Sample records for hand-pen contact force

  1. Human-Human Interaction Forces and Interlimb Coordination During Side-by-Side Walking With Hand Contact.

    PubMed

    Sylos-Labini, Francesca; d'Avella, Andrea; Lacquaniti, Francesco; Ivanenko, Yury

    2018-01-01

    Handholding can naturally occur between two walkers. When people walk side-by-side, either with or without hand contact, they often synchronize their steps. However, despite the importance of haptic interaction in general and the natural use of hand contact between humans during walking, few studies have investigated forces arising from physical interactions. Eight pairs of adult subjects participated in this study. They walked on side-by-side treadmills at 4 km/h independently and with hand contact. Only hand contact-related sensory information was available for unintentional synchronization, while visual and auditory communication was obstructed. Subjects walked at their natural cadences or following a metronome. Limb kinematics, hand contact 3D interaction forces and EMG activity of 12 upper limb muscles were recorded. Overall, unintentional step frequency locking was observed during about 40% of time in 88% of pairs walking with hand contact. On average, the amplitude of contact arm oscillations decreased while the contralateral (free) arm oscillated in the same way as during normal walking. Interestingly, EMG activity of the shoulder muscles of the contact arm did not decrease, and their synergistic pattern remained similar. The amplitude of interaction forces and of trunk oscillations was similar for synchronized and non-synchronized steps, though the synchronized steps were characterized by significantly more regular orientations of interaction forces. Our results further support the notion that gait synchronization during natural walking is common, and that it may occur through interaction forces. Conservation of the proximal muscle activity of the contact (not oscillating) arm is consistent with neural coupling between cervical and lumbosacral pattern generation circuitries ("quadrupedal" arm-leg coordination) during human gait. Overall, the findings suggest that individuals might integrate force interaction cues to communicate and coordinate steps during

  2. Human-Human Interaction Forces and Interlimb Coordination During Side-by-Side Walking With Hand Contact

    PubMed Central

    Sylos-Labini, Francesca; d'Avella, Andrea; Lacquaniti, Francesco; Ivanenko, Yury

    2018-01-01

    Handholding can naturally occur between two walkers. When people walk side-by-side, either with or without hand contact, they often synchronize their steps. However, despite the importance of haptic interaction in general and the natural use of hand contact between humans during walking, few studies have investigated forces arising from physical interactions. Eight pairs of adult subjects participated in this study. They walked on side-by-side treadmills at 4 km/h independently and with hand contact. Only hand contact-related sensory information was available for unintentional synchronization, while visual and auditory communication was obstructed. Subjects walked at their natural cadences or following a metronome. Limb kinematics, hand contact 3D interaction forces and EMG activity of 12 upper limb muscles were recorded. Overall, unintentional step frequency locking was observed during about 40% of time in 88% of pairs walking with hand contact. On average, the amplitude of contact arm oscillations decreased while the contralateral (free) arm oscillated in the same way as during normal walking. Interestingly, EMG activity of the shoulder muscles of the contact arm did not decrease, and their synergistic pattern remained similar. The amplitude of interaction forces and of trunk oscillations was similar for synchronized and non-synchronized steps, though the synchronized steps were characterized by significantly more regular orientations of interaction forces. Our results further support the notion that gait synchronization during natural walking is common, and that it may occur through interaction forces. Conservation of the proximal muscle activity of the contact (not oscillating) arm is consistent with neural coupling between cervical and lumbosacral pattern generation circuitries (“quadrupedal” arm-leg coordination) during human gait. Overall, the findings suggest that individuals might integrate force interaction cues to communicate and coordinate steps

  3. A Comparison of Glide Force Characteristics Between 2 Prefilled Insulin Lispro Pens

    PubMed Central

    Lennartz, Amanda H.; Ignaut, Debra A.

    2015-01-01

    Background: Glide force, average glide force, and glide force variability of the insulin lispro 200 units/mL pen (Eli Lilly and Company, Indianapolis, IN, USA) were compared to the Humalog® KwikPen® 100 units/mL pen (hereafter, KwikPen; Eli Lilly and Company, Indianapolis, IN, USA). Methods: Data were collected on 2 doses, 2 injection speeds, and 2 needle types. Results: Insulin lispro 200 units/mL pen showed significantly lower maximum glide force, average glide force, and glide force variability than the KwikPen across all combinations of dose size, dose speed, and needle type. Conclusions: The lower glide force observed with the insulin lispro 200 units/mL pen offers another treatment option for patients with type 1 or type 2 diabetes who require greater than 20 units of mealtime insulin daily. PMID:25591858

  4. Contact sensing from force measurements

    NASA Technical Reports Server (NTRS)

    Bicchi, Antonio; Salisbury, J. K.; Brock, David L.

    1993-01-01

    This article addresses contact sensing (i.e., the problem of resolving the location of a contact, the force at the interface, and the moment about the contact normals). Called 'intrinsic' contact sensing for the use of internal force and torque measurements, this method allows for practical devices that provide simple, relevant contact information in practical robotic applications. Such sensors have been used in conjunction with robot hands to identify objects, determine surface friction, detect slip, augment grasp stability, measure object mass, probe surfaces, and control collision and for a variety of other useful tasks. This article describes the theoretical basis for their operation and provides a framework for future device design.

  5. Dose Accuracy and Injection Force of Different Insulin Glargine Pens

    PubMed Central

    Friedrichs, Arnd; Bohnet, Janine; Korger, Volker; Adler, Steffen; Schubert-Zsilavecz, Manfred; Abdel-Tawab, Mona

    2013-01-01

    Background Dose accuracy and injection force, representing key parameters of insulin pens, were determined for three pens delivering insulin glargine-based copies, Pen Royale (WR) and DispoPen (WD) for Glaritus® (Wockhardt) and GanLee Pen (GL) for Basalin® (Gan & Lee), compared with pens of the originator, ClikSTAR® (CS) and S o l o S TA R® (SS) for Lantus® (Sanofi) . Methods Using the weighing procedure recommended by DIN EN ISO 11608–1:2000, dose accuracy was evaluated based on nonrandomized delivery of low (5 U), mid (30 U), and high (60 U) dosage levels. Injection force was measured by dispensing the maximum dose of insulin (60 U for the GL, WR, and WD; 80 U for the SS and CS) at dose speeds of 6 and 10 U/s. Results All tested pens delivered comparable average doses within the DIN EN ISO 11608–1:2000 limits at all dosage levels. The GL revealed a higher coefficient of variation (CV) at 5 U, and the WR and WD had higher CVs at all dosage levels compared with the CS and SS. Injection force was higher for the WR, WD, and GL compared with the CS and SS at both dose speeds. In contrast to the CS and SS with an end-of-content feature, doses exceeding the remaining insulin could be dialed with the WR, GL, and WD and, apparently, dispensed with the WD. Conclusions All pens fulfilled the dose accuracy requirements defined by DIN EN ISO 11608–1:2000 standards at all three dosage levels, with the WR, WD, and GL showing higher dosage variability and injection force compared with the SS and CS. Thus, the devices that deliver insulin glargine copies show different performance characteristics compared with the originator. J Diabetes Sci Technol 2013;7(5):1346–1353 PMID:24124963

  6. Effects of glovebox gloves on grip and key pinch strength and contact forces for simulated manual operations with three commonly used hand tools.

    PubMed

    Sung, Peng-Cheng

    2014-01-01

    This study examined the effects of glovebox gloves for 11 females on maximum grip and key pinch strength and on contact forces generated from simulated tasks of a roller, a pair of tweezers and a crescent wrench. The independent variables were gloves fabricated of butyl, CSM/hypalon and neoprene materials; two glove thicknesses; and layers of gloves worn including single, double and triple gloving. CSM/hypalon and butyl gloves produced greater grip strength than the neoprene gloves. CSM/hypalon gloves also lowered contact forces for roller and wrench tasks. Single gloving and thin gloves improved hand strength performances. However, triple layers lowered contact forces for all tasks. Based on the evaluating results, selection and design recommendations of gloves for three hand tools were provided to minimise the effects on hand strength and optimise protection of the palmar hand in glovebox environments. To improve safety and health in the glovebox environments where gloves usage is a necessity, this study provides recommendations for selection and design of glovebox gloves for three hand tools including a roller, a pair of tweezers and a crescent wrench based on the results discovered in the experiments.

  7. Non-contact lateral force microscopy.

    PubMed

    Weymouth, A J

    2017-08-16

    The goal of atomic force microscopy (AFM) is to measure the short-range forces that act between the tip and the surface. The signal recorded, however, includes long-range forces that are often an unwanted background. Lateral force microscopy (LFM) is a branch of AFM in which a component of force perpendicular to the surface normal is measured. If we consider the interaction between tip and sample in terms of forces, which have both direction and magnitude, then we can make a very simple yet profound observation: over a flat surface, long-range forces that do not yield topographic contrast have no lateral component. Short-range interactions, on the other hand, do. Although contact-mode is the most common LFM technique, true non-contact AFM techniques can be applied to perform LFM without the tip depressing upon the sample. Non-contact lateral force microscopy (nc-LFM) is therefore ideal to study short-range forces of interest. One of the first applications of nc-LFM was the study of non-contact friction. A similar setup is used in magnetic resonance force microscopy to detect spin flipping. More recently, nc-LFM has been used as a true microscopy technique to systems unsuitable for normal force microscopy.

  8. Small nanoparticles, surface geometry and contact forces.

    PubMed

    Takato, Yoichi; Benson, Michael E; Sen, Surajit

    2018-03-01

    In this molecular dynamics study, we examine the local surface geometric effects of the normal impact force between two approximately spherical nanoparticles that collide in a vacuum. Three types of surface geometries-(i) crystal facets, (ii) sharp edges, and (iii) amorphous surfaces of small nanoparticles with radii R <10 nm-are considered. The impact forces are compared with their macroscopic counterparts described by nonlinear contact forces based on Hertz contact mechanics. In our simulations, edge and amorphous surface contacts with weak surface energy reveal that the average impact forces are in excellent agreement with the Hertz contact force. On the other hand, facet collisions show a linearly increasing force with increasing compression. Our results suggest that the nearly spherical nanoparticles are likely to enable some nonlinear dynamic phenomena, such as breathers and solitary waves observed in granular materials, both originating from the nonlinear contact force.

  9. Mechanism of force mode dip-pen nanolithography

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Yang, Haijun, E-mail: yanghaijun@sinap.ac.cn, E-mail: swguo@sjtu.edu.cn, E-mail: wanghuabin@cigit.ac.cn; Interfacial Water Division and Key Laboratory of Interfacial Physics and Technology, Shanghai Institute of Applied Physics, CAS, Shanghai 201800; Xie, Hui

    In this work, the underlying mechanism of the force mode dip-pen nanolithography (FMDPN) is investigated in depth by analyzing force curves, tapping mode deflection signals, and “Z-scan” voltage variations during the FMDPN. The operation parameters including the relative “trigger threshold” and “surface delay” parameters are vital to control the loading force and dwell time for ink deposition during FMDPN. A model is also developed to simulate the interactions between the atomic force microscope tip and soft substrate during FMDPN, and verified by its good performance in fitting our experimental data.

  10. Injection Force of SoloSTAR® Compared with Other Disposable Insulin Pen Devices at Constant Volume Flow Rates

    PubMed Central

    van der Burg, Thomas

    2011-01-01

    Background Injection force is a particularly important practical aspect of therapy for patients with diabetes, especially those who have dexterity problems. This laboratory-based study compared the injection force of the SoloSTAR® insulin pen (SoloSTAR; sanofi-aventis) versus other available disposable pens at injection speeds based on the delivered volume of insulin released at the needle. Method Four different prefilled disposable pens were tested: SoloSTAR containing insulin glargine; FlexPen® and the Next Generation FlexPen® (NGFP) (Novo Nordisk), both containing insulin detemir; and KwikPen® containing insulin lispro (Eli Lilly). All pens were investigated using the maximum dispense volume for each pen type [80 units (U) for SoloSTAR; 60 U for the other pens], from the free needle tip dispensing into a beaker. Twenty pens of each type were fitted with the recommended needles and tested at two dose speeds (6 and 10 U/s); each pen was tested twice. Results Mean plateau injection force and maximum injection force were consistently lower with SoloSTAR compared with FlexPen, NGFP, and KwikPen at both injection speeds tested. An injection speed of 10 U/s was associated with higher injection force compared with 6 U/s for all the pens tested (p < .001). Conclusions SoloSTAR stands out because of its low injection force, even when compared with newer insulin pen devices such as the KwikPen and NGFP. This may enable patients, especially those with dexterity problems, to administer insulin more easily and improve management of their diabetes. PMID:21303637

  11. Transmission of vibration through glove materials: effects of contact force.

    PubMed

    Md Rezali, Khairil Anas; Griffin, Michael J

    2018-04-26

    This study investigated effects of applied force on the apparent mass of the hand, the dynamic stiffness of glove materials and the transmission of vibration through gloves to the hand. For 10 subjects, 3 glove materials and 3 contact forces, apparent masses and glove transmissibilities were measured at the palm and at a finger at frequencies in the range 5-300 Hz. The dynamic stiffnesses of the materials were also measured. With increasing force, the dynamic stiffnesses of the materials increased, the apparent mass at the palm increased at frequencies greater than the resonance and the apparent mass at the finger increased at low frequencies. The effects of force on transmissibilities therefore differed between materials and depended on vibration frequency, but changes in apparent mass and dynamic stiffness had predictable effects on material transmissibility. Depending on the glove material, the transmission of vibration through a glove can be increased or decreased when increasing the applied force. Practitioner summary: Increasing the contact force (i.e. push force or grip force) can increase or decrease the transmission of vibration through a glove. The vibration transmissibilities of gloves should be assessed with a range of contact forces to understand their likely influence on the exposure of the hand and fingers to vibration.

  12. Development of a measuring system of contact force during braille reading using an optical 6-axis force sensor.

    PubMed

    Watanabe, T; Oouchi, S; Yamaguchi, T; Shimojo, M; Shimada, S

    2006-01-01

    A system with an optical 6-axis force sensor was developed to measure contact force during braille reading. In using this system, we encountered two problems. One is a variability of output values depending on the contact point. This was solved by using two transformation techniques. The other is that subjects read braille in a different manner from the usual. We compared two manners of braille reading, one-handed vs two-handed, and found a small reduction in reading speed. Using this system, we collected data from four braille readers and quantitatively showed more minute contact force trajectories than those in earlier studies.

  13. A Biomechanical Assessment of Hand/Arm Force with Pneumatic Nail Gun Actuation Systems.

    PubMed

    Lowe, Brian D; Albers, James; Hudock, Stephen D

    2014-09-01

    A biomechanical model is presented, and combined with measurements of tip press force, to estimate total user hand force associated with two pneumatic nail gun trigger systems. The contact actuation trigger (CAT) can fire a nail when the user holds the trigger depressed first and then "bumps" the nail gun tip against the workpiece. With a full sequential actuation trigger (SAT) the user must press the tip against the workpiece prior to activating the trigger. The SAT is demonstrably safer in reducing traumatic injury risk, but increases the duration (and magnitude) of tip force exertion. Time integrated (cumulative) hand force was calculated for a single user from measurements of the tip contact force with the workpiece and transfer time between nails as inputs to a static model of the nail gun and workpiece in two nailing task orientations. The model shows the hand force dependence upon the orientation of the workpiece in addition to the trigger system. Based on standard time allowances from work measurement systems (i.e. Methods-Time Measurement - 1) it is proposed that efficient application of hand force with the SAT in maintaining tip contact can reduce force exertion attributable to the sequential actuation trigger to 2-8% (horizontal nailing) and 9-20% (vertical nailing) of the total hand/arm force. The present model is useful for considering differences in cumulative hand/arm force exposure between the SAT and CAT systems and may explain the appeal of the CAT trigger in reducing the user's perception of muscular effort.

  14. A Biomechanical Assessment of Hand/Arm Force with Pneumatic Nail Gun Actuation Systems

    PubMed Central

    Lowe, Brian D.; Albers, James; Hudock, Stephen D.

    2015-01-01

    A biomechanical model is presented, and combined with measurements of tip press force, to estimate total user hand force associated with two pneumatic nail gun trigger systems. The contact actuation trigger (CAT) can fire a nail when the user holds the trigger depressed first and then “bumps” the nail gun tip against the workpiece. With a full sequential actuation trigger (SAT) the user must press the tip against the workpiece prior to activating the trigger. The SAT is demonstrably safer in reducing traumatic injury risk, but increases the duration (and magnitude) of tip force exertion. Time integrated (cumulative) hand force was calculated for a single user from measurements of the tip contact force with the workpiece and transfer time between nails as inputs to a static model of the nail gun and workpiece in two nailing task orientations. The model shows the hand force dependence upon the orientation of the workpiece in addition to the trigger system. Based on standard time allowances from work measurement systems (i.e. Methods-Time Measurement - 1) it is proposed that efficient application of hand force with the SAT in maintaining tip contact can reduce force exertion attributable to the sequential actuation trigger to 2–8% (horizontal nailing) and 9–20% (vertical nailing) of the total hand/arm force. The present model is useful for considering differences in cumulative hand/arm force exposure between the SAT and CAT systems and may explain the appeal of the CAT trigger in reducing the user’s perception of muscular effort. PMID:26321780

  15. Dose accuracy and injection force dynamics of a novel disposable insulin pen.

    PubMed

    Clarke, Alastair; Spollett, Geralyn

    2007-03-01

    SoloStar (sanofi-aventis) is a new, disposable insulin pen for the administration of insulin glargine (Lantus, sanofi-aventis) or insulin glulisine (Apidra, sanofi-aventis). SoloStar was developed to address a wide range of patient needs and demonstrates advancement over previous devices, owing to its appropriate combination of ergonomically-tested and mechanically improved features. The authors report the results of key investigations carried out by sanofi-aventis as part of the SoloStar development plan, including dose accuracy and injection force testing. Comparisons between SoloStar and two commonly used pens, FlexPen (Novo Nordisk) and the Humulin/Humalog pen (Eli Lilly) establish SoloStar as a state of the art pen that is suitable for most patients with diabetes.

  16. Accuracy and Injection Force of the Gla-300 Injection Device Compared With Other Commercialized Disposable Insulin Pens.

    PubMed

    Klonoff, David; Nayberg, Irina; Thonius, Marissa; See, Florian; Abdel-Tawab, Mona; Erbstein, Frank; Haak, Thomas

    2015-08-26

    To deliver insulin glargine 300 U/mL (Gla-300), the widely used SoloSTAR(®) pen has been modified to allow for accurate and precise delivery of required insulin units in one-third of the volume compared with insulin glargine 100 U/mL, while improving usability. Here we compare the accuracy and injection force of 3 disposable insulin pens: Gla-300 SoloSTAR(®), FlexPen(®), and KwikPen™. For the accuracy assessment, 60 of each of the 3 tested devices were used for the delivery of 3 different doses (1 U, half-maximal dose, and maximal dose), which were measured gravimetrically. For the injection force assessment, 20 pens of each of the 3 types were tested twice at half-maximal and once at maximal dose, at an injection speed of 6 U/s. All tested pens met the International Organization for Standardization (ISO) requirements for dosing accuracy, with Gla-300 SoloSTAR showing the lowest between-dose variation (greatest reproducibility) at all dose levels. Mean injection force was significantly lower for Gla-300 SoloSTAR than for the other 2 pens at both half maximal and maximal doses (P < .0271). All tested pens were accurate according to ISO criteria, and the Gla-300 SoloSTAR pen displayed the greatest reproducibility and lowest injection force of any of the 3 tested devices. © 2015 Diabetes Technology Society.

  17. Engineering study comparing injection force and dose accuracy between two prefilled insulin injection pens.

    PubMed

    Ignaut, Debra A; Opincar, Michael R; Clark, Paula E; Palaisa, Melanie K; Lenox, Sheila M

    2009-12-01

    This study compared injection force (measured by glide force [GF] and glide force variability [GFV]) and dosing accuracy of the Humalog KwikPen * (prefilled insulin lispro [Humalog dagger] pen, Eli Lilly and Company, Indianapolis, IN) and the Next Generation FlexPen double dagger (prefilled insulin aspart [NovoRapid section sign] pen, Novo Nordisk A/S, Bagsvaerd, Denmark). * Humalog KwikPen is a registered trademark of Eli Lilly and Company, Indianapolis, IN, USA. dagger Humalog is a registered trademark of Eli Lilly and Company, Indianapolis, IN, USA. double dagger FlexPen is a registered trademark of Novo Nordisk A/S, Bagsvaerd, Denmark. section sign NovoRapid is a registered trademark of Novo Nordisk A/S, Bagsvaerd, Denmark. A total of 100 prefilled insulin pens (50 insulin lispro pens, 50 insulin aspart pens) were tested using two dose sizes (30 U and 60 U). In all, 50 devices (25 of each type) were tested at 10 U/s dosing speed and 50 were tested at 6.6 U/s. Devices were used per manufacturer instructions. Dose accuracy (represented as absolute dose error %), maximum and average GF, and GFV data were automatically collected by the test system for all datasets (dose size/dosing speed/device type). The test system controlled for potential dosing errors. The insulin lispro pen demonstrated a significantly lower median maximum GF at both dosing speeds: (2.83 vs. 3.92 lbs [30 U] and 3.00 vs. 4.14 lbs [60 U]) at 10 U/s; (1.85 vs. 2.93 lbs [30 U] and 2.14 vs. 3.02 lbs [60 U]) at 6.6 U/s, all p < 0.0001. For all datasets, the median GFV was significantly lower for the insulin lispro pen, p < 0.0001. Median dose error was comparable between device types when tested at 10 U/s dosing speed; however, at 6.6 U/s, the median dose error was significantly lower for insulin lispro pen compared to insulin aspart pen (0.47 vs. 0.67% [30 U] and 0.50 vs. 0.78% [60 U], both p < 0.05). The insulin lispro pen had significantly lower median GF and GFV compared with insulin aspart pen

  18. Contact geometry and mechanics predict friction forces during tactile surface exploration.

    PubMed

    Janko, Marco; Wiertlewski, Michael; Visell, Yon

    2018-03-20

    When we touch an object, complex frictional forces are produced, aiding us in perceiving surface features that help to identify the object at hand, and also facilitating grasping and manipulation. However, even during controlled tactile exploration, sliding friction forces fluctuate greatly, and it is unclear how they relate to the surface topography or mechanics of contact with the finger. We investigated the sliding contact between the finger and different relief surfaces, using high-speed video and force measurements. Informed by these experiments, we developed a friction force model that accounts for surface shape and contact mechanical effects, and is able to predict sliding friction forces for different surfaces and exploration speeds. We also observed that local regions of disconnection between the finger and surface develop near high relief features, due to the stiffness of the finger tissues. Every tested surface had regions that were never contacted by the finger; we refer to these as "tactile blind spots". The results elucidate friction force production during tactile exploration, may aid efforts to connect sensory and motor function of the hand to properties of touched objects, and provide crucial knowledge to inform the rendering of realistic experiences of touch contact in virtual reality.

  19. Shear forces in the contact patch of a braked-racing tyre

    NASA Astrophysics Data System (ADS)

    Gruber, Patrick; Sharp, Robin S.

    2012-12-01

    This article identifies tyre modelling features that are fundamental to the accurate simulation of the shear forces in the contact patch of a steady-rolling, slipping and cambered racing tyre. The features investigated include contact patch shape, contact pressure distribution, carcass flexibility, rolling radius (RR) variations and friction coefficient. Using a previously described physical tyre model of modular nature, validated for static conditions, the influence of each feature on the shear forces generated is examined under different running conditions, including normal loads of 1500, 3000 and 4500 N, camber angles of 0° and-3°, and longitudinal slip ratios from 0 to-20%. Special attention is paid to heavy braking, in which context the aligning moment is of great interest in terms of its connection with the limit-handling feel. The results of the simulations reveal that true representations of the contact patch shape, carcass flexibility and lateral RR variation are essential for an accurate prediction of the distribution and the magnitude of the shear forces generated at the tread-road interface of the cambered tyre. Independent of the camber angle, the contact pressure distribution primarily influences the shear force distribution and the slip characteristics around the peak longitudinal force. At low brake-slip ratios, the friction coefficient affects the shear forces in terms of their distribution, while, at medium to high-slip ratios, the force magnitude is significantly affected. On the one hand, these findings help in the creation of efficient yet accurate tyre models. On the other hand, the research results allow improved understanding of how individual tyre components affect the generation of shear forces in the contact patch of a rolling and slipping tyre.

  20. Contact Force Compensated Thermal Stimulators for Holistic Haptic Interfaces.

    PubMed

    Sim, Jai Kyoung; Cho, Young-Ho

    2016-05-01

    We present a contact force compensated thermal stimulator that can provide a consistent tempera- ture sensation on the human skin independent of the contact force between the thermal stimulator and the skin. Previous passive thermal stimulators were not capable of providing a consistent tem- perature on the human skin even when using identical heat source voltage due to an inconsistency of the heat conduction, which changes due to the force-dependent thermal contact resistance. We propose a force-based feedback method that monitors the contact force and controls the heat source voltage according to this contact force, thus providing consistent temperature on the skin. We composed a heat circuit model equivalent to the skin heat-transfer rate as it is changed by the contact forces; we obtained the optimal voltage condition for the constant skin heat-transfer rate independent of the contact force using a numerical estimation simulation tool. Then, in the experiment, we heated real human skin at the obtained heat source voltage condition, and investigated the skin heat transfer-rate by measuring the skin temperature at various times at different levels of contact force. In the numerical estimation results, the skin heat-transfer rate for the contact forces showed a linear profile in the contact force range of 1-3 N; from this profile we obtained the voltage equation for heat source control. In the experimental study, we adjusted the heat source voltage according to the contact force based on the obtained equation. As a result, without the heat source voltage control for the contact forces, the coefficients of variation (CV) of the skin heat-transfer rate in the contact force range of 1-3 N was found to be 11.9%. On the other hand, with the heat source voltage control for the contact forces, the CV of the skin heat-transfer rate in the contact force range of 1-3 N was found to be barely 2.0%, which indicate an 83.2% improvement in consistency compared to the skin heat

  1. Preferences of lame cows for type of surface and level of social contact in hospital pens.

    PubMed

    Jensen, M B; Herskin, M S; Thomsen, P T; Forkman, B; Houe, H

    2015-07-01

    To investigate preferences of lame cows for flooring and level of social contact, 37 lame, lactating dairy cows (diagnosed with sole ulcer or white line disease) were housed individually for 6 d in experimental hospital pens, where they could choose between 2 equally sized areas (6m × 4.5m) with either deep-bedded sand or a rubber surface. On both surfaces, cows could choose between 2 equally sized areas either near or away from heifers in a neighboring group pen. Cows spent more time lying on the deep-bedded sand than on the rubber surface (870 vs. 71min/d), whereas they spent less time upright (standing or walking) on the sand than on the rubber surface (180 vs. 319min/d). In addition, cows spent less time self-grooming on the sand than on the rubber surface (2.2 vs. 4.7% of time spent upright). With regard to level of social contact, cows spent more time near the neighboring heifers than away from them; this was true both while lying (565 vs. 374min/d) and upright (276 vs. 223min/d). Self-grooming was seen significantly more near neighboring heifers than away from them (4.8 vs. 3.3% of time spent upright). When lying, cows more often positioned themselves in areas of the pen where they could maintain visual contact with neighboring heifers. Lame cows with sole ulcers or white line disease preferred deep-bedded sand for lying, and preferred to perform self-grooming while on the rubber surface. Similarly, they preferred to lie and to perform self-grooming while positioned near animals in a neighboring pen. These results suggest that provision of a deep-bedded lying area in hospital pens is important to the welfare of lame cows. We found no evidence of isolation-seeking behavior in animals with these diagnoses (and no systemic symptoms) while they were kept in individual hospital pens. Copyright © 2015 American Dairy Science Association. Published by Elsevier Inc. All rights reserved.

  2. Experimental and simulation studies of hard contact in force reflecting teleoperation

    NASA Technical Reports Server (NTRS)

    Hannaford, Blake; Anderson, Robert

    1988-01-01

    Experiments and simulations of a single-axis force-reflecting teleoperation system have been conducted to investigate the problem of contacting a hard environment and maintaining a controlled force in teleoperation in which position is fed forward from the hand controller (master) to the manipulator (slave), and force is fed back to the human operator through motors in the master. The simulations, using an electrical circuit model, reproduce the behavior of the real system, including effects of human operator biomechanics. It is shown that human operator properties, which vary as a result of different types of grasp of the handle, affect the stability of the system in the hard-contact task. The effect of a heavier grasp on the handle is equivalent to increased hand-controller velocity damping in terms of the systems stability in the contact task, but control system damping sufficient to guarantee stable contact results in perceptible sluggishness of the control handle's response in free motion. These results suggest that human operator biomechanics must be taken into account to guarantee stable and ergonomic performance of advanced teleoperators.

  3. Analysis of the pen pressure and grip force signal during basic drawing tasks: The timing and speed changes impact drawing characteristics.

    PubMed

    Gatouillat, Arthur; Dumortier, Antoine; Perera, Subashan; Badr, Youakim; Gehin, Claudine; Sejdić, Ervin

    2017-08-01

    Writing is a complex fine and trained motor skill, involving complex biomechanical and cognitive processes. In this paper, we propose the study of writing kinetics using three angles: the pen-tip normal force, the total grip force signal and eventually writing quality assessment. In order to collect writing kinetics data, we designed a sensor collecting these characteristics simultaneously. Ten healthy right-handed adults were recruited and were asked to perform four tasks: first, they were instructed to draw circles at a speed they considered comfortable; they then were instructed to draw circles at a speed they regarded as fast; afterwards, they repeated the comfortable task compelled to follow the rhythm of a metronome; and eventually they performed the fast task under the same timing constraints. Statistical differences between the tasks were computed, and while pen-tip normal force and total grip force signal were not impacted by the changes introduced in each task, writing quality features were affected by both the speed changes and timing constraint changes. This verifies the already-studied speed-accuracy trade-off and suggest the existence of a timing constraints-accuracy trade-off. Copyright © 2017 Elsevier Ltd. All rights reserved.

  4. Stiffness map of the grasping contact areas of the human hand.

    PubMed

    Pérez-González, Antonio; Vergara, Margarita; Sancho-Bru, Joaquin L

    2013-10-18

    The elasticity and damping of the soft tissues of the hand contribute to dexterity while grasping and also help to stabilise the objects in manipulation tasks. Although some previous works have studied the force-displacement response of the fingertips, the responses in all other regions of the hand that usually participate in grasping have not been analysed to date. In this work we performed experimental measurements in 20 subjects to obtain a stiffness map of the different grasping contact areas of the human hand. A force-displacement apparatus was used to simultaneously measure force and displacement at 39 different points on the hand at six levels of force ranging from 1N to 6N. A non-linear force-displacement response was found for all points, with stiffness increasing with the amount of force applied. Mean stiffness for the different points and force levels was within the range from 0.2N/mm to 7.7N/mm. However, the stiffness range and variation with level of force were found to be different from point to point. A total of 13 regions with similar stiffness behaviours were identified. The stiffness in the fingertips increased linearly with the amount of force applied, while in the palm it remained more constant for the range of forces considered. It is hypothesised that the differences in the stiffness behaviour from one region to another allow these regions to play different roles during grasping. © 2013 Elsevier Ltd. All rights reserved.

  5. Relationship Between Hand Contact Angle and Shoulder Loading During Manual Wheelchair Propulsion by Individuals with Paraplegia

    PubMed Central

    Mulroy, Sara J.; Ruparel, Puja; Hatchett, Patricia E.; Haubert, Lisa Lighthall; Eberly, Valerie J.; Gronley, JoAnne K.

    2015-01-01

    Background: Shoulder loading during manual wheelchair propulsion (WCP) contributes to the development of shoulder pain in individuals with spinal cord injury (SCI). Objective: To use regression analysis to investigate the relationships between the hand contact angle (location of the hand on the pushrim at initial contact and release during the push phase of the WCP cycle) with propulsion characteristics, pushrim forces, and shoulder kinetics during WCP in individuals with paraplegia. Methods: Biomechanical data were collected from 222 individuals (198 men and 24 women) with paraplegia from SCI during WCP on a stationary ergometer at a self-selected speed. The average age of participants was 34.7 years (±9.3), mean time since SCI was 9.3 years (±6.1), and average body weight was 74.4 kg (±15.9). The majority (n = 127; 56%) of participants had lower level paraplegia (T8 to L5) and 95 (42%) had high paraplegia (T2 to T7). Results: Increased push arc (mean = 75.3°) was associated with greater velocity (R = 0.384, P < .001) and cycle distance (R = 0.658, P < .001) and reduced cadence (R = -0.419, P < .001). Initial contact angle and hand release angles were equally associated with cycle distance and cadence, whereas a more anterior release angle was associated with greater velocity (R = 0.372, P < .001). When controlling for body weight, a more posterior initial contact angle was associated with greater posterior shoulder net joint force (R = 0.229, P = .001) and greater flexor net joint moment (R = 0.204, P = .002), whereas a more anterior hand release angle was significantly associated with increased vertical (R = 0.270, P < .001) and greater lateral (R = .293, P < .001) pushrim forces; greater shoulder net joint forces in all 3 planes — posterior (R = 0.164, P = .015), superior (R = 0.176, P = .009), and medial (R = 0.284, P < .001); and greater external rotator (R = 0.176, P = .009) and adductor (R = 0.259, P = .001) net joint moments. Conclusions: Current

  6. Relationship Between Hand Contact Angle and Shoulder Loading During Manual Wheelchair Propulsion by Individuals with Paraplegia.

    PubMed

    Requejo, Philip Santos; Mulroy, Sara J; Ruparel, Puja; Hatchett, Patricia E; Haubert, Lisa Lighthall; Eberly, Valerie J; Gronley, JoAnne K

    2015-01-01

    Shoulder loading during manual wheelchair propulsion (WCP) contributes to the development of shoulder pain in individuals with spinal cord injury (SCI). To use regression analysis to investigate the relationships between the hand contact angle (location of the hand on the pushrim at initial contact and release during the push phase of the WCP cycle) with propulsion characteristics, pushrim forces, and shoulder kinetics during WCP in individuals with paraplegia. Biomechanical data were collected from 222 individuals (198 men and 24 women) with paraplegia from SCI during WCP on a stationary ergometer at a self-selected speed. The average age of participants was 34.7 years (±9.3), mean time since SCI was 9.3 years (±6.1), and average body weight was 74.4 kg (±15.9). The majority (n = 127; 56%) of participants had lower level paraplegia (T8 to L5) and 95 (42%) had high paraplegia (T2 to T7). Increased push arc (mean = 75.3°) was associated with greater velocity (R = 0.384, P < .001) and cycle distance (R = 0.658, P < .001) and reduced cadence (R = -0.419, P <.001). Initial contact angle and hand release angles were equally associated with cycle distance and cadence, whereas a more anterior release angle was associated with greater velocity (R = 0.372, P < .001). When controlling for body weight, a more posterior initial contact angle was associated with greater posterior shoulder net joint force (R = 0.229, P = .001) and greater flexor net joint moment (R = 0.204, P = .002), whereas a more anterior hand release angle was significantly associated with increased vertical (R = 0.270, P < .001) and greater lateral (R = .293, P < .001) pushrim forces; greater shoulder net joint forces in all 3 planes - posterior (R = 0.164, P = .015), superior (R = 0.176, P = .009), and medial (R = 0.284, P < .001); and greater external rotator (R = 0.176, P = .009) and adductor (R = 0.259, P = .001) net joint moments. Current clinical practice guidelines recommend using long, smooth

  7. Postural stabilization from fingertip contact II. Relationships between age, tactile sensibility and magnitude of contact forces.

    PubMed

    Tremblay, François; Mireault, Annie-Claude; Dessureault, Liam; Manning, Hélène; Sveistrup, Heidi

    2005-07-01

    In the present report, we extend our previous observations on the effect of age on postural stabilization from fingertip contact (Exp Brain Res 157 (2004) 275) to examine the possible influence of sensory thresholds measured at the fingertip on the magnitude of contact forces. Participants (young, n=25, 19-32 years; old, n=35, 60-86 years) underwent psychophysical testing of the right index finger to determine thresholds for spatial acuity, pressure sensitivity and kinesthetic acuity. Spatial acuity was determined from the ability to detect gaps of different widths, while Semmes-Weinstein monofilaments were used for pressure sensitivity. Kinesthetic acuity was determined by asking participants to discriminate plates of different thicknesses using a thumb-index precision grip. These tests were selected on the basis that each reflected different sensory coding mechanisms (resolution of spatial stimuli, detection of mechanical forces and integration of multi-sensory inputs for hand conformation) and thus provided specific information about the integrity and function of mechanoreceptive afferents innervating the hand. After log transformation, thresholds were first examined to determine the influence of age (young and old) and gender (male, female) on tactile acuity. Sensory thresholds were then entered into multiple linear regression models to examine their ability to predict fingertip contact forces (normal and tangential) applied to a smooth surface when subjects stood with eyes closed on either a firm or a compliant support surface. As expected, age exerted a significant effect (p<0.01) on all three thresholds, but its impact was greater on spatial acuity than on pressure sensitivity or kinesthetic acuity. Gender had a marginal impact on pressure sensitivity thresholds only. The regression analyses revealed that tactile thresholds determined at the index fingertip accounted for a substantial proportion of the variance (up to 30%) seen in the contact forces deployed

  8. Investigation of index finger triggering force using a cadaver experiment: Effects of trigger grip span, contact location, and internal tendon force.

    PubMed

    Chang, Joonho; Freivalds, Andris; Sharkey, Neil A; Kong, Yong-Ku; Mike Kim, H; Sung, Kiseok; Kim, Dae-Min; Jung, Kihyo

    2017-11-01

    A cadaver study was conducted to investigate the effects of triggering conditions (trigger grip span, contact location, and internal tendon force) on index finger triggering force and the force efficiency of involved tendons. Eight right human cadaveric hands were employed, and a motion simulator was built to secure and control the specimens. Index finger triggering forces were investigated as a function of different internal tendon forces (flexor digitorum profundus + flexor digitorum superficialis = 40, 70, and 100 N), trigger grip spans (40, 50, and 60 mm), and contact locations between the index finger and a trigger. Triggering forces significantly increased when internal tendon forces increased from 40 to 100 N. Also, trigger grip spans and contact locations had significant effects on triggering forces; maximum triggering forces were found at a 50 mm span and the most proximal contact location. The results revealed that only 10-30% of internal tendon forces were converted to their external triggering forces. Copyright © 2017 Elsevier Ltd. All rights reserved.

  9. The EChemPen: A Guiding Hand to Learn Electrochemical Surface Modifications

    ERIC Educational Resources Information Center

    Valetaud, Mathieu; Loget, Gabriel; Roche, Je´rome; Hu¨sken, Nina; Fattah, Zahra; Badets, Vasilica; Fontaine, Olivier; Zigah, Dodzi

    2015-01-01

    The Electrochemical Pen (EChemPen) was developed as an attractive tool for learning electrochemistry. The fabrication, principle, and operation of the EChemPen are simple and can be easily performed by students in practical classes. It is based on a regular fountain pen principle, where the electrolytic solution is dispensed at a tip to locally…

  10. Contact position sensor using constant contact force control system

    NASA Technical Reports Server (NTRS)

    Sturdevant, Jay (Inventor)

    1995-01-01

    A force control system (50) and method are provided for controlling a position contact sensor (10) so as to produce a constant controlled contact force therewith. The system (50) includes a contact position sensor (10) which has a contact probe (12) for contacting the surface of a target to be measured and an output signal (V.sub.o) for providing a position indication thereof. An actuator (30) is provided for controllably driving the contact position sensor (10) in response to an actuation control signal (I). A controller (52) receives the position indication signal (V.sub.o) and generates in response thereto the actuation control signal (I) so as to provide a substantially constant selective force (F) exerted by the contact probe (12). The actuation drive signal (I) is generated further in response to substantially linear approximation curves based on predetermined force and position data attained from the sensor (10) and the actuator (30).

  11. Design and fabrication of robotic gripper for grasping in minimizing contact force

    NASA Astrophysics Data System (ADS)

    Heidari, Hamidreza; Pouria, Milad Jafary; Sharifi, Shahriar; Karami, Mahmoudreza

    2018-03-01

    This paper presents a new method to improve the kinematics of robot gripper for grasping in unstructured environments, such as space operations. The robot gripper is inspired from the human hand and kept the hand design close to the structure of human fingers to provide successful grasping capabilities. The main goal is to improve kinematic structure of gripper to increase the grasping capability of large objects, decrease the contact forces and makes a successful grasp of various objects in unstructured environments. This research will describe the development of a self-adaptive and reconfigurable robotic hand for space operations through mechanical compliance which is versatile, robust and easy to control. Our model contains two fingers, two-link and three-link, with combining a kinematic model of thumb index. Moreover, some experimental tests are performed to examine the effectiveness of the hand-made in real, unstructured tasks. The results represent that the successful grasp range is improved about 30% and the contact forces is reduced approximately 10% for a wide range of target object size. According to the obtained results, the proposed approach provides an accommodative kinematic model which makes the better grasping capability by fingers geometries for a robot gripper.

  12. Learning about Modes in Atomic Force Microscopy by Means of Hands-On Activities Based on a Simple Apparatus

    ERIC Educational Resources Information Center

    Phuapaiboon, Unchada; Panijpan, Bhinyo; Osotchan, Tanakorn

    2009-01-01

    This study was conducted to examine the results of using a low-cost hands-on setup in combination with accompanying activities to promote understanding of the contact mode of atomic force microscopy (AFM). This contact mode setup enabled learners to study how AFM works by hand scanning using probing cantilevers with different characteristics on…

  13. Space Pens

    NASA Technical Reports Server (NTRS)

    1986-01-01

    Fisher's Space Pen was developed for use in gravity free environments. The cartridge, pressurized with nitrogen, seals out air preventing evaporation and oxidation of the ink. Internal pressures force ink outward toward the ball point. A thixotropic ink is used. The pen will operate from minus 50 to plus 45 degrees Fahrenheit, and will withstand atmospheric extremes. It was used both on the Apollo missions and by Soviet Cosmonauts.

  14. The fraction of total hand surface area involved in young children's outdoor hand-to-object contacts.

    PubMed

    AuYeung, Willa; Canales, Robert A; Leckie, James O

    2008-11-01

    Information on the fraction of total hand surface area touching a contaminated object is necessary in accurately estimating contaminant (e.g., pesticides, pathogens) loadings onto the hands during hand-to-object contacts. While several existing physical-stochastic human exposure models require such surface area data to estimate dermal and non-dietary ingestion exposure, there are very limited data sets. This paper provides statistical distributions of fractional surface areas (FSAs) for children's outdoor hand contacts. These distributions were constructed by combining information collected from two distinct studies exploring children's activity patterns and quantifying hand contact surface area. Results show that for outdoor contacts with "All Objects", a range of 0.13-0.27 captured median FSAs, while a range of 0.12-0.24 captured time-weighted FSAs. Overall, an FSA of 0.31 captured 80-100% of FSAs involved in each child's outdoor hand contacts, depending upon the object of interest. These values are much lower than the often conservative assumptions of up to 1 (i.e., the entire hand) that researchers currently make regarding FSAs involved in indoor and outdoor contacts [USEPA, 1997. Standard operating procedures (SOPs) for residential exposure assessments. Contract no. 68-W6-0030. http://www.epa.gov/pesticides/trac/science/trac6a05.pdf].

  15. An Improved Tibial Force Sensor to Compute Contact Forces and Contact Locations In Vitro After Total Knee Arthroplasty.

    PubMed

    Roth, Joshua D; Howell, Stephen M; Hull, Maury L

    2017-04-01

    Contact force imbalance and contact kinematics (i.e., motion of the contact location in each compartment during flexion) of the tibiofemoral joint are both important predictors of a patient's outcome following total knee arthroplasty (TKA). Previous tibial force sensors have limitations in that they either did not determine contact forces and contact locations independently in the medial and lateral compartments or only did so within restricted areas of the tibial insert, which prevented them from thoroughly evaluating contact force imbalance and contact kinematics in vitro. Accordingly, the primary objective of this study was to present the design and verification of an improved tibial force sensor which overcomes these limitations. The improved tibial force sensor consists of a modified tibial baseplate which houses independent medial and lateral arrays of three custom tension-compression transducers each. This sensor is interchangeable with a standard tibial component because it accommodates tibial articular surface inserts with a range of sizes and thicknesses. This sensor was verified by applying known loads at known locations over the entire surface of the tibial insert to determine the errors in the computed contact force and contact location in each compartment. The root-mean-square errors (RMSEs) in contact force are ≤ 6.1 N which is 1.4% of the 450 N full-scale output. The RMSEs in contact location are ≤ 1.6 mm. This improved tibial force sensor overcomes the limitations of the previous sensors and therefore should be useful for in vitro evaluation of new alignment goals, new surgical techniques, and new component designs in TKA.

  16. Learning to push and learning to move: the adaptive control of contact forces

    PubMed Central

    Casadio, Maura; Pressman, Assaf; Mussa-Ivaldi, Ferdinando A.

    2015-01-01

    To be successful at manipulating objects one needs to apply simultaneously well controlled movements and contact forces. We present a computational theory of how the brain may successfully generate a vast spectrum of interactive behaviors by combining two independent processes. One process is competent to control movements in free space and the other is competent to control contact forces against rigid constraints. Free space and rigid constraints are singularities at the boundaries of a continuum of mechanical impedance. Within this continuum, forces and motions occur in “compatible pairs” connected by the equations of Newtonian dynamics. The force applied to an object determines its motion. Conversely, inverse dynamics determine a unique force trajectory from a movement trajectory. In this perspective, we describe motor learning as a process leading to the discovery of compatible force/motion pairs. The learned compatible pairs constitute a local representation of the environment's mechanics. Experiments on force field adaptation have already provided us with evidence that the brain is able to predict and compensate the forces encountered when one is attempting to generate a motion. Here, we tested the theory in the dual case, i.e., when one attempts at applying a desired contact force against a simulated rigid surface. If the surface becomes unexpectedly compliant, the contact point moves as a function of the applied force and this causes the applied force to deviate from its desired value. We found that, through repeated attempts at generating the desired contact force, subjects discovered the unique compatible hand motion. When, after learning, the rigid contact was unexpectedly restored, subjects displayed after effects of learning, consistent with the concurrent operation of a motion control system and a force control system. Together, theory and experiment support a new and broader view of modularity in the coordinated control of forces and motions

  17. The fraction of total hand surface area involved in young children's outdoor hand-to-object contacts

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    AuYeung, Willa; Canales, Robert A.; Leckie, James O.

    2008-11-15

    Information on the fraction of total hand surface area touching a contaminated object is necessary in accurately estimating contaminant (e.g., pesticides, pathogens) loadings onto the hands during hand-to-object contacts. While several existing physical-stochastic human exposure models require such surface area data to estimate dermal and non-dietary ingestion exposure, there are very limited data sets. This paper provides statistical distributions of fractional surface areas (FSAs) for children's outdoor hand contacts. These distributions were constructed by combining information collected from two distinct studies exploring children's activity patterns and quantifying hand contact surface area. Results show that for outdoor contacts with 'All Objects',more » a range of 0.13-0.27 captured median FSAs, while a range of 0.12-0.24 captured time-weighted FSAs. Overall, an FSA of 0.31 captured 80-100% of FSAs involved in each child's outdoor hand contacts, depending upon the object of interest. These values are much lower than the often conservative assumptions of up to 1 (i.e., the entire hand) that researchers currently make regarding FSAs involved in indoor and outdoor contacts [USEPA, 1997. Standard operating procedures (SOPs) for residential exposure assessments. Contract no. 68-W6-0030. < (http://www.epa.gov/pesticides/trac/science/trac6a05.pdf)>].« less

  18. A 3-RSR Haptic Wearable Device for Rendering Fingertip Contact Forces.

    PubMed

    Leonardis, Daniele; Solazzi, Massimiliano; Bortone, Ilaria; Frisoli, Antonio

    2017-01-01

    A novel wearable haptic device for modulating contact forces at the fingertip is presented. Rendering of forces by skin deformation in three degrees of freedom (DoF), with contact-no contact capabilities, was implemented through rigid parallel kinematics. The novel asymmetrical three revolute-spherical-revolute (3-RSR) configuration allowed compact dimensions with minimum encumbrance of the hand workspace. The device was designed to render constant to low frequency deformation of the fingerpad in three DoF, combining light weight with relatively high output forces. A differential method for solving the non-trivial inverse kinematics is proposed and implemented in real time for controlling the device. The first experimental activity evaluated discrimination of different fingerpad stretch directions in a group of five subjects. The second experiment, enrolling 19 subjects, evaluated cutaneous feedback provided in a virtual pick-and-place manipulation task. Stiffness of the fingerpad plus device was measured and used to calibrate the physics of the virtual environment. The third experiment with 10 subjects evaluated interaction forces in a virtual lift-and-hold task. Although with different performance in the two manipulation experiments, overall results show that participants better controlled interaction forces when the cutaneous feedback was active, with significant differences between the visual and visuo-haptic experimental conditions.

  19. Tibiofemoral contact forces during walking, running and sidestepping.

    PubMed

    Saxby, David J; Modenese, Luca; Bryant, Adam L; Gerus, Pauline; Killen, Bryce; Fortin, Karine; Wrigley, Tim V; Bennell, Kim L; Cicuttini, Flavia M; Lloyd, David G

    2016-09-01

    We explored the tibiofemoral contact forces and the relative contributions of muscles and external loads to those contact forces during various gait tasks. Second, we assessed the relationships between external gait measures and contact forces. A calibrated electromyography-driven neuromusculoskeletal model estimated the tibiofemoral contact forces during walking (1.44±0.22ms(-1)), running (4.38±0.42ms(-1)) and sidestepping (3.58±0.50ms(-1)) in healthy adults (n=60, 27.3±5.4years, 1.75±0.11m, and 69.8±14.0kg). Contact forces increased from walking (∼1-2.8 BW) to running (∼3-8 BW), sidestepping had largest maximum total (8.47±1.57 BW) and lateral contact forces (4.3±1.05 BW), while running had largest maximum medial contact forces (5.1±0.95 BW). Relative muscle contributions increased across gait tasks (up to 80-90% of medial contact forces), and peaked during running for lateral contact forces (∼90%). Knee adduction moment (KAM) had weak relationships with tibiofemoral contact forces (all R(2)<0.36) and the relationships were gait task-specific. Step-wise regression of multiple external gait measures strengthened relationships (0.20contact force and load distributions. Step-wise regression models results suggest the relationships between external gait measures and contact forces cannot be generalized across tasks. Neuromusculoskeletal modelling may be required to examine tibiofemoral contact forces and role of muscle in knee stabilization across gait tasks. Copyright © 2016 Elsevier B.V. All rights reserved.

  20. Development and assessment of a hand assist device: GRIPIT.

    PubMed

    Kim, Byungchul; In, Hyunki; Lee, Dae-Young; Cho, Kyu-Jin

    2017-02-21

    , and legibility were measured to assess qualitative performance while writing various words and sentences. Results showed that GRIPIT is relatively complicated to wear and use compared to a conventional assist device but has advantages for writing sensation, fatigability, and legibility because it affords sufficient grasp force during writing. Two quantitative performance factors were assessed, accuracy of writing and solidity of writing. To assess accuracy of writing, we asked subjects to draw various figures under given conditions. To assess solidity of writing, pen tip force and the angle variation of the pen were measured. Quantitative evaluation results showed that GRIPIT helps users to write accurately without pen shakes even high force is applied on the pen. Qualitative and quantitative results were better when subjects used GRIPIT than when they used the conventional penholder, mainly because GRIPIT allowed them to exert a higher grasp force. Grasp force is important because disabled people cannot control their fingers and thus need to move their entire arm to write, while non-disabled people only need to move their fingers to write. The tension-maintenance structure developed for GRIPIT provides appropriate grasp force and moment balance on the user's hand, but the other writing method only fixes the pen using friction force or requires the user's arm to generate a grasp force.

  1. Force reflecting hand controller for manipulator teleoperation

    NASA Technical Reports Server (NTRS)

    Bryfogle, Mark D.

    1991-01-01

    A force reflecting hand controller based upon a six degree of freedom fully parallel mechanism, often termed a Stewart Platform, has been designed, constructed, and tested as an integrated system with a slave robot manipulator test bed. A force reflecting hand controller comprises a kinesthetic device capable of transmitting position and orientation commands to a slave robot manipulator while simultaneously representing the environmental interaction forces of the slave manipulator back to the operator through actuators driving the hand controller mechanism. The Stewart Platform was chosen as a novel approach to improve force reflecting teleoperation because of its inherently high ratio of load generation capability to system mass content and the correspondingly high dynamic bandwidth. An additional novelty of the program was to implement closed loop force and torque control about the hand controller mechanism by equipping the handgrip with a six degree of freedom force and torque measuring cell. The mechanical, electrical, computer, and control systems are discussed and system tests are presented.

  2. Contact force with magnetic-guided catheter ablation.

    PubMed

    Bessière, Francis; Zikry, Christopher; Rivard, Lena; Dyrda, Katia; Khairy, Paul

    2018-05-01

    Achieving adequate catheter tip-tissue contact is essential for delivering robust radiofrequency (RF) ablation lesions. We measured the contact force generated by a remote magnetic-guided catheter navigation system. A plexiglass model with an integrated scale was fashioned to mimic transvenous and retrograde access to sites in the right atrium and right and left ventricles. An 8 Fr RF ablation catheter was steered by remote magnetic guidance at fields of 0.08 and 0.10 T, with and without a long sheath positioned at the entrance of the chamber. Ten contact force readings were taken at each setting, with the scale recalibrated prior to each measurement. Generalized estimating equations were used to compare contact force measurements while adjusting for the non-independent data structure. A total of 240 contact force measurements were taken. Without a long sheath, contact forces with magnetic fields of 0.10 T (n = 60) and 0.08 T (n = 60) were similar (6.1 ± 1.4 g vs. 6.0 ± 1.3 g, P = 0.089). Contact forces were not significantly different with simulated transvenous (n = 80) and retrograde aortic (n = 40) approaches (6.2 ± 1.4 g vs. 5.7 ± 1.2 g, P = 0.132). The contact force increased substantially with a long sheath (P < 0.001) and was significantly higher with 0.10 T (n = 60) vs. 0.08 T (n = 60) fields (20.4 ± 0.6 g vs. 18.0 ± 0.5 g, P < 0.001). Magnetic fields of 0.08 and 0.10 T provide stable catheter contact forces, as reflected by the small variability between measurements. The average contact force is approximately 6 g without a sheath and increases to 20 g with a long sheath positioned at the entrance of the chamber of interest.

  3. Using grasping tasks to evaluate hand force coordination in children with hemiplegic cerebral palsy.

    PubMed

    Mackenzie, Samuel J; Getchell, Nancy; Modlesky, Christopher M; Miller, Freeman; Jaric, Slobodan

    2009-08-01

    Mackenzie SJ, Getchell N, Modlesky CM, Miller F, Jaric S. Using grasping tasks to evaluate hand force coordination in children with hemiplegic cerebral palsy. To assess force coordination in children with hemiplegic cerebral palsy (CP) using a device that allows for testing both unimanual and bimanual manipulation tasks performed under static and dynamic conditions. Nonequivalent groups design. University research laboratory for motor control. Six children with hemiplegic CP (age, mean +/- SD, 11.6+/-1.8 y) and 6 typically developing controls (11.6+/-1.6 y). Not applicable. Children performed simple lifting and force-matching static ramp tasks by way of both unimanual and bimanual pulling using a device that measures grip force (force acting perpendicularly at the digits-device contact area) and load force (tangential force). Main outcome measures were grip/load force ratios (grip force scaling) and correlation coefficients (force coupling). CP subjects showed significantly higher grip/load force ratios (P<.05) and slightly lower correlation coefficients than the control group, with more pronounced differences for most tasks when using their involved hand. For subjects with CP, switching from unimanual to bimanual conditions did not bring changes in scaling or coupling for the involved hand (P>.05). Compared with healthy children, the impaired hand function in the hemiplegic CP pediatric population could be reflected in excessive grip force that is also decoupled from ongoing changes in load force. Therefore, the bimanual grip load device used in this study could provide a sensitive measure of grip force coordination in CP, although nonmotor deficits should be taken into account when asking children to perform more complex tasks.

  4. Bimanual Force Variability and Chronic Stroke: Asymmetrical Hand Control

    PubMed Central

    Kang, Nyeonju; Cauraugh, James H.

    2014-01-01

    The purpose of this study was to investigate force variability generated by both the paretic and non-paretic hands during bimanual force control. Nine chronic stroke individuals and nine age-matched individuals with no stroke history performed a force control task with both hands simultaneously. The task involved extending the wrist and fingers at 5%, 25%, and 50% of maximum voluntary contraction. Bimanual and unimanual force variability during bimanual force control was determined by calculating the coefficient of variation. Analyses revealed two main findings: (a) greater bimanual force variability in the stroke group than the control group and (b) increased force variability by the paretic hands during bimanual force control in comparison to the non-paretic hands at the 5% and 25% force production conditions. A primary conclusion is that post stroke bimanual force variability is asymmetrical between hands. PMID:25000185

  5. Gait alterations to effectively reduce hip contact forces.

    PubMed

    Wesseling, Mariska; de Groote, Friedl; Meyer, Christophe; Corten, Kristoff; Simon, Jean-Pierre; Desloovere, Kaat; Jonkers, Ilse

    2015-07-01

    Patients with hip pathology present alterations in gait which have an effect on joint moments and loading. In knee osteoarthritic patients, the relation between medial knee contact forces and the knee adduction moment are currently being exploited to define gait retraining strategies to effectively reduce pain and disease progression. However, the relation between hip contact forces and joint moments has not been clearly established. Therefore, this study aims to investigate the effect of changes in hip and pelvis kinematics during gait on internal hip moments and contact forces which is calculated using muscle driven simulations. The results showed that frontal plane kinetics have the largest effect on hip contact forces. Given the high correlation between the change in hip adduction moment and contact force at initial stance (R(2)  = 0.87), this parameter can be used to alter kinematics and predict changes in contact force. At terminal stance the hip adduction and flexion moment can be used to predict changes in contact force (R(2)  = 0.76). Therefore, gait training that focuses on decreasing hip adduction moments, a wide base gait pattern, has the largest potential to reduce hip contact forces. © 2015 Orthopaedic Research Society. Published by Wiley Periodicals, Inc.

  6. Pen-Based Interface Using Hand Motions in the Air

    NASA Astrophysics Data System (ADS)

    Suzuki, Yu; Misue, Kazuo; Tanaka, Jiro

    A system which employs a stylus as an input device is suitable for creative activities like writing and painting. However, such a system does not always provide the user with a GUI that is easy to operate using the stylus. In addition, system usability is diminished because the stylus is not always integrated into the system in a way that takes into consideration the features of a pen. The purpose of our research is to improve the usability of a system which uses a stylus as an input device. We propose shortcut actions, which are interaction techniques for operation with a stylus that are controlled through a user's hand motions made in the air. We developed the Context Sensitive Stylus as a device to implement the shortcut actions. The Context Sensitive Stylus consists of an accelerometer and a conventional stylus. We also developed application programs to which we applied the shortcut actions; e.g., a drawing tool, a scroll supporting tool, and so on. Results from our evaluation of the shortcut actions indicate that users can concentrate better on their work when using the shortcut actions than when using conventional menu operations.

  7. Evaluation of Contact Separation Force Testing as a Screening Methodology for Electrical Socket Contacts

    NASA Technical Reports Server (NTRS)

    Green, Chris; Greenwell, Chris; Brusse, jay; Krus, Dennis; Leidecker, Henning

    2009-01-01

    During system level testing intermittent and permanent open circuit failures of mated, crimp removable, electrical contact pairs were experienced. The root cause of the failures was determined to be low (but not zero) contact forces applied by the socket contact tines against the engaging pin. The low contact force reduces the effectiveness of the wiping action of the socket tines against the pin. The observed failure mode may be produced when insufficient wiping during mate, demate and small relative movement in use allows for the accumulation of debris or insulating films that electrically separate the contact pair. The investigation identified at least three manufacturing process control problems associated with the socket contacts that enabled shipment of contacts susceptible to developing low contact forces: (1) Improper heat treatment of the socket tines resulting in plastic rather than elastic behavior; (2) Overly thinned socket tines at their base resulting in reduced pin retention forces; (3) insufficient screening tests to identify parts susceptible to the aforementioned failure mechanisms. The results from an extensive screening program of socket contacts utilizing the industry standard contact separation force test procedures are described herein. The investigation shows this method to be capable of identifying initially weak sockets. However, sockets whose contact retention forces may degrade during use may not be screened out by pin retention testing alone. Further investigations are required to correlate low contact retention forces with increased electrical contact resistance in the presence of insulating films that may accumulate in the use environment.

  8. Effects of Grip-Force, Contact, and Acceleration Feedback on a Teleoperated Pick-and-Place Task.

    PubMed

    Khurshid, Rebecca P; Fitter, Naomi T; Fedalei, Elizabeth A; Kuchenbecker, Katherine J

    2017-01-01

    The multifaceted human sense of touch is fundamental to direct manipulation, but technical challenges prevent most teleoperation systems from providing even a single modality of haptic feedback, such as force feedback. This paper postulates that ungrounded grip-force, fingertip-contact-and-pressure, and high-frequency acceleration haptic feedback will improve human performance of a teleoperated pick-and-place task. Thirty subjects used a teleoperation system consisting of a haptic device worn on the subject's right hand, a remote PR2 humanoid robot, and a Vicon motion capture system to move an object to a target location. Each subject completed the pick-and-place task 10 times under each of the eight haptic conditions obtained by turning on and off grip-force feedback, contact feedback, and acceleration feedback. To understand how object stiffness affects the utility of the feedback, half of the subjects completed the task with a flexible plastic cup, and the others used a rigid plastic block. The results indicate that the addition of grip-force feedback with gain switching enables subjects to hold both the flexible and rigid objects more stably, and it also allowed subjects who manipulated the rigid block to hold the object more delicately and to better control the motion of the remote robot's hand. Contact feedback improved the ability of subjects who manipulated the flexible cup to move the robot's arm in space, but it deteriorated this ability for subjects who manipulated the rigid block. Contact feedback also caused subjects to hold the flexible cup less stably, but the rigid block more securely. Finally, adding acceleration feedback slightly improved the subject's performance when setting the object down, as originally hypothesized; interestingly, it also allowed subjects to feel vibrations produced by the robot's motion, causing them to be more careful when completing the task. This study supports the utility of grip-force and high-frequency acceleration

  9. Hand hygiene prior to contact lens handling is problematical.

    PubMed

    McMonnies, Charles W

    2012-04-01

    To establish guidelines for contact lens wearers' hand hygiene practices which achieve a balance between minimising risk of infection and reasonable expectations on the ability of patients to follow them. Evidence has been obtained from publications via PubMed, Advanced Medline Search, Cochrane Reviews, Google Scholar and using the key words hand hygiene, washing and contact lens. Guidelines for effective hand washing and the bother involved vary according to the level of hygiene required. High levels of non-compliance with hand hygiene practices, even among healthcare workers, gives an indication of how important the level of bother involved when following guidelines can be in contributing to non-compliance. Better patient education to improve hand washing techniques as well as patient attitudes toward hand hygiene are needed to reduce high non-compliance levels. Better hand hygiene techniques and higher frequency of their application give the prospect of reduced risk of infection and of any discomfort that arises from increased lens and ocular bioburden. In order that adoption rates might be maximised, the guidelines which have been distilled from this review attempt to strike a balance between technique redundancy and the associated higher levels of hygiene achieved and the possibility that the perception of too much bother involved could reduce participation rates. The guidelines have been expanded by the inclusion of suggested explanatory information in the expectation that helping patients to understand why the recommendations are made will have the effect of increasing their adoption. Copyright © 2011 British Contact Lens Association. Published by Elsevier Ltd. All rights reserved.

  10. Investigation of force, contact area, and dwell time in finger-tapping tasks on membrane touch interface.

    PubMed

    Liu, Na; Yu, Ruifeng

    2018-06-01

    This study aimed to determine the touch characteristics during tapping tasks on membrane touch interface and investigate the effects of posture and gender on touch characteristics variables. One hundred participants tapped digits displayed on a membrane touch interface on sitting and standing positions using all fingers of the dominant hand. Touch characteristics measures included average force, contact area, and dwell time. Across fingers and postures, males exerted larger force and contact area than females, but similar dwell time. Across genders and postures, thumb exerted the largest force and the force of the other four fingers showed no significant difference. The contact area of the thumb was the largest, whereas that of the little finger was the smallest; the dwell time of the thumb was the longest, whereas that of the middle finger was the shortest. Relationships among finger sizes, gender, posture and touch characteristics were proposed. The findings helped direct membrane touch interface design for digital and numerical control products from hardware and software perspectives. Practitioner Summary: This study measured force, contact area, and dwell time in tapping tasks on membrane touch interface and examined effects of gender and posture on force, contact area, and dwell time. The findings will direct membrane touch interface design for digital and numerical control products from hardware and software perspectives.

  11. Enslaving in a serial chain: interactions between grip force and hand force in isometric tasks.

    PubMed

    Paclet, Florent; Ambike, Satyajit; Zatsiorsky, Vladimir M; Latash, Mark L

    2014-03-01

    This study was motivated by the double action of extrinsic hand muscles that produce grip force and also contribute to wrist torque. We explored interactions between grip force and wrist torque in isometric force production tasks. In particular, we tested a hypothesis that an intentional change in one of the two kinetic variables would produce an unintentional change in the other (enslaving). When young healthy subjects produced accurate changes in the grip force, only minor effects on the force produced by the hand (by wrist flexion/extension action) were observed. In contrast, a change in the hand force produced consistent changes in grip force in the same direction. The magnitude of such unintentional grip force change was stronger for intentional hand force decrease as compared to hand force increase. These effects increased with the magnitude of the initial grip force. When the subjects were asked to produce accurate total force computed as the sum of the hand and grip forces, strong negative covariation between the two forces was seen across trials interpreted as a synergy stabilizing the total force. An index of this synergy was higher in the space of "modes," hypothetical signals to the two effectors that could be changed by the controller one at a time. We interpret the complex enslaving effects (positive force covariation) as conditioned by typical everyday tasks. The presence of synergic effects (negative, task-specific force covariation) can be naturally interpreted within the referent configuration hypothesis.

  12. Enslaving in a serial chain: Interactions between grip force and hand force in isometric tasks

    PubMed Central

    Paclet, Florent; Ambike, Satyajit; Zatsiorsky, Vladimir M.; Latash, Mark L.

    2014-01-01

    This study was motivated by the double action of extrinsic hand muscles that produce grip force and also contribute to wrist torque. We explored interactions between grip force and wrist torque in isometric force production tasks. In particular, we tested a hypothesis that an intentional change in one of the two kinetic variables would produce an unintentional change in the other (enslaving). When young healthy subjects produced accurate changes in the grip force, only minor effects on the force produced by the hand (by wrist flexion/extension action) were observed. In contrast, a change in the hand force produced consistent changes in grip force in the same direction. The magnitude of such unintentional grip force change was stronger for intentional hand force decrease as compared to hand force increase. These effects increased with the magnitude of the initial grip force. When the subjects were asked to produce accurate total force computed as the sum of the hand and grip forces, strong negative co-variation between the two forces was seen across trials interpreted as a synergy stabilizing the total force. An index of this synergy was higher in the space of “modes”, hypothetical signals to the two effectors that could be changed by the controller one at a time. We interpret the complex enslaving effects (positive force co-variation) as conditioned by typical everyday tasks. The presence of synergic effects (negative, task-specific force co-variation) can be naturally interpreted within the referent configuration hypothesis. PMID:24309747

  13. Force Model for Control of Tendon Driven Hands

    NASA Technical Reports Server (NTRS)

    Pena, Edward; Thompson, David E.

    1997-01-01

    Knowing the tendon forces generated for a given task such as grasping via a model, an artificial hand can be controlled. A two-dimensional force model for the index finger was developed. This system is assumed to be in static equilibrium, therefore, the equations of equilibrium were applied at each joint. Constraint equations describing the tendon branch connectivity were used. Gaussian elimination was used to solve for the unknowns of the Linear system. Results from initial work on estimating tendon forces in post-operative hands during active motion therapy were discussed. The results are important for understanding the effects of hand position on tendon tension, elastic effects on tendon tension, and overall functional anatomy of the hand.

  14. The relationships between hand coupling force and vibration biodynamic responses of the hand-arm system.

    PubMed

    Pan, Daniel; Xu, Xueyan S; Welcome, Daniel E; McDowell, Thomas W; Warren, Christopher; Wu, John; Dong, Ren G

    2018-06-01

    This study conducted two series of experiments to investigate the relationships between hand coupling force and biodynamic responses of the hand-arm system. In the first experiment, the vibration transmissibility on the system was measured as a continuous function of grip force while the hand was subjected to discrete sinusoidal excitations. In the second experiment, the biodynamic responses of the system subjected to a broadband random vibration were measured under five levels of grip forces and a combination of grip and push forces. This study found that the transmissibility at each given frequency increased with the increase in the grip force before reaching a maximum level. The transmissibility then tended to plateau or decrease when the grip force was further increased. This threshold force increased with an increase in the vibration frequency. These relationships remained the same for both types of vibrations. The implications of the experimental results are discussed. Practitioner Summary: Shocks and vibrations transmitted to the hand-arm system may cause injuries and disorders of the system. How to take hand coupling force into account in the risk assessment of vibration exposure remains an important issue for further studies. This study is designed and conducted to help resolve this issue.

  15. The effects of instruction and hand dominance on grip-to-load force coordination in manipulation tasks.

    PubMed

    Jin, Xin; Uygur, Mehmet; Getchell, Nancy; Hall, Susan J; Jaric, Slobodan

    2011-10-31

    The force applied upon a vertically oriented hand-held object could be decomposed into two orthogonal and highly coordinated components: the grip force (GF; the component perpendicular to the hand-object contact area that provides friction) and the load force (LF; the parallel component that can move the object or support the body). The aim of this study was to investigate the underexplored effects of task instruction and hand dominance on GF-LF coordination. Sixteen right-handed subjects performed bimanual manipulation against a horizontally oriented instrumented device under different sets of instructions. The tasks involved exertion of ramp-and-hold or oscillation patterns of LF performed symmetrically with two hands, while the instructions regarding individual actions were either similar (pull with both hands) or dissimilar (pull with one hand and hold with another). The results revealed that the instruction "to pull" leads to higher indices of GF-LF coordination than the instruction "to hold", as evidenced by a lower GF-LF ratio, higher GF-LF coupling, and higher GF modulation. The only effect of hand dominance was a moderate time lag of GF relative to LF changes observed in the non-dominant hand. We conclude that the instructions could play an important role in GF-LF coordination and, therefore, they should be taken into account when exploring or routinely testing hand function. Additionally, the results suggest that the neural control of GF of the non-dominant hand could involve some feedback mechanisms. Copyright © 2011 Elsevier Ireland Ltd. All rights reserved.

  16. Surface Stresses and a Force Balance at a Contact Line.

    PubMed

    Liang, Heyi; Cao, Zhen; Wang, Zilu; Dobrynin, Andrey V

    2018-06-26

    Results of the coarse-grained molecular dynamics simulations are used to show that the force balance analysis at the triple-phase contact line formed at an elastic substrate has to include a quartet of forces: three surface tensions (surface free energies) and an elastic force per unit length. In the case of the contact line formed by a droplet on an elastic substrate an elastic force is due to substrate deformation generated by formation of the wetting ridge. The magnitude of this force f el is proportional to the product of the ridge height h and substrate shear modulus G. Similar elastic line force should be included in the force analysis at the triple-phase contact line of a solid particle in contact with an elastic substrate. For this contact problem elastic force obtained from contact angles and surface tensions is a sum of the elastic forces acting from the side of a solid particle and an elastic substrate. By considering only three line forces acting at the triple-phase contact line, one implicitly accounts the bulk stress contribution as a part of the resultant surface stresses. This "contamination" of the surface properties by a bulk contribution could lead to unphysically large values of the surface stresses in soft materials.

  17. Young children's hand contact activities: an observational study via videotaping in primarily outdoor residential settings.

    PubMed

    Auyeung, Willa; Canales, Robert A; Beamer, Paloma; Ferguson, Alesia C; Leckie, James O

    2006-09-01

    Microlevel activity time series (MLATS) data were gathered on hand contact activities of 38 children (1-6 years old) by videotaping in primarily outdoor residential environments. The videotape recordings were then translated into text files using a specialized software called VirtualTimingDevicetrade mark. Contact frequency (contacts/h), duration per contact (s/contact), and hourly contact duration (min/h) were summarized for outdoor hand contacts with 15 distinct object/surface categories ("Animal", "Body", "Clothes/Towels", "Fabric", "Floor", "Food", "Footwear", "Metal", "Non-dietary Water", "Paper/Wrapper", "Plastic", "Rock/Brick", "Toys", "Vegetation/Grass", and "Wood") and two aggregate object/surface categories ("Non-dietary objects/surfaces" and "Total objects/surfaces"). For outdoor both hand contacts with "Total objects/surfaces", contact frequencies ranged from 229.9 to 1517.7 contacts/h, median durations/contact ranged from < 1 to 5 s, and hourly contact durations ranged from 42.6 to 102.2 m/h. The data were analyzed for significant differences in hand contact activities as a function of (1) age, (2) location, (3) gender, and (4) hand. Significant differences (P < or = 0.05) were found for all four factors analyzed. Hourly contact durations with "Non-dietary objects/surfaces" and "Total objects/surfaces" increased with age (P = 0.01, rs = 0.42 and P = 0.005, rs = 0.46, respectively), while contact frequencies and hourly contact durations with "Wood" decreased with age (P = 0.02, rs = -0.38 and P = 0.05, rs = -0.32, respectively). Location was found to affect contact frequencies and hourly contact durations with certain objects/surfaces. For example, contact frequencies and hourly contact durations with "Fabric" were higher indoors (P = 0.02 for both), while contact frequencies and hourly contact durations with "Vegetation/Grass" were higher outdoors (P = 0.02 and P = 0.04, respectively). Girls had longer hourly contact durations with "Footwear" (P = 0

  18. A Generic Approach for Pen-Based User Interface Development

    NASA Astrophysics Data System (ADS)

    Macé, Sébastien; Anquetil, Éric

    Pen-based interaction is an intuitive way to realize hand drawn structured documents, but few applications take advantage of it. Indeed, the interpretation of the user hand drawn strokes in the context of document is a complex problem. In this paper, we propose a new generic approach to develop such systems based on three independent components. The first one is a set of graphical and editing functions adapted to pen interaction. The second one is a rule-based formalism that models structured document composition and the corresponding interpretation process. The last one is a hand drawn stroke analyzer that is able to interpret strokes progressively, directly while the user is drawing. We highlight in particular the human-computer interaction induced from this progressive interpretation process. Thanks to this generic approach, three pen-based system prototypes have already been developed, for musical score editing, for graph editing, and for UML class diagram editing

  19. How tibiofemoral alignment and contact locations affect predictions of medial and lateral tibiofemoral contact forces.

    PubMed

    Lerner, Zachary F; DeMers, Matthew S; Delp, Scott L; Browning, Raymond C

    2015-02-26

    Understanding degeneration of biological and prosthetic knee joints requires knowledge of the in-vivo loading environment during activities of daily living. Musculoskeletal models can estimate medial/lateral tibiofemoral compartment contact forces, yet anthropometric differences between individuals make accurate predictions challenging. We developed a full-body OpenSim musculoskeletal model with a knee joint that incorporates subject-specific tibiofemoral alignment (i.e. knee varus-valgus) and geometry (i.e. contact locations). We tested the accuracy of our model and determined the importance of these subject-specific parameters by comparing estimated to measured medial and lateral contact forces during walking in an individual with an instrumented knee replacement and post-operative genu valgum (6°). The errors in the predictions of the first peak medial and lateral contact force were 12.4% and 11.9%, respectively, for a model with subject-specific tibiofemoral alignment and contact locations determined through radiographic analysis, vs. 63.1% and 42.0%, respectively, for a model with generic parameters. We found that each degree of tibiofemoral alignment deviation altered the first peak medial compartment contact force by 51N (r(2)=0.99), while each millimeter of medial-lateral translation of the compartment contact point locations altered the first peak medial compartment contact force by 41N (r(2)=0.99). The model, available at www.simtk.org/home/med-lat-knee/, enables the specification of subject-specific joint alignment and compartment contact locations to more accurately estimate medial and lateral tibiofemoral contact forces in individuals with non-neutral alignment. Copyright © 2015 Elsevier Ltd. All rights reserved.

  20. How Tibiofemoral Alignment and Contact Locations Affect Predictions of Medial and Lateral Tibiofemoral Contact Forces

    PubMed Central

    Lerner, Zachary F.; DeMers, Matthew S.; Delp, Scott L.; Browning, Raymond C.

    2015-01-01

    Understanding degeneration of biological and prosthetic knee joints requires knowledge of the in-vivo loading environment during activities of daily living. Musculoskeletal models can estimate medial/lateral tibiofemoral compartment contact forces, yet anthropometric differences between individuals make accurate predictions challenging. We developed a full-body OpenSim musculoskeletal model with a knee joint that incorporates subject-specific tibiofemoral alignment (i.e. knee varus-valgus) and geometry (i.e. contact locations). We tested the accuracy of our model and determined the importance of these subject-specific parameters by comparing estimated to measured medial and lateral contact forces during walking in an individual with an instrumented knee replacement and post-operative genu valgum (6°). The errors in the predictions of the first peak medial and lateral contact force were 12.4% and 11.9%, respectively, for a model with subject-specific tibiofemoral alignment and contact locations determined via radiographic analysis, vs. 63.1% and 42.0%, respectively, for a model with generic parameters. We found that each degree of tibiofemoral alignment deviation altered the first peak medial compartment contact force by 51N (r2=0.99), while each millimeter of medial-lateral translation of the compartment contact point locations altered the first peak medial compartment contact force by 41N (r2=0.99). The model, available at www.simtk.org/home/med-lat-knee/, enables the specification of subject-specific joint alignment and compartment contact locations to more accurately estimate medial and lateral tibiofemoral contact forces in individuals with non-neutral alignment. PMID:25595425

  1. Simultaneous prediction of muscle and contact forces in the knee during gait.

    PubMed

    Lin, Yi-Chung; Walter, Jonathan P; Banks, Scott A; Pandy, Marcus G; Fregly, Benjamin J

    2010-03-22

    Musculoskeletal models are currently the primary means for estimating in vivo muscle and contact forces in the knee during gait. These models typically couple a dynamic skeletal model with individual muscle models but rarely include articular contact models due to their high computational cost. This study evaluates a novel method for predicting muscle and contact forces simultaneously in the knee during gait. The method utilizes a 12 degree-of-freedom knee model (femur, tibia, and patella) combining muscle, articular contact, and dynamic skeletal models. Eight static optimization problems were formulated using two cost functions (one based on muscle activations and one based on contact forces) and four constraints sets (each composed of different combinations of inverse dynamic loads). The estimated muscle and contact forces were evaluated using in vivo tibial contact force data collected from a patient with a force-measuring knee implant. When the eight optimization problems were solved with added constraints to match the in vivo contact force measurements, root-mean-square errors in predicted contact forces were less than 10 N. Furthermore, muscle and patellar contact forces predicted by the two cost functions became more similar as more inverse dynamic loads were used as constraints. When the contact force constraints were removed, estimated medial contact forces were similar and lateral contact forces lower in magnitude compared to measured contact forces, with estimated muscle forces being sensitive and estimated patellar contact forces relatively insensitive to the choice of cost function and constraint set. These results suggest that optimization problem formulation coupled with knee model complexity can significantly affect predicted muscle and contact forces in the knee during gait. Further research using a complete lower limb model is needed to assess the importance of this finding to the muscle and contact force estimation process. Copyright (c) 2009

  2. Apertureless cantilever-free pen arrays for scanning photochemical printing.

    PubMed

    Zhou, Yu; Xie, Zhuang; Brown, Keith A; Park, Daniel J; Zhou, Xiaozhu; Chen, Peng-Cheng; Hirtz, Michael; Lin, Qing-Yuan; Dravid, Vinayak P; Schatz, George C; Zheng, Zijian; Mirkin, Chad A

    2015-02-25

    A novel, apertureless, cantilever-free pen array can be used for dual scanning photochemical and molecular printing. Serial writing with light is enabled by combining self-focusing pyramidal pens with an opaque backing between pens. The elastomeric pens also afford force-tuned illumination and simultaneous delivery of materials and optical energy. These attributes make the technique a promising candidate for maskless high-resolution photopatterning and combinatorial chemistry. © 2014 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  3. Impedance hand controllers for increasing efficiency in teleoperations

    NASA Technical Reports Server (NTRS)

    Carignan, C.; Tarrant, J.

    1989-01-01

    An impedance hand controller with direct force feedback is examined as an alternative to bilateral force reflection in teleoperations involving force contact. Experimentation revealed an operator preference for direct force feedback which provided a better feel of contact with the environment. The advantages of variable arm impedance were also made clear in tracking tests where subjects preferred the larger hand controller inertias made possible by the acceleration feedback loop in the master arm. The ability to decouple the hand controller impedance from the slave arm dynamics is expected to be even more significant when the inertial properties of various payloads in the slave arm are considered.

  4. Thigh-calf contact parameters for six high knee flexion postures: Onset, maximum angle, total force, contact area, and center of force.

    PubMed

    Kingston, David C; Acker, Stacey M

    2018-01-23

    In high knee flexion, contact between the posterior thigh and calf is expected to decrease forces on tibiofemoral contact surfaces, therefore, thigh-calf contact needs to be thoroughly characterized to model its effect. This study measured knee angles and intersegmental contact parameters in fifty-eight young healthy participants for six common high flexion postures using motion tracking and a pressure sensor attached to the right thigh. Additionally, we introduced and assessed the reliability of a method for reducing noise in pressure sensor output. Five repetitions of two squatting, two kneeling, and two unilateral kneeling movements were completed. Interactions of posture by sex occurred for thigh-calf and heel-gluteal center of force, and thigh-calf contact area. Center of force in thigh-calf regions was farther from the knee joint center in females, compared to males, during unilateral kneeling (82 and 67 mm respectively) with an inverted relationship in the heel-gluteal region (331 and 345 mm respectively), although caution is advised when generalizing these findings from a young, relatively fit sample to a population level. Contact area was larger in females when compared to males (mean of 155.61 and 137.33 cm 2 across postures). A posture main effect was observed in contact force and sex main effects were present in onset and max angle. Males had earlier onset (121.0°) and lower max angle (147.4°) with onset and max angles having a range between movements of 8° and 3° respectively. There was a substantial total force difference of 139 N between the largest and smallest activity means. Force parameters measured in this study suggest that knee joint contact models need to incorporate activity-specific parameters when estimating loading. Copyright © 2017 Elsevier Ltd. All rights reserved.

  5. Sensitivity of medial and lateral knee contact force predictions to frontal plane alignment and contact locations.

    PubMed

    Saliba, Christopher M; Brandon, Scott C E; Deluzio, Kevin J

    2017-05-24

    Musculoskeletal models are increasingly used to estimate medial and lateral knee contact forces, which are difficult to measure in vivo. The sensitivity of contact force predictions to modeling parameters is important to the interpretation and implication of results generated by the model. The purpose of this study was to quantify the sensitivity of knee contact force predictions to simultaneous errors in frontal plane knee alignment and contact locations under different dynamic conditions. We scaled a generic musculoskeletal model for N=23 subjects' stature and radiographic knee alignment, then perturbed frontal plane alignment and mediolateral contact locations within experimentally-possible ranges of 10° to -10° and 10 to -10mm, respectively. The sensitivity of first peak, second peak, and mean medial and lateral knee contact forces to knee adduction angle and contact locations was modeled using linear regression. Medial loads increased, and lateral loads decreased, by between 3% and 6% bodyweight for each degree of varus perturbation. Shifting the medial contact point medially increased medial loads and decreased lateral loads by between 1% and 4% bodyweight per millimeter. This study demonstrates that realistic measurement errors of 5mm (contact distance) or 5° (frontal plane alignment) could result in a combined 50% BW error in subject specific contact force estimates. We also show that model sensitivity varies between subjects as a result of differences in gait dynamics. These results demonstrate that predicted knee joint contact forces should be considered as a range of possible values determined by model uncertainty. Copyright © 2017 Elsevier Ltd. All rights reserved.

  6. Contact force structure and force chains in 3D sheared granular systems

    NASA Astrophysics Data System (ADS)

    Mair, Karen; Jettestuen, Espen; Abe, Steffen

    2010-05-01

    Faults often exhibit accumulations of granular debris, ground up to create a layer of rock flour or fault gouge separating the rigid fault walls. Numerical simulations and laboratory experiments of sheared granular materials, suggest that applied loads are preferentially transmitted across such systems by transient force networks that carry enhanced forces. The characterisation of such features is important since their nature and persistence almost certainly influence the macroscopic mechanical stability of these systems and potentially that of natural faults. 3D numerical simulations of granular shear are a valuable investigation tool since they allow us to track individual particle motions, contact forces and their evolution during applied shear, that are difficult to view directly in laboratory experiments or natural fault zones. In characterising contact force distributions, it is important to use global structure measures that allow meaningful comparisons of granular systems having e.g. different grain size distributions, as may be expected at different stages of a fault's evolution. We therefore use a series of simple measures to characterise the structure, such as distributions and correlations of contact forces that can be mapped onto a force network percolation problem as recently proposed by Ostojic and coworkers for 2D granular systems. This allows the use of measures from percolation theory to both define and characterise the force networks. We demonstrate the application of this method to 3D simulations of a sheared granular material. Importantly, we then compare our measure of the contact force structure with macroscopic frictional behaviour measured at the boundaries of our model to determine the influence of the force networks on macroscopic mechanical stability.

  7. MEMS-Based Flexible Force Sensor for Tri-Axial Catheter Contact Force Measurement

    PubMed Central

    Sheng, Jun; Desai, Jaydev P.

    2016-01-01

    Atrial fibrillation (AFib) is a significant healthcare problem caused by the uneven and rapid discharge of electrical signals from pulmonary veins (PVs). The technique of radiofrequency (RF) ablation can block these abnormal electrical signals by ablating myocardial sleeves inside PVs. Catheter contact force measurement during RF ablation can reduce the rate of AFib recurrence, since it helps to determine effective contact of the catheter with the tissue, thereby resulting in effective power delivery for ablation. This paper presents the development of a three-dimensional (3D) force sensor to provide the real-time measurement of tri-axial catheter contact force. The 3D force sensor consists of a plastic cubic bead and five flexible force sensors. Each flexible force sensor was made of a PEDOT:PSS strain gauge and a PDMS bump on a flexible PDMS substrate. Calibration results show that the fabricated sensor has a linear response in the force range required for RF ablation. To evaluate its working performance, the fabricated sensor was pressed against gelatin tissue by a micromanipulator and also integrated on a catheter tip to test it within deionized water flow. Both experiments simulated the ventricular environment and proved the validity of applying the 3D force sensor in RF ablation. PMID:28190945

  8. Post-procedural evaluation of catheter contact force characteristics

    NASA Astrophysics Data System (ADS)

    Koch, Martin; Brost, Alexander; Kiraly, Atilla; Strobel, Norbert; Hornegger, Joachim

    2012-03-01

    Minimally invasive catheter ablation of electric foci, performed in electrophysiology labs, is an attractive treatment option for atrial fibrillation (AF) - in particular if drug therapy is no longer effective or tolerated. There are different strategies to eliminate the electric foci inducing the arrhythmia. Independent of the particular strategy, it is essential to place transmural lesions. The impact of catheter contact force on the generated lesion quality has been investigated recently, and first results are promising. There are different approaches to measure catheter-tissue contact. Besides traditional haptic feedback, there are new technologies either relying on catheter tip-to-tissue contact force or on local impedance measurements at the tip of the catheter. In this paper, we present a novel tool for post-procedural ablation point evaluation and visualization of contact force characteristics. Our method is based on localizing ablation points set during AF ablation procedures. The 3-D point positions are stored together with lesion specific catheter contact force (CF) values recorded during the ablation. The force records are mapped to the spatial 3-D positions, where the energy has been applied. The tracked positions of the ablation points can be further used to generate a 3-D mesh model of the left atrium (LA). Since our approach facilitates visualization of different force characteristics for post-procedural evaluation and verification, it has the potential to improve outcome by highlighting areas where lesion quality may be less than desired.

  9. Tibiofemoral Contact Forces in the Anterior Cruciate Ligament-Reconstructed Knee.

    PubMed

    Saxby, David John; Bryant, Adam L; Modenese, Luca; Gerus, Pauline; Killen, Bryce A; Konrath, Jason; Fortin, Karine; Wrigley, Tim V; Bennell, Kim L; Cicuttini, Flavia M; Vertullo, Christopher; Feller, Julian A; Whitehead, Tim; Gallie, Price; Lloyd, David G

    2016-11-01

    To investigate differences in anterior cruciate ligament-reconstructed (ACLR) and healthy individuals in terms of the magnitude of the tibiofemoral contact forces, as well as the relative muscle and external load contributions to those contact forces, during walking, running, and sidestepping gait tasks. A computational EMG-driven neuromusculoskeletal model was used to estimate the muscle and tibiofemoral contact forces in those with single-bundle combined semitendinosus and gracilis tendon autograft ACLR (n = 104, 29.7 ± 6.5 yr, 78.1 ± 14.4 kg) and healthy controls (n = 60, 27.5 ± 5.4 yr, 67.8 ± 14.0 kg) during walking (1.4 ± 0.2 m·s), running (4.5 ± 0.5 m·s) and sidestepping (3.7 ± 0.6 m·s). Within the computational model, the semitendinosus of ACLR participants was adjusted to account for literature reported strength deficits and morphological changes subsequent to autograft harvesting. ACLR had smaller maximum total and medial tibiofemoral contact forces (~80% of control values, scaled to bodyweight) during the different gait tasks. Compared with controls, ACLR were found to have a smaller maximum knee flexion moment, which explained the smaller tibiofemoral contact forces. Similarly, compared with controls, ACLR had both a smaller maximum knee flexion angle and knee flexion excursion during running and sidestepping, which may have concentrated the articular contact forces to smaller areas within the tibiofemoral joint. Mean relative muscle and external load contributions to the tibiofemoral contact forces were not significantly different between ACLR and controls. ACLR had lower bodyweight-scaled tibiofemoral contact forces during walking, running, and sidestepping, likely due to lower knee flexion moments and straighter knee during the different gait tasks. The relative contributions of muscles and external loads to the contact forces were equivalent between groups.

  10. A Parametric Approach to Numerical Modeling of TKR Contact Forces

    PubMed Central

    Lundberg, Hannah J.; Foucher, Kharma C.; Wimmer, Markus A.

    2009-01-01

    In vivo knee contact forces are difficult to determine using numerical methods because there are more unknown forces than equilibrium equations available. We developed parametric methods for computing contact forces across the knee joint during the stance phase of level walking. Three-dimensional contact forces were calculated at two points of contact between the tibia and the femur, one on the lateral aspect of the tibial plateau, and one on the medial side. Muscle activations were parametrically varied over their physiologic range resulting in a solution space of contact forces. The obtained solution space was reasonably small and the resulting force pattern compared well to a previous model from the literature for kinematics and external kinetics from the same patient. Peak forces of the parametric model and the previous model were similar for the first half of the stance phase, but differed for the second half. The previous model did not take into account the transverse external moment about the knee and could not calculate muscle activation levels. Ultimately, the parametric model will result in more accurate contact force inputs for total knee simulators, as current inputs are not generally based on kinematics and kinetics inputs from TKR patients. PMID:19155015

  11. Glenohumeral contact force during flat and topspin tennis forehand drives.

    PubMed

    Blache, Yoann; Creveaux, Thomas; Dumas, Raphaël; Chèze, Laurence; Rogowski, Isabelle

    2017-03-01

    The primary role of the shoulder joint in tennis forehand drive is at the expense of the loadings undergone by this joint. Nevertheless, few studies investigated glenohumeral (GH) contact forces during forehand drives. The aim of this study was to investigate GH compressive and shearing forces during the flat and topspin forehand drives in advanced tennis players. 3D kinematics of flat and topspin forehand drives of 11 advanced tennis players were recorded. The Delft Shoulder and Elbow musculoskeletal model was implemented to assess the magnitude and orientation of GH contact forces during the forehand drives. The results showed no differences in magnitude and orientation of GH contact forces between the flat and topspin forehand drives. The estimated maximal GH contact force during the forward swing phase was 3573 ± 1383 N, which was on average 1.25 times greater than during the follow-through phase, and 5.8 times greater than during the backswing phase. Regardless the phase of the forehand drive, GH contact forces pointed towards the anterior-superior part of the glenoid therefore standing for shearing forces. Knowledge of GH contact forces during real sport tasks performed at high velocity may improve the understanding of various sport-specific adaptations and causative factors for shoulder problems.

  12. Nanoink bridge-induced capillary pen printing for chemical sensors.

    PubMed

    Kahng, Seong-Joong; Cerwyn, Chiew; Dincau, Brian M; Kim, Jong-Hoon; Novosselov, Igor V; Anantram, M P; Chung, Jae-Hyun

    2018-08-17

    Single-walled carbon nanotubes (SWCNTs) are used as a key component for chemical sensors. For miniature scale design, a continuous printing method is preferred for electrical conductance without damaging the substrate. In this paper, a non-contact capillary pen printing method is presented by the formation of a nanoink bridge between the nib of a capillary pen and a polyethylene terephthalate film. A critical parameter for stable printing is the advancing contact angle at the bridge meniscus, which is a function of substrate temperature and printing speed. The printed pattern including dots, lines, and films of SWCNTs are characterized by morphology, optical transparency, and electrical properties. Gas and pH sensors fabricated using the non-contact printing method are demonstrated as applications.

  13. The effect of bracing availability on one-hand isometric force exertion capability.

    PubMed

    Jones, Monica L H; Reed, Matthew P; Chaffin, Don B

    2013-01-01

    Environmental obstructions that workers encounter can kinematically limit the postures that they can achieve. However, such obstructions can also provide an opportunity for additional support by bracing with the hand, thigh or other body part. The reaction forces on bracing surfaces, which are in addition to those acting at the feet and task hand, are hypothesised to improve force exertion capability, and become required inputs to biomechanical analysis of tasks with bracing. The effects of kinematic constraints and associated bracing opportunities on isometric hand force were quantified in a laboratory study of 22 men and women. Analyses of one-hand maximal push, pull and lift tasks demonstrated that bracing surfaces available at the thighs and non-task hand enabled participants to exert an average of 43% more force at the task hand. Task hand force direction deviated significantly from the nominal direction for exertions performed with bracing at both medium and low task hand locations. This study quantifies the effect of bracing on kinematically constrained force exertions. Knowledge that appropriate bracing surfaces can substantially increase hand force is critical to the evaluation of task-oriented strength capability. Force estimates may also involve large off-axis components, which have clear implications for ergonomic analyses of manual tasks.

  14. Bilateral contact ground reaction forces and contact times during plyometric drop jumping.

    PubMed

    Ball, Nick B; Stock, Christopher G; Scurr, Joanna C

    2010-10-01

    Drop jumping (DJ) is used in training programs aimed to improve lower extremity explosive power. When performing double-leg drop jumps, it is important to provide an equal stimulus to both legs to ensure balanced development of the lower legs. The aim of this study was to bilaterally analyze the ground reactions forces and temporal components of drop jumping from 3 heights. Ten recreationally active male subjects completed 3 bounce-drop jumps from 3 starting heights (0.2, 0.4, and 0.6 m). Two linked force platforms were used to record left- and right-leg peak vertical force, time to peak force, average force, ground contact time, impulse and time differential. Between-height and between-leg comparisons for each variable were made using a multivariate analysis of variance with post hoc Wilcoxon tests (p < 0.05). Results indicated that force and time variables increased as drop jump height increased (p < 0.0001). Post hoc analyses showed that at 0.2- and 0.4-m bilateral differences were present in the time to peak force, average force, and impulse. No bilateral differences for any variables were shown at 0.6-m starting height. The contact time for all jumps was <0.26 seconds. At 0.2 m, only 63% of the subjects had a starting time differential of <0.01 seconds, rising to 96.3% at 0.6 m. The results indicated that 0.6 m is the suggested drop jump height to ensure that no bilateral differences in vertical forces and temporal components occur; however, shorter contact times were found at the lower heights.

  15. Foot forces induced through Tai Chi push-hand exercises.

    PubMed

    Wong, Shiu Hong; Ji, Tianjian; Hong, Youlian; Fok, Siu Lun; Wang, Lin

    2013-08-01

    The low impact forces of Tai Chi push-hand exercises may be particularly suited for older people and for those with arthritis; however, the biomechanics of push-hand exercises have not previously been reported. This paper examines the ground reaction forces (GRFs) and plantar force distributions during Tai Chi push-hand exercises in a stationary stance with and without an opponent. Ten male Tai Chi practitioners participated in the study. The GRFs of each foot were measured in three perpendicular directions using two force plates (Kistler). The plantar force distribution of each foot was measured concurrently using an insole sensor system (Novel). The results showed that the average maximum vertical GRF of each foot was not more than 88% ± 6.1% of the body weight and the sum of the vertical forces (103% ± 1.4%) generated by the two feet approximately equals the body weight at any one time. The horizontal GRFs generated by the two feet were in the opposite directions and the measured mean peak values were not more than 12% ± 2.8% and 17% ± 4.3% of the body weight in the medio-lateral and antero-posterior directions respectively. Among the nine plantar areas, the toes sustained the greatest plantar force. This study indicates that push-hand exercises generate lower vertical forces than those induced by walking, bouncing, jumping and Tai Chi gait, and that the greatest plantar force is located in the toe area, which may have an important application in balance training particularly for older adults.

  16. Learned Manipulation at Unconstrained Contacts Does Not Transfer across Hands

    PubMed Central

    Fu, Qiushi; Choi, Jason Y.; Gordon, Andrew M.; Jesunathadas, Mark; Santello, Marco

    2014-01-01

    Recent studies about sensorimotor control of the human hand have focused on how dexterous manipulation is learned and generalized. Here we address this question by testing the extent to which learned manipulation can be transferred when the contralateral hand is used and/or object orientation is reversed. We asked subjects to use a precision grip to lift a grip device with an asymmetrical mass distribution while minimizing object roll during lifting by generating a compensatory torque. Subjects were allowed to grasp anywhere on the object’s vertical surfaces, and were therefore able to modulate both digit positions and forces. After every block of eight trials performed in one manipulation context (i.e., using the right hand and at a given object orientation), subjects had to lift the same object in the second context for one trial (transfer trial). Context changes were made by asking subjects to switch the hand used to lift the object and/or rotate the object 180° about a vertical axis. Therefore, three transfer conditions, hand switch (HS), object rotation (OR), and both hand switch and object rotation (HS+OR), were tested and compared with hand matched control groups who did not experience context changes. We found that subjects in all transfer conditions adapted digit positions across multiple transfer trials similar to the learning of control groups, regardless of different changes of contexts. Moreover, subjects in both HS and HS+OR group also adapted digit forces similar to the control group, suggesting independent learning of the left hand. In contrast, the OR group showed significant negative transfer of the compensatory torque due to an inability to adapt digit forces. Our results indicate that internal representations of dexterous manipulation tasks may be primarily built through the hand used for learning and cannot be transferred across hands. PMID:25233091

  17. Hand digit control in children: motor overflow in multi-finger pressing force vector space during maximum voluntary force production.

    PubMed

    Shim, Jae Kun; Karol, Sohit; Hsu, Jeffrey; de Oliveira, Marcio Alves

    2008-04-01

    The aim of this study was to investigate the contralateral motor overflow in children during single-finger and multi-finger maximum force production tasks. Forty-five right handed children, 5-11 years of age produced maximum isometric pressing force in flexion or extension with single fingers or all four fingers of their right hand. The forces produced by individual fingers of the right and left hands were recorded and analyzed in four-dimensional finger force vector space. The results showed that increases in task (right) hand finger forces were linearly associated with non-task (left) hand finger forces. The ratio of the non-task hand finger force magnitude to the corresponding task hand finger force magnitude, termed motor overflow magnitude (MOM), was greater in extension than flexion. The index finger flexion task showed the smallest MOM values. The similarity between the directions of task hand and non-task hand finger force vectors in four-dimensional finger force vector space, termed motor overflow direction (MOD), was the greatest for index and smallest for little finger tasks. MOM of a four-finger task was greater than the sum of MOMs of single-finger tasks, and this phenomenon was termed motor overflow surplus. Contrary to previous studies, no single-finger or four-finger tasks showed significant changes of MOM or MOD with the age of children. We conclude that the contralateral motor overflow in children during finger maximum force production tasks is dependent upon the task fingers and the magnitude and direction of task finger forces.

  18. Changes in in vivo knee contact forces through gait modification.

    PubMed

    Kinney, Allison L; Besier, Thor F; Silder, Amy; Delp, Scott L; D'Lima, Darryl D; Fregly, Benjamin J

    2013-03-01

    Knee osteoarthritis (OA) commonly occurs in the medial compartment of the knee and has been linked to overloading of the medial articular cartilage. Gait modification represents a non-invasive treatment strategy for reducing medial compartment knee force. The purpose of this study was to evaluate the effectiveness of a variety of gait modifications that were expected to alter medial contact force. A single subject implanted with a force-measuring knee replacement walked using nine modified gait patterns, four of which involved different hiking pole configurations. Medial and lateral contact force at 25, 50, and 75% of stance phase, and the average value over all of stance phase (0-100%), were determined for each gait pattern. Changes in medial and lateral contact force values relative to the subject's normal gait pattern were determined by a Kruskal-Wallis test. Apart from early stance (25% of stance), medial contact force was most effectively reduced by walking with long hiking poles and wide pole placement, which significantly reduced medial and lateral contact force during stance phase by up to 34% (at 75% of stance) and 26% (at 50% of stance), respectively. Although this study is based on data from a single subject, the results provide important insight into changes in medial and lateral contact forces through gait modification. The results of this study suggest that an optimal configuration of bilateral hiking poles may significantly reduce both medial and lateral compartment knee forces in individuals with medial knee osteoarthritis. Copyright © 2012 Orthopaedic Research Society.

  19. Muscle Synergies May Improve Optimization Prediction of Knee Contact Forces During Walking

    PubMed Central

    Walter, Jonathan P.; Kinney, Allison L.; Banks, Scott A.; D'Lima, Darryl D.; Besier, Thor F.; Lloyd, David G.; Fregly, Benjamin J.

    2014-01-01

    The ability to predict patient-specific joint contact and muscle forces accurately could improve the treatment of walking-related disorders. Muscle synergy analysis, which decomposes a large number of muscle electromyographic (EMG) signals into a small number of synergy control signals, could reduce the dimensionality and thus redundancy of the muscle and contact force prediction process. This study investigated whether use of subject-specific synergy controls can improve optimization prediction of knee contact forces during walking. To generate the predictions, we performed mixed dynamic muscle force optimizations (i.e., inverse skeletal dynamics with forward muscle activation and contraction dynamics) using data collected from a subject implanted with a force-measuring knee replacement. Twelve optimization problems (three cases with four subcases each) that minimized the sum of squares of muscle excitations were formulated to investigate how synergy controls affect knee contact force predictions. The three cases were: (1) Calibrate+Match where muscle model parameter values were calibrated and experimental knee contact forces were simultaneously matched, (2) Precalibrate+Predict where experimental knee contact forces were predicted using precalibrated muscle model parameters values from the first case, and (3) Calibrate+Predict where muscle model parameter values were calibrated and experimental knee contact forces were simultaneously predicted, all while matching inverse dynamic loads at the hip, knee, and ankle. The four subcases used either 44 independent controls or five synergy controls with and without EMG shape tracking. For the Calibrate+Match case, all four subcases closely reproduced the measured medial and lateral knee contact forces (R2 ≥ 0.94, root-mean-square (RMS) error < 66 N), indicating sufficient model fidelity for contact force prediction. For the Precalibrate+Predict and Calibrate+Predict cases, synergy controls yielded better contact force

  20. Muscle synergies may improve optimization prediction of knee contact forces during walking.

    PubMed

    Walter, Jonathan P; Kinney, Allison L; Banks, Scott A; D'Lima, Darryl D; Besier, Thor F; Lloyd, David G; Fregly, Benjamin J

    2014-02-01

    The ability to predict patient-specific joint contact and muscle forces accurately could improve the treatment of walking-related disorders. Muscle synergy analysis, which decomposes a large number of muscle electromyographic (EMG) signals into a small number of synergy control signals, could reduce the dimensionality and thus redundancy of the muscle and contact force prediction process. This study investigated whether use of subject-specific synergy controls can improve optimization prediction of knee contact forces during walking. To generate the predictions, we performed mixed dynamic muscle force optimizations (i.e., inverse skeletal dynamics with forward muscle activation and contraction dynamics) using data collected from a subject implanted with a force-measuring knee replacement. Twelve optimization problems (three cases with four subcases each) that minimized the sum of squares of muscle excitations were formulated to investigate how synergy controls affect knee contact force predictions. The three cases were: (1) Calibrate+Match where muscle model parameter values were calibrated and experimental knee contact forces were simultaneously matched, (2) Precalibrate+Predict where experimental knee contact forces were predicted using precalibrated muscle model parameters values from the first case, and (3) Calibrate+Predict where muscle model parameter values were calibrated and experimental knee contact forces were simultaneously predicted, all while matching inverse dynamic loads at the hip, knee, and ankle. The four subcases used either 44 independent controls or five synergy controls with and without EMG shape tracking. For the Calibrate+Match case, all four subcases closely reproduced the measured medial and lateral knee contact forces (R2 ≥ 0.94, root-mean-square (RMS) error < 66 N), indicating sufficient model fidelity for contact force prediction. For the Precalibrate+Predict and Calibrate+Predict cases, synergy controls yielded better contact

  1. Modeling and estimation of tip contact force for steerable ablation catheters.

    PubMed

    Khoshnam, Mahta; Skanes, Allan C; Patel, Rajni V

    2015-05-01

    The efficacy of catheter-based cardiac ablation procedures can be significantly improved if real-time information is available concerning contact forces between the catheter tip and cardiac tissue. However, the widely used ablation catheters are not equipped for force sensing. This paper proposes a technique for estimating the contact forces without direct force measurements by studying the changes in the shape of the deflectable distal section of a conventional 7-Fr catheter (henceforth called the "deflectable distal shaft," the "deflectable shaft," or the "shaft" of the catheter) in different loading situations. First, the shaft curvature when the tip is moving in free space is studied and based on that, a kinematic model for the deflectable shaft in free space is proposed. In the next step, the shaft shape is analyzed in the case where the tip is in contact with the environment, and it is shown that the curvature of the deflectable shaft provides useful information about the loading status of the catheter and can be used to define an index for determining the range of contact forces exerted by the ablation tip. Experiments with two different steerable ablation catheters show that the defined index can detect the range of applied contact forces correctly in more than 80% of the cases. Based on the proposed technique, a framework for obtaining contact force information by using the shaft curvature at a limited number of points along the deflectable shaft is constructed. The proposed kinematic model and the force estimation technique can be implemented together to describe the catheter's behavior before contact, detect tip/tissue contact, and determine the range of contact forces. This study proves that the flexibility of the catheter's distal shaft provides a means of estimating the force exerted on tissue by the ablation tip.

  2. Kinematics and force analysis of a robot hand based on an artificial biological control scheme

    NASA Astrophysics Data System (ADS)

    Kim, Man Guen

    An artificial biological control scheme (ABCS) is used to study the kinematics and statics of a multifingered hand with a view to developing an efficient control scheme for grasping. The ABCS is based on observation of human grasping, intuitively taking it as the optimum model for robotic grasping. A final chapter proposes several grasping measures to be applied to the design and control of a robot hand. The ABCS leads to the definition of two modes of the grasping action: natural grasping (NG), which is the human motion to grasp the object without any special task command, and forced grasping (FG), which is the motion with a specific task. The grasping direction line (GDL) is defined to determine the position and orientation of the object in the hand. The kinematic model of a redundant robot arm and hand is developed by reconstructing the human upper extremity and using anthropometric measurement data. The inverse kinematic analyses of various types of precision and power grasping are studied by replacing the three-link with one virtual link and using the GDL. The static force analysis for grasping with fingertips is studied by applying the ABCS. A measure of grasping stability, that maintains the positions of contacts as well as the configurations of the redundant fingers, is derived. The grasping stability measure (GSM), a measure of how well the hand maintains grasping under the existence of external disturbance, is derived by the torque vector of the hand calculated from the external force applied to the object. The grasping manipulability measure (GMM), a measure of how well the hand manipulates the object for the task, is derived by the joint velocity vector of the hand calculated from the object velocity. The grasping performance measure (GPM) is defined by the sum of the directional components of the GSM and the GMM. Finally, a planar redundant hand with two fingers is examined in order to study the various postures of the hand performing pinch grasping by

  3. Micromechanical contact stiffness devices and application for calibrating contact resonance atomic force microscopy.

    PubMed

    Rosenberger, Matthew R; Chen, Sihan; Prater, Craig B; King, William P

    2017-01-27

    This paper reports the design, fabrication, and characterization of micromechanical devices that can present an engineered contact stiffness to an atomic force microscope (AFM) cantilever tip. These devices allow the contact stiffness between the AFM tip and a substrate to be easily and accurately measured, and can be used to calibrate the cantilever for subsequent mechanical property measurements. The contact stiffness devices are rigid copper disks of diameters 2-18 μm integrated onto a soft silicone substrate. Analytical modeling and finite element simulations predict the elastic response of the devices. Measurements of tip-sample interactions during quasi-static force measurements compare well with modeling simulation, confirming the expected elastic response of the devices, which are shown to have contact stiffness 32-156 N m -1 . To demonstrate one application, we use the disk sample to calibrate three resonant modes of a U-shaped AFM cantilever actuated via Lorentz force, at approximately 220, 450, and 1200 kHz. We then use the calibrated cantilever to determine the contact stiffness and elastic modulus of three polymer samples at these modes. The overall approach allows cantilever calibration without prior knowledge of the cantilever geometry or its resonance modes, and could be broadly applied to both static and dynamic measurements that require AFM calibration against a known contact stiffness.

  4. Micromechanical contact stiffness devices and application for calibrating contact resonance atomic force microscopy

    NASA Astrophysics Data System (ADS)

    Rosenberger, Matthew R.; Chen, Sihan; Prater, Craig B.; King, William P.

    2017-01-01

    This paper reports the design, fabrication, and characterization of micromechanical devices that can present an engineered contact stiffness to an atomic force microscope (AFM) cantilever tip. These devices allow the contact stiffness between the AFM tip and a substrate to be easily and accurately measured, and can be used to calibrate the cantilever for subsequent mechanical property measurements. The contact stiffness devices are rigid copper disks of diameters 2-18 μm integrated onto a soft silicone substrate. Analytical modeling and finite element simulations predict the elastic response of the devices. Measurements of tip-sample interactions during quasi-static force measurements compare well with modeling simulation, confirming the expected elastic response of the devices, which are shown to have contact stiffness 32-156 N m-1. To demonstrate one application, we use the disk sample to calibrate three resonant modes of a U-shaped AFM cantilever actuated via Lorentz force, at approximately 220, 450, and 1200 kHz. We then use the calibrated cantilever to determine the contact stiffness and elastic modulus of three polymer samples at these modes. The overall approach allows cantilever calibration without prior knowledge of the cantilever geometry or its resonance modes, and could be broadly applied to both static and dynamic measurements that require AFM calibration against a known contact stiffness.

  5. Contact forces during hybrid atrial fibrillation ablation: an in vitro evaluation.

    PubMed

    Lozekoot, Pieter W J; de Jong, Monique M J; Gelsomino, Sandro; Parise, Orlando; Matteucci, Francesco; Lucà, Fabiana; Kumar, N; Nijs, Jan; Czapla, Jens; Kwant, Paul; Bani, Daniele; Gensini, Gian Franco; Pison, Laurent; Crijns, Harry J G M; Maessen, Jos G; La Meir, Mark

    2016-03-01

    Data on epicardial contact force efficacy in dual epicardial-endocardial atrial fibrillation ablation procedures are lacking. We present an in vitro study on the importance of epicardial and endocardial contact forces during this procedure. The in vitro setup consists of two separate chambers, mimicking the endocardial and epicardial sides of the heart. A circuit, including a pump and a heat exchanger, circulates porcine blood through the endocardial chamber. A septum, with a cut out, allows the placement of a magnetically fixed tissue holder, securing porcine atrial tissue, in the middle of both chambers. Two trocars provide access to the epicardium and endocardium. Force transducers mounted on both catheter holders allow real-time contact force monitoring, while a railing system allows controlled contact force adjustment. We histologically assessed different combinations of epi-endocardial radiofrequency ablation contact forces using porcine atria, evaluating the ablation's diameters, area, and volume. An epicardial ablation with forces of 100 or 300 g, followed by an endocardial ablation with a force of 20 g did not achieve transmurality. Increasing endocardial forces to 30 and 40 g combined with an epicardial force ranging from 100 to 300 and 500 g led to transmurality with significant increases in lesion's diameters, area, and volumes. Increased endocardial contact forces led to larger ablation lesions regardless of standard epicardial pressure forces. In order to gain transmurality in a model of a combined epicardial-endocardial procedure, a minimal endocardial force of 30 g combined with an epicardial force of 100 g is necessary.

  6. Intra-Articular Knee Contact Force Estimation During Walking Using Force-Reaction Elements and Subject-Specific Joint Model.

    PubMed

    Jung, Yihwan; Phan, Cong-Bo; Koo, Seungbum

    2016-02-01

    Joint contact forces measured with instrumented knee implants have not only revealed general patterns of joint loading but also showed individual variations that could be due to differences in anatomy and joint kinematics. Musculoskeletal human models for dynamic simulation have been utilized to understand body kinetics including joint moments, muscle tension, and knee contact forces. The objectives of this study were to develop a knee contact model which can predict knee contact forces using an inverse dynamics-based optimization solver and to investigate the effect of joint constraints on knee contact force prediction. A knee contact model was developed to include 32 reaction force elements on the surface of a tibial insert of a total knee replacement (TKR), which was embedded in a full-body musculoskeletal model. Various external measurements including motion data and external force data during walking trials of a subject with an instrumented knee implant were provided from the Sixth Grand Challenge Competition to Predict in vivo Knee Loads. Knee contact forces in the medial and lateral portions of the instrumented knee implant were also provided for the same walking trials. A knee contact model with a hinge joint and normal alignment could predict knee contact forces with root mean square errors (RMSEs) of 165 N and 288 N for the medial and lateral portions of the knee, respectively, and coefficients of determination (R2) of 0.70 and -0.63. When the degrees-of-freedom (DOF) of the knee and locations of leg markers were adjusted to account for the valgus lower-limb alignment of the subject, RMSE values improved to 144 N and 179 N, and R2 values improved to 0.77 and 0.37, respectively. The proposed knee contact model with subject-specific joint model could predict in vivo knee contact forces with reasonable accuracy. This model may contribute to the development and improvement of knee arthroplasty.

  7. The development of contact force construction in the dynamic-contact task of cycling [corrected].

    PubMed

    Brown, Nicholas A T; Jensen, Jody L

    2003-01-01

    Purposeful movement requires that an individual produce appropriate joint torques to accelerate segments, and when environmental contact is involved, to develop task-appropriate contact forces. Developmental research has been confined largely to the mastery of unconstrained movement skills (pointing, kicking). The purpose of this study was to study the developmental progression that characterizes the interaction of muscular and non-muscular forces in tasks constrained by contact with the environment. Seven younger children (YC, 6-8 years), 7 older children (OC, 9-11 years) and 7 adults (AD) pedaled an ergometer (80 rpm) at an anthropometrically scaled cycling power. Resultant forces measured at the pedal's surface were decomposed into muscle, inertia and gravity components. Muscle pedal forces were further examined in terms of the underlying lower extremity joint torques and kinematic weights that constitute the muscular component of the pedal force. Data showed children applied muscle forces to the pedal in a significantly different manner compared to adults, and that this was due to the children's lower segmental mass and inertia. The children adjusted the contribution of the proximal joint muscle torques to compensate for reduced contributions to the resultant pedal force by gravitational and inertial components. These data show that smaller segmental mass and inertia limit younger children's ability to construct the dynamic-contact task of cycling in an adult-like form. On the basis of these results, however, the children's response was not "immature". Rather, the results show a task-appropriate adaptation to lower segmental mass and inertia. Copyright 2002 Elsevier Science Ltd.

  8. Subject-specific knee joint geometry improves predictions of medial tibiofemoral contact forces.

    PubMed

    Gerus, Pauline; Sartori, Massimo; Besier, Thor F; Fregly, Benjamin J; Delp, Scott L; Banks, Scott A; Pandy, Marcus G; D'Lima, Darryl D; Lloyd, David G

    2013-11-15

    Estimating tibiofemoral joint contact forces is important for understanding the initiation and progression of knee osteoarthritis. However, tibiofemoral contact force predictions are influenced by many factors including muscle forces and anatomical representations of the knee joint. This study aimed to investigate the influence of subject-specific geometry and knee joint kinematics on the prediction of tibiofemoral contact forces using a calibrated EMG-driven neuromusculoskeletal model of the knee. One participant fitted with an instrumented total knee replacement walked at a self-selected speed while medial and lateral tibiofemoral contact forces, ground reaction forces, whole-body kinematics, and lower-limb muscle activity were simultaneously measured. The combination of generic and subject-specific knee joint geometry and kinematics resulted in four different OpenSim models used to estimate muscle-tendon lengths and moment arms. The subject-specific geometric model was created from CT scans and the subject-specific knee joint kinematics representing the translation of the tibia relative to the femur was obtained from fluoroscopy. The EMG-driven model was calibrated using one walking trial, but with three different cost functions that tracked the knee flexion/extension moments with and without constraint over the estimated joint contact forces. The calibrated models then predicted the medial and lateral tibiofemoral contact forces for five other different walking trials. The use of subject-specific models with minimization of the peak tibiofemoral contact forces improved the accuracy of medial contact forces by 47% and lateral contact forces by 7%, respectively compared with the use of generic musculoskeletal model. © 2013 Published by Elsevier Ltd.

  9. Subject-specific knee joint geometry improves predictions of medial tibiofemoral contact forces

    PubMed Central

    Gerus, Pauline; Sartori, Massimo; Besier, Thor F.; Fregly, Benjamin J.; Delp, Scott L.; Banks, Scott A.; Pandy, Marcus G.; D’Lima, Darryl D.; Lloyd, David G.

    2013-01-01

    Estimating tibiofemoral joint contact forces is important for understanding the initiation and progression of knee osteoarthritis. However, tibiofemoral contact force predictions are influenced by many factors including muscle forces and anatomical representations of the knee joint. This study aimed to investigate the influence of subject-specific geometry and knee joint kinematics on the prediction of tibiofemoral contact forces using a calibrated EMG-driven neuromusculoskeletal model of the knee. One participant fitted with an instrumented total knee replacement walked at a self-selected speed while medial and lateral tibiofemoral contact forces, ground reaction forces, whole-body kinematics, and lower-limb muscle activity were simultaneously measured. The combination of generic and subject-specific knee joint geometry and kinematics resulted in four different OpenSim models used to estimate muscle-tendon lengths and moment arms. The subject-specific geometric model was created from CT scans and the subject-specific knee joint kinematics representing the translation of the tibia relative to the femur was obtained from fluoroscopy. The EMG-driven model was calibrated using one walking trial, but with three different cost functions that tracked the knee flexion/extension moments with and without constraint over the estimated joint contact forces. The calibrated models then predicted the medial and lateral tibiofemoral contact forces for five other different walking trials. The use of subject-specific models with minimization of the peak tibiofemoral contact forces improved the accuracy of medial contact forces by 47% and lateral contact forces by 7%, respectively compared with the use of generic musculoskeletal model. PMID:24074941

  10. The Frictional Force with Respect to the Actual Contact Surface

    NASA Technical Reports Server (NTRS)

    Holm, Ragnar

    1944-01-01

    Hardy's statement that the frictional force is largely adhesion, and to a lesser extent, deformation energy is proved by a simple experiment. The actual contact surface of sliding contacts and hence the friction per unit of contact surface was determined in several cases. It was found for contacts in normal atmosphere to be about one-third t-one-half as high as the macroscopic tearing strength of the softest contact link, while contacts annealed in vacuum and then tested, disclosed frictional forces which are greater than the macroscopic strength.

  11. Functional Evaluation of the Reusable JuniorSTAR® Half-Unit Insulin Pen.

    PubMed

    Klonoff, David; Nayberg, Irina; Rabbone, Ivana; Domenger, Catherine; Stauder, Udo; Oualali, Hamid; Danne, Thomas

    2015-05-01

    The functional performance of the JuniorSTAR(®) (Sanofi, Paris, France) half-unit insulin pen was evaluated through a series of specific objective tests to assess the dose accuracy, pen weight, injection force, and dialing torque. Pens (n = 60) were tested under standard atmospheric conditions with 3 different types of insulins manufactured by Sanofi (insulin glargine, insulin glulisine, and biphasic insulin isophane). The dose accuracy was tested according to the ISO 11608-1:2012 standards. Injection doses of 0.010, 0.155, and 0.300 ml were evaluated. For mean weight evaluation, the pens without the cartridge were weighed on precision balances. The injection force was measured using a texture analyzer and the dialing torque was measured using a torque meter. JuniorSTAR met the ISO 11608-1:2012 criteria for dose accuracy as all the delivered doses were within the predefined limits for all types of insulin tested. The mean weight of the JuniorSTAR pen was 33.4 g (SD = 0.075). The mean injection force was 6.0 N (SD = 0.8), 4.3 N (SD = 0.4), and 5.1 N (SD = 0.6) for insulin glargine, insulin glulisine, and biphasic insulin isophane, respectively. The mean dialing torque was 5.09 Ncm (SD = 0.29) and 5.88 Ncm (SD = 0.53) for setting and correcting a dose, respectively. Together with results from a previously reported usability survey, these results show that the JuniorSTAR reusable, half-unit pen is a lightweight and accurate device for insulin delivery with a dialing torque and injection force suitable for young people with type 1 diabetes. © 2015 Diabetes Technology Society.

  12. Functional Evaluation of the Reusable JuniorSTAR® Half-Unit Insulin Pen

    PubMed Central

    Klonoff, David; Nayberg, Irina; Rabbone, Ivana; Domenger, Catherine; Stauder, Udo; Oualali, Hamid; Danne, Thomas

    2015-01-01

    Background: The functional performance of the JuniorSTAR® (Sanofi, Paris, France) half-unit insulin pen was evaluated through a series of specific objective tests to assess the dose accuracy, pen weight, injection force, and dialing torque. Method: Pens (n = 60) were tested under standard atmospheric conditions with 3 different types of insulins manufactured by Sanofi (insulin glargine, insulin glulisine, and biphasic insulin isophane). The dose accuracy was tested according to the ISO 11608-1:2012 standards. Injection doses of 0.010, 0.155, and 0.300 ml were evaluated. For mean weight evaluation, the pens without the cartridge were weighed on precision balances. The injection force was measured using a texture analyzer and the dialing torque was measured using a torque meter. Results: JuniorSTAR met the ISO 11608-1:2012 criteria for dose accuracy as all the delivered doses were within the predefined limits for all types of insulin tested. The mean weight of the JuniorSTAR pen was 33.4 g (SD = 0.075). The mean injection force was 6.0 N (SD = 0.8), 4.3 N (SD = 0.4), and 5.1 N (SD = 0.6) for insulin glargine, insulin glulisine, and biphasic insulin isophane, respectively. The mean dialing torque was 5.09 Ncm (SD = 0.29) and 5.88 Ncm (SD = 0.53) for setting and correcting a dose, respectively. Conclusions: Together with results from a previously reported usability survey, these results show that the JuniorSTAR reusable, half-unit pen is a lightweight and accurate device for insulin delivery with a dialing torque and injection force suitable for young people with type 1 diabetes. PMID:25633967

  13. Ball to separator contact forces in angular contact ball bearings under thrust and radial loads

    NASA Technical Reports Server (NTRS)

    Nypan, L. J.

    1978-01-01

    Experimental data are reported on ball to cage contact forces in a 110 mm bore ball bearing operating at speeds to 12,000 rpm under radial and thrust loads. Information is also reported on cage to inner race land contact force, cage to inner race land clearance, and cage to shaft speed ratios.

  14. Ball to separator contact forces in angular contact ball bearings under thrust and radial loads

    NASA Technical Reports Server (NTRS)

    Nypan, L. J.

    1977-01-01

    Experimental data is reported on ball to cage contact forces in a 110 mm bore ball bearing operating at speeds to 12000 rpm under radial and thrust loads. Information is also reported on cage to inner race land contact force, cage to inner race land clearance, and cage to shaft speed ratios.

  15. Electromagnetic Contact-Force Sensing Electrophysiological Catheters: How Accurate is the Technology?

    PubMed

    Bourier, Felix; Hessling, Gabriele; Ammar-Busch, Sonia; Kottmaier, Marc; Buiatti, Alessandra; Grebmer, Christian; Telishevska, Marta; Semmler, Verena; Lennerz, Carsten; Schneider, Christine; Kolb, Christof; Deisenhofer, Isabel; Reents, Tilko

    2016-03-01

    Contact-force (CF) sensing catheters are increasingly used in clinical electrophysiological practice due to their efficacy and safety profile. As data about the accuracy of this technology are scarce, we sought to quantify accuracy based on in vitro experiments. A custom-made force sensor was constructed that allowed exact force reference measurements registered via a flexible membrane. A Smarttouch Surround Flow (ST SF) ablation catheter (Biosense Webster, Diamond Bar, CA, USA) was brought in contact with the membrane of the force sensor in order to compare the ST SF force measurements to force sensor reference measurements. ST SF force sensing technology is based on deflection registration between the distal and proximal catheter tip. The experiment was repeated for n = 10 ST SF catheters, which showed no significant difference in accuracy levels. A series of measurements (n = 1200) was carried out for different angles of force acting to the catheter tip (0°/perpendicular contact, 30°, 60°, 90°/parallel contact). The mean absolute differences between reference and ST SF measurements were 1.7 ± 1.8 g (0°), 1.6 ± 1.2 g (30°), 1.4 ± 1.3 g (60°), and 6.6 ± 5.9 g (90°). Measurement accuracy was significantly higher in non-parallel contact when compared with parallel contact (P < 0.01). Catheter force measurements using the ST SF catheters show a high level of accuracy regarding differences to reference measurements and reproducibility. The reduced accuracy in measurements of 90° acting forces (parallel contact) might be clinically important when creating, for example, linear lesions. © 2015 Wiley Periodicals, Inc.

  16. A systematical analysis of in vivo contact forces on virtual catheter tip/tissue surface contact during cardiac mapping and intervention.

    PubMed

    Okumura, Yasuo; Johnson, Susan B; Bunch, T Jared; Henz, Benhur D; O'Brien, Christine J; Packer, Douglas L

    2008-06-01

    While catheter tip/tissue contact has been shown to be an important determinant of ablative lesions in in vitro studies, the impact of contact on the outcomes of mapping and ablation in the intact heart has not been evaluated. Twelve dogs underwent atrial ablation guided by the Senesitrade mark robotic catheter remote control system. After intracardiac ultrasound (ICE) validation of contact force measured by an in-line mechanical sensor, the relationship between contact force and individual lesion formation was established during irrigated-tipped ablation (flow 17 mL/sec) at 15 watts for 30 seconds. Minimal contact by ICE correlated with force of 4.7 +/- 5.8 grams, consistent contact 9.9 +/- 8.6 grams and tissue tenting produced 25.0 +/- 14.0 grams. Conversely, catheter tip/tissue contact by ICE was predicted by contact force. A contact force of 10-20 and > or =20 grams generated full-thickness, larger volume ablative lesions than that created with <10 grams (98 +/- 69 and 89 +/- 70 mm(3) vs 40 +/- 42 mm(3), P < 0.05). Moderate (10 grams) and marked contact (15-20 grams) application produced 1.5 X greater electroanatomic map volumes that were seen with minimal contact (5 grams) (26 +/- 3 cm(3) vs 33 +/- 6, 39 +/- 3 cm(3), P < 0.05). The electroanatomic map/CT merge process was also more distorted when mapping was generated at moderate to marked contact force. This study shows that mapping and ablation using a robotic sheath guidance system are critically dependent on generated force. These findings suggest that ablative lesion size is optimized by the application of 10-20 grams of contact force, although mapping requires lower-force application to avoid image distortions.

  17. Ground reaction force characteristics of Tai Chi push hand.

    PubMed

    Chang, Yao-Ting; Chang, Jia-Hao; Huang, Chen-Fu

    2014-01-01

    Push Hand is an advanced training technique for the Yang-style old frame 108 forms Tai Chi Chuan. It is performed by two practitioners. To clarify how people use forces during Push Hand training, it is important to review the ground reaction force (GRF). Here, we quantify the characteristics of the GRF during Push Hand training. Kinematic data and GRF data from 10 Tai Chi Chuan practitioners (29.9 ± 7.87 years) were synchronously recorded using a three-dimensional motion analysis system (200 frames · s(-1)) and three-dimensional force plates (1000 Hz). The resultant GRF for both feet for the 0%, 50% and 100% phases of attack and defence were compared to body weight using a paired-samples t-test. The differences in the resultant GRF between the 0%, 50% and 100% phases of attack and defence were tested by one-way repeated-measures ANOVA. The significance level was set to 0.05. The total resultant GRF was almost equal to the participant's body weight in push hand. This result was consistent throughout the entire push hand process. Our results revealed that the GRF was comparable to the body weight, implying that practitioners do not push or resist their opponents during the push hand process.

  18. A contact-force regulated photoplethysmography (PPG) platform

    NASA Astrophysics Data System (ADS)

    Sim, Jai Kyoung; Ahn, Bongyoung; Doh, Il

    2018-04-01

    A photoplethysmography (PPG) platform integrated with a miniaturized force-regulator is proposed in this study. Because a thermo-pneumatic type regulator maintains a consistent contact-force between the PPG probe and the measuring site, a consistent and stable PPG signal can be obtained. We designed and fabricated a watch-type PPG platform with an overall size of 35 mm × 19 mm. In the PPG measurement on the radial artery wrist while posture of the wrist is changed to extension, neutral, or flexion, regulation of the contact-force provides consistent PPG measurements for which the variations in the PPG amplitude (PPGA) was 7.2 %. The proposed PPG platform can be applied to biosignal measurements in various fields such as PPG-based ANS monitoring to estimate nociception, sleep apnea syndrome, and psychological stress.

  19. Contact hypersensitivity in hand dermatitis.

    PubMed

    Li, Lin-feng; Wang, Jing

    2002-10-01

    Contact hypersensitivity (CHS) in hand dermatitis (HD) was studied by patch testing (PT) 105 consecutive adult HD patients and 361 cases of suspected non-hand allergic contact dermatitis (NHD). The suspected offending agents were also investigated by a questionnaire. Age and sex distribution was no different between the 2 groups. The total positivity rate of PT in the HD group was much lower than in the control group (46.7% versus 63.2%, p < 0.01, chi2-test). The most common allergens in HD were rubber mix(17.1%), p-phenylenediamine (PPD) (14.3%), fragrance mix (9.5%), nickel (9.5%), colophonium (6.7%) and potassium dichromate (2.9%), while those in the control group, in sequence, were nickel (20.5%), rubber mix (16.9%), PPD (14.1%), fragrance mix (12.7%), potassium dichromate (5.5%) and colophonium (5.0%). The positivity rate to nickel was lower in the HD group (9.5% versus 20.5%, p < 0.05, chi2-test), while there was no significant difference for the other allergens. HD was divided arbitrarily into 5 groups: (1) vesicular form, in which fine papules and vesicles can be detected. 65.7% of the HD was vesicular form and 55.1% of them were PT positive; (2) fissured form, in which dry skin with fine fissures or desquamation is seen. 8.6% of the HD was fissured form and 30% of them were PT positive; (3) hyperkeratotic form, in which the lesions are thick, hyperkeratotic plaques - 6.7% of the HD was this form and no positive reaction was found; (4) hand and foot dermatitis (HFD) - 12.4% of HD was HFD and 53.8% of them were PT positive; (5) pompholyx - 6.7% of the patients had pompholyx and one positive result to nickel was detected. The suspected offending agents were reported in only 13 (12.4%) patients. These results suggest that CHS is less common in HD than in NHD and that other factors, such as skin irritation, may play more of a role in HD. Nickel allergy is less common in HD than in NHD. CHS may play a role in more than 1/2 of vesicular form HD, HFD and in some

  20. Hybrid force-velocity sliding mode control of a prosthetic hand.

    PubMed

    Engeberg, Erik D; Meek, Sanford G; Minor, Mark A

    2008-05-01

    Four different methods of hand prosthesis control are developed and examined experimentally. Open-loop control is shown to offer the least sensitivity when manipulating objects. Force feedback substantially improves upon open-loop control. However, it is shown that the inclusion of velocity and/or position feedback in a hybrid force-velocity control scheme can further improve the functionality of hand prostheses. Experimental results indicate that the sliding mode controller with force, position, and velocity feedback is less prone to unwanted force overshoot when initially grasping objects than the other controllers.

  1. Three-dimensional knee joint contact forces during walking in unilateral transtibial amputees.

    PubMed

    Silverman, Anne K; Neptune, Richard R

    2014-08-22

    Individuals with unilateral transtibial amputations have greater prevalence of osteoarthritis in the intact knee joint relative to the residual leg and non-amputees, but the cause of this greater prevalence is unclear. The purpose of this study was to compare knee joint contact forces and the muscles contributing to these forces between amputees and non-amputees during walking using forward dynamics simulations. We predicted that the intact knee contact forces would be higher than those of the residual leg and non-amputees. In the axial and mediolateral directions, the intact and non-amputee legs had greater peak tibio-femoral contact forces and impulses relative to the residual leg. The peak axial contact force was greater in the intact leg relative to the non-amputee leg, but the stance phase impulse was greater in the non-amputee leg. The vasti and hamstrings muscles in early stance and gastrocnemius in late stance were the largest contributors to the joint contact forces in the non-amputee and intact legs. Through dynamic coupling, the soleus and gluteus medius also had large contributions, even though they do not span the knee joint. In the residual leg, the prosthesis had large contributions to the joint forces, similar to the soleus in the intact and non-amputee legs. These results identify the muscles that contribute to knee joint contact forces during transtibial amputee walking and suggest that the peak knee contact forces may be more important than the knee contact impulses in explaining the high prevalence of intact leg osteoarthritis. Copyright © 2014 Elsevier Ltd. All rights reserved.

  2. Neuromusculoskeletal Model Calibration Significantly Affects Predicted Knee Contact Forces for Walking

    PubMed Central

    Serrancolí, Gil; Kinney, Allison L.; Fregly, Benjamin J.; Font-Llagunes, Josep M.

    2016-01-01

    Though walking impairments are prevalent in society, clinical treatments are often ineffective at restoring lost function. For this reason, researchers have begun to explore the use of patient-specific computational walking models to develop more effective treatments. However, the accuracy with which models can predict internal body forces in muscles and across joints depends on how well relevant model parameter values can be calibrated for the patient. This study investigated how knowledge of internal knee contact forces affects calibration of neuromusculoskeletal model parameter values and subsequent prediction of internal knee contact and leg muscle forces during walking. Model calibration was performed using a novel two-level optimization procedure applied to six normal walking trials from the Fourth Grand Challenge Competition to Predict In Vivo Knee Loads. The outer-level optimization adjusted time-invariant model parameter values to minimize passive muscle forces, reserve actuator moments, and model parameter value changes with (Approach A) and without (Approach B) tracking of experimental knee contact forces. Using the current guess for model parameter values but no knee contact force information, the inner-level optimization predicted time-varying muscle activations that were close to experimental muscle synergy patterns and consistent with the experimental inverse dynamic loads (both approaches). For all the six gait trials, Approach A predicted knee contact forces with high accuracy for both compartments (average correlation coefficient r = 0.99 and root mean square error (RMSE) = 52.6 N medial; average r = 0.95 and RMSE = 56.6 N lateral). In contrast, Approach B overpredicted contact force magnitude for both compartments (average RMSE = 323 N medial and 348 N lateral) and poorly matched contact force shape for the lateral compartment (average r = 0.90 medial and −0.10 lateral). Approach B had statistically higher

  3. High-speed adaptive contact-mode atomic force microscopy imaging with near-minimum-force

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ren, Juan; Zou, Qingze, E-mail: qzzou@rci.rutgers.edu

    In this paper, an adaptive contact-mode imaging approach is proposed to replace the traditional contact-mode imaging by addressing the major concerns in both the speed and the force exerted to the sample. The speed of the traditional contact-mode imaging is largely limited by the need to maintain precision tracking of the sample topography over the entire imaged sample surface, while large image distortion and excessive probe-sample interaction force occur during high-speed imaging. In this work, first, the image distortion caused by the topography tracking error is accounted for in the topography quantification. Second, the quantified sample topography is utilized inmore » a gradient-based optimization method to adjust the cantilever deflection set-point for each scanline closely around the minimal level needed for maintaining stable probe-sample contact, and a data-driven iterative feedforward control that utilizes a prediction of the next-line topography is integrated to the topography feeedback loop to enhance the sample topography tracking. The proposed approach is demonstrated and evaluated through imaging a calibration sample of square pitches at both high speeds (e.g., scan rate of 75 Hz and 130 Hz) and large sizes (e.g., scan size of 30 μm and 80 μm). The experimental results show that compared to the traditional constant-force contact-mode imaging, the imaging speed can be increased by over 30 folds (with the scanning speed at 13 mm/s), and the probe-sample interaction force can be reduced by more than 15% while maintaining the same image quality.« less

  4. High-speed adaptive contact-mode atomic force microscopy imaging with near-minimum-force.

    PubMed

    Ren, Juan; Zou, Qingze

    2014-07-01

    In this paper, an adaptive contact-mode imaging approach is proposed to replace the traditional contact-mode imaging by addressing the major concerns in both the speed and the force exerted to the sample. The speed of the traditional contact-mode imaging is largely limited by the need to maintain precision tracking of the sample topography over the entire imaged sample surface, while large image distortion and excessive probe-sample interaction force occur during high-speed imaging. In this work, first, the image distortion caused by the topography tracking error is accounted for in the topography quantification. Second, the quantified sample topography is utilized in a gradient-based optimization method to adjust the cantilever deflection set-point for each scanline closely around the minimal level needed for maintaining stable probe-sample contact, and a data-driven iterative feedforward control that utilizes a prediction of the next-line topography is integrated to the topography feeedback loop to enhance the sample topography tracking. The proposed approach is demonstrated and evaluated through imaging a calibration sample of square pitches at both high speeds (e.g., scan rate of 75 Hz and 130 Hz) and large sizes (e.g., scan size of 30 μm and 80 μm). The experimental results show that compared to the traditional constant-force contact-mode imaging, the imaging speed can be increased by over 30 folds (with the scanning speed at 13 mm/s), and the probe-sample interaction force can be reduced by more than 15% while maintaining the same image quality.

  5. Diminution of contact angle hysteresis under the influence of an oscillating force.

    PubMed

    Manor, Ofer

    2014-06-17

    We suggest a simple quantitative model for the diminution of contact angle hysteresis under the influence of an oscillatory force invoked by thermal fluctuations, substrate vibrations, acoustic waves, or oscillating electric fields. Employing force balance rather than the usual description of contact angle hysteresis in terms of Gibbs energy, we highlight that a wetting system, such as a sessile drop or a bubble adhered to a solid substrate, appears at long times to be partially or fully independent of contact angle hysteresis and thus independent of static friction forces, as a result of contact line pinning. We verify this theory by studying several well-known experimental observations such as the approach of an arbitrary contact angle toward the Young contact angle and the apparent decrease (or increase) in an advancing (or a receding) contact angle under the influence of an external oscillating force.

  6. Contact force and mechanical loss of multistage cable under tension and bending

    NASA Astrophysics Data System (ADS)

    Ru, Yanyun; Yong, Huadong; Zhou, Youhe

    2016-10-01

    A theoretical model for calculating the stress and strain states of cabling structures with different loadings has been developed in this paper. We solve the problem for the first- and second-stage cable with tensile or bending strain. The contact and friction forces between the strands are presented by two-dimensional contact model. Several theoretical models have been proposed to verify the results when the triplet subjected to the tensile strain, including contact force, contact stresses, and mechanical loss. It is found that loadings will affect the friction force and the mechanical loss of the triplet. The results show that the contact force and mechanical loss are dependent on the twist pitch. A shorter twist pitch can lead to higher contact force, while the trend of mechanical loss with twist pitch is complicated. The mechanical loss may be reduced by adjusting the twist pitch reasonably. The present model provides a simple analysis method to investigate the mechanical behaviors in multistage-structures under different loads.

  7. Knee medial and lateral contact forces in a musculoskeletal model with subject-specific contact point trajectories.

    PubMed

    Zeighami, A; Aissaoui, R; Dumas, R

    2018-03-01

    Contact point (CP) trajectory is a crucial parameter in estimating medial/lateral tibio-femoral contact forces from the musculoskeletal (MSK) models. The objective of the present study was to develop a method to incorporate the subject-specific CP trajectories into the MSK model. Ten healthy subjects performed 45 s treadmill gait trials. The subject-specific CP trajectories were constructed on the tibia and femur as a function of extension-flexion using low-dose bi-plane X-ray images during a quasi-static squat. At each extension-flexion position, the tibia and femur CPs were superimposed in the three directions on the medial side, and in the anterior-posterior and proximal-distal directions on the lateral side to form the five kinematic constraints of the knee joint. The Lagrange multipliers associated to these constraints directly yielded the medial/lateral contact forces. The results from the personalized CP trajectory model were compared against the linear CP trajectory and sphere-on-plane CP trajectory models which were adapted from the commonly used MSK models. Changing the CP trajectory had a remarkable impact on the knee kinematics and changed the medial and lateral contact forces by 1.03 BW and 0.65 BW respectively, in certain subjects. The direction and magnitude of the medial/lateral contact force were highly variable among the subjects and the medial-lateral shift of the CPs alone could not determine the increase/decrease pattern of the contact forces. The suggested kinematic constraints are adaptable to the CP trajectories derived from a variety of joint models and those experimentally measured from the 3D imaging techniques. Copyright © 2018 Elsevier Ltd. All rights reserved.

  8. Hand eczema and occupational contact allergies in healthcare workers with a focus on rubber additives.

    PubMed

    Hamnerius, Nils; Svedman, Cecilia; Bergendorff, Ola; Björk, Jonas; Bruze, Magnus; Engfeldt, Malin; Pontén, Ann

    2018-06-20

    Hand eczema (HE) in healthcare workers (HCWs) is common. Besides wet work, healthcare work also implies exposure to contact allergens. To assess HE and contact allergy related to occupational exposures in HCWs. In a cross-sectional study, 311 HCWs with HE within the preceding 12 months and a control group of 114 HCWs without HE were investigated with the baseline series and a special patch test series based on substances found in the gloves, soaps, alcoholic hand disinfectants and hand creams provided at the hospitals. Contact allergy to rubber additives was significantly more common in HCWs with HE (6%) than in HCWs without HE (1%, P = .02). The corresponding percentages for fragrances were 11% and 3%, respectively (P = .004). Occupational HE was found in 193 of 311 (62%) HCWs. Of these, 22 of 193 (11%) had occupational allergic contact dermatitis, including 17 with glove-related rubber contact allergy. Contact allergy to diphenylguanidine was as common as contact allergy to thiurams. Occupational contact allergy to rubber additives was significantly associated with sick-leave related to HE. Contact allergy to rubber additives in medical gloves is the most common cause of occupational allergic contact dermatitis in HCWs. Aimed patch testing with relevant rubber additives is mandatory when HE in HCWs is investigated. © 2018 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd.

  9. Pinch-force-magnification mechanism of low degree of freedom EMG prosthetic hand for children.

    PubMed

    Ye, Hesong; Sakoda, Shintaro; Jiang, Yinlai; Morishita, Soichiro; Yokoi, Hiroshi

    2015-01-01

    EMG prosthetic hands are being extensively studied for the disabled who need them not only for cosmesis but also for the functions to help them with basic daily activities. However, most EMG prosthetic hands are developed for adults. Since the early use of prosthetic hands is important for the children to accept and adapt to them, we are developing low degrees of freedom (DoF) prosthetic hand that is suitable for children. Due to the limited size of a child's hand, the servo motor which drives the MP joint are small-sized and low-power. Hence, a pinch-force-magnification mechanism is required to improve the pinch force of the EMG prosthetic hand. In this paper we designed a wire-driven mechanism which can magnify pinch force by increasing the length of the MP joint's moment arm. Pinch force measurement experiment validated that the pinch force of the prosthetic hand with the mechanism is more than twice of that of the hand with direct drive.

  10. Vibrotactile grasping force and hand aperture feedback for myoelectric forearm prosthesis users.

    PubMed

    Witteveen, Heidi J B; Rietman, Hans S; Veltink, Peter H

    2015-06-01

    User feedback about grasping force and hand aperture is very important in object handling with myoelectric forearm prostheses but is lacking in current prostheses. Vibrotactile feedback increases the performance of healthy subjects in virtual grasping tasks, but no extensive validation on potential users has been performed. Investigate the performance of upper-limb loss subjects in grasping tasks with vibrotactile stimulation, providing hand aperture, and grasping force feedback. Cross-over trial. A total of 10 subjects with upper-limb loss performed virtual grasping tasks while perceiving vibrotactile feedback. Hand aperture feedback was provided through an array of coin motors and grasping force feedback through a single miniature stimulator or an array of coin motors. Objects with varying sizes and weights had to be grasped by a virtual hand. Percentages correctly applied hand apertures and correct grasping force levels were all higher for the vibrotactile feedback condition compared to the no-feedback condition. With visual feedback, the results were always better compared to the vibrotactile feedback condition. Task durations were comparable for all feedback conditions. Vibrotactile grasping force and hand aperture feedback improves grasping performance of subjects with upper-limb loss. However, it should be investigated whether this is of additional value in daily-life tasks. This study is a first step toward the implementation of sensory vibrotactile feedback for users of myoelectric forearm prostheses. Grasping force feedback is crucial for optimal object handling, and hand aperture feedback is essential for reduction of required visual attention. Grasping performance with feedback is evaluated for the potential users. © The International Society for Prosthetics and Orthotics 2014.

  11. Variation in predicting pantograph-catenary interaction contact forces, numerical simulations and field measurements

    NASA Astrophysics Data System (ADS)

    Nåvik, Petter; Rønnquist, Anders; Stichel, Sebastian

    2017-09-01

    The contact force between the pantograph and the contact wire ensures energy transfer between the two. Too small of a force leads to arching and unstable energy transfer, while too large of a force leads to unnecessary wear on both parts. Thus, obtaining the correct contact force is important for both field measurements and estimates using numerical analysis. The field contact force time series is derived from measurements performed by a self-propelled diagnostic vehicle containing overhead line recording equipment. The measurements are not sampled at the actual contact surface of the interaction but by force transducers beneath the collector strips. Methods exist for obtaining more realistic measurements by adding inertia and aerodynamic effects to the measurements. The variation in predicting the pantograph-catenary interaction contact force is studied in this paper by evaluating the effect of the force sampling location and the effects of signal processing such as filtering. A numerical model validated by field measurements is used to study these effects. First, this paper shows that the numerical model can reproduce a train passage with high accuracy. Second, this study introduces three different options for contact force predictions from numerical simulations. Third, this paper demonstrates that the standard deviation and the maximum and minimum values of the contact force are sensitive to a low-pass filter. For a specific case, an 80 Hz cut-off frequency is compared to a 20 Hz cut-off frequency, as required by EN 50317:2012; the results show an 11% increase in standard deviation, a 36% increase in the maximum value and a 19% decrease in the minimum value.

  12. Role of contact force in ischemic scar-related ventricular tachycardia ablation; optimal force required and impact of left ventricular access route.

    PubMed

    Elsokkari, Ihab; Sapp, John L; Doucette, Steve; Parkash, Ratika; Gray, Christopher J; Gardner, Martin J; Macintyre, Ciorsti; AbdelWahab, Amir M

    2018-06-26

    Contact force-sensing technology has become a widely used addition to catheter ablation procedures. Neither the optimal contact force required to achieve adequate lesion formation in the ventricle, nor the impact of left ventricular access route on contact force has been fully clarified. Consecutive patients (n = 24) with ischemic cardiomyopathy who underwent ablation for scar-related ventricular tachycardia were included in the study. All ablations (n = 25) were performed using irrigated contact force-sensing catheters (Smart Touch, Biosense Webster). Effective lesion formation was defined as electrical unexcitability post ablation at sites which were electrically excitable prior to ablation (unipolar pacing at 10 mA, 2 ms pulse width). We explored the contact force which achieved effective lesion formation and the impact of left ventricular access route (retrograde aortic or transseptal) on the contact force achieved in various segments of the left ventricle. Scar zone was defined as bipolar signal amplitude < 0.5 mV. Among 427 ablation points, effective lesion formation was achieved at 201 points (47.1%). Contact force did not predict effective lesion formation in the overall group. However, within the scar zone, mean contact force ≥ 10 g was significantly associated with effective lesion formation [OR 3.21 (1.43, 7.19) P = 0.005]. In the 12-segment model of the left ventricle, the retrograde approach was associated with higher median contact force in the apical anterior segment (31 vs 19 g; P = 0.045) while transseptal approach had higher median force in the basal inferior segment (25 vs 15 g; P = 0.021). In the 4-segment model, the retrograde approach had higher force in the anterior wall (28 vs 16 g; P = 0.004) while the transseptal approach had higher force in the lateral wall (21 vs 18 g; P = 0.032). There was a trend towards higher force in the inferior wall with the transseptal approach, but this was not

  13. In vivo contact kinematics and contact forces of the knee after total knee arthroplasty during dynamic weight-bearing activities.

    PubMed

    Varadarajan, Kartik M; Moynihan, Angela L; D'Lima, Darryl; Colwell, Clifford W; Li, Guoan

    2008-07-19

    Analysis of polyethylene component wear and implant loosening in total knee arthroplasty (TKA) requires precise knowledge of in vivo articular motion and loading conditions. This study presents a simultaneous in vivo measurement of tibiofemoral articular contact forces and contact kinematics in three TKA patients. These measurements were accomplished via a dual fluoroscopic imaging system and instrumented tibial implants, during dynamic single leg lunge and chair rising-sitting. The measured forces and contact locations were also used to determine mediolateral distribution of axial contact forces. Contact kinematics data showed a medial pivot during flexion of the knee, for all patients in the study. Average axial forces were higher for lunge compared to chair rising-sitting (224% vs. 187% body weight). In this study, we measured peak anteroposterior and mediolateral forces averaging 13.3% BW during lunge and 18.5% BW during chair rising-sitting. Mediolateral distributions of axial contact force were both patient and activity specific. All patients showed equitable medial-lateral loading during lunge but greater loads at the lateral compartment during chair rising-sitting. The results of this study may enable more accurate reproduction of in vivo loads and articular motion patterns in wear simulators and finite element models. This in turn may help advance our understanding of factors limiting longevity of TKA implants, such as aseptic loosening and polyethylene component wear, and enable improved TKA designs.

  14. Quantification of in-contact probe-sample electrostatic forces with dynamic atomic force microscopy

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Balke, Nina Wisinger; Jesse, Stephen; Carmichael, Ben D.

    Here, atomic force microscopy (AFM) methods utilizing resonant mechanical vibrations of cantilevers in contact with a sample surface have shown sensitivities as high as few picometers for detecting surface displacements. Such a high sensitivity is harnessed in several AFM imaging modes. Here, we demonstrate a cantilever-resonance-based method to quantify electrostatic forces on a probe in the probe-sample junction in the presence of a surface potential or when a bias voltage is applied to the AFM probe. We find that the electrostatic forces acting on the probe tip apex can produce signals equivalent to a few pm of surface displacement. Inmore » combination with modeling, the measurements of the force were used to access the strength of the electrical field at the probe tip apex in contact with a sample. We find an evidence that the electric field strength in the junction can reach ca. 1 V nm –1 at a bias voltage of a few volts and is limited by non-ideality of the tip-sample contact. This field is sufficiently strong to significantly influence material states and kinetic processes through charge injection, Maxwell stress, shifts of phase equilibria, and reduction of energy barriers for activated processes. Besides, the results provide a baseline for accounting for the effects of local electrostatic forces in electromechanical AFM measurements as well as offer additional means to probe ionic mobility and field-induced phenomena in solids.« less

  15. Quantification of in-contact probe-sample electrostatic forces with dynamic atomic force microscopy.

    PubMed

    Balke, Nina; Jesse, Stephen; Carmichael, Ben; Okatan, M Baris; Kravchenko, Ivan I; Kalinin, Sergei V; Tselev, Alexander

    2017-01-04

    Atomic force microscopy (AFM) methods utilizing resonant mechanical vibrations of cantilevers in contact with a sample surface have shown sensitivities as high as few picometers for detecting surface displacements. Such a high sensitivity is harnessed in several AFM imaging modes. Here, we demonstrate a cantilever-resonance-based method to quantify electrostatic forces on a probe in the probe-sample junction in the presence of a surface potential or when a bias voltage is applied to the AFM probe. We find that the electrostatic forces acting on the probe tip apex can produce signals equivalent to a few pm of surface displacement. In combination with modeling, the measurements of the force were used to access the strength of the electrical field at the probe tip apex in contact with a sample. We find an evidence that the electric field strength in the junction can reach ca. 1 V nm -1 at a bias voltage of a few volts and is limited by non-ideality of the tip-sample contact. This field is sufficiently strong to significantly influence material states and kinetic processes through charge injection, Maxwell stress, shifts of phase equilibria, and reduction of energy barriers for activated processes. Besides, the results provide a baseline for accounting for the effects of local electrostatic forces in electromechanical AFM measurements as well as offer additional means to probe ionic mobility and field-induced phenomena in solids.

  16. Quantification of In-Contact Probe-Sample Electrostatic Forces with Dynamic Atomic Force Microscopy.

    PubMed

    Balke, Nina; Jesse, Stephen; Carmichael, Ben; Okatan, M; Kravchenko, Ivan; Kalinin, Sergei; Tselev, Alexander

    2016-12-13

    Atomic Force Microscopy (AFM) methods utilizing resonant mechanical vibrations of cantilevers in contact with a sample surface have shown sensitivities as high as few picometers for detecting surface displacements. Such a high sensitivity is harnessed in several AFM imaging modes. Here, we demonstrate a cantilever-resonance-based method to quantify electrostatic forces on a probe in the probe-sample junction in the presence of a surface potential or when a bias voltage is applied to the AFM probe. We find that the electrostatic forces acting on the probe tip apex can produce signals equivalent to a few pm of surface displacement. In combination with modeling, the measurements of the force were used to access the strength of the electrical field at the probe tip apex in contact with a sample. We find an evidence that the electric field strength in the junction can reach ca. 1 V/nm at a bias voltage of a few volts and is limited by non-ideality of the tip-sample contact. This field is sufficiently strong to significantly influence material states and kinetic processes through charge injection, Maxwell stress, shifts of phase equilibria, and reduction of energy barriers for activated processes. Besides, the results provide a baseline for accounting for the effects of local electrostatic forces in electromechanical AFM measurements as well as offer additional means to probe ionic mobility and field-induced phenomena in solids. Copyright 2016 IOP Publishing Ltd.

  17. Quantification of in-contact probe-sample electrostatic forces with dynamic atomic force microscopy

    DOE PAGES

    Balke, Nina Wisinger; Jesse, Stephen; Carmichael, Ben D.; ...

    2017-01-04

    Here, atomic force microscopy (AFM) methods utilizing resonant mechanical vibrations of cantilevers in contact with a sample surface have shown sensitivities as high as few picometers for detecting surface displacements. Such a high sensitivity is harnessed in several AFM imaging modes. Here, we demonstrate a cantilever-resonance-based method to quantify electrostatic forces on a probe in the probe-sample junction in the presence of a surface potential or when a bias voltage is applied to the AFM probe. We find that the electrostatic forces acting on the probe tip apex can produce signals equivalent to a few pm of surface displacement. Inmore » combination with modeling, the measurements of the force were used to access the strength of the electrical field at the probe tip apex in contact with a sample. We find an evidence that the electric field strength in the junction can reach ca. 1 V nm –1 at a bias voltage of a few volts and is limited by non-ideality of the tip-sample contact. This field is sufficiently strong to significantly influence material states and kinetic processes through charge injection, Maxwell stress, shifts of phase equilibria, and reduction of energy barriers for activated processes. Besides, the results provide a baseline for accounting for the effects of local electrostatic forces in electromechanical AFM measurements as well as offer additional means to probe ionic mobility and field-induced phenomena in solids.« less

  18. Influence of altered gait patterns on the hip joint contact forces.

    PubMed

    Carriero, Alessandra; Zavatsky, Amy; Stebbins, Julie; Theologis, Tim; Lenaerts, Gerlinde; Jonkers, Ilse; Shefelbine, Sandra J

    2014-01-01

    Children who exhibit gait deviations often present a range of bone deformities, particularly at the proximal femur. Altered gait may affect bone growth and lead to deformities by exerting abnormal stresses on the developing bones. The objective of this study was to calculate variations in the hip joint contact forces with different gait patterns. Muscle and hip joint contact forces of four children with different walking characteristics were calculated using an inverse dynamic analysis and a static optimisation algorithm. Kinematic and kinetic analyses were based on a generic musculoskeletal model scaled down to accommodate the dimensions of each child. Results showed that for all the children with altered gaits both the orientation and magnitude of the hip joint contact force deviated from normal. The child with the most severe gait deviations had hip joint contact forces 30% greater than normal, most likely due to the increase in muscle forces required to sustain his crouched stance. Determining how altered gait affects joint loading may help in planning treatment strategies to preserve correct loading on the bone from a young age.

  19. Identification of Object Dynamics Using Hand Worn Motion and Force Sensors

    PubMed Central

    Kortier, Henk G.; Schepers, H. Martin; Veltink, Peter H.

    2016-01-01

    Emerging microelectromechanical system (MEMS)-based sensors become much more applicable for on-body measurement purposes lately. Especially, the development of a finger tip-sized tri-axial force sensor gives the opportunity to measure interaction forces between the human hand and environmental objects. We have developed a new prototype device that allows simultaneous 3D force and movement measurements at the finger and thumb tips. The combination of interaction forces and movements makes it possible to identify the dynamical characteristics of the object being handled by the hand. With this device attached to the hand, a subject manipulated mass and spring objects under varying conditions. We were able to identify and estimate the weight of two physical mass objects (0.44 kg: 29.3%±18.9% and 0.28 kg: 19.7%±10.6%) and the spring constant of a physical spring object (16.3%±12.6%). The system is a first attempt to quantify the interactions of the hand with the environment and has many potential applications in rehabilitation, ergonomics and sports. PMID:27898040

  20. Study of role of meniscus and viscous forces during liquid-mediated contacts separation

    NASA Astrophysics Data System (ADS)

    Dhital, Prabin

    Menisci may form between two solid surfaces with the presence of an ultra-thin liquid film. When the separation operation is needed, meniscus and viscous forces contribute to an adhesion leading stiction, high friction, possibly high wear and potential failure of the contact systems, for instance microdevices, magnetic head disks and diesel fuel injectors. The situation may become more pronounced when the contacting surfaces are ultra-smooth and the normal load is small. Various design parameters, such as contact angle, initial separation height, surface tension and liquid viscosity, have been investigated during liquid-mediated contact separation. However, how the involved forces will change roles for various liquid is of interest and is necessary to be studied. In this study, meniscus and viscous forces due to water and liquid lubricants during separation of two flat surfaces are studied. Previously established mathematical model for meniscus and viscous forces during flat on flat contact separation is simulated. The effect of meniscus and viscous force on critical meniscus area at which those forces change role is studied with different liquid properties for flat on flat contact surfaces. The roles of the involved forces at various meniscus areas are analyzed. Experiments are done in concerns to studying the effect of surface roughness on contact angle. The impact of liquid properties, initial separation heights and contact angle on critical meniscus area for different liquid properties are analyzed. The study provides a fundamental understanding of the forces of the separation process and its value for the design of interfaces. The effect of surface roughness and liquid properties on contact angle are studied.

  1. Anterior cruciate ligament reconstruction and cartilage contact forces--A 3D computational simulation.

    PubMed

    Wang, Lianxin; Lin, Lin; Feng, Yong; Fernandes, Tiago Lazzaretti; Asnis, Peter; Hosseini, Ali; Li, Guoan

    2015-12-01

    Clinical outcome studies showed a high incidence of knee osteoarthritis after anterior cruciate ligament reconstruction. Abnormal joint kinematics and loading conditions were assumed as risking factors. However, little is known on cartilage contact forces after the surgery. A validated computational model was used to simulate anatomic and transtibial single-bundle anterior cruciate ligament reconstructions. Two graft fixation angles (0° and 30°) were simulated for each reconstruction. Biomechanics of the knee was investigated in intact, anterior cruciate ligament deficient and reconstructed conditions when the knee was subjected to 134 N anterior load and 400 N quadriceps load at 0°, 30°, 60° and 90° of flexion. The tibial translation and rotation, graft forces, medial and lateral contact forces were calculated. When the graft was fixed at 0°, the anatomic reconstruction resulted in slightly larger lateral contact force at 0° compared to the intact knee while the transtibial technique led to higher contact force at both 0° and 30° under the muscle load. When graft was fixed at 30°, the anatomic reconstruction overstrained the knee at 0° with larger contact forces, while the transtibial technique resulted in slightly larger contact forces at 30°. This study suggests that neither the anatomic nor the transtibial reconstruction can consistently restore normal knee biomechanics at different flexion angles. The anatomic reconstruction may better restore anteroposterior stability and contact force with the graft fixed at 0°. The transtibial technique may better restore knee anteroposterior stability and articular contact force with the graft fixed at 30° of flexion. Copyright © 2015 Elsevier Ltd. All rights reserved.

  2. Design and testing of an innovative measurement device for tyre-road contact forces

    NASA Astrophysics Data System (ADS)

    Cheli, F.; Braghin, F.; Brusarosco, M.; Mancosu, F.; Sabbioni, E.

    2011-08-01

    The measurement of tyre-road contact forces is the first step towards the development of new control systems for improving vehicle safety and performances. Tyre-road contact forces measurement systems are very expensive and significantly modify the unsprung masses of the vehicle as well as the rotational inertia of the tyres. Thus, vehicle dynamics results are significantly affected. As a consequence, the measured contact forces do not correspond to the contact forces under real working conditions. A new low-cost tyre-road contact forces measurement system is proposed in this paper that can be applied to passenger cars. Its working principle is based on the measurement of three deformations of the wheel rim through strain gauges. The tyre-rim assembly is thus turned into a sensor for tyre-road contact forces. The influence of the strain gauges position onto the measurement results has been assessed through finite element simulations and experimental tests. It has been proven that, for a large variety of rims, the strain gauge position that leads to high signal-to-noise ratios is almost the same. A dynamic calibration procedure has been developed in order to allow the reconstruction of contact force and torque components once per wheel turn. The capability of the developed device to correctly estimate tyre-road contact forces has been assessed, in a first stage, through indoor laboratory experimental test on an MTS Flat-Trac ® testing machine. Results show that the implemented measuring system allows to reconstruct contact forces once per wheel turn with a precision that is comparable to that of existing high-cost measurement systems. Subsequently, outdoor tests with a vehicle having all four wheels equipped with the developed measuring device have also been performed. Reliability of the measurements provided by the developed sensor has been assessed by comparing the global measured longitudinal/lateral forces and the product of the measured longitudinal

  3. Comprehension of handwriting development: Pen-grip kinetics in handwriting tasks and its relation to fine motor skills among school-age children.

    PubMed

    Lin, Yu-Chen; Chao, Yen-Li; Wu, Shyi-Kuen; Lin, Ho-Hsio; Hsu, Chieh-Hsiang; Hsu, Hsiao-Man; Kuo, Li-Chieh

    2017-10-01

    Numerous tools have been developed to evaluate handwriting performances by analysing written products. However, few studies have directly investigated kinetic performances of digits when holding a pen. This study thus attempts to investigate pen-grip kinetics during writing tasks of school-age children and explore the relationship between the kinetic factors and fine motor skills. This study recruited 181 children aged from 5 to 12 years old and investigated the effects of age on handwriting kinetics and the relationship between these and fine motor skills. The forces applied from the digits and pen-tip were measured during writing tasks via a force acquisition pen, and the children's fine motor performances were also evaluated. The results indicate that peak force and average force might not be direct indicators of handwriting performance for normally developing children at this age. Younger children showed larger force variation and lower adjustment frequency during writing, which might indicate they had poorer force control than the older children. Force control when handling a pen is significantly correlated with fine motor performance, especially in relation to the manual dexterity. A novel system is proposed for analysing school-age children's force control while handwriting. We observed the development of force control in relation to pen grip among the children with different ages in this study. The findings suggested that manipulation skill may be crucial when children are establishing their handwriting capabilities. © 2017 Occupational Therapy Australia.

  4. From tunneling to point contact: Correlation between forces and current

    NASA Astrophysics Data System (ADS)

    Sun, Yan; Mortensen, Henrik; Schär, Sacha; Lucier, Anne-Sophie; Miyahara, Yoichi; Grütter, Peter; Hofer, Werner

    2005-05-01

    We used a combined ultrahigh vacuum scanning tunneling and atomic force microscope (STM/AFM) to study W tip-Au(111) sample interactions in the regimes from weak coupling to strong interaction and simultaneously measure current changes from picoamperes to microamperes. Close correlation between conductance and interaction forces in a STM configuration was observed. In particular, the electrical and mechanical points of contact are determined based on the observed barrier collapse and adhesive bond formation, respectively. These points of contact, as defined by force and current measurements, coincide within measurement error. Ab initio calculations of the current as a function of distance in the tunneling regime is in quantitative agreement with experimental results. The obtained results are discussed in the context of dissipation in noncontact AFM as well as electrical contact formation in molecular electronics.

  5. Efficacy of a Hand Regimen in Skin Barrier Protection in Individuals With Occupational Irritant Contact Dermatitis.

    PubMed

    Jordan, Laura

    2016-11-01

    Occupational irritant contact dermatitis (OICD) is a dif cult and hard to manage condition. It occurs more frequently in certain occupations where contact with harsh chemicals, use of alcohol-based disinfectants, and frequent hand washing heightens the risk. Treatment for OICD includes patient education in addition to physical, topical, and systemic therapies. To review the pathogenesis and treatment options for OICD and evaluate the ef cacy of a selective skin-care regimen involv- ing a hand protectant cream alone as well as combined with a repair cream and speci c cleanser. A single-center open study was performed comprising 42 healthy male and female adult volunteers prone to occupational irritant contact dermatitis due to frequent wet work or contact with detergents. Between day 0 and day 7, subjects applied a hand protectant cream as needed on both hands (at least twice daily). On days 7 to 14, subjects applied a hand protectant cream and cleanser as needed on both hands (at least twice daily) as well as a repair cream each evening. A diary log was given to each volunteer for application control and for a subjective evaluation of daily tolerability. In these subjects prone to occupational irritant contact dermatitis, the hand protectant cream applied during the initial 7-day period was effective in restoring the damaged skin barrier and improving the stratum corneum hydration. A regimen that combined the hand protectant and repair creams with a speci c cleanser during a further 7-day period allowed contin- ued improvement of skin hydration and additional clinical bene ts while respecting the skin barrier function. The results of this study support the use of a 3-step approach for patients who are at risk of repeated exposure to external irritants. J Drugs Dermatol. 2016;15(suppl 11):s81-85..

  6. Force-independent distribution of correlated neural inputs to hand muscles during three-digit grasping.

    PubMed

    Poston, Brach; Danna-Dos Santos, Alessander; Jesunathadas, Mark; Hamm, Thomas M; Santello, Marco

    2010-08-01

    The ability to modulate digit forces during grasping relies on the coordination of multiple hand muscles. Because many muscles innervate each digit, the CNS can potentially choose from a large number of muscle coordination patterns to generate a given digit force. Studies of single-digit force production tasks have revealed that the electromyographic (EMG) activity scales uniformly across all muscles as a function of digit force. However, the extent to which this finding applies to the coordination of forces across multiple digits is unknown. We addressed this question by asking subjects (n = 8) to exert isometric forces using a three-digit grip (thumb, index, and middle fingers) that allowed for the quantification of hand muscle coordination within and across digits as a function of grasp force (5, 20, 40, 60, and 80% maximal voluntary force). We recorded EMG from 12 muscles (6 extrinsic and 6 intrinsic) of the three digits. Hand muscle coordination patterns were quantified in the amplitude and frequency domains (EMG-EMG coherence). EMG amplitude scaled uniformly across all hand muscles as a function of grasp force (muscle x force interaction: P = 0.997; cosines of angle between muscle activation pattern vector pairs: 0.897-0.997). Similarly, EMG-EMG coherence was not significantly affected by force (P = 0.324). However, coherence was stronger across extrinsic than that across intrinsic muscle pairs (P = 0.0039). These findings indicate that the distribution of neural drive to multiple hand muscles is force independent and may reflect the anatomical properties or functional roles of hand muscle groups.

  7. Finger-Shaped GelForce: Sensor for Measuring Surface Traction Fields for Robotic Hand.

    PubMed

    Sato, K; Kamiyama, K; Kawakami, N; Tachi, S

    2010-01-01

    It is believed that the use of haptic sensors to measure the magnitude, direction, and distribution of a force will enable a robotic hand to perform dexterous operations. Therefore, we develop a new type of finger-shaped haptic sensor using GelForce technology. GelForce is a vision-based sensor that can be used to measure the distribution of force vectors, or surface traction fields. The simple structure of the GelForce enables us to develop a compact finger-shaped GelForce for the robotic hand. GelForce that is developed on the basis of an elastic theory can be used to calculate surface traction fields using a conversion equation. However, this conversion equation cannot be analytically solved when the elastic body of the sensor has a complicated shape such as the shape of a finger. Therefore, we propose an observational method and construct a prototype of the finger-shaped GelForce. By using this prototype, we evaluate the basic performance of the finger-shaped GelForce. Then, we conduct a field test by performing grasping operations using a robotic hand. The results of this test show that using the observational method, the finger-shaped GelForce can be successfully used in a robotic hand.

  8. Controlling direct contact force for wet adhesion with different wedged film stabilities

    NASA Astrophysics Data System (ADS)

    Li, Meng; Xie, Jun; Shi, Liping; Huang, Wei; Wang, Xiaolei

    2018-04-01

    In solid–liquid–solid adhesive systems, wedged films often feature instability at microscopic thicknesses, which can easily disrupt the adhesive strength of their remarkable direct contact force. Here, sodium dodecyl sulfate (SDS) was employed to tune the instability of adhesion in wedged glass–water–rubber films, achieving controllable direct contact. Experimental results showed that the supplement of SDS molecules significantly weakened the direct contact force for wet adhesion and eliminated it at high concentrations. The underlying reason was suggested to be the repulsive double-layer force caused by SDS molecules, which lowers the instability of the wedged film and balances the preload, disrupting the direct contact in wet adhesion.

  9. Vertical force and torque analysis during mechanical preparation of extracted teeth using hand ProTaper instruments.

    PubMed

    Glavičić, Snježana; Anić, Ivica; Braut, Alen; Miletić, Ivana; Borčić, Josipa

    2011-08-01

    The purpose was to measure and analyse the vertical force and torque developed in the wider and narrower root canals during hand ProTaper instrumentation. Twenty human incisors were divided in two groups. Upper incisors were experimental model for the wide, while the lower incisors for the narrow root canals. Measurements of the force and torque were done by a device constructed for this purpose. Differences between the groups were statistically analysed by Mann-Whitney U-test with the significance level set to P<0.05. Vertical force in the upper incisors ranged 0.25-2.58 N, while in the lower incisors 0.38-6.94 N. Measured torque in the upper incisors ranged 0.53-12.03 Nmm, while in the lower incisor ranged 0.94-10.0 Nmm. Vertical force and torque were higher in the root canals of smaller diameter. The increase in the contact surface results in increase of the vertical force and torque as well in both narrower and wider root canals. © 2010 The Authors. Australian Endodontic Journal © 2010 Australian Society of Endodontology.

  10. Results of telerobotic hand controller study using force information and rate control

    NASA Technical Reports Server (NTRS)

    Willshire, Kelli F.; Harrison, F. W.; Hogge, Edward F.; Williams, Robert L.; Soloway, Donald

    1992-01-01

    To increase quantified information about the effectiveness and subjective workload of force information relayed through manipulator input control devices, a space related task was performed by eight subjects with kinesthetic force feedback and/or local force accommodation through three different input control devices (i.e., hand controllers) operating in rate control mode. Task completion time, manipulator work, and subjective responses were measured. Results indicated a difference among the hand controllers. For the Honeywell six degree-of-freedom hand controller, the overall task completion times were shortest, the amount of work exerted was the least, and was the most preferred by test subjects. Neither force accommodation with or without reflection resulted in shorter task completion times or reduced work although those conditions were better than no force information for some aspects. Comparisons of results from previous studies are discussed.

  11. Walking patterns and hip contact forces in patients with hip dysplasia.

    PubMed

    Skalshøi, Ole; Iversen, Christian Hauskov; Nielsen, Dennis Brandborg; Jacobsen, Julie; Mechlenburg, Inger; Søballe, Kjeld; Sørensen, Henrik

    2015-10-01

    Several studies have investigated walking characteristics in hip dysplasia patients, but so far none have described all hip rotational degrees of freedom during the whole gait cycle. This descriptive study reports 3D joint angles and torques, and furthermore extends previous studies with muscle and joint contact forces in 32 hip dysplasia patients and 32 matching controls. 3D motion capture data from walking and standing trials were analysed. Hip, knee, ankle and pelvis angles were calculated with inverse kinematics for both standing and walking trials. Hip, knee and ankle torques were calculated with inverse dynamics, while hip muscle and joint contact forces were calculated with static optimisation for the walking trials. No differences were found between the two groups while standing. While walking, patients showed decreased hip extension, increased ankle pronation and increased hip abduction and external rotation torques. Furthermore, hip muscle forces were generally lower and shifted to more posteriorly situated muscles, while the hip joint contact force was lower and directed more superiorly. During walking, patients showed lower and more superiorly directed hip joint contact force, which might alleviate pain from an antero-superiorly degenerated joint. Copyright © 2015 Elsevier B.V. All rights reserved.

  12. Mechanical impedance and absorbed power of hand-arm under x(h)-axis vibration and role of hand forces and posture.

    PubMed

    Aldien, Yasser; Marcotte, Pierre; Rakheja, Subhash; Boileau, Paul-Emile

    2005-07-01

    The biodynamic responses of the hand-arm system under x(h)-axis vibration are investigated in terms of the driving point mechanical impedance (DPMI) and absorbed power in a laboratory study. For this purpose, seven healthy male subjects are exposed to two levels of random vibration in the 8-1,000 Hz frequency range, using three instrumented cylindrical handles of different diameters (30, 40 and 50 mm), and different combinations of grip (10, 30 and 50 N) and push (0, 25 and 50 N) forces. The experiments involve grasping the handle while adopting two different postures, involving elbow flexion of 90 degrees and 180 degrees, with wrist in the neutral position for both postures. The analyses of the results revealed peak DPMI magnitude and absorbed power responses near 25 Hz and 150 Hz, for majority of the test conditions considered. The frequency corresponding to the peak response increased with increasing hand forces. Unlike the absorbed power, the DPMI response was mostly observed to be insensitive to variations in the excitation magnitude. The handle diameter revealed obvious effects on the DPMI magnitude, specifically at frequencies above 250 Hz, which was not evident in the absorbed power due to relatively low velocity at higher frequencies. The influence of hand forces was also evident on the DPMI magnitude response particularly at frequencies. above 100 Hz, while the effect of hand-arm posture on the DPMI magnitude was nearly negligible. The magnitude of power absorbed within the hand and arm was observed to be strongly dependent upon the excitation level over the entire frequency range, while the influence of hand-arm posture on the total absorbed power was observed to be important. The effect of variations in the hand forces on the absorbed power was relatively small for the bent elbow posture, while an increase in either the grip or the push force coupled with the extended arm posture resulted in considerably higher energy absorption. The results suggested

  13. Prediction of Knee Joint Contact Forces From External Measures Using Principal Component Prediction and Reconstruction.

    PubMed

    Saliba, Christopher M; Clouthier, Allison L; Brandon, Scott C E; Rainbow, Michael J; Deluzio, Kevin J

    2018-05-29

    Abnormal loading of the knee joint contributes to the pathogenesis of knee osteoarthritis. Gait retraining is a non-invasive intervention that aims to reduce knee loads by providing audible, visual, or haptic feedback of gait parameters. The computational expense of joint contact force prediction has limited real-time feedback to surrogate measures of the contact force, such as the knee adduction moment. We developed a method to predict knee joint contact forces using motion analysis and a statistical regression model that can be implemented in near real-time. Gait waveform variables were deconstructed using principal component analysis and a linear regression was used to predict the principal component scores of the contact force waveforms. Knee joint contact force waveforms were reconstructed using the predicted scores. We tested our method using a heterogenous population of asymptomatic controls and subjects with knee osteoarthritis. The reconstructed contact force waveforms had mean (SD) RMS differences of 0.17 (0.05) bodyweight compared to the contact forces predicted by a musculoskeletal model. Our method successfully predicted subject-specific shape features of contact force waveforms and is a potentially powerful tool in biofeedback and clinical gait analysis.

  14. Improving the contact resistance at low force using gold coated carbon nanotube surfaces

    NASA Astrophysics Data System (ADS)

    McBride, J. W.; Yunus, E. M.; Spearing, S. M.

    2010-04-01

    Investigations to determine the electrical contact performance under repeated cycles at low force conditions for carbon-nanotube (CNT) coated surfaces were performed. The surfaces under investigation consisted of multi-walled CNT synthesized on a silicon substrate and coated with a gold film. These planar surfaces were mounted on the tip of a PZT actuator and contacted with a plated Au hemispherical probe. The dynamic applied force used was 1 mN. The contact resistance (Rc) of these surfaces was investigated with the applied force and with repeated loading cycles performed for stability testing. The surfaces were compared with a reference Au-Au contact under the same experimental conditions. This initial study shows the potential for the application of gold coated CNT surfaces as an interface in low force electrical contact applications.

  15. Physician-applied contact pressure and table force response during unilateral thoracic manipulation.

    PubMed

    Kirstukas, S J; Backman, J A

    1999-06-01

    To measure the applied loading to human subjects during the reinforced unilateral thoracic manipulation. Biomechanical descriptive study. The National College of Chiropractic Clinical Biomechanical Laboratory in Lombard, Illinois. Seven men, ages 24 to 47, with no positive responses regarding muscle relaxants or thoracic spinal fractures, surgeries, or pain. We measured the contact pressure distribution at the physician-subject contact region and extracted three biomechanical parameters. From the measured time-dependent support force magnitudes, we extracted five additional biomechanical parameters. In the application of the reinforced unilateral manipulative treatment, the physician establishes contact and applies a near-static preload force of 250 to 350 N. The dynamic portion of the typical thrust is preceded by a 22% decrease in force magnitude, and the peak thrust magnitude is linearly related to the preload force magnitude. We estimate that the peak contact pressure beneath the chiropractor's pisiform can exceed 1000 kPa, with the highest pressures transmitted over areas as small as 3.6 cm2, depending on manipulative style. This work represents the first attempt at performing simultaneous measurements of the physician-applied loading and table force response and measuring the contact pressure distribution at the physician-patient contact region during chiropractic manipulation. This type of work will lead to a better understanding of the relationship between the dynamic physician-applied normal forces and the resulting load response at the table and gives us additional outcome parameters to quantify manipulative technique.

  16. Lenz's Law: Feel the Force.

    ERIC Educational Resources Information Center

    Sawicki, Charles A.

    1996-01-01

    Describes a simple, inexpensive system that allows students to have hands-on contact with simple experiments involving forces generated by induced currents. Discusses the use of a dynamic force sensor in making quantitative measurements of the forces generated. (JRH)

  17. Precise measurements of droplet-droplet contact forces in quasi-2D emulsions

    NASA Astrophysics Data System (ADS)

    Lowensohn, Janna; Orellana, Carlos; Weeks, Eric

    2015-03-01

    We use microscopy to visualize a quasi-2D oil-in-water emulsion confined between two parallel slides. We then use the droplet shapes to infer the forces they exert on each other. To calibrate our force law, we set up an emulsion in a tilted sample chamber so that the droplets feel a known buoyant force. By correlating radius of the droplet and length of contacts with the buoyant forces, we validate our empirical force law. We improve upon prior work in our lab by using a high-resolution camera to image each droplet multiple times, thus providing sub-pixel resolution and reducing the noise. Our new technique identifies contact forces with only a 1% uncertainty, five times better than prior work. We demonstrate the utility of our technique by examining the normal modes of the droplet contact network in our samples.

  18. Shoulder model validation and joint contact forces during wheelchair activities.

    PubMed

    Morrow, Melissa M B; Kaufman, Kenton R; An, Kai-Nan

    2010-09-17

    Chronic shoulder impingement is a common problem for manual wheelchair users. The loading associated with performing manual wheelchair activities of daily living is substantial and often at a high frequency. Musculoskeletal modeling and optimization techniques can be used to estimate the joint contact forces occurring at the shoulder to assess the soft tissue loading during an activity and to possibly identify activities and strategies that place manual wheelchair users at risk for shoulder injuries. The purpose of this study was to validate an upper extremity musculoskeletal model and apply the model to wheelchair activities for analysis of the estimated joint contact forces. Upper extremity kinematics and handrim wheelchair kinetics were measured over three conditions: level propulsion, ramp propulsion, and a weight relief lift. The experimental data were used as input to a subject-specific musculoskeletal model utilizing optimization to predict joint contact forces of the shoulder during all conditions. The model was validated using a mean absolute error calculation. Model results confirmed that ramp propulsion and weight relief lifts place the shoulder under significantly higher joint contact loading than level propulsion. In addition, they exhibit large superior contact forces that could contribute to impingement. This study highlights the potential impingement risk associated with both the ramp and weight relief lift activities. Level propulsion was shown to have a low relative risk of causing injury, but with consideration of the frequency with which propulsion is performed, this observation is not conclusive.

  19. Dual-joint modeling for estimation of total knee replacement contact forces during locomotion.

    PubMed

    Hast, Michael W; Piazza, Stephen J

    2013-02-01

    Model-based estimation of in vivo contact forces arising between components of a total knee replacement is challenging because such forces depend upon accurate modeling of muscles, tendons, ligaments, contact, and multibody dynamics. Here we describe an approach to solving this problem with results that are tested by comparison to knee loads measured in vivo for a single subject and made available through the Grand Challenge Competition to Predict in vivo Tibiofemoral Loads. The approach makes use of a "dual-joint" paradigm in which the knee joint is alternately represented by (1) a ball-joint knee for inverse dynamic computation of required muscle controls and (2) a 12 degree-of-freedom (DOF) knee with elastic foundation contact at the tibiofemoral and patellofemoral articulations for forward dynamic integration. Measured external forces and kinematics were applied as a feedback controller and static optimization attempted to track measured knee flexion angles and electromyographic (EMG) activity. The resulting simulations showed excellent tracking of knee flexion (average RMS error of 2.53 deg) and EMG (muscle activations within ±10% envelopes of normalized measured EMG signals). Simulated tibiofemoral contact forces agreed qualitatively with measured contact forces, but their RMS errors were approximately 25% of the peak measured values. These results demonstrate the potential of a dual-joint modeling approach to predict joint contact forces from kinesiological data measured in the motion laboratory. It is anticipated that errors in the estimation of contact force will be reduced as more accurate subject-specific models of muscles and other soft tissues are developed.

  20. Concurrent prediction of ground reaction forces and moments and tibiofemoral contact forces during walking using musculoskeletal modelling.

    PubMed

    Peng, Yinghu; Zhang, Zhifeng; Gao, Yongchang; Chen, Zhenxian; Xin, Hua; Zhang, Qida; Fan, Xunjian; Jin, Zhongmin

    2018-02-01

    Ground reaction forces and moments (GRFs and GRMs) measured from force plates in a gait laboratory are usually used as the input conditions to predict the knee joint forces and moments via musculoskeletal (MSK) multibody dynamics (MBD) model. However, the measurements of the GRFs and GRMs data rely on force plates and sometimes are limited by the difficulty in some patient's gait patterns (e.g. treadmill gait). In addition, the force plate calibration error may influence the prediction accuracy of the MSK model. In this study, a prediction method of the GRFs and GRMs based on elastic contact element was integrated into a subject-specific MSK MBD modelling framework of total knee arthroplasty (TKA), and the GRFs and GRMs and knee contact forces (KCFs) during walking were predicted simultaneously with reasonable accuracy. The ground reaction forces and moments were predicted with an average root mean square errors (RMSEs) of 0.021 body weight (BW), 0.014 BW and 0.089 BW in the antero-posterior, medio-lateral and vertical directions and 0.005 BW•body height (BH), 0.011 BW•BH, 0.004 BW•BH in the sagittal, frontal and transverse planes, respectively. Meanwhile, the medial, lateral and total tibiofemoral (TF) contact forces were predicted by the developed MSK model with RMSEs of 0.025-0.032 BW, 0.018-0.022 BW, and 0.089-0.132 BW, respectively. The accuracy of the predicted medial TF contact force was improved by 12% using the present method. The proposed method can extend the application of the MSK model of TKA and is valuable for understanding the in vivo knee biomechanics and tribological conditions without the force plate data. Copyright © 2017 IPEM. Published by Elsevier Ltd. All rights reserved.

  1. Stability of hand force production. I. Hand level control variables and multifinger synergies.

    PubMed

    Reschechtko, Sasha; Latash, Mark L

    2017-12-01

    We combined the theory of neural control of movement with referent coordinates and the uncontrolled manifold hypothesis to explore synergies stabilizing the hand action in accurate four-finger pressing tasks. In particular, we tested a hypothesis on two classes of synergies, those among the four fingers and those within a pair of control variables, stabilizing hand action under visual feedback and disappearing without visual feedback. Subjects performed four-finger total force and moment production tasks under visual feedback; the feedback was later partially or completely removed. The "inverse piano" device was used to lift and lower the fingers smoothly at the beginning and at the end of each trial. These data were used to compute pairs of hypothetical control variables. Intertrial analysis of variance within the finger force space was used to quantify multifinger synergies stabilizing both force and moment. A data permutation method was used to quantify synergies among control variables. Under visual feedback, synergies in the spaces of finger forces and hypothetical control variables were found to stabilize total force. Without visual feedback, the subjects showed a force drift to lower magnitudes and a moment drift toward pronation. This was accompanied by disappearance of the four-finger synergies and strong attenuation of the control variable synergies. The indexes of the two types of synergies correlated with each other. The findings are interpreted within the scheme with multiple levels of abundant variables. NEW & NOTEWORTHY We extended the idea of hierarchical control with referent spatial coordinates for the effectors and explored two types of synergies stabilizing multifinger force production tasks. We observed synergies among finger forces and synergies between hypothetical control variables that stabilized performance under visual feedback but failed to stabilize it after visual feedback had been removed. Indexes of two types of synergies correlated

  2. Joint moments and contact forces in the foot during walking.

    PubMed

    Kim, Yongcheol; Lee, Kyoung Min; Koo, Seungbum

    2018-06-06

    The net force and moment of a joint have been widely used to understand joint disease in the foot. Meanwhile, it does not reflect the physiological forces on muscles and contact surfaces. The objective of the study is to estimate active moments by muscles, passive moments by connective tissues and joint contact forces in the foot joints during walking. Joint kinematics and external forces of ten healthy subjects (all males, 24.7 ± 1.2 years) were acquired during walking. The data were entered into the five-segment musculoskeletal foot model to calculate muscle forces and joint contact forces of the foot joints using an inverse dynamics-based optimization. Joint reaction forces and active, passive and net moments of each joint were calculated from muscle and ligament forces. The maximum joint reaction forces were 8.72, 4.31, 2.65, and 3.41 body weight (BW) for the ankle, Chopart's, Lisfranc and metatarsophalangeal joints, respectively. Active and passive moments along with net moments were also obtained. The maximum net moments were 8.6, 8.4, 5.4 and 0.8%BW∙HT, respectively. While the trend of net moment was very similar between the four joints, the magnitudes and directions of the active and passive moments varied between joints. The active and passive moments during walking could reveal the roles of muscles and ligaments in each of the foot joints, which was not obvious in the net moment. This method may help narrow down the source of joint problems if applied to clinical studies. Copyright © 2018 Elsevier Ltd. All rights reserved.

  3. Evaluation of recovery in lip closing pressure and occlusal force and contact area after orthognathic surgery.

    PubMed

    Ueki, Koichiro; Moroi, Akinori; Sotobori, Megumi; Ishihara, Yuri; Marukawa, Kohei; Iguchi, Ran; Kosaka, Akihiko; Ikawa, Hiroumi; Nakazawa, Ryuichi; Higuchi, Masatoshi

    2014-10-01

    The purpose of this study was to evaluate the relationship between lip closing force, occlusal contact area and occlusal force after orthognathic surgery in skeletal Class III patients. The subjects consisted of 54 patients (28 female and 26 male) diagnosed with mandibular prognathism who underwent sagittal split ramus osteotomy with and without Le Fort I osteotomy. Maximum and minimum lip closing forces, occlusal contact area and occlusal force were measured pre-operatively, 6 months and 1 year post-operative. Maximum and minimum lip closing forces, occlusal contact area and occlusal force increased with time after surgery, however a significant increase was not found in the occlusal contact area in women. In increased ratio (6 months/pre-operative and 1 year/pre-operative), the maximum lip closing force was significantly correlated with the occlusal contact area (P < 0.0001). This study suggested that orthognathic surgery could improve the occlusal force, contact area and lip closing force, and an increase ratio in maximum lip closing force was associated with an increased ratio in occlusal contact area. Copyright © 2014 European Association for Cranio-Maxillo-Facial Surgery. Published by Elsevier Ltd. All rights reserved.

  4. Simultaneous hand-held contact color fundus and SD-OCT imaging for pediatric retinal diseases (Conference Presentation)

    NASA Astrophysics Data System (ADS)

    Ruggeri, Marco; Hernandez, Victor; De Freitas, Carolina; Relhan, Nidhi; Silgado, Juan; Manns, Fabrice; Parel, Jean-Marie

    2016-03-01

    Hand-held wide-field contact color fundus photography is currently the standard method to acquire diagnostic images of children during examination under anesthesia and in the neonatal intensive care unit. The recent development of portable non-contact hand-held OCT retinal imaging systems has proved that OCT is of tremendous help to complement fundus photography in the management of pediatric patients. Currently, there is no commercial or research system that combines color wide-field digital fundus and OCT imaging in a contact-fashion. The contact of the probe with the cornea has the advantages of reducing motion experienced by the photographer during the imaging and providing fundus and OCT images with wider field of view that includes the periphery of the retina. In this study we produce proof of concept for a contact-type hand-held unit for simultaneous color fundus and OCT live view of the retina of pediatric patients. The front piece of the hand-held unit consists of a contact ophthalmoscopy lens integrating a circular light guide that was recovered from a digital fundus camera for pediatric imaging. The custom-made rear piece consists of the optics to: 1) fold the visible aerial image of the fundus generated by the ophthalmoscopy lens on a miniaturized level board digital color camera; 2) conjugate the eye pupil to the galvanometric scanning mirrors of an OCT delivery system. Wide-field color fundus and OCT images were simultaneously obtained in an eye model and sequentially obtained on the eye of a conscious 25 year-old human subject with healthy retina.

  5. The influence of rail surface irregularities on contact forces and local stresses

    NASA Astrophysics Data System (ADS)

    Andersson, Robin; Torstensson, Peter T.; Kabo, Elena; Larsson, Fredrik

    2015-01-01

    The effect of initial rail surface irregularities on promoting further surface degradation is investigated. The study concerns rolling contact fatigue formation, in particular in the form of the so-called squats. The impact of surface irregularities in the form of dimples is quantified by peak magnitudes of dynamic contact stresses and contact forces. To this end simulations of two-dimensional (later extended to three-dimensional) vertical dynamic vehicle-track interaction are employed. The most influencing parameters are identified. It is shown that even very shallow dimples might have a large impact on local contact stresses. Peak magnitudes of contact forces and stresses due to the influence of rail dimples are shown to exceed those due to rail corrugation.

  6. Time to consider the contact force during photoplethysmography measurement during pediatric anesthesia: A prospective, nonrandomized interventional study.

    PubMed

    Lee, Ji-Hyun; Yang, Seungman; Park, Jonghyun; Kim, Hee Chan; Kim, Eun-Hee; Jang, Young-Eun; Kim, Jin-Tae; Kim, Hee-Soo

    2018-06-19

    Respiratory variations in photoplethysmography amplitude enable volume status assessment. However, the contact force between the measurement site and sensor can affect photoplethysmography waveforms. We aimed to evaluate contact force effects on respiratory variations in photoplethysmography waveforms in children under general anesthesia. Children aged 3-5 years were enrolled. After anesthetic induction, mechanical ventilation commenced at a tidal volume of 10 mL/kg. Photoplethysmographic signals were obtained in the supine position from the index finger using a force sensor-integrated clip-type photoplethysmography sensor that increased the contact force from 0-1.4 N for 20 respiratory cycles at each force. The AC amplitude (pulsatile component), DC amplitude (nonpulsatile component), AC/DC ratio, and respiratory variations in photoplethysmography amplitude were calculated. Data from 34 children were analyzed. Seven contact forces at 0.2-N increments were evaluated for each patient. The normalized AC amplitude increased maximally at a contact force of 0.4-0.6 N and decreased with increasing contact force. However, the normalized DC amplitude increased with a contact force exceeding 0.4 N. ΔPOP decreased slightly and increased from the point when the AC amplitude started to decrease as contact force increased. In a 0.2-1.2 N contact force range, significant changes in the normalized AC amplitude, normalized DC amplitude, AC/DC ratio, and respiratory variations in photoplethysmography amplitude were observed. Respiratory variations in photoplethysmography amplitude changed according to variable contact forces; therefore, these measurements may not reflect respiration-induced stroke volume variations. Clinicians should consider contact force bias when interpreting morphological data from photoplethysmography signals. © 2018 John Wiley & Sons Ltd.

  7. Product Plan of New Generation System Camera "OLYMPUS PEN E-P1"

    NASA Astrophysics Data System (ADS)

    Ogawa, Haruo

    "OLYMPUS PEN E-P1", which is new generation system camera, is the first product of Olympus which is new standard "Micro Four-thirds System" for high-resolution mirror-less cameras. It continues good sales by the concept of "small and stylish design, easy operation and SLR image quality" since release on July 3, 2009. On the other hand, the half-size film camera "OLYMPUS PEN" was popular by the concept "small and stylish design and original mechanism" since the first product in 1959 and recorded sale number more than 17 million with 17 models. By the 50th anniversary topic and emotional value of the Olympus pen, Olympus pen E-P1 became big sales. I would like to explain the way of thinking of the product plan that included not only the simple functional value but also emotional value on planning the first product of "Micro Four-thirds System".

  8. Design of a force reflecting hand controller for space telemanipulation studies

    NASA Technical Reports Server (NTRS)

    Paines, J. D. B.

    1987-01-01

    The potential importance of space telemanipulator systems is reviewed, along with past studies of master-slave manipulation using a generalized force reflecting master arm. Problems concerning their dynamic interaction with the human operator have been revealed in the use of these systems, with marked differences between 1-g and simulated weightless conditions. A study is outlined to investigate the optimization of the man machine dynamics of master-slave manipulation, and a set of specifications is determined for the apparatus necessary to perform this investigation. This apparatus is a one degree of freedom force reflecting hand controller with closed loop servo control which enables it to simulate arbitrary dynamic properties to high bandwidth. Design of the complete system and its performance is discussed. Finally, the experimental adjustment of the hand controller dynamics for smooth manual control performance with good operator force perception is described, resulting in low inertia, viscously damped hand controller dynamics.

  9. Experimental study of tyre/road contact forces in rolling conditions for noise prediction

    NASA Astrophysics Data System (ADS)

    Cesbron, Julien; Anfosso-Lédée, Fabienne; Duhamel, Denis; Ping Yin, Hai; Le Houédec, Donatien

    2009-02-01

    This paper deals with the experimental study of dynamical tyre/road contact for noise prediction. In situ measurements of contact forces and close proximity noise levels were carried out for a slick tyre rolling on six different road surfaces between 30 and 50 km/h. Additional texture profiles of the tested surfaces were taken on the wheel track. Normal contact stresses were measured at a sampling frequency of 10752 Hz using a line of pressure sensitive cells placed both along and perpendicular to the rolling direction. The contact areas obtained during rolling were smaller than in static conditions. This is mainly explained by the dynamical properties of tyre compounds, like the viscoelastic behaviour of the rubber. Additionally the root-mean-square of the resultant contact forces at various speeds was in the same order for a given road surface, while their spectra were quite different. This is certainly due to a spectral influence of bending waves propagating in the tyre during rolling, especially when the wavelength is small in comparison with the size of the contact patch. Finally, the levels of contact forces and close proximity noise measured at 30 km/h were correlated. Additional correlations with texture levels were performed. The results show that the macro-texture generates contact forces linearly around 800 Hz and consequently noise levels between 500 and 1000 Hz via the vibrations transmitted to the tyre.

  10. Contact force monitoring during catheter ablation of intraatrial reentrant tachycardia in patients with congenital heart disease.

    PubMed

    Krause, Ulrich; Backhoff, David; Klehs, Sophia; Schneider, Heike E; Paul, Thomas

    2016-08-01

    Monitoring of catheter contact force during catheter ablation of atrial fibrillation has been shown to increase efficacy and safety. However, almost no data exists on the use of this technology in catheter ablation of intraatrial reentrant tachycardia in patients with congenital heart disease. The aim of the present study was to evaluate the impact of contact force monitoring during catheter ablation of intraatrial reentrant tachycardia in those patients. Catheter ablation of intraatrial reentrant tachycardia using monitoring of catheter contact force was performed in 28 patients with congenital heart disease (CHD). Thirty-two patients matched according to gender, age, and body weight with congenital heart disease undergoing catheter ablation without contact force monitoring served as control group. Parameters reflecting acute procedural success, long-term efficacy, and safety were compared. Acute procedural success was statistically not different in both groups (contact force 93 % vs. control 84 %, p = 0.3). Likewise the recurrence rate 1 year after ablation as shown by Kaplan-Meier analysis did not differ (contact force 28 % vs. control 37 %, p = 0.63). Major complications were restricted to groin vessel injuries and occurred in 3 out of 60 patients (contact force n = 1; control n = 2). Complications related to excessive catheter contact force were not observed. The present study did not show superiority of catheter contact force monitoring during ablation of intraatrial reentrant tachycardia in patients with CHD in terms of efficacy and safety. Higher contact force compared to pulmonary vein isolation might therefore be required to increase the efficacy of catheter ablation of intraatrial reentrant tachycardia in patients with congenital heart disease.

  11. Switched Fuzzy-PD Control of Contact Forces in Robotic Microbiomanipulation.

    PubMed

    Zhang, Weize; Dong, Xianke; Liu, Xinyu

    2017-05-01

    Force sensing and control are of paramount importance in robotic micromanipulation. A contact force regulator capable of accurately applying mechanical stimuli to a live Drosophila larva could greatly facilitate mechanobiology research on Drosophila and may eventually lead to novel discoveries in mechanotransduction mechanisms of neuronal circuitries. In this paper, we present a novel contact force control scheme implemented in an automated Drosophila larvae micromanipulation system, featuring a switched fuzzy to proportional-differential (PD) controller and a noise-insensitive extended high gain observer (EHGO). The switched fuzzy-PD control law inherits the fast convergence of fuzzy control and overcomes its drawbacks such as large overshoot and steady-state oscillation. The noise-insensitive EHGO can reliably estimate system modeling errors and is robust to force measurement noises, which is advantageous over conventional high gain observers (sensitive to signal noises). Force control experiments show that, compared to a proportional-integral-differential (PID) controller, this new force control scheme significantly enhances the system dynamic performance in terms of rising time, overshoot, and oscillation. The developed robotic system and the force control scheme will be applied to mechanical stimulation and fluorescence imaging of Drosophila larvae for identifying new mechanotransduction mechanisms.

  12. The relationship between hand anthropometrics, total grip strength and individual finger force for various handle shapes.

    PubMed

    Kong, Yong-Ku; Kim, Dae-Min

    2015-01-01

    The design and shape of hand tool handles are critical factors for preventing musculoskeletal disorders (MSDs) caused by the use of hand tools. We explored how these factors are related to total force and individual finger force in males and females with various hand anthropometrics. Using the MFFM system, we assessed four indices of anthropometry, and measured total force and individual finger force on various handle designs and shapes. Both total force and individual finger force were significant according to gender and handle shape. Total grip strength to the handle shape indicated the greatest strength with D shape and the least with A shape. From the regression analysis of hand anthropometric indices, the value of R was respectably high at 0.608-0.696. The current study examined the gender and handle shape factors affecting grip strength based on the force measurements from various handle types, in terms of influence on different hand anthropometric indices.

  13. Are external knee load and EMG measures accurate indicators of internal knee contact forces during gait?

    PubMed

    Meyer, Andrew J; D'Lima, Darryl D; Besier, Thor F; Lloyd, David G; Colwell, Clifford W; Fregly, Benjamin J

    2013-06-01

    Mechanical loading is believed to be a critical factor in the development and treatment of knee osteoarthritis. However, the contact forces to which the knee articular surfaces are subjected during daily activities cannot be measured clinically. Thus, the ability to predict internal knee contact forces accurately using external measures (i.e., external knee loads and muscle electromyographic [EMG] signals) would be clinically valuable. We quantified how well external knee load and EMG measures predict internal knee contact forces during gait. A single subject with a force-measuring tibial prosthesis and post-operative valgus alignment performed four gait patterns (normal, medial thrust, walking pole, and trunk sway) to induce a wide range of external and internal knee joint loads. Linear regression analyses were performed to assess how much of the variability in internal contact forces was accounted for by variability in the external measures. Though the different gait patterns successfully induced significant changes in the external and internal quantities, changes in external measures were generally weak indicators of changes in total, medial, and lateral contact force. Our results suggest that when total contact force may be changing, caution should be exercised when inferring changes in knee contact forces based on observed changes in external knee load and EMG measures. Advances in musculoskeletal modeling methods may be needed for accurate estimation of in vivo knee contact forces. Copyright © 2012 Orthopaedic Research Society.

  14. Compensatory changes accompanying chronic forced use of the nondominant hand by unilateral amputees.

    PubMed

    Philip, Benjamin A; Frey, Scott H

    2014-03-05

    Amputation of the dominant hand forces patients to use the nondominant hand exclusively, including for tasks (e.g., writing and drawing) that were formerly the sole domain of the dominant hand. The behavioral and neurological effects of this chronic forced use of the nondominant hand remain largely unknown. Yet, these effects may shed light on the potential to compensate for degradation or loss of dominant hand function, as well as the mechanisms that support motor learning under conditions of very long-term training. We used a novel precision drawing task and fMRI to investigate 8 adult human amputees with chronic (mean 33 years) unilateral dominant (right) hand absence, and right-handed matched controls (8 for fMRI, 19 for behavior). Amputees' precision drawing performances with their left hands reached levels of smoothness (associated with left hemisphere control), acceleration time (associated with right hemisphere control), and speed equivalent to controls' right hands, whereas accuracy maintained a level comparable with controls' left hands. This compensation is supported by an experience-dependent shift from heavy reliance on the dorsodorsal parietofrontal pathway (feedback control) to the ventrodorsal pathway and prefrontal regions involved in the cognitive control of goal-directed actions. Relative to controls, amputees also showed increased activity within the former cortical sensorimotor hand territory in the left (ipsilateral) hemisphere. These data demonstrate that, with chronic and exclusive forced use, the speed and quality of nondominant hand precision endpoint control in drawing can achieve levels nearly comparable with the dominant hand.

  15. Decreased knee adduction moment does not guarantee decreased medial contact force during gait.

    PubMed

    Walter, Jonathan P; D'Lima, Darryl D; Colwell, Clifford W; Fregly, Benjamin J

    2010-10-01

    Excessive contact force is believed to contribute to the development of medial compartment knee osteoarthritis. The external knee adduction moment (KAM) has been identified as a surrogate measure for medial contact force during gait, with an abnormally large peak value being linked to increased pain and rate of disease progression. This study used in vivo gait data collected from a subject with a force-measuring knee implant to assess whether KAM decreases accurately predict corresponding decreases in medial contact force. Changes in both quantities generated via gait modification were analyzed statistically relative to the subject's normal gait. The two gait modifications were a "medial thrust" gait involving knee medialization during stance phase and a "walking pole" gait involving use of bilateral walking poles. Reductions in the first (largest) peak of the KAM (32-33%) did not correspond to reductions in the first peak of the medial contact force. In contrast, reductions in the second peak and angular impulse of the KAM (15-47%) corresponded to reductions in the second peak and impulse of the medial contact force (12-42%). Calculated reductions in both KAM peaks were highly sensitive to rotation of the shank reference frame about the superior-inferior axis of the shank. Both peaks of medial contact force were best predicted by a combination of peak values of the external KAM and peak absolute values of the external knee flexion moment (R(2) = 0.93). Future studies that evaluate the effectiveness of gait modifications for offloading the medial compartment of the knee should consider the combined effect of these two knee moments. Published by Wiley Periodicals, Inc. J Orthop Res 28:1348-1354, 2010.

  16. Measurement of separator contact forces in ball bearings using a derotation prism

    NASA Technical Reports Server (NTRS)

    Nypan, L. J.

    1978-01-01

    A derotation prism was used to produce a stationary image of balls deflecting a portion of the separator. Ball to cage contact forces in a 110 mm bearing at speeds to 12,000 rpm were found to be 25 N (five lb) maximum. Inner race land contact force was found to vary up to 20 N (four lb).

  17. Biomechanically determined hand force limits protecting the low back during occupational pushing and pulling tasks.

    PubMed

    Weston, Eric B; Aurand, Alexander; Dufour, Jonathan S; Knapik, Gregory G; Marras, William S

    2018-06-01

    Though biomechanically determined guidelines exist for lifting, existing recommendations for pushing and pulling were developed using a psychophysical approach. The current study aimed to establish objective hand force limits based on the results of a biomechanical assessment of the forces on the lumbar spine during occupational pushing and pulling activities. Sixty-two subjects performed pushing and pulling tasks in a laboratory setting. An electromyography-assisted biomechanical model estimated spinal loads, while hand force and turning torque were measured via hand transducers. Mixed modelling techniques correlated spinal load with hand force or torque throughout a wide range of exposures in order to develop biomechanically determined hand force and torque limits. Exertion type, exertion direction, handle height and their interactions significantly influenced dependent measures of spinal load, hand force and turning torque. The biomechanically determined guidelines presented herein are up to 30% lower than comparable psychophysically derived limits and particularly more protective for straight pushing. Practitioner Summary: This study utilises a biomechanical model to develop objective biomechanically determined push/pull risk limits assessed via hand forces and turning torque. These limits can be up to 30% lower than existing psychophysically determined pushing and pulling recommendations. Practitioners should consider implementing these guidelines in both risk assessment and workplace design moving forward.

  18. A Facile All-Solution-Processed Surface with High Water Contact Angle and High Water Adhesive Force.

    PubMed

    Chen, Mei; Hu, Wei; Liang, Xiao; Zou, Cheng; Li, Fasheng; Zhang, Lanying; Chen, Feiwu; Yang, Huai

    2017-07-12

    A series of sticky superhydrophobicity surfaces with high water contact angle and high water adhesive force is facilely prepared via an all-solution-processed method based on polymerization-induced phase separation between liquid crystals (LCs) and epoxy resin, which produces layers of epoxy microspheres (EMSs) with nanofolds on the surface of a substrate. The morphologies and size distributions of EMSs are confirmed by scanning electron microscopy. Results reveal that the obtained EMS coated-surface exhibits high apparent contact angle of 152.0° and high water adhesive force up to 117.6 μN. By varying the composition of the sample or preparing conditions, the sizes of the produced EMSs can be artificially regulated and, thus, control the wetting properties and water adhesive behaviors. Also, the sticky superhydrophobic surface exhibits excellent chemical stability, as well as long-term durability. Water droplet transportation experiments further prove that the as-made surface can be effectively used as a mechanical hand for water transportation applications. Based on this, it is believed that the simple method proposed in this paper will pave a new way for producing a sticky superhydrophobic surface and obtain a wide range of use.

  19. Analysis of hand contact areas and interaction capabilities during manipulation and exploration.

    PubMed

    Gonzalez, Franck; Gosselin, Florian; Bachta, Wael

    2014-01-01

    Manual human-computer interfaces for virtual reality are designed to allow an operator interacting with a computer simulation as naturally as possible. Dexterous haptic interfaces are the best suited for this goal. They give intuitive and efficient control on the environment with haptic and tactile feedback. This paper is aimed at helping in the choice of the interaction areas to be taken into account in the design of such interfaces. The literature dealing with hand interactions is first reviewed in order to point out the contact areas involved in exploration and manipulation tasks. Their frequencies of use are then extracted from existing recordings. The results are gathered in an original graphical interaction map allowing for a simple visualization of the way the hand is used, and compared with a map of mechanoreceptors densities. Then an interaction tree, mapping the relative amount of actions made available through the use of a given contact area, is built and correlated with the losses of hand function induced by amputations. A rating of some existing haptic interfaces and guidelines for their design are finally achieved to illustrate a possible use of the developed graphical tools.

  20. Molar volume and adsorption isotherm dependence of capillary forces in nanoasperity contacts.

    PubMed

    Asay, David B; Kim, Seong H

    2007-11-20

    The magnitude of the capillary force at any given temperature and adsorbate partial pressure depends primarily on four factors: the surface tension of the adsorbate, its liquid molar volume, its isothermal behavior, and the contact geometry. At large contacting radii, the adsorbate surface tension and the contact geometry are dominating. This is the case of surface force apparatus measurements and atomic force microscopy (AFM) experiments with micrometer-size spheres. However, as the size of contacting asperities decreases to the nanoscale as in AFM experiments with sharp tips, the molar volume and isotherm of the adsorbate become very important to capillary formation as well as capillary adhesion. This effect is experimentally and theoretically explored with simple alcohol molecules (ethanol, 1-butanol, and 1-pentanol) which have comparable surface tensions but differing liquid molar volumes. Adsorption isotherms for these alcohols on silicon oxide are also reported.

  1. Force Trends and Pulsatility for Catheter Contact Identification in Intracardiac Electrograms during Arrhythmia Ablation

    PubMed Central

    Muñoz-Romero, Sergio; Erazo-Rodas, Mayra; Sánchez-Muñoz, Juan José; García-Alberola, Arcadi

    2018-01-01

    The intracardiac electrical activation maps are commonly used as a guide in the ablation of cardiac arrhythmias. The use of catheters with force sensors has been proposed in order to know if the electrode is in contact with the tissue during the registration of intracardiac electrograms (EGM). Although threshold criteria on force signals are often used to determine the catheter contact, this may be a limited criterion due to the complexity of the heart dynamics and cardiac vorticity. The present paper is devoted to determining the criteria and force signal profiles that guarantee the contact of the electrode with the tissue. In this study, we analyzed 1391 force signals and their associated EGM recorded during 2 and 8 s, respectively, in 17 patients (82 ± 60 points per patient). We aimed to establish a contact pattern by first visually examining and classifying the signals, according to their likely-contact joint profile and following the suggestions from experts in the doubtful cases. First, we used Principal Component Analysis to scrutinize the force signal dynamics by analyzing the main eigen-directions, first globally and then grouped according to the certainty of their tissue-catheter contact. Second, we used two different linear classifiers (Fisher discriminant and support vector machines) to identify the most relevant components of the previous signal models. We obtained three main types of eigenvectors, namely, pulsatile relevant, non-pulsatile relevant, and irrelevant components. The classifiers reached a moderate to sufficient discrimination capacity (areas under the curve between 0.84 and 0.95 depending on the contact certainty and on the classifier), which allowed us to analyze the relevant properties in the force signals. We conclude that the catheter-tissue contact profiles in force recordings are complex and do not depend only on the signal intensity being above a threshold at a single time instant, but also on time pulsatility and trends. These

  2. Force Trends and Pulsatility for Catheter Contact Identification in Intracardiac Electrograms during Arrhythmia Ablation.

    PubMed

    Rivas-Lalaleo, David; Muñoz-Romero, Sergio; Huerta, Mónica; Erazo-Rodas, Mayra; Sánchez-Muñoz, Juan José; Rojo-Álvarez, José Luis; García-Alberola, Arcadi

    2018-05-02

    The intracardiac electrical activation maps are commonly used as a guide in the ablation of cardiac arrhythmias. The use of catheters with force sensors has been proposed in order to know if the electrode is in contact with the tissue during the registration of intracardiac electrograms (EGM). Although threshold criteria on force signals are often used to determine the catheter contact, this may be a limited criterion due to the complexity of the heart dynamics and cardiac vorticity. The present paper is devoted to determining the criteria and force signal profiles that guarantee the contact of the electrode with the tissue. In this study, we analyzed 1391 force signals and their associated EGM recorded during 2 and 8 s, respectively, in 17 patients (82 ± 60 points per patient). We aimed to establish a contact pattern by first visually examining and classifying the signals, according to their likely-contact joint profile and following the suggestions from experts in the doubtful cases. First, we used Principal Component Analysis to scrutinize the force signal dynamics by analyzing the main eigen-directions, first globally and then grouped according to the certainty of their tissue-catheter contact. Second, we used two different linear classifiers (Fisher discriminant and support vector machines) to identify the most relevant components of the previous signal models. We obtained three main types of eigenvectors, namely, pulsatile relevant, non-pulsatile relevant, and irrelevant components. The classifiers reached a moderate to sufficient discrimination capacity (areas under the curve between 0.84 and 0.95 depending on the contact certainty and on the classifier), which allowed us to analyze the relevant properties in the force signals. We conclude that the catheter-tissue contact profiles in force recordings are complex and do not depend only on the signal intensity being above a threshold at a single time instant, but also on time pulsatility and trends

  3. Hand-touch contact assessment of high-touch and mutual-touch surfaces among healthcare workers, patients, and visitors.

    PubMed

    Cheng, V C C; Chau, P H; Lee, W M; Ho, S K Y; Lee, D W Y; So, S Y C; Wong, S C Y; Tai, J W M; Yuen, K Y

    2015-07-01

    Unlike direct contact with patients' body, hand hygiene practice is often neglected by healthcare workers (HCWs) and visitors after contact with patients' environment. Contact with hospital environmental items may increase risk of pathogen transmission. To enumerate the number of hand-touch contacts by patients, HCWs and visitors with any hospital environmental items. All contact-episodes between person and item were recorded by direct observation in a six-bed cubicle of acute wards for 33 working days. High-touch and mutual-touch items with high contact frequencies by HCWs, patients, and visitors were analysed. In total, 1107 person-episodes with 6144 contact-episodes were observed in 66 observation hours (average: 16.8 person-episodes and 93.1 contact-episodes per hour). Eight of the top 10 high-touch items, including bedside rails, bedside tables, patients' bodies, patients' files, linen, bed curtains, bed frames, and lockers were mutually touched by HCWs, patients, and visitors. Bedside rails topped the list with 13.6 contact-episodes per hour (mean), followed by bedside tables (12.3 contact-episodes per hour). Using patients' body contacts as a reference, it was found that medical staff and nursing staff contacted bedside tables [rate ratio (RR): 1.741, 1.427, respectively] and patients' files (RR: 1.358, 1.324, respectively) more than patients' bodies, and nursing staff also contacted bedside rails (RR: 1.490) more than patients' bodies. Patients' surroundings may be links in the transmission of nosocomial infections because many are frequently touched and mutually contacted by HCWs, patients, and visitors. Therefore, the focus of hand hygiene education, environmental disinfection, and other system changes should be enhanced with respect to high-touch and mutual-touch items. Copyright © 2015 The Healthcare Infection Society. Published by Elsevier Ltd. All rights reserved.

  4. Handle grip span for optimising finger-specific force capability as a function of hand size.

    PubMed

    Lee, Soo-Jin; Kong, Yong-Ku; Lowe, Brian D; Song, Seongho

    2009-05-01

    Five grip spans (45 to 65 mm) were tested to evaluate the effects of handle grip span and user's hand size on maximum grip strength, individual finger force and subjective ratings of comfort using a computerised digital dynamometer with independent finger force sensors. Forty-six males participated and were assigned into three hand size groups (small, medium, large) according to their hands' length. In general, results showed the 55- and 50-mm grip spans were rated as the most comfortable sizes and showed the largest grip strength (433.6 N and 430.8 N, respectively), whereas the 65-mm grip span handle was rated as the least comfortable size and the least grip strength. With regard to the interaction effect of grip span and hand size, small and medium-hand participants rated the best preference for the 50- to 55-mm grip spans and the least for the 65-mm grip span, whereas large-hand participants rated the 55- to 60-mm grip spans as the most preferred and the 45-mm grip span as the least preferred. Normalised grip span (NGS) ratios (29% and 27%) are the ratios of user's hand length to handle grip span. The NGS ratios were obtained and applied for suggesting handle grip spans in order to maximise subjective comfort as well as gripping force according to the users' hand sizes. In the analysis of individual finger force, the middle finger force showed the highest contribution (37.5%) to the total finger force, followed by the ring (28.7%), index (20.2%) and little (13.6%) finger. In addition, each finger was observed to have a different optimal grip span for exerting the maximum force, resulting in a bow-contoured shaped handle (the grip span of the handle at the centre is larger than the handle at the end) for two-handle hand tools. Thus, the grip spans for two-handle hand tools may be designed according to the users' hand/finger anthropometrics to maximise subjective ratings and performance based on this study. Results obtained in this study will provide guidelines

  5. Surface thermodynamics and adhesion forces governing bacterial transmission in contact lens related microbial keratitis.

    PubMed

    Qu, Wenwen; Busscher, Henk J; Hooymans, Johanna M M; van der Mei, Henny C

    2011-06-15

    Contact lens induced microbial keratitis results from bacterial transmission from one surface to another. We investigated the adhesion forces of Pseudomonas aeruginosa, Staphylococci and Serratia to different contact lenses, lens cases and corneal surfaces using AFM, and applied a Weibull analysis on these adhesion forces to calculate bacterial transmission probabilities from lens case to corneas with a contact lens as an intermediate. Also a new surface thermodynamic parameter was introduced, the interfacial free energy of transmission, which in essence compares the interfacial free energies of bacterial adhesion, calculated from measured contact angles with liquids on the donating and receiving surfaces in the transmission process. Bacterial adhesion forces were generally strongest among all eight strains for the lens case (-6.5 to -12.0 nN) and corneas (-3.5 to -11.5 nN), while contact lenses (-0.6 to -13.1 nN) exerted slightly smaller adhesion forces. Consequently, bacterial transmission from lens case to contact lens yielded a smaller contribution in the final transmission than from contact lens to cornea. Bacterial transmission probabilities as derived from force analyses were higher when the interfacial free energies of transmission were more negative, which is in line with surface thermodynamic principles. Therewith this parameter could provide useful in analyzing other bacterial transmission phenomena between donating and receiving surfaces as well. Copyright © 2011 Elsevier Inc. All rights reserved.

  6. Development of method for experimental determination of wheel-rail contact forces and contact point position by using instrumented wheelset

    NASA Astrophysics Data System (ADS)

    Bižić, Milan B.; Petrović, Dragan Z.; Tomić, Miloš C.; Djinović, Zoran V.

    2017-07-01

    This paper presents the development of a unique method for experimental determination of wheel-rail contact forces and contact point position by using the instrumented wheelset (IWS). Solutions of key problems in the development of IWS are proposed, such as the determination of optimal locations, layout, number and way of connecting strain gauges as well as the development of an inverse identification algorithm (IIA). The base for the solution of these problems is the wheel model and results of FEM calculations, while IIA is based on the method of blind source separation using independent component analysis. In the first phase, the developed method was tested on a wheel model and a high accuracy was obtained (deviations of parameters obtained with IIA and really applied parameters in the model are less than 2%). In the second phase, experimental tests on the real object or IWS were carried out. The signal-to-noise ratio was identified as the main influential parameter on the measurement accuracy. Тhе obtained results have shown that the developed method enables measurement of vertical and lateral wheel-rail contact forces Q and Y and their ratio Y/Q with estimated errors of less than 10%, while the estimated measurement error of contact point position is less than 15%. At flange contact and higher values of ratio Y/Q or Y force, the measurement errors are reduced, which is extremely important for the reliability and quality of experimental tests of safety against derailment of railway vehicles according to the standards UIC 518 and EN 14363. The obtained results have shown that the proposed method can be successfully applied in solving the problem of high accuracy measurement of wheel-rail contact forces and contact point position using IWS.

  7. Temperature perception on the hand during static vs. dynamic contact with a surface

    PubMed Central

    Green, Barry G.

    2010-01-01

    Innocuous cooling or heating of the forearm can evoke nociceptive sensations such as burning, stinging, and pricking (‘low-threshold thermal nociception’, LTN) that are inhibited by dynamic contact. The present study investigated whether LTN can also be perceived on the hand, and if so, whether it is normally suppressed by active touching. Innocuous cold (28°, 25° and 18°C) and warm (38°, 40° and 43°C) temperatures were delivered to the distal metacarpal pads and intermediate and distal phalanges of the fingers via a handgrip thermode that subjects either statically held or actively grasped. The same temperatures were delivered to the forearm via another thermode that either rested on the arm or was touched to the arm. Subjects rated the intensity of thermal (warmth, cold) and nociceptive (e.g., burning) sensations and indicated the qualities of sensation experienced. The results showed that LTN can be perceived on the hand, although less frequently and less intensely than on the forearm. Dynamic contact inhibited nociceptive and thermal sensations on the hand, though less strongly than on the forearm. These findings indicate that temperature perception on the hand is attenuated and its quality changed when thermal stimulation is accompanied by dynamic tactile stimulation, as during haptic exploration. PMID:19525547

  8. Simultaneous Soft Sensing of Tissue Contact Angle and Force for Millimeter-scale Medical Robots

    PubMed Central

    Arabagi, Veaceslav; Gosline, Andrew; Wood, Robert J.; Dupont, Pierre E.

    2013-01-01

    A novel robotic sensor is proposed to measure both the contact angle and the force acting between the tip of a surgical robot and soft tissue. The sensor is manufactured using a planar lithography process that generates microchannels that are subsequently filled with a conductive liquid. The planar geometry is then molded onto a hemispherical plastic scaffolding in a geometric configuration enabling estimation of the contact angle (angle between robot tip tangent and tissue surface normal) by the rotation of the sensor around its roll axis. Contact force can also be estimated by monitoring the changes in resistance in each microchannel. Bench top experimental results indicate that, on average, the sensor can estimate the angle of contact to within ±2° and the contact force to within ±5.3 g. PMID:24241496

  9. Granular Contact Forces: Proof of "Self-Ergodicity" by Generalizing Boltzmann's Stosszahlansatz and H Theorem

    NASA Technical Reports Server (NTRS)

    Metzger, Philip T.

    2006-01-01

    Ergodicity is proved for granular contact forces. To obtain this proof from first principles, this paper generalizes Boltzmann's stosszahlansatz (molecular chaos) so that it maintains the necessary correlations and symmetries of granular packing ensembles. Then it formally counts granular contact force states and thereby defines the proper analog of Boltzmann's H functional. This functional is used to prove that (essentially) all static granular packings must exist at maximum entropy with respect to their contact forces. Therefore, the propagation of granular contact forces through a packing is a truly ergodic process in the Boltzmannian sense, or better, it is self-ergodic. Self-ergodicity refers to the non-dynamic, internal relationships that exist between the layer-by-layer and column-by-column subspaces contained within the phase space locus of any particular granular packing microstate. The generalized H Theorem also produces a recursion equation that may be solved numerically to obtain the density of single particle states and hence the distribution of granular contact forces corresponding to the condition of self-ergodicity. The predictions of the theory are overwhelmingly validated by comparison to empirical data from discrete element modeling.

  10. Ease of use and patient preference injection simulation study comparing two prefilled insulin pens.

    PubMed

    Clark, Paula E; Valentine, Virginia; Bodie, Jennifer N; Sarwat, Samiha

    2010-07-01

    To determine patient ease of use and preference for the Humalog KwikPen* (prefilled insulin lispro [Humalog dagger] pen, Eli Lilly and Company, Indianapolis, IN, USA) (insulin lispro pen) versus the Next Generation FlexPen double dagger (prefilled insulin aspart [NovoRapid section sign ] pen, Novo Nordisk A/S, Bagsvaerd, Denmark) (insulin aspart pen). This was a randomized, open-label, 2-period, 8-sequence crossover study in insulin pen-naïve patients with diabetes. Randomized patients (N = 367) received device training, then simulated low- (15 U) and high- (60 U) dose insulin injections with an appliance. Patients rated pens using an ease of use questionnaire and were asked separately for final pen preferences. The Insulin Device 'Ease of Use' Battery is a 10-item questionnaire with a 7-point scale (higher scores reflect greater ease of use). The primary objective was to determine pen preference for 'easy to press to inject my dose' (by comparing composite scores [low- plus high-dose]). Secondary objectives were to determine pen preference on select questionnaire items (from composite scores), final pen preference, and summary responses for all questionnaire items. On the primary endpoint, 'easy to press to inject my dose,' a statistically significant majority of patients with a preference chose the insulin lispro pen over the insulin aspart pen (68.4%, 95% CI = 62.7-73.6%). Statistically significant majorities of patients with a preference also favored the insulin lispro pen on secondary items: 'easy to hold in my hand when I inject' (64.9%, 95% CI = 58.8-70.7%), 'easy to use when I am in a public place' (67.5%, 95% CI = 61.0-73.6%), and 'overall easy to use' (69.9%, 95% CI = 63.9-75.4%). A statistically significant majority of patients had a final preference for the insulin lispro pen (67.3%, 95% CI = 62.2-72.1%). Among pen-naïve patients with diabetes who had a preference, the majority preferred the insulin lispro pen over the insulin aspart pen with regard

  11. Focal contacts as mechanosensors: externally applied local mechanical force induces growth of focal contacts by an mDia1-dependent and ROCK-independent mechanism.

    PubMed

    Riveline, D; Zamir, E; Balaban, N Q; Schwarz, U S; Ishizaki, T; Narumiya, S; Kam, Z; Geiger, B; Bershadsky, A D

    2001-06-11

    The transition of cell-matrix adhesions from the initial punctate focal complexes into the mature elongated form, known as focal contacts, requires GTPase Rho activity. In particular, activation of myosin II-driven contractility by a Rho target known as Rho-associated kinase (ROCK) was shown to be essential for focal contact formation. To dissect the mechanism of Rho-dependent induction of focal contacts and to elucidate the role of cell contractility, we applied mechanical force to vinculin-containing dot-like adhesions at the cell edge using a micropipette. Local centripetal pulling led to local assembly and elongation of these structures and to their development into streak-like focal contacts, as revealed by the dynamics of green fluorescent protein-tagged vinculin or paxillin and interference reflection microscopy. Inhibition of Rho activity by C3 transferase suppressed this force-induced focal contact formation. However, constitutively active mutants of another Rho target, the formin homology protein mDia1 (Watanabe, N., T. Kato, A. Fujita, T. Ishizaki, and S. Narumiya. 1999. Nat. Cell Biol. 1:136-143), were sufficient to restore force-induced focal contact formation in C3 transferase-treated cells. Force-induced formation of the focal contacts still occurred in cells subjected to myosin II and ROCK inhibition. Thus, as long as mDia1 is active, external tension force bypasses the requirement for ROCK-mediated myosin II contractility in the induction of focal contacts. Our experiments show that integrin-containing focal complexes behave as individual mechanosensors exhibiting directional assembly in response to local force.

  12. The Role of Contact Line (Pinning) Forces on Bubble Blockage in Microchannels.

    PubMed

    Mohammadi, Mahshid; Sharp, Kendra V

    2015-03-01

    This paper highlights the influence of contact line (pinning) forces on the mobility of dry bubbles in microchannels. Bubbles moving at velocities less than the dewetting velocity of liquid on the surface are essentially dry, meaning that there is no thin liquid film around the bubbles. For these "dry" bubbles, contact line forces and a possible capillary pressure gradient induced by pinning act on the bubbles and resist motion. Without sufficient driving force (e.g., external pressure), a dry bubble is brought to stagnation. For the first time, a bipartite theoretical model that estimates the required pressure difference across the length of stagnant bubbles with concave and convex back interfaces to overcome the contact line forces and stimulate motion is proposed. To validate our theory, the pressure required to move a single dry bubble in square microchannels exhibiting contact angle hysteresis has been measured. The working fluid was deionized water. The experiments have been conducted on coated glass channels with different surface hydrophilicities that resulted in concave and convex back interfaces for the bubbles. The experimental results were in agreement with the model's predictions for square channels. The predictions of the concave and convex back models were within 19% and 27% of the experimental measurements, respectively.

  13. Apparent-contact-angle model at partial wetting and evaporation: Impact of surface forces

    NASA Astrophysics Data System (ADS)

    Janeček, V.; Nikolayev, V. S.

    2013-01-01

    This theoretical and numerical study deals with evaporation of a fluid wedge in contact with its pure vapor. The model describes a regime where the continuous wetting film is absent and the actual line of the triple gas-liquid-solid contact appears. A constant temperature higher than the saturation temperature is imposed at the solid substrate. The fluid flow is solved in the lubrication approximation. The introduction of the surface forces in the case of the partial wetting is discussed. The apparent contact angle (the gas-liquid interface slope far from the contact line) is studied numerically as a function of the substrate superheating, contact line velocity, and parameters related to the solid-fluid interaction (Young and microscopic contact angles, Hamaker constant, etc.). The dependence of the apparent contact angle on the substrate temperature is in agreement with existing approaches. For water, the apparent contact angle may be 20∘ larger than the Young contact angle for 1 K superheating. The effect of the surface forces on the apparent contact angle is found to be weak.

  14. Apparent-contact-angle model at partial wetting and evaporation: impact of surface forces.

    PubMed

    Janeček, V; Nikolayev, V S

    2013-01-01

    This theoretical and numerical study deals with evaporation of a fluid wedge in contact with its pure vapor. The model describes a regime where the continuous wetting film is absent and the actual line of the triple gas-liquid-solid contact appears. A constant temperature higher than the saturation temperature is imposed at the solid substrate. The fluid flow is solved in the lubrication approximation. The introduction of the surface forces in the case of the partial wetting is discussed. The apparent contact angle (the gas-liquid interface slope far from the contact line) is studied numerically as a function of the substrate superheating, contact line velocity, and parameters related to the solid-fluid interaction (Young and microscopic contact angles, Hamaker constant, etc.). The dependence of the apparent contact angle on the substrate temperature is in agreement with existing approaches. For water, the apparent contact angle may be 20° larger than the Young contact angle for 1 K superheating. The effect of the surface forces on the apparent contact angle is found to be weak.

  15. Uncertainties in forces extracted from non-contact atomic force microscopy measurements by fitting of long-range background forces.

    PubMed

    Sweetman, Adam; Stannard, Andrew

    2014-01-01

    In principle, non-contact atomic force microscopy (NC-AFM) now readily allows for the measurement of forces with sub-nanonewton precision on the atomic scale. In practice, however, the extraction of the often desired 'short-range' force from the experimental observable (frequency shift) is often far from trivial. In most cases there is a significant contribution to the total tip-sample force due to non-site-specific van der Waals and electrostatic forces. Typically, the contribution from these forces must be removed before the results of the experiment can be successfully interpreted, often by comparison to density functional theory calculations. In this paper we compare the 'on-minus-off' method for extracting site-specific forces to a commonly used extrapolation method modelling the long-range forces using a simple power law. By examining the behaviour of the fitting method in the case of two radically different interaction potentials we show that significant uncertainties in the final extracted forces may result from use of the extrapolation method.

  16. Exploration of Force Myography and surface Electromyography in hand gesture classification.

    PubMed

    Jiang, Xianta; Merhi, Lukas-Karim; Xiao, Zhen Gang; Menon, Carlo

    2017-03-01

    Whereas pressure sensors increasingly have received attention as a non-invasive interface for hand gesture recognition, their performance has not been comprehensively evaluated. This work examined the performance of hand gesture classification using Force Myography (FMG) and surface Electromyography (sEMG) technologies by performing 3 sets of 48 hand gestures using a prototyped FMG band and an array of commercial sEMG sensors worn both on the wrist and forearm simultaneously. The results show that the FMG band achieved classification accuracies as good as the high quality, commercially available, sEMG system on both wrist and forearm positions; specifically, by only using 8 Force Sensitive Resisters (FSRs), the FMG band achieved accuracies of 91.2% and 83.5% in classifying the 48 hand gestures in cross-validation and cross-trial evaluations, which were higher than those of sEMG (84.6% and 79.1%). By using all 16 FSRs on the band, our device achieved high accuracies of 96.7% and 89.4% in cross-validation and cross-trial evaluations. Copyright © 2017 IPEM. Published by Elsevier Ltd. All rights reserved.

  17. Assessment of hindlimb locomotor strength in spinal cord transected rats through animal-robot contact force.

    PubMed

    Nessler, Jeff A; Moustafa-Bayoumi, Moustafa; Soto, Dalziel; Duhon, Jessica; Schmitt, Ryan

    2011-12-01

    Robotic locomotor training devices have gained popularity in recent years, yet little has been reported regarding contact forces experienced by the subject performing automated locomotor training, particularly in animal models of neurological injury. The purpose of this study was to develop a means for acquiring contact forces between a robotic device and a rodent model of spinal cord injury through instrumentation of a robotic gait training device (the rat stepper) with miniature force/torque sensors. Sensors were placed at each interface between the robot arm and animal's hindlimb and underneath the stepping surface of both hindpaws (four sensors total). Twenty four female, Sprague-Dawley rats received mid-thoracic spinal cord transections as neonates and were included in the study. Of these 24 animals, training began for 18 animals at 21 days of age and continued for four weeks at five min/day, five days/week. The remaining six animals were untrained. Animal-robot contact forces were acquired for trained animals weekly and untrained animals every two weeks while stepping in the robotic device with both 60 and 90% of their body weight supported (BWS). Animals that received training significantly increased the number of weight supported steps over the four week training period. Analysis of raw contact forces revealed significant increases in forward swing and ground reaction forces during this time, and multiple aspects of animal-robot contact forces were significantly correlated with weight bearing stepping. However, when contact forces were normalized to animal body weight, these increasing trends were no longer present. Comparison of trained and untrained animals revealed significant differences in normalized ground reaction forces (both horizontal and vertical) and normalized forward swing force. Finally, both forward swing and ground reaction forces were significantly reduced at 90% BWS when compared to the 60% condition. These results suggest that

  18. Practical approach to subject-specific estimation of knee joint contact force

    PubMed Central

    Knarr, Brian A.; Higginson, Jill S.

    2015-01-01

    Compressive forces experienced at the knee can significantly contribute to cartilage degeneration. Musculoskeletal models enable predictions of the internal forces experienced at the knee, but validation is often not possible, as experimental data detailing loading at the knee joint is limited. Recently available data reporting compressive knee force through direct measurement using instrumented total knee replacements offer a unique opportunity to evaluate the accuracy of models. Previous studies have highlighted the importance of subject-specificity in increasing the accuracy of model predictions; however, these techniques may be unrealistic outside of a research setting. Therefore, the goal of our work was to identify a practical approach for accurate prediction of tibiofemoral knee contact force (KCF). Four methods for prediction of knee contact force were compared: (1) standard static optimization, (2) uniform muscle coordination weighting, (3) subject-specific muscle coordination weighting and (4) subject-specific strength adjustments. Walking trials for three subjects with instrumented knee replacements were used to evaluate the accuracy of model predictions. Predictions utilizing subject-specific muscle coordination weighting yielded the best agreement with experimental data, however this method required in vivo data for weighting factor calibration. Including subject-specific strength adjustments improved models’ predictions compared to standard static optimization, with errors in peak KCF less than 0.5 body weight for all subjects. Overall, combining clinical assessments of muscle strength with standard tools available in the OpenSim software package, such as inverse kinematics and static optimization, appears to be a practical method for predicting joint contact force that can be implemented for many applications. PMID:25952546

  19. Patello-femoral and tibio-femoral contact forces during kicking type of activity

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Engin, A.E.; Tumer, S.T.

    1996-12-31

    In this paper patello-femoral and tibia-femoral contact forces during kicking type of activity is presented by means of a dynamic model of the knee joint which includes tibio-femoral and patello-femoral articulations, and the major ligaments of the joint. The model shows that the patella can be subjected to very large transient patello-femoral contact forces during a strenuous lower limb activity such as kicking even under conditions of small knee-flexion angles.

  20. Relationship between healthcare worker surface contacts, care type and hand hygiene: an observational study in a single-bed hospital ward.

    PubMed

    King, M-F; Noakes, C J; Sleigh, P A; Bale, S; Waters, L

    2016-09-01

    This study quantifies the relationship between hand hygiene and the frequency with which healthcare workers (HCWs) touch surfaces in patient rooms. Surface contacts and hand hygiene were recorded in a single-bed UK hospital ward for six care types. Surface contacts often formed non-random patterns, but hygiene before or after patient contact depends significantly on care type (P=0.001). The likelihood of hygiene correlated with the number of surface contacts (95% confidence interval 1.1-5.8, P=0.002), but not with time spent in the room. This highlights that a potential subconscious need for hand hygiene may have developed in HCWs, which may support and help focus future hygiene education programmes. Copyright © 2016 The Authors. Published by Elsevier Ltd.. All rights reserved.

  1. Measurements of the contact force from myenteric contractions on a solid bolus.

    PubMed

    Terry, Benjamin S; Schoen, Jonathan A; Rentschler, Mark E

    2013-03-01

    The development of robotic capsule endoscopes (RCEs) is one avenue presently investigated by multiple research groups to minimize invasiveness and enhance outcomes of enteroscopic procedures. Understanding the biomechanical response of the small bowel to RCEs is needed for design optimization of these devices. In previous work, the authors developed, characterized, and tested the migrating motor complex force sensor (MFS), a novel sensor for quantifying the contact forces per unit of axial length exerted by the myenteron on a solid bolus. This work is a continuation, in which the MFS is used to quantify the contractile strength in the small intestine proximal, middle, and distal regions of five live porcine models. The MFSs are surgically implanted in a generally anesthetized animal, and force data from 5 min of dwell time are analyzed. The mean myenteric contact force from all porcine models and locations within the bowel is 1.9 ± 1.0 N cm(-1). Examining the results based on the small bowel region shows a statistically significant strengthening trend in the contractile force from proximal to middle to distal with mean forces of 1.2 ± 0.5, 1.9 ± 0.9, and 2.3 ± 1.0 N cm(-1), respectively (mean ± one standard deviation). Quantification of the contact force against a solid bolus provides developers of RCEs with a valuable, experimentally derived parameter of the intraluminal environment.

  2. Contact material optimization and contact physics in metal-contact microelectromechanical systems (MEMS) switches

    NASA Astrophysics Data System (ADS)

    Yang, Zhenyin

    Metal-contact MEMS switches hold great promise for implementing agile radio frequency (RF) systems because of their small size, low fabrication cost, low power consumption, wide operational band, excellent isolation and exceptionally low signal insertion loss. Gold is often utilized as a contact material for metal-contact MEMS switches due to its excellent electrical conductivity and corrosion resistance. However contact wear and stiction are the two major failure modes for these switches due to its material softness and high surface adhesion energy. To strengthen the contact material, pure gold was alloyed with other metal elements. We designed and constructed a new micro-contacting test facility that closely mimic the typical MEMS operation and utilized this facility to efficiently evaluate optimized contact materials. Au-Ni binary alloy system as the candidate contact material for MEMS switches was systematically investigated. A correlation between contact material properties (etc. microstructure, micro-hardness, electrical resistivity, topology, surface structures and composition) and micro-contacting performance was established. It was demonstrated nano-scale graded two-phase Au-Ni film could possibly yield an improved device performance. Gold micro-contact degradation mechanisms were also systematically investigated by running the MEMS switching tests under a wide range of test conditions. According to our quantitative failure analysis, field evaporation could be the dominant failure mode for highfield (> critical threshold field) hot switching; transient thermal-assisted wear could be the dominant failure mode for low-field hot switching; on the other hand, pure mechanical wear and steady current heating (1 mA) caused much less contact degradation in cold switching tests. Results from low-force (50 muN/micro-contact), low current (0.1 mA) tests on real MEMS switches indicated that continuous adsorbed films from ambient air could degrade the switch contact

  3. Modeling the finger joint moments in a hand at the maximal isometric grip: the effects of friction.

    PubMed

    Wu, John Z; Dong, Ren G; McDowell, Thomas W; Welcome, Daniel E

    2009-12-01

    The interaction between the handle and operator's hand affects the comfort and safety of tool and machine operations. In most of the previous studies, the investigators considered only the normal contact forces. The effect of friction on the joint moments in fingers has not been analyzed. Furthermore, the observed contact forces have not been linked to the internal musculoskeletal loading in the previous experimental studies. In the current study, we proposed a universal model of a hand to evaluate the joint moments in the fingers during grasping tasks. The hand model was developed on the platform of the commercial software package AnyBody. Only four fingers (index, long, ring, and little finger) were included in the model. The anatomical structure of each finger is comprised of four phalanges (distal, middle, proximal, and metacarpal phalange). The simulations were performed using an inverse dynamics technique. The joint angles and the normal contact forces on each finger section reported by previous researchers were used as inputs, while the joint moments of each finger were predicted. The predicted trends of the dependence of the distal interphalangeal (DIP) and proximal interphalangeal (PIP) joint moments on the cylinder diameter agree with those of the contact forces on the fingers observed in the previous experimental study. Our results show that the DIP and PIP joint moments reach their maximums at a cylinder diameter of about 31mm, which is consistent with the trend of the finger contact forces measured in the experiments. The proposed approach will be useful for simulating musculoskeletal loading in the hand for occupational activities, thereby optimizing tool-handle design.

  4. A Non-Contact Measurement System for the Range of Motion of the Hand

    PubMed Central

    Pham, Trieu; Pathirana, Pubudu N.; Trinh, Hieu; Fay, Pearse

    2015-01-01

    An accurate and standardised tool to measure the active range of motion (ROM) of the hand is essential to any progressive assessment scenario in hand therapy practice. Goniometers are widely used in clinical settings for measuring the ROM of the hand. However, such measurements have limitations with regard to inter-rater and intra-rater reliability and involve direct physical contact with the hand, possibly increasing the risk of transmitting infections. The system proposed in this paper is the first non-contact measurement system utilising Intel Perceptual Technology and a Senz3D Camera for measuring phalangeal joint angles. To enhance the accuracy of the system, we developed a new approach to achieve the total active movement without measuring three joint angles individually. An equation between the actual spacial position and measurement value of the proximal inter-phalangeal joint was established through the measurement values of the total active movement, so that its actual position can be inferred. Verified by computer simulations, experimental results demonstrated a significant improvement in the calculation of the total active movement and successfully recovered the actual position of the proximal inter-phalangeal joint angles. A trial that was conducted to examine the clinical applicability of the system involving 40 healthy subjects confirmed the practicability and consistency in the proposed system. The time efficiency conveyed a stronger argument for this system to replace the current practice of using goniometers. PMID:26225976

  5. Significance of finger forces and kinematics during handwriting in writer's cramp.

    PubMed

    Hermsdörfer, Joachim; Marquardt, Christian; Schneider, Alexandra S; Fürholzer, Waltraud; Baur, Barbara

    2011-08-01

    Muscular hyperactivity during handwriting, irregular and jerky scripts, as well as awkward and slowed pen movements are the cardinal symptoms of writer's cramp. Accordingly, impaired kinematics and increased force have been reported in writer's cramp. However, the relationship between these symptoms has rarely been investigated. In addition, measurements of finger forces have been restricted to the vertical pen pressure. In the present study, the pen of a graphic tablet was equipped with a force sensor matrix to measure also the grip force produced against the pen barrel despite highly variable pen grips of the patients. Kinematics of writing movements, vertical pen pressure, and grip force were compared in 27 patients with writer's cramp and normal control writers during writing of a test sentence. As expected, all measures revealed a significantly worse writing performance in the patients compared to the control subjects. Exaggerated forces were more frequent than abnormal kinematics, and evidenced by prolonged movement times and reduced writing frequencies. Correlations were found neither between kinematics and force measures nor between the two forces. Interestingly, patients relaxed the grip force during short periods of non-writing by the same relative amount as control subjects. The finding of a large heterogeneity of performances patterns in writer's cramp may reflect the variability of dystonic symptoms as well as the highly variable compensatory strategies of individual patients. Measurements of finger force and in particular of the grip force are valuable and important descriptors of individual impairment characteristics that are independent of writing kinematics. Copyright © 2010 Elsevier B.V. All rights reserved.

  6. Practical approach to subject-specific estimation of knee joint contact force.

    PubMed

    Knarr, Brian A; Higginson, Jill S

    2015-08-20

    Compressive forces experienced at the knee can significantly contribute to cartilage degeneration. Musculoskeletal models enable predictions of the internal forces experienced at the knee, but validation is often not possible, as experimental data detailing loading at the knee joint is limited. Recently available data reporting compressive knee force through direct measurement using instrumented total knee replacements offer a unique opportunity to evaluate the accuracy of models. Previous studies have highlighted the importance of subject-specificity in increasing the accuracy of model predictions; however, these techniques may be unrealistic outside of a research setting. Therefore, the goal of our work was to identify a practical approach for accurate prediction of tibiofemoral knee contact force (KCF). Four methods for prediction of knee contact force were compared: (1) standard static optimization, (2) uniform muscle coordination weighting, (3) subject-specific muscle coordination weighting and (4) subject-specific strength adjustments. Walking trials for three subjects with instrumented knee replacements were used to evaluate the accuracy of model predictions. Predictions utilizing subject-specific muscle coordination weighting yielded the best agreement with experimental data; however this method required in vivo data for weighting factor calibration. Including subject-specific strength adjustments improved models' predictions compared to standard static optimization, with errors in peak KCF less than 0.5 body weight for all subjects. Overall, combining clinical assessments of muscle strength with standard tools available in the OpenSim software package, such as inverse kinematics and static optimization, appears to be a practical method for predicting joint contact force that can be implemented for many applications. Copyright © 2015 Elsevier Ltd. All rights reserved.

  7. The 3-D vision system integrated dexterous hand

    NASA Technical Reports Server (NTRS)

    Luo, Ren C.; Han, Youn-Sik

    1989-01-01

    Most multifingered hands use a tendon mechanism to minimize the size and weight of the hand. Such tendon mechanisms suffer from the problems of striction and friction of the tendons resulting in a reduction of control accuracy. A design for a 3-D vision system integrated dexterous hand with motor control is described which overcomes these problems. The proposed hand is composed of three three-jointed grasping fingers with tactile sensors on their tips, a two-jointed eye finger with a cross-shaped laser beam emitting diode in its distal part. The two non-grasping fingers allow 3-D vision capability and can rotate around the hand to see and measure the sides of grasped objects and the task environment. An algorithm that determines the range and local orientation of the contact surface using a cross-shaped laser beam is introduced along with some potential applications. An efficient method for finger force calculation is presented which uses the measured contact surface normals of an object.

  8. Pervasive liquid metal based direct writing electronics with roller-ball pen

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zheng, Yi; Zhang, Qin; Liu, Jing, E-mail: jliu@mail.ipc.ac.cn

    A roller-ball pen enabled direct writing electronics via room temperature liquid metal ink was proposed. With the rolling to print mechanism, the metallic inks were smoothly written on flexible polymer substrate to form conductive tracks and electronic devices. The contact angle analyzer and scanning electron microscope were implemented to disclose several unique inner properties of the obtained electronics. An ever high writing resolution with line width and thickness as 200 μm and 80 μm, respectively was realized. Further, with the administration of external writing pressure, GaIn{sub 24.5} droplets embody increasing wettability on polymer which demonstrates the pervasive adaptability of themore » roller-ball pen electronics.« less

  9. Knee Contact Force Asymmetries in Patients Who Failed Return-to-Sport Readiness Criteria 6 Months After Anterior Cruciate Ligament Reconstruction

    PubMed Central

    Gardinier, Emily S.; Di Stasi, Stephanie; Manal, Kurt; Buchanan, Thomas S.; Snyder-Mackler, Lynn

    2015-01-01

    Background After anterior cruciate ligament (ACL) injury, contact forces are decreased in the injured knee when compared with the uninjured knee. The persistence of contact force asymmetries after ACL reconstruction may increase the risk of reinjury and may play an important role in the development of knee osteoarthritis in these patients. Functional performance may also be useful in identifying patients who demonstrate potentially harmful joint contact force asymmetries after ACL reconstruction. Hypothesis Knee joint contact force asymmetries would be present during gait after ACL reconstruction, and performance on a specific set of validated return-to-sport (RTS) readiness criteria would discriminate between those who demonstrated contact force asymmetries and those who did not. Study Design Descriptive laboratory study. Methods A total of 29 patients with ACL ruptures participated in gait analysis and RTS readiness testing 6 months after reconstruction. Muscle and joint contact forces were estimated using an electromyography (EMG)–driven musculoskeletal model of the knee. The magnitude of typical limb asymmetry in uninjured controls was used to define limits of meaningful limb asymmetry in patients after ACL reconstruction. The RTS testing included isometric quadriceps strength testing, 4 unilateral hop tests, and 2 self-report questionnaires. Paired t tests were used to assess limb symmetry for peak medial and tibiofemoral contact forces in all patients, and a mixed-design analysis of variance was used to analyze the effect of passing or failing RTS testing on contact force asymmetry. Results Among all patients, neither statistically significant nor meaningful contact force asymmetries were identified. However, patients who failed RTS testing exhibited meaningful contact force asymmetries, with tibiofemoral contact force being significantly lower for the involved knee. Conversely, patients who passed RTS testing exhibited neither significant nor meaningful

  10. Kinematically aligned total knee arthroplasty limits high tibial forces, differences in tibial forces between compartments, and abnormal tibial contact kinematics during passive flexion.

    PubMed

    Roth, Joshua D; Howell, Stephen M; Hull, Maury L

    2018-06-01

    Following total knee arthroplasty (TKA), high tibial forces, large differences in tibial forces between the medial and lateral compartments, and anterior translation of the contact locations of the femoral component on the tibial component during passive flexion indicate abnormal knee function. Because the goal of kinematically aligned TKA is to restore native knee function without soft tissue release, the objectives were to determine how well kinematically aligned TKA limits high tibial forces, differences in tibial forces between compartments, and anterior translation of the contact locations of the femoral component on the tibial component during passive flexion. Using cruciate retaining components, kinematically aligned TKA was performed on thirteen human cadaveric knee specimens with use of manual instruments without soft tissue release. The tibial forces and tibial contact locations were measured in both the medial and lateral compartments from 0° to 120° of passive flexion using a custom tibial force sensor. The average total tibial force (i.e. sum of medial + lateral) ranged from 5 to 116 N. The only significant average differences in tibial force between compartments occurred at 0° of flexion (29 N, p = 0.0008). The contact locations in both compartments translated posteriorly in all thirteen kinematically aligned TKAs by an average of 14 mm (p < 0.0001) and 18 mm (p < 0.0001) in the medial and lateral compartments, respectively, from 0° to 120° of flexion. After kinematically aligned TKA, average total tibial forces due to the soft tissue restraints were limited to 116 N, average differences in tibial forces between compartments were limited to 29 N, and a net posterior translation of the tibial contact locations was observed in all kinematically aligned TKAs during passive flexion from 0° to 120°, which are similar to what has been measured previously in native knees. While confirmation in vivo is warranted, these findings give

  11. PEN as self-vetoing structural material

    NASA Astrophysics Data System (ADS)

    Majorovits, B.; Eck, S.; Fischer, F.; Gooch, C.; Hayward, C.; Kraetzschmar, T.; van der Kolk, N.; Muenstermann, D.; Schulz, O.; Simon, F.

    2018-01-01

    Polyethylene Naphtalate (PEN) is a mechanically very favorable polymer. Earlier it was found that thin foils made from PEN can have very high radio-purity compared to other commercially available foils. In fact, PEN is already in use for low background signal transmission applications (cables). Recently it has been realized that PEN also has favorable scintillating properties. In combination, this makes PEN a very promising candidate as a self-vetoing structural material in low background experiments. Components instrumented with light detectors could be built from PEN. This includes detector holders, detector containments, signal transmission links, etc. The current R&D towards qualification of PEN as a self-vetoing low background structural material is be presented.

  12. Coaxial-probe contact-force monitoring for dielectric properties measurements

    USDA-ARS?s Scientific Manuscript database

    A means is described for measuring and monitoring the contact force applied to a material sample with an open-ended coaxial-line probe for purposes of measuring the dielectric properties of semisolid material samples such as fruit, vegetable and animal tissues. The equipment consists of a stainless...

  13. Monitoring Coaxial-Probe Contact Force for Dielectric Properties Measurement

    USDA-ARS?s Scientific Manuscript database

    A means is described for measuring and monitoring the contact force applied to a material sample with an open-ended coaxial-line probe for purposes of measuring the dielectric properties of semisolid material samples such as fruit, vegetable and animal tissues. The equipment consists of a stainless...

  14. Change in knee contact force with simulated change in body weight.

    PubMed

    Knarr, Brian A; Higginson, Jill S; Zeni, Joseph A

    2016-02-01

    The relationship between obesity, weight gain and progression of knee osteoarthritis is well supported, suggesting that excessive joint loading may be a mechanism responsible for cartilage deterioration. Examining the influence of weight gain on joint compressive forces is difficult, as both muscles and ground reaction forces can have a significant impact on the forces experienced during gait. While previous studies have examined the relationship between body weight and knee forces, these studies have used models that were not validated using experimental data. Therefore, the objective of this study was to evaluate the relationship between changes in body weight and changes in knee joint contact forces for an individual's gait pattern using musculoskeletal modeling that is validated against known internal compressive forces. Optimal weighting constants were determined for three subjects to generate valid predictions of knee contact forces (KCFs) using in vivo data collection with instrumented total knee arthroplasty. A total of five simulations per walking trial were generated for each subject, from 80% to 120% body weight in 10% increments, resulting in 50 total simulations. The change in peak KCF with respect to body weight was found to be constant and subject-specific, predominantly determined by the peak force during the baseline condition at 100% body weight. This relationship may be further altered by any change in kinematics or body mass distribution that may occur as a result of a change in body weight or exercise program.

  15. Hand controller study of force and control mode

    NASA Technical Reports Server (NTRS)

    Morris, A. Terry

    1992-01-01

    The objectives are to compare and evaluate the utility and effectiveness of various input control devices, e.g., hand controllers, with respect to the relative importance of force and operation control mode (rate or position) for Space Station Freedom (SSF) related tasks. The topics are presented in viewgraph form and include the: Intelligent Research Systems Lab (ISRL) experimental design; Telerobotic Systems Research Laboratory (TSRL) final experimental design; and factor analysis summary of results.

  16. Tactile Robotic Topographical Mapping Without Force or Contact Sensors

    NASA Technical Reports Server (NTRS)

    Burke, Kevin; Melko, Joseph; Krajewski, Joel; Cady, Ian

    2008-01-01

    A method of topographical mapping of a local solid surface within the range of motion of a robot arm is based on detection of contact between the surface and the end effector (the fixture or tool at the tip of the robot arm). The method was conceived to enable mapping of local terrain by an exploratory robot on a remote planet, without need to incorporate delicate contact switches, force sensors, a vision system, or other additional, costly hardware. The method could also be used on Earth for determining the size and shape of an unknown surface in the vicinity of a robot, perhaps in an unanticipated situation in which other means of mapping (e.g., stereoscopic imaging or laser scanning with triangulation) are not available. The method uses control software modified to utilize the inherent capability of the robotic control system to measure the joint positions, the rates of change of the joint positions, and the electrical current demanded by the robotic arm joint actuators. The system utilizes these coordinate data and the known robot-arm kinematics to compute the position and velocity of the end effector, move the end effector along a specified trajectory, place the end effector at a specified location, and measure the electrical currents in the joint actuators. Since the joint actuator current is approximately proportional to the actuator forces and torques, a sudden rise in joint current, combined with a slowing of the joint, is a possible indication of actuator stall and surface contact. Hence, even though the robotic arm is not equipped with contact sensors, it is possible to sense contact (albeit with reduced sensitivity) as the end effector becomes stalled against a surface that one seeks to measure.

  17. An assessment of firework particle persistence on the hands and related police force practices in relation to GSR evidence.

    PubMed

    Grima, Matthew; Hanson, Robert; Tidy, Helen

    2014-06-01

    In a previous study by Grima et al. Sci. Justice 52 (1) (2012) 49, it was shown that background particles can aid in the exclusion of firework particles which are indistinguishable from GSR. Issues relating to the persistence of such particle populations were presented. The scope of this project was to examine persistence on the hands in the context of possible post-display scene contamination and how this can affect GSR evidence, especially in light of possible GSR/firework mixtures. Persistence was investigated by recovering firework residues eight hours post-display following contact of the hands with bedding. In addition, particle profiling was carried out using SEM-EDX. Firework particle populations exhibited strong persistence in all displays, with not less than 667 particles persisting in each scenario. This factor challenges GSR evidence, especially if personnel stationed at display sites enter scenes of crime or come into contact with suspects after a display. A survey of UK police force practices following firework displays showed that authorities are not aware of the impact particle transfer may have on GSR evidence. Recommendations for the implementation of basic hygiene practices for particle transfer control have also been made. Copyright © 2014 Elsevier Ireland Ltd. All rights reserved.

  18. [Dry hands (irritative contact dermatitis) in housewives which is not alleviated on cessation of domestic work: clinical varieties].

    PubMed

    Grimalt, F; Romaguera, C; Vilaplana, J; Mascaro, J

    1988-01-01

    There are three types of hand dermatitis in housewives. The most usual are cured when housework is stopped. Another type is that of housewife contact dermatitis which appears on pre-existing endogenous lesions such as dyshidrosis or nummular eczema. The third form is housewife hand contact dermatitis which appears, or coexists with, localized endogenous lesions of the hands. The last two forms are not cured when housework is stopped. In some cases the three forms may coexist or appear one after another. It is not usual for a person suffering from typical flexural atopic dermatitis to present with one of the described three forms of hand dermatitis. Nevertheless, without having some relationship to atopic diathesis no woman could suffer from any of these three forms of dermatitis. In spite of the lack of analytical data, everyday clinical facts (one example being these different forms of housewife hand dermatitis) suggest the need to accept a subgroup of cutaneous atopic diathesis.

  19. How soft is that pillow? The perceptual localization of the hand and the haptic assessment of contact rigidity.

    PubMed

    Pressman, Assaf; Karniel, Amir; Mussa-Ivaldi, Ferdinando A

    2011-04-27

    A new haptic illusion is described, in which the location of the mobile object affects the perception of its rigidity. There is theoretical and experimental support for the notion that limb position sense results from the brain combining ongoing sensory information with expectations arising from prior experience. How does this probabilistic state information affect one's tactile perception of the environment mechanics? In a simple estimation process, human subjects were asked to report the relative rigidity of two simulated virtual objects. One of the objects remained fixed in space and had various coefficients of stiffness. The other virtual object had constant stiffness but moved with respect to the subjects. Earlier work suggested that the perception of an object's rigidity is consistent with a process of regression between the contact force and the perceived amount of penetration inside the object's boundary. The amount of penetration perceived by the subject was affected by varying the position of the object. This, in turn, had a predictable effect on the perceived rigidity of the contact. Subjects' reports on the relative rigidity of the object are best accounted for by a probabilistic model in which the perceived boundary of the object is estimated based on its current location and on past observations. Therefore, the perception of contact rigidity is accounted for by a stochastic process of state estimation underlying proprioceptive localization of the hand.

  20. A MEMS hardness sensor with reduced contact force dependence based on the reference plane concept aimed for medical applications

    NASA Astrophysics Data System (ADS)

    Maeda, Yusaku; Terao, Kyohei; Shimokawa, Fusao; Takao, Hidekuni

    2016-04-01

    In this study, the stable detection principle of a MEMS hardness sensor with “reference plane” structure is theoretically analyzed and demonstrated with experimental results. Hardness measurement independent of contact force instability is realized by the optimum design of the reference plane. The fabricated devices were evaluated, and a “shore A” hardness scale (JIS K 6301 A) was obtained as the reference in the range from A1 to A54 under a stable contact force. The contact force dependence on hardness sensor signals was effectively reduced by 96.6% using our reference plane design. Below 5 N contact force, the maximal signal error of hardness is suppressed to A8. This result corresponds to the detection capability for fat hardness, even when the contact force is unstable. Through experiments, stable detection of human body hardness has been demonstrated without any control of contact force.

  1. Grip force regulation during pinch grip lifts under somatosensory guidance: comparison between people with stroke and healthy controls.

    PubMed

    Blennerhassett, Jannette M; Carey, Leeanne M; Matyas, Thomas A

    2006-03-01

    To compare the timing and grip force application in a pinch grip task performed under somatosensory guidance in stroke and matched controls and to identify characteristics of impaired grip force regulation after stroke. Matched-pairs control group. University research laboratory. Forty-five people with stroke who could pick up a pen lid using a pinch grip and actively participated in rehabilitation and 45 adults without neurologic conditions or musculoskeletal or skin impairments affecting the hand, matched for age, sex, and hand dominance. Not applicable. Timing and magnitude of grip forces applied during pinch grip lift and hold. Prolonged time to grip and lift objects, and excessive grip force prior to commencing the lift occurred in approximately half of the contralesional (involved) hands of people with stroke. Fluctuating irregular forces and reduced adaptation of the grip safety margin were also observed. Excessive safety margins were not predominant after stroke. Extreme slowing and disorganized sequencing of the grip and lifting forces and difficulty maintaining a stable grip characterized severe dysfunction. Delayed grip formulation and variable grip force application are key characteristics of grip dysfunction after stroke.

  2. Review and Evaluation of Hand-Arm Coordinate Systems for Measuring Vibration Exposure, Biodynamic Responses, and Hand Forces.

    PubMed

    Dong, Ren G; Sinsel, Erik W; Welcome, Daniel E; Warren, Christopher; Xu, Xueyan S; McDowell, Thomas W; Wu, John Z

    2015-09-01

    The hand coordinate systems for measuring vibration exposures and biodynamic responses have been standardized, but they are not actually used in many studies. This contradicts the purpose of the standardization. The objectives of this study were to identify the major sources of this problem, and to help define or identify better coordinate systems for the standardization. This study systematically reviewed the principles and definition methods, and evaluated typical hand coordinate systems. This study confirms that, as accelerometers remain the major technology for vibration measurement, it is reasonable to standardize two types of coordinate systems: a tool-based basicentric (BC) system and an anatomically based biodynamic (BD) system. However, these coordinate systems are not well defined in the current standard. Definition of the standard BC system is confusing, and it can be interpreted differently; as a result, it has been inconsistently applied in various standards and studies. The standard hand BD system is defined using the orientation of the third metacarpal bone. It is neither convenient nor defined based on important biological or biodynamic features. This explains why it is rarely used in practice. To resolve these inconsistencies and deficiencies, we proposed a revised method for defining the realistic handle BC system and an alternative method for defining the hand BD system. A fingertip-based BD system for measuring the principal grip force is also proposed based on an important feature of the grip force confirmed in this study.

  3. A comparison of force control algorithms for robots in contact with flexible environments

    NASA Technical Reports Server (NTRS)

    Wilfinger, Lee S.

    1992-01-01

    In order to perform useful tasks, the robot end-effector must come into contact with its environment. For such tasks, force feedback is frequently used to control the interaction forces. Control of these forces is complicated by the fact that the flexibility of the environment affects the stability of the force control algorithm. Because of the wide variety of different materials present in everyday environments, it is necessary to gain an understanding of how environmental flexibility affects the stability of force control algorithms. This report presents the theory and experimental results of two force control algorithms: Position Accommodation Control and Direct Force Servoing. The implementation of each of these algorithms on a two-arm robotic test bed located in the Center for Intelligent Robotic Systems for Space Exploration (CIRSSE) is discussed in detail. The behavior of each algorithm when contacting materials of different flexibility is experimentally determined. In addition, several robustness improvements to the Direct Force Servoing algorithm are suggested and experimentally verified. Finally, a qualitative comparison of the force control algorithms is provided, along with a description of a general tuning process for each control method.

  4. Contact force history and dynamic response due to the impact of a soft projectile

    NASA Technical Reports Server (NTRS)

    Grady, J. E.

    1988-01-01

    A series of ballistic impact tests on several different instrumented targets was performed to characterize the dynamic contact force history resulting from the impact of a compliant projectile. The results show that the variation of contact force history with impact velocity does not follow the trends predicted by classical impact models. An empirical model was therefore developed to describe this behavior. This model was then used in a finite-element analysis to estimate the force history and calculate the resulting dynamic strain response in a transversely impacted composite laminate.

  5. Note: Thermal analog to atomic force microscopy force-displacement measurements for nanoscale interfacial contact resistance.

    PubMed

    Iverson, Brian D; Blendell, John E; Garimella, Suresh V

    2010-03-01

    Thermal diffusion measurements on polymethylmethacrylate-coated Si substrates using heated atomic force microscopy tips were performed to determine the contact resistance between an organic thin film and Si. The measurement methodology presented demonstrates how the thermal contrast signal obtained during a force-displacement ramp is used to quantify the resistance to heat transfer through an internal interface. The results also delineate the interrogation thickness beyond which thermal diffusion in the organic thin film is not affected appreciably by the underlying substrate.

  6. Compressive and shear hip joint contact forces are affected by pediatric obesity during walking

    PubMed Central

    Lerner, Zachary F.; Browning, Raymond C.

    2016-01-01

    Obese children exhibit altered gait mechanics compared to healthy-weight children and have an increased prevalence of hip pain and pathology. This study sought to determine the relationships between body mass and compressive and shear hip joint contact forces during walking. Kinematic and kinetic data were collected during treadmill walking at 1 m•s−1 in 10 obese and 10 healthy-weight 8–12 year-olds. We estimated body composition, segment masses, lower-extremity alignment, and femoral neck angle via radiographic images, created personalized musculoskeletal models in OpenSim, and computed muscle forces and hip joint contact forces. Hip extension at mid-stance was 9° less, on average, in the obese children (p<0.001). Hip abduction, knee flexion, and body-weight normalized peak hip moments were similar between groups. Normalized to body-weight, peak contact forces were similar at the first peak and slightly lower at the second peak between the obese and healthy-weight participants. Total body mass explained a greater proportion of contact force variance compared to lean body mass in the compressive (r2=0.89) and vertical shear (perpendicular to the physis acting superior-to-inferior) (r2=0.84) directions; lean body mass explained a greater proportion in the posterior shear direction (r2=0.54). Stance-average contact forces in the compressive and vertical shear directions increased by 41 N and 48 N, respectively, for every kilogram of body mass. Age explained less than 27% of the hip loading variance. No effect of sex was found. The proportionality between hip loads and body-weight may be implicated in an obese child’s increased risk of hip pain and pathology. PMID:27040390

  7. Compressive and shear hip joint contact forces are affected by pediatric obesity during walking.

    PubMed

    Lerner, Zachary F; Browning, Raymond C

    2016-06-14

    Obese children exhibit altered gait mechanics compared to healthy-weight children and have an increased prevalence of hip pain and pathology. This study sought to determine the relationships between body mass and compressive and shear hip joint contact forces during walking. Kinematic and kinetic data were collected during treadmill walking at 1ms(-1) in 10 obese and 10 healthy-weight 8-12 year-olds. We estimated body composition, segment masses, lower-extremity alignment, and femoral neck angle via radiographic images, created personalized musculoskeletal models in OpenSim, and computed muscle forces and hip joint contact forces. Hip extension at mid-stance was 9° less, on average, in the obese children (p<0.001). Hip abduction, knee flexion, and body-weight normalized peak hip moments were similar between groups. Normalized to body-weight, peak contact forces were similar at the first peak and slightly lower at the second peak between the obese and healthy-weight participants. Total body mass explained a greater proportion of contact force variance compared to lean body mass in the compressive (r(2)=0.89) and vertical shear (perpendicular to the physis acting superior-to-inferior) (r(2)=0.84) directions; lean body mass explained a greater proportion in the posterior shear direction (r(2)=0.54). Stance-average contact forces in the compressive and vertical shear directions increased by 41N and 48N, respectively, for every kilogram of body mass. Age explained less than 27% of the hip loading variance. No effect of sex was found. The proportionality between hip loads and body-weight may be implicated in an obese child׳s increased risk of hip pain and pathology. Published by Elsevier Ltd.

  8. Effect of Tibial Posterior Slope on Knee Kinematics, Quadriceps Force, and Patellofemoral Contact Force After Posterior-Stabilized Total Knee Arthroplasty.

    PubMed

    Okamoto, Shigetoshi; Mizu-uchi, Hideki; Okazaki, Ken; Hamai, Satoshi; Nakahara, Hiroyuki; Iwamoto, Yukihide

    2015-08-01

    We used a musculoskeletal model validated with in vivo data to evaluate the effect of tibial posterior slope on knee kinematics, quadriceps force, and patellofemoral contact force after posterior-stabilized total knee arthroplasty. The maximum quadriceps force and patellofemoral contact force decreased with increasing posterior slope. Anterior sliding of the tibial component and anterior impingement of the anterior aspect of the tibial post were observed with tibial posterior slopes of at least 5° and 10°, respectively. Increased tibial posterior slope contributes to improved exercise efficiency during knee extension, however excessive tibial posterior slope should be avoided to prevent knee instability. Based on our computer simulation we recommend tibial posterior slopes of less than 5° in posterior-stabilized total knee arthroplasty. Copyright © 2015 Elsevier Inc. All rights reserved.

  9. Contact inhibition of locomotion determines cell–cell and cell–substrate forces in tissues

    PubMed Central

    Zimmermann, Juliane; Camley, Brian A.; Rappel, Wouter-Jan; Levine, Herbert

    2016-01-01

    Cells organized in tissues exert forces on their neighbors and their environment. Those cellular forces determine tissue homeostasis as well as reorganization during embryonic development and wound healing. To understand how cellular forces are generated and how they can influence the tissue state, we develop a particle-based simulation model for adhesive cell clusters and monolayers. Cells are contractile, exert forces on their substrate and on each other, and interact through contact inhibition of locomotion (CIL), meaning that cell–cell contacts suppress force transduction to the substrate and propulsion forces align away from neighbors. Our model captures the traction force patterns of small clusters of nonmotile cells and larger sheets of motile Madin–Darby canine kidney (MDCK) cells. In agreement with observations in a spreading MDCK colony, the cell density in the center increases as cells divide and the tissue grows. A feedback between cell density, CIL, and cell–cell adhesion gives rise to a linear relationship between cell density and intercellular tensile stress and forces the tissue into a nonmotile state characterized by a broad distribution of traction forces. Our model also captures the experimentally observed tissue flow around circular obstacles, and CIL accounts for traction forces at the edge. PMID:26903658

  10. Contact inhibition of locomotion determines cell-cell and cell-substrate forces in tissues.

    PubMed

    Zimmermann, Juliane; Camley, Brian A; Rappel, Wouter-Jan; Levine, Herbert

    2016-03-08

    Cells organized in tissues exert forces on their neighbors and their environment. Those cellular forces determine tissue homeostasis as well as reorganization during embryonic development and wound healing. To understand how cellular forces are generated and how they can influence the tissue state, we develop a particle-based simulation model for adhesive cell clusters and monolayers. Cells are contractile, exert forces on their substrate and on each other, and interact through contact inhibition of locomotion (CIL), meaning that cell-cell contacts suppress force transduction to the substrate and propulsion forces align away from neighbors. Our model captures the traction force patterns of small clusters of nonmotile cells and larger sheets of motile Madin-Darby canine kidney (MDCK) cells. In agreement with observations in a spreading MDCK colony, the cell density in the center increases as cells divide and the tissue grows. A feedback between cell density, CIL, and cell-cell adhesion gives rise to a linear relationship between cell density and intercellular tensile stress and forces the tissue into a nonmotile state characterized by a broad distribution of traction forces. Our model also captures the experimentally observed tissue flow around circular obstacles, and CIL accounts for traction forces at the edge.

  11. Contact-free calibration of an asymmetric multi-layer interferometer for the surface force balance

    NASA Astrophysics Data System (ADS)

    Balabajew, Marco; van Engers, Christian D.; Perkin, Susan

    2017-12-01

    The Surface Force Balance (SFB, also known as Surface Force Apparatus, SFA) has provided important insights into many phenomena within the field of colloid and interface science. The technique relies on using white light interferometry to measure the distance between surfaces with sub-nanometer resolution. Up until now, the determination of the distance between the surfaces required a so-called "contact calibration," an invasive procedure during which the surfaces are brought into mechanical contact. This requirement for a contact calibration limits the range of experimental systems that can be investigated with SFB, for example, it precludes experiments with substrates that would be irreversibly modified or damaged by mechanical contact. Here we present a non-invasive method to measure absolute distances without performing a contact calibration. The method can be used for both "symmetric" and "asymmetric" systems. We foresee many applications for this general approach including, most immediately, experiments using single layer graphene electrodes in the SFB which may be damaged when brought into mechanical contact.

  12. The 'Arm Force Field' method to predict manual arm strength based on only hand location and force direction.

    PubMed

    La Delfa, Nicholas J; Potvin, Jim R

    2017-03-01

    This paper describes the development of a novel method (termed the 'Arm Force Field' or 'AFF') to predict manual arm strength (MAS) for a wide range of body orientations, hand locations and any force direction. This method used an artificial neural network (ANN) to predict the effects of hand location and force direction on MAS, and included a method to estimate the contribution of the arm's weight to the predicted strength. The AFF method predicted the MAS values very well (r 2  = 0.97, RMSD = 5.2 N, n = 456) and maintained good generalizability with external test data (r 2  = 0.842, RMSD = 13.1 N, n = 80). The AFF can be readily integrated within any DHM ergonomics software, and appears to be a more robust, reliable and valid method of estimating the strength capabilities of the arm, when compared to current approaches. Copyright © 2016 Elsevier Ltd. All rights reserved.

  13. Enhancing the evaluation of pathogen transmission risk in a hospital by merging hand-hygiene compliance and contact data: a proof-of-concept study.

    PubMed

    Mastrandrea, Rossana; Soto-Aladro, Alberto; Brouqui, Philippe; Barrat, Alain

    2015-09-10

    Hand-hygiene compliance and contacts of health-care workers largely determine the potential paths of pathogen transmission in hospital wards. We explored how the combination of data collected by two automated infrastructures based on wearable sensors and recording (1) use of hydro-alcoholic solution and (2) contacts of health-care workers provide an enhanced view of the risk of transmission events in the ward. We perform a proof-of-concept observational study. Detailed data on contact patterns and hand-hygiene compliance of health-care workers were collected by wearable sensors over 12 days in an infectious disease unit of a hospital in Marseilles, France. 10,837 contact events among 10 doctors, 4 nurses, 4 nurses' aids and 4 housekeeping staff were recorded during the study. Most contacts took place among medical doctors. Aggregate contact durations were highly heterogeneous and the resulting contact network was highly structured. 510 visits of health-care workers to patients' rooms were recorded, with a low rate of hand-hygiene compliance. Both data sets were used to construct histories and statistics of contacts informed by the use of hydro-alcoholic solution, or lack thereof, of the involved health-care workers. Hand-hygiene compliance data strongly enrich the information concerning contacts among health-care workers, by assigning a 'safe' or 'at-risk' value to each contact. The global contact network can thus be divided into 'at-risk' and 'safe' contact networks. The combined data could be of high relevance for outbreak investigation and to inform data-driven models of nosocomial disease spread.

  14. Atomic force microscopy contact, tapping, and jumping modes for imaging biological samples in liquids

    NASA Astrophysics Data System (ADS)

    Moreno-Herrero, F.; Colchero, J.; Gómez-Herrero, J.; Baró, A. M.

    2004-03-01

    The capabilities of the atomic force microscope for imaging biomolecules under physiological conditions has been systematically investigated. Contact, dynamic, and jumping modes have been applied to four different biological systems: DNA, purple membrane, Alzheimer paired helical filaments, and the bacteriophage φ29. These samples have been selected to cover a wide variety of biological systems in terms of sizes and substrate contact area, which make them very appropriate for the type of comparative studies carried out in the present work. Although dynamic mode atomic force microscopy is clearly the best choice for imaging soft samples in air, in liquids there is not a leading technique. In liquids, the most appropriate imaging mode depends on the sample characteristics and preparation methods. Contact or dynamic modes are the best choices for imaging molecular assemblies arranged as crystals such as the purple membrane. In this case, the advantage of image acquisition speed predominates over the disadvantage of high lateral or normal force. For imaging individual macromolecules, which are weakly bonded to the substrate, lateral and normal forces are the relevant factors, and hence the jumping mode, an imaging mode which minimizes lateral and normal forces, is preferable to other imaging modes.

  15. Hand forces exerted by long-term care staff when pushing wheelchairs on compliant and non-compliant flooring.

    PubMed

    Lachance, Chantelle C; Korall, Alexandra M B; Russell, Colin M; Feldman, Fabio; Robinovitch, Stephen N; Mackey, Dawn C

    2018-09-01

    Purpose-designed compliant flooring and carpeting have been promoted as a means for reducing fall-related injuries in high-risk environments, such as long-term care. However, it is not known whether these surfaces influence the forces that long-term care staff exert when pushing residents in wheelchairs. We studied 14 direct-care staff who pushed a loaded wheelchair instrumented with a triaxial load cell to test the effects on hand force of flooring overlay (vinyl versus carpet) and flooring subfloor (concrete versus compliant rubber [brand: SmartCells]). During straight-line pushing, carpet overlay increased initial and sustained hand forces compared to vinyl overlay by 22-49% over a concrete subfloor and by 8-20% over a compliant subfloor. Compliant subflooring increased initial and sustained hand forces compared to concrete subflooring by 18-31% when under a vinyl overlay. In contrast, compliant flooring caused no change in initial or sustained hand forces compared to concrete subflooring when under a carpet overlay. Copyright © 2018 Elsevier Ltd. All rights reserved.

  16. The influence of muscle pennation angle and cross-sectional area on contact forces in the ankle joint

    PubMed Central

    Sopher, Ran S; Amis, Andrew A; Davies, D Ceri; Jeffers, Jonathan RT

    2016-01-01

    Data about a muscle’s fibre pennation angle and physiological cross-sectional area are used in musculoskeletal modelling to estimate muscle forces, which are used to calculate joint contact forces. For the leg, muscle architecture data are derived from studies that measured pennation angle at the muscle surface, but not deep within it. Musculoskeletal models developed to estimate joint contact loads have usually been based on the mean values of pennation angle and physiological cross-sectional area. Therefore, the first aim of this study was to investigate differences between superficial and deep pennation angles within each muscle acting over the ankle and predict how differences may influence muscle forces calculated in musculoskeletal modelling. The second aim was to investigate how inter-subject variability in physiological cross-sectional area and pennation angle affects calculated ankle contact forces. Eight cadaveric legs were dissected to excise the muscles acting over the ankle. The mean surface and deep pennation angles, fibre length and physiological cross-sectional area were measured. Cluster analysis was applied to group the muscles according to their architectural characteristics. A previously validated OpenSim model was used to estimate ankle muscle forces and contact loads using architecture data from all eight limbs. The mean surface pennation angle for soleus was significantly greater (54%) than the mean deep pennation angle. Cluster analysis revealed three groups of muscles with similar architecture and function: deep plantarflexors and peroneals, superficial plantarflexors and dorsiflexors. Peak ankle contact force was predicted to occur before toe-off, with magnitude greater than five times bodyweight. Inter-specimen variability in contact force was smallest at peak force. These findings will help improve the development of experimental and computational musculoskeletal models by providing data to estimate force based on both surface and deep

  17. The influence of muscle pennation angle and cross-sectional area on contact forces in the ankle joint.

    PubMed

    Sopher, Ran S; Amis, Andrew A; Davies, D Ceri; Jeffers, Jonathan Rt

    2017-01-01

    Data about a muscle's fibre pennation angle and physiological cross-sectional area are used in musculoskeletal modelling to estimate muscle forces, which are used to calculate joint contact forces. For the leg, muscle architecture data are derived from studies that measured pennation angle at the muscle surface, but not deep within it. Musculoskeletal models developed to estimate joint contact loads have usually been based on the mean values of pennation angle and physiological cross-sectional area. Therefore, the first aim of this study was to investigate differences between superficial and deep pennation angles within each muscle acting over the ankle and predict how differences may influence muscle forces calculated in musculoskeletal modelling. The second aim was to investigate how inter-subject variability in physiological cross-sectional area and pennation angle affects calculated ankle contact forces. Eight cadaveric legs were dissected to excise the muscles acting over the ankle. The mean surface and deep pennation angles, fibre length and physiological cross-sectional area were measured. Cluster analysis was applied to group the muscles according to their architectural characteristics. A previously validated OpenSim model was used to estimate ankle muscle forces and contact loads using architecture data from all eight limbs. The mean surface pennation angle for soleus was significantly greater (54%) than the mean deep pennation angle. Cluster analysis revealed three groups of muscles with similar architecture and function: deep plantarflexors and peroneals, superficial plantarflexors and dorsiflexors. Peak ankle contact force was predicted to occur before toe-off, with magnitude greater than five times bodyweight. Inter-specimen variability in contact force was smallest at peak force. These findings will help improve the development of experimental and computational musculoskeletal models by providing data to estimate force based on both surface and deep

  18. Importance of catheter contact force during irrigated radiofrequency ablation: evaluation in a porcine ex vivo model using a force-sensing catheter.

    PubMed

    Thiagalingam, Aravinda; D'Avila, Andre; Foley, Lori; Guerrero, J Luis; Lambert, Hendrik; Leo, Giovanni; Ruskin, Jeremy N; Reddy, Vivek Y

    2010-07-01

    Ablation electrode-tissue contact has been shown to be an important determinant of lesion size and safety during nonirrigated ablation but little data are available during irrigated ablation. We aimed to determine the importance of contact force during irrigated-tip ablation. Freshly excised hearts from 11 male pigs were perfused and superfused using fresh, heparinized, oxygenated swine blood in an ex vivo model. One-minute ablations were placed using one of 3 different power control strategies (impedance control-15 Omega target impedance drop, and 20 W or 30 W fixed power) and 3 different contact forces (2 g, 20 g, and 60 g) to give a grid of 9 ablation groups. The force sensing catheter (Tacticath, Endosense SA) was irrigated at 17 mL/min for all of the ablations. Of a total 101 ablations, no thrombus formation was noted but popping was seen in 17 lesions. The lesion depth and incidence of pops was 5.0 +/- 1.3 mm /0%, 5.0 +/- 1.6 mm /10% and 6.7 +/- 2.5 mm /45% for the 15 Omega, 20 W, and 30 W groups (P < 0.01), respectively, and 4.4 +/- 1.8 mm /3%, 5.8 +/- 1.6 mm /17% and 6.6 +/- 2.0 mm /37% for the 2 g, 20 g, and 60 g groups, respectively (P < 0.01). The impedance drop in the first 5 seconds was significantly correlated to catheter contact force: 9.7 +/- 9.9 Omega, 22.3 +/- 11.0 Omega, and 41.7 +/- 22.1 Omega, respectively, for the 2 g, 20 g, and 60 g groups (Pearson's r = 0.65, P < 0.01). Catheter contact force has an important impact on both ablation lesion size and the incidence of pops.

  19. Imagined Hand Clenching Force and Speed Modulate Brain Activity and Are Classified by NIRS Combined With EEG.

    PubMed

    Fu, Yunfa; Xiong, Xin; Jiang, Changhao; Xu, Baolei; Li, Yongcheng; Li, Hongyi

    2017-09-01

    Simultaneous acquisition of brain activity signals from the sensorimotor area using NIRS combined with EEG, imagined hand clenching force and speed modulation of brain activity, as well as 6-class classification of these imagined motor parameters by NIRS-EEG were explored. Near infrared probes were aligned with C3 and C4, and EEG electrodes were placed midway between the NIRS probes. NIRS and EEG signals were acquired from six healthy subjects during six imagined hand clenching force and speed tasks involving the right hand. The results showed that NIRS combined with EEG is effective for simultaneously measuring brain activity of the sensorimotor area. The study also showed that in the duration of (0, 10) s for imagined force and speed of hand clenching, HbO first exhibited a negative variation trend, which was followed by a negative peak. After the negative peak, it exhibited a positive variation trend with a positive peak about 6-8 s after termination of imagined movement. During (-2, 1) s, the EEG may have indicated neural processing during the preparation, execution, and monitoring of a given imagined force and speed of hand clenching. The instantaneous phase, frequency, and amplitude feature of the EEG were calculated by Hilbert transform; HbO and the difference between HbO and Hb concentrations were extracted. The features of NIRS and EEG were combined to classify three levels of imagined force [at 20/50/80% MVGF (maximum voluntary grip force)] and speed (at 0.5/1/2 Hz) of hand clenching by SVM. The average classification accuracy of the NIRS-EEG fusion feature was 0.74 ± 0.02. These results may provide increased control commands of force and speed for a brain-controlled robot based on NIRS-EEG.

  20. An ergonomic, instrumented ultrasound probe for 6-axis force/torque measurement.

    PubMed

    Gilbertson, Matthew W; Anthony, Brian W

    2013-01-01

    An ergonomic, instrumented ultrasound probe has been developed for medical imaging applications. The device, which fits compactly in the hand of sonographers and permits rapid attachment & removal of the ultrasound probe, measures ultrasound probe-to-patient contact forces and torques in all six axes. The device was used to measure contact forces and torques applied by ten professional sonographers on five patients during thirty-six abdominal exams. Of the three contact forces, those applied along the probe axis were found to be largest, averaging 7.0N. Measurement noise was quantified for each axis, and found to be small compared with the axial force. Understanding the range of forces applied during ultrasound imaging enables the design of more accurate robotic imaging systems and could also improve understanding of the correlation between contact force and sonographer fatigue and injury.

  1. How soft is that pillow? The perceptual localization of the hand and the haptic assessment of contact rigidity

    PubMed Central

    Pressman, Assaf; Karniel, Amir; Mussa-Ivaldi, Ferdinando A.

    2011-01-01

    A new haptic illusion is described, in which the location of the mobile object affects the perception of its rigidity. There is theoretical and experimental support to the notion that limb position sense results from the brain combining ongoing sensory information with expectations arising from prior experience. How does this probabilistic state information affect one’s tactile perception of the environment mechanics? In a simple estimation process human subjects were asked to report the relative rigidity of two simulated virtual objects. One of the objects remained fixed in space and had various coefficients of stiffness. The other virtual object had constant stiffness but moved with respect to the subjects. Earlier work suggested that the perception of an object’s rigidity is consistent with a process of regression between the contact force and the perceived amount of penetration inside the object’s boundary. The amount of penetration perceived by the subject was affected by varying the position of the object. This, in turn, had a predictable effect on the perceived rigidity of the contact. Subjects’ reports on the relative rigidity of the object are best accounted for by a probabilistic model in which the perceived boundary of the object is estimated based on its current location and on its past observations. Therefore, the perception of contact rigidity is accounted for by a stochastic process of state estimation underlying proprioceptive localization of the hand. PMID:21525300

  2. Vorticity dipoles and a theoretical model of a finite force at the moving contact line singularity

    NASA Astrophysics Data System (ADS)

    Zhang, Peter; Devoria, Adam; Mohseni, Kamran

    2017-11-01

    In the well known works of Moffatt (1964) and Huh & Scriven (1971), an infinite force was reported at the moving contact line (MCL) and attributed to a non-integrable stress along the fluid-solid boundary. In our recent investigation of the boundary driven wedge, a model of the MCL, we find that the classical solution theoretically predicts a finite force at the contact line if the forces applied by the two boundaries that make up the corner are taken into consideration. Mathematically, this force can be obtained by the complex contour integral of the holomorphic vorticity-pressure function given by G = μω + ip . Alternatively, this force can also be found using a carefully defined real integral that incorporates the two boundaries. Motivated by this discovery, we have found that the rate of change in circulation, viscous energy dissipation, and viscous energy flux is also finite per unit contact line length. The analysis presented demonstrates that despite a singular stress and a relatively simple geometry, the no-slip semi-infinite wedge is capable of capturing some physical quantities of interest. Furthermore, this result provides a foundation for other challenging topics such as dynamic contact angle.

  3. Correlation between the knee adduction torque and medial contact force for a variety of gait patterns.

    PubMed

    Zhao, Dong; Banks, Scott A; Mitchell, Kim H; D'Lima, Darryl D; Colwell, Clifford W; Fregly, Benjamin J

    2007-06-01

    The external knee adduction torque has been proposed as a surrogate measure for medial compartment load during gait. However, a direct link between these two quantities has not been demonstrated using in vivo measurement of medial compartment load. This study uses in vivo data collected from a single subject with an instrumented knee implant to evaluate this link. The subject performed five different overground gait motions (normal, fast, slow, wide, and toe-out) with simultaneous collection of instrumented implant, video motion, and ground reaction data. For each trial, the knee adduction torque was measured externally while the total axial force applied to the tibial insert was measured internally. Based on data collected from the same subject performing treadmill gait under fluoroscopic motion analysis, a regression equation was developed to calculate medial contact force from the implant load cell measurements. Correlation analyses were performed for the stance phase and entire gait cycle to quantify the relationship between the knee adduction torque and both the medial contact force and the medial to total contact force ratio. When the entire gait cycle was analyzed, R(2) for medial contact force was 0.77 when all gait trials were analyzed together and between 0.69 and 0.93 when each gait trial was analyzed separately (p < 0.001 in all cases). For medial to total force ratio, R(2) was 0.69 for all trials together and between 0.54 and 0.90 for each trial separately (p < 0.001 in all cases). When only the stance phase was analyzed, R(2) values were slightly lower. These results support the hypothesis that the knee adduction torque is highly correlated with medial compartment contact force and medial to total force ratio during gait. (c) 2007 Orthopaedic Research Society. Published by Wiley Periodicals, Inc.

  4. Logarithmic contact time dependence of adhesion force and its dominant role among the effects of AFM experimental parameters under low humidity

    NASA Astrophysics Data System (ADS)

    Lai, Tianmao; Meng, Yonggang

    2017-10-01

    The influences of contact time, normal load, piezo velocity, and measurement number of times on the adhesion force between two silicon surfaces were studied with an atomic force microscope (AFM) at low humidity (17-15%). Results show that the adhesion force is time-dependent and increases logarithmically with contact time until saturation is reached, which is related with the growing size of a water bridge between them. The contact time plays a dominant role among these parameters. The adhesion forces with different normal loads and piezo velocities can be quantitatively obtained just by figuring out the length of contact time, provided that the contact time dependence is known. The time-dependent adhesion force with repeated contacts at one location usually increases first sharply and then slowly with measurement number of times until saturation is reached, which is in accordance with the contact time dependence. The behavior of the adhesion force with repeated contacts can be adjusted by the lengths of contact time and non-contact time. These results may help facilitate the anti-adhesion design of silicon-based microscale systems working under low humidity.

  5. Dynamic simulation of knee-joint loading during gait using force-feedback control and surrogate contact modelling.

    PubMed

    Walter, Jonathan P; Pandy, Marcus G

    2017-10-01

    The aim of this study was to perform multi-body, muscle-driven, forward-dynamics simulations of human gait using a 6-degree-of-freedom (6-DOF) model of the knee in tandem with a surrogate model of articular contact and force control. A forward-dynamics simulation incorporating position, velocity and contact force-feedback control (FFC) was used to track full-body motion capture data recorded for multiple trials of level walking and stair descent performed by two individuals with instrumented knee implants. Tibiofemoral contact force errors for FFC were compared against those obtained from a standard computed muscle control algorithm (CMC) with a 6-DOF knee contact model (CMC6); CMC with a 1-DOF translating hinge-knee model (CMC1); and static optimization with a 1-DOF translating hinge-knee model (SO). Tibiofemoral joint loads predicted by FFC and CMC6 were comparable for level walking, however FFC produced more accurate results for stair descent. SO yielded reasonable predictions of joint contact loading for level walking but significant differences between model and experiment were observed for stair descent. CMC1 produced the least accurate predictions of tibiofemoral contact loads for both tasks. Our findings suggest that reliable estimates of knee-joint loading may be obtained by incorporating position, velocity and force-feedback control with a multi-DOF model of joint contact in a forward-dynamics simulation of gait. Copyright © 2017 IPEM. Published by Elsevier Ltd. All rights reserved.

  6. Hand hygiene compliance in patients under contact precautions and in the general hospital population.

    PubMed

    Almaguer-Leyva, Martín; Mendoza-Flores, Lidia; Medina-Torres, Ana Gabriela; Salinas-Caballero, Ana Gabriela; Vidaña-Amaro, Jose Antonio; Garza-Gonzalez, Elvira; Camacho-Ortiz, Adrián

    2013-11-01

    Hand hygiene (HH) is the single most important intervention for preventing hospital-acquired infections. Contact precautions are a series of actions that infection control units take to reduce the transmission of nosocomial pathogens. We conducted an observational study of HH compliance. Observations were stratified as opportunities in patients under contact precautions and in the general hospital population. Trained infection control personnel performed all direct evaluations. A total of 3,270 opportunities were recorded. HH compliance was statistically higher in patients on contact precautions than in the overall population (70.3% vs 60.4%; P = .0001). Critical care areas had higher HH compliance when patients were isolated by contact precautions. Medical wards were statistically lower in HH when patients were under contact precautions. Respiratory technicians had the highest HH compliance in both overall performance and in patients under contact precautions. Medical students had a lower HH compliance in both evaluations (P < .001). We noted greater compliance with HH practices when patients were under contact precaution in comparison with the overall hospital population. The difference was stronger in intensive care areas and lower among medical students. Copyright © 2013 Association for Professionals in Infection Control and Epidemiology, Inc. Published by Mosby, Inc. All rights reserved.

  7. Contact resonances of U-shaped atomic force microscope probes

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Rezaei, E.; Turner, J. A., E-mail: jaturner@unl.edu

    Recent approaches used to characterize the elastic or viscoelastic properties of materials with nanoscale resolution have focused on the contact resonances of atomic force microscope (CR-AFM) probes. The experiments for these CR-AFM methods involve measurement of several contact resonances from which the resonant frequency and peak width are found. The contact resonance values are then compared with the noncontact values in order for the sample properties to be evaluated. The data analysis requires vibration models associated with the probe during contact in order for the beam response to be deconvolved from the measured spectra. To date, the majority of CR-AFMmore » research has used rectangular probes that have a relatively simple vibration response. Recently, U-shaped AFM probes have created much interest because they allow local sample heating. However, the vibration response of these probes is much more complex such that CR-AFM is still in its infancy. In this article, a simplified analytical model of U-shaped probes is evaluated for contact resonance applications relative to a more complex finite element (FE) computational model. The tip-sample contact is modeled using three orthogonal Kelvin-Voigt elements such that the resonant frequency and peak width of each mode are functions of the contact conditions. For the purely elastic case, the frequency results of the simple model are within 8% of the FE model for the lowest six modes over a wide range of contact stiffness values. Results for the viscoelastic contact problem for which the quality factor of the lowest six modes is compared show agreement to within 13%. These results suggest that this simple model can be used effectively to evaluate CR-AFM experimental results during AFM scanning such that quantitative mapping of viscoelastic properties may be possible using U-shaped probes.« less

  8. The PartoPen: Using Digital Pen Technology to Improve Maternal Labor Monitoring in the Developing World

    ERIC Educational Resources Information Center

    Underwood, Heather Marie

    2013-01-01

    This dissertation presents the PartoPen, a new approach to addressing maternal labor monitoring challenges in developing countries. The PartoPen is a hardware and software system that uses digital pen technology to enhance, rather than replace, the paper-based labor monitoring tool known as the partograph. In the developing world, correct use of…

  9. Effect of pond ash on pen surface properties

    USDA-ARS?s Scientific Manuscript database

    Maintaining adequate feedlot pen surfaces is expensive. Pond ash (PA), a coal-fired electrical generation by-product, has good support qualities. A study was conducted comparing the performance of pond ash (PA) surfaced pens with soil surface (SS) pens. Four pens of an eight pen series with dimensio...

  10. FlexTouch: An Insulin Pen-Injector with a Low Activation Force Across Different Insulin Formulations, Needle Technologies, and Temperature Conditions.

    PubMed

    Gudiksen, Niels; Hofstätter, Thibaud; Rønn, Birgitte B; Sparre, Thomas

    2017-10-01

    FlexTouch® (Novo Nordisk A/S, Bagsvaerd, Denmark) is a pen-injector with a torque spring mechanism requiring a low activation force. This laboratory-based study compared the activation force of FlexTouch during the injection of insulin with different needles and at temperature conditions within the range at which the device is recommended for use. Using a tensile tester, activation force was measured at maximum dose settings for insulin detemir (100 U/mL) and insulin degludec (100 and 200 U/mL) at standard (23°C ± 5°C), cool (5°C ± 3°C), and warm (30°C ± 2°C) conditions. Activation force was measured with two 32-gauge needles differing in internal diameter at standard conditions. At standard, cool, and warm conditions, estimated mean activation forces with 95% confidence interval were 5.71 newtons (N) (5.63-5.79), 5.94 N (5.83-6.06), and 5.69 N (5.58-5.80) with insulin detemir, 5.53 N (5.45-5.62), 5.56 N (5.44-5.67), and 5.33 N (5.22-5.44) with 100 U/mL insulin degludec, and 5.53 N (5.45-5.61), 5.83 N (5.71-5.94), and 5.56 N (5.45-5.68) with 200 U/mL insulin degludec, respectively. Mean activation forces were observed to be low with very small variability between measurements; however, the differences between insulins and temperature conditions were statistically significant. The activation force required by FlexTouch remained low across all situations tested. The differences between activation force needed with different insulins and temperature conditions were small and unlikely to be clinically meaningful.

  11. On the non-proportionality between wheel/rail contact forces and speed during wheelset passage over specific welds

    NASA Astrophysics Data System (ADS)

    Correa, Nekane; Vadillo, Ernesto G.; Santamaria, Javier; Blanco-Lorenzo, Julio

    2018-01-01

    This study investigates the influence on the wheel-rail contact forces of the running speed and the shape and position of weld defects along the track. For this purpose, a vertical dynamic model in the space domain is used. The model is obtained from the transformation between the domains of frequency and space using a Rational Fraction Polynomials (RFP) method, which is modified with multiobjective genetic algorithms in order to improve the fitting of track receptance and to assist integration during simulations. This produces a precise model with short calculation times, which is essential to this study. The wheel-rail contact is modelled using a non-linear Hertz spring. The contact forces are studied for several types of characteristic welds. The way in which forces vary as a function of weld position and running speed is studied for each type of weld. This paper studies some of the factors that affect the maximum forces when the vehicle moves over a rail weld, such as weld geometry, parametric excitation and contact stiffness. It is found that the maximum force in the wheel-rail contact when the vehicle moves over a weld is not always proportional to the running speed. The paper explains why it is not proportional in specific welds.

  12. An American Society for Surgery of the Hand (ASSH) task force report on hand surgery subspecialty certification and ASSH membership.

    PubMed

    Goldfarb, Charles A; Lee, W P Andrew; Briskey, Dawn; Higgins, James P

    2014-02-01

    A task force for the American Society for Surgery of the Hand (ASSH) recently investigated the practice patterns, board certification, subspecialty certification status, and ASSH membership of hand surgeons after completion of fellowship training. A total of 37% of the fellowship graduates from 2000 to 2006 had not attained subspecialty certification for a variety of reasons. A smaller group of fellowship graduates obtained the subspecialty certification but had not become Active Members of the ASSH. Efforts to strengthen the hand surgeon community and best serve our patients should focus on evolving patterns in post fellowship choices that reflect practice type choices and generational changes. Copyright © 2014 American Society for Surgery of the Hand. Published by Elsevier Inc. All rights reserved.

  13. First principles calculation of current-induced forces in atomic gold contacts

    NASA Astrophysics Data System (ADS)

    Brandbyge, Mads; Stokbro, Kurt; Taylor, Jeremy; Mozos, Jose-Luis; Ordejon, Pablo

    2002-03-01

    We have recently developed an first principles method [1] for calculating the electronic structure, electronic transport, and forces acting on the atoms, for atomic scale systems connected to semi-infinite electrodes and with an applied voltage bias. Our method is based on the density functional theory (DFT) as implemented in the well tested SIESTA program [2]. We fully deal with the atomistic structure of the whole system, treating both the contact and the electrodes on the same footing. The effect of the finite bias (including selfconsistency and the solution of the electrostatic problem) is taken into account using nonequilibrium Green's functions. In this talk we show results for the forces acting on the contact atoms due to the nonequilibrium situation in the electronic subsystem, i.e. in the presence of an electronic current. We concentrate on one atom wide gold contacts/wires connected to bulk gold electrodes. References [1] Our implementation is called TranSIESTA and is described in M. Brandbyge, J. Taylor, K. Stokbro, J-L. Mozos, and P. Ordejon, cond-mat/0110650 [2] D. Sanchez-Portal, P. Ordejon, E. Artacho and J. Soler, Int. J. Quantum Chem. 65, 453 (1997).

  14. A review of 25 years' experience with the NovoPen family of insulin pens in the management of diabetes mellitus.

    PubMed

    Hyllested-Winge, Jacob; Jensen, Klaus H; Rex, Jørn

    2010-01-01

    NovoPen, the first insulin pen, was introduced in 1985. This review article is an update of a review paper published in 2006 on 20 years' use of the NovoPen family of insulin pens in the management of diabetes mellitus. The literature searches conducted in the earlier review article were updated with search results for new articles published since April 2005. This was followed by an iterative search of references cited in identified publications and by searches of abstracts from proceedings of major international diabetes conferences since 2005. Most of the original studies identified in the 2006 review showed that insulin regimens using the NovoPen family of insulin pens were at least as effective (and in some cases superior) in maintaining glycaemic control and were as safe (in terms of hypoglycaemia) as conventional insulin regimens employing vials and syringes. Most patients preferred the various NovoPen insulin pens over vials and syringes, with some evidence suggesting that the use of discreet devices, such as those of the NovoPen family, facilitates intensive insulin therapy regimens, thereby helping to improve lifestyle flexibility. The new search results showed that the current generation of the device for the adult population, NovoPen 4, retains these benefits and further meets patients' needs by improving ease of use, convenience and discretion, which may be particularly important for those with manual dexterity, visual or auditory impairments. There was also evidence that healthcare professionals would be more likely to recommend NovoPen 4 to their patients than other devices. The recently introduced NovoPen Echo, designed specifically for the paediatric population, combines half-increment dosing with a memory function that can be used to retrieve information about the time and amount of the last dose, potentially reducing the fear of double dosing or missing a dose. Evidence obtained from the new searches suggested that paediatric patients, their

  15. Participation in a mentored quality-improvement program for insulin pen safety: Opportunity to augment internal evaluation and share with peers.

    PubMed

    Rosenberg, Amy F

    2016-10-01

    UF Health's participation in a mentored quality-improvement impact program for health professionals as part of an ASHP initiative-"Strategies for Ensuring the Safe Use of Insulin Pens in the Hospital"-is described. ASHP invited hospitals to participate in its initiative at a time when UF Health was evaluating the risks and benefits of insulin pen use due to external reports of safety concerns and making a commitment to continue insulin pen use and optimize safeguards. Improvement opportunities in insulin pen best practices and staff education on insulin pen preparation and injection technique were identified and implemented. The storage of insulin pens for patients with contact isolation precautions was identified as a problem in certain patient care areas, and a practical solution was devised. Other process improvements included implementation of barcode medication administration, with scanning of insulin pens designated for specific patients to avoid inadvertent and intentional sharing of pens among multiple patients. Mentored calls with teams at other hospitals conducted as part of the program provided the opportunity to share experiences and solutions to improve insulin pen use. Participating with a knowledgeable mentor and other hospital teams struggling with the same issues and concerns related to safe insulin pen use facilitated problem solving. Discussing challenges and sharing ideas for solutions to safety concerns with other hospitals identified new process enhancements, which have the potential to improve the safety of insulin pen use at UF Health. Copyright © 2016 by the American Society of Health-System Pharmacists, Inc. All rights reserved.

  16. Bacterial adhesion forces to Ag-impregnated contact lens cases and transmission to contact lenses.

    PubMed

    Qu, Wenwen; Busscher, Henk J; van der Mei, Henny C; Hooymans, Johanna M M

    2013-03-01

    To measure adhesion forces of Pseudomonas aeruginosa, Staphylococcus aureus, and Serratia marcescens to a rigid contact lens (CL), standard polypropylene, and Ag-impregnated lens cases using atomic force microscopy and determine bacterial transmission from lens case to CL. Adhesion forces of bacterial strains to Ag-impregnated and polypropylene lens cases and a rigid CL were measured using atomic force microscopy. Adhesion forces were used to calculate Weibull distributions, from which transmission probabilities from lens case to CL were derived. Transmission probabilities were compared with actual transmission of viable bacteria from a lens case to the CL in 0.9% NaCl and in an antimicrobial lens care solution. Bacterial transmission probabilities from polypropylene lens cases based on force analysis coincided well for all strains with actual transmission in 0.9% NaCl. Bacterial adhesion forces on Ag-impregnated lens cases were much smaller than that on polypropylene and CLs, yielding a high probability of transmission. Comparison with actual bacterial transmission indicated bacterial killing due to Ag ions during colony-forming unit transmission from an Ag-impregnated lens case, especially for P. aeruginosa. Transmission of viable bacteria from Ag-impregnated lens cases could be further decreased by use of an antimicrobial lens care solution instead of 0.9% NaCl. Bacterial transmission probabilities are higher from Ag-impregnated lens cases than from polypropylene lens cases because of small adhesion forces, but this is compensated for by enhanced bacterial killing due to Ag impregnation, especially when in combination with an antimicrobial lens care solution. This calls for a balanced combination of antimicrobial lens care solutions and surface properties of a lens case and CL.

  17. The Influence of Component Alignment and Ligament Properties on Tibiofemoral Contact Forces in Total Knee Replacement.

    PubMed

    Smith, Colin R; Vignos, Michael F; Lenhart, Rachel L; Kaiser, Jarred; Thelen, Darryl G

    2016-02-01

    The study objective was to investigate the influence of coronal plane alignment and ligament properties on total knee replacement (TKR) contact loads during walking. We created a subject-specific knee model of an 83-year-old male who had an instrumented TKR. The knee model was incorporated into a lower extremity musculoskeletal model and included deformable contact, ligamentous structures, and six degrees-of-freedom (DOF) tibiofemoral and patellofemoral joints. A novel numerical optimization technique was used to simultaneously predict muscle forces, secondary knee kinematics, ligament forces, and joint contact pressures from standard gait analysis data collected on the subject. The nominal knee model predictions of medial, lateral, and total contact forces during gait agreed well with TKR measures, with root-mean-square (rms) errors of 0.23, 0.22, and 0.33 body weight (BW), respectively. Coronal plane component alignment did not affect total knee contact loads, but did alter the medial-lateral load distribution, with 4 deg varus and 4 deg valgus rotations in component alignment inducing +17% and -23% changes in the first peak medial tibiofemoral contact forces, respectively. A Monte Carlo analysis showed that uncertainties in ligament stiffness and reference strains induce ±0.2 BW uncertainty in tibiofemoral force estimates over the gait cycle. Ligament properties had substantial influence on the TKR load distributions, with the medial collateral ligament and iliotibial band (ITB) properties having the largest effects on medial and lateral compartment loading, respectively. The computational framework provides a viable approach for virtually designing TKR components, considering parametric uncertainty and predicting the effects of joint alignment and soft tissue balancing procedures on TKR function during movement.

  18. The Influence of Component Alignment and Ligament Properties on Tibiofemoral Contact Forces in Total Knee Replacement

    PubMed Central

    Smith, Colin R.; Vignos, Michael F.; Lenhart, Rachel L.; Kaiser, Jarred; Thelen, Darryl G.

    2016-01-01

    The study objective was to investigate the influence of coronal plane alignment and ligament properties on total knee replacement (TKR) contact loads during walking. We created a subject-specific knee model of an 83-year-old male who had an instrumented TKR. The knee model was incorporated into a lower extremity musculoskeletal model and included deformable contact, ligamentous structures, and six degrees-of-freedom (DOF) tibiofemoral and patellofemoral joints. A novel numerical optimization technique was used to simultaneously predict muscle forces, secondary knee kinematics, ligament forces, and joint contact pressures from standard gait analysis data collected on the subject. The nominal knee model predictions of medial, lateral, and total contact forces during gait agreed well with TKR measures, with root-mean-square (rms) errors of 0.23, 0.22, and 0.33 body weight (BW), respectively. Coronal plane component alignment did not affect total knee contact loads, but did alter the medial–lateral load distribution, with 4 deg varus and 4 deg valgus rotations in component alignment inducing +17% and −23% changes in the first peak medial tibiofemoral contact forces, respectively. A Monte Carlo analysis showed that uncertainties in ligament stiffness and reference strains induce ±0.2 BW uncertainty in tibiofemoral force estimates over the gait cycle. Ligament properties had substantial influence on the TKR load distributions, with the medial collateral ligament and iliotibial band (ITB) properties having the largest effects on medial and lateral compartment loading, respectively. The computational framework provides a viable approach for virtually designing TKR components, considering parametric uncertainty and predicting the effects of joint alignment and soft tissue balancing procedures on TKR function during movement. PMID:26769446

  19. Prediction of medial and lateral contact force of the knee joint during normal and turning gait after total knee replacement.

    PubMed

    Purevsuren, Tserenchimed; Dorj, Ariunzaya; Kim, Kyungsoo; Kim, Yoon Hyuk

    2016-04-01

    The computational modeling approach has commonly been used to predict knee joint contact forces, muscle forces, and ligament loads during activities of daily living. Knowledge of these forces has several potential applications, for example, within design of equipment to protect the knee joint from injury and to plan adequate rehabilitation protocols, although clinical applications of computational models are still evolving and one of the limiting factors is model validation. The objective of this study was to extend previous modeling technique and to improve the validity of the model prediction using publicly available data set of the fifth "Grand Challenge Competition to Predict In Vivo Knee Loads." A two-stage modeling approach, which combines conventional inverse dynamic analysis (the first stage) with a multi-body subject-specific lower limb model (the second stage), was used to calculate medial and lateral compartment contact forces. The validation was performed by direct comparison of model predictions and experimental measurement of medial and lateral compartment contact forces during normal and turning gait. The model predictions of both medial and lateral contact forces showed strong correlations with experimental measurements in normal gait (r = 0.75 and 0.71) and in turning gait trials (r = 0.86 and 0.72), even though the current technique over-estimated medial compartment contact forces in swing phase. The correlation coefficient, Sprague and Geers metrics, and root mean squared error indicated that the lateral contact forces were predicted better than medial contact forces in comparison with the experimental measurements during both normal and turning gait trials. © IMechE 2016.

  20. Characteristics of Handwriting of People With Cerebellar Ataxia: Three-Dimensional Movement Analysis of the Pen Tip, Finger, and Wrist.

    PubMed

    Fujisawa, Yuhki; Okajima, Yasutomo

    2015-11-01

    There are several functional tests for evaluating manual performance; however, quantitative manual tests for ataxia, especially those for evaluating handwriting, are limited. This study aimed to investigate the characteristics of cerebellar ataxia by analyzing handwriting, with a special emphasis on correlation between the movement of the pen tip and the movement of the finger or wrist. This was an observational study. Eleven people who were right-handed and had cerebellar ataxia and 17 people to serve as controls were recruited. The Scale for the Assessment and Rating of Ataxia was used to grade the severity of ataxia. Handwriting movements of both hands were analyzed. The time required for writing a character, the variability of individual handwriting, and the correlation between the movement of the pen tip and the movement of the finger or wrist were evaluated for participants with ataxia and control participants. The writing time was longer and the velocity profile and shape of the track of movement of the pen tip were more variable in participants with ataxia than in control participants. For participants with ataxia, the direction of movement of the pen tip deviated more from that of the finger or wrist, and the shape of the track of movement of the pen tip differed more from that of the finger or wrist. The severity of upper extremity ataxia measured with the Scale for the Assessment and Rating of Ataxia was mostly correlated with the variability parameters. Furthermore, it was correlated with the directional deviation of the trajectory of movement of the pen tip from that of the finger and with increased dissimilarity of the shapes of the tracks. The results may have been influenced by the scale and parameters used to measure movement. Ataxic handwriting with increased movement noise is characterized by irregular pen tip movements unconstrained by the finger or wrist. The severity of ataxia is correlated with these unconstrained movements. © 2015 American

  1. Hand-handle interface force and torque measurement system for pneumatic assembly tool operations: suggested enhancement to ISO 6544.

    PubMed

    Lin, Jia-Hua; McGorry, Raymond W; Chang, Chien-Chi

    2007-05-01

    A hand-handle interface force and torque measurement system is introduced to fill the void acknowledged in the international standard ISO 6544, which governs pneumatic, assembly tool reaction torque and force measurement. This system consists of an instrumented handle with a sensor capable of measuring grip force and reaction hand moment when threaded, fastener-driving tools are used by operators. The handle is rigidly affixed to the tool in parallel to the original tool handle allowing normal fastener-driving operations with minimal interference. Demonstration of this proposed system was made with tools of three different shapes: pistol grip, right angle, and in-line. During tool torque buildup, the proposed system measured operators exerting greater grip force on the soft joint than on the hard joint. The system also demonstrated that the soft joint demanded greater hand moment impulse than the hard joint. The results demonstrate that the measurement system can provide supplemental data useful in exposure assessment with power hand tools as proposed in ISO 6544.

  2. The effect of a Hill-Sachs defect on glenohumeral translations, in situ capsular forces, and bony contact forces.

    PubMed

    Sekiya, Jon K; Jolly, John; Debski, Richard E

    2012-02-01

    Hill-Sachs defects have been associated with failed repairs for anterior shoulder instability. However, the biomechanical consequences of these defects are not well understood because of the complicated interaction between the passive soft tissue and bony stabilizers. The creation of a 25% Hill-Sachs defect would not significantly alter the glenohumeral translations but would increase the in situ forces in the glenohumeral capsule as well as the glenohumeral bony contact forces. Controlled laboratory study. A robotic/universal force-moment sensor (UFS) testing system was used to apply joint compression (22 N) and an anterior or posterior load (44 N) to cadaveric shoulders (n = 9) with the skin and deltoid removed (intact) at 3 glenohumeral joint positions (abduction/external rotation): 0°/0°, 30°/30°, and 60°/60° (corresponds to 90°/90° of shoulder abduction/external rotation). A 25% bony defect on the posterolateral humeral head (defect) was then created in the most common position of anterior shoulder dislocation (90°/90°), and the loading protocol was repeated. A nonparametric repeated-measures Friedman test with a Wilcoxon signed-rank post hoc test was performed to compare translations, in situ forces in the capsule, and bony contact forces between each state (P < .05). At 0°/0°, anterior translation significantly increased from 15.3 ± 8.2 mm to 16.6 ± 9.0 mm (P < .05) in response to an anterior load. At 30°/30°, anterior and posterior translations, respectively, significantly increased in response to both anterior (intact: 13.6 ± 7.1 mm vs defect: 14.2 ± 7 mm; P < .05) and posterior loads (intact: 15.7 ± 5.8 mm vs defect: 17.7 ± 5.1 mm; P < .05). In situ force in the capsule during anterior loading was increased in the defect state at both 60°/60° (intact: 38.9 ± 14.4 N vs defect: 43.2 ± 15.9 N; P < .05) and 30°/30° (intact: 39.6 ± 13.8 N vs defect: 45.6 ± 9.3 N; P < .05). The medial bony contact forces were also increased in the

  3. Vegetation survey of PEN Branch wetlands

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Not Available

    A survey was conducted of vegetation along Pen Branch Creek at Savannah River Site (SRS) in support of K-Reactor restart. Plants were identified to species by overstory, understory, shrub, and groundcover strata. Abundance was also characterized and richness and diversity calculated. Based on woody species basal area, the Pen Branch delta was the most impacted, followed by the sections between the reactor and the delta. Species richness for shrub and groundcover strata were also lowest in the delta. No endangered plant species were found. Three upland pine areas were also sampled. In support of K Reactor restart, this report summarizesmore » a study of the wetland vegetation along Pen Branch. Reactor effluent enters Indian Grove Branch and then flows into Pen Branch and the Pen Branch Delta.« less

  4. Vegetation survey of PEN Branch wetlands

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Not Available

    1991-01-01

    A survey was conducted of vegetation along Pen Branch Creek at Savannah River Site (SRS) in support of K-Reactor restart. Plants were identified to species by overstory, understory, shrub, and groundcover strata. Abundance was also characterized and richness and diversity calculated. Based on woody species basal area, the Pen Branch delta was the most impacted, followed by the sections between the reactor and the delta. Species richness for shrub and groundcover strata were also lowest in the delta. No endangered plant species were found. Three upland pine areas were also sampled. In support of K Reactor restart, this report summarizesmore » a study of the wetland vegetation along Pen Branch. Reactor effluent enters Indian Grove Branch and then flows into Pen Branch and the Pen Branch Delta.« less

  5. Groin Flap in Paediatric Age Group to Salvage Hand after Electric Contact Burn: Challenges and Experience

    PubMed Central

    Gupta, Pradeep; Malviya, Manohar

    2017-01-01

    Introduction Electric contact burn is characterised by multiple wounds produced by entrance and exit of the current. Hand is most commonly involved in the same and children are particularly susceptible to such accidents. Aim To document effectiveness and challenges associated with the use of groin flap as an initial definitive treatment of electric contact burn in paediatric age group. Materials and Methods From January 2015 to December 2016, 25 children up to 12 years of age, who were admitted at SMS Medical College, Jaipur, Rajasthan, India, after electric burn injury with hand defect and who were treated by pedicled groin flap at the Department of Plastic and Reconstructive Surgery, were included in the study. Details related to gender, age, type of voltage injury, sites of injury and postoperative complications were recorded. The groin flap was used in these children for coverage of hand and finger defect with exposed bone and tendon. Results Normal functional results were seen in all children treated with pedicled groin flap and all were able to perform activities of daily living. All the children had satisfactory aesthetic result. Conclusion Although, groin flap was an uncomfortable procedure due to limb position that was particularly difficult for children, it was found to be a useful method to salvage hand and it resulted in favourable functional and aesthetic outcome in each case. PMID:28969190

  6. [A comparison of rebound tonometry (ICare) with TonoPenXL and Goldmann applanation tonometry].

    PubMed

    Schreiber, W; Vorwerk, C K; Langenbucher, A; Behrens-Baumann, W; Viestenz, A

    2007-04-01

    Goldmann applanation tonometry and dynamic contour tonometry (PASCAL) are two well established slit lamp mounted tonometric methods. Intraocular pressure measurement in bedridden patients and children is often only possible using hand held tonometers (TonoPenXL, Perkins tonometer, Draeger tonometer). This study was performed to evaluate the hand held ICare tonometer, which is based on the rebound method. A total of 102 eyes were examined by two highly experienced ophthalmologists for: 1) ophthalmological status, 2) central corneal power (Zeiss IOL-Master), 3) central corneal thickness (Tomey ultrasound pachymetry, five successive measurements, SD<5%), 4) intraocular pressure (IOP) measurement with the Goldmann applantation tonometer (GAT) 1x, 5) TonoPenXL (1x), 6) ICare with three successive measurement series of 6 single measurements. The mean IOP(GAT) was 13.2+/-3.0 mmHg compared with the mean IOP(TonoPenXL) (13.4+/-3.1 mmHg) and with the IOP(ICare) (mean value of first measurement series: 13.4+/-3.1 mmHg). The series of measurements with the ICare showed a tonography effect (decrease of IOP from 14.6 mmHg at the first measurement and 14.2 mmHg at the second to 14.0 at the third measurement). The ICare-measurements were highly reliable (Cronbach's alpha=0.974) and showed a good correlation between the measurement series (r=0.592-0.642; p<0.001). There was a great intra-individual variability of up to 17 mmHg between the GAT, TonoPenXL and ICare methods. The ICare tonometer is easy to handle and high reliability. The data are comparable with those from the Goldmann tonometer. A tonography effect of 0.6 mmHg in the successive measurement series was found.

  7. Pen-2 overexpression induces Aβ-42 production, memory defect, motor activity enhancement and feeding behavior dysfunction in NSE/Pen-2 transgenic mice.

    PubMed

    Nam, So Hee; Seo, Su Jin; Goo, Jun Seo; Kim, Jee Eun; Choi, Sun Il; Lee, Hae Ryun; Hwang, In Sik; Jee, Seung Wan; Lee, Su Hae; Bae, Chang Jun; Park, Jung Youn; Kim, Hye Sung; Shim, Sun Bo; Hwang, Dae Youn

    2011-12-01

    Pen-2 is a key regulator of the γ-secretase complex, which is involved in the production of the amyloid β (Aβ)-42 peptides, which ultimately lead to Alzheimer's disease (AD). While Pen-2 has been studied in vitro, Pen-2 function in vivo in the brains of transgenic (Tg) mice overexpressing human Pen-2 (hPen-2) protein has not been studied. This study aimed to determine whether Pen-2 overexpression could regulate the AD-like phenotypes in Tg mice. NSE/hPen-2 Tg mice were produced by the microinjection of the NSE/hPen-2 gene into the pronucleus of fertilized eggs. The expression of the hPen-2 gene under the control of the NSE promoter was successfully detected only in the brain and kidney tissue of NSE/hPen-2 Tg mice. Also, 12-month-old NSE/hPen-2 Tg mice displayed behavioral dysfunction in the water maze test, motor activity and feeding behavior dysfunction in food intake/water intake/motor activity monitoring system. In addition, tissue samples displayed dense staining with antibody to the Aβ-42 peptide. Furthermore, NSE/hPen-2 Tg mice exhibiting feeding behavior dysfunction were significantly more apt to display symptoms related to diabetes and obesity. These results suggest that Pen-2 overexpression in NSE/hPen-2 Tg mice may induce all the AD-like phenotypes, including behavioral deficits, motor activity and feeding behavior dysfunction, Aβ-42 peptide deposition and chronic disease induction.

  8. Review on pen-and-paper-based observational methods for assessing ergonomic risk factors of computer work.

    PubMed

    Rahman, Mohd Nasrull Abdol; Mohamad, Siti Shafika

    2017-01-01

    Computer works are associated with Musculoskeletal Disorders (MSDs). There are several methods have been developed to assess computer work risk factor related to MSDs. This review aims to give an overview of current techniques available for pen-and-paper-based observational methods in assessing ergonomic risk factors of computer work. We searched an electronic database for materials from 1992 until 2015. The selected methods were focused on computer work, pen-and-paper observational methods, office risk factors and musculoskeletal disorders. This review was developed to assess the risk factors, reliability and validity of pen-and-paper observational method associated with computer work. Two evaluators independently carried out this review. Seven observational methods used to assess exposure to office risk factor for work-related musculoskeletal disorders were identified. The risk factors involved in current techniques of pen and paper based observational tools were postures, office components, force and repetition. From the seven methods, only five methods had been tested for reliability. They were proven to be reliable and were rated as moderate to good. For the validity testing, from seven methods only four methods were tested and the results are moderate. Many observational tools already exist, but no single tool appears to cover all of the risk factors including working posture, office component, force, repetition and office environment at office workstations and computer work. Although the most important factor in developing tool is proper validation of exposure assessment techniques, the existing observational method did not test reliability and validity. Futhermore, this review could provide the researchers with ways on how to improve the pen-and-paper-based observational method for assessing ergonomic risk factors of computer work.

  9. Concurrent prediction of muscle and tibiofemoral contact forces during treadmill gait.

    PubMed

    Guess, Trent M; Stylianou, Antonis P; Kia, Mohammad

    2014-02-01

    Detailed knowledge of knee kinematics and dynamic loading is essential for improving the design and outcomes of surgical procedures, tissue engineering applications, prosthetics design, and rehabilitation. This study used publicly available data provided by the "Grand Challenge Competition to Predict in-vivo Knee Loads" for the 2013 American Society of Mechanical Engineers Summer Bioengineering Conference (Fregly et al., 2012, "Grand Challenge Competition to Predict in vivo Knee Loads," J. Orthop. Res., 30, pp. 503-513) to develop a full body, musculoskeletal model with subject specific right leg geometries that can concurrently predict muscle forces, ligament forces, and knee and ground contact forces. The model includes representation of foot/floor interactions and predicted tibiofemoral joint loads were compared to measured tibial loads for two different cycles of treadmill gait. The model used anthropometric data (height and weight) to scale the joint center locations and mass properties of a generic model and then used subject bone geometries to more accurately position the hip and ankle. The musculoskeletal model included 44 muscles on the right leg, and subject specific geometries were used to create a 12 degrees-of-freedom anatomical right knee that included both patellofemoral and tibiofemoral articulations. Tibiofemoral motion was constrained by deformable contacts defined between the tibial insert and femoral component geometries and by ligaments. Patellofemoral motion was constrained by contact between the patellar button and femoral component geometries and the patellar tendon. Shoe geometries were added to the feet, and shoe motion was constrained by contact between three shoe segments per foot and the treadmill surface. Six-axis springs constrained motion between the feet and shoe segments. Experimental motion capture data provided input to an inverse kinematics stage, and the final forward dynamics simulations tracked joint angle errors for the left

  10. A non-invasive measurement of the knee contact force using a subject-specific musculoskeletal model to investigate osteotomy.

    PubMed

    Badie, Fateme; Katouzian, Hamid Reza; Rostami, Mostafa

    2018-06-18

    The varus knee has been defined as a Hip-Knee-Ankle alignment of less than 180 degrees. Varus knee alignment increases the load on the medial knee and also the risk of osteoarthritis. High tibial osteotomy has been designed to modify the malalignment of varus knee. The aim of this study was to investigate the osteotomy effects on knee adduction moment (KAM) and contact forces using a musculoskeletal and subject-specific knee model. A patient with varus knee and no symptoms of any other disease or disability participated in this study. The geometry of the multibody knee model has been modified using MR images. The solutions of its finite element model have been used to determine the parameters of the multibody model. The motion data, ground reaction force and kinetic data have been applied to run the subject-specific musculoskeletal model during the stance phase of gait. After osteotomy, the adduction moment decreased, where the maximum values are comparable to other studies. The pattern of KAM did not witness any significant changes. The total and medial contact forces reduced considerably after surgery, but the lateral contact force did not significantly change. The changes in total and medial contact forces and lack of change in lateral contact force could be explained by modification of the gait pattern after surgery.

  11. Restoration of the contact surface in FORCE-type centred schemes I: Homogeneous two-dimensional shallow water equations

    NASA Astrophysics Data System (ADS)

    Canestrelli, Alberto; Toro, Eleuterio F.

    2012-10-01

    Recently, the FORCE centred scheme for conservative hyperbolic multi-dimensional systems has been introduced in [34] and has been applied to Euler and relativistic MHD equations, solved on unstructured meshes. In this work we propose a modification of the FORCE scheme, named FORCE-Contact, that provides improved resolution of contact and shear waves. This paper presents the technique in full detail as applied to the two-dimensional homogeneous shallow water equations. The improvements due to the new method are particularly evident when an additional equation is solved for a tracer, since the modified scheme exactly resolves isolated and steady contact discontinuities. The improvement is considerable also for slowly moving contact discontinuities, for shear waves and for steady states in meandering channels. For these types of flow fields, the numerical results provided by the new FORCE-Contact scheme are comparable with, and sometimes better than, the results obtained from upwind schemes, such as Roes scheme for example. In a companion paper, a similar approach to restoring the missing contact wave and preserving well-balanced properties for non-conservative one- and two-layer shallow water equations is introduced. However, the procedure is general and it is in principle applicable to other multidimensional hyperbolic systems in conservative and non-conservative form, such as the Euler equations for compressible gas dynamics.

  12. Hands of beauty, hands of horror: fear and Egyptian art at the Fin de Siècle.

    PubMed

    Briefel, Aviva

    2008-01-01

    This essay examines the gothicization of Egyptian manual productions in late-Victorian mummy narratives. These narratives often isolate the mummy's hand as a signifier of craftsmanship, a troubling object for a culture that was mourning the figurative loss of its artisans' hands to mechanized production. Focusing on Bram Stoker's 1903 novel, The Jewel of Seven Stars, I contend that the horror of the mummy's hand emanates from its ambiguous position as an artifact that is itself a means of production. It displaces Friedrich Engels's conception of the Western hand as a self-creating appendage into the atavistic domain of a long-lost Egyptian tradition, and in doing so, it forces the English observer to recognize the irrecoverable nature of aesthetic craftsmanship. Brought into violent contact with the creative potential of the mummy's hand, the characters in Stoker's novel try to disassociate the mummy from manual production but only succeed in confirming their own status as products of a mechanized age.

  13. Influence of Thermal Contact Resistance of Aluminum Foams in Forced Convection: Experimental Analysis

    PubMed Central

    Venettacci, Simone

    2017-01-01

    In this paper, the heat transfer performances of aluminum metal foams, placed on horizontal plane surface, was evaluated in forced convection conditions. Three different types of contacts between the sample and the heated base plate have been investigated: simple contact, brazed contact and grease paste contact. First, in order to perform the study, an ad hoc experimental set-up was built. Second, the value of thermal contact resistance was estimated. The results show that both the use of a conductive paste and the brazing contact, realized by means of a copper electro-deposition, allows a great reduction of the global thermal resistance, increasing de facto the global heat transfer coefficient of almost 80%, compared to the simple contact case. Finally, it was shown that, while the contribution of thermal resistance is negligible for the cases of brazed and grease paste contact, it is significantly high for the case of simple contact. PMID:28783052

  14. Calculation of muscle loading and joint contact forces during the rock step in Irish dance.

    PubMed

    Shippen, James M; May, Barbara

    2010-01-01

    A biomechanical model for the analysis of dancers and their movements is described. The model consisted of 31 segments, 35 joints, and 539 muscles, and was animated using movement data obtained from a three-dimensional optical tracking system that recorded the motion of dancers. The model was used to calculate forces within the muscles and contact forces at the joints of the dancers in this study. Ground reaction forces were measured using force plates mounted in a sprung floor. The analysis procedure is generic and can be applied to any dance form. As an exemplar of the application process an Irish dance step, the rock, was analyzed. The maximum ground reaction force found was 4.5 times the dancer's body weight. The muscles connected to the Achilles tendon experienced a maximum force comparable to their maximal isometric strength. The contact force at the ankle joint was 14 times body weight, of which the majority of the force was due to muscle contraction. It is suggested that as the rock step produces high forces, and therefore the potential to cause injury, its use should be carefully monitored.

  15. Precision contact of the fingertip reduces postural sway of individuals with bilateral vestibular loss

    NASA Technical Reports Server (NTRS)

    Lackner, J. R.; DiZio, P.; Jeka, J.; Horak, F.; Krebs, D.; Rabin, E.

    1999-01-01

    Contact of the hand with a stationary surface attenuates postural sway in normal individuals even when the level of force applied is mechanically inadequate to dampen body motion. We studied whether subjects without vestibular function would be able to substitute contact cues from the hand for their lost labyrinthine function and be able to balance as well as normal subjects in the dark without finger contact. We also studied the relative contribution of sight of the test chamber to the two groups. Subjects attempted to maintain a tandem Romberg stance for 25 s under three levels of fingertip contact: no contact; light-touch contact, up to 1 N (approximately 100 g) force; and unrestricted contact force. Both eyes open and eyes closed conditions were evaluated. Without contact, none of the vestibular loss subjects could stand for more than a few seconds in the dark without falling; all the normals could. The vestibular loss subjects were significantly more stable in the dark with light touch of the index finger than the normal subjects in the dark without touch. They also swayed less in the dark with light touch than when permitted sight of the test chamber without touch, and less with sight and touch than just sight. The normal subjects swayed less in the dark with touch than without, and less with sight and touch than sight alone. These findings show that during quiet stance light touch of the index finger with a stationary surface can be as effective or even more so than vestibular function for minimizing postural sway.

  16. Difference in Learning among Students Doing Pen-and-Paper Homework Compared to Web-Based Homework in an Introductory Statistics Course

    ERIC Educational Resources Information Center

    Jonsdottir, Anna Helga; Bjornsdottir, Audbjorg; Stefansson, Gunnar

    2017-01-01

    A repeated crossover experiment comparing learning among students handing in pen-and-paper homework (PPH) with students handing in web-based homework (WBH) has been conducted. The system used in the experiments, the tutor-web, has been used to deliver homework problems to thousands of students in mathematics and statistics over several years.…

  17. Lake Roosevelt Volunteer Net Pens, Lake Roosevelt Rainbow Trout Net Pens, 2002-2003 Annual Report.

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Smith, Gene

    2003-11-01

    The completion of Grand Coulee Dam for power production, flood control, and irrigation resulted in the creation of a blocked area above the dam and in the loss of anadromous fish. Because of lake level fluctuations required to meet the demands for water release or storage, native or indigenous fish were often threatened. For many years very little effort was given to stocking the waters above the dam. However, studies by fish biologists showed that there was a good food base capable of supporting rainbow and kokanee (Gangmark and Fulton 1949, Jagielo 1984, Scholz etal 1986, Peone etal 1990). Furthermore » studies indicated that artificial production might be a way of restoring or enhancing the fishery. In the 1980's volunteers experimented with net pens. The method involved putting fingerlings in net pens in the fall and rearing them into early summer before release. The result was an excellent harvest of healthy fish. The use of net pens to hold the fingerlings for approximately nine months appears to reduce predation and the possibility of entrainment during draw down and to relieve the hatcheries to open up available raceways for future production. The volunteer net pen program grew for a few years but raising funds to maintain the pens and purchase food became more and more difficult. In 1995 the volunteer net pen project (LRDA) was awarded a grant through the Northwest Power Planning Council's artificial production provisions.« less

  18. Incorporating contact angles in the surface tension force with the ACES interface curvature scheme

    NASA Astrophysics Data System (ADS)

    Owkes, Mark

    2017-11-01

    In simulations of gas-liquid flows interacting with solid boundaries, the contact line dynamics effect the interface motion and flow field through the surface tension force. The surface tension force is directly proportional to the interface curvature and the problem of accurately imposing a contact angle must be incorporated into the interface curvature calculation. Many commonly used algorithms to compute interface curvatures (e.g., height function method) require extrapolating the interface, with defined contact angle, into the solid to allow for the calculation of a curvature near a wall. Extrapolating can be an ill-posed problem, especially in three-dimensions or when multiple contact lines are near each other. We have developed an accurate methodology to compute interface curvatures that allows for contact angles to be easily incorporated while avoiding extrapolation and the associated challenges. The method, known as Adjustable Curvature Evaluation Scale (ACES), leverages a least squares fit of a polynomial to points computed on the volume-of-fluid (VOF) representation of the gas-liquid interface. The method is tested by simulating canonical test cases and then applied to simulate the injection and motion of water droplets in a channel (relevant to PEM fuel cells).

  19. Contact forces between a particle and a wet wall at both quasi-static and dynamic state

    NASA Astrophysics Data System (ADS)

    Zhang, Huang; Chen, Sheng; Li, Shuiqing

    2017-06-01

    The contact regime of particle-wall is investigated by the atomic force microscope (AFM) and theoretical models. First, AFM is used to measure the cohesive force between a micron-sized grain and a glass plate at quasi-static state under various humidity. It is found out that the cohesive force starts to grow slowly and suddenly increase rapidly beyond a critical Relative Humidity (RH). Second, mathematical models of contacting forces are presented to depict the dynamic process that a particle impacts on a wet wall. Then the energy loss of a falling grain is calculated in comparison with the models and the experimental data from the previous references. The simulation results show that the force models presented here are adaptive for both low and high viscosity fluid films with different thickness.

  20. Capillary forces exerted by liquid drops caught between crossed cylinders. A 3-D meniscus problem with free contact line

    NASA Technical Reports Server (NTRS)

    Patzek, T. W.; Scriven, L. E.

    1982-01-01

    The Young-Laplace equation is solved for three-dimensional menisci between crossed cylinders, with either the contact line fixed or the contact angle prescribed, by means of the Galerkin/finite element method. Shapes are computed, and with them the practically important quantities: drop volume, wetted area, capillary pressure force, surface tension force, and the total force exerted by the drop on each cylinder. The results show that total capillary force between cylinders increases with decreasing contact angle, i.e. with better wetting. Capillary force is also increases with decreasing drop volume, approaching an asymptotic limit. However, the wetted area on each cylinder decreases with decreasing drop volume, which raises the question of the optimum drop volume to strive for, when permanent bonding is sought from solidified liquid. For then the strength of the bond is likely to depend upon the area of contact, which is the wetted area when the bonding agent was introduced in liquid form.

  1. Hand held data collection and monitoring system for nuclear facilities

    DOEpatents

    Brayton, D.D.; Scharold, P.G.; Thornton, M.W.; Marquez, D.L.

    1999-01-26

    Apparatus and method is disclosed for a data collection and monitoring system that utilizes a pen based hand held computer unit which has contained therein interaction software that allows the user to review maintenance procedures, collect data, compare data with historical trends and safety limits, and input new information at various collection sites. The system has a means to allow automatic transfer of the collected data to a main computer data base for further review, reporting, and distribution purposes and uploading updated collection and maintenance procedures. The hand held computer has a running to-do list so sample collection and other general tasks, such as housekeeping are automatically scheduled for timely completion. A done list helps users to keep track of all completed tasks. The built-in check list assures that work process will meet the applicable processes and procedures. Users can hand write comments or drawings with an electronic pen that allows the users to directly interface information on the screen. 15 figs.

  2. Hand held data collection and monitoring system for nuclear facilities

    DOEpatents

    Brayton, Darryl D.; Scharold, Paul G.; Thornton, Michael W.; Marquez, Diana L.

    1999-01-01

    Apparatus and method is disclosed for a data collection and monitoring system that utilizes a pen based hand held computer unit which has contained therein interaction software that allows the user to review maintenance procedures, collect data, compare data with historical trends and safety limits, and input new information at various collection sites. The system has a means to allow automatic transfer of the collected data to a main computer data base for further review, reporting, and distribution purposes and uploading updated collection and maintenance procedures. The hand held computer has a running to-do list so sample collection and other general tasks, such as housekeeping are automatically scheduled for timely completion. A done list helps users to keep track of all completed tasks. The built-in check list assures that work process will meet the applicable processes and procedures. Users can hand write comments or drawings with an electronic pen that allows the users to directly interface information on the screen.

  3. The effect of concurrent hand movement on estimated time to contact in a prediction motion task.

    PubMed

    Zheng, Ran; Maraj, Brian K V

    2018-04-27

    In many activities, we need to predict the arrival of an occluded object. This action is called prediction motion or motion extrapolation. Previous researchers have found that both eye tracking and the internal clocking model are involved in the prediction motion task. Additionally, it is reported that concurrent hand movement facilitates the eye tracking of an externally generated target in a tracking task, even if the target is occluded. The present study examined the effect of concurrent hand movement on the estimated time to contact in a prediction motion task. We found different (accurate/inaccurate) concurrent hand movements had the opposite effect on the eye tracking accuracy and estimated TTC in the prediction motion task. That is, the accurate concurrent hand tracking enhanced eye tracking accuracy and had the trend to increase the precision of estimated TTC, but the inaccurate concurrent hand tracking decreased eye tracking accuracy and disrupted estimated TTC. However, eye tracking accuracy does not determine the precision of estimated TTC.

  4. Comparative Assessment of Lixisenatide, Exenatide, and Liraglutide Pen Devices

    PubMed Central

    Enginee, Diplom; Elton, Hina; Penfornis, Alfred; Edelman, Steve

    2014-01-01

    Background: Glucagon-like peptide-1 (GLP-1) receptor agonists are a relatively recent addition to the treatment options for type 2 diabetes mellitus (T2DM) and are administered using prefilled pen devices. Method: In this open-label task and interview-based pilot study, 3 GLP-1 receptor agonist pen devices—exenatide (Byetta®, Bristol-Myers Squibb/AstraZeneca), liraglutide (Victoza®, Novo Nordisk), and lixisenatide (Lyxumia®, Sanofi-Aventis)—were comparatively assessed in a randomized order in 30 participants with T2DM for ease of use, using a series of key performance measures (time taken to complete a series of tasks, number of user errors [successful performance], and user satisfaction rating). Linear and logistic regression analysis was conducted for the lixisenatide and liraglutide pens versus the exenatide pen. Participants’ mean age was 60 years; 27% and 20% of the participants had visual impairments and reduced manual dexterity, respectively. Results: Tasks were completed faster (P < .001) and with higher successful performance (P = .001) with the lixisenatide pen than with the exenatide pen, whereas the liraglutide pen was not statistically significant versus the exenatide pen on these parameters. Overall, user satisfaction was statistically higher for the lixisenatide and liraglutide pens versus the exenatide pen (P < .001 for both). Conclusions: Lixisenatide and liraglutide pens are associated with higher user satisfaction compared with the exenatide pen. In addition, the lixisenatide pen is faster and results in fewer errors than its comparator (exenatide). The lixisenatide pen may therefore be a suitable choice for patients with T2DM, including older and pen device-naïve patients, and those with visual impairments and reduced manual dexterity. PMID:24876548

  5. NONLINEAR FORCE PROFILE USED TO INCREASE THE PERFORMANCE OF A HAPTIC USER INTERFACE FOR TELEOPERATING A ROBOTIC HAND

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Anthony L. Crawford

    MODIFIED PAPER TITLE AND ABSTRACT DUE TO SLIGHTLY MODIFIED SCOPE: TITLE: Nonlinear Force Profile Used to Increase the Performance of a Haptic User Interface for Teleoperating a Robotic Hand Natural movements and force feedback are important elements in using teleoperated equipment if complex and speedy manipulation tasks are to be accomplished in hazardous environments, such as hot cells, glove boxes, decommissioning, explosives disarmament, and space. The research associated with this paper hypothesizes that a user interface and complementary radiation compatible robotic hand that integrates the human hand’s anthropometric properties, speed capability, nonlinear strength profile, reduction of active degrees of freedommore » during the transition from manipulation to grasping, and just noticeable difference force sensation characteristics will enhance a user’s teleoperation performance. The main contribution of this research is in that a system that concisely integrates all these factors has yet to be developed and furthermore has yet to be applied to a hazardous environment as those referenced above. In fact, the most prominent slave manipulator teleoperation technology in use today is based on a design patented in 1945 (Patent 2632574) [1]. The robotic hand/user interface systems of similar function as the one being developed in this research limit their design input requirements in the best case to only complementing the hand’s anthropometric properties, speed capability, and linearly scaled force application relationship (e.g. robotic force is a constant, 4 times that of the user). In this paper a nonlinear relationship between the force experienced between the user interface and the robotic hand was devised based on property differences of manipulation and grasping activities as they pertain to the human hand. The results show that such a relationship when subjected to a manipulation task and grasping task produces increased performance compared to the

  6. Modulating tibiofemoral contact force in the sheep hind limb via treadmill walking: Predictions from an opensim musculoskeletal model.

    PubMed

    Lerner, Zachary F; Gadomski, Benjamin C; Ipson, Allison K; Haussler, Kevin K; Puttlitz, Christian M; Browning, Raymond C

    2015-08-01

    Sheep are a predominant animal model used to study a variety of orthopedic conditions. Understanding and controlling the in-vivo loading environment in the sheep hind limb is often necessary for investigations relating to bone and joint mechanics. The purpose of this study was to develop a musculoskeletal model of an adult sheep hind limb and investigate the effects of treadmill walking speed on muscle and joint contact forces. We constructed the skeletal geometry of the model from computed topography images. Dual-energy x-ray absorptiometry was utilized to establish the inertial properties of each model segment. Detailed dissection and tendon excursion experiments established the requisite muscle lines of actions. We used OpenSim and experimentally-collected marker trajectories and ground reaction forces to quantify muscle and joint contact forces during treadmill walking at 0.25 m• s(-1) and 0.75 m• s(-1) . Peak compressive and anterior-posterior tibiofemoral contact forces were 20% (0.38 BW, p = 0.008) and 37% (0.17 BW, p = 0.040) larger, respectively, at the moderate gait speed relative to the slower speed. Medial-lateral tibiofemoral contact forces were not significantly different. Adjusting treadmill speed appears to be a viable method to modulate compressive and anterior-posterior tibiofemoral contact forces in the sheep hind limb. The musculoskeletal model is freely-available at www.SimTK.org. © 2015 Orthopaedic Research Society. Published by Wiley Periodicals, Inc.

  7. Considerations for diabetes: treatment with insulin pen devices.

    PubMed

    Cuddihy, Robert M; Borgman, Sarah K

    2013-01-01

    Insulin is essential for the treatment of type 1 diabetes, and most patients with type 2 diabetes will eventually require insulin for glycemic control. Several barriers contribute to delays in initiating insulin therapy in type 2 diabetes. Furthermore, insulin-treated patients often miss doses or otherwise fail to self-administer their insulin as prescribed, placing themselves at the risk of developing complications. Insulin pens can help overcome barriers to initiating insulin therapy and can facilitate the self-management of diabetes. Compared with the vial and syringe, insulin pens are more accurate, associated with greater adherence, and preferred by patients because of their convenience and ease of use. Large database analyses suggest that insulin pens may reduce the rate of occurrence of hypoglycemic events in patients with type 2 diabetes. Despite higher costs of insulin pens vs vials and syringes, studies suggest little or no increase in total health care costs and decreases in diabetes-related costs associated with reduced health care utilization with pens. Interestingly, the use of insulin pens within the United States lags far behind the use of pens in Europe and Japan. Insulin pens may be disposable or refillable, and some pens have special features [eg, audible clicks, large-dose selector and dial, memory function, half-unit dosing, high dosing (ie, 80 U)] that offer the opportunity to individualize treatment by meeting patients' needs. This review compares available insulin pens, describes strategies to facilitate their usage, and discusses how insulin pens can improve self-management of diabetes while reducing cost.

  8. Imaging contrast and tip-sample interaction of non-contact amplitude modulation atomic force microscopy with Q-control

    NASA Astrophysics Data System (ADS)

    Shi, Shuai; Guo, Dan; Luo, Jianbin

    2017-10-01

    Active quality factor (Q) exhibits many promising properties in dynamic atomic force microscopy. Energy dissipation and image contrasts are investigated in the non-contact amplitude modulation atomic force microscopy (AM-AFM) with an active Q-control circuit in the ambient air environment. Dissipated power and virial were calculated to compare the highly nonlinear interaction of tip-sample and image contrasts with different Q gain values. Greater free amplitudes and lower effective Q values show better contrasts for the same setpoint ratio. Active quality factor also can be employed to change tip-sample interaction force in non-contact regime. It is meaningful that non-destructive and better contrast images can be realized in non-contact AM-AFM by applying an active Q-control to the dynamic system.

  9. Differential MS2 Interaction with Food Contact Surfaces Determined by Atomic Force Microscopy and Virus Recovery.

    PubMed

    Shim, J; Stewart, D S; Nikolov, A D; Wasan, D T; Wang, R; Yan, R; Shieh, Y C

    2017-12-15

    Enteric viruses are recognized as major etiologies of U.S. foodborne infections. These viruses are easily transmitted via food contact surfaces. Understanding virus interactions with surfaces may facilitate the development of improved means for their removal, thus reducing transmission. Using MS2 coliphage as a virus surrogate, the strength of virus adhesion to common food processing and preparation surfaces of polyvinyl chloride (PVC) and glass was assessed by atomic force microscopy (AFM) and virus recovery assays. The interaction forces of MS2 with various surfaces were measured from adhesion peaks in force-distance curves registered using a spherical bead probe preconjugated with MS2 particles. MS2 in phosphate-buffered saline (PBS) demonstrated approximately 5 times less adhesion force to glass (0.54 nN) than to PVC (2.87 nN) ( P < 0.0001). This was consistent with the virus recovery data, which showed 1.4-fold fewer virus PFU recovered from PVC than from glass after identical inoculations and 24 h of cold storage. The difference in adhesion was ascribed to both intrinsic chemical characteristics and the substrate surface porosity (smooth glass versus porous PVC). Incorporating a surfactant micellar solution of sodium dodecyl sulfate (SDS) into the PBS reduced the adhesion force for PVC (∼0 nN) and consistently increased virus recovery by 19%. With direct and indirect evidence of virus adhesion, this study illustrated a two-way assessment of virus adhesion for the initial evaluation of potential means to mitigate virus adhesion to food contact surfaces. IMPORTANCE The spread of foodborne viruses is likely associated with their adhesive nature. Virus attachment on food contact surfaces has been evaluated by quantitating virus recoveries from inoculated surfaces. This study aimed to evaluate the microenvironment in which nanometer-sized viruses interact with food contact surfaces and to compare the virus adhesion differences using AFM. The virus surrogate MS2

  10. Alterations in knee contact forces and centers in stance phase of gait: A detailed lower extremity musculoskeletal model.

    PubMed

    Marouane, H; Shirazi-Adl, A; Adouni, M

    2016-01-25

    Evaluation of contact forces-centers of the tibiofemoral joint in gait has crucial biomechanical and pathological consequences. It involves however difficulties and limitations in in vitro cadaver and in vivo imaging studies. The goal is to estimate total contact forces (CF) and location of contact centers (CC) on the medial and lateral plateaus using results computed by a validated finite element model simulating the stance phase of gait for normal as well as osteoarthritis, varus-valgus and posterior tibial slope altered subjects. Using foregoing contact results, six methods commonly used in the literature are also applied to estimate and compare locations of CC at 6 periods of stance phase (0%, 5%, 25%, 50%, 75% and 100%). TF joint contact forces are greater on the lateral plateau very early in stance and on the medial plateau thereafter during 25-100% stance periods. Large excursions in the location of CC (>17mm), especially on the medial plateau in the mediolateral direction, are computed. Various reported models estimate quite different CCs with much greater variations (~15mm) in the mediolateral direction on both plateaus. Compared to our accurately computed CCs taken as the gold standard, the centroid of contact area algorithm yielded least differences (except in the mediolateral direction on the medial plateau at ~5mm) whereas the contact point and weighted center of proximity algorithms resulted overall in greatest differences. Large movements in the location of CC should be considered when attempting to estimate TF compartmental contact forces in gait. Copyright © 2015 Elsevier Ltd. All rights reserved.

  11. Closed-loop control of grasping with a myoelectric hand prosthesis: which are the relevant feedback variables for force control?

    PubMed

    Ninu, Andrei; Dosen, Strahinja; Muceli, Silvia; Rattay, Frank; Dietl, Hans; Farina, Dario

    2014-09-01

    In closed-loop control of grasping by hand prostheses, the feedback information sent to the user is usually the actual controlled variable, i.e., the grasp force. Although this choice is intuitive and logical, the force production is only the last step in the process of grasping. Therefore, this study evaluated the performance in controlling grasp strength using a hand prosthesis operated through a complete grasping sequence while varying the feedback variables (e.g., closing velocity, grasping force), which were provided to the user visually or through vibrotactile stimulation. The experiments were conducted on 13 volunteers who controlled the Otto Bock Sensor Hand Speed prosthesis. Results showed that vibrotactile patterns were able to replace the visual feedback. Interestingly, the experiments demonstrated that direct force feedback was not essential for the control of grasping force. The subjects were indeed able to control the grip strength, predictively, by estimating the grasping force from the prosthesis velocity of closing. Therefore, grasping without explicit force feedback is not completely blind, contrary to what is usually assumed. In our study we analyzed grasping with a specific prosthetic device, but the outcomes are also applicable for other devices, with one or more degrees-of-freedom. The necessary condition is that the electromyography (EMG) signal directly and proportionally controls the velocity/grasp force of the hand, which is a common approach among EMG controlled prosthetic devices. The results provide important indications on the design of closed-loop EMG controlled prosthetic systems.

  12. Role of penA polymorphisms for penicillin susceptibility in Neisseria lactamica and Neisseria meningitidis.

    PubMed

    Karch, André; Vogel, Ulrich; Claus, Heike

    2015-10-01

    In meningococci, reduced penicillin susceptibility is associated with five specific mutations in the transpeptidase region of penicillin binding protein 2 (PBP2). We showed that the same set of mutations was present in 64 of 123 Neisseria lactamica strains obtained from a carriage study (MIC range: 0.125-2.0mg/L). The PBP2 encoding penA alleles in these strains were genetically similar to those found in intermediate resistant meningococci suggesting frequent interspecies genetic exchange. Fifty-six N. lactamica isolates with mostly lower penicillin MICs (range: 0.064-0.38mg/L) exhibited only three of the five mutations. The corresponding penA alleles were unique to N. lactamica and formed a distinct genetic clade. PenA alleles with no mutations on the other hand were unique to meningococci. Under penicillin selective pressure, genetic transformation of N. lactamica penA alleles in meningococci was only possible for alleles encoding five mutations, but not for those encoding three mutations; the transfer resulted in MICs comparable to those of meningococci harboring penA alleles that encoded PBP2 with five mutations, but considerably lower than those of the corresponding N. lactamica donor strains. Due to a transformation barrier the complete N. lactamica penA could not be transformed into N. meningitidis. In summary, penicillin MICs in N. lactamica were associated with the number of mutations in the transpeptidase region of PBP2. Evidence for interspecific genetic transfer was only observed for penA alleles associated with higher MICs, suggesting that alleles encoding only three mutations in the transpeptidase region are biologically not effective in N. meningitidis. Factors other than PBP2 seem to be responsible for the high levels of penicillin resistance in N. lactamica. A reduction of penicillin susceptibility in N. meningitidis by horizontal gene transfer from N. lactamica is unlikely to happen. Copyright © 2015 Elsevier GmbH. All rights reserved.

  13. Study of the influence of the cutting temperature on the magnitude of the contact forces in the machining fixtures

    NASA Astrophysics Data System (ADS)

    Cioată, V. G.; Kiss, I.; Alexa, V.; Raţiu, S. A.; Racov, M.

    2018-01-01

    In the machining process, the workpieces are installed in machining fixtures in order to establish a strictly determined position with the cutting tool or its trajectory. During the cutting process, the weight of the workpiece, the forces and moments of inertia, cutting forces and moments, clamping forces, the heat released during the cutting process determine the contact forces between the locators and the workpiece. The magnitude of these forces is important because too large value can destroy the surface of the workpiece, and a too small value can cause the workpiece to slip on the locators or even the loss of the contact with the workpiece. Both situations must be avoided. The paper presents a study, realized with CAE software, regarding the influence of the cutting temperature on the magnitude of the contact forces in a machining fixture for the milling a rectangular workpiece.

  14. Improvement of Hand Movement on Visual Target Tracking by Assistant Force of Model-Based Compensator

    NASA Astrophysics Data System (ADS)

    Ide, Junko; Sugi, Takenao; Nakamura, Masatoshi; Shibasaki, Hiroshi

    Human motor control is achieved by the appropriate motor commands generating from the central nerve system. A test of visual target tracking is one of the effective methods for analyzing the human motor functions. We have previously examined a possibility for improving the hand movement on visual target tracking by additional assistant force through a simulation study. In this study, a method for compensating the human hand movement on visual target tracking by adding an assistant force was proposed. Effectiveness of the compensation method was investigated through the experiment for four healthy adults. The proposed compensator precisely improved the reaction time, the position error and the variability of the velocity of the human hand. The model-based compensator proposed in this study is constructed by using the measurement data on visual target tracking for each subject. The properties of the hand movement for different subjects can be reflected in the structure of the compensator. Therefore, the proposed method has possibility to adjust the individual properties of patients with various movement disorders caused from brain dysfunctions.

  15. Mechanical modeling and characteristic study for the adhesive contact of elastic layered media

    NASA Astrophysics Data System (ADS)

    Zhang, Yuyan; Wang, Xiaoli; Tu, Qiaoan; Sun, Jianjun; Ma, Chenbo

    2017-11-01

    This paper investigates the adhesive contact between a smooth rigid sphere and a smooth elastic layered medium with different layer thicknesses, layer-to-substrate elastic modulus ratios and adhesion energy ratios. A numerical model is established by combining elastic responses of the contact system and an equation of equivalent adhesive contact pressure which is derived based on the Hamaker summation method and the Lennard-Jones intermolecular potential law. Simulation results for hard layer cases demonstrate that variation trends of the pull-off force with the layer thickness and elastic modulus ratio are complex. On one hand, when the elastic modulus ratio increases, the pull-off force decreases at smaller layer thicknesses, decreases at first and then increases at middle layer thicknesses, while increases monotonously at larger layer thicknesses. On the other hand, the pull-off force decreases at first and then increases with the increase in the layer thickness. Furthermore, a critical layer thickness above which the introduction of hard layer cannot reduce adhesion and an optimum layer thickness under which the pull-off force reaches a minimum are found. Both the critical and optimum layer thicknesses become larger with an increase in the Tabor parameter, while they tend to decrease with the increase in the elastic modulus ratio. In addition, the pull-off force increases sublinearly with the adhesion energy ratio if the layer thickness and elastic modulus ratio are fixed.

  16. Stability of Hand Force Production: II. Ascending and Descending Synergies.

    PubMed

    Reschechtko, Sasha; Latash, Mark L

    2018-06-06

    We combined the theory of neural control of movement with referent coordinates and the uncontrolled manifold hypothesis to investigate multi-finger coordination. We tested hypotheses related to stabilization of performance by co-varying control variables, translated into apparent stiffness and referent coordinate, at different levels of an assumed hierarchy of control. Subjects produced an accurate combination of total force and total moment of force with the four fingers under visual feedback on both variables and after feedback was partly or completely removed. The "inverse piano" device was used to estimate control variables. We observed strong synergies in the space of hypothetical control variables which stabilized total force and moment of force, as well as weaker synergies stabilizing individual finger forces; while the former were attenuated by alteration of visual feedback, the latter were much less affected. In addition, we investigated the organization of "ascending synergies" stabilizing task-level control variables by co-varied adjustments of finger-level control variables. We observed inter-trial co-variation of individual fingers' referent coordinates stabilizing hand-level referent coordinate, but observed no such co-variation for apparent stiffness. The observations suggest the existence of both descending and ascending synergies in a hierarchical control system. They confirm a trade-off between synergies at different levels of control and corroborate the hypothesis on specialization of different fingers for the control of force and moment. The results provide strong evidence for the importance of central back-coupling loops in ensuring stability of action.

  17. Sensor Prototype to Evaluate the Contact Force in Measuring with Coordinate Measuring Arms

    PubMed Central

    Cuesta, Eduardo; Telenti, Alejandro; Patiño, Hector; González-Madruga, Daniel; Martínez-Pellitero, Susana

    2015-01-01

    This paper describes the design, development and evaluation tests of an integrated force sensor prototype for portable Coordinate Measuring Arms (CMAs or AACMMs). The development is based on the use of strain gauges located on the surface of the CMAs’ hard probe. The strain gauges as well as their cables and connectors have been protected with a custom case, made by Additive Manufacturing techniques (Polyjet 3D). The same method has been selected to manufacture an ergonomic handle that includes trigger mechanics and the electronic components required for synchronizing the trigger signal when probing occurs. The paper also describes the monitoring software that reads the signals in real time, the calibration procedure of the prototype and the validation tests oriented towards increasing knowledge of the forces employed in manual probing. Several experiments read and record the force in real time comparing different ways of probing (discontinuous and continuous contact) and measuring different types of geometric features, from single planes to exterior cylinders, cones, or spheres, through interior features. The probing force is separated into two components allowing the influence of these strategies in probe deformation to be known. The final goal of this research is to improve the probing technique, for example by using an operator training programme, allowing extra-force peaks and bad contacts to be minimized or just to avoid bad measurements. PMID:26057038

  18. Contact force sensing for ablation of persistent atrial fibrillation: A randomized, multicenter trial.

    PubMed

    Conti, Sergio; Weerasooriya, Rukshen; Novak, Paul; Champagne, Jean; Lim, Hong Euy; Macle, Laurent; Khaykin, Yaariv; Pantano, Alfredo; Verma, Atul

    2018-02-01

    Impact of contact force sensing (CFS) on ablation of persistent atrial fibrillation (PeAF) is unknown. The purpose of the TOUCH AF (Therapeutic Outcomes Using Contact force Handling during Ablation of Persistent Atrial Fibrillation) randomized trial was to compare CFS-guided ablation to a CFS-blinded strategy. Patients (n = 128) undergoing first-time ablation for persistent AF were randomized to a CFS-guided vs CFS-blinded strategy. In the CFS-guided procedure, operators visualized real-time force data. In the blinded procedure, force data were hidden. Wide antral pulmonary vein isolation plus a roof line were performed. Patients were followed at 3, 6, 9, and 12 months with clinical visit, ECG, and 48-hour Holter monitoring. The primary endpoint was cumulative radiofrequency (RF) time for all procedures. Atrial arrhythmia >30 seconds after 3 months was a recurrence. PeAF was continuous for 26 weeks (interquartile range [IQR] 13-52), and left atrial size was 45 ± 5 mm. Force in the CFS-blinded and CFS-guided arms was 12 g [IQR 6-20] and 14 g [IQR 9-20] (P = .10), respectively. Total RF time did not differ between CFS-guided and CFS-blinded groups (49 ± 14 min vs 50 ± 20 min, respectively; P = .70). Single procedure freedom from atrial arrhythmia was 60% in the CFS-guided arm and 63% in the CFS-blinded arm off drugs. Lesions with gaps were associated with significantly less force (11.4 g [IQR 6-19] vs 13.2 g [IQR 8-20], respectively; P = .0007) and less force-time integral (174 gs [IQR 91-330] vs 210 gs [IQR 113-388], respectively; P <.001). CFS-guided ablation resulted in no difference to RF time or 12-month outcome. Lower force/force-time integral was associated with significantly more gaps. Copyright © 2017 Heart Rhythm Society. Published by Elsevier Inc. All rights reserved.

  19. Force feedback delay affects perception of stiffness but not action, and the effect depends on the hand used but not on the handedness.

    PubMed

    Leib, Raz; Rubin, Inbar; Nisky, Ilana

    2018-05-16

    Interaction with an object often requires the estimation of its mechanical properties. We examined whether the hand that is used to interact with the object and their handedness affected people's estimation of these properties using stiffness estimation as a test case. We recorded participants' responses on a stiffness discrimination of a virtual elastic force field and the grip force applied on the robotic device during the interaction. In half of the trials, the robotic device delayed the participants' force feedback. Consistent with previous studies, delayed force feedback biased the perceived stiffness of the force field. Interestingly, in both left-handed and right-handed participants, for the delayed force field, there was even less perceived stiffness when participants used their left hand than their right hand. This result supports the idea that haptic processing is affected by laterality in the brain, not by handedness. Consistent with previous studies, participants adjusted their applied grip force according to the correct size and timing of the load force regardless of the hand that was used, the handedness, or the delay. This suggests that in all these conditions, participants were able to form an accurate internal representation of the anticipated trajectory of the load force (size and timing) and that this representation was used for accurate control of grip force independently of the perceptual bias. Thus, these results provide additional evidence for the dissociation between action and perception in the processing of delayed information.

  20. GelSight: High-Resolution Robot Tactile Sensors for Estimating Geometry and Force

    PubMed Central

    Yuan, Wenzhen; Dong, Siyuan; Adelson, Edward H.

    2017-01-01

    Tactile sensing is an important perception mode for robots, but the existing tactile technologies have multiple limitations. What kind of tactile information robots need, and how to use the information, remain open questions. We believe a soft sensor surface and high-resolution sensing of geometry should be important components of a competent tactile sensor. In this paper, we discuss the development of a vision-based optical tactile sensor, GelSight. Unlike the traditional tactile sensors which measure contact force, GelSight basically measures geometry, with very high spatial resolution. The sensor has a contact surface of soft elastomer, and it directly measures its deformation, both vertical and lateral, which corresponds to the exact object shape and the tension on the contact surface. The contact force, and slip can be inferred from the sensor’s deformation as well. Particularly, we focus on the hardware and software that support GelSight’s application on robot hands. This paper reviews the development of GelSight, with the emphasis in the sensing principle and sensor design. We introduce the design of the sensor’s optical system, the algorithm for shape, force and slip measurement, and the hardware designs and fabrication of different sensor versions. We also show the experimental evaluation on the GelSight’s performance on geometry and force measurement. With the high-resolution measurement of shape and contact force, the sensor has successfully assisted multiple robotic tasks, including material perception or recognition and in-hand localization for robot manipulation. PMID:29186053

  1. Contact Forces between Single Metal Oxide Nanoparticles in Gas-Phase Applications and Processes.

    PubMed

    Salameh, Samir; van der Veen, Monique A; Kappl, Michael; van Ommen, J Ruud

    2017-03-14

    In this work we present a comprehensive experimental study to determine the contact forces between individual metal oxide nanoparticles in the gas-phase using atomic force microscopy. In addition, we determined the amount of physisorbed water for each type of particle surface. By comparing our results with mathematical models of the interaction forces, we could demonstrate that classical continuum models of van der Waals and capillary forces alone cannot sufficiently describe the experimental findings. Rather, the discrete nature of the molecules has to be considered, which leads to ordering at the interface and the occurrence of solvation forces. We demonstrate that inclusion of solvation forces in the model leads to quantitative agreement with experimental data and that tuning of the molecular order by addition of isopropanol vapor allows us to control the interaction forces between the nanoparticles.

  2. Contact Forces between Single Metal Oxide Nanoparticles in Gas-Phase Applications and Processes

    PubMed Central

    2017-01-01

    In this work we present a comprehensive experimental study to determine the contact forces between individual metal oxide nanoparticles in the gas-phase using atomic force microscopy. In addition, we determined the amount of physisorbed water for each type of particle surface. By comparing our results with mathematical models of the interaction forces, we could demonstrate that classical continuum models of van der Waals and capillary forces alone cannot sufficiently describe the experimental findings. Rather, the discrete nature of the molecules has to be considered, which leads to ordering at the interface and the occurrence of solvation forces. We demonstrate that inclusion of solvation forces in the model leads to quantitative agreement with experimental data and that tuning of the molecular order by addition of isopropanol vapor allows us to control the interaction forces between the nanoparticles. PMID:28186771

  3. Contact resonance atomic force microscopy imaging in air and water using photothermal excitation.

    PubMed

    Kocun, Marta; Labuda, Aleksander; Gannepalli, Anil; Proksch, Roger

    2015-08-01

    Contact Resonance Force Microscopy (CR-FM) is a leading atomic force microscopy technique for measuring viscoelastic nano-mechanical properties. Conventional piezo-excited CR-FM measurements have been limited to imaging in air, since the "forest of peaks" frequency response associated with acoustic excitation methods effectively masks the true cantilever resonance. Using photothermal excitation results in clean contact, resonance spectra that closely match the ideal frequency response of the cantilever, allowing unambiguous and simple resonance frequency and quality factor measurements in air and liquids alike. This extends the capabilities of CR-FM to biologically relevant and other soft samples in liquid environments. We demonstrate CR-FM in air and water on both stiff silicon/titanium samples and softer polystyrene-polyethylene-polypropylene polymer samples with the quantitative moduli having very good agreement between expected and measured values.

  4. Open-MRI measures of cam intrusion for hips in an anterior impingement position relate to acetabular contact force.

    PubMed

    Buchan, Lawrence L; Zhang, Honglin; Konan, Sujith; Heaslip, Ingrid; Ratzlaff, Charles R; Wilson, David R

    2016-02-01

    Open MRI in functional positions has potential to directly and non-invasively assess cam femoroacetabular impingement (FAI). Our objective was to investigate whether open MRI can depict intrusion of the cam deformity into the intra-articular joint space, and whether intrusion is associated with elevated acetabular contact force. Cadaver hips (9 cam; 3 controls) were positioned in an anterior impingement posture and imaged using open MRI with multi-planar reformatting. The β-angle (describing clearance between the femoral neck and acetabulum) was measured around the entire circumference of the femoral neck. We defined a binary "MRI cam-intrusion sign" (positive if β < 0°). We then instrumented each hip with a piezoresistive sensor and conducted six repeated positioning trials, measuring acetabular contact force (F). We defined a binary "contact-force sign" (positive if F > 20N). Cam hips were more likely than controls to have both a positive MRI cam-intrusion sign (p = 0.0182, Fisher's exact test) and positive contact-force sign (p = 0.0083), which represents direct experimental evidence for cam intrusion. There was also a relationship between the MRI cam-intrusion sign and contact-force sign (p = 0.033), representing a link between imaging and mechanics. Our findings indicate that open MRI has significant potential for in vivo investigation of the cam FAI mechanism. © 2015 Orthopaedic Research Society. Published by Wiley Periodicals, Inc.

  5. In Vivo Knee Contact Force Prediction Using Patient-Specific Musculoskeletal Geometry in a Segment-Based Computational Model.

    PubMed

    Ding, Ziyun; Nolte, Daniel; Kit Tsang, Chui; Cleather, Daniel J; Kedgley, Angela E; Bull, Anthony M J

    2016-02-01

    Segment-based musculoskeletal models allow the prediction of muscle, ligament, and joint forces without making assumptions regarding joint degrees-of-freedom (DOF). The dataset published for the "Grand Challenge Competition to Predict in vivo Knee Loads" provides directly measured tibiofemoral contact forces for activities of daily living (ADL). For the Sixth Grand Challenge Competition to Predict in vivo Knee Loads, blinded results for "smooth" and "bouncy" gait trials were predicted using a customized patient-specific musculoskeletal model. For an unblinded comparison, the following modifications were made to improve the predictions: further customizations, including modifications to the knee center of rotation; reductions to the maximum allowable muscle forces to represent known loss of strength in knee arthroplasty patients; and a kinematic constraint to the hip joint to address the sensitivity of the segment-based approach to motion tracking artifact. For validation, the improved model was applied to normal gait, squat, and sit-to-stand for three subjects. Comparisons of the predictions with measured contact forces showed that segment-based musculoskeletal models using patient-specific input data can estimate tibiofemoral contact forces with root mean square errors (RMSEs) of 0.48-0.65 times body weight (BW) for normal gait trials. Comparisons between measured and predicted tibiofemoral contact forces yielded an average coefficient of determination of 0.81 and RMSEs of 0.46-1.01 times BW for squatting and 0.70-0.99 times BW for sit-to-stand tasks. This is comparable to the best validations in the literature using alternative models.

  6. Hip contact forces in asymptomatic total hip replacement patients differ from normal healthy individuals: Implications for preclinical testing.

    PubMed

    Li, Junyan; Redmond, Anthony C; Jin, Zhongmin; Fisher, John; Stone, Martin H; Stewart, Todd D

    2014-08-01

    Preclinical durability testing of hip replacement implants is standardised by ISO-14242-1 (2002) which is based on historical inverse dynamics analysis using data obtained from a small sample of normal healthy individuals. It has not been established whether loading cycles derived from normal healthy individuals are representative of loading cycles occurring in patients following total hip replacement. Hip joint kinematics and hip contact forces derived from multibody modelling of forces during normal walking were obtained for 15 asymptomatic total hip replacement patients and compared to 38 normal healthy individuals and to the ISO standard for pre-clinical testing. Hip kinematics in the total hip replacement patients were comparable to the ISO data and the hip contact force in the normal healthy group was also comparable to the ISO cycles. Hip contact forces derived from the asymptomatic total hip replacement patients were comparable for the first part of the stance period but exhibited 30% lower peak loads at toe-off. Although the ISO standard provides a representative kinematic cycle, the findings call into question whether the hip joint contact forces in the ISO standard are representative of those occurring in the joint following total hip replacement. Copyright © 2014. Published by Elsevier Ltd.

  7. Multiplexed biomimetic lipid membranes on graphene by dip-pen nanolithography

    PubMed Central

    Hirtz, Michael; Oikonomou, Antonios; Georgiou, Thanasis; Fuchs, Harald; Vijayaraghavan, Aravind

    2013-01-01

    The application of graphene in sensor devices depends on the ability to appropriately functionalize the pristine graphene. Here we show the direct writing of tailored phospholipid membranes on graphene using dip-pen nanolithography. Phospholipids exhibit higher mobility on graphene compared with the commonly used silicon dioxide substrate, leading to well-spread uniform membranes. Dip-pen nanolithography allows for multiplexed assembly of phospholipid membranes of different functionalities in close proximity to each other. The membranes are stable in aqueous environments and we observe electronic doping of graphene by charged phospholipids. On the basis of these results, we propose phospholipid membranes as a route for non-covalent immobilization of various functional groups on graphene for applications in biosensing and biocatalysis. As a proof of principle, we demonstrate the specific binding of streptavidin to biotin-functionalized membranes. The combination of atomic force microscopy and binding experiments yields a consistent model for the layer organization within phospholipid stacks on graphene. PMID:24107937

  8. Kinematics of the six-degree-of-freedom force-reflecting Kraft Master

    NASA Technical Reports Server (NTRS)

    Williams, Robert L., II

    1991-01-01

    Presented here are kinematic equations for a six degree of freedom force-reflecting hand controller. The forward kinematics solution is developed and shown in simplified form. The Jacobian matrix, which uses terms from the forward kinematics solution, is derived. Both of these kinematic solutions require joint angle inputs. A calibration method is presented to determine the hand controller joint angles given the respective potentiometer readings. The kinematic relationship describing the mechanical coupling between the hand and controller shoulder and elbow joints is given. These kinematic equations may be used in an algorithm to control the hand controller as a telerobotic system component. The purpose of the hand controller is two-fold: operator commands to the telerobotic system are entered using the hand controller, and contact forces and moments from the task are reflected to the operator via the hand controller.

  9. Improving Fine Control of Grasping Force during Hand–Object Interactions for a Soft Synergy-Inspired Myoelectric Prosthetic Hand

    PubMed Central

    Fu, Qiushi; Santello, Marco

    2018-01-01

    The concept of postural synergies of the human hand has been shown to potentially reduce complexity in the neuromuscular control of grasping. By merging this concept with soft robotics approaches, a multi degrees of freedom soft-synergy prosthetic hand [SoftHand-Pro (SHP)] was created. The mechanical innovation of the SHP enables adaptive and robust functional grasps with simple and intuitive myoelectric control from only two surface electromyogram (sEMG) channels. However, the current myoelectric controller has very limited capability for fine control of grasp forces. We addressed this challenge by designing a hybrid-gain myoelectric controller that switches control gains based on the sensorimotor state of the SHP. This controller was tested against a conventional single-gain (SG) controller, as well as against native hand in able-bodied subjects. We used the following tasks to evaluate the performance of grasp force control: (1) pick and place objects with different size, weight, and fragility levels using power or precision grasp and (2) squeezing objects with different stiffness. Sensory feedback of the grasp forces was provided to the user through a non-invasive, mechanotactile haptic feedback device mounted on the upper arm. We demonstrated that the novel hybrid controller enabled superior task completion speed and fine force control over SG controller in object pick-and-place tasks. We also found that the performance of the hybrid controller qualitatively agrees with the performance of native human hands. PMID:29375360

  10. Piezoelectric sensor pen for dynamic signature verification

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    EerNisse, E.P.; Land, C.E.; Snelling, J.B.

    The concept of using handwriting dynamics for electronic identification is discussed. A piezoelectric sensor pen for obtaining the pen point dynamics during writing is described. Design equations are derived and details of an operating device are presented. Typical output waveforms are shown to demonstrate the operation of the pen and to show the dissimilarities between dynamics of a genuine signature and an attempted forgery.

  11. Mechanical properties of cellulose nanomaterials studied by contact resonance atomic force microscopy

    Treesearch

    Ryan Wagner; Robert J. Moon; Arvind Raman

    2016-01-01

    Quantification of the mechanical properties of cellulose nanomaterials is key to the development of new cellulose nanomaterial based products. Using contact resonance atomic force microscopy we measured and mapped the transverse elastic modulus of three types of cellulosic nanoparticles: tunicate cellulose nanocrystals, wood cellulose nanocrystals, and wood cellulose...

  12. Contact resistance evolution of highly cycled, lightly loaded micro-contacts

    NASA Astrophysics Data System (ADS)

    Stilson, Christopher; Coutu, Ronald

    2014-03-01

    Reliable microelectromechanical systems (MEMS) switches are critical for developing high performance radio frequency circuits like phase shifters. Engineers have attempted to improve reliability and lifecycle performance using novel contact metals, unique mechanical designs and packaging. Various test fixtures including: MEMS devices, atomic force microscopes (AFM) and nanoindentors have been used to collect resistance and contact force data. AFM and nanoindentor test fixtures allow direct contact force measurements but are severely limited by low resonance sensors, and therefore low data collection rates. This paper reports the contact resistance evolution results and fabrication of thin film, sputtered and evaporated gold, micro-contacts dynamically tested up to 3kHz. The upper contact support structure consists of a gold surface micromachined, fix-fix beam designed with sufficient restoring force to overcome adhesion. The hemisphere-upper and planar-lower contacts are mated with a calibrated, external load resulting in approximately 100μN of contact force and are cycled in excess of 106 times or until failure. Contact resistance is measured, in-situ, using a cross-bar configuration and the entire apparatus is isolated from external vibration and housed in an enclosure to minimize contamination due to ambient environment. Additionally, contact cycling and data collection are automated using a computer and LabVIEW. Results include contact resistance measurements of 6 and 8 μm radius contact bumps and lifetime testing up to 323.6 million cycles.

  13. Stability of steady hand force production explored across spaces and methods of analysis.

    PubMed

    de Freitas, Paulo B; Freitas, Sandra M S F; Lewis, Mechelle M; Huang, Xuemei; Latash, Mark L

    2018-06-01

    We used the framework of the uncontrolled manifold (UCM) hypothesis and explored the reliability of several outcome variables across different spaces of analysis during a very simple four-finger accurate force production task. Fourteen healthy, young adults performed the accurate force production task with each hand on 3 days. Small spatial finger perturbations were generated by the "inverse piano" device three times per trial (lifting the fingers 1 cm/0.5 s and lowering them). The data were analyzed using the following main methods: (1) computation of indices of the structure of inter-trial variance and motor equivalence in the space of finger forces and finger modes, and (2) analysis of referent coordinates and apparent stiffness values for the hand. Maximal voluntary force and the index of enslaving (unintentional finger force production) showed good to excellent reliability. Strong synergies stabilizing total force were reflected in both structure of variance and motor equivalence indices. Variance within the UCM and the index of motor equivalent motion dropped over the trial duration and showed good to excellent reliability. Variance orthogonal to the UCM and the index of non-motor equivalent motion dropped over the 3 days and showed poor to moderate reliability. Referent coordinate and apparent stiffness indices co-varied strongly and both showed good reliability. In contrast, the computed index of force stabilization showed poor reliability. The findings are interpreted within the scheme of neural control with referent coordinates involving the hierarchy of two basic commands, the r-command and c-command. The data suggest natural drifts in the finger force space, particularly within the UCM. We interpret these drifts as reflections of a trade-off between stability and optimization of action. The implications of these findings for the UCM framework and future clinical applications are explored in the discussion. Indices of the structure of variance and

  14. Determination of Mechanical Properties of Spatially Heterogeneous Breast Tissue Specimens Using Contact Mode Atomic Force Microscopy (AFM)

    PubMed Central

    Roy, Rajarshi; Desai, Jaydev P.

    2016-01-01

    This paper outlines a comprehensive parametric approach for quantifying mechanical properties of spatially heterogeneous thin biological specimens such as human breast tissue using contact-mode Atomic Force Microscopy. Using inverse finite element (FE) analysis of spherical nanoindentation, the force response from hyperelastic material models is compared with the predicted force response from existing analytical contact models, and a sensitivity study is carried out to assess uniqueness of the inverse FE solution. Furthermore, an automation strategy is proposed to analyze AFM force curves with varying levels of material nonlinearity with minimal user intervention. Implementation of our approach on an elastic map acquired from raster AFM indentation of breast tissue specimens indicates that a judicious combination of analytical and numerical techniques allow more accurate interpretation of AFM indentation data compared to relying on purely analytical contact models, while keeping the computational cost associated an inverse FE solution with reasonable limits. The results reported in this study have several implications in performing unsupervised data analysis on AFM indentation measurements on a wide variety of heterogeneous biomaterials. PMID:25015130

  15. Contact resonance atomic force microscopy imaging in air and water using photothermal excitation

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kocun, Marta; Labuda, Aleksander; Gannepalli, Anil

    2015-08-15

    Contact Resonance Force Microscopy (CR-FM) is a leading atomic force microscopy technique for measuring viscoelastic nano-mechanical properties. Conventional piezo-excited CR-FM measurements have been limited to imaging in air, since the “forest of peaks” frequency response associated with acoustic excitation methods effectively masks the true cantilever resonance. Using photothermal excitation results in clean contact, resonance spectra that closely match the ideal frequency response of the cantilever, allowing unambiguous and simple resonance frequency and quality factor measurements in air and liquids alike. This extends the capabilities of CR-FM to biologically relevant and other soft samples in liquid environments. We demonstrate CR-FM inmore » air and water on both stiff silicon/titanium samples and softer polystyrene-polyethylene-polypropylene polymer samples with the quantitative moduli having very good agreement between expected and measured values.« less

  16. Surgical Force-Measuring Probe

    NASA Technical Reports Server (NTRS)

    Tcheng, Ping; Roberts, Paul W.; Scott, Charles E.

    1993-01-01

    Aerodynamic balance adapted to medical use. Electromechanical probe measures forces and moments applied to human tissue during surgery. Measurements used to document optimum forces and moments for surgical research and training. In neurosurgical research, measurements correlated with monitored responses of nerves. In training, students learn procedures by emulating forces used by experienced surgeons. Lightweight, pen-shaped probe easily held by surgeon. Cable feeds output signals to processing circuitry.

  17. Characterization of the Electron Energy Distribution Function in a Penning Discharge

    NASA Astrophysics Data System (ADS)

    Skoutnev, Valentin; Dourbal, Paul; Raitses, Yevgeny

    2017-10-01

    Slow and fast sweeping Langmuir probe diagnostics were implemented to measure the electron energy distribution function (EEDF) in a cross-field Penning discharge undergoing rotating spoke phenomenon. The EEDF was measured using the Druyvesteyn method. Rotating spoke occurs in a variety of ExB devices and is characterized primarily by azimuthal light, density, and potential fluctuations on the order of a few kHz, but is theoretically still not well understood. Characterization of a time-resolved EEDF of the spoke would be important for understanding physical mechanisms responsible for the spoke and its effects on Penning discharges, Hall thrusters, sputtering magnetrons, and other ExB devices. In this work, preliminary results of measurements of the EEDF using slow and fast Langmuir probes that sweep below and above the fundamental spoke frequency will be discussed. This work was supported by the Air Force Office of Scientific Research (AFOSR).

  18. The influence of risk perception on biosafety level-2 laboratory workers' hand-to-face contact behaviors.

    PubMed

    Johnston, James D; Eggett, Dennis; Johnson, Michele J; Reading, James C

    2014-01-01

    Pathogen transmission in the laboratory is thought to occur primarily through inhalation of infectious aerosols or by direct contact with mucous membranes on the face. While significant research has focused on controlling inhalation exposures, little has been written about hand contamination and subsequent hand-to-face contact (HFC) transmission. HFC may present a significant risk to workers in biosafety level-2 (BSL-2) laboratories where there is typically no barrier between the workers' hands and face. The purpose of this study was to measure the frequency and location of HFC among BSL-2 workers, and to identify psychosocial factors that influence the behavior. Research workers (N = 93) from 21 BSL-2 laboratories consented to participate in the study. Two study personnel measured workers' HFC behaviors by direct observation during activities related to cell culture maintenance, cell infection, virus harvesting, reagent and media preparation, and tissue processing. Following observations, a survey measuring 11 psychosocial predictors of HFC was administered to participants. Study personnel recorded 396 touches to the face over the course of the study (mean = 2.6 HFCs/hr). Of the 93 subjects, 67 (72%) touched their face at least once, ranging from 0.2-16.0 HFCs/hr. Among those who touched their face, contact with the nose was most common (44.9%), followed by contact with the forehead (36.9%), cheek/chin (12.5%), mouth (4.0%), and eye (1.7%). HFC rates were significantly different across laboratories F(20, 72) = 1.85, p = 0.03. Perceived severity of infection predicted lower rates of HFC (p = 0.03). For every one-point increase in the severity scale, workers had 0.41 fewer HFCs/hr (r = -.27, P < 0.05). This study suggests HFC is common among BSL-2 laboratory workers, but largely overlooked as a major route of exposure. Workers' risk perceptions had a modest impact on their HFC behaviors, but other factors not considered in this study, including social modeling and

  19. Fine finger motor skill training with exoskeleton robotic hand in chronic stroke: stroke rehabilitation.

    PubMed

    Ockenfeld, Corinna; Tong, Raymond K Y; Susanto, Evan A; Ho, Sze-Kit; Hu, Xiao-ling

    2013-06-01

    Background and Purpose. Stroke survivors often show a limited recovery in the hand function to perform delicate motions, such as full hand grasping, finger pinching and individual finger movement. The purpose of this study is to describe the implementation of an exoskeleton robotic hand together with fine finger motor skill training on 2 chronic stroke patients. Case Descriptions. Two post-stroke patients participated in a 20-session training program by integrating 10 minutes physical therapy, 20 minutes robotic hand training and 15 minutes functional training tasks with delicate objects(card, pen and coin). These two patients (A and B) had cerebrovascular accident at 6 months and 11 months respectively when enrolled in this study. Outcomes. The results showed that both patients had improvements in Fugl-Meyer assessment (FM), Action Research Arm Test (ARAT). Patients had better isolation of the individual finger flexion and extension based on the reduced muscle co-contraction from the electromyographic(EMG) signals and finger extension force after 20 sessions of training. Discussion. This preliminary study showed that by focusing on the fine finger motor skills together with the exoskeleton robotic hand, it could improve the motor recovery of the upper extremity in the fingers and hand function, which were showed in the ARAT. Future randomized controlled trials are needed to evaluate the clinical effectiveness.

  20. Purkinje cells signal hand shape and grasp force during reach-to-grasp in the monkey.

    PubMed

    Mason, Carolyn R; Hendrix, Claudia M; Ebner, Timothy J

    2006-01-01

    The cerebellar cortex and nuclei play important roles in the learning, planning, and execution of reach-to-grasp and prehensile movements. However, few studies have investigated the signals carried by cerebellar neurons during reach-to-grasp, particularly signals relating to target object properties, hand shape, and grasp force. In this study, the simple spike discharge of 77 Purkinje cells was recorded as two rhesus monkeys reached and grasped 16 objects. The objects varied systematically in volume, shape, and orientation and each was grasped at five different force levels. Linear multiple regression analyses showed the simple spike discharge was significantly modulated in relation to objects and force levels. Object related modulation occurred preferentially during reach or early in the grasp and was linearly related to grasp aperture. The simple spike discharge was positively correlated with grasp force during both the reach and the grasp. There was no significant interaction between object and grasp force modulation, supporting previous kinematic findings that grasp kinematics and force are signaled independently. Singular value decomposition (SVD) was used to quantify the temporal patterns in the simple spike discharge. Most cells had a predominant discharge pattern that remained relatively constant across object grasp dimensions and force levels. A single predominant simple spike discharge pattern that spans reach and grasp and accounts for most of the variation (>60%) is consistent with the concept that the cerebellum is involved with synergies underlying prehension. Therefore Purkinje cells are involved with the signaling of prehension, providing independent signals for hand shaping and grasp force.

  1. Soldier-relevant body borne loads increase knee joint contact force during a run-to-stop maneuver.

    PubMed

    Ramsay, John W; Hancock, Clifford L; O'Donovan, Meghan P; Brown, Tyler N

    2016-12-08

    The purpose of this study was to understand the effects of load carriage on human performance, specifically during a run-to-stop (RTS) task. Using OpenSim analysis tools, knee joint contact force, grounds reaction force, leg stiffness and lower extremity joint angles and moments were determined for nine male military personnel performing a RTS under three load configurations (light, ~6kg, medium, ~20kg, and heavy, ~40kg). Subject-based means for each biomechanical variable were submitted to repeated measures ANOVA to test the effects of load. During the RTS, body borne load significantly increased peak knee joint contact force by 1.2 BW (p<0.001) and peak vertical (p<0.001) and anterior-posterior (p=0.002) ground reaction forces by 0.6 BW and 0.3 BW, respectively. Body borne load also had a significant effect on hip (p=0.026) posture with the medium load and knee (p=0.046) posture with the heavy load. With the heavy load, participants exhibited a substantial, albeit non-significant increase in leg stiffness (p=0.073 and d=0.615). Increases in joint contact force exhibited during the RTS were primarily due to greater GRFs that impact the soldier with each incremental addition of body borne load. The stiff leg, extended knee and large braking force the soldiers exhibited with the heavy load suggests their injury risk may be greatest with that specific load configuration. Further work is needed to determine if the biomechanical profile exhibited with the heavy load configuration translates to unsafe shear forces at the knee joint and consequently, a higher likelihood of injury. Published by Elsevier Ltd.

  2. Multiple sessions of low-frequency repetitive transcranial magnetic stimulation in focal hand dystonia: clinical and physiological effects

    PubMed Central

    Kimberley, Teresa Jacobson; Borich, Michael R.; Arora, Sanjeev; Siebner, Hartwig R.

    2016-01-01

    Purpose The ability of low-frequency repetitive transcranial magnetic stimulation (rTMS) to enhance intracortical inhibition has motivated its use as a potential therapeutic intervention in focal hand dystonia (FHD). In this preliminary investigation, we assessed the physiologic and behavioral effects of multiple sessions of rTMS in FHD. Methods 12 patients with FHD underwent five daily-sessions of 1Hz rTMS to contralateral dorsal premotor cortex (dPMC). Patients held a pencil and made movements that did not elicit dystonic symptoms during rTMS. We hypothesized that an active but non-dystonic motor state would increase beneficial effects of rTMS. Five additional patients received sham-rTMS protocol. The area under curve (AUC) of the motor evoked potentials and the cortical silent period (CSP) were measured to assess changes in corticospinal excitability and intracortical inhibition, respectively. Behavioral measures included pen force and velocity during handwriting and subjective report. Results Multiple-session rTMS strengthened intracortical inhibition causing a prolongation of CSP after 3 days of intervention and pen force was reduced at day 1 and 5, leaving other measures unchanged. 68% of patients self-reported as ‘responders’ at day 5, and 58% at follow-up. Age predicted responders. Conclusions A strong therapeutic potential of this rTMS paradigm in FHD was not supported but findings warrant further investigation. PMID:23340117

  3. Technical note: whole-pen assessments of nutrient excretion and digestibility from dairy replacement heifers housed in sand-bedded freestalls.

    PubMed

    Coblentz, W K; Hoffman, P C; Esser, N M; Bertram, M G

    2013-10-01

    linear trends (P ≤ 0.027) associated with the inclusion rates of EGG within the diet were detected. This technique allows estimation of apparent diet digestibilities on multiple animals simultaneously, thereby mitigating the need for isolating individual animals to obtain digestibility coefficients. The approach appears viable but requires hand labor for collections of multiple pens and thorough mixing of large volumes of manure as well as analytical corrections for sand ingested by lounging heifers.

  4. Dynamic contact forces on leukocyte microvilli and their penetration of the endothelial glycocalyx.

    PubMed Central

    Zhao, Y; Chien, S; Weinbaum, S

    2001-01-01

    We develop a theoretical model to examine the combined effect of gravity and microvillus length heterogeneity on tip contact force (F(m)(z)) during free rolling in vitro, including the initiation of L-, P-, and E-selectin tethers and the threshold behavior at low shear. F (m)(z) grows nonlinearly with shear. At shear stress of 1 dyn/cm(2), F(m)(z) is one to two orders of magnitude greater than the 0.1 pN force for gravitational settling without flow. At shear stresses > 0.2 dyn/cm(2) only the longest microvilli contact the substrate; hence at the shear threshold (0.4 dyn/cm(2) for L-selectin), only 5% of microvilli can initiate tethering interaction. The characteristic time for tip contact is surprisingly short, typically 0.1-1 ms. This model is then applied in vivo to explore the free-rolling interaction of leukocyte microvilli with endothelial glycocalyx and the necessary conditions for glycocalyx penetration to initiate cell rolling. The model predicts that for arteriolar capillaries even the longest microvilli cannot initiate rolling, except in regions of low shear or flow reversal. In postcapillary venules, where shear stress is approximately 2 dyn/cm(2), tethering interactions are highly likely, provided that there are some relatively long microvilli. Once tethering is initiated, rolling tends to ensue because F(m)(z) and contact duration will both increase substantially to facilitate glycocalyx penetration by the shorter microvilli. PMID:11222278

  5. Obesity is associated with higher absolute tibiofemoral contact and muscle forces during gait with and without knee osteoarthritis.

    PubMed

    Harding, Graeme T; Dunbar, Michael J; Hubley-Kozey, Cheryl L; Stanish, William D; Astephen Wilson, Janie L

    2016-01-01

    Obesity is an important risk factor for knee osteoarthritis initiation and progression. However, it is unclear how obesity may directly affect the mechanical loading environment of the knee joint, initiating or progressing joint degeneration. The objective of this study was to investigate the interacting role of obesity and moderate knee osteoarthritis presence on tibiofemoral contact forces and muscle forces within the knee joint during walking gait. Three-dimensional gait analysis was performed on 80 asymptomatic participants and 115 individuals diagnosed with moderate knee osteoarthritis. Each group was divided into three body mass index categories: healthy weight (body mass index<25), overweight (25≤body mass index≤30), and obese (body mass index>30). Tibiofemoral anterior-posterior shear and compressive forces, as well as quadriceps, hamstrings and gastrocnemius muscle forces, were estimated based on a sagittal plane contact force model. Peak contact and muscle forces during gait were compared between groups, as well as the interaction between disease presence and body mass index category, using a two-factor analysis of variance. There were significant osteoarthritis effects in peak shear, gastrocnemius and quadriceps forces only when they were normalized to body mass, and there were significant BMI effects in peak shear, compression, gastrocnemius and hamstrings forces only in absolute, non-normalized forces. There was a significant interaction effect in peak quadriceps muscle forces, with higher forces in overweight and obese groups compared to asymptomatic healthy weight participants. Body mass index was associated with higher absolute tibiofemoral compression and shear forces as well as posterior muscle forces during gait, regardless of moderate osteoarthritis presence or absence. The differences found may contribute to accelerated joint damage with obesity, but with the osteoarthritic knees less able to accommodate the high loads. Copyright © 2015

  6. Probability of detecting Porcine reproductive and respiratory syndrome virus infection using pen-based swine oral fluid specimens as a function of within-pen prevalence.

    PubMed

    Olsen, Chris; Wang, Chong; Christopher-Hennings, Jane; Doolittle, Kent; Harmon, Karen M; Abate, Sarah; Kittawornrat, Apisit; Lizano, Sergio; Main, Rodger; Nelson, Eric A; Otterson, Tracy; Panyasing, Yaowalak; Rademacher, Chris; Rauh, Rolf; Shah, Rohan; Zimmerman, Jeffrey

    2013-05-01

    Pen-based oral fluid sampling has proven to be an efficient method for surveillance of infectious diseases in swine populations. To better interpret diagnostic results, the performance of oral fluid assays (antibody- and nucleic acid-based) must be established for pen-based oral fluid samples. Therefore, the objective of the current study was to determine the probability of detecting Porcine reproductive and respiratory syndrome virus (PRRSV) infection in pen-based oral fluid samples from pens of known PRRSV prevalence. In 1 commercial swine barn, 25 pens were assigned to 1 of 5 levels of PRRSV prevalence (0%, 4%, 12%, 20%, or 36%) by placing a fixed number (0, 1, 3, 5, or 9) of PRRSV-positive pigs (14 days post PRRSV modified live virus vaccination) in each pen. Prior to placement of the vaccinated pigs, 1 oral fluid sample was collected from each pen. Thereafter, 5 oral fluid samples were collected from each pen, for a total of 150 samples. To confirm individual pig PRRSV status, serum samples from the PRRSV-negative pigs (n = 535) and the PRRSV vaccinated pigs (n = 90) were tested for PRRSV antibodies and PRRSV RNA. The 150 pen-based oral fluid samples were assayed for PRRSV antibody and PRRSV RNA at 6 laboratories. Among the 100 samples from pens containing ≥1 positive pig (≥4% prevalence) and tested at the 6 laboratories, the mean positivity was 62% for PRRSV RNA and 61% for PRRSV antibody. These results support the use of pen-based oral fluid sampling for PRRSV surveillance in commercial pig populations.

  7. Lessons Learned during the Development of HumaPen® Memoir™, an Insulin Pen with a Memory Feature

    PubMed Central

    Breslin, Stuart D.; Ignaut, Debra A.; Boyd, Douglas E.

    2010-01-01

    Insulin pens are developed to address specific needs of diabetes patients for their pens, such as ease of use, portability, and discreetness. Like many consumer-based products, the development of insulin pens can pose significant challenges to the development team in that they must balance substantial accuracy requirements with aesthetic desires. The HumaPen® Memoir™ team learned valuable lessons throughout the development process that may be worth highlighting. A keen understanding of the unmet needs of the patient population and a skillfully planned product generation map are critical to successful device development. A development team must decide whether to use a Quality Functional Deployment or system engineering-based development plan and, additionally, recognize where proof of concept ends and product development begins to maintain a strict timeline for the project. A proficiency in understanding and managing technical risk is critical to ensure a timely and high-quality product launch to the marketplace. PMID:20513318

  8. Robustness of muscle synergies underlying three-dimensional force generation at the hand in healthy humans

    PubMed Central

    Rymer, William Z.; Beer, Randall F.

    2012-01-01

    Previous studies using advanced matrix factorization techniques have shown that the coordination of human voluntary limb movements may be accomplished using combinations of a small number of intermuscular coordination patterns, or muscle synergies. However, the potential use of muscle synergies for isometric force generation has been evaluated mostly using correlational methods. The results of such studies suggest that fixed relationships between the activations of pairs of muscles are relatively rare. There is also emerging evidence that the nervous system uses independent strategies to control movement and force generation, which suggests that one cannot conclude a priori that isometric force generation is accomplished by combining muscle synergies, as shown in movement control. In this study, we used non-negative matrix factorization to evaluate the ability of a few muscle synergies to reconstruct the activation patterns of human arm muscles underlying the generation of three-dimensional (3-D) isometric forces at the hand. Surface electromyographic (EMG) data were recorded from eight key elbow and shoulder muscles during 3-D force target-matching protocols performed across a range of load levels and hand positions. Four synergies were sufficient to explain, on average, 95% of the variance in EMG datasets. Furthermore, we found that muscle synergy composition was conserved across biomechanical task conditions, experimental protocols, and subjects. Our findings are consistent with the view that the nervous system can generate isometric forces by assembling a combination of a small number of muscle synergies, differentially weighted according to task constraints. PMID:22279190

  9. Reduced step length reduces knee joint contact forces during running following anterior cruciate ligament reconstruction but does not alter inter-limb asymmetry.

    PubMed

    Bowersock, Collin D; Willy, Richard W; DeVita, Paul; Willson, John D

    2017-03-01

    Anterior cruciate ligament reconstruction is associated with early onset knee osteoarthritis. Running is a typical activity following this surgery, but elevated knee joint contact forces are thought to contribute to osteoarthritis degenerative processes. It is therefore clinically relevant to identify interventions to reduce contact forces during running among individuals after anterior cruciate ligament reconstruction. The primary purpose of this study was to evaluate the effect of reducing step length during running on patellofemoral and tibiofemoral joint contact forces among people with a history of anterior cruciate ligament reconstruction. Inter limb knee joint contact force differences during running were also examined. 18 individuals at an average of 54.8months after unilateral anterior cruciate ligament reconstruction ran in 3 step length conditions (preferred, -5%, -10%). Bilateral patellofemoral, tibiofemoral, and medial tibiofemoral compartment peak force, loading rate, impulse, and impulse per kilometer were evaluated between step length conditions and limbs using separate 2 factor analyses of variance. Reducing step length 5% decreased patellofemoral, tibiofemoral, and medial tibiofemoral compartment peak force, impulse, and impulse per kilometer bilaterally. A 10% step length reduction further decreased peak forces and force impulses, but did not further reduce force impulses per kilometer. Tibiofemoral joint impulse, impulse per kilometer, and patellofemoral joint loading rate were lower in the previously injured limb compared to the contralateral limb. Running with a shorter step length is a feasible clinical intervention to reduce knee joint contact forces during running among people with a history of anterior cruciate ligament reconstruction. Copyright © 2017 Elsevier Ltd. All rights reserved.

  10. Right- and left-handed three-helix proteins. II. Similarity and differences in mechanical unfolding of proteins.

    PubMed

    Glyakina, Anna V; Likhachev, Ilya V; Balabaev, Nikolay K; Galzitskaya, Oxana V

    2014-01-01

    Here, we study mechanical properties of eight 3-helix proteins (four right-handed and four left-handed ones), which are similar in size under stretching at a constant speed and at a constant force on the atomic level using molecular dynamics simulations. The analysis of 256 trajectories from molecular dynamics simulations with explicit water showed that the right-handed three-helix domains are more mechanically resistant than the left-handed domains. Such results are observed at different extension velocities studied (192 trajectories obtained at the following conditions: v = 0.1, 0.05, and 0.01 Å ps(-1) , T = 300 K) and under constant stretching force (64 trajectories, F = 800 pN, T = 300 K). We can explain this by the fact, at least in part, that the right-handed domains have a larger number of contacts per residue and the radius of cross section than the left-handed domains. Copyright © 2013 Wiley Periodicals, Inc.

  11. Fingertip contact influences human postural control

    NASA Technical Reports Server (NTRS)

    Jeka, J. J.; Lackner, J. R.

    1994-01-01

    Touch and pressure stimulation of the body surface can strongly influence apparent body orientation, as well as the maintenance of upright posture during quiet stance. In the present study, we investigated the relationship between postural sway and contact forces at the fingertip while subjects touched a rigid metal bar. Subjects were tested in the tandem Romberg stance with eyes open or closed under three conditions of fingertip contact: no contact, touch contact (< 0.98 N of force), and force contact (as much force as desired). Touch contact was as effective as force contact or sight of the surroundings in reducing postural sway when compared to the no contact, eyes closed condition. Body sway and fingertip forces were essentially in phase with force contact, suggesting that fingertip contact forces are physically counteracting body sway. Time delays between body sway and fingertip forces were much larger with light touch contact, suggesting that the fingertip is providing information that allows anticipatory innervation of musculature to reduce body sway. The results are related to observations on precision grip as well as the somatosensory, proprioceptive, and motor mechanisms involved in the reduction of body sway.

  12. Comparing soil and pond ash feedlot pen surfaces for environmental management

    USDA-ARS?s Scientific Manuscript database

    Removing manure and replacing soil to maintain pen surfaces is expensive. Pond ash (PA), a coal-fired electrical generation by-product, has good support qualities. A study was conducted comparing the performance of pond ash (PA) surfaced pens with soil surface (SS) pens. Four pens of an eight pen se...

  13. Key Insights into Hand Biomechanics: Human Grip Stiffness Can Be Decoupled from Force by Cocontraction and Predicted from Electromyography

    PubMed Central

    Höppner, Hannes; Große-Dunker, Maximilian; Stillfried, Georg; Bayer, Justin; van der Smagt, Patrick

    2017-01-01

    We investigate the relation between grip force and grip stiffness for the human hand with and without voluntary cocontraction. Apart from gaining biomechanical insight, this issue is particularly relevant for variable-stiffness robotic systems, which can independently control the two parameters, but for which no clear methods exist to design or efficiently exploit them. Subjects were asked in one task to produce different levels of force, and stiffness was measured. As expected, this task reveals a linear coupling between force and stiffness. In a second task, subjects were then asked to additionally decouple stiffness from force at these force levels by using cocontraction. We measured the electromyogram from relevant groups of muscles and analyzed the possibility to predict stiffness and force. Optical tracking was used for avoiding wrist movements. We found that subjects were able to decouple grip stiffness from force when using cocontraction on average by about 20% of the maximum measured stiffness over all force levels, while this ability increased with the applied force. This result contradicts the force–stiffness behavior of most variable-stiffness actuators. Moreover, we found the thumb to be on average twice as stiff as the index finger and discovered that intrinsic hand muscles predominate our prediction of stiffness, but not of force. EMG activity and grip force allowed to explain 72 ± 12% of the measured variance in stiffness by simple linear regression, while only 33 ± 18% variance in force. Conclusively the high signal-to-noise ratio and the high correlation to stiffness of these muscles allow for a robust and reliable regression of stiffness, which can be used to continuously teleoperate compliance of modern robotic hands. PMID:28588472

  14. Writing kinematics and pen forces in writer's cramp: effects of task and clinical subtype.

    PubMed

    Schneider, A S; Baur, B; Fürholzer, W; Jasper, I; Marquardt, C; Hermsdörfer, J

    2010-11-01

    Writer's Cramp (WC) is defined as a task-specific form of focal-hand-dystonia generating hypertonic muscle co-contractions resulting in impaired handwriting. Little is known about kinematic and dynamic characteristics in handwriting in the different subtypes of WC. In this study, kinematic and force analyses were used to compare handwriting capacity of 14 simple, 13 dystonic WC-patients and 14 healthy subjects. The effect of task-complexity was investigated using a simple repetitive writing-task, writing pairs of letters, a sentence and copying a text. In general, patients showed significant deficits in kinematic and force parameters during writing, but no consistent differences between the two subtypes of WC were found. The complexity of writing material modulated writing parameters in all groups, but less complex material did not ameliorate the patients' deficits relative to control subjects. The similarity of deficits in patients with simple and dystonic WC does not support the concept of a unitary progression of deficits causing a switch from simple to dystonic WC. Dystonic WC seems to be characterized by a spread of symptoms independent of severity. Obviously, the deficits concern elementary aspects of writing and are not modulated by more complex aspects. Quantification of writing deficits by simple and short phrases with kinematic and force parameters can substantially improve the characterization of WC. Copyright © 2010 International Federation of Clinical Neurophysiology. Published by Elsevier Ireland Ltd. All rights reserved.

  15. Detection of stiff nanoparticles within cellular structures by contact resonance atomic force microscopy subsurface nanomechanical imaging.

    PubMed

    Reggente, Melania; Passeri, Daniele; Angeloni, Livia; Scaramuzzo, Francesca Anna; Barteri, Mario; De Angelis, Francesca; Persiconi, Irene; De Stefano, Maria Egle; Rossi, Marco

    2017-05-04

    Detecting stiff nanoparticles buried in soft biological matrices by atomic force microscopy (AFM) based techniques represents a new frontier in the field of scanning probe microscopies, originally developed as surface characterization methods. Here we report the detection of stiff (magnetic) nanoparticles (NPs) internalized in cells by using contact resonance AFM (CR-AFM) employed as a potentially non-destructive subsurface characterization tool. Magnetite (Fe 3 O 4 ) NPs were internalized in microglial cells from cerebral cortices of mouse embryos of 18 days by phagocytosis. Nanomechanical imaging of cells was performed by detecting the contact resonance frequencies (CRFs) of an AFM cantilever held in contact with the sample. Agglomerates of NPs internalized in cells were visualized on the basis of the local increase in the contact stiffness with respect to the surrounding biological matrix. A second AFM-based technique for nanomechanical imaging, i.e., HarmoniX™, as well as magnetic force microscopy and light microscopy were used to confirm the CR-AFM results. Thus, CR-AFM was demonstrated as a promising technique for subsurface imaging of nanomaterials in biological samples.

  16. Hand-drawn&written pen-on-paper electrochemiluminescence immunodevice powered by rechargeable battery for low-cost point-of-care testing.

    PubMed

    Yang, Hongmei; Kong, Qingkun; Wang, Shaowei; Xu, Jinmeng; Bian, Zhaoquan; Zheng, Xiaoxiao; Ma, Chao; Ge, Shenguang; Yu, Jinghua

    2014-11-15

    In this paper, a pen-on-paper electrochemiluminescence (PoP-ECL) device was entirely hand drawn and written in commercially available crayon and pencil in turn for the first time, and a constant potential-triggered sandwich-type immunosensor was introduced into the PoP-ECL device to form a low-cost ECL immunodevice proof. Each PoP-ECL device contained a hydrophilic paper channel and two PoP electrodes, and the PoP-ECL device was produced as follows: crayon was firstly used to draw hydrophobic regions on pure cellulose paper to create the hydrophilic paper channels followed with a baking treatment, and then a 6B-type black pencil with low resistivity was applied for precision writing, as the PoP electrodes, across the hydrophilic paper channel. For further point-of-care testing, a portable, low-cost rechargeable battery was employed as the power source to provide constant potential to the PoP electrodes to trigger the ECL. Using Carbohydrate antigen 199 as model analyte, this PoP-ECL immunodevice showed a good linear response range from 0.01-200 U mL(-1) with a detection limit of 0.0055 U mL(-1), a high sensitivity and stability. The proposed PoP-ECL immunodevice could be used in point-of-care testing of other tumor markers for remote regions and developing countries. Copyright © 2014 Elsevier B.V. All rights reserved.

  17. Influence of typical faults over the dynamic behavior of pantograph-catenary contact force in electric rail transport

    NASA Astrophysics Data System (ADS)

    Rusu-Anghel, S.; Ene, A.

    2017-05-01

    The quality of electric energy capture and also the equipment operational safety depend essentially of the technical state of the contact line (CL). The present method for determining the technical state of CL based on advance programming is no longer efficient, due to the faults which can occur into the not programmed areas. Therefore, they cannot be remediated. It is expected another management method for the repairing and maintenance of CL based on its real state which must be very well known. In this paper a new method for determining the faults in CL is described. It is based on the analysis of the variation of pantograph-CL contact force in dynamical regime. Using mathematical modelling and also experimental tests, it was established that each type of fault is able to generate ‘signatures’ into the contact force diagram. The identification of these signatures can be accomplished by an informatics system which will provide the fault location, its type and also in the future, the probable evolution of the CL technical state. The measuring of the contact force is realized in optical manner using a railway inspection trolley which has appropriate equipment. The analysis of the desired parameters can be accomplished in real time by a data acquisition system, based on dedicated software.

  18. Influence of weak hip abductor muscles on joint contact forces during normal walking: probabilistic modeling analysis.

    PubMed

    Valente, Giordano; Taddei, Fulvia; Jonkers, Ilse

    2013-09-03

    The weakness of hip abductor muscles is related to lower-limb joint osteoarthritis, and joint overloading may increase the risk for disease progression. The relationship between muscle strength, structural joint deterioration and joint loading makes the latter an important parameter in the study of onset and follow-up of the disease. Since the relationship between hip abductor weakness and joint loading still remains an open question, the purpose of this study was to adopt a probabilistic modeling approach to give insights into how the weakness of hip abductor muscles, in the extent to which normal gait could be unaltered, affects ipsilateral joint contact forces. A generic musculoskeletal model was scaled to each healthy subject included in the study, and the maximum force-generating capacity of each hip abductor muscle in the model was perturbed to evaluate how all physiologically possible configurations of hip abductor weakness affected the joint contact forces during walking. In general, the muscular system was able to compensate for abductor weakness. The reduced force-generating capacity of the abductor muscles affected joint contact forces to a mild extent, with 50th percentile mean differences up to 0.5 BW (maximum 1.7 BW). There were greater increases in the peak knee joint loads than in loads at the hip or ankle. Gluteus medius, particularly the anterior compartment, was the abductor muscle with the most influence on hip and knee loads. Further studies should assess if these increases in joint loading may affect initiation and progression of osteoarthritis. Copyright © 2013 Elsevier Ltd. All rights reserved.

  19. Anisotropic forces from spatially constrained focal adhesions mediate contact guidance directed cell migration

    PubMed Central

    Ray, Arja; Lee, Oscar; Win, Zaw; Edwards, Rachel M.; Alford, Patrick W.; Kim, Deok-Ho; Provenzano, Paolo P.

    2017-01-01

    Directed migration by contact guidance is a poorly understood yet vital phenomenon, particularly for carcinoma cell invasion on aligned collagen fibres. We demonstrate that for single cells, aligned architectures providing contact guidance cues induce constrained focal adhesion maturation and associated F-actin alignment, consequently orchestrating anisotropic traction stresses that drive cell orientation and directional migration. Consistent with this understanding, relaxing spatial constraints to adhesion maturation either through reduction in substrate alignment density or reduction in adhesion size diminishes the contact guidance response. While such interactions allow single mesenchymal-like cells to spontaneously ‘sense' and follow topographic alignment, intercellular interactions within epithelial clusters temper anisotropic cell–substratum forces, resulting in substantially lower directional response. Overall, these results point to the control of contact guidance by a balance of cell–substratum and cell–cell interactions, modulated by cell phenotype-specific cytoskeletal arrangements. Thus, our findings elucidate how phenotypically diverse cells perceive ECM alignment at the molecular level. PMID:28401884

  20. Microfabricated Fountain Pens for High-Density DNA Arrays

    PubMed Central

    Reese, Matthew O.; van Dam, R. Michae; Scherer, Axel; Quake, Stephen R.

    2003-01-01

    We used photolithographic microfabrication techniques to create very small stainless steel fountain pens that were installed in place of conventional pens on a microarray spotter. Because of the small feature size produced by the microfabricated pens, we were able to print arrays with up to 25,000 spots/cm2, significantly higher than can be achieved by other deposition methods. This feature density is sufficiently large that a standard microscope slide can contain multiple replicates of every gene in a complex organism such as a mouse or human. We tested carryover during array printing with dye solution, labeled DNA, and hybridized DNA, and we found it to be indistinguishable from background. Hybridization also showed good sequence specificity to printed oligonucleotides. In addition to improved slide capacity, the microfabrication process offers the possibility of low-cost mass-produced pens and the flexibility to include novel pen features that cannot be machined with conventional techniques. PMID:12975313

  1. Effects of hand configuration on muscle force coordination, co-contraction and concomitant intermuscular coupling during maximal isometric flexion of the fingers.

    PubMed

    Charissou, Camille; Amarantini, David; Baurès, Robin; Berton, Eric; Vigouroux, Laurent

    2017-11-01

    The mechanisms governing the control of musculoskeletal redundancy remain to be fully understood. The hand is highly redundant, and shows different functional role of extensors according to its configuration for a same functional task of finger flexion. Through intermuscular coherence analysis combined with hand musculoskeletal modelling during maximal isometric hand contractions, our aim was to better understand the neural mechanisms underlying the control of muscle force coordination and agonist-antagonist co-contraction. Thirteen participants performed maximal isometric flexions of the fingers in two configurations: power grip (Power) and finger-pressing on a surface (Press). Hand kinematics and force/moment measurements were used as inputs in a musculoskeletal model of the hand to determine muscular tensions and co-contraction. EMG-EMG coherence analysis was performed between wrist and finger flexors and extensor muscle pairs in alpha, beta and gamma frequency bands. Concomitantly with tailored muscle force coordination and increased co-contraction between Press and Power (mean difference: 48.08%; p < 0.05), our results showed muscle-pair-specific modulation of intermuscular coupling, characterized by pair-specific modulation of EMG-EMG coherence between Power and Press (p < 0.05), and a negative linear association between co-contraction and intermuscular coupling for the ECR/FCR agonist-antagonist muscle pair (r = - 0.65; p < 0.05). This study brings new evidence that pair-specific modulation of EMG-EMG coherence is related to modulation of muscle force coordination during hand contractions. Our results highlight the functional importance of intermuscular coupling as a mechanism contributing to the control of muscle force synergies and agonist-antagonist co-contraction.

  2. Taking nanomedicine teaching into practice with atomic force microscopy and force spectroscopy.

    PubMed

    Carvalho, Filomena A; Freitas, Teresa; Santos, Nuno C

    2015-12-01

    Atomic force microscopy (AFM) is a useful and powerful tool to study molecular interactions applied to nanomedicine. The aim of the present study was to implement a hands-on atomic AFM course for graduated biosciences and medical students. The course comprises two distinct practical sessions, where students get in touch with the use of an atomic force microscope by performing AFM scanning images of human blood cells and force spectroscopy measurements of the fibrinogen-platelet interaction. Since the beginning of this course, in 2008, the overall rating by the students was 4.7 (out of 5), meaning a good to excellent evaluation. Students were very enthusiastic and produced high-quality AFM images and force spectroscopy data. The implementation of the hands-on AFM course was a success, giving to the students the opportunity of contact with a technique that has a wide variety of applications on the nanomedicine field. In the near future, nanomedicine will have remarkable implications in medicine regarding the definition, diagnosis, and treatment of different diseases. AFM enables students to observe single molecule interactions, enabling the understanding of molecular mechanisms of different physiological and pathological processes at the nanoscale level. Therefore, the introduction of nanomedicine courses in bioscience and medical school curricula is essential. Copyright © 2015 The American Physiological Society.

  3. Comparison of optical and electrical measurements of the pantograph-catenary contact force

    NASA Astrophysics Data System (ADS)

    Bocciolone, Marco; Bucca, Giuseppe; Collina, Andrea; Comolli, Lorenzo

    2010-09-01

    In railway engineering the monitoring of contact force between pantograph and catenary gives information about the interaction between the two systems and it is useful to check the status of the overhead line. Indeed the failure of the catenary is one of the main causes of out of order problems. This study was conducted in a test campaign on an underground train instrumented with sensors able to monitor the line status. One of the more important measured quantities is the pantograph contact force, and two measurement systems were implemented: one optical and another electrical. The optical one was based on FBG sensors applied on the pantograph collector strip; the electrical one was based on two load cells positioned at the sides of the collector strip. The in-line measurements show that the optical solution is very promising, providing very reliable results that can be successfully used in the monitoring application, allowing the determination of the critical point in the line. The thermal compensation of any FBG sensors is a known problem and here is no exception: a thermal compensator was used to get also mean value measurements and the results are discussed.

  4. Contact stiffness and damping of liquid films in dynamic atomic force microscope

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Xu, Rong-Guang; Leng, Yongsheng, E-mail: leng@gwu.edu

    2016-04-21

    The mechanical properties and dissipation behaviors of nanometers confined liquid films have been long-standing interests in surface force measurements. The correlation between the contact stiffness and damping of the nanoconfined film is still not well understood. We establish a novel computational framework through molecular dynamics (MD) simulation for the first time to study small-amplitude dynamic atomic force microscopy (dynamic AFM) in a simple nonpolar liquid. Through introducing a tip driven dynamics to mimic the mechanical oscillations of the dynamic AFM tip-cantilever assembly, we find that the contact stiffness and damping of the confined film exhibit distinct oscillations within 6-7 monolayermore » distances, and they are generally out-of-phase. For the solid-like film with integer monolayer thickness, further compression of the film before layering transition leads to higher stiffness and lower damping, while much lower stiffness and higher damping occur at non-integer monolayer distances. These two alternating mechanisms dominate the mechanical properties and dissipation behaviors of simple liquid films under cyclic elastic compression and inelastic squeeze-out. Our MD simulations provide a direct picture of correlations between the structural property, mechanical stiffness, and dissipation behavior of the nanoconfined film.« less

  5. Insulin pen-the "iPod" for insulin delivery (why pen wins over syringe).

    PubMed

    Asamoah, Ernest

    2008-03-01

    Diabetes affects most aspects of everyday life and places considerable responsibility on the patient; therefore, without patient acceptance of what we offer, the therapy is unlikely to be adhered to especially when that therapy happens to be insulin injection. In 2008, almost every physician/health care provider carries new and sleek cell phones (because the newer ones are well designed and function better). Why these same providers continue to prescribe insulin via syringes in 2008 is something that I cannot fathom. Previously, some insurance companies only paid for vials and there was no other choice, but today almost all insurance pay for pens and so the "insurance reason" is no longer tenable. Since Banting and Best discovered insulin in 1921, scientists have continued to improve the types of insulin (making them mimic physiology more closely in order to minimize hypoglycemia and improve glycemic control as seen with the latest analog insulins). In the same manner, the delivery process of insulin has also continued to evolve to make it easier and more acceptable to patients. Studies have shown that patients prefer device use over traditional vials/syringes. Pen devices used to inject insulin lead to better compliance, are quicker to inject, dosing is much more accurate, and, surprisingly, are more cost effective. I challenge my colleagues to take full responsibility for what their patients use. If a provider believes in pen devices, most of his/her patients will use them. The products your patients use is a direct reflection of what you practice. Educating providers to change their beliefs and practices is key to moving American diabetic patients from syringes to pen devices.

  6. The Role Of Contact Force In Atrial Fibrillation Ablation.

    PubMed

    Nakagawa, Hiroshi; Jackman, Warren M

    2014-01-01

    During radiofrequency (RF) ablation, low electrode-tissue contact force (CF) is associated with ineffective RF lesion formation, whereas excessive CF may increase the risk of steam pop and perforation. Recently, ablation catheters using two technologies have been developed to measure real-time catheter-tissue CF. One catheter uses three optical fibers to measure microdeformation of a deformable body in the catheter tip. The other catheter uses a small spring connecting the ablation tip electrode to the catheter shaft with a magnetic transmitter and sensors to measure microdeflection of the spring. Pre-clinical experimental studies have shown that 1) at constant RF power and application time, RF lesion size significantly increases with increasing CF; 2) the incidence of steam pop and thrombus also increase with increasing CF; 3) modulating RF power based on CF (i.e, high RF power at low CF and lower RF power at high CF) results in a similar and predictable RF lesion size. In clinical studies in patients undergoing pulmonary vein (PV) isolation, CF during mapping in the left atrium and PVs showed a wide range of CF and transient high CF. The most common high CF site was located at the anterior/rightward left atrial roof, directly beneath the ascending aorta. There was a poor relationship between CF and previously used surrogate parameters for CF (unipolar or bipolar atrial potential amplitude and impedance). Patients who underwent PV isolation with an average CF of <10 g experienced higher AF recurrence, whereas patients with ablation using an average CF of > 20g had lower AF recurrence. AF recurred within 12 months in 6 of 8 patients (75%) who had a mean Force-Time Integral (FTI, area under the curve for contact force vs. time) < 500 gs. In contrast, AF recurred in only 4 of 13 patients (21%) with ablation using a mean FTI >1000 gs. In another study, controlling RF power based on CF prevented steam pop and impedance rise without loss of lesion effectiveness. These

  7. Knee contact forces and lower extremity support moments during running in young individuals post-partial meniscectomy.

    PubMed

    Willy, R W; Bigelow, M A; Kolesar, A; Willson, J D; Thomas, J S

    2017-01-01

    While partial meniscectomy results in a compromised tibiofemoral joint, little is known regarding tibiofemoral joint loading during running in individuals who are post-partial meniscectomy. It was hypothesized that individuals post-partial meniscectomy would run with a greater hip support moment, yielding reduced peak knee extension moments and reduced tibiofemoral joint contact forces. 3-D Treadmill running mechanics were evaluated in 23 athletic individuals post-partial meniscectomy (37.5 ± 19.0 months post-partial meniscectomy) and 23 matched controls. Bilateral hip, knee and ankle contributions to the total support moment and the peak knee extension moment were calculated. A musculoskeletal model estimated peak and impulse tibiofemoral joint contact forces. Knee function was quantified with the Knee injury and Osteoarthritis Outcome Score (KOOS). During running, the partial meniscectomy group had a greater hip support moment (p = 0.002) and a reduced knee support moment (p < 0.001) relative to the total support moment. This movement pattern was associated with a 14.5 % reduction (p = 0.019) in the peak knee extension moment. Despite these differences, there were no significant group differences in peak or impulse tibiofemoral joint contact forces. Lower KOOS Quality of Life scores were associated with greater hip support moment (p = 0.004, r = -0.58), reduced knee support moment (p = 0.006, r = 0.55) and reduced peak knee extension moment (p = 0.01, r = 0.52). Disordered running mechanics are present long term post-partial meniscectomy. A coordination strategy that shifts a proportion of the total support moment away from the knee to the hip reduces the peak knee extension moment, but does not equate to reduced tibiofemoral joint contact forces during running in individuals post-partial meniscectomy. III.

  8. Investigation of the dependence of joint contact forces on musculotendon parameters using a codified workflow for image-based modelling.

    PubMed

    Modenese, Luca; Montefiori, Erica; Wang, Anqi; Wesarg, Stefan; Viceconti, Marco; Mazzà, Claudia

    2018-05-17

    The generation of subject-specific musculoskeletal models of the lower limb has become a feasible task thanks to improvements in medical imaging technology and musculoskeletal modelling software. Nevertheless, clinical use of these models in paediatric applications is still limited for what concerns the estimation of muscle and joint contact forces. Aiming to improve the current state of the art, a methodology to generate highly personalized subject-specific musculoskeletal models of the lower limb based on magnetic resonance imaging (MRI) scans was codified as a step-by-step procedure and applied to data from eight juvenile individuals. The generated musculoskeletal models were used to simulate 107 gait trials using stereophotogrammetric and force platform data as input. To ensure completeness of the modelling procedure, muscles' architecture needs to be estimated. Four methods to estimate muscles' maximum isometric force and two methods to estimate musculotendon parameters (optimal fiber length and tendon slack length) were assessed and compared, in order to quantify their influence on the models' output. Reported results represent the first comprehensive subject-specific model-based characterization of juvenile gait biomechanics, including profiles of joint kinematics and kinetics, muscle forces and joint contact forces. Our findings suggest that, when musculotendon parameters were linearly scaled from a reference model and the muscle force-length-velocity relationship was accounted for in the simulations, realistic knee contact forces could be estimated and these forces were not sensitive the method used to compute muscle maximum isometric force. Copyright © 2018 The Authors. Published by Elsevier Ltd.. All rights reserved.

  9. Influence of partial meniscectomy on attachment forces, superficial strain and contact mechanics in porcine knee joints.

    PubMed

    Freutel, Maren; Seitz, Andreas M; Ignatius, Anita; Dürselen, Lutz

    2015-01-01

    Numerous studies investigated the reasons for premature osteoarthritis due to partial meniscectomy (PM). However, the influence of meniscectomy on attachment forces and superficial strain of the tibial meniscus is unclear. It is hypothesised that these parameters depend on the degree of PM. Six porcine medial menisci were placed in a custom made apparatus, and each meniscal attachment was connected to a force sensor. After printing markers onto the tibial meniscal surfaces, the menisci were positioned on a glass plate enabling optical superficial strain measurement. Additionally, contact area and pressure were investigated. Each meniscus was axially loaded up to 650 N using its respective femoral condyle. Testing was conducted intact and after 50 and 75% PM of the posterior horn and extending 75% PM to the anterior horn. With increasing meniscectomy, the attachment forces decreased anteriorly by up to 17% (n.s.) and posteriorly by up to 55% (p = 0.003). The circumferential strain in the peripheral meniscal zones was not affected by the meniscectomy, while in some meniscal zones the radial strain changed from compression to tension. Contact area decreased by up to 23% (p = 0.01), resulting in an increase in 40% (p = 0.02) for the maximum contact pressure. Partial meniscectomy significantly alters the loading situation of the meniscus and its attachments. Specifically, the attachment forces decreased with increasing amount of meniscal tissue loss, which reflects the impaired ability of the meniscus to transform axial joint load into meniscal hoop stress.

  10. A teleoperation training simulator with visual and kinesthetic force virtual reality

    NASA Technical Reports Server (NTRS)

    Kim, Won S.; Schenker, Paul

    1992-01-01

    A force-reflecting teleoperation training simulator with a high-fidelity real-time graphics display has been developed for operator training. A novel feature of this simulator is that it enables the operator to feel contact forces and torques through a force-reflecting controller during the execution of the simulated peg-in-hole task, providing the operator with the feel of visual and kinesthetic force virtual reality. A peg-in-hole task is used in our simulated teleoperation trainer as a generic teleoperation task. A quasi-static analysis of a two-dimensional peg-in-hole task model has been extended to a three-dimensional model analysis to compute contact forces and torques for a virtual realization of kinesthetic force feedback. The simulator allows the user to specify force reflection gains and stiffness (compliance) values of the manipulator hand for both the three translational and the three rotational axes in Cartesian space. Three viewing modes are provided for graphics display: single view, two split views, and stereoscopic view.

  11. Force related hemodynamic responses during execution and imagery of a hand grip task: A functional near infrared spectroscopy study.

    PubMed

    Wriessnegger, Selina C; Kirchmeyr, Daniela; Bauernfeind, Günther; Müller-Putz, Gernot R

    2017-10-01

    We examined force related hemodynamic changes during the performance of a motor execution (ME) and motor imagery (MI) task by means of multichannel functional near infrared spectroscopy (fNIRS). The hemodynamic responses of fourteen healthy participants were measured while they performed a hand grip execution or imagery task with low and high grip forces. We found an overall higher increase of [oxy-Hb] concentration changes during ME for both grip forces but with a delayed peak maximum for the lower grip force. During the MI task with lower grip force, the [oxy-Hb] level increases are stronger compared to the MI with higher grip force. The facilitation in performing MI with higher grip strength might thus indicate less inhibition of the actual motor act which could also explain the later increase onset of [oxy-Hb] in the ME task with the lower grip force. Our results suggest that execution and imagery of a hand grip task with high and low grip forces, leads to different cortical activation patterns. Since impaired control of grip forces during object manipulation in particular is one aspect of fine motor control deficits after stroke, our study will contribute to future rehabilitation programs enhancing patient's grip force control. Copyright © 2017 Elsevier Inc. All rights reserved.

  12. An observational study of frequency of provider hand contacts in child care facilities in North Carolina and South Carolina.

    PubMed

    Fraser, Angela; Wohlgenant, Kelly; Cates, Sheryl; Chen, Xi; Jaykus, Lee-Ann; Li, You; Chapman, Benjamin

    2015-02-01

    Children enrolled in child care are 2.3-3.5 times more likely to experience acute gastrointestinal illness than children cared for in their own homes. The purpose of this study was to determine the frequency surfaces were touched by child care providers to identify surfaces that should be cleaned and sanitized. Observation data from a convenience sample of 37 child care facilities in North Carolina and South Carolina were analyzed. Trained data collectors used iPods (Apple, Cupertino, CA) to record hand touch events of 1 child care provider for 45 minutes in up to 2 classrooms in each facility. Across the 37 facilities, 10,134 hand contacts were observed in 51 classrooms. Most (4,536) were contacts with porous surfaces, with an average of 88.9 events per classroom observation. The most frequently touched porous surface was children's clothing. The most frequently touched nonporous surface was food contact surfaces (18.6 contacts/observation). Surfaces commonly identified as high-touch surfaces (ie, light switches, handrails, doorknobs) were touched the least. General cleaning and sanitizing guidelines should include detailed procedures for cleaning and sanitizing high-touch surfaces (ie, clothes, furniture, soft toys). Guidelines are available for nonporous surfaces but not for porous surfaces (eg, clothing, carpeting). Additional research is needed to inform the development of evidence-based practices to effectively treat porous surfaces. Copyright © 2015 Association for Professionals in Infection Control and Epidemiology, Inc. Published by Elsevier Inc. All rights reserved.

  13. Transferability of different classical force fields for right and left handed α-helices constructed from enantiomeric amino acids.

    PubMed

    Biswas, Santu; Sarkar, Sujit; Pandey, Prithvi Raj; Roy, Sudip

    2016-02-21

    Amino acids can form d and l enantiomers, of which the l enantiomer is abundant in nature. The naturally occurring l enantiomer has a greater preference for a right handed helical conformation, and the d enantiomer for a left handed helical conformation. The other conformations, that is, left handed helical conformations of the l enantiomers and right handed helical conformations of the d enantiomers, are not common. The energetic differences between left and right handed alpha helical peptide chains constructed from enantiomeric amino acids are investigated using quantum chemical calculations (using the M06/6-311g(d,p) level of theory). Further, the performances of commonly used biomolecular force fields (OPLS/AA, CHARMM27/CMAP and AMBER) to represent the different helical conformations (left and right handed) constructed from enantiomeric (D and L) amino acids are evaluated. 5- and 10-mer chains from d and l enantiomers of alanine, leucine, lysine, and glutamic acid, in right and left handed helical conformations, are considered in the study. Thus, in total, 32 α-helical polypeptides (4 amino acids × 4 conformations of 5-mer and 10-mer) are studied. Conclusions, with regards to the performance of the force fields, are derived keeping the quantum optimized geometry as the benchmark, and on the basis of phi and psi angle calculations, hydrogen bond analysis, and different long range helical order parameters.

  14. Reduction in finger blood flow induced by hand-transmitted vibration: effect of hand elevation.

    PubMed

    Ye, Ying; Mauro, Marcella; Bovenzi, Massimo; Griffin, Michael J

    2015-10-01

    This study investigated the effect of hand elevation on reductions in finger blood flow (FBF) induced by hand-transmitted vibration. Fourteen males attended six sessions on six separate days, with a control sessions and a vibration session (125-Hz vibration at 44 ms(-2) rms) with the right hand supported at each of three elevations: 20 cm below heart level (HL), at HL, and 20 cm above HL. Finger blood flow on the left and right hand was measured every 30 s during each 25-min session comprised of five periods: (1) no force and no vibration (5 min), (2) 2-N force and no vibration (5 min), (3) 2-N force and vibration (5 min), (4) 2-N force and no vibration (5 min), and (5) no force and no vibration (5 min). Without vibration, FBF decreased with increasing elevation of the hand. During vibration of the right hand, FBF reduced on both hands. With elevation of the right hand, the percentage reduction in FBF due to vibration (relative to FBF on the same finger at the same elevation before exposure to vibration) was similar on the middle and little fingers of both hands. After cessation of vibration, there was delayed return of FBF with all three hand heights. Vibration of one hand reduces FBF on both exposed and unexposed hands, with the reduction dependent on the elevation of the hand. The mechanisms responsible for vibration-induced reductions in FBF seem to reduce blood flow as a percentage of the blood flow without vibration. Tasks requiring the elevation of the hands will be associated with lower FBF, and the FBF will be reduced further if there is exposure to hand-transmitted vibration.

  15. Contact stiffness and damping identification for hardware-in-the-loop contact simulator with measurement delay compensation

    NASA Astrophysics Data System (ADS)

    Qi, Chenkun; Zhao, Xianchao; Gao, Feng; Ren, Anye; Sun, Qiao

    2016-06-01

    The hardware-in-the-loop (HIL) contact simulator is to simulate the contact process of two flying objects in space. The contact stiffness and damping are important parameters used for the process monitoring, compliant contact control and force compensation control. In this study, a contact stiffness and damping identification approach is proposed for the HIL contact simulation with the force measurement delay. The actual relative position of two flying objects can be accurately measured. However, the force measurement delay needs to be compensated because it will lead to incorrect stiffness and damping identification. Here, the phase lead compensation is used to reconstruct the actual contact force from the delayed force measurement. From the force and position data, the contact stiffness and damping are identified in real time using the recursive least squares (RLS) method. The simulations and experiments are used to verify that the proposed stiffness and damping identification approach is effective.

  16. Volatile Organic Compound (VOC) emissions from feedlot pen surface materials as affected by within pen location, moisture, and temperature

    USDA-ARS?s Scientific Manuscript database

    A laboratory study was conducted to evaluate the effects of pen location, moisture, and temperature on emissions of volatile organic compounds (VOC) from surface materials obtained from feedlot pens where beef cattle were fed a diet containing 30% wet distillers grain plus solubles. Surface material...

  17. Coordination of hand shape.

    PubMed

    Pesyna, Colin; Pundi, Krishna; Flanders, Martha

    2011-03-09

    The neural control of hand movement involves coordination of the sensory, motor, and memory systems. Recent studies have documented the motor coordinates for hand shape, but less is known about the corresponding patterns of somatosensory activity. To initiate this line of investigation, the present study characterized the sense of hand shape by evaluating the influence of differences in the amount of grasping or twisting force, and differences in forearm orientation. Human subjects were asked to use the left hand to report the perceived shape of the right hand. In the first experiment, six commonly grasped items were arranged on the table in front of the subject: bottle, doorknob, egg, notebook, carton, and pan. With eyes closed, subjects used the right hand to lightly touch, forcefully support, or imagine holding each object, while 15 joint angles were measured in each hand with a pair of wired gloves. The forces introduced by supporting or twisting did not influence the perceptual report of hand shape, but for most objects, the report was distorted in a consistent manner by differences in forearm orientation. Subjects appeared to adjust the intrinsic joint angles of the left hand, as well as the left wrist posture, so as to maintain the imagined object in its proper spatial orientation. In a second experiment, this result was largely replicated with unfamiliar objects. Thus, somatosensory and motor information appear to be coordinated in an object-based, spatial-coordinate system, sensitive to orientation relative to gravitational forces, but invariant to grasp forcefulness.

  18. Detecting condylar contact loss using single-plane fluoroscopy: a comparison with in vivo force data and in vitro bi-plane data.

    PubMed

    Prins, A H; Kaptein, B L; Banks, S A; Stoel, B C; Nelissen, R G H H; Valstar, E R

    2014-05-07

    Knee contact mechanics play an important role in knee implant failure and wear mechanics. Femoral condylar contact loss in total knee arthroplasty has been reported in some studies and it is considered to potentially induce excessive wear of the polyethylene insert.Measuring in vivo forces applied to the tibial plateau with an instrumented prosthesis is a possible approach to assess contact loss in vivo, but this approach is not very practical. Alternatively, single-plane fluoroscopy and pose estimation can be used to derive the relative pose of the femoral component with respect to the tibial plateau and estimate the distance from the medial and lateral parts of the femoral component towards the insert. Two measures are reported in the literature: lift-off is commonly defined as the difference in distance between the medial and lateral condyles of the femoral component with respect to the tibial plateau; separation is determined by the closest distance of each condyle towards the polyethylene insert instead of the tibia plateau.In this validation study, lift-off and separation as measured with single-plane fluoroscopy are compared to in vivo contact forces measured with an instrumented knee implant. In a phantom study, lift-off and separation were compared to measurements with a high quality bi-plane measurement.The results of the in vivo contact-force experiment demonstrate a large discrepancy between single-plane fluoroscopy and the in vivo force data: single-plane fluoroscopy measured up to 5.1mm of lift-off or separation, whereas the force data never showed actual loss of contact. The phantom study demonstrated that the single-plane setup could introduce an overestimation of 0.22mm±±0.36mm. Correcting the out-of-plane position resulted in an underestimation of medial separation by -0.20mm±±0.29mm.In conclusion, there is a discrepancy between the in vivo force data and single-plane fluoroscopic measurements. Therefore contact loss may not always be

  19. Outbreak of diffuse lamellar keratitis caused by marking-pen toxicity.

    PubMed

    Hadden, Osmond Bruce; McGhee, Charles N J; Morris, Antony Trevor; Gray, Trevor Buchanan; Ring, Charles Peter; Watson, Adam Stewart John

    2008-07-01

    To examine the evidence that a series of cases of diffuse lamellar keratitis (DLK) after laser in situ keratomileusis (LASIK) was caused by a type of marker pen. Eye Institute, Auckland, New Zealand. During a 10-week period, 522 consecutive LASIK procedures were performed using a 60 Hz IntraLase femtosecond laser (IntraLase Corp.) to create the LASIK flap and a 217Z 100 Hz excimer laser (Bausch & Lomb) to perform the refractive ablation. As standard practice, a marking pen was used to enable accurate flap realignment. Three weeks after a sudden increase in the incidence of DLK was identified, one of the 5 surgeons performed 5 consecutive bilateral cases using the marking pen in the right eyes but not in the left eyes. Of the 522 LASIK cases (119 without marking pen, 403 with marking pen), DLK developed in 49 (9.4%). No eye treated without the marking pen developed DLK; of those in which the marking pen was used, 49 (12.2%) developed DLK (P<0.0001, Fischer exact test; odds ratio, 27). In the 5 consecutive bilateral cases in which the marking pen was used in the right eye but not the left eye, 4 right eyes and no left eye developed DLK (P=0.03). Forty-five of the 49 eyes with DLK quickly recovered. The other 4 developed central toxic keratopathy. There is strong statistical evidence that the marking pen was a factor in the occurrence of DLK.

  20. Musculoskeletal loading during the round-off in female gymnastics: the effect of hand position.

    PubMed

    Farana, Roman; Jandacka, Daniel; Uchytil, Jaroslav; Zahradnik, David; Irwin, Gareth

    2014-06-01

    Chronic elbow injuries from tumbling in female gymnastics present a serious problem for performers. This research examined how the biomechanical characteristics of impact loading and elbow kinematics and kinetics change as a function of technique selection. Seven international-level female gymnasts performed 10 trials of the round-off from a hurdle step to flic-flac with 'parallel' and 'T-shape' hand positions. Synchronized kinematic (3D-automated motion analysis system; 247 Hz) and kinetic (two force plates; 1,235 Hz) data were collected for each trial. Wilcoxon non-parametric test and effect-size statistics determined differences between the hand positions examined in this study. Significant differences (p < 0.05) and large effect sizes (ES > 0.8) were observed for peak vertical ground reaction force (GRF), anterior-posterior GRF, resultant GRF, loading rates of these forces and elbow joint angles, and internal moments of force in sagittal, transverse, and frontal planes. In conclusion, the T-shape hand position reduces vertical, anterior-posterior, and resultant contact forces and has a decreased loading rate indicating a safer technique for the round-off. Significant differences observed in joint elbow moments highlighted that the T-shape position may prevent overloading of the joint complex and consequently reduce the potential for elbow injury.

  1. Volatile organic compound (VOC) emissions from beef feedlot pen surface as affected by within pen location, moisture, and temperature

    USDA-ARS?s Scientific Manuscript database

    A laboratory study was conducted to determine effects of pen location, moisture, and temperature on emissions of volatile organic compounds (VOC). Feedlot surface material (FSM) was obtained from pens where cattle were fed a diet containing 30% wet distillers grain plus soluble (WDGS). The FSM were ...

  2. Atomic force microscopy and scanning electron microscopy analysis of daily disposable limbal ring contact lenses.

    PubMed

    Lorenz, Kathrine Osborn; Kakkassery, Joseph; Boree, Danielle; Pinto, David

    2014-09-01

    Limbal ring (also known as 'circle') contact lenses are becoming increasingly popular, especially in Asian markets because of their eye-enhancing effects. The pigment particles that give the eye-enhancing effects of these lenses can be found on the front or back surface of the contact lens or 'enclosed' within the lens matrix. The purpose of this research was to evaluate the pigment location and surface roughness of seven types of 'circle' contact lenses. Scanning electron microscopic (SEM) analysis was performed using a variable pressure Hitachi S3400N instrument to discern the placement of lens pigments. Atomic force microscopy (Dimension Icon AFM from Bruker Nano) was used to determine the surface roughness of the pigmented regions of the contact lenses. Atomic force microscopic analysis was performed in fluid phase under contact mode using a Sharp Nitride Lever probe (SNL-10) with a spring constant of 0.06 N/m. Root mean square (RMS) roughness values were analysed using a generalised linear mixed model with a log-normal distribution. Least square means and their corresponding 95% confidence intervals were estimated for each brand, location and pigment combination. SEM cross-sectional images at 500× and 2,000× magnification showed pigment on the surface of six of the seven lens types tested. The mean depth of pigment for 1-DAY ACUVUE DEFINE (1DAD) lenses was 8.1 μm below the surface of the lens, while the remaining lens types tested had pigment particles on the front or back surface. Results of the atomic force microscopic analysis indicated that 1DAD lenses had significantly lower root mean square roughness values in the pigmented area of the lens than the other lens types tested. SEM and AFM analysis revealed pigment on the surface of the lens for all types tested with the exception of 1DAD. Further research is required to determine if the difference in pigment location influences on-eye performance. © 2014 The Authors. Clinical and Experimental

  3. Atomic force microscopy and scanning electron microscopy analysis of daily disposable limbal ring contact lenses

    PubMed Central

    Lorenz, Kathrine Osborn; Kakkassery, Joseph; Boree, Danielle; Pinto, David

    2014-01-01

    Background Limbal ring (also known as ‘circle’) contact lenses are becoming increasingly popular, especially in Asian markets because of their eye-enhancing effects. The pigment particles that give the eye-enhancing effects of these lenses can be found on the front or back surface of the contact lens or ‘enclosed’ within the lens matrix. The purpose of this research was to evaluate the pigment location and surface roughness of seven types of ‘circle’ contact lenses. Methods Scanning electron microscopic (SEM) analysis was performed using a variable pressure Hitachi S3400N instrument to discern the placement of lens pigments. Atomic force microscopy (Dimension Icon AFM from Bruker Nano) was used to determine the surface roughness of the pigmented regions of the contact lenses. Atomic force microscopic analysis was performed in fluid phase under contact mode using a Sharp Nitride Lever probe (SNL-10) with a spring constant of 0.06 N/m. Root mean square (RMS) roughness values were analysed using a generalised linear mixed model with a log-normal distribution. Least square means and their corresponding 95% confidence intervals were estimated for each brand, location and pigment combination. Results SEM cross-sectional images at 500× and 2,000× magnification showed pigment on the surface of six of the seven lens types tested. The mean depth of pigment for 1-DAY ACUVUE DEFINE (1DAD) lenses was 8.1 μm below the surface of the lens, while the remaining lens types tested had pigment particles on the front or back surface. Results of the atomic force microscopic analysis indicated that 1DAD lenses had significantly lower root mean square roughness values in the pigmented area of the lens than the other lens types tested. Conclusions SEM and AFM analysis revealed pigment on the surface of the lens for all types tested with the exception of 1DAD. Further research is required to determine if the difference in pigment location influences on-eye performance. PMID

  4. Can extra-articular strains be used to measure facet contact forces in the lumbar spine? An in-vitro biomechanical study.

    PubMed

    Zhu, Q A; Park, Y B; Sjovold, S G; Niosi, C A; Wilson, D C; Cripton, P A; Oxland, T R

    2008-02-01

    Experimental measurement of the load-bearing patterns of the facet joints in the lumbar spine remains a challenge, thereby limiting the assessment of facet joint function under various surgical conditions and the validation of computational models. The extra-articular strain (EAS) technique, a non-invasive measurement of the contact load, has been used for unilateral facet joints but does not incorporate strain coupling, i.e. ipsilateral EASs due to forces on the contralateral facet joint. The objectives of the present study were to establish a bilateral model for facet contact force measurement using the EAS technique and to determine its effectiveness in measuring these facet joint contact forces during three-dimensional flexibility tests in the lumbar spine. Specific goals were to assess the accuracy and repeatability of the technique and to assess the effect of soft-tissue artefacts. In the accuracy and repeatability tests, ten uniaxial strain gauges were bonded to the external surface of the inferior facets of L3 of ten fresh lumbar spine specimens. Two pressure-sensitive sensors (Tekscan) were inserted into the joints after the capsules were cut. Facet contact forces were measured with the EAS and Tekscan techniques for each specimen in flexion, extension, axial rotation, and lateral bending under a +/- 7.5 N m pure moment. Four of the ten specimens were tested five times in axial rotation and extension for repeatability. These same specimens were disarticulated and known forces were applied across the facet joint using a manual probe (direct accuracy) and a materials-testing system (disarticulated accuracy). In soft-tissue artefact tests, a separate set of six lumbar spine specimens was used to document the virtual facet joint contact forces during a flexibility test following removal of the superior facet processes. Linear strain coupling was observed in all specimens. The average peak facet joint contact forces during flexibility testing was greatest in

  5. Investigation of the influence of vertical force on the contact between truck tyre and road using finite element analyses

    NASA Astrophysics Data System (ADS)

    Moisescu, Alexandra-Raluca; Anghelache, Gabriel

    2017-10-01

    In the modern context of automobile integration with the emerging technologies of the interconnected society, the interaction between tyre and road is an element of major importance for automobile safety systems such as the intelligent tyres, as well as for passenger comfort, fuel economy, environmental protection, infrastructure and vehicle durability. The tyre-road contact generates the distribution of forces exerted on each unit area in the contact patch, therefore the distribution of contact stresses on three orthogonal directions. The numerical investigation of stresses distribution in the contact patch requires the development of finite element models capable of accurately describing the interaction between tyre and rolling surface. The complex finite element model developed for the 11R22.5 truck tyre has been used for investigating the influence of vertical force on the distributions of contact stresses. In addition to these contributions, the paper presents aspects related to the simulation of truck tyre radial stiffness. The influence of tyre rolling has not been taken into consideration, as the purpose of the current research is the investigation of tyre-road contact in stationary conditions.

  6. Pace-capture-guided ablation after contact-force-guided pulmonary vein isolation: results of the randomized controlled DRAGON trial.

    PubMed

    Masuda, Masaharu; Fujita, Masashi; Iida, Osamu; Okamoto, Shin; Ishihara, Takayuki; Nanto, Kiyonori; Kanda, Takashi; Sunaga, Akihiro; Tsujimura, Takuya; Matsuda, Yasuhiro; Ohashi, Takuya; Uematsu, Masaaki

    2017-11-17

    Before the discovery of contact-force guidance, eliminating pacing capture along the pulmonary vein (PV) isolation line had been reported to improve PV isolation durability and rhythm outcomes. DRAGON (UMIN-CTR, UMIN000015332) aimed to elucidate the efficacy of pace-capture-guided ablation following contact-force-guided PV isolation ablation in paroxysmal atrial fibrillation (AF) patients. A total of 156 paroxysmal AF patients with AF-trigger ectopies from any of the four PVs induced by isoproterenol were randomly assigned to undergo pace-capture-guided ablation along a contact-force-guided isolation line around AF-trigger PVs (PC group, n = 76) or contact-force-guided PV isolation ablation alone (control group, n = 80). Follow-up of at least 1 year commenced with serial 24 h Holter and symptom-triggered ambulatory monitoring. There was no significant difference in acute PV reconnection rates during a 20 min waiting period after the last ablation or adenosine infusion testing between the PC and the control groups (per patient, 21% vs. 27%, P = 0.27; per AF-trigger PV, 5.9% vs. 7.3%, P = 0.70; and per non-AF-trigger PV, 7.1% vs. 7.4%, P = 0.92). Atrial tachyarrhythmia-free survival rates off antiarrhythmic drugs after the initial session were comparable at 19.3 ± 6.2 months between the two groups (82% vs. 80%, P = 0.80). Among 22 patients who required a second ablation procedure, there was no difference between the PC and the control groups in the PV reconnection rates at both previously AF-trigger (29% vs. 43%, P = 0.70) and non-AF-trigger PVs (18% vs. 19%, P = 0.88). Pace-capture-guided ablation performed after contact-force-guided PV isolation demonstrated no improvement in PV isolation durability or rhythm outcome. Published on behalf of the European Society of Cardiology. All rights reserved. © The Author 2017. For permissions, please email: journals.permissions@oup.com.

  7. Two-year follow-up of changes in bite force and occlusal contact area after intraoral vertical ramus osteotomy with and without Le Fort I osteotomy.

    PubMed

    Choi, Y J; Lim, H; Chung, C J; Park, K H; Kim, K H

    2014-06-01

    This study was performed to examine the longitudinal changes in bite force and occlusal contact area after mandibular setback surgery via intraoral vertical ramus osteotomy (IVRO). Patients with mandibular prognathism who underwent IVRO (surgical group: 39 men and 39 women) were compared with subjects with class I skeletal and dental relationships (control group; 32 men and 35 women). The surgical group was divided into two subgroups: 1-jaw surgery (n = 30) and 2-jaw surgery (n = 48). Bite force and contact area were measured in maximum intercuspation with the Dental Prescale System before treatment, within 1 month before surgery, and at 1, 3, 6, 9, 12, and 24 months postsurgery. A linear mixed model was used to investigate the time-dependent changes and associated factors. Bite force and contact area decreased during presurgical orthodontic treatment, were minimal at 1 month postsurgery, and increased gradually thereafter. The 1-jaw and 2-jaw subgroups showed no significant differences in bite force. The time-dependent changes in bite force were significantly different according to the contact area (P < 0.05). The results of this study suggest that bite force and occlusal contact area gradually increase throughout the postsurgical evaluation period. Increasing the occlusal contact area may be essential for improving bite force after surgery. Copyright © 2014 International Association of Oral and Maxillofacial Surgeons. Published by Elsevier Ltd. All rights reserved.

  8. Robotic set-up to quantify hand-eye behavior in motor execution and learning of children with autism spectrum disorder.

    PubMed

    Casellato, Claudia; Gandolla, Marta; Crippa, Alessandro; Pedrocchi, Alessandra

    2017-07-01

    Autism spectrum disorder (ASD) is a multifaceted neurodevelopmental disorder characterized by a persistence of social and communication impairment, and restricted and repetitive behaviors. However, motor disorders have also been described, but not objectively assessed. Most studies showed inefficient eye-hand coordination and motor learning in children with ASD; in other experiments, mechanisms of acquisition of internal models in self-generated movements appeared to be normal in autism. In this framework, we have developed a robotic protocol, recording gaze and hand data during upper limb tasks, in which a haptic pen-like handle is moved along specific trajectories displayed on the screen. The protocol includes trials of reaching under a perturbing force field and catching moving targets, with or without visual availability of the whole path. We acquired 16 typically-developing scholar-age children and one child with ASD as a case study. Speed-accuracy tradeoff, motor performance, and gaze-hand spatial coordination have been evaluated. Compared to typically developing peers, in the force field sequence, the child with ASD showed an intact but delayed learning, and more variable gazehand patterns. In the catching trials, he showed less efficient movements, but an intact capability of exploiting the available a-priori plan. The proposed protocol represents a powerful tool, easily tunable, for quantitative (longitudinal) assessment, and for subject-tailored training in ASD.

  9. Greater magnitude tibiofemoral contact forces are associated with reduced prevalence of osteochondral pathologies 2-3 years following anterior cruciate ligament reconstruction.

    PubMed

    Saxby, David John; Bryant, Adam L; Van Ginckel, Ans; Wang, Yuanyuan; Wang, Xinyang; Modenese, Luca; Gerus, Pauline; Konrath, Jason M; Fortin, Karine; Wrigley, Tim V; Bennell, Kim L; Cicuttini, Flavia M; Vertullo, Christopher; Feller, Julian A; Whitehead, Tim; Gallie, Price; Lloyd, David G

    2018-06-07

    External loading of osteoarthritic and healthy knees correlates with current and future osteochondral tissue state. These relationships have not been examined following anterior cruciate ligament reconstruction. We hypothesised greater magnitude tibiofemoral contact forces were related to increased prevalence of osteochondral pathologies, and these relationships were exacerbated by concomitant meniscal injury. This was a cross-sectional study of 100 individuals (29.7 ± 6.5 years, 78.1 ± 14.4 kg) examined 2-3 years following hamstring tendon anterior cruciate ligament reconstruction. Thirty-eight participants had concurrent meniscal pathology (30.6 ± 6.6 years, 83.3 ± 14.3 kg), which included treated and untreated meniscal injury, and 62 participants (29.8 ± 6.4 years, 74.9 ± 13.3 kg) were free of meniscal pathology. Magnetic resonance imaging of reconstructed knees was used to assess prevalence of tibiofemoral osteochondral pathologies (i.e., cartilage defects and bone marrow lesions). A calibrated electromyogram-driven neuromusculoskeletal model was used to predict medial and lateral tibiofemoral compartment contact forces from gait analysis data. Relationships between contact forces and osteochondral pathology prevalence were assessed using logistic regression models. In patients with reconstructed knees free from meniscal pathology, greater medial contact forces were related to reduced prevalence of medial cartilage defects (odds ratio (OR) = 0.7, Wald χ 2 (2) = 7.9, 95% confidence interval (CI) = 0.50-95, p = 0.02) and medial bone marrow lesions (OR = 0.8, Wald χ 2 (2) = 4.2, 95% CI = 0.7-0.99, p = 0.04). No significant relationships were found in lateral compartments. In reconstructed knees with concurrent meniscal pathology, no relationships were found between contact forces and osteochondral pathologies. In patients with reconstructed knees free from meniscal pathology, increased

  10. Attitudes of Danish pig farmers towards requirements for hospital pens.

    PubMed

    Thomsen, Peter T; Klottrup, Anne; Steinmetz, Henriette; Herskin, Mette S

    2016-06-01

    According to Danish legislation, sick or injured pigs must be housed in hospital pens with specific requirements. During recent years the majority of cases of non-compliance with legislation have been related to management of these animals. Hence, we hypothesized that 1) pig farmers generally find a requirement for hospital pens reasonable, but do not know the specific requirements; 2) pig farmers do not find the specific requirements for hospital pens meaningful compared with their perception of what sick pigs need; and 3) pig farmers often omit to move sick pigs to hospital pens due to lack of time or labour. An on-line questionnaire regarding farmers' attitudes towards and knowledge about legal requirements for hospital pens was constructed and e-mailed to 2348 pig farmers. In total, 508 farmers answered the questionnaire. Overall, 66% of the respondents found that the requirements for hospital pens made good sense, and more than 90% found that it made at least partial sense. Even though almost all respondents thought they knew the legal requirements for specific facilities in hospital pens, in fact 20% of them did not. The majority of respondents found all specific requirements in accordance with the needs of sick pigs, with the exception of cooling (only 17% agreed that cooling was needed). Unexpectedly, lack of time or labour wasn't reported to be a major obstacle to the use of hospital pens. Possibly, different thresholds for defining a pig as 'sick enough' to need housing in a hospital pen may exist between farmers and authorities. Copyright © 2016 Elsevier Ltd. All rights reserved.

  11. Initial development of a device for controlling manually applied forces.

    PubMed

    Waddington, Gordon S; Adams, Roger D

    2007-05-01

    In both simulation and manual therapy studies, substantial variability has been shown when therapists attempt to replicate an applied force. Knowledge about the forces employed during treatment could reduce this variability. In the current project, a prototype for a mobilizing device incorporating a dynamometer was constructed. The prototype device was built around a conventional "hand-grip" dynamometer to give dial visibility during application of mobilizing forces and a moulded handle was used to increase the hand contact surface during force application. The variability of the mobilization forces produced was measured, and ratings of comfort during a simulated spinal mobilization technique were obtained from therapists. Thirty physiotherapists were randomly allocated to apply either: (i) their own estimate of a grade III mobilization force using their hands in a pisiform grip or (ii) a 100N force with the manual therapy dynamometer, and to rate comfort during the performance of both techniques on a 100mm visual analogue scale. Variance in dynamometer-dial-guided force application was always significantly less than the variance in therapist-concept-guided force application. Repeated-measures tests showed that the mean force produced at grade III was not significantly different from 100N, but physiotherapist comfort ratings were found to be significantly greater (P<0.01) when the manual therapy dynamometer was used. Manually applied force variability was significantly less and therapist comfort greater when using a device with visual access to a dial giving immediate force readout.

  12. Comparison of surface roughness and bacterial adhesion between cosmetic contact lenses and conventional contact lenses.

    PubMed

    Ji, Yong Woo; Cho, Young Joo; Lee, Chul Hee; Hong, Soon Ho; Chung, Dong Yong; Kim, Eung Kweon; Lee, Hyung Keun

    2015-01-01

    To compare physical characteristics of cosmetic contact lenses (Cos-CLs) and conventional contact lenses (Con-CLs) that might affect susceptibility to bacterial adhesion on the contact lens (CL) surface. Surface characteristics of Cos-CLs and Con-CLs made from the same material by the same manufacturer were measured by atomic force microscopy (AFM) and scanning electron microscopy. To determine the extent and rate of bacterial adhesion, Cos-CL and Con-CL were immersed in serum-free Roswell Park Memorial Institute media containing Staphylococcus aureus or Pseudomonas aeruginosa. Additionally, the rate of removal of adherent bacteria was evaluated using hand rubbing or immersion in multipurpose disinfecting solutions (MPDS). The mean surface roughness (root mean square and peak-to-valley value) measured by AFM was significantly higher for Cos-CL than for Con-CL. At each time point, significantly more S. aureus and P. aeruginosa adhered to Cos-CL than to Con-CL, which correlated with the surface roughness of CL. In Cos-CL, bacteria were mainly found on the tinted surface rather than on the noncolored or convex areas. Pseudomonas aeruginosa attached earlier than S. aureus to all types of CL. However, P. aeruginosa was more easily removed from the surface of CL than S. aureus by hand rubbing or MPDS soaking. Increased surface roughness is an important physical factor for bacterial adhesion in Cos-CL, which may explain why rates of bacterial keratitis rates are higher in Cos-CL users in CL physical characteristics.

  13. Evaluation of the Dual-Chamber Pen Design for the Injection of Exenatide Once Weekly for the Treatment of Type 2 Diabetes

    PubMed Central

    LaRue, Susan; Malloy, Jaret

    2015-01-01

    Background: Exenatide once weekly, an injectable glucagon-like peptide-1 receptor agonist, has been shown to reduce A1C, fasting glucose, and body weight in patients with type 2 diabetes. Exenatide 2.0 mg is dispersed in poly-(D,L-lactide-co-glycolide) polymer microspheres, which require resuspension in aqueous diluent before subcutaneous injection. A single-use, dual-chamber pen was developed to improve the convenience of exenatide once weekly delivery and tested following Food and Drug Administration (FDA) guidance. Methods: Design development goals were established, and validation tests (dose accuracy, torque/force requirements, usability, and ease-of-use) were performed. Dose accuracy was tested under a variety of conditions. After 10 exploratory studies in 329 patients, the final design’s usability and ease-of-use were tested in untrained health care practitioners (HCPs; n = 16) and untrained/trained patients (n = 30/17). Usability testing evaluated completion of multiple setup, dose preparation, and injection steps. Ease-of-use impression was assessed using a scale of 1−7 (1 = very difficult, 7 = very easy). Results: The dual-chamber pen successfully met development goals and delivered target volume (650 µL ± 10%) under tested conditions (mean 644.7–649.3 µL), with torque and force requirements below prespecified maximum values. In the final user study, most participants (≥87%) correctly completed pen setup, dose preparation, and injection steps. Mean ease-of-use scores were 5.8, 6.3, and 6.5 out of 7 in untrained HCPs, untrained patients, and trained patients, respectively. Conclusion: With self-education or minimal training, participants accurately and precisely suspended, mixed, and delivered exenatide-containing microspheres using the dual-chamber pen with high ease-of-use scores. The dual-chamber pen was FDA-approved in February 2014. PMID:25759181

  14. Miniature penetrator (MinPen) acceleration recorder development test

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Franco, R.J.; Platzbecker, M.R.

    1998-08-01

    The Telemetry Technology Development Department at Sandia National Laboratories actively develops and tests acceleration recorders for penetrating weapons. This new acceleration recorder (MinPen) utilizes a microprocessor-based architecture for operational flexibility while maintaining electronics and packaging techniques developed over years of penetrator testing. MinPen has been demonstrated to function in shock environments up to 20,000 Gs. The MinPen instrumentation development has resulted in a rugged, versatile, miniature acceleration recorder and is a valuable tool for penetrator testing in a wide range of applications.

  15. Hyperspectral imaging coupled with chemometric analysis for non-invasive differentiation of black pens

    NASA Astrophysics Data System (ADS)

    Chlebda, Damian K.; Majda, Alicja; Łojewski, Tomasz; Łojewska, Joanna

    2016-11-01

    Differentiation of the written text can be performed with a non-invasive and non-contact tool that connects conventional imaging methods with spectroscopy. Hyperspectral imaging (HSI) is a relatively new and rapid analytical technique that can be applied in forensic science disciplines. It allows an image of the sample to be acquired, with full spectral information within every pixel. For this paper, HSI and three statistical methods (hierarchical cluster analysis, principal component analysis, and spectral angle mapper) were used to distinguish between traces of modern black gel pen inks. Non-invasiveness and high efficiency are among the unquestionable advantages of ink differentiation using HSI. It is also less time-consuming than traditional methods such as chromatography. In this study, a set of 45 modern gel pen ink marks deposited on a paper sheet were registered. The spectral characteristics embodied in every pixel were extracted from an image and analysed using statistical methods, externally and directly on the hypercube. As a result, different black gel inks deposited on paper can be distinguished and classified into several groups, in a non-invasive manner.

  16. Half-Unit Insulin Pens: Disease Management in Patients With Diabetes Who Are Sensitive to Insulin.

    PubMed

    Klonoff, David C; Nayberg, Irina; Stauder, Udo; Oualali, Hamid; Domenger, Catherine

    2017-05-01

    Insulin pens represent a significant technological advancement in diabetes management. While the vast majority have been designed with 1U-dosing increments, improved accuracy and precision facilitated by half-unit increments may be particularly significant in specific patients who are sensitive to insulin. These include patients with low insulin requirements and in those requiring more precise dose adjustments, such as the pediatric patient population. This review summarized functional characteristics of insulin half-unit pens (HUPs) and their effect on user experience. The literature search was restricted to articles published in English between January 1, 2000, and January 1, 2015. A total of 17 publications met the set criteria and were included in the review. Overall, studies outlined characteristics for 4 insulin HUPs. Based on their functionality, the pens were generally similar and all met the ISO 11608-1 criteria for accuracy. However, some had specific advantageous features in terms of size, weight, design, dialing torque, and injection force. Although limited, the currently available user preference studies in children and adolescents with diabetes and their carers suggest that the selection of an HUP is likely to be influenced by a combination of factors such as these, in addition to the prescribed insulin and dosing regimen. Insulin HUPs are likely to be a key diabetes management tool for patients who are sensitive to insulin; specific pen features may further advance diabetes management in these populations.

  17. Personal hand gel for improved hand hygiene compliance on the regional anesthesia team.

    PubMed

    Parks, Colby L; Schroeder, Kristopher M; Galgon, Richard E

    2015-12-01

    Hand hygiene reduces healthcare-associated infections, and several recent publications have examined hand hygiene in the perioperative period. Our institution's policy is to perform hand hygiene before and after patient contact. However, observation suggests poor compliance. This is a retrospective review of a quality improvement database showing the effect of personal gel dispensers on perioperative hand hygiene compliance on a regional anesthesia team. Healthcare providers assigned to the Acute Pain Service were observed for compliance with hand hygiene policy during a quality improvement initiative. Provider type and compliance were prospectively recorded in a database. Team members were then given a personal gel dispensing device and again observed for compliance. We have retrospectively reviewed this database to determine the effects of this intervention. Of the 307 encounters observed, 146 were prior to implementing personal gel dispensers. Compliance was 34%. Pre- and post-patient contact compliances were 23 and 43%, respectively. For 161 encounters after individual gel dispensers were provided, compliance was 63%. Pre- and post-patient contact compliances were 53 and 72%, respectively. Improvement in overall compliance from 34 to 63% was significant. On the Acute Pain Service, compliance with hand hygiene policy improves when individual sanitation gel dispensing devices are worn on the person.

  18. Fingertip contact suppresses the destabilizing influence of leg muscle vibration

    NASA Technical Reports Server (NTRS)

    Lackner, J. R.; Rabin, E.; DiZio, P.

    2000-01-01

    Touch of the hand with a stationary surface at nonmechanically supportive force levels (<1 N) greatly attenuates postural sway during quiet stance. We predicted such haptic contact would also suppress the postural destabilization caused by vibrating the right peroneus brevis and longus muscles of subjects standing heel-to-toe with eyes closed. In experiment 1, ten subjects were tested under four conditions: no-vibration, no-touch; no-vibration, touch; vibration, no-touch; and vibration, touch. A hand-held physiotherapy vibrator (120 Hz) was applied approximately 5 cm above the malleolous to stimulate the peroneus longus and brevis tendons. Touch conditions involved contact of the right index finger with a laterally positioned surface (<1 N of force) at waist height. Vibration in the absence of finger contact greatly increased the mean sway amplitude of the center of pressure and of the head relative to the no-vibration, no-touch control condition (P < 0.001). The touch, no-vibration and touch-vibration conditions were not significantly different (P > 0.05) from each other and both had significantly less mean sway amplitude of head and of center of pressure than the other conditions (P < 0.01). In experiment 2, eight subjects stood heel-to-toe under touch and no-touch conditions involving 40-s duration trials of peroneus tendon vibration at different duty cycles: 1-, 2-, 3-, and 4-s ON and OFF periods. The vibrator was attached to the subject's leg and remotely activated. In the no-touch conditions, subjects showed periodic postural disruptions contingent on the duty cycle and mirror image rebounds with the offset of vibration. In the touch conditions, subjects were much less disrupted and showed compensations occurring within 500 ms of vibration onset and mirror image rebounds with vibration offset. Subjects were able to suppress almost completely the destabilizing influence of the vibration in the 3- and 4-s duty cycle trials. These experiments show that haptic

  19. Administration technique and storage of disposable insulin pens reported by patients with diabetes.

    PubMed

    Mitchell, Virginia D; Porter, Kyle; Beatty, Stuart J

    2012-01-01

    The purpose of the study was to evaluate insulin injection technique and storage of insulin pens as reported by patients with diabetes and to compare correct pen use to initial education on injection technique, hemoglobin A1C, duration of insulin therapy, and duration of insulin pen. Cross-sectional questionnaire orally administered to patients at a university-affiliated primary care practice. Subjects were patients with diabetes who were 18 years or older and prescribed a disposable insulin pen for at least 4 weeks. A correct usage score was calculated for each patient based on manufacturer recommendations for disposable insulin pen use. Associations were made between the correct usage score and certainty in technique, initial education, years of insulin therapy, duration of pen use, and hemoglobin A1C. Sixty-seven patients completed the questionnaire, reporting total use of 94 insulin pens. The 3 components most often neglected by patients were priming pen needle, holding for specific count time before withdrawal of pen needle from skin, and storing an in-use pen. For three-fourths of the insulin pens being used, users did not follow the manufacturer's instructions for proper administration and storage of insulin pens. Correct usage scores were significantly higher if initial education on insulin pens was performed by a pharmacist or nurse. The majority of patients may be ignoring or unaware of key components for consistent insulin dosing using disposable insulin pens; therefore, initial education and reeducation on correct use of disposable insulin pens by health care professionals are needed.

  20. Evaluation of the electrical contact area in contact-mode scanning probe microscopy

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Celano, Umberto, E-mail: celano@imec.be, E-mail: u.celano@gmail.com; Chintala, Ravi Chandra; Vandervorst, Wilfried

    The tunneling current through an atomic force microscopy (AFM) tip is used to evaluate the effective electrical contact area, which exists between tip and sample in contact-AFM electrical measurements. A simple procedure for the evaluation of the effective electrical contact area is described using conductive atomic force microscopy (C-AFM) in combination with a thin dielectric. We characterize the electrical contact area for coated metal and doped-diamond tips operated at low force (<200 nN) in contact mode. In both cases, we observe that only a small fraction (<10 nm{sup 2}) of the physical contact (∼100 nm{sup 2}) is effectively contributing to the transportmore » phenomena. Assuming this reduced area is confined to the central area of the physical contact, these results explain the sub-10 nm electrical resolution observed in C-AFM measurements.« less

  1. Redistribution of Adhesive Forces through Src/FAK Drives Contact Inhibition of Locomotion in Neural Crest.

    PubMed

    Roycroft, Alice; Szabó, András; Bahm, Isabel; Daly, Liam; Charras, Guillaume; Parsons, Maddy; Mayor, Roberto

    2018-06-04

    Contact inhibition of locomotion is defined as the behavior of cells to cease migrating in their former direction after colliding with another cell. It has been implicated in multiple developmental processes and its absence has been linked to cancer invasion. Cellular forces are thought to govern this process; however, the exact role of traction through cell-matrix adhesions and tension through cell-cell adhesions during contact inhibition of locomotion remains unknown. Here we use neural crest cells to address this and show that cell-matrix adhesions are rapidly disassembled at the contact between two cells upon collision. This disassembly is dependent upon the formation of N-cadherin-based cell-cell adhesions and driven by Src and FAK activity. We demonstrate that the loss of cell-matrix adhesions near the contact leads to a buildup of tension across the cell-cell contact, a step that is essential to drive cell-cell separation after collision. Copyright © 2018 The Authors. Published by Elsevier Inc. All rights reserved.

  2. Impact of distal median neuropathy on handwriting performance for patients with carpal tunnel syndrome in office and administrative support occupations.

    PubMed

    Kuo, Li-Chieh; Hsu, Hsiao-Man; Wu, Po-Ting; Lin, Sheng-Che; Hsu, Hsiu-Yun; Jou, I-Ming

    2014-06-01

    This study investigates the handwriting performance of patients with carpal tunnel syndrome (CTS) and healthy controls in office and administrative support occupations, adopting both biomechanical and functional perspectives. This work also explores how surgical intervention altered the performance of the CTS patients. Fourteen CTS patients and 14 control subjects were recruited to complete a self-reported survey and participate in sensory tests, hand strength, dexterity and handwriting tasks using a custom force acquisition pen along with motion capture technology. Based on the results of these, the sensory measurements, along with functional and biomechanical parameters, were used to determine the differences between the groups and also reveal any improvements that occurred in the CTS group after surgical intervention. The CTS patients showed significantly poorer hand sensibility and dexterity than the controls, as well as excessive force exertion of the digits and pen tip, and less efficient force adjustment ability during handwriting. After surgery and sensory recovery, the hand dexterity and pen tip force of the CTS patients improved significantly. The force adjustment abilities of the digits also increased, but these changes were not statistically significant. This study provides the objective measurements and novel apparatus that can be used to determine impairments in the handwriting abilities of office or administrative workers with CTS. The results can also help clinicians or patients to better understand the sensory-related deficits in sensorimotor control of the hand related to CTS, and thus develop and implement more suitable training or adaptive protocols.

  3. Focal Contacts as Mechanosensors

    PubMed Central

    Riveline, Daniel; Zamir, Eli; Balaban, Nathalie Q.; Schwarz, Ulrich S.; Ishizaki, Toshimasa; Narumiya, Shuh; Kam, Zvi; Geiger, Benjamin; Bershadsky, Alexander D.

    2001-01-01

    The transition of cell–matrix adhesions from the initial punctate focal complexes into the mature elongated form, known as focal contacts, requires GTPase Rho activity. In particular, activation of myosin II–driven contractility by a Rho target known as Rho-associated kinase (ROCK) was shown to be essential for focal contact formation. To dissect the mechanism of Rho-dependent induction of focal contacts and to elucidate the role of cell contractility, we applied mechanical force to vinculin-containing dot-like adhesions at the cell edge using a micropipette. Local centripetal pulling led to local assembly and elongation of these structures and to their development into streak-like focal contacts, as revealed by the dynamics of green fluorescent protein–tagged vinculin or paxillin and interference reflection microscopy. Inhibition of Rho activity by C3 transferase suppressed this force-induced focal contact formation. However, constitutively active mutants of another Rho target, the formin homology protein mDia1 (Watanabe, N., T. Kato, A. Fujita, T. Ishizaki, and S. Narumiya. 1999. Nat. Cell Biol. 1:136–143), were sufficient to restore force-induced focal contact formation in C3 transferase-treated cells. Force-induced formation of the focal contacts still occurred in cells subjected to myosin II and ROCK inhibition. Thus, as long as mDia1 is active, external tension force bypasses the requirement for ROCK-mediated myosin II contractility in the induction of focal contacts. Our experiments show that integrin-containing focal complexes behave as individual mechanosensors exhibiting directional assembly in response to local force. PMID:11402062

  4. Integrated Force and Distance Sensing using Elastomer-Embedded Commodity Proximity Sensors.

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Patel, Radhen; Cox, Rebecca E.; Correll, Nikolaus

    We describe a combined proximity, contact and force (PCF) sensor based on a commodity infrared distance sensor embedded in a transparent elastomer with applications in robotic manipulation. Prior to contact, the sensor works as a distance sensor (0{6 cm), whereas after contact the material doubles as a spring, with force proportional to the compression of the elastomer (0{5 N). We describe its principle of operation and design parameters, including polymer thickness, mixing ratio, and emitter current, and show that the sensor response has an in ection point at contact that is independent of an object's surface properties, making it amore » robust detector for contact events. We then demonstrate how arrays of sensors, custom made for a standard Baxter gripper as well as embedded in the nger of the Kinova hand, can be used to (1) improve gripper alignment during grasping, (2) determine contact points with objects, (3) obtain simple 3D models using both proximity and touch, and (4) register point clouds from touch and RGB-D data.« less

  5. Force feedback in a piezoelectric linear actuator for neurosurgery.

    PubMed

    De Lorenzo, Danilo; De Momi, Elena; Dyagilev, Ilya; Manganelli, Rudy; Formaglio, Alessandro; Prattichizzo, Domenico; Shoham, Moshe; Ferrigno, Giancarlo

    2011-09-01

    Force feedback in robotic minimally invasive surgery allows the human operator to manipulate tissues as if his/her hands were in contact with the patient organs. A force sensor mounted on the probe raises problems with sterilization of the overall surgical tool. Also, the use of off-axis gauges introduces a moment that increases the friction force on the bearing, which can easily mask off the signal, given the small force to be measured. This work aims at designing and testing two methods for estimating the resistance to the advancement (force) experienced by a standard probe for brain biopsies within a brain-like material. The further goal is to provide a neurosurgeon using a master-slave tele-operated driver with direct feedback on the tissue mechanical characteristics. Two possible sensing methods, in-axis strain gauge force sensor and position-position error (control-based method), were implemented and tested, both aimed at device miniaturization. The analysis carried out was aimed at fulfilment of the psychophysics requirements for force detection and delay tolerance, also taking into account safety, which is directly related to the last two issues. Controller parameters definition is addressed and consideration is given to development of the device with integration of a haptic interface. Results show better performance of the control-based method (RMSE < 0.1 N), which is also best for reliability, sterilizability, and material dimensions for the application addressed. The control-based method developed for force estimation is compatible with the neurosurgical application and is also capable of measuring tissue resistance without any additional sensors. Force feedback in minimally invasive surgery allows the human operator to manipulate tissues as if his/her hands were in contact with the patient organs. Copyright © 2011 John Wiley & Sons, Ltd.

  6. Penning ionization widths by Fano-algebraic diagrammatic construction method

    NASA Astrophysics Data System (ADS)

    Yun, Renjie; Narevicius, Edvardas; Averbukh, Vitali

    2018-03-01

    We present an ab initio theory and computational method for Penning ionization widths. Our method is based on the Fano theory of resonances, algebraic diagrammatic construction (ADC) scheme for many-electron systems, and Stieltjes imaging procedure. It includes an extension of the Fano-ADC scheme [V. Averbukh and L. S. Cederbaum, J. Chem. Phys. 123, 204107 (2005)] to triplet excited states. Penning ionization widths of various He*-H2 states are calculated as a function of the distance R between He* and H2. We analyze the asymptotic (large-R) dependences of the Penning widths in the region where the well-established electron transfer mechanism of the decay is suppressed by the multipole- and/or spin-forbidden energy transfer. The R-12 and R-8 power laws are derived for the asymptotes of the Penning widths of the singlet and triplet excited states of He*(1s2s1,3S), respectively. We show that the electron transfer mechanism dominates Penning ionization of He*(1s2s 3S)-H2 up until the He*-H2 separation is large enough for the radiative decay of He* to become the dominant channel. The same mechanism also dominates the ionization of He*(1s2s 1S)-H2 when R < 5 Å. We estimate that the regime of energy transfer in the He*-H2 Penning ionization cannot be reached by approaching zero collisional temperature. However, the multipole-forbidden energy transfer mechanism can become important for Penning ionization in doped helium droplets.

  7. Humalog(®) KwikPen™: an insulin-injecting pen designed for ease of use.

    PubMed

    Schwartz, Sherwyn L; Ignaut, Debra A; Bodie, Jennifer N

    2010-11-01

    Insulin pens offer significant benefits over vial and syringe injections for patients with diabetes who require insulin therapy. Insulin pens are more discreet, easier for patients to hold and inject, and provide better dosing accuracy than vial and syringe injections. The Humalog(®) KwikPen™ (prefilled insulin lispro [Humalog] pen, Eli Lilly and Company, Indianapolis, IN, USA) is a prefilled insulin pen highly rated by patients for ease of use in injections, and has been preferred by patients to both a comparable insulin pen and to vial and syringe injections in comparator studies. Together with an engineering study demonstrating smoother injections and reduced dosing error versus a comparator pen, recent evidence demonstrates the Humalog KwikPen device is an accurate, easy-to-use, patient-preferred insulin pen.

  8. Hand hygiene in rural Indonesian healthcare workers: barriers beyond sinks, hand rubs and in-service training.

    PubMed

    Marjadi, B; McLaws, M-L

    2010-11-01

    Few attempts to increase healthcare workers' hand hygiene compliance have included an in-depth analysis of the social and behavioural context in which hand hygiene is not undertaken. We used a mixed method approach to explore hand hygiene barriers in rural Indonesian healthcare facilities to develop a resource-appropriate adoption of international guidelines. Two hospitals and eight clinics (private and public) in a rural Indonesian district were studied for three months each. Hand hygiene compliance was covertly observed for two shifts each in three adult wards at two hospitals. Qualitative data were collected from direct observation, focus group discussions and semistructured in-depth and informal interviews within healthcare facilities and the community. Major barriers to compliance included longstanding water scarcity, tolerance of dirtiness by the community and the healthcare organisational culture. Hand hygiene compliance was poor (20%; 57/281; 95% CI: 16-25%) and was more likely to be undertaken after patient contact (34% after-patient contact vs 5% before-patient contact, P<0.001) and 'inherent' opportunities associated with contacts perceived to be dirty (49% 'inherent' vs 11% 'elective' opportunities associated with clean contacts, P<0.001). Clinicians frequently touched patients without hand hygiene, and some clinicians avoided touching patients altogether. The provision of clean soap and water and in-service training will not overcome strong social and behavioural barriers unless interventions focus on long term community education and managerial commitment to the provision of supportive working conditions. Copyright © 2010 The Hospital Infection Society. All rights reserved.

  9. Prosthetic finger phalanges with lifelike skin compliance for low-force social touching interactions

    PubMed Central

    2011-01-01

    Background Prosthetic arms and hands that can be controlled by the user's electromyography (EMG) signals are emerging. Eventually, these advanced prosthetic devices will be expected to touch and be touched by other people. As realistic as they may look, the currently available prosthetic hands have physical properties that are still far from the characteristics of human skins because they are much stiffer. In this paper, different configurations of synthetic finger phalanges have been investigated for their skin compliance behaviour and have been compared with the phalanges of the human fingers and a phalanx from a commercially available prosthetic hand. Methods Handshake tests were performed to identify which areas on the human hand experience high contact forces. After these areas were determined, experiments were done on selected areas using an indenting probe to obtain the force-displacement curves. Finite element simulations were used to compare the force-displacement results of the synthetic finger phalanx designs with that of the experimental results from the human and prosthetic finger phalanges. The simulation models were used to investigate the effects of (a) varying the internal topology of the finger phalanx and (b) varying different materials for the internal and external layers. Results and Conclusions During handshake, the high magnitudes of contact forces were observed at the areas where the full grasping enclosure of the other person's hand can be achieved. From these areas, the middle phalanges of the (a) little, (b) ring, and (c) middle fingers were selected. The indentation experiments on these areas showed that a 2 N force corresponds to skin tissue displacements of more than 2 mm. The results from the simulation model show that introducing an open pocket with 2 mm height on the internal structure of synthetic finger phalanges increased the skin compliance of the silicone material to 235% and the polyurethane material to 436%, as compared to a

  10. Intra- and Inter-Rater Reliability of the Rate of Force Development of Hip Abductor Muscles Measured by Hand-Held Dynamometer

    ERIC Educational Resources Information Center

    Takeda, Kazuya; Tanabe, Shigeo; Koyama, Soichiro; Nagai, Tomoko; Sakurai, Hiroaki; Kanada, Yoshikiyo; Shomoto, Koji

    2018-01-01

    The aim of this study was to clarify the intra- and inter-rater reliability of the rate of force development in hip abductor muscle force measurements using a hand-held dynamometer. Thirty healthy adults were separately assessed by two independent raters on two separate days. Rate of force development was calculated from the slope of the…

  11. The Effects of Age, Gender, and Hand on Force Control Capabilities of Healthy Adults.

    PubMed

    Lee, Baekhee; Lee, Mina; Yoh, Myeung Sook; You, Heecheon; Park, Hyunji; Jung, Kihyo; Lee, Byung Hwa; Na, Duk L; Kim, Geon Ha

    2015-12-01

    The present study examined the effects of age (20s to 70s), gender (male and female), and hand (dominant and nondominant) on force control capabilities (FCCs) in four force control phases (initiation, development, maintenance, and termination). Normative data of FCCs by force control phase are needed for various populations in age and gender to identify a type of motor performance reduction and its severity. FCCs of 360 participants (30 for each combination of age group and gender) were measured using a finger dynamometer and quantified in terms of initiation time (IT), development time (DT), maintenance error (ME), and termination time (TT). Although gradual increases (1%~28%) by age were shown in IT, DT, and TT, a dramatic increase in ME was observed among participants in their 50s (26%), 60s (68%), and 70s (160%) compared to those in their 20s~40s. The most distinctive interaction effect of age and gender was found in ME out of the four FCC measures. Lastly, hand and its related interactions were not found significant. Normative FCC data were established for four age groups (20s~40s, 50s, 60s, and 70s) and gender. The normative FCC data can be used for evaluating an individual's motor performance, screening patients with brain disorders, and designing input devices triggered and/or operated by the finger. © 2015, Human Factors and Ergonomics Society.

  12. Why pens have rubbery grips

    NASA Astrophysics Data System (ADS)

    Dzidek, Brygida; Bochereau, Séréna; Johnson, Simon A.; Hayward, Vincent; Adams, Michael J.

    2017-10-01

    The process by which human fingers gives rise to stable contacts with smooth, hard objects is surprisingly slow. Using high-resolution imaging, we found that, when pressed against glass, the actual contact made by finger pad ridges evolved over time following a first-order kinetics relationship. This evolution was the result of a two-stage coalescence process of microscopic junctions made between the keratin of the stratum corneum of the skin and the glass surface. This process was driven by the secretion of moisture from the sweat glands, since increased hydration in stratum corneum causes it to become softer. Saturation was typically reached within 20 s of loading the contact, regardless of the initial moisture state of the finger and of the normal force applied. Hence, the gross contact area, frequently used as a benchmark quantity in grip and perceptual studies, is a poor reflection of the actual contact mechanics that take place between human fingers and smooth, impermeable surfaces. In contrast, the formation of a steady-state contact area is almost instantaneous if the counter surface is soft relative to keratin in a dry state. It is for this reason that elastomers are commonly used to coat grip surfaces.

  13. Stereoscopic, Force-Feedback Trainer For Telerobot Operators

    NASA Technical Reports Server (NTRS)

    Kim, Won S.; Schenker, Paul S.; Bejczy, Antal K.

    1994-01-01

    Computer-controlled simulator for training technicians to operate remote robots provides both visual and kinesthetic virtual reality. Used during initial stage of training; saves time and expense, increases operational safety, and prevents damage to robots by inexperienced operators. Computes virtual contact forces and torques of compliant robot in real time, providing operator with feel of forces experienced by manipulator as well as view in any of three modes: single view, two split views, or stereoscopic view. From keyboard, user specifies force-reflection gain and stiffness of manipulator hand for three translational and three rotational axes. System offers two simulated telerobotic tasks: insertion of peg in hole in three dimensions, and removal and insertion of drawer.

  14. Quantification of hand function by power grip and pinch strength force measurements in ulnar nerve lesion simulated by ulnar nerve block.

    PubMed

    Wachter, Nikolaus Johannes; Mentzel, Martin; Krischak, Gert D; Gülke, Joachim

    2017-06-24

    In the assessment of hand and upper limb function, grip strength is of the major importance. The measurement by dynamometers has been established. In this study, the effect of a simulated ulnar nerve lesion on different grip force measurements was evaluated. In 25 healthy volunteers, grip force measurement was done by the JAMAR dynamometer (Fabrication Enterprises Inc, Irvington, NY) for power grip and by a pinch strength dynamometer for tip pinch strength, tripod grip, and key pinch strength. A within-subject research design was used in this prospective study. Each subject served as the control by preinjection measurements of grip and pinch strength. Subsequent measurements after ulnar nerve block were used to examine within-subject change. In power grip, there was a significant reduction of maximum grip force of 26.9% with ulnar nerve block compared with grip force without block (P < .0001). Larger reductions in pinch strength were observed with block: 57.5% in tip pinch strength (P < .0001), 61.0% in tripod grip (P < .0001), and 58.3% in key pinch strength (P < .0001). The effect of the distal ulnar nerve block on grip and pinch force could be confirmed. However, the assessment of other dimensions of hand strength as tip pinch, tripod pinch and key pinch had more relevance in demonstrating hand strength changes resulting from an distal ulnar nerve lesion. The measurement of tip pinch, tripod grip and key pinch can improve the follow-up in hand rehabilitation. II. Copyright © 2017 Hanley & Belfus. Published by Elsevier Inc. All rights reserved.

  15. Prehension synergies: A study of digit force adjustments to the continuously varied load force exerted on a partially constrained hand-held object

    PubMed Central

    Friedman, Jason; Latash, Mark L.; Zatsiorsky, Vladimir M.

    2009-01-01

    We examined how the digit forces adjust when a load force acting on a hand-held object continuously varies. The subjects were required to hold the handle still while a linearly increasing and then decreasing force was applied to the handle. The handle was constrained, such that it could only move up and down, and rotate about a horizontal axis. In addition the moment arm of the thumb tangential force was 1.5 times the moment arm of the virtual finger (VF, an imagined finger with the mechanical action equal to that of the four fingers) force. Unlike the situation when there are equal moment arms, the experimental setup forced the subjects to choose between (a) sharing equally the increase in load force between the thumb and virtual finger but generating a moment of tangential force, which had to be compensated by negatively covarying the moment due to normal forces, or (b) sharing unequally the load force increase between the thumb and VF but preventing generation of a moment of tangential forces. We found that different subjects tended to use one of these two strategies. These findings suggest that the selection by the CNS of prehension synergies at the VF-thumb level with respect to the moment of force are non-obligatory and reflect individual subject preferences. This unequal sharing of the load by the tangential forces, in contrast to the previously observed equal sharing, suggests that the invariant feature of prehension may be a correlated increase in tangential forces rather than an equal increase. PMID:19554319

  16. Of Papers and Pens: Polysemes and Homophones in Lexical (Mis)Selection

    ERIC Educational Resources Information Center

    Li, Leon; Slevc, L. Robert

    2017-01-01

    Every word signifies multiple senses. Many studies using comprehension-based measures suggest that polysemes' senses (e.g., "paper" as in "printer paper" or "term paper") share lexical representations, whereas homophones' meanings (e.g., "pen" as in "ballpoint pen" or "pig pen")…

  17. The influence of patellofemoral joint contact geometry on the modeling of three dimensional patellofemoral joint forces.

    PubMed

    Powers, Christopher M; Chen, Yu-Jen; Scher, Irving; Lee, Thay Q

    2006-01-01

    The purpose of this study was to determine the influence of patellofemoral joint contact geometry on the modeling of three-dimensional patellofemoral joint forces. To achieve this goal, patellofemoral joint reaction forces (PFJRFs) that were measured from an in-vitro cadaveric set-up were compared to PFJRFs estimated from a computer model that did not consider patellofemoral joint contact geometry. Ten cadaver knees were used in this study. Each was mounted on a custom jig that was fixed to an Instron frame. Quadriceps muscle loads were accomplished using a pulley system and weights. The force in the patellar ligament was obtained using a buckle transducer. To quantify the magnitude and direction of the PFJRF, a six-axis load cell was incorporated into the femoral fixation system so that a rigid body assumption could be made. PFJRF data were obtained at 0 degrees , 20 degrees , 40 degrees and 60 degrees of knee flexion. Following in vitro testing, SIMM modeling software was used to develop computational models based on the three-dimensional coordinates (Microscribe digitizer) of individual muscle and patellar ligament force vectors obtained from the cadaver knees. The overall magnitude of the PFJRF estimated from the computer generated models closely matched the direct measurements from the in vitro set-up (Pearson's correlation coefficient, R(2)=0.91, p<0.001). Although the computational model accurately estimated the posteriorly directed forces acting on the joint, some discrepancies were noted in the forces acting in the superior and lateral directions. These differences however, were relatively small when expressed as a total of the overall PFJRF magnitude.

  18. The PEN&PAD data entry system: from prototype to practical system.

    PubMed Central

    Kirby, J.; Rector, A. L.

    1996-01-01

    This paper describes some of the issues addressed in the transition of the PEN&PAD from prototype clinical workstation to practical data entry system for use by general practitioners in the UK. Background and motivation of the PEN&PAD and GALEN projects are presented before the operation of the PEN&PAD user interface is described. A number of issues which have arisen in the development of the PEN&PAD Data Entry System are discussed. PMID:8947757

  19. Highly conductive indium nanowires deposited on silicon by dip-pen nanolithography

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kozhukhov, Anton; Volodin, Vladimir; Novosibirsk State University, Novosibirsk 630090

    2015-04-14

    In this paper, we developed a new dip-pen nanolithography (DPN) method. Using this method, we fabricated conductive nanowires with diameters of 30–50 nm on silicon substrates. To accomplish this, indium was transferred from an atomic force microscopy tip to the surface by applying a potential difference between the tip and substrate. The fabricated indium nanowires were several micrometers in length. Unlike thermal DPN, our DPN method hardly oxidized the indium, producing nanowires with conductivities from 5.7 × 10{sup −3} to 4 × 10{sup −2} Ω cm.

  20. Oregano essential oil as an antimicrobial additive to detergent for hand washing and food contact surface cleaning.

    PubMed

    Rhoades, J; Gialagkolidou, K; Gogou, M; Mavridou, O; Blatsiotis, N; Ritzoulis, C; Likotrafiti, E

    2013-10-01

    To investigate the potential use of oregano essential oil as an antimicrobial agent in liquid soap for hand washing and for food contact surface cleaning. Oregano essential oil (O.E.O.) was emulsified in liquid detergent solution. This was challenge tested against a commercial antimicrobial soap in hand washing trials using natural flora. Soap with O.E.O. was as effective as the commercial antimicrobial soap at reducing aerobic plate count on the hands and more effective than plain soap with no additives. Cloths wetted with soap with O.E.O. were used to clean three different surfaces contaminated with four bacterial pathogens. For three of the four pathogens, the addition of 0·5% v/v O.E.O. to the soap solution enhanced cleaning performance and also reduced bacterial survival on the cloth after cleaning. Oregano essential oil (0·5%) is effective as an antimicrobial additive to detergent solutions for hand washing and surface cleaning. This preliminary study has shown that oregano essential oil is a potential alternative to antimicrobials used in various detergents, such as chloroxylenol and triclosan, which can have adverse environmental and health effects. Further development could lead to a commercial product. © 2013 The Society for Applied Microbiology.

  1. An Analysis of Bubble Deformation by a Sphere Relevant to the Measurements of Bubble-Particle Contact Interaction and Detachment Forces.

    PubMed

    Sherman, H; Nguyen, A V; Bruckard, W

    2016-11-22

    Atomic force microscopy makes it possible to measure the interacting forces between individual colloidal particles and air bubbles, which can provide a measure of the particle hydrophobicity. To indicate the level of hydrophobicity of the particle, the contact angle can be calculated, assuming that no interfacial deformation occurs with the bubble retaining a spherical profile. Our experimental results obtained using a modified sphere tensiometry apparatus to detach submillimeter spherical particles show that deformation of the bubble interface does occur during particle detachment. We also develop a theoretical model to describe the equilibrium shape of the bubble meniscus at any given particle position, based on the minimization of the free energy of the system. The developed model allows us to analyze high-speed video captured during detachment. In the system model deformation of the bubble profile is accounted for by the incorporation of a Lagrange multiplier into both the Young-Laplace equation and the force balance. The solution of the bubble profile matched to the high-speed video allows us to accurately calculate the contact angle and determine the total force balance as a function of the contact point of the bubble on the particle surface.

  2. Forces and thin water film drainage in deformable asymmetric nanoscale contacts.

    PubMed

    Schönherr, Holger

    2015-01-27

    Gas-liquid interfaces are omnipresent in daily life, and processes involving these interfaces are the basis for a broad range of applications that span from established industrial processes to modern microengineering, technology, and medical applications for diagnosis and treatment. Despite the rapid progress in understanding intermolecular forces at such interfaces from a theoretical point of view and, in particular, from an experimental point of view down to sub-nanometer length scales, the quantitative description of all relevant forces, particularly the hydrophobic interaction and the dynamic behavior of nanometer-scale confined water films, was until now unsatisfactory. This situation is particularly the case for the elusive description and understanding of the origins of the so-called hydrophobic interaction. For soft, deformable interfaces, such as those found in asymmetric contacts between gas bubbles and a solid, a complete picture has begun to emerge that has direct consequences for interfacial water at (bio)interfaces, functionalized gas microbubbles, surface nanobubbles, and beyond.

  3. Dissipative and electrostatic force spectroscopy of indium arsenide quantum dots by non-contact atomic force microscopy

    NASA Astrophysics Data System (ADS)

    Stomp, Romain-Pierre

    This thesis is devoted to the studies of self-assembled InAs quantum dots (QD) by low-temperature Atomic Force Microscopy (AFM) in frequency modulation mode. Several spectroscopic methods are developed to investigate single electron charging from a two-dimensional electron gas (2DEG) to an individual InAs QD. Furthermore, a new technique to measure the absolute tip-sample capacitance is also demonstrated. The main observables are the electrostatic force between the metal-coated AFM tip and sample as well as the sample-induced energy dissipation, and therefore no tunneling current has to be collected at the AFM tip. Measurements were performed by recording simultaneously the shift in the resonant frequency and the Q-factor degradation of the oscillating cantilever either as a function of tip-sample voltage or distance. The signature of single electron charging was detected as an abrupt change in the frequency shift as well as corresponding peaks in the dissipation. The main experimental features in the force agree well with the semi-classical theory of Coulomb blockade by considering the free energy of the system. The observed dissipation peaks can be understood as a back-action effect on the oscillating cantilever beam due to the fluctuation in time of electrons tunneling back and forth between the 2DEG and the QD. It was also possible to extract the absolute value of the tip-sample capacitance, as a consequence of the spectroscopic analysis of the electrostic force as a function of tip-sample distance for different values of the applied voltage. At the same time, the contact potential difference and the residual non-capacitive force could also be determined as a function of tip-sample distance.

  4. 40 CFR 721.1750 - 1H-Benzotriazole, 5-(pen-tyl-oxy)- and 1H-ben-zo-tri-a-zole, 5-(pen-tyl-oxy)-, sodium and...

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... 1H-ben-zo-tri-a-zole, 5-(pen-tyl-oxy)-, sodium and potassium salts. 721.1750 Section 721.1750... 1H-Benzotriazole, 5-(pen-tyl-oxy)- and 1H-ben-zo-tri-a-zole, 5-(pen-tyl-oxy)-, sodium and potassium...-tyl-oxy)-, sodium salt (PMN P-92-35), and 1H-benzotriazole, 5-(pentyloxy)- , potassium salt (PMN P-92...

  5. 40 CFR 721.1750 - 1H-Benzotriazole, 5-(pen-tyl-oxy)- and 1H-ben-zo-tri-a-zole, 5-(pen-tyl-oxy)-, sodium and...

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 1H-ben-zo-tri-a-zole, 5-(pen-tyl-oxy)-, sodium and potassium salts. 721.1750 Section 721.1750... 1H-Benzotriazole, 5-(pen-tyl-oxy)- and 1H-ben-zo-tri-a-zole, 5-(pen-tyl-oxy)-, sodium and potassium...-tyl-oxy)-, sodium salt (PMN P-92-35), and 1H-benzotriazole, 5-(pentyloxy)- , potassium salt (PMN P-92...

  6. 40 CFR 721.1750 - 1H-Benzotriazole, 5-(pen-tyl-oxy)- and 1H-ben-zo-tri-a-zole, 5-(pen-tyl-oxy)-, sodium and...

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 1H-ben-zo-tri-a-zole, 5-(pen-tyl-oxy)-, sodium and potassium salts. 721.1750 Section 721.1750... 1H-Benzotriazole, 5-(pen-tyl-oxy)- and 1H-ben-zo-tri-a-zole, 5-(pen-tyl-oxy)-, sodium and potassium...-tyl-oxy)-, sodium salt (PMN P-92-35), and 1H-benzotriazole, 5-(pentyloxy)- , potassium salt (PMN P-92...

  7. 40 CFR 721.1750 - 1H-Benzotriazole, 5-(pen-tyl-oxy)- and 1H-ben-zo-tri-a-zole, 5-(pen-tyl-oxy)-, sodium and...

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 1H-ben-zo-tri-a-zole, 5-(pen-tyl-oxy)-, sodium and potassium salts. 721.1750 Section 721.1750... 1H-Benzotriazole, 5-(pen-tyl-oxy)- and 1H-ben-zo-tri-a-zole, 5-(pen-tyl-oxy)-, sodium and potassium...-tyl-oxy)-, sodium salt (PMN P-92-35), and 1H-benzotriazole, 5-(pentyloxy)- , potassium salt (PMN P-92...

  8. Operational and theoretical temperature considerations in a Penning surface plasma source

    NASA Astrophysics Data System (ADS)

    Faircloth, D. C.; Lawrie, S. R.; Pereira Da Costa, H.; Dudnikov, V.

    2015-04-01

    A fully detailed 3D thermal model of the ISIS Penning surface plasma source is developed in ANSYS. The proportion of discharge power applied to the anode and cathode is varied until the simulation matches the operational temperature observations. The range of possible thermal contact resistances are modelled, which gives an estimation that between 67% and 85% of the discharge power goes to the cathode. Transient models show the electrode surface temperature rise during the discharge pulse for a range of duty cycles. The implications of these measurements are discussed and a mechanism for governing cesium coverage proposed. The requirements for the design of a high current long pulse source are stated.

  9. Analysis on composition and inclusions of ballpoint pen tip steel

    NASA Astrophysics Data System (ADS)

    Yang, Qian-kun; Shen, Ping; Zhang, Dong; Wu, Yan-xin; Fu, Jian-xun

    2018-04-01

    Ballpoint pen tip steel, a super free-cutting stainless steel, exhibits excellent corrosion resistance and good machining properties. In this study, inductively coupled plasma spectroscopy, metallographic microscopy, and scanning electron microscopy were used to determine the elemental contents in five ballpoint pen tips and their components, morphologies, and inclusion distributions. The results showed that the steels were all S-Pb-Te super free-cutting ferritic stainless steel. The free-cutting phases in the steels were mainly MnS, Pb, and small amounts of PbTe. MnS inclusions were in the form of chain distributions, and the aspect ratio of each size inclusion in the chain was small. The stress concentration effect could substantially reduce the cutting force when the material was machined. Some of the Pb was distributed evenly in the steel matrix as fine particles (1-2 μm), and the rest of the Pb was distributed at the middle or at both ends of the MnS inclusions. The Pb plays a role in lubrication and melting embrittlement, which substantially increases the cutting performance. PbTe was also usually distributed in the middle and at both ends of the MnS inclusions, and Te could convert the sulfides into spindles, thereby improving the cutting performance of the steel.

  10. The contact condition influence on stability and energy efficiency of quadruped robot

    NASA Astrophysics Data System (ADS)

    Lei, Jingtao; Wang, Tianmiao; Gao, Feng

    2008-10-01

    Quadruped robot has attribute of serial and parallel manipulator with multi-loop mechanism, with more DOF of each leg and intermittent contact with ground during walking, the trot gait of quadruped robot belongs to dynamic waking, compared to the crawl gait, the walking speed is higher, but the robot becomes unstable, it is difficult to keep dynamically stable walking. In this paper, we mainly analyze the condition for the quadruped robot to realize dynamically stable walking, establish centroid orbit equation based on ZMP (Zero Moment Point) stability theory, on the other hand , we study contact impact and friction influence on stability and energy efficiency. Because of the periodic contact between foots and ground, the contact impact and friction are considered to establish spring-damp nonlinear dynamics model. Robot need to be controlled to meet ZMP stability condition and contact constraint condition. Based on the virtual prototyping model, we study control algorithm considering contact condition, the contact compensator and friction compensator are adopted. The contact force and the influence of different contact conditions on the energy efficiency during whole gait cycle are obtained.

  11. Review: Factors affecting fouling in conventional pens for slaughter pigs.

    PubMed

    Larsen, M L V; Bertelsen, M; Pedersen, L J

    2018-02-01

    This review assesses factors affecting fouling in conventional pens for slaughter pigs. Fouling of the pen happens when pigs change their excretory behaviour from occurring in the designated dunging area to the lying area. This can result in a lower hygiene, bad air quality, extra work for the farmer, disturbance of the pigs' resting behaviour and an increase in agonistic interactions. A systematic search was conducted and results narrowed down to 21 articles. Four factors were found to affect fouling directly: insufficient space allowance, the flooring design of the pen, the thermal climate and pigs' earlier experience. Further, these primary factors are affected by secondary factors such as the shape of the pen, the weight of the pigs and especially the heat balance of the pigs, which is affected by several tertiary factors including, for example, temperature, humidity and draught. Results indicate that the most important factor to control when trying to prevent fouling of a pen is the pen climate. An appropriate climate may be accomplished through floor cooling in the designated lying area, sprinklers above the designated dunging area and by ensuring a more optimal ambient temperature curve that also fits the weight of the pigs in different stages of the production. All in all, fouling of the pen in conventional slaughter pigs is a multifactorial problem, but it is important to focus on increasing the comfortability, and especially the climate, of the designated lying area.

  12. Comparative Assessment of Lixisenatide, Exenatide, and Liraglutide Pen Devices: A Pilot User-Based Study.

    PubMed

    Stauder, Udo; Enginee, Diplom; Elton, Hina; Penfornis, Alfred; Edelman, Steve

    2014-01-01

    Glucagon-like peptide-1 (GLP-1) receptor agonists are a relatively recent addition to the treatment options for type 2 diabetes mellitus (T2DM) and are administered using prefilled pen devices. In this open-label task and interview-based pilot study, 3 GLP-1 receptor agonist pen devices-exenatide (Byetta ® , Bristol-Myers Squibb/AstraZeneca), liraglutide (Victoza ® , Novo Nordisk), and lixisenatide (Lyxumia ® , Sanofi-Aventis)-were comparatively assessed in a randomized order in 30 participants with T2DM for ease of use, using a series of key performance measures (time taken to complete a series of tasks, number of user errors [successful performance], and user satisfaction rating). Linear and logistic regression analysis was conducted for the lixisenatide and liraglutide pens versus the exenatide pen. Participants' mean age was 60 years; 27% and 20% of the participants had visual impairments and reduced manual dexterity, respectively. Tasks were completed faster (P < .001) and with higher successful performance (P = .001) with the lixisenatide pen than with the exenatide pen, whereas the liraglutide pen was not statistically significant versus the exenatide pen on these parameters. Overall, user satisfaction was statistically higher for the lixisenatide and liraglutide pens versus the exenatide pen (P < .001 for both). Lixisenatide and liraglutide pens are associated with higher user satisfaction compared with the exenatide pen. In addition, the lixisenatide pen is faster and results in fewer errors than its comparator (exenatide). The lixisenatide pen may therefore be a suitable choice for patients with T2DM, including older and pen device-naïve patients, and those with visual impairments and reduced manual dexterity. © 2014 Diabetes Technology Society.

  13. Psychometric Assessment of the Injection Pen Assessment Questionnaire (IPAQ): measuring ease of use and preference with injection pens for human growth hormone

    PubMed Central

    2012-01-01

    Purpose To examine the psychometric properties of the Injection Pen Assessment Questionnaire (IPAQ) including the following: 1) item and scale characteristics (e.g., frequencies, item distributions, and factor structure), 2) reliability, and 3) validity. Methods Focus groups and one-on-one dyad interviews guided the development of the IPAQ. The IPAQ was subsequently tested in 136 parent–child dyads in a Phase 3, 2-month, open-label, multicenter trial for a new Genotropin® disposable pen. Factor analysis was performed to inform the development of a scoring algorithm, and reliability and validity of the IPAQ were evaluated using the data from this two months study. Psychometric analyses were conducted separately for each injection pen. Results Confirmatory factor analysis provides evidence supporting a second order factor solution for four subscales and a total IPAQ score. These factor analysis results support the conceptual framework developed from previous qualitative research in patient dyads using the reusable pen. However, the IPAQ subscales did not consistently meet acceptable internal consistency reliability for some group level comparisons. Cronbach’s alphas for the total IPAQ score for both pens were 0.85, exceeding acceptable levels of reliability for group comparisons. Conclusions The total IPAQ score is a useful measure for evaluating ease of use and preference for injection pens in clinical trials among patient dyads receiving hGH. The psychometric properties of the individual subscales, mainly the lower internal consistency reliability of some of the subscales and the predictive validity findings, do not support the use of subscale scores alone as a primary endpoint. PMID:23046797

  14. Pen-based Interfaces for Engineering and Education

    NASA Astrophysics Data System (ADS)

    Stahovich, Thomas F.

    Sketches are an important problem-solving tool in many fields. This is particularly true of engineering design, where sketches facilitate creativity by providing an efficient medium for expressing ideas. However, despite the importance of sketches in engineering practice, current engineering software still relies on traditional mouse and keyboard interfaces, with little or no capabilities to handle free-form sketch input. With recent advances in machine-interpretation techniques, it is now becoming possible to create practical interpretation-based interfaces for such software. In this chapter, we report on our efforts to create interpretation techniques to enable pen-based engineering applications. We describe work on two fundamental sketch understanding problems. The first is sketch parsing, the task of clustering pen strokes or geometric primitives into individual symbols. The second is symbol recognition, the task of classifying symbols once they have been located by a parser. We have used the techniques that we have developed to construct several pen-based engineering analysis tools. These are used here as examples to illustrate our methods. We have also begun to use our techniques to create pen-based tutoring systems that scaffold students in solving problems in the same way they would ordinarily solve them with paper and pencil. The chapter concludes with a brief discussion of these systems.

  15. Successful catheter ablation of ventricular premature complexes from the right atrial side of the atrioventricular septum with good contact force.

    PubMed

    Arai, Marina; Fukamizu, Seiji; Kawamura, Iwanari; Miyazawa, Satoshi; Hojo, Rintaro; Sakurada, Harumizu; Hiraoka, Masayasu

    2018-04-01

    The acquisition of good contact force for radiofrequency catheter ablation of ventricular premature complexes (VPCs) originating from the basal septum of the left ventricle (LV) is often difficult. We describe a case of VPCs originating from the basal septum of the LV, which were successfully eliminated by applying radiofrequency at the right atrium (RA) side of the atrioventricular septum (AVS) without causing any significant impairment of atrioventricular conduction because the ablation catheter could obtain better contact force through the RA approach. Moreover, intracardiac echocardiography (ICE) and RA angiography effectively demonstrated the AVS.

  16. Cadherin Switch during EMT in Neural Crest Cells Leads to Contact Inhibition of Locomotion via Repolarization of Forces.

    PubMed

    Scarpa, Elena; Szabó, András; Bibonne, Anne; Theveneau, Eric; Parsons, Maddy; Mayor, Roberto

    2015-08-24

    Contact inhibition of locomotion (CIL) is the process through which cells move away from each other after cell-cell contact, and it contributes to malignant invasion and developmental migration. Various cell types exhibit CIL, whereas others remain in contact after collision and may form stable junctions. To investigate what determines this differential behavior, we study neural crest cells, a migratory stem cell population whose invasiveness has been likened to cancer metastasis. By comparing pre-migratory and migratory neural crest cells, we show that the switch from E- to N-cadherin during EMT is essential for acquisition of CIL behavior. Loss of E-cadherin leads to repolarization of protrusions, via p120 and Rac1, resulting in a redistribution of forces from intercellular tension to cell-matrix adhesions, which break down the cadherin junction. These data provide insight into the balance of physical forces that contributes to CIL in cells in vivo. Copyright © 2015 The Authors. Published by Elsevier Inc. All rights reserved.

  17. Cadherin Switch during EMT in Neural Crest Cells Leads to Contact Inhibition of Locomotion via Repolarization of Forces

    PubMed Central

    Scarpa, Elena; Szabó, András; Bibonne, Anne; Theveneau, Eric; Parsons, Maddy; Mayor, Roberto

    2015-01-01

    Summary Contact inhibition of locomotion (CIL) is the process through which cells move away from each other after cell-cell contact, and it contributes to malignant invasion and developmental migration. Various cell types exhibit CIL, whereas others remain in contact after collision and may form stable junctions. To investigate what determines this differential behavior, we study neural crest cells, a migratory stem cell population whose invasiveness has been likened to cancer metastasis. By comparing pre-migratory and migratory neural crest cells, we show that the switch from E- to N-cadherin during EMT is essential for acquisition of CIL behavior. Loss of E-cadherin leads to repolarization of protrusions, via p120 and Rac1, resulting in a redistribution of forces from intercellular tension to cell-matrix adhesions, which break down the cadherin junction. These data provide insight into the balance of physical forces that contributes to CIL in cells in vivo. PMID:26235046

  18. Higher contact force during radiofrequency ablation leads to a much larger increase in edema as compared to chronic lesion size.

    PubMed

    Thomas, Samuel; Silvernagel, Josh; Angel, Nathan; Kholmovski, Eugene; Ghafoori, Elyar; Hu, Nan; Ashton, John; Dosdall, Derek J; MacLeod, Rob; Ranjan, Ravi

    2018-05-18

    Reversible edema is a part of any radiofrequency ablation but its relationship with contact force is unknown. The goal of this study was to characterize through histology and MRI, acute and chronic ablation lesions and reversible edema with contact force. In a canine model (n = 14), chronic ventricular lesions were created with a 3.5-mm tip ThermoCool SmartTouch (Biosense Webster) catheter at 25 W or 40 W for 30 seconds. Repeat ablation was performed after 3 months to create a second set of lesions (acute). Each ablation procedure was followed by in vivo T2-weighted MRI for edema and late-gadolinium enhancement (LGE) MRI for lesion characterization. For chronic lesions, the mean scar volumes at 25 W and 40 W were 77.8 ± 34.5 mm 3 (n = 24) and 139.1 ± 69.7 mm 3 (n = 12), respectively. The volume of chronic lesions increased (25 W: P < 0.001, 40 W: P < 0.001) with greater contact force. For acute lesions, the mean volumes of the lesion were 286.0 ± 129.8 mm 3 (n = 19) and 422.1 ± 113.1 mm 3 (n = 16) for 25 W and 40 W, respectively (P < 0.001 compared to chronic scar). On T2-weighted MRI, the acute edema volume was on average 5.6-8.7 times higher than the acute lesion volume and increased with contact force (25 W: P = 0.001, 40 W: P = 0.011). With increasing contact force, there is a marginal increase in lesion size but accompanied with a significantly larger edema. The reversible edema that is much larger than the chronic lesion volume may explain some of the chronic procedure failures. © 2018 Wiley Periodicals, Inc.

  19. PREFACE: NC-AFM 2003: Proceedings of the 6th International Conference on Non-contact Atomic Force Microscopy

    NASA Astrophysics Data System (ADS)

    Reichling, Michael

    2004-02-01

    Direct nanoscale and atomic resolution imaging is a key issue in nanoscience and nanotechnology. The invention of the dynamic force microscope in the early 1990s was an important step forward in this direction as this instrument provides a universal tool for measuring the topography and many other physical and chemical properties of surfaces at the nanoscale. Operation in the so-called non-contact mode now allows direct atomic resolution imaging of electrically insulating surfaces and nanostructures which has been an unsolved problem during the first decade of nanotechnology. Today, we face a most rapid development of the technique and an extension of its capabilities far beyond imaging; atomically resolved force spectroscopy provides information about local binding properties and researchers now develop sophisticated schemes of force controlled atomic manipulation with the tip of the force microscope. Progress in the field of non-contact force microscopy is discussed at the annually held NC-AFM conferences that are part of a series started in 1998 with a meeting in Osaka, Japan. The 6th International Conference on Non-contact Atomic Force Microscopy took place in Dingle, Ireland, from 31 August to 3 September 2003 and this special issue is a compilation of the original publications of work presented at this meeting. The papers published here well reflect recent achievements, current trends and some of the challenging new directions in non-contact force microscopy that have been discussed during the most stimulating conference days in Dingle. Fundamental aspects of forces and dissipation relevant in imaging and spectroscopy have been covered by experimental and theoretical contributions yielding a more detailed understanding of tip--surface interaction in force microscopy. Novel and improved imaging and spectroscopy techniques have been introduced that either improve the performance of force microscopy or pave the way towards new functionalities and applications

  20. Using Hand Grip Force as a Correlate of Longitudinal Acceleration Comfort for Rapid Transit Trains

    PubMed Central

    Guo, Beiyuan; Gan, Weide; Fang, Weining

    2015-01-01

    Longitudinal acceleration comfort is one of the essential metrics used to evaluate the ride comfort of train. The aim of this study was to investigate the effectiveness of using hand grip force as a correlate of longitudinal acceleration comfort of rapid transit trains. In the paper, a motion simulation system was set up and a two-stage experiment was designed to investigate the role of the grip force on the longitudinal comfort of rapid transit trains. The results of the experiment show that the incremental grip force was linearly correlated with the longitudinal acceleration value, while the incremental grip force had no correlation with the direction of the longitudinal acceleration vector. The results also show that the effects of incremental grip force and acceleration duration on the longitudinal comfort of rapid transit trains were significant. Based on multiple regression analysis, a step function model was established to predict the longitudinal comfort of rapid transit trains using the incremental grip force and the acceleration duration. The feasibility and practicably of the model was verified by a field test. Furthermore, a comparative analysis shows that the motion simulation system and the grip force based model were valid to support the laboratory studies on the longitudinal comfort of rapid transit trains. PMID:26147730

  1. A new six-degree-of-freedom force-reflecting hand controller for space telerobotics

    NASA Technical Reports Server (NTRS)

    Mcaffee, Douglas; Snow, Edward; Townsend, William; Robinson, Lee; Hanson, Joe

    1990-01-01

    A new 6 degree of freedom universal Force Reflecting Hand Controller (FRHC) was designed for use as the man-machine interface in teleoperated and telerobotic flight systems. The features of this new design include highly intuitive operation, excellent kinesthetic feedback, high fidelity force/torque feedback, a kinematically simple structure, mechanically decoupled motion in all 6 DOF, good back-drivability, and zero backlash. In addition, the new design has a much larger work envelope, smaller stowage volume, greater stiffness and responsiveness, and better overlap of the human operator's range of motion than do previous designs. The utility and basic operation of a new, flight prototype FRHC called the Model X is briefly discussed. The design heritage, general design goals, and design implementation of this advanced new generation of FRHCs are presented, followed by a discussion of basic features and the results of initial testing.

  2. Multiple sensor smart robot hand with force control

    NASA Technical Reports Server (NTRS)

    Killion, Richard R.; Robinson, Lee R.; Bejczy, Antal

    1987-01-01

    A smart robot hand developed at JPL for the Protoflight Manipulator Arm (PFMA) is described. The development of this smart hand was based on an integrated design and subsystem architecture by considering mechanism, electronics, sensing, control, display, and operator interface in an integrated design approach. The mechanical details of this smart hand and the overall subsystem are described elsewhere. The sensing and electronics components of the JPL/PFMA smart hand are summarized and it is described in some detail in control capabilities.

  3. Pediatric obesity and walking duration increase medial tibiofemoral compartment contact forces.

    PubMed

    Lerner, Zachary F; Board, Wayne J; Browning, Raymond C

    2016-01-01

    With the high prevalence of pediatric obesity there is a need for structured physical activity during childhood. However, altered tibiofemoral loading during physical activity in obese children likely contribute to their increased risk of orthopedic disorders of the knee. The goal of this study was to determine the effects of pediatric obesity and walking duration on medial and lateral tibiofemoral contact forces. We collected experimental biomechanics data during treadmill walking at 1 m•s(-1) for 20 min in 10 obese and 10 healthy-weight 8-12 year-olds. We created subject-specific musculoskeletal models using radiographic measures of tibiofemoral alignment and centers-of-pressure, and predicted medial and lateral tibiofemoral contact forces at the beginning and end of each trial. Obesity and walking duration affected tibiofemoral loading. At the beginning of the trail, the average percent of the total load passing through the medial compartment during stance was 85% in the obese children and 63% in the healthy-weight children; at the end of the trial, the medial distribution was 90% in the obese children and 72% in the healthy-weight children. Medial compartment loading rates were 1.78 times greater in the obese participants. The medial compartment loading rate increased 17% in both groups at the end compared to the beginning of the trial (p = 0.001). We found a strong linear relationship between body-fat percentage and the medial-lateral load distribution (r(2) = 0.79). Altered tibiofemoral loading during walking in obese children may contribute to their increased risk of knee pain and pathology. © 2015 Orthopaedic Research Society. Published by Wiley Periodicals, Inc.

  4. Vulnerability of corneal endothelial cells to mechanical trauma from indentation forces assessed using contact mechanics and fluorescence microscopy.

    PubMed

    Ramirez-Garcia, Manuel A; Khalifa, Yousuf M; Buckley, Mark R

    2018-06-05

    Corneal endothelial cell (CEC) loss occurs from tissue manipulation during anterior segment surgery and corneal transplantation as well as from contact with synthetic materials like intraocular lenses and tube shunts. While several studies have quantified CEC loss for specific surgical steps, the vulnerability of CECs to isolated, controllable and measurable mechanical forces has not been assessed previously. The purpose of this study was to develop an experimental testing platform where the susceptibility of CECs to controlled mechanical trauma could be measured. The corneal endothelial surfaces of freshly dissected porcine corneas were subjected to a range of indentation forces via a spherical stainless steel bead. A cell viability assay in combination with high-resolution fluorescence microscopy was used to visualize and quantify injured/dead CEC densities before and after mechanical loading. In specimens subjected to an indentation force of 9 mN, the mean ± SD peak contact pressure P 0 was 18.64 ± 3.59 kPa (139.81 ± 26.93 mmHg) in the center of indentation and decreased radially outward. Injured/dead CEC densities were significantly greater (p ≤ 0.001) after mechanical indentation of 9 mN (167 ± 97 cells/mm 2 ) compared to before indentation (39 ± 52 cells/mm 2 ) and compared to the sham group (34 ± 31 cells/mm 2 ). In specimens subjected to "contact only" - defined as an applied indentation force of 0.65 mN - the peak contact pressure P 0 was 7.31 ± 1.5 kPa (54.83 ± 11.25 mmHg). In regions where the contact pressures was below 78% of P 0 (<5.7 kPa or 42.75 mmHg), injured/dead CEC densities were within the range of CEC loss observed in the sham group, suggesting negligible cell death. These findings indicate that CECs are highly susceptible to mechanical trauma via indentation, supporting the established "no-touch" policy for ophthalmological procedures. While CECs can potentially remain

  5. Relationships Between Tibiofemoral Contact Forces and Cartilage Morphology at 2 to 3 Years After Single-Bundle Hamstring Anterior Cruciate Ligament Reconstruction and in Healthy Knees.

    PubMed

    Saxby, David John; Bryant, Adam L; Wang, Xinyang; Modenese, Luca; Gerus, Pauline; Konrath, Jason M; Bennell, Kim L; Fortin, Karine; Wrigley, Tim; Cicuttini, Flavia M; Vertullo, Christopher J; Feller, Julian A; Whitehead, Tim; Gallie, Price; Lloyd, David G

    2017-08-01

    Prevention of knee osteoarthritis (OA) following anterior cruciate ligament (ACL) rupture and reconstruction is vital. Risk of postreconstruction knee OA is markedly increased by concurrent meniscal injury. It is unclear whether reconstruction results in normal relationships between tibiofemoral contact forces and cartilage morphology and whether meniscal injury modulates these relationships. Since patients with isolated reconstructions (ie, without meniscal injury) are at lower risk for knee OA, we predicted that relationships between tibiofemoral contact forces and cartilage morphology would be similar to those of normal, healthy knees 2 to 3 years postreconstruction. In knees with meniscal injuries, these relationships would be similar to those reported in patients with knee OA, reflecting early degenerative changes. Cross-sectional study; Level of evidence, 3. Three groups were examined: (1) 62 patients who received single-bundle hamstring reconstruction with an intact, uninjured meniscus (mean age, 29.8 ± 6.4 years; mean weight, 74.9 ± 13.3 kg); (2) 38 patients with similar reconstruction with additional meniscal injury (ie, tear, repair) or partial resection (mean age, 30.6 ± 6.6 years; mean weight, 83.3 ± 14.3 kg); and (3) 30 ligament-normal, healthy individuals (mean age, 28.3 ± 5.2 years; mean weight, 74.9 ± 14.9 kg) serving as controls. All patients underwent magnetic resonance imaging to measure the medial and lateral tibial articular cartilage morphology (volumes and thicknesses). An electromyography-driven neuromusculoskeletal model determined medial and lateral tibiofemoral contact forces during walking. General linear models were used to assess relationships between tibiofemoral contact forces and cartilage morphology. In control knees, cartilage was thicker compared with that of isolated and meniscal-injured ACL-reconstructed knees, while greater contact forces were related to both greater tibial cartilage volumes (medial: R 2 = 0.43, β = 0

  6. Relationships Between Tibiofemoral Contact Forces and Cartilage Morphology at 2 to 3 Years After Single-Bundle Hamstring Anterior Cruciate Ligament Reconstruction and in Healthy Knees

    PubMed Central

    Saxby, David John; Bryant, Adam L.; Wang, Xinyang; Modenese, Luca; Gerus, Pauline; Konrath, Jason M.; Bennell, Kim L.; Fortin, Karine; Wrigley, Tim; Cicuttini, Flavia M.; Vertullo, Christopher J.; Feller, Julian A.; Whitehead, Tim; Gallie, Price; Lloyd, David G.

    2017-01-01

    Background: Prevention of knee osteoarthritis (OA) following anterior cruciate ligament (ACL) rupture and reconstruction is vital. Risk of postreconstruction knee OA is markedly increased by concurrent meniscal injury. It is unclear whether reconstruction results in normal relationships between tibiofemoral contact forces and cartilage morphology and whether meniscal injury modulates these relationships. Hypotheses: Since patients with isolated reconstructions (ie, without meniscal injury) are at lower risk for knee OA, we predicted that relationships between tibiofemoral contact forces and cartilage morphology would be similar to those of normal, healthy knees 2 to 3 years postreconstruction. In knees with meniscal injuries, these relationships would be similar to those reported in patients with knee OA, reflecting early degenerative changes. Study Design: Cross-sectional study; Level of evidence, 3. Methods: Three groups were examined: (1) 62 patients who received single-bundle hamstring reconstruction with an intact, uninjured meniscus (mean age, 29.8 ± 6.4 years; mean weight, 74.9 ± 13.3 kg); (2) 38 patients with similar reconstruction with additional meniscal injury (ie, tear, repair) or partial resection (mean age, 30.6 ± 6.6 years; mean weight, 83.3 ± 14.3 kg); and (3) 30 ligament-normal, healthy individuals (mean age, 28.3 ± 5.2 years; mean weight, 74.9 ± 14.9 kg) serving as controls. All patients underwent magnetic resonance imaging to measure the medial and lateral tibial articular cartilage morphology (volumes and thicknesses). An electromyography-driven neuromusculoskeletal model determined medial and lateral tibiofemoral contact forces during walking. General linear models were used to assess relationships between tibiofemoral contact forces and cartilage morphology. Results: In control knees, cartilage was thicker compared with that of isolated and meniscal-injured ACL-reconstructed knees, while greater contact forces were related to both

  7. Effect of contact time and force on monocyte adhesion to vascular endothelium.

    PubMed Central

    Rinker, K D; Prabhakar, V; Truskey, G A

    2001-01-01

    In this study we examined whether monocytic cell attachment to vascular endothelium was affected by elevating shear stress at a constant shear rate. Contact time, which is inversely related to the shear rate, was fixed and viscosity elevated with dextran to increase the shear stress (and hence the net force on the cell) independently of shear rate. At a fixed contact time, tethering frequencies increased, rolling velocities decreased, and median arrest durations increased with increasing shear stress. Rolling and short arrests (< 0.2 s) were well fit by a single exponential consistent with adhesion via the formation of a single additional bond. The cell dissociation constant, k(off), increased when the shear stress was elevated at constant shear rate. Firmly adherent cells arresting for at least 0.2 s were well fit by a stochastic model involving dissociation from multiple bonds. Therefore, at a fixed contact time and increasing shear stress, bonds formed more frequently for rolling cells resulting in more short arrests, and more bonds formed for firmly arresting cells resulting in longer arrest durations. Possible mechanisms for this increased adhesion include greater monocyte deformation and/or more frequent penetration of microvilli through steric and charge barriers. PMID:11259286

  8. Review and Evaluation of Hand–Arm Coordinate Systems for Measuring Vibration Exposure, Biodynamic Responses, and Hand Forces

    PubMed Central

    Dong, Ren G.; Sinsel, Erik W.; Welcome, Daniel E.; Warren, Christopher; Xu, Xueyan S.; McDowell, Thomas W.; Wu, John Z.

    2015-01-01

    The hand coordinate systems for measuring vibration exposures and biodynamic responses have been standardized, but they are not actually used in many studies. This contradicts the purpose of the standardization. The objectives of this study were to identify the major sources of this problem, and to help define or identify better coordinate systems for the standardization. This study systematically reviewed the principles and definition methods, and evaluated typical hand coordinate systems. This study confirms that, as accelerometers remain the major technology for vibration measurement, it is reasonable to standardize two types of coordinate systems: a tool-based basicentric (BC) system and an anatomically based biodynamic (BD) system. However, these coordinate systems are not well defined in the current standard. Definition of the standard BC system is confusing, and it can be interpreted differently; as a result, it has been inconsistently applied in various standards and studies. The standard hand BD system is defined using the orientation of the third metacarpal bone. It is neither convenient nor defined based on important biological or biodynamic features. This explains why it is rarely used in practice. To resolve these inconsistencies and deficiencies, we proposed a revised method for defining the realistic handle BC system and an alternative method for defining the hand BD system. A fingertip-based BD system for measuring the principal grip force is also proposed based on an important feature of the grip force confirmed in this study. PMID:26929824

  9. Biomechanical Effects of Posterior Condylar Offset and Posterior Tibial Slope on Quadriceps Force and Joint Contact Forces in Posterior-Stabilized Total Knee Arthroplasty.

    PubMed

    Kang, Kyoung-Tak; Koh, Yong-Gon; Son, Juhyun; Kwon, Oh-Ryong; Lee, Jun-Sang; Kwon, Sae Kwang

    2017-01-01

    This study aimed to determine the biomechanical effect of the posterior condylar offset (PCO) and posterior tibial slope (PTS) in posterior-stabilized (PS) fixed-bearing total knee arthroplasty (TKA). We developed ±1, ±2, and ±3 mm PCO models in the posterior direction and -3°, 0°, 3°, and 6° PTS models using a previously validated FE model. The influence of changes in the PCO and PTS on the biomechanical effects under deep-knee-bend loading was investigated. The contact stress on the PE insert increased by 14% and decreased by 7% on average as the PCO increased and decreased, respectively, compared to the neutral position. In addition, the contact stress on post in PE insert increased by 18% on average as PTS increased from -3° to 6°. However, the contact stress on the patellar button decreased by 11% on average as PTS increased from -3° to 6° in all different PCO cases. The quadriceps force decreased by 14% as PTS increased from -3° to 6° in all PCO models. The same trend was found in patellar tendon force. Changes in PCO had adverse biomechanical effects whereas PTS increase had positive biomechanical effects. However, excessive PTS should be avoided to prevent knee instability and subsequent failure.

  10. Control of Precision Grip Force in Lifting and Holding of Low-Mass Objects

    PubMed Central

    Kimura, Daisuke; Kadota, Koji; Ito, Taro

    2015-01-01

    Few studies have investigated the control of grip force when manipulating an object with an extremely small mass using a precision grip, although some related information has been provided by studies conducted in an unusual microgravity environment. Grip-load force coordination was examined while healthy adults (N = 17) held a moveable instrumented apparatus with its mass changed between 6 g and 200 g in 14 steps, with its grip surface set as either sandpaper or rayon. Additional measurements of grip-force-dependent finger-surface contact area and finger skin indentation, as well as a test of weight discrimination, were also performed. For each surface condition, the static grip force was modulated in parallel with load force while holding the object of a mass above 30 g. For objects with mass smaller than 30 g, on the other hand, the parallel relationship was changed, resulting in a progressive increase in grip-to-load force (GF/LF) ratio. The rayon had a higher GF/LF force ratio across all mass levels. The proportion of safety margin in the static grip force and normalized moment-to-moment variability of the static grip force were also elevated towards the lower end of the object mass for both surfaces. These findings indicate that the strategy of grip force control for holding objects with an extremely small mass differs from that with a mass above 30 g. The data for the contact area, skin indentation, and weight discrimination suggest that a decreased level of cutaneous feedback signals from the finger pads could have played some role in a cost function in efficient grip force control with low-mass objects. The elevated grip force variability associated with signal-dependent and internal noises, and anticipated inertial force on the held object due to acceleration of the arm and hand, could also have contributed to the cost function. PMID:26376484

  11. Development of devices for self-injection: using tribological analysis to optimize injection force

    PubMed Central

    Lange, Jakob; Urbanek, Leos; Burren, Stefan

    2016-01-01

    This article describes the use of analytical models and physical measurements to characterize and optimize the tribological behavior of pen injectors for self-administration of biopharmaceuticals. One of the main performance attributes of this kind of device is its efficiency in transmitting the external force applied by the user on to the cartridge inside the pen in order to effectuate an injection. This injection force characteristic is heavily influenced by the frictional properties of the polymeric materials employed in the mechanism. Standard friction tests are available for characterizing candidate materials, but they use geometries and conditions far removed from the actual situation inside a pen injector and thus do not always generate relevant data. A new test procedure, allowing the direct measurement of the coefficient of friction between two key parts of a pen injector mechanism using real parts under simulated use conditions, is presented. In addition to the absolute level of friction, the test method provides information on expected evolution of friction over lifetime as well as on expected consistency between individual devices. Paired with an analytical model of the pen mechanism, the frictional data allow the expected overall injection system force efficiency to be estimated. The test method and analytical model are applied to a range of polymer combinations with different kinds of lubrication. It is found that material combinations used without lubrication generally have unsatisfactory performance, that the use of silicone-based internal lubricating additives improves performance, and that the best results can be achieved with external silicone-based lubricants. Polytetrafluoroethylene-based internal lubrication and external lubrication are also evaluated but found to provide only limited benefits unless used in combination with silicone. PMID:27274319

  12. Muscle optimization techniques impact the magnitude of calculated hip joint contact forces.

    PubMed

    Wesseling, Mariska; Derikx, Loes C; de Groote, Friedl; Bartels, Ward; Meyer, Christophe; Verdonschot, Nico; Jonkers, Ilse

    2015-03-01

    In musculoskeletal modelling, several optimization techniques are used to calculate muscle forces, which strongly influence resultant hip contact forces (HCF). The goal of this study was to calculate muscle forces using four different optimization techniques, i.e., two different static optimization techniques, computed muscle control (CMC) and the physiological inverse approach (PIA). We investigated their subsequent effects on HCFs during gait and sit to stand and found that at the first peak in gait at 15-20% of the gait cycle, CMC calculated the highest HCFs (median 3.9 times peak GRF (pGRF)). When comparing calculated HCFs to experimental HCFs reported in literature, the former were up to 238% larger. Both static optimization techniques produced lower HCFs (median 3.0 and 3.1 pGRF), while PIA included muscle dynamics without an excessive increase in HCF (median 3.2 pGRF). The increased HCFs in CMC were potentially caused by higher muscle forces resulting from co-contraction of agonists and antagonists around the hip. Alternatively, these higher HCFs may be caused by the slightly poorer tracking of the net joint moment by the muscle moments calculated by CMC. We conclude that the use of different optimization techniques affects calculated HCFs, and static optimization approached experimental values best. © 2014 Orthopaedic Research Society. Published by Wiley Periodicals, Inc.

  13. Arc Discharges of a Pure Carbon Strip Affected by Dynamic Contact Force during Current-Carrying Sliding

    PubMed Central

    Zhang, Yanyan; Zhang, Yongzhen

    2018-01-01

    Arc discharges of a pure carbon strip induced by dynamic contact force were studied on a pin-on-disk tribometer. It was found that arc discharges were produced periodically in accordance with the period of the dynamic contact force. The arcing rate of the pure carbon strip increased with an increase of frequency f and amplitude B, which led to a decrease of current-carrying quality. These influences at high velocities became much more significant. A critical point of the arcing rate at around 2% was detected. Lower than 2%, the pure carbon strip was able to maintain its excellent current-carrying capability; higher than this point, the current-carrying quality deteriorated abruptly. SEM and XPS analysis show that the element Cu detected on the worn surface at lower arcing rates was metal Cu. CuO was found at higher arcing rates. This indicated that the wear mechanism transferred from mechanical wear to arc erosion with the increase of the arcing rate. PMID:29762496

  14. Arc Discharges of a Pure Carbon Strip Affected by Dynamic Contact Force during Current-Carrying Sliding.

    PubMed

    Zhang, Yanyan; Zhang, Yongzhen; Song, Chenfei

    2018-05-15

    Arc discharges of a pure carbon strip induced by dynamic contact force were studied on a pin-on-disk tribometer. It was found that arc discharges were produced periodically in accordance with the period of the dynamic contact force. The arcing rate of the pure carbon strip increased with an increase of frequency f and amplitude B , which led to a decrease of current-carrying quality. These influences at high velocities became much more significant. A critical point of the arcing rate at around 2% was detected. Lower than 2%, the pure carbon strip was able to maintain its excellent current-carrying capability; higher than this point, the current-carrying quality deteriorated abruptly. SEM and XPS analysis show that the element Cu detected on the worn surface at lower arcing rates was metal Cu. CuO was found at higher arcing rates. This indicated that the wear mechanism transferred from mechanical wear to arc erosion with the increase of the arcing rate.

  15. Proximal arm kinematics affect grip force-load force coordination

    PubMed Central

    Vermillion, Billy C.; Lum, Peter S.

    2015-01-01

    During object manipulation, grip force is coordinated with load force, which is primarily determined by object kinematics. Proximal arm kinematics may affect grip force control, as proximal segment motion could affect control of distal hand muscles via biomechanical and/or neural pathways. The aim of this study was to investigate the impact of proximal kinematics on grip force modulation during object manipulation. Fifteen subjects performed three vertical lifting tasks that involved distinct proximal kinematics (elbow/shoulder), but resulted in similar end-point (hand) trajectories. While temporal coordination of grip and load forces remained similar across the tasks, proximal kinematics significantly affected the grip force-to-load force ratio (P = 0.042), intrinsic finger muscle activation (P = 0.045), and flexor-extensor ratio (P < 0.001). Biomechanical coupling between extrinsic hand muscles and the elbow joint cannot fully explain the observed changes, as task-related changes in intrinsic hand muscle activation were greater than in extrinsic hand muscles. Rather, between-task variation in grip force (highest during task 3) appears to contrast to that in shoulder joint velocity/acceleration (lowest during task 3). These results suggest that complex neural coupling between the distal and proximal upper extremity musculature may affect grip force control during movements, also indicated by task-related changes in intermuscular coherence of muscle pairs, including intrinsic finger muscles. Furthermore, examination of the fingertip force showed that the human motor system may attempt to reduce variability in task-relevant motor output (grip force-to-load force ratio), while allowing larger fluctuations in output less relevant to task goal (shear force-to-grip force ratio). PMID:26289460

  16. Of Papers and Pens: Polysemes and Homophones in Lexical (mis)Selection.

    PubMed

    Li, Leon; Slevc, L Robert

    2017-05-01

    Every word signifies multiple senses. Many studies using comprehension-based measures suggest that polysemes' senses (e.g., paper as in printer paper or term paper) share lexical representations, whereas homophones' meanings (e.g., pen as in ballpoint pen or pig pen) correspond to distinct lexical representations. Less is known about the lexical representations of polysemes compared to homophones in language production. In this study, speakers named pictures after reading sentence fragments that primed polysemes and homophones either as direct competitors to pictures (i.e., semantic-competitors), or as indirect-competitors to pictures (e.g., polysemous senses of semantic competitors, or homophonous meanings of semantic competitors). Polysemes (e.g., paper) elicited equal numbers of intrusions to picture names (e.g., cardboard) compared to in control conditions whether primed as direct competitors (printer paper) or as indirect-competitors (term paper). This contrasted with the finding that homophones (e.g., pen) elicited more intrusions to picture names (e.g., crayon) compared to in control conditions when primed as direct competitors (ballpoint pen) than when primed as indirect-competitors (pig pen). These results suggest that polysemes, unlike homophones, are stored and retrieved as unified lexical representations. Copyright © 2016 Cognitive Science Society, Inc.

  17. Maximum Likelihood Analysis in the PEN Experiment

    NASA Astrophysics Data System (ADS)

    Lehman, Martin

    2013-10-01

    The experimental determination of the π+ -->e+ ν (γ) decay branching ratio currently provides the most accurate test of lepton universality. The PEN experiment at PSI, Switzerland, aims to improve the present world average experimental precision of 3 . 3 ×10-3 to 5 ×10-4 using a stopped beam approach. During runs in 2008-10, PEN has acquired over 2 ×107 πe 2 events. The experiment includes active beam detectors (degrader, mini TPC, target), central MWPC tracking with plastic scintillator hodoscopes, and a spherical pure CsI electromagnetic shower calorimeter. The final branching ratio will be calculated using a maximum likelihood analysis. This analysis assigns each event a probability for 5 processes (π+ -->e+ ν , π+ -->μ+ ν , decay-in-flight, pile-up, and hadronic events) using Monte Carlo verified probability distribution functions of our observables (energies, times, etc). A progress report on the PEN maximum likelihood analysis will be presented. Work supported by NSF grant PHY-0970013.

  18. Unconstrained and contactless hand geometry biometrics.

    PubMed

    de-Santos-Sierra, Alberto; Sánchez-Ávila, Carmen; Del Pozo, Gonzalo Bailador; Guerra-Casanova, Javier

    2011-01-01

    This paper presents a hand biometric system for contact-less, platform-free scenarios, proposing innovative methods in feature extraction, template creation and template matching. The evaluation of the proposed method considers both the use of three contact-less publicly available hand databases, and the comparison of the performance to two competitive pattern recognition techniques existing in literature: namely support vector machines (SVM) and k-nearest neighbour (k-NN). Results highlight the fact that the proposed method outcomes existing approaches in literature in terms of computational cost, accuracy in human identification, number of extracted features and number of samples for template creation. The proposed method is a suitable solution for human identification in contact-less scenarios based on hand biometrics, providing a feasible solution to devices with limited hardware requirements like mobile devices.

  19. Unconstrained and Contactless Hand Geometry Biometrics

    PubMed Central

    de-Santos-Sierra, Alberto; Sánchez-Ávila, Carmen; del Pozo, Gonzalo Bailador; Guerra-Casanova, Javier

    2011-01-01

    This paper presents a hand biometric system for contact-less, platform-free scenarios, proposing innovative methods in feature extraction, template creation and template matching. The evaluation of the proposed method considers both the use of three contact-less publicly available hand databases, and the comparison of the performance to two competitive pattern recognition techniques existing in literature: namely Support Vector Machines (SVM) and k-Nearest Neighbour (k-NN). Results highlight the fact that the proposed method outcomes existing approaches in literature in terms of computational cost, accuracy in human identification, number of extracted features and number of samples for template creation. The proposed method is a suitable solution for human identification in contact-less scenarios based on hand biometrics, providing a feasible solution to devices with limited hardware requirements like mobile devices. PMID:22346634

  20. Smart Hand For Manipulators

    NASA Astrophysics Data System (ADS)

    Fiorini, Paolo

    1987-10-01

    Sensor based, computer controlled end effectors for mechanical arms are receiving more and more attention in the robotics industry, because commonly available grippers are only adequate for simple pick and place tasks. This paper describes the current status of the research at JPL on a smart hand for a Puma 560 robot arm. The hand is a self contained, autonomous system, capable of executing high level commands from a supervisory computer. The mechanism consists of parallel fingers, powered by a DC motor, and controlled by a microprocessor embedded in the hand housing. Special sensors are integrated in the hand for measuring the grasp force of the fingers, and for measuring forces and torques applied between the arm and the surrounding environment. Fingers can be exercised under position, velocity and force control modes. The single-chip microcomputer in the hand executes the tasks of communication, data acquisition and sensor based motor control, with a sample cycle of 2 ms and a transmission rate of 9600 baud. The smart hand described in this paper represents a new development in the area of end effector design because of its multi-functionality and autonomy. It will also be a versatile test bed for experimenting with advanced control schemes for dexterous manipulation.

  1. Applying Hand-Held 3D Printing Technology to the Teaching of VSEPR Theory

    ERIC Educational Resources Information Center

    Dean, Natalie L.; Ewan, Corrina; McIndoe, J. Scott

    2016-01-01

    The use of hand-held 3D printing technology provides a unique and engaging approach to learning VSEPR theory by enabling students to draw three-dimensional depictions of different molecular geometries, giving them an appreciation of the shapes of the building blocks of complex molecular structures. Students are provided with 3D printing pens and…

  2. Microalgae Scatter off Solid Surfaces by Hydrodynamic and Contact Forces.

    PubMed

    Contino, Matteo; Lushi, Enkeleida; Tuval, Idan; Kantsler, Vasily; Polin, Marco

    2015-12-18

    Interactions between microorganisms and solid boundaries play an important role in biological processes, such as egg fertilization, biofilm formation, and soil colonization, where microswimmers move within a structured environment. Despite recent efforts to understand their origin, it is not clear whether these interactions can be understood as being fundamentally of hydrodynamic origin or hinging on the swimmer's direct contact with the obstacle. Using a combination of experiments and simulations, here we study in detail the interaction of the biflagellate green alga Chlamydomonas reinhardtii, widely used as a model puller microorganism, with convex obstacles, a geometry ideally suited to highlight the different roles of steric and hydrodynamic effects. Our results reveal that both kinds of forces are crucial for the correct description of the interaction of this class of flagellated microorganisms with boundaries.

  3. Quantum Degeneracy in Atomic Point Contacts Revealed by Chemical Force and Conductance

    NASA Astrophysics Data System (ADS)

    Sugimoto, Yoshiaki; Ondráček, Martin; Abe, Masayuki; Pou, Pablo; Morita, Seizo; Perez, Ruben; Flores, Fernando; Jelínek, Pavel

    2013-09-01

    Quantum degeneracy is an important concept in quantum mechanics with large implications to many processes in condensed matter. Here, we show the consequences of electron energy level degeneracy on the conductance and the chemical force between two bodies at the atomic scale. We propose a novel way in which a scanning probe microscope can detect the presence of degenerate states in atomic-sized contacts even at room temperature. The tunneling conductance G and chemical binding force F between two bodies both tend to decay exponentially with distance in a certain distance range, usually maintaining direct proportionality G∝F. However, we show that a square relation G∝F2 arises as a consequence of quantum degeneracy between the interacting frontier states of the scanning tip and a surface atom. We demonstrate this phenomenon on the Si(111)-(7×7) surface reconstruction where the Si adatom possesses a strongly localized dangling-bond state at the Fermi level.

  4. Amplitude quantification in contact-resonance-based voltage-modulated force spectroscopy

    NASA Astrophysics Data System (ADS)

    Bradler, Stephan; Schirmeisen, André; Roling, Bernhard

    2017-08-01

    Voltage-modulated force spectroscopy techniques, such as electrochemical strain microscopy and piezoresponse force microscopy, are powerful tools for characterizing electromechanical properties on the nanoscale. In order to correctly interpret the results, it is important to quantify the sample motion and to distinguish it from the electrostatic excitation of the cantilever resonance. Here, we use a detailed model to describe the cantilever dynamics in contact resonance measurements, and we compare the results with experimental values. We show how to estimate model parameters from experimental values and explain how they influence the sensitivity of the cantilever with respect to the excitation. We explain the origin of different crosstalk effects and how to identify them. We further show that different contributions to the measured signal can be distinguished by analyzing the correlation between the resonance frequency and the measured amplitude. We demonstrate this technique on two representative test samples: (i) ferroelectric periodically poled lithium niobate, and (ii) the Na+-ion conducting soda-lime float glass. We extend our analysis to higher cantilever bending modes and show that non-local electrostatic excitation is strongly reduced in higher bending modes due to the nodes in the lever shape. Based on our analyses, we present practical guidelines for quantitative imaging.

  5. 9 CFR 313.1 - Livestock pens, driveways and ramps.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ...) Livestock pens, driveways and ramps shall be maintained in good repair. They shall be free from sharp or... acceptable construction and maintenance. (c) U.S. Suspects (as defined in § 301.2(xxx)) and dying, diseased... awaiting disposition by the inspector. (d) Livestock pens and driveways shall be so arranged that sharp...

  6. A computational framework for simultaneous estimation of muscle and joint contact forces and body motion using optimization and surrogate modeling.

    PubMed

    Eskinazi, Ilan; Fregly, Benjamin J

    2018-04-01

    Concurrent estimation of muscle activations, joint contact forces, and joint kinematics by means of gradient-based optimization of musculoskeletal models is hindered by computationally expensive and non-smooth joint contact and muscle wrapping algorithms. We present a framework that simultaneously speeds up computation and removes sources of non-smoothness from muscle force optimizations using a combination of parallelization and surrogate modeling, with special emphasis on a novel method for modeling joint contact as a surrogate model of a static analysis. The approach allows one to efficiently introduce elastic joint contact models within static and dynamic optimizations of human motion. We demonstrate the approach by performing two optimizations, one static and one dynamic, using a pelvis-leg musculoskeletal model undergoing a gait cycle. We observed convergence on the order of seconds for a static optimization time frame and on the order of minutes for an entire dynamic optimization. The presented framework may facilitate model-based efforts to predict how planned surgical or rehabilitation interventions will affect post-treatment joint and muscle function. Copyright © 2018 IPEM. Published by Elsevier Ltd. All rights reserved.

  7. Atrial Fibrillation Radiofrequency Ablation: Safety Using Contact Force Catheter In A Low-Volume Centre.

    PubMed

    Vaccari Md, Diego; Giacopelli MSc, Daniele; Rocchetto MSc, Eros; Vittadello Md, Sabina; Mantovan Md, Roberto; Neri Md, Gianfilippo

    2014-01-01

    The tip-to-tissue contact force (CF) has been identified as a potential determinant of lesion quality during radiofrequency (RF) ablation. The aim of this paper is to report the experience of a single low-volume centre in the atrial fibrillation (AF) ablation procedure with an RF catheter capable of measuring this parameter. CF data and their possible implications on patient safety are presented. Thirty-nine consecutive patients suffering of paroxysmal or permanent AF received percutaneous ablation with the novel catheter studied. Procedural characteristics, CF applied and safety events related to the procedure were reported. During RF application the mean CF value was 17 ± 3 g, with a maximum mean value of 37 ± 8 g. CF value never exceeded 62 g and in the 74% of the RF applications ranged between 10 g and 30 g. No complication related to the catheter manipulation or to the energy delivered was observed. This study of a single centre with a low level of experience in AF ablation suggests that the ability to measure CF may provide additional useful information to the operator. It ensures uniform ablations, with little variability in the catheter manipulations, and it avoids excessive contact forces increasing the patient safety.

  8. Hand dermatitis--differential diagnoses, diagnostics, and treatment options.

    PubMed

    Mahler, Vera

    2016-01-01

    The pathogenesis of hand dermatitis is multifactorial, and includes factors such as genetic predisposition and exposure. A high incidence rate is associated with female gender, contact allergy, atopic dermatitis, and wet work. The most important risk factors for the persistence of hand dermatitis include its extent, contact allergic or atopic etiology, childhood dermatitis, and early onset (before the age of 20). The cost of illness of hand dermatitis corresponds to this seen in moderate to severe psoriasis. The diagnostic workup of hand dermatitis and its differential diagnoses requires a detailed assessment of occupational and recreational exposure. In case of possible work-related triggers, early notification of the accident insurer should be sought (via the dermatologist's report). Exposure to a contact allergen is a contributing factor in one-half of all cases of hand dermatitis. It is therefore imperative that all patients with hand dermatitis persisting for more than three months undergo patch testing. Successful and sustainable treatment of hand dermatitis starts with the proper identification and elimination of individual triggers, including the substitution of identified contact allergens and irritants, as well as optimizing preventive measures. Graded therapy taking the clinical severity into account is essential. Validated instruments may be used to monitor therapeutic efficacy. © 2015 Deutsche Dermatologische Gesellschaft (DDG). Published by John Wiley & Sons Ltd.

  9. CONTACT: An Air Force technical report on military satellite control technology

    NASA Astrophysics Data System (ADS)

    Weakley, Christopher K.

    1993-07-01

    This technical report focuses on Military Satellite Control Technologies and their application to the Air Force Satellite Control Network (AFSCN). This report is a compilation of articles that provide an overview of the AFSCN and the Advanced Technology Program, and discusses relevant technical issues and developments applicable to the AFSCN. Among the topics covered are articles on Future Technology Projections; Future AFSCN Topologies; Modeling of the AFSCN; Wide Area Communications Technology Evolution; Automating AFSCN Resource Scheduling; Health & Status Monitoring at Remote Tracking Stations; Software Metrics and Tools for Measuring AFSCN Software Performance; Human-Computer Interface Working Group; Trusted Systems Workshop; and the University Technical Interaction Program. In addition, Key Technology Area points of contact are listed in the report.

  10. Links between nanoscale and macroscale surface properties of natural root mucilage studied by atomic force microscopy and contact angle.

    PubMed

    Kaltenbach, Robin; Diehl, Dörte; Schaumann, Gabriele E

    2018-04-15

    Soil water repellency originating from organic coatings plays a crucial role for soil hydraulics and plant water uptake. Focussing on hydrophobicity in the rhizosphere induced by root-mucilage, this study aims to explore the link between macroscopic wettability and nano-microscopic surface properties. The existing knowledge of the nanostructures of organic soil compounds and its effect on wettability is limited by the lack of a method capable to assess the natural spatial heterogeneity of physical and chemical properties. In this contribution, this task is tackled by a geostatistical approach via variogram analysis of topography and adhesion force data acquired by atomic force microscopy and macroscopic sessile drop measurements on dried films of mucilage. The results are discussed following the wetting models given by Wenzel and Cassie-Baxter. Undiluted mucilage formed homogeneous films on the substrate with contact angles >90°. For diluted samples contact angles were smaller and incomplete mucilage surface coverage with hole-like structures frequently exhibited increased adhesion forces. Break-free distances of force curves indicated enhanced capillary forces due to adsorbed water films at atmospheric RH (35 ± 2%) that promote wettability. Variogram analysis enabled a description of complex surface structures exceeding the capability of comparative visual inspection. Copyright © 2018 Elsevier Inc. All rights reserved.

  11. Vapor bridges between solid substrates in the presence of the contact line pinning effect: Stability and capillary force

    NASA Astrophysics Data System (ADS)

    Liu, Yawei; Zhang, Xianren

    2016-12-01

    In this work, we focus on investigating how nanobubbles mediate long-range interaction between neighboring solid substrates in the presence of the contact line pinning effect caused by surface heterogeneities. Using the constrained lattice density functional theory (LDFT), we prove that the nanobubbles, which take the form of vapor bridges here, are stabilized by the pinning effect if the separation between two substrates is less than a critical distance. The critical distance strongly depends on the chemical potential (i.e., the degree of saturation) and could become extremely long at a special chemical potential. Moreover, under the pinning effect, the substrate chemistry only determines the stability of the vapor bridges and the range of the capillary force, but has less influences on the magnitude of the capillary force, indicating that the substrate chemistry or the apparent contact angle for droplets or bubbles on the substrates is no longer a direct parameter to determine the magnitude of capillary force. A qualitative analysis for the two dimensional vapor bridges by considering the feedback mechanism can explain the results from the LDFT calculations.

  12. Self-Sealed Bionic Long Microchannels with Thin Walls and Designable Nanoholes Prepared by Line-Contact Capillary-Force Assembly.

    PubMed

    Lao, Zhao-Xin; Hu, Yan-Lei; Pan, Deng; Wang, Ren-Yan; Zhang, Chen-Chu; Ni, Jin-Cheng; Xu, Bing; Li, Jia-Wen; Wu, Dong; Chu, Jia-Ru

    2017-06-01

    Long microchannels with thin walls, small width, and nanoholes or irregular shaped microgaps, which are similar to capillaries or cancerous vessels, are urgently needed to simulate the physiological activities in human body. However, the fabrication of such channels remains challenging. Here, microchannels with designable holes are manufactured by combining laser printing with line-contact capillary-force assembly. Two microwalls are first printed by femtosecond laser direct-writing, and subsequently driven to collapse into a channel by the capillary force that arises in the evaporation of developer. The channel can remain stable in solvent due to the enhanced Van der Waals' force caused by the line-contact of microwalls. Microchannels with controllable nanoholes and almost arbitrary patterns can be fabricated without any bonding or multistep processes. As-prepared microchannels, with wall thicknesses less than 1 µm, widths less than 3 µm, lengths more than 1 mm, are comparable with human capillaries. In addition, the prepared channels also exhibit the ability to steer the flow of liquid without any external pump. © 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  13. Optical contacting of quartz

    NASA Technical Reports Server (NTRS)

    Payne, L. L.

    1982-01-01

    The strength of the bond between optically contacted quartz surfaces was investigated. The Gravity Probe-B (GP-B) experiment to test the theories of general relativity requires extremely precise measurements. The quartz components of the instruments to make these measurements must be held together in a very stable unit. Optical contacting is suggested as a possible method of joining these components. The fundamental forces involved in optical contacting are reviewed and relates calculations of these forces to the results obtained in experiments.

  14. Actuation of atomic force microscopy microcantilevers using contact acoustic nonlinearities

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Torello, D.; Degertekin, F. Levent, E-mail: levent.degertekin@me.gatech.edu

    2013-11-15

    A new method of actuating atomic force microscopy (AFM) cantilevers is proposed in which a high frequency (>5 MHz) wave modulated by a lower frequency (∼300 kHz) wave passes through a contact acoustic nonlinearity at the contact interface between the actuator and the cantilever chip. The nonlinearity converts the high frequency, modulated signal to a low frequency drive signal suitable for actuation of tapping-mode AFM probes. The higher harmonic content of this signal is filtered out mechanically by the cantilever transfer function, providing for clean output. A custom probe holder was designed and constructed using rapid prototyping technologies and off-the-shelfmore » components and was interfaced with an Asylum Research MFP-3D AFM, which was then used to evaluate the performance characteristics with respect to standard hardware and linear actuation techniques. Using a carrier frequency of 14.19 MHz, it was observed that the cantilever output was cleaner with this actuation technique and added no significant noise to the system. This setup, without any optimization, was determined to have an actuation bandwidth on the order of 10 MHz, suitable for high speed imaging applications. Using this method, an image was taken that demonstrates the viability of the technique and is compared favorably to images taken with a standard AFM setup.« less

  15. Hand-rim forces and gross mechanical efficiency in asynchronous and synchronous wheelchair propulsion: a comparison.

    PubMed

    Lenton, J P; van der Woude, L; Fowler, N; Nicholson, G; Tolfrey, K; Goosey-Tolfrey, V

    2014-03-01

    To compare the force application characteristics at various push frequencies of asynchronous (ASY) and synchronous (SYN) hand-rim propulsion, 8 able-bodied participants performed a separate sub-maximal exercise test on a wheelchair roller ergometer for each propulsion mode. Each test consisted of a series of 5, 4-min exercise blocks at 1.8 m · s-1 - initially at their freely chosen frequency (FCF), followed by four counter-balanced trials at 60, 80, 120 and 140% FCF. Kinetic data was obtained using a SMARTWheel, measuring forces and moments. The gross efficiency (GE) was determined as the ratio of external work done and the total energy expended. The ASY propulsion produced higher force measures for FRES, FTAN, rate of force development & FEF (P<0.05), while there was no difference in GE values (P=0.518). In pair-matched push frequencies (ASY80:SYN60, ASY100:SYN80, ASY120:SYN100 and ASY140:SYN120), ASY propulsion forces remained significantly higher (FRES, FTAN, rate of force development & FEF P<0.05), and there was no significant effect on GE (P=0.456). Both ASY and SYN propulsion demonstrate similar trends: changes in push frequency are accompanied by changes in absolute force even without changes in the gross pattern/trend of force application, FEF or GE. Matched push frequencies continue to produce significant differences in force measures but not GE. This suggests ASY propulsion is the predominant factor in force application differences. The ASY would appear to offer a kinetic disadvantage to SYN propulsion and no physiological advantage under current testing conditions. © Georg Thieme Verlag KG Stuttgart · New York.

  16. Increased Force Variability in Chronic Stroke: Contributions of Force Modulation below 1 Hz

    PubMed Central

    Lodha, Neha; Misra, Gaurav; Coombes, Stephen A.; Christou, Evangelos A.; Cauraugh, James H.

    2013-01-01

    Increased force variability constitutes a hallmark of arm disabilities following stroke. Force variability is related to the modulation of force below 1 Hz in healthy young and older adults. However, whether the increased force variability observed post stroke is related to the modulation of force below 1 Hz remains unknown. Thus, the purpose of this study was to compare force modulation below 1 Hz in chronic stroke and age-matched healthy individuals. Both stroke and control individuals (N = 26) performed an isometric grip task to submaximal force levels. Coefficient of variation quantified force variability, and power spectrum density of force quantified force modulation below 1 Hz with a high resolution (0.07 Hz). Analyses indicated that force variability was greater for the stroke group compared with to healthy controls and for the paretic hand compared with the non-paretic hand. Force modulation below 1 Hz differentiated the stroke individuals and healthy controls, as well as the paretic and non-paretic hands. Specifically, stroke individuals (paretic hand) exhibited greater power ∼0.2 Hz (0.07–0.35 Hz) and lesser power ∼0.6 Hz (0.49–0.77 Hz) compared to healthy controls (non-dominant hand). Similarly, the paretic hand exhibited greater power ∼0.2 Hz, and lesser power ∼0.6 Hz than the non-paretic hand. Moreover, variability of force was strongly predicted from the modulation of specific frequencies below 1 Hz (R 2 = 0.80). Together, these findings indicate that the modulation of force below 1 Hz provides significant insight into changes in motor control after stroke. PMID:24386208

  17. Design of a lightweight, cost effective thimble-like sensor for haptic applications based on contact force sensors.

    PubMed

    Ferre, Manuel; Galiana, Ignacio; Aracil, Rafael

    2011-01-01

    This paper describes the design and calibration of a thimble that measures the forces applied by a user during manipulation of virtual and real objects. Haptic devices benefit from force measurement capabilities at their end-point. However, the heavy weight and cost of force sensors prevent their widespread incorporation in these applications. The design of a lightweight, user-adaptable, and cost-effective thimble with four contact force sensors is described in this paper. The sensors are calibrated before being placed in the thimble to provide normal and tangential forces. Normal forces are exerted directly by the fingertip and thus can be properly measured. Tangential forces are estimated by sensors strategically placed in the thimble sides. Two applications are provided in order to facilitate an evaluation of sensorized thimble performance. These applications focus on: (i) force signal edge detection, which determines task segmentation of virtual object manipulation, and (ii) the development of complex object manipulation models, wherein the mechanical features of a real object are obtained and these features are then reproduced for training by means of virtual object manipulation.

  18. Design of a Lightweight, Cost Effective Thimble-Like Sensor for Haptic Applications Based on Contact Force Sensors

    PubMed Central

    Ferre, Manuel; Galiana, Ignacio; Aracil, Rafael

    2011-01-01

    This paper describes the design and calibration of a thimble that measures the forces applied by a user during manipulation of virtual and real objects. Haptic devices benefit from force measurement capabilities at their end-point. However, the heavy weight and cost of force sensors prevent their widespread incorporation in these applications. The design of a lightweight, user-adaptable, and cost-effective thimble with four contact force sensors is described in this paper. The sensors are calibrated before being placed in the thimble to provide normal and tangential forces. Normal forces are exerted directly by the fingertip and thus can be properly measured. Tangential forces are estimated by sensors strategically placed in the thimble sides. Two applications are provided in order to facilitate an evaluation of sensorized thimble performance. These applications focus on: (i) force signal edge detection, which determines task segmentation of virtual object manipulation, and (ii) the development of complex object manipulation models, wherein the mechanical features of a real object are obtained and these features are then reproduced for training by means of virtual object manipulation. PMID:22247677

  19. Video observation of hand hygiene practices during routine companion animal appointments and the effect of a poster intervention on hand hygiene compliance

    PubMed Central

    2014-01-01

    Background Hand hygiene is considered one of the most important infection control measures in human healthcare settings, but there is little information available regarding hand hygiene frequency and technique used in veterinary clinics. The objectives of this study were to describe hand hygiene practices associated with routine appointments in companion animal clinics in Ontario, and the effectiveness of a poster campaign to improve hand hygiene compliance. Results Observation of hand hygiene practices was performed in 51 clinics for approximately 3 weeks each using 2 small wireless surveillance cameras: one in an exam room, and one in the most likely location for hand hygiene to be performed outside the exam room following an appointment. Data from 38 clinics were included in the final analysis, including 449 individuals, 1139 appointments before and after the poster intervention, and 10894 hand hygiene opportunities. Overall hand hygiene compliance was 14% (1473/10894), while before and after patient contact compliance was 3% (123/4377) and 26% (1145/4377), respectively. Soap and water was used for 87% (1182/1353) of observed hand hygiene attempts with a mean contact time of 4 s (median 2 s, range 1-49 s), while alcohol-based hand rub (ABHR) was used for 7% (98/1353) of attempts with a mean contact time of 8 s (median 7 s, range 1-30 s). The presence of the posters had no significant effect on compliance, although some staff reported that they felt the posters did increase their personal awareness of the need to perform hand hygiene, and the posters had some effect on product contact times. Conclusions Overall hand hygiene compliance in veterinary clinics in this study was low, and contact time with hand hygiene products was frequently below current recommendations. Use of ABHR was low despite its advantages over hand washing and availability in the majority of clinics. The poster campaign had a limited effect on its own, but could still be used as a

  20. Video observation of hand hygiene practices during routine companion animal appointments and the effect of a poster intervention on hand hygiene compliance.

    PubMed

    Anderson, Maureen E C; Sargeant, Jan M; Weese, J Scott

    2014-05-07

    Hand hygiene is considered one of the most important infection control measures in human healthcare settings, but there is little information available regarding hand hygiene frequency and technique used in veterinary clinics. The objectives of this study were to describe hand hygiene practices associated with routine appointments in companion animal clinics in Ontario, and the effectiveness of a poster campaign to improve hand hygiene compliance. Observation of hand hygiene practices was performed in 51 clinics for approximately 3 weeks each using 2 small wireless surveillance cameras: one in an exam room, and one in the most likely location for hand hygiene to be performed outside the exam room following an appointment. Data from 38 clinics were included in the final analysis, including 449 individuals, 1139 appointments before and after the poster intervention, and 10894 hand hygiene opportunities. Overall hand hygiene compliance was 14% (1473/10894), while before and after patient contact compliance was 3% (123/4377) and 26% (1145/4377), respectively. Soap and water was used for 87% (1182/1353) of observed hand hygiene attempts with a mean contact time of 4 s (median 2 s, range 1-49 s), while alcohol-based hand rub (ABHR) was used for 7% (98/1353) of attempts with a mean contact time of 8 s (median 7 s, range 1-30 s). The presence of the posters had no significant effect on compliance, although some staff reported that they felt the posters did increase their personal awareness of the need to perform hand hygiene, and the posters had some effect on product contact times. Overall hand hygiene compliance in veterinary clinics in this study was low, and contact time with hand hygiene products was frequently below current recommendations. Use of ABHR was low despite its advantages over hand washing and availability in the majority of clinics. The poster campaign had a limited effect on its own, but could still be used as a component of a multimodal hand

  1. Minimising the effect of nanoparticle deformation in intermittent contact amplitude modulation atomic force microscopy measurements

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Babic, Bakir, E-mail: bakir.babic@measurement.gov.au; Lawn, Malcolm A.; Coleman, Victoria A.

    The results of systematic height measurements of polystyrene (PS) nanoparticles using intermittent contact amplitude modulation atomic force microscopy (IC-AM-AFM) are presented. The experimental findings demonstrate that PS nanoparticles deform during AFM imaging, as indicated by a reduction in the measured particle height. This deformation depends on the IC-AM-AFM imaging parameters, material composition, and dimensional properties of the nanoparticles. A model for nanoparticle deformation occurring during IC-AM-AFM imaging is developed as a function of the peak force which can be calculated for a particular set of experimental conditions. The undeformed nanoparticle height can be estimated from the model by extrapolation tomore » zero peak force. A procedure is proposed to quantify and minimise nanoparticle deformation during IC-AM-AFM imaging, based on appropriate adjustments of the experimental control parameters.« less

  2. Pairwise Force Smoothed Particle Hydrodynamics model for multiphase flow: Surface tension and contact line dynamics

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Tartakovsky, Alexandre M.; Panchenko, Alexander

    2016-01-01

    We present a novel formulation of the Pairwise Force Smoothed Particle Hydrodynamics Model (PF-SPH) and use it to simulate two- and three-phase flows in bounded domains. In the PF-SPH model, the Navier-Stokes equations are discretized with the Smoothed Particle Hydrodynamics (SPH) method and the Young-Laplace boundary condition at the fluid-fluid interface and the Young boundary condition at the fluid-fluid-solid interface are replaced with pairwise forces added into the Navier-Stokes equations. We derive a relationship between the parameters in the pairwise forces and the surface tension and static contact angle. Next, we demonstrate the accuracy of the model under static andmore » dynamic conditions. Finally, to demonstrate the capabilities and robustness of the model we use it to simulate flow of three fluids in a porous material.« less

  3. A Web-based home welfare and care services support system using a pen type image sensor.

    PubMed

    Ogawa, Hidekuni; Yonezawa, Yoshiharu; Maki, Hiromichi; Sato, Haruhiko; Hahn, Allen W; Caldwell, W Morton

    2003-01-01

    A long-term care insurance law for elderly persons was put in force two years ago in Japan. The Home Helpers, who are employed by hospitals, care companies or the welfare office, provide home welfare and care services for the elderly, such as cooking, bathing, washing, cleaning, shopping, etc. We developed a web-based home welfare and care services support system using wireless Internet mobile phones and Internet client computers, which employs a pen type image sensor. The pen type image sensor is used by the elderly people as the entry device for their care requests. The client computer sends the requests to the server computer in the Home Helper central office, and then the server computer automatically transfers them to the Home Helper's mobile phone. This newly-developed home welfare and care services support system is easily operated by elderly persons and enables Homes Helpers to save a significant amount of time and extra travel.

  4. Facilitating the safe use of insulin pens in hospitals through a mentored quality-improvement program.

    PubMed

    Lutz, Mark F; Haines, Stuart T; Lesch, Christine A; Szumita, Paul M

    2016-10-01

    Results of the MENTORED QUALITY IMPROVEMENT IMPACT PROGRAM℠ (MQIIP) on Ensuring Insulin Pen Safety in Hospitals, which was part of an ASHP educational initiative aimed at ensuring the safe use of insulin pens in hospitals, are described. During this ASHP initiative, which also included continuing-education activities and Web-based resources, distance mentoring by pharmacists with expertise in the safe use of insulin pens was provided to interprofessional teams at 14 hospitals between September 2014 and May 2015. The results of baseline assessments of nursing staff knowledge of insulin pen use, insulin pen storage and labeling audits, and insulin pen injection observations conducted in September and October 2014 were the basis for insulin pen quality-improvement plans. Postintervention data were collected in April and May 2015. Compared with the baseline period, significant improvements in nurses' knowledge of insulin pen use, insulin pen labeling and storage, and insulin pen administration were observed in the postintervention period despite the relatively short time frame for implementation of quality-improvement plans. Program participants are committed to sustaining and building on improvements achieved during the program. The outcome measures described in this report could be adapted by other health systems to identify opportunities to improve the safety of insulin pen use. Focused attention on insulin pen safety through an interprofessional team approach during the MQIIP enabled participating sites to detect potential safety issues based on collected data, develop targeted process changes, document improvements, and identify areas requiring further intervention. A sustained organizational commitment is required to ensure the safe use of insulin pen devices in hospitals. Copyright © 2016 by the American Society of Health-System Pharmacists, Inc. All rights reserved.

  5. Respiratory motion influence on catheter contact force during radio frequency ablation procedures

    NASA Astrophysics Data System (ADS)

    Koch, Martin; Brost, Alexander; Hornegger, Joachim; Strobel, Norbert

    2013-03-01

    Minimally invasive catheter ablation is a common treatment option for atrial fibrillation. A common treatment strategy is pulmonary vein isolation. In this case, individual ablation points need to be placed around the ostia of the pulmonary veins attached to the left atrium to generate transmural lesions and thereby block electric signals. To achieve a durable transmural lesion, the tip of the catheter has to be stable with a sufficient tissue contact during radio-frequency ablation. Besides the steerable interface operated by the physician, the movement of the catheter is also influenced by the heart and breathing motion - particularly during ablation. In this paper we investigate the influence of breathing motion on different areas of the endocardium during radio frequency ablation. To this end, we analyze the frequency spectrum of the continuous catheter contact force to identify areas with increased breathing motion using a classification method. This approach has been applied to clinical patient data acquired during three pulmonary vein isolation procedures. Initial findings show that motion due to respiration is more pronounced at the roof and around the right pulmonary veins.

  6. Evaluation of hand hygiene adherence in a tertiary hospital.

    PubMed

    Novoa, Ana M; Pi-Sunyer, Teresa; Sala, Maria; Molins, Eduard; Castells, Xavier

    2007-12-01

    Although hand hygiene is the most important measure in the prevention of nosocomial infection, adherence to recommendations among health care workers (HCW) is low. Evaluation of compliance with hand hygiene was carried out in a Spanish teaching hospital. In 2005, adherence to hand hygiene was evaluated hospital wide through direct observation, collecting data on hand hygiene carried out whenever indicated (opportunity for hand hygiene). Compliance was defined as handwashing/disinfection in an opportunity for hand hygiene according to hospital protocols. The results were analyzed using mixed effects models, with the HCW observed as the random effect. A total of 1254 opportunities for hand hygiene were observed in 247 HCWs. Mean compliance was 20%. Although few differences were observed among types of HCW, compliance varied according to hospital area (69% in the intensive care unit [ICU]) and timing with respect to patient contact (compliance after contact was twice that before contact). Multivariate analyses revealed a protective odds ratio (OR) for nonadherence in ICUs (OR, 0.04; 95% confidence interval (95% CI): 0.01-0.10) and after patient contact (OR, 0.25; 95% CI: 0.17-0.38). Low adherence observed suggests that new interventions should focus in modification of HCWs' habits and attitudes, working at several levels: individual and institutional.

  7. Force reflecting hand controller

    NASA Technical Reports Server (NTRS)

    Mcaffee, Douglas A. (Inventor); Snow, Edward R. (Inventor); Townsend, William T. (Inventor)

    1993-01-01

    A universal input device for interfacing a human operator with a slave machine such as a robot or the like includes a plurality of serially connected mechanical links extending from a base. A handgrip is connected to the mechanical links distal from the base such that a human operator may grasp the handgrip and control the position thereof relative to the base through the mechanical links. A plurality of rotary joints is arranged to connect the mechanical links together to provide at least three translational degrees of freedom and at least three rotational degrees of freedom of motion of the handgrip relative to the base. A cable and pulley assembly for each joint is connected to a corresponding motor for transmitting forces from the slave machine to the handgrip to provide kinesthetic feedback to the operator and for producing control signals that may be transmitted from the handgrip to the slave machine. The device gives excellent kinesthetic feedback, high-fidelity force/torque feedback, a kinematically simple structure, mechanically decoupled motion in all six degrees of freedom, and zero backlash. The device also has a much larger work envelope, greater stiffness and responsiveness, smaller stowage volume, and better overlap of the human operator's range of motion than previous designs.

  8. Clinical application of a light-pen computer system for quantitative angiography

    NASA Technical Reports Server (NTRS)

    Alderman, E. L.

    1975-01-01

    The important features in a clinical system for quantitative angiography were examined. The human interface for data input, whether an electrostatic pen, sonic pen, or light-pen must be engineered to optimize the quality of margin definition. The computer programs which the technician uses for data entry and computation of ventriculographic measurements must be convenient to use on a routine basis in a laboratory performing multiple studies per day. The method used for magnification correction must be continuously monitored.

  9. Phosphorylation is required for the pathogen defense function of the Arabidopsis PEN3 ABC transporter.

    PubMed

    Underwood, William; Somerville, Shauna C

    2017-10-03

    The Arabidopsis PEN3 ABC transporter accumulates at sites of pathogen detection, where it is involved in defense against a number of pathogens. Perception of PAMPs by pattern recognition receptors initiates recruitment of PEN3 and also leads to PEN3 phosphorylation at multiple amino acid residues. Whether PAMP-induced phosphorylation of PEN3 is important for its defense function or focal recruitment has not been addressed. In this study, we evaluated the role of PEN3 phosphorylation in modulating the localization and defense function of the transporter. We report that PEN3 phosphorylation is critical for its function in defense, but dispensable for recruitment to powdery mildew penetration sites. These results indicate that PAMP-induced phosphorylation is likely to regulate the transport activity of PEN3.

  10. [Studies on reduction of repellent force of rare earth magnets--concerning tooth intrusion].

    PubMed

    Kitsugi, A

    1992-12-01

    The purpose of this investigation was to evaluate the sealing effect of the repelling force of the magnets with ferromagnetic stainless steel and also to examine the reduction pattern along with the change of the relative position of the magnets. The Nd-Fe-B magnet as rare earth magnet, and SUSXM 27, YEP-3, SUS 416 as ferromagnetic stainless steel were used in this experiment. The findings were as follows: 1. There was a little decrease of the repelling force of the magnets sealed with ferromagnetic stainless steel. On the other hand, no significant differences in the repelling force sealed with any kind of ferromagnetic stainless steel were found. 2. Direct contact of the repelling force of the phi 4.0 x 1.5 mm magnets sealed with SUSXM 27 of 0.2 mm in thickness was 242 gf. According to relative horizontal 1.2 mm movement keeping direct contact, the vertical and horizontal components of the repelling force were of the same value. 3. The repelling force of the phi 10.0 x 1.8 mm magnets sealed with SUSXM 27 of 0.2 mm in thickness was 815 gf. It showed more than 300 gf of vertical component of the repelling force when the magnets shifted to 3.0 mm horizontally when in contact. 4. It is suggested that the repelling force of the Nd-Fe-B magnets will be clinically useful for the intrusion of molar teeth.

  11. Dynamic-compliance and viscosity of PET and PEN

    NASA Astrophysics Data System (ADS)

    Weick, Brian L.

    2016-05-01

    Complex dynamic-compliance and in-phase dynamic-viscosity data are presented and analyzed for PET and PEN advanced polyester substrates used for magnetic tapes. Frequency-temperature superposition is used to predict long-term behavior. Temperature and frequency ranges for the primary glass transition and secondary transitions are discussed and compared for PET and PEN. Shift factors from frequency-temperature superposition are used to determine activation energies for the transitions, and WLF parameters are determined for the polyester substrates.

  12. Dynamic-compliance and viscosity of PET and PEN

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Weick, Brian L.

    Complex dynamic-compliance and in-phase dynamic-viscosity data are presented and analyzed for PET and PEN advanced polyester substrates used for magnetic tapes. Frequency-temperature superposition is used to predict long-term behavior. Temperature and frequency ranges for the primary glass transition and secondary transitions are discussed and compared for PET and PEN. Shift factors from frequency-temperature superposition are used to determine activation energies for the transitions, and WLF parameters are determined for the polyester substrates.

  13. Contact Us

    Science.gov Websites

    J8 | Force Structure, Resources & Assessment Contact Home : Contact Chairman's Social Media Chairman's Flicker Chairman's Blog SEAC's Social Media SEAC's Facebook SEAC's Flicker SEAC's Twitter Joint Staff's Social Media Joint Staff's Facebook Joint Staff's Flicker Joint Staff 's Twitter Social Media

  14. SCUT: clinical data organization for physicians using pen computers.

    PubMed Central

    Wormuth, D. W.

    1992-01-01

    The role of computers in assisting physicians with patient care is rapidly advancing. One of the significant obstacles to efficient use of computers in patient care has been the unavailability of reasonably configured portable computers. Lightweight portable computers are becoming more attractive as physician data-management devices, but still pose a significant problem with bedside use. The advent of computers designed to accept input from a pen and having no keyboard present a usable computer platform to enable physicians to perform clinical computing at the bedside. This paper describes a prototype system to maintain an electronic "scut" sheet. SCUT makes use of pen-input and background rule checking to enhance patient care. GO Corporation's PenPoint Operating System is used to implement the SCUT project. PMID:1483012

  15. Micromechanics of Ultrafine Particle Adhesion—Contact Models

    NASA Astrophysics Data System (ADS)

    Tomas, Jürgen

    2009-06-01

    Ultrafine, dry, cohesive and compressible powders (particle diameter d<10 μm) show a wide variety of flow problems that cause insufficient apparatus and system reliability of processing plants. Thus, the understanding of the micromechanics of particle adhesion is essential to assess the product quality and to improve the process performance in particle technology. Comprehensive models are shown that describe the elastic-plastic force-displacement and frictional moment-angle behavior of adhesive contacts of isotropic smooth spheres. By the model stiff particles with soft contacts, a sphere-sphere interaction of van der Waals forces without any contact deformation describes the stiff attractive term. But, the soft micro-contact response generates a flattened contact, i.e. plate-plate interaction, and increasing adhesion. These increasing adhesion forces between particles directly depend on this frozen irreversible deformation. Thus, the adhesion force is found to be load dependent. It contributes to the tangential forces in an elastic-plastic frictional contact with partially sticking and micro-slip within the contact plane. The load dependent rolling resistance and torque of mobilized frictional contact rotation (spin around its principal axis) are also shown. This reasonable combination of particle contact micromechanics and powder continuum mechanics is used to model analytically the macroscopic friction limits of incipient powder consolidation, yield and cohesive steady-state shear flow on physical basis.

  16. Space-charge effects in Penning ion traps

    NASA Astrophysics Data System (ADS)

    Porobić, T.; Beck, M.; Breitenfeldt, M.; Couratin, C.; Finlay, P.; Knecht, A.; Fabian, X.; Friedag, P.; Fléchard, X.; Liénard, E.; Ban, G.; Zákoucký, D.; Soti, G.; Van Gorp, S.; Weinheimer, Ch.; Wursten, E.; Severijns, N.

    2015-06-01

    The influence of space-charge on ion cyclotron resonances and magnetron eigenfrequency in a gas-filled Penning ion trap has been investigated. Off-line measurements with K39+ using the cooling trap of the WITCH retardation spectrometer-based setup at ISOLDE/CERN were performed. Experimental ion cyclotron resonances were compared with ab initio Coulomb simulations and found to be in agreement. As an important systematic effect of the WITCH experiment, the magnetron eigenfrequency of the ion cloud was studied under increasing space-charge conditions. Finally, the helium buffer gas pressure in the Penning trap was determined by comparing experimental cooling rates with simulations.

  17. A method for modeling contact dynamics for automated capture mechanisms

    NASA Technical Reports Server (NTRS)

    Williams, Philip J.

    1991-01-01

    Logicon Control Dynamics develops contact dynamics models for space-based docking and berthing vehicles. The models compute contact forces for the physical contact between mating capture mechanism surfaces. Realistic simulation requires proportionality constants, for calculating contact forces, to approximate surface stiffness of contacting bodies. Proportionality for rigid metallic bodies becomes quite large. Small penetrations of surface boundaries can produce large contact forces.

  18. Subject-Specific Modeling of Muscle Force and Knee Contact in Total Knee Arthroplasty

    PubMed Central

    Navacchia, Alessandro; Rullkoetter, Paul J.; Schütz, Pascal; List, Renate B.; Fitzpatrick, Clare K.; Shelburne, Kevin B.

    2017-01-01

    Understanding the mechanical loading environment and resulting joint mechanics for activities of daily living in total knee arthroplasty is essential to continuous improvement in implant design. Although survivorship of these devices is good, a substantial number of patients report dissatisfaction with the outcome of their procedure. Knowledge of in vivo kinematics and joint loading will enable improvement in preclinical assessment and refinement of implant geometry. The purpose of this investigation was to describe the mechanics of total knee arthroplasty during a variety of activities of daily living (gait, walking down stairs, and chair rise/sit). Estimates of muscle forces, tibial contact load, location, and pressure distribution was performed through a combination of mobile fluoroscopy data collection, musculoskeletal modeling, and finite element simulation. For the activities evaluated, joint compressive load was greatest during walking down stairs; however, the highest contact pressure occurred during chair rise/sit. The joint contact moment in the frontal plane was mainly varus for gait and walking down stairs, while it was valgus during chair rise/sit. Excursion of the center of pressure on the tibial component was similar during each activity and between the medial and lateral sides. The main determinants of center of pressure location were internal–external rotation, joint load, and tibial insert conformity. PMID:26792665

  19. Modified Penning-Malmberg Trap for Storing Antiprotons

    NASA Technical Reports Server (NTRS)

    Sims, William H.; Martin, James; Lewis, Raymond

    2005-01-01

    A modified Penning-Malmberg trap that could store a small cloud of antiprotons for a relatively long time (weeks) has been developed. This trap is intended for use in research on the feasibility of contemplated future matter/antimatter-annihilation systems as propulsion sources for spacecraft on long missions. This trap is also of interest in its own right as a means of storing and manipulating antiprotons for terrestrial scientific experimentation. The use of Penning-Malmberg traps to store antiprotons is not new. What is new here is the modified trap design, which utilizes state-of-the-art radiofrequency (RF) techniques, including ones that, heretofore, have been used in radio-communication applications but not in iontrap applications. A basic Penning-Malmberg trap includes an evacuated round tube that contains or is surrounded by three or more collinear tube electrodes. A steady axial magnetic field that reaches a maximum at the geometric center of the tube is applied by an external source, and DC bias voltages that give rise to an electrostatic potential that reaches a minimum at the center are applied to the electrodes. The combination of electric and magnetic fields confines the charged particles (ions or electrons) for which it was designed to a prolate spheroidal central region. However, geometric misalignments and the diffusive cooling process prevent the steady fields of a basic Penning- Malmberg trap from confining the particles indefinitely. In the modified Penning-Malmberg trap, the loss of antiprotons is reduced or eliminated by use of a "rotating-wall" RF stabilization scheme that also heats the antiproton cloud to minimize loss by matter/antimatter annihilation. The scheme involves the superposition of a quadrupole electric field that rotates about the cylindrical axis at a suitably chosen radio frequency. The modified Penning-Malmberg trap (see Figure 1) includes several collinear sets of electrodes inside a tubular vacuum chamber. Each set

  20. Effect of calcium hydroxide application to cattle feedlot pens on Escherichia coli O157:H7 and total E. coli in pen surface manure

    USDA-ARS?s Scientific Manuscript database

    Introduction: Cattle and beef products are sources of the pathogen Escherichia coli O157:H7. Lime products have a long history of use in cattle production as disinfectants for sick pens, calving pens, and muddy areas, to control the spread of diseases. Lime may also be useful as a preharvest trea...

  1. Pen-based computers: Computers without keys

    NASA Technical Reports Server (NTRS)

    Conklin, Cheryl L.

    1994-01-01

    The National Space Transportation System (NSTS) is comprised of many diverse and highly complex systems incorporating the latest technologies. Data collection associated with ground processing of the various Space Shuttle system elements is extremely challenging due to the many separate processing locations where data is generated. This presents a significant problem when the timely collection, transfer, collation, and storage of data is required. This paper describes how new technology, referred to as Pen-Based computers, is being used to transform the data collection process at Kennedy Space Center (KSC). Pen-Based computers have streamlined procedures, increased data accuracy, and now provide more complete information than previous methods. The end results is the elimination of Shuttle processing delays associated with data deficiencies.

  2. p{sup +}-doping analysis of laser fired contacts for silicon solar cells by Kelvin probe force microscopy

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ebser, J., E-mail: Jan.Ebser@uni-konstanz.de; Sommer, D.; Fritz, S.

    Local rear contacts for silicon passivated emitter and rear contact solar cells can be established by point-wise treating an Al layer with laser radiation and thereby establishing an electrical contact between Al and Si bulk through the dielectric passivation layer. In this laser fired contacts (LFC) process, Al can establish a few μm thick p{sup +}-doped Si region below the metal/Si interface and forms in this way a local back surface field which reduces carrier recombination at the contacts. In this work, the applicability of Kelvin probe force microscopy (KPFM) to the investigation of LFCs considering the p{sup +}-doping distributionmore » is demonstrated. The method is based on atomic force microscopy and enables the evaluation of the lateral 2D Fermi-level characteristics at sub-micrometer resolution. The distribution of the electrical potential and therefore the local hole concentration in and around the laser fired region can be measured. KPFM is performed on mechanically polished cross-sections of p{sup +}-doped Si regions formed by the LFC process. The sample preparation is of great importance because the KPFM signal is very surface sensitive. Furthermore, the measurement is responsive to sample illumination and the height of the applied voltage between tip and sample. With other measurement techniques like micro-Raman spectroscopy, electrochemical capacitance-voltage, and energy dispersive X-ray analysis, a high local hole concentration in the range of 10{sup 19 }cm{sup −3} is demonstrated in the laser fired region. This provides, in combination with the high spatial resolution of the doping distribution measured by KPFM, a promising approach for microscopic understanding and further optimization of the LFC process.« less

  3. Pen Pal Writing: A Holistic and Socio-Cultural Approach to Adult English Literacy

    ERIC Educational Resources Information Center

    Larrotta, Clarena; Serrano, Arlene F.

    2012-01-01

    This qualitative study reports the findings implementing a pen pal letter exchange project between adult English language learners and volunteer native English speakers. The pen pal project was implemented using a holistic and socio-cultural approach to English literacy development. This article presents pen pal writing as an authentic language…

  4. Tibiofemoral loss of contact area but no changes in peak pressures after meniscectomy in a Lapine in vivo quadriceps force transfer model.

    PubMed

    Leumann, Andre; Fortuna, Rafael; Leonard, Tim; Valderrabano, Victor; Herzog, Walter

    2015-01-01

    The menisci are thought to modulate load transfer and to absorb shocks in the knee joint. No study has experimentally measured the meniscal functions in the intact, in vivo joint loaded by physiologically relevant muscular contractions. Right knee joints of seven New Zealand white rabbits were loaded using isometric contractions of the quadriceps femoris muscles controlled by femoral nerve stimulation. Isometric knee extensor torques at the maximal and two submaximal force levels were performed at knee angles of 70°, 90°, 110°, and 130°. Patellofemoral and tibiofemoral contact areas and pressure distributions were measured using Fuji Presensor film inserted above and below the menisci and also with the menisci removed. Meniscectomy was associated with a decrease in tibiofemoral contact area ranging from 30 to 70% and a corresponding increase in average contact pressures. Contact areas measured below the menisci were consistently larger than those measured on top of the menisci. Contact areas in the patellofemoral joint (PFJ), and peak pressures in tibiofemoral and PFJs, were not affected by meniscectomy. Contact areas and peak pressures in all joints depended crucially on knee joint angle and quadriceps force: The more flexed the knee joint was, the larger were the contact areas and the higher were the peak pressures. In agreement with the literature, removal of the menisci was associated with significant decreases in tibiofemoral contact area and corresponding increases in average contact pressures, but surprisingly, peak pressures remained unaffected, indicating that the function of the menisci is to distribute loads across a greater contact area.

  5. Surface EMG in advanced hand prosthetics.

    PubMed

    Castellini, Claudio; van der Smagt, Patrick

    2009-01-01

    One of the major problems when dealing with highly dexterous, active hand prostheses is their control by the patient wearing them. With the advances in mechatronics, building prosthetic hands with multiple active degrees of freedom is realisable, but actively controlling the position and especially the exerted force of each finger cannot yet be done naturally. This paper deals with advanced robotic hand control via surface electromyography. Building upon recent results, we show that machine learning, together with a simple downsampling algorithm, can be effectively used to control on-line, in real time, finger position as well as finger force of a highly dexterous robotic hand. The system determines the type of grasp a human subject is willing to use, and the required amount of force involved, with a high degree of accuracy. This represents a remarkable improvement with respect to the state-of-the-art of feed-forward control of dexterous mechanical hands, and opens up a scenario in which amputees will be able to control hand prostheses in a much finer way than it has so far been possible.

  6. Effects of Computer-Aided Interlimb Force Coupling Training on Paretic Hand and Arm Motor Control following Chronic Stroke: A Randomized Controlled Trial

    PubMed Central

    Lin, Chueh-Ho; Chou, Li-Wei; Luo, Hong-Ji; Tsai, Po-Yi; Lieu, Fu-Kong; Chiang, Shang-Lin; Sung, Wen-Hsu

    2015-01-01

    Objective We investigated the training effects of interlimb force coupling training on paretic upper extremity outcomes in patients with chronic stroke and analyzed the relationship between motor recovery of the paretic hand, arm and functional performances on paretic upper limb. Design A randomized controlled trial with outcome assessment at baseline and after 4 weeks of intervention. Setting Taipei Veterans General Hospital, National Yang-Ming University. Participants Thirty-three subjects with chronic stroke were recruited and randomly assigned to training (n = 16) and control groups (n = 17). Interventions The computer-aided interlimb force coupling training task with visual feedback included different grip force generation methods on both hands. Main Outcome Measures The Barthel Index (BI), the upper extremity motor control Fugl-Meyer Assessment (FMA-UE), the Motor Assessment Score (MAS), and the Wolf Motor Function Test (WMFT). All assessments were executed by a blinded evaluator, and data management and statistical analysis were also conducted by a blinded researcher. Results The training group demonstrated greater improvement on the FMA-UE (p<.001), WMFT (p<.001), MAS (p = .004) and BI (p = .037) than the control group after 4 weeks of intervention. In addition, a moderate correlation was found between the improvement of scores for hand scales of the FMA and other portions of the FMA UE (r = .528, p = .018) or MAS (r = .596, p = .015) in the training group. Conclusion Computer-aided interlimb force coupling training improves the motor recovery of a paretic hand, and facilitates motor control and enhances functional performance in the paretic upper extremity of people with chronic stroke. Trial Registration ClinicalTrials.gov NCT02247674. PMID:26193492

  7. Mechanical Determinants of Faster Change of Direction Speed Performance in Male Athletes.

    PubMed

    DosʼSantos, Thomas; Thomas, Christopher; Jones, Paul A; Comfort, Paul

    2017-03-01

    Dos'Santos, T, Thomas, C, Jones, PA, and Comfort, P. Mechanical determinants of faster change of direction speed performance in male athletes. J Strength Cond Res 31(3): 696-705, 2017-Mechanical variables during change of directions, for example, braking and propulsive forces, impulses, and ground contact times (GCT) have been identified as determinants of faster change of direction speed (CODS) performance. The purpose of this study was to investigate the mechanical determinants of 180° CODS performance with mechanical characteristic comparisons between faster and slower performers; while exploring the role of the penultimate foot contact (PEN) during the change of direction. Forty multidirectional male athletes performed 6 modified 505 (mod505) trials (3 left and right), and ground reaction forces were collected across the PEN and final foot contact (FINAL) during the change of direction. Pearson's correlation coefficients and coefficients of determination were used to explore the relationship between mechanical variables and mod505 completion time. Independent T-tests and Cohen's d effect sizes (ES) were conducted between faster (n = 10) and slower (n = 10) mod505 performers to explore differences in mechanical variables. Faster CODS performance was associated (p ≤ 0.05) with shorter GCTs (r = 0.701-0.757), greater horizontal propulsive forces (HPF) (r = -0.572 to -0.611), greater horizontal braking forces (HBF) in the PEN (r = -0.337), lower HBF ratios (r = -0.429), and lower FINAL vertical impact forces (VIF) (r = 0.449-0.559). Faster athletes demonstrated significantly (p ≤ 0.05, ES = 1.08-2.54) shorter FINAL GCTs, produced lower VIF, lower HBF ratios, and greater HPF in comparison to slower athletes. These findings suggest that different mechanical properties are required to produce faster CODS performance, with differences in mechanical properties observed between fast and slower performers. Furthermore, applying a greater proportion of braking force

  8. Validation of a questionnaire on hand hygiene in the construction industry.

    PubMed

    Timmerman, Johan G; Zilaout, Hicham; Heederik, Dick; Spee, Ton; Smit, Lidwien A M

    2014-10-01

    Construction workers are at risk of developing occupational contact dermatitis. Gloves, when used properly, may protect against chemicals and coarse materials. We investigated the prevalence and determinants of contact dermatitis in a population of Dutch construction workers and aimed at validating questionnaire items on hand hygiene. A cross-sectional study was conducted at 13 construction sites, yielding data of 177 subjects (95% response rate). A questionnaire covering questions on hand hygiene and contact dermatitis symptoms was used. Agreement between workplace observations and a number of questionnaire items was assessed by calculating Cohen's kappa. Log-binomial regression analysis was used to assess the association between contact dermatitis and various hand hygiene-related determinants. The 1-year prevalence of self-reported contact dermatitis in our study sample was 46.9%. Multiple regression analysis showed a positive association with difficulties with hand cleaning (prevalence ratio [PR]: 1.26, 95% confidence interval [CI]: 1.05-1.52), hand contamination at the end of the working day (PR: 2.30, 95% CI: 1.14-4.65), and intensive hand cream use (PR: 2.07, 95% CI: 1.42-3.01). Observations of hand contamination, glove use, and glove types were found to agree well with the self-reported data from the questionnaire (Cohen's kappa's 0.75, 0.97, and 0.88). Self-reported contact dermatitis prevalence in construction workers was high and related to hand hygiene. A strong agreement was found between workplace observations and self-reported questionnaire data. © The Author 2014. Published by Oxford University Press on behalf of the British Occupational Hygiene Society.

  9. Anodal transcranial direct current stimulation to the cerebellum improves handwriting and cyclic drawing kinematics in focal hand dystonia.

    PubMed

    Bradnam, Lynley V; Graetz, Lynton J; McDonnell, Michelle N; Ridding, Michael C

    2015-01-01

    There is increasing evidence that the cerebellum has a role in the pathophysiology of primary focal hand dystonia and might provide an intervention target for non-invasive brain stimulation to improve function of the affected hand. The primary objective of this study was to determine if cerebellar transcranial direct current stimulation (tDCS) improves handwriting and cyclic drawing kinematics in people with hand dystonia, by reducing cerebellar-brain inhibition (CBI) evoked by transcranial magnetic stimulation (TMS). Eight people with dystonia (5 writer's dystonia, 3 musician's dystonia) and eight age-matched controls completed the study and underwent cerebellar anodal, cathodal and sham tDCS in separate sessions. Dystonia severity was assessed using the Writer's Cramp Rating Scale (WRCS) and the Arm Dystonia Disability Scale (ADDS). The kinematic measures that differentiated the groups were; mean stroke frequency during handwriting and fast cyclic drawing and average pen pressure during light cyclic drawing. TMS measures of cortical excitability were no different between people with FHD and controls. There was a moderate, negative relationship between TMS-evoked CBI at baseline and the WRCS in dystonia. Anodal cerebellar tDCS reduced handwriting mean stroke frequency and average pen pressure, and increased speed and reduced pen pressure during fast cyclic drawing. Kinematic measures were not associated with a decrease in CBI within an individual. In conclusion, cerebellar anodal tDCS appeared to improve kinematics of handwriting and circle drawing tasks; but the underlying neurophysiological mechanism remains uncertain. A study in a larger homogeneous population is needed to further investigate the possible therapeutic benefit of cerebellar tDCS in dystonia.

  10. Chemical composition of felt-tip pen inks.

    PubMed

    Germinario, Giulia; Garrappa, Silvia; D'Ambrosio, Valeria; van der Werf, Inez Dorothé; Sabbatini, Luigia

    2018-01-01

    Felt-tip pens are frequently used for the realization of sketches, drawings, architectural projects, and other technical designs. The formulations of these inks are usually rather complex and may be associated to those of modern paint materials where, next to the binding medium and pigments/dyes, solvents, fillers, emulsifiers, antioxidants, plasticizers, light stabilizers, biocides, and so on are commonly added. Felt-tip pen inks are extremely sensitive to degradation and especially exposure to light may cause chromatic changes and fading. In this study, we report on the complete chemical characterization of modern felt-tip pen inks that are commercially available and commonly used for the realization of artworks. Three brands of felt-tip pens (Faber-Castell, Edding, and Stabilo) were investigated with complementary analytical techniques such as thin-layer chromatography (TLC), VIS-reflectance spectroscopy, μ-Raman spectroscopy, surface-enhanced Raman spectroscopy (SERS), pyrolysis-gas chromatography-mass spectrometry (Py-GC-MS), GC-MS, and Fourier transform infrared (FTIR) spectroscopy. The use of TLC proved to be very powerful in the study of complex mixtures of synthetic dyes. First derivatives of the reflectance spectra acquired on the TLC spots were useful in the preliminary identification of the dye, followed by Raman spectroscopy and SERS, which allowed for the unambiguous determination of the chemical composition of the pigments (phthalocyanines, dioxazines, and azo pigments) and dyes (azo dyes, triarylmethanes, xanthenes). FTIR spectroscopy was used especially for the detection of additives, as well as for confirming the nature of solvents and dyes/pigments. Finally, (Py-)GC-MS data provided information on the binders (styrene-acrylic resins, plant gums), solvents, and additives, as well as on pigments and dyes.

  11. A novel pen-based Bluetooth-enabled insulin delivery system with insulin dose tracking and advice.

    PubMed

    Bailey, Timothy S; Stone, Jenine Y

    2017-05-01

    Diabetes is growing in prevalence internationally. As more individuals require insulin as part of their treatment, technology evolves to optimize delivery, improve adherence, and reduce dosing errors. Insulin pens outperform vial and syringe in simplicity, dosing accuracy, and user preference. Bolus advisors improve dosing confidence and treatment adherence. The InPen System offers a novel approach to treatment via a wireless pen that syncs to a mobile application featuring a bolus advisor, enabling convenient insulin dose tracking and more accurate bolus advice among other features. Areas covered: Existing technology for insulin delivery and bolus advice are reviewed. The mechanics and functionality of the InPen device are delineated. Findings from formative testing and usability studies of the InPen system are reported. Future directions for the InPen system in the treatment of diabetes are discussed. Expert opinion: Diabetes management is complex and largely data-driven. The InPen System offers a promising new opportunity to avail insulin pen-users of features known to improve treatment efficacy, which have otherwise primarily been available to those using pumps. Given that the majority of insulin users do not use insulin pumps, the InPen System is poised to improve glucose control in a significant portion of the diabetes population.

  12. A redesigned follitropin alfa pen injector for infertility: results of a market research study

    PubMed Central

    Abbotts, Carole; Salgado-Braga, Cristiana; Audibert-Gros, Céline

    2011-01-01

    Background: The purpose of this study was to evaluate patient-learning and nurse-teaching experiences when using a redesigned prefilled, ready-to-use follitropin alfa pen injector. Methods: Seventy-three UK women of reproductive age either administering daily treatment with self-injectable gonadotropins or about to start gonadotropin treatment for infertility (aged 24–47 years; 53 self-injection-experienced and 20 self-injection-naïve) and 28 nurses from UK infertility clinics were recruited for the study. Following instruction, patients and nurses used the redesigned follitropin alfa pen to inject water into an orange and completed questionnaires to evaluate their experiences with the pen immediately after the simulated injections. Results: Most (88%, n = 64) patients found it easy to learn how to use the pen. Among injection-experienced patients, 66% (n = 35) agreed that the redesigned pen was easier to learn to use compared with their current method and 70% (n = 37) also said they would prefer its use over current devices for all injectable fertility medications. All nurses considered the redesigned pen easy to learn and believed it would be easy to teach patients how to use. Eighty-six percent (n = 24) of the nurses thought it was easy to teach patients to determine the remaining dose to be dialed and injected in a second pen if the initial dose was incomplete. Compared with other injection devices, 96% (n = 27) thought it was “much easier” to “as easy” to teach patients to use the redesigned pen. Based on ease of teaching, 68% (n = 19) of nurses would choose to teach the pen in preference to any other injection method. Almost all (93%, n = 26) nurses considered that having the same pen format for a range of injectable gonadotropins would facilitate teaching and learning self-injection. Conclusion: In this market research study with infertile patients and infertility nurses, the redesigned follitropin alfa pen was perceived as easy to learn, easy to

  13. Force sensor

    DOEpatents

    Grahn, Allen R.

    1993-01-01

    A force sensor and related method for determining force components. The force sensor includes a deformable medium having a contact surface against which a force can be applied, a signal generator for generating signals that travel through the deformable medium to the contact surface, a signal receptor for receiving the signal reflected from the contact surface, a generation controller, a reception controller, and a force determination apparatus. The signal generator has one or more signal generation regions for generating the signals. The generation controller selects and activates the signal generation regions. The signal receptor has one or more signal reception regions for receiving signals and for generating detections signals in response thereto. The reception controller selects signal reception regions and detects the detection signals. The force determination apparatus measures signal transit time by timing activation and detection and, optionally, determines force components for selected cross-field intersections. The timer which times by activation and detection can be any means for measuring signal transit time. A cross-field intersection is defined by the overlap of a signal generation region and a signal reception region.

  14. The apparent mass and mechanical impedance of the hand and the transmission of vibration to the fingers, hand, and arm

    NASA Astrophysics Data System (ADS)

    Concettoni, Enrico; Griffin, Michael

    2009-08-01

    Although hand-transmitted vibration causes injury and disease, most often evident in the fingers, the biodynamic responses of the fingers, hand, and arm are not yet well understood. A method of investigating the motion of the entire finger-hand-arm system, based on the simultaneous measurement of the biodynamic response at the driving point and the transmissibility to many points on the finger-hand-arm system, is illustrated. Fourteen male subjects participated in an experiment in which they pushed down on a vertically vibrating metal plate with their right forearm pronated and their elbow bent at 90°. The apparent mass and mechanical impedance of the finger-hand-arm system were measured for each of seven different contact conditions between the plate and the fingers and hand. Simultaneously, the vibration of the fingers, hand, and arm was measured at 41 locations using a scanning laser Doppler vibrometer. Transmissibilities showed how the vibration was transmitted along the arm and allowed the construction of spectral operating deflection shapes showing the vibration pattern of the fingers, hand, and arm for each of the seven contact conditions. The vibration patterns at critical frequencies for each contact condition have been used to explain features in the driving point biodynamic responses and the vibration behaviour of the hand-arm system. Spectral operating deflection shapes for the upper limb assist the interpretation of driving point biodynamic responses and help to advance understanding required to predict, explain, and control the various effects of hand-transmitted vibration.

  15. Microchemical Pen: An Open Microreactor for Region-Selective Surface Modification.

    PubMed

    Mao, Sifeng; Sato, Chiho; Suzuki, Yuma; Yang, Jianmin; Zeng, Hulie; Nakajima, Hizuru; Yang, Ming; Lin, Jin-Ming; Uchiyama, Katsumi

    2016-10-18

    Various micro surface-modification approaches including photolithography, dip-pen lithography and ink-jet systems have been developed and used to extend the functionalities of solid surfaces. While those approaches work in the "open space", push-pull systems which work in solutions have recently drawn considerable attention. However, the confining flows performed by push-pull systems have realized only the dispense process, while microscale, region-selective chemical reactions have remained unattainable. This study reports a microchemical pen that enables region-selective chemical reactions for the micro surface modification/patterning. The chemical pen is based on the principle of microfluidic laminar flows and the resulting mixing of reagents by the mutual diffusion. The tiny diffusion layer performs as the working region. This report represents the first demonstration of an open microreactor in which two different reagents react on a real solid sample. The multifunctional characteristics of the microchemical pen are confirmed by different types of reactions in many research areas, including inorganic chemistry, polymer science, electrochemistry and biological sample treatment. © 2016 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  16. An Investigation of the Usability of the Stylus Pen for Various Age Groups on Personal Digital Assistants

    ERIC Educational Resources Information Center

    Ren, Xiangshi; Zhou, Xiaolei

    2011-01-01

    Many handheld devices with stylus pens are available in the market; however, there have been few studies which examine the effects of the size of the stylus pen on user performance and subjective preferences for handheld device interfaces for various age groups. Two experiments (pen-length experiment and pen-tip width/pen-width experiment) were…

  17. Paper Spray Mass Spectrometry for the Forensic Analysis of Black Ballpoint Pen Inks

    NASA Astrophysics Data System (ADS)

    Amador, Victoria Silva; Pereira, Hebert Vinicius; Sena, Marcelo Martins; Augusti, Rodinei; Piccin, Evandro

    2017-09-01

    This article describes the use of paper spray mass spectrometry (PS-MS) for the direct analysis of black ink writings made with ballpoint pens. The novel approach was developed in a forensic context by first performing the classification of commercially available ballpoint pens according to their brands. Six of the most commonly worldwide utilized brands (Bic, Paper Mate, Faber Castell, Pentel, Compactor, and Pilot) were differentiated according to their characteristic chemical patterns obtained by PS-MS. MS on the negative ion mode at a mass range of m/ z 100-1000 allowed prompt discrimination just by visual inspection. On the other hand, the concept of relative ion intensity (RII) and the analysis at other mass ranges were necessary for the differentiation using the positive ion mode. PS-MS combined with partial least squares (PLS) was utilized to monitor changes on the ink chemical composition after light exposure (artificial aging studies). The PLS model was optimized by variable selection, which allowed the identification of the most influencing ions on the degradation process. The feasibility of the method on forensic investigations was also demonstrated in three different applications: (1) analysis of overlapped fresh ink lines, (2) analysis of old inks from archived documents, and (3) detection of alterations (simulated forgeries) performed on archived documents. [Figure not available: see fulltext.

  18. [Hand for the dermatologist].

    PubMed

    Cribier, B

    2010-11-01

    Through its anatomical, topographical, and functional distinctiveness, more than all other parts of the body, the hand is the interface between humans and their environment. All types of stimulus produce cutaneous signs in the hands, notably cold, light, pressure, contact, etc. Exposure to light makes it the region where photodermatosis is expressed, but also a particular site for cutaneous carcinogenesis. The countless chemical substances that the hand encounters can create specific or particular diseases in this location (irritative dermitis, contact eczema, hyperkeratosis, atrophy, etc.). The hand is also the site of infectious dermatosis transmission (erysipeloid, orf, mycobacteriosis, etc.), sometimes exotic (chromomycosis, histoplasmosis), and the site of plant penetration (protothecosis or more commonly thorns and splinters). The complexity of its vascularization and its many bones, joints, and tendons explain why it is a preferred area for signs of systemic diseases (diverse forms of lupus, dermatomyositis, inflammatory rheumatism, etc.). The nail unit alone shows innumerable signs of exogenic diseases, but also reflects certain internal diseases localized here with often characteristic signs. Here more than anywhere else, dermatology opens out to all of medicine. Copyright © 2010 Elsevier Masson SAS. All rights reserved.

  19. Atrial rhythm influences catheter tissue contact during radiofrequency catheter ablation of atrial fibrillation: comparison of contact force between sinus rhythm and atrial fibrillation.

    PubMed

    Matsuda, Hisao; Parwani, Abdul Shokor; Attanasio, Philipp; Huemer, Martin; Wutzler, Alexander; Blaschke, Florian; Haverkamp, Wilhelm; Boldt, Leif-Hendrik

    2016-09-01

    Catheter tissue contact force (CF) is an important factor for durable lesion formation during radiofrequency catheter ablation (RFCA) of atrial fibrillation (AF). Since CF varies in the beating heart, atrial rhythm during RFCA may influence CF. A high-density map and RFCA points were obtained in 25 patients undergoing RFCA of AF using a CF-sensing catheter (Tacticath, St. Jude Medical). The operators were blinded to the CF information. Contact type was classified into three categories: constant, variable, and intermittent contact. Average CF and contact type were analyzed according to atrial rhythm (SR vs. AF) and anatomical location. A total of 1364 points (891 points during SR and 473 points during AF) were analyzed. Average CFs showed no significant difference between SR (17.2 ± 11.3 g) and AF (17.2 ± 13.3 g; p = 0.99). The distribution of points with an average CF of ≥20 and <10 g also showed no significant difference. However, the distribution of excessive CF (CF ≥40 g) was significantly higher during AF (7.4 %) in comparison with SR (4.2 %; p < 0.05). At the anterior area of the right inferior pulmonary vein (RIPV), the average CF during AF was significantly higher than during SR (p < 0.05). Constant contact was significantly higher during AF (32.2 %) when compared to SR (9.9 %; p < 0.01). Although the average CF was not different between atrial rhythms, constant contact was more often achievable during AF than it was during SR. However, excessive CF also seems to occur more frequently during AF especially at the anterior part of RIPV.

  20. Role of Contact Force Sensing in Catheter Ablation of Cardiac Arrhythmias: Evolution or History Repeating Itself?

    PubMed

    Ariyarathna, Nilshan; Kumar, Saurabh; Thomas, Stuart P; Stevenson, William G; Michaud, Gregory F

    2018-06-01

    Adequate catheter-tissue contact facilitates efficient heat energy transfer to target tissue. Tissue contact is thus critical to achieving lesion transmurality and success of radiofrequency (RF) ablation procedures, a fact recognized more than 2 decades ago. The availability of real-time contact force (CF)-sensing catheters has reinvigorated the field of ablation biophysics and optimized lesion formation. The ability to measure and display CF came with the promise of dramatic improvement in safety and efficacy; however, CF quality was noted to have just as important an influence on lesion formation as absolute CF quantity. Multiple other factors have emerged as key elements influencing effective lesion formation, including catheter stability, lesion contiguity and continuity, lesion density, contact homogeneity across a line of ablation, spatiotemporal dynamics of contact governed by cardiac and respiratory motion, contact directionality, and anatomic wall thickness, in addition to traditional ablation indices of power and RF duration. There is greater appreciation of surrogate markers as a guide to lesion formation, such as impedance fall, loss of pace capture, and change in unipolar electrogram morphology. In contrast, other surrogates such as tactile feedback, catheter motion, and electrogram amplitude are notably poor predictors of actual contact and lesion formation. This review aims to contextualize the role of CF sensing in lesion formation with respect of the fundamental principles of biophysics of RF ablation and summarize the state-of-the-art evidence behind the role of CF in optimizing lesion formation. Copyright © 2018 American College of Cardiology Foundation. Published by Elsevier Inc. All rights reserved.

  1. Quantification of Hand Motor Symptoms in Parkinson's Disease: A Proof-of-Principle Study Using Inertial and Force Sensors.

    PubMed

    van den Noort, Josien C; Verhagen, Rens; van Dijk, Kees J; Veltink, Peter H; Vos, Michelle C P M; de Bie, Rob M A; Bour, Lo J; Heida, Ciska T

    2017-10-01

    This proof-of-principle study describes the methodology and explores and demonstrates the applicability of a system, existing of miniature inertial sensors on the hand and a separate force sensor, to objectively quantify hand motor symptoms in patients with Parkinson's disease (PD) in a clinical setting (off- and on-medication condition). Four PD patients were measured in off- and on- dopaminergic medication condition. Finger tapping, rapid hand opening/closing, hand pro/supination, tremor during rest, mental task and kinetic task, and wrist rigidity movements were measured with the system (called the PowerGlove). To demonstrate applicability, various outcome parameters of measured hand motor symptoms of the patients in off- vs. on-medication condition are presented. The methodology described and results presented show applicability of the PowerGlove in a clinical research setting, to objectively quantify hand bradykinesia, tremor and rigidity in PD patients, using a single system. The PowerGlove measured a difference in off- vs. on-medication condition in all tasks in the presented patients with most of its outcome parameters. Further study into the validity and reliability of the outcome parameters is required in a larger cohort of patients, to arrive at an optimal set of parameters that can assist in clinical evaluation and decision-making.

  2. Knee contact forces are not altered in early knee osteoarthritis.

    PubMed

    Meireles, S; De Groote, F; Reeves, N D; Verschueren, S; Maganaris, C; Luyten, F; Jonkers, I

    2016-03-01

    This study calculated knee contact forces (KCF) and its relations with knee external knee adduction moments (KAM) and/or flexion moments (KFM) during the stance phase of gait in patients with early osteoarthritis (OA), classified based on early joint degeneration on Magnetic Resonance Imaging (MRI). We aimed at assessing if altered KCF are already present in early structural degeneration. Three-dimensional motion and ground reaction force data in 59 subjects with medial compartment knee OA (N=23 established OA, N=16 early OA, N=20 controls) were used as input for a musculoskeletal model. KAM and KFM, and KCF were estimated using OpenSim software. No significant differences were found between controls and subjects with early OA. In early OA patients, KAM significantly explained 69% of the variance associated with the first peaks KCF but only KFM contributed to the second peaks KCF. The multiple correlation, combining KAM and KFM, showed to be higher. However, only 20% of the variance of second peak KCF was explained by both moments in established OA. KCF are not increased in patients with early OA, suggesting that knee joint overload is more a consequence of further joint degeneration in more advanced stages of OA. Additionally, our results clearly show that KAM is not sufficient to predict joint loading at the end of the stance, where KFM contributes substantially to the loading, especially in early OA. Copyright © 2016 Elsevier B.V. All rights reserved.

  3. Analysis of the NovoTwist Pen Needle in Comparison with Conventional Screw-Thread Needles

    PubMed Central

    Aye, Tandy

    2011-01-01

    Administration of insulin via a pen device may be advantageous over a vial and syringe system. Hofman and colleagues introduce a new insulin pen needle, the NovoTwist, to simplify injections to a small group of children and adolescents. Their overall preferences and evaluation of the handling of the needle are reported in the study. This new needle has the potential to ease administration of insulin via a pen device that may increase both the use of a pen device and adherence to insulin therapy. PMID:22226270

  4. Experimental research on showing automatic disappearance pen handwriting based on spectral imaging technology

    NASA Astrophysics Data System (ADS)

    Su, Yi; Xu, Lei; Liu, Ningning; Huang, Wei; Xu, Xiaojing

    2016-10-01

    Purpose to find an efficient, non-destructive examining method for showing the disappearing words after writing with automatic disappearance pen. Method Using the imaging spectrometer to show the potential disappearance words on paper surface according to different properties of reflection absorbed by various substances in different bands. Results the disappeared words by using different disappearance pens to write on the same paper or the same disappearance pen to write on different papers, both can get good show results through the use of the spectral imaging examining methods. Conclusion Spectral imaging technology can show the disappearing words after writing by using the automatic disappearance pen.

  5. Robotic hand and fingers

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Salisbury, Curt Michael; Dullea, Kevin J.

    Technologies pertaining to a robotic hand are described herein. The robotic hand includes one or more fingers releasably attached to a robotic hand frame. The fingers can abduct and adduct as well as flex and tense. The fingers are releasably attached to the frame by magnets that allow for the fingers to detach from the frame when excess force is applied to the fingers.

  6. Using a Digital Pen to Support Secondary Students with Learning Disabilities

    ERIC Educational Resources Information Center

    Ok, Min Wook; Rao, Kavita

    2017-01-01

    Secondary students with learning disabilities (LD) can benefit from using assistive and instructional technologies to support content and skill acquisition. Digital pens have features that can be beneficial for students who struggle with comprehension, note taking, and organization. Livescribe pens, in particular, provide a variety features that…

  7. Pen rearing and imprinting of fall Chinook salmon

    USGS Publications Warehouse

    Beeman, J.W.; Novotny, J.F.

    1994-01-01

    Results of rearing upriver bright fall chinook salmon juveniles in net pens and a barrier net enclosure in two backwater areas and a pond along the Columbia River were compared with traditional hatchery methods. Growth, smoltification, and general condition of pen-reared fish receiving supplemental feeding were better than those of fish reared using traditional methods. Juvenile fish receiving no supplemental feeding were generally in poor condition resulting in a net loss of production. Rearing costs using pens were generally lower than in the hatchery. However, low adult returns resulted in greater cost per adult recovery than fish reared and released using traditional methods. Much of the differences in recovery rates may have been due to differences in rearing locations, as study sites were as much as 128 mi upstream from the hatcheries and study fish may have incurred higher mortality associated with downstream migration than control fish. Fish reared using these methods could be a cost-effective method of enhancing salmon production in the Columbia River Basin.

  8. An experimental analysis of the real contact area between an electrical contact and a glass plane

    NASA Astrophysics Data System (ADS)

    Down, Michael; Jiang, Liudi; McBride, John W.

    2013-06-01

    The exact contact between two rough surfaces is usually estimated using statistical mathematics and surface analysis before and after contact has occurred. To date the majority of real contact and loaded surfaces has been theoretical or by numerical analyses. A method of analysing real contact area under various loads, by utilizing a con-contact laser surface profiler, allows direct measurement of contact area and deformation in terms of contact force and plane displacement between two surfaces. A laser performs a scan through a transparent flat side supported in a fixed position above the base. A test contact, mounted atop a spring and force sensor, and a screw support which moves into contact with the transparent surface. This paper presents the analysis of real contact area of various surfaces under various loads. The surfaces analysed are a pair of Au coated hemispherical contacts, one is a used Au to Au coated multi-walled carbon nanotubes surface, from a MEMS relay application, the other a new contact surface of the same configuration.

  9. Innovation & evaluation of tangible direct manipulation digital drawing pens for children.

    PubMed

    Lee, Tai-Hua; Wu, Fong-Gong; Chen, Huei-Tsz

    2017-04-01

    Focusing on the theme of direct manipulation, in this study, we proposed a new and innovative tangible user interface (TUI) design concept for a manipulative digital drawing pen. Based on interviews with focus groups brainstorming and experts and the results of a field survey, we selected the most suitable tangible user interface for children between 4 and 7 years of age. Using the new tangible user interface, children could choose between the brush tools after touching and feeling the various patterns. The thickness of the brush could be adjusted by changing the tilt angle. In a subsequent experimental process we compared the differences in performance and subjective user satisfaction. A total of sixteen children, aged 4-7 years participated in the experiment. Two operating system experiments (the new designed tangible digital drawing pen and traditional visual interface-icon-clicking digital drawing pens) were performed at random and in turns. We assessed their manipulation performance, accuracy, brush stroke richness and subjective evaluations. During the experimental process we found that operating functions using the direct manipulation method, and adding shapes and semantic models to explain the purpose of each function, enabled the children to perform stroke switches relatively smoothly. By using direct manipulation digital pens, the children could improve their stroke-switching performance for digital drawing. Additionally, by using various patterns to represent different brushes or tools, the children were able to make selections using their sense of touch, thereby reducing the time required to move along the drawing pens and select icons (The significant differences (p = 0.000, p < 0.01) existed in the manipulation times for drawing thick lines using the crayon function of the two (new and old) drawing pens (new 5.8750 < old 10.7500)). The addition of direct manipulation movements to drawing operations enhanced the drawing results, thereby

  10. Choosing a Hand-Held Inventory Device

    ERIC Educational Resources Information Center

    Green, Lois; Hughes, Janet; Neff, Verne; Notartomas, Trish

    2008-01-01

    In spring of 2006, a task force was charged to look at the feasibility of acquiring hand-held inventory devices for the Pennsylvania State University Libraries (PSUL). The task force's charge was not to look at the whole concept of doing an inventory, but rather to focus on the feasibility of acquiring hand-held devices to use in an inventory.…

  11. Analysis of the NovoTwist pen needle in comparison with conventional screw-thread needles.

    PubMed

    Aye, Tandy

    2011-11-01

    Administration of insulin via a pen device may be advantageous over a vial and syringe system. Hofman and colleagues introduce a new insulin pen needle, the NovoTwist, to simplify injections to a small group of children and adolescents. Their overall preferences and evaluation of the handling of the needle are reported in the study. This new needle has the potential to ease administration of insulin via a pen device that may increase both the use of a pen device and adherence to insulin therapy. © 2011 Diabetes Technology Society.

  12. True non-contact atomic force microscopy imaging of heterogeneous biological samples in liquids: topography and material contrast.

    PubMed

    Almonte, Lisa; Colchero, Jaime

    2017-02-23

    The present work analyses how the tip-sample interaction signals critically determine the operation of an Atomic Force Microscope (AFM) set-up immersed in liquid. On heterogeneous samples, the conservative tip-sample interaction may vary significantly from point to point - in particular from attractive to repulsive - rendering correct feedback very challenging. Lipid membranes prepared on a mica substrate are analyzed as reference samples which are locally heterogeneous (material contrast). The AFM set-up is operated dynamically at low oscillation amplitude and all available experimental data signals - the normal force, as well as the amplitude and frequency - are recorded simultaneously. From the analysis of how the dissipation (oscillation amplitude) and the conservative interaction (normal force and resonance frequency) vary with the tip-sample distance we conclude that dissipation is the only appropriate feedback source for stable and correct topographic imaging. The normal force and phase then carry information about the sample composition ("chemical contrast"). Dynamic AFM allows imaging in a non-contact regime where essentially no forces are applied, rendering dynamic AFM a truly non-invasive technique.

  13. Co-robotic ultrasound imaging: a cooperative force control approach

    NASA Astrophysics Data System (ADS)

    Finocchi, Rodolfo; Aalamifar, Fereshteh; Fang, Ting Yun; Taylor, Russell H.; Boctor, Emad M.

    2017-03-01

    Ultrasound (US) imaging remains one of the most commonly used imaging modalities in medical practice. However, due to the physical effort required to perform US imaging tasks, 63-91% of ultrasonographers develop musculoskeletal disorders throughout their careers. The goal of this work is to provide ultrasonographers with a system that facilitates and reduces strain in US image acquisition. To this end, we propose a system for admittance force robot control that uses the six-degree-of-freedom UR5 industrial robot. A six-axis force sensor is used to measure the forces and torques applied by the sonographer on the probe. As the sonographer pushes against the US probe, the robot complies with these forces, following the user's desired path. A one-axis load cell is used to measure contact forces between the patient and the probe in real time. When imaging, the robot augments the axial forces applied by the user, lessening the physical effort required. User studies showed an overall decrease in hand tremor while imaging at high forces, improvements in image stability, and a decrease in difficulty and strenuousness.

  14. Drawing from Memory: Hand-Eye Coordination at Multiple Scales

    PubMed Central

    Spivey, Michael J.

    2013-01-01

    Eyes move to gather visual information for the purpose of guiding behavior. This guidance takes the form of perceptual-motor interactions on short timescales for behaviors like locomotion and hand-eye coordination. More complex behaviors require perceptual-motor interactions on longer timescales mediated by memory, such as navigation, or designing and building artifacts. In the present study, the task of sketching images of natural scenes from memory was used to examine and compare perceptual-motor interactions on shorter and longer timescales. Eye and pen trajectories were found to be coordinated in time on shorter timescales during drawing, and also on longer timescales spanning study and drawing periods. The latter type of coordination was found by developing a purely spatial analysis that yielded measures of similarity between images, eye trajectories, and pen trajectories. These results challenge the notion that coordination only unfolds on short timescales. Rather, the task of drawing from memory evokes perceptual-motor encodings of visual images that preserve coarse-grained spatial information over relatively long timescales as well. PMID:23554894

  15. Force sensor

    DOEpatents

    Grahn, A.R.

    1993-05-11

    A force sensor and related method for determining force components is described. The force sensor includes a deformable medium having a contact surface against which a force can be applied, a signal generator for generating signals that travel through the deformable medium to the contact surface, a signal receptor for receiving the signal reflected from the contact surface, a generation controller, a reception controller, and a force determination apparatus. The signal generator has one or more signal generation regions for generating the signals. The generation controller selects and activates the signal generation regions. The signal receptor has one or more signal reception regions for receiving signals and for generating detections signals in response thereto. The reception controller selects signal reception regions and detects the detection signals. The force determination apparatus measures signal transit time by timing activation and detection and, optionally, determines force components for selected cross-field intersections. The timer which times by activation and detection can be any means for measuring signal transit time. A cross-field intersection is defined by the overlap of a signal generation region and a signal reception region.

  16. Superior-inferior position of patellar component affects patellofemoral kinematics and contact forces in computer simulation.

    PubMed

    Nakamura, Shinichiro; Tanaka, Yoshihisa; Kuriyama, Shinichi; Nishitani, Kohei; Ito, Hiromu; Furu, Moritoshi; Matsuda, Shuichi

    2017-06-01

    Anterior knee pain has been reported as a major postoperative complication after total knee arthroplasty, which may lead to patient dissatisfaction. Rotational alignment and the medial-lateral position correlate with patellar maltracking, which can cause knee pain postoperatively. However, the superior-inferior position of the patellar component has not been investigated. The purpose of the current study was to investigate the effects of the patellar superior-inferior position on patellofemoral kinematics and kinetics. Superior, central, and inferior models with a dome patellar component were constructed. In the superior and inferior models, the position of the patellar component translated superiorly and inferiorly, respectively, by 3mm, relative to the center model. Kinematics of the patellar component, quadriceps force, and patellofemoral contact force were calculated using a computer simulation during a squatting activity in a weight-bearing deep knee bend. In the inferior model, the flexion angle, relative to the tibial component, was the greatest among all models. The inferior model showed an 18.0%, 36.5%, and 22.7% increase in the maximum quadriceps force, the maximum medial patellofemoral force, and the maximum lateral patellofemoral force, respectively, compared with the superior model. Superior-inferior positions affected patellofemoral kinematic and kinetics. Surgeons should avoid the inferior position of the patellar component, because the inferior positioned model showed greater quadriceps and patellofemoral force, resulting in a potential risk for anterior knee pain and component loosening. Copyright © 2017. Published by Elsevier Ltd.

  17. Increasing viscosity and inertia using a robotically-controlled pen improves handwriting in children

    PubMed Central

    Ben-Pazi, Hilla; Ishihara, Abraham; Kukke, Sahana; Sanger, Terence D

    2010-01-01

    The aim of this study was to determine the effect of mechanical properties of the pen on the quality of handwriting in children. Twenty two school aged children, ages 8–14 years wrote in cursive using a pen attached to a robot. The robot was programmed to increase the effective weight (inertia) and stiffness (viscosity) of the pen. Speed, frequency, variability, and quality of the two handwriting samples were compared. Increased inertia and viscosity improved handwriting quality in 85% of children (p<0.05). Handwriting quality did not correlate with changes in speed, suggesting that improvement was not due to reduced speed. Measures of movement variability remained unchanged, suggesting that improvement was not due to mechanical smoothing of pen movement by the robot. Since improvement was not explained by reduced speed or mechanical smoothing, we conclude that children alter handwriting movements in response to pen mechanics. Altered movement could be caused by changes in proprioceptive sensory feedback. PMID:19794098

  18. Hand Eczema

    PubMed Central

    Agarwal, Uma Shankar; Besarwal, Raj Kumar; Gupta, Rahul; Agarwal, Puneet; Napalia, Sheetal

    2014-01-01

    Hand eczema is often a chronic, multifactorial disease. It is usually related to occupational or routine household activities. Exact etiology of the disease is difficult to determine. It may become severe enough and disabling to many of patients in course of time. An estimated 2-10% of population is likely to develop hand eczema at some point of time during life. It appears to be the most common occupational skin disease, comprising 9-35% of all occupational diseases and up to 80% or more of all occupational contact dermatitis. So, it becomes important to find the exact etiology and classification of the disease and to use the appropriate preventive and treatment measures. Despite its importance in the dermatological practice, very few Indian studies have been done till date to investigate the epidemiological trends, etiology, and treatment options for hand eczema. In this review, we tried to find the etiology, epidemiology, and available treatment modalities for chronic hand eczema patients. PMID:24891648

  19. Anodal transcranial direct current stimulation to the cerebellum improves handwriting and cyclic drawing kinematics in focal hand dystonia

    PubMed Central

    Bradnam, Lynley V.; Graetz, Lynton J.; McDonnell, Michelle N.; Ridding, Michael C.

    2015-01-01

    There is increasing evidence that the cerebellum has a role in the pathophysiology of primary focal hand dystonia and might provide an intervention target for non-invasive brain stimulation to improve function of the affected hand. The primary objective of this study was to determine if cerebellar transcranial direct current stimulation (tDCS) improves handwriting and cyclic drawing kinematics in people with hand dystonia, by reducing cerebellar-brain inhibition (CBI) evoked by transcranial magnetic stimulation (TMS). Eight people with dystonia (5 writer’s dystonia, 3 musician’s dystonia) and eight age-matched controls completed the study and underwent cerebellar anodal, cathodal and sham tDCS in separate sessions. Dystonia severity was assessed using the Writer’s Cramp Rating Scale (WRCS) and the Arm Dystonia Disability Scale (ADDS). The kinematic measures that differentiated the groups were; mean stroke frequency during handwriting and fast cyclic drawing and average pen pressure during light cyclic drawing. TMS measures of cortical excitability were no different between people with FHD and controls. There was a moderate, negative relationship between TMS-evoked CBI at baseline and the WRCS in dystonia. Anodal cerebellar tDCS reduced handwriting mean stroke frequency and average pen pressure, and increased speed and reduced pen pressure during fast cyclic drawing. Kinematic measures were not associated with a decrease in CBI within an individual. In conclusion, cerebellar anodal tDCS appeared to improve kinematics of handwriting and circle drawing tasks; but the underlying neurophysiological mechanism remains uncertain. A study in a larger homogeneous population is needed to further investigate the possible therapeutic benefit of cerebellar tDCS in dystonia. PMID:26042019

  20. Force illusions and drifts observed during muscle vibration.

    PubMed

    Reschechtko, Sasha; Cuadra, Cristian; Latash, Mark L

    2018-01-01

    We explored predictions of a scheme that views position and force perception as a result of measuring proprioceptive signals within a reference frame set by ongoing efferent process. In particular, this hypothesis predicts force illusions caused by muscle vibration and mediated via changes in both afferent and efferent components of kinesthesia. Healthy subjects performed accurate steady force production tasks by pressing with the four fingers of one hand (the task hand) on individual force sensors with and without visual feedback. At various times during the trials, subjects matched the perceived force using the other hand. High-frequency vibration was applied to one or both of the forearms (over the hand and finger extensors). Without visual feedback, subjects showed a drop in the task hand force, which was significantly smaller under the vibration of that forearm. Force production by the matching hand was consistently higher than that of the task hand. Vibrating one of the forearms affected the matching hand in a manner consistent with the perception of higher magnitude of force produced by the vibrated hand. The findings were consistent between the dominant and nondominant hands. The effects of vibration on both force drift and force mismatching suggest that vibration led to shifts in both signals from proprioceptors and the efferent component of perception, the referent coordinate and/or coactivation command. The observations fit the hypothesis on combined perception of kinematic-kinetic variables with little specificity of different groups of peripheral receptors that all contribute to perception of forces and coordinates. NEW & NOTEWORTHY We show that vibration of hand/finger extensors produces consistent errors in finger force perception. Without visual feedback, finger force drifted to lower values without a drift in the matching force produced by the other hand; hand extensor vibration led to smaller finger force drift. The findings fit the scheme with