Sample records for hand-held gamma-ray spectrometer

  1. Detector optimization for hand-held CsI(Tl)/HgI{sub 2} gamma-ray scintillation spectrometer applications

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wang, Y.J.; Patt, B.E.; Iwanczyk, J.S.

    Gamma-ray spectrometers using mercuric iodide (HgI{sub 2}) photodetectors (PDs) coupled with CsI(Tl) scintillators have shown excellent energy resolutions and high detection efficiency at room temperature. Additionally HgI{sub 2} semiconductor PDs allow for extreme miniaturization of the detector packaging compared with photomultiplier tube (PMT) based detectors. These advantages make possible the construction of a new generation of hand-held gamma-ray spectrometers. Studies of detector optimization for this application have been undertaken. Several contact materials including hydrogen and semi-transparent metal films have been evaluated and compared for their performances and long term stability. In order to provide higher gamma-ray detection efficiency (i.e., largermore » scintillator volume), but without causing significant degradation of the excellent response achieved with the matched scintillator/PD interface, the scintillator/PD configuration has been studied. A Monte Carlo simulation model has been developed so that the spectral shape can be predicted for various scintillator shapes and surface treatments.« less

  2. Direction-Sensitive Hand-Held Gamma-Ray Spectrometer

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Mukhopadhyay, S.

    2012-10-04

    A novel, light-weight, hand-held gamma-ray detector with directional sensitivity is being designed. The detector uses a set of multiple rings around two cylindrical surfaces, which provides precise location of two interaction points on two concentric cylindrical planes, wherefrom the source location can be traced back by back projection and/or Compton imaging technique. The detectors are 2.0 × 2.0 mm europium-doped strontium iodide (SrI2:Eu2+) crystals, whose light output has been measured to exceed 120,000 photons/MeV, making it one of the brightest scintillators in existence. The crystal’s energy resolution, less than 3% at 662 keV, is also excellent, and the response ismore » highly linear over a wide range of gamma-ray energies. The emission of SrI2:Eu2+ is well matched to both photo-multiplier tubes and blue-enhanced silicon photodiodes. The solid-state photomultipliers used in this design (each 2.0 × 2.0 mm) are arrays of active pixel sensors (avalanche photodiodes driven beyond their breakdown voltage in reverse bias); each pixel acts as a binary photon detector, and their summed output is an analog representation of the total photon energy, while the individual pixel accurately defines the point of interaction. A simple back-projection algorithm involving cone-surface mapping is being modeled. The back projection for an event cone is a conical surface defining the possible location of the source. The cone axis is the straight line passing through the first and second interaction points.« less

  3. NEAR Gamma Ray Spectrometer Characterization and Repair

    NASA Technical Reports Server (NTRS)

    Groves, Joel Lee; Vajda, Stefan

    1998-01-01

    This report covers the work completed in the third year of the contract. The principle activities during this period were (1) the characterization of the NEAR 2 Gamma Ray Spectrometer using a neutron generator to generate complex gamma ray spectra and a large Ge Detecter to identify all the major peaks in the spectra; (2) the evaluation and repair of the Engineering Model Unit of the Gamma Ray Spectrometer for the NEAR mission; (3) the investigation of polycapillary x-ray optics for x-ray detection; and (4) technology transfer from NASA to forensic science.

  4. US-ROK Action Sheet 34: Safeguards Application of a Hand-held Mechanically Cooled Germanium Spectrometer

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Dreyer, J.; Burks, M.; Ham, Y.

    2015-10-20

    This report summarizes results of Action Sheet 34 - for the cooperative efforts on the field testing and evaluation of a high-resolution, hand-held, gamma-ray spectrometer, known as SPG (Spectroscopic Planar Germanium), for safeguards application such as short notice inspections, UF6 analysis, enrichment determination, and other potential applications. The Spectroscopic Planar Germanium (SPG) has been demonstrated IAEA Physical Inventory Verification (PIV) in South Korea. This field test was a success and the feedback provided by KINAC, IAEA, and national laboratory staff was used to direct efforts to improve the instrument this year. Key points in this report include measurement results frommore » PIV, analysis of spectra with commercially available Ortec U235 and PC-FRAM, and completion of tripod and tungsten collimator and integration of user feedback.« less

  5. Noiseless coding for the Gamma Ray spectrometer

    NASA Technical Reports Server (NTRS)

    Rice, R.; Lee, J. J.

    1985-01-01

    The payload of several future unmanned space missions will include a sophisticated gamma ray spectrometer. Severely constrained data rates during certain portions of these missions could limit the possible science return from this instrument. This report investigates the application of universal noiseless coding techniques to represent gamma ray spectrometer data more efficiently without any loss in data integrity. Performance results demonstrate compression factors from 2.5:1 to 20:1 in comparison to a standard representation. Feasibility was also demonstrated by implementing a microprocessor breadboard coder/decoder using an Intel 8086 processor.

  6. Hard X-ray and low-energy gamma-ray spectrometers

    NASA Technical Reports Server (NTRS)

    Gehrels, N.; Crannell, C. J.; Orwig, L. E.; Forrest, D. J.; Lin, R. P.; Starr, R.

    1988-01-01

    Basic principles of operation and characteristics of scintillation and semi-conductor detectors used for solar hard X-ray and gamma-ray spectrometers are presented. Scintillation materials such as NaI offer high stopping power for incident gamma rays, modest energy resolution, and relatively simple operation. They are, to date, the most often used detector in solar gamma-ray spectroscopy. The scintillator BGO has higher stopping power than NaI, but poorer energy resolution. The primary advantage of semi-conductor materials such as Ge is their high-energy resolution. Monte-Carlo simulations of the response of NaI and Ge detectors to model solar flare inputs show the benefit of high resoluton for studying spectral lines. No semi-conductor material besides Ge is currently available with adequate combined size and purity to make general-use hard X-ray and gamma-ray detectors for solar studies.

  7. Venus Measurements by the MESSENGER Gamma-Ray and X-Ray Spectrometers

    NASA Astrophysics Data System (ADS)

    Rhodes, E. A.; Starr, R. D.; Goldsten, J. O.; Schlemm, C. E.; Boynton, W. V.

    2007-12-01

    The Gamma-Ray Spectrometer (GRS), which is a part of the Gamma-Ray and Neutron Spectrometer Instrument, and the X-Ray Spectrometer (XRS) on the MESSENGER spacecraft made calibration measurements during the Venus flyby on June 5, 2007. The purpose of these instruments is to determine elemental abundances on the surface of Mercury. The GRS measures gamma-rays emitted from element interactions with cosmic rays impinging on the surface, while the XRS measures X-ray emissions induced on the surface by the incident solar flux. The GRS sensor is a high-resolution high-purity Ge detector cooled by a Stirling cryocooler, surrounded by a borated-plastic anticoincidence shield. The GRS is sensitive to gamma-rays up to ~10 MeV and can identify most major elements, sampling down to depths of about ten centimeters. Only the shield was powered on for this flyby in order to conserve cooler lifetime. Gamma-rays were observed coming from Venus as well as from the spacecraft. Although the Venus gamma-rays originate from its thick atmosphere rather than its surface, the GRS data from this encounter will provide useful calibration data from a source of known composition. In particular, the data will be useful for determining GRS sensitivity and pointing options for the Mercury flybys, the first of which will be in January 2008. The X-ray spectrum of a planetary surface is dominated by a combination of the fluorescence and scattered solar X-rays. The most prominent fluorescent lines are the Kα lines from the major elements Mg, Al, Si, S, Ca, Ti, and Fe (1-10 keV). The sampling depth is less than 100 u m. The XRS is similar in design to experiments flown on Apollo 15 and 16 and the NEAR-Shoemaker mission. Three large-area gas-proportional counters view the planet, and a small Si-PIN detector mounted on the spacecraft sunshade monitors the Sun. The energy resolution of the gas proportional counters (~850 eV at 5.9 keV) is sufficient to resolve the X-ray lines above 2 keV, but Al and Mg

  8. Instrumental background in balloon-borne gamma-ray spectrometers and techniques for its reduction

    NASA Technical Reports Server (NTRS)

    Gehrels, N.

    1985-01-01

    Instrumental background in balloon-borne gamma-ray spectrometers is presented. The calculations are based on newly available interaction cross sections and new analytic techniques, and are the most detailed and accurate published to date. Results compare well with measurements made in the 20 keV to 10 MeV energy range by the Goddard Low Energy Gamma-ray Spectrometer (LEGS). The principal components of the continuum background in spectrometers with GE detectors and thick active shields are: (1) elastic neutron scattering of atmospheric neutrons on the Ge nuclei; (2) aperture flux of atmospheric and cosmic gamma rays; (3) beta decays of unstable nuclides produced by nuclear interactions of atmospheric protons and neutrons with Ge nuclei; and (4) shield leakage of atmospheric gamma rays. The improved understanding of these components leads to several recommended techniques for reducing the background.

  9. Superconducting High Energy Resolution Gamma-ray Spectrometers

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Chow, D T

    2002-02-22

    We have demonstrated that a bulk absorber coupled to a TES can serve as a good gamma-ray spectrometer. Our measured energy resolution of 70 eV at 60 keV is among the best measurements in this field. We have also shown excellent agreement between the noise predictions and measured noise. Despite this good result, we noted that our detector design has shortcomings with a low count rate and vulnerabilities with the linearity of energy response. We addressed these issues by implementation of an active negative feedback bias. We demonstrated the effects of active bias such as additional pulse shortening, reduction ofmore » TES change in temperature during a pulse, and linearization of energy response at low energy. Linearization at higher energy is possible with optimized heat capacities and thermal conductivities of the microcalorimeter. However, the current fabrication process has low control and repeatability over the thermal properties. Thus, optimization of the detector performance is difficult until the fabrication process is improved. Currently, several efforts are underway to better control the fabrication of our gamma-ray spectrometers. We are developing a full-wafer process to produce TES films. We are investigating the thermal conductivity and surface roughness of thicker SiN membranes. We are exploring alternative methods to couple the absorber to the TES film for reproducibility. We are also optimizing the thermal conductivities within the detector to minimize two-element phonon noise. We are experimenting with different absorber materials to optimize absorption efficiency and heat capacity. We are also working on minimizing Johnson noise from the E S shunt and SQUID amplifier noise. We have shown that our performance, noise, and active bias models agree very well with measured data from several microcalorimeters. Once the fabrication improvements have been implemented, we have no doubt that our gamma-ray spectrometer will achieve even more spectacular

  10. A Compton scatter attenuation gamma ray spectrometer

    NASA Technical Reports Server (NTRS)

    Austin, W. E.

    1972-01-01

    A Compton scatter attenuation gamma ray spectrometer conceptual design is discussed for performing gamma spectral measurements in monodirectional gamma fields from 100 R per hour to 1,000,000 R per hour. Selectable Compton targets are used to scatter gamma photons onto an otherwise heavily shielded detector with changeable scattering efficiencies such that the count rate is maintained between 500 and 10,000 per second. Use of two sum-Compton coincident detectors, one for energies up to 1.5 MeV and the other for 600 keV to 10 MeV, will allow good peak to tail pulse height ratios to be obtained over the entire spectrum and reduces the neutron recoil background rate.

  11. Handheld dual thermal neutron detector and gamma-ray spectrometer

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Stowe, Ashley C.; Burger, Arnold; Bhattacharya, Pijush

    2017-05-02

    A combined thermal neutron detector and gamma-ray spectrometer system, including: a first detection medium including a lithium chalcopyrite crystal operable for detecting neutrons; a gamma ray shielding material disposed adjacent to the first detection medium; a second detection medium including one of a doped metal halide, an elpasolite, and a high Z semiconductor scintillator crystal operable for detecting gamma rays; a neutron shielding material disposed adjacent to the second detection medium; and a photodetector coupled to the second detection medium also operable for detecting the gamma rays; wherein the first detection medium and the second detection medium do not overlapmore » in an orthogonal plane to a radiation flux. Optionally, the first detection medium includes a .sup.6LiInSe.sub.2 crystal. Optionally, the second detection medium includes a SrI.sub.2(Eu) scintillation crystal.« less

  12. The Feasibility of Event Sequence Discrimination for the Improvement of Gamma-Ray Spectrometer Sensitivity

    DTIC Science & Technology

    1989-12-29

    1.1.2. General Performance Criteria for Gamma Ray Spectrometers 4 1.1.3. Special Criteria for Space-Based Spectrometer Systems 7 1.1.4. Prior Approaches...calculations were performed for selected incident gamma ray energies and were used to generate tabular and graphical listings of gamma scattering results. The... generated . These output presentations were studied to identify behavior patterns of "good" and "bad" event sequences. For the specific gamma energy

  13. The transient gamma-ray spectrometer

    NASA Technical Reports Server (NTRS)

    Owens, A.; Baker, R.; Cline, T. L.; Gehrels, N.; Jermakian, J.; Nolan, T.; Ramaty, R.; Smith, G.; Stilwell, D. E.; Teegarden, B. J.

    1991-01-01

    The authors describe the Transient Gamma-Ray Spectrometer (TGRS) to be flown onboard the WIND spacecraft. This instrument is designed to detect cosmic gamma-ray bursts over the energy range of 20 keV to 10 MeV with an expected spectroscopic resolution of 2 keV at 1 MeV (E/Delta-E = 500). The active detection element is a 215-cu cm high-purity n-type Ge crystal cooled to cryogenic temperatures by a passive radiative cooler. The geometric field of view (FOV) defined by the cooler is 170 deg FWFM. Burst data are stored directly in an onboard 2.75-Mb burst memory with an absolute timing accuracy of +/-1.5 ms. This capacity is sufficient to store the entire spectral data set of all but the largest bursts. In addition to burst measurements, the instrument will also study solar flares, search for possible diffuse background lines, and monitor the 511-keV positron annihilation radiation from the galactic center. The experiment is scheduled to be launched on a Delta II launch vehicle from Cape Canaveral on December 31, 1992.

  14. Observing gamma-ray bursts with the INTEGRAL spectrometer SPI

    NASA Technical Reports Server (NTRS)

    Skinner, G. K.; Connell, P. H.; Naya, J. E.; Seifert, H.; Teegarden, B. J.

    1997-01-01

    The spectrometer for INTEGRAL (SPI) is a germanium spectrometer with a wide field of view and will provide the International Gamma Ray Astrophysics Laboratory (INTEGRAL) mission with the opportunity of studying gamma ray bursts. Simulations carried out to assess the response of the instrument using data from real burst data as input are reported on. It is shown that, despite the angular resolution of 3 deg, it is possible to locate the direction of bursts with an accuracy of a few arcmin, while offering the high spectral resolution of the germanium detectors. It is remarked that the SPI field of view is similar to the size of the halo of bursts expected around M 31 on galactic models. The detectability of bursts with such a halo is discussed.

  15. Elpasolite Planetary Ice and Composition Spectrometer (EPICS): A Low-Resource Combined Gamma-Ray and Neutron Spectrometer for Planetary Science

    NASA Astrophysics Data System (ADS)

    Stonehill, L. C.; Coupland, D. D. S.; Dallmann, N. A.; Feldman, W. C.; Mesick, K.; Nowicki, S.; Storms, S.

    2017-12-01

    The Elpasolite Planetary Ice and Composition Spectrometer (EPICS) is an innovative, low-resource gamma-ray and neutron spectrometer for planetary science missions, enabled by new scintillator and photodetector technologies. Neutrons and gamma rays are produced by cosmic ray interactions with planetary bodies and their subsequent interactions with the near-surface materials produce distinctive energy spectra. Measuring these spectra reveals details of the planetary near-surface composition that are not accessible through any other phenomenology. EPICS will be the first planetary science instrument to fully integrate the neutron and gamma-ray spectrometers. This integration is enabled by the elpasolite family of scintillators that offer gamma-ray spectroscopy energy resolutions as good as 3% FWHM at 662 keV, thermal neutron sensitivity, and the ability to distinguish gamma-ray and neutron signals via pulse shape differences. This new detection technology will significantly reduce size, weight, and power (SWaP) while providing similar neutron performance and improved gamma energy resolution compared to previous scintillator instruments, and the ability to monitor the cosmic-ray source term. EPICS will detect scintillation light with silicon photomultipliers rather than traditional photomultiplier tubes, offering dramatic additional SWaP reduction. EPICS is under development with Los Alamos National Laboratory internal research and development funding. Here we report on the EPICS design, provide an update on the current status of the EPICS development, and discuss the expected sensitivity and performance of EPICS in several potential missions to airless bodies.

  16. TIGRESS: TRIUMF-ISAC gamma-ray escape-suppressed spectrometer

    NASA Astrophysics Data System (ADS)

    Svensson, C. E.; Amaudruz, P.; Andreoiu, C.; Andreyev, A.; Austin, R. A. E.; Ball, G. C.; Bandyopadhyay, D.; Boston, A. J.; Chakrawarthy, R. S.; Chen, A. A.; Churchman, R.; Drake, T. E.; Finlay, P.; Garrett, P. E.; Grinyer, G. F.; Hackman, G.; Hyland, B.; Jones, B.; Kanungo, R.; Maharaj, R.; Martin, J. P.; Morris, D.; Morton, A. C.; Pearson, C. J.; Phillips, A. A.; Ressler, J. J.; Roy, R.; Sarazin, F.; Schumaker, M. A.; Scraggs, H. C.; Smith, M. B.; Starinsky, N.; Valiente-Dobón, J. J.; Waddington, J. C.; Watters, L. M.

    2005-10-01

    The TRIUMF-ISAC gamma-ray escape-suppressed spectrometer (TIGRESS) is a new γ-ray detector array being developed for use at TRIUMF's Isotope Separator and Accelerator (ISAC) radioactive ion beam facility. TIGRESS will comprise 12 32-fold segmented clover-type HPGe detectors coupled with 20-fold segmented modular Compton suppression shields and custom digital signal processing electronics. This paper provides an overview of the TIGRESS project and progress in its development to date.

  17. Development of a Gamma-Ray Spectrometer for Korean Pathfinder Lunar Orbiter

    NASA Astrophysics Data System (ADS)

    Kim, Kyeong Ja; Park, Junghun; Choi, Yire; Lee, Sungsoon; Yeon, Youngkwang; Yi, Eung Seok; Jeong, Meeyoung; Sun, Changwan; van Gasselt, Stephan; Lee, K. B.; Kim, Yongkwon; Min, Kyungwook; Kang, Kyungin; Cho, Jinyeon; Park, Kookjin; Hasebe, Nobuyuki; Elphic, Richard; Englert, Peter; Gasnault, Olivier; Lim, Lucy; Shibamura, Eido; GRS Team

    2016-10-01

    Korea is preparing for a lunar orbiter mission (KPLO) to be developed in no later than 2018. Onboard the spacecraft is a gamma ray spectrometer (KLGRS) allowing to collect low energy gamma-ray signals in order to detect elements by either X-ray fluorescence or by natural radioactive decay in the low as well as higher energy regions of up to 10 MeV. Scientific objectives include lunar resources (water and volatile measurements, rare earth elements and precious metals, energy resources, major elemental distributions for prospective in-situ utilizations), investigation of the lunar geology and studies of the lunar environment (mapping of the global radiation environment from keV to 10 MeV, high energy cosmic ray flux using the plastic scintillator).The Gamma-Ray Spectrometer (GRS) system is a compact low-weight instrument for the chemical analysis of lunar surface materials within a gamma-ray energy range from 10s keV to 10 MeV. The main LaBr3 detector is surrounded by an anti-coincidence counting module of BGO/PS scintillators to reduce both low gamma-ray background from the spacecraft and housing materials and high energy gamma-ray background from cosmic rays. The GRS system will determine the elemental compositions of the near surface of the Moon.The GRS system is a recently developed gamma-ray scintillation based detector which can be used as a replacement for the HPGe GRS sensor with the advantage of being able to operate at a wide range of temperatures with remarkable energy resolution. LaBr3 also has a high photoelectron yield, fast scintillation response, good linearity and thermal stability. With these major advantages, the LaBr3 GRS system will allow us to investigate scientific objectives and assess important research questions on lunar geology and resource exploration.The GRS investigation will help to assess open questions related to the spatial distribution and origin of the elements on the lunar surface and will contribute to unravel geological surface

  18. Surgical guidance system using hand-held probe with accompanying positron coincidence detector

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Majewski, Stanislaw; Weisenberger, Andrew G.

    A surgical guidance system offering different levels of imaging capability while maintaining the same hand-held convenient small size of light-weight intra-operative probes. The surgical guidance system includes a second detector, typically an imager, located behind the area of surgical interest to form a coincidence guidance system with the hand-held probe. This approach is focused on the detection of positron emitting biomarkers with gamma rays accompanying positron emissions from the radiolabeled nuclei.

  19. Isotopic response with small scintillator based gamma-ray spectrometers

    DOEpatents

    Madden, Norman W [Sparks, NV; Goulding, Frederick S [Lafayette, CA; Asztalos, Stephen J [Oakland, CA

    2012-01-24

    The intrinsic background of a gamma ray spectrometer is significantly reduced by surrounding the scintillator with a second scintillator. This second (external) scintillator surrounds the first scintillator and has an opening of approximately the same diameter as the smaller central scintillator in the forward direction. The second scintillator is selected to have a higher atomic number, and thus has a larger probability for a Compton scattering interaction than within the inner region. Scattering events that are essentially simultaneous in coincidence to the first and second scintillators, from an electronics perspective, are precluded electronically from the data stream. Thus, only gamma-rays that are wholly contained in the smaller central scintillator are used for analytic purposes.

  20. Search for gamma-ray transients using the SMM spectrometer

    NASA Technical Reports Server (NTRS)

    Share, G. H.; Harris, M. J.; Leising, M. D.; Messina, D. C.

    1993-01-01

    Observations for transient radiation made by the Gamma Ray Spectrometer on the SMM satellite are summarized. Spectra were obtained from 215 solar flares and 177 gamma-ray bursts. No narrow or moderately broadened lines were observed in any of the bursts. The rate of bursts is consistent with a constant over the mission but is weakly correlated with solar activity. No evidence was found for bursts of 511 keV line emission, unaccompanied by a strong continuum, at levels not less than 0.05 gamma/sq cm s for bursts lasting not more than 16 s. No evidence was found for broad features near 1 MeV from Cyg X-1, the Galactic center, or the Crab in 12-d integrations at levels not less than 0.006 gamma/sq cm s. No evidence was found for transient celestial narrow-line emission from 300 keV to 7 MeV on min-to-hrs-long time scales from 1984 to 1989.

  1. Gamma Ray and Neutron Spectrometer for the Lunar Resource Mapper

    NASA Technical Reports Server (NTRS)

    Moss, C. E.; Byrd, R. C.; Drake, D. M.; Feldman, W. C.; Martin, R. A.; Merrigan, M. A.; Reedy, R. C.

    1992-01-01

    One of the early Space Exploration Initiatives will be a lunar orbiter to map the elemental composition of the Moon. This mission will support further lunar exploration and habitation and will provide a valuable dataset for understanding lunar geological processes. The proposed payload will consist of the gamma ray and neutron spectrometers which are discussed, an x ray fluorescence imager, and possibly one or two other instruments.

  2. Improved Lunar Iron Map Obtained by the Kaguya Gamma-Ray Spectrometer

    NASA Astrophysics Data System (ADS)

    Naito, M.; Hasebe, N.; Nagaoka, H.; Shibamura, E.; Ohtake, M.; Kim, K. J.; Wöhler, C.; Berezhnoy, A. A.

    2018-04-01

    The lunar iron distribution is determined by the observation data of Kaguya Gamma-ray Spectrometer (KGRS). The excellent energy resolution of KGRS enables us to produce high quality FeO map with lower limit of about 3 wt%.

  3. Portable compton gamma-ray detection system

    DOEpatents

    Rowland, Mark S [Alamo, CA; Oldaker, Mark E [Pleasanton, CA

    2008-03-04

    A Compton scattered gamma-ray detector system. The system comprises a gamma-ray spectrometer and an annular array of individual scintillators. The scintillators are positioned so that they are arrayed around the gamma-ray spectrometer. The annular array of individual scintillators includes a first scintillator. A radiation shield is positioned around the first scintillator. A multi-channel analyzer is operatively connected to the gamma-ray spectrometer and the annular array of individual scintillators.

  4. Characteristics of bursts observed by the SMM Gamma-Ray Spectrometer

    NASA Technical Reports Server (NTRS)

    Share, G. H.; Messina, D. C.; Iadicicco, A.; Matz, S. M.; Rieger, E.; Forrest, D. J.

    1992-01-01

    The Gamma Ray Spectrometer (GRS) on the SMM completed close to 10 years of highly successful operation when the spacecraft reentered the atmosphere on December 2, 1989. During this period the GRS detected 177 events above 300 keV which have been classified as cosmic gamma-ray bursts. A catalog of these events is in preparation which will include time profiles and spectra for all events. Visual inspection of the spectra indicates that emission typically extends into the MeV range, without any evidence for a high-energy cutoff; 17 of these events are also observed above 10 MeV. We find no convincing evidence for line-like emission features in any of the time-integrated spectra.

  5. Field gamma-ray spectrometer GS256: measurements stability

    NASA Astrophysics Data System (ADS)

    Mojzeš, Andrej

    2009-01-01

    The stability of in situ readings of the portable gamma-ray spectrometer GS256 during the field season of 2006 was studied. The instrument is an impulse detector of gamma rays based on NaI(Tl) 3" × 3" scintillation unit and 256-channel spectral analyzer which allows simultaneous assessment of up to 8 radioisotopes in rocks. It is commonly used in surface geophysical survey for the measurement of natural 40K, 238U and 232Th but also artificial 137Cs quantities. The statistical evaluation is given of both repeated measurements - in the laboratory and at several field control points in different survey areas. The variability of values shows both the instrument stability and also the relative influence of some meteorological factors, mainly rainfalls. The analysis shows an acceptable level of instrument measurements stability, the necessity to avoid measurement under unfavourable meteorological conditions and to keep detailed field book information about time, position and work conditions.

  6. Thermal neutron detector and gamma-ray spectrometer utilizing a single material

    DOEpatents

    Stowe, Ashley; Burger, Arnold; Lukosi, Eric

    2017-05-02

    A combined thermal neutron detector and gamma-ray spectrometer system, including: a detection medium including a lithium chalcopyrite crystal operable for detecting thermal neutrons in a semiconductor mode and gamma-rays in a scintillator mode; and a photodetector coupled to the detection medium also operable for detecting the gamma rays. Optionally, the detection medium includes a .sup.6LiInSe.sub.2 crystal. Optionally, the detection medium comprises a compound formed by the process of: melting a Group III element; adding a Group I element to the melted Group III element at a rate that allows the Group I and Group III elements to react thereby providing a single phase I-III compound; and adding a Group VI element to the single phase I-III compound and heating; wherein the Group I element includes lithium.

  7. Environmental radionuclides as contaminants of HPGe gamma-ray spectrometers: Monte Carlo simulations for Modane underground laboratory.

    PubMed

    Breier, R; Brudanin, V B; Loaiza, P; Piquemal, F; Povinec, P P; Rukhadze, E; Rukhadze, N; Štekl, I

    2018-05-21

    The main limitation in the high-sensitive HPGe gamma-ray spectrometry has been the detector background, even for detectors placed deep underground. Environmental radionuclides such as 40 K and decay products in the 238 U and 232 Th chains have been identified as the most important radioactive contaminants of construction parts of HPGe gamma-ray spectrometers. Monte Carlo simulations have shown that the massive inner and outer lead shields have been the main contributors to the HPGe-detector background, followed by aluminum cryostat, copper cold finger, detector holder and the lead ring with FET. The Monte Carlo simulated cosmic-ray background gamma-ray spectrum has been by about three orders of magnitude lower than the experimental spectrum measured in the Modane underground laboratory (4800 m w.e.), underlying the importance of using radiopure materials for the construction of ultra-low-level HPGe gamma-ray spectrometers. Copyright © 2018 Elsevier Ltd. All rights reserved.

  8. Airborne gamma-ray spectrometer and magnetometer survey: Durango Quadrangle (Colorado). Final report

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Not Available

    1979-07-01

    Results from the airborne gamma-ray spectrometer and magnetometer survey of Durango Quadrangle in Colorado are presented in the form of radiometric multiple-parameter stacked profiles, histograms, flight path map, and magnetic and ancillary stacked profile data.

  9. Instrumental and atmospheric background lines observed by the SMM gamma-ray spectrometer

    NASA Technical Reports Server (NTRS)

    Share, G. H.; Kinzer, R. L.; Strickman, M. S.; Letaw, J. R.; Chupp, E. L.

    1989-01-01

    Preliminary identifications of instrumental and atmospheric background lines detected by the gamma-ray spectrometer on NASA's Solar Maximum Mission satellite (SMM) are presented. The long-term and stable operation of this experiment has provided data of high quality for use in this analysis. Methods are described for identifying radioactive isotopes which use their different decay times. Temporal evolution of the features are revealed by spectral comparisons, subtractions, and fits. An understanding of these temporal variations has enabled the data to be used for detecting celestial gamma-ray sources.

  10. The gamma-ray observatory

    NASA Technical Reports Server (NTRS)

    1991-01-01

    An overview is given of the Gamma Ray Observatory (GRO) mission. Detection of gamma rays and gamma ray sources, operations using the Space Shuttle, and instruments aboard the GRO, including the Burst and Transient Source Experiment (BATSE), the Oriented Scintillation Spectrometer Experiment (OSSE), the Imaging Compton Telescope (COMPTEL), and the Energetic Gamma Ray Experiment Telescope (EGRET) are among the topics surveyed.

  11. Hand-held radiometry: A set of notes developed for use at the Workshop of Hand-held radiometry

    NASA Technical Reports Server (NTRS)

    Jackson, R. D.; Pinter, P. J., Jr.; Reginato, R. J.; Idso, S. B. (Principal Investigator)

    1980-01-01

    A set of notes was developed to aid the beginner in hand-held radiometry. The electromagnetic spectrum is reviewed, and pertinent terms are defined. View areas of multiband radiometers are developed to show the areas of coincidence of adjacent bands. The amounts of plant cover seen by radiometers having different fields of view are described. Vegetation indices are derived and discussed. Response functions of several radiometers are shown and applied to spectrometer data taken over 12 wheat plots, to provide a comparison of instruments and bands within and among instruments. The calculation of solar time is reviewed and applied to the calculation of the local time of LANDSAT satellite overpasses for any particular location in the Northern Hemisphere. The use and misuse of hand-held infrared thermometers are discussed, and a procedure for photographic determination of plant cover is described. Some suggestions are offered concerning procedures to be followed when collecting hand-held spectral and thermal data. A list of references pertinent to hand-held radiometry is included.

  12. Calibration of Ge gamma-ray spectrometers for complex sample geometries and matrices

    NASA Astrophysics Data System (ADS)

    Semkow, T. M.; Bradt, C. J.; Beach, S. E.; Haines, D. K.; Khan, A. J.; Bari, A.; Torres, M. A.; Marrantino, J. C.; Syed, U.-F.; Kitto, M. E.; Hoffman, T. J.; Curtis, P.

    2015-11-01

    A comprehensive study of the efficiency calibration and calibration verification of Ge gamma-ray spectrometers was performed using semi-empirical, computational Monte-Carlo (MC), and transfer methods. The aim of this study was to evaluate the accuracy of the quantification of gamma-emitting radionuclides in complex matrices normally encountered in environmental and food samples. A wide range of gamma energies from 59.5 to 1836.0 keV and geometries from a 10-mL jar to 1.4-L Marinelli beaker were studied on four Ge spectrometers with the relative efficiencies between 102% and 140%. Density and coincidence summing corrections were applied. Innovative techniques were developed for the preparation of artificial complex matrices from materials such as acidified water, polystyrene, ethanol, sugar, and sand, resulting in the densities ranging from 0.3655 to 2.164 g cm-3. They were spiked with gamma activity traceable to international standards and used for calibration verifications. A quantitative method of tuning MC calculations to experiment was developed based on a multidimensional chi-square paraboloid.

  13. Radiation measurement above the lunar surface by Kaguya gamma-ray spectrometer

    NASA Astrophysics Data System (ADS)

    Hasebe, Nobuyuki; Nagaoka, Hiroshi; Kusano, Hiroki; Hareyama, Matoko; Ideguchi, Yusuke; Shimizu, Sota; Shibamura, Eido

    The lunar surface is filled with various ionizing radiations such as high energy galactic particles, albedo particles and secondary radiations of neutrons, gamma rays and other elementary particles. A high-resolution Kaguya Gamma-Ray Spectrometer (KGRS) was carried on the Japan’s lunar explorer SELENE (Kaguya), the largest lunar orbiter since the Apollo missions. The KGRS instrument employed, for the first time in lunar exploration, a high-purity Ge crystal to increase the identification capability of elemental gamma-ray lines. The Ge detector is surrounded by BGO and plastic counters as for anticoincidence shields. The KGRS measured gamma rays in the energy range from 200 keV to 13 MeV with high precision to determine the chemical composition of the lunar surface. It provided data on the abundance of major elements over the entire lunar surface. In addition to the gamma-ray observation by the KGRS, it successfully measured the global distribution of fast neutrons. In the energy spectra of gamma-rays observed by the KGRS, several saw-tooth- peaks of Ge are included, which are formed by the collision interaction of lunar fast neutrons with Ge atoms in the Ge crystal. With these saw-tooth-peaks analysis, global distribution of neutrons emitted from the lunara surface was successfully created, which was compared with the previous results obtained by Lunar Prospector neutron maps. Another anticoincidence counter, the plastic counter with 5 mm thickness, was used to veto radiation events mostly generated by charged particles. A single photomultiplier serves to count scintillation light from the plastic scintillation counter. The global map of counting rates observed by the plastic counter was also created, implying that the radiation counting rate implies the geological distribution, in spite that the plastic counter mostly measures high energy charged particles and energetic neutrons. These results are presented and discussed.

  14. The gamma-ray spectrometer experiment on the solar maximum mission satellite

    NASA Technical Reports Server (NTRS)

    Chupp, E. L.

    1988-01-01

    The major activities (through 15 November l987) of the Solar Maximum Mission Gamma-Ray Spectrometer (SMM GRS) team members at the University of New Hampshire and the Naval Research Laboratory and the work of the Guest Investigators since the last Semi-Annual Report are summarized. In addition, an updated list of published papers and invited papers or papers presented at scientific meetings is provided.

  15. Measurement of 0.511-MeV gamma rays with a balloon-borne Ge/Li/ spectrometer

    NASA Technical Reports Server (NTRS)

    Ling, J. C.; Mahoney, W. A.; Willett, J. B.; Jacobson, A. S.

    1977-01-01

    A collimated high-resolution gamma ray spectrometer was flown on a balloon over Palestine, Texas, on June 10, 1974, to obtain measurements of the terrestrial and extraterrestrial 0.511-MeV gamma rays. The spectrometer consists of four 40-cu-cm Ge(Li) crystals operating in the energy range 0.06-10 MeV; this cluster of detectors is surrounded by a CsI(Na) anticoincidence shield. This system is used primarily to allow measurements of the two escape peaks associated with high-energy gamma ray lines. It also allows a measurement of the background component of the 0.511-MeV flux produced by beta(+) decays in materials inside the CsI(Na) shield. It is shown that the measurements of the atmospheric fluxes are consistent with earlier results after allowance is made for an additional component of the background due to beta(+) decays produced by neutron- and proton-initiated interactions with materials in and near the detector. Results of the extraterrestrial flux require an extensive detailed analysis of the time-varying background because of activation buildup and balloon spatial drifts.

  16. Maintaining radiation exposures as low as reasonably achievable (ALARA) for dental personnel operating portable hand-held x-ray equipment.

    PubMed

    McGiff, Thomas J; Danforth, Robert A; Herschaft, Edward E

    2012-08-01

    Clinical experience indicates that newly available portable hand-held x-ray units provide advantages compared to traditional fixed properly installed and operated x-ray units in dental radiography. However, concern that hand-held x-ray units produce higher operator doses than fixed x-ray units has caused regulatory agencies to mandate requirements for use of hand-held units that go beyond those recommended by the manufacturer and can discourage the use of this technology. To assess the need for additional requirements, a hand-held x-ray unit and a pair of manikins were used to measure the dose to a simulated operator under two conditions: exposures made according to the manufacturer's recommendations and exposures made according to manufacturer's recommendation except for the removal of the x-ray unit's protective backscatter shield. Dose to the simulated operator was determined using an array of personal dosimeters and a pair of pressurized ion chambers. The results indicate that the dose to an operator of this equipment will be less than 0.6 mSv y⁻¹ if the device is used according to the manufacturer's recommendations. This suggests that doses to properly trained operators of well-designed, hand-held dental x-ray units will be below 1.0 mSv y⁻¹ (2% of the annual occupational dose limit) even if additional no additional operational requirements are established by regulatory agencies. This level of annual dose is similar to those reported as typical dental personnel using fixed x-ray units and appears to satisfy the ALARA principal for this class of occupational exposures.

  17. Hand-held synchronous scan spectrometer for in situ and immediate detection of live/dead bacteria ratio

    NASA Astrophysics Data System (ADS)

    Li, Runze; Goswami, Umang; Walck, Matthew; Khan, Kasfia; Chen, Jie; Cesario, Thomas C.; Rentzepis, Peter M.

    2017-11-01

    The design, construction, and operation of a hand-held synchronously scanned, excitation-emission, double monochromator spectrometer is described. Data show that it is possible to record and display within minutes the fluorescence spectra and ratio of live/dead bacteria in situ. Excitation emission matrix contour plots display clearly bacteria fluorescence spectra before and after UV inactivation, respectively. The separation of the fluorescence band maxima of molecular components, such as tryptophan, tyrosine, and DNA, may be distinguished in the diffused fluorescence spectra of bacteria and mixtures.

  18. Hand-held synchronous scan spectrometer for in situ and immediate detection of live/dead bacteria ratio.

    PubMed

    Li, Runze; Goswami, Umang; Walck, Matthew; Khan, Kasfia; Chen, Jie; Cesario, Thomas C; Rentzepis, Peter M

    2017-11-01

    The design, construction, and operation of a hand-held synchronously scanned, excitation-emission, double monochromator spectrometer is described. Data show that it is possible to record and display within minutes the fluorescence spectra and ratio of live/dead bacteria in situ. Excitation emission matrix contour plots display clearly bacteria fluorescence spectra before and after UV inactivation, respectively. The separation of the fluorescence band maxima of molecular components, such as tryptophan, tyrosine, and DNA, may be distinguished in the diffused fluorescence spectra of bacteria and mixtures.

  19. Enhanced Analysis Techniques for an Imaging Neutron and Gamma Ray Spectrometer

    NASA Astrophysics Data System (ADS)

    Madden, Amanda C.

    The presence of gamma rays and neutrons is a strong indicator of the presence of Special Nuclear Material (SNM). The imaging Neutron and gamma ray SPECTrometer (NSPECT) developed by the University of New Hampshire and Michigan Aerospace corporation detects the fast neutrons and prompt gamma rays from fissile material, and the gamma rays from radioactive material. The instrument operates as a double scatter device, requiring a neutron or a gamma ray to interact twice in the instrument. While this detection requirement decreases the efficiency of the instrument, it offers superior background rejection and the ability to measure the energy and momentum of the incident particle. These measurements create energy spectra and images of the emitting source for source identification and localization. The dual species instrument provides superior detection than a single species alone. In realistic detection scenarios, few particles are detected from a potential threat due to source shielding, detection at a distance, high background, and weak sources. This contributes to a small signal to noise ratio, and threat detection becomes difficult. To address these difficulties, several enhanced data analysis tools were developed. A Receiver Operating Characteristic Curve (ROC) helps set instrumental alarm thresholds as well as to identify the presence of a source. Analysis of a dual-species ROC curve provides superior detection capabilities. Bayesian analysis helps to detect and identify the presence of a source through model comparisons, and helps create a background corrected count spectra for enhanced spectroscopy. Development of an instrument response using simulations and numerical analyses will help perform spectra and image deconvolution. This thesis will outline the principles of operation of the NSPECT instrument using the double scatter technology, traditional analysis techniques, and enhanced analysis techniques as applied to data from the NSPECT instrument, and an

  20. Handheld real-time volumetric 3-D gamma-ray imaging

    NASA Astrophysics Data System (ADS)

    Haefner, Andrew; Barnowski, Ross; Luke, Paul; Amman, Mark; Vetter, Kai

    2017-06-01

    This paper presents the concept of real-time fusion of gamma-ray imaging and visual scene data for a hand-held mobile Compton imaging system in 3-D. The ability to obtain and integrate both gamma-ray and scene data from a mobile platform enables improved capabilities in the localization and mapping of radioactive materials. This not only enhances the ability to localize these materials, but it also provides important contextual information of the scene which once acquired can be reviewed and further analyzed subsequently. To demonstrate these concepts, the high-efficiency multimode imager (HEMI) is used in a hand-portable implementation in combination with a Microsoft Kinect sensor. This sensor, in conjunction with open-source software, provides the ability to create a 3-D model of the scene and to track the position and orientation of HEMI in real-time. By combining the gamma-ray data and visual data, accurate 3-D maps of gamma-ray sources are produced in real-time. This approach is extended to map the location of radioactive materials within objects with unknown geometry.

  1. Performance of the prototype LaBr3 spectrometer developed for the JET gamma-ray camera upgrade.

    PubMed

    Rigamonti, D; Muraro, A; Nocente, M; Perseo, V; Boltruczyk, G; Fernandes, A; Figueiredo, J; Giacomelli, L; Gorini, G; Gosk, M; Kiptily, V; Korolczuk, S; Mianowski, S; Murari, A; Pereira, R C; Cippo, E P; Zychor, I; Tardocchi, M

    2016-11-01

    In this work, we describe the solution developed by the gamma ray camera upgrade enhancement project to improve the spectroscopic properties of the existing JET γ-ray camera. Aim of the project is to enable gamma-ray spectroscopy in JET deuterium-tritium plasmas. A dedicated pilot spectrometer based on a LaBr 3 crystal coupled to a silicon photo-multiplier has been developed. A proper pole zero cancellation network able to shorten the output signal to a length of 120 ns has been implemented allowing for spectroscopy at MHz count rates. The system has been characterized in the laboratory and shows an energy resolution of 5.5% at E γ = 0.662 MeV, which extrapolates favorably in the energy range of interest for gamma-ray emission from fast ions in fusion plasmas.

  2. A comparative study of LaBr3(Ce(3+)) and CeBr3 based gamma-ray spectrometers for planetary remote sensing applications.

    PubMed

    Kozyrev, A; Mitrofanov, I; Owens, A; Quarati, F; Benkhoff, J; Bakhtin, B; Fedosov, F; Golovin, D; Litvak, M; Malakhov, A; Mokrousov, M; Nuzhdin, I; Sanin, A; Tretyakov, V; Vostrukhin, A; Timoshenko, G; Shvetsov, V; Granja, C; Slavicek, T; Pospisil, S

    2016-08-01

    The recent availability of large volume cerium bromide crystals raises the possibility of substantially improving gamma-ray spectrometer limiting flux sensitivities over current systems based on the lanthanum tri-halides, e.g., lanthanum bromide and lanthanum chloride, especially for remote sensing, low-level counting applications or any type of measurement characterized by poor signal to noise ratios. The Russian Space Research Institute has developed and manufactured a highly sensitive gamma-ray spectrometer for remote sensing observations of the planet Mercury from the Mercury Polar Orbiter (MPO), which forms part of ESA's BepiColombo mission. The Flight Model (FM) gamma-ray spectrometer is based on a 3-in. single crystal of LaBr3(Ce(3+)) produced in a separate crystal development programme specifically for this mission. During the spectrometers development, manufacturing, and qualification phases, large crystals of CeBr3 became available in a subsequent phase of the same crystal development programme. Consequently, the Flight Spare Model (FSM) gamma-ray spectrometer was retrofitted with a 3-in. CeBr3 crystal and qualified for space. Except for the crystals, the two systems are essentially identical. In this paper, we report on a comparative assessment of the two systems, in terms of their respective spectral properties, as well as their suitability for use in planetary mission with respect to radiation tolerance and their propensity for activation. We also contrast their performance with a Ge detector representative of that flown on MESSENGER and show that: (a) both LaBr3(Ce(3+)) and CeBr3 provide superior detection systems over HPGe in the context of minimally resourced spacecraft and (b) CeBr3 is a more attractive system than LaBr3(Ce(3+)) in terms of sensitivities at lower gamma fluxes. Based on the tests, the FM has now been replaced by the FSM on the BepiColombo spacecraft. Thus, CeBr3 now forms the central gamma-ray detection element on the MPO spacecraft.

  3. Performance of the prototype LaBr{sub 3} spectrometer developed for the JET gamma-ray camera upgrade

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Rigamonti, D., E-mail: davide.rigamonti@mib.infn.it; Nocente, M.; Gorini, G.

    2016-11-15

    In this work, we describe the solution developed by the gamma ray camera upgrade enhancement project to improve the spectroscopic properties of the existing JET γ-ray camera. Aim of the project is to enable gamma-ray spectroscopy in JET deuterium-tritium plasmas. A dedicated pilot spectrometer based on a LaBr{sub 3} crystal coupled to a silicon photo-multiplier has been developed. A proper pole zero cancellation network able to shorten the output signal to a length of 120 ns has been implemented allowing for spectroscopy at MHz count rates. The system has been characterized in the laboratory and shows an energy resolution ofmore » 5.5% at E{sub γ} = 0.662 MeV, which extrapolates favorably in the energy range of interest for gamma-ray emission from fast ions in fusion plasmas.« less

  4. Development and characterization of a round hand-held silicon photomultiplier based gamma camera for intraoperative imaging

    PubMed Central

    Popovic, Kosta; McKisson, Jack E.; Kross, Brian; Lee, Seungjoon; McKisson, John; Weisenberger, Andrew G.; Proffitt, James; Stolin, Alexander; Majewski, Stan; Williams, Mark B.

    2017-01-01

    This paper describes the development of a hand-held gamma camera for intraoperative surgical guidance that is based on silicon photomultiplier (SiPM) technology. The camera incorporates a cerium doped lanthanum bromide (LaBr3:Ce) plate scintillator, an array of 80 SiPM photodetectors and a two-layer parallel-hole collimator. The field of view is circular with a 60 mm diameter. The disk-shaped camera housing is 75 mm in diameter, approximately 40.5 mm thick and has a mass of only 1.4 kg, permitting either hand-held or arm-mounted use. All camera components are integrated on a mobile cart that allows easy transport. The camera was developed for use in surgical procedures including determination of the location and extent of primary carcinomas, detection of secondary lesions and sentinel lymph node biopsy (SLNB). Here we describe the camera design and its principal operating characteristics, including spatial resolution, energy resolution, sensitivity uniformity, and geometric linearity. The gamma camera has an intrinsic spatial resolution of 4.2 mm FWHM, an energy resolution of 21.1 % FWHM at 140 keV, and a sensitivity of 481 and 73 cps/MBq when using the single- and double-layer collimators, respectively. PMID:28286345

  5. Studying Phobos subsurface structure elementary composition by neutron and gamma-rays spectrometers "NS HEND" from "Phobos-Grunt" mission.

    NASA Astrophysics Data System (ADS)

    Kozyrev, S. Alexander; Litvak, Maxim; Malakhov, Alexey; Mokrousov, Maxim; Mitrofanov, Igor; Sanin, Anton; Schulz, Rita; Shvetsov, Valery; Rogozhin, Alexander; Timoshenko, Genagy; Tretyakov, Vladislav; Vostrukhin, Andrey

    The Neutron Spectrometer HEND (NS HEND) has been proposed for studying elemental com-position of Phobos (the Mars's moon) regolith by "Phobos-Grunt" mission. NS HEND have been selected by the Federal Space Agency of Russia for the Lander of the "Phobos-Grunt" mission scheduled for launch in 2011. The shallow subsurface of Phobos might be studied by observations of induced nuclear gamma-ray lines and neutron emission. Secondary gamma-rays and neutrons are produced by energetic Galactic Cosmic Rays within 1-2 meter layer of subsur-face. The knowledge of the spectral density of neutrons in addition to measurements of nuclear gamma lines allows to deconvolve concentrations of soil-constituting elements. That is why nuclear instruments include both the segment for detection of gamma ray lines and segment of neutron spectrometer for the measurement of the neutron leakage spectra. Moreover, mea-surements of neutrons at 2.2 MeV line will also allow to study the content of hydrogen within subsurface layer about 1 meter deep. This instrument, will be able to provide observational data for composition of Phobos regolith and content of natural radioactive elements K, U and Th, and also for content of hydrogen or water ice in the Phobos subsurface. At present, the flight units of NS HEND instrument is manufactured, tested and current go through physical calibration.

  6. A Comprehensive Search for Gamma-Ray Lines in the First Year of Data from the INTEGRAL Spectrometer

    NASA Technical Reports Server (NTRS)

    Teegarden, B. J.; Watanabe, K.

    2006-01-01

    Gamma-ray lines are produced in nature by a variety of different physical processes. They can be valuable astrophysical diagnostics providing information the may be unobtainable by other means. We have carried out an extensive search for gamma-ray lines in the first year of public data from the Spectrometer (SPI) on the INTEGRAL mission. INTEGRAL has spent a large fraction of its observing time in the Galactic Plane with particular concentration in the Galactic Center (GC) region (approximately 3 Msec in the first year). Hence the most sensitive search regions are in the Galactic Plane and Center. The phase space of the search spans the energy range 20-8000 keV, and line widths from 0-1000 keV (FWHM) and includes both diffuse and point-like emission. We have searched for variable emission on time scales down to approximately 1000 sec. Diffuse emission has been searched for on a range of different spatial scales from approximately 20 degrees (the approximate field-of-view of the spectrometer) up to the entire Galactic Plane. Our search procedures were verified by the recovery of the known gamma-ray lines at 511 keV and 1809 keV at the appropriate intensities and significances. We find no evidence for any previously unknown gamma-ray lines. The upper limits range from a few x10(exp -5) per square centimeter per second to a few x10(exp -3) per square centimeter per second depending on line width, energy and exposure. Comparison is made between our results and various prior predictions of astrophysical lines

  7. Measurement of natural radionuclides in phosphgypsum using an anti-cosmic gamma-ray spectrometer.

    PubMed

    Ferreux, Laurent; Moutard, Gérard; Branger, Thierry

    2009-05-01

    Gamma-ray spectrometry measurements have been carried out to determine the activity of natural radionuclides in a phosphogypsum sample included in a specific tight container. The gamma spectrometer includes an N-type coaxial high-purity germanium (HPGe) detector equipped with an anti-cosmic system. This measurement required the determination of linear attenuation coefficients of phosphogypsum to calculate self-absorption correction between efficiency calibration conditions and measurement ones. The results are given for the three natural chains and for (40)K, in term of specific activity/g of dry material, ranging from a few Bq kg(-1) to a few hundreds Bq kg(-1). The equilibrium within the different families and the (235)U/(238)U ratio are discussed.

  8. Radioactivity observed in the sodium iodide gamma-ray spectrometer returned on the Apollo 17 mission

    NASA Technical Reports Server (NTRS)

    Dyer, C. S.; Trombka, J. I.; Schmadebeck, R. L.; Eller, E.; Bielefeld, M. J.; Okelley, G. D.; Eldridge, J. S.; Northcutt, K. J.; Metzger, A. E.; Reedy, R. C.

    1975-01-01

    In order to obtain information on radioactive background induced in the Apollo 15 and 16 gamma-ray spectrometers (7 cm x 7 cm NaI) by particle irradiation during spaceflight, and identical detector was flown and returned to earth on the Apollo 17 mission. The induced radioactivity was monitored both internally and externally from one and a half hours after splashdown. When used in conjunction with a computation scheme for estimating induced activation from calculated trapped proton and cosmic-ray fluences, these results show an important contribution resulting from both thermal and energetic neutrons produced in the heavy spacecraft by cosmic-ray interactions.

  9. Surface chemistry of selected lunar regions. [using gamma ray spectrometers

    NASA Technical Reports Server (NTRS)

    Bielefeld, M. J.; Reedy, R. C.; Metzger, A. E.; Trombka, A. I.; Arnold, J. R.

    1976-01-01

    A completely new analysis has been carried out on the data from the Apollo 15 and 16 gamma ray spectrometer experiments. The components of the continuum background have been estimated. The elements Th, K, Fe and Mg give useful results; results for Ti are significant only for a few high Ti regions. Errors are given, and the results are checked by other methods. Concentrations are reported for about sixty lunar regions; the ground track has been subdivided in various ways. The borders of the maria seem well-defined chemically, while the distribution of KREEP is broad. This wide distribution requires emplacement of KREEP before the era of mare formation. Its high concentration in western mare soils seems to require major vertical mixing.

  10. Gamma-ray burst spectroscopy capabilities of the BATSE/GRO experiment

    NASA Technical Reports Server (NTRS)

    Matteson, J. L.; Fishman, G. J.; Meegan, C. A.; Parnell, T. A.; Wilson, R. B.; Paciesas, W.; Cline, T. L.; Teegarden, B. J.

    1985-01-01

    A scintillation spectrometer is included in each of the eight BATSE/GRO detector modules, resulting in all-sky coverage for gamma-ray bursts. The scientific motivation, design and capabilities of these spectrometers for performing spectral observations over a wide range of gamma-ray energies and burst intensities are described.

  11. HEAO C-1 gamma-ray spectrometer. [experimental design

    NASA Technical Reports Server (NTRS)

    Mahoney, W. A.; Ling, J. C.; Willett, J. B.; Jacobson, A. S.

    1978-01-01

    The gamma-ray spectroscopy experiment to be launched on the third High Energy Astronomy Observatory (HEAO C) will perform a complete sky search for narrow gamma-ray line emission to the level of about 00001 photons/sq cm -sec for steady point sources. The design of this experiment and its performance based on testing and calibration to date are discussed.

  12. A comparative study of LaBr{sub 3}(Ce{sup 3+}) and CeBr{sub 3} based gamma-ray spectrometers for planetary remote sensing applications

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kozyrev, A., E-mail: kozyrev@mx.iki.rssi.ru; Mitrofanov, I.; Bakhtin, B.

    The recent availability of large volume cerium bromide crystals raises the possibility of substantially improving gamma-ray spectrometer limiting flux sensitivities over current systems based on the lanthanum tri-halides, e.g., lanthanum bromide and lanthanum chloride, especially for remote sensing, low-level counting applications or any type of measurement characterized by poor signal to noise ratios. The Russian Space Research Institute has developed and manufactured a highly sensitive gamma-ray spectrometer for remote sensing observations of the planet Mercury from the Mercury Polar Orbiter (MPO), which forms part of ESA’s BepiColombo mission. The Flight Model (FM) gamma-ray spectrometer is based on a 3-in. singlemore » crystal of LaBr{sub 3}(Ce{sup 3+}) produced in a separate crystal development programme specifically for this mission. During the spectrometers development, manufacturing, and qualification phases, large crystals of CeBr{sub 3} became available in a subsequent phase of the same crystal development programme. Consequently, the Flight Spare Model (FSM) gamma-ray spectrometer was retrofitted with a 3-in. CeBr{sub 3} crystal and qualified for space. Except for the crystals, the two systems are essentially identical. In this paper, we report on a comparative assessment of the two systems, in terms of their respective spectral properties, as well as their suitability for use in planetary mission with respect to radiation tolerance and their propensity for activation. We also contrast their performance with a Ge detector representative of that flown on MESSENGER and show that: (a) both LaBr{sub 3}(Ce{sup 3+}) and CeBr{sub 3} provide superior detection systems over HPGe in the context of minimally resourced spacecraft and (b) CeBr{sub 3} is a more attractive system than LaBr{sub 3}(Ce{sup 3+}) in terms of sensitivities at lower gamma fluxes. Based on the tests, the FM has now been replaced by the FSM on the BepiColombo spacecraft. Thus, CeBr{sub 3

  13. Research in particles and fields. [cosmic rays, gamma rays, and cosmic plasma

    NASA Technical Reports Server (NTRS)

    Stone, E. C.; Buffington, A.; Davis, L., Jr.; Prince, T. A.; Vogt, R. E.

    1984-01-01

    Research activities in cosmic rays, gamma rays, and astrophysical plasmas are reviewed. Energetic particle and photon detector systems flown on spacecraft and balloons were used to carry out the investigations. Specific instruments mentioned are: the high energy isotope spectrometer telescope, the electron/isotope spectrometer, the heavy isotope spectrometer telescope, and magnetometers. Solar flares, planetary magnetospheres, element abundance, the isotopic composition of low energy cosmic rays, and heavy nuclei are among the topics receiving research attention.

  14. Superconducting gamma and fast-neutron spectrometers with high energy resolution

    DOEpatents

    Friedrich, Stephan; , Niedermayr, Thomas R.; Labov, Simon E.

    2008-11-04

    Superconducting Gamma-ray and fast-neutron spectrometers with very high energy resolution operated at very low temperatures are provided. The sensor consists of a bulk absorber and a superconducting thermometer weakly coupled to a cold reservoir, and determines the energy of the incident particle from the rise in temperature upon absorption. A superconducting film operated at the transition between its superconducting and its normal state is used as the thermometer, and sensor operation at reservoir temperatures around 0.1 K reduces thermal fluctuations and thus enables very high energy resolution. Depending on the choice of absorber material, the spectrometer can be configured either as a Gamma-spectrometer or as a fast-neutron spectrometer.

  15. Preliminary observations of the SELENE Gamma Ray Spectrometer

    NASA Astrophysics Data System (ADS)

    Forni, O.; Diez, B.; Gasnault, O.; Munoz, B.; D'Uston, C.; Reedy, R. C.; Hasebe, N.

    2008-09-01

    Introduction We analyze the spectra measured by the Gamma Ray Spectrometer (GRS) on board the SELENE satellite [1]. SELENE was inserted in lunar orbit on 4 Oct. 2007. After passing through a health check and a function check, the GRS was shifted to nominal observation on 21 Dec. 2007. The spectra consist in various lines of interest (O, Mg, Al, Si, Ti, Ca, Fe, K, Th, U, and possibly H) superposed on a continuum. The energies of the gamma rays identify the nuclides responsible for the gamma ray emission and their intensities relate to their abundance. Data collected through 17 Feb. 2008 are studied here, corresponding to an accumulation time (Fig. 1) sufficiently good to allow preliminary mapping. Analysis of the global gamma ray spectrum In order to obtain spectra with counting statistics sufficient for peak analysis, we accumulate all observations. The identification of lines is performed on this global lunar spectrum (Fig 2). Fit of individual lines The gamma ray lines that arise from decay of longlived radioactive species are among the easiest to analyze. So far the abundance of two species is studied thanks to such lines: potassium (1461 keV) and thorium (2614 keV). Secondary neutrons from cosmic ray interactions also produce gamma ray when reacting with the planetary material, according to scattering or absorption reactions. However these lines need substantial corrections before an interpretation in terms of abundance can be performed. Lines have been examined with different techniques. The simplest method consists in summing the spectra in a window containing the line of interest. The continuum is adjusted with a polynomial and removed. Such a method was used for the gamma ray spectra collected by Lunar Prospector [2]. This method is especially robust for isolated lines, such as those of K and Th mentioned above, or with very low statistics. The second method consists in fitting the lines by summing a quadratic continuum with Gaussian lines and exponential

  16. Dense gamma-ray and pair creation using ultra-intense lasers

    NASA Astrophysics Data System (ADS)

    Liang, Edison; Lo, Willie; Hasson, Hannah; Dyer, Gilliss; Clarke, Taylor; Fasanelli, Fabio; Yao, Kelly; Marchenka, Ilija; Henderson, Alexander; Dashko, Andriy; Zhang, Yuling; Ditmire, Todd

    2016-10-01

    We report recent results of gamma-ray and e +e- pair creation experiments using the Texas Petawatt laser (TPW) in Austin and the Trident laser at LANL irradiating solid high-Z targets. In addition to achieving record high densities of emerging gamma-rays and pairs at TPW, we measured in detail the spectra of hot electrons, positrons, and gamma-rays, and studied their spectral variation with laser and target parameters. A new type of gamma-ray spectrometer, called the scintillator attenuation spectrometer (SAS), was successfully demonstrated in Trident experiments in 2015. We will discuss the design and results of the SAS. Preliminary results of new experiments at TPW carried out in the summer of 2016 will also be presented.

  17. High efficiency CsI(Tl)/HgI{sub 2} gamma ray spectrometers

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wang, Y.J.; Patt, B.E.; Iwanczyk, J.S.

    CsI(Tl)/HgI{sub 2} gamma-ray spectrometers have been constructed using 0.5 inch diameter detectors which show excellent energy resolution: 4.58% FWHM for 662 keV {sup 137}Cs gamma-ray photons. Further efforts have been focused on optimization of larger size ({ge} 1 inch diameter) detector structures and improvement of low noise electronics. In order to take full advantage of scintillation detectors for high energy gamma-rays, larger scintillators are always preferred for their higher detection efficiencies. However, the larger capacitance and higher dark current caused by the larger size of the detector could result in a higher FWHM resolution. Also, the increased probability of includingmore » nonuniformities in larger pieces of crystals makes it more difficult to obtain the high resolutions one obtains from small detectors. Thus for very large volume scintillators, it may be necessary to employ a photodiode (PD) with a sensitive area smaller than the cross-section of the scintillator. Monte Carlo simulations of the light collection for various tapered scintillator/PD configuration were performed in order to find those geometries which resulted in the best light collection. According to the simulation results, scintillators with the most favorable geometry, the conical frustum, have been fabricated and evaluated. The response of a large conical frustum (top-2 inch, bottom-1 inch, 2 inch high) CsI(Tl) scintillator coupled with a 1 inch HgI{sub 2} PD was measured. The energy resolution of the 662 keV peak was 5.57%. The spectrum shows much higher detection efficiency than those from smaller scintillators, i.e., much higher peak-to-Compton ratio in the spectrum.« less

  18. Evidence for solar flare directivity from the Gamma-Ray Spectrometer aboard the SMM satellite

    NASA Technical Reports Server (NTRS)

    Vestrand, W. T.; Forrest, D. J.; Chupp, E. L.; Rieger, E.; Share, G. H.

    1986-01-01

    A number of observations from the SMM Gamma-Ray Spectrometer are presented that altogether strongly indicate that the high-energy emission from flares is anisotropic. They are: (1) the fraction of events detected at energies above 300 keV near the limb is significantly higher than is expected for isotropically emitting flares; (2) there is a statistically significant center-to-limb variation in the 300-1000-keV spectra of flares; and (3) nearly all of the events detected at above 10 MeV are located near the limb.

  19. Characterization of the Gamma Response of a Cadmium Capture-gated Neutron Spectrometer

    NASA Astrophysics Data System (ADS)

    Hogan, Nathaniel; Rees, Lawrence; Czirr, Bart; Bastola, Suraj

    2010-10-01

    We have studied the gamma response of a newly developed capture-gated neutron spectrometer. Such spectrometers detect a dual signal from incoming neutrons, allowing for differentiation between other particles, such as gamma rays. The neutron provides a primary light pulse in either plastic or liquid scintillator through neutron-proton collisions. A capture material then delivers a second pulse as the moderated neutron captures in the intended material, which then de-excites with the release of gamma energy. The presented spectrometer alternates one centimeter thick plastic scintillators with sheets of cadmium inserted in between for neutron capture. The neutron capture in cadmium offers a release of gamma energy ˜ 9 MeV. To verify that the interaction was caused by a neutron, the response functions of both events must be well known. Due to the prior existence of many capture-gated neutron spectrometers, the proton recoil pulse has already been studied, but the capture pulse is unique to each spectrometer and must be measured. Experimental results agree with theoretical Monte-Carlo code, both suggesting that the optics and geometry of the spectrometer play a large role in its efficiency. Results prove promising for the efficiency of the spectrometer.

  20. Superallowed Fermi β-Decay Studies with SCEPTAR and the 8π Gamma-Ray Spectrometer

    NASA Astrophysics Data System (ADS)

    Koopmans, K. A.

    2005-04-01

    The 8π Gamma-Ray Spectrometer, operating at TRIUMF in Vancouver Canada, is a high-precision instrument for detecting the decay radiations from exotic nuclei. In 2003, a new beta-scintillating array called SCEPTAR was installed within the 8π Spectrometer. With these two systems, precise measurements of half-lives and branching ratios can be made, specifically on certain nuclei which exhibit Superallowed Fermi 0+ → 0+ β-decay. These data can be used to determine the value of δC, an isospin symmetry-breaking (Coulomb) correction factor to good precision. As this correction factor is currently one of the leading sources of error in the unitarity test of the CKM matrix, a precise determination of its value could help to eliminate any possible "trivial" explanation of the seeming departure of current experimental data from Standard Model predictions.

  1. Lunar surface radioactivity: preliminary results of the apollo 15 and apollo 16 gamma-ray spectrometer experiments.

    PubMed

    Metzger, A E; Trombka, J I; Peterson, L E; Reedy, R C; Arnold, J R

    1973-02-23

    Gamma-ray spectrometers on the Apollo 15 and Apollo 16 missions have been used to map the moon's radioactivity over 20 percent of its surface. The highest levels of natural radioactivity are found in Mare Imbrium and Oceanus Procellarum with contrastingly lower enhancements in the eastern maria. The ratio of potassium to uranium is higher on the far side than on the near side, although it is everywhere lower than commonly found on the earth.

  2. Lunar surface radioactivity - Preliminary results of the Apollo 15 and Apollo 16 gamma-ray spectrometer experiments.

    NASA Technical Reports Server (NTRS)

    Metzger, A. E.; Trombka, J. I.; Peterson, L. E.; Reedy, R. C.; Arnold, J. R.

    1973-01-01

    Gamma-ray spectrometers on the Apollo 15 and Apollo 16 missions have been used to map the moon's radioactivity over 20 percent of its surface. The highest levels of natural radioactivity are found in Mare Imbrium and Oceanus Procellarum with contrastingly lower enhancements in the eastern maria. The ratio of potassium to uranium is higher on the far side than on the near side, although it is everywhere lower than commonly found on the earth.

  3. Extra-oral dental radiography for disaster victims using a flat panel X-ray detector and a hand-held X-ray generator.

    PubMed

    Ohtani, M; Oshima, T; Mimasaka, S

    2017-12-01

    Forensic odontologists commonly incise the skin for post-mortem dental examinations when it is difficult to open the victim's mouth. However, it is prohibited by law to incise dead bodies without permission in Japan. Therefore, we attempted using extra-oral dental radiography, using a digital X-ray equipment with rechargeable batteries, to overcome this restriction. A phantom was placed in the prone position on a table, and three plain dental radiographs were used per case: "lateral oblique radiographs" for left and right posterior teeth and a "contact radiograph" for anterior teeth were taken using a flat panel X-ray detector and a hand-held X-ray generator. The resolving power of the images was measured by a resolution test chart, and the scattered X-ray dose was measured using an ionization chamber-type survey meter. The resolving power of the flat panel X-ray detector was 3.0 lp/mm, which was less than that of intra-oral dental methods, but the three extra-oral plain dental radiographs provided the overall dental information from outside of the mouth, and this approach was less time-consuming. In addition, the higher dose of scattered X-rays was laterally distributed, but the dose per case was much less than that of intra-oral dental radiographs. Extra-oral plain dental radiography can be used for disaster victim identification by dental methods even when it is difficult to open the mouth. Portable and rechargeable devices, such as a flat panel X-ray detector and a hand-held X-ray generator, are convenient to bring and use anywhere, even at a disaster scene lacking electricity and water.

  4. Polarimetric Analysis of the Long Duration Gamma-Ray Burst GRB 160530A With the Balloon Borne Compton Spectrometer and Imager

    NASA Astrophysics Data System (ADS)

    Lowell, A. W.; Boggs, S. E.; Chiu, C. L.; Kierans, C. A.; Sleator, C.; Tomsick, J. A.; Zoglauer, A. C.; Chang, H.-K.; Tseng, C.-H.; Yang, C.-Y.; Jean, P.; von Ballmoos, P.; Lin, C.-H.; Amman, M.

    2017-10-01

    A long duration gamma-ray burst, GRB 160530A, was detected by the Compton Spectrometer and Imager (COSI) during the 2016 COSI Super Pressure Balloon campaign. As a Compton telescope, COSI is inherently sensitive to the polarization of gamma-ray sources in the energy range 0.2-5.0 MeV. We measured the polarization of GRB 160530A using (1) a standard method (SM) based on fitting the distribution of azimuthal scattering angles with a modulation curve and (2) an unbinned, maximum likelihood method (MLM). In both cases, the measured polarization level was below the 99% confidence minimum detectable polarization levels of 72.3% ± 0.8% (SM) and 57.5% ± 0.8% (MLM). Therefore, COSI did not detect polarized gamma-ray emission from this burst. Our most constraining 90% confidence upper limit on the polarization level was 46% (MLM).

  5. Polarimetric Analysis of the Long Duration Gamma-Ray Burst GRB 160530A With the Balloon Borne Compton Spectrometer and Imager

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lowell, A. W.; Boggs, S. E; Chiu, C. L.

    2017-10-20

    A long duration gamma-ray burst, GRB 160530A, was detected by the Compton Spectrometer and Imager (COSI) during the 2016 COSI Super Pressure Balloon campaign. As a Compton telescope, COSI is inherently sensitive to the polarization of gamma-ray sources in the energy range 0.2–5.0 MeV. We measured the polarization of GRB 160530A using (1) a standard method (SM) based on fitting the distribution of azimuthal scattering angles with a modulation curve and (2) an unbinned, maximum likelihood method (MLM). In both cases, the measured polarization level was below the 99% confidence minimum detectable polarization levels of 72.3% ± 0.8% (SM) andmore » 57.5% ± 0.8% (MLM). Therefore, COSI did not detect polarized gamma-ray emission from this burst. Our most constraining 90% confidence upper limit on the polarization level was 46% (MLM).« less

  6. The Complimentary Role of Methoxy-Isobutyl-Isonitrile and Hand-Held Gamma Probe in Adamantinoma

    PubMed Central

    Maharaj, Masha; Korowlay, Nisaar; Ellmann, Prof

    2016-01-01

    Adamantinoma is a rare locally aggressive osteolytic tumor that is found 90% of the time in the diaphysis of the tibia with the remaining lesions found in the fibula and long tubular bones. A case of adamantinoma of the tibia is presented. The added value of nuclear medicine investigations in the workup of this patient is described. A three-phase whole body 99mTc-methylene diphosphonate bone and a whole body 99mTc-methoxy-isobutyl-isonitrile scans were complimentary in the demarcation of viable bone tumor and the assessment of the remainder of the bone and soft tissue to exclude other sites. Intra-operative assistance with a hand-held gamma probe, guided the biopsy of the most metabolically active tumor tissue. Histology revealed a biphasic tumor composed of epithelial and fibrous components, in keeping with an adamantinoma. PMID:26912979

  7. Long-term variations in the gamma-ray background on SMM

    NASA Technical Reports Server (NTRS)

    Kurfess, J. D.; Share, G. H.; Kinzer, R. L.; Johnson, W. N.; Adams, J. H., Jr.

    1989-01-01

    Long-term temporal variations in the various components of the background radiation detected by the gamma-ray spectrometer on the Solar Maximum Mission are presented. The SMM gamma-ray spectrometer was launched in February, 1980 and continues to operate normally. The extended period of mission operations has provided a large data base in which it is possible to investigate a variety of environmental and instrumental background effects. In particular, several effects associated with orbital precession are introduced and discussed.

  8. Spectrometer of high energy gamma quantums

    NASA Technical Reports Server (NTRS)

    Blokhintsev, I. D.; Melioranskiy, A. S.; Kalinkin, L. F.; Nagornykh, Y. I.; Pryakhin, Y. A.

    1979-01-01

    A detailed description of the apparatus GG-2M is given. The spectrometer contains a Cerenkov and scintillation (including anticoincidence) counter. The energies of the gamma quantums are measured by a shower calorimeter, in which scintillation counters are used in the capacity of detectors. Results are given for tuning the device on mu-mesons of cosmic rays. The data of physical tuning allow more reliable interpretation of the results of measurements which are received on the satellites.

  9. Nondestructive determination of radionuclides in lunar samples using a large low-background gamma-ray spectrometer and a novel application of least-squares fitting

    NASA Technical Reports Server (NTRS)

    Eldridge, J. S.; Okelly, G. D.; Northcutt, K. J.; Schonfeld, E.

    1972-01-01

    Dual-parameter gamma ray spectrometer systems with large volume Nal (Tl) crystals and low backgrounds were used for nondestructive determination of K, Th, U and cosmic ray produced radionuclides in 60 lunar samples. The total weight of samples measured with this system is 28 kg, and the individual sample weights varied from 2 to 2300 g. Samples from Apollo 11, 12, 14, 15 and 16 were measured. Operation of the spectrometers in the coincidence mode and analyzing single coincidence spectra permits the simultaneous determination of 8-10 radionuclides in each lunar sample.

  10. Gamma ray spectroscopy with Arduino UNO

    NASA Astrophysics Data System (ADS)

    Lavelle, C. M.

    2018-05-01

    We review a simple gamma ray spectrometer constructed on a solderless breadboard. The spectrometer's detector consists of a CsI(Tl) scintillator and silicon photomultiplier (SiPM) and its readout is facilitated by an Arduino UNO. The system is low cost and utilizes a minimum of components while still achieving satisfactory charge linearity and noise levels. This instrument can be used in instructional laboratories to introduce both radiation detection and analog signal processing concepts. We also expect it will be of interest to those seeking to introduce gamma spectroscopy to the expanding ecosystem of Arduino hardware.

  11. Hand-held medical robots.

    PubMed

    Payne, Christopher J; Yang, Guang-Zhong

    2014-08-01

    Medical robots have evolved from autonomous systems to tele-operated platforms and mechanically-grounded, cooperatively-controlled robots. Whilst these approaches have seen both commercial and clinical success, uptake of these robots remains moderate because of their high cost, large physical footprint and long setup times. More recently, researchers have moved toward developing hand-held robots that are completely ungrounded and manipulated by surgeons in free space, in a similar manner to how conventional instruments are handled. These devices provide specific functions that assist the surgeon in accomplishing tasks that are otherwise challenging with manual manipulation. Hand-held robots have the advantages of being compact and easily integrated into the normal surgical workflow since there is typically little or no setup time. Hand-held devices can also have a significantly reduced cost to healthcare providers as they do not necessitate the complex, multi degree-of-freedom linkages that grounded robots require. However, the development of such devices is faced with many technical challenges, including miniaturization, cost and sterility, control stability, inertial and gravity compensation and robust instrument tracking. This review presents the emerging technical trends in hand-held medical robots and future development opportunities for promoting their wider clinical uptake.

  12. Towards the hand-held mass spectrometer: design considerations, simulation, and fabrication of micrometer-scaled cylindrical ion traps

    NASA Astrophysics Data System (ADS)

    Blain, Matthew G.; Riter, Leah S.; Cruz, Dolores; Austin, Daniel E.; Wu, Guangxiang; Plass, Wolfgang R.; Cooks, R. Graham

    2004-08-01

    Breakthrough improvements in simplicity and reductions in the size of mass spectrometers are needed for high-consequence fieldable applications, including error-free detection of chemical/biological warfare agents, medical diagnoses, and explosives and contraband discovery. These improvements are most likely to be realized with the reconceptualization of the mass spectrometer, rather than by incremental steps towards miniaturization. Microfabricated arrays of mass analyzers represent such a conceptual advance. A massively parallel array of micrometer-scaled mass analyzers on a chip has the potential to set the performance standard for hand-held sensors due to the inherit selectivity, sensitivity, and universal applicability of mass spectrometry as an analytical method. While the effort to develop a complete micro-MS system must include innovations in ultra-small-scale sample introduction, ion sources, mass analyzers, detectors, and vacuum and power subsystems, the first step towards radical miniaturization lies in the design, fabrication, and characterization of the mass analyzer itself. In this paper we discuss design considerations and results from simulations of ion trapping behavior for a micrometer scale cylindrical ion trap (CIT) mass analyzer (internal radius r0 = 1 [mu]m). We also present a description of the design and microfabrication of a 0.25 cm2 array of 106 one-micrometer CITs, including integrated ion detectors, constructed in tungsten on a silicon substrate.

  13. Search for Doppler-shifted gamma-ray emission from SS 433 using the SMM spectrometer

    NASA Technical Reports Server (NTRS)

    Geldzahler, B. J.; Share, G. H.; Kinzer, R. L.; Magura, J.; Chupp, E. L.

    1989-01-01

    Data accumulated from 1980 to 1983 with the Gamma Ray Spectrometer aboard NASA's Solar Maximum Mission (SMM) satellite were searched for evidence of red and blue Doppler-shifted 1.37 MeV Mg-24 nuclear lines from SS 433. The SMM data base covers 270 days when SS 433 was in the field of view and includes periods of radio flaring and quiescence. No evidence was found for Doppler-shifted line emission in any of the spectra. The range of 3-sigma upper limits for individual 9 day integration periods was 0.0008-0.0023 photons/sq cm per sec for the blue beam, encompassing the reported about 1.5 MeV line, and 0.0008-0.002 photons/sq cm per sec for the red beam, encompassing the reported about 1.2 MeV line; the average 3-sigma upper limit in each beam for shifted about 1.37 MeV lines is 0.0015 photons/sq cm per sec for single 9 day integrations. The 3-sigma upper limit on 1.37 MeV gamma-ray emission over 23 9-day integration intervals for the red beam and 28 intervals for the blue beam is 0.0002 photons/sq cm per sec. These new limits from SMM can be reconciled with the HEAO 3 results only if SS 433 emits gamma radiation at or above the SMM sensitivity limit on rare occasions due to variable physical conditions in the system.

  14. Airborne gamma-ray spectrometer and magnetometer survey: Platoro Caldera Detail Survey, Durango quadrangle (Colorado). Final report

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Not Available

    1980-02-01

    Between October 18 and November 7, 1978, a high sensitivity airborne gamma-ray spectrometer and magnetometer survey was conducted over the Durango Detailed Survey Area No. 3, which is centered about 20 miles northeast of Pagosa Springs, Colorado and located within the San Juan Mountains. The study was carried out as part of the Aerial Radiometric and Magnetic Reconnaissance Survey Program, designed to map the regional distribution of the natural radioelements for the principal rock units of the United States in support of the National Uranium Resource Evaluation (NURE) program.

  15. SHIELDING AND DETECTOR RESPONSE CALCULATIONS PERTAINING TO CATEGORY 1 QUANTITIES OF PLUTONIUM AND HAND-HELD PLASTIC SCINTILLATORS

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Couture, A.

    2013-06-07

    Nuclear facilities sometimes use hand-held plastic scintillator detectors to detect attempts to divert special nuclear material in situations where portal monitors are impractical. MCNP calculations have been performed to determine the neutron and gamma radiation field arising from a Category I quantity of weapons-grade plutonium in various shielding configurations. The shields considered were composed of combinations of lead and high-density polyethylene such that the mass of the plutonium plus shield was 22.7 kilograms. Monte-Carlo techniques were also used to determine the detector response to each of the shielding configurations. The detector response calculations were verified using field measurements of high-,more » medium-, and low- energy gamma-ray sources as well as a Cf-252 neutron source.« less

  16. Assessment of background gamma radiation levels using airborne gamma ray spectrometer data over uranium deposits, Cuddapah Basin, India - A comparative study of dose rates estimated by AGRS and PGRS.

    PubMed

    Srinivas, D; Ramesh Babu, V; Patra, I; Tripathi, Shailesh; Ramayya, M S; Chaturvedi, A K

    2017-02-01

    The Atomic Minerals Directorate for Exploration and Research (AMD) has conducted high-resolution airborne gamma ray spectrometer (AGRS), magnetometer and time domain electromagnetic (TDEM) surveys for uranium exploration, along the northern margins of Cuddapah Basin. The survey area includes well known uranium deposits such as Lambapur-Peddagattu, Chitrial and Koppunuru. The AGRS data collected for uranium exploration is utilised for estimating the average absorbed rates in air due to radio-elemental (potassium in %, uranium and thorium in ppm) distribution over these known deposit areas. Further, portable gamma ray spectrometer (PGRS) was used to acquire data over two nearby locations one from Lambapur deposit, and the other from known anomalous zone and subsequently average gamma dose rates were estimated. Representative in-situ rock samples were also collected from these two areas and subjected to radio-elemental concentration analysis by gamma ray spectrometer (GRS) in the laboratory and then dose rates were estimated. Analyses of these three sets of results complement one another, thereby providing a comprehensive picture of the radiation environment over these deposits. The average absorbed area wise dose rate level is estimated to be 130 ± 47 nGy h -1 in Lambapur-Peddagattu, 186 ± 77 nGy h -1 in Chitrial and 63 ± 22 nGy h -1 in Koppunuru. The obtained average dose levels are found to be higher than the world average value of 54 nGy h -1 . The gamma absorbed dose rates in nGy h -1 were converted to annual effective dose rates in mSv y -1 as proposed by the United Nations Scientific Committee on the Effect of Atomic Radiation (UNSCEAR). The annual average effective dose rates for the entire surveyed area is 0.12 mSv y -1 , which is much lower than the recommended limit of 1 mSv y -1 by International Commission on Radiation protection (ICRP). It may be ascertained here that the present study establishes a reference data set (baseline) in these areas

  17. The gamma-ray light curves of SN 1987A

    NASA Technical Reports Server (NTRS)

    Leising, Mark D.; Share, Gerald H.

    1990-01-01

    Observations of the SN 1987A ejecta in four Co-56-decay gamma-ray lines, obtained using the SMM gamma-ray spectrometer between February 1987 and May 1989, are reported and analyzed. The instrument characteristics and data-reduction procedures are described, and the results are presented in extensive tables and graphs and discussed with reference to theoretical models. Gamma-ray fluxes significantly above possible instrumental levels (as determined from analysis of pre-1987 data) were detected in the second half of 1987 and the first half of 1988. The data are found to favor a model with some Co-56 in regions of low gamma-ray optical depth by 200 d after the SN outburst over models with all Co-56 at one depth within a uniform expanding envelope. Also investigated are the gamma-ray contribution to the total bolometric luminosity and the escape (and potential observability) of Co-57 gamma rays.

  18. Nuclear Forensics using Gamma-ray Spectroscopy

    NASA Astrophysics Data System (ADS)

    Norman, E. B.

    2016-09-01

    Much of George Dracoulis's research career was devoted to utilising gamma-ray spectroscopy in fundamental studies in nuclear physics. This same technology is useful in a wide range of applications in the area of nuclear forensics. Over the last several years, our research group has made use of both high- and low-resolution gamma-ray spectrometers to: identify the first sample of plutonium large enough to be weighed; determine the yield of the Trinity nuclear explosion; measure fission fragment yields as a function of target nucleus and neutron energy; and observe fallout in the U. S. from the Fukushima nuclear reactor accident.

  19. Observations of Galactic gamma-radiation with the SMM spectrometer

    NASA Technical Reports Server (NTRS)

    Share, G. H.; Kinzer, R. L.; Messina, D. C.; Purcell, W. R.; Chupp, E. L.

    1986-01-01

    Preliminary results from the SMM gamma-ray spectrometer are reported which indicate the detection of a constant source of 0.511-MeV annihilation radiation from the Galaxy. Year-to-year variability appears to be less than 30 percent. The radiation probably comes from a diffuse source and is not associated with the reported compact object at the Galactic center.

  20. Benchmark gamma-ray skyshine experiment

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Nason, R.R.; Shultis, J.K.; Faw, R.E.

    1982-01-01

    A benchmark gamma-ray skyshine experiment is descibed in which /sup 60/Co sources were either collimated into an upward 150-deg conical beam or shielded vertically by two different thicknesses of concrete. A NaI(Tl) spectrometer and a high pressure ion chamber were used to measure, respectively, the energy spectrum and the 4..pi..-exposure rate of the air-reflected gamma photons up to 700 m from the source. Analyses of the data and comparison to DOT discrete ordinates calculations are presented.

  1. Accurate Wavelength Measurement of High-Energy Gamma Rays from the 35Cl(n,{gamma}) Reactions

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Belgya, T.; Molnar, G.L.; Mutti, P.

    2005-05-24

    The energies of eight gamma rays in the 36Cl level scheme have been measured with high precision using the 35Cl(n,{gamma}) reaction and the GAMS4 spectrometer. From these energies, a skeleton decay scheme for 36Cl was constructed, and the binding energy of 36Cl was determined to higher precision than previously. It is shown that using this new information, binding energy determination from Ge detector experiments for other nuclei can also be made with higher precision than now available. The measurement of additional weaker 36Cl gamma rays is continuing.

  2. Development of the instruments for the Gamma Ray Observatory

    NASA Technical Reports Server (NTRS)

    Madden, J. J.; Kniffen, D. A.

    1986-01-01

    The Gamma Ray Observatory (GRO) is to be launched in 1988 by the STS. The GRO will feature four very large instruments: the Oriented Scintillation Spectrometer Experiment (OSSE), the Imaging Compton Telescope (COMPTEL), the Energetic Gamma Ray Experiment Telescope (EGRET) and the Burst and Transient Source Experiment (BATSE). The instruments weigh from 900-1200 kg each, and required the development of specialized lifting and dolly devices to permit their assembly, manipulation and testing. The GRO is intended a{s a tool for studying discrete celestial objects such as black holes, neutron stars and other gamma-ray emitting objects, scanning for nucleosynthesis processes, mapping the Galaxy and other, high energy galaxies in terms of gamma rays, searching for cosmological effects and observing gamma ray bursts. The instruments will be sensitive from the upper end mof X-rya wavelengths to the highest energies possible. Details of the hardware and performance specifications of each of the instruments are discussed.

  3. Hand-Held Devices Detect Explosives and Chemical Agents

    NASA Technical Reports Server (NTRS)

    2010-01-01

    Ion Applications Inc., of West Palm Beach, Florida, partnered with Ames Research Center through Small Business Innovation Research (SBIR) agreements to develop a miniature version ion mobility spectrometer (IMS). While NASA was interested in the instrument for detecting chemicals during exploration of distant planets, moons, and comets, the company has incorporated the technology into a commercial hand-held IMS device for use by the military and other public safety organizations. Capable of detecting and identifying molecules with part-per-billion sensitivity, the technology now provides soldiers with portable explosives and chemical warfare agent detection. The device is also being adapted for detecting drugs and is employed in industrial processes such as semiconductor manufacturing.

  4. High energy X-ray observations of COS-B gamma-ray sources from OSO-8

    NASA Technical Reports Server (NTRS)

    Dolan, J. F.; Crannell, C. J.; Dennis, B. R.; Frost, K. J.; Orwig, L. E.; Caraveo, P. A.

    1985-01-01

    During the three years between satellite launch in June 1975 and turn-off in October 1978, the high energy X-ray spectrometer on board OSO-8 observed nearly all of the COS-B gamma-ray source positions given in the 2CG catalog (Swanenburg et al., 1981). An X-ray source was detected at energies above 20 keV at the 6-sigma level of significance in the gamma-ray error box containing 2CG342 - 02 and at the 3-sigma level of significance in the error boxes containing 2CG065 + 00, 2CG195 + 04, and 2CG311 - 01. No definite association between the X-ray and gamma-ray sources can be made from these data alone. Upper limits are given for the 2CG sources from which no X-ray flux was detected above 20 keV.

  5. High resolution X- and gamma-ray spectroscopy of cosmic X-ray sources

    NASA Technical Reports Server (NTRS)

    Lin, R. P.

    1983-01-01

    A high resolution X-ray spectrometer and large area phoswich detector were designed and co-aligned in a common elevation mounting in order to measure solar and cosmic X-ray and gamma ray emission in the 13 to 600 KeV energy range from a balloon. The instrument is described and results obtained for the Crab Nebula, the supernova remnant Cas A, and the Sun are discussed and analyzed.

  6. Gamma ray spectroscopy monitoring method and apparatus

    DOEpatents

    Stagg, William R; Policke, Timothy A

    2017-05-16

    The present invention relates generally to the field of gamma ray spectroscopy monitoring and a system for accomplishing same to monitor one or more aspects of various isotope production processes. In one embodiment, the present invention relates to a monitoring system, and method of utilizing same, for monitoring one or more aspects of an isotope production process where the monitoring system comprises: (A) at least one sample cell; (B) at least one measuring port; (C) at least one adjustable collimator device; (D) at least one shutter; and (E) at least one high resolution gamma ray spectrometer.

  7. Distance and spectrum of the Apollo gamma-ray burst

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Gilman, D.; Metzger, A.E.; Parker, R.H.

    1980-03-15

    The ..gamma..-ray spectrometer on Apollo 16 obtained spectral information with good energy resolution from more than 2500 burst photons in the energy range 0.06--5.16 MeV. The spectrum from 2 keV to 2 MeV, observed at X-ray energies by the Apollo X-ray spectrometer, is fitted by a thermal bremsstrahlung spectrum with kT=500 keV. The success of the fit implies that the source is optically thin, and it follows that it must be closer than 50 pc. Absence of spectral variability suggests that the burst results from isothermal changes in emission measure.

  8. An alpha–gamma coincidence spectrometer based on the Photon–Electron Rejecting Alpha Liquid Scintillation (PERALS®) system

    DOE PAGES

    Cadieux, J. R.; Fugate, G. A.; King, III, G. S.

    2015-02-07

    Here, an alpha–gamma coincidence spectrometer has been developed for the measurement of selected actinide isotopes in the presence of high beta/gamma fields. The system is based on a PERALS® liquid scintillation counter for beta/alpha discrimination and was successfully tested with both high purity germanium and bismuth germanate, gamma-ray detectors using conventional analog electronics.

  9. 30 CFR 57.7053 - Moving hand-held drills.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 30 Mineral Resources 1 2010-07-01 2010-07-01 false Moving hand-held drills. 57.7053 Section 57... MINE SAFETY AND HEALTH SAFETY AND HEALTH STANDARDS-UNDERGROUND METAL AND NONMETAL MINES Drilling and Rotary Jet Piercing Drilling-Surface and Underground § 57.7053 Moving hand-held drills. Before hand-held...

  10. 30 CFR 57.7053 - Moving hand-held drills.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 30 Mineral Resources 1 2014-07-01 2014-07-01 false Moving hand-held drills. 57.7053 Section 57... MINE SAFETY AND HEALTH SAFETY AND HEALTH STANDARDS-UNDERGROUND METAL AND NONMETAL MINES Drilling and Rotary Jet Piercing Drilling-Surface and Underground § 57.7053 Moving hand-held drills. Before hand-held...

  11. 30 CFR 57.7053 - Moving hand-held drills.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 30 Mineral Resources 1 2013-07-01 2013-07-01 false Moving hand-held drills. 57.7053 Section 57... MINE SAFETY AND HEALTH SAFETY AND HEALTH STANDARDS-UNDERGROUND METAL AND NONMETAL MINES Drilling and Rotary Jet Piercing Drilling-Surface and Underground § 57.7053 Moving hand-held drills. Before hand-held...

  12. 30 CFR 57.7053 - Moving hand-held drills.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... 30 Mineral Resources 1 2012-07-01 2012-07-01 false Moving hand-held drills. 57.7053 Section 57... MINE SAFETY AND HEALTH SAFETY AND HEALTH STANDARDS-UNDERGROUND METAL AND NONMETAL MINES Drilling and Rotary Jet Piercing Drilling-Surface and Underground § 57.7053 Moving hand-held drills. Before hand-held...

  13. 30 CFR 57.7053 - Moving hand-held drills.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 30 Mineral Resources 1 2011-07-01 2011-07-01 false Moving hand-held drills. 57.7053 Section 57... MINE SAFETY AND HEALTH SAFETY AND HEALTH STANDARDS-UNDERGROUND METAL AND NONMETAL MINES Drilling and Rotary Jet Piercing Drilling-Surface and Underground § 57.7053 Moving hand-held drills. Before hand-held...

  14. 30 CFR 57.12033 - Hand-held electric tools.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 30 Mineral Resources 1 2010-07-01 2010-07-01 false Hand-held electric tools. 57.12033 Section 57.12033 Mineral Resources MINE SAFETY AND HEALTH ADMINISTRATION, DEPARTMENT OF LABOR METAL AND NONMETAL... Surface and Underground § 57.12033 Hand-held electric tools. Hand-held electric tools shall not be...

  15. 30 CFR 57.12033 - Hand-held electric tools.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... 30 Mineral Resources 1 2012-07-01 2012-07-01 false Hand-held electric tools. 57.12033 Section 57.12033 Mineral Resources MINE SAFETY AND HEALTH ADMINISTRATION, DEPARTMENT OF LABOR METAL AND NONMETAL... Surface and Underground § 57.12033 Hand-held electric tools. Hand-held electric tools shall not be...

  16. 30 CFR 57.12033 - Hand-held electric tools.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 30 Mineral Resources 1 2014-07-01 2014-07-01 false Hand-held electric tools. 57.12033 Section 57.12033 Mineral Resources MINE SAFETY AND HEALTH ADMINISTRATION, DEPARTMENT OF LABOR METAL AND NONMETAL... Surface and Underground § 57.12033 Hand-held electric tools. Hand-held electric tools shall not be...

  17. 30 CFR 57.12033 - Hand-held electric tools.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 30 Mineral Resources 1 2011-07-01 2011-07-01 false Hand-held electric tools. 57.12033 Section 57.12033 Mineral Resources MINE SAFETY AND HEALTH ADMINISTRATION, DEPARTMENT OF LABOR METAL AND NONMETAL... Surface and Underground § 57.12033 Hand-held electric tools. Hand-held electric tools shall not be...

  18. 30 CFR 57.12033 - Hand-held electric tools.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 30 Mineral Resources 1 2013-07-01 2013-07-01 false Hand-held electric tools. 57.12033 Section 57.12033 Mineral Resources MINE SAFETY AND HEALTH ADMINISTRATION, DEPARTMENT OF LABOR METAL AND NONMETAL... Surface and Underground § 57.12033 Hand-held electric tools. Hand-held electric tools shall not be...

  19. Primary gamma rays. [resulting from cosmic ray interaction with interstellar matter

    NASA Technical Reports Server (NTRS)

    Fichtel, C. E.

    1974-01-01

    Within this galaxy, cosmic rays reveal their presence in interstellar space and probably in source regions by their interactions with interstellar matter which lead to gamma rays with a very characteristic energy spectrum. From the study of the intensity of the high energy gamma radiation as a function of galactic longitude, it is already clear that cosmic rays are almost certainly not uniformly distributed in the galaxy and are not concentrated in the center of the galaxy. The galactic cosmic rays appear to be tied to galactic structural features, presumably by the galactic magnetic fields which are in turn held by the matter in the arm segments and the clouds. On the extragalactic scale, it is now possible to say that cosmic rays are not universal at the density seen near the earth. The diffuse celestial gamma ray spectrum that is observed presents the interesting possibility of cosmological studies and possible evidence for a residual universal cosmic ray density, which is much lower than the present galactic cosmic ray density.

  20. SMM hard X-ray observations of the soft gamma-ray repeater 1806-20

    NASA Technical Reports Server (NTRS)

    Kouveliotou, C.; Norris, J. P.; Cline, T. L.; Dennis, B. R.; Desai, U. D.; Orwig, L. E.

    1987-01-01

    Six bursts from the soft gamma-ray repeater (SGR) 1806-20 have been recorded with the SMM Hard X-ray Burst Spectrometer during a highly active phase in 1983. Rise and decay times of less than 5 ns have been detected. Time profiles of these events indicate low-level emission prior to and after the main peaks. The results suggest that SGRs are distinguished from classical gamma-ray bursts by repetition, softer nonvarying spectra, short durations, simple temporal profiles, and a tendency for source locations to correlate with Population I objects. SGR characteristics differ from those of type I X-ray bursts, but they appear to have similarities with the type II bursts from the Rapid Burster.

  1. Conceptual design of the radial gamma ray spectrometers system for α particle and runaway electron measurements at ITER

    NASA Astrophysics Data System (ADS)

    Nocente, M.; Tardocchi, M.; Barnsley, R.; Bertalot, L.; Brichard, B.; Croci, G.; Brolatti, G.; Di Pace, L.; Fernandes, A.; Giacomelli, L.; Lengar, I.; Moszynski, M.; Krasilnikov, V.; Muraro, A.; Pereira, R. C.; Perelli Cippo, E.; Rigamonti, D.; Rebai, M.; Rzadkiewicz, J.; Salewski, M.; Santosh, P.; Sousa, J.; Zychor, I.; Gorini, G.

    2017-07-01

    We here present the principles and main physics capabilities behind the design of the radial gamma ray spectrometers (RGRS) system for alpha particle and runaway electron measurements at ITER. The diagnostic benefits from recent advances in gamma-ray spectrometry for tokamak plasmas and combines space and high energy resolution in a single device. The RGRS system as designed can provide information on α ~ particles on a time scale of 1/10 of the slowing down time for the ITER 500 MW full power DT scenario. Spectral observations of the 3.21 and 4.44 MeV peaks from the 9\\text{Be}≤ft(α,nγ \\right){{}12}\\text{C} reaction make the measurements sensitive to α ~ particles at characteristic resonant energies and to possible anisotropies of their slowing down distribution function. An independent assessment of the neutron rate by gamma-ray emission is also feasible. In case of runaway electrons born in disruptions with a typical duration of 100 ms, a time resolution of at least 10 ms for runaway electron studies can be achieved depending on the scenario and down to a current of 40 kA by use of external gas injection. We find that the bremsstrahlung spectrum in the MeV range from confined runaways is sensitive to the electron velocity space up to E≈ 30 -40 MeV, which allows for measurements of the energy distribution of the runaway electrons at ITER.

  2. Unidentified Gamma-Ray Sources: Hunting Gamma-Ray Blazars

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Massaro, F.; D'Abrusco, R.; Tosti, G.

    2012-04-02

    One of the main scientific objectives of the ongoing Fermi mission is unveiling the nature of the unidentified {gamma}-ray sources (UGSs). Despite the large improvements of Fermi in the localization of {gamma}-ray sources with respect to the past {gamma}-ray missions, about one third of the Fermi-detected objects are still not associated to low energy counterparts. Recently, using the Wide-field Infrared Survey Explorer (WISE) survey, we discovered that blazars, the rarest class of Active Galactic Nuclei and the largest population of {gamma}-ray sources, can be recognized and separated from other extragalactic sources on the basis of their infrared (IR) colors. Basedmore » on this result, we designed an association method for the {gamma}-ray sources to recognize if there is a blazar candidate within the positional uncertainty region of a generic {gamma}-ray source. With this new IR diagnostic tool, we searched for {gamma}-ray blazar candidates associated to the UGS sample of the second Fermi {gamma}-ray catalog (2FGL). We found that our method associates at least one {gamma}-ray blazar candidate as a counterpart each of 156 out of 313 UGSs analyzed. These new low-energy candidates have the same IR properties as the blazars associated to {gamma}-ray sources in the 2FGL catalog.« less

  3. UNIDENTIFIED {gamma}-RAY SOURCES: HUNTING {gamma}-RAY BLAZARS

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Massaro, F.; Ajello, M.; D'Abrusco, R.

    2012-06-10

    One of the main scientific objectives of the ongoing Fermi mission is unveiling the nature of unidentified {gamma}-ray sources (UGSs). Despite the major improvements of Fermi in the localization of {gamma}-ray sources with respect to the past {gamma}-ray missions, about one-third of the Fermi-detected objects are still not associated with low-energy counterparts. Recently, using the Wide-field Infrared Survey Explorer survey, we discovered that blazars, the rarest class of active galactic nuclei and the largest population of {gamma}-ray sources, can be recognized and separated from other extragalactic sources on the basis of their infrared (IR) colors. Based on this result, wemore » designed an association method for the {gamma}-ray sources to recognize if there is a blazar candidate within the positional uncertainty region of a generic {gamma}-ray source. With this new IR diagnostic tool, we searched for {gamma}-ray blazar candidates associated with the UGS sample of the second Fermi {gamma}-ray LAT catalog (2FGL). We found that our method associates at least one {gamma}-ray blazar candidate as a counterpart to each of 156 out of 313 UGSs analyzed. These new low-energy candidates have the same IR properties as the blazars associated with {gamma}-ray sources in the 2FGL catalog.« less

  4. 30 CFR 56.7053 - Moving hand-held drills.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 30 Mineral Resources 1 2010-07-01 2010-07-01 false Moving hand-held drills. 56.7053 Section 56... MINE SAFETY AND HEALTH SAFETY AND HEALTH STANDARDS-SURFACE METAL AND NONMETAL MINES Drilling and Rotary Jet Piercing Drilling § 56.7053 Moving hand-held drills. Before hand-held drills are moved from one...

  5. 30 CFR 56.7053 - Moving hand-held drills.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 30 Mineral Resources 1 2011-07-01 2011-07-01 false Moving hand-held drills. 56.7053 Section 56... MINE SAFETY AND HEALTH SAFETY AND HEALTH STANDARDS-SURFACE METAL AND NONMETAL MINES Drilling and Rotary Jet Piercing Drilling § 56.7053 Moving hand-held drills. Before hand-held drills are moved from one...

  6. 30 CFR 56.7053 - Moving hand-held drills.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 30 Mineral Resources 1 2014-07-01 2014-07-01 false Moving hand-held drills. 56.7053 Section 56... MINE SAFETY AND HEALTH SAFETY AND HEALTH STANDARDS-SURFACE METAL AND NONMETAL MINES Drilling and Rotary Jet Piercing Drilling § 56.7053 Moving hand-held drills. Before hand-held drills are moved from one...

  7. 30 CFR 56.7053 - Moving hand-held drills.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 30 Mineral Resources 1 2013-07-01 2013-07-01 false Moving hand-held drills. 56.7053 Section 56... MINE SAFETY AND HEALTH SAFETY AND HEALTH STANDARDS-SURFACE METAL AND NONMETAL MINES Drilling and Rotary Jet Piercing Drilling § 56.7053 Moving hand-held drills. Before hand-held drills are moved from one...

  8. 30 CFR 56.7053 - Moving hand-held drills.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... 30 Mineral Resources 1 2012-07-01 2012-07-01 false Moving hand-held drills. 56.7053 Section 56... MINE SAFETY AND HEALTH SAFETY AND HEALTH STANDARDS-SURFACE METAL AND NONMETAL MINES Drilling and Rotary Jet Piercing Drilling § 56.7053 Moving hand-held drills. Before hand-held drills are moved from one...

  9. Airborne gamma-ray spectrometer and magnetometer survey: Susanville quadrangle, California. Final report

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Not Available

    1981-05-01

    An airborne high sensitivity gamma-ray spectrometer and magnetometer survey was conducted over ten (10) areas over northern California and southwestern Oregon. These include the 2/sup 0/ x 1/sup 0/ NTMS quadrangles of Roseburg, Medford, Weed, Alturas, Redding, Susanville, Ukiah, and Chico along with the 1/sup 0/ x 2/sup 0/ areas of the Coos Bay quadrangle and the Crescent City/Eureka areas combined. This report discusses the results obtained over the Susanville, California, map area. Traverse lines were flown in an east-west direction at a line spacing of six (6) miles. Tie lines were flown north-south approximately eighteen (18) miles apart. Amore » total of 16,880.5 line miles of geophysical data were acquired, compiled, and interpreted during the survey, of which 1642.8 line miles are in this quadrangle. The purpose of this study is to acquire and compile geologic and other information with which to assess the magnitude and distribution of uranium resources and to determine areas favorable for the occurrence of uranium in the United States.« less

  10. Airborne gamma-ray spectrometer and magnetometer survey, Medford Quadrangle Oregon. Final report

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Not Available

    1981-04-01

    An airborne high sensitivity gamma-ray spectrometer and magnetometer survey was conducted over ten (10) areas over northern California and southwestern Oregon. These include the 2/sup 0/ x 1/sup 0/ NTMS quadrangles of Roseburg, Medford, Weed, Alturas, Redding, Susanville, Ukiah, and Chico along with the 1/sup 0/ x 2/sup 0/ areas of the Coos Bay quadrangle and the Crescent City/Eureka areas combined. This report discusses the results obtained over the Medford, Oregon, map area. Traverse lines were flown in an east-west direction at a line spacing of three miles. Tie lines were flown north-south approximately twelve miles apart. A total ofmore » 16,880.5 line miles of geophysical data were acquired, compiled, and interpreted during the survey, of which 2925 line miles are in this quadrangle. The purpose of this study is to acquire and compile geologic and other information with which to assess the magnitude and distribution of uranium resources and to determine areas favorable for the occurrence of uranium in the United States.« less

  11. Airborne gamma-ray spectrometer and magnetometer survey: Durango Quadrangle (Colorado). Final report

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Not Available

    1979-08-01

    Between September 26 and November 9, 1978, Aero Service Division Western Geophysical Company of America conducted a high sensitivity airborne gamma-ray spectrometer and magnetometer survey over the 2/sup 0/ x 1/sup 0/ NTMS quadrangle of Durango, Colorado. The survey area is bounded by the 106/sup 0/W and 108/sup 0/W meridians and the 37/sup 0/N and 38/sup 0/N parallels. The area contains rocks of the Colorado Plateau suite in the southwestern part. The remainder of the area, with the exception of the eastern margin, is underlain by intrusive and extrusive igneous rocks and volcano-clastic sediments of Tertiary age. The eastern marginmore » of the map is formed by the Quaternary alluvium of the San Juan Valley. The major river in the area is the Rio Grande, which drains the San Juan mountains to the east of the continental divide. The southwestern part of the San Juan mountains is drained by the San Juan river, a tributary of the Colorado River.« less

  12. Cost effective spectral sensor solutions for hand held and field applications

    NASA Astrophysics Data System (ADS)

    Reetz, Edgar; Correns, Martin; Notni, Gunther

    2015-05-01

    Optical spectroscopy is without doubt one of the most important non-contact measurement principles. It is used in a wide range of applications from bio-medical to industrial fields. One recent trend is to miniaturize spectral sensors to address new areas of application. The most common spectral sensor type is based on diffraction gratings, while other types are based on micro mechanical systems (MEMS) or filter technologies. The authors represent the opinion that there is a potentially wide spread field of applications for spectrometers, but the market limits the range of applications since they cannot keep up with targeted cost requirements for consumer products. The present article explains an alternative approach for miniature multichannel spectrometer to enhance robustness for hand held field applications at a cost efficient price point.

  13. Choosing a Hand-Held Inventory Device

    ERIC Educational Resources Information Center

    Green, Lois; Hughes, Janet; Neff, Verne; Notartomas, Trish

    2008-01-01

    In spring of 2006, a task force was charged to look at the feasibility of acquiring hand-held inventory devices for the Pennsylvania State University Libraries (PSUL). The task force's charge was not to look at the whole concept of doing an inventory, but rather to focus on the feasibility of acquiring hand-held devices to use in an inventory.…

  14. STS-37 Gamma Ray Observatory (GRO) grappled by RMS

    NASA Image and Video Library

    1991-04-07

    Backdropped against the Earth's surface, the Gamma Ray Observatory (GRO) with its solar array (SA) panels deployed is grappled by the remote manipulator system (RMS) during STS-37 systems checkout. GRO's four complement instruments are visible: the Energetic Gamma Ray Experiment Telescope (EGRET) (at the bottom); the Imaging Compton Telescope (COMPTEL) (center); the Oriented Scintillation Spectrometer Experiment (OSSE) (top); and Burst and Transient Source Experiment (BATSE) (on four corners). The view was taken by STS-37 crew through an aft flight deck overhead window.

  15. Mapping of radiation anomalies using UAV mini-airborne gamma-ray spectrometry.

    PubMed

    Šálek, Ondřej; Matolín, Milan; Gryc, Lubomír

    2018-02-01

    Localization of size-limited gamma-ray anomalies plays a fundamental role in uranium prospecting and environmental studies. Possibilities of a newly developed mini-airborne gamma-ray spectrometric equipment were tested on a uranium anomaly near the village of Třebsko, Czech Republic. The measurement equipment was based on a scintillation gamma-ray spectrometer specially developed for unmanned aerial vehicles (UAV) mounted on powerful hexacopter. The gamma-ray spectrometer has two 103 cm 3 BGO scintillation detectors of relatively high sensitivity. The tested anomaly, which is 80 m by 40 m in size, was investigated by ground gamma-ray spectrometric measurement in a detail rectangular measurement grid. Average uranium concentration is 25 mg/kg eU attaining 700 mg/kg eU locally. The mini-airborne measurement across the anomaly was carried out on three 100 m long parallel profiles at eight flight altitudes from 5 to 40 m above the ground. The resulting 1 s 1024 channel gamma-ray spectra, recorded in counts per second (cps), were processed to concentration units of K, U and Th, while total count (TC) was reported in cps. Increased gamma ray intensity of the anomaly was indicated by mini-airborne measurement at all profiles and altitudes, including the highest altitude of 40 m, at which the recorded intensity is close to the natural radiation background. The reported instrument is able to record data with comparable quality as standard airborne survey, due to relative sensitive detector, lower flight altitude and relatively low flight speed of 1 m/s. The presented experiment brings new experience with using unmanned semi-autonomous aerial vehicles and the latest mini-airborne radiometric instrument. The experiment has demonstrated the instrument's ability to localize size-limited uranium anomalies. Copyright © 2017 Elsevier Ltd. All rights reserved.

  16. Ground-based measurements with the ADRON active gamma-ray and neutron spectrometer designed for lunar and Martian landing missions

    NASA Astrophysics Data System (ADS)

    Litvak, M. L.; Golovin, D. V.; Kolesnikov, A. B.; Vostrukhin, A. A.; Djachkova, M. V.; Kozyrev, A. S.; Mitrofanov, I. G.; Mokrousov, M. I.; Sanin, A. B.

    2017-05-01

    This paper outlines the main research objectives and gives a description of the ADRON active gamma-ray and neutron spectrometer, which is designed specifically for the Russian lunar landing missions Luna-Glob and Luna-Resurs and for the ExoMars Martian landing platform. The measurement technique is described. The first ground-based calibration results are presented, making it possible to assess the sensitivity of the ADRON instruments in determining the average water content of the underlying surface in the range from 1% (dry ground) to 100% (water ice) to a depth of 0.5 m.

  17. Practical applications of hand-held computers in dermatology.

    PubMed

    Goldblum, Orin M

    2002-09-01

    For physicians, hand-held computers are gaining popularity as point of care reference tools. The convergence of hand-held computers, the Internet, and wireless networks will enable these devices to assume more essential roles as mobile transmitters and receivers of digital medical Information. In addition to serving as portable medical reference sources, these devices can be Internet-enabled, allowing them to communicate over wireless wide and local area networks. With enhanced wireless connectivity, hand-held computers can be used at the point of patient care for charge capture, electronic prescribing, laboratory test ordering, laboratory result retrieval, web access, e-mail communication, and other clinical and administrative tasks. Physicians In virtually every medical specialty have begun using these devices in various ways. This review of hand-held computer use in dermatology illustrates practical examples of the many different ways hand-held computers can be effectively used by the practicing dermatologist.

  18. Characterization of uranium bearing material using x-ray fluorescence and direct gamma-rays measurement techniques

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Mujaini, M., E-mail: madihah@uniten.edu.my; Chankow, N.; Yusoff, M. Z.

    2016-01-22

    Uranium ore can be easily detected due to various gamma-ray energies emitted from uranium daughters particularly from {sup 238}U daughters such as {sup 214}Bi, {sup 214}Pb and {sup 226}Ra. After uranium is extracted from uranium ore, only low energy gamma-rays emitted from {sup 235}U may be detected if the detector is placed in close contact to the specimen. In this research, identification and characterization of uranium bearing materials is experimentally investigated using direct measurement of gamma-rays from {sup 235}U in combination with the x-ray fluorescence (XRF) technique. Measurement of gamma-rays can be conducted by using high purity germanium (HPGe) detectormore » or cadmium telluride (CdTe) detector while a {sup 57}Coradioisotope-excited XRF spectrometer using CdTe detector is used for elemental analysis. The proposed technique was tested with various uranium bearing specimens containing natural, depleted and enriched uranium in both metallic and powder forms.« less

  19. Monte-Carlo Simulation and Measurements of Electrons, Positrons, And Gamma-Rays Generated by Laser-Solid Interactions

    NASA Astrophysics Data System (ADS)

    Henderson, Alexander Hastings

    Lasers have grown more powerful in recent years, opening up new frontiers in physics. From early intensities of less than 1010 W/cm 2, lasers can now achieve intensities over 1021 W/cm 2. Ultraintense laser can become powerful new tools to produce relativistic electrons, positron-electron pairs, and gamma-rays. The pair production efficiency is equal to or greater than that of linear accelerators, the most common method of antimatter generation in the past. The gamma-rays and electrons produced can be highly collimated, making these interactions of interest for beam generation. Monte-Carlo particle transport simulation has long been used in physics for simulating various particle and radiation processes, and is well-suited to simulating both electromagnetic cascades resulting from laser-solid interactions and the response of electron/positron spectrometers and gamma-ray detectors. We have used GEANT4 Monte-Carlo particle transport simulation to design and calibrate charged-particle spectrometers using permanent magnets as well as a Forward Compton Electron Spectrometer to measure gamma-rays of higher energies than have previously been achieved. We have had some success simulating and measuring high positron and gamma-rays yields from laser-solid interactions using gold target at the Texas Petawatt Laser (TPW). While similar spectrometers have been developed in the past, we are to our knowledge the first to successfully use permanent magnet spectrometers to detect positrons originating from laser-solid interactions in this energy range. We believe we are also the first to successfully detect multi-MeV gamma rays using a permanent magnet Forward Compton Electron Spectrometer. Monte-Carlo particle transport simulation has been used by other groups to model positron production from laser-solid ineraction, but at the time that we began we were, as far as we know, the first to have a significant amount of empirical data to work with. We were thus at liberty to estimate

  20. Very high-energy gamma rays from gamma-ray bursts.

    PubMed

    Chadwick, Paula M

    2007-05-15

    Very high-energy (VHE) gamma-ray astronomy has undergone a transformation in the last few years, with telescopes of unprecedented sensitivity having greatly expanded the source catalogue. Such progress makes the detection of a gamma-ray burst at the highest energies much more likely than previously. This paper describes the facilities currently operating and their chances for detecting gamma-ray bursts, and reviews predictions for VHE gamma-ray emission from gamma-ray bursts. Results to date are summarized.

  1. Investigation of Martian H2O and CO2 via orbital gamma ray spectroscopy

    NASA Technical Reports Server (NTRS)

    Evans, Larry G.; Squyres, Steven W.

    1987-01-01

    The capability of an orbital gamma ray spectrometer to address presently unanswered questions concerning H2O and CO2 on Mars is investigated. The gamma ray signal produced by the Martian atmosphere and by several simple models of Martian surface materials is calculated. Results are reported for: (1) the production of neutrons in the atmosphere and in the subsurface material by cosmic ray interactions, (2) the scattering of neutrons and the resultant neutron energy spectrum and spatial distributions, (3) the reproduction of gamma rays by neutron prompt capture and nonelastic scatter reactions, (4) the production of gamma rays by natural radionuclides, (5) the attenuation of the gamma ray signal by passage through surface materials and the Martian atmosphere, (6) the production of the gamma ray continuum background, and (7) the uncertainty in gamma ray line strengths that results from the combined signal and background observed by the detector.

  2. Delayed Gamma-ray Spectroscopy for Safeguards Applications

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Mozin, Vladimir

    The delayed gamma-ray assay technique utilizes an external neutron source (D-D, D-T, or electron accelerator-driven), and high-resolution gamma-ray spectrometers to perform characterization of SNM materials behind shielding and in complex configurations such as a nuclear fuel assembly. High-energy delayed gamma-rays (2.5 MeV and above) observed following the active interrogation, provide a signature for identification of specific fissionable isotopes in a mixed sample, and determine their relative content. Potential safeguards applications of this method are: 1) characterization of fresh and spent nuclear fuel assemblies in wet or dry storage; 2) analysis of uranium enrichment in shielded or non-characterized containers or inmore » the presence of a strong radioactive background and plutonium contamination; 3) characterization of bulk and waste and product streams at SNM processing plants. Extended applications can include warhead confirmation and warhead dismantlement confirmation in the arms control area, as well as SNM diagnostics for the emergency response needs. In FY16 and prior years, the project has demonstrated the delayed gamma-ray measurement technique as a robust SNM assay concept. A series of empirical and modeling studies were conducted to characterize its response sensitivity, develop analysis methodologies, and analyze applications. Extensive experimental tests involving weapons-grade Pu, HEU and depleted uranium samples were completed at the Idaho Accelerator Center and LLNL Dome facilities for various interrogation time regimes and effects of the neutron source parameters. A dedicated delayed gamma-ray response modeling technique was developed and its elements were benchmarked in representative experimental studies, including highresolution gamma-ray measurements of spent fuel at the CLAB facility in Sweden. The objective of the R&D effort in FY17 is to experimentally demonstrate the feasibility of the delayed gamma-ray interrogation of shielded

  3. A long duration balloon-borne telescope for solar gamma-ray astronomy

    NASA Technical Reports Server (NTRS)

    Owens, Alan; Chupp, Edward L.; Dunphy, Philip P.

    1989-01-01

    A new solar gamma-ray telescope is described which is intended to take advantage of current long-duration ballon facilities such as the RACOON system. The primary scientific objective is to detect and measure gamma-ray lines from solar flares, along with the associated low-energy continuum. The proposed instrument is centered on a multiheaded Ge system and is designed to operate over the energy range 50 keV to 200 200 MeV. In the nuclear transition energy region, the average energy resolution of the primary detectors is over 20 times better than that achieved with the gamma-ray spectrometer on the Solar Maximum Mission satellite.

  4. A long duration balloon-borne telescope for solar gamma-ray astronomy

    NASA Astrophysics Data System (ADS)

    Owens, Alan; Chupp, Edward L.; Dunphy, Philip P.

    A new solar gamma-ray telescope is described which is intended to take advantage of current long-duration ballon facilities such as the RACOON system. The primary scientific objective is to detect and measure gamma-ray lines from solar flares, along with the associated low-energy continuum. The proposed instrument is centered on a multiheaded Ge system and is designed to operate over the energy range 50 keV to 200 200 MeV. In the nuclear transition energy region, the average energy resolution of the primary detectors is over 20 times better than that achieved with the gamma-ray spectrometer on the Solar Maximum Mission satellite.

  5. Lunar elemental analysis obtained from the Apollo gamma-ray and X-ray remote sensing experiment

    NASA Technical Reports Server (NTRS)

    Trombka, J. I.; Arnold, J. R.; Adler, I.; Metzger, A. E.; Reedy, R. C.

    1974-01-01

    Gamma ray and X-ray spectrometers carried in the service module of the Apollo 15 and 16 spacecraft were employed for compositional mapping of the lunar surface. The measurements involved the observation of the intensity and characteristics energy distribution of gamma rays and X-rays emitted from the lunar surface. A large scale compositional map of over 10 percent of the lunar surface was obtained from an analysis of the observed spectra. The objective of the X-ray experiment was to measure the K spectral lines from Mg, Al, and Si. Spectra were obtained and the data were reduced to Al/Si and Mg/Si intensity ratios and ultimately to chemical ratios. The objective of the gamma-ray experiment was to measure the natural and cosmic ray induced activity emission spectrum. At this time, the elemental abundances for Th, U, K, Fe, Ti, Si, and O have been determined over a number of major lunar regions.

  6. Airborne gamma-ray spectrometer and magnetometer survey: Chico quadrangle, California. Final report

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Not Available

    1981-05-01

    An airborne high sensitivity gamma-ray spectrometer and magnetometer survey was conducted over ten (10) areas over northern California and southwestern Oregon. These include the 2/sup 0/ x 1/sup 0/ NTMS quadrangles of Roseburg, Medford, Weed, Alturas, Redding, Susanville, Ukiah, and Chico along with the 1/sup 0/ x 2/sup 0/ areas of the Coos Bay quadrangle and the Crescent City/Eureka areas combined. This report discusses the results obtained over the Chico, California, map area. Traverse lines were flown in an east-west direction at a line spacing of three. Tie lines were flown north-south approximately twelve miles apart. A total of 16,880.5more » line miles of geophysical data were acquired, compiled, and interpreted during the survey, of which 3026.4 line miles are in the quadrangle. The purpose of this study is to acquire and compile geologic and other information with which to assess the magnitude and distribution of uranium resources with which to assess the magnitude and distribution of uranium resources and to determine areas favorable for the occurrence of uranium in the United States.« less

  7. Low-background gamma-ray spectrometry for the international monitoring system

    DOE PAGES

    Greenwood, L. R.; Cantaloub, M. G.; Burnett, J. L.; ...

    2016-12-28

    PNNL has developed two low-background gamma-ray spectrometers in a new shallow underground laboratory, thereby significantly improving its ability to detect low levels of gamma-ray emitting fission or activation products in airborne particulate in samples from the IMS (International Monitoring System). Furthermore, the combination of cosmic veto panels, dry nitrogen gas to reduce radon and low background shielding results in a reduction of the background count rate by about a factor of 100 compared to detectors operating above ground at our laboratory.

  8. Gen-2 hand-held optical imager towards cancer imaging: reflectance and transillumination phantom studies.

    PubMed

    Gonzalez, Jean; Roman, Manuela; Hall, Michael; Godavarty, Anuradha

    2012-01-01

    Hand-held near-infrared (NIR) optical imagers are developed by various researchers towards non-invasive clinical breast imaging. Unlike these existing imagers that can perform only reflectance imaging, a generation-2 (Gen-2) hand-held optical imager has been recently developed to perform both reflectance and transillumination imaging. The unique forked design of the hand-held probe head(s) allows for reflectance imaging (as in ultrasound) and transillumination or compressed imaging (as in X-ray mammography). Phantom studies were performed to demonstrate two-dimensional (2D) target detection via reflectance and transillumination imaging at various target depths (1-5 cm deep) and using simultaneous multiple point illumination approach. It was observed that 0.45 cc targets were detected up to 5 cm deep during transillumination, but limited to 2.5 cm deep during reflectance imaging. Additionally, implementing appropriate data post-processing techniques along with a polynomial fitting approach, to plot 2D surface contours of the detected signal, yields distinct target detectability and localization. The ability of the gen-2 imager to perform both reflectance and transillumination imaging allows its direct comparison to ultrasound and X-ray mammography results, respectively, in future clinical breast imaging studies.

  9. Identification of lunar rock types and search for polar ice by gamma ray spectroscopy

    NASA Astrophysics Data System (ADS)

    Metzger, A. E.; Drake, D. M.

    1990-01-01

    This paper examines the possibility of mapping the surface composition of the moon from an orbiting spin-stabilized spacecraft, using gamma ray spectroscopy and a cooled germanium solid-state device as a detector. A design for accommodating the germanium detector gamma ray spectrometer was devised, and the detection sensitivity was applied to typical lunar-rock compositions. For sets comprising nine highland and 16 mare types, the most useful elements were found to be Mg, Al, K, Ti, Fe, U, and Th. An analysis of the expected instrument response to the gamma ray and neutron fluxes of water ice indicated that a neutron mode added to the spectrometer will be more sensitive than the gamma ray mode to the possible presence of polar ice. It was calculated that, with a pair of selected neutron absorbers and a model which provides that 2.5 percent of the area above 75-deg latitude is occupied by trapping sites, the instrument will provide a 1-yr mission detection limit of 0.056 percent H2O by weight for each polar region.

  10. The Gamma-Ray Imager/Polarimeter for Solar Flares (GRIPS)

    NASA Technical Reports Server (NTRS)

    Shih, Albert Y.; Lin, Robert P.; Hurford, Gordon J.; Duncan, Nicole A.; Saint-Hilaire, Pascal; Bain, Hazel M.; Boggs, Steven E.; Zoglauer, Andreas C.; Smith, David M.; Tajima, Hiroyasu; hide

    2012-01-01

    The balloon-borne Gamma-Ray Imager/Polarimeter for Solar flares (GRIPS) instrument will provide a near-optimal combination of high-resolution imaging, spectroscopy, and polarimetry of solar-flare gamma-ray/hard X-ray emissions from approximately 20 keV to greater than approximately 10 MeV. GRIPS will address questions raised by recent solar flare observations regarding particle acceleration and energy release, such as: What causes the spatial separation between energetic electrons producing hard X-rays and energetic ions producing gamma-ray lines? How anisotropic are the relativistic electrons, and why can they dominate in the corona? How do the compositions of accelerated and ambient material vary with space and time, and why? The spectrometer/polarimeter consists of sixteen 3D position-sensitive germanium detectors (3D-GeDs), where each energy deposition is individually recorded with an energy resolution of a few keV FWHM and a spatial resolution of less than 0.1 cubic millimeter. Imaging is accomplished by a single multi-pitch rotating modulator (MPRM), a 2.5-centimeter thick tungsten alloy slit/slat grid with pitches that range quasi-continuously from 1 to 13 millimeters. The MPRM is situated 8 meters from the spectrometer to provide excellent image quality and unparalleled angular resolution at gamma-ray energies (12.5 arcsec FWHM), sufficient to separate 2.2 MeV footpoint sources for almost all flares. Polarimetry is accomplished by analyzing the anisotropy of reconstructed Compton scattering in the 3D-GeDs (i.e., as an active scatterer), with an estimated minimum detectable polarization of a few percent at 150-650 keV in an X-class flare. GRIPS is scheduled for a continental-US engineering test flight in fall 2013, followed by long or ultra-long duration balloon flights in Antarctica.

  11. A search for spectral lines in gamma-ray bursts using TGRS

    NASA Astrophysics Data System (ADS)

    Kurczynski, P.; Palmer, D.; Seifert, H.; Teegarden, B. J.; Gehrels, N.; Cline, T. L.; Ramaty, R.; Hurley, K.; Madden, N. W.; Pehl, R. H.

    1998-05-01

    We present the results of an ongoing search for narrow spectral lines in gamma-ray burst data. TGRS, the Transient Gamma-Ray Spectrometer aboard the Wind satellite is a high energy-resolution Ge device. Thus it is uniquely situated among the array of space-based, burst sensitive instruments to look for line features in gamma-ray burst spectra. Our search strategy adopts a two tiered approach. An automated `quick look' scan searches spectra for statistically significant deviations from the continuum. We analyzed all possible time accumulations of spectra as well as individual spectra for each burst. Follow-up analysis of potential line candidates uses model fitting with F-test and χ2 tests for statistical significance.

  12. Prediction of essential oil content of oregano by hand-held and Fourier transform NIR spectroscopy.

    PubMed

    Camps, Cédric; Gérard, Marianne; Quennoz, Mélanie; Brabant, Cécile; Oberson, Carine; Simonnet, Xavier

    2014-05-01

    In the framework of a breeding programme, the analysis of hundreds of oregano samples to determine their essential oil content (EOC) is time-consuming and expensive in terms of labour. Therefore developing a new method that is rapid, accurate and less expensive to use would be an asset to breeders. The aim of the present study was to develop a method based on near-inrared (NIR) spectroscopy to determine the EOC of oregano dried powder. Two spectroscopic approaches were compared, the first using a hand-held NIR device and the second a Fourier transform (FT) NIR spectrometer. Hand-held NIR (1000-1800 nm) measurements and partial least squares regression allowed the determination of EOC with R² and SEP values of 0.58 and 0.81 mL per 100 g dry matter (DM) respectively. Measurements with FT-NIR (1000-2500 nm) allowed the determination of EOC with R² and SEP values of 0.91 and 0.68 mL per 100 g DM respectively. RPD, RER and RPIQ values for the model implemented with FT-NIR data were satisfactory for screening application, while those obtained with hand-held NIR data were below the level required to consider the model as enough accurate for screening application. The FT-NIR approach allowed the development of an accurate model for EOC prediction. Although the hand-held NIR approach is promising, it needs additional development before it can be used in practice. © 2013 Society of Chemical Industry.

  13. Digital hand-held temperature monitor

    NASA Astrophysics Data System (ADS)

    Allin, L. V.; Ferrari, I.

    1980-09-01

    A hand-held non-invasive monitoring instrument has been designed, constructed and tested to allow core temperature measurements to be obtained from human subjects who have swallowed a temperature-sensing radio transmitter (radio pill). This instrument uses a simple AM radio for a receiver, digital circuitry to decode the received signal and a four-digit LED module to display the temperature. The unit, which is battery-powered, can be held in one hand while an antenna probe is swept over the abdomen of the subject until a continuously audible signal is generated by a piezoelectric sound source, indicating reception. The digital display then presents the body core temperature in tenths of a degree Celsius.

  14. Neutrons and gamma-rays spectroscopy of Mercury surface: global mapping from ESA MPO-BepiColombo spacecraft by MGNS instrument.

    NASA Astrophysics Data System (ADS)

    Kozyrev, A. S.; Gurvits, L. I.; Litvak, M. L.; Malakhov, A. A.; Mokrousov, M. I.; Mitrofanov, I. G.; Rogozhin, A. A.; Sanin, A. B.; Owens, A.; Schvetsov, V. N.

    2009-04-01

    For analyse chemistry composition of Mercury subsurface we will apply method of as-called remote sensing of neutrons. This method can be use for study celestial body of Solar system without thick atmospheres, like Moon, Mars, Phobos, Mercury etc. by the analysis of induced nuclear gamma-rays and neutron emission. These gamma-rays and neutrons are produced by energetic galactic cosmic rays colliding with nuclei of regolith within a 1-2 meter layer of subsurface. Mercury Planetary Orbiter of BepiColombo mission includes the nuclear instrument MGNS (Mercury Gamma-rays and Neutrons Spectrometers), which consists of gamma-rays spectrometer for detection of gamma-ray lines and neutron spectrometer for measurement of the neutron leakage flux. To test know theoretical models of Mercury composition, MGNS will provide the data for the set of gamma-ray lines, which are necessary and sufficient to discriminate between the models. Neutron data are known to be very sensitive for the presence of hydrogen within heavy soil-constituting elements. Mapping measurements of epithermal neutrons and 2.2 MeV line will allow us to study the content of hydrogen over the surface of Mercury and to test the presence of water ice deposits in the cold traps of permanently shadowed polar craters of this planet. There are also three natural radioactive elements, K, Th and U, which contents in the soil of a celestial body characterizes the physical condition of its formation in the proto-planetary cloud. The data from gamma-spectrometer will allow to compare the origin of Mercury with evolution of Earth, Moon and Mars. Three sensors for thermal and epithermal neutrons are made with similar 3He proportional counters, but have different polyethylene enclosures and cadmium shielding for different sensitivity of thermal and epithermal neutrons at different energy ranges. The fourth neutron sensor for high energy neutrons 1-10 MeV contains the scintillation crystal of stylbene with cylindrical shape of

  15. LUMINOSITY EVOLUTION OF GAMMA-RAY PULSARS

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hirotani, Kouichi, E-mail: hirotani@tiara.sinica.edu.tw

    2013-04-01

    We investigate the electrodynamic structure of a pulsar outer-magnetospheric particle accelerator and the resulting gamma-ray emission. By considering the condition for the accelerator to be self-sustained, we derive how the trans-magnetic-field thickness of the accelerator evolves with the pulsar age. It is found that the thickness is small but increases steadily if the neutron-star envelope is contaminated by sufficient light elements. For such a light element envelope, the gamma-ray luminosity of the accelerator is kept approximately constant as a function of age in the initial 10,000 yr, forming the lower bound of the observed distribution of the gamma-ray luminosity ofmore » rotation-powered pulsars. If the envelope consists of only heavy elements, on the other hand, the thickness is greater, but it increases less rapidly than a light element envelope. For such a heavy element envelope, the gamma-ray luminosity decreases relatively rapidly, forming the upper bound of the observed distribution. The gamma-ray luminosity of a general pulsar resides between these two extreme cases, reflecting the envelope composition and the magnetic inclination angle with respect to the rotation axis. The cutoff energy of the primary curvature emission is regulated below several GeV even for young pulsars because the gap thickness, and hence the acceleration electric field, is suppressed by the polarization of the produced pairs.« less

  16. A high-resolution gamma-ray and hard X-ray spectrometer for solar flare observations in Max 1991

    NASA Technical Reports Server (NTRS)

    Lin, R. P.; Curtis, D. W.; Harvey, P.; Hurley, K.; Primbsch, J. H.; Smith, D. M.; Pelling, R. M.; Duttweiler, F.

    1988-01-01

    A long duration balloon flight instrument for Max 1991 designed to study the acceleration of greater than 10 MeV ions and greater than 15 keV electrons in solar flares through high resolution spectroscopy of the gamma ray lines and hard X-ray and gamma ray continuum is described. The instrument, HIREGS, consists of an array of high-purity, n-type coaxial germanium detectors (HPGe) cooled to less than 90 K and surrounded by a bismuth germanate (BGO) anticoincidence shield. It will cover the energy range 15 keV to 20 MeV with keV spectral resolution, sufficient for accurate measurement of all parameters of the expected gamma ray lines with the exception of the neutron capture deuterium line. Electrical segmentation of the HPGe detector into a thin front segment and a thick rear segment, together with pulse-shape discrimination, provides optimal dynamic range and signal-to-background characteristics for flare measurements. Neutrons and gamma rays up to approximately 0.1 to 1 GeV can be detected and identified with the combination of the HPGe detectors and rear BGO shield. The HIREGS is planned for long duration balloon flights (LDBF) for solar flare studies during Max 1991. The two exploratory LDBFs carried out at mid-latitudes in 1987 to 1988 are described, and the LDBFs in Antarctica, which could in principle provide 24 hour/day solar coverage and very long flight durations (20 to 30 days) because of minimal ballast requirements are discussed.

  17. Cosmic gamma-ray bursts detected in the RELEC experiment onboard the Vernov satellite

    NASA Astrophysics Data System (ADS)

    Bogomolov, A. V.; Bogomolov, V. V.; Iyudin, A. F.; Kuznetsova, E. A.; Minaev, P. Yu.; Panasyuk, M. I.; Pozanenko, A. S.; Prokhorov, A. V.; Svertilov, S. I.; Chernenko, A. M.

    2017-08-01

    The RELEC scientific instrumentation onboard the Vernov spacecraft launched on July 8, 2014, included the DRGE gamma-ray and electron spectrometer. This instrument incorporates a set of scintillation phoswich detectors, including four identical X-ray and gamma-ray detectors in the energy range from 10 keV to 3 MeV with a total area of 500 cm2 directed toward the nadir, and an electron spectrometer containing three mutually orthogonal detector units with a geometry factor of 2 cm2 sr, which is also sensitive to X-rays and gamma-rays. The goal of the space experiment with the DRGE instrument was to investigate phenomena with fast temporal variability, in particular, terrestrial gammaray flashes (TGFs) and magnetospheric electron precipitations. However, the detectors of the DRGE instrument could record cosmic gamma-ray bursts (GRBs) and allowed one not only to perform a detailed analysis of the gamma-ray variability but also to compare the time profiles with the measurements made by other instruments of the RELEC scientific instrumentation (the detectors of optical and ultraviolet flashes, the radio-frequency and low-frequency analyzers of electromagnetic field parameters). We present the results of our observations of cosmicGRB 141011A and GRB 141104A, compare the parameters obtained in the GBM/Fermi and KONUS-Wind experiments, and estimate the redshifts and E iso for the sources of these GRBs. The detectability of GRBs and good agreement between the independent estimates of their parameters obtained in various experiments are important factors of the successful operation of similar detectors onboard the Lomonosov spacecraft.

  18. BiI 3 Crystals for High Energy Resolution Gamma-Ray Spectroscopy

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Nino, Juan C.; Baciak, James; Johns, Paul

    2017-04-12

    BiI 3 had been investigated for its unique properties as a layered compound semiconductor for many decades. However, despite the exceptional atomic, physical, and electronic properties of this material, good resolution gamma ray spectra had never been reported for BiI 3. The shortcomings that previously prevented BiI 3 from reaching success as a gamma ray sensor were, through this project, identified and suppressed to unlock the performance of this promising compound. Included in this work were studies on a number of methods which have, for the first time, enabled BiI 3 to exhibit spectral performance rivaling many other candidate semiconductorsmore » for room temperature gamma ray sensors. New approaches to crystal growth were explored that allow BiI 3 spectrometers to be fabricated with up to 2.2% spectral resolution at 662 keV. Fundamental studies on trap states, dopant incorporation, and polarization were performed to enhance performance of this compound. Additionally, advanced detection techniques were applied to display the capabilities of high quality BiI 3 spectrometers. Overall, through this work, BiI 3 has been revealed as a potentially transformative material for nuclear security and radiation detection sciences.« less

  19. High-energy emission in gamma-ray bursts

    NASA Technical Reports Server (NTRS)

    Matz, S. M.; Forrest, D. J.; Vestrand, W. T.; Chupp, E. L.; Share, G. H.; Rieger, E.

    1985-01-01

    Between February 1980 and August 1983 the Gamma-Ray Spectrometer on the Solar Maximum Mission Satellite (SMM) detected 72 events identified as being of cosmic origin. These events are an essentially unbiased subset of all gamma-ray bursts. The measured spectra of these events show that high energy (greater than 1 MeV) emission is a common and energetically important feature. There is no evidence for a general high-energy cut-off or a distribution of cut-offs below about 6 MeV. These observations imply a limit on the preferential beaming of high energy emission. This constraint, combined with the assumption of isotropic low energy emission, implies that the typical magnetic field strength at burst radiation sites is less than 1 x 10 to the 12th gauss.

  20. Observation of fluctuation of gamma-ray count rate accompanying thunderstorm activity and energy spectrum of gamma rays in the atmosphere up to several kilometers altitude from the ground

    NASA Astrophysics Data System (ADS)

    Torii, T.; Sanada, Y.; Watanabe, A.

    2017-12-01

    In the vicinity of the tops of high mountains and in the coastal areas of the Sea of Japan in winter, the generation of high energy photons that lasts more than 100 seconds at the occurrence of thunderclouds has been reported. At the same time, 511 keV gamma rays are also detected. On the other hand, we irradiated a radiosonde equipped with gamma-ray detectors at the time of thunderstorm and observed fluctuation in gamma-ray count-rate. As a result, we found that the gamma-ray count-rate increases significantly near the top of the thundercloud. Therefore, in order to investigate the fluctuation of the energy of the gamma rays, we developed a radiation detector for radiosonde to observe the fluctuation of the low energy gamma-ray spectrum and observed the fluctuation of the gamma-ray spectrum. We will describe the counting rate and spectral fluctuation of gamma-ray detectors for radiosonde observed in the sky in Fukushima prefecture, Japan.

  1. 30 CFR 56.14116 - Hand-held power tools.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... 30 Mineral Resources 1 2012-07-01 2012-07-01 false Hand-held power tools. 56.14116 Section 56... MINE SAFETY AND HEALTH SAFETY AND HEALTH STANDARDS-SURFACE METAL AND NONMETAL MINES Machinery and Equipment Safety Devices and Maintenance Requirements § 56.14116 Hand-held power tools. (a) Power drills...

  2. 30 CFR 56.14116 - Hand-held power tools.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 30 Mineral Resources 1 2010-07-01 2010-07-01 false Hand-held power tools. 56.14116 Section 56... MINE SAFETY AND HEALTH SAFETY AND HEALTH STANDARDS-SURFACE METAL AND NONMETAL MINES Machinery and Equipment Safety Devices and Maintenance Requirements § 56.14116 Hand-held power tools. (a) Power drills...

  3. 30 CFR 56.14116 - Hand-held power tools.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 30 Mineral Resources 1 2013-07-01 2013-07-01 false Hand-held power tools. 56.14116 Section 56... MINE SAFETY AND HEALTH SAFETY AND HEALTH STANDARDS-SURFACE METAL AND NONMETAL MINES Machinery and Equipment Safety Devices and Maintenance Requirements § 56.14116 Hand-held power tools. (a) Power drills...

  4. 30 CFR 57.14116 - Hand-held power tools.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... 30 Mineral Resources 1 2012-07-01 2012-07-01 false Hand-held power tools. 57.14116 Section 57... MINE SAFETY AND HEALTH SAFETY AND HEALTH STANDARDS-UNDERGROUND METAL AND NONMETAL MINES Machinery and Equipment Safety Devices and Maintenance Requirements § 57.14116 Hand-held power tools. (a) Power drills...

  5. 30 CFR 56.14116 - Hand-held power tools.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 30 Mineral Resources 1 2011-07-01 2011-07-01 false Hand-held power tools. 56.14116 Section 56... MINE SAFETY AND HEALTH SAFETY AND HEALTH STANDARDS-SURFACE METAL AND NONMETAL MINES Machinery and Equipment Safety Devices and Maintenance Requirements § 56.14116 Hand-held power tools. (a) Power drills...

  6. 30 CFR 57.14116 - Hand-held power tools.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 30 Mineral Resources 1 2010-07-01 2010-07-01 false Hand-held power tools. 57.14116 Section 57... MINE SAFETY AND HEALTH SAFETY AND HEALTH STANDARDS-UNDERGROUND METAL AND NONMETAL MINES Machinery and Equipment Safety Devices and Maintenance Requirements § 57.14116 Hand-held power tools. (a) Power drills...

  7. 30 CFR 57.14116 - Hand-held power tools.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 30 Mineral Resources 1 2013-07-01 2013-07-01 false Hand-held power tools. 57.14116 Section 57... MINE SAFETY AND HEALTH SAFETY AND HEALTH STANDARDS-UNDERGROUND METAL AND NONMETAL MINES Machinery and Equipment Safety Devices and Maintenance Requirements § 57.14116 Hand-held power tools. (a) Power drills...

  8. 30 CFR 56.14116 - Hand-held power tools.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 30 Mineral Resources 1 2014-07-01 2014-07-01 false Hand-held power tools. 56.14116 Section 56... MINE SAFETY AND HEALTH SAFETY AND HEALTH STANDARDS-SURFACE METAL AND NONMETAL MINES Machinery and Equipment Safety Devices and Maintenance Requirements § 56.14116 Hand-held power tools. (a) Power drills...

  9. 30 CFR 57.14116 - Hand-held power tools.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 30 Mineral Resources 1 2014-07-01 2014-07-01 false Hand-held power tools. 57.14116 Section 57... MINE SAFETY AND HEALTH SAFETY AND HEALTH STANDARDS-UNDERGROUND METAL AND NONMETAL MINES Machinery and Equipment Safety Devices and Maintenance Requirements § 57.14116 Hand-held power tools. (a) Power drills...

  10. 30 CFR 57.14116 - Hand-held power tools.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 30 Mineral Resources 1 2011-07-01 2011-07-01 false Hand-held power tools. 57.14116 Section 57... MINE SAFETY AND HEALTH SAFETY AND HEALTH STANDARDS-UNDERGROUND METAL AND NONMETAL MINES Machinery and Equipment Safety Devices and Maintenance Requirements § 57.14116 Hand-held power tools. (a) Power drills...

  11. Cosmic Gamma-Rays

    Science.gov Websites

    [Argonne Logo] [DOE Logo] Cosmic Gamma-Rays Home Publications Talks People Students Argonne > ; HEP > Cosmic Gamma-Rays Projects VERITAS Past Projects TrICE What's New CTA Cosmic Gamma-Rays The

  12. GRIS observations of Al-26 gamma-ray line emission from two points in the Galactic plane

    NASA Technical Reports Server (NTRS)

    Teegarden, B. J.; Barthelmy, S. D.; Gehrels, N.; Tueller, J.; Leventhal, M.

    1991-01-01

    Both of the Gamma-Ray Imaging Spectrometer (GRIS) experiment's two observations of the Galactic center region, at l = zero and 335 deg respectively, detected Al-26 gamma-ray line emission. While these observations are consistent with the assumed high-energy gamma-ray distribution, they are consistent with other distributions as well. The data suggest that the Al-26 emission is distributed over Galactic longitude rather than being confined to a point source. The GRIS data also indicate that the 1809 keV line is broadened.

  13. Monte Carlo simulations of the gamma-ray exposure rates of common rocks

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Haber, Daniel A.; Malchow, Russell L.; Burnley, Pamela C.

    Monte Carlo simulations have been performed to model the gamma ray emission and attenuation properties of common rocks. In geologic materials, 40K, 238U, and 232Th are responsible for most gamma ray production. If the concentration of these radioelements and attenuation factors such as degree of water saturation are known, an estimate of the gamma-ray exposure rate can be made. The results show that there are no significant differences in gamma-ray screening between major rock types. If the total number of radionuclide atoms are held constant then the major controlling factor is density of the rock. Finally, the thickness of regolithmore » or soil overlying rock can be estimated by modeling the exposure rate if the radionuclide contents of both materials are known.« less

  14. Monte Carlo simulations of the gamma-ray exposure rates of common rocks

    DOE PAGES

    Haber, Daniel A.; Malchow, Russell L.; Burnley, Pamela C.

    2016-11-24

    Monte Carlo simulations have been performed to model the gamma ray emission and attenuation properties of common rocks. In geologic materials, 40K, 238U, and 232Th are responsible for most gamma ray production. If the concentration of these radioelements and attenuation factors such as degree of water saturation are known, an estimate of the gamma-ray exposure rate can be made. The results show that there are no significant differences in gamma-ray screening between major rock types. If the total number of radionuclide atoms are held constant then the major controlling factor is density of the rock. Lastly, the thickness of regolithmore » or soil overlying rock can be estimated by modeling the exposure rate if the radionuclide contents of both materials are known.« less

  15. Monte Carlo simulations of the gamma-ray exposure rates of common rocks

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Haber, Daniel A.; Malchow, Russell L.; Burnley, Pamela C.

    Monte Carlo simulations have been performed to model the gamma ray emission and attenuation properties of common rocks. In geologic materials, 40K, 238U, and 232Th are responsible for most gamma ray production. If the concentration of these radioelements and attenuation factors such as degree of water saturation are known, an estimate of the gamma-ray exposure rate can be made. The results show that there are no significant differences in gamma-ray screening between major rock types. If the total number of radionuclide atoms are held constant then the major controlling factor is density of the rock. Lastly, the thickness of regolithmore » or soil overlying rock can be estimated by modeling the exposure rate if the radionuclide contents of both materials are known.« less

  16. Sizing up the population of gamma-ray binaries

    NASA Astrophysics Data System (ADS)

    Dubus, Guillaume; Guillard, Nicolas; Petrucci, Pierre-Olivier; Martin, Pierrick

    2017-12-01

    Context. Gamma-ray binaries are thought to be composed of a young pulsar in orbit around a massive O or Be star with their gamma-ray emission powered by pulsar spin-down. The number of such systems in our Galaxy is not known. Aims: We aim to estimate the total number of gamma-ray binaries in our Galaxy and to evaluate the prospects for new detections in the GeV and TeV energy range, taking into account that their gamma-ray emission is modulated on the orbital period. Methods: We modelled the population of gamma-ray binaries and evaluated the fraction of detected systems in surveys with the Fermi-LAT (GeV), H.E.S.S., HAWC and CTA (TeV) using observation-based and synthetic template light curves. Results: The detected fraction depends more on the orbit-average flux than on the light-curve shape. Our best estimate for the number of gamma-ray binaries is 101-52+89 systems. A handful of discoveries are expected by pursuing the Fermi-LAT survey. Discoveries in TeV surveys are less likely. However, this depends on the relative amounts of power emitted in GeV and TeV domains. There could be as many as ≈ 200 HESS J0632+057-like systems with a high ratio of TeV to GeV emission compared to other gamma-ray binaries. Statistics allow for as many as three discoveries in five years of HAWC observations and five discoveries in the first two years of the CTA Galactic Plane survey. Conclusions: We favour continued Fermi-LAT observations over ground-based TeV surveys to find new gamma-ray binaries. Gamma-ray observations are most sensitive to short orbital period systems with a high spin-down pulsar power. Radio pulsar surveys (SKA) are likely to be more efficient in detecting long orbital period systems, providing a complementary probe into the gamma-ray binary population.

  17. "Short, Hard Gamma-Ray Bursts - Mystery Solved?????"

    NASA Technical Reports Server (NTRS)

    Parsons, A.

    2006-01-01

    After over a decade of speculation about the nature of short-duration hard-spectrum gamma-ray bursts (GRBs), the recent detection of afterglow emission from a small number of short bursts has provided the first physical constraints on possible progenitor models. While the discovery of afterglow emission from long GRBs was a real breakthrough linking their origin to star forming galaxies, and hence the death of massive stars, the progenitors, energetics, and environments for short gamma-ray burst events remain elusive despite a few recent localizations. Thus far, the nature of the host galaxies measured indicates that short GRBs arise from an old (> 1 Gyr) stellar population, strengthening earlier suggestions and providing support for coalescing compact object binaries as the progenitors. On the other hand, some of the short burst afterglow observations cannot be easily explained in the coalescence scenario. These observations raise the possibility that short GRBs may have different or multiple progenitors systems. The study of the short-hard GRB afterglows has been made possible by the Swift Gamma-ray Burst Explorer, launched in November of 2004. Swift is equipped with a coded aperture gamma-ray telescope that can observe up to 2 steradians of the sky and can compute the position of a gamma-ray burst to within 2-3 arcmin in less than 10 seconds. The Swift spacecraft can slew on to this burst position without human intervention, allowing its on-board x ray and optical telescopes to study the afterglow within 2 minutes of the original GRB trigger. More Swift short burst detections and afterglow measurements are needed before we can declare that the mystery of short gamma-ray burst is solved.

  18. Analysis of high resolution satellite data for cosmic gamma ray bursts

    NASA Technical Reports Server (NTRS)

    Imhof, W. L.; Nakano, G. H.; Reagan, J. B.

    1976-01-01

    Cosmic gamma ray bursts detected a germanium spectrometer on the low altitude satellite 1972-076B were surveyed. Several bursts with durations ranging from approximately 0.032 to 15 seconds were found and are tabulated. The frequency of occurrence/intensity distribution of these events was compared with the S to the -3/2 power curve of confirmed events. The longer duration events fall above the S to the -3/2 power curve of confirmed events, suggesting they are perhaps not all true cosmic gamma-ray bursts. The narrow duration events fall closely on the S to the -3/2 power curve. The survey also revealed several counting rate spikes, with durations comparable to confirmed gamma-ray bursts, which were shown to be of magnetospheric origin. Confirmation that energetic electrons were responsible for these bursts was achieved from analysis of all data from the complete payload of gamma-ray and energetic particle detectors on board the satellite. The analyses also revealed that the narrowness of the spikes was primarily spatial rather than temporal in character.

  19. Sneaky Gamma-Rays: Using Gravitational Lensing to Avoid Gamma-Gamma-Absorption

    NASA Astrophysics Data System (ADS)

    Boettcher, Markus; Barnacka, Anna

    2014-08-01

    It has recently been suggested that gravitational lensing studies of gamma-ray blazars might be a promising avenue to probe the location of the gamma-ray emitting region in blazars. Motivated by these prospects, we have investigated potential gamma-gamma absorption signatures of intervening lenses in the very-high-energy gamma-ray emission from lensedblazars. We considered intervening galaxies and individual stars within these galaxies. We find that the collective radiation field of galaxies acting as sources of macrolensing are not expected to lead to significant gamma-gamma absorption. Individual stars within intervening galaxies could, in principle, cause a significant opacity to gamma-gamma absorption for VHE gamma-rays if the impact parameter (the distance of closest approach of the gamma-ray to the center of the star) is small enough. However, we find that the curvature of the photon path due to gravitational lensing will cause gamma-ray photons to maintain a sufficiently large distance from such stars to avoid significant gamma-gamma absorption. This re-inforces the prospect of gravitational-lensing studies of gamma-ray blazars without interference due to gamma-gamma absorption due to the lensing objects.

  20. Investigation of Martian H2O and CO2 via gamma-ray spectroscopy

    NASA Technical Reports Server (NTRS)

    Squyres, Steven W.; Evans, Larry G.

    1987-01-01

    The evolution and present state of water and carbon dioxide on Mars are discussed. Researchers wished to determine how effectively questions regarding the distribution of water and carbon dioxide on Mars may be addressed with orbital gamma ray spectrometer data. Several simple, multi-layer models of the Martian surface were formulated to address problems such as the ice/dust ratio of layered deposits; the distribution, depth and concentration of ground ice; the thickness of north polar perennial ice; the thickness of the carbon dioxide layer over the south polar cap; the thickness of the seasonal carbon dioxide frost cap; and the water content of the seasonal frost cap. The results indicate that the Mars Observer gamma ray spectrometer will be a powerful tool for investigating the distribution and stratigraphy of volatiles on Mars.

  1. A gamma-gamma coincidence/anticoincidence spectrometer for low-level cosmogenic (22)Na/(7)Be activity ratio measurement.

    PubMed

    Zhang, Weihua; Ungar, Kurt; Stukel, Matthew; Mekarski, Pawel

    2014-04-01

    In this study, a digital gamma-gamma coincidence/anticoincidence spectrometer was developed and examined for low-level cosmogenic (22)Na and (7)Be in air-filter sample monitoring. The spectrometer consists of two bismuth germanate scintillators (BGO) and an XIA LLC Digital Gamma Finder (DGF)/Pixie-4 software and card package. The spectrometer design allows a more selective measurement of (22)Na with a significant background reduction by gamma-gamma coincidence events processing. Hence, the system provides a more sensitive way to quantify trace amounts of (22)Na than normal high resolution gamma spectrometry providing a critical limit of 3 mBq within a 20 h count. The use of a list-mode data acquisition technique enabled simultaneous determination of (22)Na and (7)Be activity concentrations using a single measurement by coincidence and anticoincidence mode respectively. Copyright © 2014 Elsevier Ltd. All rights reserved.

  2. The Mapping X-ray Fluorescence Spectrometer (MapX)

    NASA Astrophysics Data System (ADS)

    Sarrazin, P.; Blake, D. F.; Marchis, F.; Bristow, T.; Thompson, K.

    2017-12-01

    Many planetary surface processes leave traces of their actions as features in the size range 10s to 100s of microns. The Mapping X-ray Fluorescence Spectrometer (MapX) will provide elemental imaging at 100 micron spatial resolution, yielding elemental chemistry at a scale where many relict physical, chemical, or biological features can be imaged and interpreted in ancient rocks on planetary bodies and planetesimals. MapX is an arm-based instrument positioned on a rock or regolith with touch sensors. During an analysis, an X-ray source (tube or radioisotope) bombards the sample with X-rays or alpha-particles / gamma-rays, resulting in sample X-ray Fluorescence (XRF). X-rays emitted in the direction of an X-ray sensitive CCD imager pass through a 1:1 focusing lens (X-ray micro-pore Optic (MPO)) that projects a spatially resolved image of the X-rays onto the CCD. The CCD is operated in single photon counting mode so that the energies and positions of individual X-ray photons are recorded. In a single analysis, several thousand frames are both stored and processed in real-time. Higher level data products include single-element maps with a lateral spatial resolution of 100 microns and quantitative XRF spectra from ground- or instrument- selected Regions of Interest (ROI). XRF spectra from ROI are compared with known rock and mineral compositions to extrapolate the data to rock types and putative mineralogies. When applied to airless bodies and implemented with an appropriate radioisotope source for alpha-particle excitation, MapX will be able to analyze biogenic elements C, N, O, P, S, in addition to the cations of the rock-forming elements >Na, accessible with either X-ray or gamma-ray excitation. The MapX concept has been demonstrated with a series of lab-based prototypes and is currently under refinement and TRL maturation.

  3. Outcrop Gamma-ray Analysis of the Cretaceous mesaverde Group: Jicarilla Apache Indian Reservation, New Mexico

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ridgley, Jennie; Dunbar, Robyn Wright

    2001-04-25

    This report presents the results of an outcrop gamma-ray survey of six selected measured sections included in the original report. The primary objective of this second study is to provide a baseline to correlate from the outcrop and reservoir model into Mesaverde strata in the San Juan Basin subsurface. Outcrop logs were generated using a GAD-6 gamma-ray spectrometer that simultaneously recorded total counts, potassium, uranium, and thorium data.

  4. Strontium iodide gamma ray spectrometers for planetary science (Conference Presentation)

    NASA Astrophysics Data System (ADS)

    Prettyman, Thomas H.; Rowe, Emmanuel; Butler, Jarrhett; Groza, Michael; Burger, Arnold; Yamashita, Naoyuki; Lambert, James L.; Stassun, Keivan G.; Beck, Patrick R.; Cherepy, Nerine J.; Payne, Stephen A.; Castillo-Rogez, Julie C.; Feldman, Sabrina M.; Raymond, Carol A.

    2016-09-01

    Gamma rays produced passively by cosmic ray interactions and by the decay of radioelements convey information about the elemental makeup of planetary surfaces and atmospheres. Orbital missions mapped the composition of the Moon, Mars, Mercury, Vesta, and now Ceres. Active neutron interrogation will enable and/or enhance in situ measurements (rovers, landers, and sondes). Elemental measurements support planetary science objectives as well as resource utilization and planetary defense initiatives. Strontium iodide, an ultra-bright scintillator with low nonproportionality, offers significantly better energy resolution than most previously flown scintillators, enabling improved accuracy for identification and quantification of key elements. Lanthanum bromide achieves similar resolution; however, radiolanthanum emissions obscure planetary gamma rays from radioelements K, Th, and U. The response of silicon-based optical sensors optimally overlaps the emission spectrum of strontium iodide, enabling the development of compact, low-power sensors required for space applications, including burgeoning microsatellite programs. While crystals of the size needed for planetary measurements (>100 cm3) are on the way, pulse-shape corrections to account for variations in absorption/re-emission of light are needed to achieve maximum resolution. Additional challenges for implementation of large-volume detectors include optimization of light collection using silicon-based sensors and assessment of radiation damage effects and energetic-particle induced backgrounds. Using laboratory experiments, archived planetary data, and modeling, we evaluate the performance of strontium iodide for future missions to small bodies (asteroids and comets) and surfaces of the Moon and Venus. We report progress on instrument design and preliminary assessment of radiation damage effects in comparison to technology with flight heritage.

  5. Lunar elemental analysis obtained from the Apollo gamma-ray and X-ray remote sensing experiment

    NASA Technical Reports Server (NTRS)

    Trombka, J. I.; Arnold, J. R.; Adler, I.; Metzger, A. E.; Reedy, R. C.

    1977-01-01

    Gamma-ray and X-ray spectrometers carried in the service modules of the Apollo 15 and Apollo 16 spacecraft were employed for compositional mapping of the lunar surface. The measurements involved the observation of the intensity and characteristic energy distribution of gamma rays and X-rays emitted from the lunar surface. A large-scale compositional map of over 10 percent of the lunar surface was obtained from an analysis of the observed spectra. The objective of the X-ray experiment was to measure the K spectral lines from Mg, Al, and Si. Spectra were obtained and the data were reduced to Al/Si and Mg/Si intensity ratios and ultimately to chemical ratios. Analyses of the results have indicated (1) that the Al/Si ratios are highest in the lunar highlands and considerably lower in the maria, and (2) that the Mg/Si concentrations generally show the opposite relationship. The objective of the gamma-ray experiment was to measure the natural and cosmic-ray-induced activity emission spectrum. At this time, the elemental abundances for Th, U, K, Fe, Ti, Si, and O have been determined over a number of major lunar regions. Regions of relatively high natural radioactivity were found in the Mare Imbrium and Oceanus Procellarum regions.

  6. Rapid and automatic chemical identification of the medicinal flower buds of Lonicera plants by the benchtop and hand-held Fourier transform infrared spectroscopy

    NASA Astrophysics Data System (ADS)

    Chen, Jianbo; Guo, Baolin; Yan, Rui; Sun, Suqin; Zhou, Qun

    2017-07-01

    With the utilization of the hand-held equipment, Fourier transform infrared (FT-IR) spectroscopy is a promising analytical technique to minimize the time cost for the chemical identification of herbal materials. This research examines the feasibility of the hand-held FT-IR spectrometer for the on-site testing of herbal materials, using Lonicerae Japonicae Flos (LJF) and Lonicerae Flos (LF) as examples. Correlation-based linear discriminant models for LJF and LF are established based on the benchtop and hand-held FT-IR instruments. The benchtop FT-IR models can exactly recognize all articles of LJF and LF. Although a few LF articles are misjudged at the sub-class level, the hand-held FT-IR models are able to exactly discriminate LJF and LF. As a direct and label-free analytical technique, FT-IR spectroscopy has great potential in the rapid and automatic chemical identification of herbal materials either in laboratories or in fields. This is helpful to prevent the spread and use of adulterated herbal materials in time.

  7. Study of SMM flares in gamma-rays and neutrons

    NASA Technical Reports Server (NTRS)

    Dunphy, Philip P.; Chupp, Edward L.

    1992-01-01

    This report summarizes the results of the research supported by NASA grant NAGW-2755 and lists the papers and publications produced through the grant. The objective of the work was to study solar flares that produced observable signals from high-energy (greater than 10 MeV) gamma-rays and neutrons in the Solar Maximum Mission (SMM) Gamma-Ray Spectrometer (GRS). In 3 of 4 flares that had been studied previously, most of the neutrons and neutral pions appear to have been produced after the 'main' impulsive phase as determined from hard x-rays and gamma-rays. We, therefore, proposed to analyze the timing of the high-energy radiation, and its implications for the acceleration, trapping, and transport of flare particles. It was equally important to characterize the spectral shapes of the interacting energetic electrons and protons - another key factor in constraining possible particle acceleration mechanisms. In section 2.0, we discuss the goals of the research. In section 3.0, we summarize the results of the research. In section 4.0, we list the papers and publications produced under the grant. Preprints or reprints of the publications are attached as appendices.

  8. MGGPOD: a Monte Carlo Suite for Modeling Instrumental Line and Continuum Backgrounds in Gamma-Ray Astronomy

    NASA Technical Reports Server (NTRS)

    Weidenspointner, G.; Harris, M. J.; Sturner, S.; Teegarden, B. J.; Ferguson, C.

    2004-01-01

    Intense and complex instrumental backgrounds, against which the much smaller signals from celestial sources have to be discerned, are a notorious problem for low and intermediate energy gamma-ray astronomy (approximately 50 keV - 10 MeV). Therefore a detailed qualitative and quantitative understanding of instrumental line and continuum backgrounds is crucial for most stages of gamma-ray astronomy missions, ranging from the design and development of new instrumentation through performance prediction to data reduction. We have developed MGGPOD, a user-friendly suite of Monte Carlo codes built around the widely used GEANT (Version 3.21) package, to simulate ab initio the physical processes relevant for the production of instrumental backgrounds. These include the build-up and delayed decay of radioactive isotopes as well as the prompt de-excitation of excited nuclei, both of which give rise to a plethora of instrumental gamma-ray background lines in addition t o continuum backgrounds. The MGGPOD package and documentation are publicly available for download. We demonstrate the capabilities of the MGGPOD suite by modeling high resolution gamma-ray spectra recorded by the Transient Gamma-Ray Spectrometer (TGRS) on board Wind during 1995. The TGRS is a Ge spectrometer operating in the 40 keV to 8 MeV range. Due to its fine energy resolution, these spectra reveal the complex instrumental background in formidable detail, particularly the many prompt and delayed gamma-ray lines. We evaluate the successes and failures of the MGGPOD package in reproducing TGRS data, and provide identifications for the numerous instrumental lines.

  9. Automated Hand-Held UXO Detection, Classification & Discrimination Sensor

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bell, Thomas H.

    2000-06-12

    The research focused on procedures for target discrimination and classification using hand-held EMI sensors. The idea is to have a small, portable sensor that can be operated in a sweep or similar pattern in front of the operator, and that is capable of distinguishing between buried UXO and clutter on the spot. Curing Phase 1, we developed the processing techniques for distinguishing between buried UXO and clutter using the EM61-HH hand-held metal detector.

  10. OV-104's RMS releases Gamma Ray Observatory (GRO) during STS-37 deployment

    NASA Image and Video Library

    1991-04-07

    Atlantis', Orbiter Vehicle (OV) 104's, remote manipulator system (RMS) releases Gamma Ray Observatory (GRO) during STS-37 deployment. Visible on the GRO as it drifts away from the RMS end effector are the four complement instruments: the Energetic Gamma Ray Experiment (bottom); Imaging Compton Telescope (COMPTEL) (center); Oriented Scintillation Spectrometer Experiment (OSSE) (top); and Burst and Transient Source Experiment (BATSE) (at four corners). GRO's solar array (SA) panels are extended and are in orbit configuration. View was taken through aft flight deck window which reflects some of the crew compartment interior.

  11. Determining the solar-flare photospheric scale height from SMM gamma-ray measurements

    NASA Technical Reports Server (NTRS)

    Lingenfelter, Richard E.

    1991-01-01

    A connected series of Monte Carlo programs was developed to make systematic calculations of the energy, temporal and angular dependences of the gamma-ray line and neutron emission resulting from such accelerated ion interactions. Comparing the results of these calculations with the Solar Maximum Mission/Gamma Ray Spectrometer (SMM/GRS) measurements of gamma-ray line and neutron fluxes, the total number and energy spectrum of the flare-accelerated ions trapped on magnetic loops at the Sun were determined and the angular distribution, pitch angle scattering, and mirroring of the ions on loop fields were constrained. Comparing the calculations with measurements of the time dependence of the neutron capture line emission, a determination of the He-3/H ratio in the photosphere was also made. The diagnostic capabilities of the SMM/GRS measurements were extended by developing a new technique to directly determine the effective photospheric scale height in solar flares from the neutron capture gamma-ray line measurements, and critically test current atmospheric models in the flare region.

  12. Gamma ray transients

    NASA Technical Reports Server (NTRS)

    Cline, Thomas L.

    1987-01-01

    The discovery of cosmic gamma ray bursts was made with systems designed at Los Alamos Laboratory for the detection of nuclear explosions beyond the atmosphere. HELIOS-2 was the first gamma ray burst instrument launched; its initial results in 1976, seemed to deepen the mystery around gamma ray transients. Interplanetary spacecraft data were reviewed in terms of explaining the behavior and source of the transients.

  13. X-ray and gamma ray astronomy detectors

    NASA Technical Reports Server (NTRS)

    Decher, Rudolf; Ramsey, Brian D.; Austin, Robert

    1994-01-01

    X-ray and gamma ray astronomy was made possible by the advent of space flight. Discovery and early observations of celestial x-rays and gamma rays, dating back almost 40 years, were first done with high altitude rockets, followed by Earth-orbiting satellites> once it became possible to carry detectors above the Earth's atmosphere, a new view of the universe in the high-energy part of the electromagnetic spectrum evolved. Many of the detector concepts used for x-ray and gamma ray astronomy were derived from radiation measuring instruments used in atomic physics, nuclear physics, and other fields. However, these instruments, when used in x-ray and gamma ray astronomy, have to meet unique and demanding requirements related to their operation in space and the need to detect and measure extremely weak radiation fluxes from celestial x-ray and gamma ray sources. Their design for x-ray and gamma ray astronomy has, therefore, become a rather specialized and rapidly advancing field in which improved sensitivity, higher energy and spatial resolution, wider spectral coverage, and enhanced imaging capabilities are all sought. This text is intended as an introduction to x-ray and gamma ray astronomy instruments. It provides an overview of detector design and technology and is aimed at scientists, engineers, and technical personnel and managers associated with this field. The discussion is limited to basic principles and design concepts and provides examples of applications in past, present, and future space flight missions.

  14. Basics of Gamma Ray Detection

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Stinnett, Jacob; Venkataraman, Ram

    The objective of this training is to explain the origin of x-rays and gamma rays, gamma ray interactions with matter, detectors and electronics used in gamma ray-spectrometry, and features of a gamma-ray spectrum for nuclear material that is safeguarded.

  15. [Development of X-ray excited fluorescence spectrometer].

    PubMed

    Ni, Chen; Gu, Mu; Di, Wang; Cao, Dun-Hua; Liu, Xiao-Lin; Huang, Shi-Ming

    2009-08-01

    An X-ray excited fluorescence spectrometer was developed with an X-ray tube and a spectrometer. The X-ray tube, spectrometer, autocontrol method and data processing selected were roundly evaluated. The wavelength and detecting efficiency of the apparatus were calibrated with the mercury and tungsten bromine standard lamps, and the X-ray excited emission spectra of BaF2, Cs I (Tl) crystals were measured. The results indicate that the apparatus has advantages of good wavelength resolution, high stability, easy to operation and good radioprotection. It is a wery effective tool for exploration of new scintillation materials.

  16. Implications of Gamma-Ray Transparency Constraints in Blazars: Minimum Distances and Gamma-Ray Collimation

    NASA Technical Reports Server (NTRS)

    Becker, Peter A.; Kafatos, Menas

    1995-01-01

    We develop a general expression for the gamma - gamma absorption coefficient, alpha(sub gamma(gamma)) for gamma-rays propagating in an arbitrary direction at an arbitrary point in space above an X-ray-emitting accretion disk. The X-ray intensity is assumed to vary as a power law in energy and radius between the outer disk radius, R(sub 0), and the inner radius, R(sub ms) which is the radius of marginal stability for a Schwarzschild black hole. We use our result for alpha(sub gamma(gamma)) to calculate the gamma - gamma optical depth, tau(sub gamma(gamma)) for gamma - rays created at height z and propagating at angle Phi relative to the disk axis, and we show that for Phi = 0 and z greater than or approx equal to R(sub 0), tau(sub gamma(gamma)) proportional to Epsilon(sup alpha)z(sup -2(alpha) - 3), where alpha is the X-ray spectral index and Epsilon is the gamma - ray energy. As an application, we use our formalism to compute the minimum distance between the central black hole and the site of production of the gamma-rays detected by EGRET during the 1991 June flare of 3C 279. In order to obtain an upper limit, we assume that all of the X-rays observed contemporaneously by Ginga were emitted by the disk. Our results suggest that the observed gamma - rays may have originated within less than or approx equal to 45 GM/sq c from a black hole of mass greater than or approx equal to 10(exp 9) solar mass, perhaps in active plasma located above the central funnel of the accretion disk. This raises the possibility of establishing a direct connection between the production of the observed gamma - rays and the accretion of material onto the black hole. We also consider the variation of the optical depth as a function of the angle of propagation Phi. Our results indicate that the "focusing" of the gamma - rays along the disk axis due to pair production is strong enough to explain the observed degree of alignment in blazar sources. If the gamma - rays are produced isotropically

  17. Method of incident low-energy gamma-ray direction reconstruction in the GAMMA-400 gamma-ray space telescope

    NASA Astrophysics Data System (ADS)

    Kheymits, M. D.; Leonov, A. A.; Zverev, V. G.; Galper, A. M.; Arkhangelskaya, I. V.; Arkhangelskiy, A. I.; Suchkov, S. I.; Topchiev, N. P.; Yurkin, Yu T.; Bakaldin, A. V.; Dalkarov, O. D.

    2016-02-01

    The GAMMA-400 gamma-ray space-based telescope has as its main goals to measure cosmic γ-ray fluxes and the electron-positron cosmic-ray component produced, theoretically, in dark-matter-particles decay or annihilation processes, to search for discrete γ-ray sources and study them in detail, to examine the energy spectra of diffuse γ-rays — both galactic and extragalactic — and to study gamma-ray bursts (GRBs) and γ-rays from the active Sun. Scientific goals of GAMMA-400 telescope require fine angular resolution. The telescope is of a pair-production type. In the converter-tracker, the incident gamma-ray photon converts into electron-positron pair in the tungsten layer and then the tracks are detected by silicon- strip position-sensitive detectors. Multiple scattering processes become a significant obstacle in the incident-gamma direction reconstruction for energies below several gigaelectronvolts. The method of utilising this process to improve the resolution is proposed in the presented work.

  18. Gamma Ray Astronomy

    NASA Technical Reports Server (NTRS)

    Wu, S. T.

    2000-01-01

    The project has progressed successfully during this period of performance. The highlights of the Gamma Ray Astronomy teams efforts are: (1) Support daily BATSE data operations, including receipt, archival and dissemination of data, quick-look science analysis, rapid gamma-ray burst and transient monitoring and response efforts, instrument state-of-health monitoring, and instrument commanding and configuration; (2) On-going scientific analysis, including production and maintenance of gamma-ray burst, pulsed source and occultation source catalogs, gamma-ray burst spectroscopy, studies of the properties of pulsars and black holes, and long-term monitoring of hard x-ray sources; (3) Maintenance and continuous improvement of BATSE instrument response and calibration data bases; (4) Investigation of the use of solid state detectors for eventual application and instrument to perform all sky monitoring of X-Ray and Gamma sources with high sensitivity; and (5) Support of BATSE outreach activities, including seminars, colloquia and World Wide Web pages. The highlights of this efforts can be summarized in the publications and presentation list.

  19. Hand held phase-shifting diffraction Moire interferometer

    DOEpatents

    Deason, V.A.; Ward, M.B.

    1994-09-20

    An interferometer is described in which a coherent beam of light is generated within a remote case and transmitted to a hand held unit tethered to said remote case, said hand held unit having optical elements for directing a pair of mutually coherent collimated laser beams at a diffraction grating. Data from the secondary or diffracted beams are then transmitted to a separate video and data acquisition system for recording and analysis for load induced deformation or for identification purposes. Means are also provided for shifting the phase of one incident beam relative to the other incident beam and being controlled from within said remote case. 4 figs.

  20. Hand held phase-shifting diffraction moire interferometer

    DOEpatents

    Deason, Vance A.; Ward, Michael B.

    1994-01-01

    An interferometer in which a coherent beam of light is generated within a remote case and transmitted to a hand held unit tethered to said remote case, said hand held unit having optical elements for directing a pair of mutually coherent collimated laser beams at a diffraction grating. Data from the secondary or diffracted beams are then transmitted to a separate video and data acquisition system for recording and analysis for load induced deformation or for identification purposes. Means are also provided for shifting the phase of one incident beam relative to the other incident beam and being controlled from within said remote case.

  1. Hand-held hyperspectral imager for chemical/biological and environmental applications

    NASA Astrophysics Data System (ADS)

    Hinnrichs, Michele; Piatek, Bob

    2004-03-01

    A small, hand held, battery operated imaging infrared spectrometer, Sherlock, has been developed by Pacific Advanced Technology and was field tested in early 2003. The Sherlock spectral imaging camera has been designed for remote gas leak detection, however, the architecture of the camera is versatile enough that it can be applied to numerous other applications such as homeland security, chemical/biological agent detection, medical and pharmaceutical applications as well as standard research and development. This paper describes the Sherlock camera, theory of operations, shows current applications and touches on potential future applications for the camera. The Sherlock has an embedded Power PC and performs real-time-image processing function in an embedded FPGA. The camera has a built in LCD display as well as output to a standard monitor, or NTSC display. It has several I/O ports, ethernet, firewire, RS232 and thus can be easily controlled from a remote location. In addition, software upgrades can be performed over the ethernet eliminating the need to send the camera back to the factory for a retrofit. Using the USB port a mouse and key board can be connected and the camera can be used in a laboratory environment as a stand alone imaging spectrometer.

  2. Hand Held Device for Wireless Powering and Interrogation of Biomems Sensors and Actuators

    NASA Technical Reports Server (NTRS)

    Simons, Rainee N (Inventor); Miranda, Felix Antonio (Inventor)

    2007-01-01

    A compact, hand-held device for wireless powering, interrogation and data retrieval from at least one implanted sensor. The hand-held device includes an antenna for powering an implanted sensor and for receiving data from the implanted sensor to the hand-held device for at least one of storage, display or analysis. The hand-held device establishes electromagnetic coupling with a low radiating radio frequency power inductor in the implanted sensor at a predefined separation and the antenna geometry allows for the antenna to power, interrogate and retrieve data from the implanted sensor without strapping the hand-held device to a human body housing the implanted sensor The hand-held device optionally allows for activation of the implanted sensor only during interrogation and data retrieval.

  3. ESA's Integral solves thirty-year old gamma-ray mystery

    NASA Astrophysics Data System (ADS)

    sources towards the direction of the Galactic centre. Lebrun's team includes Ubertini and seventeen other European scientists with long-standing experience in high-energy astrophysics. Much to the team's surprise, almost half of these sources do not fall in any class of known gamma-ray objects. They probably represent a new population of gamma-ray emitters. The first clues about a new class of gamma-ray objects came last October, when Integral discovered an intriguing gamma-ray source, known as IGRJ16318-4848. The data from Integral and ESA's other high-energy observatory XMM-Newton suggested that this object is a binary system, probably including a black hole or neutron star, embedded in a thick cocoon of cold gas and dust. When gas from the companion star is accelerated and swallowed by the black hole, energy is released at all wavelengths, mostly in the gamma rays. However, Lebrun is cautious to draw premature conclusions about the sources detected in the Galactic centre. Other interpretations are also possible that do not involve black holes. For instance, these objects could be the remains of exploded stars that are being energised by rapidly rotating celestial 'powerhouses', known as pulsars. Observations with another Integral instrument (SPI, the Spectrometer on Integral) could provide Lebrun and his team with more information on the nature of these sources. SPI measures the energy of incoming gamma rays with extraordinary accuracy and allows scientist to gain a better understanding of the physical mechanisms that generate them. However, regardless of the precise nature of these gamma-ray sources, Integral's observations have convincingly shown that the energy output from these new objects accounts for almost ninety per cent of the soft gamma-ray background coming from the centre of the Galaxy. This result raises the tantalising possibility that objects of this type hide everywhere in the Galaxy, not just in its centre. Again, Lebrun is cautious, saying, "It is

  4. Cosmic Forensics Confirms Gamma-Ray Burst And Supernova Connection

    NASA Astrophysics Data System (ADS)

    2003-03-01

    Scientists announced today that they have used NASA's Chandra X-ray Observatory to confirm that a gamma-ray burst was connected to the death of a massive star. This result is an important step in understanding the origin of gamma-ray bursts, the most violent events in the present-day universe. "If a gamma-ray burst were a crime, then we now have strong circumstantial evidence that a supernova explosion was at the scene," said Nathaniel Butler of Massachusetts Institute of Technology in Cambridge, lead author of a paper presented today at the meeting of the High Energy Division of the American Astronomical Society. Chandra was able to obtain an unusually long observation (approximately 21 hours) of the afterglow of GRB 020813 (so named because the High-Energy Transient Explorer, HETE, discovered it on August 13, 2002.) A grating spectrometer aboard Chandra revealed an overabundance of elements characteristically dispersed in a supernova explosion. Narrow lines, or bumps, due to silicon and sulfur ions (atoms stripped of most of their electrons) were clearly identified in the X-ray spectrum of GRB 020813. "Our observation of GRB 020813 supports two of the most important features of the popular supra-nova model for gamma-ray bursts," said Butler. "An extremely massive star likely exploded less than two months prior to the gamma-ray burst, and the radiation from the gamma-ray burst was beamed into a narrow cone." An analysis of the data showed that the ions were moving away from the site of the gamma-ray burst at a tenth the speed of light, probably as part of a shell of matter ejected in the supernova explosion. The line features were observed to be sharply peaked, indicating that they were coming from a narrow region of the expanding shell. This implies that only a small fraction of the shell was illuminated by the gamma-ray burst, as would be expected if the burst was beamed into a narrow cone. The observed duration of the afterglow suggests a delay of about 60 days

  5. Results from Multiwavelength Workshop for Next Generation Gamma Ray Experiments

    NASA Astrophysics Data System (ADS)

    Fortson, L.

    2002-12-01

    The next few years will see the build up of several new gamma-ray detectors both on the ground and in space. By 2006 VERITAS, HESS and MAGIC expect to be operational and GLAST will be in orbit. At the same time, a number of X-ray satellites will be in operation, complementing these new gamma-ray instruments. A better understanding of many high-energy sources can be obtained by making contemporaneous observations with multiple x-ray and gamma-ray instruments. A workshop was recently held at the Adler Planetarium and Astronomy Museum in Chicago to discuss the future of multiwavelength campaigns. The workshop was intended as an opportunity for information exchange within the community to get the best possible science returns from the wealth of data that is expected to come in from the next generation of experiments. By the end of the workshop participants gained a general understanding of the capabilities of the various instruments and their observational strategies. We also came up with a good start on some concrete mechanisms for coordinating gamma-ray observations with ground based and space based observatories at other wavelengths - including X-ray and optical groups. I will report on the results from this workshop in my presentation at the AAS. The workshop was sponsored by the Adler Planetarium and Astronomy Museum.

  6. V/V(max) test applied to SMM gamma-ray bursts

    NASA Technical Reports Server (NTRS)

    Matz, S. M.; Higdon, J. C.; Share, G. H.; Messina, D. C.; Iadicicco, A.

    1992-01-01

    We have applied the V/V(max) test to candidate gamma-ray bursts detected by the Gamma-Ray Spectrometer (GRS) aboard the SMM satellite to examine quantitatively the uniformity of the burst source population. For a sample of 132 candidate bursts identified in the GRS data by an automated search using a single uniform trigger criterion we find average V/V(max) = 0.40 +/- 0.025. This value is significantly different from 0.5, the average for a uniform distribution in space of the parent population of burst sources; however, the shape of the observed distribution of V/V(max) is unusual and our result conflicts with previous measurements. For these reasons we can currently draw no firm conclusion about the distribution of burst sources.

  7. In situ calibration of a high-resolution gamma-ray borehole sonde for assaying uranium-bearing sandstone deposits

    USGS Publications Warehouse

    Day, J.H.

    1985-01-01

    A method is presented for assaying radioactive sandstone deposits in situ by using a high-resolution borehole gamma-ray spectrometer. Gamma-ray photopeaks from the same spectrum acquired to analyze a sample are used to characterize gamma-ray attenuation properties, from which a calibration function is determined. Assay results are independent of differences between properties of field samples and those of laboratory or test-hole standards generally used to calibrate a borehole sonde. This assaying technique is also independent of the state of radioactive disequilibrium that usually exists in nature among members of the natural-decay chains. ?? 1985.

  8. A luminous gamma-ray binary in the large magellanic cloud

    DOE PAGES

    Corbet, R. H. D.; Chomiuk, L.; Coe, M. J.; ...

    2016-09-27

    Gamma-ray binaries consist of a neutron star or a black hole interacting with a normal star to produce gamma-ray emission that dominates the radiative output of the system. Previously, only a handful of such systems have been discovered, all within our Galaxy. We report the discovery of a luminous gamma-ray binary in the Large Magellanic Cloud, found with the Fermi Large Area Telescope (LAT), from a search for periodic modulation in all sources in the third Fermi LAT catalog. This is the first such system to be found outside the Milky Way. Furthermore, the system has an orbital period ofmore » 10.3 days, and is associated with a massive O5III star located in the supernova remnant DEM L241, previously identified as the candidate high-mass X-ray binary (HMXB) CXOU J053600.0–673507. X-ray and radio emission are also modulated on the 10.3 day period, but are in anti-phase with the gamma-ray modulation. Optical radial velocity measurements suggest that the system contains a neutron star. The source is significantly more luminous than similar sources in the Milky Way, at radio, optical, X-ray, and gamma-ray wavelengths. The detection of this extra-galactic system, but no new Galactic systems, raises the possibility that the predicted number of gamma-ray binaries in our Galaxy has been overestimated, and that HMXBs may be born containing relatively slowly rotating neutron stars.« less

  9. Development and Evaluation of Real-Time Volumetric Compton Gamma-Ray Imaging

    NASA Astrophysics Data System (ADS)

    Barnowski, Ross Wegner

    An approach to gamma-ray imaging has been developed that enables near real-time volumetric (3D) imaging of unknown environments thus improving the utility of gamma-ray imaging for source-search and radiation mapping applications. The approach, herein dubbed scene data fusion (SDF), is based on integrating mobile radiation imagers with real time tracking and scene reconstruction algorithms to enable a mobile mode of operation and 3D localization of gamma-ray sources. The real-time tracking allows the imager to be moved throughout the environment or around a particular object of interest, obtaining the multiple perspectives necessary for standoff 3D imaging. A 3D model of the scene, provided in real-time by a simultaneous localization and mapping (SLAM) algorithm, can be incorporated into the image reconstruction reducing the reconstruction time and improving imaging performance. The SDF concept is demonstrated in this work with a Microsoft Kinect RGB-D sensor, a real-time SLAM solver, and two different mobile gamma-ray imaging platforms. The first is a cart-based imaging platform known as the Volumetric Compton Imager (VCI), comprising two 3D position-sensitive high purity germanium (HPGe) detectors, exhibiting excellent gamma-ray imaging characteristics, but with limited mobility due to the size and weight of the cart. The second system is the High Efficiency Multimodal Imager (HEMI) a hand-portable gamma-ray imager comprising 96 individual cm3 CdZnTe crystals arranged in a two-plane, active-mask configuration. The HEMI instrument has poorer energy and angular resolution than the VCI, but is truly hand-portable, allowing the SDF concept to be tested in multiple environments and for more challenging imaging scenarios. An iterative algorithm based on Compton kinematics is used to reconstruct the gamma-ray source distribution in all three spatial dimensions. Each of the two mobile imaging systems are used to demonstrate SDF for a variety of scenarios, including

  10. Driver hand-held cellular phone use: a four-year analysis.

    PubMed

    Eby, David W; Vivoda, Jonathon M; St Louis, Renée M

    2006-01-01

    The use of hand-held cellular (mobile) phones while driving has stirred more debate, passion, and research than perhaps any other traffic safety issue in the past several years. There is ample research showing that the use of either hand-held or hands-free cellular phones can lead to unsafe driving patterns. Whether or not these performance deficits increase the risk of crash is difficult to establish, but recent studies are beginning to suggest that cellular phone use elevates crash risk. The purpose of this study was to assess changes in the rate of hand-held cellular phone use by motor-vehicle drivers on a statewide level in Michigan. This study presents the results of 13 statewide surveys of cellular phone use over a 4-year period. Hand-held cellular phone use data were collected through direct observation while vehicles were stopped at intersections and freeway exit ramps. Data were weighted to be representative of all drivers traveling during daylight hours in Michigan. The study found that driver hand-held cellular phone use has more than doubled between 2001 and 2005, from 2.7% to 5.8%. This change represents an average increase of 0.78 percentage points per year. The 5.8% use rate observed in 2005 means that at any given daylight hour, around 36,550 drivers were conversing on cellular phones while driving on Michigan roadways. The trend line fitted to these data predicts that by the year 2010, driver hand-held cellular phone use will be around 8.6%, or 55,000 drivers at any given daylight hour. These results make it clear that cellular phone use while driving will continue to be an important traffic safety issue, and highlight the importance of continued attempts to generate new ways of alleviating this potential hazard.

  11. Gamma ray camera

    DOEpatents

    Perez-Mendez, Victor

    1997-01-01

    A gamma ray camera for detecting rays emanating from a radiation source such as an isotope. The gamma ray camera includes a sensor array formed of a visible light crystal for converting incident gamma rays to a plurality of corresponding visible light photons, and a photosensor array responsive to the visible light photons in order to form an electronic image of the radiation therefrom. The photosensor array is adapted to record an integrated amount of charge proportional to the incident gamma rays closest to it, and includes a transparent metallic layer, photodiode consisting of a p-i-n structure formed on one side of the transparent metallic layer, and comprising an upper p-type layer, an intermediate layer and a lower n-type layer. In the preferred mode, the scintillator crystal is composed essentially of a cesium iodide (CsI) crystal preferably doped with a predetermined amount impurity, and the p-type upper intermediate layers and said n-type layer are essentially composed of hydrogenated amorphous silicon (a-Si:H). The gamma ray camera further includes a collimator interposed between the radiation source and the sensor array, and a readout circuit formed on one side of the photosensor array.

  12. Modular soft x-ray spectrometer for applications in energy sciences and quantum materials

    DOE PAGES

    Chuang, Yi -De; Shao, Yu -Cheng; Cruz, Alejandro; ...

    2017-01-27

    Over the past decade, the advances in grating-based soft X-ray spectrometers have revolutionized the soft X-ray spectroscopies in materials research. However, these novel spectrometers are mostly dedicated designs, which cannot be easily adopted for applications with diverging demands. Here we present a versatile spectrometer design concept based on the Hettrick-Underwood optical scheme that uses modular mechanical components. The spectrometer’s optics chamber can be used with gratings operated in either inside or outside orders, and the detector assembly can be reconfigured accordingly. The spectrometer can be designed to have high spectral resolution, exceeding 10 000 resolving power when using small sourcemore » (~1μm) and detector pixels (~5μm) with high line density gratings (~3000 lines/mm), or high throughput at moderate resolution. We report two such spectrometers with slightly different design goals and optical parameters in this paper. We show that the spectrometer with high throughput and large energy window is particularly useful for studying the sustainable energy materials. We demonstrate that the extensive resonant inelastic X-ray scattering (RIXS) map of battery cathode material LiNi 1/3Co 1/3Mn 1/3O 2 can be produced in few hours using such a spectrometer. Unlike analyzing only a handful of RIXS spectra taken at selected excitation photon energies across the elemental absorption edges to determine various spectral features like the localized dd excitations and non-resonant fluorescence emissions, these features can be easily identified in the RIXS maps. Studying such RIXS maps could reveal novel transition metal redox in battery compounds that are sometimes hard to be unambiguously identified in X-ray absorption and emission spectra. As a result, we propose that this modular spectrometer design can serve as the platform for further customization to meet specific scientific demands.« less

  13. Modular soft x-ray spectrometer for applications in energy sciences and quantum materials

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Chuang, Yi -De; Shao, Yu -Cheng; Cruz, Alejandro

    Over the past decade, the advances in grating-based soft X-ray spectrometers have revolutionized the soft X-ray spectroscopies in materials research. However, these novel spectrometers are mostly dedicated designs, which cannot be easily adopted for applications with diverging demands. Here we present a versatile spectrometer design concept based on the Hettrick-Underwood optical scheme that uses modular mechanical components. The spectrometer’s optics chamber can be used with gratings operated in either inside or outside orders, and the detector assembly can be reconfigured accordingly. The spectrometer can be designed to have high spectral resolution, exceeding 10 000 resolving power when using small sourcemore » (~1μm) and detector pixels (~5μm) with high line density gratings (~3000 lines/mm), or high throughput at moderate resolution. We report two such spectrometers with slightly different design goals and optical parameters in this paper. We show that the spectrometer with high throughput and large energy window is particularly useful for studying the sustainable energy materials. We demonstrate that the extensive resonant inelastic X-ray scattering (RIXS) map of battery cathode material LiNi 1/3Co 1/3Mn 1/3O 2 can be produced in few hours using such a spectrometer. Unlike analyzing only a handful of RIXS spectra taken at selected excitation photon energies across the elemental absorption edges to determine various spectral features like the localized dd excitations and non-resonant fluorescence emissions, these features can be easily identified in the RIXS maps. Studying such RIXS maps could reveal novel transition metal redox in battery compounds that are sometimes hard to be unambiguously identified in X-ray absorption and emission spectra. As a result, we propose that this modular spectrometer design can serve as the platform for further customization to meet specific scientific demands.« less

  14. QUASI-STAR JETS AS UNIDENTIFIED GAMMA-RAY SOURCES

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Czerny, Bozena; Sikora, Marek; Janiuk, Agnieszka

    2012-08-10

    Gamma-ray catalogs contain a considerable amount of unidentified sources. Many of these are located out of the Galactic plane and therefore may have extragalactic origin. Here we assume that the formation of massive black holes in galactic nuclei proceeds through a quasi-star stage and consider the possibility of jet production by such objects. Those jets would be the sources of collimated synchrotron and Compton emission, extending from radio to gamma rays. The expected lifetimes of quasi-stars are of the order of million of years while the jet luminosities, somewhat smaller than that of quasar jets, are sufficient to account formore » the unidentified gamma-ray sources. The jet emission dominates over the thermal emission of a quasi-star in all energy bands, except when the jet is not directed toward an observer. The predicted synchrotron emission peaks in the IR band, with the flux close to the limits of the available IR all sky surveys. The ratio of the gamma-ray flux to the IR flux is found to be very large ({approx}60), much larger than in BL Lac objects but reached by some radio-loud quasars. On the other hand, radio-loud quasars show broad emission lines while no such lines are expected from quasi-stars. Therefore, the differentiation between various scenarios accounting for the unidentified gamma-ray sources will be possible at the basis of the photometry and spectroscopy of the IR/optical counterparts.« less

  15. Gamma-ray spectroscopy: The diffuse galactic glow

    NASA Technical Reports Server (NTRS)

    Hartmann, Dieter H.

    1991-01-01

    The goal of this project is the development of a numerical code that provides statistical models of the sky distribution of gamma-ray lines due to the production of radioactive isotopes by ongoing Galactic nucleosynthesis. We are particularly interested in quasi-steady emission from novae, supernovae, and stellar winds, but continuum radiation and transient sources must also be considered. We have made significant progress during the first half period of this project and expect the timely completion of a code that can be applied to Oriented Scintillation Spectrometer Experiment (OSSE) Galactic plane survey data.

  16. Gamma-ray spectrometer experiment, Apollo 17: NaI(T1) detector crystal activation

    NASA Technical Reports Server (NTRS)

    Trombka, J. I.; Schmadebeck, R. L.; Bielefeld, M.; Okelley, G. D.; Eldridge, J. S.; Northcutt, K. J.; Metzger, A. E.; Schonfeld, E.; Peterson, L. E.; Arnold, J. R.

    1973-01-01

    An attempt was made to obtain experimental data on proton induced activity and its effect on gamma ray spectral measurements. A NaI(T1) crystal flown in Apollo 17 command module was used for the experiment.

  17. The Gamma-ray Sky with Fermi

    NASA Technical Reports Server (NTRS)

    Thompson, David

    2012-01-01

    Gamma rays reveal extreme, nonthermal conditions in the Universe. The Fermi Gamma-ray Space Telescope has been exploring the gamma-ray sky for more than four years, enabling a search for powerful transients like gamma-ray bursts, novae, solar flares, and flaring active galactic nuclei, as well as long-term studies including pulsars, binary systems, supernova remnants, and searches for predicted sources of gamma rays such as dark matter annihilation. Some results include a stringent limit on Lorentz invariance derived from a gamma-ray burst, unexpected gamma-ray variability from the Crab Nebula, a huge gamma-ray structure associated with the center of our galaxy, surprising behavior from some gamma-ray binary systems, and a possible constraint on some WIMP models for dark matter.

  18. Future Hard X-ray and Gamma-Ray Missions

    NASA Astrophysics Data System (ADS)

    Krawczynski, Henric; Physics of the Cosmos (PCOS) Gamma Ray Science Interest Group (GammaSIG) Team

    2017-01-01

    With four major NASA and ESA hard X-ray and gamma-ray missions in orbit (Swift, NuSTAR, INTEGRAL, and Fermi) hard X-ray and gamma-ray astronomy is making major contributions to our understanding of the cosmos. In this talk, I will summarize the current and upcoming activities of the Physics of the Cosmos Gamma Ray Science Interest Group and highlight a few of the future hard X-ray and gamma-ray mission discussed by the community. HK thanks NASA for the support through the awards NNX14AD19G and NNX16AC42G and for PCOS travel support.

  19. Applications of LaBr3(Ce) Gamma-ray Spectrometer Arrays for Nuclear Spectroscopy and Radionuclide Assay

    NASA Astrophysics Data System (ADS)

    Regan, PH; Shearman, R.; Daniel, T.; Lorusso, G.; Collins, SM; Judge, SM; Bell; Pearce, AK; Gurgi, LA; Rudigier, M.; Podolyák, Zs; Mărginean, N.; Mărginean, R.; Kisyov, S.

    2016-10-01

    An overview of the use of discrete energy gamma-ray detectors based on cerium- doped LaBr3 scintillators for use in nuclear spectroscopy is presented. This review includes recent applications of such detectors in mixed, 'hybrid' gamma-ray coincidence detection arrays such ROSPHERE at IFIN-HH, Bucharest; EXILL+FATIMA at ILL Grenoble, France; GAMMASPHERE+FATIMA at Argonne National Laboratory, USA; FATIMA + EURICA, at RIKEN, Japan; and the National Nuclear Array (NANA) at the UK's National Physical Laboratory. This conference paper highlights the capabilities and limitations of using these sub-nanosecond 'fast-timing', medium-resolution gamma-ray detectors for both nuclear structure research and radionuclide standardisation. Potential future application of such coincidence scintillator arrays in measurements of civilian nuclear fuel waste evaluation and assay is demonstrated using coincidence spectroscopy of a mixed 134,7Cs source.

  20. Monitoring Radionuclide Transport and Spatial Distribution with a 1D Gamma-Ray Scanner

    NASA Astrophysics Data System (ADS)

    Dozier, R.; Erdmann, B.; Sams, A.; Barber, K.; DeVol, T. A.; Moysey, S. M.; Powell, B. A.

    2016-12-01

    Understanding radionuclide movement in the environment is important for informing strategies for radioactive waste management and disposal. A 1-dimensional (1D) gamma-ray emission scanning system was developed to investigate radionuclide transport behavior within soils. Two case studies illustrate the use of the system for non-destructively monitoring transport processes within a soil column. The first case study explores the system capabilities for simultaneously detecting technetium-99m (99mTc), iodine-131 (131I), and sodium-22 (22Na) moving through a column (length = 14.1 cm, diameter = 3.8 cm) packed with soil from the Department of Energy's Savannah River Site. A sodium iodide (NaI) detector was placed at 4 cm above the influent and a Bismuth germanate (BGO) detector at about 10 cm above the influent. The NaI detector results show 99mTc, 131I, and 22Na having similar breakthrough curves with the tail of 99mTc being lower than that of 131I and 22Na. NaCl tracer results compliment the gamma-ray emission measurements. These results are promising because we are able to monitor movement of the isotopes in the column in real-time. In the second case study, the 1D gamma scanner was used to quantify radionuclide mobility within a lysimeter (length = 51 cm, diameter = 10 cm). A cementitious waste form containing cobalt-60 (60Co), barium-133 (133Ba), cesium-137 (137Cs), and europium-152 (152Eu), with the amount of each contained in the cement ranging from 3 to 8.5 MBq, was placed at the midpoint of the lysimeter. The lysimeter was then exposed to natural rainfall and environmental conditions and effluent samples were collected and quantified on a quarterly basis. Following 3.3 years of exposure, the radionuclide distribution in the lysimeter was quantified with a 0.64 cm collimated high-purity germanium gamma-ray spectrometer. Diffusion of 137Cs away from the cementitious wasteform was observed. No movement was seen for 133Ba, 60Co, or 152Eu within the detection limits

  1. Gamma ray camera

    DOEpatents

    Perez-Mendez, V.

    1997-01-21

    A gamma ray camera is disclosed for detecting rays emanating from a radiation source such as an isotope. The gamma ray camera includes a sensor array formed of a visible light crystal for converting incident gamma rays to a plurality of corresponding visible light photons, and a photosensor array responsive to the visible light photons in order to form an electronic image of the radiation therefrom. The photosensor array is adapted to record an integrated amount of charge proportional to the incident gamma rays closest to it, and includes a transparent metallic layer, photodiode consisting of a p-i-n structure formed on one side of the transparent metallic layer, and comprising an upper p-type layer, an intermediate layer and a lower n-type layer. In the preferred mode, the scintillator crystal is composed essentially of a cesium iodide (CsI) crystal preferably doped with a predetermined amount impurity, and the p-type upper intermediate layers and said n-type layer are essentially composed of hydrogenated amorphous silicon (a-Si:H). The gamma ray camera further includes a collimator interposed between the radiation source and the sensor array, and a readout circuit formed on one side of the photosensor array. 6 figs.

  2. Gamma-Ray Pulsar Light Curves as Probes of Magnetospheric Structure

    NASA Technical Reports Server (NTRS)

    Harding, A. K.

    2016-01-01

    The large number of gamma-ray pulsars discovered by the Fermi Gamma-Ray Space Telescope since its launch in 2008 dwarfs the handful that were previously known. The variety of observed light curves makes possible a tomography of both the ensemble-averaged field structure and the high-energy emission regions of a pulsar magnetosphere. Fitting the gamma-ray pulsar light curves with model magnetospheres and emission models has revealed that most of the high-energy emission, and the particles acceleration, takes place near or beyond the light cylinder, near the current sheet. As pulsar magnetosphere models become more sophisticated, it is possible to probe magnetic field structure and emission that are self-consistently determined. Light curve modeling will continue to be a powerful tool for constraining the pulsar magnetosphere physics.

  3. γ-Ray background sources in the VESUVIO spectrometer at ISIS spallation neutron source

    NASA Astrophysics Data System (ADS)

    Pietropaolo, A.; Perelli Cippo, E.; Gorini, G.; Tardocchi, M.; Schooneveld, E. M.; Andreani, C.; Senesi, R.

    2009-09-01

    An investigation of the gamma background was carried out in the VESUVIO spectrometer at the ISIS spallation neutron source. This study, performed with a yttrium-aluminum-perovskite (YAP) scintillator, follows high resolution pulse height measurements of the gamma background carried out on the same instrument with the use of a high-purity germanium detector. In this experimental work, a mapping of the gamma background was attempted, trying to find the spatial distribution and degree of directionality of the different contributions identified in the previous study. It is found that the gamma background at low times is highly directional and mostly due to the gamma rays generated in the moderator-decoupler system. The other contributions, consistently to the findings of a previous experiment, are identified as a nearly isotropic one due to neutron absorption in the walls of the experimental hall, and a directional one coming from the beam dump.

  4. Vibration and impulsivity analysis of hand held olive beaters.

    PubMed

    Deboli, Roberto; Calvo, Angela; Preti, Christian

    2016-07-01

    To provide more effective evaluations of hand arm vibration syndromes caused by hand held olive beaters, this study focused on two aspects: the acceleration measured at the tool pole and the analysis of the impulsivity, using the crest factor. The signals were frequency weighted using the weighting curve Wh as described in the ISO 5349-1 standard. The same source signals were also filtered by the Wh-bl filter (ISO/TS 15694), because the weighting filter Wh (unlike the Wh-bl filter) could underestimate the effect of high frequency vibration on vibration-induced finger disorders. Ten (experienced) male operators used three beater models (battery powered) in the real olive harvesting condition. High vibration total values were obtained with values never lower than 20 m(-2). Concerning the crest factor, the values ranged from 5 to more than 22. This work demonstrated that the hand held olive beaters produced high impulsive loads comparable to the industry hand held tools. Copyright © 2015 Elsevier Ltd and The Ergonomics Society. All rights reserved.

  5. Terrestrial Gamma-Ray Flashes (TGFs)

    NASA Technical Reports Server (NTRS)

    Fishman, Gerald J.

    2010-01-01

    This slide presentation reviews the observation of Terrestrial Gamma Ray Flashes (TGFs) by Gamma-Ray Telescopes. These were: (1) BATSE /Compton Observatory, (2) Solar Spectroscopic Imager, (3) AGILE Gamma-ray Telescope, and (4) Gamma-ray Burst Monitor (GBM) on the Fermi Gamma-ray Space Telescope. It contains charts which display the counts over time, a map or the TGFs observed by the Reuven Ramaty High Energy Solar Spectroscopic Imager (RHESSI). and a map showing the latitude and longitude of 85 of the TGFs observed by the Fermi GBM.

  6. Gamma-ray astrophysics

    NASA Technical Reports Server (NTRS)

    Stecker, F. W. (Editor); Trombka, J. I. (Editor)

    1973-01-01

    Conference papers on gamma ray astrophysics are summarized. Data cover the energy region from about 0.3 MeV to a few hundred GeV and theoretical models of production mechanisms that give rise to both galactic and extragalactic gamma rays.

  7. Planetary Geochemistry Using Active Neutron and Gamma Ray Instrumentation

    NASA Technical Reports Server (NTRS)

    Parsons, A.; Bodnarik, J.; Evans, L.; Floyd, S.; Lim, L.; McClanahan, T.; Namkung, M.; Schweitzer, J.; Starr, R.; Trombka, J.

    2010-01-01

    The Pulsed Neutron Generator-Gamma Ray And Neutron Detector (PNG-GRAND) experiment is an innovative application of the active neutron-gamma ray technology so successfully used in oil field well logging and mineral exploration on Earth, The objective of our active neutron-gamma ray technology program at NASA Goddard Space Flight Center (NASA/GSFC) is to bring the PNG-GRAND instrument to the point where it can be flown on a variety of surface lander or rover missions to the Moon, Mars, Venus, asterOIds, comets and the satellites of the outer planets, Gamma-Ray Spectrometers have been incorporated into numerous orbital planetary science missions and, especially in the case of Mars Odyssey, have contributed detailed maps of the elemental composition over the entire surface of Mars, Neutron detectors have also been placed onboard orbital missions such as the Lunar Reconnaissance Orbiter and Lunar Prospector to measure the hydrogen content of the surface of the moon, The DAN in situ experiment on the Mars Science Laboratory not only includes neutron detectors, but also has its own neutron generator, However, no one has ever combined the three into one instrument PNG-GRAND combines a pulsed neutron generator (PNG) with gamma ray and neutron detectors to produce a landed instrument that can determine subsurface elemental composition without drilling. We are testing PNG-GRAND at a unique outdoor neutron instrumentation test facility recently constructed at NASA/GSFC that consists of a 2 m x 2 m x 1 m granite structure in an empty field, We will present data from the operation of PNG-GRAND in various experimental configurations on a known sample in a geometry that is identical to that which can be achieved on a planetary surface. We will also compare the material composition results inferred from our experiments to both an independent laboratory elemental composition analysis and MCNPX computer modeling results,

  8. The Gamma-ray Universe through Fermi

    NASA Technical Reports Server (NTRS)

    Thompson, David J.

    2012-01-01

    Gamma rays, the most powerful form of light, reveal extreme conditions in the Universe. The Fermi Gamma-ray Space Telescope and its smaller cousin AGILE have been exploring the gamma-ray sky for several years, enabling a search for powerful transients like gamma-ray bursts, novae, solar flares, and flaring active galactic nuclei, as well as long-term studies including pulsars, binary systems, supernova remnants, and searches for predicted sources of gamma rays such as dark matter annihilation. Some results include a stringent limit on Lorentz invariance derived from a gamma-ray burst, unexpected gamma-ray variability from the Crab Nebula, a huge ga.nuna-ray structure associated with the center of our galaxy, surprising behavior from some gamma-ray binary systems, and a possible constraint on some WIMP models for dark matter.

  9. The Probing In-Situ With Neutron and Gamma Rays (PING) Instrument for Planetary Composition Measurements

    NASA Technical Reports Server (NTRS)

    Parsons, A.; Bodnarik, J.; Evans, L.; McClanahan, T.; Namkung, M.; Nowicki, S.; Schweitzer, J.; Starr, R.

    2012-01-01

    The Probing In situ with Neutrons and Gamma rays (PING) instrument (formerly named PNG-GRAND) [I] experiment is an innovative application of the active neutron-gamma ray technology successfully used in oil field well logging and mineral exploration on Earth over many decades. The objective of our active neutron-gamma ray technology program at NASA Goddard Space Flight Center (NASA/GSFC) is to bring PING to the point where it can be flown on a variety of surface lander or rover missions to the Moon, Mars, Venus, asteroids, comets and the satellites of the outer planets and measure their bulk surface and subsurface elemental composition without the need to drill into the surface. Gamma-Ray Spectrometers (GRS) have been incorporated into numerous orbital planetary science missions. While orbital measurements can map a planet, they have low spatial and elemental sensitivity due to the low surface gamma ray emission rates reSUlting from using cosmic rays as an excitation source, PING overcomes this limitation in situ by incorporating a powerful neutron excitation source that permits significantly higher elemental sensitivity elemental composition measurements. PING combines a 14 MeV deuterium-tritium Pulsed Neutron Generator (PNG) with a gamma ray spectrometer and two neutron detectors to produce a landed instrument that can determine the elemental composition of a planet down to 30 - 50 cm below the planet's surface, The penetrating nature of .5 - 10 MeV gamma rays and 14 MeV neutrons allows such sub-surface composition measurements to be made without the need to drill into or otherwise disturb the planetary surface, thus greatly simplifying the lander design, We are cun'ently testing a PING prototype at a unique outdoor neutron instrumentation test facility at NASA/GSFC that provides two large (1.8 m x 1.8 m x ,9 m) granite and basalt test formations placed outdoors in an empty field, Since an independent trace elemental analysis has been performed on both these

  10. Gamma-ray astronomy

    NASA Technical Reports Server (NTRS)

    Ramaty, R.; Lingenfelter, R. E.

    1982-01-01

    Cosmic gamma rays, the physical processes responsible for their production and the astrophysical sites from which they were seen are reported. The bulk of the observed gamma ray emission is in the photon energy range from about 0.1 MeV to 1 GeV, where observations are carried out above the atmosphere. There are also, however, gamma ray observations at higher energies obtained by detecting the Cerenkov light produced by the high energy photons in the atmosphere. Gamma ray emission was observed from sources as close as the Sun and the Moon and as distant as the quasar 3C273, as well as from various other galactic and extragalactic sites. The radiation processes also range from the well understood, e.g. energetic particle interactions with matter, to the still incompletely researched, such as radiation transfer in optically thick electron positron plasmas in intense neutron star magnetic fields.

  11. Network of wireless gamma ray sensors for radiological detection and identification

    NASA Astrophysics Data System (ADS)

    Barzilov, A.; Womble, P.; Novikov, I.; Paschal, J.; Board, J.; Moss, K.

    2007-04-01

    The paper describes the design and development of a network of wireless gamma-ray sensors based on cell phone or WiFi technology. The system is intended for gamma-ray detection and automatic identification of radioactive isotopes and nuclear materials. The sensor is a gamma-ray spectrometer that uses wireless technology to distribute the results. A small-size sensor module contains a scintillation detector along with a small size data acquisition system, PDA, battery, and WiFi radio or a cell phone modem. The PDA with data acquisition and analysis software analyzes the accumulated spectrum on real-time basis and returns results to the screen reporting the isotopic composition and intensity of detected radiation source. The system has been programmed to mitigate false alarms from medical isotopes and naturally occurring radioactive materials. The decision-making software can be "trained" to indicate specific signatures of radiation sources like special nuclear materials. The sensor is supplied with GPS tracker coupling radiological information with geographical coordinates. The sensor is designed for easy use and rapid deployment in common wireless networks.

  12. New concepts for scintillator/HgI[sub 2] gamma ray spectroscopy

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wang, Y.J.; Iwanczyk, J.S.; Patt, B.E.

    The construction of a high energy resolution gamma ray detector consisting of a scintillator/mercuric iodide photodetector combination has been investigated. Several HgI[sub 2] photodetectors have been fabricated and tested with standard NIM electronics. The energy resolution of a scintillator/HgI[sub 2] pair was found to be 4.75%, full width at half maximum, for 662 keV [sup 137]Cs gamma ray photons. Of five detectors fabricated with the new technique, all produced resolutions better than 5.6% FWHM. This technology makes it possible to reliably produce high quality HgI[sub 2] photodetectors. New design concepts for the HgI[sub 2] photocell, including the transparent entrance electrode,more » detector geometry, and detector packaging, are described in the paper. Advantages of gamma ray spectrometers based upon crystal scintillators optically coupled to HgI[sub 2] photodetectors (in contrast to coupling the scintillators to the more conventional light sensors, i.e., photomultiplier tubes (PMTs)) include greater ruggedness, improved energy resolution, markedly smaller size and weight, reduced power, and insensitivity to magnetic field perturbations.« less

  13. Topics in gamma ray astronomy

    NASA Technical Reports Server (NTRS)

    Ramaty, R.; Lingenfelter, R. E.

    1986-01-01

    Observations of gamma rays from solar flares, gamma ray bursts, the Galactic center, galactic nucleosynthesis, SS433, and Cygnus X-3, and their effects on astrophysical problems are discussed. It is observed that gamma ray spectra from solar flares are applicable to the study of particle acceleration and confinement and the determination of chemical abundances in the solar atmosphere. The gamma ray lines from the compact galactic object SS433 are utilized to examine the acceleration of jets, and analysis of the gamma ray lines of Cygnus X-3 reveal that particles can be accelerated in compact sources to ultrahigh energies.

  14. New concepts for HgI2 scintillator gamma ray spectroscopy

    NASA Technical Reports Server (NTRS)

    Iwanczyk, Jan S.

    1994-01-01

    The primary goals of this project are development of the technology for HgI2 photodetectors (PD's), development of a HgI2/scintillator gamma detector, development of electronics, and development of a prototype gamma spectrometer. Work on the HgI2 PD's involved HgI2 purification and crystal growth, detector surface and electrical contact studies, PD structure optimization, encapsulation and packaging, and testing. Work on the HgI2/scintillator gamma detector involved a study of the optical - mechanical coupling for the optimization of CsI(Tl)/HgI2 gamma ray detectors and determination of the relationship between resolution versus scintillator type and size. The development of the electronics focused on low noise amplification circuits using different preamp input FET's and the use of a coincidence technique to maximize the signal, minimize the noise contribution in the gamma spectra, and improve the overall system resolution.

  15. Isomer-delayed gamma-ray spectroscopy of neutron-rich 166Tb

    NASA Astrophysics Data System (ADS)

    Gurgi, L. A.; Regan, P. H.; Söderström, P.-A.; Watanabe, H.; Walker, P. M.; Podolyák, Zs.; Nishimura, S.; Berry, T. A.; Doornenbal, P.; Lorusso, G.; Isobe, T.; Baba, H.; Xu, Z. Y.; Sakurai, H.; Sumikama, T.; Catford, W. N.; Bruce, A. M.; Browne, F.; Lane, G. J.; Kondev, F. G.; Odahara, A.; Wu, J.; Liu, H. L.; Xu, F. R.; Korkulu, Z.; Lee, P.; Liu, J. J.; Phong, V. H.; Yagi, A.; Zhang, G. X.; Alharbi, T.; Carroll, R. J.; Chae, K. Y.; Dombradi, Zs.; Estrade, A.; Fukuda, N.; Griffin, C.; Ideguchi, E.; Inabe, N.; Kanaoka, H.; Kojouharov, I.; Kubo, T.; Kubono, S.; Kurz, N.; Kuti, I.; Lalkovski, S.; Lee, E. J.; Lee, C. S.; Lotay, G.; Moon, C. B.; Nishizuka, I.; Nita, C. R.; Patel, Z.; Roberts, O. J.; Schaffner, H.; Shand, C. M.; Suzuki, H.; Takeda, H.; Terashima, S.; Vajta, Zs.; Kanaya, S.; Valiente-Dobòn, J. J.

    2017-09-01

    This short paper presents the identification of a metastable, isomeric-state decay in the neutron-rich odd-odd, prolate-deformed nucleus 166Tb. The nucleus of interest was formed using the in-flight fission of a 345 MeV per nucleon 238U primary beam at the RIBF facility, RIKEN, Japan. Gamma-ray transitions decaying from the observed isomeric states in 166Tb were identified using the EURICA gamma-ray spectrometer, positioned at the final focus of the BigRIPS fragments separator. The current work identifies a single discrete gamma-ray transition of energy 119 keV which de-excites an isomeric state in 166Tb with a measured half-life of 3.5(4) μs. The multipolarity assignment for this transition is an electric dipole and is made on the basis internal conversion and decay lifetime arguments. Possible two quasi-particle Nilsson configurations for the initial and final states which are linked by this transition in 166Tb are made on the basis of comparison with Blocked BCS Nilsson calculations, with the predicted ground state configuration for this nucleus arising from the coupling of the v(1-/2)?[521] and ? π(3+/2) Nilsson orbitals.

  16. Advanced x-ray imaging spectrometer

    NASA Technical Reports Server (NTRS)

    Callas, John L. (Inventor); Soli, George A. (Inventor)

    1998-01-01

    An x-ray spectrometer that also provides images of an x-ray source. Coded aperture imaging techniques are used to provide high resolution images. Imaging position-sensitive x-ray sensors with good energy resolution are utilized to provide excellent spectroscopic performance. The system produces high resolution spectral images of the x-ray source which can be viewed in any one of a number of specific energy bands.

  17. Distributing Data from Desktop to Hand-Held Computers

    NASA Technical Reports Server (NTRS)

    Elmore, Jason L.

    2005-01-01

    A system of server and client software formats and redistributes data from commercially available desktop to commercially available hand-held computers via both wired and wireless networks. This software is an inexpensive means of enabling engineers and technicians to gain access to current sensor data while working in locations in which such data would otherwise be inaccessible. The sensor data are first gathered by a data-acquisition server computer, then transmitted via a wired network to a data-distribution computer that executes the server portion of the present software. Data in all sensor channels -- both raw sensor outputs in millivolt units and results of conversion to engineering units -- are made available for distribution. Selected subsets of the data are transmitted to each hand-held computer via the wired and then a wireless network. The selection of the subsets and the choice of the sequences and formats for displaying the data is made by means of a user interface generated by the client portion of the software. The data displayed on the screens of hand-held units can be updated at rates from 1 to

  18. Compton Gamma-Ray Observatory

    NASA Technical Reports Server (NTRS)

    1991-01-01

    This photograph shows the Compton Gamma-Ray Observatory (GRO) being deployed by the Remote Manipulator System (RMS) arm aboard the Space Shuttle Atlantis during the STS-37 mission in April 1991. The GRO reentered Earth atmosphere and ended its successful mission in June 2000. For nearly 9 years, the GRO Burst and Transient Source Experiment (BATSE), designed and built by the Marshall Space Flight Center (MSFC), kept an unblinking watch on the universe to alert scientists to the invisible, mysterious gamma-ray bursts that had puzzled them for decades. By studying gamma-rays from objects like black holes, pulsars, quasars, neutron stars, and other exotic objects, scientists could discover clues to the birth, evolution, and death of stars, galaxies, and the universe. The gamma-ray instrument was one of four major science instruments aboard the Compton. It consisted of eight detectors, or modules, located at each corner of the rectangular satellite to simultaneously scan the entire universe for bursts of gamma-rays ranging in duration from fractions of a second to minutes. In January 1999, the instrument, via the Internet, cued a computer-controlled telescope at Las Alamos National Laboratory in Los Alamos, New Mexico, within 20 seconds of registering a burst. With this capability, the gamma-ray experiment came to serve as a gamma-ray burst alert for the Hubble Space Telescope, the Chandra X-Ray Observatory, and major gound-based observatories around the world. Thirty-seven universities, observatories, and NASA centers in 19 states, and 11 more institutions in Europe and Russia, participated in the BATSE science program.

  19. Compton Gamma-Ray Observatory

    NASA Technical Reports Server (NTRS)

    1991-01-01

    This photograph shows the Compton Gamma-Ray Observatory being released from the Remote Manipulator System (RMS) arm aboard the Space Shuttle Atlantis during the STS-35 mission in April 1991. The GRO reentered the Earth's atmosphere and ended its successful mission in June 2000. For nearly 9 years, GRO's Burst and Transient Source Experiment (BATSE), designed and built by the Marshall Space Flight Center, kept an unblinking watch on the universe to alert scientist to the invisible, mysterious gamma-ray bursts that had puzzled them for decades. By studying gamma-rays from objects like black holes, pulsars, quasars, neutron stars, and other exotic objects, scientists could discover clues to the birth, evolution, and death of star, galaxies, and the universe. The gamma-ray instrument was one of four major science instruments aboard the Compton. It consisted of eight detectors, or modules, located at each corner of the rectangular satellite to simultaneously scan the entire universe for bursts of gamma-rays ranging in duration from fractions of a second to minutes. In January 1999, the instrument, via the Internet, cued a computer-controlled telescope at Las Alamos National Laboratory in Los Alamos, New Mexico, within 20 seconds of registering a burst. With this capability, the gamma-ray experiment came to serve as a gamma-ray burst alert for the Hubble Space Telescope, the Chandra X-Ray Observatory, and major gound-based observatories around the world. Thirty-seven universities, observatories, and NASA centers in 19 states, and 11 more institutions in Europe and Russia, participated in BATSE's science program.

  20. TRIUMF-ISAC Gamma-Ray Escape-Suppressed Spectrometer (TIGRESS): a versatile tool for radioactive beam physics

    NASA Astrophysics Data System (ADS)

    Ball, G. C.; Andreyev, A.; Austin, R. A. E.; Bandyopadhyay, D.; Becker, J. A.; Boston, A. J.; Boston, H. C.; Chen, A.; Churchman, R.; Cifarelli, F.; Cline, D.; Cooper, R. J.; Cross, D. S.; Dashdorj, D.; Demand, G.; Dimmock, M. R.; Drake, T. E.; Finlay, P.; Gagon-Moisan, F.; Gallant, A. T.; Garrett, P. E.; Green, K. L.; Grint, A. N.; Hackman, G.; Harkness, L. J.; Hayes, A. B.; Kanungo, R.; Leach, K. G.; Lee, G.; Maharaj, R.; Martin, J.-P.; Morton, A. C.; Mythili, S.; Nelson, L.; Newman, O.; Nolan, P. J.; Padilla-Rodal, E.; Pearson, C. J.; Phillips, A. A.; Porter-Peden, M.; Ressler, J. J.; Roy, R.; Ruiz, C.; Savajols, H.; Sarazin, F.; Schumaker, M. A.; Scraggs, D. P.; Svensson, C. E.; Waddington, J. C.; Wan, J. M.; Whitbeck, A.; Williams, S. J.; Wong, J.; Wu, C. Y.

    2007-05-01

    TIGRESS is a new generation γ-ray spectrometer designed for use with radioactive beams from ISAC. This paper gives an overview of the project and presents results from the first radioactive beam experiment with TIGRESS, the Coulomb excitation of 20,21Na.

  1. Gamma rays from Centaurus A

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Gupta, Nayantara, E-mail: nayan@phy.iitb.ac.in

    2008-06-15

    Centaurus A, the cosmic ray accelerator a few Mpc away from us, is possibly one of the nearest sources of extremely high energy cosmic rays. We investigate whether the gamma ray data currently available from Centaurus A in the GeV-TeV energy band can be explained with only proton-proton interactions. We show that for a single power law proton spectrum, mechanisms of {gamma}-ray production other than proton-proton interactions are needed inside this radio-galaxy to explain the gamma ray flux observed by EGRET, upper limits from HESS/CANGAROO-III and the correlated extremely energetic cosmic ray events observed by the Pierre Auger experiment. Inmore » future, with better {gamma}-ray data, and simultaneous observation with {gamma}-ray and cosmic ray detectors, it will be possible to carry out such studies on different sources in more detail.« less

  2. ESA presents INTEGRAL, its space observatory for Gamma-ray astronomy

    NASA Astrophysics Data System (ADS)

    1998-09-01

    more strange than the energetic radiation coming from the centre of distant galaxies are flashes of extremely powerful radiation that suddenly appear somewhere on the gamma-sky and disappear again after a short time. These gamma-bursts seem to be the biggest observed explosions in the Universe. But nobody knows their source. Integral will help to solve this long-standing mystery. ESA, the pioneer in gamma-ray astronomy The satellite as it can now be seen at ESA's test centre is five meters high and weighs more than four tonnes. Two main instruments observe the gamma-rays. An imager will give the sharpest gamma-ray images. It is provided by a consortium led by an Italian scientist. Gamma-rays ignore lenses and mirror, so INTEGRAL makes its images with so-called coded-masks. A coded-mask telescope is basically a pinhole camera, but with a larger aperture, i.e. many pinholes. A spectrometer will gauge gamma-ray energies extremely precisely. It is developed by a team of scientists under joint French-German leadership and will be a 100 times more sensitive than the previous high spectral resolution space instrument. It is made of a high-purity Germanium detector that has to be cooled down to minus 188 degree Celsius. These two gamma-ray-instruments are supported by two monitor instruments that play a crucial role in the detection and identification of the gamma-ray sources. An X-ray monitor developed in Denmark will observe X-rays, still powerful but less energetic than gamma-rays. An optical telescope provided by Spain will observe the visible light emitted by the energetic objects. Switzerland will host the Integral Science Data Centre which will preprocess and distribute the scientific data. The mission is conceived as an observatory led by ESA with Russia contributing the launcher and NASA providing tracking support with its Deep Space Network. Alenia Aerospazio in Turin, Italy is ESA's prime contractor for building INTEGRAL. Launch by a Russian Proton rocket from

  3. Future prospects for gamma-ray

    NASA Technical Reports Server (NTRS)

    Fichtel, C.

    1980-01-01

    Astrophysical phenomena discussed are: the very energetic and nuclear processes associated with compact objects; astrophysical nucleo-synthesis; solar particle acceleration; the chemical composition of the planets and other bodies of the solar system; the structure of our galaxy; the origin and dynamic pressure effects of the cosmic rays; the high energy particles and energetic processes in other galaxies, especially active ones; and the degree of matter antimater symmetry of the universe. The gamma ray results of GAMMA-I, the gamma ray observatory, the gamma ray burst network, solar polar, and very high energy gamma ray telescopes on the ground provide justification for more sophisticated telescopes.

  4. Gamma ray astrophysics to the year 2000. Report of the NASA Gamma Ray Program Working Group

    NASA Technical Reports Server (NTRS)

    1988-01-01

    Important developments in gamma-ray astrophysics up to energies of 100 GeV during the last decade are reviewed. Also, the report seeks to define the major current scientific goals of the field and proposes a vigorous program to pursue them, extending to the year 2000. The goals of gamma-ray astronomy include the study of gamma rays which provide the most direct means of studying many important problems in high energy astrophysics including explosive nucleosynthesis, accelerated particle interactions and sources, and high-energy processes around compact objects. The current research program in gamma-ray astronomy in the U.S. including the space program, balloon program and foreign programs in gamma-ray astronomy is described. The high priority recommendations for future study include an Explorer-class high resolution gamma-ray spectroscopy mission and a Get Away Special cannister (GAS-can) or Scout class multiwavelength experiment for the study of gamma-ray bursts. Continuing programs include an extended Gamma Ray Observatory mission, continuation of the vigorous program of balloon observations of the nearby Supernova 1987A, augmentation of the balloon program to provide for new instruments and rapid scientific results, and continuation of support for theoretical research. Long term recommendations include new space missions using advanced detectors to better study gamma-ray sources, the development of these detectors, continued study for the assembly of large detectors in space, collaboration with the gamma-ray astronomy missions initiated by other countries, and consideration of the Space Station attached payloads for gamma-ray experiments.

  5. Design criteria for small coded aperture masks in gamma-ray astronomy

    NASA Technical Reports Server (NTRS)

    Sembay, S.; Gehrels, Neil

    1990-01-01

    Most theoretical work on coded aperture masks in X-ray and low-energy gamma-ray astronomy has concentrated on masks with large numbers of elements. For gamma-ray spectrometers in the MeV range, the detector plane usually has only a few discrete elements, so that masks with small numbers of elements are called for. For this case it is feasible to analyze by computer all the possible mask patterns of given dimension to find the ones that best satisfy the desired performance criteria. A particular set of performance criteria for comparing the flux sensitivities, source positioning accuracies and transparencies of different mask patterns is developed. The results of such a computer analysis for masks up to dimension 5 x 5 unit cell are presented and it is concluded that there is a great deal of flexibility in the choice of mask pattern for each dimension.

  6. Development of Hand-Held Thermographic Inspection Technologies

    DOT National Transportation Integrated Search

    2009-09-01

    This study explored the application of hand-held thermographic cameras for the detection of subsurface delaminations in concrete bridges. The goal of the research was to provide maintenance and inspection personnel with an effective tool for detectin...

  7. Development of hand-held thermographic inspection technologies.

    DOT National Transportation Integrated Search

    2009-09-01

    This study explored the application of hand-held thermographic cameras for the detection of subsurface delaminations in concrete : bridges. The goal of the research was to provide maintenance and inspection personnel with an effective tool for detect...

  8. Operando Positron Annihilation Gamma Spectrometer (OPAGS)

    NASA Astrophysics Data System (ADS)

    Satyal, S.; Shastry, K.; Mukherjee, S.; Weiss, A. H.

    2009-03-01

    Surface properties measured under UHV conditions cannot be extended to surfaces interacting with gases under realistic pressures due to surface reconstruction and other strong perturbations of the surface. Surface probing techniques require UHV conditions to perform efficiently and avoid data loss due to scattering of outgoing particles. This poster describes the design of an Operando Positron Annihilation Gamma Spectrometer (OPAGS) currently under construction at the University of Texas at Arlington. The new system will be capable of obtaining surface and defect specific chemical and charge state information from surfaces under realistic pressures. Differential pumping will be used to maintain the sample in a gas environment while the rest of the beam is under UHV. Elemental content of the surface interacting with the gas environment will be determined from the Doppler broadened gamma spectra. This system will also include a time of flight (TOF) Auger spectrometer which correlates with the results of the Doppler measurements at lower pressures. By employing the unique capabilities of OPAGS together with those of the TOF PAES spectroscopy the charge transfer mechanisms at the surface in catalytic systems can be understood.

  9. Gamma ray detector shield

    DOEpatents

    Ohlinger, R.D.; Humphrey, H.W.

    1985-08-26

    A gamma ray detector shield comprised of a rigid, lead, cylindrical-shaped vessel having upper and lower portions with an pneumatically driven, sliding top assembly. Disposed inside the lead shield is a gamma ray scintillation crystal detector. Access to the gamma detector is through the sliding top assembly.

  10. Limits to the radiative decays of neutrinos and axions from gamma-ray observations of SN 1987A

    NASA Technical Reports Server (NTRS)

    Kolb, Edward W.; Turner, Michael S.

    1989-01-01

    Gamma-ray observations obtained by the SMM gamma-ray spectrometer in the energy range 4.1-6.4 MeV are used to provide limits on the possible radiative decay of neutrinos and axions emitted by SN 1987A. For branching ratio values for the radiative decay modes of less than about 0.0001, the present limits are more stringent than those based upon the photon flux from decaying relic neutrinos. The data are also used to set an axion mass limit.

  11. Gamma-Ray Bursts: An Overview

    NASA Technical Reports Server (NTRS)

    Fishman, Gerald J.

    1995-01-01

    A history and overview of the observed properties of gamma-ray bursts are presented. The phenomenon of gamma-ray bursts is without precedent in astronomy, having no observed property that would be a direct indicator of their distance and no counterpart object in another wavelength region. Their brief, random appearance only in the gamma-ray region has made their study difficult. The observed time profiles, spectral properties, and durations of gamma-ray bursts cover a wide range. All proposed models for their origin must be considered speculative. It is humbling to think that even after 25 years since their discovery, the distance scale of gamma-ray bursts is still very much debatable.

  12. High energy gamma ray astronomy

    NASA Technical Reports Server (NTRS)

    Fichtel, Carl E.

    1987-01-01

    High energy gamma ray astronomy has evolved with the space age. Nonexistent twenty-five years ago, there is now a general sketch of the gamma ray sky which should develop into a detailed picture with the results expected to be forthcoming over the next decade. The galactic plane is the dominant feature of the gamma ray sky, the longitude and latitude distribution being generally correlated with galactic structural features including the spiral arms. Two molecular clouds were already seen. Two of the three strongest gamma ray sources are pulsars. The highly variable X-ray source Cygnus X-3 was seen at one time, but not another in the 100 MeV region, and it was also observed at very high energies. Beyond the Milky Way Galaxy, there is seen a diffuse radiation, whose origin remains uncertain, as well as at least one quasar, 3C 273. Looking to the future, the satellite opportunities for high energy gamma ray astronomy in the near term are the GAMMA-I planned to be launched in late 1987 and the Gamma Ray Observatory, scheduled for launch in 1990. The Gamma Ray Observatory will carry a total of four instruments covering the entire energy range from 30,000 eV to 3 x 10 to the 10th eV with over an order of magnitude increase in sensitivity relative to previous satellite instruments.

  13. Attentionally splitting the mass distribution of hand-held rods.

    PubMed

    Burton, G; Turvey, M T

    1991-08-01

    Two experiments on the length-perception capabilities of effortful or dynamic touch differed only in terms of what the subject intended to perceive, while experimental conditions and apparatus were held constant. In each trial, a visually occluded rod was held as still as possible by the subject at an intermediate position. For two thirds of the trials, a weight was attached to the rod above or below the hand. In Experiment 1, in which the subject's task was to perceive the distance reachable with the portion of the rod forward of the hand, perceived extent was a function of the first moment of the mass distribution associated with the forward portion of the rod, and indifferent to the first moment of the entire rod. In Experiment 2, in which the task was to perceive the distance reachable with the entire rod if it was held at an end, the pattern of results was reversed. These results indicate the capability of selective sensitivity to different aspects of a hand-held object's mass distribution, without the possibility of differential exploration specific to these two tasks. Results are discussed in relation to possible roles of differential information, intention, and self-organization in the explanations of selective perceptual abilities.

  14. Implications of Hand Held Electronic Games and Microcomputers for Informal Learning.

    ERIC Educational Resources Information Center

    Kee, Daniel W.

    The use of hand-held electronic devices and microcomputers in places of public access and in the home are discussed. First, the different activities supported by this technology are described, with emphasis on the commonality of game playing to both hand-held devices and microcomputers. The need for research to investigate the motivational…

  15. Gamma-sky.net: Portal to the gamma-ray sky

    NASA Astrophysics Data System (ADS)

    Voruganti, Arjun; Deil, Christoph; Donath, Axel; King, Johannes

    2017-01-01

    http://gamma-sky.net is a novel interactive website designed for exploring the gamma-ray sky. The Map View portion of the site is powered by the Aladin Lite sky atlas, providing a scalable survey image tesselated onto a three-dimensional sphere. The map allows for interactive pan and zoom navigation as well as search queries by sky position or object name. The default image overlay shows the gamma-ray sky observed by the Fermi-LAT gamma-ray space telescope. Other survey images (e.g. Planck microwave images in low/high frequency bands, ROSAT X-ray image) are available for comparison with the gamma-ray data. Sources from major gamma-ray source catalogs of interest (Fermi-LAT 2FHL, 3FGL and a TeV source catalog) are overlaid over the sky map as markers. Clicking on a given source shows basic information in a popup, and detailed pages for every source are available via the Catalog View component of the website, including information such as source classification, spectrum and light-curve plots, and literature references. We intend for gamma-sky.net to be applicable for both professional astronomers as well as the general public. The website started in early June 2016 and is being developed as an open-source, open data project on GitHub (https://github.com/gammapy/gamma-sky). We plan to extend it to display more gamma-ray and multi-wavelength data. Feedback and contributions are very welcome!

  16. Scientific prospects for spectroscopy of the gamma-ray burst prompt emission with SVOM

    NASA Astrophysics Data System (ADS)

    Bernardini, M. G.; Xie, F.; Sizun, P.; Piron, F.; Dong, Y.; Atteia, J.-L.; Antier, S.; Daigne, F.; Godet, O.; Cordier, B.; Wei, J.

    2017-10-01

    SVOM (Space-based multi-band astronomical Variable Objects Monitor) is a Sino-French space mission dedicated to the study of Gamma-Ray Bursts (GRBs) in the next decade, capable to detect and localise the GRB emission, and to follow its evolution in the high-energy and X-ray domains, and in the visible and NIR bands. The satellite carries two wide-field high-energy instruments: a coded-mask gamma-ray imager (ECLAIRs; 4-150 keV), and a gamma-ray spectrometer (GRM; 15-5500 keV) that, together, will characterise the GRB prompt emission spectrum over a wide energy range. In this paper we describe the performances of the ECLAIRs and GRM system with different populations of GRBs from existing catalogues, from the classical ones to those with a possible thermal component superimposed to their non-thermal emission. The combination of ECLAIRs and the GRM will provide new insights also on other GRB properties, as for example the spectral characterisation of the subclass of short GRBs showing an extended emission after the initial spike.

  17. Space instrumentation for gamma-ray astronomy

    NASA Astrophysics Data System (ADS)

    Teegarden, B. J.

    1999-02-01

    The decade of the 1990s has witnessed a renaissance in the field of gamma-ray astronomy. The seminal event was the launch of the Compton Gamma-Ray Observatory (CGRO) in April 1991. There have been a flood of major discoveries from CGRO including breakthroughs in gamma-ray bursts, annihilation radiation, and blazars. The Italian SAX satellite was launched in April 1996. Although not primarily a gamma-ray mission, it has added a new dimension to our understanding of gamma-ray bursts. Along with these new discoveries a firm groundwork has been laid for missions and new technology development that should maintain a healthy and vigorous field throughout most of the next decade. These include the ESA INTEGRAL mission (INTErnational Gamma-Ray Astrophysics Laboratory, to be launched in mid-2001) and the NASA GLAST mission (Gamma-Ray Large Area Space Telescope) with a likely launch in the middle of the next decade. These two missions will extend the observational capabilities well beyond those of CGRO. New technologies (to gamma-ray astronomy), such as cooled germanium detectors, silicon strip detectors, and CdTe detectors are planned for these new missions. Additional promising new technologies such as CdZnTe strip detectors, scintillator fibers, and a gamma-ray lens for future gamma-ray astronomy missions are under development in laboratories around the world.

  18. Measurement of angularly dependent spectra of betatron gamma-rays from a laser plasma accelerator with quadrant-sectored range filters

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Jeon, Jong Ho, E-mail: jhjeon07@ibs.re.kr; Nakajima, Kazuhisa, E-mail: naka115@dia-net.ne.jp; Rhee, Yong Joo

    Measurement of angularly dependent spectra of betatron gamma-rays radiated by GeV electron beams from laser wakefield accelerators (LWFAs) are presented. The angle-resolved spectrum of betatron radiation was deconvolved from the position dependent data measured for a single laser shot with a broadband gamma-ray spectrometer comprising four-quadrant sectored range filters and an unfolding algorithm, based on the Monte Carlo code GEANT4. The unfolded gamma-ray spectra in the photon energy range of 0.1–10 MeV revealed an approximately isotropic angular dependence of the peak photon energy and photon energy-integrated fluence. As expected by the analysis of betatron radiation from LWFAs, the results indicate thatmore » unpolarized gamma-rays are emitted by electrons undergoing betatron motion in isotropically distributed orbit planes.« less

  19. The Gamma-Ray Imager GRI

    NASA Astrophysics Data System (ADS)

    Wunderer, Cornelia B.; GRI Collaboration

    2006-09-01

    Observations of the gamma-ray sky reveal the most powerful sources and the most violent events in the Universe. While at lower wavebands the observed emission is generally dominated by thermal processes, the gamma-ray sky provides us with a view on the non-thermal Universe. Here particles are accelerated to extreme relativistic energies by mechanisms which are still poorly understood, and nuclear reactions are synthesizing the basic constituents of our world. Cosmic accelerators and cosmic explosions are the major science themes that are addressed in the gamma-ray regime. With the INTEGRAL observatory, ESA has provided a unique tool to the astronomical community revealing hundreds of sources, new classes of objects, extraordinary views of antimatter annihilation in our Galaxy, and fingerprints of recent nucleosynthesis processes. While INTEGRAL provides the global overview over the soft gamma-ray sky, there is a growing need to perform deeper, more focused investigations of gamma-ray sources. In soft X-rays a comparable step was taken going from the Einstein and the EXOSAT satellites to the Chandra and XMM/Newton observatories. Technological advances in the past years in the domain of gamma-ray focusing using Laue diffraction and multilayer coated mirror techniques have paved the way towards a gamma-ray mission, providing major improvements compared to past missions regarding sensitivity and angular resolution. Such a future Gamma-Ray Imager will allow to study particle acceleration processes and explosion physics in unprecedented detail, providing essential clues on the innermost nature of the most violent and most energetic processes in the Universe.

  20. Once the Light Touch to the Brain: Cytotoxic Effects of Low-Dose Gamma-Ray, Laser Light, and Visible Light on Rat Neuronal Cell Culture

    PubMed Central

    Cakir, Murteza; Colak, Abdullah; Calikoglu, Cagatay; Taspinar, Numan; Sagsoz, Mustafa Erdem; Kadioglu, Hakan Hadi; Hacimuftuoglu, Ahmet; Seven, Sabriye

    2016-01-01

    Objective: We aimed to evaluate the effects of gamma-ray, laser light, and visible light, which neurons are commonly exposed to during treatment of various cranial diseases, on the viability of neurons. Materials and Methods: Neuronal cell culture was prepared from the frontal cortex of 9 newborn rats. Cultured cells were irradiated with gamma-ray for 1–10 min by 152Eu, 241Am, and 132Ba isotopes, visible light for 1–160 min, and laser light for 0.2–2 seconds. The MTT tetrazolium reduction assay was used to assess the number of viable cells in the neuronal cell cultures. Wavelength dispersive X-ray fluorescence spectrometer was used to determine Na, K, and Ca levels in cellular fluid obtained from neuronal cell culture plaques. Results: Under low-dose radiation with 152Eu, 241Am, and 132Ba isotopes, cell viability insignificantly decreased with time (p>0.05). On the other hand, exposure to visible light produced statistically significant decrease in cell viability at both short- (1–10 min) and long-term (20–160 min). Cell viability did not change with 2 seconds of laser exposure. Na, K, and Ca levels significantly decreased with gamma-ray and visible light. The level of oxidative stress markers significantly changed with gamma-ray. Conclusion: In conclusion, while low dose gamma-ray has slight to moderate apoptotic effect in neuronal cell cultures by oxidative stress, long-term visible light induces remarkable apoptosis and cell death. Laser light has no significant effect on neurons. Further genetic studies are needed to clarify the chronic effect of visible light on neuronal development and functions. PMID:27551168

  1. High-resolution imaging gamma-ray spectroscopy with externally segmented germanium detectors

    NASA Technical Reports Server (NTRS)

    Callas, J. L.; Mahoney, W. A.; Varnell, L. S.; Wheaton, W. A.

    1993-01-01

    Externally segmented germanium detectors promise a breakthrough in gamma-ray imaging capabilities while retaining the superb energy resolution of germanium spectrometers. An angular resolution of 0.2 deg becomes practical by combining position-sensitive germanium detectors having a segment thickness of a few millimeters with a one-dimensional coded aperture located about a meter from the detectors. Correspondingly higher angular resolutions are possible with larger separations between the detectors and the coded aperture. Two-dimensional images can be obtained by rotating the instrument. Although the basic concept is similar to optical or X-ray coded-aperture imaging techniques, several complicating effects arise because of the penetrating nature of gamma rays. The complications include partial transmission through the coded aperture elements, Compton scattering in the germanium detectors, and high background count rates. Extensive electron-photon Monte Carlo modeling of a realistic detector/coded-aperture/collimator system has been performed. Results show that these complicating effects can be characterized and accounted for with no significant loss in instrument sensitivity.

  2. Hand-held internet tablets for school-based data collection.

    PubMed

    Denny, Simon J; Milfont, Taciano L; Utter, Jennifer; Robinson, Elizabeth M; Ameratunga, Shanthi N; Merry, Sally N; Fleming, Theresa M; Watson, Peter D

    2008-07-26

    In the last 20 years, researchers have been using computer self-administered questionnaires to gather data on a wide range of adolescent health related behaviours. More recently, researchers collecting data in schools have started to use smaller hand-held computers for their ease of use and portability. The aim of this study is to describe a new technology with wi-fi enabled hand-held internet tablets and to compare adolescent preferences of laptop computers or hand-held internet tablets in administering a youth health and well-being questionnaire in a school setting. A total of 177 students took part in a pilot study of a national youth health and wellbeing survey. Students were randomly assigned to internet tablets or laptops at the start of the survey and were changed to the alternate mode of administration about half-way through the questionnaire. Students at the end of the questionnaire were asked which of the two modes of administration (1) they preferred, (2) was easier to use, (3) was more private and confidential, and (4) was easier to answer truthfully. Many students expressed no preference between laptop computers or internet tablets. However, among the students who expressed a preference between laptop computers or internet tablets, the majority of students found the internet tablets more private and confidential (p < 0.001) and easier to answer questions truthfully (p < 0.001) compared to laptop computers. This study demonstrates that using wi-fi enabled hand-held internet tablets is a feasible methodology for school-based surveys especially when asking about sensitive information.

  3. Hand-held internet tablets for school-based data collection

    PubMed Central

    Denny, Simon J; Milfont, Taciano L; Utter, Jennifer; Robinson, Elizabeth M; Ameratunga, Shanthi N; Merry, Sally N; Fleming, Theresa M; Watson, Peter D

    2008-01-01

    Background In the last 20 years, researchers have been using computer self-administered questionnaires to gather data on a wide range of adolescent health related behaviours. More recently, researchers collecting data in schools have started to use smaller hand-held computers for their ease of use and portability. The aim of this study is to describe a new technology with wi-fi enabled hand-held internet tablets and to compare adolescent preferences of laptop computers or hand-held internet tablets in administering a youth health and well-being questionnaire in a school setting. Methods A total of 177 students took part in a pilot study of a national youth health and wellbeing survey. Students were randomly assigned to internet tablets or laptops at the start of the survey and were changed to the alternate mode of administration about half-way through the questionnaire. Students at the end of the questionnaire were asked which of the two modes of administration (1) they preferred, (2) was easier to use, (3) was more private and confidential, and (4) was easier to answer truthfully. Results Many students expressed no preference between laptop computers or internet tablets. However, among the students who expressed a preference between laptop computers or internet tablets, the majority of students found the internet tablets more private and confidential (p < 0.001) and easier to answer questions truthfully (p < 0.001) compared to laptop computers. Conclusion This study demonstrates that using wi-fi enabled hand-held internet tablets is a feasible methodology for school-based surveys especially when asking about sensitive information. PMID:18710505

  4. Gamma Ray Pulsars: Multiwavelength Observations

    NASA Technical Reports Server (NTRS)

    Thompson, David J.

    2004-01-01

    High-energy gamma rays are a valuable tool for studying particle acceleration and radiation in the magnetospheres of energetic pulsars. The seven or more pulsars seen by instruments on the Compton Gamma Ray Observatory (CGRO) show that: the light curves usually have double-peak structures (suggesting a broad cone of emission); gamma rays are frequently the dominant component of the radiated power; and all the spectra show evidence of a high-energy turnover. For all the known gamma-ray pulsars, multiwavelength observations and theoretical models based on such observations offer the prospect of gaining a broad understanding of these rotating neutron stars. The Gamma-ray Large Area Space Telescope (GLAST), now in planning for a launch in 2006, will provide a major advance in sensitivity, energy range, and sky coverage.

  5. Isomer-delayed gamma-ray spectroscopy of neutron-rich 166Tb

    DOE PAGES

    Gurgi, L. A.; Regan, P. H.; Söderström, P. -A.; ...

    2017-09-13

    Here, this short paper presents the identification of a metastable, isomeric-state decay in the neutron-rich odd-odd, prolate-deformed nucleus 166Tb. The nucleus of interest was formed using the in-flight fission of a 345 MeV per nucleon 238U primary beam at the RIBF facility, RIKEN, Japan. Gamma-ray transitions decaying from the observed isomeric states in 166Tb were identified using the EURICA gamma-ray spectrometer, positioned at the final focus of the BigRIPS fragments separator. The current work identifies a single discrete gamma-ray transition of energy 119 keV which de-excites an isomeric state in 166Tb with a measured half-life of 3.5(4) μs. The multipolaritymore » assignment for this transition is an electric dipole and is made on the basis internal conversion and decay lifetime arguments. Possible two quasi-particle Nilsson configurations for the initial and final states which are linked by this transition in 166Tb are made on the basis of comparison with Blocked BCS Nilsson calculations, with the predicted ground state configuration for this nucleus arising from the coupling of the v(1-/2)[521] and π(3+/2) Nilsson orbitals.« less

  6. Gamma ray pulsars

    NASA Technical Reports Server (NTRS)

    Oegelman, H.; Ayasli, S.; Hacinliyan, A.

    1976-01-01

    Recent data from the high energy gamma ray experiment have revealed the existence of four pulsars emitting photons above 35 MeV. An attempt is made to explain the gamma ray emission from these pulsars in terms of an electron-photon cascade that develops in the magnetosphere of the pulsar. Although there is very little material above the surface of the pulsar, the very intense magnetic fields correspond to many radiation lengths which cause electrons to emit photons via magnetic bremsstrahlung and these photons to pair produce. The cascade develops until the mean photon energy drops below the pair production threshold which happens to be in the gamma ray range; at this stage the photons break out from the source.

  7. Theory and optical design of x-ray echo spectrometers

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Shvyd'ko, Yuri

    X-ray echo spectroscopy, a space-domain counterpart of neutron spin echo, is a recently proposed inelastic x-ray scattering (IXS) technique. X-ray echo spectroscopy relies on imaging IXS spectra and does not require x-ray monochromatization. Due to this, the echo-type IXS spectrometers are broadband, and thus have a potential to simultaneously provide dramatically increased signal strength, reduced measurement times, and higher resolution compared to the traditional narrow-band scanning-type IXS spectrometers. The theory of x-ray echo spectrometers presented earlier [Yu. Shvyd'ko, Phys. Rev. Lett. 116, 080801 (2016)] is developed here further with a focus on questions of practical importance, which could facilitate opticalmore » design and assessment of the feasibility and performance of the echo spectrometers. Among others, the following questions are addressed: spectral resolution, refocusing condition, echo spectrometer tolerances, refocusing condition adjustment, effective beam size on the sample, spectral window of imaging and scanning range, impact of the secondary source size on the spectral resolution, angular dispersive optics, focusing and collimating optics, and detector's spatial resolution. In conclusion, examples of optical designs and characteristics of echo spectrometers with 1-meV and 0.1-meV resolutions are presented.« less

  8. Theory and optical design of x-ray echo spectrometers

    DOE PAGES

    Shvyd'ko, Yuri

    2017-08-02

    X-ray echo spectroscopy, a space-domain counterpart of neutron spin echo, is a recently proposed inelastic x-ray scattering (IXS) technique. X-ray echo spectroscopy relies on imaging IXS spectra and does not require x-ray monochromatization. Due to this, the echo-type IXS spectrometers are broadband, and thus have a potential to simultaneously provide dramatically increased signal strength, reduced measurement times, and higher resolution compared to the traditional narrow-band scanning-type IXS spectrometers. The theory of x-ray echo spectrometers presented earlier [Yu. Shvyd'ko, Phys. Rev. Lett. 116, 080801 (2016)] is developed here further with a focus on questions of practical importance, which could facilitate opticalmore » design and assessment of the feasibility and performance of the echo spectrometers. Among others, the following questions are addressed: spectral resolution, refocusing condition, echo spectrometer tolerances, refocusing condition adjustment, effective beam size on the sample, spectral window of imaging and scanning range, impact of the secondary source size on the spectral resolution, angular dispersive optics, focusing and collimating optics, and detector's spatial resolution. In conclusion, examples of optical designs and characteristics of echo spectrometers with 1-meV and 0.1-meV resolutions are presented.« less

  9. A Unified Model for GRB Prompt Emission from Optical to Gamma-Rays; Exploring GRBs as Standard Candles

    NASA Technical Reports Server (NTRS)

    Guiriec, S.; Kouveliotou, C.; Hartmann, D. H.; Granot, J.; Asano, K.; Meszaros, P.; Gill, R.; Gehrels, N.; McEnery, J.

    2016-01-01

    The origin of prompt emission from gamma-ray bursts (GRBs) remains to be an open question. Correlated prompt optical and gamma-ray emission observed in a handful of GRBs strongly suggests a common emission region, but failure to adequately fit the broadband GRB spectrum prompted the hypothesis of different emission mechanisms for the low- and high-energy radiations. We demonstrate that our multi-component model for GRB -ray prompt emission provides an excellent fit to GRB 110205A from optical to gamma-ray energies. Our results show that the optical and highest gamma-ray emissions have the same spatial and spectral origin, which is different from the bulk of the X- and softest gamma-ray radiation. Finally, our accurate redshift estimate for GRB 110205A demonstrates promise for using GRBs as cosmological standard candles.

  10. Gamma-Ray Astronomy Technology Needs

    NASA Technical Reports Server (NTRS)

    Gehrels, N.; Cannizzo, J. K.

    2012-01-01

    In recent decades gamma-ray observations have become a valuable tool for studying the universe. Progress made in diverse 8re1lS such as gamma-ray bursts (GRBs), nucleosynthesis, and active galactic nuclei (AGNs) has complimented and enriched our astrophysical understanding in many ways. We present an overview of current and future planned space y-ray missions and discussion technology needs for- the next generation of space gamma-ray instruments.

  11. Development and application of marine gamma-ray measurements: a review.

    PubMed

    Jones, D G

    2001-01-01

    The development of instruments to measure gamma radiation in the marine environment, particularly on the sea floor, and the range of uses to which they have been put is reviewed. Since the first steps in the late 1950s, systems have been developed in at least 10 countries with the main thrust occurring in the 1970s. Development has continued up to the present, primarily in Europe and the USA. Marine gamma-ray spectrometers have been used for a range of applications including the mapping of rocks and unconsolidated sediments, mineral exploration (mainly for heavy minerals and phosphorites), sediment transport studies and investigations in relation to discharged and dumped nuclear wastes and at nuclear weapon test sites.

  12. Computer implemented method, and apparatus for controlling a hand-held tool

    NASA Technical Reports Server (NTRS)

    Wagner, Kenneth William (Inventor); Taylor, James Clayton (Inventor)

    1999-01-01

    The invention described here in is a computer-implemented method and apparatus for controlling a hand-held tool. In particular, the control of a hand held tool is for the purpose of controlling the speed of a fastener interface mechanism and the torque applied to fasteners by the fastener interface mechanism of the hand-held tool and monitoring the operating parameters of the tool. The control is embodied in intool software embedded on a processor within the tool which also communicates with remote software. An operator can run the tool, or through the interaction of both software, operate the tool from a remote location, analyze data from a performance history recorded by the tool, and select various torque and speed parameters for each fastener.

  13. Development of Compton X-ray spectrometer for high energy resolution single-shot high-flux hard X-ray spectroscopy

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kojima, Sadaoki, E-mail: kojima-s@ile.osaka-u.ac.jp, E-mail: sfujioka@ile.osaka-u.ac.jp; Ikenouchi, Takahito; Arikawa, Yasunobu

    Hard X-ray spectroscopy is an essential diagnostics used to understand physical processes that take place in high energy density plasmas produced by intense laser-plasma interactions. A bundle of hard X-ray detectors, of which the responses have different energy thresholds, is used as a conventional single-shot spectrometer for high-flux (>10{sup 13} photons/shot) hard X-rays. However, high energy resolution (Δhv/hv < 0.1) is not achievable with a differential energy threshold (DET) X-ray spectrometer because its energy resolution is limited by energy differences between the response thresholds. Experimental demonstration of a Compton X-ray spectrometer has already been performed for obtaining higher energy resolutionmore » than that of DET spectrometers. In this paper, we describe design details of the Compton X-ray spectrometer, especially dependence of energy resolution and absolute response on photon-electron converter design and its background reduction scheme, and also its application to the laser-plasma interaction experiment. The developed spectrometer was used for spectroscopy of bremsstrahlung X-rays generated by intense laser-plasma interactions using a 200 μm thickness SiO{sub 2} converter. The X-ray spectrum obtained with the Compton X-ray spectrometer is consistent with that obtained with a DET X-ray spectrometer, furthermore higher certainly of a spectral intensity is obtained with the Compton X-ray spectrometer than that with the DET X-ray spectrometer in the photon energy range above 5 MeV.« less

  14. The Andromeda galaxy in gamma-rays

    NASA Technical Reports Server (NTRS)

    Oezel, M. E.; Berkhuijsen, E. M.

    1987-01-01

    Implications of high-energy gamma-ray observations of the Andromeda galaxy with the next generation of satellites Gamma-1 and GRO are discussed in the context of the origin of cosmic rays and gamma-ray processes. The present estimate of the total gamma-ray flux of this galaxy at energies above 100 MeV is a factor of about three less than previous estimates.

  15. Gamma-ray burster recurrence timescales

    NASA Technical Reports Server (NTRS)

    Schaefer, B. E.; Cline, T. L.

    1984-01-01

    Three optical transients have been found which are associated with gamma-ray bursters (GRBs). The deduced recurrence timescale for these optical transients (tau sub opt) will depend on the minimum brightness for which a flash would be detected. A detailed analysis using all available data of tau sub opt as a function of E(gamma)/E(opt) is given. For flashes similar to those found in the Harvard archives, the best estimate of tau sub opt is 0.74 years, with a 99% confidence interval from 0.23 years to 4.7 years. It is currently unclear whether the optical transients from GRBs also give rise to gamma-ray events. One way to test this association is to measure the recurrence timescale of gamma-ray events tau sub gamma. A total of 210 gamma-ray error boxes were examined and it was found that the number of observed overlaps is not significantly different from the number expected from chance coincidence. This observation can be used to place limits on tau sub gamma for an assumed luminosity function. It was found that tau sub gamma is approx. 10 yr if bursts are monoenergetic. However, if GRBs have a power law luminosity function with a wide dynamic range, then the limit is tau sub gamma 0.5 yr. Hence, the gamma-ray data do not require tau sub gamma and tau sub opt to be different.

  16. GRI: The Gamma-Ray Imager mission

    NASA Astrophysics Data System (ADS)

    Knödlseder, J.; Gri Consortium

    Observations of the gamma-ray sky reveal the most powerful sources and the most violent events in the Universe While at lower wavebands the observed emission is generally dominated by thermal processes the gamma-ray sky provides us with a view on the non-thermal Universe Here particles are accelerated to extreme relativistic energies by mechanisms which are still poorly understood and nuclear reactions are synthesizing the basic constituents of our world Cosmic accelerators and cosmic explosions are the major science themes that are addressed in the gamma-ray regime With the INTEGRAL observatory ESA has provided a unique tool to the astronomical community and has put Europe in the lead in the field of gamma-ray astronomy INTEGRAL provides an unprecedented survey of the soft gamma-ray sky revealing hundreds of sources new classes of objects extraordinary views of antimatter annihilation in our Galaxy and fingerprints of recent nucleosynthesis processes While INTEGRAL has provided the global overview over the soft gamma-ray sky there is a growing need to perform deeper more focused investigations of gamma-ray sources In soft X-rays a comparable step was taken going from the Einstein satellite to the XMM Newton observatory Technological advances in the past years in the domain of gamma-ray focusing using Laue diffraction and multilayer-coated mirror techniques have paved the way towards a gamma-ray mission providing major improvements compared to past missions regarding sensitivity and angular resolution Such a

  17. Gamma ray spectroscopy in astrophysics. [conferences

    NASA Technical Reports Server (NTRS)

    Cline, T. L. (Editor); Ramaty, R. (Editor)

    1978-01-01

    Experimental and theoretical aspects of gamma ray spectroscopy in high energy astrophysics are discussed. Line spectra from solar, stellar, planetary, and cosmic gamma rays are examined as well as HEAO investigations, the prospects of a gamma ray observatory, and follow-on X-ray experiments in space.

  18. [Study on chemical compositions and crystallinity changes of bamboo treated with gamma rays].

    PubMed

    Sun, Feng-Bo; Jiang, Ze-hui; Fei, Ben-hua; Lu, Fang; Yu, Zi-xuan; Chang, Xiang-zhen

    2011-07-01

    The structures and qualities of main chemical compositions in cell wall of bamboo treated with gamma rays were tested by nuclear magnetic resonance spectrometer (NMR) and X-ray Diffraction (XRD). The result indicated that the bamboo crystallinity increased at the beginning of irradiation process, while the crystallinity reduced when the irradiation dose was raised to about 100 kGy. During the whole irradiation process, hemicellulose degraded, and with the irradiation doses increased the non-phenolic lignin changed to the phenolic.

  19. Gamma-ray line astrophysics

    NASA Technical Reports Server (NTRS)

    Lingenfelter, R. E.; Ramaty, R.

    1986-01-01

    Recent observations of gamma-ray line emission from solar flares, gamma-ray bursts, the galactic center, the interstellar medium and the jets of SS433 are reviewed. The implications of these observations on high energy processes in these sources are discussed.

  20. Highlights of GeV Gamma-Ray Astronomy

    NASA Technical Reports Server (NTRS)

    Thompson, David J.

    2010-01-01

    Because high-energy gamma rays are primarily produced by high-energy particle interactions, the gamma-ray survey of the sky by the Fermi Gamma-ray Space Telescope offers a view of sites of cosmic ray production and interactions. Gamma-ray bursts, pulsars, pulsar wind nebulae, binary sources, and Active Galactic Nuclei are all phenomena that reveal particle acceleration through their gamma-ray emission. Diffuse Galactic gamma radiation, Solar System gamma-ray sources, and energetic radiation from supernova remnants are likely tracers of high-energy particle interactions with matter and photon fields. This paper will present a broad overview of the constantly changing sky seen with the Large Area Telescope (LAT) on the Fermi spacecraft.

  1. Design of an Operando Positron Annihilation Gamma Spectrometer (OPAGS)

    NASA Astrophysics Data System (ADS)

    Satyal, Suman; Shastry, Kartik; Kalaskar, Sushant; Lim, Larry; Joglekar, Vibek; Weiss, Alexander

    2009-10-01

    Surface properties measured under UHV conditions cannot be extended to surfaces interacting with gases under realistic pressures due to surface reconstruction and other strong perturbations of the surface. Many surface probing techniques used till now have required UHV conditions to avoid data loss due to scattering of outgoing particles. Here we describe the design of an Operando Positron Annihilation Gamma Spectrometer (OPAGS) currently under construction at the University of Texas at Arlington. The new system will be capable of obtaining surface and defect specific chemical and charge state information from surfaces under realistic pressures. Differential pumping will be used to maintain the sample in a gas environment while the rest of the beam is under UHV. The Elemental content of the surface interacting with the gas environment will be determined from the Doppler broadened gamma spectra. This system will also include a time of flight (TOF) positron annihilation induced Auger spectrometer (TOF-PAES) for use in combined annihilation induced Auger and annihilation gamma measurements made under low pressure conditions.

  2. Engineering issues for hand-held sensing devices, with examples

    NASA Astrophysics Data System (ADS)

    Freiwald, David A.; Freiwald, Joyce

    1994-03-01

    It is now U.S. defense policy that there will be no new platform starts. The emphasis for platforms will be on O&M cost reduction, life-extension improvements, and force-multiplier- device upgrades. There is also an increasing emphasis on hand-held force-multiplier devices for individuals, which is the focus of this paper. Engineering issues include operations analysis, weight, cube, cost, prime power, ease of use, data storage, reliability, fault tolerance, data communications and human factors. Two examples of hand-held devices are given. Applications include USMC, Army, SOCOM, DEA, FBI, SS, Border Patrol and others. Barriers to adoption of such technology are also discussed.

  3. Prospects for future very high-energy gamma-ray sky survey: Impact of secondary gamma rays

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Inoue, Yoshiyuki; Kalashev, Oleg E.; Kusenko, Alexander

    2014-02-01

    Very high-energy gamma-ray measurements of distant blazars can be well explained by secondary gamma rays emitted by cascades induced by ultra-high-energy cosmic rays. The secondary gamma rays will enable one to detect a large number of blazars with future ground based gamma-ray telescopes such as Cherenkov Telescope Array (CTA). We show that the secondary emission process will allow CTA to detect 100, 130, 150, 87, and 8 blazars above 30 GeV, 100 GeV, 300 GeV, 1 TeV, and 10 TeV, respectively, up to z~8 assuming the intergalactic magnetic field (IGMF) strength B=10-17 G and an unbiased all sky survey withmore » 0.5 h exposure at each field of view, where total observing time is ~540 h. These numbers will be 79, 96, 110, 63, and 6 up to z~5 in the case of B=10-15 G. This large statistics of sources will be a clear evidence of the secondary gamma-ray scenarios and a new key to studying the IGMF statistically. We also find that a wider and shallower survey is favored to detect more and higher redshift sources even if we take into account secondary gamma rays.« less

  4. Very High-Energy Gamma-Ray Sources.

    ERIC Educational Resources Information Center

    Weekes, Trevor C.

    1986-01-01

    Discusses topics related to high-energy, gamma-ray astronomy (including cosmic radiation, gamma-ray detectors, high-energy gamma-ray sources, and others). Also considers motivation for the development of this field, the principal results to date, and future prospects. (JN)

  5. Gamma-Ray Spectroscopy at TRIUMF-ISAC: the New Frontier of Radioactive Ion Beam Research

    NASA Astrophysics Data System (ADS)

    Ball, G. C.; Andreoiu, C.; Austin, R. A. E.; Bandyopadhyay, D.; Becker, J. A.; Bricault, P.; Brown, N.; Chan, S.; Churchman, R.; Colosimo, S.; Coombes, H.; Cross, D.; Demand, G.; Drake, T. E.; Dombsky, M.; Ettenauer, S.; Finlay, P.; Furse, D.; Garnsworthy, A.; Garrett, P. E.; Green, K. L.; Grinyer, G. F.; Hyland, B.; Hackman, G.; Kanungo, R.; Kulp, W. D.; Lassen, J.; Leach, K. G.; Leslie, J. R.; Mattoon, C.; Melconian, D.; Morton, A. C.; Pearson, C. J.; Phillips, A. A.; Rand, E.; Sarazin, F.; Svensson, C. E.; Sumithrarachchi, S.; Schumaker, M. A.; Triambak, S.; Waddington, J. C.; Walker, P. M.; Williams, S. J.; Wood, J. L.; Wong, J.; Zganjar, E. F.

    2009-03-01

    High-resolution gamma-ray spectroscopy is essential to fully exploit the unique scientific opportunities at the next generation radioactive ion beam facilities such as the TRIUMF Isotope Separator and Accelerator (ISAC). At ISAC the 8π spectrometer and its associated auxiliary detectors is optimize for β-decay studies while TIGRESS an array of segmented clover HPGe detectors has been designed for studies with accelerated beams. This paper gives a brief overview of these facilities and also presents recent examples of the diverse experimental program carried out at the 8π spectrometer.

  6. Discovery of a Hand X-Ray Source, SAX J0635+0533, in the Error Box of the Gamma-Ray Source 2EG J0635+0521

    NASA Technical Reports Server (NTRS)

    Kaaret, P.; Piraino, S.; Halpern, Jules P.; Eracleous, M.; Oliversen, Ronald (Technical Monitor)

    2001-01-01

    We have discovered an X-ray source, SAX J0635+0533, with a hard spectrum within the error box of the GeV gamma-ray source in Monoceros, 2EG J0635+0521. The unabsorbed flux from the source is 1.2 x 10(exp -11) ergs /sq cm s in the 2-10 keV band. The X-ray spectrum is consistent with a simple power-law model with absorption. The photon index is 1.50 +/- 0.08, and we detect emission out to 40 keV. Optical observations identify a counterpart with a V magnitude of 12.8. The counterpart has broad emission lines and the colors of an early B-type star. If the identification of the X-ray/optical source with the gamma-ray source is correct, then the source would be a gamma-ray-emitting X-ray binary.

  7. Gamma-ray Full Spectrum Analysis for Environmental Radioactivity by HPGe Detector

    NASA Astrophysics Data System (ADS)

    Jeong, Meeyoung; Lee, Kyeong Beom; Kim, Kyeong Ja; Lee, Min-Kie; Han, Ju-Bong

    2014-12-01

    Odyssey, one of the NASA¡¯s Mars exploration program and SELENE (Kaguya), a Japanese lunar orbiting spacecraft have a payload of Gamma-Ray Spectrometer (GRS) for analyzing radioactive chemical elements of the atmosphere and the surface. In these days, gamma-ray spectroscopy with a High-Purity Germanium (HPGe) detector has been widely used for the activity measurements of natural radionuclides contained in the soil of the Earth. The energy spectra obtained by the HPGe detectors have been generally analyzed by means of the Window Analysis (WA) method. In this method, activity concentrations are determined by using the net counts of energy window around individual peaks. Meanwhile, an alternative method, the so-called Full Spectrum Analysis (FSA) method uses count numbers not only from full-absorption peaks but from the contributions of Compton scattering due to gamma-rays. Consequently, while it takes a substantial time to obtain a statistically significant result in the WA method, the FSA method requires a much shorter time to reach the same level of the statistical significance. This study shows the validation results of FSA method. We have compared the concentration of radioactivity of 40K, 232Th and 238U in the soil measured by the WA method and the FSA method, respectively. The gamma-ray spectrum of reference materials (RGU and RGTh, KCl) and soil samples were measured by the 120% HPGe detector with cosmic muon veto detector. According to the comparison result of activity concentrations between the FSA and the WA, we could conclude that FSA method is validated against the WA method. This study implies that the FSA method can be used in a harsh measurement environment, such as the gamma-ray measurement in the Moon, in which the level of statistical significance is usually required in a much shorter data acquisition time than the WA method.

  8. Gamma Ray Bursts-Afterglows and Counterparts

    NASA Technical Reports Server (NTRS)

    Fishman, Gerald J

    1998-01-01

    Several breakthrough discoveries were made last year of x-ray, optical and radio afterglows and counterparts to gamma-ray bursts, and a redshift has been associated with at least one of these. These discoveries were made possible by the fast, accurate gamma-ray burst locations of the BeppoSAX satellite. It is now generally believed that the burst sources are at cosmological distances and that they represent the most powerful explosions in the Universe. These observations also open new possibilities for the study of early star formation, the physics of extreme conditions and perhaps even cosmology. This session will concentrate on recent x-ray, optical and radio afterglow observations of gamma-ray bursts, associated redshift measurements, and counterpart observations. Several review and theory talks will also be presented, along with a summary of the astrophysical implications of the observations. There will be additional poster contributions on observations of gamma-ray burst source locations at wavelengths other than gamma rays. Posters are also solicited that describe new observational capabilities for rapid follow-up observations of gamma-ray bursts.

  9. Characteristics of gamma-ray line flares

    NASA Technical Reports Server (NTRS)

    Bai, T.; Dennis, B.

    1983-01-01

    Observations of solar gamma rays by the Solar Maximum Mission (SMM) demonstrate that energetic protons and ions are rapidly accelerated during the impulsive phase. To understand the acceleration mechanisms for these particles, the characteristics of the gamma ray line flares observed by SMM were studied. Some very intense hard X-ray flares without detectable gamma ray lines were also investigated. Gamma ray line flares are distinguished from other flares by: (1) intense hard X-ray and microwave emissions; (2) delay of high energy hard X-rays; (3) emission of type 2 and/or type 4 radio bursts; and (4) flat hard X-ray spectra (average power law index: 3.1). The majority of the gamma ray line flares shared all these characteristics, and the remainder shared at least three of them. Positive correlations were found between durations of spike bursts and spatial sizes of flare loops as well as between delay times and durations of spike bursts.

  10. About cosmic gamma ray lines

    NASA Astrophysics Data System (ADS)

    Diehl, Roland

    2017-06-01

    Gamma ray lines from cosmic sources convey the action of nuclear reactions in cosmic sites and their impacts on astrophysical objects. Gamma rays at characteristic energies result from nuclear transitions following radioactive decays or high-energy collisions with excitation of nuclei. The gamma-ray line from the annihilation of positrons at 511 keV falls into the same energy window, although of different origin. We present here the concepts of cosmic gamma ray spectrometry and the corresponding instruments and missions, followed by a discussion of recent results and the challenges and open issues for the future. Among the lessons learned are the diffuse radioactive afterglow of massive-star nucleosynthesis in 26Al and 60Fe gamma rays, which is now being exploited towards the cycle of matter driven by massive stars and their supernovae; large interstellar cavities and superbubbles have been recognised to be of key importance here. Also, constraints on the complex processes making stars explode as either thermonuclear or core-collapse supernovae are being illuminated by gamma-ray lines, in this case from shortlived radioactivities from 56Ni and 44Ti decays. In particular, the three-dimensionality and asphericities that have recently been recognised as important are enlightened in different ways through such gamma-ray line spectroscopy. Finally, the distribution of positron annihilation gamma ray emission with its puzzling bulge-dominated intensity disctribution is measured through spatially-resolved spectra, which indicate that annihilation conditions may differ in different parts of our Galaxy. But it is now understood that a variety of sources may feed positrons into the interstellar medium, and their characteristics largely get lost during slowing down and propagation of positrons before annihilation; a recent microquasar flare was caught as an opportunity to see positrons annihilate at a source.

  11. Near-infrared and gamma-ray monitoring of TANAMI gamma-ray bright sources

    DOE PAGES

    Nesci, R.; Tosti, G.; Pursimo, T.; ...

    2013-06-18

    Context. We present that spectral energy distribution and its variability are basic tools for understanding the physical processes operating in active galactic nuclei (AGN). Aims. In this paper we report the results of a one-year near-infrared (NIR) and optical monitoring of a sample of 22 AGN known to be gamma-ray emitters, aimed at discovering correlations between optical and gamma-ray emission. Methods. We observed our objects with the Rapid Eye Mount (REM) telescope in J,H,K, and R bands nearly twice every month during their visibility window and derived light curves and spectral indexes. We also analyzed the gamma-ray data from themore » Fermi gamma-ray Space Telescope, making weekly averages. Results. Six sources were never detected during our monitoring, proving to be fainter than their historical Two micron all sky survey (2MASS) level. All of the sixteen detected sources showed marked flux density variability, while the spectral indexes remained unchanged within our sensitivity limits. Steeper sources showed, on average, a larger variability. From the NIR light curves we also computed a variability speed index for each detected source. Only one source (PKS 0208-512) underwent an NIR flare during our monitoring. Half of the sources showed a regular flux density trend on a one-year time scale, but do not show any other peculiar characteristic. The broadband spectral index α ro appears to be a good proxy of the NIR spectral index only for BL Lac objects. No clear correlation between NIR and gamma-ray data is evident in our data, save for PKS 0537-441, PKS 0521-360, PKS 2155-304, and PKS 1424-418. In conclusion, the gamma-ray/NIR flux ratio showed a large spread, QSO being generally gamma-louder than BL Lac, with a marked correlation with the estimated peak frequency (ν peak) of the synchrotron emission.« less

  12. Epilepsy Forewarning Using A Hand-Held Device

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hively, LM

    2005-02-21

    Over the last decade, ORNL has developed and patented a novel approach for forewarning of a large variety of machine and biomedical events. The present implementation uses desktop computers to analyze archival data. This report describes the next logical step in this effort, namely use of a hand-held device for the analysis.

  13. Hand-held Calculators: Past, Present, and Future

    ERIC Educational Resources Information Center

    Bell, Max; And Others

    1977-01-01

    Recommendations of several publications with regard to the use of hand-held calculators in the mathematics curriculum are presented. Relevant portions of the NACOME and Euclid Conference reports are cited as well as a report to NSF and recommendations from an NIE/NSF conference. Recommendations support expanded use of, and research concerning,…

  14. Lunar occultations for gamma-ray source measurements

    NASA Technical Reports Server (NTRS)

    Koch, David G.; Hughes, E. B.; Nolan, Patrick L.

    1990-01-01

    The unambiguous association of discrete gamma-ray sources with objects radiating at other wavelengths, the separation of discrete sources from the extended emission within the Galaxy, the mapping of gamma-ray emission from nearby galaxies and the measurement of structure within a discrete source cannot presently be accomplished at gamma-ray energies. In the past, the detection processes used in high-energy gamma-ray astronomy have not allowed for good angular resolution. This problem can be overcome by placing gamma-ray detectors on the moon and using the horizon as an occulting edge to achieve arcsec resolution. For purposes of discussion, this concept is examined for gamma rays above 100 MeV for which pair production dominates the detection process and locally-generated nuclear gamma rays do not contribute to the background.

  15. Airborne gamma-ray spectra processing: Extracting photopeaks.

    PubMed

    Druker, Eugene

    2018-07-01

    The acquisition of information from the airborne gamma-ray spectra is based on the ability to evaluate photopeak areas in regular spectra from natural and other sources. In airborne gamma-ray spectrometry, extraction of photopeaks of radionuclides from regular one-second spectra is a complex problem. In the region of higher energies, difficulties are associated with low signal level, i.e. low count rates, whereas at lower energies difficulties are associated with high noises due to a high signal level. In this article, a new procedure is proposed for processing the measured spectra up to and including the extraction of evident photopeaks. The procedure consists of reducing the noise in the energy channels along the flight lines, transforming the spectra into the spectra of equal resolution, removing the background from each spectrum, sharpening the details, and transforming the spectra back to the original energy scale. The resulting spectra are better suited for examining and using the photopeaks. No assumptions are required regarding the number, locations, and magnitudes of photopeaks. The procedure does not generate negative photopeaks. The resolution of the spectrometer is used for the purpose. The proposed methodology, apparently, will contribute also to study environmental problems, soil characterization, and other near-surface geophysical methods. Copyright © 2018 Elsevier Ltd. All rights reserved.

  16. Mercuric iodine room temperature gamma-ray detectors

    NASA Technical Reports Server (NTRS)

    Patt, Bradley E.; Markakis, Jeffrey M.; Gerrish, Vernon M.; Haymes, Robert C.; Trombka, Jacob I.

    1990-01-01

    high resolution mercuric iodide room temperature gamma-ray detectors have excellent potential as an essential component of space instruments to be used for high energy astrophysics. Mercuric iodide detectors are being developed both as photodetectors used in combination with scintillation crystals to detect gamma-rays, and as direct gamma-ray detectors. These detectors are highly radiation damage resistant. The list of applications includes gamma-ray burst detection, gamma-ray line astronomy, solar flare studies, and elemental analysis.

  17. Gamma-Ray Pulsar Candidates for GLAST

    NASA Technical Reports Server (NTRS)

    Thompson, D. J.

    2008-01-01

    The Gamma-ray Large Area Space Telescope (GLAST) will be launched this year, and its Large Area Telescope (LAT) is expected to discover scores to hundreds of gamma-ray pulsars. This poster discusses which of the over 1700 known pulsars, mostly visible only at radio frequencies, are likely to emit greater than 100 MeV gamma rays with intensities detectable by the LAT. The main figure of merit used to select gamma-ray pulsar candidates is sqrt(E-dot)/d2, where E-dot is the energy loss due to rotational spin-down, and d is the distance to the pulsar. The figure of merit incorporates spin-down flux at earth (proportional to E-dot/d2) times efficiency, assumed proportional to l/sqrt(E-dot). A few individual objects are cited to illustrate the issues. Since large E-dot pulsars also tend to have large timing noise and occasional glitches, their ephemerides can become inaccurate in weeks to months. To detect and study the gamma-ray emission the photons must be accurately tagged with the pulse phase. With hours to days between gamma-ray photon arrival times from a pulsar and months to years of LAT exposure needed for good detections, GLAST will rely on radio and X-ray timing measurements throughout the continuous gamma-ray observations. The poster will describe efforts to coordinate pulsar timing of the candidate gamma-ray pulsars.

  18. Hand-held photomicroscope

    NASA Technical Reports Server (NTRS)

    Zabower, H. R. (Inventor)

    1973-01-01

    A small, lightweight, compact, hand-held photomicroscope provides simultaneous viewing and photographing, with adjustable specimen illumination and exchangeable camera format. The novel photomicroscope comprises a main housing having a top plate, bottom plate, and side walls. The objective lens is mounted on the top plate in an inverted manner relative to the normal type of mounting. The specimen holder has an adjusting mechanism for adjustably moving the specimen vertically along an axis extending through the objective lens as well as transverse of the axis. The lens system serves to split the beam of light into two paths, one to the eyepiece and the other to a camera mounting. A light source is mounted on the top plate and directs light onto the specimen. A rheostat device is mounted on the top plate and coupled to the power supply for the light source so that the intensity of the light may be varied.

  19. The Gamma-Ray Imager GRI

    NASA Astrophysics Data System (ADS)

    Wunderer, Cornelia B.; GRI Collaboration

    2008-03-01

    Observations of the gamma-ray sky reveal the most powerful sources and the most violent events in the Universe. While at lower wavebands the observed emission is generally dominated by thermal processes, the gamma-ray sky provides us with a view on the non-thermal Universe. Here particles are accelerated to extreme relativistic energies by mechanisms which are still poorly understood, and nuclear reactions are synthesizing the basic constituents of our world. Cosmic accelerators and cosmic explosions are major science themes that are addressed in the gamma-ray regime. ESA's INTEGRAL observatory currently provides the astronomical community with a unique tool to investigate the sky up to MeV energies and hundreds of sources, new classes of objects, extraordinary views of antimatter annihilation in our Galaxy, and fingerprints of recent nucleosynthesis processes have been discovered. NASA's GLAST mission will similarly take the next step in surveying the high-energy ( GeV) sky, and NuSTAR will pioneer focusing observations at hard X-ray energies (to 80 keV). There will be clearly a growing need to perform deeper, more focused investigations of gamma-ray sources in the 100-keV to MeV regime. Recent technological advances in the domain of gamma-ray focusing using Laue diffraction and multilayer-coated mirror techniques have paved the way towards a gamma-ray mission, providing major improvements compared to past missions regarding sensitivity and angular resolution. Such a future Gamma-Ray Imager will allow the study of particle acceleration processes and explosion physics in unprecedented detail, providing essential clues on the innermost nature of the most violent and most energetic processes in the Universe.

  20. Observation of gamma ray bursts and flares by the EGRET telescope on the Compton Gamma Ray Observatory

    NASA Technical Reports Server (NTRS)

    Schneid, E. J.; Bertsch, D. L.; Fichtel, C. E.; Hartman, R. C.; Hunter, S. D.; Kwok, P. W.; Mattox, J. R.; Sreekumar, P.; Thompson, D. J.; Kanbach, G.

    1992-01-01

    The Energetic Gamma Ray Experiment Telescope (EGRET) on the Compton Gamma Ray Observatory has observed energetic gamma ray bursts and flares. On May 3, 1991, EGRET detected a gamma ray burst both in the energy measuring NaI (Tl) scintillator and independently in the spark chamber imaging assembly. The NaI spectra were accumulated by a special BURST mode of EGRET. The spectra were measured over a range from 1 to 200 MeV, in three sequential spectra of 1,2, and 4 seconds. During the peak of the burst, six individual gamma rays were detected in the spark chamber, allowing a determination of the burst arrival direction. The intense flares of June were also detected. A solar flare on June 4 was observed to last for several minutes and for a brief time, less than a minute, had significant emission of gamma rays exceeding 150 MeV.

  1. X-ray spectrometer with a low-cost SiC photodiode

    NASA Astrophysics Data System (ADS)

    Zhao, S.; Lioliou, G.; Barnett, A. M.

    2018-04-01

    A low-cost Commercial-Off-The-Shelf (COTS) 4H-SiC 0.06 mm2 UV p-n photodiode was coupled to a low-noise charge-sensitive preamplifier and used as photon counting X-ray spectrometer. The photodiode/spectrometer was investigated at X-ray energies from 4.95 keV to 21.17 keV: a Mo cathode X-ray tube was used to fluoresce eight high-purity metal foils to produce characteristic X-ray emission lines which were used to characterise the instrument. The energy resolution (full width at half maximum, FWHM) of the spectrometer was found to be 1.6 keV to 1.8 keV, across the energy range. The energy linearity of the detector/spectrometer (i.e. the detector's charge output per photon as a function of incident photon energy across the 4.95 keV to 21.17 keV energy range), as well as the count rate linearity of the detector/spectrometer (i.e. number of detected photons as a function of photon fluence at a specific energy) were investigated. The energy linearity of the detector/spectrometer was linear with an error < ± 0.7 %; the count rate linearity of the detector/spectrometer was linear with an error < ± 2 %. The use of COTS SiC photodiodes as detectors for X-ray spectrometers is attractive for nanosatellite/CubeSat applications (including solar flare monitoring), and for cost sensitive industrial uses.

  2. Active Neutron and Gamma Ray Instrumentation for In Situ Planetary Science Applications

    NASA Technical Reports Server (NTRS)

    Parsons, A.; Bodnarik, J.; Evans, L.; Floyd, S.; Lim, L.; McClanahan, T.; Namkung, M.; Schweitzer, J.; Starr, R.; Trombka, J.

    2010-01-01

    The Pulsed Neutron Generator-Gamma Ray And Neutron Detectors (PNG-GRAND) experiment is an innovative application of the active neutron-gamma ray technology so successfully used in oil field well logging and mineral exploration on Earth. The objective of our active neutron-gamma ray technology program at NASA Goddard Space Flight Center (NASA-GSFC) is to bring the PNG-GRAND instrument to the point where it can be flown on a variety of surface lander or rover missions to the Moon, Mars, Menus, asteroids, comets and the satellites of the outer planets. Gamma-Ray Spectrometers (GRS) have been incorporated into numerous orbital planetary science missions and, especially its the case of the Mars Odyssey GRS, have contributed detailed maps of the elemental composition over the entire surface of Mars. However, orbital gamma ray measurements have low spatial sensitivity (100's of km) due to their low surface emission rates from cosmic rays and subsequent need to be averaged over large surface areas. PNG-GRAND overcomes this impediment by incorporating a powerful neutron excitation source that permits high sensitivity surface and subsurface measurements of bulk elemental compositions. PNG-GRAND combines a pulsed neutron generator (PNG) with gamma ray and neutron detectors to produce a landed instrument to determine subsurface elemental composition without needing to drill into a planet's surface a great advantage in mission design. We are currently testing PNG-GRAND prototypes at a unique outdoor neutron instrumentation test facility recently constructed at NASA/GSFC that consists of a 2 m x 2 in x 1 m granite structure placed outdoors in an empty field. Because an independent trace elemental analysis has been performed on the material, this granite sample is a known standard with which to compare both Monte Carlo simulations and our experimentally measured elemental composition data. We will present data from operating PNG-GRAND in various experimental configurations on a

  3. Gamma-ray astronomy: From Fermi up to the HAWC high-energy {gamma}-ray observatory in Sierra Negra

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Carraminana, Alberto; Collaboration: HAWC Collaboration

    Gamma-rays represent the most energetic electromagnetic window for the study of the Universe. They are studied both from space at MeV and GeV energies, with instruments like the Fermi{gamma}-ray Space Telescope, and at TeV energies with ground based instruments profiting of particle cascades in the atmosphere and of the Cerenkov radiation of charged particles in the air or in water. The Milagro gamma-ray observatory represented the first instrument to successfully implement the water Cerenkov technique for {gamma}-ray astronomy, opening the ground for the more sensitive HAWC {gamma}-ray observatory, currently under development in the Sierra Negra site and already providing earlymore » science results.« less

  4. New Fermi-LAT event reconstruction reveals more high-energy gamma rays from gamma-ray bursts

    DOE PAGES

    Atwood, W. B.; Baldini, L.; Bregeon, J.; ...

    2013-08-19

    Here, based on the experience gained during the four and a half years of the mission, the Fermi-LAT Collaboration has undertaken a comprehensive revision of the event-level analysis going under the name of Pass 8. Although it is not yet finalized, we can test the improvements in the new event reconstruction with the special case of the prompt phase of bright gamma-ray bursts (GRBs), where the signal-to-noise ratio is large enough that loose selection cuts are sufficient to identify gamma rays associated with the source. Using the new event reconstruction, we have re-analyzed 10 GRBs previously detected by the Largemore » Area Telescope (LAT) for which an X-ray/optical follow-up was possible and found four new gamma rays with energies greater than 10 GeV in addition to the seven previously known. Among these four is a 27.4 GeV gamma ray from GRB 080916C, which has a redshift of 4.35, thus making it the gamma ray with the highest intrinsic energy (~147 GeV) detected from a GRB. We present here the salient aspects of the new event reconstruction and discuss the scientific implications of these new high-energy gamma rays, such as constraining extragalactic background light models, Lorentz invariance violation tests, the prompt emission mechanism, and the bulk Lorentz factor of the emitting region.« less

  5. A study of the temporal and spectral characteristics of gamma ray bursts. Ph.D. Thesis - Maryland Univ.

    NASA Technical Reports Server (NTRS)

    Norris, J.

    1983-01-01

    Gamma-ray burst data obtained from the ISEE-3 Gamma Ray Burst Spectrometer and the Solar Maximum Mission's Hard X-ray Burst Spectrometer (HXRBS) were analyzed to yield information on burst temporal and spectral characteristics. A Monte Carlo approach was used to simulate the HXRBS response to candidate spectral models. At energies above about 100 keV, the spectra are well fit by exponential forms. At lower energies, 30 keV to 60 keV, depressions below the model continua are apparent in some bursts. The depressions are not instrumental or data-reduction artifacts. The event selection criterion of the ISEE-3 experiment is based on the time to accumulate a present number of photons rather than the photon count per unit time and is consequently independent of event duration for a given burst intensity, unlike most conventional systems. As a result, a significantly greater percentage of fast, narrow events have been detected. The ratio of count rates from two ISEE-3 detectors indicates that bursts with durations or approx. one second have much softer spectra than longer bursts.

  6. Modeling of Pulses in Terrestrial Gamma-ray Flashes

    NASA Astrophysics Data System (ADS)

    Xu, Wei; Celestin, Sebastien; Pasko, Victor

    2015-04-01

    Terrestrial Gamma-ray Flashes (TGFs) are high-energy photon bursts originating from the Earth's atmosphere that are associated with lightning activities. After their discovery in 1994 by the Burst and Transient Source Experiment (BATSE) detector aboard the Compton Gamma-Ray Observatory [Fishman et al., Science, 264, 1313, 1994], this phenomenon has been further observed by the Reuven Ramaty High Energy Solar Spectroscopic Imager (RHESSI) [Smith et al., Science, 307, 1085, 2005], the Fermi Gamma-ray Space Telescope [Briggs et al., JGR, 115, A07323, 2010] and the Astrorivelatore Gamma a Immagini Leggero (AGILE) satellite [Marisaldi et al., JGR, 115, A00E13, 2010]. Photon spectra corresponding to the mechanism of relativistic runaway electron avalanches (RREAs) usually provide a very good agreement with satellite observations [Dwyer and Smith, GRL, 32, L22804, 2005]. On the other hand, Celestin and Pasko [JGR, 116, A03315, 2011] have shown theoretically that the large flux of thermal runaway electrons generated by streamers during the negative corona flash stage of stepping lightning leaders in intracloud lightning flashes could be responsible for TGFs. Recently, based on analysis of the temporal profiles of 278 TGF events observed by the Fermi Gamma-Ray Burst Monitor, Foley et al. [JGR, 119, 5931, 2014] have suggested that 67% of TGF pulses detected are asymmetric and these asymmetric pulses are consistent with the production mechanism of TGFs by relativistic feedback discharges. In the present work, we employ a Monte Carlo model to study the temporal distribution of photons at low-orbit satellite altitudes during TGF events. Using the pulse fitting method described in [Foley et al., 2014], we further investigate the characteristics of TGF pulses. We mainly focus on the effects of Compton scattering on the symmetry properties and the rise and fall times of TGF pulses.

  7. Cosmic ray albedo gamma rays from the quiet sun

    NASA Technical Reports Server (NTRS)

    Seckel, D.; Stanev, T.; Gaisser, T. K.

    1992-01-01

    We estimate the flux of gamma-rays that result from collisions of high energy galactic cosmic rays with the solar atmosphere. An important aspect of our model is the propagation of cosmic rays through the magnetic fields of the inner solar systems. We use diffusion to model propagation down to the bottom of the corona. Below the corona we trace particle orbits through the photospheric fields to determine the location of cosmic ray interactions in the solar atmosphere and evolve the resultant cascades. For our nominal choice of parameters, we predict an integrated flux of gamma rays (at 1 AU) of F(E(sub gamma) greater than 100 MeV) approximately = 5 x 10(exp -8)/sq cm sec. This can be an order of magnitude above the galactic background and should be observable by the Energetic Gamma Ray experiment telescope (EGRET).

  8. Alpha Magnetic Spectrometer on the International Space Station

    NASA Astrophysics Data System (ADS)

    Ting, Samuel

    2010-02-01

    The Alpha Magnetic Spectrometer (AMS) is a multi-purpose, large acceptance, precision magnetic spectrometer to be installed on the International Space Station (ISS) via Space Shuttle STS-134, currently scheduled to launch on July 29, 2010. AMS is a US DOE-lead international collaboration involving 16 countries and 60 institutes. AMS will measure gamma rays, charged particles and nuclei to the TeV region. Some of the physics objectives are to search for the origin of dark matter, search for the existence of antimatter, search for the existence of strangelets, and precision study of cosmic rays and gamma rays. The construction of the detector was completed mostly in Europe and Asia. It will be the only large physical science experiment on the ISS. )

  9. Atmospheric electron x-ray spectrometer

    NASA Technical Reports Server (NTRS)

    Feldman, Jason E. (Inventor); George, Thomas (Inventor); Wilcox, Jaroslava Z. (Inventor)

    2002-01-01

    The present invention comprises an apparatus for performing in-situ elemental analyses of surfaces. The invention comprises an atmospheric electron x-ray spectrometer with an electron column which generates, accelerates, and focuses electrons in a column which is isolated from ambient pressure by a:thin, electron transparent membrane. After passing through the membrane, the electrons impinge on the sample in atmosphere to generate characteristic x-rays. An x-ray detector, shaping amplifier, and multi-channel analyzer are used for x-ray detection and signal analysis. By comparing the resultant data to known x-ray spectral signatures, the elemental composition of the surface can be determined.

  10. A link between prompt optical and prompt gamma-ray emission in gamma-ray bursts.

    PubMed

    Vestrand, W T; Wozniak, P R; Wren, J A; Fenimore, E E; Sakamoto, T; White, R R; Casperson, D; Davis, H; Evans, S; Galassi, M; McGowan, K E; Schier, J A; Asa, J W; Barthelmy, S D; Cummings, J R; Gehrels, N; Hullinger, D; Krimm, H A; Markwardt, C B; McLean, K; Palmer, D; Parsons, A; Tueller, J

    2005-05-12

    The prompt optical emission that arrives with the gamma-rays from a cosmic gamma-ray burst (GRB) is a signature of the engine powering the burst, the properties of the ultra-relativistic ejecta of the explosion, and the ejecta's interactions with the surroundings. Until now, only GRB 990123 had been detected at optical wavelengths during the burst phase. Its prompt optical emission was variable and uncorrelated with the prompt gamma-ray emission, suggesting that the optical emission was generated by a reverse shock arising from the ejecta's collision with surrounding material. Here we report prompt optical emission from GRB 041219a. It is variable and correlated with the prompt gamma-rays, indicating a common origin for the optical light and the gamma-rays. Within the context of the standard fireball model of GRBs, we attribute this new optical component to internal shocks driven into the burst ejecta by variations of the inner engine. The correlated optical emission is a direct probe of the jet isolated from the medium. The timing of the uncorrelated optical emission is strongly dependent on the nature of the medium.

  11. The solar gamma ray and neutron capabilities of COMPTEL on the Gamma Ray Observatory

    NASA Technical Reports Server (NTRS)

    Ryan, James M.; Lockwood, John A.

    1989-01-01

    The imaging Compton telescope COMPTEL on the Gamma Ray Observatory (GRO) has unusual spectroscopic capabilities for measuring solar gamma-ray and neutron emission. The launch of the GRO is scheduled for June 1990 near the peak of the sunspot cycle. With a 30 to 40 percent probability for the Sun being in the COMPTEL field-of-view during the sunlit part of an orbit, a large number of flares will be observed above the 800 keV gamma-ray threshold of the telescope. The telescope energy range extends to 30 MeV with high time resolution burst spectra available from 0.1 to 10 MeV. Strong Compton tail suppression of instrumental gamma-ray interactions will facilitate improved spectral analysis of solar flare emissions. In addition, the high signal to noise ratio for neutron detection and measurement will provide new neutron spectroscopic capabilities. Specifically, a flare similar to that of 3 June 1982 will provide spectroscopic data on greater than 1500 individual neutrons, enough to construct an unambiguous spectrum in the energy range of 20 to 200 MeV. Details of the instrument and its response to solar gamma-rays and neutrons will be presented.

  12. Gamma-Ray Pulsar Candidates for GLAST

    NASA Technical Reports Server (NTRS)

    Thompson, David J.; Smith, D. A.; Dumora, D.; Guillemot, L.; Parent, D.; Reposeur, T.; Grove, E.; Romani, R. W.; Thorsett, S. E.

    2007-01-01

    The Gamma-ray Large Area Space Telescope (GLAST) will be launched less than a year from now, and its Large Area Telescope (LAT) is expected to discover scores to hundreds of gamma-ray pulsars. This poster discusses which of the over 1700 known pulsars, mostly visible only at radio Erequencies, are likely to emit greater than l00 MeV gamma rays with intensities detectable by the LAT. The main figure of merit used to select gamma-ray pulsar candidates is sqrt(E-dot)/d^2, where E-dot is the energy loss due to rotational spindown, and d is the distance to the pulsar. The figure of merit incorporates spin-down flux at earth (proportional to E-dot/d^2) times efficiency, assumed proportional to 1/sqrt(E-dot). A few individual objects are cited to illustrate the issues. Since large E-dot pulsars also tend to have large timing noise and occasional glitches, their ephemerides can become inaccurate in weeks to months. To detect and study the gamma-ray emission the photons must be accurately tagged with the pulse phase. With hours to days between gamma-ray photon arrival times from a pulsar and months to years of LAT exposure needed for good detections, GLAST will need timing measurements throughout the continuous gamma-ray observations. The poster will describe efforts to coordinate pulsar timing of the candidate gamma-ray pulsars.

  13. GRI: the gamma-ray imager mission

    NASA Astrophysics Data System (ADS)

    Knödlseder, Jürgen

    2006-06-01

    Observations of the gamma-ray sky reveal the most powerful sources and the most violent events in the Universe. While at lower wavebands the observed emission is generally dominated by thermal processes, the gamma-ray sky provides us with a view on the non-thermal Universe. Here particles are accelerated to extreme relativistic energies by mechanisms which are still poorly understood, and nuclear reactions are synthesizing the basic constituents of our world. Cosmic accelerators and cosmic explosions are the major science themes that are addressed in the gamma-ray regime. With the INTEGRAL observatory, ESA has provided a unique tool to the astronomical community revealing hundreds of sources, new classes of objects, extraordinary views of antimatter annihilation in our Galaxy, and fingerprints of recent nucleosynthesis processes. While INTEGRAL provides the global overview over the soft gamma-ray sky, there is a growing need to perform deeper, more focused investigations of gamma-ray sources. In soft X-rays a comparable step was taken going from the Einstein and the EXOSAT satellites to the Chandra and XMM/Newton observatories. Technological advances in the past years in the domain of gamma-ray focusing using Laue diffraction and multilayer-coated mirror techniques hav paved the way towards a gamma-ray mission, providing major improvements compared to past missions regarding sensitivity and angular resolution. Such a future Gamma-Ray Imager will allow to study particle acceleration processes and explosion physics in unprecedented detail, providing essential clues on the innermost nature of the most violent and most energetic processes in the Universe.

  14. The Mystery of Gamma-Ray Bursts

    NASA Technical Reports Server (NTRS)

    Fishman, Gerald J.

    2004-01-01

    Gamma-ray bursts remain one of the greatest mysteries in astrophysics. Observations of gamma-ray bursts made by the BATSE experiment on the Compton Gamma-Ray Observatory will be described. Most workers in the field now believe that they originate from cosmological distances. This view has been reinforced by observations this year of several optical afterglow counterparts to gamma-ray bursts. A summary of these recent discoveries will be presented, along with their implications for models of the burst emission mechanism and the energy source of the bursts.

  15. Gamma-ray Bursts May Originate in Star-Forming Regions

    NASA Astrophysics Data System (ADS)

    2001-04-01

    than that expected by the standard scenario of a fireball in a low-density medium - an important clue that the explosion occurred in a dense region. Next, on February 22, 2001, Piro said that Chandra observations of the burst's afterglow, one of the brightest bursts ever observed by BeppoSAX, provided evidence of a fireball expanding in a very dense gas. These recent results supported data from four other gamma-ray bursts observed by BeppoSAX and Chandra (GRB970508, GRB990705, GRB991216, and GRB000214). In these bursts, Piro and his team found evidence indicating that the burst had encountered an extremely dense gas. The properties of this gas suggest that it originated from a very massive progenitor before it exploded as a gamma-ray burst. A key element in the success of these observations has been the perfect timing and liaison between the two satellites, Chandra and BeppoSAX, according to Piro. Piro is the Mission Scientist for BeppoSAX, the instrument that first detected X-ray afterglows from gamma-ray bursts. Currently, astronomers are not usually notified about gamma-ray bursts until an hour or so after they occur. These bursts last only for a few milliseconds to about a minute, although their afterglow can linger in X-ray and optical light for days or weeks. The HETE-2 satellite, launched in October 2000, and Swift, scheduled for a 2003 launch, will provide nearly instant notification of bursts in action, providing satellites such as Chandra a better opportunity to study the afterglow phenomenon in depth. The ACIS X-ray camera was developed for NASA by Penn State and the Massachusetts Institute of Technology. The High Energy Transmission Grating Spectrometer was built by MIT. NASA's Marshall Space Flight Center in Huntsville, AL, manages the Chandra program. TRW, Inc., Redondo Beach, California, is the prime contractor for the spacecraft. The Smithsonian's Chandra X-ray Center controls science and flight operations from Cambridge, MA. Images associated with this

  16. SMM observation of a cosmic gamma-ray burst from 20 keV to 100 MeV

    NASA Technical Reports Server (NTRS)

    Share, G. H.; Matz, S. M.; Messina, D. C.; Nolan, P. L.; Chupp, E. L.

    1986-01-01

    The Solar Maximum Mission gamma-ray spectrometer has detected an intense gamma-ray burst that occurred on August 5, 1984. The burst originated from a source in the constellation Hydra and lasted about 45 s. Its integral fluence at 20 keV was 0.003 erg/sq cm. Spectral evolution similar to other bursts detected by SMM was observed. The overall shape of the spectrum from 20 keV to 100 MeV, on timescales as short as 2 s, is relatively constant. This shape can be fitted by the sum of an exponential-type function and a power law. There is no evidence for narrow or broadened emission lines.

  17. Studying the High Energy Gamma Ray Sky with Gamma Ray Large Area Space Telescope (GLAST)

    NASA Technical Reports Server (NTRS)

    Kamae, T.; Ohsugi, T.; Thompson, D. J.; Watanabe, K.

    1998-01-01

    Building on the success of the Energetic Gamma Ray Experiment Telescope (EGRET) on the Compton Gamma Ray Observatory, the Gamma Ray Large Area Space Telescope (GLAST) will make a major step in the study of such subjects as blazars, gamma Ray bursts, the search for dark matter, supernova remnants, pulsars, diffuse radiation, and unidentified high energy sources. The instrument will be built on new and mature detector technologies such as silicon strip detectors, low-power low-noise LSI, and a multilevel data acquisition system. GLAST is in the research and development phase, and one full tower (of 25 total) is now being built in collaborating institutes. The prototype tower will be tested thoroughly at Stanford Linear Accelerator Center (SLAC) in the fall of 1999.

  18. Fermi Gamma-Ray Space Telescope

    NASA Technical Reports Server (NTRS)

    McEnery, Julie E.; Michelson, Peter F.; Paclesas, William S.; Ritz, Steven

    2012-01-01

    The Fermi Gamma-ray Space Telescope, launched in June 2008, is an observatory designed to survey the high-energy gamma-ray sky. The primary instrument, the Large Area Telescope (LAT), provides observations from 20 MeV to greater than 300 GeV. A second instrument, the Gamma-ray Burst Monitor (GBM), provides observations of transients from less than 10 keV to 40 MeV. We describe the design and performance of the instruments and their subsystems, the spacecraft and the ground system.

  19. Note: Operation of gamma-ray microcalorimeters at elevated count rates using filters with constraints

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Alpert, B. K.; Horansky, R. D.; Bennett, D. A.

    Microcalorimeter sensors operated near 0.1 K can measure the energy of individual x- and gamma-ray photons with significantly more precision than conventional semiconductor technologies. Both microcalorimeter arrays and higher per pixel count rates are desirable to increase the total throughput of spectrometers based on these devices. The millisecond recovery time of gamma-ray microcalorimeters and the resulting pulse pileup are significant obstacles to high per pixel count rates. Here, we demonstrate operation of a microcalorimeter detector at elevated count rates by use of convolution filters designed to be orthogonal to the exponential tail of a preceding pulse. These filters allow operationmore » at 50% higher count rates than conventional filters while largely preserving sensor energy resolution.« less

  20. Probing the Physics of Burning DT Capsules Using Gamma-ray Diagnostics

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hayes-Sterbenz, Anna Catherine; Hale, Gerald M.; Jungman, Gerard

    2015-02-01

    The Gamma Reaction History (GRH) diagnostic developed and lead by the Los Alamos National Laboratory GRH Team is used to determine the bang time and burn width of imploded inertial confinement fusion capsules at the National Ignition Facility. The GRH team is conceptualizing and designing a new Gamma-­to-Electron Magnetic Spectrometer (GEMS), that would be capable of an energy resolution ΔE/E~3-­5%. In this whitepaper we examine the physics that could be explored by the combination of these two gamma-ray diagnostics, with an emphasis on the sensitivity needed for measurements. The main areas that we consider are hydrodynamical mixing, ablator areal densitymore » and density profile, and temporal variations of the density of the cold fuel and the ablator during the DT burn of the capsule.« less

  1. Method of fabricating an imaging X-ray spectrometer

    NASA Technical Reports Server (NTRS)

    Alcorn, G. E. (Inventor); Burgess, A. S. (Inventor)

    1986-01-01

    A process for fabricating an X-ray spectrometer having imaging and energy resolution of X-ray sources is discussed. The spectrometer has an array of adjoinging rectangularly shaped detector cells formed in a silicon body. The walls of the cells are created by laser drilling holes completely through the silicon body and diffusing n(+) phosphorous doping material therethrough. A thermally migrated aluminum electrode is formed centrally through each of the cells.

  2. Educational Testing of an Auditory Display of Mars Gamma Ray Spectrometer Data

    NASA Astrophysics Data System (ADS)

    Keller, J. M.; Pompea, S. M.; Prather, E. E.; Slater, T. F.; Boynton, W. V.; Enos, H. L.; Quinn, M.

    2003-12-01

    A unique, alternative educational and public outreach product was created to investigate the use and effectiveness of auditory displays in science education. The product, which allows students to both visualize and hear seasonal variations in data detected by the Gamma Ray Spectrometer (GRS) aboard the Mars Odyssey spacecraft, consists of an animation of false-color maps of hydrogen concentrations on Mars along with a musical presentation, or sonification, of the same data. Learners can access this data using the visual false-color animation, the auditory false-pitch sonification, or both. Central to the development of this product is the question of its educational effectiveness and implementation. During the spring 2003 semester, three sections of an introductory astronomy course, each with ˜100 non-science undergraduates, were presented with one of three different exposures to GRS hydrogen data: one auditory, one visual, and one both auditory and visual. Student achievement data was collected through use of multiple-choice and open-ended surveys administered before, immediately following, and three and six weeks following the experiment. It was found that the three student groups performed equally well in their ability to perceive and interpret the data presented. Additionally, student groups exposed to the auditory display reported a higher interest and engagement level than the student group exposed to the visual data alone. Based upon this preliminary testing,we have made improvements to both the educational product and our evaluation protocol. This fall, we will conduct further testing with ˜100 additional students, half receiving auditory data and half receiving visual data, and we will conduct interviews with individual students as they interface with the auditory display. Through this process, we hope to further assess both learning and engagement gains associated with alternative and multi-modal representations of scientific data that extend beyond

  3. Cosmic rays, gamma rays and synchrotron radiation from the Galaxy

    DOE PAGES

    Orlando, Elena

    2012-07-30

    Galactic cosmic rays (CR), interstellar gamma-ray emission and synchrotron radiation are related topics. CR electrons propagate in the Galaxy and interact with the interstellar medium, producing inverse-Compton emission measured in gamma rays and synchrotron emission measured in radio. I present an overview of the latest results with Fermi/LAT on the gamma-ray diffuse emission induced by CR nuclei and electrons. Then I focus on the recent complementary studies of the synchrotron emission in the light of the latest gamma-ray results. Relevant observables include spectral indices and their variations, using surveys over a wide range of radio frequencies. As a result, thismore » paper emphasizes the importance of using the parallel study of gamma rays and synchrotron radiation in order to constrain the low-energy interstellar CR electron spectrum, models of propagation of CRs, and magnetic fields.« less

  4. Design and Performance of the GAMMA-400 Gamma-Ray Telescope for Dark Matter Searches

    NASA Technical Reports Server (NTRS)

    Galper, A.M.; Adriani, O.; Aptekar, R. L.; Arkhangelskaja, I. V.; Arkhangelskiy, A.I.; Boezio, M.; Bonvicini, V.; Boyarchuk, K. A.; Fradkin, M. I.; Gusakov, Yu. V.; hide

    2012-01-01

    The GAMMA-400 gamma-ray telescope is designed to measure the fluxes of gamma-rays and cosmic-ray electrons + positrons, which can be produced by annihilation or decay of the dark matter particles, as well as to survey the celestial sphere in order to study point and extended sources of gamma-rays, measure energy spectra of Galactic and extragalactic diffuse gamma-ray emission, gamma-ray bursts, and gamma-ray emission from the Sun. GAMMA-400 covers the energy range from 100 MeV to 3000 GeV. Its angular resolution is approx. 0.01 deg (E(sub gamma) > 100 GeV), the energy resolution approx. 1% (E(sub gamma) > 10 GeV), and the proton rejection factor approx 10(exp 6). GAMMA-400 will be installed on the Russian space platform Navigator. The beginning of observations is planned for 2018.

  5. Gamma-ray Albedo of the Moon

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Moskalenko, Igor V.; Porter, Troy A.

    2007-06-14

    We use the GEANT4 Monte Carlo framework to calculate the gamma-ray albedo of the Moon due to interactions of cosmic ray (CR) nuclei with moon rock. Our calculation of the albedo spectrum agrees with the EGRET data. We show that the spectrum of gamma-rays from the Moon is very steep with an effective cutoff around 3 GeV (600 MeV for the inner part of the Moon disc). Since it is the only (almost) black spot in the gamma-ray sky, it provides a unique opportunity for calibration of gamma-ray telescopes, such as the forthcoming Gamma Ray Large Area Space Telescope (GLAST).more » The albedo flux depends on the incident CR spectrum which changes over the solar cycle. Therefore, it is possible to monitor the CR spectrum using the albedo gamma-ray flux. Simultaneous measurements of CR proton and helium spectra by the Payload for Antimatter Matter Exploration and Light-nuclei Astrophysics (PAMELA), and observations of the albedo -rays by the GLAST Large Area Telescope (LAT), can be used to test the model predictions and will enable the GLAST LAT to monitor the CR spectrum near the Earth beyond the lifetime of PAMELA.« less

  6. Hand-held computer operating system program for collection of resident experience data.

    PubMed

    Malan, T K; Haffner, W H; Armstrong, A Y; Satin, A J

    2000-11-01

    To describe a system for recording resident experience involving hand-held computers with the Palm Operating System (3 Com, Inc., Santa Clara, CA). Hand-held personal computers (PCs) are popular, easy to use, inexpensive, portable, and can share data among other operating systems. Residents in our program carry individual hand-held database computers to record Residency Review Committee (RRC) reportable patient encounters. Each resident's data is transferred to a single central relational database compatible with Microsoft Access (Microsoft Corporation, Redmond, WA). Patient data entry and subsequent transfer to a central database is accomplished with commercially available software that requires minimal computer expertise to implement and maintain. The central database can then be used for statistical analysis or to create required RRC resident experience reports. As a result, the data collection and transfer process takes less time for residents and program director alike, than paper-based or central computer-based systems. The system of collecting resident encounter data using hand-held computers with the Palm Operating System is easy to use, relatively inexpensive, accurate, and secure. The user-friendly system provides prompt, complete, and accurate data, enhancing the education of residents while facilitating the job of the program director.

  7. Hard X-ray and gamma-ray imaging spectroscopy for the next solar maximum

    NASA Technical Reports Server (NTRS)

    Hudson, H. S.; Crannell, C. J.; Dennis, B. R.; Spicer, D. S.; Davis, J. M.; Hurford, G. J.; Lin, R. P.

    1990-01-01

    The objectives and principles are described of a single spectroscopic imaging package that can provide effective imaging in the hard X- and gamma-ray ranges. Called the High-Energy Solar Physics (HESP) mission instrument for solar investigation, the device is based on rotating modulation collimators with germanium semiconductor spectrometers. The instrument is planned to incorporate thick modulation plates, and the range of coverage is discussed. The optics permit the coverage of high-contrast hard X-ray images from small- and medium-sized flares with large signal-to-noise ratios. The detectors allow angular resolution of less than 1 arcsec, time resolution of less than 1 arcsec, and spectral resolution of about 1 keV. The HESP package is considered an effective and important instrument for investigating the high-energy solar events of the near-term future efficiently.

  8. Low-mass X-ray binaries and gamma-ray bursts

    NASA Technical Reports Server (NTRS)

    Lasota, J. P.; Frank, J.; King, A. R.

    1992-01-01

    More than twenty years after their discovery, the nature of gamma-ray burst sources (GRBs) remains mysterious. The results from BATSE experiment aboard the Compton Observatory show however that most of the sources of gamma-ray bursts cannot be distributed in the galactic disc. The possibility that a small fraction of sites of gamma-ray bursts is of galactic disc origin cannot however be excluded. We point out that large numbers of neutron-star binaries with orbital periods of 10 hr and M dwarf companions of mass 0.2-0.3 solar mass are a natural result of the evolution of low-mass X-ray binaries (LMXBs). The numbers and physical properties of these systems suggest that some gamma-ray burst sources may be identified with this endpoint of LMXB evolution. We suggest an observational test of this hypothesis.

  9. 78 FR 27441 - NIJ Evaluation of Hand-Held Cell Phone Detector Devices

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-05-10

    ... Hand-Held Cell Phone Detector Devices AGENCY: National Institute of Justice, Department of Justice...-held cell phone detector devices for participation in an evaluation by the NIJ Corrections Technology...-held cell phone detector devices for participation in an evaluation by the NIJ Corrections Technology...

  10. A Cheap, Semiquantitative Hand-Held Conductivity Tester.

    ERIC Educational Resources Information Center

    Zawacky, Susan K. S.

    1995-01-01

    Describes a design for a hand-held conductivity tester powered by a 9V battery that gives semi-quantitative results for aqueous electrolyte solutions of concentrations ranging from 0.001 M to 0.1 M. The tester uses a bar-graph LED driven by an LM3914 integrated circuit to indicate the level of conductivity. A list of parts, procedures, and results…

  11. Development of mercuric iodide uncooled x ray detectors and spectrometers

    NASA Technical Reports Server (NTRS)

    Iwanczyk, Jan S.

    1990-01-01

    The results obtained in the development of miniature, lowpower, light weight mercuric iodide, HgI2, x ray spectrometers for future space missions are summarized. It was demonstrated that HgI2 detectors can be employed in a high resolution x ray spectrometer, operating in a scanning electron microscope. Also, the development of HgI2 x ray detectors to augment alpha backscattering spectrometers is discussed. These combination instruments allow for the identification of all chemical elements, with the possible exception of hydrogen, and their respective concentrations. Additionally, further investigations of questions regarding radiation damage effects in the HgI2 x ray detectors are reported.

  12. GRI: The Gamma-Ray Imager mission

    NASA Astrophysics Data System (ADS)

    Knödlseder, Jürgen; GRI Consortium

    With the INTEGRAL observatory ESA has provided a unique tool to the astronomical community revealing hundreds of sources, new classes of objects, extraordinary views of antimatter annihilation in our Galaxy, and fingerprints of recent nucleosynthesis processes. While INTEGRAL provides the global overview over the soft gamma-ray sky, there is a growing need to perform deeper, more focused investigations of gamma-ray sources. In soft X-rays a comparable step was taken going from the Einstein and the EXOSAT satellites to the Chandra and XMM/Newton observatories. Technological advances in the past years in the domain of gamma-ray focusing using Laue diffraction have paved the way towards a new gamma-ray mission, providing major improvements regarding sensitivity and angular resolution. Such a future Gamma-Ray Imager will allow studies of particle acceleration processes and explosion physics in unprecedented detail, providing essential clues on the innermost nature of the most violent and most energetic processes in the Universe.

  13. GRI: The Gamma-Ray Imager mission

    NASA Astrophysics Data System (ADS)

    Knödlseder, Jürgen; GRI Consortium

    2006-06-01

    With the INTEGRAL observatory, ESA has provided a unique tool to the astronomical community revealing hundreds of sources, new classes of objects, extraordinary views of antimatter annihilation in our Galaxy, and fingerprints of recent nucleosynthesis processes. While INTEGRAL provides the global overview over the soft gamma-ray sky, there is a growing need to perform deeper, more focused investigations of gamma-ray sources. In soft X-rays a comparable step was taken going from the Einstein and the EXOSAT satellites to the Chandra and XMM/Newton observatories. Technological advances in the past years in the domain of gamma-ray focusing using Laue diffraction have paved the way towards a new gamma-ray mission, providing major improvements regarding sensitivity and angular resolution. Such a future Gamma-Ray Imager will allow the study of particle acceleration processes and explosion physics in unprecedented detail, providing essential clues on the innermost nature of the most violent and most energetic processes in the Universe.

  14. Hand-portable gas chromatography-ion mobility spectrometer for the determination of the freshness of fish

    NASA Technical Reports Server (NTRS)

    Snyder, A. Peter; Harden, Charles S.; Davis, Dennis M.; Shoff, Donald B.; Maswadeh, Waleed M.

    1995-01-01

    A hand-held, portable gas chromatography-ion mobility spectrometer (GC-IMS) device was used to detect the presence of volatile amine compounds in the headspace of decomposing fish. The Food and Drug Administration (FDA) largely relies on olfactory discrimination with respect to fresh and spoiled, frozen and unfrozen fish. The fish are delivered at ship docks on pallets, and each pallet of fish can range from 30-40 thousand dollars in value. Fresh fish were placed in a teflon bag and the direct headspace was interrogated. In the first three days, only low molecular weight volatile amines were detected. On the fourth day, a number of spectral signatures were observed which indicated the presence of 1,5-diaminopentane, cadaverine. Analyses typically took from 0.5-1 minute.

  15. Design and Performance of the GAMMA-400 Gamma-Ray Telescope for Dark Matter Searches

    NASA Technical Reports Server (NTRS)

    Galper, A. M.; Adriani, O.; Aptekar, R. L.; Arkhangelskaja, I. V.; Arkhangelskiy, A. I.; Boezio, M.; Bonvicini, V.; Boyarchuk, K. A.; Fradkin, M. I.; Gusakov, Yu V.; hide

    2012-01-01

    The GAMMA-400 gamma-ray telescope is designed to measure the fluxes of gamma-rays and cosmic-ray electrons (+) positrons, which can be produced by annihilation or decay of the dark matter particles, as well as to survey the celestial sphere in order to study point and extended sources of gamma-rays, measure energy spectra of Galactic and extragalactic diffuse gamma-ray emission, gamma-ray bursts, and gamma-ray emission from the Sun. GAMMA-400 covers the energy range from 100 MeV to 3000 GeV. Its angular resolution is approximately 0.01deg (E(sub gamma) greater than 100 GeV), the energy resolution approximately 1% (E(sub gamma) greater than 10 GeV), and the proton rejection factor approximately 10(exp 6). GAMMA-400 will be installed on the Russian space platform Navigator. The beginning of observations is planned for 2018.

  16. Simultaneous optical/gamma-ray observations of GRBs

    NASA Technical Reports Server (NTRS)

    Greiner, J.; Wenzel, W.; Hudec, R.; Moskalenko, E. I.; Metlov, V.; Chernych, N. S.; Getman, V. S.; Ziener, Rainer; Birkle, K.; Bade, N.

    1994-01-01

    Details on the project to search for serendipitous time correlated optical photographic observations of Gamma Ray Bursters (GRB's) are presented. The ongoing photographic observations at nine observatories are used to look for plates which were exposed simultaneously with a gamma ray burst detected by the gamma ray instrument team (BATSE) and contain the burst position. The results for the first two years of the gamma ray instrument team operation are presented.

  17. Development of high resolution x-ray spectrometers for the investigation of bioinorganic chemistry in metalloproteins

    NASA Astrophysics Data System (ADS)

    Drury, Owen Byron

    We have built an X-ray spectrometer for synchrotron-based high-resolution soft X-ray spectroscopy. The spectrometer uses four 9-pixel arrays of superconducting tunnel junctions (STJs) as sensors. They infer the energy of an absorbed X-ray from a temporary increase in tunneling current. The STJs are operated in a two-stage adiabatic demagnetization refrigerator (ADR) that uses liquid nitrogen and helium for precooling to 77 K and 4.2 K, and gallium gadolinium garnet and iron ammonium sulfate to attain a base temperature below 0.1 K. The sensors are held at the end of a 40-cm-long cold finger within ˜1 cm of a sample located inside the vacuum chamber of a synchrotron beam line end station. The spectrometer has an energy resolution between 10 eV and 20 eV FWHM below 1 keV, can be operated at rates up to ˜106 counts/s. STJ spectrometers are suited for chemical analysis of dilute samples by fluorescence-detected X-ray absorption spectroscopy (XAS) in cases where conventional germanium detectors do not have enough energy resolution. We have used this STJ spectrometer at the Advanced Light Source synchrotron for spectroscopy on the lower energy X-ray absorption edges of the elements Mo, S, Fe and N. These elements play an important role in biological nitrogen fixation at the metalloprotein nitrogenase, and we have examined if STJ spectrometers can be used to provide new insights into some of the open questions regarding the reaction mechanism of this protein. We have taken X-ray absorption near-edge spectra (XANES) and extended fine structure spectra (EXAFS) of an Fe 6N(CO)15-compound containing a single N atom inside a cluster of six Fe atoms, as postulated to exist inside the Fe-S cluster of the FeMo-cofactor (FeMo-co) in nitrogenase. The STJ detector has enabled the first-ever extended range EXAFS scans on nitrogen through the oxygen K-edge, enabling a comparison with N EXAFS on FeMo-co. We have taken iron L23-edge spectra of the Fe-S cluster in FeMo-co, which can be

  18. Design and performance of the GAMMA-400 gamma-ray telescope for dark matter searches

    NASA Astrophysics Data System (ADS)

    Galper, A. M.; Adriani, O.; Aptekar, R. L.; Arkhangelskaja, I. V.; Arkhangelskiy, A. I.; Boezio, M.; Bonvicini, V.; Boyarchuk, K. A.; Fradkin, M. I.; Gusakov, Yu. V.; Kaplin, V. A.; Kachanov, V. A.; Kheymits, M. D.; Leonov, A. A.; Longo, F.; Mazets, E. P.; Maestro, P.; Marrocchesi, P.; Mereminskiy, I. A.; Mikhailov, V. V.; Moiseev, A. A.; Mocchiutti, E.; Mori, N.; Moskalenko, I. V.; Naumov, P. Yu.; Papini, P.; Picozza, P.; Rodin, V. G.; Runtso, M. F.; Sparvoli, R.; Spillantini, P.; Suchkov, S. I.; Tavani, M.; Topchiev, N. P.; Vacchi, A.; Vannuccini, E.; Yurkin, Yu. T.; Zampa, N.; Zverev, V. G.; Zirakashvili, V. N.

    2013-02-01

    The GAMMA-400 gamma-ray telescope is designed to measure the fluxes of gamma-rays and cosmic-ray electrons + positrons, which can be produced by annihilation or decay of the dark matter particles, as well as to survey the celestial sphere in order to study point and extended sources of gamma-rays, measure energy spectra of Galactic and extragalactic diffuse gamma-ray emission, gamma-ray bursts, and gamma-ray emission from the Sun. GAMMA-400 covers the energy range from 100 MeV to 3000 GeV. Its angular resolution is ~0.01° (Eγ > 100 GeV), the energy resolution ~1% (Eγ > 10 GeV), and the proton rejection factor ~106. GAMMA-400 will be installed on the Russian space platform Navigator. The beginning of observations is planned for 2018.

  19. The Animated Gamma-ray Sky Revealed by the Fermi Gamma-ray Space Telescope

    ScienceCinema

    Isabelle Grenier

    2018-04-17

    The Fermi Gamma-ray Space Telescope has been observing the sky in gamma-rays since August 2008.  In addition to breakthrough capabilities in energy coverage (20 MeV-300 GeV) and angular resolution, the wide field of view of the Large Area Telescope enables observations of 20% of the sky at any instant, and of the whole sky every three hours. It has revealed a very animated sky with bright gamma-ray bursts flashing and vanishing in minutes, powerful active galactic nuclei flaring over hours and days, many pulsars twinkling in the Milky Way, and X-ray binaries shimmering along their orbit. Most of these variable sources had not been seen by the Fermi predecessor, EGRET, and the wealth of new data already brings important clues to the origin of the high-energy emission and particles powered by the compact objects. The telescope also brings crisp images of the bright gamma-ray emission produced by cosmic-ray interactions in the interstellar medium, thus allowing to measure the cosmic nuclei and electron spectra across the Galaxy, to weigh interstellar clouds, in particular in the dark-gas phase. The telescope sensitivity at high energy will soon provide useful constraints on dark-matter annihilations in a variety of environments. I will review the current results and future prospects of the Fermi mission.

  20. Design of an Operando Positron Annihilation Gamma Spectrometer (OPAGS)

    NASA Astrophysics Data System (ADS)

    Satyal, S.; Joglekar, P.; Kalaskar, S.; Shastry, K.; Weiss, A. H.

    2010-03-01

    Surface properties measured under UHV conditions cannot be extended to surfaces interacting with gases under realistic pressures due to surface reconstruction and other strong perturbations of the surface. We present the design of an Operando Positron Annihilation Gamma Spectrometer (OPAGS) currently under construction at the University of Texas at Arlington. This new system will enable us to probe the surface and gather defect specific chemical and charge state information from surfaces under realistic pressures. Differential pumping will be used to maintain the sample in a gas environment while the rest of the beam is maintained under UHV. The Elemental content of the surface interacting with the gas environment will be determined from the Doppler broadened gamma spectra. This system will include a time of flight (TOF) positron annihilation induced Auger spectrometer (TOF-PAES) which correlates with the Doppler measurements at lower pressures. These new technique help to understand the charge transfer mechanisms at the surface.

  1. Attenuation of X and Gamma Rays in Personal Radiation Shielding Protective Clothing.

    PubMed

    Kozlovska, Michaela; Cerny, Radek; Otahal, Petr

    2015-11-01

    A collection of personal radiation shielding protective clothing, suitable for use in case of accidents in nuclear facilities or radiological emergency situations involving radioactive agents, was gathered and tested at the Nuclear Protection Department of the National Institute for Nuclear, Chemical and Biological Protection, Czech Republic. Attenuating qualities of shielding layers in individual protective clothing were tested via spectra measurement of x and gamma rays, penetrating them. The rays originated from different radionuclide point sources, the gamma ray energies of which cover a broad energy range. The spectra were measured by handheld spectrometers, both scintillation and High Purity Germanium. Different narrow beam geometries were adjusted using a special testing bench and a set of various collimators. The main experimentally determined quantity for individual samples of personal radiation shielding protective clothing was x and gamma rays attenuation for significant energies of the spectra. The attenuation was assessed comparing net peak areas (after background subtraction) in spectra, where a tested sample was placed between the source and the detector, and corresponding net peak areas in spectra, measured without the sample. Mass attenuation coefficients, which describe attenuating qualities of shielding layers materials in individual samples, together with corresponding lead equivalents, were determined as well. Experimentally assessed mass attenuation coefficients of the samples were compared to the referred ones for individual heavy metals.

  2. Gamma-ray shielding effect of Gd3+ doped lead barium borate glasses

    NASA Astrophysics Data System (ADS)

    Kummathi, Harshitha; Naveen Kumar, P.; Vedavathi T., C.; Abhiram, J.; Rajaramakrishna, R.

    2018-05-01

    The glasses of the batch xPbO: 10BaO: (90-x)B2O3: 0.2Gd2O3 (x = 40,45,50 mol %) were prepared by melt-quench technique. The work emphasizes on gamma ray shielding effect on doped lead glasses. The role of Boron is significant as it acts as better neutron attenuator as compared with any other materials, as the thermal neutron cross-sections are high for Gadolinium, 0.2 mol% is chosen as the optimum concentration for this matrix, as higher the concentration may lead to further increase as it produces secondary γ rays due to inelastic neutron scattering. Shielding effects were studied using Sodium Iodide (NaI) - Scintillation Gamma ray spectrometer. It was found that at higher concentration of lead oxide (PbO) in the matrix, higher the attenuation which can be co-related with density. Infra-red (I.R.) spectra reveals that the conversion of Lose triangles to tight tetrahedral structure results in enhancement of shielding properties. The Differential Scanning Calorimeter (D.S.C.) study also reveals that the increase in glass forming range increases the stability which in-turn results in inter-conversion of BO3 to BO4 units such that the density of glass increases with increase in PbO content, resulting in much stable and efficient gamma ray shielding glasses.

  3. Constraining Gamma-Ray Pulsar Gap Models with a Simulated Pulsar Population

    NASA Technical Reports Server (NTRS)

    Pierbattista, Marco; Grenier, I. A.; Harding, A. K.; Gonthier, P. L.

    2012-01-01

    With the large sample of young gamma-ray pulsars discovered by the Fermi Large Area Telescope (LAT), population synthesis has become a powerful tool for comparing their collective properties with model predictions. We synthesised a pulsar population based on a radio emission model and four gamma-ray gap models (Polar Cap, Slot Gap, Outer Gap, and One Pole Caustic). Applying gamma-ray and radio visibility criteria, we normalise the simulation to the number of detected radio pulsars by a select group of ten radio surveys. The luminosity and the wide beams from the outer gaps can easily account for the number of Fermi detections in 2 years of observations. The wide slot-gap beam requires an increase by a factor of 10 of the predicted luminosity to produce a reasonable number of gamma-ray pulsars. Such large increases in the luminosity may be accommodated by implementing offset polar caps. The narrow polar-cap beams contribute at most only a handful of LAT pulsars. Using standard distributions in birth location and pulsar spin-down power (E), we skew the initial magnetic field and period distributions in a an attempt to account for the high E Fermi pulsars. While we compromise the agreement between simulated and detected distributions of radio pulsars, the simulations fail to reproduce the LAT findings: all models under-predict the number of LAT pulsars with high E , and they cannot explain the high probability of detecting both the radio and gamma-ray beams at high E. The beaming factor remains close to 1.0 over 4 decades in E evolution for the slot gap whereas it significantly decreases with increasing age for the outer gaps. The evolution of the enhanced slot-gap luminosity with E is compatible with the large dispersion of gamma-ray luminosity seen in the LAT data. The stronger evolution predicted for the outer gap, which is linked to the polar cap heating by the return current, is apparently not supported by the LAT data. The LAT sample of gamma-ray pulsars

  4. Gamma-ray lens development status for a European gamma-ray imager

    NASA Astrophysics Data System (ADS)

    Frontera, F.; Pisa, A.; Carassiti, V.; Evangelisti, F.; Loffredo, G.; Pellicciotta, D.; Andersen, K. H.; Courtois, P.; Amati, L.; Caroli, E.; Franceschini, T.; Landini, G.; Silvestri, S.; Stephen, J. B.

    2006-06-01

    A breakthrough in the sensitivity level of the hard X-/gamma-ray telescopes, which today are based on detectors that view the sky through (or not) coded masks, is expected when focusing optics will be available also in this energy range. Focusing techniques are now in an advanced stage of development. To date the most efficient technique to focus hard X-rays with energies above 100 keV appears to be the Bragg diffraction from crystals in transmission configuration (Laue lenses). Crystals with mosaic structure appear to be the most suitable to build a Laue lens with a broad passband, even though other alternative structures are being investigated. The goal of our project is the development of a broad band focusing telescope based on gamma-ray lenses for the study of the continuum emission of celestial sources from 60 keV up to >600 keV. We will report details of our project, its development status and results of our assessment study of a lens configuration for the European Gamma Ray Imager (GRI) mission now under study for the ESA plan Cosmic Vision 2015-2025.

  5. Gamma ray astrophysics. [emphasizing processes and absorption

    NASA Technical Reports Server (NTRS)

    Stecker, F. W.

    1974-01-01

    Gamma ray production processes are reviewed, including Compton scattering, synchrotron radiation, bremsstrahlung interactions, meson decay, nucleon-antinucleon annihilations, and pion production. Gamma ray absorption mechanisms through interactions with radiation and with matter are discussed, along with redshifts and gamma ray fluxes.

  6. 30 CFR 56.12033 - Hand-held electric tools.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 30 Mineral Resources 1 2011-07-01 2011-07-01 false Hand-held electric tools. 56.12033 Section 56.12033 Mineral Resources MINE SAFETY AND HEALTH ADMINISTRATION, DEPARTMENT OF LABOR METAL AND NONMETAL MINE SAFETY AND HEALTH SAFETY AND HEALTH STANDARDS-SURFACE METAL AND NONMETAL MINES Electricity § 56...

  7. 30 CFR 56.12033 - Hand-held electric tools.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 30 Mineral Resources 1 2010-07-01 2010-07-01 false Hand-held electric tools. 56.12033 Section 56.12033 Mineral Resources MINE SAFETY AND HEALTH ADMINISTRATION, DEPARTMENT OF LABOR METAL AND NONMETAL MINE SAFETY AND HEALTH SAFETY AND HEALTH STANDARDS-SURFACE METAL AND NONMETAL MINES Electricity § 56...

  8. 30 CFR 56.12033 - Hand-held electric tools.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 30 Mineral Resources 1 2014-07-01 2014-07-01 false Hand-held electric tools. 56.12033 Section 56.12033 Mineral Resources MINE SAFETY AND HEALTH ADMINISTRATION, DEPARTMENT OF LABOR METAL AND NONMETAL MINE SAFETY AND HEALTH SAFETY AND HEALTH STANDARDS-SURFACE METAL AND NONMETAL MINES Electricity § 56...

  9. 30 CFR 56.12033 - Hand-held electric tools.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... 30 Mineral Resources 1 2012-07-01 2012-07-01 false Hand-held electric tools. 56.12033 Section 56.12033 Mineral Resources MINE SAFETY AND HEALTH ADMINISTRATION, DEPARTMENT OF LABOR METAL AND NONMETAL MINE SAFETY AND HEALTH SAFETY AND HEALTH STANDARDS-SURFACE METAL AND NONMETAL MINES Electricity § 56...

  10. 30 CFR 56.12033 - Hand-held electric tools.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 30 Mineral Resources 1 2013-07-01 2013-07-01 false Hand-held electric tools. 56.12033 Section 56.12033 Mineral Resources MINE SAFETY AND HEALTH ADMINISTRATION, DEPARTMENT OF LABOR METAL AND NONMETAL MINE SAFETY AND HEALTH SAFETY AND HEALTH STANDARDS-SURFACE METAL AND NONMETAL MINES Electricity § 56...

  11. Some gamma-ray shielding measurements made at altitudes greater than 115000 feet using large Ge(Li) detectors

    NASA Technical Reports Server (NTRS)

    Chapman, G. T.; Cumby, R. P.; Gibbons, J. H.; Macklin, R. L.; Parker, H. W.

    1972-01-01

    A series of balloon-flight experiments at altitudes greater than 115,000 feet were conducted to gain information relative to the use of composite shields (passive and/or active) for shielding large-volume, lithium-drifted, germanium (Ge(Li)) detectors used in gamma-ray spectrometers. Data showing the pulse-height spectra of the environmental gamma radiation as measured at 5.3 and 3.8 gms sq cm residual atmosphere with an unshielded diode detector are also presented.

  12. Bragg x-ray survey spectrometer for ITER.

    PubMed

    Varshney, S K; Barnsley, R; O'Mullane, M G; Jakhar, S

    2012-10-01

    Several potential impurity ions in the ITER plasmas will lead to loss of confined energy through line and continuum emission. For real time monitoring of impurities, a seven channel Bragg x-ray spectrometer (XRCS survey) is considered. This paper presents design and analysis of the spectrometer, including x-ray tracing by the Shadow-XOP code, sensitivity calculations for reference H-mode plasma and neutronics assessment. The XRCS survey performance analysis shows that the ITER measurement requirements of impurity monitoring in 10 ms integration time at the minimum levels for low-Z to high-Z impurity ions can largely be met.

  13. Analysis of Multi-band Photometry of Violently Variable Gamma-Ray Sources

    NASA Astrophysics Data System (ADS)

    Kadowaki, Jennifer; Malkan, M. A.

    2013-01-01

    We studied the relationship between rapid variations in the jet intensities and changes in accretion disk activity of blazar subtype, Flat Spectrum Radio Quasar (FSRQ). Fifteen known FSRQs were specifically chosen for their prominent big blue bumps with redshifts near z=1, in order for the rest-frame UV to be redshifted into the blue-band pass. Flux changes for these 15 FSRQs were monitored for 15 observational nights in BVRI-bands and 20 nights in JHK-bands over a 12 month period using NASA's Fermi Gamma-ray Space Telescope, Lick Observatory's Nickel Telescope, and Kitt Peak National Observatory's 2.1 m Telescope. With 6.3’ x 6.3’ field of view for Nickel’s Direct Imaging Camera and 20’ x 20’ for Flamingos IR Imaging Spectrometer, approximately a half dozen, bright and non-variable stars were available to compare the concurrent changes in each of the quasar’s brightness. This process of differential photometry yielded photometric measurements of quasar brightness with 1-2% level precision. Light curves were then created for these 15 monitored quasars in optical, infrared, and gamma-ray energy bands. Dominating the redder emission spectrum due to non-thermal, synchrotron radiation and compton scattering of gamma-rays off high energy electrons, jet activity was compared to bluer spectral regions having strong accretion disk component with rest frame of approximately 2000 Angstroms. Most of the targeted FSRQs varied significantly over the 12 month monitoring period, with varying levels of fluctuations for each observed wavelength. Some correlations between gamma-ray and optical wavelengths were also present, which will be further discussed in the poster.

  14. Integral's first look at the gamma-ray Universe

    NASA Astrophysics Data System (ADS)

    2002-12-01

    powerful gamma-ray instruments. It has a camera, or imager, called IBIS and a spectrometer, SPI. Spectrometers are used to measure the energy of the gamma rays received. Gamma-ray sources are often extremely variable and can fluctuate within minutes or seconds. It is therefore crucial to record data simultaneously in different wavelengths. To achieve this, Integral also carries an X-ray and an optical monitor (JEM-X and OMC). All four instruments will observe the same objects, at the same time. In this way they can capture fleeting events completely. Integral sends the data from all the instruments to the Integral Science Data Centre (ISDC) near Geneva, Switzerland, where they are processed for eventual release to the scientific community. “We have been optimising the instruments’ performance to produce the best overall science. We expect to be ready for astronomers around the world to use Integral by the end of the year,” says Arvind Parmar, acting Integral Project Scientist at ESA. “These images and spectra prove that Integral can certainly do the job it was designed to do, and more", which is to unlock some of the secrets of the high-energy Universe. Integral’s primary mission will last for two years, but it is carrying enough fuel to continue for five years, all being well. Notes to Editors Integral was launched on board a Russian Proton rocket from the Baikonur Cosmodrome, Kazakhstan, on 17 October 2002. The satellite was placed in a tilted orbit that looped from 600 to 153 000 kilometres above the Earth and back again. Integral’s own thrusters then steered the spacecraft, in a series of five manoeuvres, into its operational orbit, between 9 000 and 153 000 kilometres above the Earth. Although Integral orbits above the Earth's atmosphere and weather, it still has ‘space weather’ to contend with. Space weather consists of a constant rain of tiny particles that can temporarily blind detectors designed to register gamma radiation. “The flashes last

  15. Found: A Galaxy's Missing Gamma Rays

    NASA Astrophysics Data System (ADS)

    Kohler, Susanna

    2016-04-01

    Recent reanalysis of data from the Fermi Gamma-ray Space Telescope has resulted in the first detection of high-energy gamma rays emitted from a nearby galaxy. This discovery reveals more about how supernovae interact with their environments.Colliding Supernova RemnantAfter a stellar explosion, the supernovas ejecta expand, eventually encountering the ambient interstellar medium. According to models, this generates a strong shock, and a fraction of the kinetic energy of the ejecta is transferred into cosmic rays high-energy radiation composed primarily of protons and atomic nuclei. Much is still unknown about this process, however. One open question is: what fraction of the supernovas explosion power goes into accelerating these cosmic rays?In theory, one way to answer this is by looking for gamma rays. In a starburst galaxy, the collision of the supernova-accelerated cosmic rays with the dense interstellar medium is predicted to produce high-energy gamma rays. That radiation should then escape the galaxy and be visible to us.Pass 8 to the RescueObservational tests of this model, however, have beenstumped by Arp 220. This nearby ultraluminous infrared galaxy is the product of a galaxy merger ~700 million years ago that fueled a frenzy of starbirth. Due to its dusty interior and extreme levels of star formation, Arp 220 has long been predicted to emit the gamma rays produced by supernova-accelerated cosmic rays. But though weve looked, gamma-ray emission has never been detected from this galaxy until now.In a recent study, a team of scientists led by Fang-Kun Peng (Nanjing University) reprocessed 7.5 years of Fermi observations using the new Pass 8 analysis software. The resulting increase in resolution revealed the first detection of GeV emission from Arp 220!Acceleration EfficiencyGamma-ray luminosity vs. total infrared luminosity for LAT-detected star-forming galaxies and Seyferts. Arp 220s luminosities are consistent with the scaling relation. [Peng et al. 2016

  16. Preliminary design and performance of an advanced gamma ray spectrometer for future orbiter missions. [composition and evolution of planets

    NASA Technical Reports Server (NTRS)

    Metzger, A. E.; Parker, R. H.; Arnold, J. R.; Reedy, R. C.; Trombka, J. I.

    1975-01-01

    A knowledge of the composition of planets, satellites, and asteroids is of primary importance in understanding the formation and evolution of the solar system. Gamma-ray spectroscopy is capable of measuring the composition of meter-depth surface material from orbit around any body possessing little or no atmosphere. Measurement sensitivity is determined by detector efficiency and resolution, counting time, and the background flux while the effective spatial resolution depends upon the field-of-view and counting time together with the regional contrast in composition. The advantages of using germanium as a detector of gamma rays in space are illustrated experimentally and a compact instrument cooled by passive thermal radiation is described. Calculations of the expected sensitivity of this instrument at the Moon and Mars show that at least a dozen elements will be detected, twice the number which have been isolated in the Apollo gamma-ray data.

  17. Promoting Physical Activity through Hand-Held Computer Technology

    PubMed Central

    King, Abby C.; Ahn, David K.; Oliveira, Brian M.; Atienza, Audie A.; Castro, Cynthia M.; Gardner, Christopher D.

    2009-01-01

    Background Efforts to achieve population-wide increases in walking and similar moderate-intensity physical activities potentially can be enhanced through relevant applications of state-of-the-art interactive communication technologies. Yet few systematic efforts to evaluate the efficacy of hand-held computers and similar devices for enhancing physical activity levels have occurred. The purpose of this first-generation study was to evaluate the efficacy of a hand-held computer (i.e., personal digital assistant [PDA]) for increasing moderate intensity or more vigorous (MOD+) physical activity levels over 8 weeks in mid-life and older adults relative to a standard information control arm. Design Randomized, controlled 8-week experiment. Data were collected in 2005 and analyzed in 2006-2007. Setting/Participants Community-based study of 37 healthy, initially underactive adults aged 50 years and older who were randomized and completed the 8-week study (intervention=19, control=18). Intervention Participants received an instructional session and a PDA programmed to monitor their physical activity levels twice per day and provide daily and weekly individualized feedback, goal setting, and support. Controls received standard, age-appropriate written physical activity educational materials. Main Outcome Measure Physical activity was assessed via the Community Healthy Activities Model Program for Seniors (CHAMPS) questionnaire at baseline and 8 weeks. Results Relative to controls, intervention participants reported significantly greater 8-week mean estimated caloric expenditure levels and minutes per week in MOD+ activity (p<0.04). Satisfaction with the PDA was reasonably high in this largely PDA-naive sample. Conclusions Results from this first-generation study indicate that hand-held computers may be effective tools for increasing initial physical activity levels among underactive adults. PMID:18201644

  18. Search of the energetic gamma-ray experiment telescope (EGRET) data for high-energy gamma-ray microsecond bursts

    NASA Technical Reports Server (NTRS)

    Fichtel, C. E.; Bertsch, D. L.; Dingus, B. L.; Esposito, J. A.; Hartman, R. C.; Hunter, S. D.; Kanbach, G.; Kniffen, D. A.; Lin, Y. C.; Mattox, J. R.

    1994-01-01

    Hawking (1974) and Page & Hawking (1976) investigated theoretically the possibility of detecting high-energy gamma rays produced by the quantum-mechanical decay of a small black hole created in the early universe. They concluded that, at the very end of the life of the small black hole, it would radiate a burst of gamma rays peaked near 250 MeV with a total energy of about 10(exp 34) ergs in the order of a microsecond or less. The characteristics of a black hole are determined by laws of physics beyond the range of current particle accelerators; hence, the search for these short bursts of high-energy gamma rays provides at least the possibility of being the first test of this region of physics. The Compton Observatory Energetic Gamma-Ray Experiment Telescope (EGRET) has the capability of detecting directly the gamma rays from such bursts at a much fainter level than SAS 2, and a search of the EGRET data has led to an upper limit of 5 x 10(exp -2) black hole decays per cu pc per yr, placing constraints on this and other theories predicting microsecond high-energy gamma-ray bursts.

  19. Bone age maturity assessment using hand-held device

    NASA Astrophysics Data System (ADS)

    Ratib, Osman M.; Gilsanz, Vicente; Liu, Xiaodong; Boechat, M. I.

    2004-04-01

    Purpose: Assessment of bone maturity is traditionally performed through visual comparison of hand and wrist radiograph with existing reference images in textbooks. Our goal was to develop a digital index based on idealized hand Xray images that can be incorporated in a hand held computer and used for visual assessment of bone age for patients. Material and methods: Due to the large variability in bone maturation in normals, we generated a set of "ideal" images obtained by computer combinations of images from our normal reference data sets. Software for hand-held PDA devices was developed for easy navigation through the set of images and visual selection of matching images. A formula based on our statistical analysis provides the standard deviation from normal based on the chronological age of the patient. The accuracy of the program was compared to traditional interpretation by two radiologists in a double blind reading of 200 normal Caucasian children (100 boys, 100 girls). Results: Strong correlations were present between chronological age and bone age (r > 0.9) with no statistical difference between the digital and traditional assessment methods. Determinations of carpal bone maturity in adolescents was slightly more accurate using the digital system. The users did praise the convenience and effectiveness of the digital Palm Index in clinical practice. Conclusion: An idealized digital Palm Bone Age Index provides a convenient and effective alternative to conventional atlases for the assessment of skeletal maturity.

  20. RoboPol: the optical polarization of gamma-ray-loud and gamma-ray-quiet blazars

    NASA Astrophysics Data System (ADS)

    Angelakis, E.; Hovatta, T.; Blinov, D.; Pavlidou, V.; Kiehlmann, S.; Myserlis, I.; Böttcher, M.; Mao, P.; Panopoulou, G. V.; Liodakis, I.; King, O. G.; Baloković, M.; Kus, A.; Kylafis, N.; Mahabal, A.; Marecki, A.; Paleologou, E.; Papadakis, I.; Papamastorakis, I.; Pazderski, E.; Pearson, T. J.; Prabhudesai, S.; Ramaprakash, A. N.; Readhead, A. C. S.; Reig, P.; Tassis, K.; Urry, M.; Zensus, J. A.

    2016-12-01

    We present average R-band optopolarimetric data, as well as variability parameters, from the first and second RoboPol observing season. We investigate whether gamma-ray-loud and gamma-ray-quiet blazars exhibit systematic differences in their optical polarization properties. We find that gamma-ray-loud blazars have a systematically higher polarization fraction (0.092) than gamma-ray-quiet blazars (0.031), with the hypothesis of the two samples being drawn from the same distribution of polarization fractions being rejected at the 3σ level. We have not found any evidence that this discrepancy is related to differences in the redshift distribution, rest-frame R-band luminosity density, or the source classification. The median polarization fraction versus synchrotron-peak-frequency plot shows an envelope implying that high-synchrotron-peaked sources have a smaller range of median polarization fractions concentrated around lower values. Our gamma-ray-quiet sources show similar median polarization fractions although they are all low-synchrotron-peaked. We also find that the randomness of the polarization angle depends on the synchrotron peak frequency. For high-synchrotron-peaked sources, it tends to concentrate around preferred directions while for low-synchrotron-peaked sources, it is more variable and less likely to have a preferred direction. We propose a scenario which mediates efficient particle acceleration in shocks and increases the helical B-field component immediately downstream of the shock.

  1. Modeled Martian subsurface elemental composition measurements with the Probing In situ with Neutron and Gamma ray instrument: Gamma and Neutron Measurements on Mars

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Nowicki, Suzanne F.; Evans, Larry G.; Starr, Richard D.

    Here, the Probing In situ with Neutrons and Gamma rays (PING) instrument is an innovative application of active neutron-induced gamma-ray technology. The objective of PING is to measure the elemental composition of the Martian regolith. As part 2 of a two-part submission, this manuscript presents PING's sensitivities as a function of the Martian regolith depth and PING's uncertainties in the measurements as a function of observation time in passive and active mode. Part 1 of our submission models the associated regolith types. The modeled sensitivities show that in PING's active mode, where both a Pulsed Neutron Generator (PNG) and amore » Gamma-Ray Spectrometer (GRS) are used, PING can interrogate the material below the rover to about 20 cm due to the penetrating nature of the high-energy neutrons and the resulting secondary gamma rays observed with the GRS. PING is capable of identifying most major and minor rock-forming elements, including H, O, Na, Mn, Mg, Al, Si, P, S, Cl, Cr, K, Ca, Ti, Fe and Th. The modeled uncertainties show that PING's use of a PNG reduces the required observation times by an order of magnitude over a passive operating mode where the PNG is turned off. While the active mode allows for more complete elemental inventories with higher sensitivity, the gamma-ray signatures of some elements are strong enough to detect in passive mode. We show that PING can detect changes in key marker elements and make thermal neutron measurements in about 1 minute that are sensitive to H and Cl.« less

  2. Modeled Martian subsurface elemental composition measurements with the Probing In situ with Neutron and Gamma ray instrument: Gamma and Neutron Measurements on Mars

    DOE PAGES

    Nowicki, Suzanne F.; Evans, Larry G.; Starr, Richard D.; ...

    2017-02-01

    Here, the Probing In situ with Neutrons and Gamma rays (PING) instrument is an innovative application of active neutron-induced gamma-ray technology. The objective of PING is to measure the elemental composition of the Martian regolith. As part 2 of a two-part submission, this manuscript presents PING's sensitivities as a function of the Martian regolith depth and PING's uncertainties in the measurements as a function of observation time in passive and active mode. Part 1 of our submission models the associated regolith types. The modeled sensitivities show that in PING's active mode, where both a Pulsed Neutron Generator (PNG) and amore » Gamma-Ray Spectrometer (GRS) are used, PING can interrogate the material below the rover to about 20 cm due to the penetrating nature of the high-energy neutrons and the resulting secondary gamma rays observed with the GRS. PING is capable of identifying most major and minor rock-forming elements, including H, O, Na, Mn, Mg, Al, Si, P, S, Cl, Cr, K, Ca, Ti, Fe and Th. The modeled uncertainties show that PING's use of a PNG reduces the required observation times by an order of magnitude over a passive operating mode where the PNG is turned off. While the active mode allows for more complete elemental inventories with higher sensitivity, the gamma-ray signatures of some elements are strong enough to detect in passive mode. We show that PING can detect changes in key marker elements and make thermal neutron measurements in about 1 minute that are sensitive to H and Cl.« less

  3. Gamma Ray Spectroscopy: Some highlights from the past, present and future

    NASA Astrophysics Data System (ADS)

    Beausang, Cornelius

    2007-04-01

    The early implementation stages of the current generation of large scale gamma-ray spectrometers, EUROGAM Phase 1 closely followed by Gammasphere Early Implementation, came online in the early 1990's. Last August the tenth anniversary of the full Gammasphere Array was celebrated. Large arrays of Compton suppressed Ge detectors, such as Gammasphere, Eurogam/Euroball/Jurosphere operated in both stand alone mode and, more recently, when coupled to highly selective and sensitive channel selection devices, such as the Fragment Mass Analyzer or RITU, or auxiliary detectors, such as Microball and Chico, have led to an unprecedented increase in our knowledge of the properties of the atomic nucleus when stressed by the application of high angular momentum, large proton or neutron imbalance, high temperatures etc. Gamma-ray spectroscopy is now routinely carried out at the limits of nuclear existence, either in terms of mass or in nuclei on, or beyond, the drip-lines. This talk will touch upon some of the classic results obtained with such arrays, will review the current state of the art in gamma-ray spectroscopy and consider some potentials for the future of the field with new arrays such as GRETA in the US and AGATA in Europe. This work is supported by the US Department of Energy under grant numbers DE-FG52-06NA26206 and DE-FG02-05ER41379.

  4. Multiwavelength Study of Gamma-Ray Bright Blazars

    NASA Astrophysics Data System (ADS)

    Morozova, Daria; Larionov, V. M.; Hagen-Thorn, V. A.; Jorstad, S. G.; Marscher, A. P.; Troitskii, I. S.

    2011-01-01

    We investigate total intensity radio images of 6 gamma-ray bright blazars (BL Lac, 3C 279, 3C 273, W Com, PKS 1510-089, and 3C 66A) and their optical and gamma-ray light curves to study connections between gamma-ray and optical brightness variations and changes in the parsec-scale radio structure. We use high-resolution maps obtained by the BU group at 43 GHz with the VLBA, optical light curves constructed by the St.Petersburg State U. (Russia) team using measurements with the 0.4 m telescope of St.Petersburg State U. (LX200) and the 0.7 m telescope of the Crimean Astrophysical Observatory (AZT-8), and gamma-ray light curves, which we have constructed with data provided by the Fermi Large Area Telescope. Over the period from August 2008 to November 2009, superluminal motion is found in all 6 objects with apparent speed ranging from 2c to 40c. The blazars with faster apparent speeds, 3C 273, 3C 279, PKS 1510-089, and 3C 66A, exhibit stronger variability of the gamma-ray emission. There is a tendency for sources with sharply peaked gamma-ray flares to have faster jet speed than sources with gamma-ray light curves with no sharp peaks. Gamma-ray light curves with sharply peaked gamma-ray flares possess a stronger gamma-ray/optical correlations. The research at St.Petersburg State U. was funded by the Minister of Education and Science of the Russian Federation (state contract N#P123). The research at BU was funded in part by NASA Fermi Guest Investigator grant NNX08AV65G and by NSF grant AST-0907893. The VLBA is an instrument of the National Radio Astronomy Observatory, a facility of the National Science Foundation operated under cooperative agreement by Associated Universities, Inc.

  5. Gamma-ray Astrophysics with AGILE

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Longo, Francesco; Tavani, M.; Barbiellini, G.

    2007-07-12

    AGILE will explore the gamma-ray Universe with a very innovative instrument combining for the first time a gamma-ray imager and a hard X-ray imager. AGILE will be operational in spring 2007 and it will provide crucial data for the study of Active Galactic Nuclei, Gamma-Ray Bursts, unidentified gamma-ray sources. Galactic compact objects, supernova remnants, TeV sources, and fundamental physics by microsecond timing. The AGILE instrument is designed to simultaneously detect and image photons in the 30 MeV - 50 GeV and 15 - 45 keV energy bands with excellent imaging and timing capabilities, and a large field of view coveringmore » {approx} 1/5 of the entire sky at energies above 30 MeV. A CsI calorimeter is capable of GRB triggering in the energy band 0.3-50 MeV AGILE is now (March 2007) undergoing launcher integration and testing. The PLSV launch is planned in spring 2007. AGILE is then foreseen to be fully operational during the summer of 2007.« less

  6. Gamma-ray Output Spectra from 239 Pu Fission

    DOE PAGES

    Ullmann, John

    2015-05-25

    The gamma-ray multiplicities, individual gamma-ray energy spectra, and total gamma energy spectra following neutron-induced fission of 239Pu were measured using the DANCE detector at Los Alamos. Corrections for detector response were made using a forward-modeling technique based on propagating sets of gamma rays generated from a paramaterized model through a GEANT model of the DANCE array and adjusting the parameters for best fit to the measured spectra. The results for the gamma-ray spectrum and multiplicity are in general agreement with previous results, but the measured total gamma-ray energy is about 10% higher. We found that a dependence of the gamma-raymore » spectrum on the gamma-ray multplicity was also observed. Finally, global model calculations of the multiplicity and gamma energy distributions are in good agreement with the data, but predict a slightly softer total-energy distribution.« less

  7. A MAD Model for Gamma-Ray Burst Variability

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lloyd-Ronning, Nicole Marie; Dolence, Joshua C.; Fryer, Christopher Lee

    Here we present a model for the temporal variability of long gamma-ray bursts during the prompt phase (the highly variable first 100 seconds or so), in the context of a magnet- ically arrested disk (MAD) around a black hole. In this state, sufficient magnetic flux is held on to the black hole such that it stalls the accretion near the inner region of the disk. The system transitions in and out of the MAD state, which we relate to the vari- able luminosity of the GRB during the prompt phase, with a characteristic timescale defined by the free fall timemore » in the region over which the accretion is arrested. We present simple analytic estimates of the relevant energetics and timescales, and com- pare them to gamma-ray burst observations. In particular, we show how this model can reproduce the characteristic one second time scale that emerges from various analyses of the prompt emission light curve. Finally, we also discuss how our model can accommodate the potentially physically important correlation between a burst quiescent time and the duration of its subsequent pulse (Ramirez-Ruiz & Merloni 2001).« less

  8. A MAD Model for Gamma-Ray Burst Variability

    DOE PAGES

    Lloyd-Ronning, Nicole Marie; Dolence, Joshua C.; Fryer, Christopher Lee

    2016-06-09

    Here we present a model for the temporal variability of long gamma-ray bursts during the prompt phase (the highly variable first 100 seconds or so), in the context of a magnet- ically arrested disk (MAD) around a black hole. In this state, sufficient magnetic flux is held on to the black hole such that it stalls the accretion near the inner region of the disk. The system transitions in and out of the MAD state, which we relate to the vari- able luminosity of the GRB during the prompt phase, with a characteristic timescale defined by the free fall timemore » in the region over which the accretion is arrested. We present simple analytic estimates of the relevant energetics and timescales, and com- pare them to gamma-ray burst observations. In particular, we show how this model can reproduce the characteristic one second time scale that emerges from various analyses of the prompt emission light curve. Finally, we also discuss how our model can accommodate the potentially physically important correlation between a burst quiescent time and the duration of its subsequent pulse (Ramirez-Ruiz & Merloni 2001).« less

  9. GLAST and Ground-Based Gamma-Ray Astronomy

    NASA Technical Reports Server (NTRS)

    McEnery, Julie

    2008-01-01

    The launch of the Gamma-ray Large Area Space Telescope together with the advent of a new generation of ground-based gamma-ray detectors such as VERITAS, HESS, MAGIC and CANGAROO, will usher in a new era of high-energy gamma-ray astrophysics. GLAST and the ground based gamma-ray observatories will provide highly complementary capabilities for spectral, temporal and spatial studies of high energy gamma-ray sources. Joint observations will cover a huge energy range, from 20 MeV to over 20 TeV. The LAT will survey the entire sky every three hours, allowing it both to perform uniform, long-term monitoring of variable sources and to detect flaring sources promptly. Both functions complement the high-sensitivity pointed observations provided by ground-based detectors. Finally, the large field of view of GLAST will allow a study of gamma-ray emission on large angular scales and identify interesting regions of the sky for deeper studies at higher energies. In this poster, we will discuss the science returns that might result from joint GLAST/ground-based gamma-ray observations and illustrate them with detailed source simulations.

  10. Gamma-Ray Emission from Galaxy Clusters : DARK MATTER AND COSMIC-RAYS

    NASA Astrophysics Data System (ADS)

    Pinzke, Anders

    The quest for the first detection of a galaxy cluster in the high energy gamma-ray regime is ongoing, and even though clusters are observed in several other wave-bands, there is still no firm detection in gamma-rays. To complement the observational efforts we estimate the gamma-ray contributions from both annihilating dark matter and cosmic-ray (CR) proton as well as CR electron induced emission. Using high-resolution simulations of galaxy clusters, we find a universal concave shaped CR proton spectrum independent of the simulated galaxy cluster. Specifically, the gamma-ray spectra from decaying neutral pions, which are produced by CR protons, dominate the cluster emission. Furthermore, based on our derived flux and luminosity functions, we identify the galaxy clusters with the brightest galaxy clusters in gamma-rays. While this emission is challenging to detect using the Fermi satellite, major observations with Cherenkov telescopes in the near future may put important constraints on the CR physics in clusters. To extend these predictions, we use a dark matter model that fits the recent electron and positron data from Fermi, PAMELA, and H.E.S.S. with remarkable precision, and make predictions about the expected gamma-ray flux from nearby clusters. In order to remain consistent with the EGRET upper limit on the gamma-ray emission from Virgo, we constrain the minimum mass of substructures for cold dark matter halos. In addition, we find comparable levels of gamma-ray emission from CR interactions and dark matter annihilations without Sommerfeld enhancement.

  11. A New View of the High Energy Gamma-Ray Sky with the Ferrni Gamma-Ray Space Telescope

    NASA Technical Reports Server (NTRS)

    McEnery, Julie

    2009-01-01

    Following its launch in June 2008, high energy gamma-ray observations by the Fermi Gamma-ray Space Telescope have opened a new and important window on a wide variety of phenomena, including pulsars, black holes and active galactic nuclei, gamma-ray bursts, supernova remnants and the origin of cosmic rays, and searches for hypothetical new phenomena such as super symmetric dark matter annihilations. In this talk I will describe the current status of the Fermi observatory and review the science highlights from the first year of observations.

  12. Fermi: The Gamma-Ray Large Area Telescope

    NASA Technical Reports Server (NTRS)

    McEnery, Julie

    2015-01-01

    Following its launch in June 2008, high-energy gamma-ray observations by the Fermi Gamma-ray Space Telescope have unveiled over 1000 new sources and opened an important and previously unexplored window on a wide variety of phenomena. These have included the discovery of an population of pulsars pulsing only in gamma rays; the detection of photons up to 10s of GeV from gamma-ray bursts, enhancing our understanding of the astrophysics of these powerful explosions; the detection of hundreds of active galaxies; a measurement of the high energy cosmic-ray electron spectrum which may imply the presence of nearby astrophysical particle accelerators; the determination of the diffuse gamma-ray emission with unprecedented accuracy and the constraints on phenomena such as supersymmetric dark-matter annihilations and exotic relics from the Big Bang. Continuous monitoring of the high-energy gamma-ray sky has uncovered numerous outbursts from active galaxies and the discovery of transient sources in our galaxy. In this talk I will describe the current status of the Fermi observatory and review the science highlights from Fermi.

  13. Fermi: The Gamma-Ray Large Area Telescope

    NASA Technical Reports Server (NTRS)

    McEnery, Julie

    2014-01-01

    Following its launch in June 2008, high-energy gamma-ray observations by the Fermi Gamma-ray Space Telescope have unveiled over 1000 new sources and opened an important and previously unexplored window on a wide variety of phenomena. These have included the discovery of an population of pulsars pulsing only in gamma rays; the detection of photons up to 10 seconds of gigaelectronvolts from gamma-ray bursts, enhancing our understanding of the astrophysics of these powerful explosions; the detection of hundreds of active galaxies; a measurement of the high energy cosmic-ray electron spectrum which may imply the presence of nearby astrophysical particle accelerators; the determination of the diffuse gamma-ray emission with unprecedented accuracy and the constraints on phenomena such as super-symmetric dark-matter annihilations and exotic relics from the Big Bang. Continuous monitoring of the high-energy gamma-ray sky has uncovered numerous outbursts from active galaxies and the discovery of transient sources in our galaxy. In this talk I will describe the current status of the Fermi observatory and review the science highlights from Fermi.

  14. Gamma Ray Bursts

    NASA Technical Reports Server (NTRS)

    Gehrels, Neil; Meszaros, Peter

    2012-01-01

    Gamma-ray bursts (GRBs) are bright flashes of gamma-rays coming from the cosmos. They occur roughly once per day ,last typically lOs of seconds and are the most luminous events in the universe. More than three decades after their discovery, and after pioneering advances from space and ground experiments, they still remain mysterious. The launch of the Swift and Fermi satellites in 2004 and 2008 brought in a trove of qualitatively new data. In this review we survey the interplay between these recent observations and the theoretical models of the prompt GRB emission and the subsequent afterglows.

  15. Alpha proton x ray spectrometer

    NASA Technical Reports Server (NTRS)

    Rieder, Rudi; Waeke, H.; Economou, T.

    1994-01-01

    Mars Pathfinder will carry an alpha-proton x ray spectrometer (APX) for the determination of the elemental chemical composition of Martian rocks and soils. The instrument will measure the concentration of all major and some minor elements, including C, N, and O at levels above typically 1 percent.

  16. Discoveries by the Fermi Gamma Ray Space Telescope

    NASA Technical Reports Server (NTRS)

    Gehrels, Neil

    2011-01-01

    Fermi is a large space gamma-ray mission developed by NASA and the DOE with major contributions from France, Germany, Italy, Japan and Sweden. It was launched in June 2008 and has been performing flawlessly since then. The main instrument is the Large Area Telescope (LAT) operating in the 20 MeV to 300 GeV range and a smaller monitor instrument is the Gamma-ray Burst Monitor (GBM) operating in the 8 keV to 40 MeV range. New findings are occurring every week. Some of the key discoveries are: 1) Discovery of many new gamma-ray pulsars, including gamma-ray only and millisecond pulsars. 2) Detection of high energy gamma-ray emission from globular clusters, most likely due to summed emission from msec pulsars. 3) Discovery of delayed and extended high energy gamma-ray emission from short and long gamma-ray busts. 4) Detection of approximately 250 gamma-ray bursts per year with the GBM instrument. 5) Most accurate measurement of the cosmic ray electron spectrum between 30 GeV and 1 TeV, showing some excess above the conventional diffusion model. The talk will present the new discoveries and their implications.

  17. Time-resolved hard x-ray spectrometer

    NASA Astrophysics Data System (ADS)

    Moy, Kenneth; Cuneo, Michael; McKenna, Ian; Keenan, Thomas; Sanford, Thomas; Mock, Ray

    2006-08-01

    Wired array studies are being conducted at the SNL Z accelerator to maximize the x-ray generation for inertial confinement fusion targets and high energy density physics experiments. An integral component of these studies is the characterization of the time-resolved spectral content of the x-rays. Due to potential spatial anisotropy in the emitted radiation, it is also critical to diagnose the time-evolved spectral content in a space-resolved manner. To accomplish these two measurement goals, we developed an x-ray spectrometer using a set of high-speed detectors (silicon PIN diodes) with a collimated field-of-view that converged on a 1-cm-diameter spot at the pinch axis. Spectral discrimination is achieved by placing high Z absorbers in front of these detectors. We built two spectrometers to permit simultaneous different angular views of the emitted radiation. Spectral data have been acquired from recent Z shots for the radial and axial (polar) views. UNSPEC 1 has been adapted to analyze and unfold the measured data to reconstruct the x-ray spectrum. The unfold operator code, UFO2, is being adapted for a more comprehensive spectral unfolding treatment.

  18. The accuracy of a hand-held navigation system in total knee arthroplasty.

    PubMed

    Loh, Bryan; Chen, Jerry Yongqiang; Yew, Andy Khye Soon; Pang, Hee Nee; Tay, Darren Keng Jin; Chia, Shi-Lu; Lo, Ngai Nung; Yeo, Seng Jin

    2017-03-01

    This study aims to evaluate the effectiveness of a new hand-held navigation system. The authors of this study hypothesize that this navigation system will improve overall lower limb alignment and implant placement without causing a delay in surgery. Two hundred consecutive patients diagnosed with tricompartmental osteoarthritis and underwent total knee arthroplasty by a senior surgeon were included in this study. One hundred patients underwent TKA using the hand-held navigation system, while the other 100 patients underwent TKA using the conventional technique. The primary outcomes of this study were the overall alignment of the lower limb and the position of the components. This was determined radiologically using the: (1) Hip-Knee-Ankle angle (HKA) for lower limb alignment; (2) Coronal Femoral-Component angle (CFA); and (3) Coronal Tibia-Component angle (CTA) for component position. Normal alignment was taken as 180° ± 3° for the HKA and 90° ± 3° for both the CFA and CTA. For the CFA, the proportion of outliers was 7 and 17% in the hand-held navigation and conventional group, respectively (p = 0.030). For the HKA and CTA, there was no difference in the proportion of outliers between the two groups. The duration of surgery was 73 ± 9 min and 87 ± 15 min in the hand-held navigation and conventional group, respectively (p < 0.001). This hand-held navigation system is an effective intraoperative tool for reducing the proportion of outliers for femoral implant placement as well as the duration of surgery. The authors conclude that it can be considered for use to check femoral implant placement intra-operatively. III.

  19. Gamma Rays at Very High Energies

    NASA Astrophysics Data System (ADS)

    Aharonian, Felix

    This chapter presents the elaborated lecture notes on Gamma Rays at Very High Energies given by Felix Aharonian at the 40th Saas-Fee Advanced Course on "Astrophysics at Very High Energies". Any coherent description and interpretation of phenomena related to gammarays requires deep knowledge of many disciplines of physics like nuclear and particle physics, quantum and classical electrodynamics, special and general relativity, plasma physics, magnetohydrodynamics, etc. After giving an introduction to gamma-ray astronomy the author discusses the astrophysical potential of ground-based detectors, radiation mechanisms, supernova remnants and origin of the galactic cosmic rays, TeV emission of young supernova remnants, gamma-emission from the Galactic center, pulsars, pulsar winds, pulsar wind nebulae, and gamma-ray loud binaries.

  20. Future Facilities for Gamma-Ray Pulsar Studies

    NASA Technical Reports Server (NTRS)

    Thompson, D. J.

    2003-01-01

    Pulsars seen at gamma-ray energies offer insight into particle acceleration to very high energies, along with information about the geometry and interaction processes in the magnetospheres of these rotating neutron stars. During the next decade, a number of new gamma-ray facilities will become available for pulsar studies. This brief review describes the motivation for gamma-ray pulsar studies, the opportunities for such studies, and some specific discussion of the capabilities of the Gamma-ray Large Area Space Telescope (GLAST) Large Area Telescope (LAT) for pulsar measurements.

  1. Ultratrace detector for hand-held gas chromatography

    DOEpatents

    Andresen, Brian D.; Miller, Fred S.

    1999-01-01

    An ultratrace detector system for hand-held gas chromatography having high sensitivity, for example, to emissions generated during production of weapons, biological compounds, drugs, etc. The detector system is insensitive to water, air, helium, argon, oxygen, and C0.sub.2. The detector system is basically composed of a hand-held capillary gas chromatography (GC), an insulated heated redox-chamber, a detection chamber, and a vapor trap. For example, the detector system may use gas phase redox reactions and spectral absorption of mercury vapor. The gas chromatograph initially separates compounds that percolate through a bed of heated mercuric oxide (HgO) in a silica--or other metal--aerogel material which acts as an insulator. Compounds easily oxidized by HgO liberate atomic mercury that subsequently pass through a detection chamber which includes a detector cell, such as quartz, that is illuminated with a 254 nm ultra-violet (UV) mercury discharge lamp which generates the exact mercury absorption bands that are used to detect the liberated mercury atoms. Atomic mercury strongly absorbs 254 nm energy is therefore a specific signal for reducing compounds eluting from the capillary GC, whereafter the atomic mercury is trapped for example, in a silicon-aerogel trap.

  2. Scintillation gamma spectrometer for analysis of hydraulic fracturing waste products.

    PubMed

    Ying, Leong; O'Connor, Frank; Stolz, John F

    2015-01-01

    Flowback and produced wastewaters from unconventional hydraulic fracturing during oil and gas explorations typically brings to the surface Naturally Occurring Radioactive Materials (NORM), predominantly radioisotopes from the U238 and Th232 decay chains. Traditionally, radiological sampling are performed by sending collected small samples for laboratory tests either by radiochemical analysis or measurements by a high-resolution High-Purity Germanium (HPGe) gamma spectrometer. One of the main isotopes of concern is Ra226 which requires an extended 21-days quantification period to allow for full secular equilibrium to be established for the alpha counting of its progeny daughter Rn222. Field trials of a sodium iodide (NaI) scintillation detector offers a more economic solution for rapid screenings of radiological samples. To achieve the quantification accuracy, this gamma spectrometer must be efficiency calibrated with known standard sources prior to field deployments to analyze the radioactivity concentrations in hydraulic fracturing waste products.

  3. Performance Calculations for the ITER Core Imaging X-Ray Spectrometer (CIXS)

    NASA Astrophysics Data System (ADS)

    Hill, K. W.; Delgado-Aparicio, L.; Pablant, N.; Johnson, D.; Feder, R.; Klabacha, J.; Stratton, B.; Bitter, M.; Beiersdorfer, P.; Barnsley, R.; Bertschinger, G.; O'Mullane, M.; Lee, S. G.

    2013-10-01

    The US is providing a 1D imaging x-ray crystal spectrometer system as a primary diagnostic for measuring profiles of ion temperature (Ti) and toroidal flow velocity (v) in the ITER plasma core (r/a = 0-0.85). The diagnostic must provide high spectral resolution (E/ ΔE > 5,000), spatial resolution of 10 cm, and time resolution of 10-100 ms, and must operate and survive in an environment having high neutron and gamma-ray fluxes. This work presents spectral simulations and tomographic inversions for obtaining local Ti and v, comparisons of the expected count rate profiles to the requirements, the degradation of performance due to the nuclear radiation background, and measurements of the rejection of nuclear background by detector pulse-height discrimination. This work was performed under the auspices of the DOE by PPPL under contract DE-AC02-09CH11466 and by LLNL under contract DE-AC52-07NA27344.

  4. Cosmological gamma-ray bursts

    NASA Technical Reports Server (NTRS)

    Paczynski, Bohdan

    1991-01-01

    The distribution in angle and flux of gamma-ray bursts indicates that the majority of gamma-ray bursters are at cosmological distances, i.e., at z of about 1. The rate is then about 10 exp -8/yr in a galaxy like the Milky Way, i.e., orders of magnitude lower than the estimated rate for collisions between neutron stars in close binary systems. The energy per burst is about 10 exp 51 ergs, assuming isotropic emission. The events appear to be less energetic and more frequent if their emission is strongly beamed. Some tests for the distance scale are discussed: a correlation between the burst's strength and its spectrum; the absorption by the Galactic gas below about 2 keV; the X-ray tails caused by forward scattering by the Galactic dust; about 1 month recurrence of some bursts caused by gravitational lensing by foreground galaxies; and a search for gamma-ray bursts in M31. The bursts appear to be a manifestation of something exotic, but conventional compact objects can provide an explanation. The best possibility is offered by a decay of a bindary composed of a spinning-stellar-mass black-hole primary and a neutron or a strange-quark star secondary. In the final phase the secondary is tidally disrupted, forms an accretion disk, and up to 10 exp 54 ergs are released. A very small fraction of this energy powers the gamma-ray burst.

  5. Significance of medium energy gamma ray astronomy in the study of cosmic rays

    NASA Technical Reports Server (NTRS)

    Fichtel, C. E.; Kniffen, D. A.; Thompson, D. J.; Bignami, G. F.; Cheung, C. Y.

    1975-01-01

    Medium energy (about 10 to 30 MeV) gamma ray astronomy provides information on the product of the galactic electron cosmic ray intensity and the galactic matter to which the electrons are dynamically coupled by the magnetic field. Because high energy (greater than 100 MeV) gamma ray astronomy provides analogous information for the nucleonic cosmic rays and the relevant matter, a comparison between high energy and medium energy gamma ray intensities provides a direct ratio of the cosmic ray electrons and nucleons throughout the galaxy. A calculation of gamma ray production by electron bremsstrahlung shows that: bremsstrahlung energy loss is probably not negligible over the lifetime of the electrons in the galaxy; and the approximate bremsstrahlung calculation often used previously overestimates the gamma ray intensity by about a factor of two. As a specific example, expected medium energy gamma ray intensities are calculated for the speral arm model.

  6. Feasibility study of a long duration balloon flight with NASA/GSFC and Soviet Space Agency Gamma Ray Spectrometers

    NASA Technical Reports Server (NTRS)

    Sharp, William E.; Knoll, Glenn

    1989-01-01

    A feasibility study of conducting a joint NASA/GSFC and Soviet Space Agency long duration balloon flight at the Antarctic in Jan. 1993 is reported. The objective of the mission is the verification and calibration of gamma ray and neutron remote sensing instruments which can be used to obtain geochemical maps of the surface of planetary bodies. The gamma ray instruments in question are the GRAD and the Soviet Phobos prototype. The neutron detectors are supplied by Los Alamos National Laboratory and the Soviet Phobos prototype. These are to be carried aboard a gondola that supplies the data and supplies the power for the period of up to two weeks.

  7. Hand held data collection and monitoring system for nuclear facilities

    DOEpatents

    Brayton, D.D.; Scharold, P.G.; Thornton, M.W.; Marquez, D.L.

    1999-01-26

    Apparatus and method is disclosed for a data collection and monitoring system that utilizes a pen based hand held computer unit which has contained therein interaction software that allows the user to review maintenance procedures, collect data, compare data with historical trends and safety limits, and input new information at various collection sites. The system has a means to allow automatic transfer of the collected data to a main computer data base for further review, reporting, and distribution purposes and uploading updated collection and maintenance procedures. The hand held computer has a running to-do list so sample collection and other general tasks, such as housekeeping are automatically scheduled for timely completion. A done list helps users to keep track of all completed tasks. The built-in check list assures that work process will meet the applicable processes and procedures. Users can hand write comments or drawings with an electronic pen that allows the users to directly interface information on the screen. 15 figs.

  8. Hand held data collection and monitoring system for nuclear facilities

    DOEpatents

    Brayton, Darryl D.; Scharold, Paul G.; Thornton, Michael W.; Marquez, Diana L.

    1999-01-01

    Apparatus and method is disclosed for a data collection and monitoring system that utilizes a pen based hand held computer unit which has contained therein interaction software that allows the user to review maintenance procedures, collect data, compare data with historical trends and safety limits, and input new information at various collection sites. The system has a means to allow automatic transfer of the collected data to a main computer data base for further review, reporting, and distribution purposes and uploading updated collection and maintenance procedures. The hand held computer has a running to-do list so sample collection and other general tasks, such as housekeeping are automatically scheduled for timely completion. A done list helps users to keep track of all completed tasks. The built-in check list assures that work process will meet the applicable processes and procedures. Users can hand write comments or drawings with an electronic pen that allows the users to directly interface information on the screen.

  9. Spent Fuel Assay with an Ultra-High Rate HPGe Spectrometer

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Fast, James; Fulsom, Bryan; Pitts, Karl

    2015-07-01

    Traditional verification of spent nuclear fuel (SNF) includes determination of initial enrichment, burnup and cool down time (IE, BU, CT). Along with neutron measurements, passive gamma assay provides important information for determining BU and CT. Other gamma-ray-based assay methods such as passive tomography and active delayed gamma offer the potential to measure the spatial distribution of fission products and the fissile isotopic concentration of the fuel, respectively. All fuel verification methods involving gamma-ray spectroscopy require that the spectrometers manage very high count rates while extracting the signatures of interest. PNNL has developed new digital filtering and analysis techniques to producemore » an ultra-high rate gamma-ray spectrometer from a standard coaxial high-purity germanium (HPGe) crystal. This 37% relative efficiency detector has been operated for SNF measurements at input count rates of 500-1300 kcps and throughput in excess of 150 kcps. Optimized filtering algorithms preserve the spectroscopic capability of the system even at these high rates. This paper will present the results of both passive and active SNF measurement performed with this system at PNNL. (authors)« less

  10. Hand-Held Ultrasonic Instrument for Reading Matrix Symbols

    NASA Technical Reports Server (NTRS)

    Schramm, Harry F.; Kula, John P.; Gurney, John W.; Lior, Ephraim D.

    2008-01-01

    A hand-held instrument that would include an ultrasonic camera has been proposed as an efficient means of reading matrix symbols. The proposed instrument could be operated without mechanical raster scanning. All electronic functions from excitation of ultrasonic pulses through final digital processing for decoding matrix symbols would be performed by dedicated circuitry within the single, compact instrument housing.

  11. Nuclear gamma rays from energetic particle interactions

    NASA Technical Reports Server (NTRS)

    Ramaty, R.; Kozlovsky, B.; Lingenfelter, R. E.

    1978-01-01

    Gamma ray line emission from nuclear deexcitation following energetic particle reactions is evaluated. The compiled nuclear data and the calculated gamma ray spectra and intensities can be used for the study of astrophysical sites which contain large fluxes of energetic protons and nuclei. A detailed evaluation of gamma ray line production in the interstellar medium is made.

  12. Fermi gamma-ray imaging of a radio galaxy.

    PubMed

    Abdo, A A; Ackermann, M; Ajello, M; Atwood, W B; Baldini, L; Ballet, J; Barbiellini, G; Bastieri, D; Baughman, B M; Bechtol, K; Bellazzini, R; Berenji, B; Blandford, R D; Bloom, E D; Bonamente, E; Borgland, A W; Bregeon, J; Brez, A; Brigida, M; Bruel, P; Burnett, T H; Buson, S; Caliandro, G A; Cameron, R A; Caraveo, P A; Casandjian, J M; Cavazzuti, E; Cecchi, C; Celik, O; Chekhtman, A; Cheung, C C; Chiang, J; Ciprini, S; Claus, R; Cohen-Tanugi, J; Colafrancesco, S; Cominsky, L R; Conrad, J; Costamante, L; Cutini, S; Davis, D S; Dermer, C D; de Angelis, A; de Palma, F; Digel, S W; do Couto e Silva, E; Drell, P S; Dubois, R; Dumora, D; Farnier, C; Favuzzi, C; Fegan, S J; Finke, J; Focke, W B; Fortin, P; Fukazawa, Y; Funk, S; Fusco, P; Gargano, F; Gasparrini, D; Gehrels, N; Georganopoulos, M; Germani, S; Giebels, B; Giglietto, N; Giordano, F; Giroletti, M; Glanzman, T; Godfrey, G; Grenier, I A; Grove, J E; Guillemot, L; Guiriec, S; Hanabata, Y; Harding, A K; Hayashida, M; Hays, E; Hughes, R E; Jackson, M S; Jóhannesson, G; Johnson, A S; Johnson, T J; Johnson, W N; Kamae, T; Katagiri, H; Kataoka, J; Kawai, N; Kerr, M; Knödlseder, J; Kocian, M L; Kuss, M; Lande, J; Latronico, L; Lemoine-Goumard, M; Longo, F; Loparco, F; Lott, B; Lovellette, M N; Lubrano, P; Madejski, G M; Makeev, A; Mazziotta, M N; McConville, W; McEnery, J E; Meurer, C; Michelson, P F; Mitthumsiri, W; Mizuno, T; Moiseev, A A; Monte, C; Monzani, M E; Morselli, A; Moskalenko, I V; Murgia, S; Nolan, P L; Norris, J P; Nuss, E; Ohsugi, T; Omodei, N; Orlando, E; Ormes, J F; Paneque, D; Parent, D; Pelassa, V; Pepe, M; Pesce-Rollins, M; Piron, F; Porter, T A; Rainò, S; Rando, R; Razzano, M; Razzaque, S; Reimer, A; Reimer, O; Reposeur, T; Ritz, S; Rochester, L S; Rodriguez, A Y; Romani, R W; Roth, M; Ryde, F; Sadrozinski, H F-W; Sambruna, R; Sanchez, D; Sander, A; Saz Parkinson, P M; Scargle, J D; Sgrò, C; Siskind, E J; Smith, D A; Smith, P D; Spandre, G; Spinelli, P; Starck, J-L; Stawarz, Ł; Strickman, M S; Suson, D J; Tajima, H; Takahashi, H; Takahashi, T; Tanaka, T; Thayer, J B; Thayer, J G; Thompson, D J; Tibaldo, L; Torres, D F; Tosti, G; Tramacere, A; Uchiyama, Y; Usher, T L; Vasileiou, V; Vilchez, N; Vitale, V; Waite, A P; Wallace, E; Wang, P; Winer, B L; Wood, K S; Ylinen, T; Ziegler, M; Hardcastle, M J; Kazanas, D

    2010-05-07

    The Fermi Gamma-ray Space Telescope has detected the gamma-ray glow emanating from the giant radio lobes of the radio galaxy Centaurus A. The resolved gamma-ray image shows the lobes clearly separated from the central active source. In contrast to all other active galaxies detected so far in high-energy gamma-rays, the lobe flux constitutes a considerable portion (greater than one-half) of the total source emission. The gamma-ray emission from the lobes is interpreted as inverse Compton-scattered relic radiation from the cosmic microwave background, with additional contribution at higher energies from the infrared-to-optical extragalactic background light. These measurements provide gamma-ray constraints on the magnetic field and particle energy content in radio galaxy lobes, as well as a promising method to probe the cosmic relic photon fields.

  13. Constraining the Origin of Phobos with the Elpasolite Planetary Ice and Composition Spectrometer (EPICS) - Simulated Performance

    NASA Astrophysics Data System (ADS)

    Nowicki, S. F.; Mesick, K.; Coupland, D. D. S.; Dallmann, N. A.; Feldman, W. C.; Stonehill, L. C.; Hardgrove, C.; Dibb, S.; Gabriel, T. S. J.; West, S.

    2017-12-01

    Elpasolites are a promising new family of inorganic scintillators that can detect both gamma rays and neutrons within a single detector volume, reducing the instrument size, weight, and power (SWaP), all of which are critical for planetary science missions. The ability to distinguish between neutron and gamma events is done through pulse shape discrimination (PSD). The Elpasolite Planetary Ice and Composition Spectrometer (EPICS) utilizes elpasolites in a next-generation, highly capable, low-SWaP gamma-ray and neutron spectrometer. We present simulated capabilities of EPICS sensitivities to neutron and gamma-rays, and demonstrate how EPICS can constrain the origin of Phobos between the following three main hypotheses: 1) accretion after a giant impact with Mars, 2) co-accretion with Mars, and 3) capture of an external body. The MCNP6 code was used to calculate the neutron and gamma-ray flux that escape the surface of Phobos, and GEANT4 to model the response of the EPICS instrument on orbit around Phobos.

  14. Gamma-400 Science Objectives Built on the Current HE Gamma-Ray and CR Results

    NASA Technical Reports Server (NTRS)

    Moiseev, Alexander; Mitchell, John; Thompson, David

    2012-01-01

    The main scientific interest of the Russian Gamma-400 team: Observe gamma-rays above approximately 50 GeV with excellent energy and angular resolution with the goals of: (1) Studying the fine spectral structure of the isotropic high-energy gamma-radiation, (2) Attempting to identify the many still-unidentified Fermi-LAT gamma-ray sources. Gamma-400 will likely be the only space-based gamma-ray observatory operating at the end of the decade. In our proposed Gamma-400-LE version, it will substantially improve upon the capabilities of Fermi LAT and AGILE in both LE and HE energy range. Measuring gamma-rays from approx 20 MeV to approx 1 TeV for at least 7 years, Gamma-400-LE will address the topics of dark matter, cosmic ray origin and propagation, neutron stars, flaring pulsars, black holes, AGNs, GRBs, and actively participate in multiwavelength campaigns.

  15. The Gamma-Ray Albedo of the Moon

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Moskalenko, I.V.; /Stanford U., HEPL /KIPAC, Menlo Park; Porter, T.A.

    2008-03-25

    We use the GEANT4 Monte Carlo framework to calculate the {gamma}-ray albedo of the Moon due to interactions of cosmic ray (CR) nuclei with moon rock. Our calculation of the albedo spectrum agrees with the EGRET data. We show that the spectrum of {gamma}-rays from the Moon is very steep with an effective cutoff around 3-4 GeV (600 MeV for the inner part of the Moon disk) and exhibits a narrow pion-decay line at 67.5 MeV, perhaps unique in astrophysics. Apart from other astrophysical sources, the albedo spectrum of the Moon is well understood, including its absolute normalization; this makesmore » it a useful 'standard candle' for {gamma}-ray telescopes. The steep albedo spectrum also provides a unique opportunity for energy calibration of {gamma}-ray telescopes, such as the forthcoming Gamma Ray Large Area Space Telescope (GLAST). Since the albedo flux depends on the incident CR spectrum which changes over the solar cycle, it is possible to monitor the CR spectrum using the albedo {gamma}-ray flux. Simultaneous measurements of CR proton and helium spectra by the Payload for Antimatter-Matter Exploration and Light-nuclei Astrophysics (PAMELA), and observations of the albedo {gamma}-rays by the GLAST Large Area Telescope (LAT), can be used to test the model predictions and will enable the LAT to monitor the CR spectrum near the Earth beyond the lifetime of the PAMELA.« less

  16. The Gamma-ray Albedo of the Moon

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Moskalenko, Igor V.; /Stanford U., HEPL; Porter, Troy A.

    2007-09-28

    We use the GEANT4 Monte Carlo framework to calculate the {gamma}-ray albedo of the Moon due to interactions of cosmic ray (CR) nuclei with moon rock. Our calculation of the albedo spectrum agrees with the EGRET data. We show that the spectrum of {gamma}-rays from the Moon is very steep with an effective cutoff around 3-4 GeV (600 MeV for the inner part of the Moon disk) and exhibits a narrow pion-decay line at 67.5 MeV, perhaps unique in astrophysics. Apart from other astrophysical sources, the albedo spectrum of the Moon is well understood, including its absolute normalization; this makesmore » it a useful 'standard candle' for {gamma}-ray telescopes. The steep albedo spectrum also provides a unique opportunity for energy calibration of {gamma}-ray telescopes, such as the forthcoming Gamma Ray Large Area Space Telescope (GLAST). Since the albedo flux depends on the incident CR spectrum which changes over the solar cycle, it is possible to monitor the CR spectrum using the albedo {gamma}-ray flux. Simultaneous measurements of CR proton and helium spectra by the Payload for Antimatter-Matter Exploration and Light-nuclei Astrophysics (PAMELA), and observations of the albedo {gamma}-rays by the GLAST Large Area Telescope (LAT), can be used to test the model predictions and will enable the LAT to monitor the CR spectrum near the Earth beyond the lifetime of the PAMELA.« less

  17. Observational techniques for solar flare gamma-rays, hard X-rays, and neutrons

    NASA Technical Reports Server (NTRS)

    Lin, Robert P.

    1989-01-01

    The development of new instrumentation and techniques for solar hard X-ray, gamma ray and neutron observations from spacecraft and/or balloon-borne platforms is examined. The principal accomplishments are: (1) the development of a two segment germanium detector which is near ideal for solar hard X-ray and gamma ray spectroscopy; (2) the development of long duration balloon flight techniques and associated instrumentation; and (3) the development of innovative new position sensitive detectors for hard X-ray and gamma rays.

  18. Laboratory laser acceleration and high energy astrophysics: {gamma}-ray bursts and cosmic rays

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Tajima, T.; Takahashi, Y.

    1998-08-20

    Recent experimental progress in laser acceleration of charged particles (electrons) and its associated processes has shown that intense electromagnetic pulses can promptly accelerate charged particles to high energies and that their energy spectrum is quite hard. On the other hand some of the high energy astrophysical phenomena such as extremely high energy cosmic rays and energetic components of {gamma}-ray bursts cry for new physical mechanisms for promptly accelerating particles to high energies. The authors suggest that the basic physics involved in laser acceleration experiments sheds light on some of the underlying mechanisms and their energy spectral characteristics of the promptlymore » accelerated particles in these high energy astrophysical phenomena.« less

  19. Gamma-ray transfer and energy deposition in supernovae

    NASA Technical Reports Server (NTRS)

    Swartz, Douglas A.; Sutherland, Peter G.; Harkness, Robert P.

    1995-01-01

    Solutions to the energy-independent (gray) radiative transfer equations are compared to results of Monte Carlo simulations of the Ni-56 and Co-56 decay gamma-ray energy deposition in supernovae. The comparison shows that an effective, purely absorptive, gray opacity, kappa(sub gamma) approximately (0. 06 +/- 0.01)Y(sub e) sq cm/g, where Y is the total number of electrons per baryon, accurately describes the interaction of gamma-rays with the cool supernova gas and the local gamma-ray energy deposition within the gas. The nature of the gamma-ray interaction process (dominated by Compton scattering in the relativistic regime) creates a weak dependence of kappa(sub gamma) on the optical thickness of the (spherically symmetric) supernova atmosphere: The maximum value of kappa(sub gamma) applies during optically thick conditions when individual gamma-rays undergo multiple scattering encounters and the lower bound is reached at the phase characterized by a total Thomson optical depth to the center of the atmosphere tau(sub e) approximately less than 1. Gamma-ray deposition for Type Ia supernova models to within 10% for the epoch from maximum light to t = 1200 days. Our results quantitatively confirm that the quick and efficient solution to the gray transfer problem provides an accurate representation of gamma-ray energy deposition for a broad range of supernova conditions.

  20. Regolith X-Ray Imaging Spectrometer (REXIS) Aboard the OSIRIS-REx Asteroid Sample Return Mission

    NASA Astrophysics Data System (ADS)

    Masterson, R. A.; Chodas, M.; Bayley, L.; Allen, B.; Hong, J.; Biswas, P.; McMenamin, C.; Stout, K.; Bokhour, E.; Bralower, H.; Carte, D.; Chen, S.; Jones, M.; Kissel, S.; Schmidt, F.; Smith, M.; Sondecker, G.; Lim, L. F.; Lauretta, D. S.; Grindlay, J. E.; Binzel, R. P.

    2018-02-01

    The Regolith X-ray Imaging Spectrometer (REXIS) is the student collaboration experiment proposed and built by an MIT-Harvard team, launched aboard NASA's OSIRIS-REx asteroid sample return mission. REXIS complements the scientific investigations of other OSIRIS-REx instruments by determining the relative abundances of key elements present on the asteroid's surface by measuring the X-ray fluorescence spectrum (stimulated by the natural solar X-ray flux) over the range of energies 0.5 to 7 keV. REXIS consists of two components: a main imaging spectrometer with a coded aperture mask and a separate solar X-ray monitor to account for the Sun's variability. In addition to element abundance ratios (relative to Si) pinpointing the asteroid's most likely meteorite association, REXIS also maps elemental abundance variability across the asteroid's surface using the asteroid's rotation as well as the spacecraft's orbital motion. Image reconstruction at the highest resolution is facilitated by the coded aperture mask. Through this operation, REXIS will be the first application of X-ray coded aperture imaging to planetary surface mapping, making this student-built instrument a pathfinder toward future planetary exploration. To date, 60 students at the undergraduate and graduate levels have been involved with the REXIS project, with the hands-on experience translating to a dozen Master's and Ph.D. theses and other student publications.

  1. Validity of maximal isometric knee extension strength measurements obtained via belt-stabilized hand-held dynamometry in healthy adults.

    PubMed

    Ushiyama, Naoko; Kurobe, Yasushi; Momose, Kimito

    2017-11-01

    [Purpose] To determine the validity of knee extension muscle strength measurements using belt-stabilized hand-held dynamometry with and without body stabilization compared with the gold standard isokinetic dynamometry in healthy adults. [Subjects and Methods] Twenty-nine healthy adults (mean age, 21.3 years) were included. Study parameters involved right side measurements of maximal isometric knee extension strength obtained using belt-stabilized hand-held dynamometry with and without body stabilization and the gold standard. Measurements were performed in all subjects. [Results] A moderate correlation and fixed bias were found between measurements obtained using belt-stabilized hand-held dynamometry with body stabilization and the gold standard. No significant correlation and proportional bias were found between measurements obtained using belt-stabilized hand-held dynamometry without body stabilization and the gold standard. The strength identified using belt-stabilized hand-held dynamometry with body stabilization may not be commensurate with the maximum strength individuals can generate; however, it reflects such strength. In contrast, the strength identified using belt-stabilized hand-held dynamometry without body stabilization does not reflect the maximum strength. Therefore, a chair should be used to stabilize the body when performing measurements of maximal isometric knee extension strength using belt-stabilized hand-held dynamometry in healthy adults. [Conclusion] Belt-stabilized hand-held dynamometry with body stabilization is more convenient than the gold standard in clinical settings.

  2. One-dimensional Spatial Distributions of Gamma-ray Emitting Contaminants in Field Lysimeters Using a Collimated Gamma-ray Spectroscopy System.

    PubMed

    Erdmann, Bryan J; Powell, Brian A; Kaplan, Daniel I; DeVol, Timothy A

    2018-05-01

    One-dimensional scans of gamma-ray emitting contaminants were conducted on lysimeters from the RadFLEX facility at the Savannah River Nationals Laboratory (SRNL). The lysimeters each contained a contamination source that was buried in SRNL soil. A source consisted of Cs, Co, Ba, and Eu incorporated either into a solid waste form (Portland cement and reducing grout) or applied to a filter paper for direct soil exposure. The lysimeters were exposed to natural environmental conditions for 3 to 4 y. The initial contaminant activities range from 4.0 to 9.0 MBq for the solid wasteforms and 0.25 to 0.47 MBq for the soil-incorporated source. The measurements were performed using a collimated high-purity germanium gamma-ray spectrometer with a spatial resolution of 2.5 mm. These scans showed downward mobility of Co and Ba when the radionuclides were incorporated directly into the SRNL soil. When radionuclides were incorporated into the solid waste forms positioned in the SRNL soil, Cs exhibited both upward and downward dispersion while the other radionuclides showed no movement. This dispersion was more significant for the Portland cement than the reducing grout wasteform. Europium-152 was the only radionuclide of those studied that showed no movement within the spatial resolution of the scanner from the original placement within the lysimeter. Understanding radionuclide movement in the environment is important for developing strategies for waste management and disposal.

  3. Terrestrial gamma-ray flashes

    NASA Astrophysics Data System (ADS)

    Marisaldi, Martino; Fuschino, Fabio; Labanti, Claudio; Tavani, Marco; Argan, Andrea; Del Monte, Ettore; Longo, Francesco; Barbiellini, Guido; Giuliani, Andrea; Trois, Alessio; Bulgarelli, Andrea; Gianotti, Fulvio; Trifoglio, Massimo

    2013-08-01

    Lightning and thunderstorm systems in general have been recently recognized as powerful particle accelerators, capable of producing electrons, positrons, gamma-rays and neutrons with energies as high as several tens of MeV. In fact, these natural systems turn out to be the highest energy and most efficient natural particle accelerators on Earth. Terrestrial Gamma-ray Flashes (TGFs) are millisecond long, very intense bursts of gamma-rays and are one of the most intriguing manifestation of these natural accelerators. Only three currently operative missions are capable of detecting TGFs from space: the RHESSI, Fermi and AGILE satellites. In this paper we review the characteristics of TGFs, including energy spectrum, timing structure, beam geometry and correlation with lightning, and the basic principles of the associated production models. Then we focus on the recent AGILE discoveries concerning the high energy extension of the TGF spectrum up to 100 MeV, which is difficult to reconcile with current theoretical models.

  4. The supernova-gamma-ray burst-jet connection.

    PubMed

    Hjorth, Jens

    2013-06-13

    The observed association between supernovae and gamma-ray bursts represents a cornerstone in our understanding of the nature of gamma-ray bursts. The collapsar model provides a theoretical framework for this connection. A key element is the launch of a bipolar jet (seen as a gamma-ray burst). The resulting hot cocoon disrupts the star, whereas the (56)Ni produced gives rise to radioactive heating of the ejecta, seen as a supernova. In this discussion paper, I summarize the observational status of the supernova-gamma-ray burst connection in the context of the 'engine' picture of jet-driven supernovae and highlight SN 2012bz/GRB 120422A--with its luminous supernova but intermediate high-energy luminosity--as a possible transition object between low-luminosity and jet gamma-ray bursts. The jet channel for supernova explosions may provide new insights into supernova explosions in general.

  5. Search for medium-energy gamma-ray pulsars

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sweeney, W.E. Jr.

    1987-01-01

    Results are presented from a search for pulsed gamma rays from four radio pulsars, chosen for their interest to gamma-ray astronomers in previous studies. The data set used for the search consists of gamma-ray events at energies of 1-30 MeV, detected during a 40-hour balloon flight of the UCR double Compton scatter telescope launched at the National Scientific Balloon Facility in Palestine, Texas, USA on September 30, 1978. No statistically significant signals were detected from any of the pulsars. Three sigma upper limits to pulsed 1-30 MeV gamma ray flux from PSR 0950+08, PSR 1822+09, PSR 1929+10, and PSR 1953+29more » are presented. Two complete exposures to PSR 0950+08 were obtained. The reported tentative detection of 1-20 MeV gamma rays from PSR 0950+08 is not confirmed.« less

  6. A practical superconducting-microcalorimeter X-ray spectrometer for beamline and laboratory science

    DOE PAGES

    Doriese, W. B.; Abbamonte, P.; Alpert, B. K.; ...

    2017-05-01

    We describe a series of microcalorimeter X-ray spectrometers designed for a broad suite of measurement applications. The chief advantage of this type of spectrometer is that it can be orders of magnitude more efficient at collecting X-rays than more traditional high-resolution spectrometers that rely on wavelength-dispersive techniques. This advantage is most useful in applications that are traditionally photon-starved and/or involve radiation-sensitive samples. Each energy-dispersive spectrometer is built around an array of several hundred transition-edge sensors (TESs). TESs are superconducting thin films that are biased into their superconducting-to-normal-metal transitions. The spectrometers share a common readout architecture and many design elements, suchmore » as a compact, 65 mK detector package, 8-column time-division-multiplexed superconducting quantum-interference device readout, and a liquid-cryogen-free cryogenic system that is a two-stage adiabatic-demagnetization refrigerator backed by a pulse-tube cryocooler. We have adapted this flexible architecture to mate to a variety of sample chambers and measurement systems that encompass a range of observing geometries. There are two different types of TES pixels employed. The first, designed for X-ray energies below 10 keV, has a best demonstrated energy resolution of 2.1 eV (full-width-at-half-maximum or FWHM) at 5.9 keV. The second, designed for X-ray energies below 2 keV, has a best demonstrated resolution of 1.0 eV (FWHM) at 500 eV. Our team has now deployed seven of these X-ray spectrometers to a variety of light sources, accelerator facilities, and laboratory-scale experiments; these seven spectrometers have already performed measurements related to their applications. Another five of these spectrometers will come online in the near future. We have applied our TES spectrometers to the following measurement applications: synchrotron-based absorption and emission spectroscopy and energy

  7. A practical superconducting-microcalorimeter X-ray spectrometer for beamline and laboratory science

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Doriese, W. B.; Abbamonte, P.; Alpert, B. K.

    We describe a series of microcalorimeter X-ray spectrometers designed for a broad suite of measurement applications. The chief advantage of this type of spectrometer is that it can be orders of magnitude more efficient at collecting X-rays than more traditional high-resolution spectrometers that rely on wavelength-dispersive techniques. This advantage is most useful in applications that are traditionally photon-starved and/or involve radiation-sensitive samples. Each energy-dispersive spectrometer is built around an array of several hundred transition-edge sensors (TESs). TESs are superconducting thin films that are biased into their superconducting-to-normal-metal transitions. The spectrometers share a common readout architecture and many design elements, suchmore » as a compact, 65 mK detector package, 8-column time-division-multiplexed superconducting quantum-interference device readout, and a liquid-cryogen-free cryogenic system that is a two-stage adiabatic-demagnetization refrigerator backed by a pulse-tube cryocooler. We have adapted this flexible architecture to mate to a variety of sample chambers and measurement systems that encompass a range of observing geometries. There are two different types of TES pixels employed. The first, designed for X-ray energies below 10 keV, has a best demonstrated energy resolution of 2.1 eV (full-width-at-half-maximum or FWHM) at 5.9 keV. The second, designed for X-ray energies below 2 keV, has a best demonstrated resolution of 1.0 eV (FWHM) at 500 eV. Our team has now deployed seven of these X-ray spectrometers to a variety of light sources, accelerator facilities, and laboratory-scale experiments; these seven spectrometers have already performed measurements related to their applications. Another five of these spectrometers will come online in the near future. We have applied our TES spectrometers to the following measurement applications: synchrotron-based absorption and emission spectroscopy and energy

  8. A practical superconducting-microcalorimeter X-ray spectrometer for beamline and laboratory science

    NASA Astrophysics Data System (ADS)

    Doriese, W. B.; Abbamonte, P.; Alpert, B. K.; Bennett, D. A.; Denison, E. V.; Fang, Y.; Fischer, D. A.; Fitzgerald, C. P.; Fowler, J. W.; Gard, J. D.; Hays-Wehle, J. P.; Hilton, G. C.; Jaye, C.; McChesney, J. L.; Miaja-Avila, L.; Morgan, K. M.; Joe, Y. I.; O'Neil, G. C.; Reintsema, C. D.; Rodolakis, F.; Schmidt, D. R.; Tatsuno, H.; Uhlig, J.; Vale, L. R.; Ullom, J. N.; Swetz, D. S.

    2017-05-01

    We describe a series of microcalorimeter X-ray spectrometers designed for a broad suite of measurement applications. The chief advantage of this type of spectrometer is that it can be orders of magnitude more efficient at collecting X-rays than more traditional high-resolution spectrometers that rely on wavelength-dispersive techniques. This advantage is most useful in applications that are traditionally photon-starved and/or involve radiation-sensitive samples. Each energy-dispersive spectrometer is built around an array of several hundred transition-edge sensors (TESs). TESs are superconducting thin films that are biased into their superconducting-to-normal-metal transitions. The spectrometers share a common readout architecture and many design elements, such as a compact, 65 mK detector package, 8-column time-division-multiplexed superconducting quantum-interference device readout, and a liquid-cryogen-free cryogenic system that is a two-stage adiabatic-demagnetization refrigerator backed by a pulse-tube cryocooler. We have adapted this flexible architecture to mate to a variety of sample chambers and measurement systems that encompass a range of observing geometries. There are two different types of TES pixels employed. The first, designed for X-ray energies below 10 keV, has a best demonstrated energy resolution of 2.1 eV (full-width-at-half-maximum or FWHM) at 5.9 keV. The second, designed for X-ray energies below 2 keV, has a best demonstrated resolution of 1.0 eV (FWHM) at 500 eV. Our team has now deployed seven of these X-ray spectrometers to a variety of light sources, accelerator facilities, and laboratory-scale experiments; these seven spectrometers have already performed measurements related to their applications. Another five of these spectrometers will come online in the near future. We have applied our TES spectrometers to the following measurement applications: synchrotron-based absorption and emission spectroscopy and energy-resolved scattering

  9. A practical superconducting-microcalorimeter X-ray spectrometer for beamline and laboratory science.

    PubMed

    Doriese, W B; Abbamonte, P; Alpert, B K; Bennett, D A; Denison, E V; Fang, Y; Fischer, D A; Fitzgerald, C P; Fowler, J W; Gard, J D; Hays-Wehle, J P; Hilton, G C; Jaye, C; McChesney, J L; Miaja-Avila, L; Morgan, K M; Joe, Y I; O'Neil, G C; Reintsema, C D; Rodolakis, F; Schmidt, D R; Tatsuno, H; Uhlig, J; Vale, L R; Ullom, J N; Swetz, D S

    2017-05-01

    We describe a series of microcalorimeter X-ray spectrometers designed for a broad suite of measurement applications. The chief advantage of this type of spectrometer is that it can be orders of magnitude more efficient at collecting X-rays than more traditional high-resolution spectrometers that rely on wavelength-dispersive techniques. This advantage is most useful in applications that are traditionally photon-starved and/or involve radiation-sensitive samples. Each energy-dispersive spectrometer is built around an array of several hundred transition-edge sensors (TESs). TESs are superconducting thin films that are biased into their superconducting-to-normal-metal transitions. The spectrometers share a common readout architecture and many design elements, such as a compact, 65 mK detector package, 8-column time-division-multiplexed superconducting quantum-interference device readout, and a liquid-cryogen-free cryogenic system that is a two-stage adiabatic-demagnetization refrigerator backed by a pulse-tube cryocooler. We have adapted this flexible architecture to mate to a variety of sample chambers and measurement systems that encompass a range of observing geometries. There are two different types of TES pixels employed. The first, designed for X-ray energies below 10 keV, has a best demonstrated energy resolution of 2.1 eV (full-width-at-half-maximum or FWHM) at 5.9 keV. The second, designed for X-ray energies below 2 keV, has a best demonstrated resolution of 1.0 eV (FWHM) at 500 eV. Our team has now deployed seven of these X-ray spectrometers to a variety of light sources, accelerator facilities, and laboratory-scale experiments; these seven spectrometers have already performed measurements related to their applications. Another five of these spectrometers will come online in the near future. We have applied our TES spectrometers to the following measurement applications: synchrotron-based absorption and emission spectroscopy and energy-resolved scattering

  10. Modeled Martian subsurface elemental composition measurements with the Probing In situ with Neutron and Gamma ray instrument

    NASA Astrophysics Data System (ADS)

    Nowicki, Suzanne F.; Evans, Larry G.; Starr, Richard D.; Schweitzer, Jeffrey S.; Karunatillake, Suniti; McClanahan, Timothy P.; Moersch, Jeffrey E.; Parsons, Ann M.; Tate, Christopher G.

    2017-02-01

    The Probing In situ with Neutron and Gamma ray (PING) instrument is an innovative application of active neutron-induced gamma ray technology. The objective of PING is to measure the elemental composition of the Martian regolith. This manuscript presents PING's sensitivities as a function of the Martian regolith depth and PING's uncertainties in the measurements as a function of observation time in passive and active mode. The modeled sensitivities show that in PING's active mode, where both a pulsed neutron generator (PNG) and a gamma ray spectrometer (GRS) are used, PING can interrogate the material below the rover to about 20 cm due to the penetrating nature of the high-energy neutrons and the resulting secondary gamma rays observed with the GRS. PING is capable of identifying most major and minor rock-forming elements, including H, O, Na, Mn, Mg, Al, Si, P, S, Cl, Cr, K, Ca, Ti, Fe, and Th. The modeled uncertainties show that PING's use of a PNG reduces the required observation times by an order of magnitude over a passive operating mode where the PNG is turned off. While the active mode allows for more complete elemental inventories with higher sensitivity, the gamma ray signatures of some elements are strong enough to detect in passive mode. We show that PING can detect changes in key marker elements and make thermal neutron measurements in about 1 min that are sensitive to H and Cl.

  11. The NIF x-ray spectrometer calibration campaign at Omega.

    PubMed

    Pérez, F; Kemp, G E; Regan, S P; Barrios, M A; Pino, J; Scott, H; Ayers, S; Chen, H; Emig, J; Colvin, J D; Bedzyk, M; Shoup, M J; Agliata, A; Yaakobi, B; Marshall, F J; Hamilton, R A; Jaquez, J; Farrell, M; Nikroo, A; Fournier, K B

    2014-11-01

    The calibration campaign of the National Ignition Facility X-ray Spectrometer (NXS) was carried out at the Omega laser facility. Spherically symmetric, laser-driven, millimeter-scale x-ray sources of K-shell and L-shell emission from various mid-Z elements were designed for the 2-18 keV energy range of the NXS. The absolute spectral brightness was measured by two calibrated spectrometers. We compare the measured performance of the target design to radiation hydrodynamics simulations.

  12. Gamma-Ray Astrophysics: New Insight Into the Universe

    NASA Technical Reports Server (NTRS)

    Fichtel, Carl E.; Trombka, Jacob I.

    1997-01-01

    During the 15 years that have passed since the first edition of this book was published, there has been a major increase in our knowledge of gamma-ray astronomy. Much of this advance arises from the extensive results that have been forthcoming from the Compton Gamma-Ray Observatory. There has been the discovery of a new class of gamma-ray objects, namely high-energy gamma- ray-emitting blazars, a special class of Active Galactic Nuclei, whose basic high-energy properties now seem to be understood. A much improved picture of our galaxy now exists in the frequency range of gamma rays. The question of whether cosmic rays are galactic or metagalactic now seems settled with certainty. Significant new information exists on the gamma-ray properties of neutron star pulsars, Seyfert galaxies, and gamma-ray bursts. Substantial new insight has been obtained on solar phenomena through gamma-ray observations. Hence, this seemed to be an appropriate time to write a new edition of this book to add the important scientific implications of these many new findings. The special importance of gamma-ray astrophysics had long been recognized by many physicists and astronomers, and theorists had pursued many aspects of the subject well before the experimental results began to become available. The slower development of the experimental side was not because of a lack of incentive, but due to the substantial experimental difficulties that had to be overcome. Thus, as the gamma-ray results became available in much greater number and detail, it was possible to build upon the theoretical work that already existed and to make substantial progress in the study of many of the phenomena involved. Consequently, a much better understanding of many of the astrophysical phenomena mentioned here and others is now possible. Our principal aims in writing this book are the same as they were for the first edition: to provide a text which describes the significance of gamma-ray astrophysics and to assemble

  13. Hand-held radiometer red and photographic infrared spectral measurements of agricultural crops

    NASA Technical Reports Server (NTRS)

    Tucker, C. J.; Fan, C. J.; Elgin, J. H., Jr.; Mcmurtrey, J. E., III

    1978-01-01

    Red and photographic infrared radiance data, collected under a variety of conditions at weekly intervals throughout the growing season using a hand-held radiometer, were used to monitor crop growth and development. The vegetation index transformation was used to effectively compensate for the different irradiational conditions encountered during the study period. These data, plotted against time, compared the different crops measured by comparing their green leaf biomass dynamics. This approach, based entirely upon spectral inputs, closely monitors crop growth and development and indicates the promise of ground-based hand-held radiometer measurements of crops.

  14. Conceptual design of the gamma-to-electron magnetic spectrometer for the National Ignition Facility

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kim, Y., E-mail: yhkim@lanl.gov; Herrmann, H. W.; Jorgenson, H. J.

    2014-11-15

    The Gamma-to-Electron Magnetic Spectrometer (GEMS) diagnostic is designed to measure the prompt γ-ray energy spectrum during high yield deuterium-tritium (DT) implosions at the National Ignition Facility (NIF). The prompt γ-ray spectrum will provide “burn-averaged” observables, including total DT fusion yield, total areal density (ρR), ablator ρR, and fuel ρR. These burn-averaged observables are unique because they are essentially averaged over 4π, providing a global reference for the line-of-sight-specific measurements typical of x-ray and neutron diagnostics. The GEMS conceptual design meets the physics-based requirements: ΔE/E = 3%–5% can be achieved in the range of 2–25 MeV γ-ray energy. Minimum DT neutronmore » yields required for 15% measurement uncertainty at low-resolution mode are: 5 × 10{sup 14} DT-n for ablator ρR (at 0.2 g/cm{sup 2}); 2 × 10{sup 15} DT-n for total DT yield (at 4.2 × 10{sup −5} γ/n); and 1 × 10{sup 16} DT-n for fuel ρR (at 1 g/cm{sup 2})« less

  15. A small field of view camera for hybrid gamma and optical imaging

    NASA Astrophysics Data System (ADS)

    Lees, J. E.; Bugby, S. L.; Bhatia, B. S.; Jambi, L. K.; Alqahtani, M. S.; McKnight, W. R.; Ng, A. H.; Perkins, A. C.

    2014-12-01

    The development of compact low profile gamma-ray detectors has allowed the production of small field of view, hand held imaging devices for use at the patient bedside and in operating theatres. The combination of an optical and a gamma camera, in a co-aligned configuration, offers high spatial resolution multi-modal imaging giving a superimposed scintigraphic and optical image. This innovative introduction of hybrid imaging offers new possibilities for assisting surgeons in localising the site of uptake in procedures such as sentinel node detection. Recent improvements to the camera system along with results of phantom and clinical imaging are reported.

  16. SMM observations of gamma-ray transients. 2: A search for gamma-ray lines between 400 and 600 keV from the Crab Nebula

    NASA Technical Reports Server (NTRS)

    Harris, Michael J.; Share, Gerald H.; Leising, Mark D.

    1994-01-01

    We have search spectra obtained by the Solar Maximum Mission Gamma-Ray Spectrometer during 1981-1988 for evidence of transient gamma-ray lines from the Crab Nebula which have been reported by previous experiments at energies 400-460 keV and 539 keV. We find no evidence for significant emission in any of these lines on time scales between aproximately 1 day and approximately 1 yr. Our 3 sigma upper limits on the transient flux during 1 d intervals are approximately equal to 2.2 x 10(exp -3) photons/sq cm/s for narrow lines at any energy, and approximately equal to 2.9 x 10(exp -3) photons/sq cm/s for the 539 keV line if it is as broad as 42 keV Full Width at Half Maximum (FWHM). We also searched our data during the approximately 5 hr period on 1981 June 6 during which Owens, Myers, & Thompson (1985) reported a strong line at 405 keV. We detected no line down to a 3 upper sigma limit of 3.3 x 10(exp -3) photons/sq cm/s in disagreement with the flux 7.2 +/- 2.1 x 10(exp -3) photos/sq cm/s measured by Owens et al.

  17. Gamma ray energy tracking in GRETINA

    NASA Astrophysics Data System (ADS)

    Lee, I. Y.

    2011-10-01

    The next generation of stable and exotic beam accelerators will provide physics opportunities to study nuclei farther away from the line of stability. However, these experiments will be more demanding on instrumentation performance. These come from the lower production rate for more exotic beams, worse beam impurities, and large beam velocity from the fragmentation and inverse reactions. Gamma-ray spectroscopy will be one of the most effective tools to study exotic nuclei. However, to fully exploit the physics reach provided by these new facilities, better gamma-ray detector will be needed. In the last 10 years, a new concept, gamma-ray energy tracking array, was developed. Tracking arrays will increase the detection sensitivity by factors of several hundred compared to current arrays used in nuclear physics research. Particularly, the capability of reconstructing the position of the interaction with millimeters resolution is needed to correct the Doppler broadening of gamma rays emitted from high velocity nuclei. GRETINA is a gamma-ray tracking array which uses 28 Ge crystals, each with 36 segments, to cover ¼ of the 4 π of the 4 π solid angle. The gamma ray tracking technique requires detailed pulse shape information from each of the segments. These pulses are digitized using 14-bit 100 MHz flash ADCs, and digital signal analysis algorithms implemented in the on-board FPGAs provides energy, time and selection of pulse traces. A digital trigger system, provided flexible trigger functions including a fast trigger output, and also allows complicated trigger decisions to be made up to 20 microseconds. Further analyzed, carried out in a computer cluster, determine the energy, time, and three-dimensional positions of all gamma-ray interactions in the array. This information is then utilized, together with the characteristics of Compton scattering and pair-production processes, to track the scattering sequences of the gamma rays. GRETINA construction is completed in

  18. Possible Detection of Gamma Ray Air Showers in Coincidence with BATSE Gamma Ray Bursts

    NASA Astrophysics Data System (ADS)

    Lin, Tzu-Fen

    1999-08-01

    Project GRAND presents the results of a search for coincident high-energy gamma ray events in the direction and at the time of nine Gamma Ray Bursts (GRBs) detected by BATSE. A gamma ray has a non-negligible hadron production cross section; for each gamma ray of energy of 100 GeV, there are 0.015 muons which reach detection level (Fasso & Poirier, 1999). These muons are identified and their angles are measured in stations of eight planes of proportional wire chambers (PWCs). A 50 mm steel plate above the bottom pair of planes is used to distinguish muons from electrons. The mean angular resolution is 0.26o over a ± 61o range in the XZ and YZ planes. The BATSE GRB catalogue is examined for bursts which are near zenith for Project GRAND. The geometrical acceptance is calculated for each of these events. The product is then taken of the GRB flux and GRANDÕs geometrical acceptance. The nine sources with the best combination of detection efficiency and BATSEÕs intensity are selected to be examined in the data. The most significant detection of these nine sources is at a statistical significance of +3.7s; this is also the GRB with the highest product of GRB flux and geometrical acceptance.

  19. SYSTEMATIC STUDY OF GAMMA-RAY-BRIGHT BLAZARS WITH OPTICAL POLARIZATION AND GAMMA-RAY VARIABILITY

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Itoh, Ryosuke; Fukazawa, Yasushi; Kanda, Yuka

    Blazars are highly variable active galactic nuclei that emit radiation at all wavelengths from radio to gamma rays. Polarized radiation from blazars is one key piece of evidence for synchrotron radiation at low energies, and it also varies dramatically. The polarization of blazars is of interest for understanding the origin, confinement, and propagation of jets. However, even though numerous measurements have been performed, the mechanisms behind jet creation, composition, and variability are still debated. We performed simultaneous gamma-ray and optical photopolarimetry observations of 45 blazars between 2008 July and 2014 December to investigate the mechanisms of variability and search formore » a basic relation between the several subclasses of blazars. We identify a correlation between the maximum degree of optical linear polarization and the gamma-ray luminosity or the ratio of gamma-ray to optical fluxes. Since the maximum polarization degree depends on the condition of the magnetic field (chaotic or ordered), this result implies a systematic difference in the intrinsic alignment of magnetic fields in parsec-scale relativistic jets between different types of blazars (flat-spectrum radio quasars vs. BL Lacs) and consequently between different types of radio galaxies (FR I versus FR II).« less

  20. Solar Gamma Rays Above 8 MeV

    NASA Technical Reports Server (NTRS)

    Crannell, C. J.; Crannell, H.; Ramaty, R.

    1978-01-01

    Processes which lead to the production of gamma rays with energy greater than 8 MeV in solar flares are reviewed and evaluated. Excited states produced by inelastic scattering, charge exchange, and spallation reactions in the abundant nuclear species are considered in order to identify nuclear lines which may contribute to the Gamma ray spectrum of solar flares. The flux of 15.11 MeV Gamma rays relative to the flux of 4.44 MeV Gamma rays from the de-excitation of the corresponding states in C12 is calculated for a number of assumed distributions of exciting particles. This flux ratio is a sensitive diagnostic of accelerated particle spectra. Other high energy nuclear levels are not so isolated as the 15.11 MeV state and are not expected to be so strong. The spectrum of Gamma rays from the decay of Pi dey is sensitive to the energy distribution of particles accelerated to energies greater than 100 MeV.

  1. Using a portable ion mobility spectrometer to screen dietary supplements for sibutramine.

    PubMed

    Dunn, Jamie D; Gryniewicz-Ruzicka, Connie M; Kauffman, John F; Westenberger, Benjamin J; Buhse, Lucinda F

    2011-02-20

    In response to recent incidents of undeclared sibutramine, an appetite suppressant found in dietary supplements, we developed a method to detect sibutramine using hand-held ion mobility spectrometers with an analysis time of 15 s. Ion mobility spectrometry is a high-throughput and sensitive technique that has been used for illicit drug, explosive, volatile organic compound and chemical warfare detection. We evaluated a hand-held ion mobility spectrometer as a tool for the analysis of supplement extracts containing sibutramine. The overall instrumental limit of detection of five portable ion mobility spectrometers was 2 ng of sibutramine HCl. When sample extractions containing 30 ng/μl or greater of sibutramine were analyzed, saturation of the ionization chamber of the spectrometer occurred and the instrument required more than three cleaning cycles to remove the drug. Hence, supplement samples suspected of containing sibutramine should be prepared at concentrations of 2-20 ng/μl. To obtain this target concentration range for products containing unknown amounts of sibutramine, we provided a simple sample preparation procedure, allowing the U.S. Food and Drug Administration or other agencies to screen products using the portable ion mobility spectrometer. Published by Elsevier B.V.

  2. Gamma ray constraints on the Galactic supernova rate

    NASA Technical Reports Server (NTRS)

    Hartmann, D.; The, L.-S.; Clayton, Donald D.; Leising, M.; Mathews, G.; Woosley, S. E.

    1991-01-01

    We perform Monte Carlo simulations of the expected gamma ray signatures of Galactic supernovae of all types to estimate the significance of the lack of a gamma ray signal due to supernovae occurring during the last millenium. Using recent estimates of the nuclear yields, we determine mean Galactic supernova rates consistent with the historic supernova record and the gamma ray limits. Another objective of these calculations of Galactic supernova histories is their application to surveys of diffuse Galactic gamma ray line emission.

  3. Gamma ray constraints on the galactic supernova rate

    NASA Technical Reports Server (NTRS)

    Hartmann, D.; The, L.-S.; Clayton, D. D.; Leising, M.; Mathews, G.; Woosley, S. E.

    1992-01-01

    Monte Carlo simulations of the expected gamma-ray signatures of galactic supernovae of all types are performed in order to estimate the significance of the lack of a gamma-ray signal due to supernovae occurring during the last millenium. Using recent estimates of nuclear yields, we determine galactic supernova rates consistent with the historic supernova record and the gamma-ray limits. Another objective of these calculations of galactic supernova histories is their application to surveys of diffuse galactic gamma-ray line emission.

  4. The Marshall Grazing Incidence X-ray Spectrometer

    NASA Astrophysics Data System (ADS)

    Kobayashi, Ken; Winebarger, Amy R.; Savage, Sabrina; Champey, Patrick; Cheimets, Peter N.; Hertz, Edward; Bruccoleri, Alexander R.; Golub, Leon; Ramsey, Brian; Ranganathan, Jaganathan; Marquez, Vanessa; Allured, Ryan; Parker, Theodore; Heilmann, Ralf K.; Schattenburg, Mark L.

    2017-08-01

    The Marshall Grazing Incidence X-ray Spectrometer (MaGIXS) is a NASA sounding rocket instrument designed to obtain spatially resolved soft X-ray spectra of the solar atmosphere in the 6-24 Å (0.5-2.0 keV) range. The instrument consists of a single shell Wolter Type-I telescope, a slit, and a spectrometer comprising a matched pair of grazing incidence parabolic mirrors and a planar varied-line space diffraction grating. The instrument is designed to achieve a 50 mÅ spectral resolution and 5 arcsecond spatial resolution along a +/-4-arcminute long slit, and launch is planned for 2019. We report on the status and our approaches for fabrication and alignment for this novel optical system. The telescope and spectrometer mirrors are replicated nickel shells, and are currently being fabricated at the NASA Marshall Space Flight Center. The diffraction grating is currently under development by the Massachusetts Institute of Technology (MIT); because of the strong line spacing variation across the grating, it will be fabricated through e-beam lithography.

  5. Telescope for x ray and gamma ray studies in astrophysics

    NASA Technical Reports Server (NTRS)

    Weaver, W. D.; Desai, Upendra D.

    1993-01-01

    Imaging of x-rays has been achieved by various methods in astrophysics, nuclear physics, medicine, and material science. A new method for imaging x-ray and gamma-ray sources avoids the limitations of previously used imaging devices. Images are formed in optical wavelengths by using mirrors or lenses to reflect and refract the incoming photons. High energy x-ray and gamma-ray photons cannot be reflected except at grazing angles and pass through lenses without being refracted. Therefore, different methods must be used to image x-ray and gamma-ray sources. Techniques using total absorption, or shadow casting, can provide images in x-rays and gamma-rays. This new method uses a coder made of a pair of Fresnel zone plates and a detector consisting of a matrix of CsI scintillators and photodiodes. The Fresnel zone plates produce Moire patterns when illuminated by an off-axis source. These Moire patterns are deconvolved using a stepped sine wave fitting or an inverse Fourier transform. This type of coder provides the capability of an instantaneous image with sub-arcminute resolution while using a detector with only a coarse position-sensitivity. A matrix of the CsI/photodiode detector elements provides the necessary coarse position-sensitivity. The CsI/photodiode detector also allows good energy resolution. This imaging system provides advantages over previously used imaging devices in both performance and efficiency.

  6. Effects of Correlated and Uncorrelated Gamma Rays on Neutron Multiplicity Counting

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Cowles, Christian C.; Behling, Richard S.; Imel, George R.

    Neutron multiplicity counting relies on time correlation between neutron events to assay the fissile mass, (α,n) to spontaneous fission neutron ratio, and neutron self-multiplication of samples. Gamma-ray sensitive neutron multiplicity counters may misidentify gamma rays as neutrons and therefore miscalculate sample characteristics. Time correlated and uncorrelated gamma-ray-like signals were added into gamma-ray free neutron multiplicity counter data to examine the effects of gamma ray signals being misidentified as neutron signals on assaying sample characteristics. Multiplicity counter measurements with and without gamma-ray-like signals were compared to determine the assay error associated with gamma-ray-like signals at various gamma-ray and neutron rates. Correlatedmore » and uncorrelated gamma-ray signals each produced consistent but different measurement errors. Correlated gamma-ray signals most strongly led to fissile mass overestimates, whereas uncorrelated gamma-ray signals most strongly lead to (α,n) neutron overestimates. Gamma-ray sensitive neutron multiplicity counters may be able to account for the effects of gamma-rays on measurements to mitigate measurement uncertainties.« less

  7. GAMMA AND X-RAY DOSIMETER AND DOSIMETRIC METHOD

    DOEpatents

    Taplin, G.V.; Douglas, C.H.; Sigoloff, S.C.

    1958-08-19

    An improvement in colorimetric gamma and x-ray dosimeter systems and a self-contained. hand carried dostmeter of the afore-mentioned type ts described. A novel point of the invention ltes in the addition of specific quantities of certain normalizing agents to the two phase chlorinated hydro-carbon-aqueous dyc colortmetric dosimeter to eliminate the after reaction and thereby extend the utility of such systein. The structure of the two phase colorimetric dosimeter tubes and the carrying case for the tubes of the portable dosimeter are unique features.

  8. Tidal tearing of circumstellar disks in Be/X-ray and gamma-ray binaries

    NASA Astrophysics Data System (ADS)

    Okazaki, Atsuo T.

    2017-11-01

    About one half of high-mass X-ray binaries host a Be star [an OB star with a viscous decretion (slowly outflowing) disk]. These Be/X-ray binaries exhibit two types of X-ray outbursts (Stella et al. 1986), normal X-ray outbursts (L X~1036-37 erg s-1) and occasional giant X-ray outbursts (L X > 1037 erg s-1). The origin of giant X-ray outbursts is unknown. On the other hand, a half of gamma-ray binaries have a Be star as the optical counterpart. One of these systems [LS I +61 303 (P orb = 26.5 d)] shows the superorbital (1,667 d) modulation in radio through X-ray bands. No consensus has been obtained for its origin. In this paper, we study a possibility that both phenomena are caused by a long-term, cyclic evolution of a highly misaligned Be disk under the influence of a compact object, by performing 3D hydrodynamic simulations. We find that the Be disk cyclically evolves in mildly eccentric, short-period systems. Each cycle consists of the following stages: 1) As the Be disk grows with time, the initially circular disk becomes eccentric by the Kozai-Lidov mechanism. 2) At some point, the disk is tidally torn off near the base and starts precession. 3) Due to precession, a gap opens between the disk base and mass ejection region, which allows the formation of a new disk in the stellar equatorial plane (see Figure 1). 4) The newly formed disk finally replaces the precessing old disk. Such a cyclic disk evolution has interesting implications for the long-term behavior of high energy emission in Be/X-ray and gamma-ray binaries.

  9. Fermi: The Gamma-Ray Large Area Space Telescope

    NASA Technical Reports Server (NTRS)

    McEnery, Julie

    2014-01-01

    Following its launch in June 2008, high-energy gamma-ray observations by the Fermi Gamma-ray Space Telescope have unveiled over 1000 new sources and opened an important and previously unexplored window on a wide variety of phenomena. These have included the discovery of an population of pulsars pulsing only in gamma rays; the detection of photons up to 10s of GeV from gamma-ray bursts, enhancing our understanding of the astrophysics of these powerful explosions; the detection of hundreds of active galaxies; a measurement of the high energy cosmic-ray electron spectrum which may imply the presence of nearby astrophysical particle accelerators; the determination of the diffuse gamma-ray emission with unprecedented accuracy and the constraints on phenomena such as supersymmetric dark-matter annihilations and exotic relics from the Big Bang. Continuous monitoring of the high-energy gamma-ray sky has uncovered numerous outbursts from active galaxies and the discovery of transient sources in our galaxy. In this talk I will describe the current status of the Fermi observatory and review the science highlights from Fermi.

  10. Stellar Photon Archaeology with Gamma-Rays

    NASA Technical Reports Server (NTRS)

    Stecker, Floyd W.

    2009-01-01

    Ongoing deep surveys of galaxy luminosity distribution functions, spectral energy distributions and backwards evolution models of star formation rates can be used to calculate the past history of intergalactic photon densities and, from them, the present and past optical depth of the Universe to gamma-rays from pair production interactions with these photons. The energy-redshift dependence of the optical depth of the Universe to gamma-rays has become known as the Fazio-Stecker relation (Fazio & Stecker 1970). Stecker, Malkan & Scully have calculated the densities of intergalactic background light (IBL) photons of energies from 0.03 eV to the Lyman limit at 13.6 eV and for 0$ < z < $6, using deep survey galaxy observations from Spitzer, Hubble and GALEX and have consequently predicted spectral absorption features for extragalactic gamma-ray sources. This procedure can also be reversed. Determining the cutoff energies of gamma-ray sources with known redshifts using the recently launched Fermi gamma-ray space telescope may enable a more precise determination of the IBL photon densities in the past, i.e., the "archaeo-IBL.", and therefore allow a better measure of the past history of the total star formation rate, including that from galaxies too faint to be observed.

  11. Gamma-ray luminosity and photon index evolution of FSRQ blazars and contribution to the gamma-ray background

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Singal, J.; Ko, A.; Petrosian, V., E-mail: jsingal@richmond.edu

    We present the redshift evolutions and distributions of the gamma-ray luminosity and photon spectral index of flat spectrum radio quasar (FSRQ) type blazars, using non-parametric methods to obtain the evolutions and distributions directly from the data. The sample we use for analysis consists of almost all FSRQs observed with a greater than approximately 7σ detection threshold in the first-year catalog of the Fermi Gamma-ray Space Telescope's Large Area Telescope, with redshifts as determined from optical spectroscopy by Shaw et al. We find that FSQRs undergo rapid gamma-ray luminosity evolution, but negligible photon index evolution, with redshift. With these evolutions accountedmore » for we determine the density evolution and luminosity function of FSRQs and calculate their total contribution to the extragalactic gamma-ray background radiation, resolved and unresolved, which is found to be 16(+10/–4)%, in agreement with previous studies.« less

  12. The Goddard program of gamma ray transient astronomy

    NASA Technical Reports Server (NTRS)

    Cline, T. L.; Desai, U. D.; Teegarden, B. J.

    1980-01-01

    Gamma ray burst studies are reviewed. The past results, present status and future expectations are outlined regarding endeavors using experiments on balloons, IMP-6 and -7, OGO-3, ISEE-1 and -3, Helios-2, Solar Maximum Mission, the Einstein Observatory, Solar Polar and the Gamma Ray Observatory, and with the interplanetary gamma ray burst networks, to which some of these spacecraft sensors contribute. Additional emphasis is given to the recent discovery of a new type of gamma ray transient, detected on 1979 March 5.

  13. The BATSE experiment on the Gamma Ray Observatory: Solar flare hard x ray and gamma-ray capabilities

    NASA Technical Reports Server (NTRS)

    Fishman, G. J.; Meegan, C. A.; Wilson, R. B.; Parnell, T. A.; Paciesas, W. S.; Pendleton, G. N.; Hudson, H. S.; Matteson, J. L.; Peterson, L. E.; Cline, T. L.

    1989-01-01

    The Burst and Transient Source Experiment (BATSE) for the Gamma Ray Observatory (GRO) consists of eight detector modules that provide full-sky coverage for gamma-ray bursts and other transient phenomena such as solar flares. Each detector module has a thin, large-area scintillation detector (2025 sq cm) for high time-resolution studies, and a thicker spectroscopy detector (125 sq cm) to extend the energy range and provide better spectral resolution. The total energy range of the system is 15 keV to 100 MeV. These 16 detectors and the associated onboard data system should provide unprecedented capabilities for observing rapid spectral changes and gamma-ray lines from solar flares. The presence of a solar flare can be detected in real-time by BATSE; a trigger signal is sent to two other experiments on the GRO. The launch of the GRO is scheduled for June 1990, so that BATSE can be an important component of the Max '91 campaign.

  14. Pulsed high-energy gamma rays from PSR 1055-52

    NASA Technical Reports Server (NTRS)

    Fierro, J. M.; Bertsch, D. L.; Brazier, K. T.; Chiang, J.; D'Amico, N.; Fichtel, C. E.; Hartman, R. C.; Hunter, S. D.; Johnston, S.; Kanbach, G.

    1993-01-01

    The Energetic Gamma Ray Experiment Telescope (EGRET) aboard the Compton Gamma Ray Observatory has detected a high-energy gamma-ray source at a position coincident with that of the radio pulsar PSR 1055-52. Analysis of the EGRET data at the radio pulsar period of 197 ms has revealed pulsed gamma-radiation at energies above 300 MeV, making PSR 1055-52 the fifth detected high-energy gamma-ray pulsar. The pulsed radiation from PSR 1055-52 has a very hard photon spectral index of -1.18 +/- 0.16 and a high efficiency for converting its rotational energy into gamma-rays. No unpulsed emission was observed.

  15. Hand-held optical imager (Gen-2): improved instrumentation and target detectability

    PubMed Central

    Gonzalez, Jean; DeCerce, Joseph; Erickson, Sarah J.; Martinez, Sergio L.; Nunez, Annie; Roman, Manuela; Traub, Barbara; Flores, Cecilia A.; Roberts, Seigbeh M.; Hernandez, Estrella; Aguirre, Wenceslao; Kiszonas, Richard

    2012-01-01

    Abstract. Hand-held optical imagers are developed by various researchers towards reflectance-based spectroscopic imaging of breast cancer. Recently, a Gen-1 handheld optical imager was developed with capabilities to perform two-dimensional (2-D) spectroscopic as well as three-dimensional (3-D) tomographic imaging studies. However, the imager was bulky with poor surface contact (∼30%) along curved tissues, and limited sensitivity to detect targets consistently. Herein, a Gen-2 hand-held optical imager that overcame the above limitations of the Gen-1 imager has been developed and the instrumentation described. The Gen-2 hand-held imager is less bulky, portable, and has improved surface contact (∼86%) on curved tissues. Additionally, the forked probe head design is capable of simultaneous bilateral reflectance imaging of both breast tissues, and also transillumination imaging of a single breast tissue. Experimental studies were performed on tissue phantoms to demonstrate the improved sensitivity in detecting targets using the Gen-2 imager. The improved instrumentation of the Gen-2 imager allowed detection of targets independent of their location with respect to the illumination points, unlike in Gen-1 imager. The developed imager has potential for future clinical breast imaging with enhanced sensitivity, via both reflectance and transillumination imaging. PMID:23224163

  16. Bright x-ray flares in gamma-ray burst afterglows.

    PubMed

    Burrows, D N; Romano, P; Falcone, A; Kobayashi, S; Zhang, B; Moretti, A; O'brien, P T; Goad, M R; Campana, S; Page, K L; Angelini, L; Barthelmy, S; Beardmore, A P; Capalbi, M; Chincarini, G; Cummings, J; Cusumano, G; Fox, D; Giommi, P; Hill, J E; Kennea, J A; Krimm, H; Mangano, V; Marshall, F; Mészáros, P; Morris, D C; Nousek, J A; Osborne, J P; Pagani, C; Perri, M; Tagliaferri, G; Wells, A A; Woosley, S; Gehrels, N

    2005-09-16

    Gamma-ray burst (GRB) afterglows have provided important clues to the nature of these massive explosive events, providing direct information on the nearby environment and indirect information on the central engine that powers the burst. We report the discovery of two bright x-ray flares in GRB afterglows, including a giant flare comparable in total energy to the burst itself, each peaking minutes after the burst. These strong, rapid x-ray flares imply that the central engines of the bursts have long periods of activity, with strong internal shocks continuing for hundreds of seconds after the gamma-ray emission has ended.

  17. System design of a hand-held mobile robot for craniotomy.

    PubMed

    Kane, Gavin; Eggers, Georg; Boesecke, Robert; Raczkowsky, Jörg; Wörn, Heinz; Marmulla, Rüdiger; Mühling, Joachim

    2009-01-01

    This contribution reports the development and initial testing of a Mobile Robot System for Surgical Craniotomy, the Craniostar. A kinematic system based on a unicycle robot is analysed to provide local positioning through two spiked wheels gripping directly onto a patients skull. A control system based on a shared control system between both the Surgeon and Robot is employed in a hand-held design that is tested initially on plastic phantom and swine skulls. Results indicate that the system has substantially lower risk than present robotically assisted craniotomies, and despite being a hand-held mobile robot, the Craniostar is still capable of sub-millimetre accuracy in tracking along a trajectory and thus achieving an accurate transfer of pre-surgical plan to the operating room procedure, without the large impact of current medical robots based on modified industrial robots.

  18. Gamma-Ray "Raindrops" from Flaring Blazar

    NASA Image and Video Library

    2017-12-08

    This visualization shows gamma rays detected during 3C 279's big flare by the LAT instrument on NASA's Fermi satellite. Gamma rays are represented as expanding circles reminiscent of raindrops on water. The flare is an abrupt shower of "rain" that trails off toward the end of the movie. Both the maximum size of the circle and its color represent the energy of the gamma ray, with white lowest and magenta highest. In a second version of the visualization, a background map shows how the LAT detects 3C 279 and other sources by accumulating high-energy photons over time (brighter squares reflect higher numbers of gamma rays). The movie starts on June 14 and ends June 17. The area shown is a region of the sky five degrees on a side and centered on the position of 3C 279. Read more: go.nasa.gov/1TqximF Credits: NASA/DOE/Fermi LAT Collaboration

  19. A short working distance multiple crystal x-ray spectrometer

    USGS Publications Warehouse

    Dickinson, B.; Seidler, G.T.; Webb, Z.W.; Bradley, J.A.; Nagle, K.P.; Heald, S.M.; Gordon, R.A.; Chou, I.-Ming

    2008-01-01

    For x-ray spot sizes of a few tens of microns or smaller, a millimeter-sized flat analyzer crystal placed ???1 cm from the sample will exhibit high energy resolution while subtending a collection solid angle comparable to that of a typical spherically bent crystal analyzer (SBCA) at much larger working distances. Based on this observation and a nonfocusing geometry for the analyzer optic, we have constructed and tested a short working distance (SWD) multicrystal x-ray spectrometer. This prototype instrument has a maximum effective collection solid angle of 0.14 sr, comparable to that of 17 SBCA at 1 m working distance. We find good agreement with prior work for measurements of the Mn K?? x-ray emission and resonant inelastic x-ray scattering for MnO, and also for measurements of the x-ray absorption near-edge structure for Dy metal using L??2 partial-fluorescence yield detection. We discuss future applications at third- and fourth-generation light sources. For concentrated samples, the extremely large collection angle of SWD spectrometers will permit collection of high-resolution x-ray emission spectra with a single pulse of the Linac Coherent Light Source. The range of applications of SWD spectrometers and traditional multi-SBCA instruments has some overlap, but also is significantly complementary. ?? 2008 American Institute of Physics.

  20. Polarization of the prompt gamma-ray emission from the gamma-ray burst of 6 December 2002.

    PubMed

    Coburn, Wayne; Boggs, Steven E

    2003-05-22

    Observations of the afterglows of gamma-ray bursts (GRBs) have revealed that they lie at cosmological distances, and so correspond to the release of an enormous amount of energy. The nature of the central engine that powers these events and the prompt gamma-ray emission mechanism itself remain enigmatic because, once a relativistic fireball is created, the physics of the afterglow is insensitive to the nature of the progenitor. Here we report the discovery of linear polarization in the prompt gamma-ray emission from GRB021206, which indicates that it is synchrotron emission from relativistic electrons in a strong magnetic field. The polarization is at the theoretical maximum, which requires a uniform, large-scale magnetic field over the gamma-ray emission region. A large-scale magnetic field constrains possible progenitors to those either having or producing organized fields. We suggest that the large magnetic energy densities in the progenitor environment (comparable to the kinetic energy densities of the fireball), combined with the large-scale structure of the field, indicate that magnetic fields drive the GRB explosion.

  1. The gamma ray continuum spectrum from the galactic center disk and point sources

    NASA Technical Reports Server (NTRS)

    Gehrels, Neil; Tueller, Jack

    1992-01-01

    A light curve of gamma-ray continuum emission from point sources in the galactic center region is generated from balloon and satellite observations made over the past 25 years. The emphasis is on the wide field-of-view instruments which measure the combined flux from all sources within approximately 20 degrees of the center. These data have not been previously used for point-source analyses because of the unknown contribution from diffuse disk emission. In this study, the galactic disk component is estimated from observations made by the Gamma Ray Imaging Spectrometer (GRIS) instrument in Oct. 1988. Surprisingly, there are several times during the past 25 years when all gamma-ray sources (at 100 keV) within about 20 degrees of the galactic center are turned off or are in low emission states. This implies that the sources are all variable and few in number. The continuum gamma-ray emission below approximately 150 keV from the black hole candidate 1E1740.7-2942 is seen to turn off in May 1989 on a time scale of less than two weeks, significantly shorter than ever seen before. With the continuum below 150 keV turned off, the spectral shape derived from the HEXAGONE observation on 22 May 1989 is very peculiar with a peak near 200 keV. This source was probably in its normal state for more than half of all observations since the mid-1960's. There are only two observations (in 1977 and 1979) for which the sum flux from the point sources in the region significantly exceeds that from 1E1740.7-2942 in its normal state.

  2. Analysis of Data from the Energetic Gamma-Ray Experiment Telescope (EGRET) on the Compton Gamma Ray Observatory

    NASA Technical Reports Server (NTRS)

    Kniffen, Donald A.; Elliott, William W.

    1999-01-01

    The final report consists of summaries of work proposed, work accomplished, papers and presentations published and continuing work regarding the cooperative agreement. The work under the agreement is based on high energy gamma ray source data analysis collected from the Energetic Gamma-Ray Experiment Telescope (EGRET).

  3. Prompt optical emission from gamma-ray bursts

    NASA Astrophysics Data System (ADS)

    Kehoe, Robert; Akerlof, Karl; Balsano, Richard; Barthelmy, Scott; Bloch, Jeff; Butterworth, Paul; Casperson, Don; Cline, Tom; Fletcher, Sandra; Frontera, Fillippo; Gisler, Galen; Heise, John; Hills, Jack; Hurley, Kevin; Lee, Brian; Marshall, Stuart; McKay, Tim; Pawl, Andrew; Piro, Luigi; Priedhorsky, Bill; Szymanski, John; Wren, Jim

    The Robotic Optical Transient Search Experiment (ROTSE) seeks to measure contemporaneous and early afterglow optical emission from gamma-ray bursts (GRBs). The ROTSE-I telescope array has been fully automated and responding to burst alerts from the GRB Coordinates Network since March 1998, taking prompt optical data for 30 bursts in its first year. We will briefly review observations of GRB990123 which revealed the first detection of an optical burst occurring during the gamma-ray emission, reaching 9th magnitude at its peak. In addition, we present here preliminary optical results for seven other gamma-ray bursts. No other optical counterparts were seen in this analysis, and the best limiting senisitivities are mV > 13.0 at 14.7 seconds after the gamma-ray rise, and mmV > 16.4 at 62 minutes. These are the most stringent limits obtained for GRB optical counterpart brightness in the first hour after the burst. This analysis suggests that there is not a strong correlation between optical flux and gamma-ray emission.

  4. IR observations in gamma-ray blazars

    NASA Technical Reports Server (NTRS)

    Mahoney, W. A.; Gautier, T. N.; Ressler, M. E.; Wallyn, P.; Durouchoux, P.; Higdon, J. C.

    1997-01-01

    The infrared photometric and spectral observation of five gamma ray blazars in coordination with the energetic gamma ray experiment telescope (EGRET) onboard the Compton Gamma Ray Observatory is reported. The infrared measurements were made with a Cassegrain infrared camera and the mid-infrared large well imager at the Mt. Palomar 5 m telescope. The emphasis is on the three blazars observed simultaneously by EGRET and the ground-based telescope during viewing period 519. In addition to the acquisition of broadband spectral measurements for direct correlation with the 100 MeV EGRET observations, near infrared images were obtained, enabling a search for intra-day variability to be carried out.

  5. Coupled multi-group neutron photon transport for the simulation of high-resolution gamma-ray spectroscopy applications

    NASA Astrophysics Data System (ADS)

    Burns, Kimberly Ann

    The accurate and efficient simulation of coupled neutron-photon problems is necessary for several important radiation detection applications. Examples include the detection of nuclear threats concealed in cargo containers and prompt gamma neutron activation analysis for nondestructive determination of elemental composition of unknown samples. In these applications, high-resolution gamma-ray spectrometers are used to preserve as much information as possible about the emitted photon flux, which consists of both continuum and characteristic gamma rays with discrete energies. Monte Carlo transport is the most commonly used modeling tool for this type of problem, but computational times for many problems can be prohibitive. This work explores the use of coupled Monte Carlo-deterministic methods for the simulation of neutron-induced photons for high-resolution gamma-ray spectroscopy applications. RAdiation Detection Scenario Analysis Toolbox (RADSAT), a code which couples deterministic and Monte Carlo transport to perform radiation detection scenario analysis in three dimensions [1], was used as the building block for the methods derived in this work. RADSAT was capable of performing coupled deterministic-Monte Carlo simulations for gamma-only and neutron-only problems. The purpose of this work was to develop the methodology necessary to perform coupled neutron-photon calculations and add this capability to RADSAT. Performing coupled neutron-photon calculations requires four main steps: the deterministic neutron transport calculation, the neutron-induced photon spectrum calculation, the deterministic photon transport calculation, and the Monte Carlo detector response calculation. The necessary requirements for each of these steps were determined. A major challenge in utilizing multigroup deterministic transport methods for neutron-photon problems was maintaining the discrete neutron-induced photon signatures throughout the simulation. Existing coupled neutron

  6. Spectroscopic CZT detectors development for x- and gamma-ray imaging instruments

    NASA Astrophysics Data System (ADS)

    Quadrini, Egidio M.; Uslenghi, Michela; Alderighi, Monica; Casini, Fabio; D'Angelo, Sergio; Fiorini, Mauro; La Palombara, Nicola; Mancini, Marcello; Monti, Serena; Bazzano, Angela; Di Cosimo, Sergio; Frutti, Massimo; Natalucci, Lorenzo; Ubertini, Pietro; Guadalupi, Giuseppe M.; Sassi, Matteo; Negri, Barbara

    2007-09-01

    In the context of R&D studies financed by the Italian Space Agency (ASI), a feasibility study to evaluate the Italian Industry interest in medium-large scale production of enhanced CZT detectors has been performed by an Italian Consortium. The R&D investment aims at providing in-house source of high quality solid state spectrometers for Space Astrophysics applications. As a possible spin-off industrial applications to Gamma-ray devices for non-destructive inspections in medical, commercial and security fields have been considered by ASI. The short term programme mainly consists of developing proprietary procedures for 2-3" CZT crystals growth, including bonding and contact philosophy, and a newly designed low-power electronics readout chain. The prototype design and breadboarding is based on a fast signal AD conversion with the target in order to perform a new run for an already existing low-power (<0.7 mW/pixel) ASIC. The prototype also provides digital photon energy reconstruction with particular care for multiple events and polarimetry evaluations. Scientific requirement evaluations for Space Astrophysics Satellite applications have been carried out in parallel, targeted to contribute to the ESA Cosmic Vision 2015-2025 Announcement of Opportunity. Detailed accommodation studies are undergoing, as part of this programme, to size a "Large area arcsecond angular resolution Imager" for the Gamma Ray Imager satellite (Knödlseder et al., this conference).and a new Gamma-ray Wide Field Camera for the "EDGE" proposal (Piro et al., this conference). Finally, an extended market study for cost analysis evaluation in view of the foreseen massive detector production has been performed.

  7. In situ capture gamma-ray analysis of coal in an oversize borehole

    USGS Publications Warehouse

    Mikesell, J.L.; Dotson, D.W.; Senftle, F.E.; Zych, R.S.; Koger, J.; Goldman, L.

    1983-01-01

    In situ capture gamma-ray analysis in a coal seam using a high resolution gamma-ray spectrometer in a close-fitting borehole has been reported previously. In order to check the accuracy of the method under adverse conditions, similar measurements were made by means of a small-diameter sonde in an oversize borehole in the Pittsburgh seam, Greene County, Pennsylvania. The hole was 5 times the diameter of the sonde, a ratio that substantially increased the contribution of water (hydrogen) to the total spectral count and reduced the size of the sample measured by the detector. The total natural count, the 40K,count, and the intensities of capture gamma rays from Si, Ca, H, and Al were determined as a function of depth above, through, and below the coal seam. From these logs, the depth and width of the coal seam and its partings were determined. Spectra were accumulated in the seam for 1 h periods by using neutron sources of different strengths. From the spectra obtained by means of several 252Cf neutron sources of different sizes, the ultimate elemental analysis and ash content were determined. The results were not as good as those obtained previously in a close-fitting borehole. However, the results did improve with successively larger source-to-detector distances, i.e.,as the count contribution due to hydrogen in the water decreased. It was concluded that in situ borehole analyses should be made in relatively close-fitting boreholes. ?? 1983.

  8. Gamma ray spectroscopy in astrophysics: Solar gamma ray astronomy on solar maximum mission. [experimental design

    NASA Technical Reports Server (NTRS)

    Forrest, D. J.

    1978-01-01

    The SMM gamma ray experiment and the important scientific capabilities of the instrument are discussed. The flare size detectable as a function of spectrum integration time was studied. A preliminary estimate indicates that a solar gamma ray line at 4.4 MeV one-fifth the intensity of that believed to have been emitted on 4 August 1972 can be detected in approximately 1000 sec with a confidence level of 99%.

  9. Hand-held cell phone use while driving legislation and observed driver behavior among population sub-groups in the United States.

    PubMed

    Rudisill, Toni M; Zhu, Motao

    2017-05-12

    Cell phone use behaviors are known to vary across demographic sub-groups and geographic locations. This study examined whether universal hand-held calling while driving bans were associated with lower road-side observed hand-held cell phone conversations across drivers of different ages (16-24, 25-59, ≥60 years), sexes, races (White, African American, or other), ruralities (suburban, rural, or urban), and regions (Northeast, Midwest, South, and West). Data from the 2008-2013 National Occupant Protection Use Survey were merged with states' cell phone use while driving legislation. The exposure was presence of a universal hand-held cell phone ban at time of observation. Logistic regression was used to assess the odds of drivers having a hand-held cell phone conversation. Sub-groups differences were assessed using models with interaction terms. When universal hand-held cell phone bans were effective, hand-held cell phone conversations were lower across all driver demographic sub-groups and regions. Sub-group differences existed among the sexes (p-value, <0.0001) and regions (p-value, 0.0003). Compared to states without universal hand-held cell phone bans, the adjusted odds ratio (aOR) of a driver hand-held phone conversation was 0.34 [95% confidence interval (CI): 0.28, 0.41] for females versus 0.47 (CI 0.40, 0.55) for males and 0.31 (CI 0.25, 0.38) for drivers in Western states compared to 0.47 (CI 0.30, 0.72) in the Northeast and 0.50 (CI 0.38, 0.66) in the South. The presence of universal hand-held cell phone bans were associated lower hand-held cell phone conversations across all driver sub-groups and regions. Hand-held phone conversations were particularly lower among female drivers and those from Western states when these bans were in effect. Public health interventions concerning hand-held cell phone use while driving could reasonably target all drivers.

  10. Gamma-Ray Telescopes: 400 Years of Astronomical Telescopes

    NASA Technical Reports Server (NTRS)

    Gehrels, Neil; Cannizzo, John K.

    2010-01-01

    The last half-century has seen dramatic developments in gamma-ray telescopes, from their initial conception and development through to their blossoming into full maturity as a potent research tool in astronomy. Gamma-ray telescopes are leading research in diverse areas such as gamma-ray bursts, blazars, Galactic transients, and the Galactic distribution of Al-26.

  11. Gravitational Waves and Gamma-Rays from a Binary Neutron Star Merger: GW170817 and GRB 170817A

    NASA Astrophysics Data System (ADS)

    Abbott, B. P.; Abbott, R.; Abbott, T. D.; Acernese, F.; Ackley, K.; Adams, C.; Adams, T.; Addesso, P.; Adhikari, R. X.; Adya, V. B.; Affeldt, C.; Afrough, M.; Agarwal, B.; Agathos, M.; Agatsuma, K.; Aggarwal, N.; Aguiar, O. D.; Aiello, L.; Ain, A.; Ajith, P.; Allen, B.; Allen, G.; Allocca, A.; Aloy, M. A.; Altin, P. A.; Amato, A.; Ananyeva, A.; Anderson, S. B.; Anderson, W. G.; Angelova, S. V.; Antier, S.; Appert, S.; Arai, K.; Araya, M. C.; Areeda, J. S.; Arnaud, N.; Arun, K. G.; Ascenzi, S.; Ashton, G.; Ast, M.; Aston, S. M.; Astone, P.; Atallah, D. V.; Aufmuth, P.; Aulbert, C.; AultONeal, K.; Austin, C.; Avila-Alvarez, A.; Babak, S.; Bacon, P.; Bader, M. K. M.; Bae, S.; Baker, P. T.; Baldaccini, F.; Ballardin, G.; Ballmer, S. W.; Banagiri, S.; Barayoga, J. C.; Barclay, S. E.; Barish, B. C.; Barker, D.; Barkett, K.; Barone, F.; Barr, B.; Barsotti, L.; Barsuglia, M.; Barta, D.; Bartlett, J.; Bartos, I.; Bassiri, R.; Basti, A.; Batch, J. C.; Bawaj, M.; Bayley, J. C.; Bazzan, M.; Bécsy, B.; Beer, C.; Bejger, M.; Belahcene, I.; Bell, A. S.; Berger, B. K.; Bergmann, G.; Bero, J. J.; Berry, C. P. L.; Bersanetti, D.; Bertolini, A.; Betzwieser, J.; Bhagwat, S.; Bhandare, R.; Bilenko, I. A.; Billingsley, G.; Billman, C. R.; Birch, J.; Birney, R.; Birnholtz, O.; Biscans, S.; Biscoveanu, S.; Bisht, A.; Bitossi, M.; Biwer, C.; Bizouard, M. A.; Blackburn, J. K.; Blackman, J.; Blair, C. D.; Blair, D. G.; Blair, R. M.; Bloemen, S.; Bock, O.; Bode, N.; Boer, M.; Bogaert, G.; Bohe, A.; Bondu, F.; Bonilla, E.; Bonnand, R.; Boom, B. A.; Bork, R.; Boschi, V.; Bose, S.; Bossie, K.; Bouffanais, Y.; Bozzi, A.; Bradaschia, C.; Brady, P. R.; Branchesi, M.; Brau, J. E.; Briant, T.; Brillet, A.; Brinkmann, M.; Brisson, V.; Brockill, P.; Broida, J. E.; Brooks, A. F.; Brown, D. A.; Brown, D. D.; Brunett, S.; Buchanan, C. C.; Buikema, A.; Bulik, T.; Bulten, H. J.; Buonanno, A.; Buskulic, D.; Buy, C.; Byer, R. L.; Cabero, M.; Cadonati, L.; Cagnoli, G.; Cahillane, C.; Calderón Bustillo, J.; Callister, T. A.; Calloni, E.; Camp, J. B.; Canepa, M.; Canizares, P.; Cannon, K. C.; Cao, H.; Cao, J.; Capano, C. D.; Capocasa, E.; Carbognani, F.; Caride, S.; Carney, M. F.; Casanueva Diaz, J.; Casentini, C.; Caudill, S.; Cavaglià, M.; Cavalier, F.; Cavalieri, R.; Cella, G.; Cepeda, C. B.; Cerdá-Durán, P.; Cerretani, G.; Cesarini, E.; Chamberlin, S. J.; Chan, M.; Chao, S.; Charlton, P.; Chase, E.; Chassande-Mottin, E.; Chatterjee, D.; Chatziioannou, K.; Cheeseboro, B. D.; Chen, H. Y.; Chen, X.; Chen, Y.; Cheng, H.-P.; Chia, H.; Chincarini, A.; Chiummo, A.; Chmiel, T.; Cho, H. S.; Cho, M.; Chow, J. H.; Christensen, N.; Chu, Q.; Chua, A. J. K.; Chua, S.; Chung, A. K. W.; Chung, S.; Ciani, G.; Ciolfi, R.; Cirelli, C. E.; Cirone, A.; Clara, F.; Clark, J. A.; Clearwater, P.; Cleva, F.; Cocchieri, C.; Coccia, E.; Cohadon, P.-F.; Cohen, D.; Colla, A.; Collette, C. G.; Cominsky, L. R.; Constancio, M., Jr.; Conti, L.; Cooper, S. J.; Corban, P.; Corbitt, T. R.; Cordero-Carrión, I.; Corley, K. R.; Cornish, N.; Corsi, A.; Cortese, S.; Costa, C. A.; Coughlin, M. W.; Coughlin, S. B.; Coulon, J.-P.; Countryman, S. T.; Couvares, P.; Covas, P. B.; Cowan, E. E.; Coward, D. M.; Cowart, M. J.; Coyne, D. C.; Coyne, R.; Creighton, J. D. E.; Creighton, T. D.; Cripe, J.; Crowder, S. G.; Cullen, T. J.; Cumming, A.; Cunningham, L.; Cuoco, E.; Dal Canton, T.; Dálya, G.; Danilishin, S. L.; D'Antonio, S.; Danzmann, K.; Dasgupta, A.; Da Silva Costa, C. F.; Dattilo, V.; Dave, I.; Davier, M.; Davis, D.; Daw, E. J.; Day, B.; De, S.; DeBra, D.; Degallaix, J.; De Laurentis, M.; Deléglise, S.; Del Pozzo, W.; Demos, N.; Denker, T.; Dent, T.; De Pietri, R.; Dergachev, V.; De Rosa, R.; DeRosa, R. T.; De Rossi, C.; DeSalvo, R.; de Varona, O.; Devenson, J.; Dhurandhar, S.; Díaz, M. C.; Di Fiore, L.; Di Giovanni, M.; Di Girolamo, T.; Di Lieto, A.; Di Pace, S.; Di Palma, I.; Di Renzo, F.; Doctor, Z.; Dolique, V.; Donovan, F.; Dooley, K. L.; Doravari, S.; Dorrington, I.; Douglas, R.; Dovale Álvarez, M.; Downes, T. P.; Drago, M.; Dreissigacker, C.; Driggers, J. C.; Du, Z.; Ducrot, M.; Dupej, P.; Dwyer, S. E.; Edo, T. B.; Edwards, M. C.; Effler, A.; Eggenstein, H.-B.; Ehrens, P.; Eichholz, J.; Eikenberry, S. S.; Eisenstein, R. A.; Essick, R. C.; Estevez, D.; Etienne, Z. B.; Etzel, T.; Evans, M.; Evans, T. M.; Factourovich, M.; Fafone, V.; Fair, H.; Fairhurst, S.; Fan, X.; Farinon, S.; Farr, B.; Farr, W. M.; Fauchon-Jones, E. J.; Favata, M.; Fays, M.; Fee, C.; Fehrmann, H.; Feicht, J.; Fejer, M. M.; Fernandez-Galiana, A.; Ferrante, I.; Ferreira, E. C.; Ferrini, F.; Fidecaro, F.; Finstad, D.; Fiori, I.; Fiorucci, D.; Fishbach, M.; Fisher, R. P.; Fitz-Axen, M.; Flaminio, R.; Fletcher, M.; Fong, H.; Font, J. A.; Forsyth, P. W. F.; Forsyth, S. S.; Fournier, J.-D.; Frasca, S.; Frasconi, F.; Frei, Z.; Freise, A.; Frey, R.; Frey, V.; Fries, E. M.; Fritschel, P.; Frolov, V. V.; Fulda, P.; Fyffe, M.; Gabbard, H.; Gadre, B. U.; Gaebel, S. M.; Gair, J. R.; Gammaitoni, L.; Ganija, M. R.; Gaonkar, S. G.; Garcia-Quiros, C.; Garufi, F.; Gateley, B.; Gaudio, S.; Gaur, G.; Gayathri, V.; Gehrels, N.; Gemme, G.; Genin, E.; Gennai, A.; George, D.; George, J.; Gergely, L.; Germain, V.; Ghonge, S.; Ghosh, Abhirup; Ghosh, Archisman; Ghosh, S.; Giaime, J. A.; Giardina, K. D.; Giazotto, A.; Gill, K.; Glover, L.; Goetz, E.; Goetz, R.; Gomes, S.; Goncharov, B.; González, G.; Gonzalez Castro, J. M.; Gopakumar, A.; Gorodetsky, M. L.; Gossan, S. E.; Gosselin, M.; Gouaty, R.; Grado, A.; Graef, C.; Granata, M.; Grant, A.; Gras, S.; Gray, C.; Greco, G.; Green, A. C.; Gretarsson, E. M.; Groot, P.; Grote, H.; Grunewald, S.; Gruning, P.; Guidi, G. M.; Guo, X.; Gupta, A.; Gupta, M. K.; Gushwa, K. E.; Gustafson, E. K.; Gustafson, R.; Halim, O.; Hall, B. R.; Hall, E. D.; Hamilton, E. Z.; Hammond, G.; Haney, M.; Hanke, M. M.; Hanks, J.; Hanna, C.; Hannam, M. D.; Hannuksela, O. A.; Hanson, J.; Hardwick, T.; Harms, J.; Harry, G. M.; Harry, I. W.; Hart, M. J.; Haster, C.-J.; Haughian, K.; Healy, J.; Heidmann, A.; Heintze, M. C.; Heitmann, H.; Hello, P.; Hemming, G.; Hendry, M.; Heng, I. S.; Hennig, J.; Heptonstall, A. W.; Heurs, M.; Hild, S.; Hinderer, T.; Hoak, D.; Hofman, D.; Holt, K.; Holz, D. E.; Hopkins, P.; Horst, C.; Hough, J.; Houston, E. A.; Howell, E. J.; Hreibi, A.; Hu, Y. M.; Huerta, E. A.; Huet, D.; Hughey, B.; Husa, S.; Huttner, S. H.; Huynh-Dinh, T.; Indik, N.; Inta, R.; Intini, G.; Isa, H. N.; Isac, J.-M.; Isi, M.; Iyer, B. R.; Izumi, K.; Jacqmin, T.; Jani, K.; Jaranowski, P.; Jawahar, S.; Jiménez-Forteza, F.; Johnson, W. W.; Johnson-McDaniel, N. K.; Jones, D. I.; Jones, R.; Jonker, R. J. G.; Ju, L.; Junker, J.; Kalaghatgi, C. V.; Kalogera, V.; Kamai, B.; Kandhasamy, S.; Kang, G.; Kanner, J. B.; Kapadia, S. J.; Karki, S.; Karvinen, K. S.; Kasprzack, M.; Kastaun, W.; Katolik, M.; Katsavounidis, E.; Katzman, W.; Kaufer, S.; Kawabe, K.; Kéfélian, F.; Keitel, D.; Kemball, A. J.; Kennedy, R.; Kent, C.; Key, J. S.; Khalili, F. Y.; Khan, I.; Khan, S.; Khan, Z.; Khazanov, E. A.; Kijbunchoo, N.; Kim, Chunglee; Kim, J. C.; Kim, K.; Kim, W.; Kim, W. S.; Kim, Y.-M.; Kimbrell, S. J.; King, E. J.; King, P. J.; Kinley-Hanlon, M.; Kirchhoff, R.; Kissel, J. S.; Kleybolte, L.; Klimenko, S.; Knowles, T. D.; Koch, P.; Koehlenbeck, S. M.; Koley, S.; Kondrashov, V.; Kontos, A.; Korobko, M.; Korth, W. Z.; Kowalska, I.; Kozak, D. B.; Krämer, C.; Kringel, V.; Krishnan, B.; Królak, A.; Kuehn, G.; Kumar, P.; Kumar, R.; Kumar, S.; Kuo, L.; Kutynia, A.; Kwang, S.; Lackey, B. D.; Lai, K. H.; Landry, M.; Lang, R. N.; Lange, J.; Lantz, B.; Lanza, R. K.; Lartaux-Vollard, A.; Lasky, P. D.; Laxen, M.; Lazzarini, A.; Lazzaro, C.; Leaci, P.; Leavey, S.; Lee, C. H.; Lee, H. K.; Lee, H. M.; Lee, H. W.; Lee, K.; Lehmann, J.; Lenon, A.; Leonardi, M.; Leroy, N.; Letendre, N.; Levin, Y.; Li, T. G. F.; Linker, S. D.; Littenberg, T. B.; Liu, J.; Lo, R. K. L.; Lockerbie, N. A.; London, L. T.; Lord, J. E.; Lorenzini, M.; Loriette, V.; Lormand, M.; Losurdo, G.; Lough, J. D.; Lousto, C. O.; Lovelace, G.; Lück, H.; Lumaca, D.; Lundgren, A. P.; Lynch, R.; Ma, Y.; Macas, R.; Macfoy, S.; Machenschalk, B.; MacInnis, M.; Macleod, D. M.; Magaña Hernandez, I.; Magaña-Sandoval, F.; Magaña Zertuche, L.; Magee, R. M.; Majorana, E.; Maksimovic, I.; Man, N.; Mandic, V.; Mangano, V.; Mansell, G. L.; Manske, M.; Mantovani, M.; Marchesoni, F.; Marion, F.; Márka, S.; Márka, Z.; Markakis, C.; Markosyan, A. S.; Markowitz, A.; Maros, E.; Marquina, A.; Martelli, F.; Martellini, L.; Martin, I. W.; Martin, R. M.; Martynov, D. V.; Mason, K.; Massera, E.; Masserot, A.; Massinger, T. J.; Masso-Reid, M.; Mastrogiovanni, S.; Matas, A.; Matichard, F.; Matone, L.; Mavalvala, N.; Mazumder, N.; McCarthy, R.; McClelland, D. E.; McCormick, S.; McCuller, L.; McGuire, S. C.; McIntyre, G.; McIver, J.; McManus, D. J.; McNeill, L.; McRae, T.; McWilliams, S. T.; Meacher, D.; Meadors, G. D.; Mehmet, M.; Meidam, J.; Mejuto-Villa, E.; Melatos, A.; Mendell, G.; Mercer, R. A.; Merilh, E. L.; Merzougui, M.; Meshkov, S.; Messenger, C.; Messick, C.; Metzdorff, R.; Meyers, P. M.; Miao, H.; Michel, C.; Middleton, H.; Mikhailov, E. E.; Milano, L.; Miller, A. L.; Miller, B. B.; Miller, J.; Millhouse, M.; Milovich-Goff, M. C.; Minazzoli, O.; Minenkov, Y.; Ming, J.; Mishra, C.; Mitra, S.; Mitrofanov, V. P.; Mitselmakher, G.; Mittleman, R.; Moffa, D.; Moggi, A.; Mogushi, K.; Mohan, M.; Mohapatra, S. R. P.; Montani, M.; Moore, C. J.; Moraru, D.; Moreno, G.; Morriss, S. R.; Mours, B.; Mow-Lowry, C. M.; Mueller, G.; Muir, A. W.; Mukherjee, Arunava; Mukherjee, D.; Mukherjee, S.; Mukund, N.; Mullavey, A.; Munch, J.; Muñiz, E. A.; Muratore, M.; Murray, P. G.; Napier, K.; Nardecchia, I.; Naticchioni, L.; Nayak, R. K.; Neilson, J.; Nelemans, G.; Nelson, T. J. N.; Nery, M.; Neunzert, A.; Nevin, L.; Newport, J. M.; Newton, G.; Ng, K. K. Y.; Nguyen, T. T.; Nichols, D.; Nielsen, A. B.; Nissanke, S.; Nitz, A.; Noack, A.; Nocera, F.; Nolting, D.; North, C.; Nuttall, L. K.; Oberling, J.; O'Dea, G. D.; Ogin, G. H.; Oh, J. J.; Oh, S. H.; Ohme, F.; Okada, M. A.; Oliver, M.; Oppermann, P.; Oram, Richard J.; O'Reilly, B.; Ormiston, R.; Ortega, L. F.; O'Shaughnessy, R.; Ossokine, S.; Ottaway, D. J.; Overmier, H.; Owen, B. J.; Pace, A. E.; Page, J.; Page, M. A.; Pai, A.; Pai, S. A.; Palamos, J. R.; Palashov, O.; Palomba, C.; Pal-Singh, A.; Pan, Howard; Pan, Huang-Wei; Pang, B.; Pang, P. T. H.; Pankow, C.; Pannarale, F.; Pant, B. C.; Paoletti, F.; Paoli, A.; Papa, M. A.; Parida, A.; Parker, W.; Pascucci, D.; Pasqualetti, A.; Passaquieti, R.; Passuello, D.; Patil, M.; Patricelli, B.; Pearlstone, B. L.; Pedraza, M.; Pedurand, R.; Pekowsky, L.; Pele, A.; Penn, S.; Perez, C. J.; Perreca, A.; Perri, L. M.; Pfeiffer, H. P.; Phelps, M.; Piccinni, O. J.; Pichot, M.; Piergiovanni, F.; Pierro, V.; Pillant, G.; Pinard, L.; Pinto, I. M.; Pirello, M.; Pitkin, M.; Poe, M.; Poggiani, R.; Popolizio, P.; Porter, E. K.; Post, A.; Powell, J.; Prasad, J.; Pratt, J. W. W.; Pratten, G.; Predoi, V.; Prestegard, T.; Prijatelj, M.; Principe, M.; Privitera, S.; Prodi, G. A.; Prokhorov, L. G.; Puncken, O.; Punturo, M.; Puppo, P.; Pürrer, M.; Qi, H.; Quetschke, V.; Quintero, E. A.; Quitzow-James, R.; Raab, F. J.; Rabeling, D. S.; Radkins, H.; Raffai, P.; Raja, S.; Rajan, C.; Rajbhandari, B.; Rakhmanov, M.; Ramirez, K. E.; Ramos-Buades, A.; Rapagnani, P.; Raymond, V.; Razzano, M.; Read, J.; Regimbau, T.; Rei, L.; Reid, S.; Reitze, D. H.; Ren, W.; Reyes, S. D.; Ricci, F.; Ricker, P. M.; Rieger, S.; Riles, K.; Rizzo, M.; Robertson, N. A.; Robie, R.; Robinet, F.; Rocchi, A.; Rolland, L.; Rollins, J. G.; Roma, V. J.; Romano, R.; Romel, C. L.; Romie, J. H.; Rosińska, D.; Ross, M. P.; Rowan, S.; Rüdiger, A.; Ruggi, P.; Rutins, G.; Ryan, K.; Sachdev, S.; Sadecki, T.; Sadeghian, L.; Sakellariadou, M.; Salconi, L.; Saleem, M.; Salemi, F.; Samajdar, A.; Sammut, L.; Sampson, L. M.; Sanchez, E. J.; Sanchez, L. E.; Sanchis-Gual, N.; Sandberg, V.; Sanders, J. R.; Sassolas, B.; Sathyaprakash, B. S.; Saulson, P. R.; Sauter, O.; Savage, R. L.; Sawadsky, A.; Schale, P.; Scheel, M.; Scheuer, J.; Schmidt, J.; Schmidt, P.; Schnabel, R.; Schofield, R. M. S.; Schönbeck, A.; Schreiber, E.; Schuette, D.; Schulte, B. W.; Schutz, B. F.; Schwalbe, S. G.; Scott, J.; Scott, S. M.; Seidel, E.; Sellers, D.; Sengupta, A. S.; Sentenac, D.; Sequino, V.; Sergeev, A.; Shaddock, D. A.; Shaffer, T. J.; Shah, A. A.; Shahriar, M. S.; Shaner, M. B.; Shao, L.; Shapiro, B.; Shawhan, P.; Sheperd, A.; Shoemaker, D. H.; Shoemaker, D. M.; Siellez, K.; Siemens, X.; Sieniawska, M.; Sigg, D.; Silva, A. D.; Singer, L. P.; Singh, A.; Singhal, A.; Sintes, A. M.; Slagmolen, B. J. J.; Smith, B.; Smith, J. R.; Smith, R. J. E.; Somala, S.; Son, E. J.; Sonnenberg, J. A.; Sorazu, B.; Sorrentino, F.; Souradeep, T.; Spencer, A. P.; Srivastava, A. K.; Staats, K.; Staley, A.; Steinke, M.; Steinlechner, J.; Steinlechner, S.; Steinmeyer, D.; Stevenson, S. P.; Stone, R.; Stops, D. J.; Strain, K. A.; Stratta, G.; Strigin, S. E.; Strunk, A.; Sturani, R.; Stuver, A. L.; Summerscales, T. Z.; Sun, L.; Sunil, S.; Suresh, J.; Sutton, P. J.; Swinkels, B. L.; Szczepańczyk, M. J.; Tacca, M.; Tait, S. C.; Talbot, C.; Talukder, D.; Tanner, D. B.; Tápai, M.; Taracchini, A.; Tasson, J. D.; Taylor, J. A.; Taylor, R.; Tewari, S. V.; Theeg, T.; Thies, F.; Thomas, E. G.; Thomas, M.; Thomas, P.; Thorne, K. A.; Thorne, K. S.; Thrane, E.; Tiwari, S.; Tiwari, V.; Tokmakov, K. V.; Toland, K.; Tonelli, M.; Tornasi, Z.; Torres-Forné, A.; Torrie, C. I.; Töyrä, D.; Travasso, F.; Traylor, G.; Trinastic, J.; Tringali, M. C.; Trozzo, L.; Tsang, K. W.; Tse, M.; Tso, R.; Tsukada, L.; Tsuna, D.; Tuyenbayev, D.; Ueno, K.; Ugolini, D.; Unnikrishnan, C. S.; Urban, A. L.; Usman, S. A.; Vahlbruch, H.; Vajente, G.; Valdes, G.; van Bakel, N.; van Beuzekom, M.; van den Brand, J. F. J.; Van Den Broeck, C.; Vander-Hyde, D. C.; van der Schaaf, L.; van Heijningen, J. V.; van Veggel, A. A.; Vardaro, M.; Varma, V.; Vass, S.; Vasúth, M.; Vecchio, A.; Vedovato, G.; Veitch, J.; Veitch, P. J.; Venkateswara, K.; Venugopalan, G.; Verkindt, D.; Vetrano, F.; Viceré, A.; Viets, A. D.; Vinciguerra, S.; Vine, D. J.; Vinet, J.-Y.; Vitale, S.; Vo, T.; Vocca, H.; Vorvick, C.; Vyatchanin, S. P.; Wade, A. R.; Wade, L. E.; Wade, M.; Walet, R.; Walker, M.; Wallace, L.; Walsh, S.; Wang, G.; Wang, H.; Wang, J. Z.; Wang, W. H.; Wang, Y. F.; Ward, R. L.; Warner, J.; Was, M.; Watchi, J.; Weaver, B.; Wei, L.-W.; Weinert, M.; Weinstein, A. J.; Weiss, R.; Wen, L.; Wessel, E. K.; Weßels, P.; Westerweck, J.; Westphal, T.; Wette, K.; Whelan, J. T.; Whitcomb, S. E.; Whiting, B. F.; Whittle, C.; Wilken, D.; Williams, D.; Williams, R. D.; Williamson, A. R.; Willis, J. L.; Willke, B.; Wimmer, M. H.; Winkler, W.; Wipf, C. C.; Wittel, H.; Woan, G.; Woehler, J.; Wofford, J.; Wong, K. W. K.; Worden, J.; Wright, J. L.; Wu, D. S.; Wysocki, D. M.; Xiao, S.; Yamamoto, H.; Yancey, C. C.; Yang, L.; Yap, M. J.; Yazback, M.; Yu, Hang; Yu, Haocun; Yvert, M.; Zadrożny, A.; Zanolin, M.; Zelenova, T.; Zendri, J.-P.; Zevin, M.; Zhang, L.; Zhang, M.; Zhang, T.; Zhang, Y.-H.; Zhao, C.; Zhou, M.; Zhou, Z.; Zhu, S. J.; Zhu, X. J.; Zimmerman, A. B.; Zucker, M. E.; Zweizig, J.; (LIGO Scientific Collaboration; Virgo Collaboration; Burns, E.; Veres, P.; Kocevski, D.; Racusin, J.; Goldstein, A.; Connaughton, V.; Briggs, M. S.; Blackburn, L.; Hamburg, R.; Hui, C. M.; von Kienlin, A.; McEnery, J.; Preece, R. D.; Wilson-Hodge, C. A.; Bissaldi, E.; Cleveland, W. H.; Gibby, M. H.; Giles, M. M.; Kippen, R. M.; McBreen, S.; Meegan, C. A.; Paciesas, W. S.; Poolakkil, S.; Roberts, O. J.; Stanbro, M.; Gamma-ray Burst Monitor, (Fermi; Savchenko, V.; Ferrigno, C.; Kuulkers, E.; Bazzano, A.; Bozzo, E.; Brandt, S.; Chenevez, J.; Courvoisier, T. J.-L.; Diehl, R.; Domingo, A.; Hanlon, L.; Jourdain, E.; Laurent, P.; Lebrun, F.; Lutovinov, A.; Mereghetti, S.; Natalucci, L.; Rodi, J.; Roques, J.-P.; Sunyaev, R.; Ubertini, P.; (INTEGRAL

    2017-10-01

    On 2017 August 17, the gravitational-wave event GW170817 was observed by the Advanced LIGO and Virgo detectors, and the gamma-ray burst (GRB) GRB 170817A was observed independently by the Fermi Gamma-ray Burst Monitor, and the Anti-Coincidence Shield for the Spectrometer for the International Gamma-Ray Astrophysics Laboratory. The probability of the near-simultaneous temporal and spatial observation of GRB 170817A and GW170817 occurring by chance is 5.0× {10}-8. We therefore confirm binary neutron star mergers as a progenitor of short GRBs. The association of GW170817 and GRB 170817A provides new insight into fundamental physics and the origin of short GRBs. We use the observed time delay of (+1.74+/- 0.05) {{s}} between GRB 170817A and GW170817 to: (I) constrain the difference between the speed of gravity and the speed of light to be between -3× {10}-15 and +7× {10}-16 times the speed of light, (II) place new bounds on the violation of Lorentz invariance, (III) present a new test of the equivalence principle by constraining the Shapiro delay between gravitational and electromagnetic radiation. We also use the time delay to constrain the size and bulk Lorentz factor of the region emitting the gamma-rays. GRB 170817A is the closest short GRB with a known distance, but is between 2 and 6 orders of magnitude less energetic than other bursts with measured redshift. A new generation of gamma-ray detectors, and subthreshold searches in existing detectors, will be essential to detect similar short bursts at greater distances. Finally, we predict a joint detection rate for the Fermi Gamma-ray Burst Monitor and the Advanced LIGO and Virgo detectors of 0.1-1.4 per year during the 2018-2019 observing run and 0.3-1.7 per year at design sensitivity.

  12. Tycho's Star Shines in Gamma Rays

    NASA Image and Video Library

    2017-12-08

    NASA image relase December 13, 2011 Gamma-rays detected by Fermi's LAT show that the remnant of Tycho's supernova shines in the highest-energy form of light. This portrait of the shattered star includes gamma rays (magenta), X-rays (yellow, green, and blue), infrared (red) and optical data. Credit: Gamma ray, NASA/DOE/Fermi LAT Collaboration; X-ray, NASA/CXC/SAO; Infrared, NASA/JPL-Caltech; Optical, MPIA, Calar Alto, O. Krause et al. and DSS To read more go to: www.nasa.gov/mission_pages/GLAST/news/tycho-star.html NASA image use policy. NASA Goddard Space Flight Center enables NASA’s mission through four scientific endeavors: Earth Science, Heliophysics, Solar System Exploration, and Astrophysics. Goddard plays a leading role in NASA’s accomplishments by contributing compelling scientific knowledge to advance the Agency’s mission. Follow us on Twitter Like us on Facebook Find us on Instagram

  13. Technology Needs for Gamma Ray Astronomy

    NASA Technical Reports Server (NTRS)

    Gehrels, Neil

    2011-01-01

    Gamma ray astronomy is currently in an exciting period of multiple missions and a wealth of data. Results from INTEGRAL, Fermi, AGILE, Suzaku and Swift are making large contributions to our knowledge of high energy processes in the universe. The advances are due to new detector and imaging technologies. The steps to date have been from scintillators to solid state detectors for sensors and from light buckets to coded aperture masks and pair telescopes for imagers. A key direction for the future is toward focusing telescopes pushing into the hard X-ray regime and Compton telescopes and pair telescopes with fine spatial resolution for medium and high energy gamma rays. These technologies will provide finer imaging of gamma-ray sources. Importantly, they will also enable large steps forward in sensitivity by reducing background.

  14. A Novel Hand-Held Optical Imager with Real-Time Coregistration Facilities Toward Diagnostic Mammography

    DTIC Science & Technology

    2011-01-01

    Journal Publications (1) S.J. Erickson, S.L. Martinez, J. Gonzalez, L. Caldera , and A. Godavarty. “Improved detection limits using a hand-held...Erickson, S. Martinez, J. Gonzalez, L. Caldera , and A. Godavarty. “Non- invasive Diagnostic Breast Imaging using a Hand-held Optical Imager...Proceedings of the 14th World Multi-Conference on Systems, Cybernetics and Informatics, 2010. (4) S.J. Erickson, S. Martinez, L. Caldera , and A

  15. On the Connection of Gamma-Ray Bursts and X-Ray Flashes

    NASA Astrophysics Data System (ADS)

    Ripa, J.; Meszaros, A.

    2017-12-01

    Classification of gamma-ray bursts (GRBs) into groups has been intensively studied by various statistical tests since 1998. It has been suggested that next to the groups of short/hard and long/soft GRBs there could be another class of intermediate durations. For the Swift/BAT database Veres et al. 2010 (ApJ, 725, 1955) it was found that the intermediate-duration bursts might be related to X-ray flashes (XRFs). On the other hand, Ripa and Meszaros 2016 (Ap&SS, 361, 370) and Ripa et al. 2012 (ApJ, 756, 44) found that the intermediate-duration GRBs in the RHESSI database are spectrally too hard to be given by XRFs. Also, in the BATSE database the intermediate-duration GRBs can be only partly populated by XRFs. The key ideas of the Ripa and Meszaros 2016 (Ap&SS, 361, 370) article are summarized in this poster.

  16. Atmospheric electron-induced x-ray spectrometer development

    NASA Technical Reports Server (NTRS)

    Wilcox, Jaroslava Z.; Urgiles, Eduardo; Toda, Risaku; Crisp, Joy

    2005-01-01

    This paper extends the work reported at the IEEE Aerospace conference in 2001 and 2003 where the concept and progress in the development of the so called atmospheric Electron X-ray Spectrometer (AEXS) has been described.

  17. The EGRET high energy gamma ray telescope

    NASA Technical Reports Server (NTRS)

    Hartman, R. C.; Bertsch, D. L.; Fichtel, C. E.; Hunter, S. D.; Kanbach, G.; Kniffen, D. A.; Kwok, P. W.; Lin, Y. C.; Mattox, J. R.; Mayer-Hasselwander, H. A.

    1992-01-01

    The Energetic Gamma Ray Experiment Telescope (EGRET) on the Compton Gamma Ray Observatory (GRO) is sensitive in the energy range from about 20 MeV to about 30,000 MeV. Electron-positron pair production by incident gamma photons is utilized as the detection mechanism. The pair production occurs in tantalum foils interleaved with the layers of a digital spark chamber system; the spark chamber records the tracks of the electron and positron, allowing the reconstruction of the arrival direction of the gamma ray. If there is no signal from the charged particle anticoincidence detector which surrounds the upper part of the detector, the spark chamber array is triggered by two hodoscopes of plastic scintillators. A time of flight requirement is included to reject events moving backward through the telescope. The energy of the gamma ray is primarily determined by absorption of the energies of the electron and positron in a 20 cm deep NaI(Tl) scintillator.

  18. The EGRET high energy gamma ray telescope

    NASA Astrophysics Data System (ADS)

    Hartman, R. C.; Bertsch, D. L.; Fichtel, C. E.; Hunter, S. D.; Kanbach, G.; Kniffen, D. A.; Kwok, P. W.; Lin, Y. C.; Mattox, J. R.; Mayer-Hasselwander, H. A.; Michelson, P. F.; von Montigny, C.; Nolan, P. L.; Pinkau, K.; Rothermel, H.; Schneid, E.; Sommer, M.; Sreekumar, P.; Thompson, D. J.

    1992-02-01

    The Energetic Gamma Ray Experiment Telescope (EGRET) on the Compton Gamma Ray Observatory (GRO) is sensitive in the energy range from about 20 MeV to about 30,000 MeV. Electron-positron pair production by incident gamma photons is utilized as the detection mechanism. The pair production occurs in tantalum foils interleaved with the layers of a digital spark chamber system; the spark chamber records the tracks of the electron and positron, allowing the reconstruction of the arrival direction of the gamma ray. If there is no signal from the charged particle anticoincidence detector which surrounds the upper part of the detector, the spark chamber array is triggered by two hodoscopes of plastic scintillators. A time of flight requirement is included to reject events moving backward through the telescope. The energy of the gamma ray is primarily determined by absorption of the energies of the electron and positron in a 20 cm deep NaI(Tl) scintillator.

  19. Spring wheat-leaf phytomass and yield estimates from airborne scanner and hand-held radiometer measurements

    NASA Technical Reports Server (NTRS)

    Aase, J. K.; Siddoway, F. H.; Millard, J. P.

    1984-01-01

    An attempt has been made to relate hand-held radiometer measurements, and airborne multispectral scanner readings, with both different wheat stand densities and grain yield. Aircraft overflights were conducted during the tillering, stem extension and heading period stages of growth, while hand-held radiometer readings were taken throughout the growing season. The near-IR/red ratio was used in the analysis, which indicated that both the aircraft and the ground measurements made possible a differentiation and evaluation of wheat stand densities at an early enough growth stage to serve as the basis of management decisions. The aircraft data also corroborated the hand-held radiometer measurements with respect to yield prediction. Winterkill was readily evaluated.

  20. Updated level scheme of 172Yb from 171Yb(nth, γ) reaction studied via gamma-gamma coincidence spectrometer

    NASA Astrophysics Data System (ADS)

    Nguyen, Ngoc Anh; Nguyen, Xuan Hai; Pham, Dinh Khang; Nguyen, Quang Hung; Ho, Huu Thang

    2017-08-01

    This paper provides the updated information on the level scheme of 172Yb nucleus studied via 171Yb(nth, γ) reaction using the gamma-gamma coincidence spectrometer at Dalat Nuclear Research Institute (Viet Nam). The latter is used because of its advantages in achieving the low Compton background as well as in identifying the correlated gamma transitions. We have detected in total the energies and intensities of 128 two-step gamma cascades corresponding to 79 primary transitions. By comparing the measured data with those extracted from the ENSDF library, 61 primary gamma transitions and corresponding energy levels together with 20 secondary gamma transitions are found to be the same as the ENSDF data. Beside that, 18 additional primary gamma transitions and corresponding energy levels plus 108 secondary ones are not found to currently exist in this library and they are therefore considered as the new data.

  1. Prompt Optical Observations of Gamma-Ray Bursts

    NASA Astrophysics Data System (ADS)

    Akerlof, Carl; Balsano, Richard; Barthelmy, Scott; Bloch, Jeff; Butterworth, Paul; Casperson, Don; Cline, Tom; Fletcher, Sandra; Frontera, Fillippo; Gisler, Galen; Heise, John; Hills, Jack; Hurley, Kevin; Kehoe, Robert; Lee, Brian; Marshall, Stuart; McKay, Tim; Pawl, Andrew; Piro, Luigi; Szymanski, John; Wren, Jim

    2000-03-01

    The Robotic Optical Transient Search Experiment (ROTSE) seeks to measure simultaneous and early afterglow optical emission from gamma-ray bursts (GRBs). A search for optical counterparts to six GRBs with localization errors of 1 deg2 or better produced no detections. The earliest limiting sensitivity is mROTSE>13.1 at 10.85 s (5 s exposure) after the gamma-ray rise, and the best limit is mROTSE>16.0 at 62 minutes (897 s exposure). These are the most stringent limits obtained for the GRB optical counterpart brightness in the first hour after the burst. Consideration of the gamma-ray fluence and peak flux for these bursts and for GRB 990123 indicates that there is not a strong positive correlation between optical flux and gamma-ray emission.

  2. Uncooled spectrometer for x-ray astrophysics

    NASA Astrophysics Data System (ADS)

    Urban, Martin; Nentvich, Ondrej; Stehlikova, Veronika; Sieger, Ladislav

    2017-05-01

    In the field of X-ray detection for Astrophysics there are mainly two objectives; first is to create 2D images as a result of sensing radiation by detectors consisting of a pixels matrix and the second is a spectral analysis of the incident radiation. For spectral analysis, the basis is usually the principle of diffraction. This paper describes the new design of X-ray spectrometer based on Timepix detector with optics positioned in front of it. The advantage of this setup is the ability to get the image and spectrum from the same devices. With other modifications is possible to shift detection threshold into areas of soft X-ray radiation.

  3. Hand x-ray

    MedlinePlus

    ... this page: //medlineplus.gov/ency/article/003811.htm Hand x-ray To use the sharing features on ... Duplication for commercial use must be authorized in writing by ADAM Health Solutions. About MedlinePlus Site Map ...

  4. Research in cosmic and gamma ray astrophysics

    NASA Technical Reports Server (NTRS)

    Stone, E. C.; Davis, L., Jr.; Mewaldt, R. A.; Prince, T. A.

    1989-01-01

    Research activities in cosmic rays, gamma rays, and astrophysical plasmas are covered. The activities are divided into sections and described, followed by a bibliography. The astrophysical aspects of cosmic rays, gamma rays, and of the radiation and electromagnetic field environment of the Earth and other planets are investigated. These investigations are performed by means of energetic particle and photon detector systems flown on spacecraft and balloons.

  5. ^235U(n,xnγ) Excitation Function Measurements Using Gamma-Ray Spectroscopy at GEANIE

    NASA Astrophysics Data System (ADS)

    Younes, W.; Becker, J. A.; Bernstein, L. A.; Archer, D. E.; Stoyer, M. A.; Hauschild, K.; Drake, D. M.; Johns, G. D.; Nelson, R. O.; Wilburn, S. W.

    1998-04-01

    The ^235U(n,xn) cross sections (where x<=2) have previously been measured at several incident neutron energies. In particular, the ^235U(n,2n) cross section has been measured(J. Frehaut et al.), Nucl. Sci. Eng. 74,29 (1980). reliably up to peak near E_n≈ 11 MeV, but not along the tail which is predicted by some(M.B. Chadwick, private communication.) codes to yield significant (e.g. >= 10% of peak) cross section out to E_n≈ 30 MeV. We have measured gamma-ray spectra resulting from ^235U(n,xn) as a function of neutron energy in the range 1 MeV <~ En <~ 200 MeV using the GEANIE spectrometer at the LANSCE/WNR ``white'' neutron source. We will present excitation functions for the de-excitation gamma rays in ^234,235U compared to predictions from the Hauser-Feshbach-preequilibrium code GNASH(M.B. Chadwick and P.G. Young, Los Alamos Report No. LA-UR-93-104, 1993.).

  6. Development of low level 226Ra analysis for live fish using gamma-ray spectrometry

    NASA Astrophysics Data System (ADS)

    Chandani, Z.; Prestwich, W. V.; Byun, S. H.

    2017-06-01

    A low level 226Ra analysis method for live fish was developed using a 4π NaI(Tl) gamma-ray spectrometer. In order to find out the best algorithm for accomplishing the lowest detection limit, the gamma-ray spectrum from a 226Ra point was collected and nine different methods were attempted for spectral analysis. The lowest detection limit of 0.99 Bq for an hour counting occurred when the spectrum was integrated in the energy region of 50-2520 keV. To extend 226Ra analysis to live fish, a Monte Carlo simulation model with a cylindrical fish in a water container was built using the MCNP code. From simulation results, the spatial distribution of the efficiency and the efficiency correction factor for the live fish model were determined. The MCNP model will be able to be conveniently modified when a different fish or container geometry is employed as fish grow up in real experiments.

  7. Three-dimensional fluorescence-enhanced optical tomography using a hand-held probe based imaging system.

    PubMed

    Ge, Jiajia; Zhu, Banghe; Regalado, Steven; Godavarty, Anuradha

    2008-07-01

    Hand-held based optical imaging systems are a recent development towards diagnostic imaging of breast cancer. To date, all the hand-held based optical imagers are used to perform only surface mapping and target localization, but are not capable of demonstrating tomographic imaging. Herein, a novel hand-held probe based optical imager is developed towards three-dimensional (3-D) optical tomography studies. The unique features of this optical imager, which primarily consists of a hand-held probe and an intensified charge coupled device detector, are its ability to; (i) image large tissue areas (5 x 10 sq. cm) in a single scan, (ii) perform simultaneous multiple point illumination and collection, thus reducing the overall imaging time; and (iii) adapt to varying tissue curvatures, from a flexible probe head design. Experimental studies are performed in the frequency domain on large slab phantoms (approximately 650 ml) using fluorescence target(s) under perfect uptake (1:0) contrast ratios, and varying target depths (1-2 cm) and X-Y locations. The effect of implementing simultaneous over sequential multiple point illumination towards 3-D tomography is experimentally demonstrated. The feasibility of 3-D optical tomography studies has been demonstrated for the first time using a hand-held based optical imager. Preliminary fluorescence-enhanced optical tomography studies are able to reconstruct 0.45 ml target(s) located at different target depths (1-2 cm). However, the depth recovery was limited as the actual target depth increased, since only reflectance measurements were acquired. Extensive tomography studies are currently carried out to determine the resolution and performance limits of the imager on flat and curved phantoms.

  8. Three-dimensional fluorescence-enhanced optical tomography using a hand-held probe based imaging system

    PubMed Central

    Ge, Jiajia; Zhu, Banghe; Regalado, Steven; Godavarty, Anuradha

    2008-01-01

    Hand-held based optical imaging systems are a recent development towards diagnostic imaging of breast cancer. To date, all the hand-held based optical imagers are used to perform only surface mapping and target localization, but are not capable of demonstrating tomographic imaging. Herein, a novel hand-held probe based optical imager is developed towards three-dimensional (3-D) optical tomography studies. The unique features of this optical imager, which primarily consists of a hand-held probe and an intensified charge coupled device detector, are its ability to; (i) image large tissue areas (5×10 sq. cm) in a single scan, (ii) perform simultaneous multiple point illumination and collection, thus reducing the overall imaging time; and (iii) adapt to varying tissue curvatures, from a flexible probe head design. Experimental studies are performed in the frequency domain on large slab phantoms (∼650 ml) using fluorescence target(s) under perfect uptake (1:0) contrast ratios, and varying target depths (1–2 cm) and X-Y locations. The effect of implementing simultaneous over sequential multiple point illumination towards 3-D tomography is experimentally demonstrated. The feasibility of 3-D optical tomography studies has been demonstrated for the first time using a hand-held based optical imager. Preliminary fluorescence-enhanced optical tomography studies are able to reconstruct 0.45 ml target(s) located at different target depths (1–2 cm). However, the depth recovery was limited as the actual target depth increased, since only reflectance measurements were acquired. Extensive tomography studies are currently carried out to determine the resolution and performance limits of the imager on flat and curved phantoms. PMID:18697559

  9. New Technology CZT Detectors for High-Energy Flare Spectroscopy: The Room Temperature Semiconductor Spectrometer for JAWSAT

    NASA Technical Reports Server (NTRS)

    Vestrand, W. Thomas

    1999-01-01

    The goal of our Room Temperature Semiconductor Spectrometer (RTeSS) project is to develop a small high-energy solar flare spectrometer employing semiconductor detectors that do not require significant cooling when used as high-energy solar flare spectrometers. Specifically, the goal is to test Cadmium Zinc Telluride (CZT) detectors with coplanar grid electrodes as x-ray and gamma-ray spectrometers and to design an experiment that can be flown as a "piggy-back" payload on a satellite mission during the next solar maximum.

  10. Solar X-Ray and Gamma-Ray Imaging Spectroscopy

    NASA Astrophysics Data System (ADS)

    Dennis, B. R.; Christe, S. D.; Shih, A. Y.; Holman, G. D.; Emslie, A. G.; Caspi, A.

    2018-02-01

    X-ray and gamma-ray Sun observations from a lunar-based observatory would provide unique information on solar atmosphere thermal and nonthermal processes. EUV and energetic neutral atom imaging spectroscopy would augment the scientific value.

  11. Smoking Gun Found for Gamma-Ray Burst in Milky Way

    NASA Astrophysics Data System (ADS)

    2004-06-01

    plane of the sky by about 20 degrees. W49B Chandra Fe K-line Image of W49B Four rings about 25 light years in diameter can be identified in the infrared image. These rings, which are due to warm gas, were presumably flung out by the rapid rotation of the massive star a few hundred thousand years before the star exploded. The rings were pushed outward by a hot wind from the star a few thousand years before it exploded. Chandra's image and spectral data show that the jets of multimillion-degree-Celsius gas extending along the axis of the barrel are rich in iron and nickel ions, consistent with their being ejected from the center of the star. This distinguishes the explosion from a conventional type II supernova in which most of the Fe and Ni goes into making the neutron star, and the outer part of the star is what is flung out. In contrast, in the collapsar model of gamma ray bursts iron and nickel from the center is ejected along the jet. At the ends of the barrel, the X-ray emission flares out to make a hot cap. The X-ray cap is surrounded by a flattened cloud of hydrogen molecules detected in the infrared. These features indicate that the shock wave produced by the explosion has encountered a large, dense cloud of gas and dust. The scenario that emerges is one in which a massive star formed from a dense cloud of dust, shone brightly for a few million years while spinning off rings of gas and pushing them away, forming a nearly empty cavity around the star. The star then underwent a collapsar-type supernova explosion that resulted in a gamma-ray burst. The observations of W49B may help to resolve a problem that has bedeviled the collapsar model for gamma-ray bursts. On the one hand, the model is based on the collapse of a massive star, which is normally formed from a dense cloud. On the other hand, observations of the afterglow of many gamma-ray bursts indicate that the explosion occurred in a low-density gas. Based on the W49B data, the resolution proposed by Keohane

  12. Use of a hand-held meter for detecting subclinical ketosis in dairy cows.

    PubMed

    Voyvoda, Huseyin; Erdogan, Hasan

    2010-12-01

    The Optium Xceed is a new hand-held meter for determining blood β-hydroxybutyrate (BHBA) and glucose in human medicine. The objective of this study was to compare BHBA and glucose results obtained using the hand-held meter with those results made with a laboratory method and to evaluate its usefulness as a cowside test in the diagnosis of subclinical ketosis (SCK) in dairy cows. Seventy-eight blood samples from clinically healthy Holstein cows between 5 and 60 days post-calving were analysed. BHBA and glucose values were significantly higher with the hand-held meter versus laboratory methods. Correlation coefficients (r) for BHBA and glucose with the Optium Xceed versus laboratory methods were 0.97 and 0.63, respectively. Based on Bland-Altman plot and Passing-Bablok regression, agreement between two methods was good for BHBA but the agreement for glucose was only fair. When SCK was defined as plasma BHBA levels ≥ 1200 μmol/L, the sensitivity and specificity of the hand-held meter ketone testing in determining SCK were 85% and 94%, respectively. Raising the threshold of the laboratory method to ≥ 1400 μmol/L, the sensitivity and specificity incremented to 0.90 and 0.98, respectively. In conclusion, the blood ketone-monitoring device can be used as a rapid and reliable diagnostic test to detect SCK under field conditions. Copyright © 2010 Elsevier Ltd. All rights reserved.

  13. In-flight calibration of Hitomi Soft X-ray Spectrometer. (1) Background

    NASA Astrophysics Data System (ADS)

    Kilbourne, Caroline A.; Sawada, Makoto; Tsujimoto, Masahiro; Angellini, Lorella; Boyce, Kevin R.; Eckart, Megan E.; Fujimoto, Ryuichi; Ishisaki, Yoshitaka; Kelley, Richard L.; Koyama, Shu; Leutenegger, Maurice A.; Loewenstein, Michael; McCammon, Dan; Mitsuda, Kazuhisa; Nakashima, Shinya; Porter, Frederick S.; Seta, Hiromi; Takei, Yoh; Tashiro, Makoto S.; Terada, Yukikatsu; Yamada, Shinya; Yamasaki, Noriko Y.

    2018-03-01

    The X-Ray Spectrometer (XRS) instrument of Suzaku provided the first measurement of the non-X-ray background (NXB) of an X-ray calorimeter spectrometer, but the data set was limited. The Soft X-ray Spectrometer (SXS) instrument of Hitomi was able to provide a more detailed picture of X-ray calorimeter background, with more than 360 ks of data while pointed at the Earth, and a comparable amount of blank-sky data. These data are important not only for analyzing SXS science data, but also for categorizing the contributions to the NXB in X-ray calorimeters as a class. In this paper, we present the contributions to the SXS NXB, the types and effectiveness of the screening, the interaction of the screening with the broad-band redistribution, and the residual background spectrum as a function of magnetic cut-off rigidity. The orbit-averaged SXS NXB in the range 0.3-12 keV was 4 × 10-2 counts s-1 cm-2. This very low background in combination with groundbreaking spectral resolution gave SXS unprecedented sensitivity to weak spectral lines.

  14. Combining heterogenous features for 3D hand-held object recognition

    NASA Astrophysics Data System (ADS)

    Lv, Xiong; Wang, Shuang; Li, Xiangyang; Jiang, Shuqiang

    2014-10-01

    Object recognition has wide applications in the area of human-machine interaction and multimedia retrieval. However, due to the problem of visual polysemous and concept polymorphism, it is still a great challenge to obtain reliable recognition result for the 2D images. Recently, with the emergence and easy availability of RGB-D equipment such as Kinect, this challenge could be relieved because the depth channel could bring more information. A very special and important case of object recognition is hand-held object recognition, as hand is a straight and natural way for both human-human interaction and human-machine interaction. In this paper, we study the problem of 3D object recognition by combining heterogenous features with different modalities and extraction techniques. For hand-craft feature, although it reserves the low-level information such as shape and color, it has shown weakness in representing hiconvolutionalgh-level semantic information compared with the automatic learned feature, especially deep feature. Deep feature has shown its great advantages in large scale dataset recognition but is not always robust to rotation or scale variance compared with hand-craft feature. In this paper, we propose a method to combine hand-craft point cloud features and deep learned features in RGB and depth channle. First, hand-held object segmentation is implemented by using depth cues and human skeleton information. Second, we combine the extracted hetegerogenous 3D features in different stages using linear concatenation and multiple kernel learning (MKL). Then a training model is used to recognize 3D handheld objects. Experimental results validate the effectiveness and gerneralization ability of the proposed method.

  15. Gamma-Ray Imaging for Explosives Detection

    NASA Technical Reports Server (NTRS)

    deNolfo, G. A.; Hunter, S. D.; Barbier, L. M.; Link, J. T.; Son, S.; Floyd, S. R.; Guardala, N.; Skopec, M.; Stark, B.

    2008-01-01

    We describe a gamma-ray imaging camera (GIC) for active interrogation of explosives being developed by NASA/GSFC and NSWCICarderock. The GIC is based on the Three-dimensional Track Imager (3-DTI) technology developed at GSFC for gamma-ray astrophysics. The 3-DTI, a large volume time-projection chamber, provides accurate, approx.0.4 mm resolution, 3-D tracking of charged particles. The incident direction of gamma rays, E, > 6 MeV, are reconstructed from the momenta and energies of the electron-positron pair resulting from interactions in the 3-DTI volume. The optimization of the 3-DTI technology for this specific application and the performance of the GIC from laboratory tests is presented.

  16. Central Engine Memory of Gamma-Ray Bursts and Soft Gamma-Ray Repeaters

    NASA Astrophysics Data System (ADS)

    Zhang, Bin-Bin; Zhang, Bing; Castro-Tirado, Alberto J.

    2016-04-01

    Gamma-ray bursts (GRBs) are bursts of γ-rays generated from relativistic jets launched from catastrophic events such as massive star core collapse or binary compact star coalescence. Previous studies suggested that GRB emission is erratic, with no noticeable memory in the central engine. Here we report a discovery that similar light curve patterns exist within individual bursts for at least some GRBs. Applying the Dynamic Time Warping method, we show that similarity of light curve patterns between pulses of a single burst or between the light curves of a GRB and its X-ray flare can be identified. This suggests that the central engine of at least some GRBs carries “memory” of its activities. We also show that the same technique can identify memory-like emission episodes in the flaring emission in soft gamma-ray repeaters (SGRs), which are believed to be Galactic, highly magnetized neutron stars named magnetars. Such a phenomenon challenges the standard black hole central engine models for GRBs, and suggest a common physical mechanism behind GRBs and SGRs, which points toward a magnetar central engine of GRBs.

  17. Hand-held Raman sensor head for in-situ characterization of meat quality applying a microsystem 671 nm diode laser

    NASA Astrophysics Data System (ADS)

    Schmidt, Heinar; Sowoidnich, Kay; Maiwald, Martin; Sumpf, Bernd; Kronfeldt, Heinz-Detlef

    2009-05-01

    A hand-held Raman sensor head was developed for the in-situ characterization of meat quality. As light source, a microsystem based external cavity diode laser module (ECDL) emitting at 671 nm was integrated in the sensor head and attached to a miniaturized optical bench which contains lens optics for excitation and signal collection as well as a Raman filter stage for Rayleigh rejection. The signal is transported with an optical fiber to the detection unit which was in the initial phase a laboratory spectrometer with CCD detector. All elements of the ECDL are aligned on a micro optical bench with 13 x 4 mm2 footprint. The wavelength stability is provided by a reflection Bragg grating and the laser has an optical power of up to 200 mW. However, for the Raman measurements of meat only 35 mW are needed to obtain Raman spectra within 1 - 5 seconds. Short measuring times are essential for the hand-held device. The laser and the sensor head are characterized in terms of stability and performance for in-situ Raman investigations. The function is demonstrated in a series of measurements with raw and packaged pork meat as samples. The suitability of the Raman sensor head for the quality control of meat and other products will be discussed.

  18. Conceptual design of the gamma-to-electron magnetic spectrometer for the National Ignition Facility

    DOE PAGES

    Kim, Y.; Herrmann, H. W.; Jorgenson, H. J.; ...

    2014-08-01

    The Gamma-to-Electron Magnetic Spectrometer (GEMS) diagnostic is designed to measure the prompt γ-ray energy spectrum during high yield deuterium-tritium (DT) implosions at the National Ignition Facility (NIF). The prompt γ-ray spectrum will provide ‘burn-averaged’ observables, including total DT fusion yield, total areal density (ρR), ablator ρR, and fuel ρR. These burn-averaged observables are unique because they are essentially averaged over 4π, providing a global reference for the line-of-sight-specific measurements typical of x-ray and neutron diagnostics. The GEMS conceptual design meets the physics-based requirements: ΔE/E = 3 - 5% can be achieved in the range of 2 - 25 MeV γ-raymore » energy. Minimum DT neutron yields required for 15% measurement uncertainty at low-resolution mode are: 5×10 14 DT-n for ablator ρR (at 0.2 g/cm 2); 2×10 15 DT-n for total DT yield (at 4.2×10 -5γ /n); and 1×10 16 DT-n for fuel ρR (at 1 g/cm 2).« less

  19. Research in particle and gamma-ray astrophysics

    NASA Technical Reports Server (NTRS)

    Stone, E. C.; Davis, L., Jr.; Mewaldt, R. A.; Prince, T. A.

    1988-01-01

    Research activities in cosmic rays, gamma rays, and astrophysical plasmas are covered. Each activity is described, followed by a bibliography. The research program is directed toward the investigation of the astrophysical aspects of cosmic rays and gamma rays and of the radiation and electromagnetic field environment of the earth and other planets. These investigations were performed by means of energetic particle and photon detector systems flown on spacecraft and balloons.

  20. A method for limiting data acquisition in a high-resolution gamma-ray spectrometer during On-Site Inspection activities under the Comprehensive Nuclear-Test-Ban Treaty

    NASA Astrophysics Data System (ADS)

    Aviv, O.; Lipshtat, A.

    2018-05-01

    On-Site Inspection (OSI) activities under the Comprehensive Nuclear-Test-Ban Treaty (CTBT) allow limitations to measurement equipment. Thus, certain detectors require modifications to be operated in a restricted mode. The accuracy and reliability of results obtained by a restricted device may be impaired. We present here a method for limiting data acquisition during OSI. Limitations are applied to a high-resolution high-purity germanium detector system, where the vast majority of the acquired data that is not relevant to the inspection is filtered out. The limited spectrum is displayed to the user and allows analysis using standard gamma spectrometry procedures. The proposed method can be incorporated into commercial gamma-ray spectrometers, including both stationary and mobile-based systems. By applying this procedure to more than 1000 spectra, representing various scenarios, we show that partial data are sufficient for reaching reliable conclusions. A comprehensive survey of potential false-positive identifications of various radionuclides is presented as well. It is evident from the results that the analysis of a limited spectrum is practically identical to that of a standard spectrum in terms of detection and quantification of OSI-relevant radionuclides. A future limited system can be developed making use of the principles outlined by the suggested method.

  1. Fermi GBM Observations of Terrestrial Gamma-Ray Flashes

    NASA Technical Reports Server (NTRS)

    Wilson-Hodge, Colleen A.; Briggs, M. S.; Connaughton, V.; Fishman, G. J.; Bhat, P. N.; Paciesas, W. S.; Preece, R.; Kippen, R. M.; vonKienlin, A.; Dwyer, J. R.; hide

    2010-01-01

    This slide presentation explores the relationship between Terrestrial Gamma-Ray Flashes (TGF) and lightning. Using data from the World-Wide Lightning Location Network (WWLLN), and the gamma ray observations from Fermi's Gamma-ray Burst Monitor (GBM), the study reviews any causal relationship between TGFs and lightning. The conclusion of the study is that the TGF and lightning are simultaneous with out a causal relationship.

  2. Gamma-ray background induced by atmospheric neutrons

    NASA Astrophysics Data System (ADS)

    Ma, Y.-Q.

    1984-03-01

    A small piggyback detector system is used to study the reduction of gamma-ray background induced by atmospheric neutrons in the type of actively shielded gamma-ray spectroscopes. The system consists of two 1.5 x 1.5 arcsec NaI crystal units, one of which is surrounded by some neutron shield material. The results of a balloon flight in 1981 are presented. The data show that a shield of 3 cm-thick pure paraffin cannot reduce the gamma-ray background. On the contrary, it may even cause some enhancement.

  3. ADP study of gamma-ray bursts

    NASA Technical Reports Server (NTRS)

    Lamb, Don Q.; Wang, John C. L.; Heuter, Geoffry J.; Graziani, Carlo; Loredo, Tom; Freeman, Peter

    1991-01-01

    This grant supported study of cyclotron scattering lines in the spectra of gamma-ray bursts through analysis of Ginga and HEAO-1 archival data, and modeling of the results in terms of radiation transfer calculations of cyclotron scattering in a strong magnetic field. A Monte Carlo radiation transfer code with which we are able to calculate the expected properties of cyclotron scattering lines in the spectra of gamma-ray bursts was developed. The extensive software necessary in order to carry out fits of these model spectra to gamma-ray burst spectral data, including folding of the model spectra through the detector response functions was also developed. Fits to Ginga satellite data on burst GB880205 were completed and fits to Ginga satellite data on burst GB870303 are being carried out. These fits have allowed us to test our software, as well as to garner new scientific results. This work has demonstrated that cyclotron resonant scattering successfully accounts for the locations, strengths, and widths of the observed line features in GB870303 and GB880205. The success of the model provides compelling evidence that these gamma-ray bursts come from strongly magnetic neutron stars and are galactic in origin, resolving longstanding controversies about the nature and distance of the burst sources. These results were reported in two papers which are in press in the proceedings of the Taos Workshop on Gamma-Ray Bursts, and in a paper submitted for publication.

  4. SUZAKU X-RAY FOLLOW-UP OBSERVATIONS OF SEVEN UNASSOCIATED FERMI-LAT GAMMA-RAY SOURCES AT HIGH GALACTIC LATITUDES

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Takahashi, Y.; Kataoka, J.; Nakamori, T.

    2012-03-01

    We report on our second-year campaign of X-ray follow-up observations of unidentified Fermi Large Area Telescope (LAT) {gamma}-ray sources at high Galactic latitudes (|b| > 10 Degree-Sign ) using the X-ray Imaging Spectrometer on board the Suzaku X-ray Observatory. In this second year of the project, seven new targets were selected from the First Fermi-LAT Catalog, and studied with 20-40 ks effective Suzaku exposures. We detected an X-ray point source coincident with the position of the recently discovered millisecond pulsar (MSP) PSR J2302+4442 within the 95% confidence error circle of 1FGL J2302.8+4443. The X-ray spectrum of the detected counterpart wasmore » well fit by a blackbody model with temperature of kT {approx_equal} 0.3 keV, consistent with an origin of the observed X-ray photons from the surface of a rotating magnetized neutron star. For four other targets that were also recently identified with a normal pulsar (1FGL J0106.7+4853) and MSPs (1FGL J1312.6+0048, J1902.0-5110, and J2043.2+1709), only upper limits in the 0.5-10 keV band were obtained at the flux levels of {approx_equal} 10{sup -14} erg cm{sup -2} s{sup -1}. A weak X-ray source was found in the field of 1FGL J1739.4+8717, but its association with the variable {gamma}-ray emitter could not be confirmed with the available Suzaku data alone. For the remaining Fermi-LAT object 1FGL J1743.8-7620 no X-ray source was detected within the LAT 95% error ellipse. We briefly discuss the general properties of the observed high Galactic-latitude Fermi-LAT objects by comparing their multiwavelength properties with those of known blazars and MSPs.« less

  5. Molecular and biochemical studies on the effect of gamma rays on lead toxicity in cowpea (Vigna sinensis) plants.

    PubMed

    Mohamed, Heba Ibrahim

    2011-12-01

    The effect of lead acetate in the presence or absence of cowpea seeds irradiated with gamma rays on morphological criteria, protein electrophoresis, isozymes, and random amplification of polymorphic DNA-polymerase chain reaction (RAPD-PCR) of leaves was investigated. A highly significant decrease in shoot and root length was observed upon lead acetate exposure (300 and 600 μM). On the other hand, in seeds irradiated with gamma rays (2, 5, and 8 krad), these morphological parameters were increased after lead acetate treatments. Meanwhile, all treatments (lead acetate and gamma rays) caused variations in number, intensity, and/or density of SDS electrophoretic bands of proteins. In addition, electrophoretic studies of esterase, acid phosphatase, peroxidase, polyphenol oxidase, catalase, and superoxide dismutase isozyme activities were increased with increasing the concentrations of lead acetate and gamma ray doses. The variation in DNA profile in response to lead acetate and gamma irradiation treatments was detected by RAPD-PCR technique. The result of RAPD analysis using the five primers indicated the appearance and disappearance of DNA polymorphic bands at all treatments (gamma rays and lead stress). The relatively high concentrations of lead acetate (600 μM) induced more changes in genomic DNA pattern.

  6. Soft gamma rays from black holes versus neutron stars

    NASA Technical Reports Server (NTRS)

    Liang, Edison P.

    1992-01-01

    The recent launches of GRANAT and GRO provide unprecedented opportunities to study compact collapsed objects from their hard x ray and gamma ray emissions. The spectral range above 100 keV can now be explored with much higher sensitivity and time resolution than before. The soft gamma ray spectral data is reviewed of black holes and neutron stars, radiation, and particle energization mechanisms and potentially distinguishing gamma ray signatures. These may include soft x ray excesses versus deficiencies, thermal versus nonthermal processes, transient gamma ray bumps versus power law tails, lines, and periodicities. Some of the highest priority future observations are outlines which will shed much light on such systems.

  7. Hand-held digital books in radiology: convenient access to information.

    PubMed

    D'Alessandro, M P; Galvin, J R; Santer, D M; Erkonen, W E

    1995-02-01

    Radiologists need constant, convenient access to current information throughout the course of their daily work. Today most learning in radiology is obtained from the printed word in books, journals, and teaching files, supplemented by the spoken word in lectures and conferences. Although learning from printed material and lectures has been proved efficacious over time, these media share the disadvantage of not being conveniently available for reference during the course of daily work at the alternator or in the examination room when accurate and up-to-date information is needed the most. As a result, many important questions about patient care go unanswered. We have developed a technique--hand-held digital books--to lower this barrier to searching and retrieval. When radiologists have a digital library that can be carried with them, they will be able to incorporate current radiology information into their daily decision making. We describe a technique for creating hand-held digital books and their future use in radiology.

  8. Directional detector of gamma rays

    DOEpatents

    Cox, Samson A.; Levert, Francis E.

    1979-01-01

    A directional detector of gamma rays comprises a strip of an electrical cuctor of high atomic number backed with a strip of a second electrical conductor of low atomic number. These elements are enclosed within an electrical conductor that establishes an electrical ground, maintains a vacuum enclosure and screens out low-energy gamma rays. The detector exhibits a directional sensitivity marked by an increased output in the favored direction by a factor of ten over the output in the unfavored direction.

  9. Air shower detectors in gamma-ray astronomy

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sinnis, Gus

    2008-01-01

    Extensive air shower (EAS) arrays directly detect the particles in an EAS that reach the observation altitude. This detection technique effectively makes air shower arrays synoptic telescopes -- they are capable of simultaneously and continuously viewing the entire overhead sky. Typical air shower detectors have an effective field-of-view of 2 sr and operate nearly 100% of the time. These two characteristics make them ideal instruments for studying the highest energy gamma rays, extended sources and transient phenomena. Until recently air shower arrays have had insufficient sensitivity to detect gamma-ray sources. Over the past decade, the situation has changed markedly. Milagro,more » in the US, and the Tibet AS{gamma} array in Tibet, have detected very-high-energy gamma-ray emission from the Crab Nebula and the active galaxy Markarian 421 (both previously known sources). Milagro has discovered TeV diffuse emission from the Milky Way, three unidentified sources of TeV gamma rays, and several candidate sources of TeV gamma rays. Given these successes and the suite of existing and planned instruments in the GeV and TeV regime (AGILE, GLAST, HESS, VERITAS, CTA, AGIS and IceCube) there are strong reasons for pursuing a next generation of EAS detectors. In conjunction with these other instruments the next generation of EAS instruments could answer long-standing problems in astrophysics.« less

  10. Development of ultrashort x-ray/gamma-ray sources using ultrahigh power lasers (Conference Presentation)

    NASA Astrophysics Data System (ADS)

    Kim, Hyung Taek; Nakajima, Kazuhisa; Hojbota, Calin; Jeon, Jong Ho; Rhee, Yong-Joo; Lee, Kyung Hwan; Lee, Seong Ku; Sung, Jae Hee; Lee, Hwang Woon; Pathak, Vishwa B.; Pae, Ki Hong; Sebban, Stéphane; Tissandier, Fabien; Gautier, Julien; Ta Phuoc, Kim; Malka, Victor; Nam, Chang Hee

    2017-05-01

    Short-pulse x-ray/gamma-ray sources have become indispensable light sources for investigating material science, bio technology, and photo-nuclear physics. In past decades, rapid advancement of high intensity laser technology led extensive progresses in the field of radiation sources based on laser-plasma interactions - x-ray lasers, betatron radiation and Compton gamma-rays. Ever since the installation of a 100-TW laser in 2006, we have pursued the development of ultrashort x-ray/gamma-ray radiations, such as x-ray lasers, relativistic high-order harmonics, betatron radiation and all-optical Compton gamma-rays. With the construction of two PW Ti:Sapphire laser beamlines having peak powers of 1.0 PW and 1.5 PW in 2010 and 2012, respectively [1], we have investigated the generation of multi-GeV electron beams [2] and MeV betatron radiations. We plan to carry out the Compton backscattering to generate MeV gamma-rays from the interaction of a GeV electron beam and a PW laser beam. Here, we present the recent progress in the development of ultrashort x-ray/gamma-ray radiation sources based on laser plasma interactions and the plan for developing Compton gamma-ray sources driven by the PW lasers. In addition, we will present the applications of laser-plasma x-ray lasers to x-ray holography and coherent diffraction imaging. [references] 1. J. H. Sung, S. K. Lee, T. J. Yu, T. M. Jeong, and J. Lee, Opt. Lett. 35, 3021 (2010). 2. H. T. Kim, K. H. Pae, H. J. Cha, I J. Kim, T. J. Yu, J. H. Sung, S. K. Lee, T. M. Jeong, J. Lee, Phys. Rev. Lett. 111, 165002 (2013).

  11. The superconducting high-resolution soft X-ray spectrometer at the advanced biological and environmental X-ray facility

    NASA Astrophysics Data System (ADS)

    Friedrich, S.; Drury, O. B.; George, S. J.; Cramer, S. P.

    2007-11-01

    We have built a 36-pixel superconducting tunnel junction X-ray spectrometer for chemical analysis of dilute samples in the soft X-ray band. It offers an energy resolution of ˜10-20 eV FWHM below 1 keV, a solid angle coverage of ˜10 -3, and can be operated at total rates of up to ˜10 6 counts/s. Here, we describe the spectrometer performance in speciation measurements by fluorescence-detected X-ray absorption spectroscopy at the Advanced Biological and Environmental X-ray facility at the ALS synchrotron.

  12. A Novel Study Connecting Ultra-High Energy Cosmic Rays, Neutrinos, and Gamma-Rays

    NASA Astrophysics Data System (ADS)

    Coenders, Stefan; Resconi, Elisa; Padovani, Paolo; Giommi, Paolo; Caccianiga, Lorenzo

    We present a novel study connecting ultra-high energy cosmic rays, neutrinos, and gamma-rays with the objective to identify common counterparts of the three astrophysical messengers. In the test presented here, we first identify potential hadronic sources by filtering gamma-ray emitters that are in spatial coincidence with IceCube neutrinos. Subsequently, these objects are correlated against ultra-high energy cosmic rays detected by the Pierre Auger Observatory and the Telescope Array, scanning in gamma-ray flux and angular separation between sources and cosmic rays. A maximal excess of 80 cosmic rays (41.9 expected) is observed for the second catalog of hard Fermi-LAT objects of blazars of the high synchrotron peak type. This corresponds to a deviation from the null-hypothesis of 2.94σ . No excess is observed for objects not in spatial connection with neutrinos. The gamma-ray sources that make up the excess are blazars of the high synchrotron peak type.

  13. X-ray imaging crystal spectrometer for extended X-ray sources

    DOEpatents

    Bitter, Manfred L.; Fraenkel, Ben; Gorman, James L.; Hill, Kenneth W.; Roquemore, A. Lane; Stodiek, Wolfgang; von Goeler, Schweickhard E.

    2001-01-01

    Spherically or toroidally curved, double focusing crystals are used in a spectrometer for X-ray diagnostics of an extended X-ray source such as a hot plasma produced in a tokomak fusion experiment to provide spatially and temporally resolved data on plasma parameters using the imaging properties for Bragg angles near 45. For a Bragg angle of 45.degree., the spherical crystal focuses a bundle of near parallel X-rays (the cross section of which is determined by the cross section of the crystal) from the plasma to a point on a detector, with parallel rays inclined to the main plain of diffraction focused to different points on the detector. Thus, it is possible to radially image the plasma X-ray emission in different wavelengths simultaneously with a single crystal.

  14. Gamma-ray pulsars: Emission zones and viewing geometries

    NASA Technical Reports Server (NTRS)

    Romani, Roger W.; Yadigaroglu, I.-A.

    1995-01-01

    There are now a half-dozen young pulsars detected in high-energy photons by the Compton Gamma-Ray Observatory (CGRO), showing a variety of emission efficiencies and pulse profiles. We present here a calculation of the pattern of high-energy emission on the sky in a model which posits gamma-ray production by charge-depleted gaps in the outer magnetosphere. This model accounts for the radio to gamma-ray pulse offsets of the known pulsars, as well as the shape of the high-energy pulse profiles. We also show that about one-third of emitting young radio pulsars will not be detected due to beaming effects, while approximately 2.5 times the number of radio-selected gamma-ray pulsars will be viewed only high energies. Finally we compute the polarization angle variation and find that the previously misunderstood optical polarization sweep of the Crab pulsar arises naturally in this picture. These results strongly support an outer magnetosphere location for the gamma-ray emission.

  15. Gamma rays from hidden millisecond pulsars

    NASA Technical Reports Server (NTRS)

    Tavani, Marco

    1992-01-01

    The properties were studied of a new class of gamma ray sources consisting of millisecond pulsars totally or partially surrounded by evaporating material from irradiated companion stars. Hidden millisecond pulsars offer a unique possibility to study gamma ray, optical and radio emission from vaporizing binaries. The relevance of this class of binaries for GRO observations and interpretation of COS-B data is emphasized.

  16. Population Studies of Radio and Gamma-Ray Pulsars

    NASA Technical Reports Server (NTRS)

    Harding, Alice K; Gonthier, Peter; Coltisor, Stefan

    2004-01-01

    Rotation-powered pulsars are one of the most promising candidates for at least some of the 40-50 EGRET unidentified gamma-ray sources that lie near the Galactic plane. Since the end of the EGRO mission, the more sensitive Parkes Multibeam radio survey has detected mere than two dozen new radio pulsars in or near unidentified EGRET sources, many of which are young and energetic. These results raise an important question about the nature of radio quiescence in gamma-ray pulsars: is the non-detection of radio emission a matter of beaming or of sensitivity? The answer is very dependent on the geometry of the radio and gamma-ray beams. We present results of a population synthesis of pulsars in the Galaxy, including for the first time the full geometry of the radio and gamma-ray beams. We use a recent empirically derived model of the radio emission and luminosity, and a gamma-ray emission geometry and luminosity derived theoretically from pair cascades in the polar slot gap. The simulation includes characteristics of eight radio surveys of the Princeton catalog plus the Parkes MB survey. Our results indicate that EGRET was capable of detecting several dozen pulsars as point sources, with the ratio of radio-loud to radio-quiet gamma-ray pulsars increasing significantly to about ten to one when the Parkes Survey is included. Polar cap models thus predict that many of the unidentified EGRET sources could be radio-loud gamma- ray pulsars, previously undetected as radio pulsars due to distance, large dispersion and lack of sensitivity. If true, this would make gamma-ray telescopes a potentially more sensitive tool for detecting distant young neutron stars in the Galactic plane.

  17. Interpretation of various radiation backgrounds observed in the gamma-ray spectrometer experiments carried on the Apollo missions and implications for diffuse gamma-ray measurements

    NASA Technical Reports Server (NTRS)

    Dyer, C. S.; Trombka, J. I.; Metzger, A. E.; Seltzer, S. M.; Bielefeld, M. J.; Evans, L. G.

    1975-01-01

    Since the report of a preliminary analysis of cosmic gamma-ray measurements made during the Apollo 15 mission, an improved calculation of the spallation activation contribution has been made including the effects of short-lived spallation fragments, which can extend the correction to 15 MeV. In addition, a difference between Apollo 15 and 16 data enables an electron bremsstrahlung contribution to be calculated. A high level of activation observed in a crystal returned on Apollo 17 indicates a background contribution from secondary neutrons. These calculations and observations enable an improved extraction of spurious components and suggest important improvements for future detectors.

  18. Comparison of backgrounds in OSO-7 and SMM spectrometers and short-term activation in SMM

    NASA Technical Reports Server (NTRS)

    Dunphy, P. P.; Forrest, D. J.; Chupp, E. L.; Share, G. H.

    1989-01-01

    The backgrounds in the OSO-7 Gamma-Ray Monitor and the Solar Maximum Mission Gamma-Ray Spectrometer are compared. After scaling to the same volume, the background spectra agree to within 30 percent. This shows that analyses which successfully describe the background in one detector can be applied to similar detectors of different sizes and on different platforms. The background produced in the SMM spectrometer by a single trapped-radiation belt passage is also studied. This background is found to be dominated by a positron-annihilation line and a continuum spectrum with a high energy cutoff at 5 MeV.

  19. Development of dual sensor hand-held detector

    NASA Astrophysics Data System (ADS)

    Sezgin, Mehmet

    2010-04-01

    In this paper hand-held dual sensor detector development requirements are considered dedicated to buried object detection. Design characteristics of such a system are categorized and listed. Hardware and software structures, ergonomics, user interface, environmental and EMC/EMI tests to be applied and performance test issues are studied. Main properties of the developed system (SEZER) are presented, which contains Metal Detector (MD) and Ground Penetrating Radar (GPR). The realized system has ergonomic structure and can detect both metallic and non-metallic buried objects. Moreover classification of target is possible if it was defined to the signal processing software in learning phase.

  20. Gamma ray pulsars. [electron-photon cascades

    NASA Technical Reports Server (NTRS)

    Oegelman, H.; Ayasli, S.; Hacinliyan, A.

    1977-01-01

    Data from the SAS-2 high-energy gamma-ray experiment reveal the existence of four pulsars emitting photons above 35 MeV. An attempt is made to explain the gamma-ray emission from these pulsars in terms of an electron-photon cascade that develops in the magnetosphere of the pulsar. Although there is very little material above the surface of the pulsar, the very intense magnetic fields (10 to the 12th power gauss) correspond to many radiation lengths which cause electrons to emit photons by magnetic bremsstrahlung and which cause these photons to pair-produce. The cascade develops until the mean photon energy drops below the pair-production threshold which is in the gamma-ray range; at this stage, the photons break out from the source.

  1. Fermi: The Gamma-Ray Large Area Telescope Mission Status

    NASA Technical Reports Server (NTRS)

    McEnery, Julie

    2014-01-01

    Following its launch in June 2008, high-energy gamma-ray observations by the Fermi Gamma-ray Space Telescope have unveiled over 1000 new sources and opened an important and previously unexplored window on a wide variety of phenomena. These have included the discovery of an population of pulsars pulsing only in gamma rays; the detection of photons up to 10s of GeV from gamma-ray bursts, enhancing our understanding of the astrophysics of these powerful explosions; the detection of hundreds of active galaxies; a measurement of the high energy cosmic-ray electron spectrum which may imply the presence of nearby astrophysical particle accelerators; the determination of the diffuse gamma-ray emission with unprecedented accuracy and the constraints on phenomena such as supersymmetric dark-matter annihilations and exotic relics from the Big Bang. Continuous monitoring of the high-energy gamma-ray sky has uncovered numerous outbursts from active galaxies and the discovery of transient sources in our galaxy. In this talk I will describe the current status of the Fermi observatory and review the science highlights from Fermi.

  2. The gamma-ray spectrum of Centaurus A: A high-resolution observation between 70 keV and 8 MeV

    NASA Technical Reports Server (NTRS)

    Gehrels, N.; Cline, T. L.; Teegarden, B. J.; Paciesas, W. S.; Tueller, J.; Durouchoux, P.; Hameury, J. M.

    1983-01-01

    The NASA/Goddard Space Flight Center Low Energy Gamma ray Spectrometer (LEGS) observed the nearby active nucleus galaxy Centaurus A (NGC 5128) during a balloon flight on 1981 November 19. There is no evidence of a break in the spectrum or of any line features. The 1.6 MeV limit is a factor of 8 lower than the 1974 line flux, indicating that, if the 1974 feature was real, and, if it was narrow, then the line intensity decreased significantly between 1974 and 1981. The lack of observed annihilation radiation from Cen A, combined with the temporal variations that are seen in the X-ray and gamma-ray intensities, constrain the size of the emission region to be between 10 to the 13th power and 5 x 10 to the 17th power cm.

  3. Swift Gamma-Ray Burst Explorer: Mission Design for Rapid, Accurate Location of Gamma-ray Bursts

    NASA Technical Reports Server (NTRS)

    Bundas, David J.

    2004-01-01

    The Swift Gamma-ray Burst Explorer is a NASA Mid-sized Explorer (MIDEX) with the primary mission of determining the origins of Gamma-Ray Bursts (GRBs). It will be the first mission to autonomously respond to newly-discovered GRBs and provide immediate follow-up with narrow field instruments capable of multi-wavelength (UV, Optical, X-ray) observations. The characteristics of GRBs that are the key mission design drivers, are their non-repeating and brief duration bursts of multi-wavelength photons. In addition, rapid notification of the location and characteristics of the GRBs to ground-and-space-based observatories drive the end-to-end data analysis and distribution requirements.

  4. Swift Gamma-ray Burst Explorer: Mission Design for Rapid, Accurate Location of Gamma-ray Bursts

    NASA Technical Reports Server (NTRS)

    Bundas, David J.

    2005-01-01

    The Swift Gamma-ray Burst Explorer is a NASA Mid-sized Explorer (MIDEX) with the primary mission of determining the origins of Gamma-Ray Bursts (GRBs). It will be the first mission to autonomously respond to newly-discovered GRBs and provide immediate follow-up with narrow field instruments capable of multi-wavelength (UT, Optical, X-ray) observations. The characteristics of GRBs that are the key mission design drivers, are their non-repeating and brief duration bursts of multi-wavelength photons. In addition, rapid notification of the location and characteristics of the GRBs to ground-and-space-based observatories drive the end-to-end data analysis and distribution requirements.

  5. Gamma-ray flares from the Crab Nebula.

    PubMed

    Abdo, A A; Ackermann, M; Ajello, M; Allafort, A; Baldini, L; Ballet, J; Barbiellini, G; Bastieri, D; Bechtol, K; Bellazzini, R; Berenji, B; Blandford, R D; Bloom, E D; Bonamente, E; Borgland, A W; Bouvier, A; Brandt, T J; Bregeon, J; Brez, A; Brigida, M; Bruel, P; Buehler, R; Buson, S; Caliandro, G A; Cameron, R A; Cannon, A; Caraveo, P A; Casandjian, J M; Çelik, Ö; Charles, E; Chekhtman, A; Cheung, C C; Chiang, J; Ciprini, S; Claus, R; Cohen-Tanugi, J; Costamante, L; Cutini, S; D'Ammando, F; Dermer, C D; de Angelis, A; de Luca, A; de Palma, F; Digel, S W; do Couto e Silva, E; Drell, P S; Drlica-Wagner, A; Dubois, R; Dumora, D; Favuzzi, C; Fegan, S J; Ferrara, E C; Focke, W B; Fortin, P; Frailis, M; Fukazawa, Y; Funk, S; Fusco, P; Gargano, F; Gasparrini, D; Gehrels, N; Germani, S; Giglietto, N; Giordano, F; Giroletti, M; Glanzman, T; Godfrey, G; Grenier, I A; Grondin, M-H; Grove, J E; Guiriec, S; Hadasch, D; Hanabata, Y; Harding, A K; Hayashi, K; Hayashida, M; Hays, E; Horan, D; Itoh, R; Jóhannesson, G; Johnson, A S; Johnson, T J; Khangulyan, D; Kamae, T; Katagiri, H; Kataoka, J; Kerr, M; Knödlseder, J; Kuss, M; Lande, J; Latronico, L; Lee, S-H; Lemoine-Goumard, M; Longo, F; Loparco, F; Lubrano, P; Madejski, G M; Makeev, A; Marelli, M; Mazziotta, M N; McEnery, J E; Michelson, P F; Mitthumsiri, W; Mizuno, T; Moiseev, A A; Monte, C; Monzani, M E; Morselli, A; Moskalenko, I V; Murgia, S; Nakamori, T; Naumann-Godo, M; Nolan, P L; Norris, J P; Nuss, E; Ohsugi, T; Okumura, A; Omodei, N; Ormes, J F; Ozaki, M; Paneque, D; Parent, D; Pelassa, V; Pepe, M; Pesce-Rollins, M; Pierbattista, M; Piron, F; Porter, T A; Rainò, S; Rando, R; Ray, P S; Razzano, M; Reimer, A; Reimer, O; Reposeur, T; Ritz, S; Romani, R W; Sadrozinski, H F-W; Sanchez, D; Saz Parkinson, P M; Scargle, J D; Schalk, T L; Sgrò, C; Siskind, E J; Smith, P D; Spandre, G; Spinelli, P; Strickman, M S; Suson, D J; Takahashi, H; Takahashi, T; Tanaka, T; Thayer, J B; Thompson, D J; Tibaldo, L; Torres, D F; Tosti, G; Tramacere, A; Troja, E; Uchiyama, Y; Vandenbroucke, J; Vasileiou, V; Vianello, G; Vitale, V; Wang, P; Wood, K S; Yang, Z; Ziegler, M

    2011-02-11

    A young and energetic pulsar powers the well-known Crab Nebula. Here, we describe two separate gamma-ray (photon energy greater than 100 mega-electron volts) flares from this source detected by the Large Area Telescope on board the Fermi Gamma-ray Space Telescope. The first flare occurred in February 2009 and lasted approximately 16 days. The second flare was detected in September 2010 and lasted approximately 4 days. During these outbursts, the gamma-ray flux from the nebula increased by factors of four and six, respectively. The brevity of the flares implies that the gamma rays were emitted via synchrotron radiation from peta-electron-volt (10(15) electron volts) electrons in a region smaller than 1.4 × 10(-2) parsecs. These are the highest-energy particles that can be associated with a discrete astronomical source, and they pose challenges to particle acceleration theory.

  6. AGIS -- the Advanced Gamma-ray Imaging System

    NASA Astrophysics Data System (ADS)

    Krennrich, Frank

    2009-05-01

    The Advanced Gamma-ray Imaging System, AGIS, is envisioned to become the follow-up mission of the current generation of very high energy gamma-ray telescopes, namely, H.E.S.S., MAGIC and VERITAS. These instruments have provided a glimpse of the TeV gamma-ray sky, showing more than 70 sources while their detailed studies constrain a wealth of physics and astrophysics. The particle acceleration, emission and absorption processes in these sources permit the study of extreme physical conditions found in galactic and extragalactic TeV sources. AGIS will dramatically improve the sensitivity and angular resolution of TeV gamma-ray observations and therefore provide unique prospects for particle physics, astrophysics and cosmology. This talk will provide an overview of the science drivers, scientific capabilities and the novel technical approaches that are pursued to maximize the performance of the large array concept of AGIS.

  7. Gamma-Ray Flares from the Crab Nebula

    NASA Astrophysics Data System (ADS)

    Abdo, A. A.; Ackermann, M.; Ajello, M.; Allafort, A.; Baldini, L.; Ballet, J.; Barbiellini, G.; Bastieri, D.; Bechtol, K.; Bellazzini, R.; Berenji, B.; Blandford, R. D.; Bloom, E. D.; Bonamente, E.; Borgland, A. W.; Bouvier, A.; Brandt, T. J.; Bregeon, J.; Brez, A.; Brigida, M.; Bruel, P.; Buehler, R.; Buson, S.; Caliandro, G. A.; Cameron, R. A.; Cannon, A.; Caraveo, P. A.; Casandjian, J. M.; Çelik, Ö.; Charles, E.; Chekhtman, A.; Cheung, C. C.; Chiang, J.; Ciprini, S.; Claus, R.; Cohen-Tanugi, J.; Costamante, L.; Cutini, S.; D'Ammando, F.; Dermer, C. D.; de Angelis, A.; de Luca, A.; de Palma, F.; Digel, S. W.; do Couto e Silva, E.; Drell, P. S.; Drlica-Wagner, A.; Dubois, R.; Dumora, D.; Favuzzi, C.; Fegan, S. J.; Ferrara, E. C.; Focke, W. B.; Fortin, P.; Frailis, M.; Fukazawa, Y.; Funk, S.; Fusco, P.; Gargano, F.; Gasparrini, D.; Gehrels, N.; Germani, S.; Giglietto, N.; Giordano, F.; Giroletti, M.; Glanzman, T.; Godfrey, G.; Grenier, I. A.; Grondin, M.-H.; Grove, J. E.; Guiriec, S.; Hadasch, D.; Hanabata, Y.; Harding, A. K.; Hayashi, K.; Hayashida, M.; Hays, E.; Horan, D.; Itoh, R.; Jóhannesson, G.; Johnson, A. S.; Johnson, T. J.; Khangulyan, D.; Kamae, T.; Katagiri, H.; Kataoka, J.; Kerr, M.; Knödlseder, J.; Kuss, M.; Lande, J.; Latronico, L.; Lee, S.-H.; Lemoine-Goumard, M.; Longo, F.; Loparco, F.; Lubrano, P.; Madejski, G. M.; Makeev, A.; Marelli, M.; Mazziotta, M. N.; McEnery, J. E.; Michelson, P. F.; Mitthumsiri, W.; Mizuno, T.; Moiseev, A. A.; Monte, C.; Monzani, M. E.; Morselli, A.; Moskalenko, I. V.; Murgia, S.; Nakamori, T.; Naumann-Godo, M.; Nolan, P. L.; Norris, J. P.; Nuss, E.; Ohsugi, T.; Okumura, A.; Omodei, N.; Ormes, J. F.; Ozaki, M.; Paneque, D.; Parent, D.; Pelassa, V.; Pepe, M.; Pesce-Rollins, M.; Pierbattista, M.; Piron, F.; Porter, T. A.; Rainò, S.; Rando, R.; Ray, P. S.; Razzano, M.; Reimer, A.; Reimer, O.; Reposeur, T.; Ritz, S.; Romani, R. W.; Sadrozinski, H. F.-W.; Sanchez, D.; Parkinson, P. M. Saz; Scargle, J. D.; Schalk, T. L.; Sgrò, C.; Siskind, E. J.; Smith, P. D.; Spandre, G.; Spinelli, P.; Strickman, M. S.; Suson, D. J.; Takahashi, H.; Takahashi, T.; Tanaka, T.; Thayer, J. B.; Thompson, D. J.; Tibaldo, L.; Torres, D. F.; Tosti, G.; Tramacere, A.; Troja, E.; Uchiyama, Y.; Vandenbroucke, J.; Vasileiou, V.; Vianello, G.; Vitale, V.; Wang, P.; Wood, K. S.; Yang, Z.; Ziegler, M.

    2011-02-01

    A young and energetic pulsar powers the well-known Crab Nebula. Here, we describe two separate gamma-ray (photon energy greater than 100 mega-electron volts) flares from this source detected by the Large Area Telescope on board the Fermi Gamma-ray Space Telescope. The first flare occurred in February 2009 and lasted approximately 16 days. The second flare was detected in September 2010 and lasted approximately 4 days. During these outbursts, the gamma-ray flux from the nebula increased by factors of four and six, respectively. The brevity of the flares implies that the gamma rays were emitted via synchrotron radiation from peta-electron-volt (1015 electron volts) electrons in a region smaller than 1.4 × 10-2 parsecs. These are the highest-energy particles that can be associated with a discrete astronomical source, and they pose challenges to particle acceleration theory.

  8. 49 CFR 392.82 - Using a hand-held mobile telephone.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ...) Definitions. For the purpose of this section only, driving means operating a commercial motor vehicle on a... SAFETY ADMINISTRATION, DEPARTMENT OF TRANSPORTATION FEDERAL MOTOR CARRIER SAFETY REGULATIONS DRIVING OF.... (a)(1) No driver shall use a hand-held mobile telephone while driving a CMV. (2) No motor carrier...

  9. 49 CFR 392.82 - Using a hand-held mobile telephone.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ...) Definitions. For the purpose of this section only, driving means operating a commercial motor vehicle on a... SAFETY ADMINISTRATION, DEPARTMENT OF TRANSPORTATION FEDERAL MOTOR CARRIER SAFETY REGULATIONS DRIVING OF.... (a)(1) No driver shall use a hand-held mobile telephone while driving a CMV. (2) No motor carrier...

  10. 49 CFR 392.82 - Using a hand-held mobile telephone.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ...) Definitions. For the purpose of this section only, driving means operating a commercial motor vehicle on a... SAFETY ADMINISTRATION, DEPARTMENT OF TRANSPORTATION FEDERAL MOTOR CARRIER SAFETY REGULATIONS DRIVING OF.... (a)(1) No driver shall use a hand-held mobile telephone while driving a CMV. (2) No motor carrier...

  11. ESA's new view of the Milky Way - in gamma rays!

    NASA Astrophysics Data System (ADS)

    2003-11-01

    Integral's gamma-ray map of the galaxy hi-res Size hi-res: 430 kb Credits: ESA/SPI team A portion of Integral's gamma-ray map of the galaxy A portion of Integral's gamma-ray map of the galaxy. This false colour picture was taken by the spectrometer on board Integral (SPI) between December 2002 and March 2003. The yellow dots correspond to bright known gamma-rays sources, whilst blue areas indicate regions of low emission. Data similar to these, but in a higher energy range, have been used to study where aluminium and iron are produced in the Galaxy. Since its formation from a cloud of hydrogen and helium gas, around 12 000 million years ago, the Milky Way has gradually been enriched with heavier chemical elements. This has allowed planets and, indeed, life on Earth to form. Today, one of those heavier elements - radioactive aluminium - is spread throughout the Galaxy and, as it decays into magnesium, gives out gamma rays with a wavelength known as the '1809 keV line'. Integral has been mapping this emission with the aim of understanding exactly what is producing all this aluminium. In particular, Integral is looking at the aluminium 'hot spots' that dot the Galaxy to determine whether these are caused by individual celestial objects or the chance alignment of many objects. Astronomers believe that the most likely sources of the aluminium are supernovae (exploding high-mass stars) and, since the decay time of the aluminium is around one million years, Integral's map shows how many stars have died in recent celestial history. Other possible sources of the aluminium include 'red giant' stars or hot blue stars that give out the element naturally. To decide between these options, Integral is also mapping radioactive iron, which is only produced in supernovae. Theories suggest that, during a supernova blast, aluminium and iron should be produced together in the same region of the exploding star. Thus, if the iron's distribution coincides with that of the aluminium, it

  12. A hand-held EPR scanner for transcutaneous oximetry

    NASA Astrophysics Data System (ADS)

    Wolfson, Helen; Ahmad, Rizwan; Twig, Ygal; Blank, Aharon; Kuppusamy, Periannan

    2015-03-01

    Cutaneous (skin) oxygenation is an important prognostic factor for the treatment of chronic wounds, skin cancer, diabetes side effects, and limb amputation. Currently, there are no reliable methods for measuring this parameter. Oximetry, using electron paramagnetic resonance (EPR) spectroscopy, is emerging as a potential tool for clinical oximetry, including cutaneous applications. The problem with EPR oximetry, however, is that the conventional EPR design requires the use of a large magnet that can generate homogeneous field across the sample, making it unattractive for clinical practice. We present a novel approach that makes use of a miniature permanent magnet, combined with a small microwave resonator, to enable the acquisition of EPR signals from paramagnetic species placed on the skin. The instrumentation consists of a hand-held, modular, cylindrical probehead with overall dimensions of 36-mm diameter and 24-mm height, with 150-g weight. The probehead includes a Halbach array of 16 pieces (4×4×8 mm3) of Sm-Co permanent magnet and a loop-gap resonator (2.24 GHz). Preliminary measurements using a Hahn-echo pulse sequence (800 echos in 20 ms) showed a signalto- noise ratio of ~70 compared to ~435 in a homogenous magnet under identical settings. Further work is in progress to improve the performance of the probehead and to optimize the hand-held system for clinical use

  13. SAS-2 gamma-ray observations of PSR 1747-46. [radio pulsar

    NASA Technical Reports Server (NTRS)

    Thompson, D. J.; Fichtel, C. E.; Kniffen, D. A.; Ogelman, H. B.; Lamb, R. C.

    1976-01-01

    Evidence is reported for the observation of gamma-ray emission from the radio pulsar PSR 1747-46 by the gamma-ray telescope aboard SAS 2. The evidence is based on the presence of both an approximately 3-sigma enhancement of gamma rays at the pulsar's location and an approximately 4-sigma peak in the phase plot of 79 gamma-ray events whose phase was calculated from the pulsar's known period. The gamma-ray pulsation is found to appear at a phase lag of about 0.16 from that predicted by the radio observations. The pulsed gamma-ray fluxes above 35 MeV and 100 MeV are estimated, and it is shown that the gamma-ray pulse width is similar to the radio pulse width. It is concluded that PSR 1747-46 is a most likely candidate for pulsed gamma-ray emission.

  14. Multiwavelength Observations of the Blazar BL Lacertae: A New Fast TeV Gamma-Ray Flare

    NASA Astrophysics Data System (ADS)

    Abeysekara, A. U.; Benbow, W.; Bird, R.; Brantseg, T.; Brose, R.; Buchovecky, M.; Buckley, J. H.; Bugaev, V.; Connolly, M. P.; Cui, W.; Daniel, M. K.; Falcone, A.; Feng, Q.; Finley, J. P.; Fortson, L.; Furniss, A.; Gillanders, G. H.; Gunawardhana, I.; Hütten, M.; Hanna, D.; Hervet, O.; Holder, J.; Hughes, G.; Humensky, T. B.; Johnson, C. A.; Kaaret, P.; Kar, P.; Kertzman, M.; Krennrich, F.; Lang, M. J.; Lin, T. T. Y.; McArthur, S.; Moriarty, P.; Mukherjee, R.; O’Brien, S.; Ong, R. A.; Otte, A. N.; Park, N.; Petrashyk, A.; Pohl, M.; Pueschel, E.; Quinn, J.; Ragan, K.; Reynolds, P. T.; Richards, G. T.; Roache, E.; Rulten, C.; Sadeh, I.; Santander, M.; Sembroski, G. H.; Shahinyan, K.; Wakely, S. P.; Weinstein, A.; Wells, R. M.; Wilcox, P.; Williams, D. A.; Zitzer, B.; The VERITAS Collaboration; Jorstad, S. G.; Marscher, A. P.; Lister, M. L.; Kovalev, Y. Y.; Pushkarev, A. B.; Savolainen, T.; Agudo, I.; Molina, S. N.; Gómez, J. L.; Larionov, V. M.; Borman, G. A.; Mokrushina, A. A.; Tornikoski, M.; Lähteenmäki, A.; Chamani, W.; Enestam, S.; Kiehlmann, S.; Hovatta, T.; Smith, P. S.; Pontrelli, P.

    2018-04-01

    Combined with measurements made by very-long-baseline interferometry, the observations of fast TeV gamma-ray flares probe the structure and emission mechanism of blazar jets. However, only a handful of such flares have been detected to date, and only within the last few years have these flares been observed from lower-frequency-peaked BL Lac objects and flat-spectrum radio quasars. We report on a fast TeV gamma-ray flare from the blazar BL Lacertae observed by the Very Energetic Radiation Imaging Telescope Array System (VERITAS). with a rise time of ∼2.3 hr and a decay time of ∼36 min. The peak flux above 200 GeV is (4.2 ± 0.6) × 10‑6 photon m‑2 s‑1 measured with a 4-minute-binned light curve, corresponding to ∼180% of the flux that is observed from the Crab Nebula above the same energy threshold. Variability contemporaneous with the TeV gamma-ray flare was observed in GeV gamma-ray, X-ray, and optical flux, as well as in optical and radio polarization. Additionally, a possible moving emission feature with superluminal apparent velocity was identified in Very Long Baseline Array observations at 43 GHz, potentially passing the radio core of the jet around the time of the gamma-ray flare. We discuss the constraints on the size, Lorentz factor, and location of the emitting region of the flare, and the interpretations with several theoretical models that invoke relativistic plasma passing stationary shocks.

  15. Rest-wavelength fiducials for the ITER core imaging x-ray spectrometer.

    PubMed

    Beiersdorfer, P; Brown, G V; Graf, A T; Bitter, M; Hill, K W; Kelley, R L; Kilbourne, C A; Leutenegger, M A; Porter, F S

    2012-10-01

    Absolute wavelength references are needed to derive the plasma velocities from the Doppler shift of a given line emitted by a moving plasma. We show that such reference standards exist for the strongest x-ray line in neonlike W(64+), which has become the line of choice for the ITER (Latin "the way") core imaging x-ray spectrometer. Close-by standards are the Hf Lβ(3) line and the Ir Lα(2) line, which bracket the W(64+) line by ±30 eV; other standards are given by the Ir Lα(1) and Lα(2) lines and the Hf Lβ(1) and Lβ(2) lines, which bracket the W(64+) line by ±40 and ±160 eV, respectively. The reference standards can be produced by an x-ray tube built into the ITER spectrometer. We present spectra of the reference lines obtained with an x-ray microcalorimeter and compare them to spectra of the W(64+) line obtained both with an x-ray microcalorimeter and a crystal spectrometer.

  16. Rest-wavelength Fiducials for the ITER Core Imaging X-ray Spectrometer

    NASA Technical Reports Server (NTRS)

    Beiersdorfer, P.; Brown, G. V.; Graf, A. T.; Bitter, M.; Hill, K. W.; Kelley, R. L.; Kilbourne, C. A.; Leutenegger, M. A.; Porter, F. S.

    2012-01-01

    Absolute wavelength references are needed to derive the plasma velocities from the Doppler shift of a given line emitted by a moving plasma. We show that such reference standards exist for the strongest x-ray line in neonlike W64+, which has become the line of choice for the ITER (Latin the way) core imaging x-ray spectrometer. Close-by standards are the Hf L3 line and the Ir L2 line, which bracket the W64+ line by 30 eV; other standards are given by the Ir L1 and L2 lines and the Hf L1 and L2 lines, which bracket the W64+ line by 40 and 160 eV, respectively. The reference standards can be produced by an x-ray tube built into the ITER spectrometer. We present spectra of the reference lines obtained with an x-ray microcalorimeter and compare them to spectra of the W64+ line obtained both with an x-ray microcalorimeter and a crystal spectrometer

  17. ASTRONOMY: Neighborhood Gamma Ray Burst Boosts Theory.

    PubMed

    Schilling, G

    2000-07-07

    Titanic explosions that emit powerful flashes of energetic gamma rays are one of astronomy's hottest mysteries. Now an analysis of the nearest gamma ray burst yet detected has added weight to the popular theory that they are expelled during the death throes of supermassive stars.

  18. High energy gamma-ray observations of SN 1987A

    NASA Technical Reports Server (NTRS)

    Sood, R. K.; Thomas, J. A.; Waldron, L.; Manchanda, R. K.; Rochester, G. K.

    1988-01-01

    Results are presented from observations of SN 1987A made with a combined high energy gamma ray and hard X-ray payload carried on a balloon flight over Alice Springs, Australia on April 5, 1988. The payload instrumentation is described, emphasizing the characteristics of the gamma-ray detector. The gamma-ray emission profile is illustrated and the preliminary results of the observations are summarized.

  19. Detecting Axionlike Particles with Gamma Ray Telescopes

    NASA Astrophysics Data System (ADS)

    Hooper, Dan; Serpico, Pasquale D.

    2007-12-01

    We propose that axionlike particles (ALPs) with a two-photon vertex, consistent with all astrophysical and laboratory bounds, may lead to a detectable signature in the spectra of high-energy gamma-ray sources. This occurs as a result of gamma rays being converted into ALPs in the magnetic fields of efficient astrophysical accelerators according to the “Hillas criterion”, such as jets of active galactic nuclei or hot spots of radio galaxies. The discovery of such an effect is possible by GLAST in the 1 100 GeV range and by ground-based gamma-ray telescopes in the TeV range.

  20. Hard gamma-ray background from the coding collimator of a gamma-ray telescope during in conditions of a space experiment

    NASA Astrophysics Data System (ADS)

    Aleksandrov, A. P.; Berezovoj, A. N.; Gal'Per, A. M.; Grachev, V. M.; Dmitrenko, V. V.; Kirillov-Ugryumov, V. G.; Lebedev, V. V.; Lyakhov, V. A.; Moiseev, A. A.; Ulin, S. E.; Shchvets, N. I.

    1984-11-01

    Coding collimators are used to improve the angular resolution of gamma-ray telescopes at energies above 50 MeV. However, the interaction of cosmic rays with the collimator material can lead to the appearance of a gramma-ray background flux which can have a deleterious effect on measurement efficiency. An experiment was performed on the Salyut-6-Soyuz spacecraft system with the Elena-F small-scale gamma-ray telescope in order to measure the magnitude of this background. It is shown that, even at a zenith angle of approximately zero degrees (the angle at which the gamma-ray observations are made), the coding collimator has only an insignificant effect on the background conditions.