Sample records for handheld raman spectrometer

  1. Handheld Raman Spectrometer Instrumentation for Quantitative Tuberculosis Biomarker Detection: A Performance Assessment for Point-of-Need Infectious Disease Diagnostics.

    PubMed

    Owens, Nicholas A; Laurentius, Lars B; Porter, Marc D; Li, Qun; Wang, Sean; Chatterjee, Delphi

    2018-01-01

    Techniques for the detection of disease biomarkers are key components in the protection of human health. While work over the last few decades has redefined the low-level measurement of disease biomarkers, the translation of these capabilities from the formal clinical setting to point-of-need (PON) usage has been much more limited. This paper presents the results of experiments designed to examine the potential utility of a handheld Raman spectrometer as a PON electronic reader for a sandwich immunoassay based on surface-enhanced Raman scattering (SERS). In so doing, the study herein used a recently developed procedure for the SERS detection of phospho-myo-inositol-capped lipoarabinomannan (PILAM) as a means to compare the performance of laboratory-grade and handheld instrumentation and, therefore, gauge the utility of the handheld instrument for PON deployment. Phospho-myo-inositol-capped lipoarabinomannan is a non-pathogenic simulant for mannose-capped lipoarabinomannan (ManLAM), which is an antigenic marker found in serum and other body fluids of individuals infected with tuberculosis (TB). The results of the measurements with the field-portable spectrometer were then compared to those obtained for the same samples when using a much more sensitive benchtop Raman spectrometer. The results, albeit under different operational settings for the two spectrometers (e.g., signal integration time), are promising in that the limit of detection found for PILAM spiked in human serum when using the handheld system (0.18 ng/mL) approached that of the benchtop instrument (0.032 ng/mL). This work also: (1) identified potential adaptations (e.g., optimization of the plasmonically enhanced response for measurement by the handheld unit through a change in the excitation wavelength) to tighten the gap in performance; and (2) briefly examined the next steps and potential processes required to move this immunoassay platform closer to PON utility.

  2. The use of a handheld Raman system for virus detection

    NASA Astrophysics Data System (ADS)

    Song, Chunyuan; Driskell, Jeremy D.; Tripp, Ralph A.; Cui, Yiping; Zhao, Yiping

    2012-06-01

    The combination of surface enhanced Raman spectroscopy (SERS) with a handheld Raman system would lead to a powerful portable device for defense and security applications. The Thermo Scientific FirstDefender RM instrument is a 785-nm handheld Raman spectrometer intended for rapid field identification of unknown solid and liquid samples. Its sensitivity and effectiveness for SERS-based detection was initially confirmed by evaluating detection of 1,2-di(4- pyridyl)ethylene as a reporter molecule on a silver nanorod (AgNR) substrate, and the results are comparable to those from a confocal Bruker Raman system. As avian influenza A viruses (AIV) are recognized as an important emerging threat to public health, this portable handheld Raman spectrometer is used, for the first time, to detect and identify avian influenza A viruses using a multi-well AgNR SERS chip. The SERS spectra obtained had rich peaks which demonstrated that the instrument can be effectively used for SERS-based influenza virus detection. According to the SERS spectra, these different influenza viruses were distinguished from the negative control via the principal component analysis and by partial least squares-discriminate analysis. Together, these results show that the combination effective SERS substrates when combined with a portable Raman spectrometer provides a powerful field device for chemical and biological sensing.

  3. Handheld spectrometers: the state of the art

    NASA Astrophysics Data System (ADS)

    Crocombe, Richard A.

    2013-05-01

    "Small" spectrometers fall into three broad classes: small versions of laboratory instruments, providing data, subsequently processed on a PC; dedicated analyzers, providing actionable information to an individual operator; and process analyzers, providing quantitative or semi-quantitative information to a process controller. The emphasis of this paper is on handheld dedicated analyzers. Many spectrometers have historically been large, possible fragile, expensive and complicated to use. The challenge over the last dozen years, as instruments have moved into the field, has been to make spectrometers smaller, affordable, rugged, easy-to-use, but most of all capable of delivering actionable results. Actionable results can dramatically improve the efficiency of a testing process and transform the way business is done. There are several keys to this handheld spectrometer revolution. Consumer electronics has given us powerful mobile platforms, compact batteries, clearly visible displays, new user interfaces, etc., while telecomm has revolutionized miniature optics, sources and detectors. While these technologies enable miniature spectrometers themselves, actionable information has demanded the development of rugged algorithms for material confirmation, unknown identification, mixture analysis and detection of suspicious materials in unknown matrices. These algorithms are far more sophisticated than the `correlation' or `dot-product' methods commonly used in benchtop instruments. Finally, continuing consumer electronics advances now enable many more technologies to be incorporated into handheld spectrometers, including Bluetooth, wireless, WiFi, GPS, cameras and bar code readers, and the continued size shrinkage of spectrometer `engines' leads to the prospect of dual technology or `hyphenated' handheld instruments.

  4. Large-area, uniform and low-cost dual-mode plasmonic naked-eye colorimetry and SERS sensor with handheld Raman spectrometer

    NASA Astrophysics Data System (ADS)

    Xu, Zhida; Jiang, Jing; Wang, Xinhao; Han, Kevin; Ameen, Abid; Khan, Ibrahim; Chang, Te-Wei; Liu, Gang Logan

    2016-03-01

    We demonstrated a highly-sensitive, wafer-scale, highly-uniform plasmonic nano-mushroom substrate based on plastic for naked-eye plasmonic colorimetry and surface-enhanced Raman spectroscopy (SERS). We gave it the name FlexBrite. The dual-mode functionality of FlexBrite allows for label-free qualitative analysis by SERS with an enhancement factor (EF) of 108 and label-free quantitative analysis by naked-eye colorimetry with a sensitivity of 611 nm RIU-1. The SERS EF of FlexBrite in the wet state was found to be 4.81 × 108, 7 times stronger than in the dry state, making FlexBrite suitable for aqueous environments such as microfluid systems. The label-free detection of biotin-streptavidin interaction by both SERS and colorimetry was demonstrated with FlexBrite. The detection of trace amounts of the narcotic drug methamphetamine in drinking water by SERS was implemented with a handheld Raman spectrometer and FlexBrite. This plastic-based dual-mode nano-mushroom substrate has the potential to be used as a sensing platform for easy and fast analysis in chemical and biological assays.We demonstrated a highly-sensitive, wafer-scale, highly-uniform plasmonic nano-mushroom substrate based on plastic for naked-eye plasmonic colorimetry and surface-enhanced Raman spectroscopy (SERS). We gave it the name FlexBrite. The dual-mode functionality of FlexBrite allows for label-free qualitative analysis by SERS with an enhancement factor (EF) of 108 and label-free quantitative analysis by naked-eye colorimetry with a sensitivity of 611 nm RIU-1. The SERS EF of FlexBrite in the wet state was found to be 4.81 × 108, 7 times stronger than in the dry state, making FlexBrite suitable for aqueous environments such as microfluid systems. The label-free detection of biotin-streptavidin interaction by both SERS and colorimetry was demonstrated with FlexBrite. The detection of trace amounts of the narcotic drug methamphetamine in drinking water by SERS was implemented with a handheld Raman

  5. Discrimination of Pigments of Microalgae, Bacteria and Yeasts Using Lightweight Handheld Raman Spectrometers: Prospects for Astrobiology

    NASA Astrophysics Data System (ADS)

    Jehlicka, J.; Osterrothova, K.; Nedbalova, L.; Gunde-Cimerman, N.; Oren, A.

    2014-06-01

    Handheld Raman instrumentation with 532 nm lasers can be used to distinguish carotenoids of autotrophic microalgae, purple sulfur bacteria, halophilic Archaea and pigmented yeasts. Pigments are proposed as biomarkers for astrobiology of Mars.

  6. Large-area, uniform and low-cost dual-mode plasmonic naked-eye colorimetry and SERS sensor with handheld Raman spectrometer.

    PubMed

    Xu, Zhida; Jiang, Jing; Wang, Xinhao; Han, Kevin; Ameen, Abid; Khan, Ibrahim; Chang, Te-Wei; Liu, Gang Logan

    2016-03-21

    We demonstrated a highly-sensitive, wafer-scale, highly-uniform plasmonic nano-mushroom substrate based on plastic for naked-eye plasmonic colorimetry and surface-enhanced Raman spectroscopy (SERS). We gave it the name FlexBrite. The dual-mode functionality of FlexBrite allows for label-free qualitative analysis by SERS with an enhancement factor (EF) of 10(8) and label-free quantitative analysis by naked-eye colorimetry with a sensitivity of 611 nm RIU(-1). The SERS EF of FlexBrite in the wet state was found to be 4.81 × 10(8), 7 times stronger than in the dry state, making FlexBrite suitable for aqueous environments such as microfluid systems. The label-free detection of biotin-streptavidin interaction by both SERS and colorimetry was demonstrated with FlexBrite. The detection of trace amounts of the narcotic drug methamphetamine in drinking water by SERS was implemented with a handheld Raman spectrometer and FlexBrite. This plastic-based dual-mode nano-mushroom substrate has the potential to be used as a sensing platform for easy and fast analysis in chemical and biological assays.

  7. The Ring Monstrance from the Loreto treasury in Prague: handheld Raman spectrometer for identification of gemstones

    PubMed Central

    Culka, Adam; Baštová, Markéta; Bašta, Petr; Kuntoš, Jaroslav

    2016-01-01

    A miniature lightweight portable Raman spectrometer and a palm-sized device allow for fast and unambiguous detection of common gemstones mounted in complex jewels. Here, complex religious artefacts and the Ring Monstrance from the Loreto treasury (Prague, Czech Republic; eighteenth century) were investigated. These discriminations are based on the very good correspondence of the wavenumbers of the strongest Raman bands of the minerals. Very short laser illumination times and efficient collection of scattered light were sufficient to obtain strong diagnostic Raman signals. The following minerals were documented: quartz and its varieties, beryl varieties (emerald), corundum varieties (sapphire), garnets (almandine, grossular), diamond as well as aragonite in pearls. Miniature Raman spectrometers can be recommended for common gemmological work as well as for mineralogical investigations of jewels and cultural heritage objects whenever the antiquities cannot be transported to a laboratory. This article is part of the themed issue ‘Raman spectroscopy in art and archaeology’. PMID:27799426

  8. The Ring Monstrance from the Loreto treasury in Prague: handheld Raman spectrometer for identification of gemstones.

    PubMed

    Jehlička, Jan; Culka, Adam; Baštová, Markéta; Bašta, Petr; Kuntoš, Jaroslav

    2016-12-13

    A miniature lightweight portable Raman spectrometer and a palm-sized device allow for fast and unambiguous detection of common gemstones mounted in complex jewels. Here, complex religious artefacts and the Ring Monstrance from the Loreto treasury (Prague, Czech Republic; eighteenth century) were investigated. These discriminations are based on the very good correspondence of the wavenumbers of the strongest Raman bands of the minerals. Very short laser illumination times and efficient collection of scattered light were sufficient to obtain strong diagnostic Raman signals. The following minerals were documented: quartz and its varieties, beryl varieties (emerald), corundum varieties (sapphire), garnets (almandine, grossular), diamond as well as aragonite in pearls. Miniature Raman spectrometers can be recommended for common gemmological work as well as for mineralogical investigations of jewels and cultural heritage objects whenever the antiquities cannot be transported to a laboratory.This article is part of the themed issue 'Raman spectroscopy in art and archaeology'. © 2016 The Author(s).

  9. Hand-held Raman sensor head for in-situ characterization of meat quality applying a microsystem 671 nm diode laser

    NASA Astrophysics Data System (ADS)

    Schmidt, Heinar; Sowoidnich, Kay; Maiwald, Martin; Sumpf, Bernd; Kronfeldt, Heinz-Detlef

    2009-05-01

    A hand-held Raman sensor head was developed for the in-situ characterization of meat quality. As light source, a microsystem based external cavity diode laser module (ECDL) emitting at 671 nm was integrated in the sensor head and attached to a miniaturized optical bench which contains lens optics for excitation and signal collection as well as a Raman filter stage for Rayleigh rejection. The signal is transported with an optical fiber to the detection unit which was in the initial phase a laboratory spectrometer with CCD detector. All elements of the ECDL are aligned on a micro optical bench with 13 x 4 mm2 footprint. The wavelength stability is provided by a reflection Bragg grating and the laser has an optical power of up to 200 mW. However, for the Raman measurements of meat only 35 mW are needed to obtain Raman spectra within 1 - 5 seconds. Short measuring times are essential for the hand-held device. The laser and the sensor head are characterized in terms of stability and performance for in-situ Raman investigations. The function is demonstrated in a series of measurements with raw and packaged pork meat as samples. The suitability of the Raman sensor head for the quality control of meat and other products will be discussed.

  10. Transmission Raman Measurements Using a Spatial Heterodyne Raman Spectrometer (SHRS).

    PubMed

    Strange, K Alicia; Paul, Kelly C; Angel, S Michael

    2017-02-01

    A spatial heterodyne Raman spectrometer (SHRS) was used to measure transmission Raman spectra of highly scattering compounds. Transmission Raman spectral intensities of ibuprofen were only 2.4 times lower in intensity than backscatter Raman spectra. The throughput was about eight times higher than an f/1.8 dispersive spectrometer, and the width of the area viewed was found to be seven to nine times higher, using 50.8 mm and 250 mm focal length collection lenses. However, the signal-to-noise (S/N) ratio was two times lower for the SHRS than the f/1.8 dispersive spectrometer, apparently due to high levels of stray light.

  11. Colonization of Snow by Microorganisms as Revealed Using Miniature Raman Spectrometers - Possibilities for Detecting Carotenoids of Psychrophiles on Mars?

    NASA Astrophysics Data System (ADS)

    Jehlička, Jan; Culka, Adam; Nedbalová, Linda

    2016-12-01

    We tested the potential of a miniaturized Raman spectrometer for use in field detection of snow algae pigments. A miniature Raman spectrometer, equipped with an excitation laser at 532 nm, allowed for the detection of carotenoids in cells of Chloromonas nivalis and Chlamydomonas nivalis at different stages of their life cycle. Astaxanthin, the major photoprotective pigment, was detected in algal blooms originating in snows at two alpine European sites that differed in altitude (Krkonoše Mts., Czech Republic, 1502 m a.s.l., and Ötztal Alps, Austria, 2790 m a.s.l.). Comparison is made with a common microalga exclusively producing astaxanthin (Haematococcus pluvialis). The handheld Raman spectrometer is a useful tool for fast and direct field estimations of the presence of carotenoids (mainly astaxanthin) within blooms of snow algae. Application of miniature Raman instruments as well as flight prototypes in areas where microbes are surviving under extreme conditions is an important stage in preparation for successful deployment of this kind of instrumentation in the framework of forthcoming astrobiological missions to Mars.

  12. Combined raman spectrometer/laser-induced breakdown spectrometer design concept

    NASA Astrophysics Data System (ADS)

    Bazalgette Courrèges-Lacoste, Gregory; Ahlers, Berit; Boslooper, Erik; Rull-Perez, Fernando; Maurice, Sylvestre

    2017-11-01

    Amongst the different instruments that have been preselected to be on-board the Pasteur payload on ExoMars is the Raman/ Laser Induced Breakdown Spectroscopy (LIBS) instrument. Raman spectroscopy and LIBS will be integrated into a single instrument sharing many hardware commonalities. An international team under the lead of TNO has been gathered to produce a design concept for a combined Raman Spectrometer/ LIBS Elegant Bread-Board (EBB). The instrument is based on a specifically designed extremely compact spectrometer with high resolution over a large wavelength range, suitable for both Raman spectroscopy and LIBS measurements. Low mass, size and resources are the main drivers of the instrument's design concept. The proposed design concept, realization and testing programme for the combined Raman/ LIBS EBB is presented as well as background information on Raman and LIBS.

  13. Colonization of Snow by Microorganisms as Revealed Using Miniature Raman Spectrometers-Possibilities for Detecting Carotenoids of Psychrophiles on Mars?

    PubMed

    Jehlička, Jan; Culka, Adam; Nedbalová, Linda

    2016-12-01

    We tested the potential of a miniaturized Raman spectrometer for use in field detection of snow algae pigments. A miniature Raman spectrometer, equipped with an excitation laser at 532 nm, allowed for the detection of carotenoids in cells of Chloromonas nivalis and Chlamydomonas nivalis at different stages of their life cycle. Astaxanthin, the major photoprotective pigment, was detected in algal blooms originating in snows at two alpine European sites that differed in altitude (Krkonoše Mts., Czech Republic, 1502 m a.s.l., and Ötztal Alps, Austria, 2790 m a.s.l.). Comparison is made with a common microalga exclusively producing astaxanthin (Haematococcus pluvialis). The handheld Raman spectrometer is a useful tool for fast and direct field estimations of the presence of carotenoids (mainly astaxanthin) within blooms of snow algae. Application of miniature Raman instruments as well as flight prototypes in areas where microbes are surviving under extreme conditions is an important stage in preparation for successful deployment of this kind of instrumentation in the framework of forthcoming astrobiological missions to Mars. Key Words: Snow algae-Chloromonas nivalis-Chlamydomonas nivalis-On-site field detection-Raman spectroscopy-Astaxanthin. Astrobiology 16, 913-924.

  14. New designs for portable Raman instrumentation in defense applications

    NASA Astrophysics Data System (ADS)

    Carron, Keith; Ray, Bryan; Buller, Shane; Strickland, Aaron

    2016-05-01

    The realization of global terrorism after the September 11 attacks led immediately to a need for rapid field analysis of materials. Colorimetric test kits existed, but they are very subjective to interpret and they require contact with the sample. A push for handheld spectrometers quickly led to FTIR systems with ATR sampling, handheld IMS systems, and handheld Raman spectrometers. No single technique solves all of the problems of field detection. We will discuss the development of Raman instrumentation and, in particular, cover the advantages and the problems that are inherent in Raman portability. Portable Raman instrumentation began with a limited number of accessories: a point-and-shoot and some sort of vial adaptor. Currently this has expanded to stand-off attachments for measurements at a distance, air sampling to look for toxic gasses or aerosols, Orbital Raster Scan (ORS) to spatially average over samples, SERS attachments for trace detection, and fiber optic probes.

  15. Using portable Raman spectrometers for the identification of organic compounds at low temperatures and high altitudes: exobiological applications.

    PubMed

    Jehlicka, J; Edwards, H G M; Culka, A

    2010-07-13

    Organic minerals, organic acids and NH-containing organic molecules represent important target molecules for astrobiology. Here, we present the results of the evaluation of a portable hand-held Raman spectrometer to detect these organic compounds outdoors under field conditions. These measurements were carried out during the February-March 2009 winter period in Austrian Alpine sites at temperatures ranging between -5 and -25 degrees C. The compounds investigated were detected under field conditions and their main Raman spectral features were observed unambiguously at their correct reference wavenumber positions. The results obtained demonstrate that a miniaturized Raman spectrometer equipped with 785 nm excitation could be applied with advantage as a key instrument for investigating the presence of organic minerals, organic acids and nitrogen-containing organic compounds outdoors under terrestrial low-temperature conditions. Within the payload designed by ESA and NASA for several missions focusing on Mars, Titan, Europa and other extraterrestrial bodies, Raman spectroscopy can be proposed as an important non-destructive analytical tool for the in situ identification of organic compounds relevant to life detection on planetary and moon surfaces or near subsurfaces.

  16. The research of digital circuit system for high accuracy CCD of portable Raman spectrometer

    NASA Astrophysics Data System (ADS)

    Yin, Yu; Cui, Yongsheng; Zhang, Xiuda; Yan, Huimin

    2013-08-01

    The Raman spectrum technology is widely used for it can identify various types of molecular structure and material. The portable Raman spectrometer has become a hot direction of the spectrometer development nowadays for its convenience in handheld operation and real-time detection which is superior to traditional Raman spectrometer with heavy weight and bulky size. But there is still a gap for its measurement sensitivity between portable and traditional devices. However, portable Raman Spectrometer with Shell-Isolated Nanoparticle-Enhanced Raman Spectroscopy (SHINERS) technology can enhance the Raman signal significantly by several orders of magnitude, giving consideration in both measurement sensitivity and mobility. This paper proposed a design and implementation of driver and digital circuit for high accuracy CCD sensor, which is core part of portable spectrometer. The main target of the whole design is to reduce the dark current generation rate and increase signal sensitivity during the long integration time, and in the weak signal environment. In this case, we use back-thinned CCD image sensor from Hamamatsu Corporation with high sensitivity, low noise and large dynamic range. In order to maximize this CCD sensor's performance and minimize the whole size of the device simultaneously to achieve the project indicators, we delicately designed a peripheral circuit for the CCD sensor. The design is mainly composed with multi-voltage circuit, sequential generation circuit, driving circuit and A/D transition parts. As the most important power supply circuit, the multi-voltage circuits with 12 independent voltages are designed with reference power supply IC and set to specified voltage value by the amplifier making up the low-pass filter, which allows the user to obtain a highly stable and accurate voltage with low noise. What's more, to make our design easy to debug, CPLD is selected to generate sequential signal. The A/D converter chip consists of a correlated

  17. ExoMars Raman laser spectrometer overview

    NASA Astrophysics Data System (ADS)

    Rull, F.; Sansano, A.; Díaz, E.; Canora, C. P.; Moral, A. G.; Tato, C.; Colombo, M.; Belenguer, T.; Fernández, M.; Manfredi, J. A. R.; Canchal, R.; Dávila, B.; Jiménez, A.; Gallego, P.; Ibarmia, S.; Prieto, J. A. R.; Santiago, A.; Pla, J.; Ramos, G.; González, C.

    2010-09-01

    The Raman Laser Spectrometer (RLS) is one of the Pasteur Payload instruments, within the ESA's Aurora Exploration Programme, ExoMars mission. The RLS Instrument will perform Raman spectroscopy on crushed powered samples deposited on a small container after crushing the cores obtained by the Rover's drill system. This is the first time that a Raman spectrometer will be launched in an out planetary mission. The Instrument will be accommodated and operate inside the Rover's ALD (Analytical Laboratory Drawer), complying with COSPAR (Committee on Space Research) Planetary Protection requirements. The RLS Instrument is composed by the following units: SPU (Spectrometer Unit); iOH: (Internal Optical Head); ICEU (Instrument Control and Excitation Unit). Other instrument units are EH (Electrical Harness), OH (Optical Harness) and RLS SW On-Board.

  18. Using a portable Raman spectrometer to detect carotenoids of halophilic prokaryotes in synthetic inclusions in NaCl, KCl, and sulfates.

    PubMed

    Jehlička, Jan; Culka, Adam; Mana, Lilly; Oren, Aharon

    2018-05-03

    Cell suspensions of the haloarchaea Halorubrum sodomense and Halobacterium salinarum and the extremely halophilic bacterium Salinibacter ruber (Bacteroidetes) in saturated solutions of chlorides and sulfates (NaCl, KCl, MgSO 4 ·7H 2 O, K 2 SO 4 , and (NH 4 )Al(SO 4 ) 2 ·12H 2 O) were left to evaporate to produce micrometric inclusions in laboratory-grown crystals. Raman spectra of these pinkish inclusions were obtained using a handheld Raman spectrometer with green excitation (532 nm). This portable instrument does not include any microscopic tool. Acceptable Raman spectra of carotenoids were obtained in the range of 200-4000 cm -1 . This detection achievement was related to the mode of illumination and collection of scattered light as well as due to resonance Raman enhancement of carotenoid signals under green excitation. The position of diagnostic Raman carotenoid bands corresponds well to those specific carotenoids produced by a given halophile. To our best knowledge, this is the first study of carotenoids included in the laboratory in crystalline chlorides and sulfates, using a miniature portable Raman spectrometer. Graphical abstract ᅟ.

  19. The Athena Raman Spectrometer

    NASA Technical Reports Server (NTRS)

    Wang, Alian; Haskin, Larry A.; Jolliff, Bradley; Wdowiak, Tom; Agresti, David; Lane, Arthur L.

    2000-01-01

    Raman spectroscopy provides a powerful tool for in situ mineralogy, petrology, and detection of water and carbon. The Athena Raman spectrometer is a microbeam instrument intended for close-up analyses of targets (rock or soils) selected by the Athena Pancam and Mini-TES. It will take 100 Raman spectra along a linear traverse of approximately one centimeter (point-counting procedure) in one to four hours during the Mars' night. From these spectra, the following information about the target will extracted: (1) the identities of major, minor, and trace mineral phases, organic species (e.g., PAH or kerogen-like polymers), reduced inorganic carbon, and water-bearing phases; (2) chemical features (e.g. Mg/Fe ratio) of major minerals; and (3) rock textural features (e.g., mineral clusters, amygdular filling and veins). Part of the Athena payload, the miniaturized Raman spectrometer has been under development in a highly interactive collaboration of a science team at Washington University and the University of Alabama at Birmingham, and an engineering team at the Jet Propulsion Laboratory. The development has completed the brassboard stage and has produced the design for the engineering model.

  20. Noninvasively Imaging Subcutaneous Tumor Xenograft by a Handheld Raman Detector, with the Assistance of an Optical Clearing Agent.

    PubMed

    Zhang, Yunfei; Liu, Haoran; Tang, Jiali; Li, Zhuoyun; Zhou, Xingyu; Zhang, Ren; Chen, Liang; Mao, Ying; Li, Cong

    2017-05-31

    A handheld Raman detector with operational convenience, high portability, and rapid acquisition rate has been applied in clinics for diagnostic purposes. However, the inherent weakness of Raman scattering and strong scattering of the turbid tissue restricts its utilization to superficial locations. To extend the applications of a handheld Raman detector to deep tissues, a gold nanostar-based surface-enhanced Raman scattering (SERS) nanoprobe with robust colloidal stability, a fingerprint-like spectrum, and extremely high sensitivity (5.0 fM) was developed. With the assistance of FPT, a multicomponent optical clearing agent (OCA) efficiently suppressing light scattering from the turbid dermal tissues, the handheld Raman detector noninvasively visualized the subcutaneous tumor xenograft with a high target-to-background ratio after intravenous injection of the gold nanostar-based SERS nanoprobe. To the best of our knowledge, this work is the first example to introduce the optical clearing technique in assisting SERS imaging in vivo. The combination of optical clearing technology and SERS is a promising strategy for the extension of the clinical applications of the handheld Raman detector from superficial tissues to subcutaneous or even deeper lesions that are usually "concealed" by the turbid dermal tissue.

  1. A Simple Raman Spectrometer.

    ERIC Educational Resources Information Center

    Blond, J. P.; Boggett, D. M.

    1980-01-01

    Discusses some basic physical ideas about light scattering and describes a simple Raman spectrometer, a single prism monochromator and a multiplier detector. This discussion is intended for British undergraduate physics students. (HM)

  2. Survey to Identify Substandard and Falsified Tablets in Several Asian Countries with Pharmacopeial Quality Control Tests and Principal Component Analysis of Handheld Raman Spectroscopy.

    PubMed

    Kakio, Tomoko; Nagase, Hitomi; Takaoka, Takashi; Yoshida, Naoko; Hirakawa, Junichi; Macha, Susan; Hiroshima, Takashi; Ikeda, Yukihiro; Tsuboi, Hirohito; Kimura, Kazuko

    2018-06-01

    The World Health Organization has warned that substandard and falsified medical products (SFs) can harm patients and fail to treat the diseases for which they were intended, and they affect every region of the world, leading to loss of confidence in medicines, health-care providers, and health systems. Therefore, development of analytical procedures to detect SFs is extremely important. In this study, we investigated the quality of pharmaceutical tablets containing the antihypertensive candesartan cilexetil, collected in China, Indonesia, Japan, and Myanmar, using the Japanese pharmacopeial analytical procedures for quality control, together with principal component analysis (PCA) of Raman spectrum obtained with handheld Raman spectrometer. Some samples showed delayed dissolution and failed to meet the pharmacopeial specification, whereas others failed the assay test. These products appeared to be substandard. Principal component analysis showed that all Raman spectra could be explained in terms of two components: the amount of the active pharmaceutical ingredient and the kinds of excipients. Principal component analysis score plot indicated one substandard, and the falsified tablets have similar principal components in Raman spectra, in contrast to authentic products. The locations of samples within the PCA score plot varied according to the source country, suggesting that manufacturers in different countries use different excipients. Our results indicate that the handheld Raman device will be useful for detection of SFs in the field. Principal component analysis of that Raman data clarify the difference in chemical properties between good quality products and SFs that circulate in the Asian market.

  3. Enhanced Uranium Ore Concentrate Analysis by Handheld Raman Sensor: FY15 Status Report

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bryan, Samuel A.; Johnson, Timothy J.; Orton, Christopher R.

    2015-11-11

    High-purity uranium ore concentrates (UOC) represent a potential proliferation concern. A cost-effective, “point and shoot” in-field analysis capability to identify ore types, phases of materials present, and impurities, as well as estimate the overall purity would be prudent. Handheld, Raman-based sensor systems are capable of identifying chemical properties of liquid and solid materials. While handheld Raman systems have been extensively applied to many other applications, they have not been broadly studied for application to UOC, nor have they been optimized for this class of chemical compounds. PNNL was tasked in Fiscal Year 2015 by the Office of International Safeguards (NA-241)more » to explore the use of Raman for UOC analysis and characterization. This report summarizes the activities in FY15 related to this project. The following tasks were included: creation of an expanded library of Raman spectra of a UOC sample set, creation of optimal chemometric analysis methods to classify UOC samples by their type and level of impurities, and exploration of the various Raman wavelengths to identify the ideal instrument settings for UOC sample interrogation.« less

  4. Miniature Raman spectrometer development

    NASA Astrophysics Data System (ADS)

    Bonvallet, Joseph; Auz, Bryan; Rodriguez, John; Olmstead, Ty

    2018-02-01

    The development of techniques to rapidly identify samples ranging from, molecule and particle imaging to detection of high explosive materials, has surged in recent years. Due to this growing want, Raman spectroscopy gives a molecular fingerprint, with no sample preparation, and can be done remotely. These systems can be small, compact, lightweight, and with a user interface that allows for easy use and sample identification. Ocean Optics Inc. has developed several systems that would meet all these end user requirements. This talk will describe the development of different Ocean Optics Inc miniature Raman spectrometers. The spectrometer on a phone (SOAP) system was designed using commercial off the shelf (COTS) components, in a rapid product development cycle. The footprint of the system measures 40x40x14 mm (LxWxH) and was coupled directly to the cell phone detector camera optics. However, it gets roughly only 40 cm-1 resolution. The Accuman system is the largest (290x220X100 mm) of the three, but uses our QEPro spectrometer and get 7-11 cm-1 resolution. Finally, the HRS-30 measuring 165x85x40 mm is a combination of the other two systems. This system uses a modified EMBED spectrometer and gets 7-12 cm-1 resolution. Each of these units uses a peak matching algorithm that then correlates the results to the pre-loaded and customizable spectral libraries.

  5. Handheld confocal Raman microspectrometer for in-vivo skin cancer measurement

    NASA Astrophysics Data System (ADS)

    Lieber, Chad A.; Ellis, Darrel L.; Billheimer, D. D.; Mahadevan-Jansen, Anita

    2004-07-01

    Several studies have demonstrated Raman spectroscopy to be capable of tissue diagnosis with accuracy rivaling that of histopathologic analysis. This technique obtains biochemical-specific information noninvasively, and can eliminate the pain, time, and cost associated with biopsy and pathological analysis. Furthermore, when used in a confocal arrangement, Raman spectra can be obtained from localized regions of the tissue. Skin cancers are an ideal candidate for this emerging technology, due to their obvious accessibility and presentation at specific depths. However, most commercially available confocal Raman microspectrometers are large, rigid systems ill-suited for clinical application. We developed a bench-top confocal Raman microspectrometer using a portable external-cavity diode laser excitation source. This system was used to study several skin lesions in vitro. Results show the depth-resolved Raman spectra can diagnose in vitro skin lesions with 96% sensitivity, 88% specificity, and 86% pathological classification accuracy. Based on the success of this study, a portable Raman system with a handheld confocal microscope was developed for clinical application. Preliminary in vivo data show several distinct spectral differences between skin pathologies. Diagnostic algorithms are planned for this continuing study to assess the capability of Raman spectroscopy for clinical skin cancer diagnosis.

  6. Elemental analysis using a handheld X-Ray fluorescence spectrometer

    USGS Publications Warehouse

    Groover, Krishangi D.; Izbicki, John

    2016-06-24

    The U.S. Geological Survey is collecting geologic samples from local stream channels, aquifer materials, and rock outcrops for studies of trace elements in the Mojave Desert, southern California. These samples are collected because geologic materials can release a variety of elements to the environment when exposed to water. The samples are to be analyzed with a handheld X-ray fluorescence (XRF) spectrometer to determine the concentrations of up to 27 elements, including chromium.

  7. Classification and Visualization of Physical and Chemical Properties of Falsified Medicines with Handheld Raman Spectroscopy and X-Ray Computed Tomography.

    PubMed

    Kakio, Tomoko; Yoshida, Naoko; Macha, Susan; Moriguchi, Kazunobu; Hiroshima, Takashi; Ikeda, Yukihiro; Tsuboi, Hirohito; Kimura, Kazuko

    2017-09-01

    Analytical methods for the detection of substandard and falsified medical products (SFs) are important for public health and patient safety. Research to understand how the physical and chemical properties of SFs can be most effectively applied to distinguish the SFs from authentic products has not yet been investigated enough. Here, we investigated the usefulness of two analytical methods, handheld Raman spectroscopy (handheld Raman) and X-ray computed tomography (X-ray CT), for detecting SFs among oral solid antihypertensive pharmaceutical products containing candesartan cilexetil as an active pharmaceutical ingredient (API). X-ray CT visualized at least two different types of falsified tablets, one containing many cracks and voids and the other containing aggregates with high electron density, such as from the presence of the heavy elements. Generic products that purported to contain equivalent amounts of API to the authentic products were discriminated from the authentic products by the handheld Raman and the different physical structure on X-ray CT. Approach to investigate both the chemical and physical properties with handheld Raman and X-ray CT, respectively, promise the accurate discrimination of the SFs, even if their visual appearance is similar with authentic products. We present a decision tree for investigating the authenticity of samples purporting to be authentic commercial tablets. Our results indicate that the combination approach of visual observation, handheld Raman and X-ray CT is a powerful strategy for nondestructive discrimination of suspect samples.

  8. Data for Users of Handheld Ion Mobility Spectrometers

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Keith A. Daum; Sandra L. Fox

    Chemical detection technology end-user surveys conducted by Idaho National Laboratory (INL) in 2005 and 2007 indicated that first responders believed manufacturers’ claims for instruments sometimes were not supported in field applications, and instruments sometimes did not meet their actual needs. Based on these findings, the Department of Homeland Security (DHS) asked INL to conduct a similar survey for handheld ion mobility spectrometers (IMS), which are used by a broad community of first responders as well as for other applications. To better access this broad community, the INL used the Center for Technology Commercialization, Inc. (CTC), Public Safety Technology Center (PSTC)more » to set up an online framework to gather information from users of handheld IMS units. This framework (Survey Monkey) was then used to perform an online Internet survey, augmented by e-mail prompts, to get information from first responders and personnel from various agencies about their direct experience with handheld IMS units. Overall, 478 individuals responded to the survey. Of these, 174 respondents actually owned a handheld IMS. Performance and satisfaction data from these 174 respondents are captured in this report. The survey identified the following observations: • The most common IMS unit used by respondents was the Advanced Portable Detector (APD 2000), followed by ChemRae, Sabre 4000, Sabre 2000, Draeger Multi IMS, Chemical Agent Monitor-2, Chemical Agent Monitor, Vapor Tracer, and Vapor Tracer 2. • The primary owners were HazMat teams (20%), fire services (14%), local police (12%), and sheriffs’ departments (9%). • IMS units are seldom used as part of an integrated system for detecting and identifying chemicals but instead are used independently. • Respondents are generally confused about the capabilities of their IMS unit. This is probably a result of lack of training. • Respondents who had no training or fewer than 8 hours were not satisfied with the

  9. Development and characterization of a handheld hyperspectral Raman imaging probe system for molecular characterization of tissue on mesoscopic scales.

    PubMed

    St-Arnaud, Karl; Aubertin, Kelly; Strupler, Mathias; Madore, Wendy-Julie; Grosset, Andrée-Anne; Petrecca, Kevin; Trudel, Dominique; Leblond, Frédéric

    2018-01-01

    Raman spectroscopy is a promising cancer detection technique for surgical guidance applications. It can provide quantitative information relating to global tissue properties associated with structural, metabolic, immunological, and genetic biochemical phenomena in terms of molecular species including amino acids, lipids, proteins, and nucleic acid (DNA). To date in vivo Raman spectroscopy systems mostly included probes and biopsy needles typically limited to single-point tissue interrogation over a scale between 100 and 500 microns. The development of wider field handheld systems could improve tumor localization for a range of open surgery applications including brain, ovarian, and skin cancers. Here we present a novel Raman spectroscopy implementation using a coherent imaging bundle of fibers to create a probe capable of reconstructing molecular images over mesoscopic fields of view. Detection is performed using linear scanning with a rotation mirror and an imaging spectrometer. Different slits widths were tested at the entrance of the spectrometer to optimize spatial and spectral resolution while preserving sufficient signal-to-noise ratios to detect the principal Raman tissue features. The nonbiological samples, calcite and polytetrafluoroethylene (PTFE), were used to characterize the performance of the system. The new wide-field probe was tested on ex vivo samples of calf brain and swine tissue. Raman spectral content of both tissue types were validated with data from the literature and compared with data acquired with a single-point Raman spectroscopy probe. The single-point probe was used as the gold standard against which the new instrument was benchmarked as it has already been thoroughly validated for biological tissue characterization. We have developed and characterized a practical noncontact handheld Raman imager providing tissue information at a spatial resolution of 115 microns over a field of view >14 mm 2 and a spectral resolution of 6 cm -1 over

  10. Detection of munitions grade g-series nerve agents using Raman excitation at 1064 nm

    NASA Astrophysics Data System (ADS)

    Roy, Eric; Wilcox, Phillip G.; Hoffland, Soren; Pardoe, Ian

    2015-05-01

    Raman spectroscopy is a powerful tool for obtaining molecular structure information of a sample. While Raman spectroscopy is a common laboratory based analytical tool, miniaturization of opto-electronic components has allowed handheld Raman analyzers to become commercially available. These handheld systems are utilized by Military and First Responder operators tasked with rapidly identifying potentially hazardous chemicals in the field. However, one limitation of many handheld Raman detection systems is strong interference caused by fluorescence of the sample or underlying surface which obscures the characteristic Raman signature of the target analyte. Munitions grade chemical warfare agents (CWAs) are produced and stored in large batches and typically have more impurities from the storage container, degradation, or unreacted precursors. In this work, Raman spectra of munitions grade CWAs were collected using a handheld Raman spectrometer with a 1064 nm excitation laser. While Raman scattering generated by a 1064 nm laser is inherently less efficient than excitation at shorter wavelengths, high quality spectra were easily obtained due to significantly reduced fluorescence of the munitions grade CWAs. The spectra of these less pure, but more operationally relevant, munitions grade CWAs were then compared to spectra of CASARM grade CWAs, as well as Raman spectra collected using the more common 785 nm excitation laser.

  11. Application of handheld and portable spectrometers for screening acrylamide content in commercial potato chips.

    PubMed

    Ayvaz, Huseyin; Rodriguez-Saona, Luis E

    2015-05-01

    The most common methods for acrylamide analysis in foods require the use of LC-MS/MS and GC-MS. Although these methods have great analytical performance, they need intensive sample preparation, highly specialised instrumentation, and are time consuming. In this study, portable and handheld infrared spectrometers were evaluated as rapid methods for screening acrylamide in potato chips and their performances were compared to those of benchtop infrared systems. The acrylamide content of 64 commercial potato chips (169-2453 μg/kg) was determined by LC-MS/MS. Spectral data were collected using mid-infrared (MIR) and near-infrared (NIR) spectrometers. Partial least squares regression (PLSR) calibration models were developed to predict acrylamide levels. Overall, good linear correlation was found between the predicted acrylamide levels and actual measured acrylamide concentrations by LC-MS/MS (rPred > 0.90 and SEP < 100 μg/kg). Our results indicate that portable and handheld spectrometers can be used as simple and rapid alternatives for acrylamide analysis in potato chips. Copyright © 2014 Elsevier Ltd. All rights reserved.

  12. Development of a miRNA surface-enhanced Raman scattering assay using benchtop and handheld Raman systems

    NASA Astrophysics Data System (ADS)

    Schechinger, Monika; Marks, Haley; Locke, Andrea; Choudhury, Mahua; Cote, Gerard

    2018-01-01

    DNA-functionalized nanoparticles, when paired with surface-enhanced Raman spectroscopy (SERS), can rapidly detect microRNA. However, widespread use of this approach is hindered by drawbacks associated with large and expensive benchtop Raman microscopes. MicroRNA-17 (miRNA-17) has emerged as a potential epigenetic indicator of preeclampsia, a condition that occurs during pregnancy. Biomarker detection using an SERS point-of-care device could enable prompt diagnosis and prevention as early as the first trimester. Recently, strides have been made in developing portable Raman systems for field applications. An SERS assay for miRNA-17 was assessed and translated from traditional benchtop Raman microscopes to a handheld system. Three different photoactive molecules were compared as potential Raman reporter molecules: a chromophore, malachite green isothiocyanate (MGITC), a fluorophore, tetramethylrhodamine isothiocyanate, and a polarizable small molecule 5,5-dithio-bis-(2-nitrobenzoic acid) (DTNB). For the benchtop Raman microscope, the DTNB-labeled assay yielded the greatest sensitivity under 532-nm laser excitation, but the MGITC-labeled assay prevailed at 785 nm. Conversely, DTNB was preferable for the miniaturized 785-nm Raman system. This comparison showed significant SERS enhancement variation in response to 1-nM miRNA-17, implying that the sensitivity of the assay may be more heavily dependent on the excitation wavelength, instrumentation, and Raman reporter chosen than on the plasmonic coupling from DNA/miRNA-mediated nanoparticle assemblies.

  13. Through tissue imaging of a live breast cancer tumour model using handheld surface enhanced spatially offset resonance Raman spectroscopy (SESORRS).

    PubMed

    Nicolson, Fay; Jamieson, Lauren E; Mabbott, Samuel; Plakas, Konstantinos; Shand, Neil C; Detty, Michael R; Graham, Duncan; Faulds, Karen

    2018-04-21

    In order to improve patient survival and reduce the amount of unnecessary and traumatic biopsies, non-invasive detection of cancerous tumours is of imperative and urgent need. Multicellular tumour spheroids (MTS) can be used as an ex vivo cancer tumour model, to model in vivo nanoparticle (NP) uptake by the enhanced permeability and retention (EPR) effect. Surface enhanced spatially offset Raman spectroscopy (SESORS) combines both surface enhanced Raman spectroscopy (SERS) and spatially offset Raman spectroscopy (SORS) to yield enhanced Raman signals at much greater sub-surface levels. By utilizing a reporter that has an electronic transition in resonance with the laser frequency, surface enhanced resonance Raman scattering (SERRS) yields even greater enhancement in Raman signal. Using a handheld SORS spectrometer with back scattering optics, we demonstrate the detection of live breast cancer 3D MTS containing SERRS active NPs through 15 mm of porcine tissue. False color 2D heat intensity maps were used to determine tumour model location. In addition, we demonstrate the tracking of SERRS-active NPs through porcine tissue to depths of up to 25 mm. This unprecedented performance is due to the use of red-shifted chalcogenpyrylium-based Raman reporters to demonstrate the novel technique of surface enhanced spatially offset resonance Raman spectroscopy (SESORRS) for the first time. Our results demonstrate a significant step forward in the ability to detect vibrational fingerprints from a tumour model at depth through tissue. Such an approach offers significant promise for the translation of NPs into clinical applications for non-invasive disease diagnostics based on this new chemical principle of measurement.

  14. Combined Raman/LIBS spectrometer elegant breadboard: built and tested - and flight model spectrometer unit

    NASA Astrophysics Data System (ADS)

    Ahlers, B.; Hutchinson, I.; Ingley, R.

    2017-11-01

    A spectrometer for combined Raman and Laser Induced Breakdown Spectroscopy (LIBS) is amongst the different instruments that have been pre-selected for the Pasteur payload of the ExoMars rover. It is regarded as a fundamental, next-generation instrument for organic, mineralogical and elemental characterisation of Martian soil, rock samples and organic molecules. Raman spectroscopy and LIBS will be integrated into a single instrument sharing many hardware commonalities [1]. The combined Raman / LIBS instrument has been recommended as the highest priority mineralogy instrument to be included in the rover's analytical laboratory for the following tasks: Analyse surface and sub-surface soil and rocks on Mars, identify organics in the search for life and determine soil origin & toxicity. The synergy of the system is evident: the Raman spectrometer is dedicated to molecular analysis of organics and minerals; the LIBS provides information on the sample's elemental composition. An international team, under ESA contract and with the leadership of TNO Science and Industry, has built and tested an Elegant Bread Board (EBB) of the combined Raman / LIBS instrument. The EBB comprises a specifically designed, extremely compact, spectrometer with high resolution over a large wavelength range, suitable for both Raman spectroscopy and LIBS measurements. The EBB also includes lasers, illumination and imaging optics as well as fibre optics for light transfer. A summary of the functional and environmental requirements together with a description of the optical design and its expected performance are described in [2]. The EBB was developed and constructed to verify the instruments' end-to-end functional performance with natural samples. The combined Raman / LIBS EBB realisation and test results of natural samples will be presented. For the Flight Model (FM) instrument, currently in the design phase, the Netherlands will be responsible for the design, development and verification of the

  15. A Novel Technique for Raman Analysis of Highly Radioactive Samples Using Any Standard Micro-Raman Spectrometer

    PubMed Central

    Colle, Jean-Yves; Naji, Mohamed; Sierig, Mark; Manara, Dario

    2017-01-01

    A novel approach for the Raman measurement of nuclear materials is reported in this paper. It consists of the enclosure of the radioactive sample in a tight capsule that isolates the material from the atmosphere. The capsule can optionally be filled with a chosen gas pressurized up to 20 bars. The micro-Raman measurement is performed through an optical-grade quartz window. This technique permits accurate Raman measurements with no need for the spectrometer to be enclosed in an alpha-tight containment. It therefore allows the use of all options of the Raman spectrometer, like multi-wavelength laser excitation, different polarizations, and single or triple spectrometer modes. Some examples of measurements are shown and discussed. First, some spectral features of a highly radioactive americium oxide sample (AmO2) are presented. Then, we report the Raman spectra of neptunium oxide (NpO2) samples, the interpretation of which is greatly improved by employing three different excitation wavelengths, 17O doping, and a triple mode configuration to measure the anti-stokes Raman lines. This last feature also allows the estimation of the sample surface temperature. Finally, data that were measured on a sample from Chernobyl lava, where phases are identified by Raman mapping, are shown. PMID:28448046

  16. Assessment of cyanide contamination in soils with a handheld mid-infrared spectrometer.

    PubMed

    Soriano-Disla, José M; Janik, Leslie J; McLaughlin, Michael J

    2018-02-01

    We examined the feasibility of using handheld mid-infrared (MIR) Fourier-Transform infrared (FT-IR) instrumentation for detecting and analysing cyanide (CN) contamination in field contaminated soils. Cyanide spiking experiments were first carried out, in the laboratory, to test the sensitivity of infrared Fourier transform (DRIFT) spectrometry to ferro- and ferricyanide compounds across a range of reference soils and minerals. Both benchtop and handheld diffuse reflectance infrared spectrometers were tested. Excellent results were obtained for the reference soils and minerals, with the MIR outperforming the near-infrared (NIR) range. Spectral peaks characteristic of the -C≡N group were observed near 2062 and 2118cm -1 in the MIR region for the ferro- and ferricyanide compounds spiked into soils/minerals, respectively. In the NIR region such peaks were observed near 4134 and 4220cm -1 . Cyanide-contaminated samples were then collected in the field and analyzed with the two spectrometers to further test the applicability of the DRIFT technique for soils containing aged CN residues. The prediction of total CN in dry and ground contaminated soils using the handheld MIR instrument resulted in a coefficient of determination (R 2 ) of 0.88-0.98 and root mean square error of the cross-validation (RMSE) of 21-49mgkg -1 for a CN range of 0-611mgkg -1 . A major peak was observed in the MIR at about 2092cm -1 which was attributed to "Prussian Blue" (Fe 4 [Fe(CN) 6 ] 3 ·xH 2 O). These results demonstrate the potential of handheld DRIFT instrumentation as a promising alternative to the standard laboratory method to predict CN concentrations in contaminated field soils. Crown Copyright © 2017. Published by Elsevier B.V. All rights reserved.

  17. Accurate Differentiation of Carotenoid Pigments Using Flight Representative Raman Spectrometers.

    PubMed

    Malherbe, Cedric; Hutchinson, Ian B; McHugh, Melissa; Ingley, Richard; Jehlička, Jan; Edwards, Howell G M

    2017-04-01

    Raman spectrometers will be utilized on two Mars rover missions, ExoMars and Mars 2020, in the near future, to search for evidence of life and habitable geological niches on Mars. Carotenoid pigments are recognized target biomarkers, and as they are highly active in Raman spectroscopy, they can be readily used to characterize the capabilities of space representative instrumentation. As part of the preparatory work being performed for the ExoMars mission, a gypsum crust colonized by microorganisms was interrogated with commercial portable Raman instruments and a flight representative Raman laser spectrometer. Four separate layers, each exhibiting different coloration resulting from specific halophilic microorganism activities within the gypsum crust, were studied by using two excitation wavelengths: 532 and 785 nm. Raman or fluorescence data were readily obtained during the present study. Gypsum, the main constituent of the crust, was detected with both excitation wavelengths, while the resonance Raman signal associated with carotenoid pigments was only detected with a 532 nm excitation wavelength. The fluorescence originating from bacteriochlorophyll a was found to overwhelm the Raman signal for the layer colonized by sulfur bacteria when interrogated with a 785 nm excitation wavelength. Finally, it was demonstrated that portable instruments and the prototype were capable of detecting a statistically significant difference in band positions of carotenoid signals between the sample layers. Key Words: Gypsum-Raman spectrometers-Carotenoids-ExoMars-Mars exploration-Band position shift. Astrobiology 17, 351-362.

  18. Development of a miRNA surface-enhanced Raman scattering assay using benchtop and handheld Raman systems.

    PubMed

    Schechinger, Monika; Marks, Haley; Locke, Andrea; Choudhury, Mahua; Cote, Gerard

    2018-01-01

    DNA-functionalized nanoparticles, when paired with surface-enhanced Raman spectroscopy (SERS), can rapidly detect microRNA. However, widespread use of this approach is hindered by drawbacks associated with large and expensive benchtop Raman microscopes. MicroRNA-17 (miRNA-17) has emerged as a potential epigenetic indicator of preeclampsia, a condition that occurs during pregnancy. Biomarker detection using an SERS point-of-care device could enable prompt diagnosis and prevention as early as the first trimester. Recently, strides have been made in developing portable Raman systems for field applications. An SERS assay for miRNA-17 was assessed and translated from traditional benchtop Raman microscopes to a handheld system. Three different photoactive molecules were compared as potential Raman reporter molecules: a chromophore, malachite green isothiocyanate (MGITC), a fluorophore, tetramethylrhodamine isothiocyanate, and a polarizable small molecule 5,5-dithio-bis-(2-nitrobenzoic acid) (DTNB). For the benchtop Raman microscope, the DTNB-labeled assay yielded the greatest sensitivity under 532-nm laser excitation, but the MGITC-labeled assay prevailed at 785 nm. Conversely, DTNB was preferable for the miniaturized 785-nm Raman system. This comparison showed significant SERS enhancement variation in response to 1-nM miRNA-17, implying that the sensitivity of the assay may be more heavily dependent on the excitation wavelength, instrumentation, and Raman reporter chosen than on the plasmonic coupling from DNA/miRNA-mediated nanoparticle assemblies. (2018) COPYRIGHT Society of Photo-Optical Instrumentation Engineers (SPIE).

  19. Application of imaging spectrometer in gas analysis by Raman scattering

    NASA Astrophysics Data System (ADS)

    Zuo, Duluo; Yu, Anlan; Li, Zhe; Wang, Xingbing; Xiong, Youhui

    2015-09-01

    Spontaneous Raman scattering is an effective technique in gas analysis, but the detection of minor constituents is difficult because of the low signal level and the usually existed background. Imaging spectrometer can provide highly spatial resolved spectra, so it should be much easier to pick up Raman signal of minor constituents from the Raman/fluorescence background of the sample cell and transporting optics compared with the widely used fiber-coupled spectrometers. For this reason, an imaging spectrometer was constructed from transmitting volume phase holographic grating, camera lenses and CCD detector. When it was used to analyze the gas sample in metal-lined capillary, which is a sample cell believed with great enhancement of Raman signal, the background was compressed obviously. When it was used to analyze the gas in a sample cell including a parabolic reflector, only weak background signal was observed, as the wide separation between the collecting zone (the focus point of the parabolic surface) and the wall of sample cell benefitted to the analysis by imaging spectrometer. By using the last sample cell, the signal from CO2 in ambient air was able to be found by an exposure time about 20 sec, and limits of detection for H2, CO2 and CO were estimated as 60 ppm, 100 ppm and 300 ppm respectively by the results of a longer exposure time. These results show that an imaging spectrometer paired with a well-arranged sample cell will lower the detecting limit effectively.

  20. Improved multiple-pass Raman spectrometer

    NASA Astrophysics Data System (ADS)

    Kc, Utsav; Silver, Joel A.; Hovde, David C.; Varghese, Philip L.

    2011-08-01

    An improved Raman gain spectrometer for flame measurements of gas temperature and species concentrations is described. This instrument uses a multiple-pass optical cell to enhance the incident light intensity in the measurement volume. The Raman signal is 83 times larger than from a single pass, and the Raman signal-to-noise ratio (SNR) in room-temperature air of 153 is an improvement over that from a single-pass cell by a factor of 9.3 when the cell is operated with 100 passes and the signal is integrated over 20 laser shots. The SNR improvement with the multipass cell is even higher for flame measurements at atmospheric pressure, because detector readout noise is more significant for single-pass measurements when the gas density is lower. Raman scattering is collected and dispersed in a spectrograph with a transmission grating and recorded with a fast gated CCD array detector to help eliminate flame interferences. The instrument is used to record spontaneous Raman spectra from N2, CO2, O2, and CO in a methane--air flame. Curve fits of the recorded Raman spectra to detailed simulations of nitrogen spectra are used to determine the flame temperature from the shapes of the spectral signatures and from the ratio of the total intensities of the Stokes and anti-Stokes signals. The temperatures measured are in good agreement with radiation-corrected thermocouple measurements for a range of equivalence ratios.

  1. Adapting Raman Spectra from Laboratory Spectrometers to Portable Detection Libraries

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Weatherall, James; Barber, Jeffrey B.; Brauer, Carolyn S.

    2013-02-01

    Raman spectral data collected with high-resolution laboratory spectrometers are processed into a for- mat suitable for importing as a user library on a 1064nm DeltaNu rst generation, eld-deployable spectrometer prototype. The two laboratory systems used are a 1064nm Bruker spectrometer and a 785nm Kaiser spectrometer. The steps taken to compensate for device-dependent spectral resolution, wavenumber shifts between instruments, and wavenumber sensitivity variation are described.

  2. UV Resonant Raman Spectrometer with Multi-Line Laser Excitation

    NASA Technical Reports Server (NTRS)

    Lambert, James L.; Kohel, James M.; Kirby, James P.; Morookian, John Michael; Pelletier, Michael J.

    2013-01-01

    A Raman spectrometer employs two or more UV (ultraviolet) laser wavel engths to generate UV resonant Raman (UVRR) spectra in organic sampl es. Resonant Raman scattering results when the laser excitation is n ear an electronic transition of a molecule, and the enhancement of R aman signals can be several orders of magnitude. In addition, the Ra man cross-section is inversely proportional to the fourth power of t he wavelength, so the UV Raman emission is increased by another fact or of 16, or greater, over visible Raman emissions. The Raman-scatter ed light is collected using a high-resolution broadband spectrograph . Further suppression of the Rayleigh-scattered laser light is provi ded by custom UV notch filters.

  3. Characterization of Uranium Ore Concentrate Chemical Composition via Raman Spectroscopy

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Su, Yin-Fong; Tonkyn, Russell G.; Sweet, Lucas E.

    Uranium Ore Concentrate (UOC, often called yellowcake) is a generic term that describes the initial product resulting from the mining and subsequent milling of uranium ores en route to production of the U-compounds used in the fuel cycle. Depending on the mine, the ore, the chemical process, and the treatment parameters, UOC composition can vary greatly. With the recent advent of handheld spectrometers, we have chosen to investigate whether either commercial off-the-shelf (COTS) handheld devices or laboratory-grade Raman instruments might be able to i) identify UOC materials, and ii) differentiate UOC samples based on chemical composition and thus suggest themore » mining or milling process. Twenty-eight UOC samples were analyzed via FT-Raman spectroscopy using both 1064 nm and 785 nm excitation wavelengths. These data were also compared with results from a newly developed handheld COTS Raman spectrometer using a technique that lowers background fluorescence signal. Initial chemometric analysis was able to differentiate UOC samples based on mine location. Additional compositional information was obtained from the samples by performing XRD analysis on a subset of samples. The compositional information was integrated with chemometric analysis of the spectroscopic dataset allowing confirmation that class identification is possible based on compositional differences between the UOC samples, typically involving species such as U3O8, α-UO2(OH)2, UO4•2H2O (metastudtite), K(UO2)2O3, etc. While there are clearly excitation λ sensitivities, especially for dark samples, Raman analysis coupled with chemometric data treatment can nicely differentiate UOC samples based on composition and even mine origin.« less

  4. Miniature Spatial Heterodyne Raman Spectrometer with a Cell Phone Camera Detector.

    PubMed

    Barnett, Patrick D; Angel, S Michael

    2017-05-01

    A spatial heterodyne Raman spectrometer (SHRS) with millimeter-sized optics has been coupled with a standard cell phone camera as a detector for Raman measurements. The SHRS is a dispersive-based interferometer with no moving parts and the design is amenable to miniaturization while maintaining high resolution and large spectral range. In this paper, a SHRS with 2.5 mm diffraction gratings has been developed with 17.5 cm -1 theoretical spectral resolution. The footprint of the SHRS is orders of magnitude smaller than the footprint of charge-coupled device (CCD) detectors typically employed in Raman spectrometers, thus smaller detectors are being explored to shrink the entire spectrometer package. This paper describes the performance of a SHRS with 2.5 mm wide diffraction gratings and a cell phone camera detector, using only the cell phone's built-in optics to couple the output of the SHRS to the sensor. Raman spectra of a variety of samples measured with the cell phone are compared to measurements made using the same miniature SHRS with high-quality imaging optics and a high-quality, scientific-grade, thermoelectrically cooled CCD.

  5. Ultraviolet Raman Wide-Field Hyperspectral Imaging Spectrometer for Standoff Trace Explosive Detection.

    PubMed

    Hufziger, Kyle T; Bykov, Sergei V; Asher, Sanford A

    2017-02-01

    We constructed the first deep ultraviolet (UV) Raman standoff wide-field imaging spectrometer. Our novel deep UV imaging spectrometer utilizes a photonic crystal to select Raman spectral regions for detection. The photonic crystal is composed of highly charged, monodisperse 35.5 ± 2.9 nm silica nanoparticles that self-assemble in solution to produce a face centered cubic crystalline colloidal array that Bragg diffracts a narrow ∼1.0 nm full width at half-maximum (FWHM) UV spectral region. We utilize this photonic crystal to select and image two different spectral regions containing resonance Raman bands of pentaerythritol tetranitrate (PETN) and NH 4 NO 3 (AN). These two deep UV Raman spectral regions diffracted were selected by angle tuning the photonic crystal. We utilized this imaging spectrometer to measure 229 nm excited UV Raman images containing ∼10-1000 µg/cm 2 samples of solid PETN and AN on aluminum surfaces at 2.3 m standoff distances. We estimate detection limits of ∼1 µg/cm 2 for PETN and AN films under these experimental conditions.

  6. Accurate Differentiation of Carotenoid Pigments Using Flight Representative Raman Spectrometers

    NASA Astrophysics Data System (ADS)

    Malherbe, Cedric; Hutchinson, Ian B.; McHugh, Melissa; Ingley, Richard; Jehlička, Jan; Edwards, Howell G. M.

    2017-04-01

    Raman spectrometers will be utilized on two Mars rover missions, ExoMars and Mars 2020, in the near future, to search for evidence of life and habitable geological niches on Mars. Carotenoid pigments are recognized target biomarkers, and as they are highly active in Raman spectroscopy, they can be readily used to characterize the capabilities of space representative instrumentation. As part of the preparatory work being performed for the ExoMars mission, a gypsum crust colonized by microorganisms was interrogated with commercial portable Raman instruments and a flight representative Raman laser spectrometer. Four separate layers, each exhibiting different coloration resulting from specific halophilic microorganism activities within the gypsum crust, were studied by using two excitation wavelengths: 532 and 785 nm. Raman or fluorescence data were readily obtained during the present study. Gypsum, the main constituent of the crust, was detected with both excitation wavelengths, while the resonance Raman signal associated with carotenoid pigments was only detected with a 532 nm excitation wavelength. The fluorescence originating from bacteriochlorophyll a was found to overwhelm the Raman signal for the layer colonized by sulfur bacteria when interrogated with a 785 nm excitation wavelength. Finally, it was demonstrated that portable instruments and the prototype were capable of detecting a statistically significant difference in band positions of carotenoid signals between the sample layers.

  7. ExoMars Raman laser spectrometer for Exomars

    NASA Astrophysics Data System (ADS)

    Rull, F.; Sansano, A.; Díaz, E.; Canora, C. P.; Moral, A. G.; Tato, C.; Colombo, M.; Belenguer, T.; Fernández, M.; Manfredi, J. A. R.; Canchal, R.; Dávila, B.; Jiménez, A.; Gallego, P.; Ibarmia, S.; Prieto, J. A. R.; Santiago, A.; Pla, J.; Ramos, G.; Díaz, C.; González, C.

    2011-10-01

    The Raman Laser Spectrometer (RLS) is one of the Pasteur Payload instruments, within the ESA's Aurora Exploration Programme, ExoMars mission. ExoMars 2018 main Scientific objective is "Searching for evidence of past and present life on Mars". Raman Spectroscopy is used to analyze the vibrational modes of a substance either in the solid, liquid or gas state. It relies on the inelastic scattering (Raman Scattering) of monochromatic light produced by atoms and molecules. The radiation-matter interaction results in the energy of the exciting photons to be shifted up or down. The shift in energy appears as a spectral distribution and therefore provides an unique fingerprint by which the substances can be identified and structurally analyzed. The RLS is being developed by an European Consortium composed by Spanish, French, German and UK partners. It will perform Raman spectroscopy on crushed powdered samples inside the Rover's Analytical Laboratory Drawer. Instrument performances are being evaluated by means of simulation tools and development of an instrument prototype.

  8. Time Resolved Raman and Fluorescence Spectrometer for Planetary Mineralogy

    NASA Astrophysics Data System (ADS)

    Blacksberg, Jordana; Rossman, George

    2010-05-01

    Raman spectroscopy is a prime candidate for the next generation of planetary instruments, as it addresses the primary goal of mineralogical analysis which is structure and composition. It does not require sample preparation and provides unique mineral fingerprints, even for mixed phase samples. However, large fluorescence return from many mineral samples under visible light excitation can seriously compromise the quality of the spectra or even render Raman spectra unattainable. Fluorescence interference is likely to be a problem on Mars and is evident in Raman spectra of Martian Meteorites[1]. Our approach uses time resolution for elimination of fluorescence from Raman spectra, allowing for traditional visible laser excitation (532 nm). Since Raman occurs instantaneously with the laser pulse and fluorescence lifetimes vary from nsec to msec depending on the mineral, it is possible to separate them out in time. Complementary information can also be obtained simultaneously using the time resolved fluorescence data. The Simultaneous Spectral Temporal Adaptive Raman Spectrometer (SSTARS) is a planetary instrument under development at the Jet Propulsion Laboratory, capable of time-resolved in situ Raman and fluorescence spectroscopy. A streak camera and pulsed miniature microchip laser provide psec scale time resolution. Our ability to observe the complete time evolution of Raman and fluorescence in minerals provides a foundation for design of pulsed Raman and fluorescence spectrometers in diverse planetary environments. We will discuss the SSTARS instrument design and performance capability. We will also present time-resolved pulsed Raman spectra collected from a relevant set of minerals selected using available data on Mars mineralogy[2]. Of particular interest are minerals resulting from aqueous alteration on Mars. For comparison, we will present Raman spectra obtained using a commercial continuous wave (CW) green (514 nm) Raman system. In many cases using a CW laser

  9. Optimization of surface enhanced Raman scattering (SERS) assay for the transition from benchtop to handheld Raman systems

    NASA Astrophysics Data System (ADS)

    Schechinger, Monika; Marks, Haley; Locke, Andrea; Choudhury, Mahua; Coté, Gerard

    2017-02-01

    Human biomarkers are indicative of the body's relative state prior to the onset of disease, and sometimes before symptoms present. While blood biomarker detection has achieved considerable success in laboratory settings, its clinical application is lagging and commercial point-of-care devices are rare. A physician's ability to detect biomarkers such as microRNA-17, a potential epigenetic indicator of preeclampsia in pregnant woman, could enable early diagnosis and preventive intervention as early as the 1st trimester. One detection approach employing DNA-functionalized nanoparticles to detect microRNA-17, in conjunction with surface-enhanced Raman spectroscopy (SERS), has shown promise but is hindered, in part, by the use of large and expensive benchtop Raman microscopes. However, recent strides have been made in developing portable Raman systems for field applications. Characteristics of the SERS assay responsible for strengthening the assay's plasmonic response were explored, whilst comparing the results from both benchtop and portable Raman systems. The Raman spectra and intensity of three different types of photoactive molecules were compared as potential Raman reporter molecules: chromophores, fluorophores, and highly polarizable small molecules. Furthermore, the plasmonic characteristics governing the formation of SERS colloidal nanoparticle assemblies in response to DNA/miRNA hybridization were investigated. There were significant variations in the SERS enhancement in response to microRNA-17 using our assay depending on the excitation lasers at wavelengths of 532 nm and 785 nm, depending on which of the three different Raman systems were used (benchtop, portable, and handheld), and depending on which of the three different Raman reporters (chromophore, fluorophore, or Raman active molecule) were used. Analysis of data obtained did indicate that signal enhancement was better for the chromophore (MGITC) and Raman active molecule (DTNB) than it was for the

  10. Raman Laser Spectrometer Development for ExoMars

    NASA Astrophysics Data System (ADS)

    Pérez, C.; Colombo, M.; Díaz, C.; Santamaría, P.; Ingley, R.; Parrot, Y.; Maurice, S.; Popp, J.; Tarcea, N.; Edwards, H. G. M.

    2013-09-01

    The Raman Laser Spectrometer is one of the Pasteur Payload instruments, within the ESA's ExoMars mission. The aim of the work presented here is to provide a summary of the instrument design and performances. For that the instrument current characteristics and performances, and its technological ass assessment program main results are presented and discussed.

  11. Inexpensive Raman Spectrometer for Undergraduate and Graduate Experiments and Research

    ERIC Educational Resources Information Center

    Mohr, Christian; Spencer, Claire L.; Hippler, Michael

    2010-01-01

    We describe the construction and performance of an inexpensive modular Raman spectrometer that has been assembled in the framework of a fourth-year undergraduate project (costs below $5000). The spectrometer is based on a 4 mW 532 nm green laser pointer and a compact monochromator equipped with glass fiber optical connections, linear detector…

  12. Use of the Raman spectrometer in gemmological laboratories: Review

    NASA Astrophysics Data System (ADS)

    Kiefert, Lore; Karampelas, Stefanos

    2011-10-01

    The current paper gives an overview of the development of Raman spectrometry in gemmological laboratories. While before 1990s, no commercial gemmological laboratory possessed such an instrument, all larger international labs have acquired these instruments by now. The Raman spectrometer is routinely used for the detection of emerald fillers, HPHT treatment of diamonds, analysis of the nature of a gemstone, analysis of gemstone inclusions and treatments, and the characterisation of natural or colour enhanced pearls and corals. Future developments in gemstone research lie in the closer analysis of the features of Raman and PL spectra and in the combination of several instruments.

  13. Biogeological Analysis of Desert Varnish Using Portable Raman Spectrometers.

    PubMed

    Malherbe, Cedric; Ingley, Richard; Hutchinson, Ian; Edwards, Howell; Carr, Andrew S; Harris, Liam; Boom, Arnoud

    2015-06-01

    Desert varnishes are thin, dark mineral coatings found on some rocks in arid or semi-arid environments on Earth. Microorganisms may play an active role in their formation, which takes many hundreds of years. Their mineral matrix may facilitate the preservation of organic matter and is therefore of great relevance to martian exploration. Miniaturized Raman spectrometers (which allow nondestructive analysis of the molecular composition of a specimen) will equip rovers in forthcoming planetary exploration missions. In that context, and for the first time, portable Raman spectrometers operating in the green visible (532 nm as currently baselined for flight) and in the near-infrared (785 nm) were used in this study to investigate the composition (and substrate) of several samples of desert varnish. Rock samples that were suspected (and later confirmed) to be coated with desert varnish were recovered from two sites in the Mojave Desert, USA. The portable spectrometers were operated in flight-representative acquisition modes to identify the key molecular components of the varnish. The results demonstrate that the coatings typically comprise silicate minerals such as quartz, plagioclase feldspars, clays, ferric oxides, and hydroxides and that successful characterization of the samples can be achieved by using flightlike portable spectrometers for both the 532 and 785 nm excitation sources. In the context of searching for spectral signatures and identifying molecules that indicate the presence of extant and/or extinct life, we also report the detection of β-carotene in some of the samples. Analysis complications caused by the presence of rare earth element photoluminescence (which overlaps with and overwhelms the organic Raman signal when a 785 nm laser is employed) are also discussed.

  14. Spectra Transfer Between a Fourier Transform Near-Infrared Laboratory and a Miniaturized Handheld Near-Infrared Spectrometer.

    PubMed

    Hoffmann, Uwe; Pfeifer, Frank; Hsuing, Chang; Siesler, Heinz W

    2016-05-01

    The aim of this contribution is to demonstrate the transfer of spectra that have been measured on two different laboratory Fourier transform near-infrared (FT-NIR) spectrometers to the format of a handheld instrument by measuring only a few samples with both spectrometer types. Thus, despite the extreme differences in spectral range and resolution, spectral data sets that have been collected and quantitative as well as qualitative calibrations that have been developed thereof, respectively, over a long period on a laboratory instrument can be conveniently transferred to the handheld system. Thus, the necessity to prepare completely new calibration samples and the effort required to develop calibration models when changing hardware platforms is minimized. The enabling procedure is based on piecewise direct standardization (PDS) and will be described for the data sets of a quantitative and a qualitative application case study. For this purpose the spectra measured on the FT-NIR laboratory spectrometers were used as "master" data and transferred to the "target" format of the handheld instrument. The quantitative test study refers to transmission spectra of three-component liquid solvent mixtures whereas the qualitative application example encompasses diffuse reflection spectra of six different current polymers. To prove the performance of the transfer procedure for quantitative applications, partial least squares (PLS-1) calibrations were developed for the individual components of the solvent mixtures with spectra transferred from the master to the target instrument and the cross-validation parameters were compared with the corresponding parameters obtained for spectra measured on the master and target instruments, respectively. To test the retention of the discrimination ability of the transferred polymer spectra sets principal component analyses (PCAs) were applied exemplarily for three of the six investigated polymers and their identification was demonstrated by

  15. Fast, cheap and in control: spectral imaging with handheld devices

    NASA Astrophysics Data System (ADS)

    Gooding, Edward A.; Deutsch, Erik R.; Huehnerhoff, Joseph; Hajian, Arsen R.

    2017-05-01

    Remote sensing has moved out of the laboratory and into the real world. Instruments using reflection or Raman imaging modalities become faster, cheaper and more powerful annually. Enabling technologies include virtual slit spectrometer design, high power multimode diode lasers, fast open-loop scanning systems, low-noise IR-sensitive array detectors and low-cost computers with touchscreen interfaces. High-volume manufacturing assembles these components into inexpensive portable or handheld devices that make possible sophisticated decision-making based on robust data analytics. Examples include threat, hazmat and narcotics detection; remote gas sensing; biophotonic screening; environmental remediation and a host of other applications.

  16. The Raman Laser Spectrometer for the ExoMars Rover Mission to Mars

    NASA Astrophysics Data System (ADS)

    Rull, Fernando; Maurice, Sylvestre; Hutchinson, Ian; Moral, Andoni; Perez, Carlos; Diaz, Carlos; Colombo, Maria; Belenguer, Tomas; Lopez-Reyes, Guillermo; Sansano, Antonio; Forni, Olivier; Parot, Yann; Striebig, Nicolas; Woodward, Simon; Howe, Chris; Tarcea, Nicolau; Rodriguez, Pablo; Seoane, Laura; Santiago, Amaia; Rodriguez-Prieto, Jose A.; Medina, Jesús; Gallego, Paloma; Canchal, Rosario; Santamaría, Pilar; Ramos, Gonzalo; Vago, Jorge L.; RLS Team

    2017-07-01

    The Raman Laser Spectrometer (RLS) on board the ESA/Roscosmos ExoMars 2020 mission will provide precise identification of the mineral phases and the possibility to detect organics on the Red Planet. The RLS will work on the powdered samples prepared inside the Pasteur analytical suite and collected on the surface and subsurface by a drill system. Raman spectroscopy is a well-known analytical technique based on the inelastic scattering by matter of incident monochromatic light (the Raman effect) that has many applications in laboratory and industry, yet to be used in space applications. Raman spectrometers will be included in two Mars rovers scheduled to be launched in 2020. The Raman instrument for ExoMars 2020 consists of three main units: (1) a transmission spectrograph coupled to a CCD detector; (2) an electronics box, including the excitation laser that controls the instrument functions; and (3) an optical head with an autofocus mechanism illuminating and collecting the scattered light from the spot under investigation. The optical head is connected to the excitation laser and the spectrometer by optical fibers. The instrument also has two targets positioned inside the rover analytical laboratory for onboard Raman spectral calibration. The aim of this article was to present a detailed description of the RLS instrument, including its operation on Mars. To verify RLS operation before launch and to prepare science scenarios for the mission, a simulator of the sample analysis chain has been developed by the team. The results obtained are also discussed. Finally, the potential of the Raman instrument for use in field conditions is addressed. By using a ruggedized prototype, also developed by our team, a wide range of terrestrial analog sites across the world have been studied. These investigations allowed preparing a large collection of real, in situ spectra of samples from different geological processes and periods of Earth evolution. On this basis, we are working

  17. Fast discrimination of hydroxypropyl methyl cellulose using portable Raman spectrometer and multivariate methods

    NASA Astrophysics Data System (ADS)

    Song, Biao; Lu, Dan; Peng, Ming; Li, Xia; Zou, Ye; Huang, Meizhen; Lu, Feng

    2017-02-01

    Raman spectroscopy is developed as a fast and non-destructive method for the discrimination and classification of hydroxypropyl methyl cellulose (HPMC) samples. 44 E series and 41 K series of HPMC samples are measured by a self-developed portable Raman spectrometer (Hx-Raman) which is excited by a 785 nm diode laser and the spectrum range is 200-2700 cm-1 with a resolution (FWHM) of 6 cm-1. Multivariate analysis is applied for discrimination of E series from K series. By methods of principal components analysis (PCA) and Fisher discriminant analysis (FDA), a discrimination result with sensitivity of 90.91% and specificity of 95.12% is achieved. The corresponding receiver operating characteristic (ROC) is 0.99, indicting the accuracy of the predictive model. This result demonstrates the prospect of portable Raman spectrometer for rapid, non-destructive classification and discrimination of E series and K series samples of HPMC.

  18. Evaluation of portable Raman spectrometer with 1064 nm excitation for geological and forensic applications

    NASA Astrophysics Data System (ADS)

    Vítek, Petr; Ali, Esam M. A.; Edwards, Howell G. M.; Jehlička, Jan; Cox, Rick; Page, Kristian

    2012-02-01

    The development of miniaturized Raman instrumentation is in demand for applications relevant to forensic, pharmaceutical and art analyses, as well as geosciences, and planetary exploration. In this study we report on evaluation of a portable dispersive Raman spectrometer equipped with 1064 nm laser excitation. Selected samples from geological, geobiological and forensic areas of interest have been studied from which the advantages, disadvantages and the analytical potential of the instrument are assessed based on a comparison with bench instrumentation and other portable Raman spectrometers using 785 nm excitation. It is demonstrated that the instrument operating with 1064 nm excitation has potential for expanding the number and types of samples that can be measured by miniaturized Raman spectroscopy without interfering fluorescence background emission. It includes inorganic and organic minerals, biomolecules within living lichen and endolithic cyanobacteria as well as drugs of abuse and explosives.

  19. ExoMars Raman laser spectrometer breadboard overview

    NASA Astrophysics Data System (ADS)

    Díaz, E.; Moral, A. G.; Canora, C. P.; Ramos, G.; Barcos, O.; Prieto, J. A. R.; Hutchinson, I. B.; Ingley, R.; Colombo, M.; Canchal, R.; Dávila, B.; Manfredi, J. A. R.; Jiménez, A.; Gallego, P.; Pla, J.; Margoillés, R.; Rull, F.; Sansano, A.; López, G.; Catalá, A.; Tato, C.

    2011-10-01

    The Raman Laser Spectrometer (RLS) is one of the Pasteur Payload instruments, within the ESA's Aurora Exploration Programme, ExoMars mission. The RLS Instrument will perform Raman spectroscopy on crushed powdered samples deposited on a small container after crushing the cores obtained by the Rover's drill system. In response to ESA requirements for delta-PDR to be held in mid 2012, an instrument BB programme has been developed, by RLS Assembly Integration and Verification (AIV) Team to achieve the Technology Readiness level 5 (TRL5), during last 2010 and whole 2011. Currently RLS instrument is being developed pending its CoDR (Conceptual Design Revision) with ESA, in October 2011. It is planned to have a fully operative breadboard, conformed from different unit and sub-units breadboards that would demonstrate the end-to-end performance of the flight representative units by 2011 Q4.

  20. Evaluation of portable Raman spectrometer with 1064 nm excitation for geological and forensic applications.

    PubMed

    Vítek, Petr; Ali, Esam M A; Edwards, Howell G M; Jehlička, Jan; Cox, Rick; Page, Kristian

    2012-02-01

    The development of miniaturized Raman instrumentation is in demand for applications relevant to forensic, pharmaceutical and art analyses, as well as geosciences, and planetary exploration. In this study we report on evaluation of a portable dispersive Raman spectrometer equipped with 1064 nm laser excitation. Selected samples from geological, geobiological and forensic areas of interest have been studied from which the advantages, disadvantages and the analytical potential of the instrument are assessed based on a comparison with bench instrumentation and other portable Raman spectrometers using 785 nm excitation. It is demonstrated that the instrument operating with 1064 nm excitation has potential for expanding the number and types of samples that can be measured by miniaturized Raman spectroscopy without interfering fluorescence background emission. It includes inorganic and organic minerals, biomolecules within living lichen and endolithic cyanobacteria as well as drugs of abuse and explosives. Copyright © 2011 Elsevier B.V. All rights reserved.

  1. Design Considerations for a Portable Raman Probe Spectrometer for Field Forensics

    DOE PAGES

    Kelly, James F.; Blake, Thomas A.; Bernacki, Bruce E.; ...

    2012-01-01

    Raman spectroscopy has been shown to be a viable method for explosives detection. Currently most forensic Raman systems are either large, powerful instruments for laboratory experiments or handheld instruments forin situpoint detection. We have chosen to examine the performance of certain benchtop Raman probe systems with the goal of developing an inexpensive, portable system that could be used to operate in a field forensics laboratory to examine explosives-related residues or samples. To this end, a rugged, low distortion line imaging dispersive Raman spectrograph was configured to work at 830 nm laser excitation and was used to determine whether the compositionmore » of thin films of plastic explosives or small (e.g., ≤10 μm) particles of RDX or other explosives or oxidizers can be detected, identified, and quantified in the field. With 300 mW excitation energy, concentrations of RDX and PETN can be detected and reconstructed in the case of thin Semtex smears, but further work is needed to push detection limits of areal dosages to the ~1μg/cm 2level. We describe the performance of several probe/spectrograph combinations and show preliminary data for particle detection, calibration and detection linearity for mixed compounds, and so forth.« less

  2. Raman Laser Spectrometer for 2020 ExoMars

    NASA Astrophysics Data System (ADS)

    Moral, Andoni G.; Pérez, Carlos; INTA, University of Valladolid, INSA, Leicester University, IRAP, RAL, OHB

    2016-10-01

    The Raman Laser Spectrometer (RLS) is one of the Pasteur Payload instruments, within the ESA's Aurora Exploration Programme, ExoMars mission.ExoMars 2020 main scientific objective is "Searching for evidence of past and present life on Mars".Raman Spectroscopy is used to analyze the vibrational modes of a substance either in the solid, liquid or gas state. It relies on the inelastic scattering (Raman Scattering) of monochromatic light produced by atoms and molecules. The radiation-matter interaction results in the energy of the exciting photons to be shifted up or down. The shift in energy appears as a spectral distribution and therefore provides an unique fingerprint by which the substances can be identified and structurally analyzed.The RLS is being developed by an European Consortium composed by Spanish, UK, French and German partners. It will perform Raman spectroscopy on crushed powdered samples, obtained from 2 meters depth under Mars surface, inside the Rover's Analytical Laboratory Drawer.After a wide campaign for evaluating Instrument performances by means of simulation tools and development of an instrument prototype, Instrument Structural and Thermal Model was successfully delivered on February 2015, and the Engineering and Qualification Model has been manufactured and is expected to be delivered by November 2016, after a testing campaign developed during Q2 & Q3 of 2016.A summary of main Instrument performances obtained during the last months, achieving high levels of spectral resolution and accuracy in the obtained spectra.

  3. Development of a combined portable x-ray fluorescence and Raman spectrometer for in situ analysis.

    PubMed

    Guerra, M; Longelin, S; Pessanha, S; Manso, M; Carvalho, M L

    2014-06-01

    In this work, we have built a portable X-ray fluorescence (XRF) spectrometer in a planar configuration coupled to a Raman head and a digital optical microscope, for in situ analysis. Several geometries for the XRF apparatus and digital microscope are possible in order to overcome spatial constraints and provide better measurement conditions. With this combined spectrometer, we are now able to perform XRF and Raman measurements in the same point without the need for sample collection, which can be crucial when dealing with cultural heritage objects, as well as forensic analysis. We show the capabilities of the spectrometer by measuring several standard reference materials, as well as other samples usually encountered in cultural heritage, geological, as well as biomedical studies.

  4. Research of high power and stable laser in portable Raman spectrometer based on SHINERS technology

    NASA Astrophysics Data System (ADS)

    Cui, Yongsheng; Yin, Yu; Wu, Yulin; Ni, Xuxiang; Zhang, Xiuda; Yan, Huimin

    2013-08-01

    The intensity of Raman light is very weak, which is only from 10-12 to 10-6 of the incident light. In order to obtain the required sensitivity, the traditional Raman spectrometer tends to be heavy weight and large volume, so it is often used as indoor test device. Based on the Shell-Isolated Nanoparticle-Enhanced Raman Spectroscopy (SHINERS) method, Raman optical spectrum signal can be enhanced significantly and the portable Raman spectrometer combined with SHINERS method will be widely used in various fields. The laser source must be stable enough and able to output monochromatic narrow band laser with stable power in the portable Raman spectrometer based on the SHINERS method. When the laser is working, the change of temperature can induce wavelength drift, thus the power stability of excitation light will be affected, so we need to strictly control the working temperature of the laser, In order to ensure the stability of laser power and output current, this paper adopts the WLD3343 laser constant current driver chip of Wavelength Electronics company and MCU P89LPC935 to drive LML - 785.0 BF - XX laser diode(LD). Using this scheme, the Raman spectrometer can be small in size and the drive current can be constant. At the same time, we can achieve functions such as slow start, over-current protection, over-voltage protection, etc. Continuous adjustable output can be realized under control, and the requirement of high power output can be satisfied. Max1968 chip is adopted to realize the accurate control of the laser's temperature. In this way, it can meet the demand of miniaturization. In term of temperature control, integral truncation effect of traditional PID algorithm is big, which is easy to cause static difference. Each output of incremental PID algorithm has nothing to do with the current position, and we can control the output coefficients to avoid full dose output and immoderate adjustment, then the speed of balance will be improved observably. Variable

  5. Hand-held synchronous scan spectrometer for in situ and immediate detection of live/dead bacteria ratio

    NASA Astrophysics Data System (ADS)

    Li, Runze; Goswami, Umang; Walck, Matthew; Khan, Kasfia; Chen, Jie; Cesario, Thomas C.; Rentzepis, Peter M.

    2017-11-01

    The design, construction, and operation of a hand-held synchronously scanned, excitation-emission, double monochromator spectrometer is described. Data show that it is possible to record and display within minutes the fluorescence spectra and ratio of live/dead bacteria in situ. Excitation emission matrix contour plots display clearly bacteria fluorescence spectra before and after UV inactivation, respectively. The separation of the fluorescence band maxima of molecular components, such as tryptophan, tyrosine, and DNA, may be distinguished in the diffused fluorescence spectra of bacteria and mixtures.

  6. Hand-held synchronous scan spectrometer for in situ and immediate detection of live/dead bacteria ratio.

    PubMed

    Li, Runze; Goswami, Umang; Walck, Matthew; Khan, Kasfia; Chen, Jie; Cesario, Thomas C; Rentzepis, Peter M

    2017-11-01

    The design, construction, and operation of a hand-held synchronously scanned, excitation-emission, double monochromator spectrometer is described. Data show that it is possible to record and display within minutes the fluorescence spectra and ratio of live/dead bacteria in situ. Excitation emission matrix contour plots display clearly bacteria fluorescence spectra before and after UV inactivation, respectively. The separation of the fluorescence band maxima of molecular components, such as tryptophan, tyrosine, and DNA, may be distinguished in the diffused fluorescence spectra of bacteria and mixtures.

  7. Characterization and calibration of a combined laser Raman, fluorescence and coherent Raman spectrometer

    NASA Astrophysics Data System (ADS)

    Lawhead, Carlos; Cooper, Nathan; Anderson, Josiah; Shiver, Tegan; Ujj, Laszlo

    2014-03-01

    Electronic and vibrational spectroscopy is extremely important tools used in material characterization; therefore a table-top laser spectrometer system was built in the spectroscopy lab at the UWF physics department. The system is based upon an injection seeded nanosecond Nd:YAG Laser. The second and the third harmonics of the fundamental 1064 nm radiation are used to generate Raman and fluorescence spectra measured with MS260i imaging spectrograph occupied with a CCD detector and cooled to -85 °C, in order to minimize the dark background noise. The wavelength calibration was performed with the emission spectra of standard gas-discharge lamps. Spectral sensitivity calibration is needed before any spectra are recorded, because of the table-top nature of the instrument. A variety of intensity standards were investigated to find standards suitable for our table top setup that do not change the geometry of the system. High quality measurement of Raman standards where analyzed to test spectral corrections. Background fluorescence removal methods were used to improve Raman signal intensity reading on highly fluorescent molecules. This instrument will be used to measure vibrational and electronic spectra of biological molecules.

  8. A compressive-sensing Fourier-transform on-chip Raman spectrometer

    NASA Astrophysics Data System (ADS)

    Podmore, Hugh; Scott, Alan; Lee, Regina

    2018-02-01

    We demonstrate a novel compressive sensing Fourier-transform spectrometer (FTS) for snapshot Raman spectroscopy in a compact format. The on-chip FTS consists of a set of planar-waveguide Mach-Zehnder interferometers (MZIs) arrayed on a photonic chip, effecting a discrete Fourier-transform of the input spectrum. Incoherence between the sampling domain (time), and the spectral domain (frequency) permits compressive sensing retrieval using undersampled interferograms for sparse spectra such as Raman emission. In our fabricated device we retain our chosen bandwidth and resolution while reducing the number of MZIs, e.g. the size of the interferogram, to 1/4th critical sampling. This architecture simultaneously reduces chip footprint and concentrates the interferogram in fewer pixels to improve the signal to noise ratio. Our device collects interferogram samples simultaneously, therefore a time-gated detector may be used to separate Raman peaks from sample fluorescence. A challenge for FTS waveguide spectrometers is to achieve multi-aperture high throughput broadband coupling to a large number of single-mode waveguides. A multi-aperture design allows one to increase the bandwidth and spectral resolution without sacrificing optical throughput. In this device, multi-aperture coupling is achieved using an array of microlenses bonded to the surface of the chip, and aligned with a grid of vertically illuminated waveguide apertures. The microlens array accepts a collimated beam with near 100% fill-factor, and the resulting spherical wavefronts are coupled into the single-mode waveguides using 45& mirrors etched into the waveguide layer via focused ion-beam (FIB). The interferogram from the waveguide outputs is imaged using a CCD, and inverted via l1-norm minimization to correctly retrieve a sparse input spectrum.

  9. Combined micro-Raman/UV-visible/fluorescence spectrometer for high-throughput analysis of microsamples.

    PubMed

    Noh, Jermim; Suh, Yung Doug; Park, Yong Ki; Jin, Seung Min; Kim, Soo Ho; Woo, Seong Ihl

    2007-07-01

    Combined micro-Raman/UV-visible (vis)/fluorescence spectroscopy system, which can evaluate an integrated array of more than 10,000 microsamples with a minimuma size of 5 microm within a few hours, has been developed for the first time. The array of microsamples is positioned on a computer-controlled XY translation microstage with a spatial resolution of 1 mum so that the spectra can be mapped with micron precision. Micro-Raman spectrometers have a high spectral resolution of about 2 cm(-1) over the wave number range of 150-3900 cm(-1), while UV-vis and fluorescence spectrometers have high spectral resolutions of 0.4 and 0.1 nm over the wavelength range of 190-900 nm, respectively. In particular, the signal-to-noise ratio of the micro-Raman spectroscopy has been improved by using a holographic Raman grating and a liquid-nitrogen-cooled charge-coupled device detector. The performance of the combined spectroscopy system has been demonstrated by the high-throughput screening of a combinatorial ferroelectric (i.e., BaTi(x)Zr(1-x)O(3)) library. This system makes possible the structure analysis of various materials including ferroelectrics, catalysts, phosphors, polymers, alloys, and so on for the development of novel materials and the ultrasensitive detection of trace amounts of pharmaceuticals and diagnostic agents.

  10. The Mars Microbeam Raman Spectrometer: An Improved Advanced Brassboard

    NASA Technical Reports Server (NTRS)

    Haskin, L. A.; Wang, Alian

    2003-01-01

    An advanced brassboard (ADBB) of the Mars Miscrobeam Raman Spectrometer is being developed. The probe and spectrograph have been redesigned with improved optics and the electronics have been miniaturized. The modified optical design in the probe and spectrograph provides better spectral resolution than the previous model and enables the probe design to be more compatible with robotic arm deployment. The CCD detector is now cooled thermoelectrically in anticipation of eventual terrestrial field testing of the instrument.

  11. Surface-enhanced Raman spectroscopy detection of polybrominated diphenylethers using a portable Raman spectrometer.

    PubMed

    Jiang, Xiaohong; Lai, Yongchao; Wang, Wei; Jiang, Wei; Zhan, Jinhua

    2013-11-15

    Polybrominated diphenylethers (PBDEs), one of the most common brominated flame retardants, are toxic and persistent, generally detected by the chromatographic method. In this work, qualitative and quantitative detection of PBDEs were explored based on surface-enhanced Raman spectroscopy (SERS) technique using a portable Raman spectrometer. Alkanethiol modified silver nanoparticle aggregates were used as the substrate and PBDEs could be pre-concentrated close to the substrate surface through their hydrophobic interactions with alkanethiol. The effect of alkanethiols with different chain length on the SERS detection of PBDEs was evaluated. It was shown that 1-hexanethiol (HT) modified substrate has higher sensitivity, good stability and reusability. Qualitative and quantitative SERS detection of PBDEs in real sea water was accomplished, with the measured detection limits at 1.2×10(2) μg L(-1). These results illustrate SERS could be used as an effective method for the detection of PBDEs. Copyright © 2013 Elsevier B.V. All rights reserved.

  12. Estimation of antioxidant components of tomato using VIS-NIR reflectance data by handheld portable spectrometer

    NASA Astrophysics Data System (ADS)

    Szuvandzsiev, Péter; Helyes, Lajos; Lugasi, Andrea; Szántó, Csongor; Baranowski, Piotr; Pék, Zoltán

    2014-10-01

    Processing tomato production represents an important part of the total production of processed vegetables in the world. The quality characteristics of processing tomato, important for the food industry, are soluble solids content and antioxidant content (such as lycopene and polyphenols) of the fruit. Analytical quantification of these components is destructive, time and labour consuming. That is why researchers try to develop a non-destructive and rapid method to assess those quality parameters. The present study reports the suitability of a portable handheld visible near infrared spectrometer to predict soluble solids, lycopene and polyphenol content of tomato fruit puree. Spectral ranges of 500-1000 nm were directly acquired on fruit puree of five different tomato varieties using a FieldSpec HandHeld 2™ Portable Spectroradiometer. Immediately after spectral measurement, each fruit sample was analysed to determine soluble solids, lycopene and polyphenol content. Partial least square regressions were carried out to create models of prediction between spectral data and the values obtained from the analytical results. The accuracy of the predictions was analysed according to the coefficient of determination value (R2), the root mean square error of calibration/ cross-validation.

  13. Performance Assessment of a Plate Beam Splitter for Deep-Ultraviolet Raman Measurements with a Spatial Heterodyne Raman Spectrometer.

    PubMed

    Lamsal, Nirmal; Angel, S Michael

    2017-06-01

    In earlier works, we demonstrated a high-resolution spatial heterodyne Raman spectrometer (SHRS) for deep-ultraviolet (UV) Raman measurements, and showed its ability to measure UV light-sensitive compounds using a large laser spot size. We recently modified the SHRS by replacing the cube beam splitter (BS) with a custom plate beam splitter with higher light transmission, an optimized reflectance/transmission ratio, higher surface flatness, and better refractive index homogeneity than the cube beam splitter. Ultraviolet Raman measurements were performed using a SHRS modified to use the plate beam splitter and a matching compensator plate and compared to the previously described cube beam splitter setup. Raman spectra obtained using the modified SHRS exhibit much higher signals and signal-to-noise (S/N) ratio and show fewer spectral artifacts. In this paper, we discuss the plate beam splitter SHRS design features, the advantages over previous designs, and discuss some general SHRS issues such as spectral bandwidth, S/N ratio characteristics, and optical efficiency.

  14. Development and implementation of a pass/fail field-friendly method for detecting sildenafil in suspect pharmaceutical tablets using a handheld Raman spectrometer and silver colloids.

    PubMed

    Lanzarotta, Adam; Lorenz, Lisa; Batson, JaCinta S; Flurer, Cheryl

    2017-11-30

    A simple, fast, sensitive and effective pass/fail field-friendly method has been developed for detecting sildenafil in suspect Viagra and unapproved tablets using handheld Raman spectrometers and silver colloids. The method involves dissolving a portion of a tablet in water followed by filtration and addition of silver colloids, resulting in a solution that can be measured directly through a glass vial. Over one hundred counterfeit Viagra and unapproved tablets were examined on three different devices during the method development phase of the study. While the pass/fail approach was found to be 92.6% effective on average, the efficacy increased to 97.4% on average when coupled with the software's "Discover Mode" feature that allows the user to compare a suspect spectrum to that of a stored sildenafil spectrum. The lowest concentration of sildenafil in a water/colloid solution that yielded a "Pass" was found to be 7.6μg/mL or 7.6 parts per million (ppm). For the analysis of suspect tablets, this value was found to be as low as 10μg/mL and as high as 625μg/mL. This variability was likely related to the tablet formulation, e.g., concentration of sildenafil, presence and concentration of water-soluble and/or water-insoluble ingredients. However, since most counterfeit Viagra and unapproved tablets contain >50mg sildenafil per tablet, such low concentrations will not be encountered often. Limited in-lab and in-field validation studies were conducted in which analysts/field agents followed the procedure outlined in this study for small sample sets. These individuals were provided with written instructions, a ∼20min demonstration regarding how to perform the procedure and use the instrument, and a kit with field-friendly supplies (purified bottled water from a local grocery store, disposable plastic pipettes, eye-dropper with a silver colloid solution, etc.). The method proved to be 98.3% and 91.7% effective for the in-lab and in-field validation studies

  15. Raman Spectrometer for Surface Identification of Minerals and Organic Compounds on Silicate Planets and Small Solar-System Bodies

    NASA Technical Reports Server (NTRS)

    Haskin, Larry A.

    2000-01-01

    This summary is the final report of work on two-year grant. Our objectives for this project were (1) to demonstrate that Raman spectroscopy is an excellent method for determining mineralogy on the surface of the Moon, Mars, and other planetary bodies; (2) to construct a prototype of a small Raman spectrometer of the kind we suggest could be used on a lander or rover; and (3) to test the ability of that spectrometer to identify minerals and quantify mineral proportions in lunar materials and complex Martian analog materials, and to identify organic matter in planetary surface materials, all under roughly simulated field conditions. These goals have been met. The principal accomplishments of this PIDDP project have been the following: selection for flight; construction of a breadboard Raman probe; throughput confirmation of the breadboard Raman probe; selection of a laser; a breadboard spectrograph based on our PIDDP design; and overall result.

  16. Microscopic Mapping of Minerals and Organics: A Modular Pulsed Raman Spectrometer Adaptable to Both Small and Large Landed Planetary Missions

    NASA Astrophysics Data System (ADS)

    Blacksberg, J.; Alerstam, E.; Maruyama, Y.; Cochrane, C.; Rossman, G. R.

    2016-12-01

    Raman spectroscopy combined with microscopic imaging is a powerful technique used to interrogate geological materials. In the laboratory, Raman spectroscopy is commonly used in the geosciences for mapping both major and minor mineral and organic constituents on a fine scale. This technique has proven valuable in analyzing planetary materials, including meteorites and lunar samples. By simultaneously analyzing microtexture and mineralogy, micro-Raman spectroscopy can provide essential information for inferring geologic processes by which planetary surfaces have evolved. Because Raman can perform these capabilities in a way that is non-destructive, requiring no sample preparation, it is extremely well suited for deployment on a planetary lander or rover arm. The pulsed Raman spectrometer presented here has been designed for maximum flexibility using miniaturized modular components in order to remain easily adaptable and relevant to numerous planetary surface missions (e.g. asteroids, comets, Mars, Mars' moons, Europa, Titan). Building on the widely used 532 nm laser Raman technique, the pulsed Raman spectrometer takes advantage of recent developments in miniaturized pulsed lasers and detectors; the instrument uses sub-ns time gating to remove pervasive background interference caused by fluorescence inherent in many minerals and organics. This technique ensures acquisition of diagnostic Raman spectra, even in environments that have been known to severely challenge conventional methods (e.g. aqueously-formed minerals from similar environments on Earth). We present the architecture and performance of the pulsed Raman spectrometer, which relies on our single photon avalanche diode (SPAD) detector synchronized with our high-speed microchip laser, both custom-built for this application. It is these key technological developments that now make time-gated Raman spectroscopy possible for applications where miniaturization is crucial. We then discuss recent progress in laser

  17. Detector optimization for hand-held CsI(Tl)/HgI{sub 2} gamma-ray scintillation spectrometer applications

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wang, Y.J.; Patt, B.E.; Iwanczyk, J.S.

    Gamma-ray spectrometers using mercuric iodide (HgI{sub 2}) photodetectors (PDs) coupled with CsI(Tl) scintillators have shown excellent energy resolutions and high detection efficiency at room temperature. Additionally HgI{sub 2} semiconductor PDs allow for extreme miniaturization of the detector packaging compared with photomultiplier tube (PMT) based detectors. These advantages make possible the construction of a new generation of hand-held gamma-ray spectrometers. Studies of detector optimization for this application have been undertaken. Several contact materials including hydrogen and semi-transparent metal films have been evaluated and compared for their performances and long term stability. In order to provide higher gamma-ray detection efficiency (i.e., largermore » scintillator volume), but without causing significant degradation of the excellent response achieved with the matched scintillator/PD interface, the scintillator/PD configuration has been studied. A Monte Carlo simulation model has been developed so that the spectral shape can be predicted for various scintillator shapes and surface treatments.« less

  18. Distinction of Ecuadorian varieties of fermented cocoa beans using Raman spectroscopy.

    PubMed

    Vargas Jentzsch, Paul; Ciobotă, Valerian; Salinas, Wilson; Kampe, Bernd; Aponte, Pedro M; Rösch, Petra; Popp, Jürgen; Ramos, Luis A

    2016-11-15

    Cocoa (Theobroma cacao) is a crop of economic importance. In Ecuador, there are two predominant cocoa varieties: National and CCN-51. The National variety is the most demanded, since its cocoa beans are used to produce the finest chocolates. Raman measurements of fermented, dried and unpeeled cocoa beans were performed using a handheld spectrometer. Samples of the National and CCN-51 varieties were collected from different provinces and studied in this work. For each sample, 25 cocoa beans were considered and each bean was measured at 4 different spots. The most important Raman features of the spectra were assigned and discussed. The spectroscopic data were processed using chemometrics, resulting in a distinction of varieties with 91.8% of total accuracy. Differences in the average Raman spectra of cocoa beans from different sites but within the same variety can be attributed to environmental factors affecting the cocoa beans during the fermentation and drying processes. Copyright © 2016 Elsevier Ltd. All rights reserved.

  19. Acquisition of Raman Spectrometer and High Temperature and Pressure Reactor for Synthesis and Characterization of Carbon Based Hybrid Nanoparticles from Waste Wood

    DTIC Science & Technology

    2015-04-27

    from waste biomass using these two high temperature reactors. We have extensively used a Raman spectrometer to analyse as synthesized carbon materials...corporation). These tools were fully installed and operational. We have also synthesized carbon materials from waste biomass using these two high...materials from waste biomass using these two high temperature reactors. We have extensively used a Raman spectrometer to analyse as synthesized carbon

  20. US-ROK Action Sheet 34: Safeguards Application of a Hand-held Mechanically Cooled Germanium Spectrometer

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Dreyer, J.; Burks, M.; Ham, Y.

    2015-10-20

    This report summarizes results of Action Sheet 34 - for the cooperative efforts on the field testing and evaluation of a high-resolution, hand-held, gamma-ray spectrometer, known as SPG (Spectroscopic Planar Germanium), for safeguards application such as short notice inspections, UF6 analysis, enrichment determination, and other potential applications. The Spectroscopic Planar Germanium (SPG) has been demonstrated IAEA Physical Inventory Verification (PIV) in South Korea. This field test was a success and the feedback provided by KINAC, IAEA, and national laboratory staff was used to direct efforts to improve the instrument this year. Key points in this report include measurement results frommore » PIV, analysis of spectra with commercially available Ortec U235 and PC-FRAM, and completion of tripod and tungsten collimator and integration of user feedback.« less

  1. Applicability of a Diffuse Reflectance Infrared Fourier Transform handheld spectrometer to perform in situ analyses on Cultural Heritage materials

    NASA Astrophysics Data System (ADS)

    Arrizabalaga, Iker; Gómez-Laserna, Olivia; Aramendia, Julene; Arana, Gorka; Madariaga, Juan Manuel

    2014-08-01

    This work studies the applicability of a Diffuse Reflectance Infrared Fourier Transform handheld device to perform in situ analyses on Cultural Heritage assets. This portable diffuse reflectance spectrometer has been used to characterise and diagnose the conservation state of (a) building materials of the Guevara Palace (15th century, Segura, Basque Country, Spain) and (b) different 19th century wallpapers manufactured by the Santa Isabel factory (Vitoria-Gasteiz, Basque Country, Spain) and by the well known Dufour and Leroy manufacturers (Paris, France), all of them belonging to the Torre de los Varona Castle (Villanañe, Basque Country, Spain). In all cases, in situ measurements were carried out and also a few samples were collected and measured in the laboratory by diffuse reflectance spectroscopy (DRIFT) in order to validate the information obtained by the handheld instrument. In the analyses performed in situ, distortions in the diffuse reflectance spectra can be observed due to the presence of specular reflection, showing the inverted bands caused by the Reststrahlen effect, in particular on those IR bands with the highest absorption coefficients. This paper concludes that the results obtained in situ by a diffuse reflectance handheld device are comparable to those obtained with laboratory diffuse reflectance spectroscopy equipment and proposes a few guidelines to acquire good spectra in the field, minimising the influence caused by the specular reflection.

  2. Towards a portable Raman spectrometer using a concave grating and a time-gated CMOS SPAD.

    PubMed

    Li, Zhiyun; Deen, M Jamal

    2014-07-28

    A low-cost, compact Raman spectrometer suitable for the on-line water monitoring applications is explored. A custom-designed concave grating for wavelength selection was fabricated and tested. The detection of the Raman signal is accomplished with a time-gated single photon avalanche diode (TG-SPAD). A fixed gate window of 3.5ns is designed and applied to the TG-SPAD. The temporal resolution of the SPAD was ~60ps when tested with a 7ps, 532nm solid-state laser. To test the efficiency of the gating in fluorescence signal suppression, different detection windows (3ns-0.25ns) within the 3.5ns gate window are used to measure the Raman spectra of Rhodamine B. Strong Raman peaks are resolved with this low-cost system.

  3. Evaluation of portable Raman spectroscopy and handheld X-ray fluorescence analysis (hXRF) for the direct analysis of glyptics

    NASA Astrophysics Data System (ADS)

    Lauwers, D.; Candeias, A.; Coccato, A.; Mirao, J.; Moens, L.; Vandenabeele, P.

    2016-03-01

    In archaeometry, the advantages of a combined use of Raman spectroscopy and X-ray fluorescence spectroscopy are extensively discussed for applications such as the analysis of paintings, manuscripts, pottery, etc. Here, we demonstrate for the first time the advantage of using both techniques for analysing glyptics. These engraved gemstones or glass materials were originally used as stamps, to identify the owner, for instance on letters, but also on wine vessels. For this research, a set of 64 glyptics (42 Roman glass specimens and 22 modern ones), belonging to the collection of the museum 'Quinta das Cruzes' in Funchal (Madeira, Portugal), was analysed with portable Raman spectroscopy and handheld X-ray fluorescence (hXRF). These techniques were also used to confirm the gemological identification of these precious objects and can give extra information about the glass composition. Raman spectroscopy identifies the molecular composition as well as on the crystalline phases present. On the other hand, hXRF results show that the antique Roman glass samples are characterised with low Pb and Sn levels and that the modern specimens can be discriminated in two groups: lead-based and non-lead-based ones.

  4. Evaluation of portable Raman spectroscopy and handheld X-ray fluorescence analysis (hXRF) for the direct analysis of glyptics.

    PubMed

    Lauwers, D; Candeias, A; Coccato, A; Mirao, J; Moens, L; Vandenabeele, P

    2016-03-15

    In archaeometry, the advantages of a combined use of Raman spectroscopy and X-ray fluorescence spectroscopy are extensively discussed for applications such as the analysis of paintings, manuscripts, pottery, etc. Here, we demonstrate for the first time the advantage of using both techniques for analysing glyptics. These engraved gemstones or glass materials were originally used as stamps, to identify the owner, for instance on letters, but also on wine vessels. For this research, a set of 64 glyptics (42 Roman glass specimens and 22 modern ones), belonging to the collection of the museum 'Quinta das Cruzes' in Funchal (Madeira, Portugal), was analysed with portable Raman spectroscopy and handheld X-ray fluorescence (hXRF). These techniques were also used to confirm the gemological identification of these precious objects and can give extra information about the glass composition. Raman spectroscopy identifies the molecular composition as well as on the crystalline phases present. On the other hand, hXRF results show that the antique Roman glass samples are characterised with low Pb and Sn levels and that the modern specimens can be discriminated in two groups: lead-based and non-lead-based ones. Copyright © 2015 Elsevier B.V. All rights reserved.

  5. The research of data acquisition system for Raman spectrometer

    NASA Astrophysics Data System (ADS)

    Cui, Xiao; Guo, Pan; Zhang, Yinchao; Chen, Siying; Chen, He; Chen, Wenbo

    2011-11-01

    Raman spectrometer has been widely used as an identification tool for analyzing material structure and composition in many fields. However, Raman scattering echo signal is very weak, about dozens of photons at most in one laser plus signal. Therefore, it is a great challenge to design a Raman spectrum data acquisition system which could accurately receive the weak echo signal. The system designed in this paper receives optical signals with the principle of photon counter and could detect single photon. The whole system consists of a photoelectric conversion module H7421-40 and a photo counting card including a field programmable gate array (FPGA) chip and a PCI9054 chip. The module H7421-40 including a PMT, an amplifier and a discriminator has high sensitivity on wavelength from 300nm to 720nm. The Center Wavelength is 580nm which is close to the excitation wavelength (532nm), QE 40% at peak wavelength, Count Sensitivity is 7.8*105(S-1PW-1) and Count Linearity is 1.5MHZ. In FPGA chip, the functions are divided into three parts: parameter setting module, controlling module, data collection and storage module. All the commands, parameters and data are transmitted between FPGA and computer by PCI9054 chip through the PCI interface. The result of experiment shows that the Raman spectrum data acquisition system is reasonable and efficient. There are three primary advantages of the data acquisition system: the first one is the high sensitivity with single photon detection capability; the second one is the high integrated level which means all the operation could be done by the photo counting card; and the last one is the high expansion ability because of the smart reconfigurability of FPGA chip.

  6. Pocket-size near-infrared spectrometer for narcotic materials identification

    NASA Astrophysics Data System (ADS)

    Pederson, Christopher G.; Friedrich, Donald M.; Hsiung, Chang; von Gunten, Marc; O'Brien, Nada A.; Ramaker, Henk-Jan; van Sprang, Eric; Dreischor, Menno

    2014-05-01

    While significant progress has been made towards the miniaturization of Raman, mid-infrared (IR), and near-infrared (NIR) spectrometers for homeland security and law enforcement applications, there remains continued interest in pushing the technology envelope for smaller, lower cost, and easier to use analyzers. In this paper, we report on the use of the MicroNIR Spectrometer, an ultra-compact, handheld near infrared (NIR) spectrometer, the, that weighs less than 60 grams and measures < 50mm in diameter for the classification of 140 different substances most of which are controlled substances (such as cocaine, heroin, oxycodone, diazepam), as well as synthetic cathinones (also known as bath salts), and synthetic cannabinoids. A library of the materials was created from a master MicroNIR spectrometer. A set of 25 unknown samples were then identified with three other MicroNIRs showing: 1) the ability to correctly identify the unknown with a very low rate of misidentification, and 2) the ability to use the same library with multiple instruments. In addition, we have shown that through the use of innovative chemometric algorithms, we were able to identify the individual compounds that make up an unknown mixture based on the spectral library of the individual compounds only. The small size of the spectrometer is enabled through the use of high-performance linear variable filter (LVF) technology.

  7. Diffraction gratings metrology and ray-tracing results for an XUV Raman spectrometer at FLASH

    PubMed Central

    Dziarzhytski, Siarhei; Siewert, Frank; Gwalt, Grzegorz; Seliger, Tino; Rübhausen, Michael; Weigelt, Holger; Brenner, Günter

    2018-01-01

    The extreme-ultraviolet double-stage imaging Raman spectrometer is a permanent experimental endstation at the plane-grating monochromator beamline branch PG1 at FLASH at DESY in Hamburg, Germany. This unique instrument covers the photon energy range from 20 to 200 eV with high energy resolution of about 2 to 20 meV (design values) featuring an efficient elastic line suppression as well as effective stray light rejection. Such a design enables studies of low-energy excitations like, for example, phonons in solids close to the vicinity of the elastic line. The Raman spectrometer effectively operates with four reflective off-axial parabolic mirrors and two plane-grating units. The optics quality and their precise alignment are crucial to guarantee best performance of the instrument. Here, results on a comprehensive investigation of the quality of the spectrometer diffraction gratings are presented. The gratings have been characterized by ex situ metrology at the BESSY-II Optics Laboratory, employing slope measuring deflectometry and interferometry as well as atomic force microscopy studies. The efficiency of these key optical elements has been measured at the at-wavelength metrology laboratory using the reflectometer at the BESSY-II Optics beamline. Also, the metrology results are discussed with respect to the expected resolving power of the instrument by including them in ray-tracing studies of the instrument. PMID:29271763

  8. Time domain diffuse Raman spectrometer based on a TCSPC camera for the depth analysis of diffusive media.

    PubMed

    Konugolu Venkata Sekar, S; Mosca, S; Tannert, S; Valentini, G; Martelli, F; Binzoni, T; Prokazov, Y; Turbin, E; Zuschratter, W; Erdmann, R; Pifferi, A

    2018-05-01

    We present a time domain diffuse Raman spectrometer for depth probing of highly scattering media. The system is based on, to the best of our knowledge, a novel time-correlated single-photon counting (TCSPC) camera that simultaneously acquires both spectral and temporal information of Raman photons. A dedicated non-contact probe was built, and time domain Raman measurements were performed on a tissue mimicking bilayer phantom. The fluorescence contamination of the Raman signal was eliminated by early time gating (0-212 ps) the Raman photons. Depth sensitivity is achieved by time gating Raman photons at different delays with a gate width of 106 ps. Importantly, the time domain can provide time-dependent depth sensitivity leading to a high contrast between two layers of Raman signal. As a result, an enhancement factor of 2170 was found for our bilayer phantom which is much higher than the values obtained by spatial offset Raman spectroscopy (SORS), frequency offset Raman spectroscopy (FORS), or hybrid FORS-SORS on a similar phantom.

  9. Applicability of a Diffuse Reflectance Infrared Fourier Transform handheld spectrometer to perform in situ analyses on Cultural Heritage materials.

    PubMed

    Arrizabalaga, Iker; Gómez-Laserna, Olivia; Aramendia, Julene; Arana, Gorka; Madariaga, Juan Manuel

    2014-08-14

    This work studies the applicability of a Diffuse Reflectance Infrared Fourier Transform handheld device to perform in situ analyses on Cultural Heritage assets. This portable diffuse reflectance spectrometer has been used to characterise and diagnose the conservation state of (a) building materials of the Guevara Palace (15th century, Segura, Basque Country, Spain) and (b) different 19th century wallpapers manufactured by the Santa Isabel factory (Vitoria-Gasteiz, Basque Country, Spain) and by the well known Dufour and Leroy manufacturers (Paris, France), all of them belonging to the Torre de los Varona Castle (Villanañe, Basque Country, Spain). In all cases, in situ measurements were carried out and also a few samples were collected and measured in the laboratory by diffuse reflectance spectroscopy (DRIFT) in order to validate the information obtained by the handheld instrument. In the analyses performed in situ, distortions in the diffuse reflectance spectra can be observed due to the presence of specular reflection, showing the inverted bands caused by the Reststrahlen effect, in particular on those IR bands with the highest absorption coefficients. This paper concludes that the results obtained in situ by a diffuse reflectance handheld device are comparable to those obtained with laboratory diffuse reflectance spectroscopy equipment and proposes a few guidelines to acquire good spectra in the field, minimising the influence caused by the specular reflection. Copyright © 2014 Elsevier B.V. All rights reserved.

  10. Hazardous metals in vintage plastic toys measured by a handheld X-ray fluorescence spectrometer.

    PubMed

    Miller, Gillian Zaharias; Harris, Zoe E

    2015-01-01

    Over 100 plastic toys from the 1970s and 1980s, both polyvinyl chloride ("vinyl") and nonvinyl, were analyzed in the study described here using a handheld X-ray fluorescence spectrometer to quantify hazardous metal content. A sampling of recent vinyl toys was also tested. The majority of nonvinyl samples were Fisher Price brand toys. The vinyl toys consisted largely of Barbie dolls and other dolls. Overall, lead or cadmium was found in 67% of vintage plastic toys, frequently at concentrations exceeding current U.S. and European limits. Arsenic was detected at levels of concern in 16% of the samples. In the nonvinyl toys, heavy metal content was found to correlate with certain colors of plastic. The likely sources of the detected metals are discussed. None of the contemporary vinyl toys contained detectable cadmium, lead, or arsenic. Given that vintage toys remain in widespread use by children in homes and other locations, the results illuminate a potential source of heavy metal exposure for children.

  11. High-sensitivity Raman spectrometer to study pristine and irradiated interstellar ice analogs.

    PubMed

    Bennett, Chris J; Brotton, Stephen J; Jones, Brant M; Misra, Anupam K; Sharma, Shiv K; Kaiser, Ralf I

    2013-06-18

    We discuss the novel design of a sensitive, normal-Raman spectrometer interfaced to an ultra-high vacuum chamber (5 × 10(-11) Torr) utilized to investigate the interaction of ionizing radiation with low temperature ices relevant to the solar system and interstellar medium. The design is based on a pulsed Nd:YAG laser which takes advantage of gating techniques to isolate the scattered Raman signal from the competing fluorescence signal. The setup incorporates innovations to achieve maximum sensitivity without detectable heating of the sample. Thin films of carbon dioxide (CO2) ices of 10 to 396 nm thickness were prepared and characterized using both Fourier transform infrared (FT-IR) spectroscopy and HeNe interference techniques. The ν+ and ν- Fermi resonance bands of CO2 ices were observed by Raman spectroscopy at 1385 and 1278 cm(-1), respectively, and the band areas showed a linear dependence on ice thickness. Preliminary irradiation experiments are conducted on a 450 nm thick sample of CO2 ice using energetic electrons. Both carbon monoxide (CO) and the infrared inactive molecular oxygen (O2) products are readily detected from their characteristic Raman bands at 2145 and 1545 cm(-1), respectively. Detection limits of 4 ± 3 and 6 ± 4 monolayers of CO and O2 were derived, demonstrating the unique power to detect newly formed molecules in irradiated ices in situ. The setup is universally applicable to the detection of low-abundance species, since no Raman signal enhancement is required, demonstrating Raman spectroscopy as a reliable alternative, or complement, to FT-IR spectroscopy in space science applications.

  12. Hand-held radiometry: A set of notes developed for use at the Workshop of Hand-held radiometry

    NASA Technical Reports Server (NTRS)

    Jackson, R. D.; Pinter, P. J., Jr.; Reginato, R. J.; Idso, S. B. (Principal Investigator)

    1980-01-01

    A set of notes was developed to aid the beginner in hand-held radiometry. The electromagnetic spectrum is reviewed, and pertinent terms are defined. View areas of multiband radiometers are developed to show the areas of coincidence of adjacent bands. The amounts of plant cover seen by radiometers having different fields of view are described. Vegetation indices are derived and discussed. Response functions of several radiometers are shown and applied to spectrometer data taken over 12 wheat plots, to provide a comparison of instruments and bands within and among instruments. The calculation of solar time is reviewed and applied to the calculation of the local time of LANDSAT satellite overpasses for any particular location in the Northern Hemisphere. The use and misuse of hand-held infrared thermometers are discussed, and a procedure for photographic determination of plant cover is described. Some suggestions are offered concerning procedures to be followed when collecting hand-held spectral and thermal data. A list of references pertinent to hand-held radiometry is included.

  13. Raman Laser Spectrometer (RLS) on-board data processing and compression

    NASA Astrophysics Data System (ADS)

    Diaz, C.; Lopez, G.; Hermosilla, I.; Catalá, A.; Rodriguez, J. A.; Perez, C.; Diaz, E.

    2013-09-01

    The Raman Laser Spectrometer (RLS) is one of the Pasteur Payload instruments, within the ESA's Aurora Exploration Programme, ExoMars mission. Particularly, the RLS scientific objectives are as follows: identify organic compound and search for life; identify the mineral products and indicators of biologic activities; characterize mineral phases produced by water-related processes; characterize igneous minerals and their alteration products; characterise water/geochemical environment as a function of depth in the shallow subsurface. The straightforward approach of operating the instrument would result in a vast amount of spectrum images. A flexible on-board data processing concept has been designed to accommodate scientific return to the sample nature and data downlink bandwidth.

  14. Resonant Cavity Enhanced On-Chip Raman Spectrometer Array with Precisely Positioned Metallic Nano-Gaps for Single Molecule Detection

    DTIC Science & Technology

    2011-03-22

    the nanogaps are engraved on. Simulations show that smaller diameters of the nanowires should provide higher enhancement factors for SERS signal...Inverted Microscope with lasers of wavelengths of 512 to 633 nm as the excitation source. The signal was collected and analyzed by a 50cm Spectrometer...the optical path which can selectively pass the Raman signals and reject the excitation lasers . Figure 2.12 Custom built Raman microscope for the

  15. The ExoMars Raman spectrometer and the identification of biogeological spectroscopic signatures using a flight-like prototype.

    PubMed

    Edwards, Howell G M; Hutchinson, Ian; Ingley, Richard

    2012-10-01

    The molecular specificity of Raman spectroscopy provides a powerful tool for the analytical interrogation of mineralogical and many biological specimens. The Raman Laser Spectrometer (RLS) is a compact Raman spectrometer under development for deployment on the Martian surface as part of the forthcoming ESA ExoMars mission. This will be the first Raman instrument deployed in space. The scientific interpretation of the data emerging from such an instrument not only addresses the geological and mineral composition of the specimens but also enables an assessment to be made of organic biomaterials that may be preserved in the planetary geological record. The latter evidence centres on the residual and distinctive chemistry relating to the biological adaptation of the geological matrix that has occurred as a result of extremophilic organisms colonizing suitable geological niches for their survival in environmentally stressed habitats on Mars. These biogeological modifications have been studied terrestrially for Mars analogue sites and consist of both a geological component and residual key organic biomarkers, the recognition of which would be a prime factor in life detection surveys of a planetary surface and subsurface. In this paper, the protocols required for the Raman spectral discrimination of key biogeological features that may be detectable on the Martian planetary surface or subsurface are developed using the UK breadboard (UKBB) instrument. This instrument has been constructed to be functionally equivalent to the RLS flight instrument design in order to evaluate the feasible science return of the instrument which will finally be delivered to Mars. Initial Raman measurements using the UKBB are presented and compared with the performance of a commercial laboratory Raman microscope. The initial measurements reported here demonstrate this flight-like prototype achieves straightforward detection of biological signatures contained in geological matrices with Raman

  16. A Raman Spectrometer for the ExoMars 2020 Rover

    NASA Astrophysics Data System (ADS)

    Moral, A. G.; Rull, F.; Maurice, S.; Hutchinson, I.; Canora, C. P.; Seoane, L.; Rodríguez, P.; Canchal, R.; Gallego, P.; Ramos, G.; López, G.; Prieto, J. A. R.; Santiago, A.; Santamaría, P.; Colombo, M.; Belenguer, T.; Forni, O.

    2017-09-01

    The Raman project is devoted to the development of a Raman spectrometer and the support science associated for the rover EXOMARS mission to be launched in 2020. ExoMars is a double mission with two different launch opportunities, first one launched in March 2016 allowed to put in orbit the TGO with the communication system for the next mission. And the second one in 2020, deploying a rover which includes for the first time in the robotic exploration of Mars, a drill capable to obtain samples from the subsurface up to 2 meters depth. These samples will be crushed into a fine powder and delivered to the analytical instruments suite inside the rover by means of a dosing station. The EQM has been already qualified under a very demanding thermo mechanical environment, and under EMC tests, finally achieving required scientific performances. The RLS Engineering and Qualification Model has been manufactured and is expected to be delivered by May 2017, after a full qualification testing campaign developed during 2016 Q4, and 2017 Q1. It will finally delivered to ESA, by July 2017. December 2017 at TAS-I premises will do RLS FM delivery to ESA, for its final integration on the ExoMars 2020 Rover.

  17. The high throughput virtual slit enables compact, inexpensive Raman spectral imagers

    NASA Astrophysics Data System (ADS)

    Gooding, Edward; Deutsch, Erik R.; Huehnerhoff, Joseph; Hajian, Arsen R.

    2018-02-01

    Raman spectral imaging is increasingly becoming the tool of choice for field-based applications such as threat, narcotics and hazmat detection; air, soil and water quality monitoring; and material ID. Conventional fiber-coupled point source Raman spectrometers effectively interrogate a small sample area and identify bulk samples via spectral library matching. However, these devices are very slow at mapping over macroscopic areas. In addition, the spatial averaging performed by instruments that collect binned spectra, particularly when used in combination with orbital raster scanning, tends to dilute the spectra of trace particles in a mixture. Our design, employing free space line illumination combined with area imaging, reveals both the spectral and spatial content of heterogeneous mixtures. This approach is well suited to applications such as detecting explosives and narcotics trace particle detection in fingerprints. The patented High Throughput Virtual Slit1 is an innovative optical design that enables compact, inexpensive handheld Raman spectral imagers. HTVS-based instruments achieve significantly higher spectral resolution than can be obtained with conventional designs of the same size. Alternatively, they can be used to build instruments with comparable resolution to large spectrometers, but substantially smaller size, weight and unit cost, all while maintaining high sensitivity. When used in combination with laser line imaging, this design eliminates sample photobleaching and unwanted photochemistry while greatly enhancing mapping speed, all with high selectivity and sensitivity. We will present spectral image data and discuss applications that are made possible by low cost HTVS-enabled instruments.

  18. Direct and Sensitive Detection of CWA Simulants by Active Capillary Plasma Ionization Coupled to a Handheld Ion Trap Mass Spectrometer

    NASA Astrophysics Data System (ADS)

    Wolf, Jan-Christoph; Etter, Raphael; Schaer, Martin; Siegenthaler, Peter; Zenobi, Renato

    2016-07-01

    An active capillary plasma ionization (ACI) source was coupled to a handheld mass spectrometer (Mini 10.5; Aston Labs, West Lafayette, IN, USA) and applied to the direct gas-phase detection and quantification of chemical warfare agent (CWA) related chemicals. Complementing the discontinuous atmospheric pressure interface (DAPI) of the Mini 10.5 mass spectrometer with an additional membrane pump, a quasi-continuous sample introduction through the ACI source was achieved. Nerve agent simulants (three dialkyl alkylphosphonates, a dialkyl phosporamidate, and the pesticide dichlorvos) were detected at low gas-phase concentrations with limits of detection ranging from 1.0 μg/m3 to 6.3 μg/m3. Our results demonstrate a sensitivity enhancement for portable MS-instrumentation by using an ACI source, enabling direct, quantitative measurements of volatile organic compounds. Due to its high sensitivity, selectivity, low power consumption (<80 W) and weight (<13 kg), this instrumentation has the potential for direct on-site CWA detection as required by military or civil protection.

  19. ExoMars Raman Laser Spectrometer scientific required performances check with a Breadboard

    NASA Astrophysics Data System (ADS)

    Moral, A.; Díaz, E.; Ramos, G.; Rodríguez Prieto, J. A.; Pérez Canora, C.; Díaz, C.; Canchal, R.; Gallego, P.; Santamaría, P.; Colombo, M.

    2013-09-01

    The Raman Laser Spectrometer (RLS) is one of the Pasteur Payload instruments, within the ESA's Aurora Exploration Program, ExoMars mission. For being able to verify the achievement of the scientific objectives of the instrument, a Breadboard campaign was developed, for achieving instrument TRL5. Within the Instrument TRL5 Plan, it was required to every unit to develop its own Unit Breadboard, to check their own TRL5 and then to deliver it to System Team to be integrated and tested for finally checks Instrument performances.

  20. KazRAM: Build Your Own Raman Spectrometer for Environmental Science Education in Kazakhstan

    NASA Astrophysics Data System (ADS)

    Redfern, S. A. T.; Seitkan, A.

    2016-12-01

    The development of field-based spectroscopic investigations in Eastern Kazakhstan has been held-back by the lack of access to spectroscopic methods and technologies. This has been addressed in this project, in which we use a modular system of construction to allow a Raman spectrometer to be built in the University classroom. In collaboration with scientists at East Kazakhstan State University the team at Cambridge University have designed and developed an instrument that can be replicated in the near-field environment in Central Asia. This allows students to gain a first-hand understanding of the principles and practise of Raman spectroscopy by constructing their own instrument. The project will then allow measurement of key samples in both biological ecology settings as well as in geological and mining exploration contexts.

  1. Advancements in the safe identification of explosives using a Raman handheld instrument (ACE-ID)

    NASA Astrophysics Data System (ADS)

    Arnó, Josep; Frunzi, Michael; Kittredge, Marina; Sparano, Brian

    2014-05-01

    Raman spectroscopy is the technology of choice to identify bulk solid and liquid phase unknown samples without the need to contact the substance. Materials can be identified through transparent and semi-translucent containers such as plastic and glass. ConOps in emergency response and military field applications require the redesign of conventional laboratory units for: field portability; shock, thermal and chemical attack resistance; easy and intuitive use in restrictive gear; reduced size, weight, and power. This article introduces a new handheld instrument (ACE-IDTM) designed to take Raman technology to the next level in terms of size, safety, speed, and analytical performance. ACE-ID is ruggedized for use in severe climates and terrains. It is lightweight and can be operated with just one hand. An intuitive software interface guides users through the entire identification process, making it easy-to-use by personnel of different skill levels including military explosive ordinance disposal technicians, civilian bomb squads and hazmat teams. Through the use of embedded advanced algorithms, the instrument is capable of providing fluorescence correction and analysis of binary mixtures. Instrument calibration is performed automatically upon startup without requiring user intervention. ACE-ID incorporates an optical rastering system that diffuses the laser energy over the sample. This important innovation significantly reduces the heat induced in dark samples and the probability of ignition of susceptible explosive materials. In this article, the explosives identification performance of the instrument will be provided in addition to a quantitative evaluation of the safety improvements derived from the reduced ignition probabilities.

  2. Next generation in-situ optical Raman sensor for seawater investigations

    NASA Astrophysics Data System (ADS)

    Kolomijeca, A.; Kwon, Y.-H.; Ahmad, H.; Kronfeldt, H.-D.

    2012-04-01

    We introduce the next generation of optical sensors based on a combination of surfaced enhanced Raman scattering (SERS) and shifted excitation Raman difference spectroscopy (SERDS) suited for investigations of tiny concentrations of pollutions in the seawater. First field measurements were carried out in the Arctic area which is of global interest since it is more affected by global warming caused climatic changes than any other areas of our planet and it is a recipient for many toxic organic pollutants. A significant long-range atmospheric transport of pollutants to Svalbard is mainly originated from industrialized countries in Europe and North America during the last decades. Therefore, the main interest is to investigate the Arctic water column and also the sediments. Standard chemical methods for water/sediment analysis are extremely accurate but complex and time-consuming. The primary objective of our study was to develop a fast response in-situ optical sensor for easy to use and quick analysis. The system comprises several components: a handheld measurement head containing a 671 nm microsystem diode laser and the Raman optical bench, a laser driver electronics board, a custom-designed miniature spectrometer with an optical resolution of 8 cm-1 and a netbook to control the spectrometer as well as for data evaluation. We introduced for the first time the portable Raman sensor system on an Artic sea-trial during a three week cruise on board of the James Clark Ross research vessel in August 2011. Numerous Raman and SERS measurements followed by SERDS evaluations were taken around locations 78° N and 9° E. Different SERS substrates developed for SERS measurements in sea-water were tested for their capability to detect different substances (PAHs) in the water down to very small (nmol/l) concentrations. Stability tests of the substrates were carried out also for the applicability of our system e.g. on a mooring. Details of the in-situ Raman sensor were presented

  3. Raman Laser Spectrometer internal Optical Head current status: opto-mechanical redesign to minimize the excitation laser trace

    NASA Astrophysics Data System (ADS)

    Sanz, Miguel; Ramos, Gonzalo; Moral, Andoni; Pérez, Carlos; Belenguer, Tomás; del Rosario Canchal, María; Zuluaga, Pablo; Rodriguez, Jose Antonio; Santiago, Amaia; Rull, Fernando; Instituto Nacional de Técnica Aeroespacial (INTA); Ingeniería de Sistemas para la Defesa de España S.A. (ISDEFE)

    2016-10-01

    Raman Laser Spectrometer (RLS) is the Pasteur Payload instruments of the ExoMars mission, within the ESA's Aurora Exploration Programme, that will perform for the first time in an out planetary mission Raman spectroscopy. RLS is composed by SPU (Spectrometer Unit), iOH (Internal Optical Head), and ICEU (Instrument Control and Excitation Unit). iOH focuses the excitation laser on the samples (excitation path), and collects the Raman emission from the sample (collection path, composed on collimation system and filtering system). The original design presented a high laser trace reaching to the detector, and although a certain level of laser trace was required for calibration purposes, the high level degrades the Signal to Noise Ratio confounding some Raman peaks.The investigation revealing that the laser trace was not properly filtered as well as the iOH opto-mechanical redesign are reported on. After the study of the Long Pass Filters Optical Density (OD) as a function of the filtering stage to the detector distance, a new set of filters (Notch filters) was decided to be evaluated. Finally, and in order to minimize the laser trace, a new collection path design (mainly consisting on that the collimation and filtering stages are now separated in two barrels, and on the kind of filters to be used) was required. Distance between filters and collimation stage first lens was increased, increasing the OD. With this new design and using two Notch filters, the laser trace was reduced to assumable values, as can be observed in the functional test comparison also reported on this paper.

  4. Miniaturized time-resolved Raman spectrometer for planetary science based on a fast single photon avalanche diode detector array.

    PubMed

    Blacksberg, Jordana; Alerstam, Erik; Maruyama, Yuki; Cochrane, Corey J; Rossman, George R

    2016-02-01

    We present recent developments in time-resolved Raman spectroscopy instrumentation and measurement techniques for in situ planetary surface exploration, leading to improved performance and identification of minerals and organics. The time-resolved Raman spectrometer uses a 532 nm pulsed microchip laser source synchronized with a single photon avalanche diode array to achieve sub-nanosecond time resolution. This instrument can detect Raman spectral signatures from a wide variety of minerals and organics relevant to planetary science while eliminating pervasive background interference caused by fluorescence. We present an overview of the instrument design and operation and demonstrate high signal-to-noise ratio Raman spectra for several relevant samples of sulfates, clays, and polycyclic aromatic hydrocarbons. Finally, we present an instrument design suitable for operation on a rover or lander and discuss future directions that promise great advancement in capability.

  5. Fully reflective deep ultraviolet to near infrared spectrometer and entrance optics for resonance Raman spectroscopy

    NASA Astrophysics Data System (ADS)

    Schulz, B.; Bäckström, J.; Budelmann, D.; Maeser, R.; Rübhausen, M.; Klein, M. V.; Schoeffel, E.; Mihill, A.; Yoon, S.

    2005-07-01

    We present the design and performance of a new triple-grating deep ultraviolet to near-infrared spectrometer. The system is fully achromatic due to the use of reflective optics. The minimization of image aberrations by using on- and off- axis parabolic mirrors as well as elliptical mirrors yields a strong stray light rejection with high resolution over a wavelength range between 165 and 1000nm. The Raman signal is collected with a reflective entrance objective with a numerical aperture of 0.5, featuring a Cassegrain-type design. Resonance Raman studies on semiconductors and on correlated compounds, such as LaMnO3, highlight the performance of this instrument, and show diverse resonance effects between 1.96 and 5.4eV.

  6. Towards the hand-held mass spectrometer: design considerations, simulation, and fabrication of micrometer-scaled cylindrical ion traps

    NASA Astrophysics Data System (ADS)

    Blain, Matthew G.; Riter, Leah S.; Cruz, Dolores; Austin, Daniel E.; Wu, Guangxiang; Plass, Wolfgang R.; Cooks, R. Graham

    2004-08-01

    Breakthrough improvements in simplicity and reductions in the size of mass spectrometers are needed for high-consequence fieldable applications, including error-free detection of chemical/biological warfare agents, medical diagnoses, and explosives and contraband discovery. These improvements are most likely to be realized with the reconceptualization of the mass spectrometer, rather than by incremental steps towards miniaturization. Microfabricated arrays of mass analyzers represent such a conceptual advance. A massively parallel array of micrometer-scaled mass analyzers on a chip has the potential to set the performance standard for hand-held sensors due to the inherit selectivity, sensitivity, and universal applicability of mass spectrometry as an analytical method. While the effort to develop a complete micro-MS system must include innovations in ultra-small-scale sample introduction, ion sources, mass analyzers, detectors, and vacuum and power subsystems, the first step towards radical miniaturization lies in the design, fabrication, and characterization of the mass analyzer itself. In this paper we discuss design considerations and results from simulations of ion trapping behavior for a micrometer scale cylindrical ion trap (CIT) mass analyzer (internal radius r0 = 1 [mu]m). We also present a description of the design and microfabrication of a 0.25 cm2 array of 106 one-micrometer CITs, including integrated ion detectors, constructed in tungsten on a silicon substrate.

  7. Raman Spectroscopic Detection for Simulants of Chemical Warfare Agents Using a Spatial Heterodyne Spectrometer.

    PubMed

    Hu, Guangxiao; Xiong, Wei; Luo, Haiyan; Shi, Hailiang; Li, Zhiwei; Shen, Jing; Fang, Xuejing; Xu, Biao; Zhang, Jicheng

    2018-01-01

    Raman spectroscopic detection is one of the suitable methods for the detection of chemical warfare agents (CWAs) and simulants. Since the 1980s, many researchers have been dedicated to the research of chemical characteristic of CWAs and simulants and instrumental improvement for their analysis and detection. The spatial heterodyne Raman spectrometer (SHRS) is a new developing instrument for Raman detection that appeared in 2011. It is already well-known that SHRS has the characteristics of high spectral resolution, a large field-of-view, and high throughput. Thus, it is inherently suitable for the analysis and detection of these toxic chemicals and simulants. The in situ and standoff detection of some typical simulants of CWAs, such as dimethyl methylphosphonate (DMMP), diisopropyl methylphosphonate (DIMP), triethylphosphate (TEP), diethyl malonate (DEM), methyl salicylate (MES), 2-chloroethyl ethyl sulfide (CEES), and malathion, were tried. The achieved results show that SHRS does have the ability of in situ analysis or standoff detection for simulants of CWAs. When the laser power was set to as low as 26 mW, the SHRS still has a signal-to-noise ratio higher than 5 in in situ detection. The standoff Raman spectra detection of CWAs simulants was realized at a distance of 11 m. The potential feasibility of standoff detection of SHRS for CWAs simulants has been proved.

  8. Detection of pigments of halophilic endoliths from gypsum: Raman portable instrument and European Space Agency's prototype analysis.

    PubMed

    Culka, Adam; Osterrothová, Kateřina; Hutchinson, Ian; Ingley, Richard; McHugh, Melissa; Oren, Aharon; Edwards, Howell G M; Jehlička, Jan

    2014-12-13

    A prototype instrument, under development at the University of Leicester, for the future European Space Agency (ESA) ExoMars mission, was used for the analysis of microbial pigments within a stratified gypsum crust from a hypersaline saltern evaporation pond at Eilat (Israel). Additionally, the same samples were analysed using a miniaturized Raman spectrometer, featuring the same 532 nm excitation. The differences in the position of the specific bands, attributed to carotenoid pigments from different coloured layers, were minor when analysed by the ESA prototype instrument; therefore, making it difficult to distinguish among the different pigments. The portable Delta Nu Advantage instrument allowed for the discrimination of microbial carotenoids from the orange/green and purple layers. The purpose of this study was to complement previous laboratory results with new data and experience with portable or handheld Raman systems, even with a dedicated prototype Raman system for the exploration of Mars. The latter is equipped with an excitation wavelength falling within the carotenoid polyene resonance region. The ESA prototype Raman instrument detected the carotenoid pigments (biomarkers) with ease, although further detailed distinctions among them were not achieved. © 2014 The Author(s) Published by the Royal Society. All rights reserved.

  9. Detection of pigments of halophilic endoliths from gypsum: Raman portable instrument and European Space Agency's prototype analysis

    PubMed Central

    Culka, Adam; Osterrothová, Kateřina; Hutchinson, Ian; Ingley, Richard; McHugh, Melissa; Oren, Aharon; Edwards, Howell G. M.; Jehlička, Jan

    2014-01-01

    A prototype instrument, under development at the University of Leicester, for the future European Space Agency (ESA) ExoMars mission, was used for the analysis of microbial pigments within a stratified gypsum crust from a hypersaline saltern evaporation pond at Eilat (Israel). Additionally, the same samples were analysed using a miniaturized Raman spectrometer, featuring the same 532 nm excitation. The differences in the position of the specific bands, attributed to carotenoid pigments from different coloured layers, were minor when analysed by the ESA prototype instrument; therefore, making it difficult to distinguish among the different pigments. The portable Delta Nu Advantage instrument allowed for the discrimination of microbial carotenoids from the orange/green and purple layers. The purpose of this study was to complement previous laboratory results with new data and experience with portable or handheld Raman systems, even with a dedicated prototype Raman system for the exploration of Mars. The latter is equipped with an excitation wavelength falling within the carotenoid polyene resonance region. The ESA prototype Raman instrument detected the carotenoid pigments (biomarkers) with ease, although further detailed distinctions among them were not achieved. PMID:25368354

  10. Rotating samples in FT-RAMAN spectrometers

    NASA Astrophysics Data System (ADS)

    De Paepe, A. T. G.; Dyke, J. M.; Hendra, P. J.; Langkilde, F. W.

    1997-11-01

    It is customary to rotate samples in Raman spectroscopy to avoid absorption or sample heating. In FT-Raman experiments the rotation is always shown (typically 30-60 rpm) because higher speeds are thought to generate noise in the spectra. In this article we show that more rapid rotation is possible. A tablet containing maleic acid and one made up of sub-millimetre silica particles with metoprolol succinate as active ingredient were rotated at different speeds, up to 6760 rpm. The FT-Raman spectra were recorded and studied. We conclude that it is perfectly acceptable to rotate samples up to 1500 rpm.

  11. Raman-based system for DNA sequencing-mapping and other separations

    DOEpatents

    Vo-Dinh, Tuan

    1994-01-01

    DNA sequencing and mapping are performed by using a Raman spectrometer with a surface enhanced Raman scattering (SERS) substrate to enhance the Raman signal. A SERS label is attached to a DNA fragment and then analyzed with the Raman spectrometer to identify the DNA fragment according to characteristics of the Raman spectrum generated.

  12. Design and Calibration of a Raman Spectrometer for use in a Laser Spectroscopy Instrument Intended to Analyze Martian Surface and Atmospheric Characteristics for NASA

    NASA Technical Reports Server (NTRS)

    Lucas, John F.; Hornef, James

    2016-01-01

    This project's goal is the design of a Raman spectroscopy instrument to be utilized by NASA in an integrated spectroscopy strategy that will include Laser-Induced Breakdown Spectroscopy (LIBS) and Laser-Induced Florescence Spectroscopy (LIFS) for molecule and element identification on Mars Europa, and various asteroids. The instrument is to be down scaled from a dedicated rover mounted instrument into a compact unit with the same capabilities and accuracy as the larger instrument. The focus for this design is a spectrometer that utilizes Raman spectroscopy. The spectrometer has a calculated range of 218 nm wavelength spectrum with a resolution of 1.23 nm. To filter out the laser source wavelength of 532 nm the spectrometer design utilizes a 532 nm wavelength dichroic mirror and a 532 nm wavelength notch filter. The remaining scatter signal is concentrated by a 20 x microscopic objective through a 25-micron vertical slit into a 5mm diameter, 1cm focal length double concave focusing lens. The light is then diffracted by a 1600 Lines per Millimeter (L/mm) dual holographic transmission grating. This spectrum signal is captured by a 1-inch diameter double convex 3 cm focal length capture lens. An Intensified Charge Couple Device (ICCD) is placed within the initial focal cone of the capture lens and the Raman signal captured is to be analyzed through spectroscopy imaging software. This combination allows for accurate Raman spectroscopy to be achieved. The components for the spectrometer have been bench tested in a series of prototype developments based on theoretical calculations, alignment, and scaling strategies. The mounting platform is 2.5 cm wide by 8.8 cm long by 7 cm height. This platform has been tested and calibrated with various sources such as a neon light source and ruby crystal. This platform is intended to be enclosed in a ruggedized enclosure for mounting on a rover platform. The size and functionality of the Raman spectrometer allows for the rover to

  13. Raman-based system for DNA sequencing-mapping and other separations

    DOEpatents

    Vo-Dinh, T.

    1994-04-26

    DNA sequencing and mapping are performed by using a Raman spectrometer with a surface enhanced Raman scattering (SERS) substrate to enhance the Raman signal. A SERS label is attached to a DNA fragment and then analyzed with the Raman spectrometer to identify the DNA fragment according to characteristics of the Raman spectrum generated. 11 figures.

  14. Simultaneous Spectral Temporal Adaptive Raman Spectrometer - SSTARS

    NASA Technical Reports Server (NTRS)

    Blacksberg, Jordana

    2010-01-01

    Raman spectroscopy is a prime candidate for the next generation of planetary instruments, as it addresses the primary goal of mineralogical analysis, which is structure and composition. However, large fluorescence return from many mineral samples under visible light excitation can render Raman spectra unattainable. Using the described approach, Raman and fluorescence, which occur on different time scales, can be simultaneously obtained from mineral samples using a compact instrument in a planetary environment. This new approach is taken based on the use of time-resolved spectroscopy for removing the fluorescence background from Raman spectra in the laboratory. In the SSTARS instrument, a visible excitation source (a green, pulsed laser) is used to generate Raman and fluorescence signals in a mineral sample. A spectral notch filter eliminates the directly reflected beam. A grating then disperses the signal spectrally, and a streak camera provides temporal resolution. The output of the streak camera is imaged on the CCD (charge-coupled device), and the data are read out electronically. By adjusting the sweep speed of the streak camera, anywhere from picoseconds to milliseconds, it is possible to resolve Raman spectra from numerous fluorescence spectra in the same sample. The key features of SSTARS include a compact streak tube capable of picosecond time resolution for collection of simultaneous spectral and temporal information, adaptive streak tube electronics that can rapidly change from one sweep rate to another over ranges of picoseconds to milliseconds, enabling collection of both Raman and fluorescence signatures versus time and wavelength, and Synchroscan integration that allows for a compact, low-power laser without compromising ultimate sensitivity.

  15. Use of the product of mean intensity ratio (PMIR) technique for discriminant analysis of lycopene-rich vegetable juice using a portable NIR-excited Raman spectrometer.

    PubMed

    Hara, Risa; Ishigaki, Mika; Kitahama, Yasutaka; Ozaki, Yukihiro; Genkawa, Takuma

    2018-02-15

    In this study, a lycopene-content-based discriminant analysis was performed using a portable near-infrared-excited Raman spectrometer. In the vegetable-juice Raman spectra, the peak intensity of the lycopene band increased with increasing lycopene concentration, but scattering decreased the repeatability of the peak intensity. Consequently, developing a lycopene-concentration regression model using peak intensity is not straightforward. Therefore, a new method known as the product of mean intensity ratio (PMIR) analysis was developed to rapidly identify lycopene-rich samples on-site. In the PMIR analysis, Raman spectra are measured with short exposure times, confirming only the peaks of carotenoids with high concentrations, and thus the lycopene concentrations of vegetable juice samples could be determined successfully. Exposure times of 20ms and 100ms could detect lycopene concentrations of ≥5mg/100g and ≥2mg/100g with 93.2% and 97.7% accuracy, respectively; thus, lycopene-content-based discriminant analysis using the PMIR and a portable Raman spectrometer is feasible. Copyright © 2017 Elsevier Ltd. All rights reserved.

  16. Modulated Fourier Transform Raman Fiber-Optic Spectroscopy

    NASA Technical Reports Server (NTRS)

    Jensen, Brian J. (Inventor); Cooper, John B. (Inventor); Wise, Kent L. (Inventor)

    2000-01-01

    A modification to a commercial Fourier Transform (FT) Raman spectrometer is presented for the elimination of thermal backgrounds in the FT Raman spectra. The modification involves the use of a mechanical optical chopper to modulate the continuous wave laser, remote collection of the signal via fiber optics, and connection of a dual-phase digital-signal-processor (DSP) lock-in amplifier between the detector and the spectrometer's collection electronics to demodulate and filter the optical signals. The resulting Modulated Fourier Transform Raman Fiber-Optic Spectrometer is capable of completely eliminating thermal backgrounds at temperatures exceeding 300 C.

  17. Surface-enhanced Raman spectroscopy of urine by an ingenious near-infrared Raman spectrometer

    NASA Astrophysics Data System (ADS)

    Feng, Shangyuan; Chen, Weiwei; Li, Yongzeng; Chen, Guannan; Huang, Zufang; Liao, Xiaohua; Xie, Zhiming; Chen, Rong

    2007-11-01

    This paper demonstrates the potential of an elaborately devised near-infrared Raman system in analysis of urine. The broad band in the long-wavelength region of the electronic absorption spectra of the sol with added adsorbent at certain concentrations has been explained in terms of the aggregation of the colloidal silver particles. We have reported the surface-enhanced Raman (SERS) spectra of urine, and studied the silver solution enhanced effects on the urine Raman scattering. The Raman bands of human's urine was assigned to certain molecule vibrations. We have found that different donators have dissimilar SERS of urine in different physiological condition. Comparatively few studies have explored the ability of Raman spectroscopy for the analysis of urine acid. In the present report, we investigated the ability of surface enhanced Raman spectroscopy to measure uric acid in the human urine. The results suggested that the present Raman system holds considerable promise for practical use. Practical applications such as the quantitative medical examination of urine metabolites may also be feasible in the near future.

  18. Micro-mirror arrays for Raman spectroscopy

    NASA Astrophysics Data System (ADS)

    Duncan, W. M.

    2015-03-01

    In this research we study Raman and fluorescence spectroscopies as non-destructive and noninvasive methods for probing biological material and "living systems." Particularly for a living material any probe need be non-destructive and non-invasive, as well as provide real time measurement information and be cost effective to be generally useful. Over the past few years the components needed to measure weak and complex processes such as Raman scattering have evolved substantially with the ready availability of lasers, dichroic filters, low noise and sensitive detectors, digitizers and signal processors. A Raman spectrum consists of a wavelength or frequency spectrum that corresponds to the inelastic (Raman) photon signal that results from irradiating a "Raman active" material. Raman irradiation of a material usually and generally uses a single frequency laser. The Raman fingerprint spectrum that results from a Raman interaction can be determined from the frequencies scattered and received by an appropriate detector. Spectra are usually "digitized" and numerically matched to a reference sample or reference material spectra in performing an analysis. Fortunately today with the many "commercial off-the-shelf" components that are available, weak intensity effects such as Raman and fluorescence spectroscopy can be used for a number of analysis applications. One of the experimental limitations in Raman measurement is the spectrometer itself. The spectrometer is the section of the system that either by interference plus detection or by dispersion plus detection that "signal" amplitude versus energy/frequency signals are measured. Particularly in Raman spectroscopy, optical signals carrying desired "information" about the analyte are extraordinarily weak and require special considerations when measuring. We will discuss here the use of compact spectrometers and a micro-mirror array system (used is the digital micro-mirror device (DMD) supplied by the DLP® Products group of

  19. Handheld low-temperature plasma probe for portable "point-and-shoot" ambient ionization mass spectrometry.

    PubMed

    Wiley, Joshua S; Shelley, Jacob T; Cooks, R Graham

    2013-07-16

    We describe a handheld, wireless low-temperature plasma (LTP) ambient ionization source and its performance on a benchtop and a miniature mass spectrometer. The source, which is inexpensive to build and operate, is battery-powered and utilizes miniature helium cylinders or air as the discharge gas. Comparison of a conventional, large-scale LTP source against the handheld LTP source, which uses less helium and power than the large-scale version, revealed that the handheld source had similar or slightly better analytical performance. Another advantage of the handheld LTP source is the ability to quickly interrogate a gaseous, liquid, or solid sample without requiring any setup time. A small, 7.4-V Li-polymer battery is able to sustain plasma for 2 h continuously, while the miniature helium cylinder supplies gas flow for approximately 8 continuous hours. Long-distance ion transfer was achieved for distances up to 1 m.

  20. Scanning angle Raman spectroscopy: Investigation of Raman scatter enhancement techniques for chemical analysis

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Meyer, Matthew W.

    2013-01-01

    This thesis outlines advancements in Raman scatter enhancement techniques by applying evanescent fields, standing-waves (waveguides) and surface enhancements to increase the generated mean square electric field, which is directly related to the intensity of Raman scattering. These techniques are accomplished by employing scanning angle Raman spectroscopy and surface enhanced Raman spectroscopy. A 1064 nm multichannel Raman spectrometer is discussed for chemical analysis of lignin. Extending dispersive multichannel Raman spectroscopy to 1064 nm reduces the fluorescence interference that can mask the weaker Raman scattering. Overall, these techniques help address the major obstacles in Raman spectroscopy for chemical analysis, which include themore » inherently weak Raman cross section and susceptibility to fluorescence interference.« less

  1. A tunable single-monochromator Raman system based on the supercontinuum laser and tunable filters for resonant Raman profile measurements.

    PubMed

    Liu, X-L; Liu, H-N; Tan, P-H

    2017-08-01

    Resonant Raman spectroscopy requires that the wavelength of the laser used is close to that of an electronic transition. A tunable laser source and a triple spectrometer are usually necessary for resonant Raman profile measurements. However, such a system is complex with low signal throughput, which limits its wide application by scientific community. Here, a tunable micro-Raman spectroscopy system based on the supercontinuum laser, transmission grating, tunable filters, and single-stage spectrometer is introduced to measure the resonant Raman profile. The supercontinuum laser in combination with transmission grating makes a tunable excitation source with a bandwidth of sub-nanometer. Such a system exhibits continuous excitation tunability and high signal throughput. Its good performance and flexible tunability are verified by resonant Raman profile measurement of twisted bilayer graphene, which demonstrates its potential application prospect for resonant Raman spectroscopy.

  2. Non-destructive in situ study of "Mad Meg" by Pieter Bruegel the Elder using mobile X-ray fluorescence, X-ray diffraction and Raman spectrometers

    NASA Astrophysics Data System (ADS)

    Van de Voorde, Lien; Van Pevenage, Jolien; De Langhe, Kaat; De Wolf, Robin; Vekemans, Bart; Vincze, Laszlo; Vandenabeele, Peter; Martens, Maximiliaan P. J.

    2014-07-01

    "Mad Meg", a figure of Flemish folklore, is the subject of a famous oil-on-panel painting by the Flemish renaissance artist Pieter Bruegel the Elder, exhibited in the Museum Mayer van den Bergh (Antwerp, Belgium). This article reports on the in situ chemical characterization of this masterpiece by using currently available state-of-the-art portable analytical instruments. The applied non-destructive analytical approach involved the use of a) handheld X-ray fluorescence instrumentation for retrieving elemental information and b) portable X-ray fluorescence/X-ray diffraction instrumentation and laser-based Raman spectrometers for obtaining structural/molecular information. Next to material characterization of the used pigments and of the different preparation layers of the painting, also the verification of two important historical iconographic hypotheses is performed concerning the economic way of painting by Brueghel, and whether or not he used blue smalt pigment for painting the boat that appears towards the top of the painting. The pigments identified are smalt pigment (65% SiO2 + 15% K2O + 10% CoO + 5% Al2O3) for the blue color present in all blue areas of the painting, probably copper resinate for the green colors, vermillion (HgS) as red pigment and lead white is used to form different colors. The comparison of blue pigments used on different areas of the painting gives no differences in the elemental fingerprint which confirms the existing hypothesis concerning the economic painting method by Bruegel.

  3. A Laser-Pointer-Based Spectrometer for Endpoint Detection of EDTA Titrations

    ERIC Educational Resources Information Center

    Dahm, Christopher E.; Hall, James W.; Mattioni, Brian E.

    2004-01-01

    A laser spectrometer for the ethylenediaminetetra-acetic acid (EDTA) titration of magnesium or calcium ions that is designed around a handheld laser pointer as the source and a photoresistor as the detector is developed. Findings show that the use of the spectrometer reduces the degree of uncertainty and error in one part of the EDTA titrations,…

  4. Extending Raman's reach: enabling applications via greater sensitivity and speed

    NASA Astrophysics Data System (ADS)

    Creasey, David; Sullivan, Mike; Paul, Chris; Rathmell, Cicely

    2018-02-01

    Over the last decade, miniature fiber optic spectrometers have greatly expanded the ability of Raman spectroscopy to tackle practical applications in the field, from mobile pharmaceutical ID to hazardous material assessment in remote locations. There remains a gap, however, between the typical diode array spectrometer and their more sensitive benchtop analogs. High sensitivity, cooled Raman spectrometers have the potential to narrow that gap by providing greater sensitivity, better SNR, and faster measurement times. In this paper, we'll look at the key factors in the design of high sensitivity miniature Raman spectrometers and their associated accessories, as well as the key metric for direct comparison of these systems - limit of detection. With the availability of our high sensitivity Raman systems operating at wavelengths from the UV to NIR, many applications are now becoming practical in the field, from trace level detection to analysis of complex biological samples.

  5. Using a portable ion mobility spectrometer to screen dietary supplements for sibutramine.

    PubMed

    Dunn, Jamie D; Gryniewicz-Ruzicka, Connie M; Kauffman, John F; Westenberger, Benjamin J; Buhse, Lucinda F

    2011-02-20

    In response to recent incidents of undeclared sibutramine, an appetite suppressant found in dietary supplements, we developed a method to detect sibutramine using hand-held ion mobility spectrometers with an analysis time of 15 s. Ion mobility spectrometry is a high-throughput and sensitive technique that has been used for illicit drug, explosive, volatile organic compound and chemical warfare detection. We evaluated a hand-held ion mobility spectrometer as a tool for the analysis of supplement extracts containing sibutramine. The overall instrumental limit of detection of five portable ion mobility spectrometers was 2 ng of sibutramine HCl. When sample extractions containing 30 ng/μl or greater of sibutramine were analyzed, saturation of the ionization chamber of the spectrometer occurred and the instrument required more than three cleaning cycles to remove the drug. Hence, supplement samples suspected of containing sibutramine should be prepared at concentrations of 2-20 ng/μl. To obtain this target concentration range for products containing unknown amounts of sibutramine, we provided a simple sample preparation procedure, allowing the U.S. Food and Drug Administration or other agencies to screen products using the portable ion mobility spectrometer. Published by Elsevier B.V.

  6. Improving Spectral Results Using Row-by-Row Fourier Transform of Spatial Heterodyne Raman Spectrometer Interferogram.

    PubMed

    Barnett, Patrick D; Strange, K Alicia; Angel, S Michael

    2017-06-01

    This work describes a method of applying the Fourier transform to the two-dimensional Fizeau fringe patterns generated by the spatial heterodyne Raman spectrometer (SHRS), a dispersive interferometer, to correct the effects of certain types of optical alignment errors. In the SHRS, certain types of optical misalignments result in wavelength-dependent and wavelength-independent rotations of the fringe pattern on the detector. We describe here a simple correction technique that can be used in post-processing, by applying the Fourier transform in a row-by-row manner. This allows the user to be more forgiving of fringe alignment and allows for a reduction in the mechanical complexity of the SHRS.

  7. Novel handheld x-ray fluorescence spectrometer for routine testing for the presence of lead

    NASA Astrophysics Data System (ADS)

    Rensing, Noa M.; Tiernan, Timothy C.; Squillante, Michael R.

    2011-06-01

    RMD is developing a safe, inexpensive, and easy to operate lead detector for retailers and consumers that can reliably detect dangerous levels of lead in toys and other household products. Lead and its compounds have been rated as top chemicals that pose a great threat to human health. However, widespread testing for environmental lead is rarely undertaken until lead poisoning has already been diagnosed. The problem is not due to the accuracy or sensitivity of existing lead detection technology, but rather to the high expense, safety and licensing barriers of available test equipment. An inexpensive and easy to use lead detector would enable the identification of highly contaminated objects and areas and allow for timely and cost effective remediation. The military has similar needs for testing for lead and other heavy elements such as mercury, primarily in the decontamination of former military properties prior to their return to civilian use. RMD's research and development efforts are abased on advanced solid-state detectors combined with recently patented lead detection techniques to develop a consumer oriented lead detector that will be widely available and easy and inexpensive to use. These efforts will result in an instrument that offers: (1) high sensitivity, to identify objects containing dangerous amounts of lead, (2) low cost to encourage widespread testing by consumers and other end users and (3) convenient operation requiring no training or licensing. In contrast, current handheld x-ray fluorescence spectrometers either use a radioactive source requiring licensing and operating training, or use an electronic x-ray source that limits their sensitivity to surface lead.

  8. Blood identification and discrimination between human and nonhuman blood using portable Raman spectroscopy.

    PubMed

    Fujihara, J; Fujita, Y; Yamamoto, T; Nishimoto, N; Kimura-Kataoka, K; Kurata, S; Takinami, Y; Yasuda, T; Takeshita, H

    2017-03-01

    Raman spectroscopy is commonly used in chemistry to identify molecular structure. This technique is a nondestructive analysis and needs no sample preparation. Recently, Raman spectroscopy has been shown to be effective as a multipurpose analytical method for forensic applications. In the present study, blood identification and discrimination between human and nonhuman blood were performed by a portable Raman spectrometer, which can be used at a crime scene. To identify the blood and to discriminate between human and nonhuman blood, Raman spectra of bloodstains from 11 species (human, rat, mouse, cow, horse, sheep, pig, rabbit, cat, dog, and chicken) were taken using a portable Raman spectrometer. Raman peaks for blood (742, 1001, 1123, 1247, 1341, 1368, 1446, 1576, and 1619 cm -1 ) could be observed by the portable Raman spectrometer in all 11 species, and the human bloodstain could be distinguished from the nonhuman ones by using a principal component analysis. This analysis can be performed on a bloodstain sample of at least 3 months old. The portable Raman spectrometer can be used at a crime scene, and this analysis is useful for forensic examination.

  9. Quantitative determinations using portable Raman spectroscopy.

    PubMed

    Navin, Chelliah V; Tondepu, Chaitanya; Toth, Roxana; Lawson, Latevi S; Rodriguez, Jason D

    2017-03-20

    A portable Raman spectrometer was used to develop chemometric models to determine percent (%) drug release and potency for 500mg ciprofloxacin HCl tablets. Parallel dissolution and chromatographic experiments were conducted alongside Raman experiments to assess and compare the performance and capabilities of portable Raman instruments in determining critical drug attributes. All batches tested passed the 30min dissolution specification and the Raman model for drug release was able to essentially reproduce the dissolution profiles obtained by ultraviolet spectroscopy at 276nm for all five batches of the 500mg ciprofloxacin tablets. The five batches of 500mg ciprofloxacin tablets also passed the potency (assay) specification and the % label claim for the entire set of tablets run were nearly identical, 99.4±5.1 for the portable Raman method and 99.2±1.2 for the chromatographic method. The results indicate that portable Raman spectrometers can be used to perform quantitative analysis of critical product attributes of finished drug products. The findings of this study indicate that portable Raman may have applications in the areas of process analytical technology and rapid pharmaceutical surveillance. Published by Elsevier B.V.

  10. New Applications of Portable Raman Spectroscopy in Agri-Bio-Photonics

    NASA Astrophysics Data System (ADS)

    Voronine, Dmitri; Scully, Rob; Sanders, Virgil

    2014-03-01

    Modern optical techniques based on Raman spectroscopy are being used to monitor and analyze the health of cattle, crops and their natural environment. These optical tools are now available to perform fast, noninvasive analysis of live animals and plants in situ. We will report new applications of a portable handheld Raman spectroscopy to identification and taxonomy of plants. In addition, detection of organic food residues will be demonstrated. Advantages and limitations of current portable instruments will be discussed with suggestions for improved performance by applying enhanced Raman spectroscopic schemes.

  11. Development of a Laser Raman Spectrometer for In Situ Measurements in the Deep Ocean

    NASA Astrophysics Data System (ADS)

    White, S. N.; Brewer, P. G.; Peltzer, E. T.; Malby, G. E.; Pasteris, J. D.

    2002-12-01

    We have developed an ROV-deployable laser Raman spectrometer (LRS) to make in situ measurements of solid, liquid and gaseous species in the ocean (up to 3600 m depth). The LRS can be used to determine chemical and structural composition by irradiating the target with a laser and measuring the inelastically scattered (Raman shifted) light. The frequency shift from the exciting wavelength is due to characteristic molecular vibrations of the molecule; thus, the Raman spectrum serves as a fingerprint of a substance based on molecular composition and crystal structure. Raman spectroscopy is rapid, and typically requires no sample preparation. However, the weak Raman effect (~1 in 108 photons), the need for precise laser positioning, and fluorescence, pose challenges. We have acquired an LRS from Kaiser Optical Systems, Inc. and adapted it for use in the ocean by dividing the components into three pressure cases, building penetrating fiber optic cables, developing an Ethernet interface to control the system from shipboard, and redesigning and rebuilding non-robust components. Future improvements will include weight/size reduction, adding through-the-lens visualization, and using liquid core optical waveguides to increase sensitivity. An increase in sensitivity of x10 would permit direct observation of natural seawater HCO3 and CO3 peaks. The LRS has been successfully deployed over 6 times on MBARI's two remotely operated vehicles in 2002. Initial measurements of standards (e.g., isopropanol, calcite, and diamond) at depths as great as 3600 m have proven the effectiveness of the instrument in the deep ocean and have allowed us to advance methods for its use. Detailed spectra of seawater in situ and in the lab have also been obtained to better understand the ever-present seawater background (which includes water and SO4 peaks, and very little fluorescence). We have used the LRS in a number of deep-sea CO2 sequestration studies to acquire spectra of gaseous CO2 and CO2/N2

  12. Raman Spectroscopy of Microbial Pigments

    PubMed Central

    Edwards, Howell G. M.; Oren, Aharon

    2014-01-01

    Raman spectroscopy is a rapid nondestructive technique providing spectroscopic and structural information on both organic and inorganic molecular compounds. Extensive applications for the method in the characterization of pigments have been found. Due to the high sensitivity of Raman spectroscopy for the detection of chlorophylls, carotenoids, scytonemin, and a range of other pigments found in the microbial world, it is an excellent technique to monitor the presence of such pigments, both in pure cultures and in environmental samples. Miniaturized portable handheld instruments are available; these instruments can be used to detect pigments in microbiological samples of different types and origins under field conditions. PMID:24682303

  13. How to improve a critical performance for an ExoMars 2020 Scientific Instrument (RLS). Raman Laser Spectrometer Signal to Noise Ratio (SNR) Optimization

    NASA Astrophysics Data System (ADS)

    Canora, C. P.; Moral, A. G.; Rull, F.; Maurice, S.; Hutchinson, I.; Ramos, G.; López-Reyes, G.; Belenguer, T.; Canchal, R.; Prieto, J. A. R.; Rodriguez, P.; Santamaria, P.; Berrocal, A.; Colombo, M.; Gallago, P.; Seoane, L.; Quintana, C.; Ibarmia, S.; Zafra, J.; Saiz, J.; Santiago, A.; Marin, A.; Gordillo, C.; Escribano, D.; Sanz-Palominoa, M.

    2017-09-01

    The Raman Laser Spectrometer (RLS) is one of the Pasteur Payload instruments, within the ESA's Aurora Exploration Programme, ExoMars mission. Raman spectroscopy is based on the analysis of spectral fingerprints due to the inelastic scattering of light when interacting with matter. RLS is composed by Units: SPU (Spectrometer Unit), iOH (Internal Optical Head), and ICEU (Instrument Control and Excitation Unit) and the harnesses (EH and OH). The iOH focuses the excitation laser on the samples and collects the Raman emission from the sample via SPU (CCD) and the video data (analog) is received, digitalizing it and transmiting it to the processor module (ICEU). The main sources of noise arise from the sample, the background, and the instrument (Laser, CCD, focuss, acquisition parameters, operation control). In this last case the sources are mainly perturbations from the optics, dark signal and readout noise. Also flicker noise arising from laser emission fluctuations can be considered as instrument noise. In order to evaluate the SNR of a Raman instrument in a practical manner it is useful to perform end-to-end measurements on given standards samples. These measurements have to be compared with radiometric simulations using Raman efficiency values from literature and taking into account the different instrumental contributions to the SNR. The RLS EQM instrument performances results and its functionalities have been demonstrated in accordance with the science expectations. The Instrument obtained SNR performances in the RLS EQM will be compared experimentally and via analysis, with the Instrument Radiometric Model tool. The characterization process for SNR optimization is still on going. The operational parameters and RLS algorithms (fluorescence removal and acquisition parameters estimation) will be improved in future models (EQM-2) until FM Model delivery.

  14. Challenges Analyzing Gypsum on Mars by Raman Spectroscopy.

    PubMed

    Marshall, Craig P; Olcott Marshall, Alison

    2015-09-01

    Raman spectroscopy can provide chemical information about organic and inorganic substances quickly and nondestructively with little to no sample preparation, thus making it an ideal instrument for Mars rover missions. The ESA ExoMars planetary mission scheduled for launch in 2018 will contain a miniaturized Raman spectrometer (RLS) as part of the Pasteur payload operating with a continuous wave (CW) laser emitting at 532 nm. In addition, NASA is independently developing two miniaturized Raman spectrometers for the upcoming Mars 2020 rover mission, one of which is a remote (stand-off) Raman spectrometer that uses a pulse-gated 532 nm excitation system (SuperCam). The other is an in situ Raman spectrometer that employs a CW excitation laser emitting at 248.6 nm (SHERLOC). Recently, it has been shown with analyses by Curiosity that Gale Crater contains significantly elevated concentrations of transition metals such as Cr and Mn. Significantly, these transition metals are known to undergo fluorescence emission in the visible portion of the electromagnetic spectrum. Consequently, samples containing these metals could be problematic for the successful acquisition of fluorescence-free Raman spectra when using a CW 532 nm excitation source. Here, we investigate one analog environment, with a similar mineralogy and sedimentology to that observed in martian environments, as well as elevated Cr contents, to ascertain the best excitation wavelength to successfully collect fluorescence-free spectra from Mars-like samples. Our results clearly show that CW near-infrared laser excitation emitting at 785 nm is better suited to the collection of fluorescence-free Raman spectra than would be a CW laser emitting at 532 nm.

  15. Raman and Photoluminescence Spectroscopy in Mineral Identification

    NASA Astrophysics Data System (ADS)

    Kuehn, J. W.

    2014-06-01

    Raman spectroscopy is particularly useful for rapid identification of minerals and gemstones. Raman spectrometers also allow PL studies for authentication of samples and geological provenance, diamond type screening and detection of HPHT treatments.

  16. A method to enhance the measurement accuracy of Raman shift based on high precision calibration technique

    NASA Astrophysics Data System (ADS)

    Ding, Xiang; Li, Fei; Zhang, Jiyan; Liu, Wenli

    2016-10-01

    Raman spectrometers are usually calibrated periodically to ensure their measurement accuracy of Raman shift. A combination of a piece of monocrystalline silicon chip and a low pressure discharge lamp is proposed as a candidate for the reference standard of Raman shift. A high precision calibration technique is developed to accurately determine the standard value of the silicon's Raman shift around 520cm-1. The technique is described and illustrated by measuring a piece of silicon chip against three atomic spectral lines of a neon lamp. A commercial Raman spectrometer is employed and its error characteristics of Raman shift are investigated. Error sources are evaluated based on theoretical analysis and experiments, including the sample factor, the instrumental factor, the laser factor and random factors. Experimental results show that the expanded uncertainty of the silicon's Raman shift around 520cm-1 can acheive 0.3 cm-1 (k=2), which is more accurate than most of currently used reference materials. The results are validated by comparison measurement between three Raman spectrometers. It is proved that the technique can remarkably enhance the accuracy of Raman shift, making it possible to use the silicon and the lamp to calibrate Raman spectrometers.

  17. Handheld computing in pathology

    PubMed Central

    Park, Seung; Parwani, Anil; Satyanarayanan, Mahadev; Pantanowitz, Liron

    2012-01-01

    Handheld computing has had many applications in medicine, but relatively few in pathology. Most reported uses of handhelds in pathology have been limited to experimental endeavors in telemedicine or education. With recent advances in handheld hardware and software, along with concurrent advances in whole-slide imaging (WSI), new opportunities and challenges have presented themselves. This review addresses the current state of handheld hardware and software, provides a history of handheld devices in medicine focusing on pathology, and presents future use cases for such handhelds in pathology. PMID:22616027

  18. Multiplex coherent raman spectroscopy detector and method

    NASA Technical Reports Server (NTRS)

    Joyner, Candace C. (Inventor); Patrick, Sheena T. (Inventor); Chen, Peter (Inventor); Guyer, Dean R. (Inventor)

    2004-01-01

    A multiplex coherent Raman spectrometer (10) and spectroscopy method rapidly detects and identifies individual components of a chemical mixture separated by a separation technique, such as gas chromatography. The spectrometer (10) and method accurately identify a variety of compounds because they produce the entire gas phase vibrational Raman spectrum of the unknown gas. This is accomplished by tilting a Raman cell (20) to produce a high-intensity, backward-stimulated, coherent Raman beam of 683 nm, which drives a degenerate optical parametric oscillator (28) to produce a broadband beam of 1100-1700 nm covering a range of more than 3000 wavenumber. This broadband beam is combined with a narrowband beam of 532 nm having a bandwidth of 0.003 wavenumbers and focused into a heated windowless cell (38) that receives gases separated by a gas chromatograph (40). The Raman radiation scattered from these gases is filtered and sent to a monochromator (50) with multichannel detection.

  19. Multiplex coherent raman spectroscopy detector and method

    DOEpatents

    Chen, Peter; Joyner, Candace C.; Patrick, Sheena T.; Guyer, Dean R.

    2004-06-08

    A multiplex coherent Raman spectrometer (10) and spectroscopy method rapidly detects and identifies individual components of a chemical mixture separated by a separation technique, such as gas chromatography. The spectrometer (10) and method accurately identify a variety of compounds because they produce the entire gas phase vibrational Raman spectrum of the unknown gas. This is accomplished by tilting a Raman cell (20) to produce a high-intensity, backward-stimulated, coherent Raman beam of 683 nm, which drives a degenerate optical parametric oscillator (28) to produce a broadband beam of 1100-1700 nm covering a range of more than 3000 wavenumber. This broadband beam is combined with a narrowband beam of 532 nm having a bandwidth of 0.003 wavenumbers and focused into a heated windowless cell (38) that receives gases separated by a gas chromatograph (40). The Raman radiation scattered from these gases is filtered and sent to a monochromator (50) with multichannel detection.

  20. Portable handheld diffuse reflectance spectroscopy system for clinical evaluation of skin: a pilot study in psoriasis patients

    PubMed Central

    Tzeng, Shih-Yu; Guo, Jean-Yan; Yang, Chao-Chun; Hsu, Chao-Kai; Huang, Hung Ji; Chou, Shih-Jie; Hwang, Chi-Hung; Tseng, Sheng-Hao

    2016-01-01

    Diffuse reflectance spectroscopy (DRS) has been utilized to study biological tissues for a variety of applications. However, many DRS systems are not designed for handheld use and/or relatively expensive which limit the extensive clinical use of this technique. In this paper, we report a handheld, low-cost DRS system consisting of a light source, optical switch, and a spectrometer, that can precisely quantify the optical properties of tissue samples in the clinical setting. The handheld DRS system was employed to determine the skin chromophore concentrations, absorption and scattering properties of 11 patients with psoriasis. The measurement results were compared to the clinical severity of psoriasis as evaluated by dermatologist using PASI (Psoriasis Area and Severity Index) scores. Our statistical analyses indicated that the handheld DRS system could be a useful non-invasive tool for objective evaluation of the severity of psoriasis. It is expected that the handheld system can be used for the objective evaluation and monitoring of various skin diseases such as keloid and psoriasis. PMID:26977366

  1. 671-nm microsystem diode laser based on portable Raman sensor device for in-situ identification of meat spoilage

    NASA Astrophysics Data System (ADS)

    Sowoidnich, Kay; Schmidt, Heinar; Schwägele, Fredi; Kronfeldt, Heinz-Detlef

    2011-05-01

    Based on a miniaturized optical bench with attached 671 nm microsystem diode laser we present a portable Raman system for the rapid in-situ characterization of meat spoilage. It consists of a handheld sensor head (dimensions: 210 x 240 x 60 mm3) for Raman signal excitation and collection including the Raman optical bench, a laser driver, and a battery pack. The backscattered Raman radiation from the sample is analyzed by means of a custom-designed miniature spectrometer (dimensions: 200 x 190 x 70 mm3) with a resolution of 8 cm-1 which is fiber-optically coupled to the sensor head. A netbook is used to control the detector and for data recording. Selected cuts from pork (musculus longissimus dorsi and ham) stored refrigerated at 5 °C were investigated in timedependent measurement series up to three weeks to assess the suitability of the system for the rapid detection of meat spoilage. Using a laser power of 100 mW at the sample meat spectra can be obtained with typical integration times of 5 - 10 seconds. The complex spectra were analyzed by the multivariate statistical tool PCA (principal components analysis) to determine the spectral changes occurring during the storage period. Additionally, the Raman data were correlated with reference analyses performed in parallel. In that way, a distinction between fresh and spoiled meat can be found in the time slot of 7 - 8 days after slaughter. The applicability of the system for the rapid spoilage detection of meat and other food products will be discussed.

  2. SmallSat Spinning Lander with a Raman Spectrometer Payload for Future Ocean Worlds Exploration Missions

    NASA Technical Reports Server (NTRS)

    Ridenoure, R.; Angel, S. M.; Aslam, S.; Gorius, N.; Hewagama, T.; Nixon, C. A.; Sharma, S.

    2017-01-01

    We describe an Evolved Expendable Launch Vehicle Secondary Payload Adapter (ESPA)-class SmallSat spinning lander concept for the exploration of Europa or other Ocean World surfaces to ascertain the potential for life. The spinning lander will be ejected from an ESPA ring from an orbiting or flyby spacecraft and will carry on-board a standoff remote Spatial Heterodyne Raman spectrometer (SHRS) and a time resolved laser induced fluorescence spectrograph (TR-LIFS), and once landed and stationary the instruments will make surface chemical measurements. The SHRS and TR-LIFS have no moving parts have minimal mass and power requirements and will be able to characterize the surface and near-surface chemistry, including complex organic chemistry to constrain the ocean composition.

  3. SmallSat Spinning Lander with a Raman Spectrometer Payload for Future Ocean Worlds Exploration Missions

    NASA Astrophysics Data System (ADS)

    Ridenoure, R.; Angel, S. M.; Aslam, S.; Gorius, N.; Hewagama, T.; Nixon, C. A.; Sharma, S.

    2017-09-01

    We describe an Evolved Expendable Launch Vehicle Secondary Payload Adapter (ESPA)-class SmallSat spinning lander concept for the exploration of Europa or other Ocean World surfaces to ascertain the potential for life. The spinning lander will be ejected from an ESPA ring from an orbiting or flyby spacecraft and will carry on-board a standoff remote Spatial Heterodyne Raman spectrometer (SHRS) and a time resolved laser induced fluorescence spectrograph (TR-LIFS), and once landed and stationary the instruments will make surface chemical measurements. The SHRS and TR-LIFS have no moving parts have minimal mass and power requirements and will be able to characterize the surface and near-surface chemistry, including complex organic chemistry to constrain the ocean composition.

  4. Direction-Sensitive Hand-Held Gamma-Ray Spectrometer

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Mukhopadhyay, S.

    2012-10-04

    A novel, light-weight, hand-held gamma-ray detector with directional sensitivity is being designed. The detector uses a set of multiple rings around two cylindrical surfaces, which provides precise location of two interaction points on two concentric cylindrical planes, wherefrom the source location can be traced back by back projection and/or Compton imaging technique. The detectors are 2.0 × 2.0 mm europium-doped strontium iodide (SrI2:Eu2+) crystals, whose light output has been measured to exceed 120,000 photons/MeV, making it one of the brightest scintillators in existence. The crystal’s energy resolution, less than 3% at 662 keV, is also excellent, and the response ismore » highly linear over a wide range of gamma-ray energies. The emission of SrI2:Eu2+ is well matched to both photo-multiplier tubes and blue-enhanced silicon photodiodes. The solid-state photomultipliers used in this design (each 2.0 × 2.0 mm) are arrays of active pixel sensors (avalanche photodiodes driven beyond their breakdown voltage in reverse bias); each pixel acts as a binary photon detector, and their summed output is an analog representation of the total photon energy, while the individual pixel accurately defines the point of interaction. A simple back-projection algorithm involving cone-surface mapping is being modeled. The back projection for an event cone is a conical surface defining the possible location of the source. The cone axis is the straight line passing through the first and second interaction points.« less

  5. Comparative Variable Temperature Studies of Polyamide II with a Benchtop Fourier Transform and a Miniature Handheld Near-Infrared Spectrometer Using 2D-COS and PCMW-2D Analysis.

    PubMed

    Unger, Miriam; Pfeifer, Frank; Siesler, Heinz W

    2016-07-01

    The main objective of this communication is to compare the performance of a miniaturized handheld near-infrared (NIR) spectrometer with a benchtop Fourier transform near-infrared (FT-NIR) spectrometer. Generally, NIR spectroscopy is an extremely powerful analytical tool to study hydrogen-bonding changes of amide functionalities in solid and liquid materials and therefore variable temperature NIR measurements of polyamide II (PAII) have been selected as a case study. The information content of the measurement data has been further enhanced by exploiting the potential of two-dimensional correlation spectroscopy (2D-COS) and the perturbation correlation moving window two-dimensional (PCMW2D) evaluation technique. The data provide valuable insights not only into the changes of the hydrogen-bonding structure and the recrystallization of the hydrocarbon segments of the investigated PAII but also in their sequential order. Furthermore, it has been demonstrated that the 2D-COS and PCMW2D results derived from the spectra measured with the miniaturized NIR instrument are equivalent to the information extracted from the data obtained with the high-performance FT-NIR instrument. © The Author(s) 2016.

  6. Picosecond laser fabricated Ag, Au and Ag-Au nanoparticles for detecting ammonium perchlorate using a portable Raman spectrometer

    NASA Astrophysics Data System (ADS)

    Byram, Chandu; Moram, Sree Sathya Bharathi; Soma, Venugopal Rao

    2018-04-01

    In this paper, we present the results from fabrication studies of Ag, Au, and Ag-Au alloy nanoparticles (NPs) using picosecond laser ablation technique in the presence of liquid media. The alloy formation in the NPs was confirmed from UV-Visible measurements. The shape and crystallinity of NPs were investigated by using high resolution transmission electron microscopy (HRTEM), selected area diffraction pattern (SAED) and energy dispersive spectroscopy (EDS). The SERS effect of fabricated NPs was tested with methylene blue and an explosive molecule (ammonium perchlorate) using a portable Raman spectrometer and achieved EFs of ˜106.

  7. Optofluidic platforms based on surface-enhanced Raman scattering.

    PubMed

    Lim, Chaesung; Hong, Jongin; Chung, Bong Geun; deMello, Andrew J; Choo, Jaebum

    2010-05-01

    We report recent progress in the development of surface-enhanced Raman scattering (SERS)-based optofluidic platforms for the fast and sensitive detection of chemical and biological analytes. In the current context, a SERS-based optofluidic platform is defined as an integrated analytical device composed of a microfluidic element and a sensitive Raman spectrometer. Optofluidic devices for SERS detection normally involve nanocolloid-based microfluidic systems or metal nanostructure-embedded microfluidic systems. In the current review, recent advances in both approaches are surveyed and assessed. Additionally, integrated real-time sensing systems that combine portable Raman spectrometers with microfluidic devices are also reviewed. Such real-time sensing systems have significant utility in environmental monitoring, forensic science and homeland defense applications.

  8. Compact Solid-State 213 nm Laser Enables Standoff Deep Ultraviolet Raman Spectrometer: Measurements of Nitrate Photochemistry.

    PubMed

    Bykov, Sergei V; Mao, Michael; Gares, Katie L; Asher, Sanford A

    2015-08-01

    We describe a new compact acousto-optically Q-switched diode-pumped solid-state (DPSS) intracavity frequency-tripled neodymium-doped yttrium vanadate laser capable of producing ~100 mW of 213 nm power quasi-continuous wave as 15 ns pulses at a 30 kHz repetition rate. We use this new laser in a prototype of a deep ultraviolet (UV) Raman standoff spectrometer. We use a novel high-throughput, high-resolution Echelle Raman spectrograph. We measure the deep UV resonance Raman (UVRR) spectra of solid and solution sodium nitrate (NaNO3) and ammonium nitrate (NH4NO3) at a standoff distance of ~2.2 m. For this 2.2 m standoff distance and a 1 min spectral accumulation time, where we only monitor the symmetric stretching band, we find a solid state NaNO3 detection limit of ~100 μg/cm(2). We easily detect ~20 μM nitrate water solutions in 1 cm path length cells. As expected, the aqueous solutions UVRR spectra of NaNO3 and NH4NO3 are similar, showing selective resonance enhancement of the nitrate (NO3(-)) vibrations. The aqueous solution photochemistry is also similar, showing facile conversion of NO3(-) to nitrite (NO2(-)). In contrast, the observed UVRR spectra of NaNO3 and NH4NO3 powders significantly differ, because their solid-state photochemistries differ. Whereas solid NaNO3 photoconverts with a very low quantum yield to NaNO2, the NH4NO3 degrades with an apparent quantum yield of ~0.2 to gaseous species.

  9. Identification of targets at remote distances with Raman spectroscopy

    NASA Astrophysics Data System (ADS)

    Cox, Rick; Williams, Brad; Harpster, Mark H.

    2012-06-01

    In the past few years, there has arisen an intense demand for new generation technologies which provide for the rapid and sensitive stand-off detection of explosive compounds and hazardous chemicals. This has been fueled, in large part, by the escalation of threats to homeland security and the debilitating effects of IED devices in both civilian and war zones. In this paper, we describe two portable stand-off Raman spectrometers which have been developed by DeltaNu and are intended for use in different test environments. The first, the DeltaNu ObserveR™, is a handheld785 nm laser device suited for the close range detection of explosive materials during nighttime operations, or indoors under restricted light conditions. The second device, the ObserveR LR, is a tripod-mounted, solar blind system that enables detection at longer distances (ca. <30 m) with reduced fluorescence interference. A condensed summary is presented of different tests that have been conducted using these devices, and results are discussed within the context of technological improvements that will be required to adequately meet the challenge of robust explosive material detection.

  10. Study of a unique 16th century Antwerp majolica floor in the Rameyenhof castle's chapel by means of X-ray fluorescence and portable Raman analytical instrumentation

    NASA Astrophysics Data System (ADS)

    Van de Voorde, Lien; Vandevijvere, Melissa; Vekemans, Bart; Van Pevenage, Jolien; Caen, Joost; Vandenabeele, Peter; Van Espen, Piet; Vincze, Laszlo

    2014-12-01

    The most unique and only known 16th century Antwerp majolica tile floor in Belgium is situated in a tower of the Rameyenhof castle (Gestel, Belgium). This exceptional work of art has recently been investigated in situ by using X-ray fluorescence (XRF) and Raman spectroscopy in order to study the material characteristics. This study reports on the result of the analyses based on the novel combination of non-destructive and portable instrumentation, including a handheld XRF spectrometer for obtaining elemental information and a mobile Raman spectrometer for retrieving structural and molecular information on the floor tiles in the Rameyenhof castle and on a second, similar medallion, which is stored in the Rubens House museum in Antwerp (Belgium). The investigated material, majolica, is a type of ceramic, which fascinated many people and potters throughout history by its beauty and colourful appearance. In this study the characteristic major/minor and trace element signature of 16th century Antwerp majolica is determined and the pigments used for the colourful paintings present on the floor are identified. Furthermore, based on the elemental fingerprint of the white glaze, and in particular on the presence of zinc in the tiles - an element that was not used for making 16th century majolica - valuable information about the originality of the chapel floor and the two central medallions is acquired.

  11. Raman technology for future planetary missions

    NASA Astrophysics Data System (ADS)

    Thiele, Hans; Hofer, Stefan; Stuffler, Timo; Glier, Markus; Popp, Jürgen; Sqalli, Omar; Wuttig, Andreas; Riesenberg, Rainer

    2017-11-01

    Scientific experiments on mineral and biological samples with Raman excitation below 300nm show a wealth of scientific information. The fluorescence, which typically decreases signal quality in the visual or near infrared wavelength regime can be avoided with deep ultraviolet excitation. This wavelength regime is therefore regarded as highly attractive for a compact high performance Raman spectrometer for in-situ planetary research. Main objective of the MIRAS II breadboard activity presented here (MIRAS: Mineral Investigation with Raman Spectroscopy) is to evaluate, design and build a compact fiber coupled deep-UV Raman system breadboard. Additionally, the Raman system is combined with an innovative scanning microscope system to allow effective auto-focusing and autonomous orientation on the sample surface for high precise positioning or high resolution Raman mapping.

  12. Modulated FT- Raman Fiber-Optic Spectroscopy: A technique for Remotely Monitoring High-Temperature Reactions in Real-Time

    NASA Technical Reports Server (NTRS)

    Cooper, John B.; Wise, Kent L.; Jensen, Brian J.

    1997-01-01

    A modification to a commercial FT-Raman spectrometer is presented for the elimination of thermal backgrounds in FT-Raman spectra. The modification involves the use of a mechanical chopper to modulate the CW laser, remote collection of the signal via fiber optics, and connection of a dual-phase digital signal processor lock-in amplifier between the detector and the spectrometer's collection electronics to demodulate and filter the optical signals. The resulting modulated FT-Raman fiber-optic spectrometer is capable of completely eliminating thermal backgrounds at temperatures exceeding 370 C. In addition, the signal/noise of generated Raman spectra is greater than for spectra collected with the conventional FT-Raman under identical conditions and incident laser power. This is true for both room-temperature and hot samples. The method allows collection of data using preexisting spectrometer software. The total cost of the modification (excluding fiber optics) is approximately $3000 and requires less than 2 h to implement. This is the first report of Fr-Raman spectra collected at temperatures in excess of 300 C in the absence of thermal backgrounds.

  13. Hollow fiber-optic Raman probes for small experimental animals

    NASA Astrophysics Data System (ADS)

    Katagiri, Takashi; Hattori, Yusuke; Suzuki, Toshiaki; Matsuura, Yuji; Sato, Hidetoshi

    2007-02-01

    Two types of hollow fiber-optic probes are developed to measure the in vivo Raman spectra of small animals. One is the minimized probe which is end-sealed with the micro-ball lens. The measured spectra reflect the information of the sample's sub-surface. This probe is used for the measurement of the esophagus and the stomach via an endoscope. The other probe is a confocal Raman probe which consists of a single fiber and a lens system. It is integrated into the handheld microscope. A simple and small multimodal probe is realized because the hollow optical fiber requires no optical filters. The performance of each probe is examined and the effectiveness of these probes for in vivo Raman spectroscopy is shown by animal tests.

  14. Ultra-Compact Raman Spectrometer for Planetary Explorations

    NASA Technical Reports Server (NTRS)

    Davis, Derek; Hornef, James; Lucas, John; Elsayed-Ali, Hani; Abedin, M. Nurul

    2016-01-01

    To develop a compact Raman spectroscopy system with features that will make it suitable for future space missions which require surface landing. Specifically, this system will be appropriate for any mission in which planetary surface samples need to be measured and analyzed.

  15. Handheld juggernaut.

    PubMed

    Hagland, Mark

    2010-08-01

    Not only are hospital, health system, and medical group ClOs and clinical informaticists deploying handheld mobile devices across their enterprises as clinical computing tools; clinicians, especially physicians, are increasingly bringing their own BlackBerrys, iPhones, iPads, Android devices, and other handhelds, into patient care organizations for their personal clinical use. Not surprisingly, the challenges--as well as the opportunities--are multilayered and complex, and include the strategic planning, infrastructure, clinician preference, clinician workflow, and security issues involved in the emerging mobile handheld revolution. The diversity of approaches among ClOs and other healthcare IT leaders on such issues is striking, and underscores the need for flexibility and nimbleness going forward.

  16. Ultra-compact MEMS FTIR spectrometer

    NASA Astrophysics Data System (ADS)

    Sabry, Yasser M.; Hassan, Khaled; Anwar, Momen; Alharon, Mohamed H.; Medhat, Mostafa; Adib, George A.; Dumont, Rich; Saadany, Bassam; Khalil, Diaa

    2017-05-01

    Portable and handheld spectrometers are being developed and commercialized in the late few years leveraging the rapidly-progressing technology and triggering new markets in the field of on-site spectroscopic analysis. Although handheld devices were commercialized for the near-infrared spectroscopy (NIRS), their size and cost stand as an obstacle against the deployment of the spectrometer as spectral sensing components needed for the smart phone industry and the IoT applications. In this work we report a chip-sized microelectromechanical system (MEMS)-based FTIR spectrometer. The core optical engine of the solution is built using a passive-alignment integration technique for a selfaligned MEMS chip; self-aligned microoptics and a single detector in a tiny package sized about 1 cm3. The MEMS chip is a monolithic, high-throughput scanning Michelson interferometer fabricated using deep reactive ion etching technology of silicon-on-insulator substrate. The micro-optical part is used for conditioning the input/output light to/from the MEMS and for further light direction to the detector. Thanks to the all-reflective design of the conditioning microoptics, the performance is free of chromatic aberration. Complemented by the excellent transmission properties of the silicon in the infrared region, the integrated solution allows very wide spectral range of operation. The reported sensor's spectral resolution is about 33 cm-1 and working in the range of 1270 nm to 2700 nm; upper limited by the extended InGaAs detector. The presented solution provides a low cost, low power, tiny size, wide wavelength range NIR spectral sensor that can be manufactured with extremely high volumes. All these features promise the compatibility of this technology with the forthcoming demand of smart portable and IoT devices.

  17. A Foothold for Handhelds.

    ERIC Educational Resources Information Center

    Joyner, Amy

    2003-01-01

    Handheld computers provide students tremendous computing and learning power at about a 10th the cost of a regular computer. Describes the evolution of handhelds; provides some examples of their uses; and cites research indicating they are effective classroom tools that can improve efficiency and instruction. A sidebar lists handheld resources.…

  18. Measuring Rocket Engine Temperatures with Hydrogen Raman Spectroscopy

    NASA Technical Reports Server (NTRS)

    Wehrmeyer, Joseph A.; Osborne, Robin J.; Trinh, Huu P.; Turner, James (Technical Monitor)

    2001-01-01

    Optically accessible, high pressure, hot fire test articles are available at NASA Marshall for use in development of advanced rocket engine propellant injectors. Single laser-pulse ultraviolet (UV) Raman spectroscopy has been used in the past in these devices for analysis of high pressure H2- and CH4-fueled combustion, but relies on an independent pressure measurement in order to provide temperature information. A variation of UV Raman (High Resolution Hydrogen Raman Spectroscopy) is under development and will allow temperature measurement without the need for an independent pressure measurement, useful for flows where local pressure may not be accurately known. The technique involves the use of a spectrometer with good spectral resolution, requiring a small entrance slit for the spectrometer. The H2 Raman spectrum, when created by a narrow linewidth laser source and obtained from a good spectral resolution spectrograph, has a spectral shape related to temperature. By best-fit matching an experimental spectrum to theoretical spectra at various temperatures, a temperature measurement is obtained. The spectral model accounts for collisional narrowing, collisional broadening, Doppler broadening, and collisional line shifting of each Raman line making up the H2 Stokes vibrational Q-branch spectrum. At pressures from atmospheric up to those associated with advanced preburner components (5500 psia), collisional broadening though present does not cause significant overlap of the Raman lines, allowing high resolution H2 Raman to be used for temperature measurements in plumes and in high pressure test articles. Experimental demonstrations of the technique are performed for rich H2-air flames at atmospheric pressure and for high pressure, 300 K H2-He mixtures. Spectrometer imaging quality is identified as being critical for successful implementation of technique.

  19. Resonance Raman spectroscopy in malaria research.

    PubMed

    Wood, Bayden R; McNaughton, Don

    2006-10-01

    In recent years, the field of Raman spectroscopy has witnessed a surge in technological development, with the incorporation of ultrasensitive, charge-coupled devices, improved laser sources and precision Rayleigh-filter systems. This has led to the development of sensitive confocal micro-Raman spectrometers and imaging spectrometers that are capable of obtaining high spatial-resolution spectra and images of subcellular components within single living cells. This review reports on the application of resonance micro-Raman spectroscopy to the study of malaria pigment (hemozoin), a by-product of hemoglobin catabolization by the malaria parasite, which is an important target site for antimalarial drugs. The review aims to briefly describe recent studies on the application of this technology, elucidate molecular and electronic properties of the malaria pigment and its synthetic analog beta-hematin, provide insight into the mechanism of hemozoin formation within the food vacuole of the parasite, and comment on developing strategies for using this technology in drug-screening protocols.

  20. THE ROLE OF RAMAN SPECTROSCOPY IN THE ANALYTICAL CHEMISTRY OF POTABLE WATER

    EPA Science Inventory

    Advances in instrumentation are making Raman spectroscopy the tool of choice for an increasing number of chemical applications. For example, many recalcitrant industrial-process monitoring problems have been solved in recent years with in-line Raman spectrometers. Raman is attr...

  1. THE ROLE OF RAMAN SPECTROSCOPY IN THE ANALYTICAL CHEMISTRY OF POTABLE WATER

    EPA Science Inventory

    Advances in instrumentation are making Raman spectroscopy the tool of choice for an increasing number of chemical applications. For example, many recalcitrant industrial process monitoring problems have been solved in recent years with in-line Raman spectrometers. Raman is attr...

  2. Combining Portable Raman Probes with Nanotubes for Theranostic Applications

    PubMed Central

    Bhirde, Ashwinkumar A.; Liu, Gang; Jin, Albert; Iglesias-Bartolome, Ramiro; Sousa, Alioscka A.; Leapman, Richard D.; Gutkind, J. Silvio; Lee, Seulki; Chen, Xiaoyuan

    2011-01-01

    Recently portable Raman probes have emerged along with a variety of applications, including carbon nanotube (CNT) characterization. Aqueous dispersed CNTs have shown promise for biomedical applications such as drug/gene delivery vectors, photo-thermal therapy, and photoacoustic imaging. In this study we report the simultaneous detection and irradiation of carbon nanotubes in 2D monolayers of cancer cells and in 3D spheroids using a portable Raman probe. A portable handheld Raman instrument was utilized for dual purposes: as a CNT detector and as an irradiating laser source. Single-walled carbon nanotubes (SWCNTs) and multi-walled carbon nanotubes (MWCNTs) were dispersed aqueously using a lipid-polymer (LP) coating, which formed highly stable dispersions both in buffer and cell media. The LP coated SWCNT and MWCNT aqueous dispersions were characterized by atomic force microscopy, transmission electron microscopy, dynamic light scattering, Fourier transform infrared spectroscopy and Raman spectroscopy. The cellular uptake of the LP-dispersed SWCNTs and MWCNTs was observed using confocal microscopy, and fluorescein isothiocyanate (FITC)-nanotube conjugates were found to be internalized by ovarian cancer cells by using Z-stack fluorescence confocal imaging. Biocompatibility of SWCNTs and MWCNTs was assessed using a cell viability MTT assay, which showed that the nanotube dispersions did not hinder the proliferation of ovarian cancer cells at the dosage tested. Ovarian cancer cells treated with SWCNTs and MWCNTs were simultaneously detected and irradiated live in 2D layers of cancer cells and in 3D environments using the portable Raman probe. An apoptotic terminal deoxynucleotidyl transferase dUTP nick end labeling (TUNEL) assay carried out after laser irradiation confirmed that cell death occurred only in the presence of nanotube dispersions. We show for the first time that both SWCNTs and MWCNTs can be selectively irradiated and detected in cancer cells using a simple

  3. Combining portable Raman probes with nanotubes for theranostic applications.

    PubMed

    Bhirde, Ashwinkumar A; Liu, Gang; Jin, Albert; Iglesias-Bartolome, Ramiro; Sousa, Alioscka A; Leapman, Richard D; Gutkind, J Silvio; Lee, Seulki; Chen, Xiaoyuan

    2011-01-01

    Recently portable Raman probes have emerged along with a variety of applications, including carbon nanotube (CNT) characterization. Aqueous dispersed CNTs have shown promise for biomedical applications such as drug/gene delivery vectors, photo-thermal therapy, and photoacoustic imaging. In this study we report the simultaneous detection and irradiation of carbon nanotubes in 2D monolayers of cancer cells and in 3D spheroids using a portable Raman probe. A portable handheld Raman instrument was utilized for dual purposes: as a CNT detector and as an irradiating laser source. Single-walled carbon nanotubes (SWCNTs) and multi-walled carbon nanotubes (MWCNTs) were dispersed aqueously using a lipid-polymer (LP) coating, which formed highly stable dispersions both in buffer and cell media. The LP coated SWCNT and MWCNT aqueous dispersions were characterized by atomic force microscopy, transmission electron microscopy, dynamic light scattering, Fourier transform infrared spectroscopy and Raman spectroscopy. The cellular uptake of the LP-dispersed SWCNTs and MWCNTs was observed using confocal microscopy, and fluorescein isothiocyanate (FITC)-nanotube conjugates were found to be internalized by ovarian cancer cells by using Z-stack fluorescence confocal imaging. Biocompatibility of SWCNTs and MWCNTs was assessed using a cell viability MTT assay, which showed that the nanotube dispersions did not hinder the proliferation of ovarian cancer cells at the dosage tested. Ovarian cancer cells treated with SWCNTs and MWCNTs were simultaneously detected and irradiated live in 2D layers of cancer cells and in 3D environments using the portable Raman probe. An apoptotic terminal deoxynucleotidyl transferase dUTP nick end labeling (TUNEL) assay carried out after laser irradiation confirmed that cell death occurred only in the presence of nanotube dispersions. We show for the first time that both SWCNTs and MWCNTs can be selectively irradiated and detected in cancer cells using a simple

  4. Handheld and mobile hyperspectral imaging sensors for wide-area standoff detection of explosives and chemical warfare agents

    NASA Astrophysics Data System (ADS)

    Gomer, Nathaniel R.; Gardner, Charles W.; Nelson, Matthew P.

    2016-05-01

    Hyperspectral imaging (HSI) is a valuable tool for the investigation and analysis of targets in complex background with a high degree of autonomy. HSI is beneficial for the detection of threat materials on environmental surfaces, where the concentration of the target of interest is often very low and is typically found within complex scenery. Two HSI techniques that have proven to be valuable are Raman and shortwave infrared (SWIR) HSI. Unfortunately, current generation HSI systems have numerous size, weight, and power (SWaP) limitations that make their potential integration onto a handheld or field portable platform difficult. The systems that are field-portable do so by sacrificing system performance, typically by providing an inefficient area search rate, requiring close proximity to the target for screening, and/or eliminating the potential to conduct real-time measurements. To address these shortcomings, ChemImage Sensor Systems (CISS) is developing a variety of wide-field hyperspectral imaging systems. Raman HSI sensors are being developed to overcome two obstacles present in standard Raman detection systems: slow area search rate (due to small laser spot sizes) and lack of eye-safety. SWIR HSI sensors have been integrated into mobile, robot based platforms and handheld variants for the detection of explosives and chemical warfare agents (CWAs). In addition, the fusion of these two technologies into a single system has shown the feasibility of using both techniques concurrently to provide higher probability of detection and lower false alarm rates. This paper will provide background on Raman and SWIR HSI, discuss the applications for these techniques, and provide an overview of novel CISS HSI sensors focused on sensor design and detection results.

  5. Spectral domain, common path OCT in a handheld PIC based system

    NASA Astrophysics Data System (ADS)

    Leinse, Arne; Wevers, Lennart; Marchenko, Denys; Dekker, Ronald; Heideman, René G.; Ruis, Roosje M.; Faber, Dirk J.; van Leeuwen, Ton G.; Kim, Keun Bae; Kim, Kyungmin

    2018-02-01

    Optical Coherence Tomography (OCT) has made it into the clinic in the last decade with systems based on bulk optical components. The next disruptive step will be the introduction of handheld OCT systems. Photonic Integrated Circuit (PIC) technology is the key enabler for this further miniaturization. PIC technology allows signal processing on a stable platform and the implementation of a common path interferometer in that same platform creates a robust fully integrated OCT system with a flexible fiber probe. In this work the first PIC based handheld and integrated common path based spectral domain OCT system is described and demonstrated. The spectrometer in the system is based on an Arrayed Waveguide Grating (AWG) and fully integrated with the CCD and a fiber probe into a system operating at 850 nm. The AWG on the PIC creates a 512 channel spectrometer with a resolution of 0.22 nm enabling a high speed analysis of the full A-scan. The silicon nitride based proprietary waveguide technology (TriPleXTM) enables low loss complex photonic structures from the visible (405 nm) to IR (2350 nm) range, making it a unique candidate for OCT applications. Broadband AWG operation from visible to 1700 nm has been shown in the platform and Photonic Design Kits (PDK) are available enabling custom made designs in a system level design environment. This allows a low threshold entry for designing new (OCT) designs for a broad wavelength range.

  6. Optical properties behavior of three optical filters and a mirror used in the internal optical head of a Raman laser spectrometer after exposed to proton radiation

    NASA Astrophysics Data System (ADS)

    Guembe, V.; Alvarado, C. G.; Fernández-Rodriguez, M.; Gallego, P.; Belenguer, T.; Díaz, E.

    2017-11-01

    The Raman Laser Spectrometer is one of the ExoMars Pasteur Rover's payload instruments that is devoted to the analytical analysis of the geochemistry content and elemental composition of the observed minerals provided by the Rover through Raman spectroscopy technique. One subsystem of the RLS instrument is the Internal Optical Head unit (IOH), which is responsible for focusing the light coming from the laser onto the mineral under analysis and for collecting the Raman signal emitted by the excited mineral. The IOH is composed by 4 commercial elements for Raman spectroscopy application; 2 optical filters provided by Iridian Spectral Technologies Company and 1 optical filter and 1 mirror provided by Semrock Company. They have been exposed to proton radiation in order to analyze their optical behaviour due to this hostile space condition. The proton irradiation test was performed following the protocol of LINES lab (INTA). The optical properties have been studied through transmittance, reflectance and optical density measurements, the final results and its influence on optical performances are presented.

  7. Raman Shifted Nd:YAG Class I Eye-Safe Laser Development 21 January 1986

    NASA Astrophysics Data System (ADS)

    Nichols, R. W.; Ng, W. K.

    1986-07-01

    Hughes Aircraft has been developing a hand-held eye-safe laser rangefinder fo1r the Army utilizing Stimulated Raman Scattering technology. The device uses the 2915 cm-1 vibrational mode of methane (CH4) to wavelength shift the Nd:YAG pump laser's 1.064 micron to an eye-safe 1.543 micron. The result is a lightweight BRH Class I eye-safe tactical device. A brief description of Raman wavelength shifting basics is followed by description of the Hughes system.

  8. High-performance dispersive Raman and absorption spectroscopy as tools for drug identification

    NASA Astrophysics Data System (ADS)

    Pawluczyk, Olga; Andrey, Sam; Nogas, Paul; Roy, Andrew; Pawluczyk, Romuald

    2009-02-01

    Due to increasing availability of pharmaceuticals from many sources, a need is growing to quickly and efficiently analyze substances in terms of the consistency and accuracy of their chemical composition. Differences in chemical composition occur at very low concentrations, so that highly sensitive analytical methods become crucial. Recent progress in dispersive spectroscopy with the use of 2-dimensional detector arrays, permits for signal integration along a long (up to 12 mm long) entrance slit of a spectrometer, thereby increasing signal to noise ratio and improving the ability to detect small concentration changes. This is achieved with a non-scanning, non-destructive system. Two different methods using P&P Optica high performance spectrometers were used. High performance optical dispersion Raman and high performance optical absorption spectroscopy were employed to differentiate various acetaminophen-containing drugs, such as Tylenol and other generic brands, which differ in their ingredients. A 785 nm excitation wavelength was used in Raman measurements and strong Raman signals were observed in the spectral range 300-1800 cm-1. Measurements with the absorption spectrometer were performed in the wavelength range 620-1020 nm. Both Raman and absorption techniques used transmission light spectrometers with volume phase holographic gratings and provided sufficient spectral differences, often structural, allowing for drug differentiation.

  9. Hand-Held Devices Detect Explosives and Chemical Agents

    NASA Technical Reports Server (NTRS)

    2010-01-01

    Ion Applications Inc., of West Palm Beach, Florida, partnered with Ames Research Center through Small Business Innovation Research (SBIR) agreements to develop a miniature version ion mobility spectrometer (IMS). While NASA was interested in the instrument for detecting chemicals during exploration of distant planets, moons, and comets, the company has incorporated the technology into a commercial hand-held IMS device for use by the military and other public safety organizations. Capable of detecting and identifying molecules with part-per-billion sensitivity, the technology now provides soldiers with portable explosives and chemical warfare agent detection. The device is also being adapted for detecting drugs and is employed in industrial processes such as semiconductor manufacturing.

  10. Comparison of fluorescence rejection methods of baseline correction and shifted excitation Raman difference spectroscopy

    NASA Astrophysics Data System (ADS)

    Cai, Zhijian; Zou, Wenlong; Wu, Jianhong

    2017-10-01

    Raman spectroscopy has been extensively used in biochemical tests, explosive detection, food additive and environmental pollutants. However, fluorescence disturbance brings a big trouble to the applications of portable Raman spectrometer. Currently, baseline correction and shifted-excitation Raman difference spectroscopy (SERDS) methods are the most prevailing fluorescence suppressing methods. In this paper, we compared the performances of baseline correction and SERDS methods, experimentally and simulatively. Through the comparison, it demonstrates that the baseline correction can get acceptable fluorescence-removed Raman spectrum if the original Raman signal has good signal-to-noise ratio, but it cannot recover the small Raman signals out of large noise background. By using SERDS method, the Raman signals, even very weak compared to fluorescence intensity and noise level, can be clearly extracted, and the fluorescence background can be completely rejected. The Raman spectrum recovered by SERDS has good signal to noise ratio. It's proved that baseline correction is more suitable for large bench-top Raman system with better quality or signal-to-noise ratio, while the SERDS method is more suitable for noisy devices, especially the portable Raman spectrometers.

  11. Gem and mineral identification using GL Gem Raman and comparison with other portable instruments

    NASA Astrophysics Data System (ADS)

    Culka, Adam; Hyršl, Jaroslav; Jehlička, Jan

    2016-11-01

    Several mainly silicate minerals in their gemstone varieties have been analysed by the Gem Raman portable system by Gemlab R&T, Vancouver, Canada, in order to ascertain the general performance of this relatively non-expensive tool developed exactly for the purpose of gemstone identification. The Raman spectra of gemstones acquired by this system have been subsequently critically compared with the data obtained by several other portable or handheld Raman instruments. The Raman spectra acquired with the Gem Raman instrument were typically of lesser quality when compared with the spectra taken by other instruments. Characteristic features such as steep baseline probably due to the fluorescence of the minerals, Raman bands much broader and therefore less resolved closely located Raman bands, and generally greater shifts of the band positions from the reference values were encountered. Some gemstone groups such as rubies did not provide useful Raman spectra at all. Nevertheless, general identification of gemstones was possible for a selection of gemstones.

  12. A new spectrometer concept for Mars exploration

    NASA Astrophysics Data System (ADS)

    Rull, F.; Sansano, A.; Díaz, E.; Colombo, M.; Belenguer, T.; Fernández, M.; Guembe, V.; Canchal, R.; Dávila, B.; Sánchez, A.; Laguna, H.; Ramos, G.; González, C.; Fraga, D.; Gallego, P.; Hutchinson, I.; Ingley, R.; Sánchez, J.; Canora, C. P.; Moral, A. G.; Ibarmia, S.; Prieto, J. A. R.; Manfredi, J. A. R.; Cabo, P.; Díaz, C.; Jiménez, A.; Pla, J.; Margoillés, R.

    2011-10-01

    The Raman Laser Spectrometer instrument is included in ExoMars program Pasteur payload and it is focused on the Mars samples analytical analysis of the geochemistry content and elemental composition of the observed crushed samples obtained by the Rover. One of the most critical Units of the RLS is the Spectrometer unit (SPU) that performs Raman spectroscopy technique and operates in a very demanding environment (operative temperature: from -40 ºC to 6 ºC) with very restrictive design constraints. It is a very small optical instrument capable to cope with 0.09 nm/pixel of resolution. The selected solution is based on a single transmisive holographic grating. At this stage of the project SPU Team is preparing the Conceptual Design Review that will take place at the end of October 2011.

  13. Applications of Raman spectroscopy to gemology.

    PubMed

    Bersani, Danilo; Lottici, Pier Paolo

    2010-08-01

    Being nondestructive and requiring short measurement times, a low amount of material, and no sample preparation, Raman spectroscopy is used for routine investigation in the study of gemstone inclusions and treatments and for the characterization of mounted gems. In this work, a review of the use of laboratory Raman and micro-Raman spectrometers and of portable Raman systems in the gemology field is given, focusing on gem identification and on the evaluation of the composition, provenance, and genesis of gems. Many examples are shown of the use of Raman spectroscopy as a tool for the identification of imitations, synthetic gems, and enhancement treatments in natural gemstones. Some recent developments are described, with particular attention being given to the semiprecious stone jade and to two important organic materials used in jewelry, i.e., pearls and corals.

  14. Detection of nerve gases using surface-enhanced Raman scattering substrates with high droplet adhesion

    NASA Astrophysics Data System (ADS)

    Hakonen, Aron; Rindzevicius, Tomas; Schmidt, Michael Stenbæk; Andersson, Per Ola; Juhlin, Lars; Svedendahl, Mikael; Boisen, Anja; Käll, Mikael

    2016-01-01

    Threats from chemical warfare agents, commonly known as nerve gases, constitute a serious security issue of increasing global concern because of surging terrorist activity worldwide. However, nerve gases are difficult to detect using current analytical tools and outside dedicated laboratories. Here we demonstrate that surface-enhanced Raman scattering (SERS) can be used for sensitive detection of femtomol quantities of two nerve gases, VX and Tabun, using a handheld Raman device and SERS substrates consisting of flexible gold-covered Si nanopillars. The substrate surface exhibits high droplet adhesion and nanopillar clustering due to elasto-capillary forces, resulting in enrichment of target molecules in plasmonic hot-spots with high Raman enhancement. The results may pave the way for strategic life-saving SERS detection of chemical warfare agents in the field.Threats from chemical warfare agents, commonly known as nerve gases, constitute a serious security issue of increasing global concern because of surging terrorist activity worldwide. However, nerve gases are difficult to detect using current analytical tools and outside dedicated laboratories. Here we demonstrate that surface-enhanced Raman scattering (SERS) can be used for sensitive detection of femtomol quantities of two nerve gases, VX and Tabun, using a handheld Raman device and SERS substrates consisting of flexible gold-covered Si nanopillars. The substrate surface exhibits high droplet adhesion and nanopillar clustering due to elasto-capillary forces, resulting in enrichment of target molecules in plasmonic hot-spots with high Raman enhancement. The results may pave the way for strategic life-saving SERS detection of chemical warfare agents in the field. Electronic supplementary information (ESI) available. See DOI: 10.1039/c5nr06524k

  15. Coronagraphic Notch Filter for Raman Spectroscopy

    NASA Technical Reports Server (NTRS)

    Cohen, David; Stirbl, Robert

    2004-01-01

    A modified coronagraph has been proposed as a prototype of improved notch filters in Raman spectrometers. Coronagraphic notch filters could offer alternatives to both (1) the large and expensive double or triple monochromators in older Raman spectrometers and (2) holographic notch filters, which are less expensive but are subject to environmental degradation as well as to limitations of geometry and spectral range. Measurement of a Raman spectrum is an exercise in measuring and resolving faint spectral lines close to a bright peak: In Raman spectroscopy, a monochromatic beam of light (the pump beam) excites a sample of material that one seeks to analyze. The pump beam generates a small flux of scattered light at wavelengths slightly greater than that of the pump beam. The shift in wavelength of the scattered light from the pump wavelength is known in the art as the Stokes shift. Typically, the flux of scattered light is of the order of 10 7 that of the pump beam and the Stokes shift lies in the wave-number range of 100 to 3,000 cm 1. A notch filter can be used to suppress the pump-beam spectral peak while passing the nearby faint Raman spectral lines. The basic principles of design and operation of a coronagraph offer an opportunity for engineering the spectral transmittance of the optics in a Raman spectrometer. A classical coronagraph may be understood as two imaging systems placed end to end, such that the first system forms an intermediate real image of a nominally infinitely distant object and the second system forms a final real image of the intermediate real image. If the light incident on the first telescope is collimated, then the intermediate image is a point-spread function (PSF). If an appropriately tailored occulting spot (e.g., a Gaussian-apodized spot with maximum absorption on axis) is placed on the intermediate image plane, then the instrument inhibits transmission of light from an on-axis source. However, the PSFs of off-axis light sources are

  16. A novel method for single bacteria identification by Raman spectroscopy

    NASA Astrophysics Data System (ADS)

    Schultz, Emmanuelle; Simon, Anne-Catherine; Strola, Samy Andrea; Perenon, Rémi; Espagnon, Isabelle; Allier, Cédric; Claustre, Patricia; Jary, Dorothée.; Dinten, Jean-Marc

    2014-03-01

    In this paper we present results on single bacteria rapid identification obtained with a low-cost and compact Raman spectrometer. At present, we demonstrate that a 1 minute procedure, including the localization of single bacterium, is sufficient to acquire comprehensive Raman spectrum in the range of 600 to 3300 cm-1. Localization and detection of single bacteria is performed by means of lensfree imaging over a large field of view of 24 mm2. An excitation source of 532 nm and 30 mW illuminates single bacteria to collect Raman signal into a Tornado Spectral Systems prototype spectrometer (HTVS technology). The acquisition time to record a single bacterium spectrum is as low as 10 s owing to the high light throughput of this spectrometer. The spectra processing features different steps for cosmic spikes removal, background subtraction, and gain normalization to correct the residual inducted fluorescence and substrate fluctuations. This allows obtaining a fine chemical fingerprint analysis. We have recorded a total of 1200 spectra over 7 bacterial species (E. coli, Bacillus species, S. epidermis, M. luteus, S. marcescens). The analysis of this database results in a high classification score of almost 90 %. Hence we can conclude that our setup enables automatic recognition of bacteria species among 7 different species. The speed and the sensitivity (<30 minutes for localization and spectra collection of 30 single bacteria) of our Raman spectrometer pave the way for high-throughput and non-destructive real-time bacteria identification assays. This compact and low-cost technology can benefit biomedical, clinical diagnostic and environmental applications.

  17. Hand-Held Femtogram Detection of Hazardous Picric Acid with Hydrophobic Ag Nanopillar SERS Substrates and Mechanism of Elasto-Capillarity.

    PubMed

    Hakonen, Aron; Wang, FengChao; Andersson, Per Ola; Wingfors, Håkan; Rindzevicius, Tomas; Schmidt, Michael Stenbæk; Soma, Venugopal Rao; Xu, Shicai; Li, YingQi; Boisen, Anja; Wu, HengAn

    2017-02-24

    Picric acid (PA) is a severe environmental and security risk due to its unstable, toxic, and explosive properties. It is also challenging to detect in trace amounts and in situ because of its highly acidic and anionic character. Here, we assess sensing of PA under nonlaboratory conditions using surface-enhanced Raman scattering (SERS) silver nanopillar substrates and hand-held Raman spectroscopy equipment. The advancing elasto-capillarity effects are explained by molecular dynamics simulations. We obtain a SERS PA detection limit on the order of 20 ppt, corresponding attomole amounts, which together with the simple analysis methodology demonstrates that the presented approach is highly competitive for ultrasensitive analysis in the field.

  18. Remote sensing capacity of Raman spectroscopy in identification of mineral and organic constituents

    NASA Astrophysics Data System (ADS)

    Chen, Bin; Stoker, Carol; Cabrol, Nathalie; McKay, Christopher P.

    2007-09-01

    We present design, integration and test results for a field Raman spectrometer science payload, integrated into the Mars Analog Research and Technology (MARTE) drilling platform. During the drilling operation, the subsurface Raman spectroscopy inspection system has obtained signatures of organic and mineral compositions. We also performed ground truth studies using both this field unit and a laboratory micro Raman spectrometer equipped with multiple laser excitation wavelengths on series of field samples including Mojave rocks, Laguna Verde salty sediment and Rio Tinto topsoil. We have evaluated laser excitation conditions and optical probe designs for further improvement. We have demonstrated promising potential for Raman spectroscopy as a non-destructive in situ, high throughput, subsurface detection technique, as well as a desirable active remote sensing tool for future planetary and space missions.

  19. Novel high-temperature and pressure-compatible ultrasonic levitator apparatus coupled to Raman and Fourier transform infrared spectrometers

    NASA Astrophysics Data System (ADS)

    Brotton, Stephen J.; Kaiser, Ralf I.

    2013-05-01

    We describe an original apparatus comprising of an acoustic levitator enclosed within a pressure-compatible process chamber. To characterize any chemical and physical modifications of the levitated particle, the chamber is interfaced to complimentary, high-sensitivity Raman (4390-170 cm-1), and Fourier transform infrared (FTIR) (10 000-500 cm-1) spectroscopic probes. The temperature of the levitated particle can be accurately controlled by heating using a carbon dioxide laser emitting at 10.6 μm. The advantages of levitating a small particle combined with the two spectroscopic probes, process chamber, and infrared laser heating makes novel experiments possible relevant to the fields of, for example, planetary science, astrobiology, and combustion chemistry. We demonstrate that this apparatus is well suited to study the dehydration of a variety of particles including minerals and biological samples; and offers the possibility of investigating combustion processes involving micrometer-sized particles such as graphite. Furthermore, we show that the FTIR spectrometer enables the study of chemical reactions on the surfaces of porous samples and scientifically and technologically relevant, micrometer-thick levitated sheets. The FTIR spectrometer can also be used to investigate non-resonant and resonant scattering from small, irregularly-shaped particles across the mid-infrared range from 2.5 μm to 25 μm, which is relevant to scattering from interplanetary dust and biological, micrometer-sized samples but cannot be accurately modelled using Mie theory.

  20. General study of asymmetrical crossed Czerny-Turner spectrometer.

    PubMed

    Tang, Ming; Fan, Xianguang; Wang, Xin; Xu, Yingjie; Que, Jing; He, Jian

    2015-11-20

    A study of the spectrum resolution, wavelength range, and primary aberration of the asymmetrical crossed Czerny-Turner spectrometer is presented by deducing the relationship between them and structural parameters of the spectrometer in a new way of thinking based on simple but effective geometric models. The analysis was verified in an experiment and simulation performed on the optical design program ZEMAX, and the obtained results agree with the analysis. Owing to the analysis, initial designed parameters of the spectrometer were given and then optimized by ZEMAX; with the instruction of the study, a small adjustment was made in the actual alignment to obtain the desired final spectrometer. The spectrometer successfully measured the last four characteristic peaks of the Raman spectrum of CCL4, which demonstrates that the research provides important guidance to the design and alignment of an asymmetrical crossed Czerny-Turner spectrometer.

  1. Planetary Surface Exploration Using Raman Spectroscopy on Rovers and Landers

    NASA Astrophysics Data System (ADS)

    Blacksberg, Jordana; Alerstam, E.; Maruyama, Y.; Charbon, E.; Rossman, G. R.

    2013-10-01

    Planetary surface exploration using laser induced breakdown spectroscopy (LIBS) to probe the composition of rocks has recently become a reality with the operation of the mast-mounted ChemCam instrument onboard the Curiosity rover. Following this success, Raman spectroscopy has steadily gained support as a means for using laser spectroscopy to identify not just composition but mineral phases, without the need for sample preparation. The RLS Raman Spectrometer is included on the payload for the ExoMars mission, and a Raman spectrometer has been included in an example strawman payload for NASA’s Mars 2020 mission. Raman spectroscopy has been identified by the community as a feasible means for pre-selection of samples on Mars for subsequent return to Earth. We present a next-generation instrument that builds on the widely used green-Raman technique to provide a means for performing Raman spectroscopy without the background noise that is often generated by fluorescence of minerals and organics. Microscopic Raman spectroscopy with a laser spot size smaller than the grains of interest can provide surface mapping of mineralogy while preserving morphology. A very small laser spot size 1 µm) is often necessary to identify minor phases that are often of greater interest than the matrix phases. In addition to the difficulties that can be posed by fine-grained material, fluorescence interference from the very same material is often problematic. This is particularly true for many of the minerals of interest that form in environments of aqueous alteration and can be highly fluorescent. We use time-resolved laser spectroscopy to eliminate fluorescence interference that can often make it difficult or impossible to obtain Raman spectra. We will discuss significant advances leading to the feasibility of a compact time-resolved spectrometer, including the development of a new solid-state detector capable of sub-ns time resolution. We will present results on planetary analog

  2. Ex-vivo evaluation of an early caries detector based on integrated OCT and polarized Raman spectroscopy (Conference Presentation)

    NASA Astrophysics Data System (ADS)

    Lamouche, Guy; Padioleau, Christian; Hewko, Mark; Smith, Michael S. D.; Schattka, Bernie J.; Fulton, Crystal; Gauthier, Bruno; Beauchesne, André; Ko, Alex C.; Choo-Smith, Lin-P'ing; Sowa, Michael G.

    2017-02-01

    Early detection of incipient caries would allow dentists to provide more effective measures to delay or to reverse caries' progression at earlier stage. Such earlier intervention could lead to improved oral health for the patients and reduced burden to the health system. Previously, we have demonstrated that the combination of morphological and biochemical information furnished by optical coherence tomography (OCT) and polarized Raman spectroscopy (PRS), respectively, provided a unique tool for dental caries management. In this study we will report the first pre-clinical caries detection system that includes a hand-held probe with a size slightly larger than a tooth brush. This probe presents a novel platform combining both OCT and PRS optics in a very tight space ideal for clinical practice. OCT cross-sectional images of near-surface enamel morphology are obtained with miniaturized MEMS scanning device and are processed in real-time to identify culprit regions. These regions are sequentially analyzed with polarized Raman spectroscopy for further confirmation. PRS is performed using 830nm laser line and four detection channels in order to obtain polarized Raman spectroscopic data, i.e. depolarization ratio of the hydroxyapatite Raman band at 960 cm-1. A detailed description of this hand-held caries detector and ex-vivo/in-vivo test results will be presented.

  3. UV-Enhanced IR Raman System for Identifying Biohazards

    NASA Technical Reports Server (NTRS)

    Stirbl, Robert; Moynihan, Philip; Lane, Arthur

    2003-01-01

    An instrumentation system that would include an ultraviolet (UV) laser or light-emitting diode, an infrared (IR) laser, and the equivalent of an IR Raman spectrometer has been proposed to enable noncontact identification of hazardous biological agents and chemicals. In prior research, IR Raman scattering had shown promise as a means of such identification, except that the Raman-scattered light was often found to be too weak to be detected or to enable unambiguous identification in practical applications. The proposed system would utilize UV illumination as part of a two-level optical-pumping scheme to intensify the Raman signal sufficiently to enable positive identification.

  4. Differentiating the growth phases of single bacteria using Raman spectroscopy

    NASA Astrophysics Data System (ADS)

    Strola, S. A.; Marcoux, P. R.; Schultz, E.; Perenon, R.; Simon, A.-C.; Espagnon, I.; Allier, C. P.; Dinten, J.-M.

    2014-03-01

    In this paper we present a longitudinal study of bacteria metabolism performed with a novel Raman spectrometer system. Longitudinal study is possible with our Raman setup since the overall procedure to localize a single bacterium and collect a Raman spectrum lasts only 1 minute. Localization and detection of single bacteria are performed by means of lensfree imaging, whereas Raman signal (from 600 to 3200 cm-1) is collected into a prototype spectrometer that allows high light throughput (HTVS technology, Tornado Spectral System). Accomplishing time-lapse Raman spectrometry during growth of bacteria, we observed variation in the net intensities for some band groups, e.g. amides and proteins. The obtained results on two different bacteria species, i.e. Escherichia coli and Bacillus subtilis clearly indicate that growth affects the Raman chemical signature. We performed a first analysis to check spectral differences and similarities. It allows distinguishing between lag, exponential and stationary growth phases. And the assignment of interest bands to vibration modes of covalent bonds enables the monitoring of metabolic changes in bacteria caused by growth and aging. Following the spectra analysis, a SVM (support vector machine) classification of the different growth phases is presented. In sum this longitudinal study by means of a compact and low-cost Raman setup is a proof of principle for routine analysis of bacteria, in a real-time and non-destructive way. Real-time Raman studies on metabolism and viability of bacteria pave the way for future antibiotic susceptibility testing.

  5. Handheld Sensor for UXO Discrimination:

    DTIC Science & Technology

    2006-06-01

    between buried UXO and clutter. This project demonstrated the use of commercially available technology (Geonics EM61-HH handheld metal detector ) for...determine whether each target was UXO or clutter. The Geonics EM61-HH handheld metal detector is a pulsed electromagnetic induction (EMI) sensor. The...processing, the EM61-HH handheld metal detector can 2 be used in a cued identification mode to reliably discriminate between buried UXO and clutter

  6. [Application of Raman Spectroscopy Technique to Agricultural Products Quality and Safety Determination].

    PubMed

    Liu, Yan-de; Jin, Tan-tan

    2015-09-01

    The quality and safety of agricultural products and people health are inseparable. Using the conventional chemical methods which have so many defects, such as sample pretreatment, complicated operation process and destroying the samples. Raman spectroscopy as a powerful tool of analysing and testing molecular structure, can implement samples quickly without damage, qualitative and quantitative detection analysis. With the continuous improvement and the scope of the application of Raman spectroscopy technology gradually widen, Raman spectroscopy technique plays an important role in agricultural products quality and safety determination, and has wide application prospects. There have been a lot of related research reports based on Raman spectroscopy detection on agricultural product quality safety at present. For the understanding of the principle of detection and the current development situation of Raman spectroscopy, as well as tracking the latest research progress both at home and abroad, the basic principles and the development of Raman spectroscopy as well as the detection device were introduced briefly. The latest research progress of quality and safety determination in fruits and vegetables, livestock and grain by Raman spectroscopy technique were reviewed deeply. Its technical problems for agricultural products quality and safety determination were pointed out. In addition, the text also briefly introduces some information of Raman spectrometer and the application for patent of the portable Raman spectrometer, prospects the future research and application.

  7. At Ease in the Handheld World.

    ERIC Educational Resources Information Center

    Levinson, Eliot; Grohe, Barbara

    2001-01-01

    Provides educational decision-makers with an overview of the offerings and issues related to adopting handheld computers. Describes several handheld products available to schools, including: Palm, iPAQ, Mindsurf, Symbol Technologies, Texas Instruments, and Gateway Handspring Visor. Compares handhelds to PCs, in terms of functionality, operating…

  8. New Method to Study the Vibrational Modes of Biomolecules in the Terahertz Range Based on a Single-Stage Raman Spectrometer.

    PubMed

    Kalanoor, Basanth S; Ronen, Maria; Oren, Ziv; Gerber, Doron; Tischler, Yaakov R

    2017-03-31

    The low-frequency vibrational (LFV) modes of biomolecules reflect specific intramolecular and intermolecular thermally induced fluctuations that are driven by external perturbations, such as ligand binding, protein interaction, electron transfer, and enzymatic activity. Large efforts have been invested over the years to develop methods to access the LFV modes due to their importance in the studies of the mechanisms and biological functions of biomolecules. Here, we present a method to measure the LFV modes of biomolecules based on Raman spectroscopy that combines volume holographic filters with a single-stage spectrometer, to obtain high signal-to-noise-ratio spectra in short acquisition times. We show that this method enables LFV mode characterization of biomolecules even in a hydrated environment. The measured spectra exhibit distinct features originating from intra- and/or intermolecular collective motion and lattice modes. The observed modes are highly sensitive to the overall structure, size, long-range order, and configuration of the molecules, as well as to their environment. Thus, the LFV Raman spectrum acts as a fingerprint of the molecular structure and conformational state of a biomolecule. The comprehensive method we present here is widely applicable, thus enabling high-throughput study of LFV modes of biomolecules.

  9. Prediction of essential oil content of oregano by hand-held and Fourier transform NIR spectroscopy.

    PubMed

    Camps, Cédric; Gérard, Marianne; Quennoz, Mélanie; Brabant, Cécile; Oberson, Carine; Simonnet, Xavier

    2014-05-01

    In the framework of a breeding programme, the analysis of hundreds of oregano samples to determine their essential oil content (EOC) is time-consuming and expensive in terms of labour. Therefore developing a new method that is rapid, accurate and less expensive to use would be an asset to breeders. The aim of the present study was to develop a method based on near-inrared (NIR) spectroscopy to determine the EOC of oregano dried powder. Two spectroscopic approaches were compared, the first using a hand-held NIR device and the second a Fourier transform (FT) NIR spectrometer. Hand-held NIR (1000-1800 nm) measurements and partial least squares regression allowed the determination of EOC with R² and SEP values of 0.58 and 0.81 mL per 100 g dry matter (DM) respectively. Measurements with FT-NIR (1000-2500 nm) allowed the determination of EOC with R² and SEP values of 0.91 and 0.68 mL per 100 g DM respectively. RPD, RER and RPIQ values for the model implemented with FT-NIR data were satisfactory for screening application, while those obtained with hand-held NIR data were below the level required to consider the model as enough accurate for screening application. The FT-NIR approach allowed the development of an accurate model for EOC prediction. Although the hand-held NIR approach is promising, it needs additional development before it can be used in practice. © 2013 Society of Chemical Industry.

  10. Raman spectroscopy in astrobiology.

    PubMed

    Jorge Villar, Susana E; Edwards, Howell G M

    2006-01-01

    Raman spectroscopy is proposed as a valuable analytical technique for planetary exploration because it is sensitive to organic and inorganic compounds and able to unambiguously identify key spectral markers in a mixture of biological and geological components; furthermore, sample manipulation is not required and any size of sample can be studied without chemical or mechanical pretreatment. NASA and ESA are considering the adoption of miniaturised Raman spectrometers for inclusion in suites of analytical instrumentation to be placed on robotic landers on Mars in the near future to search for extinct or extant life signals. In this paper we review the advantages and limitations of Raman spectroscopy for the analysis of complex specimens with relevance to the detection of bio- and geomarkers in extremophilic organisms which are considered to be terrestrial analogues of possible extraterrestial life that could have developed on planetary surfaces.

  11. Raman-in-SEM, a multimodal and multiscale analytical tool: performance for materials and expertise.

    PubMed

    Wille, Guillaume; Bourrat, Xavier; Maubec, Nicolas; Lahfid, Abdeltif

    2014-12-01

    The availability of Raman spectroscopy in a powerful analytical scanning electron microscope (SEM) allows morphological, elemental, chemical, physical and electronic analysis without moving the sample between instruments. This paper documents the metrological performance of the SEMSCA commercial Raman interface operated in a low vacuum SEM. It provides multiscale and multimodal analyses as Raman/EDS, Raman/cathodoluminescence or Raman/STEM (STEM: scanning transmission electron microscopy) as well as Raman spectroscopy on nanomaterials. Since Raman spectroscopy in a SEM can be influenced by several SEM-related phenomena, this paper firstly presents a comparison of this new tool with a conventional micro-Raman spectrometer. Then, some possible artefacts are documented, which are due to the impact of electron beam-induced contamination or cathodoluminescence contribution to the Raman spectra, especially with geological samples. These effects are easily overcome by changing or adapting the Raman spectrometer and the SEM settings and methodology. The deletion of the adverse effect of cathodoluminescence is solved by using a SEM beam shutter during Raman acquisition. In contrast, this interface provides the ability to record the cathodoluminescence (CL) spectrum of a phase. In a second part, this study highlights the interest and efficiency of the coupling in characterizing micrometric phases at the same point. This multimodal approach is illustrated with various issues encountered in geosciences. Copyright © 2014 Elsevier Ltd. All rights reserved.

  12. QUANTITATIVE DETECTION OF ENVIRONMENTALLY IMPORTANT DYES USING DIODE LASER/FIBER-OPTIC RAMAN

    EPA Science Inventory

    A compact diode laser/fiber-optic Raman spectrometer is used for quantitative detection of environmentally important dyes. This system is based on diode laser excitation at 782 mm, fiber optic probe technology, an imaging spectrometer, and state-of-the-art scientific CCD camera. ...

  13. Rapid and automatic chemical identification of the medicinal flower buds of Lonicera plants by the benchtop and hand-held Fourier transform infrared spectroscopy

    NASA Astrophysics Data System (ADS)

    Chen, Jianbo; Guo, Baolin; Yan, Rui; Sun, Suqin; Zhou, Qun

    2017-07-01

    With the utilization of the hand-held equipment, Fourier transform infrared (FT-IR) spectroscopy is a promising analytical technique to minimize the time cost for the chemical identification of herbal materials. This research examines the feasibility of the hand-held FT-IR spectrometer for the on-site testing of herbal materials, using Lonicerae Japonicae Flos (LJF) and Lonicerae Flos (LF) as examples. Correlation-based linear discriminant models for LJF and LF are established based on the benchtop and hand-held FT-IR instruments. The benchtop FT-IR models can exactly recognize all articles of LJF and LF. Although a few LF articles are misjudged at the sub-class level, the hand-held FT-IR models are able to exactly discriminate LJF and LF. As a direct and label-free analytical technique, FT-IR spectroscopy has great potential in the rapid and automatic chemical identification of herbal materials either in laboratories or in fields. This is helpful to prevent the spread and use of adulterated herbal materials in time.

  14. Ultraviolet Raman scattering from persistent chemical warfare agents

    NASA Astrophysics Data System (ADS)

    Kullander, Fredrik; Wästerby, Pär.; Landström, Lars

    2016-05-01

    Laser induced Raman scattering at excitation wavelengths in the middle ultraviolet was examined using a pulsed tunable laser based spectrometer system. Droplets of chemical warfare agents, with a volume of 2 μl, were placed on a silicon surface and irradiated with sequences of laser pulses. The Raman scattering from V-series nerve agents, Tabun (GA) and Mustard gas (HD) was studied with the aim of finding the optimum parameters and the requirements for a detection system. A particular emphasis was put on V-agents that have been previously shown to yield relatively weak Raman scattering in this excitation band.

  15. Mars Mineralogy by Microbeam Raman Spectrometry

    NASA Technical Reports Server (NTRS)

    Haskin, Larry A.; Wang, Alian; Jolliff, Bradley L.; Wdowiak, Thomas J.; Agresti, David G.; Lane, Arthur L.; Squyres, Steven W.

    2001-01-01

    The Mars Microbeam Raman Spectrometer, under development at Washington University and the Jet Propulsion Laboratory, can identify oxide, sulfide, and oxyanion minerals, bound water and OH, and organic and graphitic carbon in Mars rocks and soils in situ. Additional information is contained in the original extended abstract.

  16. Towards optical fibre based Raman spectroscopy for the detection of surgical site infection

    NASA Astrophysics Data System (ADS)

    Thompson, Alex J.; Koziej, Lukasz; Williams, Huw D.; Elson, Daniel S.; Yang, Guang-Zhong

    2016-03-01

    Surgical site infections (SSIs) are common post-surgical complications that remain significant clinical problems, as they are associated with substantial mortality and morbidity. As such, there is significant interest in the development of minimally invasive techniques that permit early detection of SSIs. To this end, we are applying a compact, clinically deployable Raman spectrometer coupled to an optical fibre probe to the study of bacteria, with the long term goal of using Raman spectroscopy to detect infection in vivo. Our system comprises a 785 nm laser diode for excitation and a commercial (Ocean Optics, Inc.) Raman spectrometer for detection. Here we discuss the design, optimisation and validation of this system, and describe our first experiences interrogating bacterial cells (Escherichia coli) in vitro.

  17. Handheld dual thermal neutron detector and gamma-ray spectrometer

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Stowe, Ashley C.; Burger, Arnold; Bhattacharya, Pijush

    2017-05-02

    A combined thermal neutron detector and gamma-ray spectrometer system, including: a first detection medium including a lithium chalcopyrite crystal operable for detecting neutrons; a gamma ray shielding material disposed adjacent to the first detection medium; a second detection medium including one of a doped metal halide, an elpasolite, and a high Z semiconductor scintillator crystal operable for detecting gamma rays; a neutron shielding material disposed adjacent to the second detection medium; and a photodetector coupled to the second detection medium also operable for detecting the gamma rays; wherein the first detection medium and the second detection medium do not overlapmore » in an orthogonal plane to a radiation flux. Optionally, the first detection medium includes a .sup.6LiInSe.sub.2 crystal. Optionally, the second detection medium includes a SrI.sub.2(Eu) scintillation crystal.« less

  18. Approximate chemical analysis of volcanic glasses using Raman spectroscopy

    PubMed Central

    Morgavi, Daniele; Hess, Kai‐Uwe; Neuville, Daniel R.; Borovkov, Nikita; Perugini, Diego; Dingwell, Donald B.

    2015-01-01

    The effect of chemical composition on the Raman spectra of a series of natural calcalkaline silicate glasses has been quantified by performing electron microprobe analyses and obtaining Raman spectra on glassy filaments (~450 µm) derived from a magma mingling experiment. The results provide a robust compositionally‐dependent database for the Raman spectra of natural silicate glasses along the calcalkaline series. An empirical model based on both the acquired Raman spectra and an ideal mixing equation between calcalkaline basaltic and rhyolitic end‐members is constructed enabling the estimation of the chemical composition and degree of polymerization of silicate glasses using Raman spectra. The model is relatively insensitive to acquisition conditions and has been validated using the MPI‐DING geochemical standard glasses1 as well as further samples. The methods and model developed here offer several advantages compared with other analytical and spectroscopic methods such as infrared spectroscopy, X‐ray fluorescence spectroscopy, electron and ion microprobe analyses, inasmuch as Raman spectroscopy can be performed with a high spatial resolution (1 µm2) without the need for any sample preparation as a nondestructive technique. This study represents an advance in efforts to provide the first database of Raman spectra for natural silicate glasses and yields a new approach for the treatment of Raman spectra, which allows us to extract approximate information about the chemical composition of natural silicate glasses using Raman spectroscopy. We anticipate its application in handheld in situ terrestrial field studies of silicate glasses under extreme conditions (e.g. extraterrestrial and submarine environments). © 2015 The Authors Journal of Raman Spectroscopy Published by John Wiley & Sons Ltd PMID:27656038

  19. Handheld computers in critical care.

    PubMed

    Lapinsky, S E; Weshler, J; Mehta, S; Varkul, M; Hallett, D; Stewart, T E

    2001-08-01

    Computing technology has the potential to improve health care management but is often underutilized. Handheld computers are versatile and relatively inexpensive, bringing the benefits of computers to the bedside. We evaluated the role of this technology for managing patient data and accessing medical reference information, in an academic intensive-care unit (ICU). Palm III series handheld devices were given to the ICU team, each installed with medical reference information, schedules, and contact numbers. Users underwent a 1-hour training session introducing the hardware and software. Various patient data management applications were assessed during the study period. Qualitative assessment of the benefits, drawbacks, and suggestions was performed by an independent company, using focus groups. An objective comparison between a paper and electronic handheld textbook was achieved using clinical scenario tests. During the 6-month study period, the 20 physicians and 6 paramedical staff who used the handheld devices found them convenient and functional but suggested more comprehensive training and improved search facilities. Comparison of the handheld computer with the conventional paper text revealed equivalence. Access to computerized patient information improved communication, particularly with regard to long-stay patients, but changes to the software and the process were suggested. The introduction of this technology was well received despite differences in users' familiarity with the devices. Handheld computers have potential in the ICU, but systems need to be developed specifically for the critical-care environment.

  20. Handheld computers in critical care

    PubMed Central

    Lapinsky, Stephen E; Weshler, Jason; Mehta, Sangeeta; Varkul, Mark; Hallett, Dave; Stewart, Thomas E

    2001-01-01

    Background Computing technology has the potential to improve health care management but is often underutilized. Handheld computers are versatile and relatively inexpensive, bringing the benefits of computers to the bedside. We evaluated the role of this technology for managing patient data and accessing medical reference information, in an academic intensive-care unit (ICU). Methods Palm III series handheld devices were given to the ICU team, each installed with medical reference information, schedules, and contact numbers. Users underwent a 1-hour training session introducing the hardware and software. Various patient data management applications were assessed during the study period. Qualitative assessment of the benefits, drawbacks, and suggestions was performed by an independent company, using focus groups. An objective comparison between a paper and electronic handheld textbook was achieved using clinical scenario tests. Results During the 6-month study period, the 20 physicians and 6 paramedical staff who used the handheld devices found them convenient and functional but suggested more comprehensive training and improved search facilities. Comparison of the handheld computer with the conventional paper text revealed equivalence. Access to computerized patient information improved communication, particularly with regard to long-stay patients, but changes to the software and the process were suggested. Conclusions The introduction of this technology was well received despite differences in users' familiarity with the devices. Handheld computers have potential in the ICU, but systems need to be developed specifically for the critical-care environment. PMID:11511337

  1. Hand-held medical robots.

    PubMed

    Payne, Christopher J; Yang, Guang-Zhong

    2014-08-01

    Medical robots have evolved from autonomous systems to tele-operated platforms and mechanically-grounded, cooperatively-controlled robots. Whilst these approaches have seen both commercial and clinical success, uptake of these robots remains moderate because of their high cost, large physical footprint and long setup times. More recently, researchers have moved toward developing hand-held robots that are completely ungrounded and manipulated by surgeons in free space, in a similar manner to how conventional instruments are handled. These devices provide specific functions that assist the surgeon in accomplishing tasks that are otherwise challenging with manual manipulation. Hand-held robots have the advantages of being compact and easily integrated into the normal surgical workflow since there is typically little or no setup time. Hand-held devices can also have a significantly reduced cost to healthcare providers as they do not necessitate the complex, multi degree-of-freedom linkages that grounded robots require. However, the development of such devices is faced with many technical challenges, including miniaturization, cost and sterility, control stability, inertial and gravity compensation and robust instrument tracking. This review presents the emerging technical trends in hand-held medical robots and future development opportunities for promoting their wider clinical uptake.

  2. Detection of chemical warfare simulants using Raman excitation at 1064 nm

    NASA Astrophysics Data System (ADS)

    Dentinger, Claire; Mabry, Mark W.; Roy, Eric G.

    2014-05-01

    Raman spectroscopy is a powerful technique for material identification. The technique is sensitive to primary and higher ordered molecular structure and can be used to identify unknown materials by comparison with spectral reference libraries. Additionally, miniaturization of opto-electronic components has permitted development of portable Raman analyzers that are field deployable. Raman scattering is a relatively weak effect compared to a competing phenomenon, fluorescence. Even a moderate amount of fluorescence background interference can easily prevent identification of unknown materials. A long wavelength Raman system is less likely to induce fluorescence from a wider variety of materials than a higher energy visible laser system. Compounds such as methyl salicylate (MS), diethyl malonate (DEM), and dimethyl methylphosphonate (DMMP) are used as chemical warfare agent (CWA) simulants for development of analytical detection strategies. Field detection of these simulants however poses unique challenges because threat identification must be made quickly without the turnaround time usually required for a laboratory based analysis. Fortunately, these CWA simulants are good Raman scatterers, and field based detection using portable Raman instruments is promising. Measurements of the CWA simulants were done using a 1064 nm based portable Raman spectrometer. The longer wavelength excitation laser was chosen relative to a visible based laser systems because the 1064 nm based spectrometer is less likely to induce fluorescence and more suitable to a wider range of materials. To more closely mimic real world measurement situations, different sample presentations were investigated.

  3. [Laser Raman spectrum analysis of carbendazim pesticide].

    PubMed

    Wang, Xiao-bin; Wu, Rui-mei; Liu, Mu-hua; Zhang, Lu-ling; Lin, Lei; Yan, Lin-yuan

    2014-06-01

    Raman signal of solid and liquid carbendazim pesticide was collected by laser Raman spectrometer. The acquired Raman spectrum signal of solid carbendazim was preprocessed by wavelet analysis method, and the optimal combination of wavelet denoising parameter was selected through mixed orthogonal test. The results showed that the best effect was got with signal to noise ratio (SNR) being 62.483 when db2 wavelet function was used, decomposition level was 2, the threshold option scheme was 'rigisure' and reset mode was 'sln'. According to the vibration mode of different functional groups, the de-noised Raman bands could be divided into 3 areas: 1 400-2 000, 700-1 400 and 200-700 cm(-1). And the de-noised Raman bands were assigned with and analyzed. The characteristic vibrational modes were gained in different ranges of wavenumbers. Strong Raman signals were observed in the Raman spectrum at 619, 725, 964, 1 022, 1 265, 1 274 and 1 478 cm(-1), respectively. These characteristic vibrational modes are characteristic Raman peaks of solid carbendazim pesticide. Find characteristic Raman peaks at 629, 727, 1 001, 1 219, 1 258 and 1 365 cm(-1) in Raman spectrum signal of liquid carbendazim. These characteristic peaks were basically tallies with the solid carbendazim. The results can provide basis for the rapid screening of pesticide residue in food and agricultural products based on Raman spectrum.

  4. Patient Perceptions of Physician Use of Handheld Computers

    PubMed Central

    Houston, Thomas K.; Ray, Midge N.; Crawford, Myra A.; Giddens, Tonya; Berner, Eta S.

    2003-01-01

    Background Handheld computers have advantages for physicians, including portability and integration into office workflow. However, negative patient perceptions of physician use of handheld computers in the examining room might limit integration. Objective To survey patients’ perceptions of handheld use, and compare those with their providers’ perceptions. Methods A survey of patient attitudes toward handhelds was conducted among patients at a low-income university clinic. Internal Medicine residents providing care were also surveyed. Results Patients (N=93) were mostly female (79%) and ethnic minorities (67%) with average age of 39. Only 10% of patients did not like the idea of a handheld computer in the exam room. Other negative attitudes were also seen in a minority of patients. Some physicians (23%) reported reservations about using the handheld with patients. Conclusions Negative attitudes were rare among patients, but some providers were concerned about using the handheld in the exam room. PMID:14728182

  5. Raman Hyperspectral Imaging of Microfossils: Potential Pitfalls

    PubMed Central

    Olcott Marshall, Alison

    2013-01-01

    Abstract Initially, Raman spectroscopy was a specialized technique used by vibrational spectroscopists; however, due to rapid advancements in instrumentation and imaging techniques over the last few decades, Raman spectrometers are widely available at many institutions, allowing Raman spectroscopy to become a widespread analytical tool in mineralogy and other geological sciences. Hyperspectral imaging, in particular, has become popular due to the fact that Raman spectroscopy can quickly delineate crystallographic and compositional differences in 2-D and 3-D at the micron scale. Although this rapid growth of applications to the Earth sciences has provided great insight across the geological sciences, the ease of application as the instruments become increasingly automated combined with nonspecialists using this techique has resulted in the propagation of errors and misunderstandings throughout the field. For example, the literature now includes misassigned vibration modes, inappropriate spectral processing techniques, confocal depth of laser penetration incorrectly estimated into opaque crystalline solids, and a misconstrued understanding of the anisotropic nature of sp2 carbons. Key Words: Raman spectroscopy—Raman imaging—Confocal Raman spectroscopy—Disordered sp2 carbons—Hematite—Microfossils. Astrobiology 13, 920–931. PMID:24088070

  6. Simultaneous neutron scattering and Raman scattering.

    PubMed

    Adams, Mark A; Parker, Stewart F; Fernandez-Alonso, Felix; Cutler, David J; Hodges, Christopher; King, Andrew

    2009-07-01

    The capability to make simultaneous neutron and Raman scattering measurements at temperatures between 1.5 and 450 K has been developed. The samples to be investigated are attached to one end of a custom-made center-stick suitable for insertion into a 100 mm-bore cryostat. The other end of the center-stick is fiber-optically coupled to a Renishaw in Via Raman spectrometer incorporating a 300 mW Toptica 785 nm wavelength stabilized diode laser. The final path for the laser beam is approximately 1.3 m in vacuo within the center-stick followed by a focusing lens close to the sample. Raman scattering measurements with a resolution of 1 to 4 cm(-1) can be made over a wide range (100-3200 cm(-1)) at the same time as a variety of different types of neutron scattering measurements. In this work we highlight the use of inelastic neutron scattering and neutron diffraction in conjunction with the Raman for studies of the globular protein lysozyme.

  7. A portable fiber-optic raman spectrometer concept for evaluation of mineral content within enamel tissue.

    PubMed

    Akkus, Anna; Yang, Shan; Roperto, Renato; Mustafa, Hathem; Teich, Sorin; Akkus, Ozan

    2017-02-01

    Measurement of tooth enamel mineralization using a clinically viable method is essential since variation of mineralization may be used to monitor caries risk or in assessing the effectiveness of remineralization therapy. Fiber optic Raman systems are becoming more affordable and popular in context of biomedical applications. However, the applicability of fiber optic Raman systems for measurement of mineral content within enamel tissue has not been elucidated significantly in the prior literature. Human teeth with varying degrees of enamel mineralization were selected. In addition alligator, boar and buffalo teeth which have increasing amount of mineral content, respectively, were also included as another set of samples. Reference Raman measurements of mineralization were performed using a high-fidelity confocal Raman microscope. Analysis of human teeth by research grade Raman system indicated a 2-fold difference in the Raman intensities of v1 symmetric-stretch bands of mineral-related phosphate bonds and 7-fold increase in mineral related Raman intensities of animal teeth. However, fiber optic system failed to resolve the differences in the mineralization of human teeth. These results indicate that the sampling volume of fiber optic systems extends to the underlying dentin and that confocal aperture modification is essential to limit the sampling volume to within the enamel. Further research efforts will focus on putting together portable Raman systems integrated with confocal fiber probe. Key words: Enamel, mineral content, raman spectroscopy.

  8. In Vivo Fiber-Optic Raman Mapping Of Metastases In Mouse Brains

    NASA Astrophysics Data System (ADS)

    Stelling, A.; Kirsch, M.; Steiner, G.; Krafft, C.; Schackert, G.; Salzer, R.

    2010-08-01

    Vibrational spectroscopy, in particular Raman spectroscopy, has potential applications in the field of in vivo diagnostics. Raman and FT-IR spectroscopy analyze the complete biochemical information at any given pixel within the visual field. Here we demonstrate the feasibility of performing Raman spectroscopic measurements on living mice brains using a fiber-optic probe with a nominal spatial resolution of 60 μm. The objectives of this study were to 1) evaluate preclinical models, namely murine brain slices containing experimental tumors, 2) optimize the preparation of pristine brain tissue to obtain reference information, to 3) optimize the conditions for introducing a fiber-optic probe to acquire Raman maps in vivo, and 4) to transfer results obtained from human brain tumors to an animal model. Disseminated brain metastases of malignant melanomas were induced by injecting tumor cells into the carotid artery of mice. The procedure mimicked hematogenous tumor spread in one brain hemisphere while the other hemisphere remained tumor free. Three series of sections were prepared consecutively from whole mouse brains: pristine, 2-mm thick sections for Raman mapping and dried, thin sections for FT-IR imaging, hematoxylin and eosin-stained thin sections for histopathological assessment. Raman maps were collected serially using a spectrometer coupled to a fiber-optic probe. FT-IR images were recorded using a spectrometer with a multi-channel detector. The FT-IR images and the Raman maps were evaluated by multivariate data analysis. The results obtained from the thin section studies were employed to guide measurements of murine brains in vivo. Raman maps with an acquisition time of over an hour could be performed on the living animals. No damage to the tissue was observed.

  9. Surface enhanced Raman spectroscopy based nanoparticle assays for rapid, point-of-care diagnostics

    NASA Astrophysics Data System (ADS)

    Driscoll, Ashley J.

    Nucleotide and immunoassays are important tools for disease diagnostics. Many of the current laboratory-based analytical diagnostic techniques require multiple assay steps and long incubation times before results are acquired. In the development of bioassays designed for detecting the emergence and spread of diseases in point-of-care (POC) and remote settings, more rapid and portable analytical methods are necessary. Nanoparticles provide simple and reproducible synthetic methods for the preparation of substrates that can be applied in colloidal assays, providing gains in kinetics due to miniaturization and plasmonic substrates for surface enhanced spectroscopies. Specifically, surface enhanced Raman spectroscopy (SERS) is finding broad application as a signal transduction method in immunological and nucleotide assays due to the production of narrow spectral peaks from the scattering molecules and the potential for simultaneous multiple analyte detection. The application of SERS to a no-wash, magnetic capture assay for the detection of West Nile Virus Envelope and Rift Valley Fever Virus N antigens is described. The platform utilizes colloid based capture of the target antigen in solution, magnetic collection of the immunocomplexes and acquisition of SERS spectra by a handheld Raman spectrometer. The reagents for a core-shell nanoparticle, SERS based assay designed for the capture of target microRNA implicated in acute myocardial infarction are also characterized. Several new, small molecule Raman scatterers are introduced and used to analyze the enhancing properties of the synthesized gold coated-magnetic nanoparticles. Nucleotide and immunoassay platforms have shown improvements in speed and analyte capture through the miniaturization of the capture surface and particle-based capture systems can provide a route to further surface miniaturization. A reaction-diffusion model of the colloidal assay platform is presented to understand the interplay of system

  10. Role of Raman spectroscopy and surface enhanced Raman spectroscopy in colorectal cancer

    PubMed Central

    Jenkins, Cerys A; Lewis, Paul D; Dunstan, Peter R; Harris, Dean A

    2016-01-01

    Colorectal cancer (CRC) is the fourth most common cancer in the United Kingdom and is the second largest cause of cancer related death in the United Kingdom after lung cancer. Currently in the United Kingdom there is not a diagnostic test that has sufficient differentiation between patients with cancer and those without cancer so the current referral system relies on symptomatic presentation in a primary care setting. Raman spectroscopy and surface enhanced Raman spectroscopy (SERS) are forms of vibrational spectroscopy that offer a non-destructive method to gain molecular information about biological samples. The techniques offer a wide range of applications from in vivo or in vitro diagnostics using endoscopic probes, to the use of micro-spectrometers for analysis of biofluids. The techniques have the potential to detect molecular changes prior to any morphological changes occurring in the tissue and therefore could offer many possibilities to aid the detection of CRC. The purpose of this review is to look at the current state of diagnostic technology in the United Kingdom. The development of Raman spectroscopy and SERS in clinical applications relation for CRC will then be discussed. Finally, future areas of research of Raman/SERS as a clinical tool for the diagnosis of CRC are also discussed. PMID:27190582

  11. An Empirical Study on Raman Peak Fitting and Its Application to Raman Quantitative Research.

    PubMed

    Yuan, Xueyin; Mayanovic, Robert A

    2017-10-01

    Fitting experimentally measured Raman bands with theoretical model profiles is the basic operation for numerical determination of Raman peak parameters. In order to investigate the effects of peak modeling using various algorithms on peak fitting results, the representative Raman bands of mineral crystals, glass, fluids as well as the emission lines from a fluorescent lamp, some of which were measured under ambient light whereas others under elevated pressure and temperature conditions, were fitted using Gaussian, Lorentzian, Gaussian-Lorentzian, Voigtian, Pearson type IV, and beta profiles. From the fitting results of the Raman bands investigated in this study, the fitted peak position, intensity, area and full width at half-maximum (FWHM) values of the measured Raman bands can vary significantly depending upon which peak profile function is used in the fitting, and the most appropriate fitting profile should be selected depending upon the nature of the Raman bands. Specifically, the symmetric Raman bands of mineral crystals and non-aqueous fluids are best fit using Gaussian-Lorentzian or Voigtian profiles, whereas the asymmetric Raman bands are best fit using Pearson type IV profiles. The asymmetric O-H stretching vibrations of H 2 O and the Raman bands of soda-lime glass are best fit using several Gaussian profiles, whereas the emission lines from a florescent light are best fit using beta profiles. Multiple peaks that are not clearly separated can be fit simultaneously, provided the residuals in the fitting of one peak will not affect the fitting of the remaining peaks to a significant degree. Once the resolution of the Raman spectrometer has been properly accounted for, our findings show that the precision in peak position and intensity can be improved significantly by fitting the measured Raman peaks with appropriate profiles. Nevertheless, significant errors in peak position and intensity were still observed in the results from fitting of weak and wide Raman

  12. Use of portable devices and confocal Raman spectrometers at different wavelength to obtain the spectral information of the main organic components in tomato (Solanum lycopersicum) fruits

    NASA Astrophysics Data System (ADS)

    Trebolazabala, Josu; Maguregui, Maite; Morillas, Héctor; de Diego, Alberto; Madariaga, Juan Manuel

    2013-03-01

    Tomato (Solanum lycopersicum) fruit samples, in two ripening stages, ripe (red) and unripe (green), collected from a cultivar in the North of Spain (Barrika, Basque Country), were analyzed directly, without any sample pretreatment, with two different Raman instruments (portable spectrometer coupled to a micro-videocamera and a confocal Raman microscope), using two different laser excitation wavelengths (514 and 785 nm, only for the confocal microscope). The combined use of these laser excitation wavelengths allows obtaining, in a short period of time, the maximum spectral information about the main organic compounds present in this fruit. The major identified components of unripe tomatoes were cutin and cuticular waxes. On the other hand, the main components on ripe tomatoes were carotenes, polyphenoles and polysaccharides. Among the carotenes, it was possible to distinguish the presence of lycopene from β-carotene with the help of both excitation wavelengths, but specially using the 514 nm one, which revealed specific overtones and combination tones of this type of carotene.

  13. Envisioning the Handheld-Centric Classroom

    ERIC Educational Resources Information Center

    Norris, Cathleen; Soloway, Elliot

    2004-01-01

    While appropriate as an initial focus, it is time that the educational community move beyond an emphasis on 1:1 computing (each child having his/her own personal computer) to a vision of a handheld-centric classroom, where each child not only has his/her own personal, handheld computer, but also has access to networked PCs, probeware, digital…

  14. Silver nanoplate-decorated copper wire for the on-site microextraction and detection of perchlorate using a portable Raman spectrometer.

    PubMed

    Zhu, Sha; Zhang, Xiaoli; Cui, Jingcheng; Shi, Yu-E; Jiang, Xiaohong; Liu, Zhen; Zhan, Jinhua

    2015-04-21

    Perchlorate, which causes health concerns because of its effects on the thyroid function, is highly soluble and mobile in the environment. In this study, diethyldithiocarbamate (DDTC)-modified silver nanoplates were fabricated on a copper wire to perform the on-site microextraction and detection of perchlorate. This fiber could be inserted into water or soil to extract perchlorate through electrostatic interaction and then can be detected by a portable Raman spectrometer, owing to its surface-enhanced Raman (SERS) activity. A relatively stable vibrational mode (δ(HCH)(CH3), (CH2)) of DDTC at 1273 cm(-1) was used as an internal standard, which was negligibly influenced by the absorption of ClO4(-). The DDTC-modified Ag/Cu fiber showed high uniformity, good reusability and temporal stability under continuous laser radiation each with an RSD lower than 10%. The qualitative and quantitative detection of perchlorate were also realized. A log-log plot of the normalized SERS intensity against perchlorate concentration showed a good linear relationship. The fiber could be also directly inserted into the perchlorate-polluted soil, and the perchlorate could thereby be detected on site. The detection limit in soil reached 0.081 ppm, which was much lower than the EPA-published safety standard. The recovery of the detection was 105% and comparable with the ion chromatography. This hyphenated method of microextraction with direct SERS detection may find potential application for direct pollutant detection free from complex sample pretreatment.

  15. Monitoring of aqueous humor metabolites using Raman spectroscopy

    NASA Astrophysics Data System (ADS)

    Wicksted, James P.; Erckens, Roel J.; Motamedi, Massoud; March, Wayne F.

    1994-05-01

    Laser Raman scattering has been used to monitor glucose and lactate metabolites within aqueous humor specimens obtained from nine human eyes during cataract surgery. Nine postmortem rabbit eyes were also investigated. Raman measurements were obtained using a single grating Raman spectrometer with a liquid nitrogen cooled CCD. A 514.5 nm line from an argon laser was used to illuminate capillaries containing several microliters of aqueous humor. A water background was subtracted from each of the aqueous humor Raman spectra. This experimental system was calibrated so that each metabolite in water could be measured down to 0.1 weight percent. Raman peaks indicative of the stretching vibrations of methylene and methyl groups associated with glucose and lactate, respectively, were observed in the human specimens. A second stretching mode characteristic of lactate between the carbon atom and either the carboxylic acid group or carboxylate ion group was also observed providing a distinguishing feature between the glucose and lactate Raman peaks. Similar structure was observed from the rabbit specimens, but these samples have recently been found to have been contaminated during euthanasia.

  16. Long-term effects of handheld cell phone laws on driver handheld cell phone use.

    PubMed

    McCartt, Anne T; Hellinga, Laurie A; Strouse, Laura M; Farmer, Charles M

    2010-04-01

    As of October 2009, seven U.S. states and the District of Columbia (D.C.) ban driving while talking on a handheld cell phone. Long-term effects on driver handheld phone use in D.C., New York State, and Connecticut were examined. The percentage of drivers talking on handheld cell phones was measured over time with daytime observation surveys in the jurisdictions with bans and comparison jurisdictions without bans. Trends were modeled using Poisson regression to estimate differences between actual rates and rates that would have been expected without a ban. The D.C. ban immediately lowered the percentage of drivers talking on handheld cell phones by 41 percent. Nearly 5 years later, the rate was 43 percent lower than would have been expected without the ban. Use in Connecticut declined 76 percent immediately after the ban; 3.5 years later, use was 65 percent lower than would have been expected without the ban. In New York, use declined 47 percent immediately after the ban; 7 years later, use was 24 percent lower than expected without the ban. Fifteen months after the laws took effect, compliance in New York was lower than in D.C., and the difference appeared due to more intensive enforcement in D.C. However, this linkage is no longer clear because enforcement in New York picked up such that 2008 levels of enforcement appeared comparable in D.C. and New York, whereas enforcement in Connecticut lagged behind. In all three jurisdictions, the chance that a violator would receive a citation was low, and there were no publicized targeted enforcement campaigns. Jurisdictional bans have reduced handheld phone use and appear capable of maintaining reductions for the long term. However, it is unknown whether overall phone use is lower because many drivers may have switched to hands-free devices. Further research is needed to determine whether reduced handheld cell phone use has reduced crashes.

  17. The association between handheld phone bans and the prevalence of handheld phone conversations among young drivers in the United States.

    PubMed

    Zhu, Motao; Rudisill, Toni M; Heeringa, Steven; Swedler, David; Redelmeier, Donald A

    2016-12-01

    Fourteen US states and the District of Columbia have banned handheld phone use for all drivers. We examined whether such legislation was associated with reduced handheld phone conversations among drivers aged younger than 25 years. Data from the 2008 to 2013 National Occupant Protection Use Survey were merged with states' legislation. The outcome was roadside-observed handheld phone conversation at stop signs or lights. Logistic regression was used. A total of 32,784 young drivers were observed. Relative to drivers who were observed in states without a universal handheld phone ban, the adjusted odds ratio of phone conversation was 0.42 (95% confidence interval, 0.33-0.53) for drivers who were observed in states with bans. The relative reduction in phone conversation was 46% (23%, 61%) for laws that were effective less than 1 year, 55% (32%, 70%) for 1-2 years, 63% (51%, 72%) for 2 years or more, relative to no laws. Universal handheld phone bans may be effective at reducing handheld phone use among young drivers. Copyright © 2016 Elsevier Inc. All rights reserved.

  18. Detection of adulterants in honey using a portable Raman Spectrometer

    NASA Astrophysics Data System (ADS)

    Garcia, Kenneth Leigh

    Food adulteration is a growing problem worldwide. In the United States over half of honey consumed is provided with imported products as total domestic production of honey is unable to meet the demand. As pure, natural honey is a labor intensive, relatively expensive product it is a prime target for adulteration with less expensive sweeteners. Previously published work describes the detection of these adulterants in a strict laboratory environment with time consuming techniques and delicate instrumentation. Experiments confirm that adulterants such as high fructose corn syrup and rice malt syrup can be detected in honey using Raman Spectroscopy and portable equipment. When laser light is applied to the products, the result is a Raman signal of inelastically scattered photons representing the fingerprints of the various molecules. When this signal is detected and stored in a laptop computer it can be analyzed for characteristics peculiar to honey and to the adulterants.

  19. Handheld, point-of-care laser speckle imaging

    PubMed Central

    Farraro, Ryan; Fathi, Omid; Choi, Bernard

    2016-01-01

    Abstract. Laser speckle imaging (LSI) enables measurement of relative changes in blood flow in biological tissues. We postulate that a point-of-care form factor will lower barriers to routine clinical use of LSI. Here, we describe a first-generation handheld LSI device based on a tablet computer. The coefficient of variation of speckle contrast was <2% after averaging imaging data collected over an acquisition period of 5.3 s. With a single, experienced user, handheld motion artifacts had a negligible effect on data collection. With operation by multiple users, we did not identify any significant difference (p>0.05) between the measured speckle contrast values using either a handheld or mounted configuration. In vivo data collected during occlusion experiments demonstrate that a handheld LSI is capable of both quantitative and qualitative assessment of changes in blood flow. Finally, as a practical application of handheld LSI, we collected data from a 53-day-old neonate with confirmed compromised blood flow in the hand. We readily identified with LSI a region of diminished blood flow in the thumb of the affected hand. Our data collectively suggest that handheld LSI is a promising technique to enable clinicians to obtain point-of-care measurements of blood flow. PMID:27579578

  20. Handheld, point-of-care laser speckle imaging

    NASA Astrophysics Data System (ADS)

    Farraro, Ryan; Fathi, Omid; Choi, Bernard

    2016-09-01

    Laser speckle imaging (LSI) enables measurement of relative changes in blood flow in biological tissues. We postulate that a point-of-care form factor will lower barriers to routine clinical use of LSI. Here, we describe a first-generation handheld LSI device based on a tablet computer. The coefficient of variation of speckle contrast was <2% after averaging imaging data collected over an acquisition period of 5.3 s. With a single, experienced user, handheld motion artifacts had a negligible effect on data collection. With operation by multiple users, we did not identify any significant difference (p>0.05) between the measured speckle contrast values using either a handheld or mounted configuration. In vivo data collected during occlusion experiments demonstrate that a handheld LSI is capable of both quantitative and qualitative assessment of changes in blood flow. Finally, as a practical application of handheld LSI, we collected data from a 53-day-old neonate with confirmed compromised blood flow in the hand. We readily identified with LSI a region of diminished blood flow in the thumb of the affected hand. Our data collectively suggest that handheld LSI is a promising technique to enable clinicians to obtain point-of-care measurements of blood flow.

  1. 30 CFR 57.7053 - Moving hand-held drills.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 30 Mineral Resources 1 2010-07-01 2010-07-01 false Moving hand-held drills. 57.7053 Section 57... MINE SAFETY AND HEALTH SAFETY AND HEALTH STANDARDS-UNDERGROUND METAL AND NONMETAL MINES Drilling and Rotary Jet Piercing Drilling-Surface and Underground § 57.7053 Moving hand-held drills. Before hand-held...

  2. 30 CFR 57.7053 - Moving hand-held drills.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 30 Mineral Resources 1 2014-07-01 2014-07-01 false Moving hand-held drills. 57.7053 Section 57... MINE SAFETY AND HEALTH SAFETY AND HEALTH STANDARDS-UNDERGROUND METAL AND NONMETAL MINES Drilling and Rotary Jet Piercing Drilling-Surface and Underground § 57.7053 Moving hand-held drills. Before hand-held...

  3. 30 CFR 57.7053 - Moving hand-held drills.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 30 Mineral Resources 1 2013-07-01 2013-07-01 false Moving hand-held drills. 57.7053 Section 57... MINE SAFETY AND HEALTH SAFETY AND HEALTH STANDARDS-UNDERGROUND METAL AND NONMETAL MINES Drilling and Rotary Jet Piercing Drilling-Surface and Underground § 57.7053 Moving hand-held drills. Before hand-held...

  4. 30 CFR 57.7053 - Moving hand-held drills.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... 30 Mineral Resources 1 2012-07-01 2012-07-01 false Moving hand-held drills. 57.7053 Section 57... MINE SAFETY AND HEALTH SAFETY AND HEALTH STANDARDS-UNDERGROUND METAL AND NONMETAL MINES Drilling and Rotary Jet Piercing Drilling-Surface and Underground § 57.7053 Moving hand-held drills. Before hand-held...

  5. 30 CFR 57.7053 - Moving hand-held drills.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 30 Mineral Resources 1 2011-07-01 2011-07-01 false Moving hand-held drills. 57.7053 Section 57... MINE SAFETY AND HEALTH SAFETY AND HEALTH STANDARDS-UNDERGROUND METAL AND NONMETAL MINES Drilling and Rotary Jet Piercing Drilling-Surface and Underground § 57.7053 Moving hand-held drills. Before hand-held...

  6. 30 CFR 57.12033 - Hand-held electric tools.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 30 Mineral Resources 1 2010-07-01 2010-07-01 false Hand-held electric tools. 57.12033 Section 57.12033 Mineral Resources MINE SAFETY AND HEALTH ADMINISTRATION, DEPARTMENT OF LABOR METAL AND NONMETAL... Surface and Underground § 57.12033 Hand-held electric tools. Hand-held electric tools shall not be...

  7. 30 CFR 57.12033 - Hand-held electric tools.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... 30 Mineral Resources 1 2012-07-01 2012-07-01 false Hand-held electric tools. 57.12033 Section 57.12033 Mineral Resources MINE SAFETY AND HEALTH ADMINISTRATION, DEPARTMENT OF LABOR METAL AND NONMETAL... Surface and Underground § 57.12033 Hand-held electric tools. Hand-held electric tools shall not be...

  8. 30 CFR 57.12033 - Hand-held electric tools.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 30 Mineral Resources 1 2014-07-01 2014-07-01 false Hand-held electric tools. 57.12033 Section 57.12033 Mineral Resources MINE SAFETY AND HEALTH ADMINISTRATION, DEPARTMENT OF LABOR METAL AND NONMETAL... Surface and Underground § 57.12033 Hand-held electric tools. Hand-held electric tools shall not be...

  9. 30 CFR 57.12033 - Hand-held electric tools.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 30 Mineral Resources 1 2011-07-01 2011-07-01 false Hand-held electric tools. 57.12033 Section 57.12033 Mineral Resources MINE SAFETY AND HEALTH ADMINISTRATION, DEPARTMENT OF LABOR METAL AND NONMETAL... Surface and Underground § 57.12033 Hand-held electric tools. Hand-held electric tools shall not be...

  10. 30 CFR 57.12033 - Hand-held electric tools.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 30 Mineral Resources 1 2013-07-01 2013-07-01 false Hand-held electric tools. 57.12033 Section 57.12033 Mineral Resources MINE SAFETY AND HEALTH ADMINISTRATION, DEPARTMENT OF LABOR METAL AND NONMETAL... Surface and Underground § 57.12033 Hand-held electric tools. Hand-held electric tools shall not be...

  11. Sensing systems using chip-based spectrometers

    NASA Astrophysics Data System (ADS)

    Nitkowski, Arthur; Preston, Kyle J.; Sherwood-Droz, Nicolás.; Behr, Bradford B.; Bismilla, Yusuf; Cenko, Andrew T.; DesRoches, Brandon; Meade, Jeffrey T.; Munro, Elizabeth A.; Slaa, Jared; Schmidt, Bradley S.; Hajian, Arsen R.

    2014-06-01

    Tornado Spectral Systems has developed a new chip-based spectrometer called OCTANE, the Optical Coherence Tomography Advanced Nanophotonic Engine, built using a planar lightwave circuit with integrated waveguides fabricated on a silicon wafer. While designed for spectral domain optical coherence tomography (SD-OCT) systems, the same miniaturized technology can be applied to many other spectroscopic applications. The field of integrated optics enables the design of complex optical systems which are monolithically integrated on silicon chips. The form factors of these systems can be significantly smaller, more robust and less expensive than their equivalent free-space counterparts. Fabrication techniques and material systems developed for microelectronics have previously been adapted for integrated optics in the telecom industry, where millions of chip-based components are used to power the optical backbone of the internet. We have further adapted the photonic technology platform for spectroscopy applications, allowing unheard-of economies of scale for these types of optical devices. Instead of changing lenses and aligning systems, these devices are accurately designed programmatically and are easily customized for specific applications. Spectrometers using integrated optics have large advantages in systems where size, robustness and cost matter: field-deployable devices, UAVs, UUVs, satellites, handheld scanning and more. We will discuss the performance characteristics of our chip-based spectrometers and the type of spectral sensing applications enabled by this technology.

  12. Remote-Raman spectroscopic study of minerals under supercritical CO2 relevant to Venus exploration.

    PubMed

    Sharma, Shiv K; Misra, Anupam K; Clegg, Samuel M; Barefield, James E; Wiens, Roger C; Acosta, Tayro E; Bates, David E

    2011-10-01

    The authors have utilized a recently developed compact Raman spectrometer equipped with an 85 mm focal length (f/1.8) Nikon camera lens and a custom mini-ICCD detector at the University of Hawaii for measuring remote Raman spectra of minerals under supercritical CO(2) (Venus chamber, ∼102 atm pressure and 423 K) excited with a pulsed 532 nm laser beam of 6 mJ/pulse and 10 Hz. These experiments demonstrate that by focusing a frequency-doubled 532 nm Nd:YAG pulsed laser beam with a 10× beam expander to a 1mm spot on minerals located at 2m inside a Venus chamber, it is possible to measure the remote Raman spectra of anhydrous sulfates, carbonates, and silicate minerals relevant to Venus exploration during daytime or nighttime with 10s integration time. The remote Raman spectra of gypsum, anhydrite, barite, dolomite and siderite contain fingerprint Raman lines along with the Fermi resonance doublet of CO(2). Raman spectra of gypsum revealed dehydration of the mineral with time under supercritical CO(2) at 423 K. Fingerprint Raman lines of olivine, diopside, wollastonite and α-quartz can easily be identified in the spectra of these respective minerals under supercritical CO(2). The results of the present study show that time-resolved remote Raman spectroscopy with a compact Raman spectrometer of moderate resolution equipped with a gated intensified CCD detector and low power laser source could be a potential tool for exploring Venus surface mineralogy both during daytime and nighttime from a lander. Copyright © 2011 Elsevier B.V. All rights reserved.

  13. The research of Raman spectra measurement system based on tiled-grating monochromator

    NASA Astrophysics Data System (ADS)

    Liu, Li-na; Zhang, Yin-chao; Chen, Si-ying; Chen, He; Guo, Pan; Wang, Yuan

    2013-09-01

    A set of Raman spectrum measurement system, essentially a Raman spectrometer, has been independently designed and accomplished by our research group. This system adopts tiled-grating structure, namely two 50mm × 50mm holographic gratings are tiled to form a big spectral grating. It not only improves the resolution but also reduces the cost. This article outlines the Raman spectroscopy system's composition structure and performance parameters. Then corresponding resolutions of the instrument under different criterions are deduced through experiments and data fitting. The result shows that the system's minimum resolution is up to 0.02nm, equivalent to 0.5cm-1 wavenumber under Rayleigh criterion; and it will be up to 0.007nm, equivalent to 0.19cm-1 wavenumber under Sparrow criterion. Then Raman spectra of CCl4 and alcohol have been obtained by the spectrometer, which agreed with the standard spectrum respectively very well. Finally, we measured the spectra of the alcohol solutions with different concentrations and extracted the intensity of characteristic peaks from smoothed spectra. Linear fitting between intensity of characteristic peaks and alcohol solution concentrations has been made. And the linear correlation coefficient is 0.96.

  14. Optimizing laser crater enhanced Raman spectroscopy.

    PubMed

    Lednev, V N; Sdvizhenskii, P A; Grishin, M Ya; Filichkina, V A; Shchegolikhin, A N; Pershin, S M

    2018-03-20

    Raman signal enhancement by laser crater production was systematically studied for 785 nm continuous wave laser pumping. Laser craters were produced in L-aspartic acid powder by a nanosecond pulsed solid state neodymium-doped yttrium aluminum garnet laser (532 nm, 8 ns, 1 mJ/pulse), while Raman spectra were then acquired by using a commercial spectrometer with 785 nm laser beam pumping. The Raman signal enhancement effect was studied in terms of the number of ablating pulses used, the lens-to-sample distance, and the crater-center-laser-spot offset. The influence of the experiment parameters on Raman signal enhancement was studied for different powder materials. Maximum Raman signal enhancement reached 11 fold for loose powders but decreased twice for pressed tablets. Raman signal enhancement was demonstrated for several diverse powder materials like gypsum or ammonium nitrate with better results achieved for the samples tending to give narrow and deep craters upon the laser ablation stage. Alternative ways of cavity production (steel needle tapping and hole drilling) were compared with the laser cratering technique in terms of Raman signal enhancement. Drilling was found to give the poorest enhancement of the Raman signal, while both laser ablation and steel needle tapping provided comparable results. Here, we have demonstrated for the first time, to the best of our knowledge, that a Raman signal can be enhanced 10 fold with the aid of simple cavity production by steel needle tapping in rough highly reflective materials. Though laser crater enhancement Raman spectroscopy requires an additional pulsed laser, this technique is more appropriate for automatization compared to the needle tapping approach.

  15. 30 CFR 56.7053 - Moving hand-held drills.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 30 Mineral Resources 1 2010-07-01 2010-07-01 false Moving hand-held drills. 56.7053 Section 56... MINE SAFETY AND HEALTH SAFETY AND HEALTH STANDARDS-SURFACE METAL AND NONMETAL MINES Drilling and Rotary Jet Piercing Drilling § 56.7053 Moving hand-held drills. Before hand-held drills are moved from one...

  16. 30 CFR 56.7053 - Moving hand-held drills.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 30 Mineral Resources 1 2011-07-01 2011-07-01 false Moving hand-held drills. 56.7053 Section 56... MINE SAFETY AND HEALTH SAFETY AND HEALTH STANDARDS-SURFACE METAL AND NONMETAL MINES Drilling and Rotary Jet Piercing Drilling § 56.7053 Moving hand-held drills. Before hand-held drills are moved from one...

  17. 30 CFR 56.7053 - Moving hand-held drills.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 30 Mineral Resources 1 2014-07-01 2014-07-01 false Moving hand-held drills. 56.7053 Section 56... MINE SAFETY AND HEALTH SAFETY AND HEALTH STANDARDS-SURFACE METAL AND NONMETAL MINES Drilling and Rotary Jet Piercing Drilling § 56.7053 Moving hand-held drills. Before hand-held drills are moved from one...

  18. 30 CFR 56.7053 - Moving hand-held drills.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 30 Mineral Resources 1 2013-07-01 2013-07-01 false Moving hand-held drills. 56.7053 Section 56... MINE SAFETY AND HEALTH SAFETY AND HEALTH STANDARDS-SURFACE METAL AND NONMETAL MINES Drilling and Rotary Jet Piercing Drilling § 56.7053 Moving hand-held drills. Before hand-held drills are moved from one...

  19. 30 CFR 56.7053 - Moving hand-held drills.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... 30 Mineral Resources 1 2012-07-01 2012-07-01 false Moving hand-held drills. 56.7053 Section 56... MINE SAFETY AND HEALTH SAFETY AND HEALTH STANDARDS-SURFACE METAL AND NONMETAL MINES Drilling and Rotary Jet Piercing Drilling § 56.7053 Moving hand-held drills. Before hand-held drills are moved from one...

  20. [Raman spectroscopy fluorescence background correction and its application in clustering analysis of medicines].

    PubMed

    Chen, Shan; Li, Xiao-ning; Liang, Yi-zeng; Zhang, Zhi-min; Liu, Zhao-xia; Zhang, Qi-ming; Ding, Li-xia; Ye, Fei

    2010-08-01

    During Raman spectroscopy analysis, the organic molecules and contaminations will obscure or swamp Raman signals. The present study starts from Raman spectra of prednisone acetate tablets and glibenclamide tables, which are acquired from the BWTek i-Raman spectrometer. The background is corrected by R package baselineWavelet. Then principle component analysis and random forests are used to perform clustering analysis. Through analyzing the Raman spectra of two medicines, the accurate and validity of this background-correction algorithm is checked and the influences of fluorescence background on Raman spectra clustering analysis is discussed. Thus, it is concluded that it is important to correct fluorescence background for further analysis, and an effective background correction solution is provided for clustering or other analysis.

  1. A portable Raman acoustic levitation spectroscopic system for the identification and environmental monitoring of algal cells.

    PubMed

    Wood, Bayden R; Heraud, Philip; Stojkovic, Slobodanka; Morrison, Danielle; Beardall, John; McNaughton, Don

    2005-08-01

    We report the coupling of a portable Raman spectrometer to an acoustic levitation device to enable environmental monitoring and the potential taxonomic identification of microalgae. Spectra of living cells were recorded at 785 nm using a fiber-optic probe coupled to a portable Raman spectrometer. The spectra exhibit an excellent signal-to-noise ratio and clearly show bands from chlorophyll a and beta-carotene. Spectra of levitated photobleached microalgae clearly show a reduction in chlorophyll a concentration relative to beta-carotene after 10 min of exposure to a quartz halogen lamp. Spectra recorded from levitated nitrogen-limited cells also show a significant reduction in bands associated with chlorophyll a, as compared to nitrogen-replete cells. To investigate the diagnostic capability of the technique, four species of microalgae were analyzed. Good quality spectra of all four species were obtained showing varying ratios of beta-carotene to chlorophyll. The combination of an acoustic levitation device and a portable Raman spectrometer shows potential as a taxonomic and environmental monitoring tool with direct application to field studies in remote environments.

  2. High-throughput spectrometer designs in a compact form-factor: principles and applications

    NASA Astrophysics Data System (ADS)

    Norton, S. M.

    2013-05-01

    Many compact, portable Raman spectrometers have entered the market in the past few years with applications in narcotics and hazardous material identification, as well as verification applications in pharmaceuticals and security screening. Often, the required compact form-factor has forced designers to sacrifice throughput and sensitivity for portability and low-cost. We will show that a volume phase holographic (VPH)-based spectrometer design can achieve superior throughput and thus sensitivity over conventional Czerny-Turner reflective designs. We will look in depth at the factors influencing throughput and sensitivity and illustrate specific VPH-based spectrometer examples that highlight these design principles.

  3. New capability for hazardous materials ID within sealed containers using a portable spatially offset Raman spectroscopy (SORS) device

    NASA Astrophysics Data System (ADS)

    Stokes, Robert J.; Bailey, Mike; Bonthron, Stuart; Stone, Thomas; Maskall, Guy; Presly, Oliver; Roy, Eric; Tombling, Craig; Loeffen, Paul W.

    2016-10-01

    Raman spectroscopy allows the acquisition of molecularly specific signatures of pure compounds and mixtures making it a popular method for material identification applications. In hazardous materials, security and counter terrorism applications, conventional handheld Raman systems are typically limited to operation by line-of-sight or through relatively transparent plastic bags / clear glass vials. If materials are concealed behind thicker, coloured or opaque barriers it can be necessary to open and take a sample. Spatially Offset Raman Spectroscopy (SORS)[1] is a novel variant of Raman spectroscopy whereby multiple measurements at differing positions are used to separate the spectrum arising from the sub layers of a sample from the spectrum at the surface. For the first time, a handheld system based on SORS has been developed and applied to hazardous materials identification. The system - "Resolve" - enables new capabilities in the rapid identification of materials concealed by a wide variety of non-metallic sealed containers such as; coloured and opaque plastics, paper, card, sacks, fabric and glass. The range of potential target materials includes toxic industrial chemicals, explosives, narcotics, chemical warfare agents and biological materials. Resolve has the potential to improve the safety, efficiency and critical decision making in incident management, search operations, policing and ports and border operations. The operator is able to obtain a positive identification of a potentially hazardous material without opening or disturbing the container - to gain access to take a sample - thus improving safety. The technique is fast and simple thus suit and breathing gear time is used more efficiently. SORS also allows Raman to be deployed at an earlier stage in an event before more intrusive techniques are used. Evidential information is preserved and the chain of custody protected. Examples of detection capability for a number of materials and barrier types are

  4. [A new peak detection algorithm of Raman spectra].

    PubMed

    Jiang, Cheng-Zhi; Sun, Qiang; Liu, Ying; Liang, Jing-Qiu; An, Yan; Liu, Bing

    2014-01-01

    The authors proposed a new Raman peak recognition method named bi-scale correlation algorithm. The algorithm uses the combination of the correlation coefficient and the local signal-to-noise ratio under two scales to achieve Raman peak identification. We compared the performance of the proposed algorithm with that of the traditional continuous wavelet transform method through MATLAB, and then tested the algorithm with real Raman spectra. The results show that the average time for identifying a Raman spectrum is 0.51 s with the algorithm, while it is 0.71 s with the continuous wavelet transform. When the signal-to-noise ratio of Raman peak is greater than or equal to 6 (modern Raman spectrometers feature an excellent signal-to-noise ratio), the recognition accuracy with the algorithm is higher than 99%, while it is less than 84% with the continuous wavelet transform method. The mean and the standard deviations of the peak position identification error of the algorithm are both less than that of the continuous wavelet transform method. Simulation analysis and experimental verification prove that the new algorithm possesses the following advantages: no needs of human intervention, no needs of de-noising and background removal operation, higher recognition speed and higher recognition accuracy. The proposed algorithm is operable in Raman peak identification.

  5. Application of laser Raman spectroscopy to dental diagnosis

    NASA Astrophysics Data System (ADS)

    Izawa, Takahiro; Wakaki, Moriaki

    2005-03-01

    The aim of this research is related with the diagnosis of caries by use of a laser. We study the fundamental characterization of the diagnosis method using both fluorescence and Raman scattering spectroscopy. We try to evaluate the possibility of the caries diagnosis using Raman spectroscopy and its clinical application. We focus on the PO34- ion that flows out with the dissolution of hydroxyapatite (HAp), and the fluorescence that increases in connection with caries. The Raman line of P-O vibration is overlapped on the continuous, background spectrum by fluorescence. Consequently, we try to find out the correlation between a healthy part and a carious part by analyzing both fluorescence and Raman spectra. It was found that Raman intensity of HAp at carious lesion was weaker than those of healthy parts and the florescence intensity at the same portions was stronger. We have obtained the feasibility to estimate the degree of caries and health condition by deriving the ratio between Raman and florescence intensity. And the trial measurements in vivo were carried out to verify the availability of the method by using a fiber probe type multi channel Raman spectrometer. The process of remineralization is under researching for the development of preventive medicine.

  6. Practical applications of hand-held computers in dermatology.

    PubMed

    Goldblum, Orin M

    2002-09-01

    For physicians, hand-held computers are gaining popularity as point of care reference tools. The convergence of hand-held computers, the Internet, and wireless networks will enable these devices to assume more essential roles as mobile transmitters and receivers of digital medical Information. In addition to serving as portable medical reference sources, these devices can be Internet-enabled, allowing them to communicate over wireless wide and local area networks. With enhanced wireless connectivity, hand-held computers can be used at the point of patient care for charge capture, electronic prescribing, laboratory test ordering, laboratory result retrieval, web access, e-mail communication, and other clinical and administrative tasks. Physicians In virtually every medical specialty have begun using these devices in various ways. This review of hand-held computer use in dermatology illustrates practical examples of the many different ways hand-held computers can be effectively used by the practicing dermatologist.

  7. Handheld Computers: A Boon for Principals

    ERIC Educational Resources Information Center

    Brazell, Wayne

    2005-01-01

    As I reflect on my many years as an elementary school principal, I realize how much more effective I would have been if I had owned a wireless handheld computer. This relatively new technology can provide considerable assistance to today?s principals and recent advancements have increased its functions and capacity. Handheld computers are…

  8. Use of portable devices and confocal Raman spectrometers at different wavelength to obtain the spectral information of the main organic components in tomato (Solanum lycopersicum) fruits.

    PubMed

    Trebolazabala, Josu; Maguregui, Maite; Morillas, Héctor; de Diego, Alberto; Madariaga, Juan Manuel

    2013-03-15

    Tomato (Solanum lycopersicum) fruit samples, in two ripening stages, ripe (red) and unripe (green), collected from a cultivar in the North of Spain (Barrika, Basque Country), were analyzed directly, without any sample pretreatment, with two different Raman instruments (portable spectrometer coupled to a micro-videocamera and a confocal Raman microscope), using two different laser excitation wavelengths (514 and 785 nm, only for the confocal microscope). The combined use of these laser excitation wavelengths allows obtaining, in a short period of time, the maximum spectral information about the main organic compounds present in this fruit. The major identified components of unripe tomatoes were cutin and cuticular waxes. On the other hand, the main components on ripe tomatoes were carotenes, polyphenoles and polysaccharides. Among the carotenes, it was possible to distinguish the presence of lycopene from β-carotene with the help of both excitation wavelengths, but specially using the 514 nm one, which revealed specific overtones and combination tones of this type of carotene. Copyright © 2012 Elsevier B.V. All rights reserved.

  9. Raman spectroscopic instrumentation and plasmonic methods for material characterization

    NASA Astrophysics Data System (ADS)

    Tanaka, Kazuki

    The advent of nanotechnology has led to incredible growth in how we consume, make and approach advanced materials. By exploiting nanoscale material properties, unique control of optical, thermal, mechanical, and electrical characteristics becomes possible. This thesis describes the development of a novel localized surface plasmon resonant (LSPR) color sensitive photosensor, based on functionalization of gold nanoparticles onto tianium dioxide nanowires and sensing by a metal-semiconducting nanowire-metal photodiode structure. This LSPR photosensor has been integrated into a system that incorporates Raman spectroscopy, microfluidics, optical trapping, and sorting flow cytometry into a unique material characterization system called the microfluidic optical fiber trapping Raman sorting flow cytometer (MOFTRSFC). Raman spectroscopy is utilized as a powerful molecular characterization technique used to analyze biological, mineralogical and nanomaterial samples. To combat the inherently weak Raman signal, plasmonic methods have been applied to exploit surface enhanced Raman scattering (SERS) and localized surface plasmon resonance (LSPR), increasing Raman intensity by up to 5 orders of magnitude. The resultant MOFTRSFC system is a prototype instrument that can effectively trap, analyze, and sort micron-sized dielectric particles and biological cells. Raman spectroscopy has been presented in several modalities, including the development of a portable near-infrared Raman spectrometer and other emerging technologies.

  10. A new miniature hand-held solar-blind reagentless standoff chemical, biological, and explosives (CBE) sensor

    NASA Astrophysics Data System (ADS)

    Hug, W. F.; Reid, R. D.; Bhartia, R.; Lane, A. L.

    2008-04-01

    Improvised explosive devices (IEDs), vehicle-borne improvised explosive devices (VBIEDs), and suicide bombers are a major threat to many countries and their citizenry. The ability to detect trace levels of these threats with a miniature, hand-held, reagentless, standoff sensor represents a major improvement in the state of the art of CBE surface sensors. Photon Systems, Inc., in collaboration with Jet Propulsion Laboratory, recently demonstrated a new technology hand-held sensor for reagentless, close-range, standoff detection and identification of trace levels CBE materials on surfaces. This targeted ultraviolet CBE (TUCBE) sensor is the result of an Army Phase I STTR program. The resulting 5lb, 5W, flashlight-sized sensor can discriminate CBE from background materials using a combination of deep UV excited resonance Raman (RR) and laser induced native fluorescence (LINF) emissions resulting from excitation by a new technology deep UV laser. Detection and identification is accomplished in less than 1ms. Standoff excitation of suspicious packages, vehicles, persons, and other objects that may contain hazardous materials is accomplished using wavelengths below 250nm where Raman and native fluorescence emissions occupy distinctly different wavelength regions. This enables simultaneous detection of RR and LINF emissions with no interferences. The sensor employs fused RR/LINF chemometric methods to extract the identity of targeted materials from background clutter. Photon Systems has demonstrated detection and identification of 100ng/cm2 of explosives materials at a distance of 1 meter using a sensor with 3.8 cm optical aperture. Expansion of the optical aperture to 38 cm in a lantern-sized sensor will enable similar detection and identification of CBE materials at standoff distances of 10 meters. As a result of excitation and detection in the deep UV and the use of a gated detection system, the sensor is solar blind and can operate in full daylight conditions.

  11. Raman spectroscopy for in-line water quality monitoring--instrumentation and potential.

    PubMed

    Li, Zhiyun; Deen, M Jamal; Kumar, Shiva; Selvaganapathy, P Ravi

    2014-09-16

    Worldwide, the access to safe drinking water is a huge problem. In fact, the number of persons without safe drinking water is increasing, even though it is an essential ingredient for human health and development. The enormity of the problem also makes it a critical environmental and public health issue. Therefore, there is a critical need for easy-to-use, compact and sensitive techniques for water quality monitoring. Raman spectroscopy has been a very powerful technique to characterize chemical composition and has been applied to many areas, including chemistry, food, material science or pharmaceuticals. The development of advanced Raman techniques and improvements in instrumentation, has significantly improved the performance of modern Raman spectrometers so that it can now be used for detection of low concentrations of chemicals such as in-line monitoring of chemical and pharmaceutical contaminants in water. This paper briefly introduces the fundamentals of Raman spectroscopy, reviews the development of Raman instrumentations and discusses advanced and potential Raman techniques for in-line water quality monitoring.

  12. A handheld laser-induced fluorescence detector for multiple applications.

    PubMed

    Fang, Xiao-Xia; Li, Han-Yang; Fang, Pan; Pan, Jian-Zhang; Fang, Qun

    2016-04-01

    In this paper, we present a compact handheld laser-induced fluorescence (LIF) detector based on a 450 nm laser diode and quasi-confocal optical configuration with a total size of 9.1 × 6.2 × 4.1 cm(3). Since there are few reports on the use of 450 nm laser diode in LIF detection, especially in miniaturized LIF detector, we systematically investigated various optical arrangements suitable for the requirements of 450 nm laser diode and system miniaturization, including focusing lens, filter combination, and pinhole, as well as Raman effect of water at 450 nm excitation wavelength. As the result, the handheld LIF detector integrates the light source (450 nm laser diode), optical circuit module (including a 450 nm band-pass filter, a dichroic mirror, a collimating lens, a 525 nm band-pass filter, and a 1.0mm aperture), optical detector (miniaturized photomultiplier tube), as well as electronic module (including signal recording, processing and displaying units). This detector is capable of working independently with a cost of ca. $2000 for the whole instrument. The detection limit of the instrument for sodium fluorescein solution is 0.42 nM (S/N=3). The broad applicability of the present system was demonstrated in capillary electrophoresis separation of fluorescein isothiocyanate (FITC) labeled amino acids and in flow cytometry of tumor cells as an on-line LIF detector, as well as in droplet array chip analysis as a LIF scanner. We expect such a compact LIF detector could be applied in flow analysis systems as an on-line detector, and in field analysis and biosensor analysis as a portable universal LIF detector. Copyright © 2015 Elsevier B.V. All rights reserved.

  13. Handheld computer use in U.S. family practice residency programs.

    PubMed

    Criswell, Dan F; Parchman, Michael L

    2002-01-01

    The purpose of the study was to evaluate the uses of handheld computers (also called personal digital assistants, or PDAs) in family practice residency programs in the United States. In November 2000, the authors mailed a questionnaire to the program directors of all American Academy of Family Physicians (AAFP) and American College of Osteopathic Family Practice (ACOFP) residency programs in the United States. Data and patterns of the use and non-use of handheld computers were identified. Approximately 50 percent (306 of 610) of the programs responded to the survey. Two thirds of the programs reported that handheld computers were used in their residencies, and an additional 14 percent had plans for implementation within 24 months. Both the Palm and the Windows CE operating systems were used, with the Palm operating system the most common. Military programs had the highest rate of use (8 of 10 programs, 80 percent), and osteopathic programs had the lowest (23 of 55 programs, 42 percent). Of programs that reported handheld computer use, 45 percent had required handheld computer applications that are used uniformly by all users. Funding for handheld computers and related applications was non-budgeted in 76percent of the programs in which handheld computers were used. In programs providing a budget for handheld computers, the average annual budget per user was 461.58 dollars. Interested faculty or residents, rather than computer information services personnel, performed upkeep and maintenance of handheld computers in 72 percent of the programs in which the computers are used. In addition to the installed calendar, memo pad, and address book, the most common clinical uses of handheld computers in the programs were as medication reference tools, electronic textbooks, and clinical computational or calculator-type programs. Handheld computers are widely used in family practice residency programs in the United States. Although handheld computers were designed as electronic

  14. Choosing a Hand-Held Inventory Device

    ERIC Educational Resources Information Center

    Green, Lois; Hughes, Janet; Neff, Verne; Notartomas, Trish

    2008-01-01

    In spring of 2006, a task force was charged to look at the feasibility of acquiring hand-held inventory devices for the Pennsylvania State University Libraries (PSUL). The task force's charge was not to look at the whole concept of doing an inventory, but rather to focus on the feasibility of acquiring hand-held devices to use in an inventory.…

  15. Correcting for motion artifact in handheld laser speckle images.

    PubMed

    Lertsakdadet, Ben; Yang, Bruce Y; Dunn, Cody E; Ponticorvo, Adrien; Crouzet, Christian; Bernal, Nicole; Durkin, Anthony J; Choi, Bernard

    2018-03-01

    Laser speckle imaging (LSI) is a wide-field optical technique that enables superficial blood flow quantification. LSI is normally performed in a mounted configuration to decrease the likelihood of motion artifact. However, mounted LSI systems are cumbersome and difficult to transport quickly in a clinical setting for which portability is essential in providing bedside patient care. To address this issue, we created a handheld LSI device using scientific grade components. To account for motion artifact of the LSI device used in a handheld setup, we incorporated a fiducial marker (FM) into our imaging protocol and determined the difference between highest and lowest speckle contrast values for the FM within each data set (Kbest and Kworst). The difference between Kbest and Kworst in mounted and handheld setups was 8% and 52%, respectively, thereby reinforcing the need for motion artifact quantification. When using a threshold FM speckle contrast value (KFM) to identify a subset of images with an acceptable level of motion artifact, mounted and handheld LSI measurements of speckle contrast of a flow region (KFLOW) in in vitro flow phantom experiments differed by 8%. Without the use of the FM, mounted and handheld KFLOW values differed by 20%. To further validate our handheld LSI device, we compared mounted and handheld data from an in vivo porcine burn model of superficial and full thickness burns. The speckle contrast within the burn region (KBURN) of the mounted and handheld LSI data differed by <4  %   when accounting for motion artifact using the FM, which is less than the speckle contrast difference between superficial and full thickness burns. Collectively, our results suggest the potential of handheld LSI with an FM as a suitable alternative to mounted LSI, especially in challenging clinical settings with space limitations such as the intensive care unit. (2018) COPYRIGHT Society of Photo-Optical Instrumentation Engineers (SPIE).

  16. Correcting for motion artifact in handheld laser speckle images

    NASA Astrophysics Data System (ADS)

    Lertsakdadet, Ben; Yang, Bruce Y.; Dunn, Cody E.; Ponticorvo, Adrien; Crouzet, Christian; Bernal, Nicole; Durkin, Anthony J.; Choi, Bernard

    2018-03-01

    Laser speckle imaging (LSI) is a wide-field optical technique that enables superficial blood flow quantification. LSI is normally performed in a mounted configuration to decrease the likelihood of motion artifact. However, mounted LSI systems are cumbersome and difficult to transport quickly in a clinical setting for which portability is essential in providing bedside patient care. To address this issue, we created a handheld LSI device using scientific grade components. To account for motion artifact of the LSI device used in a handheld setup, we incorporated a fiducial marker (FM) into our imaging protocol and determined the difference between highest and lowest speckle contrast values for the FM within each data set (Kbest and Kworst). The difference between Kbest and Kworst in mounted and handheld setups was 8% and 52%, respectively, thereby reinforcing the need for motion artifact quantification. When using a threshold FM speckle contrast value (KFM) to identify a subset of images with an acceptable level of motion artifact, mounted and handheld LSI measurements of speckle contrast of a flow region (KFLOW) in in vitro flow phantom experiments differed by 8%. Without the use of the FM, mounted and handheld KFLOW values differed by 20%. To further validate our handheld LSI device, we compared mounted and handheld data from an in vivo porcine burn model of superficial and full thickness burns. The speckle contrast within the burn region (KBURN) of the mounted and handheld LSI data differed by <4 % when accounting for motion artifact using the FM, which is less than the speckle contrast difference between superficial and full thickness burns. Collectively, our results suggest the potential of handheld LSI with an FM as a suitable alternative to mounted LSI, especially in challenging clinical settings with space limitations such as the intensive care unit.

  17. Sparse-sampling with time-encoded (TICO) stimulated Raman scattering for fast image acquisition

    NASA Astrophysics Data System (ADS)

    Hakert, Hubertus; Eibl, Matthias; Karpf, Sebastian; Huber, Robert

    2017-07-01

    Modern biomedical imaging modalities aim to provide researchers a multimodal contrast for a deeper insight into a specimen under investigation. A very promising technique is stimulated Raman scattering (SRS) microscopy, which can unveil the chemical composition of a sample with a very high specificity. Although the signal intensities are enhanced manifold to achieve a faster acquisition of images if compared to standard Raman microscopy, there is a trade-off between specificity and acquisition speed. Commonly used SRS concepts either probe only very few Raman transitions as the tuning of the applied laser sources is complicated or record whole spectra with a spectrometer based setup. While the first approach is fast, it reduces the specificity and the spectrometer approach records whole spectra -with energy differences where no Raman information is present-, which limits the acquisition speed. Therefore, we present a new approach based on the TICO-Raman concept, which we call sparse-sampling. The TICO-sparse-sampling setup is fully electronically controllable and allows probing of only the characteristic peaks of a Raman spectrum instead of always acquiring a whole spectrum. By reducing the spectral points to the relevant peaks, the acquisition time can be greatly reduced compared to a uniformly, equidistantly sampled Raman spectrum while the specificity and the signal to noise ratio (SNR) are maintained. Furthermore, all laser sources are completely fiber based. The synchronized detection enables a full resolution of the Raman signal, whereas the analogue and digital balancing allows shot noise limited detection. First imaging results with polystyrene (PS) and polymethylmethacrylate (PMMA) beads confirm the advantages of TICO sparse-sampling. We achieved a pixel dwell time as low as 35 μs for an image differentiating both species. The mechanical properties of the applied voice coil stage for scanning the sample currently limits even faster acquisition.

  18. Image Quality Characteristics of Handheld Display Devices for Medical Imaging

    PubMed Central

    Yamazaki, Asumi; Liu, Peter; Cheng, Wei-Chung; Badano, Aldo

    2013-01-01

    Handheld devices such as mobile phones and tablet computers have become widespread with thousands of available software applications. Recently, handhelds are being proposed as part of medical imaging solutions, especially in emergency medicine, where immediate consultation is required. However, handheld devices differ significantly from medical workstation displays in terms of display characteristics. Moreover, the characteristics vary significantly among device types. We investigate the image quality characteristics of various handheld devices with respect to luminance response, spatial resolution, spatial noise, and reflectance. We show that the luminance characteristics of the handheld displays are different from those of workstation displays complying with grayscale standard target response suggesting that luminance calibration might be needed. Our results also demonstrate that the spatial characteristics of handhelds can surpass those of medical workstation displays particularly for recent generation devices. While a 5 mega-pixel monochrome workstation display has horizontal and vertical modulation transfer factors of 0.52 and 0.47 at the Nyquist frequency, the handheld displays released after 2011 can have values higher than 0.63 at the respective Nyquist frequencies. The noise power spectra for workstation displays are higher than 1.2×10−5 mm2 at 1 mm−1, while handheld displays have values lower than 3.7×10−6 mm2. Reflectance measurements on some of the handheld displays are consistent with measurements for workstation displays with, in some cases, low specular and diffuse reflectance coefficients. The variability of the characterization results among devices due to the different technological features indicates that image quality varies greatly among handheld display devices. PMID:24236113

  19. Wireless Handhelds to Support Clinical Nursing Practicum

    ERIC Educational Resources Information Center

    Wu, Cheng-Chih; Lai, Chin-Yuan

    2009-01-01

    This paper reports our implementation and evaluation of a wireless handheld learning environment used to support a clinical nursing practicum course. The learning environment was designed so that nursing students could use handhelds for recording information, organizing ideas, assessing patients, and also for interaction and collaboration with…

  20. Portable Raman instrument for rapid biological agent detection and identification

    NASA Astrophysics Data System (ADS)

    Lesaicherre, Marie L.; Paxon, Tracy L.; Mondello, Frank J.; Burrell, Michael C.; Linsebigler, Amy

    2009-05-01

    The rapid and sensitive identification of biological species is a critical need for the 1st responder and military communities. Raman spectroscopy is a powerful tool for substance identification that has gained popularity with the respective communities due to the increasing availability of portable Raman spectrometers. Attempts to use Raman spectroscopy for the direct identification of biological pathogens has been hindered by the complexity of the generated Raman spectrum. We report here the use of a sandwich immunoassay containing antibody modified magnetic beads to capture and concentrate target analytes in solution and Surface Enhanced Raman Spectroscopy (SERS) tags conjugated with these same antibodies for specific detection. Using this approach, the biological complexity of a microorganism can be translated into chemical simplicity and Raman can be used for the identification of biological pathogens. The developed assay has a low limit of detection due to the SERS effect, robust to commonly found white powders interferants, and stable at room temperature over extended period of time. This assay is being implemented into a user-friendly interface to be used in conjunction with the GE Homeland Protection StreetLab MobileTM Raman instrument for rapid, field deployable chemical and biological identification.

  1. Analysis of human hair by Raman microspectroscopy

    NASA Astrophysics Data System (ADS)

    Plascencia-Castro, A. S.; Cordova-Fraga, T.; Piña-Ruiz, A. L.; Hernández-Rayas, A.; Bernal, J. J.

    2017-04-01

    Raman microspectroscopy is an optical compound identification technique, which is widely used nowadays for different field applications. A crucial part of this technique is the focus given to the sample in the microscope because it depends on which part of the sample it will analyze. In this work, the effects of irradiating a natural hair samples, obtained from women aged 18 to 55, with a monochromatic light of the Raman spectrometer in two different focus is presented. Two different spectra were obtained with a peak in common. Depending on the information wanted, how the sample is focused plays a crucial role, either way the spectra is information-rich and may be used for biomedical applications.

  2. Frequency-resolved Raman for transient thermal probing and thermal diffusivity measurement

    DOE PAGES

    Wang, Tianyu; Xu, Shen; Hurley, David H.; ...

    2015-12-18

    Steady state Raman has been widely used for temperature probing and thermal conductivity/conductance measurement in combination with temperature coefficient calibration. In this work, a new transient Raman thermal probing technique: frequency-resolved Raman (FR-Raman) is developed for probing the transient thermal response of materials and measuring their thermal diffusivity. The FR-Raman uses an amplitude modulated square-wave laser for simultaneous material heating and Raman excitation. The evolution profile of Raman properties: intensity, Raman wavenumber, and emission, against frequency are measured experimentally and reconstructed theoretically. They are used for fitting to determine the thermal diffusivity of the material under test. A Si cantilevermore » is used to investigate the capacity of this new technique. The cantilever’s thermal diffusivity is determined as 9.57 × 10 -5 m 2/s, 11.00 × 10 -5 m 2/s and 9.02 × 10 -5 m 2/s by fitting the Raman intensity, wavenumber and emission. The deviation from the reference value is largely attributed to thermal stress-induced material deflection and Raman drift, which could be significantly suppressed by using a higher sensitivity Raman spectrometer with lower laser energy. As a result, the FR-Raman provides a novel way for transient thermal characterization of materials with a ?m spatial resolution.« less

  3. Do Handheld Devices Facilitate Face-to-Face Collaboration? Handheld Devices with Large Shared Display Groupware to Facilitate Group Interactions

    ERIC Educational Resources Information Center

    Liu, Chen-Chung; Kao, L.-C.

    2007-01-01

    One-to-one computing environments change and improve classroom dynamics as individual students can bring handheld devices fitted with wireless communication capabilities into the classrooms. However, the screens of handheld devices, being designed for individual-user mobile application, limit promotion of interaction among groups of learners. This…

  4. Quantitative determination of the human breast milk macronutrients by near-infrared Raman spectroscopy

    NASA Astrophysics Data System (ADS)

    Motta, Edlene d. C. M.; Zângaro, Renato A.; Silveira, Landulfo, Jr.

    2012-03-01

    This work proposes the evaluation of the macronutrient constitution of human breast milk based on the spectral information provided by near-infrared Raman spectroscopy. Human breast milk (5 mL) from a subject was collected during the first two weeks of breastfeeding and stocked in -20°C freezer. Raman spectra were measured using a Raman spectrometer (830 nm excitation) coupled to a fiber based Raman probe. Spectra of human milk were dominated by bands of proteins, lipids and carbohydrates in the 600-1800 cm-1 spectral region. Raman spectroscopy revealed differences in the biochemical constitution of human milk depending on the time of breastfeeding startup. This technique could be employed to develop a classification routine for the milk in Human Milk Banking (HMB) depending on the nutritional facts.

  5. Handheld Computer Use in U.S. Family Practice Residency Programs

    PubMed Central

    Criswell, Dan F.; Parchman, Michael L.

    2002-01-01

    Objective: The purpose of the study was to evaluate the uses of handheld computers (also called personal digital assistants, or PDAs) in family practice residency programs in the United States. Study Design: In November 2000, the authors mailed a questionnaire to the program directors of all American Academy of Family Physicians (AAFP) and American College of Osteopathic Family Practice (ACOFP) residency programs in the United States. Measurements: Data and patterns of the use and non-use of handheld computers were identified. Results: Approximately 50 percent (306 of 610) of the programs responded to the survey. Two thirds of the programs reported that handheld computers were used in their residencies, and an additional 14 percent had plans for implementation within 24 months. Both the Palm and the Windows CE operating systems were used, with the Palm operating system the most common. Military programs had the highest rate of use (8 of 10 programs, 80 percent), and osteopathic programs had the lowest (23 of 55 programs, 42 percent). Of programs that reported handheld computer use, 45 percent had required handheld computer applications that are used uniformly by all users. Funding for handheld computers and related applications was non-budgeted in 76percent of the programs in which handheld computers were used. In programs providing a budget for handheld computers, the average annual budget per user was $461.58. Interested faculty or residents, rather than computer information services personnel, performed upkeep and maintenance of handheld computers in 72 percent of the programs in which the computers are used. In addition to the installed calendar, memo pad, and address book, the most common clinical uses of handheld computers in the programs were as medication reference tools, electronic textbooks, and clinical computational or calculator-type programs. Conclusions: Handheld computers are widely used in family practice residency programs in the United States

  6. Dual-excitation wavelength resonance Raman explosives detector

    NASA Astrophysics Data System (ADS)

    Yellampalle, Balakishore; Sluch, Mikhail; Wu, Hai-Shan; Martin, Robert; McCormick, William; Ice, Robert; Lemoff, Brian E.

    2013-05-01

    Deep-ultraviolet resonance Raman spectroscopy (DUVRRS) is a promising approach to stand-off detection of explosive traces due to: 1) resonant enhancement of Raman cross-section, 2) λ-4-cross-section enhancement, and 3) fluorescence and solar background free signatures. For trace detection, these signal enhancements more than offset the small penetration depth due to DUV absorption. A key challenge for stand-off sensors is to distinguish explosives, with high confidence, from a myriad of unknown background materials that may have interfering spectral peaks. To address this, we are developing a stand-off explosive sensor using DUVRRS with two simultaneous DUV excitation wavelengths. Due to complex interplay of resonant enhancement, self-absorption and laser penetration depth, significant amplitude variation is observed between corresponding Raman bands with different excitation wavelengths. These variations with excitation wavelength provide an orthogonal signature that complements the traditional Raman signature to improve specificity relative to single-excitation-wavelength techniques. As part of this effort, we are developing two novel CW DUV lasers, which have potential to be compact, and a compact dual-band high throughput DUV spectrometer, capable of simultaneous detection of Raman spectra in two spectral windows. We have also developed a highly sensitive algorithm for the detection of explosives under low signal-to-noise situations.

  7. A Raman Spectroscopic Study of Samples from the May 2001 FIDO Test Site

    NASA Technical Reports Server (NTRS)

    Kuebler, K.; Jolliff, B. L.; Wang, A.; Haskin, L. A.

    2002-01-01

    Last May, a rover field test was conducted in the Mojave desert. This study shows what mineralogy a rover-deployed Raman spectrometer might have observed. Additional information is contained in the original extended abstract.

  8. Experimental examination of ultraviolet Raman cross sections of chemical warfare agent simulants

    NASA Astrophysics Data System (ADS)

    Kullander, F.; Landström, L.; Lundén, H.; Wästerby, Pär.

    2015-05-01

    Laser induced Raman scattering from the commonly used chemical warfare agent simulants dimethyl sulfoxide, tributyl phosphate, triethyl phosphonoacetate was measured at excitation wavelengths ranging from 210 to 410 nm using a pulsed laser based spectrometer system with a probing distance of 1.4 m and with a field of view on the target of less than 1mm. For the purpose of comparison with well explored reference liquids the Raman scattering from simulants was measured in the form of an extended liquid surface layer on top of a silicon wafer. This way of measuring enabled direct comparison to the Raman scattering strength from cyclohexane. The reference Raman spectra were used to validate the signal strength of the simulants and the calibration of the experimental set up. Measured UV absorbance functions were used to calculate Raman cross sections. Established Raman cross sections of the simulants make it possible to use them as reference samples when measuring on chemical warfare agents in droplet form.

  9. In-situ shifted excitation Raman difference spectroscopy: development and demonstration of a portable sensor system at 785 nm

    NASA Astrophysics Data System (ADS)

    Maiwald, M.; Müller, A.; Sumpf, B.

    2017-02-01

    In-situ shifted excitation Raman difference spectroscopy (SERDS) experiments are presented using a portable sensor system. Key elements of this system are an in-house developed handheld probe with an implemented dual-wavelength diode laser at 785 nm. An optical power of 120 mW is achieved ex probe. Raman experiments are carried out in the laboratory for qualification using polystyrene as test sample. Here, a shot-noise limited signal-to-noise ratio (SNR) of 120 is achieved. Stability tests were performed and show a stable position of the Raman line under study within 0.1 cm-1 and a stable Raman intensity better +/- 2% mainly limited by shot noise interference. SERDS experiments are carried out in an apple orchard for demonstration. Green apple leafs are used as test samples. The Raman spectra show huge background interferences by fluorescence and ambient daylight which almost obscure Raman signals from green leafs. The selected excitation power is 50 mW and the exposure time is 0.2 s to avoid detector saturation. SERDS efficiently separates the Raman signals from fluorescence and daylight contributions and generates an 11-fold improvement of the signal-to-background noise with respect to the measured Raman signals. The results demonstrate the capability of the portable SERDS system and enable rapid in-situ and undisturbed Raman investigations under daylight conditions.

  10. The sounds of handheld audio players.

    PubMed

    Rudy, Susan F

    2007-01-01

    Hearing experts and public health organizations have longstanding hearing safety concerns about personal handheld audio devices, which are growing in both number and popularity. This paper reviews the maximum sound levels of handheld compact disc players, MP3 players, and an iPod. It further reviews device factors that influence the sound levels produced by these audio devices and ways to reduce the risk to hearing during their use.

  11. Rapid, sensitive and reproducible method for point-of-collection screening of liquid milk for adulterants using a portable Raman spectrometer with novel optimized sample well

    NASA Astrophysics Data System (ADS)

    Nieuwoudt, Michel K.; Holroyd, Steve E.; McGoverin, Cushla M.; Simpson, M. Cather; Williams, David E.

    2017-02-01

    Point-of-care diagnostics are of interest in the medical, security and food industry, the latter particularly for screening food adulterated for economic gain. Milk adulteration continues to be a major problem worldwide and different methods to detect fraudulent additives have been investigated for over a century. Laboratory based methods are limited in their application to point-of-collection diagnosis and also require expensive instrumentation, chemicals and skilled technicians. This has encouraged exploration of spectroscopic methods as more rapid and inexpensive alternatives. Raman spectroscopy has excellent potential for screening of milk because of the rich complexity inherent in its signals. The rapid advances in photonic technologies and fabrication methods are enabling increasingly sensitive portable mini-Raman systems to be placed on the market that are both affordable and feasible for both point-of-care and point-of-collection applications. We have developed a powerful spectroscopic method for rapidly screening liquid milk for sucrose and four nitrogen-rich adulterants (dicyandiamide (DCD), ammonium sulphate, melamine, urea), using a combined system: a small, portable Raman spectrometer with focusing fibre optic probe and optimized reflective focusing wells, simply fabricated in aluminium. The reliable sample presentation of this system enabled high reproducibility of 8% RSD (residual standard deviation) within four minutes. Limit of detection intervals for PLS calibrations ranged between 140 - 520 ppm for the four N-rich compounds and between 0.7 - 3.6 % for sucrose. The portability of the system and reliability and reproducibility of this technique opens opportunities for general, reagentless adulteration screening of biological fluids as well as milk, at point-of-collection.

  12. Live broadcast of laparoscopic surgery to handheld computers.

    PubMed

    Gandsas, A; McIntire, K; Park, A

    2004-06-01

    Thanks to advances in computer power and miniaturization technology, portable electronic devices are now being used to assist physicians with various applications that extend far beyond Web browsing or sending e-mail. Handheld computers are used for electronic medical records, billing, coding, and to enable convenient access to electronic journals for reference purposes. The results of diagnostic investigations, such as laboratory results, study reports, and still radiographic pictures, can also be downloaded into portable devices for later view. Handheld computer technology, combined with wireless protocols and streaming video technology, has the added potential to become a powerful educational tool for medical students and residents. The purpose of this study was to assess the feasibility of transferring multimedia data in real time to a handheld computer via a wireless network and displaying them on the computer screens of clients at remote locations. A live laparoscopic splenectomy was transmitted live to eight handheld computers simultaneously through our institution's wireless network. All eight viewers were able to view the procedure and to hear the surgeon's comments throughout the entire duration of the operation. Handheld computer technology can play a key role in surgical education by delivering information to surgical residents or students when they are geographically distant from the actual event. Validation of this new technology by conducting clinical research is still needed to determine whether resident physicians or medical students can benefit from the use of handheld computers.

  13. Spectral monitoring of toluene and ethanol in gasoline blends using Fourier-Transform Raman spectroscopy

    NASA Astrophysics Data System (ADS)

    Ortega Clavero, Valentin; Weber, Andreas; Schröder, Werner; Curticapean, Dan; Meyrueis, Patrick; Javahiraly, Nicolas

    2013-04-01

    The combination of fossil-derived fuels with ethanol and methanol has acquired relevance and attention in several countries in recent years. This trend is strongly affected by market prices, constant geopolitical events, new sustainability policies, new laws and regulations, etc. Besides bio-fuels these materials also include different additives as anti-shock agents and as octane enhancer. Some of the chemical compounds in these additives may have harmful properties for both environment and public health (besides the inherent properties, like volatility). We present detailed Raman spectral information from toluene (C7H8) and ethanol (C2H6O) contained in samples of ElO gasoline-ethanol blends. The spectral information has been extracted by using a robust, high resolution Fourier-Transform Raman spectrometer (FT-Raman) prototype. This spectral information has been also compared with Raman spectra from pure additives and with standard Raman lines in order to validate its accuracy in frequency. The spectral information is presented in the range of 0 cm-1 to 3500 cm-1 with a resolution of 1.66cm-1. This allows resolving tight adjacent Raman lines like the ones observed around 1003cm-1 and 1030cm-1 (characteristic lines of toluene). The Raman spectra obtained show a reduced frequency deviation when compared to standard Raman spectra from different calibration materials. The FT-Raman spectrometer prototype used for the analysis consist basically of a Michelson interferometer and a self-designed photon counter cooled down on a Peltier element arrangement. The light coupling is achieved with conventional62.5/125μm multi-mode fibers. This FT-Raman setup is able to extract high resolution and frequency precise Raman spectra from the additives in the fuels analyzed. The proposed prototype has no additional complex hardware components or costly software modules. The mechanical and thermal disturbances affecting the FT-Raman system are mathematically compensated by accurately

  14. Ultra-compact switchable SLO/OCT handheld probe design

    NASA Astrophysics Data System (ADS)

    LaRocca, Francesco; Nankivil, Derek; DuBose, Theodore; Farsiu, Sina; Izatt, Joseph A.

    2015-03-01

    Handheld scanning laser ophthalmoscopy (SLO) and optical coherence tomography (OCT) systems facilitate imaging of young children and subjects that have difficulty fixating. More compact and lightweight probes allow for better portability and increased comfort for the operator of the handheld probe. We describe a very compact, novel SLO and OCT handheld probe design. A single 2D microelectromechanical systems (MEMS) scanner and a custom optical design using a converging beam prior to the scanner permitted significant reduction in the system size. Our design utilized a combination of commercial and custom optics that were optimized in Zemax to achieve near diffraction-limited resolution of 8 μm over a 7° field of view. The handheld probe has a form factor of 7 x 6 x 2.5 cm and a weight of only 94 g, which is over an order of magnitude lighter than prior SLO-OCT handheld probes. Images were acquired from a normal subject with an incident power on the eye under the ANSI limit. With this device, which is the world's lightest and smallest SLO-OCT system, we were able to visualize parafoveal cone photoreceptors and nerve fiber bundles without the use of adaptive optics.

  15. Wavelength Selection For Laser Raman Spectroscopy of Putative Martian Habitats and Biomolecules

    NASA Astrophysics Data System (ADS)

    Wynn-Williams, D. D.; Newton, E. M. G.; Edwards, H. G. M.

    Pigments are key potential biomarkers for any former life on Mars because of the selective pressure of solar radiation on any biological system that could have evolved at its surface. We have found that the near -Infrared laser Raman spectrometer available to use was eminently suitable for diagnostic analysis of pigments because of their minimal autofluorescence at its 1064 nm excitation wav elength. However, we have now evaluated a diverse range of excitation wavelengths to confirm this choice, to ensure that we have the best technique to seek for pigments and their derivatives from any former surface life on Mars. The Raman is weak relative to fluorescence, which results in elevated baseline and concurrent swamping of Raman bands. We confirm the molecular information available from near-IR FT Raman spectra for two highly pigmented UV-tolerant epilithic Antarctic lichens (Acarospora chlorop hana and Caloplaca saxicola) from Victoria Land, a whole endolithic microbial community and endolithic cyanobacterium Chroococcidiopsis from within translucent sandstone of the Trans -Antarctic Mountains, and the free- living cyanobacterium Nostoc commune from Alexander Island, Antarctic Peninsula region. We also show that much of the information we require on biomolecules is not evident from lasers of shorter wavelengths. A miniature 1064 nm Raman spectrometer with an In-Ga-As detector sensitive to IR is being developed by Montana State University (now existing as a prototype) as the prime instrument for a proposed UK-led Mars rover mission (Vanguard). Preliminary spectra from this system confirm the suitability of the near-IR laser.

  16. Raman Spectroscopy for Analysis of Thorium Compounds

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Su, Yin-Fong; Johnson, Timothy J.; Olsen, Khris B.

    2016-05-12

    The thorium fuel cycle is an alternative to the uranium fuel cycle in that when 232Th is irradiated with neutrons it is converted to 233U, another fissile isotope. There are several chemical forms of thorium which are used in the Th fuel cycle. Recently, Raman spectroscopy has become a very portable and facile analytical technique useful for many applications, including e.g. determining the chemical composition of different materials such as for thorium compounds. The technique continues to improve with the development of ever-more sensitive instrumentation and better software. Using a laboratory Fourier-transform (FT)-Raman spectrometer with a 785 nm wavelength laser,more » we were able to obtain Raman spectra from a series of thorium-bearing compounds of unknown origin. These spectra were compared to the spectra of in-stock-laboratory thorium compounds including ThO2, ThF4, Th(CO3)2 and Th(C2O4)2. The unknown spectra showed very good agreement to the known standards, demonstrating the applicability of Raman spectroscopy for detection and identification of these nuclear materials.« less

  17. Feasibility of a handheld near infrared device for the qualitative analysis of bloodstains.

    PubMed

    Morillas, Alvaro Varela; Gooch, James; Frascione, Nunzianda

    2018-07-01

    One of the most common tasks in criminal investigation is to determine from which tissue source a biological fluid stain originates. As a result, there are many tests that are frequently used to determine if a stain is blood, semen or saliva by exploiting the properties of certain molecules present within the fluids themselves. These include chemical reagents such as the Kastle-Meyer or Acid Phosphatase tests, as well as other techniques like the use of alternative light sources. However, most of the tests currently available have some major drawbacks. In this study, a handheld near-infrared spectrometer is investigated for the specific identification of deposited bloodstains. First, a calibration was carried out by scanning over 500 positive (blood present) and negative (blood absent) samples to train several predictive models based on machine learning principles. These models were then tested on over 100 new positive and negative samples to evaluate their performance. All models tested were able to correctly classify deposited stains as blood in at least 81% of tested samples, with some models allowing for even higher classification accuracy at over 94%. This suggests that handheld near infrared devices could offer great opportunity for the rapid, low cost and non-destructive screening of body fluids at scenes of crime. Copyright © 2018 Elsevier B.V. All rights reserved.

  18. Fast Confocal Raman Imaging Using a 2-D Multifocal Array for Parallel Hyperspectral Detection.

    PubMed

    Kong, Lingbo; Navas-Moreno, Maria; Chan, James W

    2016-01-19

    We present the development of a novel confocal hyperspectral Raman microscope capable of imaging at speeds up to 100 times faster than conventional point-scan Raman microscopy under high noise conditions. The microscope utilizes scanning galvomirrors to generate a two-dimensional (2-D) multifocal array at the sample plane, generating Raman signals simultaneously at each focus of the array pattern. The signals are combined into a single beam and delivered through a confocal pinhole before being focused through the slit of a spectrometer. To separate the signals from each row of the array, a synchronized scan mirror placed in front of the spectrometer slit positions the Raman signals onto different pixel rows of the detector. We devised an approach to deconvolve the superimposed signals and retrieve the individual spectra at each focal position within a given row. The galvomirrors were programmed to scan different focal arrays following Hadamard encoding patterns. A key feature of the Hadamard detection is the reconstruction of individual spectra with improved signal-to-noise ratio. Using polystyrene beads as test samples, we demonstrated not only that our system images faster than a conventional point-scan method but that it is especially advantageous under noisy conditions, such as when the CCD detector operates at fast read-out rates and high temperatures. This is the first demonstration of multifocal confocal Raman imaging in which parallel spectral detection is implemented along both axes of the CCD detector chip. We envision this novel 2-D multifocal spectral detection technique can be used to develop faster imaging spontaneous Raman microscopes with lower cost detectors.

  19. Preliminary investigation on the relationship of Raman spectra of sheep meat with shear force and cooking loss.

    PubMed

    Schmidt, Heinar; Scheier, Rico; Hopkins, David L

    2013-01-01

    A prototype handheld Raman system was used as a rapid non-invasive optical device to measure raw sheep meat to estimate cooked meat tenderness and cooking loss. Raman measurements were conducted on m. longissimus thoracis et lumborum samples from two sheep flocks from two different origins which had been aged for five days at 3-4°C before deep freezing and further analysis. The Raman data of 140 samples were correlated with shear force and cooking loss data using PLS regression. Both sample origins could be discriminated and separate correlation models yielded better correlations than the joint correlation model. For shear force, R(2)=0.79 and R(2)=0.86 were obtained for the two sites. Results for cooking loss were comparable: separate models yielded R(2)=0.79 and R(2)=0.83 for the two sites. The results show the potential usefulness of Raman spectra which can be recorded during meat processing for the prediction of quality traits such as tenderness and cooking loss. Copyright © 2012 Elsevier Ltd. All rights reserved.

  20. Fast low frequency (down to 10 cm(-1)) multichannel Raman spectroscopy using an iodine vapor filter.

    PubMed

    Okajima, Hajime; Hamaguchi, Hiro-o

    2009-08-01

    We have constructed a multi-channel Raman spectrometer that is capable of recording the low frequency region down to 5 cm(-1) with a measurement time of a few tenths of a second. An iodine vapor filter, which uses a narrow (approximately 0.03 cm(-1)) absorption line of iodine for Rayleigh scattering elimination, is combined with a multi-channel Raman spectrometer composed of a single polychromator and a charge-coupled device (CCD) camera. Thanks to the high Rayleigh scattering elimination efficiency of the filter, which is over 10(6), Raman spectra of microcrystalline L-cystine from -300 cm(-1) to 1000 cm(-1) are simultaneously measurable with a small gap of 10 cm(-1) (-5 cm(-1) to 5 cm(-1)). Although raw spectra contain many sharp spikes due to the fine structures of iodine absorption, they can be correctly compensated with the use of a transmittance spectrum measured under the same experimental conditions. Many Raman bands including the 9.8 cm(-1) band are measured with a high signal-to-noise ratio in both the Stokes and anti-Stokes sides with a measurement time as short as 0.2 s.

  1. Combining Raman and laser induced breakdown spectroscopy by double pulse lasing.

    PubMed

    Lednev, Vasily N; Pershin, Sergey M; Sdvizhenskii, Pavel A; Grishin, Mikhail Ya; Fedorov, Alexander N; Bukin, Vladimir V; Oshurko, Vadim B; Shchegolikhin, Alexander N

    2018-01-01

    A new approach combining Raman spectrometry and laser induced breakdown spectrometry (LIBS) within a single laser event was suggested. A pulsed solid state Nd:YAG laser running in double pulse mode (two frequency-doubled sequential nanosecond laser pulses with dozens microseconds delay) was used to combine two spectrometry methods within a single instrument (Raman/LIBS spectrometer). First, a low-energy laser pulse (power density far below ablation threshold) was used for Raman measurements while a second powerful laser pulse created the plasma suitable for LIBS analysis. A short time delay between two successive pulses allows measuring LIBS and Raman spectra at different moments but within a single laser flash-lamp pumping. Principal advantages of the developed instrument include high quality Raman/LIBS spectra acquisition (due to optimal gating for Raman/LIBS independently) and absence of target thermal alteration during Raman measurements. A series of high quality Raman and LIBS spectra were acquired for inorganic salts (gypsum, anhydrite) as well as for pharmaceutical samples (acetylsalicylic acid). To the best of our knowledge, the quantitative analysis feasibility by combined Raman/LIBS instrument was demonstrated for the first time by calibration curves construction for acetylsalicylic acid (Raman) and copper (LIBS) in gypsum matrix. Combining ablation pulses and Raman measurements (LIBS/Raman measurements) within a single instrument makes it an efficient tool for identification of samples hidden by non-transparent covering or performing depth profiling analysis including remote sensing. Graphical abstract Combining Raman and laser induced breakdown spectroscopy by double pulse lasing.

  2. Raman Spectroscopy for In-Line Water Quality Monitoring — Instrumentation and Potential

    PubMed Central

    Li, Zhiyun; Deen, M. Jamal; Kumar, Shiva; Selvaganapathy, P. Ravi

    2014-01-01

    Worldwide, the access to safe drinking water is a huge problem. In fact, the number of persons without safe drinking water is increasing, even though it is an essential ingredient for human health and development. The enormity of the problem also makes it a critical environmental and public health issue. Therefore, there is a critical need for easy-to-use, compact and sensitive techniques for water quality monitoring. Raman spectroscopy has been a very powerful technique to characterize chemical composition and has been applied to many areas, including chemistry, food, material science or pharmaceuticals. The development of advanced Raman techniques and improvements in instrumentation, has significantly improved the performance of modern Raman spectrometers so that it can now be used for detection of low concentrations of chemicals such as in-line monitoring of chemical and pharmaceutical contaminants in water. This paper briefly introduces the fundamentals of Raman spectroscopy, reviews the development of Raman instrumentations and discusses advanced and potential Raman techniques for in-line water quality monitoring. PMID:25230309

  3. Handheld optical-resolution photoacoustic microscopy

    NASA Astrophysics Data System (ADS)

    Lin, Li; Zhang, Pengfei; Xu, Song; Shi, Junhui; Li, Lei; Yao, Junjie; Wang, Lidai; Zou, Jun; Wang, Lihong V.

    2017-04-01

    Optical-resolution photoacoustic microscopy (OR-PAM) offers label-free in vivo imaging with high spatial resolution by acoustically detecting optical absorption contrasts via the photoacoustic effect. We developed a compact handheld OR-PAM probe for fast photoacoustic imaging. Different from benchtop microscopes, the handheld probe provides flexibility in imaging various anatomical sites. Resembling a cup in size, the probe uses a two-axis water-immersible microelectromechanical system mirror to scan both the illuminating optical beam and resultant acoustic beam. The system performance was tested in vivo by imaging the capillary bed in a mouse ear and both the capillary bed and a mole on a human volunteer.

  4. Multifocus confocal Raman microspectroscopy for fast multimode vibrational imaging of living cells.

    PubMed

    Okuno, Masanari; Hamaguchi, Hiro-o

    2010-12-15

    We have developed a multifocus confocal Raman microspectroscopic system for the fast multimode vibrational imaging of living cells. It consists of an inverted microscope equipped with a microlens array, a pinhole array, a fiber bundle, and a multichannel Raman spectrometer. Forty-eight Raman spectra from 48 foci under the microscope are simultaneously obtained by using multifocus excitation and image-compression techniques. The multifocus confocal configuration suppresses the background generated from the cover glass and the cell culturing medium so that high-contrast images are obtainable with a short accumulation time. The system enables us to obtain multimode (10 different vibrational modes) vibrational images of living cells in tens of seconds with only 1 mW laser power at one focal point. This image acquisition time is more than 10 times faster than that in conventional single-focus Raman microspectroscopy.

  5. Use of handheld computers in clinical practice: a systematic review.

    PubMed

    Mickan, Sharon; Atherton, Helen; Roberts, Nia Wyn; Heneghan, Carl; Tilson, Julie K

    2014-07-06

    Many healthcare professionals use smartphones and tablets to inform patient care. Contemporary research suggests that handheld computers may support aspects of clinical diagnosis and management. This systematic review was designed to synthesise high quality evidence to answer the question; Does healthcare professionals' use of handheld computers improve their access to information and support clinical decision making at the point of care? A detailed search was conducted using Cochrane, MEDLINE, EMBASE, PsycINFO, Science and Social Science Citation Indices since 2001. Interventions promoting healthcare professionals seeking information or making clinical decisions using handheld computers were included. Classroom learning and the use of laptop computers were excluded. Two authors independently selected studies, assessed quality using the Cochrane Risk of Bias tool and extracted data. High levels of data heterogeneity negated statistical synthesis. Instead, evidence for effectiveness was summarised narratively, according to each study's aim for assessing the impact of handheld computer use. We included seven randomised trials investigating medical or nursing staffs' use of Personal Digital Assistants. Effectiveness was demonstrated across three distinct functions that emerged from the data: accessing information for clinical knowledge, adherence to guidelines and diagnostic decision making. When healthcare professionals used handheld computers to access clinical information, their knowledge improved significantly more than peers who used paper resources. When clinical guideline recommendations were presented on handheld computers, clinicians made significantly safer prescribing decisions and adhered more closely to recommendations than peers using paper resources. Finally, healthcare professionals made significantly more appropriate diagnostic decisions using clinical decision making tools on handheld computers compared to colleagues who did not have access to these

  6. Use of handheld computers in clinical practice: a systematic review

    PubMed Central

    2014-01-01

    Background Many healthcare professionals use smartphones and tablets to inform patient care. Contemporary research suggests that handheld computers may support aspects of clinical diagnosis and management. This systematic review was designed to synthesise high quality evidence to answer the question; Does healthcare professionals’ use of handheld computers improve their access to information and support clinical decision making at the point of care? Methods A detailed search was conducted using Cochrane, MEDLINE, EMBASE, PsycINFO, Science and Social Science Citation Indices since 2001. Interventions promoting healthcare professionals seeking information or making clinical decisions using handheld computers were included. Classroom learning and the use of laptop computers were excluded. Two authors independently selected studies, assessed quality using the Cochrane Risk of Bias tool and extracted data. High levels of data heterogeneity negated statistical synthesis. Instead, evidence for effectiveness was summarised narratively, according to each study’s aim for assessing the impact of handheld computer use. Results We included seven randomised trials investigating medical or nursing staffs’ use of Personal Digital Assistants. Effectiveness was demonstrated across three distinct functions that emerged from the data: accessing information for clinical knowledge, adherence to guidelines and diagnostic decision making. When healthcare professionals used handheld computers to access clinical information, their knowledge improved significantly more than peers who used paper resources. When clinical guideline recommendations were presented on handheld computers, clinicians made significantly safer prescribing decisions and adhered more closely to recommendations than peers using paper resources. Finally, healthcare professionals made significantly more appropriate diagnostic decisions using clinical decision making tools on handheld computers compared to colleagues

  7. Raman Spectroscopic Analysis of Geological and Biogeological Specimens of Relevance to the ExoMars Mission

    PubMed Central

    Edwards, Howell G.M.; Ingley, Richard; Parnell, John; Vítek, Petr; Jehlička, Jan

    2013-01-01

    Abstract A novel miniaturized Raman spectrometer is scheduled to fly as part of the analytical instrumentation package on an ESA remote robotic lander in the ESA/Roscosmos ExoMars mission to search for evidence for extant or extinct life on Mars in 2018. The Raman spectrometer will be part of the first-pass analytical stage of the sampling procedure, following detailed surface examination by the PanCam scanning camera unit on the ExoMars rover vehicle. The requirements of the analytical protocol are stringent and critical; this study represents a laboratory blind interrogation of specimens that form a list of materials that are of relevance to martian exploration and at this stage simulates a test of current laboratory instrumentation to highlight the Raman technique strengths and possible weaknesses that may be encountered in practice on the martian surface and from which future studies could be formulated. In this preliminary exercise, some 10 samples that are considered terrestrial representatives of the mineralogy and possible biogeologically modified structures that may be identified on Mars have been examined with Raman spectroscopy, and conclusions have been drawn about the viability of the unambiguous spectral identification of biomolecular life signatures. It is concluded that the Raman spectroscopic technique does indeed demonstrate the capability to identify biomolecular signatures and the mineralogy in real-world terrestrial samples with a very high degree of success without any preconception being made about their origin and classification. Key Words: Biosignatures—Mars Exploration Rovers—Raman spectroscopy—Search for life (biosignatures)—Planetary instrumentation. Astrobiology 13, 543–549. PMID:23758166

  8. Near-field nano-Raman imaging of Si device structures

    NASA Astrophysics Data System (ADS)

    Atesang, Jacob; Geer, Robert

    2005-05-01

    Apertureless-based, near-field Raman imaging holds the potential for nanoscale stress metrology in emerging Si devices. Preliminary application of near-field Raman imaging on Si device structures has demonstrated the potential for stress measurements. However, detailed investigations have not been published regarding the effect of tip radius on observed near-field enhancement. Such investigations are important to understand the fundamental limits regarding the signal-to-noise ratio of the measurement and the spatial resolution that can potentially be achieved before wide application to semiconductor metrology can be considered. Investigations are presented into near-field enhancement of Raman scattering from Si device structures using a modified near-field optical microscope (NSOM). The nano-Raman system utilizes an off-axis (45°) backscattering NSOM geometry with free-space collection optics. The spectroscopic configuration utilizes a single-bounce spectrometer incorporating a holographic notch filter assembly utilized as a secondary beam-splitter for an apertureless backscattering collection geometry. Near-field enhancement is observed for both Al- and Ag-coated probes. An inverse square power-law relationship is observed between near-field enhancement factor and tip radius.

  9. 30 CFR 56.14116 - Hand-held power tools.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... 30 Mineral Resources 1 2012-07-01 2012-07-01 false Hand-held power tools. 56.14116 Section 56... MINE SAFETY AND HEALTH SAFETY AND HEALTH STANDARDS-SURFACE METAL AND NONMETAL MINES Machinery and Equipment Safety Devices and Maintenance Requirements § 56.14116 Hand-held power tools. (a) Power drills...

  10. 30 CFR 56.14116 - Hand-held power tools.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 30 Mineral Resources 1 2010-07-01 2010-07-01 false Hand-held power tools. 56.14116 Section 56... MINE SAFETY AND HEALTH SAFETY AND HEALTH STANDARDS-SURFACE METAL AND NONMETAL MINES Machinery and Equipment Safety Devices and Maintenance Requirements § 56.14116 Hand-held power tools. (a) Power drills...

  11. 30 CFR 56.14116 - Hand-held power tools.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 30 Mineral Resources 1 2013-07-01 2013-07-01 false Hand-held power tools. 56.14116 Section 56... MINE SAFETY AND HEALTH SAFETY AND HEALTH STANDARDS-SURFACE METAL AND NONMETAL MINES Machinery and Equipment Safety Devices and Maintenance Requirements § 56.14116 Hand-held power tools. (a) Power drills...

  12. 30 CFR 57.14116 - Hand-held power tools.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... 30 Mineral Resources 1 2012-07-01 2012-07-01 false Hand-held power tools. 57.14116 Section 57... MINE SAFETY AND HEALTH SAFETY AND HEALTH STANDARDS-UNDERGROUND METAL AND NONMETAL MINES Machinery and Equipment Safety Devices and Maintenance Requirements § 57.14116 Hand-held power tools. (a) Power drills...

  13. 30 CFR 56.14116 - Hand-held power tools.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 30 Mineral Resources 1 2011-07-01 2011-07-01 false Hand-held power tools. 56.14116 Section 56... MINE SAFETY AND HEALTH SAFETY AND HEALTH STANDARDS-SURFACE METAL AND NONMETAL MINES Machinery and Equipment Safety Devices and Maintenance Requirements § 56.14116 Hand-held power tools. (a) Power drills...

  14. 30 CFR 57.14116 - Hand-held power tools.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 30 Mineral Resources 1 2010-07-01 2010-07-01 false Hand-held power tools. 57.14116 Section 57... MINE SAFETY AND HEALTH SAFETY AND HEALTH STANDARDS-UNDERGROUND METAL AND NONMETAL MINES Machinery and Equipment Safety Devices and Maintenance Requirements § 57.14116 Hand-held power tools. (a) Power drills...

  15. 30 CFR 57.14116 - Hand-held power tools.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 30 Mineral Resources 1 2013-07-01 2013-07-01 false Hand-held power tools. 57.14116 Section 57... MINE SAFETY AND HEALTH SAFETY AND HEALTH STANDARDS-UNDERGROUND METAL AND NONMETAL MINES Machinery and Equipment Safety Devices and Maintenance Requirements § 57.14116 Hand-held power tools. (a) Power drills...

  16. 30 CFR 56.14116 - Hand-held power tools.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 30 Mineral Resources 1 2014-07-01 2014-07-01 false Hand-held power tools. 56.14116 Section 56... MINE SAFETY AND HEALTH SAFETY AND HEALTH STANDARDS-SURFACE METAL AND NONMETAL MINES Machinery and Equipment Safety Devices and Maintenance Requirements § 56.14116 Hand-held power tools. (a) Power drills...

  17. 30 CFR 57.14116 - Hand-held power tools.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 30 Mineral Resources 1 2014-07-01 2014-07-01 false Hand-held power tools. 57.14116 Section 57... MINE SAFETY AND HEALTH SAFETY AND HEALTH STANDARDS-UNDERGROUND METAL AND NONMETAL MINES Machinery and Equipment Safety Devices and Maintenance Requirements § 57.14116 Hand-held power tools. (a) Power drills...

  18. 30 CFR 57.14116 - Hand-held power tools.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 30 Mineral Resources 1 2011-07-01 2011-07-01 false Hand-held power tools. 57.14116 Section 57... MINE SAFETY AND HEALTH SAFETY AND HEALTH STANDARDS-UNDERGROUND METAL AND NONMETAL MINES Machinery and Equipment Safety Devices and Maintenance Requirements § 57.14116 Hand-held power tools. (a) Power drills...

  19. Development, characterization and application of compact spectrometers based on MEMS with in-plane capacitive drives

    NASA Astrophysics Data System (ADS)

    Kenda, A.; Kraft, M.; Tortschanoff, A.; Scherf, Werner; Sandner, T.; Schenk, Harald; Luettjohann, Stephan; Simon, A.

    2014-05-01

    With a trend towards the use of spectroscopic systems in various fields of science and industry, there is an increasing demand for compact spectrometers. For UV/VIS to the shortwave near-infrared spectral range, compact hand-held polychromator type devices are widely used and have replaced larger conventional instruments in many applications. Still, for longer wavelengths this type of compact spectrometers is lacking suitable and affordable detector arrays. In perennial development Carinthian Tech Research AG together with the Fraunhofer Institute for Photonic Microsystems endeavor to close this gap by developing spectrometer systems based on photonic MEMS. Here, we review on two different spectrometer developments, a scanning grating spectrometer working in the NIR and a FT-spectrometer accessing the mid-IR range up to 14 μm. Both systems are using photonic MEMS devices actuated by in-plane comb drive structures. This principle allows for high mechanical amplitudes at low driving voltages but results in gratings respectively mirrors oscillating harmonically. Both systems feature special MEMS structures as well as aspects in terms of system integration which shall tease out the best possible overall performance on the basis of this technology. However, the advantages of MEMS as enabling technology for high scanning speed, miniaturization, energy efficiency, etc. are pointed out. Whereas the scanning grating spectrometer has already evolved to a product for the point of sale analysis of traditional Chinese medicine products, the purpose of the FT-spectrometer as presented is to demonstrate what is achievable in terms of performance. Current developments topics address MEMS packaging issues towards long term stability, further miniaturization and usability.

  20. Study of corrosion in archaeological gilded irons by Raman imaging and a coupled scanning electron microscope-Raman system.

    PubMed

    Veneranda, Marco; Costantini, Ilaria; de Vallejuelo, Silvia Fdez-Ortiz; Garcia, Laura; García, Iñaki; Castro, Kepa; Azkarate, Agustín; Madariaga, Juan Manuel

    2016-12-13

    In this work, analytical and chemical imaging tools have been applied to the study of a gilded spur found in the medieval necropolis of Erenozar (Bizkaia, Spain). As a first step, a lot of portable equipment has been used to study the object in a non-invasive way. The hand-held energy-dispersive X-ray fluorescence equipment allowed us to characterize the artefact as a rare example of an iron matrix item decorated by means of a fire gilding technique. On the other hand, the use of a portable Raman system helped us to detect the main degradation compounds affecting the spur. Afterwards, further information was acquired in the laboratory by analysing detached fragments. The molecular images obtained using confocal Raman microscopy permitted us to characterize the stratigraphic succession of iron corrosions. Furthermore, the combined use of this technique with a scanning electron microscope (SEM) was achieved owing to the use of a structural and chemical analyser interface. In this way, the molecular characterization, enhanced by the magnification feature of the SEM, allowed us to identify several micrometric degradation compounds. Finally, the effectiveness of one of the most used desalination baths (NaOH) was evaluated by comparing its effects with those provided by a reference bath (MilliQ). The comparison proved that basic treatment avoided any side effects on the spur decorated by fire gilding, compensating for the lack of bibliographic documentation in this field.This article is part of the themed issue 'Raman spectroscopy in art and archaeology'. © 2016 The Author(s).

  1. Study of corrosion in archaeological gilded irons by Raman imaging and a coupled scanning electron microscope-Raman system

    NASA Astrophysics Data System (ADS)

    Veneranda, Marco; Costantini, Ilaria; de Vallejuelo, Silvia Fdez-Ortiz; Garcia, Laura; García, Iñaki; Castro, Kepa; Azkarate, Agustín; Madariaga, Juan Manuel

    2016-12-01

    In this work, analytical and chemical imaging tools have been applied to the study of a gilded spur found in the medieval necropolis of Erenozar (Bizkaia, Spain). As a first step, a lot of portable equipment has been used to study the object in a non-invasive way. The hand-held energy-dispersive X-ray fluorescence equipment allowed us to characterize the artefact as a rare example of an iron matrix item decorated by means of a fire gilding technique. On the other hand, the use of a portable Raman system helped us to detect the main degradation compounds affecting the spur. Afterwards, further information was acquired in the laboratory by analysing detached fragments. The molecular images obtained using confocal Raman microscopy permitted us to characterize the stratigraphic succession of iron corrosions. Furthermore, the combined use of this technique with a scanning electron microscope (SEM) was achieved owing to the use of a structural and chemical analyser interface. In this way, the molecular characterization, enhanced by the magnification feature of the SEM, allowed us to identify several micrometric degradation compounds. Finally, the effectiveness of one of the most used desalination baths (NaOH) was evaluated by comparing its effects with those provided by a reference bath (MilliQ). The comparison proved that basic treatment avoided any side effects on the spur decorated by fire gilding, compensating for the lack of bibliographic documentation in this field. This article is part of the themed issue "Raman spectroscopy in art and archaeology".

  2. Study of corrosion in archaeological gilded irons by Raman imaging and a coupled scanning electron microscope–Raman system

    PubMed Central

    Veneranda, Marco; Costantini, Ilaria; de Vallejuelo, Silvia Fdez-Ortiz; Garcia, Laura; García, Iñaki; Azkarate, Agustín; Madariaga, Juan Manuel

    2016-01-01

    In this work, analytical and chemical imaging tools have been applied to the study of a gilded spur found in the medieval necropolis of Erenozar (Bizkaia, Spain). As a first step, a lot of portable equipment has been used to study the object in a non-invasive way. The hand-held energy-dispersive X-ray fluorescence equipment allowed us to characterize the artefact as a rare example of an iron matrix item decorated by means of a fire gilding technique. On the other hand, the use of a portable Raman system helped us to detect the main degradation compounds affecting the spur. Afterwards, further information was acquired in the laboratory by analysing detached fragments. The molecular images obtained using confocal Raman microscopy permitted us to characterize the stratigraphic succession of iron corrosions. Furthermore, the combined use of this technique with a scanning electron microscope (SEM) was achieved owing to the use of a structural and chemical analyser interface. In this way, the molecular characterization, enhanced by the magnification feature of the SEM, allowed us to identify several micrometric degradation compounds. Finally, the effectiveness of one of the most used desalination baths (NaOH) was evaluated by comparing its effects with those provided by a reference bath (MilliQ). The comparison proved that basic treatment avoided any side effects on the spur decorated by fire gilding, compensating for the lack of bibliographic documentation in this field. This article is part of the themed issue ‘Raman spectroscopy in art and archaeology’. PMID:27799430

  3. Raman spectrum of natural and synthetic stishovite

    USGS Publications Warehouse

    Hemley, R.J.; Mao, Ho-kwang; Chao, E.C.T.

    1986-01-01

    Raman spectra of natural and synthetic samples of stishovite have been measured with a micro-optical spectrometer system. These spectra have a pattern that is characteristic of rutile-structured oxides. The spectrum of synthetic stishovite is characterized by well-resolved bands at 231, 589, 753, and 967 cm-1, which are assigned as the B1g, Eg, A1g, and B2g fundamentals, respectively, of the first-order Raman spectrum of the ideal, ordered structure. Natural stishovite obtained from Meteor Crater, Arizona has a first-order Raman spectrum that is fully consistent with that of the synthetic material. The observed spectrum of the natural sample, however, is weaker and has bands in addition to those identified as fundamentals in the spectrum of the synthetic material. A broad band at ???475 cm-1 may be indicative of glass or contaminants derived from the extraction procedure. Alternatively, this band may arise from multiphonon scattering that is enhanced by poor crystallinity or structural disorder in the natural shocked sample. ?? 1986 Springer-Verlag.

  4. Raman spectroscopic analysis of geological and biogeological specimens of relevance to the ExoMars mission.

    PubMed

    Edwards, Howell G M; Hutchinson, Ian B; Ingley, Richard; Parnell, John; Vítek, Petr; Jehlička, Jan

    2013-06-01

    A novel miniaturized Raman spectrometer is scheduled to fly as part of the analytical instrumentation package on an ESA remote robotic lander in the ESA/Roscosmos ExoMars mission to search for evidence for extant or extinct life on Mars in 2018. The Raman spectrometer will be part of the first-pass analytical stage of the sampling procedure, following detailed surface examination by the PanCam scanning camera unit on the ExoMars rover vehicle. The requirements of the analytical protocol are stringent and critical; this study represents a laboratory blind interrogation of specimens that form a list of materials that are of relevance to martian exploration and at this stage simulates a test of current laboratory instrumentation to highlight the Raman technique strengths and possible weaknesses that may be encountered in practice on the martian surface and from which future studies could be formulated. In this preliminary exercise, some 10 samples that are considered terrestrial representatives of the mineralogy and possible biogeologically modified structures that may be identified on Mars have been examined with Raman spectroscopy, and conclusions have been drawn about the viability of the unambiguous spectral identification of biomolecular life signatures. It is concluded that the Raman spectroscopic technique does indeed demonstrate the capability to identify biomolecular signatures and the mineralogy in real-world terrestrial samples with a very high degree of success without any preconception being made about their origin and classification.

  5. The transforming effect of handheld computers on nursing practice.

    PubMed

    Thompson, Brent W

    2005-01-01

    Handheld computers have the power to transform nursing care. The roots of this power are the shift to decentralization of communication, electronic health records, and nurses' greater need for information at the point of care. This article discusses the effects of handheld resources, calculators, databases, electronic health records, and communication devices on nursing practice. The US government has articulated the necessity of implementing the use of handheld computers in healthcare. Nurse administrators need to encourage and promote the diffusion of this technology, which can reduce costs and improve care.

  6. Characterization of a Raman spectroscopy probe system for intraoperative brain tissue classification

    PubMed Central

    Desroches, Joannie; Jermyn, Michael; Mok, Kelvin; Lemieux-Leduc, Cédric; Mercier, Jeanne; St-Arnaud, Karl; Urmey, Kirk; Guiot, Marie-Christine; Marple, Eric; Petrecca, Kevin; Leblond, Frédéric

    2015-01-01

    A detailed characterization study is presented of a Raman spectroscopy system designed to maximize the volume of resected cancer tissue in glioma surgery based on in vivo molecular tissue characterization. It consists of a hand-held probe system measuring spectrally resolved inelastically scattered light interacting with tissue, designed and optimized for in vivo measurements. Factors such as linearity of the signal with integration time and laser power, and their impact on signal to noise ratio, are studied leading to optimal data acquisition parameters. The impact of ambient light sources in the operating room is assessed and recommendations made for optimal operating conditions. In vivo Raman spectra of normal brain, cancer and necrotic tissue were measured in 10 patients, demonstrating that real-time inelastic scattering measurements can distinguish necrosis from vital tissue (including tumor and normal brain tissue) with an accuracy of 87%, a sensitivity of 84% and a specificity of 89%. PMID:26203368

  7. Handheld Computers in the Classroom: Integration Strategies for Social Studies Educators.

    ERIC Educational Resources Information Center

    Ray, Beverly

    Handheld computers have gone beyond the world of business and are now finding their way into the hands of social studies teachers and students. This paper discusses how social studies teachers can use handheld computers to aid anytime/ anywhere course management. The integration of handheld technology into the classroom provides social studies…

  8. Handheld optical coherence tomography-reflectance confocal microscopy probe for detection of basal cell carcinoma and delineation of margins

    NASA Astrophysics Data System (ADS)

    Iftimia, Nicusor; Yélamos, Oriol; Chen, Chih-Shan J.; Maguluri, Gopi; Cordova, Miguel A.; Sahu, Aditi; Park, Jesung; Fox, William; Alessi-Fox, Christi; Rajadhyaksha, Milind

    2017-07-01

    We present a hand-held implementation and preliminary evaluation of a combined optical coherence tomography (OCT) and reflectance confocal microscopy (RCM) probe for detecting and delineating the margins of basal cell carcinomas (BCCs) in human skin in vivo. A standard OCT approach (spectrometer-based) with a central wavelength of 1310 nm and 0.11 numerical aperture (NA) was combined with a standard RCM approach (830-nm wavelength and 0.9 NA) into a common path hand-held probe. Cross-sectional OCT images and enface RCM images are simultaneously displayed, allowing for three-dimensional microscopic assessment of tumor morphology in real time. Depending on the subtype and depth of the BCC tumor and surrounding skin conditions, OCT and RCM imaging are able to complement each other, the strengths of each helping overcome the limitations of the other. Four representative cases are summarized, out of the 15 investigated in a preliminary pilot study, demonstrating how OCT and RCM imaging may be synergistically combined to more accurately detect BCCs and more completely delineate margins. Our preliminary results highlight the potential benefits of combining the two technologies within a single probe to potentially guide diagnosis as well as treatment of BCCs.

  9. Handheld readout electronics to fully exploit the particle discrimination capabilities of elpasolite scintillators

    NASA Astrophysics Data System (ADS)

    Budden, B. S.; Stonehill, L. C.; Warniment, A.; Michel, J.; Storms, S.; Dallmann, N.; Coupland, D. D. S.; Stein, P.; Weller, S.; Borges, L.; Proicou, M.; Duran, G.; Kamto, J.

    2015-09-01

    A new class of elpasolite scintillators has garnered recent attention due to the ability to perform as simultaneous gamma spectrometers and thermal neutron detectors. Such a dual-mode capability is made possible by pulse-shape discrimination (PSD), whereby the emission waveform profiles of gamma and neutron events are fundamentally unique. To take full advantage of these materials, we have developed the Compact Advanced Readout Electronics for Elpasolites (CAREE). This handheld instrument employs a multi-channel PSD-capable ASIC, custom micro-processor board, front-end electronics, power supplies, and a 2 in. photomultiplier tube for readout of the scintillator. The unit is highly configurable to allow for performance optimization amongst a wide sample of elpasolites which provide PSD in fundamentally different ways. We herein provide an introduction to elpasolites, then describe the motivation for the work, mechanical and electronic design, and preliminary performance results.

  10. Biosignatures observed by Raman mapping in silicified materials

    NASA Astrophysics Data System (ADS)

    Foucher, F.; Westall, F.; Knoll, A.

    2012-04-01

    Establishing the biogenicity of ancient microbial remains is relatively difficult due to their simple shape and small size (micrometric-submicrometric). Potential biosignatures that remain in the rocks are related to morphological aspects of the potential microfossils, their chemical composition (carbon and associated elements), and evidence for metabolic activity (elemental isotopic signature, biominerals, corrosion/leaching features). Detection of biosignatures related to each of these microbial characteristics will increase the confidence with which biogenicity can be assigned to an unknown structure. However, given the small size of the microfossils and the consequent faint organic/geochemical traces, sophisticated instrumentation, such as mass spectrometers, electron microscopes, proton probes, nano-SIMS or even synchrotrons is generally required. In this study, we demonstrate the usefulness of Raman spectroscopy, and in particular Raman mapping, as a very powerful tool for the study of both organic and minerals biosignatures. Our investigations concern silicified, carbonaceous-walled microfossils from the Precambrian (700-800 Ma) Draken Formation, Spitsbergen (Svalbard). The microfossils consist of filamentous cyanobacterial mats containing trapped coccoidal planktonic microorganisms. The filaments are generally ~5 µm in width and the coccoidal structures are ~10µm in diameter. The Raman spectrometer used (WITec Alpha500 RA) allows compositional 2D/3D mapping at a sub-micrometric resolution of fossilised microorganisms, whose biogenicity had been previously established on the basis of their morphological characteristics and carbonaceous composition [1]. Complementary features were revealed by the micro-Raman mapping that may aid interpretation of biogenicity in an unknown structure. They included detection of opaline silica, titanium dioxide (anatase), pyrite and hydroxyapatite associated with the microfossils. Opaline silica is metastable and normally

  11. Handheld ultrasound array imaging device

    NASA Astrophysics Data System (ADS)

    Hwang, Juin-Jet; Quistgaard, Jens

    1999-06-01

    A handheld ultrasound imaging device, one that weighs less than five pounds, has been developed for diagnosing trauma in the combat battlefield as well as a variety of commercial mobile diagnostic applications. This handheld device consists of four component ASICs, each is designed using the state of the art microelectronics technologies. These ASICs are integrated with a convex array transducer to allow high quality imaging of soft tissues and blood flow in real time. The device is designed to be battery driven or ac powered with built-in image storage and cineloop playback capability. Design methodologies of a handheld device are fundamentally different to those of a cart-based system. As system architecture, signal and image processing algorithm as well as image control circuit and software in this device is deigned suitably for large-scale integration, the image performance of this device is designed to be adequate to the intent applications. To elongate the battery life, low power design rules and power management circuits are incorporated in the design of each component ASIC. The performance of the prototype device is currently being evaluated for various applications such as a primary image screening tool, fetal imaging in Obstetrics, foreign object detection and wound assessment for emergency care, etc.

  12. Atomic force microscope with combined FTIR-Raman spectroscopy having a micro thermal analyzer

    DOEpatents

    Fink, Samuel D [Aiken, SC; Fondeur, Fernando F [North Augusta, SC

    2011-10-18

    An atomic force microscope is provided that includes a micro thermal analyzer with a tip. The micro thermal analyzer is configured for obtaining topographical data from a sample. A raman spectrometer is included and is configured for use in obtaining chemical data from the sample.

  13. Antarctic analogues for Mars exploration: a Raman spectroscopic study of biogeological signatures

    NASA Astrophysics Data System (ADS)

    Edwards, Howell G. M.; Moody, Caroline A.; Jorge Villar, Susana E.; Dickensheets, David L.; Wynn-Williams, David D.

    2004-03-01

    There is now much interest in the construction of portable Raman systems for the analysis of cyanobacterial and lichen communities in the field; to this extent, Raman spectra obtained with laboratory-based systems operating at different wavelengths have been evaluated for potential fieldwork applications of miniaturized units. Selected test specimens of the cyanobacterial Nostoc commune, epilithic lichens Acarospora chlorophana, and Caloplaca saxicola and the endolithic Chroococcidiopsis from Antarctic sites have been examined in the present preliminary studies. Although some organisms gave useable Raman spectra with short-wavelength lasers, 1064 nm was the only excitation that was consistently excellent for all organisms. We conclude that a miniaturized Raman spectrometer, operating at layer wavelength excitation, is the optimal instrument for in situ studies of pigmented communities at the limits of life on Earth. This has practical potential for the quest for biomolecules residual from any former surface or subsurface life on Mars.

  14. Handheld Computing

    DTIC Science & Technology

    2005-06-01

    company has devel- oped an exciting prototype technology: … that lets users of PDAs and similar mobile devices put data into their handheld systems...for a class of small, easily carried electronic devices used to store and retrieve infor- mation” [2], were at one time viewed as lit- tle more than...some of the many ways that PDA technology is currently being used within the DoD: • The Pocket-Sized Forward Entry Device (PFED) is a ruggedized PDA

  15. Astigmatism correction of a non-imaging double spectrometer fitted with a 2D array detector

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Yaney, P.P.; Ernst, S.L.; Blackshire, J.

    1992-12-01

    A SPEX 1401 double spectrometer was adapted for a liquid nitrogen cooled CCD detector to permit both spectral and spatial analysis of ceramic specimens in a laser Raman microprobe system. The exit image of the spectrometer suffers from astigmatism due to off-axis spherical mirrors. A cylindrical lens was added before the CCD to correct for the astigmatism. The spectrometer and several lenses were modeled using an optical ray tracing program to characterize the astigmatism and to optimize the locations of the lens and the detector. The astigmatism and the spot pattern sizes determined by the model were in good agreementmore » with he observed performance of the modified spectrometer-detector system. Typical spot patterns fell within the 23 {mu}m square pixel size.« less

  16. Infrared and Raman spectroscopy on synthetic glasses as analogues of planetary surfaces.

    NASA Astrophysics Data System (ADS)

    Weber, Iris; Morlok, Andreas; Klemme, Stephan; Dittmer, Isabelle; Stojic, Aleksandra N.; Hiesinger, Harald; Sohn, Martin; Helbert, Jörn

    2015-04-01

    One of the fundamental aims of space mission is to understand the physical, chemical, and geologic processes and conditions of planetary formation and evolution. For this purpose, it is important to investigate analog material to correctly interpret the returned spacecraft data, including the spectral information from remote planetary surfaces. For example, mid-infrared spectroscopy provides detailed information on the mineralogical compositions of planetary surfaces via remote sensing. Data is affected by numerous factors such as grain size, illumination geometry, space weathering, and temperature. These features need to be systematically investigated on analog material in terrestrial laboratories in order to understand the mineralogy/composition of a planetary surface. In addition, Raman spectroscopy allows non-destructive analyses of planetary surfaces in the case of a landing mission. Our work at the IRIS (Infrared spectroscopy for Interplanetary Studies) laboratory at the Institut für Planetologie produces spectra for a database of the ESA/JAXA BepiColombo mission to Mercury. Onboard is a mid-infrared spectrometer (MERTIS-Mercury Radiometer and Thermal Infrared Spectrometer). This unique instrument allows us to map spectral features in the 7-14 µm range, with a spatial resolution of ~500 m [1-5]. Comparably, using our Raman spectrometer, we are continuously contributing to the Raman database for upcoming mission, e.g., the Raman Laser Spectrometer (RLS) onboard of ExoMars [6]. Material on the surface of Mercury and the other terrestrial bodies was exposed to heavy impact cratering [4]. Depending on the P/T conditions during the impact, minerals on planetary surfaces can react with the formation of glassy material. Thus, understanding the effects of impact shock and heat on the mineral structure and the resulting corresponding change in the spectral properties is of high interest for the MERTIS project. Here, we present spectral information on the first glass

  17. Improved sensing using simultaneous deep-UV Raman and fluorescence detection-II

    NASA Astrophysics Data System (ADS)

    Hug, W. F.; Bhartia, R.; Sijapati, K.; Beegle, L. W.; Reid, R. D.

    2014-05-01

    Photon Systems in collaboration with JPL is continuing development of a new technology robot-mounted or hand-held sensor for reagentless, short-range, standoff detection and identification of trace levels chemical, biological, and explosive (CBE) materials on surfaces. This deep ultraviolet CBE sensor is the result of Army STTR and DTRA programs. The evolving 10 to 15 lb, 20 W, sensor can discriminate CBE from background clutter materials using a fusion of deep UV excited resonance Raman (RR) and laser induced native fluorescence (LINF) emissions collected is less than 1 ms. RR is a method that provides information about molecular bonds, while LINF spectroscopy is a much more sensitive method that provides information regarding the electronic configuration of target molecules. Standoff excitation of suspicious packages, vehicles, persons, and other objects that may contain hazardous materials is accomplished using excitation in the deep UV where there are four main advantages compared to near-UV, visible or near-IR counterparts. 1) Excited between 220 and 250 nm, Raman emission occur within a fluorescence-free region of the spectrum, eliminating obscuration of weak Raman signals by fluorescence from target or surrounding materials. 2) Because Raman and fluorescence occupy separate spectral regions, detection can be done simultaneously, providing an orthogonal set of information to improve both sensitivity and lower false alarm rates. 3) Rayleigh law and resonance effects increase Raman signal strength and sensitivity of detection. 4) Penetration depth into target in the deep UV is short, providing spatial/spectral separation of a target material from its background or substrate. 5) Detection in the deep UV eliminates ambient light background and enable daylight detection.

  18. Doctors' experience with handheld computers in clinical practice: qualitative study.

    PubMed

    McAlearney, Ann Scheck; Schweikhart, Sharon B; Medow, Mitchell A

    2004-05-15

    To examine doctors' perspectives about their experiences with handheld computers in clinical practice. Qualitative study of eight focus groups consisting of doctors with diverse training and practice patterns. Six practice settings across the United States and two additional focus group sessions held at a national meeting of general internists. 54 doctors who did or did not use handheld computers. Doctors who used handheld computers in clinical practice seemed generally satisfied with them and reported diverse patterns of use. Users perceived that the devices helped them increase productivity and improve patient care. Barriers to use concerned the device itself and personal and perceptual constraints, with perceptual factors such as comfort with technology, preference for paper, and the impression that the devices are not easy to use somewhat difficult to overcome. Participants suggested that organisations can help promote handheld computers by providing advice on purchase, usage, training, and user support. Participants expressed concern about reliability and security of the device but were particularly concerned about dependency on the device and over-reliance as a substitute for clinical thinking. Doctors expect handheld computers to become more useful, and most seem interested in leveraging (getting the most value from) their use. Key opportunities with handheld computers included their use as a stepping stone to build doctors' comfort with other information technology and ehealth initiatives and providing point of care support that helps improve patient care.

  19. Raman spectroscopy for prostate cancer detection and characterization (Conference Presentation)

    NASA Astrophysics Data System (ADS)

    Aubertin, Kelly; Trinh, Quoc-Huy; Jermyn, Michael; St-Pierre, Catherine; Vladoiu, Maria-Claudia; Grosset, Andrée.-Anne; Saad, Fred; Trudel, Dominique; Leblond, Frédéric

    2017-02-01

    Prostate cancer is the most frequent diagnosed cancers among men. When prostate cancer occurs, the cancer does not result in only one or few localized malignant tumor, but is generally spread within the whole prostate. In order to counteract the very high level of heterogeneities exhibited by prostate tissues, we developed a method for high-resolution co-registration of Raman spectroscopy with prostate cancer diagnosis. Raman spectra were acquired on fresh ex vivo prostate within 2 hours after radical prostatectomy using a multi-wavelength hand-held contact probe. After the measurements, the prostate was reintegrated to the usual pathological workflow: formalin fixated and paraffin embedded (FFPE), and prepared for microscope histopathological analyses. The precise reconstruction of the prostate slice with hematoxylin and eosin (H and E) tissue allows the spatial correlation of the measured area (0.2 mm2) with the correspondent histopathological information, for point-by-point diagnosis determination. The tissue was classified into groups (normal/cancer) and subgroups according to the percentage of benign glands, stroma or cancer. Different machine learning algorithms were tested to classify the spectra with increasing levels of categorization. Preliminary results showed that Raman spectroscopy is capable of detecting prostate cancer with an accuracy >90%. In addition, high percentages of stroma (vs. glands) have been correlated with spectral signature of collagen, which is the main constituent of extracellular matrix.

  20. Accurate assessment of liver steatosis in animal models using a high throughput Raman fiber optic probe.

    PubMed

    Hewitt, Kevin C; Ghassemi Rad, Javad; McGregor, Hanna C; Brouwers, Erin; Sapp, Heidi; Short, Michael A; Fashir, Samia B; Zeng, Haishan; Alwayn, Ian P

    2015-10-07

    Due to the shortage of healthy donor organs, steatotic livers are commonly used for transplantation, placing patients at higher risk for graft dysfunction and lower survival rates. Raman Spectroscopy is a technique which has shown the ability to rapidly detect the vibration state of C-H bonds in triglycerides. The aim of this study is to determine whether conventional Raman spectroscopy can reliably detect and quantify fat in an animal model of liver steatosis. Mice and rats fed a methionine and choline-deficient (MCD) and control diets were sacrificed on one, two, three and four weeks' time points. A confocal Raman microscope, a commercial Raman (iRaman) fiber optic probe and a highly sensitive Raman fiber optic probe system, the latter utilizing a 785 nm excitation laser, were used to detect changes in the Raman spectra of steatotic mouse livers. Thin layer chromatography was used to assess the triglyceride content of liver specimens, and sections were scored blindly for fat content using histological examination. Principal component analysis (PCA) of Raman spectra was used to extract the principal components responsible for spectroscopic differences with MCD week (time on MCD diet). Confocal Raman microscopy revealed the presence of saturated fats in mice liver sections. A commercially available handheld Raman spectroscopy probe could not distinguish the presence of fat in the liver whereas our specially designed, high throughput Raman system could clearly distinguish lobe-specific changes in fat content. In the left lobe in particular, the Raman PC scores exhibited a significant correlation (R(2) = 0.96) with the gold standard, blinded scoring by histological examination. The specially designed, high throughput Raman system can be used for clinical purposes. Its application to the field of transplantation would enable surgeons to determine the hepatic fat content of the donor's liver in the field prior to proceeding with organ retrieval. Next steps include

  1. Assignments of the Raman modes of monoclinic erbium oxide

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Yan, D.; Wu, P., E-mail: pingwu@sas.ustb.edu.cn; Zhang, S. P.

    2013-11-21

    As a heavy rare earth oxide, erbium oxide (Er{sub 2}O{sub 3}) has many attractive properties. Monoclinic Er{sub 2}O{sub 3} has useful properties not found in stable cubic Er{sub 2}O{sub 3}, such as unique optical properties and high radiation damage tolerance. In this study, cubic Er{sub 2}O{sub 3} coating and Er{sub 2}O{sub 3} coating with mixed phases were prepared. The Raman scattering spectra of these coatings were investigated by using a confocal micro-Raman spectrometer equipped with 325, 473, 514, 532, 633, and 784 nm lasers. A total of 17 first-order Raman modes of monoclinic Er{sub 2}O{sub 3} were identified and assigned. Themore » modes at 83, 112, 152, 170, 278, 290, 409, 446, 478, 521, 603, and 622 cm{sup −1} are of A{sub g} symmetry, whereas modes at 71, 98, 333, 409, 446, and 468 cm{sup −1} are of B{sub g} symmetry. This research provides basic data necessary for the characterization of monoclinic Er{sub 2}O{sub 3} by Raman spectroscopy.« less

  2. Deep Raman spectroscopy for the non-invasive standoff detection of concealed chemical threat agents.

    PubMed

    Izake, Emad L; Cletus, Biju; Olds, William; Sundarajoo, Shankaran; Fredericks, Peter M; Jaatinen, Esa

    2012-05-30

    Deep Raman spectroscopy has been utilized for the standoff detection of concealed chemical threat agents from a distance of 15 m under real life background illumination conditions. By using combined time and space resolved measurements, various explosive precursors hidden in opaque plastic containers were identified non-invasively. Our results confirm that combined time and space resolved Raman spectroscopy leads to higher selectivity towards the sub-layer over the surface layer as well as enhanced rejection of fluorescence from the container surface when compared to standoff spatially offset Raman spectroscopy. Raman spectra that have minimal interference from the packaging material and good signal-to-noise ratio were acquired within 5 s of measurement time. A new combined time and space resolved Raman spectrometer has been designed with nanosecond laser excitation and gated detection, making it of lower cost and complexity than picosecond-based laboratory systems. Copyright © 2012 Elsevier B.V. All rights reserved.

  3. [Laser Raman Spectroscopy and Its Application in Gas Hydrate Studies].

    PubMed

    Fu, Juan; Wu, Neng-you; Lu, Hai-long; Wu, Dai-dai; Su, Qiu-cheng

    2015-11-01

    Gas hydrates are important potential energy resources. Microstructural characterization of gas hydrate can provide information to study the mechanism of gas hydrate formation and to support the exploitation and application of gas hydrate technology. This article systemly introduces the basic principle of laser Raman spectroscopy and summarizes its application in gas hydrate studies. Based on Raman results, not only can the information about gas composition and structural type be deduced, but also the occupancies of large and small cages and even hydration number can be calculated from the relative intensities of Raman peaks. By using the in-situ analytical technology, laser Raman specstropy can be applied to characterize the formation and decomposition processes of gas hydrate at microscale, for example the enclathration and leaving of gas molecules into/from its cages, to monitor the changes in gas concentration and gas solubility during hydrate formation and decomposition, and to identify phase changes in the study system. Laser Raman in-situ analytical technology has also been used in determination of hydrate structure and understanding its changing process under the conditions of ultra high pressure. Deep-sea in-situ Raman spectrometer can be employed for the in-situ analysis of the structures of natural gas hydrate and their formation environment. Raman imaging technology can be applied to specify the characteristics of crystallization and gas distribution over hydrate surface. With the development of laser Raman technology and its combination with other instruments, it will become more powerful and play a more significant role in the microscopic study of gas hydrate.

  4. Handheld readout electronics to fully exploit the particle discrimination capabilities of elpasolite scintillators

    DOE PAGES

    Budden, B. S.; Stonehill, L. C.; Warniment, A.; ...

    2015-06-10

    In this study, a new class of elpasolite scintillators has garnered recent attention due to the ability to perform as simultaneous gamma spectrometers and thermal neutron detectors. Such a dual-mode capability is made possible by pulse-shape discrimination (PSD), whereby the emission waveform profiles of gamma and neutron events are fundamentally unique. To take full advantage of these materials, we have developed the Compact Advanced Readout Electronics for Elpasolites (CAREE). This handheld instrument employs a multi-channel PSD-capable ASIC, custom micro-processor board, front-end electronics, power supplies, and a 2 in. photomultiplier tube for readout of the scintillator. The unit is highly configurablemore » to allow for performance optimization amongst a wide sample of elpasolites which provide PSD in fundamentally different ways. We herein provide an introduction to elpasolites, then describe the motivation for the work, mechanical and electronic design, and preliminary performance results.« less

  5. Doctors' experience with handheld computers in clinical practice: qualitative study

    PubMed Central

    McAlearney, Ann Scheck; Schweikhart, Sharon B; Medow, Mitchell A

    2004-01-01

    Objective To examine doctors' perspectives about their experiences with handheld computers in clinical practice. Design Qualitative study of eight focus groups consisting of doctors with diverse training and practice patterns. Setting Six practice settings across the United States and two additional focus group sessions held at a national meeting of general internists. Participants 54 doctors who did or did not use handheld computers. Results Doctors who used handheld computers in clinical practice seemed generally satisfied with them and reported diverse patterns of use. Users perceived that the devices helped them increase productivity and improve patient care. Barriers to use concerned the device itself and personal and perceptual constraints, with perceptual factors such as comfort with technology, preference for paper, and the impression that the devices are not easy to use somewhat difficult to overcome. Participants suggested that organisations can help promote handheld computers by providing advice on purchase, usage, training, and user support. Participants expressed concern about reliability and security of the device but were particularly concerned about dependency on the device and over-reliance as a substitute for clinical thinking. Conclusions Doctors expect handheld computers to become more useful, and most seem interested in leveraging (getting the most value from) their use. Key opportunities with handheld computers included their use as a stepping stone to build doctors' comfort with other information technology and ehealth initiatives and providing point of care support that helps improve patient care. PMID:15142920

  6. Remote detection of explosives using Raman spectroscopy

    NASA Astrophysics Data System (ADS)

    Fulton, Jack

    2011-05-01

    Stand-off detection of potentially hazardous small molecules at distances that allow the user to be safe has many applications, including explosives and chemical threats. The Naval Surface Warfare Center, Crane Division, with EYZtek, Inc. of Ohio, developed a prototype stand-off, eye-safe Raman spectrometer. With a stand-off distance greater than twenty meters and scanning optics, this system has the potential of addressing particularly difficult challenges in small molecule detection. An overview of the system design and desired application space is presented.

  7. Raman Spectroscopy of Cocrystals

    NASA Astrophysics Data System (ADS)

    Rooney, Frank; Reardon, Paul; Ochoa, Romulo; Abourahma, Heba; Marti, Marcus; Dimeo, Rachel

    2010-02-01

    Cocrystals are a class of compounds that consist of two or more molecules that are held together by hydrogen bonding. Pharmaceutical cocrystals are those that contain an active pharmaceutical ingredient (API) as one of the components. Pharmaceutical cocrystals are of particular interest and have gained a lot of attention in recent years because they offer the ability to modify the physical properties of the API, like solubility and bioavailability, without altering the chemical structure of the API. The APIs that we targeted for our studies are theophylline (Tp) and indomethacin (Ind). These compounds have been mixed with complementary coformers (cocrystal former) that include acetamide (AcONH2), melamine (MLM), nicotinic acid (Nic-COOH), 4-cyanopyridine (4-CNPy) and 4-aminopyridine (4-NH2Py). Raman spectroscopy has been used to characterize these cocrystals. Spectra of the cocrystals were compared to those of the coformers to analyze for peak shifts, specifically those corresponding to hydrogen bonding. A 0.5 m CCD Spex spectrometer was used, in a micro-Raman setup, for spectral analysis. An Argon ion Coherent laser at 514.5 nm was used as the excitation source. )

  8. Handheld Searchlight

    NASA Technical Reports Server (NTRS)

    1976-01-01

    Streamlite Inc. reengineered the NASA searchlight for commercial use. The brightest hand-held light yet produced is result of Xenon-arc lights developed as solar simulators at Johnson Space Center. Intense battery powered searchlight is rated a million candlepower - 50 times brighter than high beam headlights of a car, and weighs only 7 pounds. Lifetime of xenon lamp is at least 200 hours at maximum intensity. Retail cost is under $400.00. Company has introduced smaller unit in shape of a flashlight, produces 20,000 candlepower and costs approximately $60.00.

  9. Advances in miniature spectrometer and sensor development

    NASA Astrophysics Data System (ADS)

    Malinen, Jouko; Rissanen, Anna; Saari, Heikki; Karioja, Pentti; Karppinen, Mikko; Aalto, Timo; Tukkiniemi, Kari

    2014-05-01

    Miniaturization and cost reduction of spectrometer and sensor technologies has great potential to open up new applications areas and business opportunities for analytical technology in hand held, mobile and on-line applications. Advances in microfabrication have resulted in high-performance MEMS and MOEMS devices for spectrometer applications. Many other enabling technologies are useful for miniature analytical solutions, such as silicon photonics, nanoimprint lithography (NIL), system-on-chip, system-on-package techniques for integration of electronics and photonics, 3D printing, powerful embedded computing platforms, networked solutions as well as advances in chemometrics modeling. This paper will summarize recent work on spectrometer and sensor miniaturization at VTT Technical Research Centre of Finland. Fabry-Perot interferometer (FPI) tunable filter technology has been developed in two technical versions: Piezoactuated FPIs have been applied in miniature hyperspectral imaging needs in light weight UAV and nanosatellite applications, chemical imaging as well as medical applications. Microfabricated MOEMS FPIs have been developed as cost-effective sensor platforms for visible, NIR and IR applications. Further examples of sensor miniaturization will be discussed, including system-on-package sensor head for mid-IR gas analyzer, roll-to-roll printed Surface Enhanced Raman Scattering (SERS) technology as well as UV imprinted waveguide sensor for formaldehyde detection.

  10. Anharmonic Effects on Vibrational Spectra Intensities: Infrared, Raman, Vibrational Circular Dichroism and Raman Optical Activity

    PubMed Central

    Bloino, Julien; Biczysko, Malgorzata; Barone, Vincenzo

    2017-01-01

    The aim of this paper is twofold. First, we want to report the extension of our virtual multifrequency spectrometer (VMS) to anharmonic intensities for Raman Optical Activity (ROA) with the full inclusion of first- and second-order resonances for both frequencies and intensities in the framework of the generalized second-order vibrational perturbation theory (GVPT2) for all kinds of vibrational spectroscopies. Then, from a more general point of view, we want to present and validate the performance of VMS for the parallel analysis of different vibrational spectra for medium-sized molecules (IR, Raman, VCD, ROA) including both mechanical and electric/magnetic anharmonicity. For the well-known methyloxirane benchmark, careful selection of density functional, basis set, and resonance tresholds permitted to reach qualitative and quantitative vis-à-vis comparison between experimental and computed band positions and shapes. Next, the whole series of halogenated azetidinones is analyzed, showing that it is now possible to interpret different spectra in terms of electronegativity, polarizability, and hindrance variation between closely related substituents, chiral spectroscopies being particular effective in this connection. PMID:26580121

  11. Discrimination of selected species of pathogenic bacteria using near-infrared Raman spectroscopy and principal components analysis

    NASA Astrophysics Data System (ADS)

    de Siqueira e Oliveira, Fernanda S.; Giana, Hector E.; Silveira, Landulfo, Jr.

    2012-03-01

    It has been proposed a method based on Raman spectroscopy for identification of different microorganisms involved in bacterial urinary tract infections. Spectra were collected from different bacterial colonies (Gram negative: E. coli, K. pneumoniae, P. mirabilis, P. aeruginosa, E. cloacae and Gram positive: S. aureus and Enterococcus sp.), grown in culture medium (Agar), using a Raman spectrometer with a fiber Raman probe (830 nm). Colonies were scraped from Agar surface placed in an aluminum foil for Raman measurements. After pre-processing, spectra were submitted to a Principal Component Analysis and Mahalanobis distance (PCA/MD) discrimination algorithm. It has been found that the mean Raman spectra of different bacterial species show similar bands, being the S. aureus well characterized by strong bands related to carotenoids. PCA/MD could discriminate Gram positive bacteria with sensitivity and specificity of 100% and Gram negative bacteria with good sensitivity and high specificity.

  12. An ergonomic handheld ultrasound probe providing contact forces and pose information.

    PubMed

    Yohan Noh; Housden, R James; Gomez, Alberto; Knight, Caroline; Garcia, Francesca; Hongbin Liu; Razavi, Reza; Rhode, Kawal; Althoefer, Kaspar

    2015-08-01

    This paper presents a handheld ultrasound probe which is integrated with sensors to measure force and pose (position/orientation) information. Using an integrated probe like this, one can relate ultrasound images to spatial location and create 3D ultrasound maps. The handheld device can be used by sonographers and also easily be integrated with robot arms for automated sonography. The handheld device is ergonomically designed; rapid attachment and removal of the ultrasound transducer itself is possible using easy-to-operate clip mechanisms. A cable locking mechanism reduces the impact that gravitational and other external forces have (originating from data and power supply cables connected to the probe) on our measurements. Gravitational errors introduced by the housing of the probe are compensated for using knowledge of the housing geometry and the integrated pose sensor that provides us with accurate orientation information. In this paper, we describe the handheld probe with its integrated force/pose sensors and our approach to gravity compensation. We carried out a set of experiments to verify the feasibility of our approach to obtain accurate spatial information of the handheld probe.

  13. Electronic prescribing: criteria for evaluating handheld prescribing systems and an evaluation of a new, handheld, wireless wide area network (WWAN) prescribing system.

    PubMed

    Goldblum, O M

    2001-02-01

    The objectives of this study were: 1) to establish criteria for evaluating handheld computerized prescribing systems; and 2) to evaluate out-of-box performance and features of a new, Palm Operating System (OS)-based, handheld, wireless wide area network (WWAN) prescribing system. The system consisted of a Palm Vx handheld organizer, a Novatel Minstrel V wireless modem, OmniSky wireless internet access and ePhysician ePad 1.1, the Palm OS electronic prescribing software program. A dermatologist familiar with healthcare information technology conducted an evaluation of the performance and features of a new, handheld, WWAN electronic prescribing system in an office practice during a three-month period in 2000. System performance, defined as transmission success rate, was determined from data collected during the three-month trial. Evaluation criteria consisted of an analysis of features found in electronic prescribing systems. All prescriptions written for all patients seen during a three-month period (August - November, 2000) were eligible for inclusion. Prescriptions written for patients who intended to fill them at pharmacies without known facsimile receiving capabilities were excluded from the study. The performance of the system was evaluated using data collected during the study. Criteria for evaluating features of electronic prescribing systems were developed and used to analyze the system employed in this study. During this three-month trial, 200 electronic prescriptions were generated for 132 patients included in the study. Of these prescriptions, 92.5 percent were successfully transmitted to pharmacies. Transmission failures resulted from incorrect facsimile numbers and non-functioning facsimile machines. Criteria established for evaluation of electronic prescribing systems included System (Hardware & Software), Costs, System Features, Printing & Transmission, Formulary & Insurance, Customization, Drug Safety and Security. This study is the first effort to

  14. Automated Hand-Held UXO Detection, Classification & Discrimination Sensor

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bell, Thomas H.

    2000-06-12

    The research focused on procedures for target discrimination and classification using hand-held EMI sensors. The idea is to have a small, portable sensor that can be operated in a sweep or similar pattern in front of the operator, and that is capable of distinguishing between buried UXO and clutter on the spot. Curing Phase 1, we developed the processing techniques for distinguishing between buried UXO and clutter using the EM61-HH hand-held metal detector.

  15. Digital micromirror devices in Raman trace detection of explosives

    NASA Astrophysics Data System (ADS)

    Glimtoft, Martin; Svanqvist, Mattias; Ågren, Matilda; Nordberg, Markus; Östmark, Henric

    2016-05-01

    Imaging Raman spectroscopy based on tunable filters is an established technique for detecting single explosives particles at stand-off distances. However, large light losses are inherent in the design due to sequential imaging at different wavelengths, leading to effective transmission often well below 1 %. The use of digital micromirror devices (DMD) and compressive sensing (CS) in imaging Raman explosives trace detection can improve light throughput and add significant flexibility compared to existing systems. DMDs are based on mature microelectronics technology, and are compact, scalable, and can be customized for specific tasks, including new functions not available with current technologies. This paper has been focusing on investigating how a DMD can be used when applying CS-based imaging Raman spectroscopy on stand-off explosives trace detection, and evaluating the performance in terms of light throughput, image reconstruction ability and potential detection limits. This type of setup also gives the possibility to combine imaging Raman with non-spatially resolved fluorescence suppression techniques, such as Kerr gating. The system used consists of a 2nd harmonics Nd:YAG laser for sample excitation, collection optics, DMD, CMOScamera and a spectrometer with ICCD camera for signal gating and detection. Initial results for compressive sensing imaging Raman shows a stable reconstruction procedure even at low signals and in presence of interfering background signal. It is also shown to give increased effective light transmission without sacrificing molecular specificity or area coverage compared to filter based imaging Raman. At the same time it adds flexibility so the setup can be customized for new functionality.

  16. Risk management considerations and the pregnancy handheld record. An audit of the return rate of the pregnancy handheld record.

    PubMed

    Toohill, Jocelyn; Soong, Barbara; Meldrum, Melissa

    2006-12-01

    Risk management is integral to the provision of contemporary health care. As maternity practices change and with a commitment on women being at the centre of care, one strategy has been for women to retain their records during the antenatal period. This paper explores the return rate of the pregnancy handheld record in a major tertiary facility and discusses the risk management implications when the record is not available upon presentation to the treating practitioner. Four audits were conducted over a 2 year period to determine the return rate of the pregnancy handheld record at time of admission for labour and birth. A total of 1096 records were returned out of a possible 1256 during the study. A 6.6% increase in the return rate was achieved over the 4 audit periods (82-88.5%) with an overall return rate of 85%. Our audit highlights the need for consumers, clinicians and heath care facilities to consider the advantages and disadvantages of the pregnancy handheld record, as well as the medico-legal responsibilities that ultimately fall back on the health facility.

  17. Continuous-wave deep ultraviolet sources for resonance Raman explosive sensing

    NASA Astrophysics Data System (ADS)

    Yellampalle, Balakishore; Martin, Robert; Sluch, Mikhail; McCormick, William; Ice, Robert; Lemoff, Brian

    2015-05-01

    A promising approach to stand-off detection of explosive traces is using resonance Raman spectroscopy with Deepultraviolet (DUV) light. The DUV region offers two main advantages: strong explosive signatures due to resonant and λ- 4 enhancement of Raman cross-section, and lack of fluorescence and solar background. For DUV Raman spectroscopy, continuous-wave (CW) or quasi-CW lasers are preferable to high peak powered pulsed lasers because Raman saturation phenomena and sample damage can be avoided. In this work we present a very compact DUV source that produces greater than 1 mw of CW optical power. The source has high optical-to-optical conversion efficiency, greater than 5 %, as it is based on second harmonic generation (SHG) of a blue/green laser source using a nonlinear crystal placed in an external resonant enhancement cavity. The laser system is extremely compact, lightweight, and can be battery powered. Using two such sources, one each at 236.5 nm and 257.5 nm, we are building a second generation explosive detection system called Dual-Excitation-Wavelength Resonance-Raman Detector (DEWRRED-II). The DEWRRED-II system also includes a compact dual-band high throughput DUV spectrometer, and a highly-sensitive detection algorithm. The DEWRRED technique exploits the DUV excitation wavelength dependence of Raman signal strength, arising from complex interplay of resonant enhancement, self-absorption and laser penetration depth. We show sensor measurements from explosives/precursor materials at different standoff distances.

  18. Predicting aged pork quality using a portable Raman device.

    PubMed

    Santos, C C; Zhao, J; Dong, X; Lonergan, S M; Huff-Lonergan, E; Outhouse, A; Carlson, K B; Prusa, K J; Fedler, C A; Yu, C; Shackelford, S D; King, D A; Wheeler, T L

    2018-05-29

    The utility of Raman spectroscopic signatures of fresh pork loin (1 d & 15 d postmortem) in predicting fresh pork tenderness and slice shear force (SSF) was determined. Partial least square models showed that sensory tenderness and SSF are weakly correlated (R 2  = 0.2). Raman spectral data were collected in 6 s using a portable Raman spectrometer (RS). A PLS regression model was developed to predict quantitatively the tenderness scores and SSF values from Raman spectral data, with very limited success. It was discovered that the prediction accuracies for day 15 post mortem samples are significantly greater than that for day 1 postmortem samples. Classification models were developed to predict tenderness at two ends of sensory quality as "poor" vs. "good". The accuracies of classification into different quality categories (1st to 4th percentile) are also greater for the day 15 postmortem samples for sensory tenderness (93.5% vs 76.3%) and SSF (92.8% vs 76.1%). RS has the potential to become a rapid on-line screening tool for the pork producers to quickly select meats with superior quality and/or cull poor quality to meet market demand/expectations. Copyright © 2018 Elsevier Ltd. All rights reserved.

  19. Non-destructive NIR-FT-Raman spectroscopy of plant and animal tissues, of food and works of art.

    PubMed

    Schrader, B; Schulz, H; Andreev, G N; Klump, H H; Sawatzki, J

    2000-10-02

    Just after the discovery of Raman spectroscopy in 1928, it became evident that fluorescence with a quantum yield of several orders of magnitude higher than that of the Raman effect was a great and apparently unbeatable competitor. Raman spectroscopy could therefore, in spite of many exciting advantages during the last 60 years, not be applied as an analytical routine method: for nearly every sample, fluorescing impurities had to be removed by distillation or crystallisation. Purification, however, is not possible for cells and tissues, since the removal of the fluorescing enzymes and coenzymes would destroy the cells. There is fortunately one alternative solution. When excited with the radiation of the Nd:YAG laser at 1064 nm Raman spectra are practically free of fluorescence. Raman spectra can now be recorded with minimal sample preparation. In order to facilitate non-destructive Raman spectroscopy of any sample, cells and tissues, food, textiles and works of art, a new entrance optics for Raman spectrometers is used. Typical results from several fields are demonstrated.

  20. Abiotic versus biotic iron mineral transformation studied by a miniaturized backscattering Mössbauer spectrometer (MIMOS II), X-ray diffraction and Raman spectroscopy

    NASA Astrophysics Data System (ADS)

    Markovski, C.; Byrne, J. M.; Lalla, E.; Lozano-Gorrín, A. D.; Klingelhöfer, G.; Rull, F.; Kappler, A.; Hoffmann, T.; Schröder, C.

    2017-11-01

    Searching for biomarkers or signatures of microbial transformations of minerals is a critical aspect for determining how life evolved on Earth, and whether or not life may have existed in other planets, including Mars. In order to solve such questions, several missions to Mars have sought to determine the geochemistry and mineralogy on the Martian surface. This research includes the two miniaturized Mössbauer spectrometers (MIMOS II) on board the Mars Exploration Rovers Spirit and Opportunity, which have detected a variety of iron minerals on Mars, including magnetite (Fe2+Fe3+2O4) and goethite (α-FeO(OH)). On Earth, both minerals can derive from microbiological activity (e.g. through dissimilatory iron reduction of ferrihydrite by Fe(III)-reducing bacteria). Here we used a lab based MIMOS II to characterize the mineral products of biogenic transformations of ferrihydrite to magnetite by the Fe(III)-reducing bacteria Geobacter sulfurreducens. In combination with Raman spectroscopy and X-ray diffraction (XRD), we observed the formation of magnetite, goethite and siderite. We compared the material produced by biogenic transformations to abiotic samples in order to distinguish abiotic and biotic iron minerals by techniques that are or will be available onboard Martian based laboratories. The results showed the possibility to distinguish the abiotic and biotic origin of the minerals. Mossbauer was able to distinguish the biotic/abiotic magnetite with the interpretation of the geological context (Fe content mineral assemblages and accompanying minerals) and the estimation of the particle size in a non-destructive way. The Raman was able to confirm the biotic/abiotic principal peaks of the magnetite, as well as the organic principal vibration bands attributed to the bacteria. Finally, the XRD confirmed the particle size and mineralogy.

  1. A Cognitive Style Perspective to Handheld Devices: Customization vs. Personalization

    ERIC Educational Resources Information Center

    Hsieh, Chen-Wei; Chen, Sherry Y.

    2016-01-01

    Handheld devices are widely applied to support open and distributed learning, where students are diverse. On the other hand, customization and personalization can be applied to accommodate students' diversities. However, paucity of research compares the effects of customization and personalization in the context of handheld devices. To this end, a…

  2. [Ultrastructure and Raman Spectral Characteristics of Two Kinds of Acute Myeloid Leukemia Cells].

    PubMed

    Liang, Hao-Yue; Cheng, Xue-Lian; Dong, Shu-Xu; Zhao, Shi-Xuan; Wang, Ying; Ru, Yong-Xin

    2018-02-01

    To investigate the Raman spectral characteristics of leukemia cells from 4 patients with acute promyelocytic leukemia (M 3 ) and 3 patients with acute monoblastic leukemia (M 5 ), establish a novel Raman label-free method to distinguish 2 kinds of acute myeloid leukemia cells so as to provide basis for clinical research. Leukemia cells were collected from bone marrow of above-mentioned patients. Raman spectra were acquired by Horiba Xplora Raman spectrometer and Raman spectra of 30-50 cells from each patient were recorded. The diagnostic model was established according to principle component analysis (PCA), discriminant function analysis (DFA) and cluster analysis, and the spectra of leukemia cells from 7 patients were analyzed and classified. Characteristics of Raman spectra were analyzed combining with ultrastructure of leukemia cells. There were significant differences between Raman spectra of 2 kinds of leukemia cells. Compared with acute monoblastic leukemia cells, the spectra of acute promyelocytic leukemia cells showed stronger peaks in 622, 643, 757, 852, 1003, 1033, 1117, 1157, 1173, 1208, 1340, 1551, 1581 cm -1 . The diagnostic models established by PCA-DFA and cluster analysis could successfully classify these Raman spectra of different samples with a high accuracy of 100% (233/233). The model was evaluated by "Leave-one-out" cross-validation and reached a high accuracy of 97% (226/233). The level of macromolecules of M 3 cells is higher than that of M 5 . The diagnostic models established by PCA-DFA can classify these Raman spectra of different cells with a high accuracy. Raman spectra shows consistent result with ultrastructure by TEM.

  3. Handheld scanning probes for optical coherence tomography: developments, applications, and perspectives

    NASA Astrophysics Data System (ADS)

    Duma, V.-F.; Demian, D.; Sinescu, C.; Cernat, R.; Dobre, G.; Negrutiu, M. L.; Topala, F. I.; Hutiu, Gh.; Bradu, A.; Podoleanu, A. G.

    2016-03-01

    We present the handheld scanning probes that we have recently developed in our current project for biomedical imaging in general and for Optical Coherence Tomography (OCT) in particular. OCT is an established, but dynamic imagistic technique based on laser interferometry, which offers micrometer resolutions and millimeters penetration depths. With regard to existing devices, the newly developed handheld probes are simple, light and relatively low cost. Their design is described in detail to allow for the reproduction in any lab, including for educational purposes. Two probes are constructed almost entirely from off-the-shelf components, while a third, final variant is constructed with dedicated components, in an ergonomic design. The handheld probes have uni-dimensional (1D) galvanometer scanners therefore they achieve transversal sections through the biological sample investigated - in contrast to handheld probes equipped with bi-dimensional (2D) scanners that can also achieve volumetric (3D) reconstructions of the samples. These latter handheld probes are therefore also discussed, as well as the possibility to equip them with galvanometer 2D scanners or with Risley prisms. For galvanometer scanners the optimal scanning functions studied in a series of previous works are pointed out; these functions offer a higher temporal efficiency/duty cycle of the scanning process, as well as artifact-free OCT images. The testing of the handheld scanning probes in dental applications is presented, for metal ceramic prosthesis and for teeth.

  4. Raman Investigation of Temperature Profiles of Phospholipid Dispersions in the Biochemistry Laboratory

    NASA Astrophysics Data System (ADS)

    Craig, Norman C.

    2015-06-01

    The temperature dependence of self-assembled, cell-like dispersions of phospholipids is investigated with Raman spectroscopy in the biochemistry laboratory. Vibrational modes in the hydrocarbon interiors of phospholipid bilayers are strongly Raman active, whereas the vibrations of the polar head groups and the water matrix have little Raman activity. From Raman spectra increases in fluidity of the hydrocarbon chains can be monitored with intensity changes as a function of temperature in the CH-stretching region. The experiment uses detection of scattered 1064-nm laser light (Nicolet NXR module) by a Fourier transform infrared spectrometer (Nicolet 6700). A thermoelectric heater-cooler device (Melcor) gives convenient temperature control from 5 to 95°C for samples in melting point capillaries. Use of deuterium oxide instead of water as the matrix avoids some absorption of the exciting laser light and interference with intensity observations in the CH-stretching region. Phospholipids studied range from dimyristoylphosphotidyl choline (C14, transition T = 24°C) to dibehenoylphosphotidyl choline (C22, transition T = 74°C).

  5. Discrimination of selected species of pathogenic bacteria using near-infrared Raman spectroscopy and principal components analysis

    NASA Astrophysics Data System (ADS)

    de Siqueira e Oliveira, Fernanda SantAna; Giana, Hector Enrique; Silveira, Landulfo

    2012-10-01

    A method, based on Raman spectroscopy, for identification of different microorganisms involved in bacterial urinary tract infections has been proposed. Spectra were collected from different bacterial colonies (Gram-negative: Escherichia coli, Klebsiella pneumoniae, Proteus mirabilis, Pseudomonas aeruginosa and Enterobacter cloacae, and Gram-positive: Staphylococcus aureus and Enterococcus spp.), grown on culture medium (agar), using a Raman spectrometer with a fiber Raman probe (830 nm). Colonies were scraped from the agar surface and placed on an aluminum foil for Raman measurements. After preprocessing, spectra were submitted to a principal component analysis and Mahalanobis distance (PCA/MD) discrimination algorithm. We found that the mean Raman spectra of different bacterial species show similar bands, and S. aureus was well characterized by strong bands related to carotenoids. PCA/MD could discriminate Gram-positive bacteria with sensitivity and specificity of 100% and Gram-negative bacteria with sensitivity ranging from 58 to 88% and specificity ranging from 87% to 99%.

  6. Diagnosing basal cell carcinoma in vivo by near-infrared Raman spectroscopy: a Principal Components Analysis discrimination algorithm

    NASA Astrophysics Data System (ADS)

    Silveira, Landulfo, Jr.; Silveira, Fabrício L.; Bodanese, Benito; Pacheco, Marcos Tadeu T.; Zângaro, Renato A.

    2012-02-01

    This work demonstrated the discrimination among basal cell carcinoma (BCC) and normal human skin in vivo using near-infrared Raman spectroscopy. Spectra were obtained in the suspected lesion prior resectional surgery. After tissue withdrawn, biopsy fragments were submitted to histopathology. Spectra were also obtained in the adjacent, clinically normal skin. Raman spectra were measured using a Raman spectrometer (830 nm) with a fiber Raman probe. By comparing the mean spectra of BCC with the normal skin, it has been found important differences in the 800-1000 cm-1 and 1250-1350 cm-1 (vibrations of C-C and amide III, respectively, from lipids and proteins). A discrimination algorithm based on Principal Components Analysis and Mahalanobis distance (PCA/MD) could discriminate the spectra of both tissues with high sensitivity and specificity.

  7. Raman spectroscopy and imaging of whole functional cells

    NASA Astrophysics Data System (ADS)

    McNaughton, Don; Lim, Janelle; Hammer, Larissa; Langford, Steven J.; Collie, Jocelyn; Wood, Bayden R.

    2005-02-01

    With the advent of Raman spectrometers based on CCD array detectors, instruments have been coupled to optical microscopes leading to all the advantages of bright field microscopy with the added advantage of a direct chemical probe. The primary biological solvent, water, is a weak Raman scatterer and so these instruments can now be used to investigate the chemistry of living systems at spatial resolutions of 1 μm and below. We have developed techniques that allow us to study functional red blood cells and monitor the exchange of ligands and the development and chemistry of disease processes. These techniques take advantage of Aggregated Enhanced Raman Spectroscopy, which enables us to use the haem group of the haemoglobins and related haem pigments, such as the malarial pigment haemozoin, as a sensitive probe for changes in oxidation state, spin state and electronic structure. We have used the Raman microprobe to investigate the effect of drugs such as quinoline on the food vacuole of the malarial parasite in vivo. Sickle cell disease affects 1 out of 600 African American births and is caused by a mutant form (β6 glu-->val) of haemoglobin (HbS). HbS polymerizes and forms higher order aggregates under hypoxic conditions, leading to distortion and rigidity of the erythrocyte. These rigid cells can block the microvasculature resulting in tissue ischaemia, organ damage, and ultimately death. The sensitivity of the Raman technique to haem aggregation provides a tool with which we can analyse the changes that occur between normal and sickle cells.

  8. Application of laser Raman spectroscopy in concentration measurements of multiple analytes in human body fluids

    NASA Astrophysics Data System (ADS)

    Qu, Jianan Y.; Suria, David; Wilson, Brian C.

    1998-05-01

    The primary goal of these studies was to demonstrate that NIR Raman spectroscopy is feasible as a rapid and reagentless analytic method for clinical diagnostics. Raman spectra were collected on human serum and urine samples using a 785 nm excitation laser and a single-stage holographic spectrometer. A partial east squares method was used to predict the analyte concentrations of interest. The actual concentrations were determined by a standard clinical chemistry. The prediction accuracy of total protein, albumin, triglyceride and glucose in human sera ranged from 1.5 percent to 5 percent which is greatly acceptable for clinical diagnostics. The concentration measurements of acetaminophen, ethanol and codeine inhuman urine have demonstrated the potential of NIR Raman technology in screening of therapeutic drugs and substances of abuse.

  9. Quantitative transmission Raman spectroscopy of pharmaceutical tablets and capsules.

    PubMed

    Johansson, Jonas; Sparén, Anders; Svensson, Olof; Folestad, Staffan; Claybourn, Mike

    2007-11-01

    Quantitative analysis of pharmaceutical formulations using the new approach of transmission Raman spectroscopy has been investigated. For comparison, measurements were also made in conventional backscatter mode. The experimental setup consisted of a Raman probe-based spectrometer with 785 nm excitation for measurements in backscatter mode. In transmission mode the same system was used to detect the Raman scattered light, while an external diode laser of the same type was used as excitation source. Quantitative partial least squares models were developed for both measurement modes. The results for tablets show that the prediction error for an independent test set was lower for the transmission measurements with a relative root mean square error of about 2.2% as compared with 2.9% for the backscatter mode. Furthermore, the models were simpler in the transmission case, for which only a single partial least squares (PLS) component was required to explain the variation. The main reason for the improvement using the transmission mode is a more representative sampling of the tablets compared with the backscatter mode. Capsules containing mixtures of pharmaceutical powders were also assessed by transmission only. The quantitative results for the capsules' contents were good, with a prediction error of 3.6% w/w for an independent test set. The advantage of transmission Raman over backscatter Raman spectroscopy has been demonstrated for quantitative analysis of pharmaceutical formulations, and the prospects for reliable, lean calibrations for pharmaceutical analysis is discussed.

  10. Handheld Technology Acceptance in Radiologic Science Education and Training Programs

    ERIC Educational Resources Information Center

    Powers, Kevin Jay

    2012-01-01

    The purpose of this study was to explore the behavioral intention of directors of educational programs in the radiologic sciences to adopt handheld devices to aid in managing student clinical data. Handheld devices were described to participants as a technology representing a class of mobile electronic devices including, but not limited to,…

  11. Combined LIBS-Raman for remote detection and characterization of biological samples

    DOE PAGES

    Anderson, Aaron S.; Mukundan, Harshini; Mcinroy, Rhonda E.; ...

    2015-02-07

    Laser-Induced Breakdown Spectroscopy (LIBS) and Raman Spectroscopy have rich histories in the analysis of a wide variety of samples in both in situ and remote configurations. Our team is working on building a deployable, integrated Raman and LIBS spectrometer (RLS) for the parallel elucidation of elemental and molecular signatures under Earth and Martian surface conditions. Herein, results from remote LIBS and Raman analysis of biological samples such as amino acids, small peptides, mono- and disaccharides, and nucleic acids acquired under terrestrial and Mars conditions are reported, giving rise to some interesting differences. A library of spectra and peaks of interestmore » were compiled, and will be used to inform the analysis of more complex systems, such as large peptides, dried bacterial spores, and biofilms. Lastly, these results will be presented and future applications will be discussed, including the assembly of a combined RLS spectroscopic system and stand-off detection in a variety of environments.« less

  12. BIOMEX on EXPOSE-R2: First results on the preservation of Raman biosignatures after space exposure

    NASA Astrophysics Data System (ADS)

    Baqué, Mickael; Böttger, Ute; Leya, Thomas; de Vera, Jean-Pierre Paul

    2017-04-01

    After a 15-month exposure on-board the EXPOSE-R2 space platform, situated on the outside of the International Space Station, four astrobiology experiments successfully came back to Earth in March and June 2016. Among them, the BIOMEX (BIOlogy and Mars EXperiment) experiment aims at investigating the endurance of extremophiles and stability of biomolecules under space and Mars-like conditions in the presence of Martian mineral analogues (de Vera et al., 2012). The preservation and evolution of Raman biosignatures under such conditions is of particular interest for guiding future search-for-life missions to Mars (and other planetary objects) carrying Raman spectrometers (such as the Raman Laser Spectrometer instrument on board the future ExoMars rover). The photoprotective carotenoid pigments (present either in photosynthetic organisms such as plants, algae, cyanobacteria and in some bacteria and archaea) have been classified as high priority targets for biomolecule detection on Mars and therefore used as biosignature models due to their stability and easy identification by Raman spectroscopy (Böttger et al., 2012). We report here on the first results from the analysis of two carotenoids containing organisms: the cyanobacterium Nostoc sp. (strain CCCryo 231-06; = UTEX EE21 and CCMEE 391) isolated from Antarctica and the green alga cf. Sphaerocystis sp. (strain CCCryo 101-99) isolated from Spitsbergen. Desiccated cells of these organisms were exposed to space and simulated Mars-like conditions in space in the presence of two Martian mineral analogues (phyllosilicatic and sulfatic Mars regolith simulants) and a Lunar regolith analogue and analyzed with a 532nm Raman microscope at 1mW laser power. Carotenoids in both organisms were surprisingly still detectable at relatively high levels after being exposed for 15 months in Low Earth Orbit to UV, cosmic rays, vacuum (or Mars-like atmosphere) and temperatures stresses regardless of the mineral matrix used. Further

  13. Characterizing the reflectivity of handheld display devices.

    PubMed

    Liu, Peter; Badano, Aldo

    2014-08-01

    With increased use of handheld and tablet display devices for viewing medical images, methods for consistently measuring reflectivity of the devices are needed. In this note, the authors report on the characterization of diffuse reflections for handheld display devices including mobile phones and tablets using methods recommended by the American Association of Physicists in Medicine Task Group 18 (TG18). The authors modified the diffuse reflectance coefficient measurement method outlined in the TG18 report. The authors measured seven handheld display devices (two phones and five tablets) and three workstation displays. The device was attached to a black panel with Velcro. To study the effect of the back surface on the diffuse reflectance coefficient, the authors created Styrofoam masks with different size square openings and placed it in front of the device. Overall, for each display device, measurements of illuminance and reflected luminance on the display screen were taken. The authors measured with no mask, with masks of varying size, and with display-size masks, and calculated the corresponding diffuse reflectance coefficient. For all handhelds, the diffuse reflectance coefficient measured with no back panel were lower than measurements performed with a mask. The authors found an overall increase in reflectivity as the size of the mask decreases. For workstations displays, diffuse reflectance coefficients were higher when no back panel was used, and higher than with masks. In all cases, as luminance increased, illuminance increased, but not at the same rate. Since the size of handheld displays is smaller than that of workstation devices, the TG18 method suffers from a dependency on illumination condition. The authors show that the diffuse reflection coefficients can vary depending on the nature of the back surface of the illuminating box. The variability in the diffuse coefficient can be as large as 20% depending on the size of the mask. For all measurements

  14. Synthesis and characterization of mixed monolayer protected gold nanorods and their Raman activities

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Mlambo, Mbuso; Nanotechnology Innovation Centre, Advanced Materials Division, Mintek, Private Bag X3015, Randburg 2125; Mdluli, Phumlani S.

    2013-10-15

    Graphical abstract: Gold nanorods surface functionalization. - Highlights: • Mixed monolayer protected gold nanorods. • Surface enhanced Raman spectroscopy. • HS-(CH{sub 2}){sub 11}-NHCO-coumarin as a Raman active compound. - Abstract: The cetyltrimethylammonium bromide (CTAB) gold nanorods (AuNRs) were prepared by seed-mediated route followed by the addition of a Raman active compound (HS-(CH{sub 2}){sub 11}-NHCO-coumarin) on the gold nanorods surfaces. Different stoichiometric mixtures of HS-(CH{sub 2}){sub 11}-NHCO-coumarin and HS-PEG-(CH{sub 2}){sub 11}COOH were evaluated for their Raman activities. The lowest stoichiometric ratio HS-(CH{sub 2}){sub 11}-NHCO-coumarin adsorbed on gold nanorods surface was detected and enhanced by Raman spectroscopy. The produced mixed monolayer protectedmore » gold nanorods were characterized by UV-vis spectrometer for optical properties, transmission electron microscope (TEM) for structural properties (shape and aspect ratio) and their zeta potentials (charges) were obtained from ZetaSizer to determine the stability of the produced mixed monolayer protected gold nanorods. The Raman results showed a surface enhanced Raman scattering (SERS) enhancement at the lowest stoichiometric ratio of 1% HS-(CH{sub 2}){sub 11}-NHCO-coumarin compared to high ratio of 50% HS-(CH{sub 2}){sub 11}-NHCO-coumarin on the surface of gold nanorods.« less

  15. Critical care procedure logging using handheld computers

    PubMed Central

    Carlos Martinez-Motta, J; Walker, Robin; Stewart, Thomas E; Granton, John; Abrahamson, Simon; Lapinsky, Stephen E

    2004-01-01

    Introduction We conducted this study to evaluate the feasibility of implementing an internet-linked handheld computer procedure logging system in a critical care training program. Methods Subspecialty trainees in the Interdepartmental Division of Critical Care at the University of Toronto received and were trained in the use of Palm handheld computers loaded with a customized program for logging critical care procedures. The procedures were entered into the handheld device using checkboxes and drop-down lists, and data were uploaded to a central database via the internet. To evaluate the feasibility of this system, we tracked the utilization of this data collection system. Benefits and disadvantages were assessed through surveys. Results All 11 trainees successfully uploaded data to the central database, but only six (55%) continued to upload data on a regular basis. The most common reason cited for not using the system pertained to initial technical problems with data uploading. From 1 July 2002 to 30 June 2003, a total of 914 procedures were logged. Significant variability was noted in the number of procedures logged by individual trainees (range 13–242). The database generated by regular users provided potentially useful information to the training program director regarding the scope and location of procedural training among the different rotations and hospitals. Conclusion A handheld computer procedure logging system can be effectively used in a critical care training program. However, user acceptance was not uniform, and continued training and support are required to increase user acceptance. Such a procedure database may provide valuable information that may be used to optimize trainees' educational experience and to document clinical training experience for licensing and accreditation. PMID:15469577

  16. Fast Raman single bacteria identification: toward a routine in-vitro diagnostic

    NASA Astrophysics Data System (ADS)

    Douet, Alice; Josso, Quentin; Marchant, Adrien; Dutertre, Bertrand; Filiputti, Delphine; Novelli-Rousseau, Armelle; Espagnon, Isabelle; Kloster-Landsberg, Meike; Mallard, Frédéric; Perraut, Francois

    2016-04-01

    Timely microbiological results are essential to allow clinicians to optimize the prescribed treatment, ideally at the initial stage of the therapeutic process. Several approaches have been proposed to solve this issue and to provide the microbiological result in a few hours directly from the sample such as molecular biology. However fast and sensitive those methods are not based on single phenotypic information which presents several drawbacks and limitations. Optical methods have the advantage to allow single-cell sensitivity and to probe the phenotype of measured cells. Here we present a process and a prototype that allow automated single-bacteria phenotypic analysis. This prototype is based on the use of Digital In-line Holography techniques combined with a specially designed Raman spectrometer using a dedicated device to capture bacteria. The localization of single-cell is finely determined by using holograms and a proper propagation kernel. Holographic images are also used to analyze bacteria in the sample to sort potential pathogens from flora dwelling species or other biological particles. This accurate localization enables the use of a small confocal volume adapted to the measurement of single-cell. Along with the confocal volume adaptation, we also have modified every components of the spectrometer to optimize single-bacteria Raman measurements. This optimization allowed us to acquire informative single-cell spectra using an integration time of 0.5s only. Identification results obtained with this prototype are presented based on a 65144 Raman spectra database acquired automatically on 48 bacteria strains belonging to 8 species.

  17. On the use of spectra from portable Raman and ATR-IR instruments in synthesis route attribution of a chemical warfare agent by multivariate modeling.

    PubMed

    Wiktelius, Daniel; Ahlinder, Linnea; Larsson, Andreas; Höjer Holmgren, Karin; Norlin, Rikard; Andersson, Per Ola

    2018-08-15

    Collecting data under field conditions for forensic investigations of chemical warfare agents calls for the use of portable instruments. In this study, a set of aged, crude preparations of sulfur mustard were characterized spectroscopically without any sample preparation using handheld Raman and portable IR instruments. The spectral data was used to construct Random Forest multivariate models for the attribution of test set samples to the synthetic method used for their production. Colored and fluorescent samples were included in the study, which made Raman spectroscopy challenging although fluorescence was diminished by using an excitation wavelength of 1064 nm. The predictive power of models constructed with IR or Raman data alone, as well as with combined data was investigated. Both techniques gave useful data for attribution. Model performance was enhanced when Raman and IR spectra were combined, allowing correct classification of 19/23 (83%) of test set spectra. The results demonstrate that data obtained with spectroscopy instruments amenable for field deployment can be useful in forensic studies of chemical warfare agents. Copyright © 2018 Elsevier B.V. All rights reserved.

  18. Driver hand-held cellular phone use: a four-year analysis.

    PubMed

    Eby, David W; Vivoda, Jonathon M; St Louis, Renée M

    2006-01-01

    The use of hand-held cellular (mobile) phones while driving has stirred more debate, passion, and research than perhaps any other traffic safety issue in the past several years. There is ample research showing that the use of either hand-held or hands-free cellular phones can lead to unsafe driving patterns. Whether or not these performance deficits increase the risk of crash is difficult to establish, but recent studies are beginning to suggest that cellular phone use elevates crash risk. The purpose of this study was to assess changes in the rate of hand-held cellular phone use by motor-vehicle drivers on a statewide level in Michigan. This study presents the results of 13 statewide surveys of cellular phone use over a 4-year period. Hand-held cellular phone use data were collected through direct observation while vehicles were stopped at intersections and freeway exit ramps. Data were weighted to be representative of all drivers traveling during daylight hours in Michigan. The study found that driver hand-held cellular phone use has more than doubled between 2001 and 2005, from 2.7% to 5.8%. This change represents an average increase of 0.78 percentage points per year. The 5.8% use rate observed in 2005 means that at any given daylight hour, around 36,550 drivers were conversing on cellular phones while driving on Michigan roadways. The trend line fitted to these data predicts that by the year 2010, driver hand-held cellular phone use will be around 8.6%, or 55,000 drivers at any given daylight hour. These results make it clear that cellular phone use while driving will continue to be an important traffic safety issue, and highlight the importance of continued attempts to generate new ways of alleviating this potential hazard.

  19. In Situ Raman Analyses of Natural Gas and Gas Hydrates at Hydrate Ridge, Oregon

    NASA Astrophysics Data System (ADS)

    Peltzer, E. T.; White, S. N.; Dunk, R. M.; Brewer, P. G.; Sherman, A. D.; Schmidt, K.; Hester, K. C.; Sloan, E. D.

    2004-12-01

    During a July 2004 cruise to Hydrate Ridge, Oregon, MBARI's sea-going laser Raman spectrometer was used to obtain in situ Raman spectra of natural gas hydrates and natural gas venting from the seafloor. This was the first in situ analysis of gas hydrates on the seafloor. The hydrate spectra were compared to laboratory analyses performed at the Center for Hydrate Research, Colorado School of Mines. The natural gas spectra were compared to MBARI gas chromatography (GC) analyses of gas samples collected at the same site. DORISS (Deep Ocean Raman In Situ Spectrometer) is a laboratory model laser Raman spectrometer from Kaiser Optical Systems, Inc modified at MBARI for deployment in the deep ocean. It has been successfully deployed to depths as great as 3600 m. Different sampling optics provide flexibility in adapting the instrument to a particular target of interest. An immersion optic was used to analyze natural gas venting from the seafloor at South Hydrate Ridge ( ˜780 m depth). An open-bottomed cube was placed over the vent to collect the gas. The immersion optic penetrated the side of the cube as did a small heater used to dissociate any hydrate formed during sample collection. To analyze solid hydrates at both South and North Hydrate Ridge ( ˜590 m depth), chunks of hydrate were excavated from the seafloor and collected in a glass cylinder with a mesh top. A stand-off optic was used to analyze the hydrate inside the cylinder. Due to the partial opacity of the hydrate and the small focal volume of the sampling optic, a precision underwater positioner (PUP) was used to focus the laser spot onto the hydrate. PUP is a stand-alone system with three degrees-of-freedom, capable of moving the DORISS probe head with a precision of 0.1 mm. In situ Raman analyses of the gas indicate that it is primarily methane. This is verified by GC analyses of samples collected from the same site. Other minor constituents (such as CO2 and higher hydrocarbons) are present but may be in

  20. In Site Analysis of a High Temperature Cure Reaction in Real Time Using Modulated Fiber-Optic FT-Raman Spectroscopy

    NASA Technical Reports Server (NTRS)

    Cooper, John; Aust, Jeffrey F.; Wise, Kent L.; Jensen, Brian J.

    1999-01-01

    The vibrational spectrum of a high temperature (330 C) polymerization reaction was successfully monitored in real time using a modulated fiber-optic FT-Raman spectrometer. A phenylethynyl terminated monomer was cured, and spectral evidence for two different reaction products was acquired. The products are a conjugated polyene chain and a cyclized trimer. This is the first report describing the use of FT-Raman spectroscopy to monitor a high temperature (greater than 250 C) reaction in real time.

  1. Raman scattering from phonons and magnons in magnetic semiconductors, MnTe

    NASA Technical Reports Server (NTRS)

    Mobasser, S. R.; Hart, T. R.

    1985-01-01

    Comparisons are made between theoretical and experimental data on laser Raman scattering by phonons and two-magnons in antiferromagnetic and paramagnetic phases of MnTe. The study was performed specifically to characterize the magnetic exchange coupling constants of the Mn ions in the samples. Crystal MnTe samples were bombarded with an Ar ion laser beam to obtain spectrometer and photon counter data. One E(2g) phonon with a room temperature energy of 178/cm and a two-magnon peak of 360/cm were observed in the Raman spectrum. A spin wave dispersion relation is presented for the spectrum. Finally, a Monte Carlo technique was used to calculate the two-magnon joint density of states that best fits the experimental data.

  2. Raman spectroscopy and oral exfoliative cytology

    NASA Astrophysics Data System (ADS)

    Sahu, Aditi; Shah, Nupur; Mahimkar, Manoj; Garud, Mandavi; Pagare, Sandeep; Nair, Sudhir; Krishna, C. Murali

    2014-03-01

    Early detection of oral cancers can substantially improve disease-free survival rates. Ex vivo and in vivo Raman spectroscopic (RS) studies on oral cancer have demonstrated the applicability of RS in identifying not only malignant and premalignant conditions but also cancer-field-effects: the earliest events in oral carcinogenesis. RS has also been explored for cervical exfoliated cells analysis. Exfoliated cells are associated with several advantages like non-invasive sampling, higher patient compliance, transportation and analysis at a central facility: obviating need for on-site instrumentation. Thus, oral exfoliative cytology coupled with RS may serve as a useful adjunct for oral cancer screening. In this study, exfoliated cells from healthy controls with and without tobacco habits, premalignant lesions (leukoplakia and tobacco-pouch-keratosis) and their contralateral mucosa were collected using a Cytobrush. Cells were harvested by vortexing and centrifugation at 6000 rpm. The cellular yield was ascertained using Neubauer's chamber. Cell pellets were placed on a CaF2 window and Raman spectra were acquired using a Raman microprobe (40X objective) coupled HE-785 Raman spectrometer. Approximately 7 spectra were recorded from each pellet, following which pellet was smeared onto a glass slide, fixed in 95% ethanol and subjected to Pap staining for cytological diagnosis (gold standard). Preliminary PC-LDA followed by leave-one-out cross validation indicate delineation of cells from healthy and all pathological conditions. A tendency of classification was also seen between cells from contralateral, healthy tobacco and site of premalignant lesions. These results will be validated by cytological findings, which will serve as the basis for building standard models of each condition.

  3. Raman spectroscopy of triolein under high pressures

    NASA Astrophysics Data System (ADS)

    Tefelski, D. B.; Jastrzębski, C.; Wierzbicki, M.; Siegoczyński, R. M.; Rostocki, A. J.; Wieja, K.; Kościesza, R.

    2010-03-01

    This article presents results of the high pressure Raman spectroscopy of triolein. Triolein, a triacylglyceride (TAG) of oleic acid, is an unsaturated fat, present in natural oils such as olive oil. As a basic food component and an energy storage molecule, it has considerable importance for food and fuel industries. To generate pressure in the experiment, we used a high-pressure cylindrical chamber with sapphire windows, presented in (R.M. Siegoczyński, R. Kościesza, D.B. Tefelski, and A. Kos, Molecular collapse - modification of the liquid structure induced by pressure in oleic acid, High Press. Res. 29 (2009), pp. 61-66). Pressure up to 750 MPa was applied. A Raman spectrometer in "macro"-configuration was employed. Raman spectroscopy provides information on changes of vibrational modes related to structural changes of triolein under pressure. Interesting changes in the triglyceride C‒H stretching region at 2650-3100 cm-1 were observed under high-pressures. Changes were also observed in the ester carbonyl (C˭ O) stretching region 1700-1780 cm-1 and the C‒C stretching region at 1050-1150 cm-1. The overall luminescence of the sample decreased under pressure, making it possible to set longer spectrum acquisition time and obtain more details of the spectrum. The registered changes suggest that the high-pressure solid phase of triolein is organized as β-polymorphic, as was reported in (C. Akita, T. Kawaguchi, and F. Kaneko, Structural study on polymorphism of cis-unsaturated triacylglycerol: Triolein, J. Phys. Chem. B 110 (2006), pp. 4346-4353; E. Da Silva and D. Rousseau, Molecular order and thermodynamics of the solid-liquid transition in triglycerides via Raman spectroscopy, Phys. Chem. Chem. Phys. 10 (2008), pp. 4606-4613) (with temperature-induced phase transitions). The research has shown that Raman spectroscopy in TAGs under pressure reveals useful information about its structural changes.

  4. Note: A portable Raman analyzer for microfluidic chips based on a dichroic beam splitter for integration of imaging and signal collection light paths

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Geng, Yijia; Xu, Shuping; Xu, Weiqing, E-mail: xuwq@jlu.edu.cn

    An integrated and portable Raman analyzer featuring an inverted probe fixed on a motor-driving adjustable optical module was designed for the combination of a microfluidic system. It possesses a micro-imaging function. The inverted configuration is advantageous to locate and focus microfluidic channels. Different from commercial micro-imaging Raman spectrometers using manual switchable light path, this analyzer adopts a dichroic beam splitter for both imaging and signal collection light paths, which avoids movable parts and improves the integration and stability of optics. Combined with surface-enhanced Raman scattering technique, this portable Raman micro-analyzer is promising as a powerful tool for microfluidic analytics.

  5. Raman Spectroscopy as a Method for Mineral Identification on Lunar Robotic Exploration Missions

    NASA Technical Reports Server (NTRS)

    Wang, Alian; Jolliff, Bradley L.; Haskin, Larry A.

    1995-01-01

    The sharp, nonoverlapping Raman bands for plagioclase, pyroxene, and olivine would be advantageous for on-surface, active mineralogical analysis of lunar materials. A robust, light-weight, low-power, rover-based Raman spectrometer with a laser exciting source, entirely transmission-mode holographic optics, and a charge-coupled device (CCD) detector could fit within a less than 20 cm cube. A sensor head on the end of an optical fiber bundle that carried the laser beam and returned the scattered radiation could be placed against surfaces at any desired angle by a deployment mechanism; otherwise, the instrument would need no moving parts. A modem micro-Raman spectrometer with its beam broadened (to expand the spot to 50-micrometer diameter) and set for low resolution (7/cm in the 100-1400/cm region relative to 514.5-nm excitation), was used to simulate the spectra anticipated from a rover instrument. We present spectra for lunar mineral grains, less than 1 mm soil fines, breccia fragments, and glasses. From frequencies of olivine peaks, we derived sufficiently precise forsterite contents to correlate the analyzed grains to known rock types and we obtained appropriate forsterite contents from weak signals above background in soil fines and breccias. Peak positions of pyroxenes were sufficiently well determined to distinguish among orthorhombic, monoclinic, and triclinic (pyroxenoid) structures; additional information can be obtained from pyroxene spectra, but requires further laboratory calibration. Plagioclase provided sharp peaks in soil fines and most breccias even when the glass content was high.

  6. In vivo Raman spectroscopy of cervix cancers

    NASA Astrophysics Data System (ADS)

    Rubina, S.; Sathe, Priyanka; Dora, Tapas Kumar; Chopra, Supriya; Maheshwari, Amita; Krishna, C. Murali

    2014-03-01

    Cervix-cancer is the third most common female cancer worldwide. It is the leading cancer among Indian females with more than million new diagnosed cases and 50% mortality, annually. The high mortality rates can be attributed to late diagnosis. Efficacy of Raman spectroscopy in classification of normal and pathological conditions in cervix cancers on diverse populations has already been demonstrated. Our earlier ex vivo studies have shown the feasibility of classifying normal and cancer cervix tissues as well as responders/non-responders to Concurrent chemoradiotherapy (CCRT). The present study was carried out to explore feasibility of in vivo Raman spectroscopic methods in classifying normal and cancerous conditions in Indian population. A total of 182 normal and 132 tumor in vivo Raman spectra, from 63 subjects, were recorded using a fiberoptic probe coupled HE-785 spectrometer, under clinical supervision. Spectra were acquired for 5 s and averaged over 3 times at 80 mW laser power. Spectra of normal conditions suggest strong collagenous features and abundance of non-collagenous proteins and DNA in case of tumors. Preprocessed spectra were subjected to Principal Component-Linear Discrimination Analysis (PCLDA) followed by leave-one-out-cross-validation. Classification efficiency of ~96.7% and 100% for normal and cancerous conditions respectively, were observed. Findings of the study corroborates earlier studies and suggest applicability of Raman spectroscopic methods in combination with appropriate multivariate tool for objective, noninvasive and rapid diagnosis of cervical cancers in Indian population. In view of encouraging results, extensive validation studies will be undertaken to confirm the findings.

  7. Determination of human coronary artery composition by Raman spectroscopy.

    PubMed

    Brennan, J F; Römer, T J; Lees, R S; Tercyak, A M; Kramer, J R; Feld, M S

    1997-07-01

    We present a method for in situ chemical analysis of human coronary artery using near-infrared Raman spectroscopy. It is rapid and accurate and does not require tissue removal; small volumes, approximately 1 mm3, can be sampled. This methodology is likely to be useful as a tool for intravascular diagnosis of artery disease. Human coronary artery segments were obtained from nine explanted recipient hearts within 1 hour of heart transplantation. Minces from one or more segments were obtained through grinding in a mortar and pestle containing liquid nitrogen. Artery segments and minces were excited with 830 nm near-infrared light, and Raman spectra were collected with a specially designed spectrometer. A model was developed to analyze the spectra and quantify the amounts of cholesterol, cholesterol esters, triglycerides and phospholipids, and calcium salts present. The model provided excellent fits to spectra from the artery segments, indicating its applicability to intact tissue. In addition, the minces were assayed chemically for lipid and calcium salt content, and the results were compared. The relative weights obtained using the Raman technique agreed with those of the standard assays within a few percentage points. The chemical composition of coronary artery can be quantified accurately with Raman spectroscopy. This opens the possibility of using histochemical analysis to predict acute events such as plaque rupture, to follow the progression of disease, and to select appropriate therapeutic interventions.

  8. An Investigation of Game-Embedded Handheld Devices to Enhance English Learning

    ERIC Educational Resources Information Center

    Hung, Hui-Chun; Young, Shelley Shwu-Ching

    2015-01-01

    This study proposed and implemented a system combining the advantages of both educational games and wireless handheld technology to promote the interactive English learning in the classroom setting. An interactive English vocabulary acquisition board game was designed with the system being implemented on handheld devices. Thirty sixth-grade…

  9. Design of a fiber-optic multiphoton microscopy handheld probe

    PubMed Central

    Zhao, Yuan; Sheng, Mingyu; Huang, Lin; Tang, Shuo

    2016-01-01

    We have developed a fiber-optic multiphoton microscopy (MPM) system with handheld probe using femtosecond fiber laser. Here we present the detailed optical design and analysis of the handheld probe. The optical systems using Lightpath 352140 and 352150 as objective lens were analyzed. A custom objective module that includes Lightpath 355392 and two customized corrective lenses was designed. Their performances were compared by wavefront error, field curvature, astigmatism, F-θ error, and tolerance in Zemax simulation. Tolerance analysis predicted the focal spot size to be 1.13, 1.19 and 0.83 µm, respectively. Lightpath 352140 and 352150 were implemented in experiment and the measured lateral resolution was 1.22 and 1.3 µm, respectively, which matched with the prediction. MPM imaging by the handheld probe were conducted on leaf, fish scale and rat tail tendon. The MPM resolution can potentially be improved by the custom objective module. PMID:27699109

  10. Design of a fiber-optic multiphoton microscopy handheld probe.

    PubMed

    Zhao, Yuan; Sheng, Mingyu; Huang, Lin; Tang, Shuo

    2016-09-01

    We have developed a fiber-optic multiphoton microscopy (MPM) system with handheld probe using femtosecond fiber laser. Here we present the detailed optical design and analysis of the handheld probe. The optical systems using Lightpath 352140 and 352150 as objective lens were analyzed. A custom objective module that includes Lightpath 355392 and two customized corrective lenses was designed. Their performances were compared by wavefront error, field curvature, astigmatism, F-θ error, and tolerance in Zemax simulation. Tolerance analysis predicted the focal spot size to be 1.13, 1.19 and 0.83 µm, respectively. Lightpath 352140 and 352150 were implemented in experiment and the measured lateral resolution was 1.22 and 1.3 µm, respectively, which matched with the prediction. MPM imaging by the handheld probe were conducted on leaf, fish scale and rat tail tendon. The MPM resolution can potentially be improved by the custom objective module.

  11. Angular acceptance analysis of an infrared focal plane array with a built-in stationary Fourier transform spectrometer.

    PubMed

    Gillard, Frédéric; Ferrec, Yann; Guérineau, Nicolas; Rommeluère, Sylvain; Taboury, Jean; Chavel, Pierre

    2012-06-01

    Stationary Fourier transform spectrometry is an interesting concept for building reliable field or embedded spectroradiometers, especially for the mid- and far- IR. Here, a very compact configuration of a cryogenic stationary Fourier transform IR (FTIR) spectrometer is investigated, where the interferometer is directly integrated in the focal plane array (FPA). We present a theoretical analysis to explain and describe the fringe formation inside the FTIR-FPA structure when illuminated by an extended source positioned at a finite distance from the detection plane. The results are then exploited to propose a simple front lens design compatible with a handheld package.

  12. Using medical knowledge sources on handheld computers--a qualitative study among junior doctors.

    PubMed

    Axelson, Christian; Wårdh, Inger; Strender, Lars-Erik; Nilsson, Gunnar

    2007-09-01

    The emergence of mobile computing could have an impact on how junior doctors learn. To exploit this opportunity it is essential to understand their information seeking process. To explore junior doctors' experiences of using medical knowledge sources on handheld computers. Interviews with five Swedish junior doctors. A qualitative manifest content analysis of a focus group interview followed by a qualitative latent content analysis of two individual interviews. A focus group interview showed that users were satisfied with access to handheld medical knowledge sources, but there was concern about contents, reliability and device dependency. Four categories emerged from individual interviews: (1) A feeling of uncertainty about using handheld technology in medical care; (2) A sense of security that handhelds can provide; (3) A need for contents to be personalized; (4) A degree of adaptability to make the handheld a versatile information tool. A theme was established to link the four categories together, as expressed in the Conclusion section. Junior doctors' experiences of using medical knowledge sources on handheld computers shed light on the need to decrease uncertainty about clinical decisions during medical internship, and to find ways to influence the level of self-confidence in the junior doctor's process of decision-making.

  13. In vivo confocal Raman spectroscopy of the human cornea.

    PubMed

    Bauer, N J; Hendrikse, F; March, W F

    1999-07-01

    To investigate the feasibility of a confocal Raman spectroscopic technique for the noninvasive assessment of corneal hydration in vivo in two legally blind subjects. A laser beam (632.8 nm; 15 mJ) was maintained on the cornea by using a microscope objective lens (x25 magnification, NA = 0.5, f = 10 mm) both for focusing the incident light as well as collecting the Raman backscattered light, in a 180 degrees backscatter configuration. An optical fiber, acting as the confocal pinhole for elimination of light from out-of-focus places, was coupled to a spectrometer that dispersed the collected light onto a sensitive array detector for rapid spectral data acquisition over a range from 2,890 to 3,590/cm(-1). Raman spectra were recorded from the anterior 100-150 microm of the cornea over a period before and after topical application of a mild dehydrating solution. The ratio between the amplitudes of the signals at 3,400/cm(-1) (OH-vibrational mode of water) and 2,940/cm(-1) (CH-vibrational mode of proteins) was used as a measure for corneal hydration. High signal-to-noise ratio (SNR = 25) Raman spectra were obtained from the human corneas by using 15 mJ of laser light energy. Qualitative changes in the hydration of the anteriormost part of the corneas could be observed as a result of the dehydrating agent. With adequate improvements in system safety, confocal Raman spectroscopy could potentially be applied clinically as a noninvasive tool for the assessment of corneal hydration in vivo.

  14. 75 FR 8400 - In the Matter of Certain Wireless Communications System Server Software, Wireless Handheld...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-02-24

    ... Communications System Server Software, Wireless Handheld Devices and Battery Packs; Notice of Investigation..., wireless handheld devices and battery packs by reason of infringement of certain claims of U.S. Patent Nos... certain wireless communications system server software, wireless handheld devices or battery packs that...

  15. Emergency medicine clerkship encounter and procedure logging using handheld computers.

    PubMed

    Penciner, Rick; Siddiqui, Sanam; Lee, Shirley

    2007-08-01

    Tracking medical student clinical encounters is now an accreditation requirement of medical schools. The use of handheld computers for electronic logging is emerging as a strategy to achieve this. To evaluate the technical feasibility and student satisfaction of a novel electronic logging and feedback program using handheld computers in the emergency department. This was a survey study of fourth-year medical student satisfaction with the use of their handheld computers for electronic logging of patient encounters and procedures. The authors also included an analysis of this technology. Forty-six students participated in this pilot project, logging a total of 2,930 encounters. Students used the logs an average of 7.6 shifts per rotation, logging an average of 8.3 patients per shift. Twenty-nine students (63%) responded to the survey. Students generally found it easy to complete each encounter (69%) and easy to synchronize their handheld computer with the central server (83%). However, half the students (49%) never viewed the feedback Web site and most (79%) never reviewed their logs with their preceptors. Overall, only 17% found the logging program beneficial as a learning tool. Electronic logging by medical students during their emergency medicine clerkship has many potential benefits as a method to document clinical encounters and procedures performed. However, this study demonstrated poor compliance and dissatisfaction with the process. In order for electronic logging using handheld computers to be a beneficial educational tool for both learners and educators, obstacles to effective implementation need to be addressed.

  16. In Situ Analysis of a High-Temperature Cure Reaction in Real Time Using Modulated Fiber-Optic FT-Raman Spectroscopy

    NASA Technical Reports Server (NTRS)

    Aust, Jeffrey F.; Cooper, John B.; Wise, Kent L.; Jensen, Brian J.

    1999-01-01

    The vibrational spectrum of a high-temperature (330 C) polymerization reaction was successfully monitored in real time with the use of a modulated fiber-optic Fourier transform (FT)-Raman spectrometer. A phenylethynyl-terminated monomer was cured, and spectral evidence for two different reaction products was acquired. The products are a conjugated polyene chain and a cyclized trimer. This is the first report describing the use of FT-Raman spectroscopy to monitor a high temperature (greater than 250 C) reaction in real time.

  17. Augmented Reality Simulations on Handheld Computers

    ERIC Educational Resources Information Center

    Squire, Kurt; Klopfer, Eric

    2007-01-01

    Advancements in handheld computing, particularly its portability, social interactivity, context sensitivity, connectivity, and individuality, open new opportunities for immersive learning environments. This article articulates the pedagogical potential of augmented reality simulations in environmental engineering education by immersing students in…

  18. Blueberry juices: a rapid multi-analysis of quality indicators by means of dispersive Raman spectroscopy excited at 1064 nm

    NASA Astrophysics Data System (ADS)

    Ciaccheri, L.; Yuan, T.; Zhang, S.; Mencaglia, A. A.; Trono, C.; Yuan, L.; Mignani, A. G.

    2017-04-01

    Blueberry juices produced in China and in Italy were analyzed by means of Raman spectroscopy. The reference data of important nutraceutical indicators such as degrees Brix and carbohydrates were available. Some juices were produced from fresh organic fruits, while others were industrial grade, differing in qualities and prices. Raman spectra obtained with excitation at 1064 nm were acquired using a dispersive fiber-optic spectrometer. Degrees Brix were measured by means of a commercial refractometer, while carbohydrate contents were available from the producers. Multivariate processing was used for predicting Brix and carbohydrates from Raman spectra and from the reference data. Determination coefficients equal to 0.88 and 0.84, respectively, were obtained. This experiment further confirms the excellent potentials of Raman spectroscopy for both non-destructive and rapid assessments of food quality.

  19. Texting while driving: is speech-based text entry less risky than handheld text entry?

    PubMed

    He, J; Chaparro, A; Nguyen, B; Burge, R J; Crandall, J; Chaparro, B; Ni, R; Cao, S

    2014-11-01

    Research indicates that using a cell phone to talk or text while maneuvering a vehicle impairs driving performance. However, few published studies directly compare the distracting effects of texting using a hands-free (i.e., speech-based interface) versus handheld cell phone, which is an important issue for legislation, automotive interface design and driving safety training. This study compared the effect of speech-based versus handheld text entries on simulated driving performance by asking participants to perform a car following task while controlling the duration of a secondary text-entry task. Results showed that both speech-based and handheld text entries impaired driving performance relative to the drive-only condition by causing more variation in speed and lane position. Handheld text entry also increased the brake response time and increased variation in headway distance. Text entry using a speech-based cell phone was less detrimental to driving performance than handheld text entry. Nevertheless, the speech-based text entry task still significantly impaired driving compared to the drive-only condition. These results suggest that speech-based text entry disrupts driving, but reduces the level of performance interference compared to text entry with a handheld device. In addition, the difference in the distraction effect caused by speech-based and handheld text entry is not simply due to the difference in task duration. Copyright © 2014 Elsevier Ltd. All rights reserved.

  20. Evaluating carotenoid changes in tomatoes during postharvest ripening using Raman chemical imaging

    NASA Astrophysics Data System (ADS)

    Qin, Jianwei; Chao, Kuanglin; Kim, Moon S.

    2011-06-01

    Lycopene is a major carotenoid in tomatoes and its content varies considerably during postharvest ripening. Hence evaluating lycopene changes can be used to monitor the ripening of tomatoes. Raman chemical imaging technique is promising for mapping constituents of interest in complex food matrices. In this study, a benchtop point-scanning Raman chemical imaging system was developed to evaluate lycopene content in tomatoes at different maturity stages. The system consists of a 785 nm laser, a fiber optic probe, a dispersive imaging spectrometer, a spectroscopic CCD camera, and a two-axis positioning table. Tomato samples at different ripeness stages (i.e., green, breaker, turning, pink, light red, and red) were selected and cut before imaging. Hyperspectral Raman images were acquired from cross sections of the fruits in the wavenumber range of 200 to 2500 cm-1 with a spatial resolution of 1 mm. The Raman spectrum of pure lycopene was measured as reference for spectral matching. A polynomial curve-fitting method was used to correct for the underlying fluorescence background in the Raman spectra of the tomatoes. A hyperspectral image classification method was developed based on spectral information divergence to identify lycopene in the tomatoes. Raman chemical images were created to visualize quantity and spatial distribution of the lycopene at different ripeness stages. The lycopene patterns revealed the mechanism of lycopene generation during the postharvest development of the tomatoes. The method and findings of this study form a basis for the future development of a Raman-based nondestructive approach for monitoring internal maturity of the tomatoes.

  1. In vivo Raman spectroscopy for oral cancers diagnosis

    NASA Astrophysics Data System (ADS)

    Singh, S. P.; Deshmukh, Atul; Chaturvedi, Pankaj; Krishna, C. Murali

    2012-01-01

    Oral squamous cell carcinoma is sixth among the major malignancies worldwide. Tobacco habits are known as major causative factor in tumor carcinogenesis in oral cancer. Optical spectroscopy methods, including Raman, are being actively pursued as alternative/adjunct for cancer diagnosis. Earlier studies have demonstrated the feasibility of classifying normal, premalignant and malignant oral ex-vivo tissues. In the present study we have recorded in vivo spectra from contralateral normal and diseased sites of 50 subjects with pathologically confirmed lesions of buccal mucosa using fiber-optic-probe-coupled HE-785 Raman spectrometer. Spectra were recorded on similar points as per teeth positions with an average acquisition time of 8 seconds. A total of 215 and 225 spectra from normal and tumor sites, respectively, were recorded. Finger print region (1200-1800 cm-1) was utilized for classification using LDA. Standard-model was developed using 125 normal and 139 tumor spectra from 27 subjects. Two separate clusters with an efficiency of ~95% were obtained. Cross-validation with leave-one-out yielded ~90% efficiency. Remaining 90 normal and 86 tumor spectra were used as test data and predication efficiency of model was evaluated. Findings of the study indicate that Raman spectroscopic methods in combination with appropriate multivariate tool can be used for objective, noninvasive and rapid diagnosis.

  2. Effect on the partial least-squares prediction of yarn properties combining raman and infrared measurements and applying wavelength selection.

    PubMed

    de Groot, P J; Swierenga, H; Postma, G J; Melssen, W J; Buydens, L M C

    2003-06-01

    The combination of Raman and infrared spectroscopy on the one hand and wavelength selection on the other hand is used to improve the partial least-squares (PLS) prediction of seven selected yarn properties. These properties are important for on-line quality control during production. From 71 yarn samples, the Raman and infrared spectra are measured and reference methods are used to determine the selected properties. Making separate PLS models for all yarn properties using the Raman and infrared spectra, prior to wavelength selection, reveals that Raman spectroscopy outperforms infrared spectroscopy. If wavelength selection is applied, the PLS prediction error decreases and the correlation coefficient increases for all properties. However, a substantial wavelength selection effect is present for the infrared spectra compared to the Raman spectra. For the infrared spectra, wavelength selection results in PLS prediction errors comparable with the prediction performance of the Raman spectra prior to wavelength selection. Concatenating the Raman and infrared spectra does not enhance the PLS prediction performance, not even after wavelength selection. It is concluded that an infrared spectrometer, combined with a wavelength selection procedure, can be used if no (suitable) Raman instrument is available.

  3. Handheld Metal Detector for Metallic Foreign Body Ingestion in Pediatric Emergency.

    PubMed

    Hamzah, Hazwani Binte; James, Vigil; Manickam, Suraj; Ganapathy, Sashikumar

    2018-01-04

    Foreign body ingestion is a common problem for which children present to the emergency department. The most common ingested foreign bodies among children are coins. Metal detector is an equipment, which measures a change in inductance of a coil when an electroconductive material is placed near it and produces an audio-visual signal. The present study was conducted to determine the effectiveness and feasibility of HMD in the local Pediatric population. This was a prospective study conducted in the pediatric emergency department among children presenting with history of foreign body ingestion. The outcome measured was presence or absence of metallic foreign body detected on handheld metal detector examination. During the study period, 36 patients with history of foreign body ingestion presented to the emergency department. Among these, 28 were metallic foreign body ingestions. Coins were the most common type of foreign body ingested. Among the metallic foreign bodies ingested, all the coins were accurately identified by the handheld metal detector. Non-coin metallic foreign bodies like metallic screw, needle and stapler pin were not identified by the handheld metal detector. The study demonstrates that handheld metal detector can be safely and reliably used as a screening tool in the process of detecting ingested coins. The plain radiograph still appears to be superior as it accurately localizes sharp metallic objects as well as cell batteries (button batteries) which need to be detected early and removed in order to prevent complications. Handheld metal detector is an effective tool that can be used in the follow up of patients to confirm whether the coin like metallic foreign body has been expelled. Handheld metal detector examination is more sensitive than traditional X-ray examination to detect radiolucent metallic foreign bodies like aluminium.

  4. Measurement of the human esophageal cancer in an early stage with Raman spectroscopy

    NASA Astrophysics Data System (ADS)

    Maeda, Yasuhiro; Ishigaki, Mika; Taketani, Akinori; Andriana, Bibin B.; Ishihara, Ryu; Sato, Hidetoshi

    2014-02-01

    The esophageal cancer has a tendency to transfer to another part of the body and the surgical operation itself sometimes gives high risk in vital function because many delicate organs exist near the esophagus. So the esophageal cancer is a disease with a high mortality. So, in order to lead a higher survival rate five years after the cancer's treatment, the investigation of the diagnosis methods or techniques of the cancer in an early stage and support the therapy are required. In this study, we performed the ex vivo experiments to obtain the Raman spectra from normal and early-stage tumor (stage-0) human esophageal sample by using Raman spectroscopy. The Raman spectra are collected by the homemade Raman spectrometer with the wavelength of 785 nm and Raman probe with 600-um-diameter. The principal component analysis (PCA) is performed after collection of spectra to recognize which materials changed in normal part and cancerous pert. After that, the linear discriminant analysis (LDA) is performed to predict the tissue type. The result of PCA indicates that the tumor tissue is associated with a decrease in tryptophan concentration. Furthermore, we can predict the tissue type with 80% accuracy by LDA which model is made by tryptophan bands.

  5. Planetary surface exploration using Raman spectroscopy for minerals and organics

    NASA Astrophysics Data System (ADS)

    Blacksberg, J.; Alerstam, E.; Maruyama, Y.; Charbon, E.; Rossman, G. R.; Shkolyar, S.; Farmer, J. D.

    2013-12-01

    Raman spectroscopy has been identified as one of the primary techniques for planetary surface mineralogy. It is widely used as a laboratory technique since it can identify nearly all crystalline mineral phases. Using a small spot size on the surface (on the order of a micron), mineral phases can be mapped onto microscopic images preserving information about surface morphology. As a result, this technique has been steadily gaining support for in situ exploration of a variety of target bodies, for example Mars, the Moon, Venus, asteroids, and comets. In addition to in situ exploration, Raman spectroscopy has been identified as a feasible means for pre-selection of samples on Mars for subsequent return to Earth. This is in part due to the fact that Raman can detect many organics in addition to minerals. As a result, the most relevant rock samples containing organics (potentially fossil biosignatures) may potentially be selected for return to Earth. We present a next-generation instrument that builds on the widely used 532 nm Raman technique to provide a means for performing Raman spectroscopy without the background noise that is often generated by fluorescence of minerals and organics. We use time-resolved laser spectroscopy to eliminate this fluorescence interference that can often make it difficult or impossible to obtain Raman spectra. We will discuss significant advances leading to the feasibility of a compact time-resolved spectrometer, including the development of a new solid-state detector capable of sub-ns temporal resolution. We will address the challenges of analyzing surface materials, often organics, that exhibit short-lifetime fluorescence. We will present result on planetary analog samples to demonstrate the instrument performance including fluorescence rejection.

  6. The rheo-Raman microscope: Simultaneous chemical, conformational, mechanical, and microstructural measures of soft materials

    NASA Astrophysics Data System (ADS)

    Kotula, Anthony P.; Meyer, Matthew W.; De Vito, Francesca; Plog, Jan; Hight Walker, Angela R.; Migler, Kalman B.

    2016-10-01

    The design and performance of an instrument capable of simultaneous Raman spectroscopy, rheology, and optical microscopy are described. The instrument couples a Raman spectrometer and optical microscope to a rotational rheometer through an optically transparent base, and the resulting simultaneous measurements are particularly advantageous in situations where flow properties vary due to either chemical or conformational changes in molecular structure, such as in crystallization, melting, gelation, or curing processes. Instrument performance is demonstrated on two material systems that show thermal transitions. First, we perform steady state rotational tests, Raman spectroscopy, and polarized reflection microscopy during a melting transition in a cosmetic emulsion. Second, we perform small amplitude oscillatory shear measurements along with Raman spectroscopy and polarized reflection microscopy during crystallization of a high density polyethylene. The instrument can be applied to study structure-property relationships in a variety of soft materials including thermoset resins, liquid crystalline materials, colloidal suspensions undergoing sol-gel processes, and biomacromolecules. Official contribution of the National Institute of Standards and Technology; not subject to copyright in the United States.

  7. 75 FR 448 - In the Matter of: Certain Authentication Systems, Including Software and Handheld Electronic...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-01-05

    ... Systems, Including Software and Handheld Electronic Devices; Notice of Investigation AGENCY: U.S... software and handheld electronic devices, by reason of infringement of certain claims of U.S. Patent No 7... software and handheld electronic devices, that infringe one or more of claims 31-35, 38, 41, 51, 54, 56, 58...

  8. Improving car passengers' comfort and experience by supporting the use of handheld devices.

    PubMed

    van Veen, S A T; Hiemstra-van Mastrigt, S; Kamp, I; Vink, P

    2014-01-01

    There is a demand for interiors to support other activities in a car than controlling the vehicle. Currently, this is the case for the car passengers and--in the future--autonomous driving cars will also facilitate drivers to perform other activities. One of these activities is working with handheld devices. Previous research shows that people experience problems when using handheld devices in a moving vehicle and the use of handheld devices generally causes unwanted neck flexion [Young et al. 2012; Sin and Zu 2011; Gold et al.2011]. In this study, armrests are designed to support the arms when using handheld devices in a driving car in order to decrease neck flexion. Neck flexion was measured by attaching markers on the C7 and tragus. Discomfort was indicated on a body map on a scale 1-10. User experience was evaluated in a semi-structured interview. Neck flexion is significantly decreased by the support of the armrests and approaches a neutral position. Furthermore, overall comfort and comfort in the neck region specifically are significantly increased. Subjects appreciate the body posture facilitated by the armrests and 9 out of 10 prefer using handheld devices with the armrests compared to using handheld devices without the armrests. More efforts are needed to develop the mock-up into an established product, but the angles and dimensions presented in this study could serve as guidelines.

  9. Non-destructive analysis of museum objects by fibre-optic Raman spectroscopy

    PubMed Central

    Tate, Jim; Moens, Luc

    2006-01-01

    Raman spectroscopy is a versatile technique that has frequently been applied for the investigation of art objects. By using mobile Raman instrumentation it is possible to investigate the artworks without the need for sampling. This work evaluates the use of a dedicated mobile spectrometer for the investigation of a range of museum objects in museums in Scotland, including antique Egyptian sarcophagi, a panel painting, painted surfaces on paper and textile, and the painted lid and soundboard of an early keyboard instrument. The investigations of these artefacts illustrate some analytical challenges that arise when analysing museum objects, including fluorescing varnish layers, ambient sunlight, large dimensions of artefacts and the need to handle fragile objects with care. Analysis of the musical instrument (the Mar virginals) was undertaken in the exhibition gallery, while on display, which meant that interaction with the public and health and safety issues had to be taken into account. Experimental set-up for the non-destructive Raman spectroscopic investigation of a textile banner in the National Museums of Scotland PMID:16953310

  10. Non-destructive analysis of museum objects by fibre-optic Raman spectroscopy.

    PubMed

    Vandenabeele, Peter; Tate, Jim; Moens, Luc

    2007-02-01

    Raman spectroscopy is a versatile technique that has frequently been applied for the investigation of art objects. By using mobile Raman instrumentation it is possible to investigate the artworks without the need for sampling. This work evaluates the use of a dedicated mobile spectrometer for the investigation of a range of museum objects in museums in Scotland, including antique Egyptian sarcophagi, a panel painting, painted surfaces on paper and textile, and the painted lid and soundboard of an early keyboard instrument. The investigations of these artefacts illustrate some analytical challenges that arise when analysing museum objects, including fluorescing varnish layers, ambient sunlight, large dimensions of artefacts and the need to handle fragile objects with care. Analysis of the musical instrument (the Mar virginals) was undertaken in the exhibition gallery, while on display, which meant that interaction with the public and health and safety issues had to be taken into account. Experimental set-up for the non-destructive Raman spectroscopic investigation of a textile banner in the National Museums of Scotland.

  11. Scytonin, a novel cyanobacterial photoprotective pigment: calculations of Raman spectroscopic biosignatures.

    PubMed

    Varnali, Tereza; Edwards, Howell G M

    2014-03-01

    The Raman spectrum of scytonin, a novel derivative of the parent scytonemin, is predicted from DFT calculations of the most stable, lowest energy, conformational structure. The diagnostic importance of this study relates to the spectral ability to discriminate between scytonemin and its derivatives alone or in admixture with geological matrices from identified characteristic Raman spectral signatures. The successful interpretation of biosignatures from a wide range of cyanobacterial extremophilic colonization in terrestrial and extraterrestrial scenarios is a fundamental requirement of the evaluation of robotic spectroscopic instrumentation in search for life missions. Scytonemin is produced exclusively by cyanobacterial colonies in environmentally stressed habitats and is widely recognized as a key target biomarker molecule in this enterprise. Here, the detailed theoretical analysis of the structure of scytonin enables a protocol to be established for the recognition of characteristic bands in its Raman spectrum and to accomplish the successful differentiation between scytonin and scytonemin as well as other scytonemin derivatives such as the dimethoxy and tetramethoxy compounds that have been isolated from cyanobacterial colonies but which have not yet been characterized spectroscopically. The results of this study will facilitate an extension of the database capability for miniaturized Raman spectrometers which will be carried on board search for life robotic missions to Mars, Europa, and Titan.

  12. Innovation and Integration: Case Studies of Effective Teacher Practices in the Use of Handheld Computers

    ERIC Educational Resources Information Center

    Chavez, Raymond Anthony

    2010-01-01

    Previous research conducted on the use of handheld computers in K-12 education has focused on how handheld computer use affects student motivation, engagement, and productivity. These four case studies sought to identify effective teacher practices in the integration of handhelds into the curriculum and the factors that affect those practices. The…

  13. Distributing Data from Desktop to Hand-Held Computers

    NASA Technical Reports Server (NTRS)

    Elmore, Jason L.

    2005-01-01

    A system of server and client software formats and redistributes data from commercially available desktop to commercially available hand-held computers via both wired and wireless networks. This software is an inexpensive means of enabling engineers and technicians to gain access to current sensor data while working in locations in which such data would otherwise be inaccessible. The sensor data are first gathered by a data-acquisition server computer, then transmitted via a wired network to a data-distribution computer that executes the server portion of the present software. Data in all sensor channels -- both raw sensor outputs in millivolt units and results of conversion to engineering units -- are made available for distribution. Selected subsets of the data are transmitted to each hand-held computer via the wired and then a wireless network. The selection of the subsets and the choice of the sequences and formats for displaying the data is made by means of a user interface generated by the client portion of the software. The data displayed on the screens of hand-held units can be updated at rates from 1 to

  14. Evidence of Effectiveness of Health Care Professionals Using Handheld Computers: A Scoping Review of Systematic Reviews

    PubMed Central

    2013-01-01

    Background Handheld computers and mobile devices provide instant access to vast amounts and types of useful information for health care professionals. Their reduced size and increased processing speed has led to rapid adoption in health care. Thus, it is important to identify whether handheld computers are actually effective in clinical practice. Objective A scoping review of systematic reviews was designed to provide a quick overview of the documented evidence of effectiveness for health care professionals using handheld computers in their clinical work. Methods A detailed search, sensitive for systematic reviews was applied for Cochrane, Medline, EMBASE, PsycINFO, Allied and Complementary Medicine Database (AMED), Global Health, and Cumulative Index to Nursing and Allied Health Literature (CINAHL) databases. All outcomes that demonstrated effectiveness in clinical practice were included. Classroom learning and patient use of handheld computers were excluded. Quality was assessed using the Assessment of Multiple Systematic Reviews (AMSTAR) tool. A previously published conceptual framework was used as the basis for dual data extraction. Reported outcomes were summarized according to the primary function of the handheld computer. Results Five systematic reviews met the inclusion and quality criteria. Together, they reviewed 138 unique primary studies. Most reviewed descriptive intervention studies, where physicians, pharmacists, or medical students used personal digital assistants. Effectiveness was demonstrated across four distinct functions of handheld computers: patient documentation, patient care, information seeking, and professional work patterns. Within each of these functions, a range of positive outcomes were reported using both objective and self-report measures. The use of handheld computers improved patient documentation through more complete recording, fewer documentation errors, and increased efficiency. Handheld computers provided easy access to

  15. Evidence of effectiveness of health care professionals using handheld computers: a scoping review of systematic reviews.

    PubMed

    Mickan, Sharon; Tilson, Julie K; Atherton, Helen; Roberts, Nia Wyn; Heneghan, Carl

    2013-10-28

    Handheld computers and mobile devices provide instant access to vast amounts and types of useful information for health care professionals. Their reduced size and increased processing speed has led to rapid adoption in health care. Thus, it is important to identify whether handheld computers are actually effective in clinical practice. A scoping review of systematic reviews was designed to provide a quick overview of the documented evidence of effectiveness for health care professionals using handheld computers in their clinical work. A detailed search, sensitive for systematic reviews was applied for Cochrane, Medline, EMBASE, PsycINFO, Allied and Complementary Medicine Database (AMED), Global Health, and Cumulative Index to Nursing and Allied Health Literature (CINAHL) databases. All outcomes that demonstrated effectiveness in clinical practice were included. Classroom learning and patient use of handheld computers were excluded. Quality was assessed using the Assessment of Multiple Systematic Reviews (AMSTAR) tool. A previously published conceptual framework was used as the basis for dual data extraction. Reported outcomes were summarized according to the primary function of the handheld computer. Five systematic reviews met the inclusion and quality criteria. Together, they reviewed 138 unique primary studies. Most reviewed descriptive intervention studies, where physicians, pharmacists, or medical students used personal digital assistants. Effectiveness was demonstrated across four distinct functions of handheld computers: patient documentation, patient care, information seeking, and professional work patterns. Within each of these functions, a range of positive outcomes were reported using both objective and self-report measures. The use of handheld computers improved patient documentation through more complete recording, fewer documentation errors, and increased efficiency. Handheld computers provided easy access to clinical decision support systems and

  16. Is a hands-free phone safer than a handheld phone?

    PubMed

    Ishigami, Yoko; Klein, Raymond M

    2009-01-01

    Although it is becoming more and more accepted that driving while talking on a cell phone can be hazardous, most jurisdictions are making handheld phone use illegal while allowing hands-free phone use. The scientific literature exploring the effects of these two types of cell phone use on driving and driving-related performance is reviewed here. Our review shows that talking on the phone, regardless of phone type, has negative impacts on performance especially in detecting and identifying events. Performance while using a hands-free phone was rarely found to be better than when using a handheld phone. Some studies found that drivers compensate for the deleterious effects of cell phone use when using a handheld phone but neglect to do so when using a hands-free phone. Current research does not support the decision to allow hands-free phone use while driving.

  17. Handheld detector using NIR for bottled liquid explosives

    NASA Astrophysics Data System (ADS)

    Itozaki, Hideo; Sato-Akaba, Hideo

    2014-10-01

    A handheld bottle checker for detection of liquid explosives is developed using near infrared technology. In order to make it compact, a LED light was used as a light source and a novel circuit board was developed for the device control instead of using a PC. This enables low power consumption and this handheld detector can be powered by a Li-ion battery without an AC power supply. This checker works well to analyze liquids, even using limited bandwidth of NIR by the LED. It is expected that it can be applied not only to airport security but also to wider applications because of its compactness and portability.

  18. Dual-resolution Raman spectroscopy for measurements of temperature and twelve species in hydrocarbon–air flames

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Magnotti, Gaetano; Barlow, Robert S.

    2016-07-12

    This study introduces dual-resolution Raman spectroscopy as a novel diagnostics approach for measurements of temperature and species in flames where multiple hydrocarbons are present. Simultaneous measurement of multiple hydrocarbons is challenging because their vibrational Raman spectra in the C–H stretch region are closely overlapped and are not well known over the range of temperature encountered in flames. Overlap between the hydrocarbon spectra is mitigated by adding a second spectrometer, with a higher dispersion grating, to collect the Raman spectra in the C–H stretch region. A dual-resolution Raman spectroscopy instrument has been developed and optimized for measurements of major species (Nmore » 2, O 2, H 2O, CO 2, CO, H 2, DME) and major combustion intermediates (CH 4, CH 2O, C 2H 2, C 2H 4 and C 2H 6) in DME–air flames. The temperature dependences of the hydrocarbon Raman spectra over fixed spectral regions have been determined through a series of measurements in laminar Bunsen-burner flames, and have been used to extend a library of previously acquired Raman spectra up to flame temperature. The paper presents the first Raman measurements of up to twelve species in hydrocarbon flames, and the first quantitative Raman measurements of formaldehyde in flames. Lastly, the accuracy and precision of the instrument are determined from measurements in laminar flames and the applicability of the instrument to turbulent DME–air flames is discussed.« less

  19. Development of a Technique for Separating Raman Scattering Signals from Background Emission with Single-Shot Measurement Potential

    NASA Technical Reports Server (NTRS)

    Hartfield, Roy J., Jr.; Dobson, Chris; Eskridge, Richard; Wehrmeyer, Joseph A.

    1997-01-01

    A novel technique for extracting Q-branch Raman signals scattered by a diatomic species from the emission spectrum resulting from the irradiation of combustion products using a broadband excimer laser has been developed. This technique is based on the polarization characteristics of vibrational Raman scattering and can be used for both single-shot Raman extraction and time-averaged data collection. The Q-branch Raman signal has a unique set of polarization characteristics which depend on the direction of the scattering while fluorescence signals are unpolarized. For the present work, a calcite crystal is used to separate the horizonal component of a collected signal from the vertical component. The two components are then sent through a UV spectrometer and imaged onto an intensified CCD camera separately. The vertical component contains both the Raman signal and the interfering fluorescence signal. The horizontal component contains the fluorescence signal and a very weak component of the Raman signal; hence, the Raman scatter can be extracted by taking the difference between the two signals. The separation of the Raman scatter from interfering fluorescence signals is critically important to the interpretation of the Raman for cases in which a broadband ultraviolet (UV) laser is used as an excitation source in a hydrogen-oxygen flame and in all hydrocarbon flames. The present work provides a demonstration of the separation of the Raman scatter from the fluorescence background in real time.

  20. Field Test Report: NETL Portable Raman Gas Composition Monitor - Initial Industrial tests at NETL and General Electric (GE)

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Michael, Buric; Jessica, Mullen; Steven, Woodruff

    2012-02-24

    NETL has developed new technology which enables the use of Raman spectroscopy in the real-time measurement of gas mixtures. This technology uses a hollow reflective metal-lined capillary waveguide as a gas sampling cell which contains the sample gas, and efficiently collects optical Raman scattering from the gas sample, for measurement with a miniature spectrometer. The result is an optical Raman “fingerprint” for each gas which is tens or hundreds of times larger than that which can be collected with conventional free-space optics. In this manner, the new technology exhibits a combination of measurement speed and accuracy which is unprecedented formore » spontaneous Raman measurements of gases. This makes the system especially well-suited to gas turbine engine control based on a-priori measurement of incoming fuel composition. The system has been developed to produce a measurement of all of the common components of natural gas, including the lesser nitrogen, oxygen, carbon-dioxide, and carbon monoxide diluents to better than 1% concentration accuracy each second. The objective of this task under CRADA 10-N100 was to evaluate the capability of a laser Raman capillary gas sensor for combustion fuels. A portable version of the Raman gas sensor, constructed at NETL, was used for field-trials conducted in a cooperative research effort at a GE facility. Testing under the CRADA was performed in 5 parts. Parts 1-4 were successful in testing of the Raman Gas Composition Monitor with bottled calibration gases, and in continuous monitoring of several gas streams at low pressure, in comparison with an online mass spectrometer. In part 5, the Raman Gas Composition Monitor was moved outdoors for testing with high pressure gas supplies. Some difficulties were encountered during industrial testing including the condensation of heavy hydrocarbons inside the sample cell (in part 5), communication with the GE data collection system, as well as some drift in the optical noise

  1. Students Using Handheld Computers to Learn Collaboratively in a First Grade Classroom

    ERIC Educational Resources Information Center

    Fritz, Megan Lynne

    2005-01-01

    This ethnographic study investigated how first grade students used handheld computers to learn in collaboration with others throughout the learning process. This research focused specifically on how the use of handheld computers impacts students' learning outcomes and relates to technology standards. A qualitative methodology was used to capture…

  2. Laser Rayleigh and Raman Diagnostics for Small Hydrogen/oxygen Rockets

    NASA Technical Reports Server (NTRS)

    Degroot, Wilhelmus A.; Zupanc, Frank J.

    1993-01-01

    Localized velocity, temperature, and species concentration measurements in rocket flow fields are needed to evaluate predictive computational fluid dynamics (CFD) codes and identify causes of poor rocket performance. Velocity, temperature, and total number density information have been successfully extracted from spectrally resolved Rayleigh scattering in the plume of small hydrogen/oxygen rockets. Light from a narrow band laser is scattered from the moving molecules with a Doppler shifted frequency. Two components of the velocity can be extracted by observing the scattered light from two directions. Thermal broadening of the scattered light provides a measure of the temperature, while the integrated scattering intensity is proportional to the number density. Spontaneous Raman scattering has been used to measure temperature and species concentration in similar plumes. Light from a dye laser is scattered by molecules in the rocket plume. Raman spectra scattered from major species are resolved by observing the inelastically scattered light with linear array mounted to a spectrometer. Temperature and oxygen concentrations have been extracted by fitting a model function to the measured Raman spectrum. Results of measurements on small rockets mounted inside a high altitude chamber using both diagnostic techniques are reported.

  3. Investigation for the differentiation process of mouse ES cells by Raman spectroscopy

    NASA Astrophysics Data System (ADS)

    Yamaguchi, Yoshinori; El-Hagrasy, Maha A.; Shimizu, Eiichi; Saito, Masato; Tamiya, Eiichi

    2012-03-01

    The arrangement of differentiated pluripotent embryonic stem cells into three-dimensional aggregates, which are known as embryonic bodies, is a main step for progressing the embryonic stem cells differentiation. In this work, embryonic stem cells that were directly produced from the hanging drop step as a three-dimensional structure with no further twodimensional differentiation were diagnosed with Raman spectroscopy as a non-invasive and label-free technique. Raman spectroscopy was employed to discriminate between mouse embryonic bodies of different degrees of maturation. EBs were prepared applying the hanging drop method. The Raman scattering measurements were obtained in vitro with a Nanophoton RAMAN-11 micro-spectrometer (Japan: URL: www.nanophoton.jp equipped with an Olympus XLUM Plan FLN 20X/NA= 1.0 objective lens. Spectral data were smoothed, baseline corrected and normalized to the a welldefined intense 1003 cm-1 band (phenylalanine) which is insensitive to changes in conformation or environment. The differentiation process of embryonic stem cells is initiated by the removal of LIF from culture medium. 1, 7 and 17-dayold embryonic stem cells were collected and investigated by Raman spectroscopy. The main differences involve bands which decreased with maturation such as: 784 cm-1 (U, T, C ring br DNA/RNA, O-P-O str); 1177 cm-1 (cytosine, guanine) and 1578 cm-1 (G, A). It was found that with the progress of differentiation the protein content was amplified. The increase of protein to nucleic acid ratio was also previously observed with the progress of the differentiation process. Raman spectroscopy has the potential to distinguish between the Raman signatures of live embryonic stem cells with different degrees of maturation.

  4. Raman spectroscopic detection of biomolecular markers from Antarctic materials: evaluation for putative Martian habitats

    NASA Astrophysics Data System (ADS)

    Edwards, Howell G. M.; Newton, Emma M.; Dickensheets, David L.; Wynn-Williams, David D.

    2003-08-01

    The vital UV-protective and photosynthetic pigments of cyanobacteria and lichens (microbial symbioses) that dominate primary production in Antarctic desert ecosystems auto-fluoresce at short-wavelengths. A long wavelength (1064 nm) near infra-red laser has been used for non-intrusive Raman spectroscopic analysis of their ecologically significant compounds. There is now much interest in the construction of portable Raman systems for the analysis of cyanobacterial and lichen communities in the field; to this extent, Raman spectra obtained with laboratory-based systems operating at wavelengths of 852 and 1064 nm have been evaluated for potential fieldwork applications of miniaturised units. Selected test specimens of the cyanobacterial Nostoc commune, epilithic lichens Acarospora chlorophana, Xanthoria elegans and Caloplaca saxicola and the endolithic Chroococcidiopsis from Antarctic sites have been examined in the present study. Although some organisms gave useable Raman spectra with short-wavelength lasers, 1064 nm was the only excitation that was consistently excellent for all organisms. We conclude that a 1064 nm Raman spectrometer, miniaturised using an InGaAs detector, is the optimal instrument for in situ studies of pigmented communities at the limits of life on Earth. This has practical potential for the quest for biomolecules residual from any former surface or subsurface life on Mars.

  5. Raman spectroscopic detection of biomolecular markers from Antarctic materials: evaluation for putative Martian habitats.

    PubMed

    Edwards, Howell G M; Newton, Emma M; Dickensheets, David L; Wynn-Williams, David D

    2003-08-01

    The vital UV-protective and photosynthetic pigments of cyanobacteria and lichens (microbial symbioses) that dominate primary production in Antarctic desert ecosystems auto-fluoresce at short-wavelengths. A long wavelength (1064 nm) near infra-red laser has been used for non-intrusive Raman spectroscopic analysis of their ecologically significant compounds. There is now much interest in the construction of portable Raman systems for the analysis of cyanobacterial and lichen communities in the field; to this extent, Raman spectra obtained with laboratory-based systems operating at wavelengths of 852 and 1064 nm have been evaluated for potential fieldwork applications of miniaturised units. Selected test specimens of the cyanobacterial Nostoc commune, epilithic lichens Acarospora chlorophana, Xanthoria elegans and Caloplaca saxicola and the endolithic Chroococcidiopsis from Antarctic sites have been examined in the present study. Although some organisms gave useable Raman spectra with short-wavelength lasers, 1064 nm was the only excitation that was consistently excellent for all organisms. We conclude that a 1064 nm Raman spectrometer, miniaturised using an InGaAs detector, is the optimal instrument for in situ studies of pigmented communities at the limits of life on Earth. This has practical potential for the quest for biomolecules residual from any former surface or subsurface life on Mars.

  6. The reliability of Raman micro-spectroscopy in measuring the density of CO2 mantle fluids

    NASA Astrophysics Data System (ADS)

    Remigi, S.; Frezzotti, M. L.; Ferrando, S.; Villa, I. M.; Maffeis, A.

    2017-12-01

    Recent evaluations of carbon fluxes into and out the Earth's interior recognize that a significant part of the total outgassing of deep Earth carbon occurs in tectonically active areas (Kelemen and Manning, 2015). Potential tracers of carbon fluxes at mantle depths include CO2 fluid inclusions in peridotites. Raman micro-spectroscopy allows calculating the density of CO2 fluids based on the distance of the CO2 Fermi doublet, Δ, in cm-1 (Rosso and Bodnar, 1995). The aim of this work is to check the reliability of Raman densimeter equations (cf. Lamadrid et al., 2016) for high-density CO2 fluids originating at mantle depths. Forty pure CO2 inclusions in peridotites (El Hierro, Canary Islands) of known density (microthermometry) have been analyzed by Raman micro-spectroscopy. In order to evaluate the influence of contaminants on the reliability of equations, 22 CO2-rich inclusions containing subordinate amounts of N2, CO, SO2 have also been studied. Raman spectrometer analytical conditions are: 532 nm laser, 80 mW emission power, T 18°C, 1800 and 600 grating, 1 accumulation x 80 sec. Daily calibration included diamond and atmosphere N2. Results suggest that the "Raman densimeter" represents an accurate method to calculate the density of CO2 mantle fluids. Equations, however, must be applied only to pure CO2 fluids, since contaminants, even in trace amounts (0.39 mol%), affect the Δ resulting in density overestimation. Present study further highlights how analytical conditions and data processing, such as spectral resolution (i.e., grating), calibration linearity, and statistical treatment of spectra, influence the accuracy and the precision of Δ measurements. As a consequence, specific analytical protocols for single Raman spectrometers should be set up in order to get reliable CO2 density data. Kelemen, Peter B., & Craig E. Manning. PNAS, 112.30 (2015): E3997-E4006.Lamadrid, H. M., Moore, L. R., Moncada, D., Rimstidt, J. D., Burruss, R. C., & Bodnar, R. J. Chem

  7. Raman acoustic levitation spectroscopy of red blood cells and Plasmodium falciparum trophozoites.

    PubMed

    Puskar, Ljiljana; Tuckermann, Rudolf; Frosch, Torsten; Popp, Jürgen; Ly, Vanalysa; McNaughton, Don; Wood, Bayden R

    2007-09-01

    Methods to probe the molecular structure of living cells are of paramount importance in understanding drug interactions and environmental influences in these complex dynamical systems. The coupling of an acoustic levitation device with a micro-Raman spectrometer provides a direct molecular probe of cellular chemistry in a containerless environment minimizing signal attenuation and eliminating the affects of adhesion to walls and interfaces. We show that the Raman acoustic levitation spectroscopic (RALS) approach can be used to monitor the heme dynamics of a levitated 5 microL suspension of red blood cells and to detect hemozoin in malaria infected cells. The spectra obtained have an excellent signal-to-noise ratio and demonstrate for the first time the utility of the technique as a diagnostic and monitoring tool for minute sample volumes of living animal cells.

  8. Handheld computers in nursing education: PDA pilot project.

    PubMed

    Koeniger-Donohue, Rebecca

    2008-02-01

    Interest in the use and application of handheld technology at undergraduate and graduate nursing programs across the country is growing rapidly. Personal digital assistants (PDAs) are often referred to as a "peripheral brain" because they can save time, decrease errors, and simplify information retrieval at the point of care. In addition, research results support the notion that PDAs enhance nursing clinical education and are an effective student learning resource. However, most nursing programs lack the full range of technological resources to implement and provide ongoing support for handheld technology use by faculty and students. This article describes a 9-month pilot project for the initial use of PDAs by novice faculty and students at Simmons College.

  9. Hand-held internet tablets for school-based data collection.

    PubMed

    Denny, Simon J; Milfont, Taciano L; Utter, Jennifer; Robinson, Elizabeth M; Ameratunga, Shanthi N; Merry, Sally N; Fleming, Theresa M; Watson, Peter D

    2008-07-26

    In the last 20 years, researchers have been using computer self-administered questionnaires to gather data on a wide range of adolescent health related behaviours. More recently, researchers collecting data in schools have started to use smaller hand-held computers for their ease of use and portability. The aim of this study is to describe a new technology with wi-fi enabled hand-held internet tablets and to compare adolescent preferences of laptop computers or hand-held internet tablets in administering a youth health and well-being questionnaire in a school setting. A total of 177 students took part in a pilot study of a national youth health and wellbeing survey. Students were randomly assigned to internet tablets or laptops at the start of the survey and were changed to the alternate mode of administration about half-way through the questionnaire. Students at the end of the questionnaire were asked which of the two modes of administration (1) they preferred, (2) was easier to use, (3) was more private and confidential, and (4) was easier to answer truthfully. Many students expressed no preference between laptop computers or internet tablets. However, among the students who expressed a preference between laptop computers or internet tablets, the majority of students found the internet tablets more private and confidential (p < 0.001) and easier to answer questions truthfully (p < 0.001) compared to laptop computers. This study demonstrates that using wi-fi enabled hand-held internet tablets is a feasible methodology for school-based surveys especially when asking about sensitive information.

  10. Hand-held internet tablets for school-based data collection

    PubMed Central

    Denny, Simon J; Milfont, Taciano L; Utter, Jennifer; Robinson, Elizabeth M; Ameratunga, Shanthi N; Merry, Sally N; Fleming, Theresa M; Watson, Peter D

    2008-01-01

    Background In the last 20 years, researchers have been using computer self-administered questionnaires to gather data on a wide range of adolescent health related behaviours. More recently, researchers collecting data in schools have started to use smaller hand-held computers for their ease of use and portability. The aim of this study is to describe a new technology with wi-fi enabled hand-held internet tablets and to compare adolescent preferences of laptop computers or hand-held internet tablets in administering a youth health and well-being questionnaire in a school setting. Methods A total of 177 students took part in a pilot study of a national youth health and wellbeing survey. Students were randomly assigned to internet tablets or laptops at the start of the survey and were changed to the alternate mode of administration about half-way through the questionnaire. Students at the end of the questionnaire were asked which of the two modes of administration (1) they preferred, (2) was easier to use, (3) was more private and confidential, and (4) was easier to answer truthfully. Results Many students expressed no preference between laptop computers or internet tablets. However, among the students who expressed a preference between laptop computers or internet tablets, the majority of students found the internet tablets more private and confidential (p < 0.001) and easier to answer questions truthfully (p < 0.001) compared to laptop computers. Conclusion This study demonstrates that using wi-fi enabled hand-held internet tablets is a feasible methodology for school-based surveys especially when asking about sensitive information. PMID:18710505

  11. Development of Hand-Held Thermographic Inspection Technologies

    DOT National Transportation Integrated Search

    2009-09-01

    This study explored the application of hand-held thermographic cameras for the detection of subsurface delaminations in concrete bridges. The goal of the research was to provide maintenance and inspection personnel with an effective tool for detectin...

  12. Development of hand-held thermographic inspection technologies.

    DOT National Transportation Integrated Search

    2009-09-01

    This study explored the application of hand-held thermographic cameras for the detection of subsurface delaminations in concrete : bridges. The goal of the research was to provide maintenance and inspection personnel with an effective tool for detect...

  13. Determination of glucose and ethanol after enzymatic hydrolysis and fermentation of biomass using Raman spectroscopy.

    PubMed

    Shih, Chien-Ju; Smith, Emily A

    2009-10-27

    Raman spectroscopy has been used for the quantitative determination of the conversion efficiency at each step in the production of ethanol from biomass. The method requires little sample preparation; therefore, it is suitable for screening large numbers of biomass samples and reaction conditions in a complex sample matrix. Dilute acid or ammonia-pretreated corn stover was used as a model biomass for these studies. Ammonia pretreatment was suitable for subsequent measurements with Raman spectroscopy, but dilute acid-pretreated corn stover generated a large background signal that surpassed the Raman signal. The background signal is attributed to lignin, which remains in the plant tissue after dilute acid pretreatment. A commercial enzyme mixture was used for the enzymatic hydrolysis of corn stover, and glucose levels were measured with a dispersive 785 nm Raman spectrometer. The glucose detection limit in hydrolysis liquor by Raman spectroscopy was 8 g L(-1). The mean hydrolysis efficiency for three replicate measurements obtained with Raman spectroscopy (86+/-4%) was compared to the result obtained using an enzymatic reaction with UV-vis spectrophotometry detection (78+/-8%). The results indicate good accuracy, as determined using a Student's t-test, and better precision for the Raman spectroscopy measurement relative to the enzymatic detection assay. The detection of glucose in hydrolysis broth by Raman spectroscopy showed no spectral interference, provided the sample was filtered to remove insoluble cellulose prior to analysis. The hydrolysate was further subjected to fermentation to yield ethanol. The detection limit for ethanol in fermentation broth by Raman spectroscopy was found to be 6 g L(-1). Comparison of the fermentation efficiencies measured by Raman spectroscopy (80+/-10%) and gas chromatography-mass spectrometry (87+/-9%) were statistically the same. The work demonstrates the utility of Raman spectroscopy for screening the entire conversion process to

  14. Pseudoslit Spectrometer

    NASA Technical Reports Server (NTRS)

    Reuter, Dennis C.; McCabe, George H.

    2004-01-01

    The pseudoslit spectrometer is a conceptual optoelectronic instrument that would offer some of the advantages, without the disadvantages, of prior linear-variable etalon (LVE) spectrometers and prior slit spectrometers. The pseudoslit spectrometer is so named because it would not include a slit, but the combined effects of its optical components would include a spatial filtering effect approximately equivalent to that of a slit. Like a prior LVE spectrometer, the pseudoslit spectrometer would include an LVE (essentially, a wedge-like narrowband- pass filter, the pass wavelength of which varies linearly with position in one dimension) in a focal plane covering an imaging planar array of photodetectors. However, the pseudoslit spectrometer would be more efficient because unlike a prior LVE spectrometer, the pseudoslit spectrometer would not have to be scanned across an entire field of view to obtain the spectrum of an object of interest that may occupy only a small portion of the field of view. Like a prior slit spectrometer, the pseudoslit spectrometer could acquire the entire spectrum of such a small object without need for scanning. However, the pseudoslit spectrometer would be optically and mechanically simpler: it would have fewer components and, hence, would pose less of a problem of alignment of components and would be less vulnerable to misalignment.

  15. Comparison of Portable and Bench-Top Spectrometers for Mid-Infrared Diffuse Reflectance Measurements of Soils.

    PubMed

    Hutengs, Christopher; Ludwig, Bernard; Jung, András; Eisele, Andreas; Vohland, Michael

    2018-03-27

    Mid-infrared (MIR) spectroscopy has received widespread interest as a method to complement traditional soil analysis. Recently available portable MIR spectrometers additionally offer potential for on-site applications, given sufficient spectral data quality. We therefore tested the performance of the Agilent 4300 Handheld FTIR (DRIFT spectra) in comparison to a Bruker Tensor 27 bench-top instrument in terms of (i) spectral quality and measurement noise quantified by wavelet analysis; (ii) accuracy of partial least squares (PLS) calibrations for soil organic carbon (SOC), total nitrogen (N), pH, clay and sand content with a repeated cross-validation analysis; and (iii) key spectral regions for these soil properties identified with a Monte Carlo spectral variable selection approach. Measurements and multivariate calibrations with the handheld device were as good as or slightly better than Bruker equipped with a DRIFT accessory, but not as accurate as with directional hemispherical reflectance (DHR) data collected with an integrating sphere. Variations in noise did not markedly affect the accuracy of multivariate PLS calibrations. Identified key spectral regions for PLS calibrations provided a good match between Agilent and Bruker DHR data, especially for SOC and N. Our findings suggest that portable FTIR instruments are a viable alternative for MIR measurements in the laboratory and offer great potential for on-site applications.

  16. Energy Cost of Active and Sedentary Music Video Games: Drum and Handheld Gaming vs. Walking and Sitting

    PubMed Central

    MIRANDA, EDWIN; OVERSTREET, BRITTANY S.; FOUNTAIN, WILLIAM A.; GUTIERREZ, VINCENT; KOLANKOWSKI, MICHAEL; OVERSTREET, MATTHEW L.; SAPP, RYAN M.; WOLFF, CHRISTOPHER A.; MAZZETTI, SCOTT A.

    2017-01-01

    To compare energy expenditure during and after active and handheld video game drumming compared to walking and sitting. Ten experienced, college-aged men performed four protocols (one per week): no-exercise seated control (CTRL), virtual drumming on a handheld gaming device (HANDHELD), active drumming on drum pads (DRUM), and walking on a treadmill at ~30% of VO2max (WALK). Protocols were performed after an overnight fast, and expired air was collected continuously during (30min) and after (30min) exercise. DRUM and HANDHELD song lists, day of the week, and time of day were identical for each participant. Significant differences (p < 0.05) among the average rates of energy expenditure (kcal·min−1) during activity included WALK > DRUM > HANDHELD. No significant differences in the rates of energy expenditure among groups during recovery were observed. Total energy expenditure was significantly greater (p < 0.05) during WALK (149.5 ± 30.6 kcal) compared to DRUM (118.7 ± 18.8 kcal) and HANDHELD (44.9±11.6 kcal), and greater during DRUM compared to HANDHELD. Total energy expenditure was not significantly different between HANDHELD (44.9 ± 11.6 kcal) and CTRL (38.2 ± 6.0 kcal). Active video game drumming at expert-level significantly increased energy expenditure compared to handheld, but it hardly met moderate-intensity activity standards, and energy expenditure was greatest during walking. Energy expenditure with handheld video game drumming was not different from no-exercise control. Thus, traditional aerobic exercise remains at the forefront for achieving the minimum amount and intensity of physical activity for health, individuals desiring to use video games for achieving weekly physical activity recommendations should choose games that require significant involvement of lower-body musculature, and time spent playing sedentary games should be a limited part of an active lifestyle. PMID:29170705

  17. Energy Cost of Active and Sedentary Music Video Games: Drum and Handheld Gaming vs. Walking and Sitting.

    PubMed

    Miranda, Edwin; Overstreet, Brittany S; Fountain, William A; Gutierrez, Vincent; Kolankowski, Michael; Overstreet, Matthew L; Sapp, Ryan M; Wolff, Christopher A; Mazzetti, Scott A

    2017-01-01

    To compare energy expenditure during and after active and handheld video game drumming compared to walking and sitting. Ten experienced, college-aged men performed four protocols (one per week): no-exercise seated control (CTRL), virtual drumming on a handheld gaming device (HANDHELD), active drumming on drum pads (DRUM), and walking on a treadmill at ~30% of VO 2max (WALK). Protocols were performed after an overnight fast, and expired air was collected continuously during (30min) and after (30min) exercise. DRUM and HANDHELD song lists, day of the week, and time of day were identical for each participant. Significant differences (p < 0.05) among the average rates of energy expenditure (kcal·min -1 ) during activity included WALK > DRUM > HANDHELD. No significant differences in the rates of energy expenditure among groups during recovery were observed. Total energy expenditure was significantly greater (p < 0.05) during WALK (149.5 ± 30.6 kcal) compared to DRUM (118.7 ± 18.8 kcal) and HANDHELD (44.9±11.6 kcal), and greater during DRUM compared to HANDHELD. Total energy expenditure was not significantly different between HANDHELD (44.9 ± 11.6 kcal) and CTRL (38.2 ± 6.0 kcal). Active video game drumming at expert-level significantly increased energy expenditure compared to handheld, but it hardly met moderate-intensity activity standards, and energy expenditure was greatest during walking. Energy expenditure with handheld video game drumming was not different from no-exercise control. Thus, traditional aerobic exercise remains at the forefront for achieving the minimum amount and intensity of physical activity for health, individuals desiring to use video games for achieving weekly physical activity recommendations should choose games that require significant involvement of lower-body musculature, and time spent playing sedentary games should be a limited part of an active lifestyle.

  18. Design of Portable Mass Spectrometers with Handheld Probes: Aspects of the Sampling and Miniature Pumping Systems

    NASA Astrophysics Data System (ADS)

    Chen, Chien-Hsun; Chen, Tsung-Chi; Zhou, Xiaoyu; Kline-Schoder, Robert; Sorensen, Paul; Cooks, R. Graham; Ouyang, Zheng

    2015-02-01

    Miniature mass spectrometry analytical systems of backpack configuration fitted with sampling probes could potentially be of significant interest for in-field, real-time chemical analysis. In this study, various configurations were explored in which a long narrow tube was used to connect the turbo and backing pumps used to create and maintain vacuum. Also, for the first time we introduced two new types of pumps for miniature mass spectrometers, the Creare 130 g drag pump and Creare 350 g scroll backing pump. These pumps, along with another Creare 550 turbo pump and the commercially available Pfeiffer HiPace 10 turbo and KnF diaphragm backing pumps, were tested with the backpack configurations. The system performance, especially the scan time, was characterized when used with a discontinuous atmospheric pressure interface (DAPI) for ion introduction. The pumping performance in the pressure region above 1 mtorr is critical for DAPI operation. The 550 g turbo pump was shown to have a relatively higher pumping speed above 1 mtorr and gave a scan time of 300 ms, almost half the value obtained with the larger, heavier HiPace 10 often used with miniature mass spectrometers. The 350 g scroll pump was also found to be an improvement over the diaphragm pumps generally used as backing pumps. With a coaxial low temperature plasma ion source, direct analysis of low volatility compounds glass slides was demonstrated, including 1 ng DNP (2,4-Dinitrophenol) and 10 ng TNT (2,4,6-trinitrotoluene) with Creare 550 g turbo pump as well as 10 ng cocaine and 20 ng DNP with Creare 130 g drag pump.

  19. Design of Portable Mass Spectrometers with Handheld Probes: Aspects of the Sampling and Miniature Pumping Systems

    PubMed Central

    Chen, Chien-Hsun; Chen, Tsung-Chi; Zhou, Xiaoyu; Kline-Schoder, Robert; Sorensen, Paul; Cooks, R. Graham; Ouyang, Zheng

    2014-01-01

    Miniature mass spectrometry analytical systems of backpack configuration fitted with sampling probes could potentially be of significant interest for in-field, real-time chemical analysis. In this study, various configurations were explored in which a long narrow tube was used to connect the turbo and backing pumps used to create and maintain vacuum. Also, for the first time we introduced two new types of pumps for miniature mass spectrometers, the Creare 130g drag pump and Creare 350g scroll backing pump. These pumps, along with another Creare 550 turbo pump and the commercially available Pfeiffer HiPace 10 turbo and KnF diaphragm backing pumps, were tested with the backpack configurations. The system performance, especially the scan time, was characterized when used with a discontinuous atmospheric pressure interface (DAPI) for ion introduction. The pumping performance in the pressure region above 1 mtorr is critical for DAPI operation. The 550g turbo pump was shown to have a relatively higher pumping speed above 1 mtorr and gave a scan time of 300 ms, almost half the value obtained with the larger, heavier HiPace 10 often used with miniature mass spectrometers. The 350 g scroll pump was also found to be an improvement over the diaphragm pumps generally used as backing pumps. With a coaxial low temperature plasma ion source, direct analysis of low volatility compounds glass slides was demonstrated, including 1 ng DNP (2,4-Dinitrophenol) and 10ng TNT (2,4,6-trinitrotoluene) with Creare 550g turbo pump as well as 10 ng cocaine and 20 ng DNP with Creare 130g drag pump. PMID:25404157

  20. Design of portable mass spectrometers with handheld probes: aspects of the sampling and miniature pumping systems.

    PubMed

    Chen, Chien-Hsun; Chen, Tsung-Chi; Zhou, Xiaoyu; Kline-Schoder, Robert; Sorensen, Paul; Cooks, R Graham; Ouyang, Zheng

    2015-02-01

    Miniature mass spectrometry analytical systems of backpack configuration fitted with sampling probes could potentially be of significant interest for in-field, real-time chemical analysis. In this study, various configurations were explored in which a long narrow tube was used to connect the turbo and backing pumps used to create and maintain vacuum. Also, for the first time we introduced two new types of pumps for miniature mass spectrometers, the Creare 130 g drag pump and Creare 350 g scroll backing pump. These pumps, along with another Creare 550 turbo pump and the commercially available Pfeiffer HiPace 10 turbo and KnF diaphragm backing pumps, were tested with the backpack configurations. The system performance, especially the scan time, was characterized when used with a discontinuous atmospheric pressure interface (DAPI) for ion introduction. The pumping performance in the pressure region above 1 mtorr is critical for DAPI operation. The 550 g turbo pump was shown to have a relatively higher pumping speed above 1 mtorr and gave a scan time of 300 ms, almost half the value obtained with the larger, heavier HiPace 10 often used with miniature mass spectrometers. The 350 g scroll pump was also found to be an improvement over the diaphragm pumps generally used as backing pumps. With a coaxial low temperature plasma ion source, direct analysis of low volatility compounds glass slides was demonstrated, including 1 ng DNP (2,4-Dinitrophenol) and 10 ng TNT (2,4,6-trinitrotoluene) with Creare 550 g turbo pump as well as 10 ng cocaine and 20 ng DNP with Creare 130 g drag pump.

  1. Handheld single photon emission computed tomography (handheld SPECT) navigated video-assisted thoracoscopic surgery of computer tomography-guided radioactively marked pulmonary lesions.

    PubMed

    Müller, Joachim; Putora, Paul Martin; Schneider, Tino; Zeisel, Christoph; Brutsche, Martin; Baty, Florent; Markus, Alexander; Kick, Jochen

    2016-09-01

    Radioactive marking can be a valuable extension to minimally invasive surgery. The technique has been clinically applied in procedures involving sentinel lymph nodes, parathyroidectomy as well as interventions in thoracic surgery. Improvements in equipment and techniques allow one to improve the limits. Pulmonary nodules are frequently surgically removed for diagnostic or therapeutic reasons; here video-assisted thoracoscopic surgery (VATS) is the preferred technique. VATS might be impossible with nodules that are small or located deep in the lung. In this study, we examined the clinical application and safety of employing the newly developed handheld single photon emission tomography (handheld SPECT) device in combination with CT-guided radioactive marking of pulmonary nodules. In this pilot study, 10 subjects requiring surgical resection of a pulmonary nodule were included. The technique involved CT-guided marking of the target nodule with a 20-G needle, with subsequent injection of 25-30 MBq (effective: 7-14 MBq) Tc-99m MAA (Macro Albumin Aggregate). Quality control was made with conventional SPECT-CT to confirm the correct localization and exclude possible complications related to the puncture procedure. VATS was subsequently carried out using the handheld SPECT to localize the radioactivity intraoperatively and therefore the target nodule. A 3D virtual image was superimposed on the intraoperative visual image for surgical guidance. In 9 of the 10 subjects, the radioactive application was successfully placed directly in or in the immediate vicinity of the target nodule. The average size of the involved nodules was 9 mm (range 4-15). All successfully marked nodules were subsequently completely excised (R0) using VATS. The procedure was well tolerated. An asymptomatic clinically insignificant pneumothorax occurred in 5 subjects. Two subjects were found to have non-significant discrete haemorrhage in the infiltration canal of the needle. In a single subject, the

  2. Stimulated Raman spectroscopy and nanoscopy of molecules using near field photon induced forces without resonant electronic enhancement gain

    NASA Astrophysics Data System (ADS)

    Tamma, Venkata Ananth; Huang, Fei; Nowak, Derek; Kumar Wickramasinghe, H.

    2016-06-01

    We report on stimulated Raman spectroscopy and nanoscopy of molecules, excited without resonant electronic enhancement gain, and recorded using near field photon induced forces. Photon-induced interaction forces between the sharp metal coated silicon tip of an Atomic Force Microscope (AFM) and a sample resulting from stimulated Raman excitation were detected. We controlled the tip to sample spacing using the higher order flexural eigenmodes of the AFM cantilever, enabling the tip to come very close to the sample. As a result, the detection sensitivity was increased compared with previous work on Raman force microscopy. Raman vibrational spectra of azobenzene thiol and l-phenylalanine were measured and found to agree well with published results. Near-field force detection eliminates the need for far-field optical spectrometer detection. Recorded images show spatial resolution far below the optical diffraction limit. Further optimization and use of ultrafast pulsed lasers could push the detection sensitivity towards the single molecule limit.

  3. Stimulated Raman spectroscopy and nanoscopy of molecules using near field photon induced forces without resonant electronic enhancement gain

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Tamma, Venkata Ananth; Huang, Fei; Kumar Wickramasinghe, H., E-mail: hkwick@uci.edu

    We report on stimulated Raman spectroscopy and nanoscopy of molecules, excited without resonant electronic enhancement gain, and recorded using near field photon induced forces. Photon-induced interaction forces between the sharp metal coated silicon tip of an Atomic Force Microscope (AFM) and a sample resulting from stimulated Raman excitation were detected. We controlled the tip to sample spacing using the higher order flexural eigenmodes of the AFM cantilever, enabling the tip to come very close to the sample. As a result, the detection sensitivity was increased compared with previous work on Raman force microscopy. Raman vibrational spectra of azobenzene thiol andmore » l-phenylalanine were measured and found to agree well with published results. Near-field force detection eliminates the need for far-field optical spectrometer detection. Recorded images show spatial resolution far below the optical diffraction limit. Further optimization and use of ultrafast pulsed lasers could push the detection sensitivity towards the single molecule limit.« less

  4. Hand-held optical imager (Gen-2): improved instrumentation and target detectability

    PubMed Central

    Gonzalez, Jean; DeCerce, Joseph; Erickson, Sarah J.; Martinez, Sergio L.; Nunez, Annie; Roman, Manuela; Traub, Barbara; Flores, Cecilia A.; Roberts, Seigbeh M.; Hernandez, Estrella; Aguirre, Wenceslao; Kiszonas, Richard

    2012-01-01

    Abstract. Hand-held optical imagers are developed by various researchers towards reflectance-based spectroscopic imaging of breast cancer. Recently, a Gen-1 handheld optical imager was developed with capabilities to perform two-dimensional (2-D) spectroscopic as well as three-dimensional (3-D) tomographic imaging studies. However, the imager was bulky with poor surface contact (∼30%) along curved tissues, and limited sensitivity to detect targets consistently. Herein, a Gen-2 hand-held optical imager that overcame the above limitations of the Gen-1 imager has been developed and the instrumentation described. The Gen-2 hand-held imager is less bulky, portable, and has improved surface contact (∼86%) on curved tissues. Additionally, the forked probe head design is capable of simultaneous bilateral reflectance imaging of both breast tissues, and also transillumination imaging of a single breast tissue. Experimental studies were performed on tissue phantoms to demonstrate the improved sensitivity in detecting targets using the Gen-2 imager. The improved instrumentation of the Gen-2 imager allowed detection of targets independent of their location with respect to the illumination points, unlike in Gen-1 imager. The developed imager has potential for future clinical breast imaging with enhanced sensitivity, via both reflectance and transillumination imaging. PMID:23224163

  5. Rapid detection of benzoyl peroxide in wheat flour by using Raman scattering spectroscopy

    NASA Astrophysics Data System (ADS)

    Zhao, Juan; Peng, Yankun; Chao, Kuanglin; Qin, Jianwei; Dhakal, Sagar; Xu, Tianfeng

    2015-05-01

    Benzoyl peroxide is a common flour additive that improves the whiteness of flour and the storage properties of flour products. However, benzoyl peroxide adversely affects the nutritional content of flour, and excess consumption causes nausea, dizziness, other poisoning, and serious liver damage. This study was focus on detection of the benzoyl peroxide added in wheat flour. A Raman scattering spectroscopy system was used to acquire spectral signal from sample data and identify benzoyl peroxide based on Raman spectral peak position. The optical devices consisted of Raman spectrometer and CCD camera, 785 nm laser module, optical fiber, prober, and a translation stage to develop a real-time, nondestructive detection system. Pure flour, pure benzoyl peroxide and different concentrations of benzoyl peroxide mixed with flour were prepared as three sets samples to measure the Raman spectrum. These samples were placed in the same type of petri dish to maintain a fixed distance between the Raman CCD and petri dish during spectral collection. The mixed samples were worked by pretreatment of homogenization and collected multiple sets of data of each mixture. The exposure time of this experiment was set at 0.5s. The Savitzky Golay (S-G) algorithm and polynomial curve-fitting method was applied to remove the fluorescence background from the Raman spectrum. The Raman spectral peaks at 619 cm-1, 848 cm-1, 890 cm-1, 1001 cm-1, 1234 cm-1, 1603cm-1, 1777cm-1 were identified as the Raman fingerprint of benzoyl peroxide. Based on the relationship between the Raman intensity of the most prominent peak at around 1001 cm-1 and log values of benzoyl peroxide concentrations, the chemical concentration prediction model was developed. This research demonstrated that Raman detection system could effectively and rapidly identify benzoyl peroxide adulteration in wheat flour. The experimental result is promising and the system with further modification can be applicable for more products in near

  6. Hyperspectral microscopic imaging by multiplex coherent anti-Stokes Raman scattering (CARS)

    NASA Astrophysics Data System (ADS)

    Khmaladze, Alexander; Jasensky, Joshua; Zhang, Chi; Han, Xiaofeng; Ding, Jun; Seeley, Emily; Liu, Xinran; Smith, Gary D.; Chen, Zhan

    2011-10-01

    Coherent anti-Stokes Raman scattering (CARS) microscopy is a powerful technique to image the chemical composition of complex samples in biophysics, biology and materials science. CARS is a four-wave mixing process. The application of a spectrally narrow pump beam and a spectrally wide Stokes beam excites multiple Raman transitions, which are probed by a probe beam. This generates a coherent directional CARS signal with several orders of magnitude higher intensity relative to spontaneous Raman scattering. Recent advances in the development of ultrafast lasers, as well as photonic crystal fibers (PCF), enable multiplex CARS. In this study, we employed two scanning imaging methods. In one, the detection is performed by a photo-multiplier tube (PMT) attached to the spectrometer. The acquisition of a series of images, while tuning the wavelengths between images, allows for subsequent reconstruction of spectra at each image point. The second method detects CARS spectrum in each point by a cooled coupled charged detector (CCD) camera. Coupled with point-by-point scanning, it allows for a hyperspectral microscopic imaging. We applied this CARS imaging system to study biological samples such as oocytes.

  7. Quantitative fiber-optic Raman spectroscopy for tissue Raman measurements

    NASA Astrophysics Data System (ADS)

    Duraipandian, Shiyamala; Bergholt, Mads; Zheng, Wei; Huang, Zhiwei

    2014-03-01

    Molecular profiling of tissue using near-infrared (NIR) Raman spectroscopy has shown great promise for in vivo detection and prognostication of cancer. The Raman spectra measured from the tissue generally contain fundamental information about the absolute biomolecular concentrations in tissue and its changes associated with disease transformation. However, producing analogues tissue Raman spectra present a great technical challenge. In this preliminary study, we propose a method to ensure the reproducible tissue Raman measurements and validated with the in vivo Raman spectra (n=150) of inner lip acquired using different laser powers (i.e., 30 and 60 mW). A rapid Raman spectroscopy system coupled with a ball-lens fiber-optic Raman probe was utilized for tissue Raman measurements. The investigational results showed that the variations between the spectra measured with different laser powers are almost negligible, facilitating the quantitative analysis of tissue Raman measurements in vivo.

  8. Quantitative analysis of domain texture in polycrystalline barium titanate by polarized Raman microprobe spectroscopy

    NASA Astrophysics Data System (ADS)

    Sakashita, Tatsuo; Chazono, Hirokazu; Pezzotti, Giuseppe

    2007-12-01

    A quantitative determination of domain distribution in polycrystalline barium titanate (BaTiO3, henceforth BT) ceramics has been pursued with the aid of a microprobe polarized Raman spectrometer. The crystallographic texture and domain orientation distribution of BT ceramics, which switched upon applying stress according to ferroelasticity principles, were determined from the relative intensity of selected phonon modes, taking into consideration a theoretical analysis of the angular dependence of phonon mode intensity for the tetragonal BT phase. Furthermore, the angular dependence of Raman intensity measured in polycrystalline BT depended on the statistical distribution of domain angles in the laser microprobe, which was explicitly taken into account in this work for obtaining a quantitative analysis of domain orientation for in-plane textured BT polycrystalline materials.

  9. Handheld technology acceptance in radiologic science education and training programs

    NASA Astrophysics Data System (ADS)

    Powers, Kevin Jay

    The purpose of this study was to explore the behavioral intention of directors of educational programs in the radiologic sciences to adopt handheld devices to aid in managing student clinical data. Handheld devices were described to participants as a technology representing a class of mobile electronic devices including, but not limited to, personal digital assistants such as a Palm TX, Apple iPod Touch, Apple iPad or Hewlett Packard iPaq, and cellular or smartphones with third generation mobile capabilities such as an Apple iPhone, Blackberry or Android device. The study employed a non-experimental, cross-sectional survey design to determine the potential of adopting handheld technologies based on the constructs of Davis's (1989) Technology Acceptance Model. An online self-report questionnaire survey instrument was used to gather study data from 551 entry level radiologic science programs specializing in radiography, radiation therapy, nuclear medicine and medical sonography. The study design resulted in a single point in time assessment of the relationship between the primary constructs of the Technology Acceptance Model: perceived usefulness and perceived ease of use, and the behavioral intention of radiography program directors to adopt the information technology represented by hand held devices. Study results provide justification for investing resources to promote the adoption of mobile handheld devices in radiologic science programs and study findings serve as a foundation for further research involving technology adoption in the radiologic sciences.

  10. Stimulated Raman spectroscopy of 13CF4

    NASA Astrophysics Data System (ADS)

    Martínez, R. Z.; Bermejo, D.; Boudon, V.

    2018-06-01

    CF4 is a powerful greenhouse gas, mostly released in the atmosphere by industries. A careful modeling of its absorption spectrum is required in order to allow accurate atmospheric concentration measurements. For this aim, high resolution Raman spectroscopy is of great help, since it gives access to rovibrational levels that are not directly reachable through dipolar absorption, although they are involved in hot band generation. Following our previous work on 12CF4, we present here a similar investigation of the second isotopologue, 13CF4. The spectra of the ν1 (909.21 cm-1), 2ν1 -ν1 (906.77 cm-1), ν1 +ν2 -ν2 (909.33 cm-1), ν2 (435.47 cm-1), 2ν2 (868.10 cm-1) and 3ν2 -ν2 (865.73 cm-1) bands were obtained with a quasi-continuous wave stimulated Raman spectrometer. These six bands were studied at temperatures of 140 and 298 K (for the hot bands). These spectra could be assigned and modeled thanks to the XTDS and SPVIEW software developed in the Dijon group.

  11. Are Handheld Computers Dependable? A New Data Collection System for Classroom-Based Observations

    ERIC Educational Resources Information Center

    Adiguzel, Tufan; Vannest, Kimberly J.; Parker, Richard I.

    2009-01-01

    Very little research exists on the dependability of handheld computers used in public school classrooms. This study addresses four dependability criteria--reliability, maintainability, availability, and safety--to evaluate a data collection tool on a handheld computer. Data were collected from five sources: (1) time-use estimations by 19 special…

  12. Toward Automated Intraocular Laser Surgery Using a Handheld Micromanipulator

    PubMed Central

    Yang, Sungwook; MacLachlan, Robert A.; Riviere, Cameron N.

    2014-01-01

    This paper presents a technique for automated intraocular laser surgery using a handheld micromanipulator known as Micron. The novel handheld manipulator enables the automated scanning of a laser probe within a cylinder of 4 mm long and 4 mm in diameter. For the automation, the surface of the retina is reconstructed using a stereomicroscope, and then preplanned targets are placed on the surface. The laser probe is precisely located on the target via visual servoing of the aiming beam, while maintaining a specific distance above the surface. In addition, the system is capable of tracking the surface of the eye in order to compensate for any eye movement introduced during the operation. We compared the performance of the automated scanning using various control thresholds, in order to find the most effective threshold in terms of accuracy and speed. Given the selected threshold, we conducted the handheld operation above a fixed target surface. The average error and execution time are reduced by 63.6% and 28.5%, respectively, compared to the unaided trials. Finally, the automated laser photocoagulation was demonstrated also in an eye phantom, including compensation for the eye movement. PMID:25893135

  13. Handheld Devices: Toward a More Mobile Campus.

    ERIC Educational Resources Information Center

    Fallon, Mary A. C.

    2002-01-01

    Offers an overview of the acceptance and use of handheld personal computing devices on campus that connect wirelessly to the campus network. Considers access; present and future software applications; uses in medial education; faculty training needs; and wireless technology issues. (Author/LRW)

  14. Monitoring uranium, hydrogen, and lithium and their isotopes using a compact laser-induced breakdown spectroscopy (LIBS) probe and high-resolution spectrometer.

    PubMed

    Cremers, David A; Beddingfield, Alan; Smithwick, Robert; Chinni, Rosemarie C; Jones, C Randy; Beardsley, Burt; Karch, Larry

    2012-03-01

    The development of field-deployable instruments to monitor radiological, nuclear, and explosive (RNE) threats is of current interest for a number of assessment needs such as the on-site screening of suspect facilities and nuclear forensics. The presence of uranium and plutonium and radiological materials can be determined through monitoring the elemental emission spectrum using relatively low-resolution spectrometers. In addition, uranium compounds, explosives, and chemicals used in nuclear fuel processing (e.g., tributyl-phosphate) can be identified by applying chemometric analysis to the laser-induced breakdown (LIBS) spectrum recorded by these spectrometers. For nuclear forensic applications, however, isotopes of U and Pu and other elements (e.g., H and Li) must also be determined, requiring higher resolution spectrometers given the small magnitude of the isotope shifts for some of these elements (e.g., 25 pm for U and 13 pm for Pu). High-resolution spectrometers will be preferred for several reasons but these must fit into realistic field-based analysis scenarios. To address the need for field instrumentation, we evaluated a previously developed field-deployable hand-held LIBS interrogation probe combined with two relatively new high-resolution spectrometers (λ/Δλ ~75,000 and ~44,000) that have the potential to meet field-based analysis needs. These spectrometers are significantly smaller and lighter in weight than those previously used for isotopic analysis and one unit can provide simultaneous wide spectral coverage and high resolution in a relatively small package. The LIBS interrogation probe was developed initially for use with low resolution compact spectrometers in a person-portable backpack LIBS instrument. Here we present the results of an evaluation of the LIBS probe combined with a high-resolution spectrometer and demonstrate rapid detection of isotopes of uranium and hydrogen and highly enriched samples of (6)Li and (7)Li. © 2012 Society for

  15. Engineering issues for hand-held sensing devices, with examples

    NASA Astrophysics Data System (ADS)

    Freiwald, David A.; Freiwald, Joyce

    1994-03-01

    It is now U.S. defense policy that there will be no new platform starts. The emphasis for platforms will be on O&M cost reduction, life-extension improvements, and force-multiplier- device upgrades. There is also an increasing emphasis on hand-held force-multiplier devices for individuals, which is the focus of this paper. Engineering issues include operations analysis, weight, cube, cost, prime power, ease of use, data storage, reliability, fault tolerance, data communications and human factors. Two examples of hand-held devices are given. Applications include USMC, Army, SOCOM, DEA, FBI, SS, Border Patrol and others. Barriers to adoption of such technology are also discussed.

  16. Handheld Multi-Gas Meters Market Survey Report

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Williams, Gustavious; Wald-Hopkins, Mark David; Obrey, Stephen J.

    2016-06-23

    Handheld multi-gas meters (MGMs) are equipped with sensors to monitor oxygen (O2) levels and additional sensors to detect the presence of combustible or toxic gases in the environment. This report is limited to operational response-type MGMs that include at least four different sensors. These sensors can vary by type and by the chemical monitored. In real time, the sensors report the concentration of monitored gases in the atmosphere near the MGM. To provide emergency responders with information on handheld multi-gas meters, the System Assessment and Validation for Emergency Responders (SAVER) Program conducted a market survey. This market survey report ismore » based on information gathered between November 2015 and February 2016 from vendors, Internet research, industry publications, an emergency responder focus group, and a government issued Request for Information (RFI) that was posted on the Federal Business Opportunities website.« less

  17. Surface-enhanced raman medical probes and system for disease diagnosis and drug testing

    DOEpatents

    Vo-Dinh, Tuan

    1999-01-01

    A probe for a surface-enhanced Raman scattering spectrometer includes a member of optically transmissive material for receiving the excitation radiation from a laser and for carrying the radiation emitted from a specimen to a detector. An end of the member for placing against the specimen has a coating that produces surface enhancement of the specimen during Raman scattering spectroscopic analysis. Specifically the coating is formed by a first layer of microparticles on the member and a metal layer over the first layer. The first layer may form a microstructure surface over which a metal layer is applied. Alternatively the coating may be a material containing microparticles of a metal. An optional layer of a material may be applied to the metal layer to concentrate onto the probe compounds of analytical interest onto the probe.

  18. Field testing of hand-held infrared thermography, phase II TPF-5(247) : final report.

    DOT National Transportation Integrated Search

    2016-05-01

    This report is the second of two volumes that document results from the pooled fund study TPF-5 (247), Development of : Handheld Infrared Thermography, Phase II. The interim report (volume I) studied the implementation of handheld thermography : by p...

  19. Hand-portable gas chromatography-ion mobility spectrometer for the determination of the freshness of fish

    NASA Technical Reports Server (NTRS)

    Snyder, A. Peter; Harden, Charles S.; Davis, Dennis M.; Shoff, Donald B.; Maswadeh, Waleed M.

    1995-01-01

    A hand-held, portable gas chromatography-ion mobility spectrometer (GC-IMS) device was used to detect the presence of volatile amine compounds in the headspace of decomposing fish. The Food and Drug Administration (FDA) largely relies on olfactory discrimination with respect to fresh and spoiled, frozen and unfrozen fish. The fish are delivered at ship docks on pallets, and each pallet of fish can range from 30-40 thousand dollars in value. Fresh fish were placed in a teflon bag and the direct headspace was interrogated. In the first three days, only low molecular weight volatile amines were detected. On the fourth day, a number of spectral signatures were observed which indicated the presence of 1,5-diaminopentane, cadaverine. Analyses typically took from 0.5-1 minute.

  20. A smartphone controlled handheld microfluidic liquid handling system.

    PubMed

    Li, Baichen; Li, Lin; Guan, Allan; Dong, Quan; Ruan, Kangcheng; Hu, Ronggui; Li, Zhenyu

    2014-10-21

    Microfluidics and lab-on-a-chip technologies have made it possible to manipulate small volume liquids with unprecedented resolution, automation and integration. However, most current microfluidic systems still rely on bulky off-chip infrastructures such as compressed pressure sources, syringe pumps and computers to achieve complex liquid manipulation functions. Here, we present a handheld automated microfluidic liquid handling system controlled by a smartphone, which is enabled by combining elastomeric on-chip valves and a compact pneumatic system. As a demonstration, we show that the system can automatically perform all the liquid handling steps of a bead-based HIV1 p24 sandwich immunoassay on a multi-layer PDMS chip without any human intervention. The footprint of the system is 6 × 10.5 × 16.5 cm, and the total weight is 829 g including battery. Powered by a 12.8 V 1500 mAh Li battery, the system consumed 2.2 W on average during the immunoassay and lasted for 8.7 h. This handheld microfluidic liquid handling platform is generally applicable to many biochemical and cell-based assays requiring complex liquid manipulation and sample preparation steps such as FISH, PCR, flow cytometry and nucleic acid sequencing. In particular, the integration of this technology with read-out biosensors may help enable the realization of the long-sought Tricorder-like handheld in vitro diagnostic (IVD) systems.

  1. Raman signal enhancement by multiple beam excitation and its application for the detection of chemicals

    NASA Astrophysics Data System (ADS)

    Gupta, Sakshi; Ahmad, Azeem; Gambhir, Vijayeta; Reddy, Martha N.; Mehta, Dalip S.

    2015-08-01

    In a typical Raman based sensor, a single laser beam is used for exciting the sample and the backscattered or forward scattered light is collected using collection optics and is analyzed by a spectrometer. We have investigated that by means of exciting the sample with multiple beams, i.e., by dividing the same input power of the single beam into two or three or more beams and exciting the sample from different angles, the Raman signal enhances significantly. Due to the presence of multiple beams passing through the same volume of the sample, an interference pattern is formed and the volume of interaction of excitation beams with the sample increases. By means of this geometry, the enhancement in the Raman signal is observed and it was found that the signal strength increases linearly with the increase in number of excitation beams. Experimental results of this scheme for excitation of the samples are reported for explosive detection at a standoff distance.

  2. Photophoretic trapping of absorbing particles in air and measurement of their single-particle Raman spectra.

    PubMed

    Pan, Yong-Le; Hill, Steven C; Coleman, Mark

    2012-02-27

    A new method is demonstrated for optically trapping micron-sized absorbing particles in air and obtaining their single-particle Raman spectra. A 488-nm Gaussian beam from an Argon ion laser is transformed by conical lenses (axicons) and other optics into two counter-propagating hollow beams, which are then focused tightly to form hollow conical beams near the trapping region. The combination of the two coaxial conical beams, with focal points shifted relative to each other along the axis of the beams, generates a low-light-intensity biconical region totally enclosed by the high-intensity light at the surface of the bicone, which is a type of bottle beam. Particles within this region are trapped by the photophoretic forces that push particles toward the low-intensity center of this region. Raman spectra from individual trapped particles made from carbon nanotubes are measured. This trapping technique could lead to the development of an on-line real-time single-particle Raman spectrometer for characterization of absorbing aerosol particles.

  3. Analysis of polycyclic aromatic hydrocarbons using desorption atmospheric pressure chemical ionization coupled to a portable mass spectrometer.

    PubMed

    Jjunju, Fred P M; Maher, Simon; Li, Anyin; Badu-Tawiah, Abraham K; Taylor, Stephen; Cooks, R Graham

    2015-02-01

    Desorption atmospheric pressure chemical ionization (DAPCI) is implemented on a portable mass spectrometer and applied to the direct detection of polycyclic aromatic hydrocarbons (PAHs) and alkyl substituted benzenes. The presence of these compounds in the environment poses a significant threat to the health of both humans and wildlife because of their carcinogenic, toxic, and mutagenic properties. As such, instant detection outside of the laboratory is of particular importance to allow in-situ measurement at the source. Using a rapid, high throughput, miniature, handheld mass spectrometer, several alkyl substituted benzenes and PAHs (i.e., 1,2,3,5-tetramethylbenzene, pentamethylbenzene, hexamethylbenzene, fluoranthene, anthracene, benzo[k]fluoranthene, dibenz[a,h]anthracene, acenaphthene, indeno[1,2,3-c,d]pyrene, 9-ethylfluorene, and 1-benzyl-3-methyl-naphthalene) were identified and characterized using tandem mass spectrometry (MS/MS) from ambient surfaces, in the open air. This method can provide almost instantaneous information while minimizing sample preparation, which is advantageous in terms of both cost and simplicity of analysis. This MS-based technique is applicable to a wide range of environmental organic molecules.

  4. Hand-held computer operating system program for collection of resident experience data.

    PubMed

    Malan, T K; Haffner, W H; Armstrong, A Y; Satin, A J

    2000-11-01

    To describe a system for recording resident experience involving hand-held computers with the Palm Operating System (3 Com, Inc., Santa Clara, CA). Hand-held personal computers (PCs) are popular, easy to use, inexpensive, portable, and can share data among other operating systems. Residents in our program carry individual hand-held database computers to record Residency Review Committee (RRC) reportable patient encounters. Each resident's data is transferred to a single central relational database compatible with Microsoft Access (Microsoft Corporation, Redmond, WA). Patient data entry and subsequent transfer to a central database is accomplished with commercially available software that requires minimal computer expertise to implement and maintain. The central database can then be used for statistical analysis or to create required RRC resident experience reports. As a result, the data collection and transfer process takes less time for residents and program director alike, than paper-based or central computer-based systems. The system of collecting resident encounter data using hand-held computers with the Palm Operating System is easy to use, relatively inexpensive, accurate, and secure. The user-friendly system provides prompt, complete, and accurate data, enhancing the education of residents while facilitating the job of the program director.

  5. Characterization of Surface-Enhanced Raman Scattering of Nicotine Utilizing Plasmonic Nanometals for the Applications of Medical and Chemical Sensing

    NASA Astrophysics Data System (ADS)

    Jackson, Ashley; Rigo, Maria; Seo, Jaetae; HU Team

    2011-05-01

    Raman spectroscopy has received a great deal of interest for its applications in biological sensing and cell imaging due to the ease with which it can be used to extract significant data from tissue and cells. This study has focused on the application of SERS for nicotine detection. Liquid nicotine was diluted and combined with Au nanoparticles (NPs). The nicotine-gold solution was analyzed by acquiring Raman spectra data using a Delta Nu Spectrometer. Absorption data shows the characteristic peak of Au NPs at ~528 nm while showing successful aggregation of the nicotine particles. Data taken from Raman spectra shows characteristic Raman shifts of nicotine at ~1030 cm-1 and ~1590 cm-1. Currently work is being done to optimize the SERS signal for nicotine in the 1590-1600 region using higher concentrations of nicotine and various sizes of Au NPs. This work at Hampton University was supported by the National Science Foundation (HRD-0734635 and HRD-063037).

  6. Performance assessments of Android-powered military applications operating on tactical handheld devices

    NASA Astrophysics Data System (ADS)

    Weiss, Brian A.; Fronczek, Lisa; Morse, Emile; Kootbally, Zeid; Schlenoff, Craig

    2013-05-01

    Transformative Apps (TransApps) is a Defense Advanced Research Projects Agency (DARPA) funded program whose goal is to develop a range of militarily-relevant software applications ("apps") to enhance the operational-effectiveness of military personnel on (and off) the battlefield. TransApps is also developing a military apps marketplace to facilitate rapid development and dissemination of applications to address user needs by connecting engaged communities of endusers with development groups. The National Institute of Standards and Technology's (NIST) role in the TransApps program is to design and implement evaluation procedures to assess the performance of: 1) the various software applications, 2) software-hardware interactions, and 3) the supporting online application marketplace. Specifically, NIST is responsible for evaluating 50+ tactically-relevant applications operating on numerous Android™-powered platforms. NIST efforts include functional regression testing and quantitative performance testing. This paper discusses the evaluation methodologies employed to assess the performance of three key program elements: 1) handheld-based applications and their integration with various hardware platforms, 2) client-based applications and 3) network technologies operating on both the handheld and client systems along with their integration into the application marketplace. Handheld-based applications are assessed using a combination of utility and usability-based checklists and quantitative performance tests. Client-based applications are assessed to replicate current overseas disconnected (i.e. no network connectivity between handhelds) operations and to assess connected operations envisioned for later use. Finally, networked applications are assessed on handhelds to establish baselines of performance for when connectivity will be common usage.

  7. Destruction of Raman biosignatures by ionising radiation and the implications for life detection on Mars.

    PubMed

    Dartnell, Lewis R; Page, Kristian; Jorge-Villar, Susana E; Wright, Gary; Munshi, Tasnim; Scowen, Ian J; Ward, John M; Edwards, Howell G M

    2012-04-01

    Raman spectroscopy has proven to be a very effective approach for the detection of microorganisms colonising hostile environments on Earth. The ExoMars rover, due for launch in 2018, will carry a Raman laser spectrometer to analyse samples of the martian subsurface collected by the probe's 2-m drill in a search for similar biosignatures. The martian surface is unprotected from the flux of cosmic rays, an ionising radiation field that will degrade organic molecules and so diminish and distort the detectable Raman signature of potential martian microbial life. This study employs Raman spectroscopy to analyse samples of two model organisms, the cyanobacterium Synechocystis sp. PCC 6803 and the extremely radiation resistant polyextremophile Deinococcus radiodurans, that have been exposed to increasing doses of ionising radiation. The three most prominent peaks in the Raman spectra are from cellular carotenoids: deinoxanthin in D. radiodurans and β-carotene in Synechocystis. The degradative effect of ionising radiation is clearly seen, with significant diminishment of carotenoid spectral peak heights after 15 kGy and complete erasure of Raman biosignatures by 150 kGy of ionising radiation. The Raman signal of carotenoid in D. radiodurans diminishes more rapidly than that of Synechocystis, believed to be due to deinoxanthin acting as a superior scavenger of radiolytically produced reactive oxygen species, and so being destroyed more quickly than the less efficient antioxidant β-carotene. This study highlights the necessity for further experimental work on the manner and rate of degradation of Raman biosignatures by ionising radiation, as this is of prime importance for the successful detection of microbial life in the martian near subsurface.

  8. Validity of maximal isometric knee extension strength measurements obtained via belt-stabilized hand-held dynamometry in healthy adults.

    PubMed

    Ushiyama, Naoko; Kurobe, Yasushi; Momose, Kimito

    2017-11-01

    [Purpose] To determine the validity of knee extension muscle strength measurements using belt-stabilized hand-held dynamometry with and without body stabilization compared with the gold standard isokinetic dynamometry in healthy adults. [Subjects and Methods] Twenty-nine healthy adults (mean age, 21.3 years) were included. Study parameters involved right side measurements of maximal isometric knee extension strength obtained using belt-stabilized hand-held dynamometry with and without body stabilization and the gold standard. Measurements were performed in all subjects. [Results] A moderate correlation and fixed bias were found between measurements obtained using belt-stabilized hand-held dynamometry with body stabilization and the gold standard. No significant correlation and proportional bias were found between measurements obtained using belt-stabilized hand-held dynamometry without body stabilization and the gold standard. The strength identified using belt-stabilized hand-held dynamometry with body stabilization may not be commensurate with the maximum strength individuals can generate; however, it reflects such strength. In contrast, the strength identified using belt-stabilized hand-held dynamometry without body stabilization does not reflect the maximum strength. Therefore, a chair should be used to stabilize the body when performing measurements of maximal isometric knee extension strength using belt-stabilized hand-held dynamometry in healthy adults. [Conclusion] Belt-stabilized hand-held dynamometry with body stabilization is more convenient than the gold standard in clinical settings.

  9. Development and preliminary results of an in vivo Raman probe for early lung cancer detection

    NASA Astrophysics Data System (ADS)

    Short, Michael A.; Lam, Stephen; McWilliams, Annette; Zhao, Jianhua; Lui, Harvey; Zeng, Haishan

    2008-02-01

    Our previous results from Raman spectroscopy studies on ex vivo lung tissue showed the technique had great potential to differentiate between samples with different pathologies. In this work, a fast dispersive-type near-infrared (NIR) Raman spectroscopy system was developed to collect real-time, noninvasive, in vivo human lung spectra. The 785 nm excitation, and the collection of tissue emission were accomplished by using a reusable fiber optic catheter which passed down the instrument channel of a bronchoscope. Filters in two stages blocked laser emission other than 785 nm from reaching the tissue surface, and reduced fiber fluorescence and elastically scattered excitation light from being passed to the spectrometer. The spectrometer itself consisted of one of two holographic gratings with usable frequency ranges of: 700 to 2000 cm -1 and 1500 to 3400 cm -1. The dispersed light was detected by a cooled CCD array consisting of 400 by 1340 pixels. To increase the resolution of the system, while maximizing the throughput, a second fiber bundle, consisting of 54×100 μm diameter fibers connected the catheter to the spectrometer. The fibers in this second bundle were spread out to form a parabolic arc which replaced the conventional entrance slit. This geometry corrected for image aberrations, permitting complete CCD vertical binning, thereby yielding up to a 20-fold improvement in signal-to-noise ratio. The estimated spectral resolution of the system was 9 cm -1 for both gratings. So far we have measured spectra from 20 patients and have seen clear differences between spectra from tumor and normal tissue.

  10. Dual-wavelength external cavity laser device for fluorescence suppression in Raman spectroscopy

    NASA Astrophysics Data System (ADS)

    Zhang, Xuting; Cai, Zhijian; Wu, Jianhong

    2017-10-01

    Raman spectroscopy has been widely used in the detection of drugs, pesticides, explosives, food additives and environmental pollutants, for its characteristics of fast measurement, easy sample preparation, and molecular structure analyzing capability. However, fluorescence disturbance brings a big trouble to these applications, with strong fluorescence background covering up the weak Raman signals. Recently shifted excitation Raman difference spectroscopy (SERDS) not only can completely remove the fluorescence background, but also can be easily integrated into portable Raman spectrometers. Usually, SERDS uses two lasers with small wavelength gap to excite the sample, then acquires two spectra, and subtracts one to the other to get the difference spectrum, where the fluorescence background will be rejected. So, one key aspects of successfully applying SERDS method is to obtain a dual-wavelength laser source. In this paper, a dual-wavelength laser device design based on the principles of external cavity diode laser (ECDL) is proposed, which is low-cost and compact. In addition, it has good mechanical stability because of no moving parts. These features make it an ideal laser source for SERDS technique. The experiment results showed that the device can emit narrow-spectral-width lasers of two wavelengths, with the gap smaller than 2 nanometers. The laser power corresponding to each wavelength can be up to 100mW.

  11. Calibration and testing of a Raman hyperspectral imaging system to reveal powdered food adulteration.

    PubMed

    Lohumi, Santosh; Lee, Hoonsoo; Kim, Moon S; Qin, Jianwei; Kandpal, Lalit Mohan; Bae, Hyungjin; Rahman, Anisur; Cho, Byoung-Kwan

    2018-01-01

    The potential adulteration of foodstuffs has led to increasing concern regarding food safety and security, in particular for powdered food products where cheap ground materials or hazardous chemicals can be added to increase the quantity of powder or to obtain the desired aesthetic quality. Due to the resulting potential health threat to consumers, the development of a fast, label-free, and non-invasive technique for the detection of adulteration over a wide range of food products is necessary. We therefore report the development of a rapid Raman hyperspectral imaging technique for the detection of food adulteration and for authenticity analysis. The Raman hyperspectral imaging system comprises of a custom designed laser illumination system, sensing module, and a software interface. Laser illumination system generates a 785 nm laser line of high power, and the Gaussian like intensity distribution of laser beam is shaped by incorporating an engineered diffuser. The sensing module utilize Rayleigh filters, imaging spectrometer, and detector for collection of the Raman scattering signals along the laser line. A custom-built software to acquire Raman hyperspectral images which also facilitate the real time visualization of Raman chemical images of scanned samples. The developed system was employed for the simultaneous detection of Sudan dye and Congo red dye adulteration in paprika powder, and benzoyl peroxide and alloxan monohydrate adulteration in wheat flour at six different concentrations (w/w) from 0.05 to 1%. The collected Raman imaging data of the adulterated samples were analyzed to visualize and detect the adulterant concentrations by generating a binary image for each individual adulterant material. The results obtained based on the Raman chemical images of adulterants showed a strong correlation (R>0.98) between added and pixel based calculated concentration of adulterant materials. This developed Raman imaging system thus, can be considered as a powerful

  12. Short Distance Standoff Raman Detection of Extra Virgin Olive Oil Adulterated with Canola and Grapeseed Oils.

    PubMed

    Farley, Carlton; Kassu, Aschalew; Bose, Nayana; Jackson-Davis, Armitra; Boateng, Judith; Ruffin, Paul; Sharma, Anup

    2017-06-01

    A short distance standoff Raman technique is demonstrated for detecting economically motivated adulteration (EMA) in extra virgin olive oil (EVOO). Using a portable Raman spectrometer operating with a 785 nm laser and a 2-in. refracting telescope, adulteration of olive oil with grapeseed oil and canola oil is detected between 1% and 100% at a minimum concentration of 2.5% from a distance of 15 cm and at a minimum concentration of 5% from a distance of 1 m. The technique involves correlating the intensity ratios of prominent Raman bands of edible oils at 1254, 1657, and 1441 cm -1 to the degree of adulteration. As a novel variation in the data analysis technique, integrated intensities over a spectral range of 100 cm -1 around the Raman line were used, making it possible to increase the sensitivity of the technique. The technique is demonstrated by detecting adulteration of EVOO with grapeseed and canola oils at 0-100%. Due to the potential of this technique for making measurements from a convenient distance, the short distance standoff Raman technique has the promise to be used for routine applications in food industry such as identifying food items and monitoring EMA at various checkpoints in the food supply chain and storage facilities.

  13. Handheld emissions detector (HED): overview and development

    NASA Astrophysics Data System (ADS)

    Valentino, George J.; Schimmel, David

    2009-05-01

    Nova Engineering, Cincinnati OH, a division of L-3 Communications (L-3 Nova), under the sponsorship of Program Manager Soldier Warrior (PM-SWAR), Fort Belvoir, VA, has developed a Soldier portable, light-weight, hand-held, geolocation sensor and processing system called the Handheld Emissions Detector (HED). The HED is a broadband custom receiver and processor that allows the user to easily sense, direction find, and locate a broad range of emitters in the user's surrounding area. Now in its second design iteration, the HED incorporates a set of COTS components that are complemented with L-3 Nova custom RF, power, digital, and mechanical components, plus custom embedded and application software. The HED user interfaces are designed to provide complex information in a readily-understandable form, thereby providing actionable results for operators. This paper provides, where possible, the top-level characteristics of the HED as well as the rationale behind its design philosophy along with its applications in both DOD and Commercial markets.

  14. The utility of handheld metal detector in confirming metallic foreign body ingestion in the pediatric emergency department.

    PubMed

    Saz, Eylem Ulaş; Arikan, Ciğdem; Ozgenç, Funda; Duyu, Muhterem; Ozananar, Yeliz

    2010-06-01

    We aimed to identify the presence of ingested metallic foreign bodies with handheld metal detector in the pediatric population. All children (n=40) known or suspected to have ingested a MFB and who presented to the Emergency Department of the Children's Hospital of Ege University were prospectively ascertained. All patients underwent both radiographic evaluation and handheld metal detector scanning of the chest and abdomen on their presentation. In the present prospective study, we compared handheld metal detector scanning with plain radiography. The end point of the study compared metallic foreign body findings with handheld metal detector vs radiological findings during an eight-month period. Forty subjects with possible metallic foreign body ingestion were enrolled into the study. The principle investigator scanned all subjects. Disease was defined by the presence of a foreign body in the gastrointestinal tract on radiograph. Radiographically, 35 foreign bodies were found, and handheld metal detector revealed 31 of them. The sensitivity of handheld metal detector was 88.6% (95% confidence interval [CI]: 72.1%-96.5%), specificity 100% (95% CI: 61.8%-100%), positive predictive value (PPV) 100% (95% CI: 85.8%-100%), and negative predictive value 55.5% (95% CI: 34.3%-84.6%). Handheld metal detector revealed that 2 metallic foreign bodies (1 pushpin, 1 coin) were localized to the chest, which was confirmed by radiography, and urgent removal was performed with endoscopy. Handheld metal detector scanning is an accurate, inexpensive, radiation-free screening tool and should be used for evaluation of patients suspected of ingesting metallic foreign bodies.

  15. Infrared and NIR Raman spectroscopy in medical microbiology

    NASA Astrophysics Data System (ADS)

    Naumann, Dieter

    1998-04-01

    FTIR and FT-NIR Raman spectra of intact microbial cells are highly specific, fingerprint-like signatures which can be used to (i) discriminate between diverse microbial species and strains, (ii) detect in situ intracellular components or structures such as inclusion bodies, storage materials or endospores, (iii) detect and quantify metabolically released CO2 in response to various different substrate, and (iv) characterize growth-dependent phenomena and cell-drug interactions. The characteristic information is extracted from the spectral contours by applying resolution enhancement techniques, difference spectroscopy, and pattern recognition methods such as factor-, cluster-, linear discriminant analysis, and artificial neural networks. Particularly interesting applications arise by means of a light microscope coupled to the spectrometer. FTIR spectra of micro-colonies containing less than 103 cells can be obtained from colony replica by a stamping technique that transfers micro-colonies growing on culture plates to a special IR-sample holder. Using a computer controlled x, y- stage together with mapping and video techniques, the fundamental tasks of microbiological analysis, namely detection, enumeration, and differentiation of micro- organisms can be integrated in one single apparatus. FTIR and NIR-FT-Raman spectroscopy can also be used in tandem to characterize medically important microorganisms. Currently novel methodologies are tested to take advantage of the complementary information of IR and Raman spectra. Representative examples on medically important microorganisms will be given that highlight the new possibilities of vibrational spectroscopies.

  16. Understanding the application of Raman spectroscopy to the detection of traces of life.

    PubMed

    Marshall, Craig P; Edwards, Howell G M; Jehlicka, Jan

    2010-03-01

    Investigating carbonaceous microstructures and material in Earth's oldest sedimentary rocks is an essential part of tracing the origins of life on our planet; furthermore, it is important for developing techniques to search for traces of life on other planets, for example, Mars. NASA and ESA are considering the adoption of miniaturized Raman spectrometers for inclusion in suites of analytical instrumentation to be placed on robotic landers on Mars in the near future to search for fossil or extant biomolecules. Recently, Raman spectroscopy has been used to infer a biological origin of putative carbonaceous microfossils in Early Archean rocks. However, it has been demonstrated that the spectral signature obtained from kerogen (of known biological origin) is similar to spectra obtained from many poorly ordered carbonaceous materials that arise through abiotic processes. Yet there is still confusion in the literature as to whether the Raman spectroscopy of carbonaceous materials can indeed delineate a signature of ancient life. Despite the similar nature in spectra, rigorous structural interrogation between the thermal alteration products of biological and nonbiological organic materials has not been undertaken. Therefore, we propose a new way forward by investigating the second derivative, deconvolution, and chemometrics of the carbon first-order spectra to build a database of structural parameters that may yield distinguishable characteristics between biogenic and abiogenic carbonaceous material. To place Raman spectroscopy as a technique to delineate a biological origin for samples in context, we will discuss what is currently accepted as a spectral signature for life; review Raman spectroscopy of carbonaceous material; and provide a historical overview of Raman spectroscopy applied to Archean carbonaceous materials, interpretations of the origin of the ancient carbonaceous material, and a future way forward for Raman spectroscopy.

  17. Handheld Computers in Education: An Industry Perspective

    ERIC Educational Resources Information Center

    van 't Hooft, Mark; Vahey, Philip

    2007-01-01

    Five representatives from the mobile computing industry provide their perspectives on handhelds in education. While some of their ideas differ, they all agree on the importance of staff development, appropriate curriculum development, and teacher support to create the kinds of personalized learning environments that mobile devices make possible.

  18. Investigation of stratigraphic mapping in paintings using micro-Raman spectroscopy

    NASA Astrophysics Data System (ADS)

    Karagiannis, Georgios Th.; Apostolidis, Georgios K.

    2016-04-01

    In this work, microRaman spectroscopy is used to investigate the stratigraphic mapping in paintings. The objective of mapping imaging is to segment the dataset, here spectra, into clusters each of which consisting spectra that have similar characteristics; hence, similar chemical composition. The spatial distribution of such clusters can be illustrated in pseudocolor images, in which each pixel of image is colored according to its cluster membership. Such mapping images convey information about the spatial distribution of the chemical substances in an object. Moreover, the laser light source that is used has excitation in 1064 nm, i.e., near infrared (NIR), allowing the penetration of the radiation in deeper layers. Thus, the mapping images that are produced by clustering the acquired spectra (specifying specific bands of Raman shifts) can provide stratigraphic information in the mapping images, i.e., images that convey information of the distribution of substances from deeper, as well. To cluster the spectra, unsupervised machine learning algorithms are applied, e.g., hierarchical clustering. Furthermore, the optical microscopy camera (×50), where the Raman probe (B and WTek iRaman EX) is plugged in, is attached to a computerized numerical control (CNC) system which is driven by a software that is specially developed for Raman mapping. This software except for the conventional CNC operation allows the user to parameterize the spectrometer and check each and every measurement to ensure proper acquisition. This facility is important in painting investigation because some materials are vulnerable to such specific parameterization that other materials demand. The technique is tested on a portable experimental overpainted icon of a known stratigraphy. Specifically, the under icon, i.e., the wavy hair of "Saint James", can be separated from upper icon, i.e., the halo of Mother of God in the "Descent of the Cross".

  19. Dispersive Fourier transformation for megahertz detection of coherent stokes and anti-stokes Raman spectra

    NASA Astrophysics Data System (ADS)

    Bohlin, Alexis; Patterson, Brian D.; Kliewer, Christopher J.

    2017-11-01

    In many fields of study, from coherent Raman microscopy on living cells to time-resolved coherent Raman spectroscopy of gas-phase turbulence and combustion reaction dynamics, the need for the capability to time-resolve fast dynamical and nonrepetitive processes has led to the continued development of high-speed coherent Raman methods and new high-repetition rate laser sources, such as pulse-burst laser systems. However, much less emphasis has been placed on our ability to detect shot to shot coherent Raman spectra at equivalently high scan rates, across the kilohertz to megahertz regime. This is beyond the capability of modern scientific charge coupled device (CCD) cameras, for instance, as would be employed with a Czerny-Turner type spectrograph. As an alternative detection strategy with megahertz spectral detection rate, we demonstrate dispersive Fourier transformation detection of pulsed (∼90 ps) coherent Raman signals in the time-domain. Instead of reading the frequency domain signal out using a spectrometer and CCD, the signal is transformed into a time-domain waveform through dispersive Fourier transformation in a long single-mode fiber and read-out with a fast sampling photodiode and oscilloscope. Molecular O- and S-branch rotational sideband spectra from both N2 and H2 were acquired employing this scheme, and the waveform is fitted to show highly quantitative agreement with a molecular model. The total detection time for the rotational spectrum was 20 ns, indicating an upper limit to the detection frequency of ∼50 MHz, significantly faster than any other reported spectrally-resolved coherent anti-Stokes Raman detection strategy to date.

  20. Laser-Raman microprobe identification of inclusions in capsules associated with silicone gel breast implants.

    PubMed

    Centeno, J A; Mullick, F G; Panos, R G; Miller, F W; Valenzuela-Espinoza, A

    1999-07-01

    Raman spectroscopy (the analysis of scattered photons after excitation with a monochromatic light source) provides a nondestructive method for identifying organic and inorganic materials on the basis of the molecule's characteristic spectrum of vibrational frequencies. Although the technique has been predominantly applied in sciences other than pathology, the recent advent of high-quality microscope optics coupled to optical Raman spectrometers (a variation known as a Raman microprobe) rendered this technique amenable to applications in human pathology. In the Raman microprobe, a laser beam is focused on a spot approximately 1 microm in diameter on the surface of the sample, e.g., tissue, and the scattered light is collected and analyzed. In this investigation, we used the Raman microprobe for the identification of foreign materials in breast implant capsular tissues. The characteristic silicone group frequencies associated with the silicon-oxygen stretch, the silicone-carbon stretch, the silicon-methyl and the methyl carbon-hydrogen stretch frequencies were used to identify polydimethylsiloxane and to define chemical differences among the various other implant-related inclusions. All of the inclusions were positively identified in a series of 44 capsules from silicone gel-filled implants: polydimethylsiloxane was found in 44 of 44 capsules surrounding silicone gel-filled implants; polyurethane was seen in 4 of 4 capsules around polyurethane foam-coated gel-filled implants; 4 of 4 capsules enveloping Dacron patch gel-filled implants revealed Dacron; and talc was identified in 8 of these 44 capsules. Raman microspectroscopy provides a rapid, accurate, and sensitive method for identifying inclusions associated with silicone and other implant materials in tissue.

  1. Raman microspectroscopy, surface-enhanced Raman scattering microspectroscopy, and stable-isotope Raman microspectroscopy for biofilm characterization.

    PubMed

    Ivleva, Natalia P; Kubryk, Patrick; Niessner, Reinhard

    2017-07-01

    Biofilms represent the predominant form of microbial life on our planet. These aggregates of microorganisms, which are embedded in a matrix formed by extracellular polymeric substances, may colonize nearly all interfaces. Detailed knowledge of microorganisms enclosed in biofilms as well as of the chemical composition, structure, and functions of the complex biofilm matrix and their changes at different stages of the biofilm formation and under various physical and chemical conditions is relevant in different fields. Important research topics include the development and improvement of antibiotics and medical devices and the optimization of biocides, antifouling strategies, and biological wastewater treatment. Raman microspectroscopy is a capable and nondestructive tool that can provide detailed two-dimensional and three-dimensional chemical information about biofilm constituents with the spatial resolution of an optical microscope and without interference from water. However, the sensitivity of Raman microspectroscopy is rather limited, which hampers the applicability of Raman microspectroscopy especially at low biomass concentrations. Fortunately, the resonance Raman effect as well as surface-enhanced Raman scattering can help to overcome this drawback. Furthermore, the combination of Raman microspectroscopy with other microscopic techniques, mass spectrometry techniques, or particularly with stable-isotope techniques can provide comprehensive information on monospecies and multispecies biofilms. Here, an overview of different Raman microspectroscopic techniques, including resonance Raman microspectroscopy and surface-enhanced Raman scattering microspectroscopy, for in situ detection, visualization, identification, and chemical characterization of biofilms is given, and the main feasibilities and limitations of these techniques in biofilm research are presented. Future possibilities of and challenges for Raman microspectroscopy alone and in combination with other

  2. Development of a Fiber-Optics Microspatially Offset Raman Spectroscopy Sensor for Probing Layered Materials.

    PubMed

    Vandenabeele, Peter; Conti, Claudia; Rousaki, Anastasia; Moens, Luc; Realini, Marco; Matousek, Pavel

    2017-09-05

    Microspatially offset Raman spectroscopy (micro-SORS) has been proposed as a valuable approach to sample molecular information from layers that are covered by a turbid (nontransparent) layer. However, when large magnifications are involved, the approach is not straightforward, as spatial constraints exist to position the laser beam and the objective lens with the external beam delivery or, with internal beam delivery, the maximum spatial offset achievable is restricted. To overcome these limitations, we propose here a prototype of a new micro-SORS sensor, which uses bare glass fibers to transfer the laser radiation to the sample and to collect the Raman signal from a spatially offset zone to the Raman spectrometer. The concept also renders itself amenable to remote delivery and to the miniaturization of the probe head which could be beneficial for special applications, e.g., where access to sample areas is restricted. The basic applicability of this approach was demonstrated by studying several layered structure systems. Apart from proving the feasibility of the technique, also, practical aspects of the use of the prototype sensor are discussed.

  3. Surface-enhanced Raman medical probes and system for disease diagnosis and drug testing

    DOEpatents

    Vo-Dinh, T.

    1999-01-26

    A probe for a surface-enhanced Raman scattering spectrometer includes a member of optically transmissive material for receiving the excitation radiation from a laser and for carrying the radiation emitted from a specimen to a detector. An end of the member for placing against the specimen has a coating that produces surface enhancement of the specimen during Raman scattering spectroscopic analysis. Specifically the coating is formed by a first layer of microparticles on the member and a metal layer over the first layer. The first layer may form a microstructure surface over which a metal layer is applied. Alternatively the coating may be a material containing microparticles of a metal. An optional layer of a material may be applied to the metal layer to concentrate onto the probe compounds of analytical interest onto the probe. 39 figs.

  4. Rapid detection of bacterial contamination in cell or tissue cultures based on Raman spectroscopy

    NASA Astrophysics Data System (ADS)

    Bolwien, Carsten; Sulz, Gerd; Becker, Sebastian; Thielecke, Hagen; Mertsching, Heike; Koch, Steffen

    2008-02-01

    Monitoring the sterility of cell or tissue cultures is an essential task, particularly in the fields of regenerative medicine and tissue engineering when implanting cells into the human body. We present a system based on a commercially available microscope equipped with a microfluidic cell that prepares the particles found in the solution for analysis, a Raman-spectrometer attachment optimized for non-destructive, rapid recording of Raman spectra, and a data acquisition and analysis tool for identification of the particles. In contrast to conventional sterility testing in which samples are incubated over weeks, our system is able to analyze milliliters of supernatant or cell suspension within hours by filtering relevant particles and placing them on a Raman-friendly substrate in the microfluidic cell. Identification of critical particles via microscopic imaging and subsequent image analysis is carried out before micro-Raman analysis of those particles is then carried out with an excitation wavelength of 785 nm. The potential of this setup is demonstrated by results of artificial contamination of samples with a pool of bacteria, fungi, and spores: single-channel spectra of the critical particles are automatically baseline-corrected without using background data and classified via hierarchical cluster analysis, showing great promise for accurate and rapid detection and identification of contaminants.

  5. Surgical guidance system using hand-held probe with accompanying positron coincidence detector

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Majewski, Stanislaw; Weisenberger, Andrew G.

    A surgical guidance system offering different levels of imaging capability while maintaining the same hand-held convenient small size of light-weight intra-operative probes. The surgical guidance system includes a second detector, typically an imager, located behind the area of surgical interest to form a coincidence guidance system with the hand-held probe. This approach is focused on the detection of positron emitting biomarkers with gamma rays accompanying positron emissions from the radiolabeled nuclei.

  6. Fe-Ti-Cr-Oxides in Martian Meteorite EETA79001 Studied by Point-counting Procedure Using Raman Spectroscopy

    NASA Technical Reports Server (NTRS)

    Wang, Alian; Kuebler, Karla E.; Jolliff, Bradley L.; Haskin, Larry A.

    2003-01-01

    Fe-Ti-Cr-Oxide minerals contain much information about rock petrogenesis and alteration. Among the most important in the petrology of common intrusive and extrusive rocks are those of the FeO-TiO2-Cr2O3 compositional system chromite, ulv spinel-magnetite, and ilmenite-hematite. These minerals retain memories of oxygen fugacity. Their exsolution into companion mineral pairs give constraints on formation temperature and cooling rate. Laser Raman spectroscopy is anticipated to be a powerful technique for characterization of materials on the surface of Mars. A Mars Microbeam Raman Spectrometer (MMRS) is under development. It combines a micro sized laser beam and an automatic point-counting mechanism, and so can detect minor minerals or weak Raman-scattering phases such as Fe- Ti-Cr-oxides in mixtures (rocks & soils), and provide information on grain size and mineral mode. Most Fe-Ti-Cr-oxides produce weaker Raman signals than those from oxyanionic minerals, e.g. carbonates, sulfates, phosphates, and silicates, partly because most of them are intrinsically weaker Raman scatters, and partly because their dark colors limit the penetration depth of the excitation laser beam (visible wavelength) and of the Raman radiation produced. The purpose of this study is to show how well the Fe-Ti-Cr-oxides can be characterized by on-surface planetary exploration using Raman spectroscopy. We studied the basic Raman features of common examples of these minerals using well-characterized individual mineral grains. The knowledge gained was then used to study the Fe-Ti-Cr-oxides in Martian meteorite EETA79001, especially effects of compositional and structural variations on their Raman features.

  7. 75 FR 36678 - In the Matter of Certain Authentication Systems, Including Software and Handheld Electronic...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-06-28

    ... INTERNATIONAL TRADE COMMISSION [Investigation No. 337-TA-697] In the Matter of Certain Authentication Systems, Including Software and Handheld Electronic Devices; Notice of Commission Decision Not to... importation of certain authentication systems, including software and handheld electronic devices, by reason...

  8. My-Mini-Pet: A Handheld Pet-Nurturing Game to Engage Students in Arithmetic Practices

    ERIC Educational Resources Information Center

    Liao, C. C. Y.; Chen, Z-H.; Cheng, H. N. H.; Chen, F-C.; Chan, T-W.

    2011-01-01

    In the last decade, more and more games have been developed for handheld devices. Furthermore, the popularity of handheld devices and increase of wireless computing can be taken advantage of to provide students with more learning opportunities. Games also could bring promising benefits--specifically, motivating students to learn/play, sustaining…

  9. Airborne Visible/Infrared Imaging Spectrometer (AVIRIS) spectrometer design and performance

    NASA Technical Reports Server (NTRS)

    Macenka, Steven A.; Chrisp, Michael P.

    1987-01-01

    The development of the Airborne Visible/Infrared Imaging Spectrometer (AVIRIS) has been completed at JPL. This paper outlines the functional requirements of the spectrometer optics subsystem, and describes the spectrometer optical design. The optical subsystem performance is shown in terms of spectral modulation transfer functions, radial energy distributions, and system transmission at selected wavelengths for the four spectrometers. An outline of the spectrometer alignment is included.

  10. Quantifying creatinine and urea in human urine through Raman spectroscopy aiming at diagnosis of kidney disease

    NASA Astrophysics Data System (ADS)

    Saatkamp, Cassiano Junior; de Almeida, Maurício Liberal; Bispo, Jeyse Aliana Martins; Pinheiro, Antonio Luiz Barbosa; Fernandes, Adriana Barrinha; Silveira, Landulfo, Jr.

    2016-03-01

    Due to their importance in the regulation of metabolites, the kidneys need continuous monitoring to check for correct functioning, mainly by urea and creatinine urinalysis. This study aimed to develop a model to estimate the concentrations of urea and creatinine in urine by means of Raman spectroscopy (RS) that could be used to diagnose kidney disease. Midstream urine samples were obtained from 54 volunteers with no kidney complaints. Samples were subjected to a standard colorimetric assay of urea and creatinine and submitted to spectroscopic analysis by means of a dispersive Raman spectrometer (830 nm, 350 mW, 30 s). The Raman spectra of urine showed peaks related mainly to urea and creatinine. Partial least squares models were developed using selected Raman bands related to urea and creatinine and the biochemical concentrations in urine measured by the colorimetric method, resulting in r=0.90 and 0.91 for urea and creatinine, respectively, with root mean square error of cross-validation (RMSEcv) of 312 and 25.2 mg/dL, respectively. RS may become a technique for rapid urinalysis, with concentration errors suitable for population screening aimed at the prevention of renal diseases.

  11. Hand-held cell phone use while driving legislation and observed driver behavior among population sub-groups in the United States.

    PubMed

    Rudisill, Toni M; Zhu, Motao

    2017-05-12

    Cell phone use behaviors are known to vary across demographic sub-groups and geographic locations. This study examined whether universal hand-held calling while driving bans were associated with lower road-side observed hand-held cell phone conversations across drivers of different ages (16-24, 25-59, ≥60 years), sexes, races (White, African American, or other), ruralities (suburban, rural, or urban), and regions (Northeast, Midwest, South, and West). Data from the 2008-2013 National Occupant Protection Use Survey were merged with states' cell phone use while driving legislation. The exposure was presence of a universal hand-held cell phone ban at time of observation. Logistic regression was used to assess the odds of drivers having a hand-held cell phone conversation. Sub-groups differences were assessed using models with interaction terms. When universal hand-held cell phone bans were effective, hand-held cell phone conversations were lower across all driver demographic sub-groups and regions. Sub-group differences existed among the sexes (p-value, <0.0001) and regions (p-value, 0.0003). Compared to states without universal hand-held cell phone bans, the adjusted odds ratio (aOR) of a driver hand-held phone conversation was 0.34 [95% confidence interval (CI): 0.28, 0.41] for females versus 0.47 (CI 0.40, 0.55) for males and 0.31 (CI 0.25, 0.38) for drivers in Western states compared to 0.47 (CI 0.30, 0.72) in the Northeast and 0.50 (CI 0.38, 0.66) in the South. The presence of universal hand-held cell phone bans were associated lower hand-held cell phone conversations across all driver sub-groups and regions. Hand-held phone conversations were particularly lower among female drivers and those from Western states when these bans were in effect. Public health interventions concerning hand-held cell phone use while driving could reasonably target all drivers.

  12. Epilepsy Forewarning Using A Hand-Held Device

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hively, LM

    2005-02-21

    Over the last decade, ORNL has developed and patented a novel approach for forewarning of a large variety of machine and biomedical events. The present implementation uses desktop computers to analyze archival data. This report describes the next logical step in this effort, namely use of a hand-held device for the analysis.

  13. Hand-held Calculators: Past, Present, and Future

    ERIC Educational Resources Information Center

    Bell, Max; And Others

    1977-01-01

    Recommendations of several publications with regard to the use of hand-held calculators in the mathematics curriculum are presented. Relevant portions of the NACOME and Euclid Conference reports are cited as well as a report to NSF and recommendations from an NIE/NSF conference. Recommendations support expanded use of, and research concerning,…

  14. Handheld Chem/Biosensor Using Extreme Conformational Changes in Designed Binding Proteins to Enhance Surface Plasmon Resonance (SPR)

    DTIC Science & Technology

    2016-04-01

    AFCEC-CX-TY-TR-2016-0007 HANDHELD CHEM/ BIOSENSOR USING EXTREME CONFORMATIONAL CHANGES IN DESIGNED BINDING PROTEINS TO ENHANCE SURFACE PLASMON...Include area code) 03/24/2016 Abstract 08/14/2015--03/31/2016 Handheld chem/ biosensor using extreme conformational changes in designed binding...Baltimore, Maryland on 17-21 April 2016. We propose the development of a highly sensitive handheld chem/ biosensor device using a novel class of engineered

  15. The accuracy of a hand-held navigation system in total knee arthroplasty.

    PubMed

    Loh, Bryan; Chen, Jerry Yongqiang; Yew, Andy Khye Soon; Pang, Hee Nee; Tay, Darren Keng Jin; Chia, Shi-Lu; Lo, Ngai Nung; Yeo, Seng Jin

    2017-03-01

    This study aims to evaluate the effectiveness of a new hand-held navigation system. The authors of this study hypothesize that this navigation system will improve overall lower limb alignment and implant placement without causing a delay in surgery. Two hundred consecutive patients diagnosed with tricompartmental osteoarthritis and underwent total knee arthroplasty by a senior surgeon were included in this study. One hundred patients underwent TKA using the hand-held navigation system, while the other 100 patients underwent TKA using the conventional technique. The primary outcomes of this study were the overall alignment of the lower limb and the position of the components. This was determined radiologically using the: (1) Hip-Knee-Ankle angle (HKA) for lower limb alignment; (2) Coronal Femoral-Component angle (CFA); and (3) Coronal Tibia-Component angle (CTA) for component position. Normal alignment was taken as 180° ± 3° for the HKA and 90° ± 3° for both the CFA and CTA. For the CFA, the proportion of outliers was 7 and 17% in the hand-held navigation and conventional group, respectively (p = 0.030). For the HKA and CTA, there was no difference in the proportion of outliers between the two groups. The duration of surgery was 73 ± 9 min and 87 ± 15 min in the hand-held navigation and conventional group, respectively (p < 0.001). This hand-held navigation system is an effective intraoperative tool for reducing the proportion of outliers for femoral implant placement as well as the duration of surgery. The authors conclude that it can be considered for use to check femoral implant placement intra-operatively. III.

  16. Identification of handheld objects for electro-optic/FLIR applications

    NASA Astrophysics Data System (ADS)

    Moyer, Steve K.; Flug, Eric; Edwards, Timothy C.; Krapels, Keith A.; Scarbrough, John

    2004-08-01

    This paper describes research on the determination of the fifty-percent probability of identification cycle criterion (N50) for two sets of handheld objects. The first set consists of 12 objects which are commonly held in a single hand. The second set consists of 10 objects commonly held in both hands. These sets consist of not only typical civilian handheld objects but also objects that are potentially lethal. A pistol, a cell phone, a rocket propelled grenade (RPG) launcher, and a broom are examples of the objects in these sets. The discrimination of these objects is an inherent part of homeland security, force protection, and also general population security. Objects were imaged from each set in the visible and mid-wave infrared (MWIR) spectrum. Various levels of blur are then applied to these images. These blurred images were then used in a forced choice perception experiment. Results were analyzed as a function of blur level and target size to give identification probability as a function of resolvable cycles on target. These results are applicable to handheld object target acquisition estimates for visible imaging systems and MWIR systems. This research provides guidance in the design and analysis of electro-optical systems and forward-looking infrared (FLIR) systems for use in homeland security, force protection, and also general population security.

  17. Concept for tremor compensation for a handheld OCT-laryngoscope

    NASA Astrophysics Data System (ADS)

    Donner, Sabine; Deutsch, Stefanie; Bleeker, Sebastian; Ripken, Tammo; Krüger, Alexander

    2013-06-01

    Optical coherence tomography (OCT) is a non-invasive imaging technique which can create optical tissue sections, enabling diagnosis of vocal cord tissue. To take full advantage from the non-contact imaging technique, OCT was adapted to an indirect laryngoscope to work on awake patients. Using OCT in a handheld diagnostic device the challenges of rapid working distance adjustment and tracking of axial motion arise. The optical focus of the endoscopic sample arm and the reference-arm length can be adjusted in a range of 40 mm to 90 mm. Automatic working distance adjustment is based on image analysis of OCT B-scans which identifies off depth images as well as position errors. The movable focal plane and reference plane are used to adjust working distance to match the sample depth and stabilise the sample in the desired axial position of the OCT scans. The autofocus adjusts the working distance within maximum 2.7 seconds for the maximum initial displacement of 40 mm. The amplitude of hand tremor during 60 s handheld scanning was reduced to 50 % and it was shown that the image stabilisation keeps the position error below 0.5 mm. Fast automatic working distance adjustment is crucial to minimise the duration of the diagnostic procedure. The image stabilisation compensates relative axial movements during handheld scanning.

  18. Utilising handheld computers to monitor and support patients receiving chemotherapy: results of a UK-based feasibility study.

    PubMed

    Kearney, N; Kidd, L; Miller, M; Sage, M; Khorrami, J; McGee, M; Cassidy, J; Niven, K; Gray, P

    2006-07-01

    Recent changes in cancer service provision mean that many patients spend a limited time in hospital and therefore experience and must cope with and manage treatment-related side effects at home. Information technology can provide innovative solutions in promoting patient care through information provision, enhancing communication, monitoring treatment-related side effects and promoting self-care. The aim of this feasibility study was to evaluate the acceptability of using handheld computers as a symptom assessment and management tool for patients receiving chemotherapy for cancer. A convenience sample of patients (n = 18) and health professionals (n = 9) at one Scottish cancer centre was recruited. Patients used the handheld computer to record and send daily symptom reports to the cancer centre and receive instant, tailored symptom management advice during two treatment cycles. Both patients' and health professionals' perceptions of the handheld computer system were evaluated at baseline and at the end of the project. Patients believed the handheld computer had improved their symptom management and felt comfortable in using it. The health professionals also found the handheld computer to be helpful in assessing and managing patients' symptoms. This project suggests that a handheld-computer-based symptom management tool is feasible and acceptable to both patients and health professionals in complementing the care of patients receiving chemotherapy.

  19. Clinical translation of handheld optical coherence tomography: practical considerations and recent advancements

    NASA Astrophysics Data System (ADS)

    Monroy, Guillermo L.; Won, Jungeun; Spillman, Darold R.; Dsouza, Roshan; Boppart, Stephen A.

    2017-12-01

    Since the inception of optical coherence tomography (OCT), advancements in imaging system design and handheld probes have allowed for numerous advancements in disease diagnostics and characterization of the structural and optical properties of tissue. OCT system developers continue to reduce form factor and cost, while improving imaging performance (speed, resolution, etc.) and flexibility for applicability in a broad range of fields, and nearly every clinical specialty. An extensive array of components to construct customized systems has also become available, with a range of commercial entities that produce high-quality products, from single components to full systems, for clinical and research use. Many advancements in the development of these miniaturized and portable systems can be linked back to a specific challenge in academic research, or a clinical need in medicine or surgery. Handheld OCT systems are discussed and explored for various applications. Handheld systems are discussed in terms of their relative level of portability and form factor, with mention of the supporting technologies and surrounding ecosystem that bolstered their development. Additional insight from our efforts to implement systems in several clinical environments is provided. The trend toward well-designed, efficient, and compact handheld systems paves the way for more widespread adoption of OCT into point-of-care or point-of-procedure applications in both clinical and commercial settings.

  20. Portable Raman spectroscopy for an in-situ monitoring the ripening of tomato (Solanum lycopersicum) fruits

    NASA Astrophysics Data System (ADS)

    Trebolazabala, Josu; Maguregui, Maite; Morillas, Héctor; de Diego, Alberto; Madariaga, Juan Manuel

    2017-06-01

    Ripening is one of the most important transformations that fruits and vegetables suffer, from an unripe to a ripe stage. In this study, it was followed up and analyzed the variations in the composition of tomato fruits at different ripening stages (green or unripe, orange or middle ripe, red or ripe and brown or overripe). The results obtained from the Raman measurements carried out showed a change in the composition of tomato fruits in the transit from green to brown. The analysis confirmed an increase of carotenoids from an unripe to a ripe stage of these fruits, being lycopene the characteristic carotenoid of the optimum ripe stage. The presence of chlorophyll and cuticular waxes decrease from the unripe to the ripe stage. Moreover, the relative intensity of phytofluene, a transition compound in the carotenoid biosynthetic pathway, is higher in the orange or middle ripening stage. The results obtained in-situ, without cutting and handling the tomato fruits, by means of a portable Raman spectrometer offered the same information that can be achieved using a more expensive and sophisticated confocal Raman microscope.

  1. Evaluation of an enclosed ultraviolet-C radiation device for decontamination of mobile handheld devices.

    PubMed

    Mathew, J Itty; Cadnum, Jennifer L; Sankar, Thriveen; Jencson, Annette L; Kundrapu, Sirisha; Donskey, Curtis J

    2016-06-01

    Mobile handheld devices used in health care settings may become contaminated with health care-associated pathogens. We demonstrated that an enclosed ultraviolet-C radiation device was effective in rapidly reducing methicillin-resistant Staphylococcus aureus, and with longer exposure times, Clostridium difficile spores, on glass slides and reducing contamination on in-use mobile handheld devices. Published by Elsevier Inc.

  2. 75 FR 43206 - In the Matter of Certain Wireless Communications System Server Software, Wireless Handheld...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-07-23

    ... INTERNATIONAL TRADE COMMISSION [Investigation No. 337-TA-706] In the Matter of Certain Wireless Communications System Server Software, Wireless Handheld Devices and Battery Packs: Notice of Commission... handheld devices and battery packs by reason of infringement of certain claims of U.S. Patent Nos. 5,319...

  3. Trends in Handheld Computing Among Medical Students

    PubMed Central

    Grasso, Michael A.; Yen, M. Jim; Mintz, Matthew L.

    2005-01-01

    The purpose of this study was to identify trends in the utilization and acceptance of handheld computers (personal digital assistants) among medical students during preclinical and clinical training. These results can be used to identify differences between preclinical and clinical users, differences between current use and idealized use, and perceived limitations of these devices. PMID:16779255

  4. Raman spectroscopy

    USDA-ARS?s Scientific Manuscript database

    Raman spectroscopy has gained increased use and importance in recent years for accurate and precise detection of physical and chemical properties of food materials, due to the greater specificity and sensitivity of Raman techniques over other analytical techniques. This book chapter presents Raman s...

  5. Spherical grating spectrometers

    NASA Astrophysics Data System (ADS)

    O'Donoghue, Darragh; Clemens, J. Christopher

    2014-07-01

    We describe designs for spectrometers employing convex dispersers. The Offner spectrometer was the first such instrument; it has almost exclusively been employed on satellite platforms, and has had little impact on ground-based instruments. We have learned how to fabricate curved Volume Phase Holographic (VPH) gratings and, in contrast to the planar gratings of traditional spectrometers, describe how such devices can be used in optical/infrared spectrometers designed specifically for curved diffraction gratings. Volume Phase Holographic gratings are highly efficient compared to conventional surface relief gratings; they have become the disperser of choice in optical / NIR spectrometers. The advantage of spectrometers with curved VPH dispersers is the very small number of optical elements used (the simplest comprising a grating and a spherical mirror), as well as illumination of mirrors off axis, resulting in greater efficiency and reduction in size. We describe a "Half Offner" spectrometer, an even simpler version of the Offner spectrometer. We present an entirely novel design, the Spherical Transmission Grating Spectrometer (STGS), and discuss exemplary applications, including a design for a double-beam spectrometer without any requirement for a dichroic. This paradigm change in spectrometer design offers an alternative to all-refractive astronomical spectrometer designs, using expensive, fragile lens elements fabricated from CaF2 or even more exotic materials. The unobscured mirror layout avoids a major drawback of the previous generation of catadioptric spectrometer designs. We describe laboratory measurements of the efficiency and image quality of a curved VPH grating in a STGS design, demonstrating, simultaneously, efficiency comparable to planar VPH gratings along with good image quality. The stage is now set for construction of a prototype instrument with impressive performance.

  6. FT-Raman spectroscopic study of calcium-rich and magnesium-rich carbonate minerals.

    PubMed

    Edwards, Howell G M; Villar, Susana E Jorge; Jehlicka, Jan; Munshi, Tasnim

    2005-08-01

    Calcium and magnesium carbonates are important minerals found in sedimentary environments. Although sandstones are the most common rock colonized by endolith organisms, the production of calcium and magnesium carbonates is important in survival strategies of organisms and as a source for the removal of oxalate ions. Extremophile organisms in some situations may convert or destroy carbonates of calcium and magnesium, which gives important information about the conditions under which these organisms can survive. The identification on the surface of Mars of 'White Rock' formations, in Juventae Chasma or Sabaea Terra, as possibly carbonate rocks makes the study of these minerals a prerequisite of remote Martian exploration. Here, we show the protocol for the identification by Raman spectroscopy of different calcium and magnesium carbonates and we present a database of relevance in the search for life, extinct or extant, on Mars; this will be useful for the assessment of data obtained from remote, miniaturized Raman spectrometers now proposed for Mars exploration.

  7. Correlation and Agreement of Handheld Spirometry with Laboratory Spirometry in Allogeneic Hematopoietic Cell Transplant Recipients

    PubMed Central

    Cheng, Guang-Shing; Campbell, Angela P.; Xie, Hu; Stednick, Zach; Callais, Cheryl; Leisenring, Wendy M.; Englund, Janet A.; Chien, Jason W.; Boeckh, Michael

    2016-01-01

    BACKGROUND Early detection of subclinical lung function decline may help identify allogeneic hematopoietic cell transplantation (HCT) recipients who are at increased risk for late non-infectious pulmonary complications including bronchiolitis obliterans syndrome (BOS). We evaluated the use of handheld spirometry in this population. METHODS Allogeneic HCT recipients enrolled in a single center observational trial performed weekly spirometry with a handheld spirometer for one year after transplantation. Participants performed pulmonary function tests in an outpatient laboratory setting at 3 time points: pre-transplant, day 80 and 1 year post-transplant. Correlation between the two methods was assessed by Pearson and Spearman correlations; agreement was assessed using Bland-Altman plots. RESULTS A total of 437 subjects had evaluable pulmonary function tests. Correlation for FEV1 was r=0.954 (p<.0001) at day 80 and r=0.931 (p<.0001) at 1 year when the handheld and laboratory tests were performed within one day of each other. Correlation for handheld FEV6 with laboratory FVC was r=0.914 (p<.0001) at day 80 and r=0.826 (p<.0001) at 1 year. The bias, or the mean difference (handheld minus laboratory) for FEV1 at day 80 and 1 year was −0.13L (−0.63, 0.37) and −0.10L (−0.77, 0.56), respectively. FEV6 showed greater bias at day 80 [−0.51L (−1.44, 0.42)] and 1 year [−0.40L (−1.81, 1.01)]. CONCLUSIONS Handheld spirometry correlated well with laboratory spirometry after allogeneic HCT and may be useful for self-monitoring of patients for early identification of airflow obstruction. PMID:26748162

  8. Monitoring of WEEE plastics in regards to brominated flame retardants using handheld XRF

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Aldrian, Alexia, E-mail: alexia.aldrian@unileoben.ac.at; Ledersteger, Alfred, E-mail: a.ledersteger@saubermacher.at; Pomberger, Roland, E-mail: roland.pomberger@unileoben.ac.at

    Highlights: • Specification of an empirical factor for conversion from bromine to PBB and PBDE. • The handheld XRF device was validated for this particular application. • A very large number of over 4600 pieces of monitor housings was analysed. • The recyclable fraction mounts up to 85% for TV but only 53% of PC waste plastics. • A high percentage of pieces with bromine contents of over 50,000 ppm was obtained. - Abstract: This contribution is focused on the on-site determination of the bromine content in waste electrical and electronic equipment (WEEE), in particular waste plastics from television setsmore » (TV) and personal computer monitors (PC) using a handheld X-ray fluorescence (XRF) device. The described approach allows the examination of samples in regards to the compliance with legal specifications for polybrominated biphenyls (PBBs) and polybrominated diphenyl ethers (PBDEs) directly after disassembling and facilitates the sorting out of plastics with high contents of brominated flame retardants (BFRs). In all, over 3000 pieces of black (TV) and 1600 pieces of grey (PC) plastic waste were analysed with handheld XRF technique for this study. Especially noticeable was the high percentage of pieces with a bromine content of over 50,000 ppm for TV (7%) and PC (39%) waste plastics. The applied method was validated by comparing the data of handheld XRF with results obtained by GC–MS. The results showed the expected and sufficiently accurate correlation between these two methods. It is shown that handheld XRF technique is an effective tool for fast monitoring of large volumes of WEEE plastics in regards to BFRs for on-site measurements.« less

  9. Handheld computers for self-administered sensitive data collection: A comparative study in Peru

    PubMed Central

    Bernabe-Ortiz, Antonio; Curioso, Walter H; Gonzales, Marco A; Evangelista, Wilfredo; Castagnetto, Jesus M; Carcamo, Cesar P; Hughes, James P; Garcia, Patricia J; Garnett, Geoffrey P; Holmes, King K

    2008-01-01

    Background Low-cost handheld computers (PDA) potentially represent an efficient tool for collecting sensitive data in surveys. The goal of this study is to evaluate the quality of sexual behavior data collected with handheld computers in comparison with paper-based questionnaires. Methods A PDA-based program for data collection was developed using Open-Source tools. In two cross-sectional studies, we compared data concerning sexual behavior collected with paper forms to data collected with PDA-based forms in Ancon (Lima). Results The first study enrolled 200 participants (18–29 years). General agreement between data collected with paper format and handheld computers was 86%. Categorical variables agreement was between 70.5% and 98.5% (Kappa: 0.43–0.86) while numeric variables agreement was between 57.1% and 79.8% (Spearman: 0.76–0.95). Agreement and correlation were higher in those who had completed at least high school than those with less education. The second study enrolled 198 participants. Rates of responses to sensitive questions were similar between both kinds of questionnaires. However, the number of inconsistencies (p = 0.0001) and missing values (p = 0.001) were significantly higher in paper questionnaires. Conclusion This study showed the value of the use of handheld computers for collecting sensitive data, since a high level of agreement between paper and PDA responses was reached. In addition, a lower number of inconsistencies and missing values were found with the PDA-based system. This study has demonstrated that it is feasible to develop a low-cost application for handheld computers, and that PDAs are feasible alternatives for collecting field data in a developing country. PMID:18366687

  10. Raman Plus X: Biomedical Applications of Multimodal Raman Spectroscopy.

    PubMed

    Das, Nandan K; Dai, Yichuan; Liu, Peng; Hu, Chuanzhen; Tong, Lieshu; Chen, Xiaoya; Smith, Zachary J

    2017-07-07

    Raman spectroscopy is a label-free method of obtaining detailed chemical information about samples. Its compatibility with living tissue makes it an attractive choice for biomedical analysis, yet its translation from a research tool to a clinical tool has been slow, hampered by fundamental Raman scattering issues such as long integration times and limited penetration depth. In this review we detail the how combining Raman spectroscopy with other techniques yields multimodal instruments that can help to surmount the translational barriers faced by Raman alone. We review Raman combined with several optical and non-optical methods, including fluorescence, elastic scattering, OCT, phase imaging, and mass spectrometry. In each section we highlight the power of each combination along with a brief history and presentation of representative results. Finally, we conclude with a perspective detailing both benefits and challenges for multimodal Raman measurements, and give thoughts on future directions in the field.

  11. Raman Plus X: Biomedical Applications of Multimodal Raman Spectroscopy

    PubMed Central

    Das, Nandan K.; Dai, Yichuan; Liu, Peng; Hu, Chuanzhen; Tong, Lieshu; Chen, Xiaoya

    2017-01-01

    Raman spectroscopy is a label-free method of obtaining detailed chemical information about samples. Its compatibility with living tissue makes it an attractive choice for biomedical analysis, yet its translation from a research tool to a clinical tool has been slow, hampered by fundamental Raman scattering issues such as long integration times and limited penetration depth. In this review we detail the how combining Raman spectroscopy with other techniques yields multimodal instruments that can help to surmount the translational barriers faced by Raman alone. We review Raman combined with several optical and non-optical methods, including fluorescence, elastic scattering, OCT, phase imaging, and mass spectrometry. In each section we highlight the power of each combination along with a brief history and presentation of representative results. Finally, we conclude with a perspective detailing both benefits and challenges for multimodal Raman measurements, and give thoughts on future directions in the field. PMID:28686212

  12. Non-contact temperature Raman measurement in YSZ and alumina ceramics

    NASA Astrophysics Data System (ADS)

    Thapa, Juddha; Chorpening, Benjamin T.; Buric, Michael P.

    2018-02-01

    Yttria-stabilized zirconia (YSZ: ZrO2 + Y2O3) and alumina (Al2O3) are widely used in high-temperature applications due to their high-temperature stability, low thermal conductivity, and chemical inertness. Alumina is used extensively in engineered ceramic applications such as furnace tubes and thermocouple protection tubes, while YSZ is commonly used in thermal barrier coatings on turbine blades. Because they are already often found in high temperature and combustion applications, these two substances have been compared as candidates for Raman thermometry in high-temperature energy-related applications. Both ceramics were used with as-received rough surfaces, i.e., without polishing or modification. This closely approximates surface conditions in practical high-temperature situations. A single-line argon ion laser at 488nm was used to excite the materials inside a cylindrical furnace while measuring Raman spectra with a fixed-grating spectrometer. The shift in the peak positions of the most intense A1g peak at 418cm-1 (room temperature position) of alumina ceramic and relatively more symmetric Eg peak at 470cm-1 (room temperature position) of YSZ were measured and reported along with a thermocouple-derived reference temperature up to about 1000°C. This study showed that alumina and YSZ ceramics can be used in high-temperature Raman thermometry with an accuracy of 4.54°C and 10.5°C average standard deviations respectively over the range of about 1000°C. We hope that this result will guide future researchers in selecting materials and utilizing Raman non-contact temperature measurements in harsh environments.

  13. Monitoring of WEEE plastics in regards to brominated flame retardants using handheld XRF.

    PubMed

    Aldrian, Alexia; Ledersteger, Alfred; Pomberger, Roland

    2015-02-01

    This contribution is focused on the on-site determination of the bromine content in waste electrical and electronic equipment (WEEE), in particular waste plastics from television sets (TV) and personal computer monitors (PC) using a handheld X-ray fluorescence (XRF) device. The described approach allows the examination of samples in regards to the compliance with legal specifications for polybrominated biphenyls (PBBs) and polybrominated diphenyl ethers (PBDEs) directly after disassembling and facilitates the sorting out of plastics with high contents of brominated flame retardants (BFRs). In all, over 3000 pieces of black (TV) and 1600 pieces of grey (PC) plastic waste were analysed with handheld XRF technique for this study. Especially noticeable was the high percentage of pieces with a bromine content of over 50,000ppm for TV (7%) and PC (39%) waste plastics. The applied method was validated by comparing the data of handheld XRF with results obtained by GC-MS. The results showed the expected and sufficiently accurate correlation between these two methods. It is shown that handheld XRF technique is an effective tool for fast monitoring of large volumes of WEEE plastics in regards to BFRs for on-site measurements. Copyright © 2014 Elsevier Ltd. All rights reserved.

  14. Near-infrared Raman spectroscopy to detect anti-Toxoplasma gondii antibody in blood sera of domestic cats: quantitative analysis based on partial least-squares multivariate statistics

    NASA Astrophysics Data System (ADS)

    Duarte, Janaína; Pacheco, Marcos T. T.; Villaverde, Antonio Balbin; Machado, Rosangela Z.; Zângaro, Renato A.; Silveira, Landulfo

    2010-07-01

    Toxoplasmosis is an important zoonosis in public health because domestic cats are the main agents responsible for the transmission of this disease in Brazil. We investigate a method for diagnosing toxoplasmosis based on Raman spectroscopy. Dispersive near-infrared Raman spectra are used to quantify anti-Toxoplasma gondii (IgG) antibodies in blood sera from domestic cats. An 830-nm laser is used for sample excitation, and a dispersive spectrometer is used to detect the Raman scattering. A serological test is performed in all serum samples by the enzyme-linked immunosorbent assay (ELISA) for validation. Raman spectra are taken from 59 blood serum samples and a quantification model is implemented based on partial least squares (PLS) to quantify the sample's serology by Raman spectra compared to the results provided by the ELISA test. Based on the serological values provided by the Raman/PLS model, diagnostic parameters such as sensitivity, specificity, accuracy, positive prediction values, and negative prediction values are calculated to discriminate negative from positive samples, obtaining 100, 80, 90, 83.3, and 100%, respectively. Raman spectroscopy, associated with the PLS, is promising as a serological assay for toxoplasmosis, enabling fast and sensitive diagnosis.

  15. Outcome assessment via handheld computer in community mental health: consumer satisfaction and reliability.

    PubMed

    Goldstein, Lizabeth A; Connolly Gibbons, Mary Beth; Thompson, Sarah M; Scott, Kelli; Heintz, Laura; Green, Patricia; Thompson, Donald; Crits-Christoph, Paul

    2011-07-01

    Computerized administration of mental health-related questionnaires has become relatively common, but little research has explored this mode of assessment in "real-world" settings. In the current study, 200 consumers at a community mental health center completed the BASIS-24 via handheld computer as well as paper and pen. Scores on the computerized BASIS-24 were compared with scores on the paper BASIS-24. Consumers also completed a questionnaire which assessed their level of satisfaction with the computerized BASIS-24. Results indicated that the BASIS-24 administered via handheld computer was highly correlated with pen and paper administration of the measure and was generally acceptable to consumers. Administration of the BASIS-24 via handheld computer may allow for efficient and sustainable outcomes assessment, adaptable research infrastructure, and maximization of clinical impact in community mental health agencies.

  16. In vivo Raman spectroscopic identification of premalignant lesions in oral buccal mucosa

    NASA Astrophysics Data System (ADS)

    Singh, S. P.; Deshmukh, Atul; Chaturvedi, Pankaj; Murali Krishna, C.

    2012-10-01

    Cancers of oral cavities are one of the most common malignancies in India and other south-Asian countries. Tobacco habits are the main etiological factors for oral cancer. Identification of premalignant lesions is required for improving survival rates related to oral cancer. Optical spectroscopy methods are projected as alternative/adjunct for cancer diagnosis. Earlier studies have demonstrated the feasibility of classifying normal, premalignant, and malignant oral ex-vivo tissues. We intend to evaluate potentials of Raman spectroscopy in detecting premalignant conditions. Spectra were recorded from premalignant patches, contralateral normal (opposite to tumor site), and cancerous sites of subjects with oral cancers and also from age-matched healthy subjects with and without tobacco habits. A total of 861 spectra from 104 subjects were recorded using a fiber-optic probe-coupled HE-785 Raman spectrometer. Spectral differences in the 1200- to 1800-cm-1 region were subjected to unsupervised principal component analysis and supervised linear discriminant analysis followed by validation with leave-one-out and an independent test data set. Results suggest that premalignant conditions can be objectively discriminated with both normal and cancerous sites as well as from healthy controls with and without tobacco habits. Findings of the study further support efficacy of Raman spectroscopic approaches in oral-cancer applications.

  17. A review on the applications of portable near-infrared spectrometers in the agro-food industry.

    PubMed

    dos Santos, Cláudia A Teixeira; Lopo, Miguel; Páscoa, Ricardo N M J; Lopes, João A

    2013-11-01

    Industry has created the need for a cost-effective and nondestructive quality-control analysis system. This requirement has increased interest in near-infrared (NIR) spectroscopy, leading to the development and marketing of handheld devices that enable new applications that can be implemented in situ. Portable NIR spectrometers are powerful instruments offering several advantages for nondestructive, online, or in situ analysis: small size, low cost, robustness, simplicity of analysis, sample user interface, portability, and ergonomic design. Several studies of on-site NIR applications are presented: characterization of internal and external parameters of fruits and vegetables; conservation state and fat content of meat and fish; distinguishing among and quality evaluation of beverages and dairy products; protein content of cereals; evaluation of grape ripeness in vineyards; and soil analysis. Chemometrics is an essential part of NIR spectroscopy manipulation because wavelength-dependent scattering effects, instrumental noise, ambient effects, and other sources of variability may complicate the spectra. As a consequence, it is difficult to assign specific absorption bands to specific functional groups. To achieve useful and meaningful results, multivariate statistical techniques (essentially involving regression techniques coupled with spectral preprocessing) are therefore required to extract the information hidden in the spectra. This work reviews the evolution of the use of portable near-infrared spectrometers in the agro-food industry.

  18. Calibration and testing of a Raman hyperspectral imaging system to reveal powdered food adulteration

    PubMed Central

    Lohumi, Santosh; Lee, Hoonsoo; Kim, Moon S.; Qin, Jianwei; Kandpal, Lalit Mohan; Bae, Hyungjin; Rahman, Anisur

    2018-01-01

    The potential adulteration of foodstuffs has led to increasing concern regarding food safety and security, in particular for powdered food products where cheap ground materials or hazardous chemicals can be added to increase the quantity of powder or to obtain the desired aesthetic quality. Due to the resulting potential health threat to consumers, the development of a fast, label-free, and non-invasive technique for the detection of adulteration over a wide range of food products is necessary. We therefore report the development of a rapid Raman hyperspectral imaging technique for the detection of food adulteration and for authenticity analysis. The Raman hyperspectral imaging system comprises of a custom designed laser illumination system, sensing module, and a software interface. Laser illumination system generates a 785 nm laser line of high power, and the Gaussian like intensity distribution of laser beam is shaped by incorporating an engineered diffuser. The sensing module utilize Rayleigh filters, imaging spectrometer, and detector for collection of the Raman scattering signals along the laser line. A custom-built software to acquire Raman hyperspectral images which also facilitate the real time visualization of Raman chemical images of scanned samples. The developed system was employed for the simultaneous detection of Sudan dye and Congo red dye adulteration in paprika powder, and benzoyl peroxide and alloxan monohydrate adulteration in wheat flour at six different concentrations (w/w) from 0.05 to 1%. The collected Raman imaging data of the adulterated samples were analyzed to visualize and detect the adulterant concentrations by generating a binary image for each individual adulterant material. The results obtained based on the Raman chemical images of adulterants showed a strong correlation (R>0.98) between added and pixel based calculated concentration of adulterant materials. This developed Raman imaging system thus, can be considered as a powerful

  19. 30 CFR 56.12033 - Hand-held electric tools.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 30 Mineral Resources 1 2011-07-01 2011-07-01 false Hand-held electric tools. 56.12033 Section 56.12033 Mineral Resources MINE SAFETY AND HEALTH ADMINISTRATION, DEPARTMENT OF LABOR METAL AND NONMETAL MINE SAFETY AND HEALTH SAFETY AND HEALTH STANDARDS-SURFACE METAL AND NONMETAL MINES Electricity § 56...

  20. 30 CFR 56.12033 - Hand-held electric tools.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 30 Mineral Resources 1 2010-07-01 2010-07-01 false Hand-held electric tools. 56.12033 Section 56.12033 Mineral Resources MINE SAFETY AND HEALTH ADMINISTRATION, DEPARTMENT OF LABOR METAL AND NONMETAL MINE SAFETY AND HEALTH SAFETY AND HEALTH STANDARDS-SURFACE METAL AND NONMETAL MINES Electricity § 56...