Sample records for handle hazardous materials

  1. [Hazardous materials and work safety in veterinary practice. 1: Hazardous material definition and characterization, practice documentation and general rules for handling].

    PubMed

    Sliwinski-Korell, A; Lutz, F

    1998-04-01

    In the last years the standards for professional handling of hazardous material as well as health and safety in the veterinary practice became considerably more stringent. This is expressed in various safety regulations, particularly the decree of hazardous material and the legislative directives concerning health and safety at work. In part 1, a definition based on the law for hazardous material is given and the potential risks are mentioned. The correct documentation regarding the protection of the purchase, storage, working conditions and removal of hazardous material and of the personal is explained. General rules for the handling of hazardous material are described. In part 2, particular emphasis is put on the handling of flammable liquids, disinfectants, cytostatica, pressurised gas, liquid nitrogen, narcotics, mailing of potentially infectious material and safe disposal of hazardous waste. Advice about possible unrecognized hazards and references is also given.

  2. 25 CFR 170.905 - How can tribes obtain training in handling hazardous material?

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... 25 Indians 1 2011-04-01 2011-04-01 false How can tribes obtain training in handling hazardous... Transportation § 170.905 How can tribes obtain training in handling hazardous material? (a) Tribes cannot use IRR Program funds to train personnel to handle radioactive and hazardous material. (b) Tribes can seek...

  3. 41 CFR 102-42.75 - How are gifts containing hazardous materials handled?

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 41 Public Contracts and Property Management 3 2010-07-01 2010-07-01 false How are gifts containing...-UTILIZATION, DONATION, AND DISPOSAL OF FOREIGN GIFTS AND DECORATIONS General Provisions Special Disposals § 102-42.75 How are gifts containing hazardous materials handled? Gifts containing hazardous materials...

  4. Notification: Audit of Security Categorization for EPA Systems That Handle Hazardous Material Information

    EPA Pesticide Factsheets

    Project #OA-FY18-0089, January 8, 2018. The OIG plans to begin preliminary research to determine whether the EPA classified the sensitivity of data for systems that handle hazardous waste material information as prescribed by NIST.

  5. Robotics for Nuclear Material Handling at LANL:Capabilities and Needs

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Harden, Troy A; Lloyd, Jane A; Turner, Cameron J

    Nuclear material processing operations present numerous challenges for effective automation. Confined spaces, hazardous materials and processes, particulate contamination, radiation sources, and corrosive chemical operations are but a few of the significant hazards. However, automated systems represent a significant safety advance when deployed in place of manual tasks performed by human workers. The replacement of manual operations with automated systems has been desirable for nearly 40 years, yet only recently are automated systems becoming increasingly common for nuclear materials handling applications. This paper reviews several automation systems which are deployed or about to be deployed at Los Alamos National Laboratory formore » nuclear material handling operations. Highlighted are the current social and technological challenges faced in deploying automated systems into hazardous material handling environments and the opportunities for future innovations.« less

  6. Analysis of multiple activity manual materials handling tasks using A Guide to Manual Materials Handling.

    PubMed

    Mital, A

    1999-01-01

    Manual handling of materials continues to be a hazardous activity, leading to a very significant number of severe overexertion injuries. Designing jobs that are within the physical capabilities of workers is one approach ergonomists have adopted to redress this problem. As a result, several job design procedures have been developed over the years. However, these procedures are limited to designing or evaluating only pure lifting jobs or only the lifting aspect of a materials handling job. This paper describes a general procedure that may be used to design or analyse materials handling jobs that involve several different kinds of activities (e.g. lifting, lowering, carrying, pushing, etc). The job design/analysis procedure utilizes an elemental approach (breaking the job into elements) and relies on databases provided in A Guide to Manual Materials Handling to compute associated risk factors. The use of the procedure is demonstrated with the help of two case studies.

  7. 30 CFR 56.16004 - Containers for hazardous materials.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 30 Mineral Resources 1 2010-07-01 2010-07-01 false Containers for hazardous materials. 56.16004 Section 56.16004 Mineral Resources MINE SAFETY AND HEALTH ADMINISTRATION, DEPARTMENT OF LABOR METAL AND... Storage and Handling § 56.16004 Containers for hazardous materials. Containers holding hazardous materials...

  8. 30 CFR 57.16004 - Containers for hazardous materials.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 30 Mineral Resources 1 2010-07-01 2010-07-01 false Containers for hazardous materials. 57.16004 Section 57.16004 Mineral Resources MINE SAFETY AND HEALTH ADMINISTRATION, DEPARTMENT OF LABOR METAL AND... Storage and Handling § 57.16004 Containers for hazardous materials. Containers holding hazardous materials...

  9. 30 CFR 57.16003 - Storage of hazardous materials.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... 30 Mineral Resources 1 2012-07-01 2012-07-01 false Storage of hazardous materials. 57.16003 Section 57.16003 Mineral Resources MINE SAFETY AND HEALTH ADMINISTRATION, DEPARTMENT OF LABOR METAL AND... Storage and Handling § 57.16003 Storage of hazardous materials. Materials that can create hazards if...

  10. 30 CFR 56.16003 - Storage of hazardous materials.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 30 Mineral Resources 1 2014-07-01 2014-07-01 false Storage of hazardous materials. 56.16003 Section 56.16003 Mineral Resources MINE SAFETY AND HEALTH ADMINISTRATION, DEPARTMENT OF LABOR METAL AND... Storage and Handling § 56.16003 Storage of hazardous materials. Materials that can create hazards if...

  11. 30 CFR 56.16003 - Storage of hazardous materials.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... 30 Mineral Resources 1 2012-07-01 2012-07-01 false Storage of hazardous materials. 56.16003 Section 56.16003 Mineral Resources MINE SAFETY AND HEALTH ADMINISTRATION, DEPARTMENT OF LABOR METAL AND... Storage and Handling § 56.16003 Storage of hazardous materials. Materials that can create hazards if...

  12. 30 CFR 57.16003 - Storage of hazardous materials.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 30 Mineral Resources 1 2014-07-01 2014-07-01 false Storage of hazardous materials. 57.16003 Section 57.16003 Mineral Resources MINE SAFETY AND HEALTH ADMINISTRATION, DEPARTMENT OF LABOR METAL AND... Storage and Handling § 57.16003 Storage of hazardous materials. Materials that can create hazards if...

  13. 33 CFR 127.1313 - Storage of hazardous materials.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 33 Navigation and Navigable Waters 2 2011-07-01 2011-07-01 false Storage of hazardous materials. 127.1313 Section 127.1313 Navigation and Navigable Waters COAST GUARD, DEPARTMENT OF HOMELAND SECURITY... HAZARDOUS GAS Waterfront Facilities Handling Liquefied Hazardous Gas Operations § 127.1313 Storage of...

  14. 33 CFR 127.1313 - Storage of hazardous materials.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 33 Navigation and Navigable Waters 2 2013-07-01 2013-07-01 false Storage of hazardous materials. 127.1313 Section 127.1313 Navigation and Navigable Waters COAST GUARD, DEPARTMENT OF HOMELAND SECURITY... HAZARDOUS GAS Waterfront Facilities Handling Liquefied Hazardous Gas Operations § 127.1313 Storage of...

  15. 33 CFR 127.1313 - Storage of hazardous materials.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 33 Navigation and Navigable Waters 2 2010-07-01 2010-07-01 false Storage of hazardous materials. 127.1313 Section 127.1313 Navigation and Navigable Waters COAST GUARD, DEPARTMENT OF HOMELAND SECURITY... HAZARDOUS GAS Waterfront Facilities Handling Liquefied Hazardous Gas Operations § 127.1313 Storage of...

  16. 33 CFR 127.1313 - Storage of hazardous materials.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 33 Navigation and Navigable Waters 2 2014-07-01 2014-07-01 false Storage of hazardous materials. 127.1313 Section 127.1313 Navigation and Navigable Waters COAST GUARD, DEPARTMENT OF HOMELAND SECURITY... HAZARDOUS GAS Waterfront Facilities Handling Liquefied Hazardous Gas Operations § 127.1313 Storage of...

  17. 33 CFR 127.1313 - Storage of hazardous materials.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... 33 Navigation and Navigable Waters 2 2012-07-01 2012-07-01 false Storage of hazardous materials. 127.1313 Section 127.1313 Navigation and Navigable Waters COAST GUARD, DEPARTMENT OF HOMELAND SECURITY... HAZARDOUS GAS Waterfront Facilities Handling Liquefied Hazardous Gas Operations § 127.1313 Storage of...

  18. Hazardous Waste Handling Should be Defined

    ERIC Educational Resources Information Center

    Steigman, Harry

    1972-01-01

    An examination of the handling, storage and disposition of hazardous wastes from municipal and industrial sources, with a plea for the development of a uniform national hazardous waste code or listing that would be acceptable and useful to all state and federal agencies. (LK)

  19. [Hazardous material and safety conditions in veterinary practice. 2: Flammable liquid, disinfectants and cleansing media, cytostatics, pressurized gases, liquid nitrogen, narcotic gases, mailing of diagnostic samples, hazardous waste].

    PubMed

    Sliwinski-Korell, A; Lutz, F

    1998-05-01

    In the last years the standards for professional handling of hazardous material as well as health and safety in the veterinary practice became considerably more stringent. This is expressed in various safety regulations, particularly the decree of hazardous material and the legislative directives concerning health and safety at work. In part 1, a definition based on the law for hazardous material was given and the potential risks were mentioned. The correct documentation regarding the protection of personal and the purchase, storage, working conditions and removal of hazardous material was explained. General rules for the handling of hazardous material were described. In part 2, partial emphasis is put on the handling of flammable liquids, disinfectants, cytostatica, pressurised gases, liquid nitrogen, narcotics, mailing of potentially infectious material and safe disposal of hazardous waste. Advice about possible unrecognized hazards and references are also given.

  20. Hazardous materials: chemistry and safe handling aspects of flammable, toxic and radioactive materials. A course of study

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Smith, M.W.

    1983-01-01

    The subject of this dissertation is a one semester, three credit course designed for students who have taken at least twelve credits college chemistry, and for high school teachers as a continuing education course. The need for such a course arises from the increased concern for safety in recent years and the introduction of many regulations of which the working chemist should be aware, notably those issued by the Occupational Safety and Health Administration. A few colleges have recently started to offer courses in laboratory safety to undergraduate and graduate chemistry students. Thus, there is a need for the developmentmore » of courses in which chemical safety is taught. This course is divided into three units: 1) flammable materials; 2) toxic materials; and 3) radioactive materials. Each unit is self contained and could be taught separately as a one credit course. The material necessary for lecture presentation is given in the text of this dissertation: there are about seven topics in each unit. The chemical properties of selected substances are emphasized. Examples of governmental regulations are given, and there are sample examination questions for each unit and homework assignments that require the use of reference sources. Laboratory exercises are included to enable students to gain experience in the safe handling of hazardous chemicals and of some equipment and instruments used to analyze and study flammable, toxic and radioactive materials.« less

  1. Hazardous Materials Technician. Technical Committee on Occupational Curriculum Development.

    ERIC Educational Resources Information Center

    Northern Montana Coll., Havre. Montana Center for Vocational Education, Research, Curriculum and Personnel Development.

    This document describes Montana's postsecondary curriculum to prepare hazardous materials technicians. Basic general education requirements are described. The technical skills and the knowledge associated with each are listed in the following categories: (1) site assessment; (2) sampling materials; (3) handling materials; (4) recording data; (5)…

  2. Analysis of Material Handling Safety in Construction Sites and Countermeasures for Effective Enhancement

    PubMed Central

    Anil Kumar, C. N.; Sakthivel, M.; Elangovan, R. K.; Arularasu, M.

    2015-01-01

    One of many hazardous workplaces includes the construction sites as they involve several dangerous tasks. Many studies have revealed that material handling equipment is a major cause of accidents at these sites. Though safety measures are being followed and monitored continuously, accident rates are still high as either workers are unaware of hazards or the safety regulations are not being strictly followed. This paper analyses the safety management systems at construction sites through means of questionnaire surveys with employees, specifically referring to safety of material handling equipment. Based on results of the questionnaire surveys, two construction sites were selected for a safety education program targeting worker safety related to material handling equipment. Knowledge levels of the workers were gathered before and after the program and results obtained were subjected to a t-test analysis to mark significance level of the conducted safety education program. PMID:26446572

  3. 49 CFR 176.108 - Supervision of Class 1 (explosive) materials during loading, unloading, handling and stowage.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... 49 Transportation 2 2010-10-01 2010-10-01 false Supervision of Class 1 (explosive) materials during loading, unloading, handling and stowage. 176.108 Section 176.108 Transportation Other Regulations Relating to Transportation PIPELINE AND HAZARDOUS MATERIALS SAFETY ADMINISTRATION, DEPARTMENT OF TRANSPORTATION HAZARDOUS MATERIALS REGULATIONS...

  4. Composite Material Hazard Assessment at Crash Sites

    DTIC Science & Technology

    2015-01-01

    advanced composite materials. All personnel involved in rescue in close crash-site proximity are required to wear self -contained breathing apparatus...close crash-site proximity are required to wear self -contained breathing apparatus, chemical protective clothing, leather gloves, and neoprene...Take extra precaution when handling these materials. Nitrile rubber gloves can be worn underneath the leather gloves to provide chemical hazard

  5. A comparative study of two hazard handling training methods for novice drivers.

    PubMed

    Wang, Y B; Zhang, W; Salvendy, G

    2010-10-01

    The effectiveness of two hazard perception training methods, simulation-based error training (SET) and video-based guided error training (VGET), for novice drivers' hazard handling performance was tested, compared, and analyzed. Thirty-two novice drivers participated in the hazard perception training. Half of the participants were trained using SET by making errors and/or experiencing accidents while driving with a desktop simulator. The other half were trained using VGET by watching prerecorded video clips of errors and accidents that were made by other people. The two groups had exposure to equal numbers of errors for each training scenario. All the participants were tested and evaluated for hazard handling on a full cockpit driving simulator one week after training. Hazard handling performance and hazard response were measured in this transfer test. Both hazard handling performance scores and hazard response distances were significantly better for the SET group than the VGET group. Furthermore, the SET group had more metacognitive activities and intrinsic motivation. SET also seemed more effective in changing participants' confidence, but the result did not reach the significance level. SET exhibited a higher training effectiveness of hazard response and handling than VGET in the simulated transfer test. The superiority of SET might benefit from the higher levels of metacognition and intrinsic motivation during training, which was observed in the experiment. Future research should be conducted to assess whether the advantages of error training are still effective under real road conditions.

  6. Handling of hazardous drugs - Effect of an innovative teaching session for nursing students.

    PubMed

    Zimmer, Janine; Hartl, Stefanie; Standfuß, Katrin; Möhn, Till; Bertsche, Astrid; Frontini, Roberto; Neininger, Martina P; Bertsche, Thilo

    2017-02-01

    Imparting knowledge and practical skills in hazardous drug handling in nursing students' education is essential to prevent hazardous exposure and to preserve nurses' health. This study aimed at comparing routine nursing education with an additional innovative teaching session. A prospective controlled study in nursing students was conducted in two study periods: (i) a status-quo period (routine education on handling hazardous drugs) followed by (ii) an intervention period (additional innovative teaching session on handling hazardous drugs). Nursing students at a vocational school were invited to participate voluntarily. In both study periods (i) and (ii), the following factors were analysed: (a) knowledge of hazardous drug handling by questionnaire, (b) practical skills in hazardous drug handling (e.g. cleaning) by a simulated handling scenario, (c) contamination with drug residuals on the work surface by fluorescent imaging. Fifty-three nursing students were enrolled. (a) Median knowledge improved from status-quo (39% right answers) to intervention (65%, p<0.001), (b) practical skills improved from status-quo (53% of all participants cleaned the work surface) to intervention (92%, p<0.001). (c) Median number of particles/m 2 decreased from status-quo to intervention (932/97, p<0.001). Compared with routine education, knowledge and practical skills in hazardous drug handling were significantly improved after an innovative teaching session. Additionally, the amount of residuals on the work surface decreased. This indicates a lower risk for hazardous drug exposure. Copyright © 2016 Elsevier Ltd. All rights reserved.

  7. 49 CFR 176.74 - On deck stowage of break-bulk hazardous materials.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... 49 Transportation 2 2013-10-01 2013-10-01 false On deck stowage of break-bulk hazardous materials... CARRIAGE BY VESSEL General Handling and Stowage § 176.74 On deck stowage of break-bulk hazardous materials... and proper lashing by use of wire rope, strapping or other means, including shoring and bracing, or...

  8. 49 CFR 176.74 - On deck stowage of break-bulk hazardous materials.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... 49 Transportation 2 2014-10-01 2014-10-01 false On deck stowage of break-bulk hazardous materials... CARRIAGE BY VESSEL General Handling and Stowage § 176.74 On deck stowage of break-bulk hazardous materials... and proper lashing by use of wire rope, strapping or other means, including shoring and bracing, or...

  9. 49 CFR 176.74 - On deck stowage of break-bulk hazardous materials.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... 49 Transportation 2 2011-10-01 2011-10-01 false On deck stowage of break-bulk hazardous materials... CARRIAGE BY VESSEL General Handling and Stowage § 176.74 On deck stowage of break-bulk hazardous materials... and proper lashing by use of wire rope, strapping or other means, including shoring and bracing, or...

  10. 49 CFR 176.74 - On deck stowage of break-bulk hazardous materials.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... 49 Transportation 2 2012-10-01 2012-10-01 false On deck stowage of break-bulk hazardous materials... CARRIAGE BY VESSEL General Handling and Stowage § 176.74 On deck stowage of break-bulk hazardous materials... and proper lashing by use of wire rope, strapping or other means, including shoring and bracing, or...

  11. [Nursing workers' perceptions regarding the handling of hazardous chemical waste].

    PubMed

    Costa, Taiza Florêncio; Felli, Vanda Elisa Andres; Baptista, Patrícia Campos Pavan

    2012-12-01

    The objectives of this study were to identify the perceptions of nursing workers regarding the handling of hazardous chemical waste at the University of São Paulo University Hospital (HU-USP), and develop a proposal to improve safety measures. This study used a qualitative approach and a convenience sample consisting of eighteen nursing workers. Data collection was performed through focal groups. Thematic analysis revealed four categories that gave evidence of training deficiencies in terms of the stages of handling waste. Difficulties that emerged included a lack of knowledge regarding exposure and its impact, the utilization of personal protective equipment versus collective protection, and suggestions regarding measures to be taken by the institution and workers for the safe handling of hazardous chemical waste. The present data allowed for recommending proposals regarding the safe management of hazardous chemical waste by the nursing staff.

  12. Safe Handling and Use of Flammable and Combustible Materials. Module SH-30. Safety and Health.

    ERIC Educational Resources Information Center

    Center for Occupational Research and Development, Inc., Waco, TX.

    This student module on safe handling and use of flammable and combustible materials is one of 50 modules concerned with job safety and health. This module introduces the student to the hazards of flammable and combustible materials and the measures necessary to control those hazards. Following the introduction, 14 objectives (each keyed to a page…

  13. ENGINEERING BULLETIN: CONTROL OF AIR EMISSIONS FROM MATERIALS HANDLING DURING REMEDIATION

    EPA Science Inventory

    This bulletin presents an overview discussion on the importance of and methods for controlling emissions into the air from materials handling processes at Superfund or other hazardous waste sites. It also describes several techniques used for dust and vapor suppress ion that have...

  14. Hazardous Waste Certification Plan: Hazardous Waste Handling Facility, Lawrence Berkeley Laboratory

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Not Available

    1992-02-01

    The purpose of this plan is to describe the organization and methodology for the certification of hazardous waste (HW) handled in the Lawrence Berkeley Laboratory (LBL) Hazardous Waste Handling Facility (HWHF). The plan also incorporates the applicable elements of waste reduction, which include both up-front minimization and end- product treatment to reduce the volume and toxicity of the waste; segregation of the waste as it applies to certification; and executive summary of the Quality Assurance Program Plan (QAPP) for the HWHF and a list of the current and planned implementing procedures used in waste certification. The plan provides guidance frommore » the HWHF to waste generators, waste handlers, and the Systems Group Manager to enable them to conduct their activities and carry out their responsibilities in a manner that complies with several requirements of the Federal Resource Conservation and Resource Recovery Act (RCRA), the Federal Department of Transportation (DOT), and the State of California, Code of Regulations (CCR), Title 22.« less

  15. Teaching about Hazardous Materials. ERIC/SMEAC Environmental Education Digest No. 2.

    ERIC Educational Resources Information Center

    Disinger, John F.

    Problems related to the handling of hazardous substances and toxic wastes have escalated making this environmental dilemma a national concern. This digest provides an update of key legislative and management efforts associated with hazardous wastes and reviews current instructional materials in the area. Major topics addressed include: (1) waste…

  16. Ergonomic material-handling device

    DOEpatents

    Barsnick, Lance E.; Zalk, David M.; Perry, Catherine M.; Biggs, Terry; Tageson, Robert E.

    2004-08-24

    A hand-held ergonomic material-handling device capable of moving heavy objects, such as large waste containers and other large objects requiring mechanical assistance. The ergonomic material-handling device can be used with neutral postures of the back, shoulders, wrists and knees, thereby reducing potential injury to the user. The device involves two key features: 1) gives the user the ability to adjust the height of the handles of the device to ergonomically fit the needs of the user's back, wrists and shoulders; and 2) has a rounded handlebar shape, as well as the size and configuration of the handles which keep the user's wrists in a neutral posture during manipulation of the device.

  17. Prudent Practices for Handling Hazardous Chemicals in Laboratories.

    ERIC Educational Resources Information Center

    National Academy of Sciences-National Research Council, Washington, DC. Assembly of Mathematical and Physical Sciences.

    This guide recommends procedures for safe handling and disposal of hazardous substances, along with broad recommendations for developing comprehensive laboratory safety programs. Although specific information is provided, general principles which can be adapted to activities in any laboratory are emphasized. Section 1 focuses on procedures for…

  18. 41 CFR 101-42.202 - Identification of hazardous materials.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ...'s Federal Supply Service (4FQ) maintains an automated data base, accessible via modem and computer... on the terminal screen, the system allows for the addition of the MSDS to the user's local data base... personnel who handle, store, ship, use or dispose of hazardous materials. Each record in the data base is...

  19. 41 CFR 101-42.202 - Identification of hazardous materials.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ...'s Federal Supply Service (4FQ) maintains an automated data base, accessible via modem and computer... on the terminal screen, the system allows for the addition of the MSDS to the user's local data base... personnel who handle, store, ship, use or dispose of hazardous materials. Each record in the data base is...

  20. 41 CFR 101-42.202 - Identification of hazardous materials.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ...'s Federal Supply Service (4FQ) maintains an automated data base, accessible via modem and computer... on the terminal screen, the system allows for the addition of the MSDS to the user's local data base... personnel who handle, store, ship, use or dispose of hazardous materials. Each record in the data base is...

  1. 41 CFR 101-42.202 - Identification of hazardous materials.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ...'s Federal Supply Service (4FQ) maintains an automated data base, accessible via modem and computer... on the terminal screen, the system allows for the addition of the MSDS to the user's local data base... personnel who handle, store, ship, use or dispose of hazardous materials. Each record in the data base is...

  2. 41 CFR 101-42.202 - Identification of hazardous materials.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ...'s Federal Supply Service (4FQ) maintains an automated data base, accessible via modem and computer... on the terminal screen, the system allows for the addition of the MSDS to the user's local data base... personnel who handle, store, ship, use or dispose of hazardous materials. Each record in the data base is...

  3. Simplified training for hazardous materials management in developing countries

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Braithwaite, J.

    1994-12-31

    There are thousands of dangerous situations happening daily in developing countries around the world involving untrained workers and hazardous materials. There are very few if any agencies in developing countries that are charged with ensuring safe and healthful working conditions. In addition to the problem of regulation and enforcement, there are potential training problems due to the level of literacy and degree of scientific background of these workers. Many of these workers are refugees from poorly developed countries who are willing to work no matter what the conditions. Training methods (standards) accepted as state of the art in the Unitedmore » States and other developed countries may not work well under the conditions found in developing countries. Because these methods may not be appropriate, new and novel ways to train workers quickly, precisely and economically in hazardous materials management should be developed. One approach is to develop training programs that use easily recognizable graphics with minimal verbal instruction, programs similar to the type used to teach universal international driving regulations and safety. The program as outlined in this paper could be tailored to any sized plant and any hazardous material handling or exposure situation. The situation in many developing countries is critical, development of simplified training methods for workers exposed to hazardous materials hold valuable market potential and are an opportunity for many underdeveloped countries to develop indigenous expertise in hazardous materials management.« less

  4. 78 FR 69310 - Hazardous Materials Table, Special Provisions, Hazardous Materials Communications, Emergency...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-11-19

    ... DEPARTMENT OF TRANSPORTATION Pipeline and Hazardous Materials Safety Administration 49 CFR Part 172 Hazardous Materials Table, Special Provisions, Hazardous Materials Communications, Emergency Response Information, Training Requirements, and Security Plans CFR Correction In Title 49 of the Code of...

  5. 49 CFR 176.57 - Supervision of handling and stowage.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... 49 Transportation 2 2011-10-01 2011-10-01 false Supervision of handling and stowage. 176.57 Section 176.57 Transportation Other Regulations Relating to Transportation PIPELINE AND HAZARDOUS... VESSEL General Handling and Stowage § 176.57 Supervision of handling and stowage. (a) Hazardous materials...

  6. 49 CFR 176.57 - Supervision of handling and stowage.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... 49 Transportation 2 2014-10-01 2014-10-01 false Supervision of handling and stowage. 176.57 Section 176.57 Transportation Other Regulations Relating to Transportation PIPELINE AND HAZARDOUS... VESSEL General Handling and Stowage § 176.57 Supervision of handling and stowage. (a) Hazardous materials...

  7. 49 CFR 176.57 - Supervision of handling and stowage.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... 49 Transportation 2 2012-10-01 2012-10-01 false Supervision of handling and stowage. 176.57 Section 176.57 Transportation Other Regulations Relating to Transportation PIPELINE AND HAZARDOUS... VESSEL General Handling and Stowage § 176.57 Supervision of handling and stowage. (a) Hazardous materials...

  8. 49 CFR 176.57 - Supervision of handling and stowage.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... 49 Transportation 2 2010-10-01 2010-10-01 false Supervision of handling and stowage. 176.57 Section 176.57 Transportation Other Regulations Relating to Transportation PIPELINE AND HAZARDOUS... VESSEL General Handling and Stowage § 176.57 Supervision of handling and stowage. (a) Hazardous materials...

  9. 49 CFR 176.57 - Supervision of handling and stowage.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... 49 Transportation 2 2013-10-01 2013-10-01 false Supervision of handling and stowage. 176.57 Section 176.57 Transportation Other Regulations Relating to Transportation PIPELINE AND HAZARDOUS... VESSEL General Handling and Stowage § 176.57 Supervision of handling and stowage. (a) Hazardous materials...

  10. HAZBOT - A hazardous materials emergency response mobile robot

    NASA Technical Reports Server (NTRS)

    Stone, H. W.; Edmonds, G.

    1992-01-01

    The authors describe the progress that has been made towards the development of a mobile robot that can be used by hazardous materials emergency response teams to perform a variety of tasks including incident localization and characterization, hazardous material identification/classification, site surveillance and monitoring, and ultimately incident mitigation. In September of 1991, the HAZBOT II vehicle performed its first end-to-end demonstration involving a scenario in which the vehicle: navigated to the incident location from a distant (150-200 ft.) deployment site; entered a building through a door with thumb latch style handle and door closer; located and navigated to the suspected incident location (a chemical storeroom); unlocked and opened the storeroom's door; climbed over the storeroom's 12 in. high threshold to enter the storeroom; and located and identified a broken container of benzene.

  11. HAZBOT - A hazardous materials emergency response mobile robot

    NASA Astrophysics Data System (ADS)

    Stone, H. W.; Edmonds, G.

    The authors describe the progress that has been made towards the development of a mobile robot that can be used by hazardous materials emergency response teams to perform a variety of tasks including incident localization and characterization, hazardous material identification/classification, site surveillance and monitoring, and ultimately incident mitigation. In September of 1991, the HAZBOT II vehicle performed its first end-to-end demonstration involving a scenario in which the vehicle: navigated to the incident location from a distant (150-200 ft.) deployment site; entered a building through a door with thumb latch style handle and door closer; located and navigated to the suspected incident location (a chemical storeroom); unlocked and opened the storeroom's door; climbed over the storeroom's 12 in. high threshold to enter the storeroom; and located and identified a broken container of benzene.

  12. 76 FR 4276 - Hazardous Materials: Improving the Safety of Railroad Transportation of Hazardous Materials

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-01-25

    ...-0004] Hazardous Materials: Improving the Safety of Railroad Transportation of Hazardous Materials... hazardous materials program. DATES: The public meeting will be held on Tuesday, February 22, 2011, starting...--Hazardous Materials, FRA Office of Safety Assurance and Compliance, at least 4 business days before the date...

  13. MHSS: a material handling system simulator

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Pomernacki, L.; Hollstien, R.B.

    1976-04-07

    A Material Handling System Simulator (MHSS) program is described that provides specialized functional blocks for modeling and simulation of nuclear material handling systems. Models of nuclear fuel fabrication plants may be built using functional blocks that simulate material receiving, storage, transport, inventory, processing, and shipping operations as well as the control and reporting tasks of operators or on-line computers. Blocks are also provided that allow the user to observe and gather statistical information on the dynamic behavior of simulated plants over single or replicated runs. Although it is currently being developed for the nuclear materials handling application, MHSS can bemore » adapted to other industries in which material accountability is important. In this paper, emphasis is on the simulation methodology of the MHSS program with application to the nuclear material safeguards problem. (auth)« less

  14. Closed-system drug-transfer devices plus safe handling of hazardous drugs versus safe handling alone for reducing exposure to infusional hazardous drugs in healthcare staff.

    PubMed

    Gurusamy, Kurinchi Selvan; Best, Lawrence Mj; Tanguay, Cynthia; Lennan, Elaine; Korva, Mika; Bussières, Jean-François

    2018-03-27

    Occupational exposure to hazardous drugs can decrease fertility and result in miscarriages, stillbirths, and cancers in healthcare staff. Several recommended practices aim to reduce this exposure, including protective clothing, gloves, and biological safety cabinets ('safe handling'). There is significant uncertainty as to whether using closed-system drug-transfer devices (CSTD) in addition to safe handling decreases the contamination and risk of staff exposure to infusional hazardous drugs compared to safe handling alone. To assess the effects of closed-system drug-transfer of infusional hazardous drugs plus safe handling versus safe handling alone for reducing staff exposure to infusional hazardous drugs and risk of staff contamination. We searched the Cochrane Central Register of Controlled Trials (CENTRAL), MEDLINE, Embase, OSH-UPDATE, CINAHL, Science Citation Index Expanded, economic evaluation databases, the World Health Organization International Clinical Trials Registry Platform, and ClinicalTrials.gov to October 2017. We included comparative studies of any study design (irrespective of language, blinding, or publication status) that compared CSTD plus safe handling versus safe handling alone for infusional hazardous drugs. Two review authors independently identified trials and extracted data. We calculated the risk ratio (RR) and mean difference (MD) with 95% confidence intervals (CI) using both fixed-effect and random-effects models. We assessed risk of bias according to the risk of bias in non-randomised studies of interventions (ROBINS-I) tool, used an intracluster correlation coefficient of 0.10, and we assessed the quality of the evidence using GRADE. We included 23 observational cluster studies (358 hospitals) in this review. We did not find any randomised controlled trials or formal economic evaluations. In 21 studies, the people who used the intervention (CSTD plus safe handling) and control (safe handling alone) were pharmacists or pharmacy

  15. Lifecycle Management of Hazardous Materials/ Hazardous Waste. Revision 1.

    DTIC Science & Technology

    1997-02-01

    1 WHAT YOU NEED TO KNOW ABOUT HAZARDOUS MATERIALS (HM) ....................... 1 PURCHASING HAZARDOUS MATERIALS...20 Figures 1 . Acquisition Flowchart .................................. 12 2. NRaD Hazardous Material Pre-Purchase Checklist ........ 13 3. NRaD...Hazardous Waste Profile Sheet (Part 111) .................. 18 Tables 1 . Class 1 Ozone Depleting Substances .................... 11 i INTRODUCTION This

  16. 78 FR 42998 - Hazardous Materials: Improving the Safety of Railroad Transportation of Hazardous Materials

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-07-18

    ... Materials: Improving the Safety of Railroad Transportation of Hazardous Materials AGENCY: Pipeline and... that affect the safety of the transportation of hazardous materials by rail and are seeking input from... authority to FRA. 49 CFR 1.89(a) through (q). The Federal hazardous materials transportation laws, 49 U.S.C...

  17. NASA LaRC Hazardous Material Pharmacy

    NASA Technical Reports Server (NTRS)

    Esquenet, Remy

    1995-01-01

    In 1993-1994 the Office of Environmental Engineering contracted SAIC to develop NASA Langley's Pollution Prevention (P2) Program. One of the priority projects identified in this contract was the development of a hazardous waste minimization (HAZMIN)/hazardous materials reutilization (HAZMART) program in the form of a Hazardous Materials Pharmacy. A hazardous materials pharmacy is designed to reduce hazardous material procurement costs and hazardous waste disposal costs. This is accomplished through the collection and reissue of excess hazardous material. Currently, a rarely used hazardous material may be stored in a shop area, unused, until it passes its expiration date. The material is then usually disposed of as a hazardous waste, often at a greater expense than the original cost of the material. While this material was on the shelf expiring, other shop areas may have ordered new supplies of the same material. The hazardous material pharmacy would act as a clearinghouse for such materials. Material that is not going to be used would be turned in to the pharmacy. Other users could then be issued this material free of charge, thereby reducing procurement costs. The use of this material by another shop prevents it from expiring, thereby reducing hazardous waste disposal costs.

  18. Hazardous materials regulation in Virginia.

    DOT National Transportation Integrated Search

    1987-01-01

    The report covered four subjects: (1) significance of hazardous materials in Virginia, (2) federal regulation, (3) laws on the transport of hazardous materials in Virginia, and (4) Virginia regulations on hazardous materials emergency response.

  19. Manual materials handling: the cause of over-exertion injury and illness in industry.

    PubMed

    Chaffin, D B

    1979-01-01

    It is reported from various sources that overexertion due to lifting, pushing, pulling, and carrying objects accounts for about 27 percent of all compensable industrial injury and illness in the United States. Resulting strain/sprain injuries account for over 50 percent of workmen's compensation clams in many industries. Almont two-thirds of these involve back pain, with reported compensation and medical payments totaling well over one billion dollars annually in the U.S. An estimated 300,000 plus workers will be affected each year, 5 to 10 percent of whom will have a permanent disability and often will be unemployable. This paper attempts to describe four basic approaches used to study this occupational health problem. In so doing, a concerted effort is made to identifiy the gaps in knowledge which need to be more fully researched. The approaches utilized to understand and control the hazards of manual materials handling are: 1) epidemiological studies of job and worker attributes to identify those that individually and in combination cause musculoskeletal incidents, 2) psychophysical studies to ascertain the volitional tolerance of workers to the stress mitigated by manual materials-handling activities, 3) biomechanical studies of the musculoskeletal system during common exertions required in manual materials-handling activities, and 4) physiological studies of the strain imposed on the cardiovascular system during repeated load-handling activities. The state of knowledge from each of these approaches is summarized briefly, and a case is made that much research is still needed to substantiate the necessary controls to lessen the economic burden and human suffering associated with manual materials-handling acts in industry.

  20. Materials Handling. Module SH-01. Safety and Health.

    ERIC Educational Resources Information Center

    Center for Occupational Research and Development, Inc., Waco, TX.

    This student module on materials handling is one of 50 modules concerned with job safety and health. It presents the procedures for safe materials handling. Discussed are manual handling methods (lifting and carrying by hand) and mechanical lifting (lifting by powered trucks, cranes or conveyors). Following the introduction, 15 objectives (each…

  1. Transportation of hazardous materials

    DOT National Transportation Integrated Search

    1986-07-01

    This report discusses transportation of all hazardous materials (commodities, : radioactive materials including spent nuclear fuel, and hazardous wastes) that : travel by truck, rail, water, or air. The Office of Technology Assessment (OTA) : has ide...

  2. Cellular Manufacturing System with Dynamic Lot Size Material Handling

    NASA Astrophysics Data System (ADS)

    Khannan, M. S. A.; Maruf, A.; Wangsaputra, R.; Sutrisno, S.; Wibawa, T.

    2016-02-01

    Material Handling take as important role in Cellular Manufacturing System (CMS) design. In several study at CMS design material handling was assumed per pieces or with constant lot size. In real industrial practice, lot size may change during rolling period to cope with demand changes. This study develops CMS Model with Dynamic Lot Size Material Handling. Integer Linear Programming is used to solve the problem. Objective function of this model is minimizing total expected cost consisting machinery depreciation cost, operating costs, inter-cell material handling cost, intra-cell material handling cost, machine relocation costs, setup costs, and production planning cost. This model determines optimum cell formation and optimum lot size. Numerical examples are elaborated in the paper to ilustrate the characterictic of the model.

  3. Transportation of Hazardous Materials Emergency Preparedness Hazards Assessment

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Blanchard, A.

    This report documents the Emergency Preparedness Hazards Assessment (EPHA) for the Transportation of Hazardous Materials (THM) at the Department of Energy (DOE) Savannah River Site (SRS). This hazards assessment is intended to identify and analyze those transportation hazards significant enough to warrant consideration in the SRS Emergency Management Program.

  4. Impact of the new handling recommendations for hazardous drugs in a hospital pharmacy service.

    PubMed

    García-Alcántara, Beatriz G; Perelló Alomar, Catalina; Moreno Centeno, Elena; Modamio, Pilar; Mariño, Eduardo L; Delgado Sánchez, Olga

    2017-03-01

    To describe the actions taken by the Pharmacy Unit in a tertiary hospital in order to adapt to the recommendations established by NIOSH 2014 for handling Hazardous Drugs. Method: A retrospective observational study. A list was prepared including all hazardous drugs according to NIOSH 2014 that were available at the hospital as marketed or foreign drugs, or used in clinical trials, and there was a review of the processes of acquisition, repackaging, preparation, circuits, organizational, dispensing and identification. Results: After the analysis, a report including all needs was prepared and sent to the Hospital Management. Any relevant information about the handling and administration of hazardous drugs was included in the prescription computer program. There were changes in the acquisition process of two drugs, in order to avoid splitting and multi-dose formulations. An alternative or improvement was found for 35 253 of the 75 779 units of hazardous drugs repackaged in one year. The Pharmacy Unit took over the preparation of four non-sterile medications, as well as the preparation of all sterile parenteral medications included in Lists 1 and 2 that were not previously prepared there, as well as one from List 3. Information was also included about the preparation processes of Magistral Formulations that involved hazardous drugs from Lists 2 or 3. The adaptation to the recommendations by NIOSH 2014 has represented a change, but also a significant reduction in the handling process of hazardous drugs by the healthcare staff, therefore reducing the risk of occupational exposure. Copyright AULA MEDICA EDICIONES 2014. Published by AULA MEDICA. All rights reserved.

  5. Transportation of Hazardous Evidentiary Material.

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Osborn, Douglas.

    2005-06-01

    This document describes the specimen and transportation containers currently available for use with hazardous and infectious materials. A detailed comparison of advantages, disadvantages, and costs of the different technologies is included. Short- and long-term recommendations are also provided.3 DraftDraftDraftExecutive SummaryThe Federal Bureau of Investigation's Hazardous Materials Response Unit currently has hazardous material transport containers for shipping 1-quart paint cans and small amounts of contaminated forensic evidence, but the containers may not be able to maintain their integrity under accident conditions or for some types of hazardous materials. This report provides guidance and recommendations on the availability of packages for themore » safe and secure transport of evidence consisting of or contaminated with hazardous chemicals or infectious materials. Only non-bulk containers were considered because these are appropriate for transport on small aircraft. This report will addresses packaging and transportation concerns for Hazardous Classes 3, 4, 5, 6, 8, and 9 materials. If the evidence is known or suspected of belonging to one of these Hazardous Classes, it must be packaged in accordance with the provisions of 49 CFR Part 173. The anthrax scare of several years ago, and less well publicized incidents involving unknown and uncharacterized substances, has required that suspicious substances be sent to appropriate analytical laboratories for analysis and characterization. Transportation of potentially hazardous or infectious material to an appropriate analytical laboratory requires transport containers that maintain both the biological and chemical integrity of the substance in question. As a rule, only relatively small quantities will be available for analysis. Appropriate transportation packaging is needed that will maintain the integrity of the substance, will not allow biological alteration, will not react chemically with the substance

  6. Hazardous-Materials Robot

    NASA Technical Reports Server (NTRS)

    Stone, Henry W.; Edmonds, Gary O.

    1995-01-01

    Remotely controlled mobile robot used to locate, characterize, identify, and eventually mitigate incidents involving hazardous-materials spills/releases. Possesses number of innovative features, allowing it to perform mission-critical functions such as opening and unlocking doors and sensing for hazardous materials. Provides safe means for locating and identifying spills and eliminates risks of injury associated with use of manned entry teams. Current version of vehicle, called HAZBOT III, also features unique mechanical and electrical design enabling vehicle to operate safely within combustible atmosphere.

  7. 46 CFR 151.03-30 - Hazardous material.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... 46 Shipping 5 2010-10-01 2010-10-01 false Hazardous material. 151.03-30 Section 151.03-30 Shipping... BULK LIQUID HAZARDOUS MATERIAL CARGOES Definitions § 151.03-30 Hazardous material. In this part hazardous material means a liquid material or substance that is— (a) Flammable or combustible; (b...

  8. 46 CFR 151.03-30 - Hazardous material.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... 46 Shipping 5 2012-10-01 2012-10-01 false Hazardous material. 151.03-30 Section 151.03-30 Shipping... BULK LIQUID HAZARDOUS MATERIAL CARGOES Definitions § 151.03-30 Hazardous material. In this part hazardous material means a liquid material or substance that is— (a) Flammable or combustible; (b...

  9. 46 CFR 151.03-30 - Hazardous material.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... 46 Shipping 5 2013-10-01 2013-10-01 false Hazardous material. 151.03-30 Section 151.03-30 Shipping... BULK LIQUID HAZARDOUS MATERIAL CARGOES Definitions § 151.03-30 Hazardous material. In this part hazardous material means a liquid material or substance that is— (a) Flammable or combustible; (b...

  10. An Introduction to Hazardous Material Management.

    ERIC Educational Resources Information Center

    Reinhardt, Peter A.; And Others

    1987-01-01

    Colleges must have a system to safely control the ordering, delivery, transport, storage, and use of hazardous material. Information on hazardous material management is excerpted from "Managing Hazardous Waste at Educational Institutions. (MLW)

  11. 10 CFR 1016.24 - Special handling of classified material.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... 10 Energy 4 2010-01-01 2010-01-01 false Special handling of classified material. 1016.24 Section 1016.24 Energy DEPARTMENT OF ENERGY (GENERAL PROVISIONS) SAFEGUARDING OF RESTRICTED DATA Physical Security § 1016.24 Special handling of classified material. When the Restricted Data contained in material...

  12. 10 CFR 1016.24 - Special handling of classified material.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... 10 Energy 4 2011-01-01 2011-01-01 false Special handling of classified material. 1016.24 Section 1016.24 Energy DEPARTMENT OF ENERGY (GENERAL PROVISIONS) SAFEGUARDING OF RESTRICTED DATA Physical Security § 1016.24 Special handling of classified material. When the Restricted Data contained in material...

  13. Research on the Use of Robotics in Hazardous Environments at Sandia National Laboratories

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kwok, Kwan S.

    Many hazardous material handling needs exist in remote unstructured environments. Currently these operations are accomplished using personnel in direct contact with the hazards. A safe and cost effective alternative to this approach is the use of intelligent robotic systems for safe handling, packaging, transport, and even excavation of hazardous materials. The Intelligent Systems and Robotics Center of Sandia National Laboratories has developed and deployed robotic technologies for use in hazardous environments, three of which have been deployed in DOE production facilities for handling of special nuclear materials. Other systems are currently under development for packaging special nuclear materials. This papermore » presents an overview of the research activities, including five delivered systems, at %ndia National Laboratories on the use of robotics in hazardous environments.« less

  14. Fleet Sizing of Automated Material Handling Using Simulation Approach

    NASA Astrophysics Data System (ADS)

    Wibisono, Radinal; Ai, The Jin; Ratna Yuniartha, Deny

    2018-03-01

    Automated material handling tends to be chosen rather than using human power in material handling activity for production floor in manufacturing company. One critical issue in implementing automated material handling is designing phase to ensure that material handling activity more efficient in term of cost spending. Fleet sizing become one of the topic in designing phase. In this research, simulation approach is being used to solve fleet sizing problem in flow shop production to ensure optimum situation. Optimum situation in this research means minimum flow time and maximum capacity in production floor. Simulation approach is being used because flow shop can be modelled into queuing network and inter-arrival time is not following exponential distribution. Therefore, contribution of this research is solving fleet sizing problem with multi objectives in flow shop production using simulation approach with ARENA Software

  15. Hazardous Materials Flow by Rail

    DOT National Transportation Integrated Search

    1990-03-01

    The report presents a quantitative overview of the movement of hazardous materials by rail in the United States. The data used is a hazardous materials rail waybill sample developed at TSC from the 1983 Rail Waybill Sample. The report examines (1) th...

  16. 46 CFR 151.25-2 - Cargo handling space.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... 46 Shipping 5 2011-10-01 2011-10-01 false Cargo handling space. 151.25-2 Section 151.25-2 Shipping... BULK LIQUID HAZARDOUS MATERIAL CARGOES Environmental Control § 151.25-2 Cargo handling space. Pump rooms, compressor rooms, refrigeration rooms, heating rooms, instrument rooms or other closed spaces...

  17. 46 CFR 151.25-2 - Cargo handling space.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... 46 Shipping 5 2012-10-01 2012-10-01 false Cargo handling space. 151.25-2 Section 151.25-2 Shipping... BULK LIQUID HAZARDOUS MATERIAL CARGOES Environmental Control § 151.25-2 Cargo handling space. Pump rooms, compressor rooms, refrigeration rooms, heating rooms, instrument rooms or other closed spaces...

  18. 46 CFR 151.25-2 - Cargo handling space.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... 46 Shipping 5 2010-10-01 2010-10-01 false Cargo handling space. 151.25-2 Section 151.25-2 Shipping... BULK LIQUID HAZARDOUS MATERIAL CARGOES Environmental Control § 151.25-2 Cargo handling space. Pump rooms, compressor rooms, refrigeration rooms, heating rooms, instrument rooms or other closed spaces...

  19. 46 CFR 151.25-2 - Cargo handling space.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... 46 Shipping 5 2014-10-01 2014-10-01 false Cargo handling space. 151.25-2 Section 151.25-2 Shipping... BULK LIQUID HAZARDOUS MATERIAL CARGOES Environmental Control § 151.25-2 Cargo handling space. Pump rooms, compressor rooms, refrigeration rooms, heating rooms, instrument rooms or other closed spaces...

  20. 46 CFR 151.25-2 - Cargo handling space.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... 46 Shipping 5 2013-10-01 2013-10-01 false Cargo handling space. 151.25-2 Section 151.25-2 Shipping... BULK LIQUID HAZARDOUS MATERIAL CARGOES Environmental Control § 151.25-2 Cargo handling space. Pump rooms, compressor rooms, refrigeration rooms, heating rooms, instrument rooms or other closed spaces...

  1. 29 CFR 1926.953 - Material handling.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... Material handling. (a) Unloading. Prior to unloading steel, poles, cross arms and similar material, the.... During framing operations, employees shall not work under a pole or a structure suspended by a crane, A-frame or similar equipment unless the pole or structure is adequately supported. (g) Attaching the load...

  2. 29 CFR 1926.953 - Material handling.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... Material handling. (a) Unloading. Prior to unloading steel, poles, cross arms and similar material, the.... During framing operations, employees shall not work under a pole or a structure suspended by a crane, A-frame or similar equipment unless the pole or structure is adequately supported. (g) Attaching the load...

  3. 29 CFR 1926.953 - Material handling.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... Material handling. (a) Unloading. Prior to unloading steel, poles, cross arms and similar material, the.... During framing operations, employees shall not work under a pole or a structure suspended by a crane, A-frame or similar equipment unless the pole or structure is adequately supported. (g) Attaching the load...

  4. 29 CFR 1926.953 - Material handling.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... Material handling. (a) Unloading. Prior to unloading steel, poles, cross arms and similar material, the... stored in temporary containers other than those required in § 1926.152, such as pillow tanks. (f) Framing. During framing operations, employees shall not work under a pole or a structure suspended by a crane, A...

  5. 29 CFR 1926.953 - Material handling.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... Material handling. (a) Unloading. Prior to unloading steel, poles, cross arms and similar material, the... stored in temporary containers other than those required in § 1926.152, such as pillow tanks. (f) Framing. During framing operations, employees shall not work under a pole or a structure suspended by a crane, A...

  6. Factors influencing oncology nurses' use of hazardous drug safe-handling precautions.

    PubMed

    Polovich, Martha; Clark, Patricia C

    2012-05-01

    To examine relationships among factors affecting nurses' use of hazardous drug (HD) safe-handling precautions, identify factors that promote or interfere with HD precaution use, and determine managers' perspectives on the use of HD safe-handling precautions. Cross-sectional, mixed methods; mailed survey to nurses who handle chemotherapy and telephone interviews with managers. Mailed invitation to oncology centers across the United States. 165 nurses who reported handling chemotherapy and 20 managers of nurses handling chemotherapy. Instruments measured the use of HD precautions and individual and organizational factors believed to influence precaution use. Data analysis included descriptive statistics and hierarchical regression. Manager interview data were analyzed using content analysis. Chemotherapy exposure knowledge, self-efficacy, perceived barriers, perceived risk, interpersonal influences, and workplace safety climate. Nurses were well educated, experienced, and certified in oncology nursing. The majority worked in outpatient settings and administered chemotherapy to an average of 6.8 patients per day. Exposure knowledge, self-efficacy for using personal protective equipment, and perceived risk of harm from HD exposure were high; total precaution use was low. Nurse characteristics did not predict HD precaution use. Fewer barriers, better workplace safety climate, and fewer patients per day were independent predictors of higher HD precaution use. HD handling policies were present, but many did not reflect current recommendations. Few managers formally monitored nurses' HD precaution use. Circumstances in the workplace interfere with nurses' use of HD precautions. Interventions should include fostering a positive workplace safety climate, reducing barriers, and providing appropriate nurse-patient ratios.

  7. The handling, hazards, and maintenance of heavy liquids in the geologic laboratory

    USGS Publications Warehouse

    Hauff, Phoebe L.; Airey, Joseph

    1980-01-01

    In geologic laboratories the organic heavy liquids bromoform, methylene iodide, tetrabromoethane, and clerici compounds have been used for years in mineral separation processes. Because the volume of use of these compounds is low, insufficient data is available on their toxic properties. This report is an attempt to summarize the known data from published and industry sources. The physical properties, hazards of handling,proper storage facilities, and adequate protective Clothing are discussed for each compound as well as for their common and less-common solvents. Toxicity data for these materials is listed along with exposure symptoms and suggested first aid treatments. Safety for the worker is emphasized. Three reclamation methods which recover the solvent used as a dilutant and purify the heavy liquid are discussed and illustrated. These include: the water cascade, re fluxing-distillation-condensation, and flash evaporation methods. Various techniques for restoration and stabilization of these heavy liquids are also included.

  8. Dust prevention in bulk material transportation and handling

    NASA Astrophysics Data System (ADS)

    Kirichenko, A. V.; Kuznetsov, A. L.; Pogodin, V. A.

    2017-10-01

    The environmental problem of territory and atmosphere pollution caused by transportation and handling of dust-generating bulk cargo materials is quite common for the whole world. The reducing of weight of fine class coal caused by air blowing reaches the level of 0.5-0.6 t per railcar over the 500 km transportation distance, which is equal to the loss of 1 % of the total weight. The studies showed that all over the country in the process of the railroad transportation, the industry loses 3-5 metric tonnes of coal annually. There are several common tactical measurers to prevent dust formation: treating the dust-producing materials at dispatch point with special liquid solutions; watering the stacks and open handling points of materials; frequent dust removing and working area cleaning. Recently there appeared several new radical measures for pollution prevention in export of ore and coal materials via sea port terminals, specifically: wind-dust protection screens, the container cargo handling system of delivery materials to the hold of the vessels. The article focuses on the discussion of these measures.

  9. Guidelines for safe handling of hazardous drugs: A systematic review

    PubMed Central

    Bernabeu-Martínez, Mari A.; Ramos Merino, Mateo; Santos Gago, Juan M.; Álvarez Sabucedo, Luis M.; Wanden-Berghe, Carmina

    2018-01-01

    Objective To review the scientific literature related to the safe handling of hazardous drugs (HDs). Method Critical analysis of works retrieved from MEDLINE, the Cochrane Library, Scopus, CINHAL, Web of Science and LILACS using the terms "Hazardous Substances", "Antineoplastic Agents" and "Cytostatic Agents", applying "Humans" and "Guidelines" as filters. Date of search: January 2017. Results In total, 1100 references were retrieved, and from those, 61 documents were selected based on the inclusion and exclusion criteria: 24 (39.3%) documents related to recommendations about HDs; 27 (44.3%) about antineoplastic agents, and 10 (33.3%) about other types of substances (monoclonal antibodies, gene medicine and other chemical and biological agents). In 14 (23.3%) guides, all the stages in the manipulation process involving a risk due to exposure were considered. Only one guide addressed all stages of the handling process of HDs (including stages with and without the risk of exposure). The most described stages were drug preparation (41 guides, 67.2%), staff training and/or patient education (38 guides, 62.3%), and administration (37 guides, 60.7%). No standardized informatics system was found that ensured quality management, traceability and minimization of the risks associated with these drugs. Conclusions Most of the analysed guidelines limit their recommendations to the manipulation of antineoplastics. The most frequently described activities were preparation, training, and administration. It would be convenient to apply ICTs (Information and Communications Technologies) to manage processes involving HDs in a more complete and simpler fashion. PMID:29750798

  10. Guidelines for safe handling of hazardous drugs: A systematic review.

    PubMed

    Bernabeu-Martínez, Mari A; Ramos Merino, Mateo; Santos Gago, Juan M; Álvarez Sabucedo, Luis M; Wanden-Berghe, Carmina; Sanz-Valero, Javier

    2018-01-01

    To review the scientific literature related to the safe handling of hazardous drugs (HDs). Critical analysis of works retrieved from MEDLINE, the Cochrane Library, Scopus, CINHAL, Web of Science and LILACS using the terms "Hazardous Substances", "Antineoplastic Agents" and "Cytostatic Agents", applying "Humans" and "Guidelines" as filters. Date of search: January 2017. In total, 1100 references were retrieved, and from those, 61 documents were selected based on the inclusion and exclusion criteria: 24 (39.3%) documents related to recommendations about HDs; 27 (44.3%) about antineoplastic agents, and 10 (33.3%) about other types of substances (monoclonal antibodies, gene medicine and other chemical and biological agents). In 14 (23.3%) guides, all the stages in the manipulation process involving a risk due to exposure were considered. Only one guide addressed all stages of the handling process of HDs (including stages with and without the risk of exposure). The most described stages were drug preparation (41 guides, 67.2%), staff training and/or patient education (38 guides, 62.3%), and administration (37 guides, 60.7%). No standardized informatics system was found that ensured quality management, traceability and minimization of the risks associated with these drugs. Most of the analysed guidelines limit their recommendations to the manipulation of antineoplastics. The most frequently described activities were preparation, training, and administration. It would be convenient to apply ICTs (Information and Communications Technologies) to manage processes involving HDs in a more complete and simpler fashion.

  11. Solar Energy: Materials, Materials Handling, and Fabrication Processes: Student Material. First Edition.

    ERIC Educational Resources Information Center

    Bolin, William Everet; Orsak, Charles G., Jr.

    Designed for student use in "Materials, Materials Handling, and Fabrication Processes," one of 11 courses in a 2-year associate degree program in solar technology, this manual provides readings, exercises, worksheets, bibliographies, and illustrations for 13 course modules. The manual, which corresponds to an instructor guide for the…

  12. 41 CFR 101-42.405 - Transportation of hazardous materials.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 41 Public Contracts and Property Management 2 2010-07-01 2010-07-01 true Transportation of... Destruction of Surplus Hazardous Materials and Certain Categories of Property § 101-42.405 Transportation of hazardous materials. The transportation of hazardous materials is governed by the hazardous materials...

  13. 41 CFR 101-42.405 - Transportation of hazardous materials.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 41 Public Contracts and Property Management 2 2014-07-01 2012-07-01 true Transportation of... Destruction of Surplus Hazardous Materials and Certain Categories of Property § 101-42.405 Transportation of hazardous materials. The transportation of hazardous materials is governed by the hazardous materials...

  14. 41 CFR 101-42.405 - Transportation of hazardous materials.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 41 Public Contracts and Property Management 2 2011-07-01 2007-07-01 true Transportation of... Destruction of Surplus Hazardous Materials and Certain Categories of Property § 101-42.405 Transportation of hazardous materials. The transportation of hazardous materials is governed by the hazardous materials...

  15. 14 CFR 135.503 - Hazardous materials training: General.

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... 14 Aeronautics and Space 3 2012-01-01 2012-01-01 false Hazardous materials training: General. 135.503 Section 135.503 Aeronautics and Space FEDERAL AVIATION ADMINISTRATION, DEPARTMENT OF... Hazardous Materials Training Program § 135.503 Hazardous materials training: General. (a) Each certificate...

  16. 14 CFR 135.507 - Hazardous materials training records.

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... 14 Aeronautics and Space 3 2013-01-01 2013-01-01 false Hazardous materials training records. 135.507 Section 135.507 Aeronautics and Space FEDERAL AVIATION ADMINISTRATION, DEPARTMENT OF... Hazardous Materials Training Program § 135.507 Hazardous materials training records. (a) General requirement...

  17. 14 CFR 135.505 - Hazardous materials training required.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... 14 Aeronautics and Space 3 2011-01-01 2011-01-01 false Hazardous materials training required. 135.505 Section 135.505 Aeronautics and Space FEDERAL AVIATION ADMINISTRATION, DEPARTMENT OF... Hazardous Materials Training Program § 135.505 Hazardous materials training required. (a) Training...

  18. 14 CFR 135.507 - Hazardous materials training records.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... 14 Aeronautics and Space 3 2014-01-01 2014-01-01 false Hazardous materials training records. 135.507 Section 135.507 Aeronautics and Space FEDERAL AVIATION ADMINISTRATION, DEPARTMENT OF... Hazardous Materials Training Program § 135.507 Hazardous materials training records. (a) General requirement...

  19. 14 CFR 135.505 - Hazardous materials training required.

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... 14 Aeronautics and Space 3 2012-01-01 2012-01-01 false Hazardous materials training required. 135.505 Section 135.505 Aeronautics and Space FEDERAL AVIATION ADMINISTRATION, DEPARTMENT OF... Hazardous Materials Training Program § 135.505 Hazardous materials training required. (a) Training...

  20. 14 CFR 135.503 - Hazardous materials training: General.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... 14 Aeronautics and Space 3 2010-01-01 2010-01-01 false Hazardous materials training: General. 135.503 Section 135.503 Aeronautics and Space FEDERAL AVIATION ADMINISTRATION, DEPARTMENT OF... Hazardous Materials Training Program § 135.503 Hazardous materials training: General. (a) Each certificate...

  1. 14 CFR 135.503 - Hazardous materials training: General.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... 14 Aeronautics and Space 3 2014-01-01 2014-01-01 false Hazardous materials training: General. 135.503 Section 135.503 Aeronautics and Space FEDERAL AVIATION ADMINISTRATION, DEPARTMENT OF... Hazardous Materials Training Program § 135.503 Hazardous materials training: General. (a) Each certificate...

  2. 14 CFR 135.503 - Hazardous materials training: General.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... 14 Aeronautics and Space 3 2011-01-01 2011-01-01 false Hazardous materials training: General. 135.503 Section 135.503 Aeronautics and Space FEDERAL AVIATION ADMINISTRATION, DEPARTMENT OF... Hazardous Materials Training Program § 135.503 Hazardous materials training: General. (a) Each certificate...

  3. 14 CFR 135.505 - Hazardous materials training required.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... 14 Aeronautics and Space 3 2014-01-01 2014-01-01 false Hazardous materials training required. 135.505 Section 135.505 Aeronautics and Space FEDERAL AVIATION ADMINISTRATION, DEPARTMENT OF... Hazardous Materials Training Program § 135.505 Hazardous materials training required. (a) Training...

  4. 14 CFR 135.507 - Hazardous materials training records.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... 14 Aeronautics and Space 3 2011-01-01 2011-01-01 false Hazardous materials training records. 135.507 Section 135.507 Aeronautics and Space FEDERAL AVIATION ADMINISTRATION, DEPARTMENT OF... Hazardous Materials Training Program § 135.507 Hazardous materials training records. (a) General requirement...

  5. 14 CFR 135.505 - Hazardous materials training required.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... 14 Aeronautics and Space 3 2010-01-01 2010-01-01 false Hazardous materials training required. 135.505 Section 135.505 Aeronautics and Space FEDERAL AVIATION ADMINISTRATION, DEPARTMENT OF... Hazardous Materials Training Program § 135.505 Hazardous materials training required. (a) Training...

  6. 14 CFR 135.505 - Hazardous materials training required.

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... 14 Aeronautics and Space 3 2013-01-01 2013-01-01 false Hazardous materials training required. 135.505 Section 135.505 Aeronautics and Space FEDERAL AVIATION ADMINISTRATION, DEPARTMENT OF... Hazardous Materials Training Program § 135.505 Hazardous materials training required. (a) Training...

  7. 14 CFR 135.503 - Hazardous materials training: General.

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... 14 Aeronautics and Space 3 2013-01-01 2013-01-01 false Hazardous materials training: General. 135.503 Section 135.503 Aeronautics and Space FEDERAL AVIATION ADMINISTRATION, DEPARTMENT OF... Hazardous Materials Training Program § 135.503 Hazardous materials training: General. (a) Each certificate...

  8. 14 CFR 135.507 - Hazardous materials training records.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... 14 Aeronautics and Space 3 2010-01-01 2010-01-01 false Hazardous materials training records. 135.507 Section 135.507 Aeronautics and Space FEDERAL AVIATION ADMINISTRATION, DEPARTMENT OF... Hazardous Materials Training Program § 135.507 Hazardous materials training records. (a) General requirement...

  9. 14 CFR 135.507 - Hazardous materials training records.

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... 14 Aeronautics and Space 3 2012-01-01 2012-01-01 false Hazardous materials training records. 135.507 Section 135.507 Aeronautics and Space FEDERAL AVIATION ADMINISTRATION, DEPARTMENT OF... Hazardous Materials Training Program § 135.507 Hazardous materials training records. (a) General requirement...

  10. Explosion Hazards Associated with Spills of Large Quantities of Hazardous Materials. Phase I

    DTIC Science & Technology

    1974-10-01

    quantities of hazardous material such as liquified natural gas ( LNG ), liquified petroleum gils (LPG), or ethylene. The principal results are (1) a...associated with spills of large quantities of hazardous material such as liquified natural gas ( LNG ), liquified petroleum gas (LPG), or ethylene. The...liquified natural gas ( LNG ). Unfortunately, as the quantity of material shipped at one time increases, so does the potential hazard associated with

  11. Bulk material handling system

    DOEpatents

    Kleysteuber, William K.; Mayercheck, William D.

    1979-01-01

    This disclosure relates to a bulk material handling system particularly adapted for underground mining and includes a monorail supported overhead and carrying a plurality of conveyors each having input and output end portions with the output end portion of a first of the conveyors positioned above an input end portion of a second of the conveyors, a device for imparting motion to the conveyors to move the material from the input end portions toward the output end portions thereof, a device for supporting at least one of the input and output end portions of the first and second conveyors from the monorail, and the supporting device including a plurality of trolleys rollingly supported by the monorail whereby the conveyors can be readily moved therealong.

  12. 9 CFR 318.18 - Handling of certain material for mechanical processing.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... 9 Animals and Animal Products 2 2010-01-01 2010-01-01 false Handling of certain material for mechanical processing. 318.18 Section 318.18 Animals and Animal Products FOOD SAFETY AND INSPECTION SERVICE... PREPARATION OF PRODUCTS General § 318.18 Handling of certain material for mechanical processing. Material to...

  13. 49 CFR 172.313 - Poisonous hazardous materials.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... TABLE, SPECIAL PROVISIONS, HAZARDOUS MATERIALS COMMUNICATIONS, EMERGENCY RESPONSE INFORMATION, TRAINING... 1,000 kg (2,205 pounds) or more aggregate gross weight of the material in non-bulk packages marked... aggregate gross weight; and (ii) For different materials in both Hazard Zones A and B, with the...

  14. 76 FR 37283 - Hazardous Materials: Revision to the List of Hazardous Substances and Reportable Quantities

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-06-27

    ... DEPARTMENT OF TRANSPORTATION Pipeline and Hazardous Materials Safety Administration 49 CFR Part... under the Federal hazardous materials transportation law (49 U.S.C. 5101-5128). PHMSA carries out the rulemaking responsibilities of the Secretary of Transportation under the Federal hazardous materials...

  15. Hazardous Materials Routing Study Phase I: Establishing Hazardous Materials Truck Routes for Shipments Through the Dallas-Fort Worth Area

    DOT National Transportation Integrated Search

    1985-10-01

    The transportation of hazardous materials over streets and highways in the Dallas-Fort Worth area has become a significant transportation safety concern. Recent accidents involving vehicles transporting hazardous materials have resulted in extensive ...

  16. 78 FR 18419 - Office of Hazardous Materials Safety; Delayed Applications

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-03-26

    ... DEPARTMENT OF TRANSPORTATION Pipeline and Hazardous Materials Safety Administration Office of Hazardous Materials Safety; Delayed Applications AGENCY: Pipeline and Hazardous Materials Safety.... FOR FURTHER INFORMATION CONTACT: Ryan Paquet, Director, Office of Hazardous Materials Special Permits...

  17. Hazardous materials programs in the fifty states.

    DOT National Transportation Integrated Search

    1988-01-01

    This report describes the hazardous materials transportation safety programs, laws, and regulatory programs enacted by each of the fifty states. The report contains a brief description of common elements in the hazardous materials policy-making proce...

  18. Flows of Selected Hazardous Materials by Rail

    DOT National Transportation Integrated Search

    1990-03-01

    This report reviews the hazardous materials rail traffic of 33 selected hazardous materials commoditites or commodity groups in 1986, a relatively typical recent year. The flow of the selected commodities by rail are characterized and their geographi...

  19. Hazardous waste: cleanup and prevention

    USGS Publications Warehouse

    Vandas, Stephen; Cronin, Nancy L.; Farrar, Frank; Serrano, Guillermo Eliezer Ávila; Yajimovich, Oscar Efraín González; Muñoz, Aurora R.; Rivera, María del C.

    1996-01-01

    Our lifestyles are supported by complex Industrial activities that produce many different chemicals and chemical wastes. The Industries that produce our clothing, cars, medicines, paper, food, fuels, steel, plastics, and electric components use and discard thousands of chemicals every year. At home we may use lawn chemicals, solvents, disinfectants, cleaners, and auto products to Improve our quality of life. A chemical that presents a threat or unreasonable risk to people or the environment Is a hazardous material. When a hazardous material can no longer be used, It becomes a hazardous waste. Hazardous wastes come from a variety of sources, from both present and past activities. Impacts to human health and the environment can result from Improper handling and disposal of hazardous waste.

  20. 78 FR 24309 - Pipeline and Hazardous Materials Safety Administration

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-04-24

    ... DEPARTMENT OF TRANSPORTATION Pipeline and Hazardous Materials Safety Administration List of Special Permit Applications Delayed AGENCY: Pipeline and Hazardous Materials Safety Administration (PHMSA..., Pipeline and Hazardous Materials Safety Administration, U.S. Department of Transportation, East Building...

  1. Ergonomics intervention in a tile industry- case of manual material handling.

    PubMed

    Dormohammadi, Ali; Amjad Sardrudi, Hosein; Motamedzade, Majid; Dormohammadi, Reza; Musavi, Saeed

    2012-12-13

    Manual material handling is one of the major health and safety hazards in industry. This study aims to assess the lifting tasks, before and after intervention using NIOSH lifting equation and Manual Handling Assessment Charts (MAC). This interventional study was performed in 2011 in a tile manufacturing industry in Hamadan, located in the West of Iran. The prevalence of musculoskeletal discomfort was determined using Nordic musculoskeletal questionnaire. In order to assess the risk factors related to lifting and identify the high-risk activities, MAC and NIOSH lifting equation were used. In intervention phase, we designed a load-carrying cart with shelves capable of moving vertically up and down, similar to scissor lifts. After intervention, the reassessment of risk factors was conducted to determine the success of the intervention and to compare risk levels before and after intervention using t-test. The outputs of MAC and NIOSH lifting equation assessments before intervention revealed that all activities were at high-risk level. After intervention, the risk level decreased to average level. In conclusion, the results of intervention revealed a considerable decrease in risk level. It may be concluded that the given intervention was acceptable and favorably effective in preventing musculoskeletal disorders especially low back pain.

  2. 76 FR 45332 - Pipeline and Hazardous Materials Safety Administration

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-07-28

    ... DEPARTMENT OF TRANSPORTATION Pipeline and Hazardous Materials Safety Administration Office of... Hazardous Materials Safety Administration (PHMSA), DOT. ACTION: List of Applications for Modification of..., 2011. ADDRESSES: Record Center, Pipeline and Hazardous Materials Safety Administration, U.S. Department...

  3. Method of preparing and handling chopped plant materials

    DOEpatents

    Bransby, David I.

    2002-11-26

    The method improves efficiency of harvesting, storage, transport, and feeding of dry plant material to animals, and is a more efficient method for harvesting, handling and transporting dry plant material for industrial purposes, such as for production of bioenergy, and composite panels.

  4. 78 FR 60726 - Hazardous Materials Regulations: Penalty Guidelines

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-10-02

    ..., Radioactive Materials, Compressed Gases in cylinders; Packaging Manufacturers, Drum Manufacturers and... Administrative practices and procedure, Hazardous materials transportation, Packaging and containers, Penalties... DEPARTMENT OF TRANSPORTATION Pipeline and Hazardous Materials Safety Administration 49 CFR Part...

  5. Hazardous Material Packaging and Transportation

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hypes, Philip A.

    2016-02-04

    This is a student training course. Some course objectives are to: recognize and use standard international and US customary units to describe activities and exposure rates associated with radioactive material; determine whether a quantity of a single radionuclide meets the definition of a class 7 (radioactive) material; determine, for a given single radionuclide, the shipping quantity activity limits per 49 Code of Federal Regulations (CFR) 173.435; determine the appropriate radioactive material hazard class proper shipping name for a given material; determine when a single radionuclide meets the DOT definition of a hazardous substance; determine the appropriate packaging required for amore » given radioactive material; identify the markings to be placed on a package of radioactive material; determine the label(s) to apply to a given radioactive material package; identify the entry requirements for radioactive material labels; determine the proper placement for radioactive material label(s); identify the shipping paper entry requirements for radioactive material; select the appropriate placards for a given radioactive material shipment or vehicle load; and identify allowable transport limits and unacceptable transport conditions for radioactive material.« less

  6. Oxygen Handling and Cooling Options in High Temperature Electrolysis Plants

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Manohar S. Sohal; J. Stephen Herring

    2008-07-01

    Idaho National Laboratory is working on a project to generate hydrogen by high temperature electrolysis (HTE). In such an HTE system, safety precautions need to be taken to handle high temperature oxygen at ~830°C. This report is aimed at addressing oxygen handling in a HTE plant.. Though oxygen itself is not flammable, most engineering material, including many gases and liquids, will burn in the presence of oxygen under some favorable physicochemical conditions. At present, an absolute set of rules does not exist that can cover all aspects of oxygen system design, material selection, and operating practices to avoid subtle hazardsmore » related to oxygen. Because most materials, including metals, will burn in an oxygen-enriched environment, hazards are always present when using oxygen. Most materials will ignite in an oxygen-enriched environment at a temperature lower than that in air, and once ignited, combustion rates are greater in the oxygen-enriched environment. Even many metals, if ignited, burn violently in an oxygen-enriched environment. However, these hazards do not preclude the operations and systems involving oxygen. Oxygen can be safely handled and used if all the materials in a system are not flammable in the end-use environment or if ignition sources are identified and controlled. In fact, the incidence of oxygen system fires is reported to be low with a probability of about one in a million. This report is a practical guideline and tutorial for the safe operation and handling of gaseous oxygen in high temperature electrolysis system. The intent is to provide safe, practical guidance that permits the accomplishment of experimental operations at INL, while being restrictive enough to prevent personnel endangerment and to provide reasonable facility protection. Adequate guidelines are provided to govern various aspects of oxygen handling associated with high temperature electrolysis system to generate hydrogen. The intent here is to present

  7. APPARATUS FOR HANDLING MIXTURES OF SOLID MATERIALS

    DOEpatents

    Hubbell, J.P.

    1959-08-25

    An apparatus is described for handling either a mixture of finely subdivided materials or a single material requiring a compacting action thereon preparatory to a chemical reducing process carried out in a crucible container. The apparatus is designed to deposit a mixture of dust-forming solid materials in a container while confining the materials against escape into the surrounding atmosphere. A movable filling tube, having a compacting member, is connected to the container and to a covered hopper receiving the mixture of materials. The filling tube is capable of reciprocating in the container and their relative positions are dependent upon the pressure established upon the material by the compacting member.

  8. 49 CFR 176.192 - Cargo handling equipment for freight containers carrying Class 1 (explosive) materials.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... 49 Transportation 2 2014-10-01 2014-10-01 false Cargo handling equipment for freight containers...) Materials Handling Class 1 (explosive) Materials in Port § 176.192 Cargo handling equipment for freight containers carrying Class 1 (explosive) materials. (a) Except in an emergency, only cargo handling equipment...

  9. 49 CFR 176.192 - Cargo handling equipment for freight containers carrying Class 1 (explosive) materials.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... 49 Transportation 2 2010-10-01 2010-10-01 false Cargo handling equipment for freight containers...) Materials Handling Class 1 (explosive) Materials in Port § 176.192 Cargo handling equipment for freight containers carrying Class 1 (explosive) materials. (a) Except in an emergency, only cargo handling equipment...

  10. 49 CFR 176.192 - Cargo handling equipment for freight containers carrying Class 1 (explosive) materials.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... 49 Transportation 2 2011-10-01 2011-10-01 false Cargo handling equipment for freight containers...) Materials Handling Class 1 (explosive) Materials in Port § 176.192 Cargo handling equipment for freight containers carrying Class 1 (explosive) materials. (a) Except in an emergency, only cargo handling equipment...

  11. 49 CFR 176.192 - Cargo handling equipment for freight containers carrying Class 1 (explosive) materials.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... 49 Transportation 2 2013-10-01 2013-10-01 false Cargo handling equipment for freight containers...) Materials Handling Class 1 (explosive) Materials in Port § 176.192 Cargo handling equipment for freight containers carrying Class 1 (explosive) materials. (a) Except in an emergency, only cargo handling equipment...

  12. 49 CFR 176.192 - Cargo handling equipment for freight containers carrying Class 1 (explosive) materials.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... 49 Transportation 2 2012-10-01 2012-10-01 false Cargo handling equipment for freight containers...) Materials Handling Class 1 (explosive) Materials in Port § 176.192 Cargo handling equipment for freight containers carrying Class 1 (explosive) materials. (a) Except in an emergency, only cargo handling equipment...

  13. 29 CFR 1917.73 - Terminal facilities handling menhaden and similar species of fish (see also § 1917.2, definition...

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 29 Labor 7 2010-07-01 2010-07-01 false Terminal facilities handling menhaden and similar species of fish (see also § 1917.2, definition of hazardous cargo, material, substance or atmosphere). 1917... facilities handling menhaden and similar species of fish (see also § 1917.2, definition of hazardous cargo...

  14. Naturally occurring hazardous materials.

    DOT National Transportation Integrated Search

    2011-12-01

    The study of naturally occurring hazardous materials (NOHMs) was conceived as a proactive response to assure that the Oregon : Department of Transportation (ODOT) maintenance and construction activities take the presence of NOHMs into account. The la...

  15. Hazardous Materials Routing Study Phase II: Analysis of Hazardous Materials Truck Routes in Proximity to the Dallas Central Business District

    DOT National Transportation Integrated Search

    1985-10-01

    This report summarizes the findings from the second phase of a two-part analysis of hazardous materials truck routes in the Dallas-Fort Worth area. Phase II of this study analyzes the risk of transporting hazardous materials on freeways and arterial ...

  16. 40 CFR 260.42 - Notification requirement for hazardous secondary materials.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... (CONTINUED) SOLID WASTES (CONTINUED) HAZARDOUS WASTE MANAGEMENT SYSTEM: GENERAL Rulemaking Petitions § 260.42... according to the exclusion (reported as the EPA hazardous waste numbers that would apply if the hazardous secondary materials were managed as hazardous wastes); (8) For each hazardous secondary material, whether...

  17. 40 CFR 260.42 - Notification requirement for hazardous secondary materials.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... (CONTINUED) SOLID WASTES (CONTINUED) HAZARDOUS WASTE MANAGEMENT SYSTEM: GENERAL Rulemaking Petitions § 260.42... according to the exclusion (reported as the EPA hazardous waste numbers that would apply if the hazardous secondary materials were managed as hazardous wastes); (8) For each hazardous secondary material, whether...

  18. 40 CFR 260.42 - Notification requirement for hazardous secondary materials.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... (CONTINUED) SOLID WASTES (CONTINUED) HAZARDOUS WASTE MANAGEMENT SYSTEM: GENERAL Rulemaking Petitions § 260.42... according to the exclusion (reported as the EPA hazardous waste numbers that would apply if the hazardous secondary materials were managed as hazardous wastes); (8) For each hazardous secondary material, whether...

  19. 40 CFR 260.42 - Notification requirement for hazardous secondary materials.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... (CONTINUED) SOLID WASTES (CONTINUED) HAZARDOUS WASTE MANAGEMENT SYSTEM: GENERAL Rulemaking Petitions § 260.42... according to the exclusion (reported as the EPA hazardous waste numbers that would apply if the hazardous secondary materials were managed as hazardous wastes); (8) For each hazardous secondary material, whether...

  20. Hazardous Materials Hazard Analysis, Portland, Oregon.

    DTIC Science & Technology

    1981-06-01

    combustible liquids, primarily petroleum products such as gasoline and fuel oil . Although less prevalent, compressed flammable gases (such as liquid...magnitude when hazardous materials are involved. -- Texas City, Texas, 1947--A ship being loaded with ammonium nitrate exploded, killing 468 people...An overturned gasoline or home heating fuel oil tanker or natural gas leak which does not ignite would be a Level 1 emergency. Level 2: A spill or

  1. Federal Hazardous Materials Law

    DOT National Transportation Integrated Search

    1994-10-01

    The purpose of this chapter is to provide adequate protection against the risks to life and property inherent in the transpor-tation : of hazardous material in commerce by improving the regulatory and enforcement authority of the Secretary of Trans-p...

  2. NASA Hydrogen Peroxide Propellant Hazards Technical Manual

    NASA Technical Reports Server (NTRS)

    Baker, David L.; Greene, Ben; Frazier, Wayne

    2005-01-01

    The Fire, Explosion, Compatibility and Safety Hazards of Hydrogen Peroxide NASA technical manual was developed at the NASA Johnson Space Center White Sands Test Facility. NASA Technical Memorandum TM-2004-213151 covers topics concerning high concentration hydrogen peroxide including fire and explosion hazards, material and fluid reactivity, materials selection information, personnel and environmental hazards, physical and chemical properties, analytical spectroscopy, specifications, analytical methods, and material compatibility data. A summary of hydrogen peroxide-related accidents, incidents, dose calls, mishaps and lessons learned is included. The manual draws from art extensive literature base and includes recent applicable regulatory compliance documentation. The manual may be obtained by United States government agencies from NASA Johnson Space Center and used as a reference source for hazards and safe handling of hydrogen peroxide.

  3. 49 CFR 172.101 - Purpose and use of hazardous materials table.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... 49 Transportation 2 2012-10-01 2012-10-01 false Purpose and use of hazardous materials table. 172.101 Section 172.101 Transportation Other Regulations Relating to Transportation PIPELINE AND HAZARDOUS MATERIALS SAFETY ADMINISTRATION, DEPARTMENT OF TRANSPORTATION HAZARDOUS MATERIALS REGULATIONS HAZARDOUS MATERIALS TABLE, SPECIAL PROVISIONS,...

  4. 49 CFR 172.101 - Purpose and use of hazardous materials table.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... 49 Transportation 2 2014-10-01 2014-10-01 false Purpose and use of hazardous materials table. 172.101 Section 172.101 Transportation Other Regulations Relating to Transportation PIPELINE AND HAZARDOUS MATERIALS SAFETY ADMINISTRATION, DEPARTMENT OF TRANSPORTATION HAZARDOUS MATERIALS REGULATIONS HAZARDOUS MATERIALS TABLE, SPECIAL PROVISIONS,...

  5. 49 CFR 172.101 - Purpose and use of hazardous materials table.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... 49 Transportation 2 2013-10-01 2013-10-01 false Purpose and use of hazardous materials table. 172.101 Section 172.101 Transportation Other Regulations Relating to Transportation PIPELINE AND HAZARDOUS MATERIALS SAFETY ADMINISTRATION, DEPARTMENT OF TRANSPORTATION HAZARDOUS MATERIALS REGULATIONS HAZARDOUS MATERIALS TABLE, SPECIAL PROVISIONS,...

  6. Transportation of hazardous materials : state and local activities

    DOT National Transportation Integrated Search

    1986-03-01

    Report is the first of two Office of Technology Assessment (OTA) reports : examining the transportation of hazardous materials in the U. S. in order to : assist the Congress in its deliberations on reauthorization of the Hazardous : Materials Transpo...

  7. 49 CFR 173.2 - Hazardous materials classes and index to hazard class definitions.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ....50 1 1.6 Extremely insensitive detonating substances 173.50 2 2.1 Flammable gas 173.115 2 2.2 Non-flammable compressed gas 173.115 2 2.3 Poisonous gas 173.115 3 Flammable and combustible liquid 173.120 4 4... PIPELINE AND HAZARDOUS MATERIALS SAFETY ADMINISTRATION, DEPARTMENT OF TRANSPORTATION HAZARDOUS MATERIALS...

  8. 49 CFR 173.2 - Hazardous materials classes and index to hazard class definitions.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ....50 1 1.6 Extremely insensitive detonating substances 173.50 2 2.1 Flammable gas 173.115 2 2.2 Non-flammable compressed gas 173.115 2 2.3 Poisonous gas 173.115 3 Flammable and combustible liquid 173.120 4 4... PIPELINE AND HAZARDOUS MATERIALS SAFETY ADMINISTRATION, DEPARTMENT OF TRANSPORTATION HAZARDOUS MATERIALS...

  9. 49 CFR 173.2 - Hazardous materials classes and index to hazard class definitions.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ....50 1 1.6 Extremely insensitive detonating substances 173.50 2 2.1 Flammable gas 173.115 2 2.2 Non-flammable compressed gas 173.115 2 2.3 Poisonous gas 173.115 3 Flammable and combustible liquid 173.120 4 4... PIPELINE AND HAZARDOUS MATERIALS SAFETY ADMINISTRATION, DEPARTMENT OF TRANSPORTATION HAZARDOUS MATERIALS...

  10. 49 CFR 173.2 - Hazardous materials classes and index to hazard class definitions.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ....50 1 1.6 Extremely insensitive detonating substances 173.50 2 2.1 Flammable gas 173.115 2 2.2 Non-flammable compressed gas 173.115 2 2.3 Poisonous gas 173.115 3 Flammable and combustible liquid 173.120 4 4... PIPELINE AND HAZARDOUS MATERIALS SAFETY ADMINISTRATION, DEPARTMENT OF TRANSPORTATION HAZARDOUS MATERIALS...

  11. Hazardous Materials Information System (HMIS) Data Quality Review

    DOT National Transportation Integrated Search

    1997-05-01

    The Hazardous Materials Information System (HMIS) is used to manage data required for the use, transportation, storage and disposal of hazardous material by the US Government. In response to concerns expressed by some users, DORO was tasked to conduc...

  12. 14 CFR 121.1003 - Hazardous materials training: General.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... 14 Aeronautics and Space 3 2014-01-01 2014-01-01 false Hazardous materials training: General. 121.1003 Section 121.1003 Aeronautics and Space FEDERAL AVIATION ADMINISTRATION, DEPARTMENT OF... OPERATING REQUIREMENTS: DOMESTIC, FLAG, AND SUPPLEMENTAL OPERATIONS Hazardous Materials Training Program...

  13. 14 CFR 121.1003 - Hazardous materials training: General.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... 14 Aeronautics and Space 3 2010-01-01 2010-01-01 false Hazardous materials training: General. 121.1003 Section 121.1003 Aeronautics and Space FEDERAL AVIATION ADMINISTRATION, DEPARTMENT OF... OPERATING REQUIREMENTS: DOMESTIC, FLAG, AND SUPPLEMENTAL OPERATIONS Hazardous Materials Training Program...

  14. 14 CFR 121.1007 - Hazardous materials training records.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... 14 Aeronautics and Space 3 2014-01-01 2014-01-01 false Hazardous materials training records. 121.1007 Section 121.1007 Aeronautics and Space FEDERAL AVIATION ADMINISTRATION, DEPARTMENT OF... OPERATING REQUIREMENTS: DOMESTIC, FLAG, AND SUPPLEMENTAL OPERATIONS Hazardous Materials Training Program...

  15. 14 CFR 121.1005 - Hazardous materials training required.

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... 14 Aeronautics and Space 3 2012-01-01 2012-01-01 false Hazardous materials training required. 121.1005 Section 121.1005 Aeronautics and Space FEDERAL AVIATION ADMINISTRATION, DEPARTMENT OF... OPERATING REQUIREMENTS: DOMESTIC, FLAG, AND SUPPLEMENTAL OPERATIONS Hazardous Materials Training Program...

  16. 14 CFR 121.1005 - Hazardous materials training required.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... 14 Aeronautics and Space 3 2010-01-01 2010-01-01 false Hazardous materials training required. 121.1005 Section 121.1005 Aeronautics and Space FEDERAL AVIATION ADMINISTRATION, DEPARTMENT OF... OPERATING REQUIREMENTS: DOMESTIC, FLAG, AND SUPPLEMENTAL OPERATIONS Hazardous Materials Training Program...

  17. 14 CFR 121.1003 - Hazardous materials training: General.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... 14 Aeronautics and Space 3 2011-01-01 2011-01-01 false Hazardous materials training: General. 121.1003 Section 121.1003 Aeronautics and Space FEDERAL AVIATION ADMINISTRATION, DEPARTMENT OF... OPERATING REQUIREMENTS: DOMESTIC, FLAG, AND SUPPLEMENTAL OPERATIONS Hazardous Materials Training Program...

  18. 14 CFR 121.1005 - Hazardous materials training required.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... 14 Aeronautics and Space 3 2014-01-01 2014-01-01 false Hazardous materials training required. 121.1005 Section 121.1005 Aeronautics and Space FEDERAL AVIATION ADMINISTRATION, DEPARTMENT OF... OPERATING REQUIREMENTS: DOMESTIC, FLAG, AND SUPPLEMENTAL OPERATIONS Hazardous Materials Training Program...

  19. 14 CFR 121.1007 - Hazardous materials training records.

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... 14 Aeronautics and Space 3 2013-01-01 2013-01-01 false Hazardous materials training records. 121.1007 Section 121.1007 Aeronautics and Space FEDERAL AVIATION ADMINISTRATION, DEPARTMENT OF... OPERATING REQUIREMENTS: DOMESTIC, FLAG, AND SUPPLEMENTAL OPERATIONS Hazardous Materials Training Program...

  20. 14 CFR 121.1005 - Hazardous materials training required.

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... 14 Aeronautics and Space 3 2013-01-01 2013-01-01 false Hazardous materials training required. 121.1005 Section 121.1005 Aeronautics and Space FEDERAL AVIATION ADMINISTRATION, DEPARTMENT OF... OPERATING REQUIREMENTS: DOMESTIC, FLAG, AND SUPPLEMENTAL OPERATIONS Hazardous Materials Training Program...

  1. 14 CFR 121.1007 - Hazardous materials training records.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... 14 Aeronautics and Space 3 2011-01-01 2011-01-01 false Hazardous materials training records. 121.1007 Section 121.1007 Aeronautics and Space FEDERAL AVIATION ADMINISTRATION, DEPARTMENT OF... OPERATING REQUIREMENTS: DOMESTIC, FLAG, AND SUPPLEMENTAL OPERATIONS Hazardous Materials Training Program...

  2. 14 CFR 121.1007 - Hazardous materials training records.

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... 14 Aeronautics and Space 3 2012-01-01 2012-01-01 false Hazardous materials training records. 121.1007 Section 121.1007 Aeronautics and Space FEDERAL AVIATION ADMINISTRATION, DEPARTMENT OF... OPERATING REQUIREMENTS: DOMESTIC, FLAG, AND SUPPLEMENTAL OPERATIONS Hazardous Materials Training Program...

  3. 14 CFR 121.1005 - Hazardous materials training required.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... 14 Aeronautics and Space 3 2011-01-01 2011-01-01 false Hazardous materials training required. 121.1005 Section 121.1005 Aeronautics and Space FEDERAL AVIATION ADMINISTRATION, DEPARTMENT OF... OPERATING REQUIREMENTS: DOMESTIC, FLAG, AND SUPPLEMENTAL OPERATIONS Hazardous Materials Training Program...

  4. 14 CFR 121.1003 - Hazardous materials training: General.

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... 14 Aeronautics and Space 3 2013-01-01 2013-01-01 false Hazardous materials training: General. 121.1003 Section 121.1003 Aeronautics and Space FEDERAL AVIATION ADMINISTRATION, DEPARTMENT OF... OPERATING REQUIREMENTS: DOMESTIC, FLAG, AND SUPPLEMENTAL OPERATIONS Hazardous Materials Training Program...

  5. 14 CFR 121.1007 - Hazardous materials training records.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... 14 Aeronautics and Space 3 2010-01-01 2010-01-01 false Hazardous materials training records. 121.1007 Section 121.1007 Aeronautics and Space FEDERAL AVIATION ADMINISTRATION, DEPARTMENT OF... OPERATING REQUIREMENTS: DOMESTIC, FLAG, AND SUPPLEMENTAL OPERATIONS Hazardous Materials Training Program...

  6. 14 CFR 121.1003 - Hazardous materials training: General.

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... 14 Aeronautics and Space 3 2012-01-01 2012-01-01 false Hazardous materials training: General. 121.1003 Section 121.1003 Aeronautics and Space FEDERAL AVIATION ADMINISTRATION, DEPARTMENT OF... OPERATING REQUIREMENTS: DOMESTIC, FLAG, AND SUPPLEMENTAL OPERATIONS Hazardous Materials Training Program...

  7. 14 CFR 91.1085 - Hazardous materials recognition training.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... 14 Aeronautics and Space 2 2014-01-01 2014-01-01 false Hazardous materials recognition training. 91.1085 Section 91.1085 Aeronautics and Space FEDERAL AVIATION ADMINISTRATION, DEPARTMENT OF... Ownership Operations Program Management § 91.1085 Hazardous materials recognition training. No program...

  8. 14 CFR 91.1085 - Hazardous materials recognition training.

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... 14 Aeronautics and Space 2 2012-01-01 2012-01-01 false Hazardous materials recognition training. 91.1085 Section 91.1085 Aeronautics and Space FEDERAL AVIATION ADMINISTRATION, DEPARTMENT OF... Ownership Operations Program Management § 91.1085 Hazardous materials recognition training. No program...

  9. 14 CFR 91.1085 - Hazardous materials recognition training.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... 14 Aeronautics and Space 2 2010-01-01 2010-01-01 false Hazardous materials recognition training. 91.1085 Section 91.1085 Aeronautics and Space FEDERAL AVIATION ADMINISTRATION, DEPARTMENT OF... Ownership Operations Program Management § 91.1085 Hazardous materials recognition training. No program...

  10. 14 CFR 91.1085 - Hazardous materials recognition training.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... 14 Aeronautics and Space 2 2011-01-01 2011-01-01 false Hazardous materials recognition training. 91.1085 Section 91.1085 Aeronautics and Space FEDERAL AVIATION ADMINISTRATION, DEPARTMENT OF... Ownership Operations Program Management § 91.1085 Hazardous materials recognition training. No program...

  11. 14 CFR 91.1085 - Hazardous materials recognition training.

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... 14 Aeronautics and Space 2 2013-01-01 2013-01-01 false Hazardous materials recognition training. 91.1085 Section 91.1085 Aeronautics and Space FEDERAL AVIATION ADMINISTRATION, DEPARTMENT OF... Ownership Operations Program Management § 91.1085 Hazardous materials recognition training. No program...

  12. 29 CFR 1910.176 - Handling materials-general.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    .... (b) Secure storage. Storage of material shall not create a hazard. Bags, containers, bundles, etc... on spur railroad tracks where a rolling car could contact other cars being worked, enter a building...

  13. 29 CFR 1910.176 - Handling materials-general.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    .... (b) Secure storage. Storage of material shall not create a hazard. Bags, containers, bundles, etc... on spur railroad tracks where a rolling car could contact other cars being worked, enter a building...

  14. 29 CFR 1910.176 - Handling materials-general.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    .... (b) Secure storage. Storage of material shall not create a hazard. Bags, containers, bundles, etc... on spur railroad tracks where a rolling car could contact other cars being worked, enter a building...

  15. 29 CFR 1910.176 - Handling materials-general.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    .... (b) Secure storage. Storage of material shall not create a hazard. Bags, containers, bundles, etc... on spur railroad tracks where a rolling car could contact other cars being worked, enter a building...

  16. 29 CFR 1910.176 - Handling materials-general.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    .... (b) Secure storage. Storage of material shall not create a hazard. Bags, containers, bundles, etc... on spur railroad tracks where a rolling car could contact other cars being worked, enter a building...

  17. Long-term pavement performance project laboratory materials testing and handling guide

    DOT National Transportation Integrated Search

    2007-09-01

    The Long Term Pavement Performance (LTPP) Laboratory Material Testing Guide was originally prepared for laboratory material handling and testing of material specimens and samples of asphalt materials, portland cement concrete, aggregates, and soils u...

  18. 49 CFR 171.16 - Detailed hazardous materials incident reports.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... quantity of hazardous waste; (3) A specification cargo tank with a capacity of 1,000 gallons or greater..., DC 20590-0001, or an electronic Hazardous Material Incident Report to the Information System Manager..., submit a written or electronic copy of the Hazardous Materials Incident Report to the FAA Security Field...

  19. 49 CFR 171.16 - Detailed hazardous materials incident reports.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... quantity of hazardous waste; (3) A specification cargo tank with a capacity of 1,000 gallons or greater..., DC 20590-0001, or an electronic Hazardous Material Incident Report to the Information System Manager..., submit a written or electronic copy of the Hazardous Materials Incident Report to the FAA Security Field...

  20. 49 CFR 171.16 - Detailed hazardous materials incident reports.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... quantity of hazardous waste; (3) A specification cargo tank with a capacity of 1,000 gallons or greater..., DC 20590-0001, or an electronic Hazardous Material Incident Report to the Information System Manager..., submit a written or electronic copy of the Hazardous Materials Incident Report to the FAA Security Field...

  1. 46 CFR 148.02-5 - Report of hazardous materials incidents.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... 46 Shipping 5 2010-10-01 2010-10-01 false Report of hazardous materials incidents. 148.02-5 Section 148.02-5 Shipping COAST GUARD, DEPARTMENT OF HOMELAND SECURITY (CONTINUED) DANGEROUS CARGOES CARRIAGE OF SOLID HAZARDOUS MATERIALS IN BULK Vessel Requirements § 148.02-5 Report of hazardous materials...

  2. Sustainable Materials Management: Non-Hazardous Materials and Waste Management Hierarchy

    EPA Pesticide Factsheets

    EPA developed the non-hazardous materials and waste management hierarchy in recognition that no single waste management approach is suitable for managing all materials and waste streams in all circumstances.

  3. Hazardous Materials Management Skill Standard. Final Project Report.

    ERIC Educational Resources Information Center

    Center for Occupational Research and Development, Inc., Waco, Tex.

    This document begins with a brief report describing how the Center for Occupational Research and Development (CORD) organized a coalition of organizations related to the hazardous materials industry to identify required skills and training for Hazardous Materials Management Technician (HMMT). CORD staff established a committee of employers,…

  4. 41 CFR 109-43.307-2 - Hazardous materials.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... 41 Public Contracts and Property Management 3 2011-01-01 2011-01-01 false Hazardous materials. 109-43.307-2 Section 109-43.307-2 Public Contracts and Property Management Federal Property Management... 43-UTILIZATION OF PERSONAL PROPERTY 43.3-Utilization of Excess § 109-43.307-2 Hazardous materials. ...

  5. 41 CFR 109-43.307-2 - Hazardous materials.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... 41 Public Contracts and Property Management 3 2014-01-01 2014-01-01 false Hazardous materials. 109-43.307-2 Section 109-43.307-2 Public Contracts and Property Management Federal Property Management... 43-UTILIZATION OF PERSONAL PROPERTY 43.3-Utilization of Excess § 109-43.307-2 Hazardous materials. ...

  6. 41 CFR 109-43.307-2 - Hazardous materials.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 41 Public Contracts and Property Management 3 2013-07-01 2013-07-01 false Hazardous materials. 109-43.307-2 Section 109-43.307-2 Public Contracts and Property Management Federal Property Management... 43-UTILIZATION OF PERSONAL PROPERTY 43.3-Utilization of Excess § 109-43.307-2 Hazardous materials. ...

  7. Containment system for experiments on radioactive and other hazardous materials in a Paris-Edinburgh press

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Jacobsen, M. K., E-mail: mjacobsen@lanl.gov; Velisavljevic, N.

    2015-11-15

    Recent technical developments using the large volume Paris-Edinburgh press platform have enabled x-ray synchrotron studies at high pressure and temperature conditions. However, its application to some materials of interest, such as high hazard materials that require special handling due to safety issues, reactivity, or other challenges, has not been feasible without the introduction of special containment systems to eliminate the hazards. However, introduction of a containment system is challenging due to the requirement to provide full safety containment for operation in the variety of environments available, while not hindering any of the experimental probes that are available for inert samplemore » measurement. In this work, we report on the development and implementation of a full safety enclosure for a Paris-Edinburgh type press. During the initial development and subsequent application stage of work, experiments were performed on both cerium dioxide (CeO{sub 2}) and uranium (U). This device allows for full implementation of all currently available experimental probes involving the Paris-Edinburgh press at the High Pressure Collaborative Access Team sector of the Advanced Photon Source.« less

  8. Measurement of particulate concentrations produced during bulk material handling at the Tarragona harbor

    NASA Astrophysics Data System (ADS)

    Artíñano, B.; Gómez-Moreno, F. J.; Pujadas, M.; Moreno, N.; Alastuey, A.; Querol, X.; Martín, F.; Guerra, A.; Luaces, J. A.; Basora, J.

    Bulk material handling can be a significant source of particles in harbor areas. The atmospheric impact of a number of loading/unloading activities of diverse raw materials has been assessed from continuous measurements of ambient particle concentrations recorded close to the emission sources. Two experimental campaigns have been carried out in the Tarragona port to document the impact of specific handling operations and bulk materials. Dusty bulk materials such as silica-manganese powder, tapioca, coal, clinker and lucerne were dealt with during the experiments. The highest impacts on ambient particle concentrations were recorded during handling of clinker. For this material and silica-manganese powder, high concentrations were recorded in the fine grain size (<2.5 μm). The lowest impacts on particulate matter concentrations were recorded during handling of tapioca and lucerne, mainly in the coarse grain size (2-5-10 μm). The effectiveness of several emission abatement measures, such as ground watering to diminish coal particle resuspension, was demonstrated to reduce ambient concentrations by up to two orders of magnitude. The importance of other good practices in specific handling operations, such as controlling the height of the shovel discharge, was also evidenced by these experiments. The results obtained can be further utilized as a useful experimental database for emission factor estimations.

  9. Hazardous Material Transportation Risks in the Puget Sound Region

    DOT National Transportation Integrated Search

    1981-09-01

    In order to contribute to workable hazardous materials accident prevention and response systems, public safety risks of transporting hazardous materials in the Central Puget Sound Region of Washington State are determined. Risk spectrums are obtained...

  10. Technology assessment of solar-energy systems. Materials resource and hazardous materials impacts of solar deployment

    NASA Astrophysics Data System (ADS)

    Schiffman, Y. M.; Tahami, J. E.

    1982-04-01

    The materials-resource and hazardous-materials impacts were determined by examining the type and quantity of materials used in the manufacture, construction, installation, operation and maintenance of solar systems. The materials requirements were compared with US materials supply and demand data to determine if potential problems exist in terms of future availability of domestic supply and increased dependence on foreign sources of supply. Hazardous materials were evaluated in terms of public and occupational health hazards and explosive and fire hazards. It is concluded that: although large amounts of materials would be required, the US had sufficient industrial capacity to produce those materials; (2) postulated growth in solar technology deployment during the period 1995-2000 could cause some production shortfalls in the steel and copper industry; the U.S. could increase its import reliance for certain materials such as silver, iron ore, and copper; however, shifts to other materials such as aluminum and polyvinylchloride could alleviate some of these problems.

  11. Nurses' use of hazardous drug-handling precautions and awareness of national safety guidelines.

    PubMed

    Polovich, Martha; Martin, Susan

    2011-11-01

    To determine patterns of personal protective equipment (PPE) used by oncology nurses while handling hazardous drugs (HDs) and to assess knowledge of the 2004 National Institute for Occupational Safety and Health (NIOSH) Alert and its effect on precaution use. Descriptive, correlational. The Oncology Nursing Society 31st Annual Congress in Boston, MA, in 2006. 330 nurses who prepared and/or administered chemotherapy. Nurses described HD safe-handling precaution use by self-report survey. The availability and use of biologic safety cabinets and PPE. Respondents were well educated (57% had a bachelor's degree or more), experienced (X = 19, SD = 10.2 years in nursing and X = 12, SD = 7.9 years in oncology), and certified (70%; majority OCN®). Forty-seven percent of respondents were aware of the NIOSH Alert. Thirty-five percent of all participants and 93% of nurses in private practice settings reported preparing chemotherapy. Glove use (95%-100%) was higher than that reported in earlier studies, and gown use for drug preparation (65%), drug administration (50%), and handling excretions (23%) have remained unchanged. Double-gloving was rare (11%-18%). Nurses in private practices were less likely to have chemotherapy-designated PPE available, use PPE, and use spill kits for HD spills. Nurses have adopted glove use for HD handling; however, gown use remains comparatively low. Chemotherapy-designated PPE is not always provided by employers. Nurses lack awareness of current safety guidelines. Nurses must know about the risks of HD exposure and ways to reduce exposure. Employers must provide appropriate PPE and encourage its use. Alternative methods of disseminating safety recommendations are needed.

  12. 75 FR 5258 - Hazardous Materials Transportation; Registration and Fee Assessment Program

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-02-02

    ... DEPARTMENT OF TRANSPORTATION Pipeline and Hazardous Materials Safety Administration 49 CFR Part 107 [Docket No. PHMSA-2009-0201 (HM-208H)] RIN 2137-AE47 Hazardous Materials Transportation... transportation, certain categories and quantities of hazardous materials. PHMSA's proposal would provide that...

  13. 49 CFR 172.312 - Liquid hazardous materials in non-bulk packagings.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... offered or intended for transportation by aircraft, packages containing flammable liquids in inner... 49 Transportation 2 2014-10-01 2014-10-01 false Liquid hazardous materials in non-bulk packagings... HAZARDOUS MATERIALS SAFETY ADMINISTRATION, DEPARTMENT OF TRANSPORTATION HAZARDOUS MATERIALS REGULATIONS...

  14. 49 CFR 172.312 - Liquid hazardous materials in non-bulk packagings.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... offered or intended for transportation by aircraft, packages containing flammable liquids in inner... 49 Transportation 2 2013-10-01 2013-10-01 false Liquid hazardous materials in non-bulk packagings... HAZARDOUS MATERIALS SAFETY ADMINISTRATION, DEPARTMENT OF TRANSPORTATION HAZARDOUS MATERIALS REGULATIONS...

  15. Material handling systems for the fluidized-bed combustion boiler at Rivesville, West Virginia

    NASA Technical Reports Server (NTRS)

    Branam, J. G.; Rosborough, W. W.

    1977-01-01

    The 300,000 lbs/hr steam capacity multicell fluidized-bed boiler (MFB) utilizes complex material handling systems. The material handling systems can be divided into the following areas: (1) coal preparation; transfer and delivery, (2) limestone handling system, (3) fly-ash removal and (4) bed material handling system. Each of the above systems are described in detail and some of the potential problem areas are discussed. A major potential problem that exists is the coal drying system. The coal dryer is designed to use 600 F preheated combustion air as drying medium and the dryer effluent is designed to enter a hot electrostatic precipitator (730 F) after passage through a cyclone. Other problem areas to be discussed include the steam generator coal and limestone feed system which may have operating difficulties with wet coal and/or coal fines.

  16. 75 FR 15613 - Hazardous Materials Transportation; Registration and Fee Assessment Program

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-03-30

    ... DEPARTMENT OF TRANSPORTATION Pipeline and Hazardous Materials Safety Administration 49 CFR Part 107 [Docket No. PHMSA-2009-0201 (HM-208H)] RIN 2137-AE47 Hazardous Materials Transportation... registration program are to gather information about the transportation of hazardous materials, and to fund the...

  17. 41 CFR 101-42.302 - Responsibilities for donation of hazardous materials.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... donation of hazardous materials. 101-42.302 Section 101-42.302 Public Contracts and Property Management...-Donation of Hazardous Materials and Certain Categories of Property § 101-42.302 Responsibilities for donation of hazardous materials. (a) Holding agencies. Holding agencies shall be responsible for the...

  18. 41 CFR 101-42.302 - Responsibilities for donation of hazardous materials.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... donation of hazardous materials. 101-42.302 Section 101-42.302 Public Contracts and Property Management...-Donation of Hazardous Materials and Certain Categories of Property § 101-42.302 Responsibilities for donation of hazardous materials. (a) Holding agencies. Holding agencies shall be responsible for the...

  19. 41 CFR 101-42.302 - Responsibilities for donation of hazardous materials.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... donation of hazardous materials. 101-42.302 Section 101-42.302 Public Contracts and Property Management...-Donation of Hazardous Materials and Certain Categories of Property § 101-42.302 Responsibilities for donation of hazardous materials. (a) Holding agencies. Holding agencies shall be responsible for the...

  20. 41 CFR 101-42.302 - Responsibilities for donation of hazardous materials.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... donation of hazardous materials. 101-42.302 Section 101-42.302 Public Contracts and Property Management...-Donation of Hazardous Materials and Certain Categories of Property § 101-42.302 Responsibilities for donation of hazardous materials. (a) Holding agencies. Holding agencies shall be responsible for the...

  1. 41 CFR 101-42.302 - Responsibilities for donation of hazardous materials.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... donation of hazardous materials. 101-42.302 Section 101-42.302 Public Contracts and Property Management...-Donation of Hazardous Materials and Certain Categories of Property § 101-42.302 Responsibilities for donation of hazardous materials. (a) Holding agencies. Holding agencies shall be responsible for the...

  2. 49 CFR 174.82 - General requirements for the handling of placarded rail cars, transport vehicles, freight...

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... 49 Transportation 2 2014-10-01 2014-10-01 false General requirements for the handling of placarded rail cars, transport vehicles, freight containers, and bulk packages. 174.82 Section 174.82 Transportation Other Regulations Relating to Transportation PIPELINE AND HAZARDOUS MATERIALS SAFETY ADMINISTRATION, DEPARTMENT OF TRANSPORTATION HAZARDOUS...

  3. 49 CFR 174.82 - General requirements for the handling of placarded rail cars, transport vehicles, freight...

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... 49 Transportation 2 2012-10-01 2012-10-01 false General requirements for the handling of placarded rail cars, transport vehicles, freight containers, and bulk packages. 174.82 Section 174.82 Transportation Other Regulations Relating to Transportation PIPELINE AND HAZARDOUS MATERIALS SAFETY ADMINISTRATION, DEPARTMENT OF TRANSPORTATION HAZARDOUS...

  4. Mechanisms of and facility types involved in hazardous materials incidents.

    PubMed Central

    Kales, S N; Polyhronopoulos, G N; Castro, M J; Goldman, R H; Christiani, D C

    1997-01-01

    The purpose of this study was to systematically investigate hazardous materials (hazmat) releases and determine the mechanisms of these accidents, and the industries/activities and chemicals involved. We analyzed responses by Massachusetts' six district hazmat teams from their inception through May 1996. Information from incident reports was extracted onto standard coding sheets. The majority of hazardous materials incidents were caused by spills, leaks, or escapes of hazardous materials (76%) and occurred at fixed facilities (80%). Transportation-related accidents accounted for 20% of incidents. Eleven percent of hazardous materials incidents were at schools or health care facilities. Petroleum-derived fuels were involved in over half of transportation-related accidents, and these accounted for the majority of petroleum fuel releases. Chlorine derivatives were involved in 18% of all accidents and were associated with a wide variety of facility types and activities. In conclusion, systematic study of hazardous materials incidents allows the identification of preventable causes of these incidents. PMID:9300926

  5. Standards for material handling and facilities equipment proofload testing

    NASA Technical Reports Server (NTRS)

    Bonn, S. P.

    1970-01-01

    Document provides information on verifying the safety of material handling and facilities equipment /MH/FE/, ranging from monorail systems to ladders and non-powered mobile equipment. Seven catagories of MH/FE equipment are defined.

  6. 76 FR 51324 - Hazardous Materials: Incorporating Rail Special Permits Into the Hazardous Materials Regulations

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-08-18

    ... appropriate level of safety. This rulemaking also proposes to respond to two petitions for rulemaking, P-1497... used to transport a hazardous material under a special permit. Petitions for Rulemaking Two proposals... the shipment. The IVOHMA also identified two problems associated with the train consist. The first...

  7. DEVELOPMENT OF AN IDENTIFICATION KIT FOR SPILLED HAZARDOUS MATERIALS

    EPA Science Inventory

    The Chemical Systems Laboratory (CSL) has developed a field kit to identify spilled hazardous materials in inland waters and on the ground. The Hazardous Materials Spills Identification Kit is a two-component kit consisting of an inverter/shortwave UV lamp unit for photochemical ...

  8. 33 CFR 154.1325 - Response plan development and evaluation criteria for facilities that handle, store, or transport...

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... evaluation criteria for facilities that handle, store, or transport other non-petroleum oils. 154.1325...) POLLUTION FACILITIES TRANSFERRING OIL OR HAZARDOUS MATERIAL IN BULK Response Plans for Other Non-Petroleum..., store, or transport other non-petroleum oils. (a) An owner or operator of a facility that handles...

  9. 33 CFR 154.1325 - Response plan development and evaluation criteria for facilities that handle, store, or transport...

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... evaluation criteria for facilities that handle, store, or transport other non-petroleum oils. 154.1325...) POLLUTION FACILITIES TRANSFERRING OIL OR HAZARDOUS MATERIAL IN BULK Response Plans for Other Non-Petroleum..., store, or transport other non-petroleum oils. (a) An owner or operator of a facility that handles...

  10. The cost analysis of material handling in Chinese traditional praying paper production plant

    NASA Astrophysics Data System (ADS)

    Nasution, H.; Budiman, I.; Salim, A.

    2018-02-01

    Chinese traditional praying paper industry is an industry which produced Chinese traditional religion praying paper. This kind of industry is rarely examined since it was only in Small and Medium Enterprise (SME’s- form). This industry produced various kinds of Chinese traditional paper products. The purpose of this research is to increase the amount of production, reduce waiting time and moving time, and reduce material handling cost. The research was conducted at prime production activities, consists of: calculate the capacity of the material handler, the frequency of movement, cost of material handling, and total cost of material handling. This displacement condition leads to an ineffective and inefficient production process. The alternative was developed using production judgment and aisle standard. Based on the observation results, it is possible to reduce displacement in the production. Using alternative which by-passed displacement from a rolled paper in the temporary warehouse to cutting and printing workstation, it can reduce material handling cost from 2.26 million rupiahs to 2.00 million rupiahs only for each batch of production. This result leads to increasing of production quantity, reducing waiting and moving time about 10% from the current condition.

  11. Recommendations for tool-handle material choice based on finite element analysis.

    PubMed

    Harih, Gregor; Dolšak, Bojan

    2014-05-01

    Huge areas of work are still done manually and require the usages of different powered and non-powered hand tools. In order to increase the user performance, satisfaction, and lower the risk of acute and cumulative trauma disorders, several researchers have investigated the sizes and shapes of tool-handles. However, only a few authors have investigated tool-handles' materials for further optimising them. Therefore, as presented in this paper, we have utilised a finite-element method for simulating human fingertip whilst grasping tool-handles. We modelled and simulated steel and ethylene propylene diene monomer (EPDM) rubber as homogeneous tool-handle materials and two composites consisting of EPDM rubber and EPDM foam, and also EPDM rubber and PU foam. The simulated finger force was set to obtain characteristic contact pressures of 20 kPa, 40 kPa, 80 kPa, and 100 kPa. Numerical tests have shown that EPDM rubber lowers the contact pressure just slightly. On the other hand, both composites showed significant reduction in contact pressure that could lower the risks of acute and cumulative trauma disorders which are pressure-dependent. Based on the results, it is also evident that a composite containing PU foam with a more evident and flat plateau deformed less at lower strain rates and deformed more when the plateau was reached, in comparison to the composite with EPDM foam. It was shown that hyper-elastic foam materials, which take into account the non-linear behaviour of fingertip soft tissue, can lower the contact pressure whilst maintaining low deformation rate of the tool-handle material for maintaining sufficient rate of stability of the hand tool in the hands. Lower contact pressure also lowers the risk of acute and cumulative trauma disorders, and increases comfort whilst maintaining performance. Copyright © 2013 Elsevier Ltd and The Ergonomics Society. All rights reserved.

  12. Biennial report on hazardous materials transportation : calendar years 1996-1997

    DOT National Transportation Integrated Search

    1999-08-01

    Hazardous materials (HM) are essential to the economy of the United States (U.S.) and the well-being : of its people. These materials fuel cars and trucks and heat and cool homes and offices. Hazardous : materials are used for farming and medical app...

  13. 77 FR 60935 - Hazardous Materials: Minor Editorial Corrections and Clarifications (RRR)

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-10-05

    ... DEPARTMENT OF TRANSPORTATION Pipeline and Hazardous Materials Safety Administration 49 CFR Parts... Materials: Minor Editorial Corrections and Clarifications (RRR) AGENCY: Pipeline and Hazardous Materials... material. (a) * * * (3) * * * Source and name of material 49 CFR reference * * * * * * * ISO 9809-1: Gas...

  14. Hazardous materials accidents: initial scene assessment and patient care.

    PubMed

    Leonard, R B

    1993-06-01

    Hazardous materials, i.e., chemicals that are toxic, corrosive, flammable, or explosive, are a ubiquitous aspect of modern life. They are manufactured throughout the United States, shipped by truck, train, barge, and pipeline, and stored at a wide variety of locations, including factories, military bases, and warehouses. Accidents involving hazardous materials present an added dimension of danger to emergency personnel arriving first at the scene, and have the potential to produce chemically contaminated patients who require special medical treatment. Personnel arriving first at the scene must understand how to evaluate the scene for fast and safe mitigation without endangering themselves. Chemically contaminated patients require prompt treatment, which, for optimal outcome, must begin at the scene. Although frequently the identification of the hazardous materials involved is not known initially, emergency personnel may safely provide medical care to the victims by understanding and following the principles of hazardous materials accidents and the pathophysiology of chemical injuries as presented in this paper.

  15. Containment system for experiments on radioactive and other hazardous materials in a Paris-Edinburgh press

    DOE PAGES

    Jacobsen, M. K.; Velisavljevic, N.

    2015-11-20

    Recent technical developments using the large volume Paris-Edinburgh press platform have enabled x-ray synchrotron studies at high pressure and temperature conditions. However, its application to some materials of interest, such as high hazard materials that require special handling due to safety issues, reactivity, or other challenges, has not been feasible without the introduction of special containment systems to eliminate the hazards. However, introduction of a containment system is challenging due to the requirement to provide full safety containment for operation in the variety of environments available, while not hindering any of the experimental probes that are available for inert samplemore » measurement. In this work, we report on the development and implementation of a full safety enclosure for a Paris-Edinburgh type press. During the initial development and subsequent application stage of work, experiments were performed on both cerium dioxide (CeO2) and uranium (U). As a result, this device allows for full implementation of all currently available experimental probes involving the Paris-Edinburgh press at the High Pressure Collaborative Access Team sector of the Advanced Photon Source.« less

  16. 48 CFR 908.7112 - Materials handling equipment replacement standards.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... 48 Federal Acquisition Regulations System 5 2010-10-01 2010-10-01 false Materials handling equipment replacement standards. 908.7112 Section 908.7112 Federal Acquisition Regulations System DEPARTMENT OF ENERGY COMPETITION ACQUISITION PLANNING REQUIRED SOURCES OF SUPPLIES AND SERVICES Acquisition of...

  17. 49 CFR 172.101 - Purpose and use of hazardous materials table.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... paragraph (c)(11): For the transportation of samples of self-reactive materials, organic peroxides... hazard class, the material is not a hazardous material. (13) Self-reactive materials and organic peroxides. A generic proper shipping name for a self-reactive material or an organic peroxide, as listed in...

  18. Traffic incident management in hazardous materials spills in incident clearance.

    DOT National Transportation Integrated Search

    2009-01-01

    Hazardous materials spills provide unique challenges to traffic incident clearance. When hazardous materials are present, not only do response personnel have to deal with typical traffic incident issues, they also must deal with potential chemical ha...

  19. NRT-1: Hazardous Materials Planning Guide

    EPA Pesticide Factsheets

    The NRT issued Hazardous Materials Emergency Planning Guide (NRT1) in 1987, as required by EPCRA, to provide planning guidance for state and local governments in the development of local emergency response plans.

  20. Safe Handling of Radioactive Materials. Recommendations of the National Committee on Radiation Protection. Handbook 92.

    ERIC Educational Resources Information Center

    National Bureau of Standards (DOC), Washington, DC.

    This handbook is designed to help users of radioactive materials to handle the radioactive material without exposing themselves or others to radiation doses in excess of maximum permissible limits. The discussion of radiation levels is in terms of readings from dosimeters and survey instruments. Safety in the handling of radioactive materials in…

  1. Investigation of hazards associated with plastic bonded starter mix manufacturing processes

    NASA Technical Reports Server (NTRS)

    1971-01-01

    An investigation to determine the hazards potential evaluation of plastic bonded starter mix (PBSM) production processes and the application to the M18 and M7A3 grenades is reported. The investigation indicated: (1) the materials with the greatest hazards characteristics, (2) process operating stations most likely to initiate hazardous conditions, (3) the test program required to examine ignition characteristics and process hazards, and (4) the method of handling the accumulated information from testing and safety analyses.

  2. Guidance Manual for Integrating Hazardous Material Control and Management into System Acquisition Programs

    DTIC Science & Technology

    1993-04-01

    34 in the remainder of this "• IPS. Ensure that system safety, Section refer to the DoD format paragraph health hazards, and environmental for the...hazardous materials is controlled in the manner which protects human health and the environment at the least cost. Hazardous Material Control and Management...of hazardous materials is controlled in a manner which protects human health and the environment at the least cost. Hazardous Material Control and

  3. Shelf life studies of common hazardous materials: An innovative approach to pollution prevention

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Farmanian, P.A.

    1995-12-31

    Hazardous chemical systems, ranging in form from simple materials to compounded products and complex natural mixtures, constitute an important asset in the Navy`s daily operations. These materials include but are not limited to paints, solvents, soaps, resins, adhesives, pesticides, printing materials, petroleum products, and photographic chemicals. The short-lived availability of hazardous materials that are suspected of or known to degrade over time imposes a unique burden on the Navy`s procurement and hazardous waste disposal systems. Hazardous Materials whose shelf life`s have expired are processed for disposal as hazardous wastes. In addition, these expired hazardous materials must be replaced with newmore » materials. Many shelf life codes are based solely on the recommendations of suppliers and are not critically subjected to scientific study. The important goal of this project is to conduct a comprehensive study of the degradation of a given hazardous material to determine the true shelf life.« less

  4. 41 CFR 101-42.304 - Special requirements for donation of certain hazardous materials.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... donation of certain hazardous materials. 101-42.304 Section 101-42.304 Public Contracts and Property....3-Donation of Hazardous Materials and Certain Categories of Property § 101-42.304 Special requirements for donation of certain hazardous materials. Special donation requirements for specific hazardous...

  5. 41 CFR 101-42.304 - Special requirements for donation of certain hazardous materials.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... donation of certain hazardous materials. 101-42.304 Section 101-42.304 Public Contracts and Property....3-Donation of Hazardous Materials and Certain Categories of Property § 101-42.304 Special requirements for donation of certain hazardous materials. Special donation requirements for specific hazardous...

  6. 41 CFR 101-42.304 - Special requirements for donation of certain hazardous materials.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... donation of certain hazardous materials. 101-42.304 Section 101-42.304 Public Contracts and Property....3-Donation of Hazardous Materials and Certain Categories of Property § 101-42.304 Special requirements for donation of certain hazardous materials. Special donation requirements for specific hazardous...

  7. 41 CFR 101-42.304 - Special requirements for donation of certain hazardous materials.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... donation of certain hazardous materials. 101-42.304 Section 101-42.304 Public Contracts and Property....3-Donation of Hazardous Materials and Certain Categories of Property § 101-42.304 Special requirements for donation of certain hazardous materials. Special donation requirements for specific hazardous...

  8. 41 CFR 101-42.304 - Special requirements for donation of certain hazardous materials.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... donation of certain hazardous materials. 101-42.304 Section 101-42.304 Public Contracts and Property....3-Donation of Hazardous Materials and Certain Categories of Property § 101-42.304 Special requirements for donation of certain hazardous materials. Special donation requirements for specific hazardous...

  9. 75 FR 27205 - Hazardous Materials: Incorporation of Special Permits Into Regulations

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-05-14

    ... transportation, Packaging and containers, Radioactive materials, Reporting and recordkeeping requirements... manufacture, marking, sale and use of certain packagings for transportation of hazardous materials. These... packagings prepared in accordance with Sec. 173.13. Authorize, for certain hazardous materials, external...

  10. Decision method for optimal selection of warehouse material handling strategies by production companies

    NASA Astrophysics Data System (ADS)

    Dobos, P.; Tamás, P.; Illés, B.

    2016-11-01

    Adequate establishment and operation of warehouse logistics determines the companies’ competitiveness significantly because it effects greatly the quality and the selling price of the goods that the production companies produce. In order to implement and manage an adequate warehouse system, adequate warehouse position, stock management model, warehouse technology, motivated work force committed to process improvement and material handling strategy are necessary. In practical life, companies have paid small attantion to select the warehouse strategy properly. Although it has a major influence on the production in the case of material warehouse and on smooth costumer service in the case of finished goods warehouse because this can happen with a huge loss in material handling. Due to the dynamically changing production structure, frequent reorganization of warehouse activities is needed, on what the majority of the companies react basically with no reactions. This work presents a simulation test system frames for eligible warehouse material handling strategy selection and also the decision method for selection.

  11. 77 FR 71031 - Office of Hazardous Materials Safety; Actions on Special Permit Applications

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-11-28

    ...), transportation in commerce 173.465(d). of certain Radioactive material in alternative packaging by highway. A... DEPARTMENT OF TRANSPORTATION Pipeline and Hazardous Materials Safety Administration Office of Hazardous Materials Safety; Actions on Special Permit Applications AGENCY: Pipeline And Hazardous Materials...

  12. Assessing materials handling and storage capacities in port terminals

    NASA Astrophysics Data System (ADS)

    Dinu, O.; Roşca, E.; Popa, M.; Roşca, M. A.; Rusca, A.

    2017-08-01

    Terminals constitute the factual interface between different modes and, as a result, buffer stocks are unavoidable whenever transport flows with different discontinuities meet. This is the reason why assessing materials handling and storage capacities is an important issue in the course of attempting to increase operative planning of logistic processes in terminals. Proposed paper starts with a brief review of the compatibilities between different sorts of materials and corresponding transport modes and after, a literature overview of the studies related to ports terminals and their specialization is made. As a methodology, discrete event simulation stands as a feasible technique for assessing handling and storage capacities at the terminal, taking into consideration the multi-flows interaction and the non-uniform arrivals of vessels and inland vehicles. In this context, a simulation model, that integrates the activities of an inland water terminal and describes the essential interactions between the subsystems which influence the terminal capacity, is developed. Different scenarios are simulated for diverse sorts of materials, leading to bottlenecks identification, performance indicators such as average storage occupancy rate, average dwell or transit times estimations, and their evolution is analysed in order to improve the transfer operations in the logistic process

  13. CARRIER PREPARATION BUILDING MATERIALS HANDLING SYSTEM DESCRIPTION DOCUMENT

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    E.F. Loros

    2000-06-28

    The Carrier Preparation Building Materials Handling System receives rail and truck shipping casks from the Carrier/Cask Transport System, and inspects and prepares the shipping casks for return to the Carrier/Cask Transport System. Carrier preparation operations for carriers/casks received at the surface repository include performing a radiation survey of the carrier and cask, removing/retracting the personnel barrier, measuring the cask temperature, removing/retracting the impact limiters, removing the cask tie-downs (if any), and installing the cask trunnions (if any). The shipping operations for carriers/casks leaving the surface repository include removing the cask trunnions (if any), installing the cask tie-downs (if any), installingmore » the impact limiters, performing a radiation survey of the cask, and installing the personnel barrier. There are four parallel carrier/cask preparation lines installed in the Carrier Preparation Building with two preparation bays in each line, each of which can accommodate carrier/cask shipping and receiving. The lines are operated concurrently to handle the waste shipping throughputs and to allow system maintenance operations. One remotely operated overhead bridge crane and one remotely operated manipulator is provided for each pair of carrier/cask preparation lines servicing four preparation bays. Remotely operated support equipment includes a manipulator and tooling and fixtures for removing and installing personnel barriers, impact limiters, cask trunnions, and cask tie-downs. Remote handling equipment is designed to facilitate maintenance, dose reduction, and replacement of interchangeable components where appropriate. Semi-automatic, manual, and backup control methods support normal, abnormal, and recovery operations. Laydown areas and equipment are included as required for transportation system components (e.g., personnel barriers and impact limiters), fixtures, and tooling to support abnormal and recovery operations

  14. 49 CFR 176.140 - Segregation from other classes of hazardous materials.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... 49 Transportation 2 2010-10-01 2010-10-01 false Segregation from other classes of hazardous... CARRIAGE BY VESSEL Detailed Requirements for Class 1 (Explosive) Materials Segregation § 176.140 Segregation from other classes of hazardous materials. (a) Class 1 (explosive) materials must be segregated...

  15. 49 CFR 176.140 - Segregation from other classes of hazardous materials.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... 49 Transportation 2 2011-10-01 2011-10-01 false Segregation from other classes of hazardous... CARRIAGE BY VESSEL Detailed Requirements for Class 1 (Explosive) Materials Segregation § 176.140 Segregation from other classes of hazardous materials. (a) Class 1 (explosive) materials must be segregated...

  16. 78 FR 8431 - Hazardous Materials: Harmonization with International Standards (RRR)

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-02-06

    ... DEPARTMENT OF TRANSPORTATION Pipeline and Hazardous Materials Safety Administration 49 CFR Part 172 [Docket Nos. PHMSA-2012-0027 (HM-215L)] RIN 2137-AE87 Hazardous Materials: Harmonization with International Standards (RRR) Correction In rule document 2012-31243 appearing on pages 988 through 1100 in the...

  17. Screening tests for hazard classification of complex waste materials - Selection of methods

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Weltens, R., E-mail: reinhilde.weltens@vito.be; Vanermen, G.; Tirez, K.

    In this study we describe the development of an alternative methodology for hazard characterization of waste materials. Such an alternative methodology for hazard assessment of complex waste materials is urgently needed, because the lack of a validated instrument leads to arbitrary hazard classification of such complex waste materials. False classification can lead to human and environmental health risks and also has important financial consequences for the waste owner. The Hazardous Waste Directive (HWD) describes the methodology for hazard classification of waste materials. For mirror entries the HWD classification is based upon the hazardous properties (H1-15) of the waste which canmore » be assessed from the hazardous properties of individual identified waste compounds or - if not all compounds are identified - from test results of hazard assessment tests performed on the waste material itself. For the latter the HWD recommends toxicity tests that were initially designed for risk assessment of chemicals in consumer products (pharmaceuticals, cosmetics, biocides, food, etc.). These tests (often using mammals) are not designed nor suitable for the hazard characterization of waste materials. With the present study we want to contribute to the development of an alternative and transparent test strategy for hazard assessment of complex wastes that is in line with the HWD principles for waste classification. It is necessary to cope with this important shortcoming in hazardous waste classification and to demonstrate that alternative methods are available that can be used for hazard assessment of waste materials. Next, by describing the pros and cons of the available methods, and by identifying the needs for additional or further development of test methods, we hope to stimulate research efforts and development in this direction. In this paper we describe promising techniques and argument on the test selection for the pilot study that we have performed on different

  18. Hazardous Materials Packaging and Transportation Safety

    DOT National Transportation Integrated Search

    1995-09-27

    To establish safety requirements for the proper packaging and : transportation of Department of Energy (DOE) offsite shipments and onsite transfers of hazardous materials and for modal transport. (Offsite is any area within or outside a DOE site to w...

  19. Determination of the fire hazards of mine materials using a radiant panel.

    PubMed

    Harteis, S P; Litton, C D; Thomas, R A

    2016-01-01

    The objective of this study was to develop a laboratory-scale method to rank the ignition and fire hazards of commonly used underground mine materials and to eliminate the need for the expensive large-scale tests that are currently being used. A radiant-panel apparatus was used to determine the materials' relevant thermal characteristics: time to ignition, critical heat flux for ignition, heat of gasification, and mass-loss rate. Three thermal parameters, TRP , TP1 and TP4 , were derived from the data, then developed and subsequently used to rank the combined ignition and fire hazards of the combustible materials from low hazard to high hazard. The results compared favorably with the thermal and ignition hazards of similar materials reported in the literature and support this approach as a simpler one for quantifying these combustible hazards.

  20. 49 CFR 172.202 - Description of hazardous material on shipping papers.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... HAZARDOUS MATERIALS TABLE, SPECIAL PROVISIONS, HAZARDOUS MATERIALS COMMUNICATIONS, EMERGENCY RESPONSE... description must be indicated (by mass or volume, or by activity for Class 7 materials) and must include an... mass. For an explosive that is an article, such as Cartridges, small arms, the net explosive mass may...

  1. 49 CFR 173.230 - Fuel cell cartridges containing hazardous material.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... 49 Transportation 2 2010-10-01 2010-10-01 false Fuel cell cartridges containing hazardous material... Than Class 1 and Class 7 § 173.230 Fuel cell cartridges containing hazardous material. (a) Requirements for Fuel Cell Cartridges. Fuel cell cartridges, including when contained in or packed with equipment...

  2. Recycling of hazardous solid waste material using high-temperature solar process heat. 2. Reactor design and experimentation.

    PubMed

    Schaffner, Beatrice; Meier, Anton; Wuillemin, Daniel; Hoffelner, Wolfgang; Steinfeld, Aldo

    2003-01-01

    A novel high-temperature solar chemical reactor is proposed for the thermal recycling of hazardous solid waste material using concentrated solar power. It features two cavities in series, with the inner one functioning as the solar absorber and the outer one functioning as the reaction chamber. The solar reactor can handle thermochemical processes at temperatures above 1,300 K involving multiphases and controlled atmospheres. It further allows for batch or continuous mode of operation and for easy adjustment of the residence time of the reactants to match the kinetics of the reaction. A 10-kW solar reactor prototype was designed and tested for the carbothermic reduction of electric arc furnace dusts (EAFD). The reactor was subjected to mean solar flux intensities of 2,000 kW m(-2) and operated in both batch and continuous mode within the temperature range of 1,120-1,400 K. Extraction of over 90% of the toxic compounds originally contained in the EAFD was achieved while the condensable products of the off-gas contained mainly Zn, Pb, and Cl. The use of concentrated solar energy as the source of process heat offers the possibility of converting hazardous solid waste material into valuable commodities for processes in closed and sustainable material cycles.

  3. Deaths, injuries, and evacuations from acute hazardous materials releases.

    PubMed Central

    Binder, S

    1989-01-01

    We examined reports from three surveillance systems of 587 acute releases of hazardous materials in 1986. These releases resulted in at least 115 deaths, 2,254 injuries, and 111 evacuations. Only eight (1 percent) of the 587 events were common to all three systems. Estimates of the public health consequences of hazardous materials releases could be improved by enforcing existing laws, modifying report forms, and validating collected information. PMID:2751024

  4. Methods and apparatus for handling or treating particulate material

    NASA Technical Reports Server (NTRS)

    Littman, Howard (Inventor); Plawsky, Joel L. (Inventor); Paccione, John D. (Inventor)

    2009-01-01

    An improved draft tube spout fluid bed (DTSFB) mixing, handling, conveying, and treating apparatus and systems, and methods for operating are provided. The apparatus and systems can accept particulate material and pneumatically or hydraulically conveying the material to mix and/or treat the material. In addition to conveying apparatus, a collection and separation apparatus adapted to receive the conveyed particulate material is also provided. The collection apparatus may include an impaction plate against which the conveyed material is directed to improve mixing and/or treatment. The improved apparatus are characterized by means of controlling the operation of the pneumatic or hydraulic transfer to enhance the mixing and/or reacting by controlling the flow of fluids, for example, air, into and out of the apparatus. The disclosed apparatus may be used to mix particulate material, for example, mortar; react fluids with particulate material; coat particulate material, or simply convey particulate material.

  5. Mars Sample Handling Protocol Workshop Series: Workshop 2

    NASA Technical Reports Server (NTRS)

    Rummel, John D. (Editor); Acevedo, Sara E. (Editor); Kovacs, Gregory T. A. (Editor); Race, Margaret S. (Editor); DeVincenzi, Donald L. (Technical Monitor)

    2001-01-01

    Numerous NASA reports and studies have identified Planetary Protection (PP) as an important part of any Mars sample return mission. The mission architecture, hardware, on-board experiments, and related activities must be designed in ways that prevent both forward- and back-contamination and also ensure maximal return of scientific information. A key element of any PP effort for sample return missions is the development of guidelines for containment and analysis of returned sample(s). As part of that effort, NASA and the Space Studies Board (SSB) of the National Research Council (NRC) have each assembled experts from a wide range of scientific fields to identify and discuss issues pertinent to sample return. In 1997, the SSB released its report on recommendations for handling and testing of returned Mars samples. In particular, the NRC recommended that: a) samples returned from Mars by spacecraft should be contained and treated as potentially hazardous until proven otherwise, and b) rigorous physical, chemical, and biological analyses [should] confirm that there is no indication of the presence of any exogenous biological entity. Also in 1997, a Mars Sample Quarantine Protocol workshop was convened at NASA Ames Research Center to deal with three specific aspects of the initial handling of a returned Mars sample: 1) biocontainment, to prevent 'uncontrolled release' of sample material into the terrestrial environment; 2) life detection, to examine the sample for evidence of organisms; and 3) biohazard testing, to determine if the sample poses any threat to terrestrial life forms and the Earth's biosphere. In 1999, a study by NASA's Mars Sample Handling and Requirements Panel (MSHARP) addressed three other specific areas in anticipation of returning samples from Mars: 1) sample collection and transport back to Earth; 2) certification of the samples as non-hazardous; and 3) sample receiving, curation, and distribution. To further refine the requirements for sample

  6. Characteristics of hazardous material spills from reporting systems in California.

    PubMed Central

    Shaw, G M; Windham, G C; Leonard, A; Neutra, R R

    1986-01-01

    Data on hazardous material releases that occurred between January 1, 1982 and September 30, 1983 in California were obtained from the California Highway Patrol (CHP) and the US Department of Transportation (DOT). The majority of incidents involved highway transport of hazardous materials, although some information was available on air, rail, and stationary facility releases. Vehicle accidents and failure of or damage to the container were the most frequent causes of releases. Proportionately more hazardous materials incidents occurred in early summer than at other times of the year, during weekdays, and daytime hours. The largest proportions of incidents involved the chemical categories of corrosives and fuels. Reported exposures and injuries to response personnel and other people at the scene were relatively few; no fatalities were reported. Few incidents were reported in both data sources, suggesting that the examination of only one data source would yield a gross underestimate of the total number of hazardous materials incidents in California. The lack of available denominator data limits the interpretation of the findings. Images FIGURE 1 FIGURE 2 FIGURE 3 PMID:3963282

  7. School Science Laboratories. A Guide to Some Hazardous Substances. A Supplement to the National Institute for Occupational Safety and Health Manual of Safety and Health Hazards in the School Science Laboratory.

    ERIC Educational Resources Information Center

    Council of State Science Supervisors, Washington, DC.

    The purpose of this document is to identify potentially hazardous substances that may be in use in many school laboratories and to provide an inventory of these substances so that science teachers may take the initiative in providing for the proper storage, handling, use, and if warranted, removal of hazardous materials. The document consists of…

  8. 75 FR 52392 - Office Of Hazardous Materials Safety; Notice of Application for Special Permits

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-08-25

    ... DEPARTMENT OF TRANSPORTATION Pipeline And Hazardous Materials Safety Administration Office Of Hazardous Materials Safety; Notice of Application for Special Permits AGENCY: Pipeline and Hazardous Materials Safety Administration (PHMSA), DOT. ACTION: List of applications for special permits. SUMMARY: In...

  9. The materials processing sciences glovebox

    NASA Technical Reports Server (NTRS)

    Traweek, Larry

    1990-01-01

    The Materials Processing Sciences Glovebox is a rack mounted workstation which allows on orbit sample preparation and characterization of specimens from various experiment facilities. It provides an isolated safe, clean, and sterile environment for the crew member to work with potentially hazardous materials. It has to handle a range of chemicals broader than even PMMS. The theme is that the Space Station Laboratory experiment preparation and characterization operations provide the fundamental glovebox design characteristics. Glovebox subsystem concepts and how internal material handling operations affect the design are discussed.

  10. 30 CFR 250.108 - What requirements must I follow for cranes and other material-handling equipment?

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... other material-handling equipment? 250.108 Section 250.108 Mineral Resources BUREAU OF SAFETY AND... material-handling equipment? (a) All cranes installed on fixed platforms must be operated in accordance... Cranes, API RP 2D (as incorporated by reference in § 250.198). (b) All cranes installed on fixed...

  11. 30 CFR 250.108 - What requirements must I follow for cranes and other material-handling equipment?

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... other material-handling equipment? 250.108 Section 250.108 Mineral Resources BUREAU OF SAFETY AND... material-handling equipment? (a) All cranes installed on fixed platforms must be operated in accordance... Cranes, API RP 2D (as incorporated by reference in § 250.198). (b) All cranes installed on fixed...

  12. 30 CFR 250.108 - What requirements must I follow for cranes and other material-handling equipment?

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... other material-handling equipment? 250.108 Section 250.108 Mineral Resources BUREAU OF SAFETY AND... material-handling equipment? (a) All cranes installed on fixed platforms must be operated in accordance... Cranes, API RP 2D (as incorporated by reference in § 250.198). (b) All cranes installed on fixed...

  13. Conversion of hazardous materials using supercritical water oxidation

    DOEpatents

    Rofer, Cheryl K.; Buelow, Steven J.; Dyer, Richard B.; Wander, Joseph D.

    1992-01-01

    A process for destruction of hazardous materials in a medium of supercritical water without the addition of an oxidant material. The harzardous material is converted to simple compounds which are relatively benign or easily treatable to yield materials which can be discharged into the environment. Treatment agents may be added to the reactants in order to bind certain materials, such as chlorine, in the form of salts or to otherwise facilitate the destruction reactions.

  14. 78 FR 987 - Hazardous Materials: Harmonization with International Standards (RRR)

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-01-07

    ...PHMSA is amending the Hazardous Materials Regulations to maintain alignment with international standards by incorporating various amendments, including changes to proper shipping names, hazard classes, packing groups, special provisions, packaging authorizations, air transport quantity limitations, and vessel stowage requirements. These revisions are necessary to harmonize the Hazardous Materials Regulations (HMR) with recent changes made to the International Maritime Dangerous Goods (IMDG) Code, the International Civil Aviation Organization's Technical Instructions for the Safe Transport of Dangerous Goods by Air (ICAO Technical Instructions), and the United Nations Recommendations on the Transport of Dangerous Goods--Model Regulations (UN Model Regulations) and address a petition for rulemaking.

  15. 77 FR 49167 - Hazardous Materials: Harmonization with International Standards (RRR)

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-08-15

    ...PHMSA proposes to amend the Hazardous Materials Regulations to maintain alignment with international standards by incorporating various amendments, including changes to proper shipping names, hazard classes, packing groups, special provisions, packaging authorizations, air transport quantity limitations, and vessel stowage requirements. These revisions are necessary to harmonize the Hazardous Materials Regulations with recent changes made to the International Maritime Dangerous Goods Code, the International Civil Aviation Organization's Technical Instructions for the Safe Transport of Dangerous Goods by Air, and the United Nations Recommendations on the Transport of Dangerous Goods--Model Regulations and subsequently address a petition for rulemaking.

  16. 76 FR 77589 - Office of Hazardous Materials Safety; Notice of Application for Special Permits

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-12-13

    ... DC. commerce of radioactive materials without being subject to the requirements in 49 CFR 173.417(a... DEPARTMENT OF TRANSPORTATION Pipeline and Hazardous Materials Safety Administration Office of Hazardous Materials Safety; Notice of Application for Special Permits AGENCY: Pipeline and Hazardous...

  17. 77 FR 36607 - Office of Hazardous Materials Safety Notice of Application for Special Permits

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-06-19

    ... commerce of certain DOT Specification 20WC radioactive material packagings after October 1, 2008. (mode 1... DEPARTMENT OF TRANSPORTATION Pipeline and Hazardous Materials Safety Administration Office of Hazardous Materials Safety Notice of Application for Special Permits AGENCY: Pipeline and Hazardous...

  18. Hazardous materials information hotline using System 2000

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Brower, J.E.; Fuchel, K.

    1984-04-30

    The Center for Assessment of Chemical and Physical Hazards (CACPH) at Brookhaven National Laboratory (BNL) has developed a computer hotline service for the Department of Energy (DOE) and its contractors. This service provides access to health and safety information for over 800 chemicals and hazardous materials. The data base uses System 2000 on a CDC 6600 and provides information on the chemical name and its synonyms, 17 categories of health and safety information, composition of chemical mixtures, categories of chemicals, use and hazards, and physical, chemical and toxicity attributes. In order to make this information available to people unfamiliar withmore » System 2000, a user-friendly interface was developed using a Fortran PLEX Program. 1 reference, 1 figure.« less

  19. 41 CFR 109-44.702-3 - Hazardous materials.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 41 Public Contracts and Property Management 3 2013-07-01 2013-07-01 false Hazardous materials. 109-44.702-3 Section 109-44.702-3 Public Contracts and Property Management Federal Property Management... materials. The Director, Office of Administrative Services and heads of field organizations shall be...

  20. 41 CFR 109-44.702-3 - Hazardous materials.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... 41 Public Contracts and Property Management 3 2014-01-01 2014-01-01 false Hazardous materials. 109-44.702-3 Section 109-44.702-3 Public Contracts and Property Management Federal Property Management... materials. The Director, Office of Administrative Services and heads of field organizations shall be...

  1. Hazardous materials highlights : 2007 Commodity Flow Survey

    DOT National Transportation Integrated Search

    2011-01-01

    Hazardous materials movement through the Nations transportation network in 2007 remained relatively unchanged from 2002 measures, according to data from the 2007 Commodity Flow Survey (CFS), released in 2010. The estimated 2.2 billion tons of haza...

  2. SB 1082 -- Unified hazardous materials/waste program: Local implementation

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Jones, W.

    California Senate Bill 1082 was signed into law in the fall of 1993 because business and industry believed there were too many hazardous materials inspectors asking the same questions, looking at the same items and requiring similar information on several variations of the same form. Industry was not happy with the large diversity of programs, each with its own inspectors, permits and fees, essentially doing what industry believed was the same inspection. SB 1082 will allow local city and county agencies to apply to the California Environmental Protection Agency to become a Certified Unified Program Agency (CUPA) or work withmore » a CUPA as a Participating Agency (PA) to manage specific program elements. The CUPA will unify six regulatory programs including hazardous waste/tiered permitting, aboveground storage tanks, underground storage tanks, business and area plans/inventory or disclosure, acutely hazardous materials/risk management prevention and Uniform Fire Code programs related to hazardous materials inventory/plan requirements. The bill requires the CUPA to (1) implement a permit consolidation program; (2) implement a single fee system with a state surcharge; (3) consolidate, coordinate and make consistent any local or regional requirements or guidance documents; and (4) implement a single unified inspection and enforcement program.« less

  3. 77 FR 24885 - Hazardous Materials; Miscellaneous Amendments (RRR)

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-04-26

    ... ``Dried residue of molten sulfur on tank cars shall meet the `Molten Sulphur Rail Car Guidance Document... reference material in the HMR should provide rail shippers of molten sulfur with a greater situational... hazardous material. In addition, PHMSA proposes to revise the entries for ``Sulfur, Molten'' specified in...

  4. 49 CFR 171.1 - Applicability of Hazardous Materials Regulations (HMR) to persons and functions.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... package or container or on a package or container containing a residue of a hazardous material. (5... bracing a hazardous materials package in a freight container or transport vehicle. (13) Segregating a hazardous materials package in a freight container or transport vehicle from incompatible cargo. (14...

  5. 49 CFR 171.1 - Applicability of Hazardous Materials Regulations (HMR) to persons and functions.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... package or container or on a package or container containing a residue of a hazardous material. (5... bracing a hazardous materials package in a freight container or transport vehicle. (13) Segregating a hazardous materials package in a freight container or transport vehicle from incompatible cargo. (14...

  6. 49 CFR 171.1 - Applicability of Hazardous Materials Regulations (HMR) to persons and functions.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... package or container or on a package or container containing a residue of a hazardous material. (5... bracing a hazardous materials package in a freight container or transport vehicle. (13) Segregating a hazardous materials package in a freight container or transport vehicle from incompatible cargo. (14...

  7. 49 CFR 171.1 - Applicability of Hazardous Materials Regulations (HMR) to persons and functions.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... package or container or on a package or container containing a residue of a hazardous material. (5... bracing a hazardous materials package in a freight container or transport vehicle. (13) Segregating a hazardous materials package in a freight container or transport vehicle from incompatible cargo. (14...

  8. How to HAMMER home hazardous materials training

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ollero, J.

    1994-10-01

    This article describes HAMMER - the Hazardous Materials Management and Emergency Response Training - program being developed at the Hanford Reservation. The program uses true-to-life props and facilities to simulate emergencies and hazardous conditions. Topics covered include the set-up of the facility and training; the demand for such training; the involvement of the Army Corps of Engineers; the props to be constructed; the educational involvement of Tulane and Xavier Univerisities of Louisiana; temporary facility for the program; partnership with Indian Nations and Stakeholders; and budget plans and constriction. 9 figs.

  9. 78 FR 69745 - Safety and Security Plans for Class 3 Hazardous Materials Transported by Rail

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-11-20

    ... DEPARTMENT OF TRANSPORTATION Pipeline and Hazardous Materials Safety Administration [Docket No... Security Plans for Class 3 Hazardous Materials Transported by Rail AGENCY: Pipeline and Hazardous Materials... characterization, classification, and selection of a packing group for Class 3 materials, and the corresponding...

  10. 49 CFR 173.33 - Hazardous materials in cargo tank motor vehicles.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... cryogenic liquids, the pressure prescribed in § 173.315 of this subchapter. (ii) For cryogenic liquids, the pressure prescribed in § 173.318 of this subchapter. (iii) For liquid hazardous materials loaded in DOT... vehicle used to transport a liquid hazardous material with a gas pad must have a pressure relief system...

  11. 49 CFR 173.33 - Hazardous materials in cargo tank motor vehicles.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... cryogenic liquids, the pressure prescribed in § 173.315 of this subchapter. (ii) For cryogenic liquids, the pressure prescribed in § 173.318 of this subchapter. (iii) For liquid hazardous materials loaded in DOT... vehicle used to transport a liquid hazardous material with a gas pad must have a pressure relief system...

  12. Hazardous Materials Chemistry for the Non-Chemist. Second Edition.

    ERIC Educational Resources Information Center

    Wray, Thomas K.; Enholm, Eric J.

    This book provides a basic introduction for the student to hazardous materials chemistry. Coverage of chemistry, rather than non-chemical hazards, is particularly stressed on a level which the layman can understand. Basic terminology is emphasized at all levels, as are simple chemistry symbols, in order to provide the student with an introductory…

  13. Activities for Teaching about Hazardous Materials in the Home.

    ERIC Educational Resources Information Center

    Howe, Robert W.; And Others

    Materials containing hazardous substances present serious problems to human health and to the health of the environment. There are many potential problems related to the site of a house or apartment, the construction materials used in the house or the apartment, products and materials used in and around the home, and disposal of materials.…

  14. 29 CFR 1917.23 - Hazardous atmospheres and substances (see also § 1917.2 Hazardous cargo, material, substance or...

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 29 Labor 7 2014-07-01 2014-07-01 false Hazardous atmospheres and substances (see also § 1917.2 Hazardous cargo, material, substance or atmosphere). 1917.23 Section 1917.23 Labor Regulations Relating to... TERMINALS Marine Terminal Operations § 1917.23 Hazardous atmospheres and substances (see also § 1917.2...

  15. 29 CFR 1917.23 - Hazardous atmospheres and substances (see also § 1917.2 Hazardous cargo, material, substance or...

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... 29 Labor 7 2012-07-01 2012-07-01 false Hazardous atmospheres and substances (see also § 1917.2 Hazardous cargo, material, substance or atmosphere). 1917.23 Section 1917.23 Labor Regulations Relating to... TERMINALS Marine Terminal Operations § 1917.23 Hazardous atmospheres and substances (see also § 1917.2...

  16. 29 CFR 1917.23 - Hazardous atmospheres and substances (see also § 1917.2 Hazardous cargo, material, substance or...

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 29 Labor 7 2013-07-01 2013-07-01 false Hazardous atmospheres and substances (see also § 1917.2 Hazardous cargo, material, substance or atmosphere). 1917.23 Section 1917.23 Labor Regulations Relating to... TERMINALS Marine Terminal Operations § 1917.23 Hazardous atmospheres and substances (see also § 1917.2...

  17. 29 CFR 1917.23 - Hazardous atmospheres and substances (see also § 1917.2 Hazardous cargo, material, substance or...

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 29 Labor 7 2011-07-01 2011-07-01 false Hazardous atmospheres and substances (see also § 1917.2 Hazardous cargo, material, substance or atmosphere). 1917.23 Section 1917.23 Labor Regulations Relating to... TERMINALS Marine Terminal Operations § 1917.23 Hazardous atmospheres and substances (see also § 1917.2...

  18. 46 CFR 151.03-30 - Hazardous material.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ...) Designated a hazardous substance under section 311(b) of the Federal Water Pollution Control Act (33 U.S.C... materials that are transported as bulk liquids by water in § 153.40. [CGD 81-101, 52 FR 7777, Mar. 12, 1987...

  19. Regulatory Exclusions and Alternative Standards for the Recycling of Materials, Solid Wastes and Hazardous Wastes

    EPA Pesticide Factsheets

    Determining the Level of Regulation for Hazardous Waste Recycling, Recycled Materials that are not Subject to RCRA Hazardous Waste Regulation, Materials Subject to Alternative Regulatory Controls, Materials Subject to Full Hazardous Waste Regulations.

  20. Integrated risk reduction framework to improve railway hazardous materials transportation safety.

    PubMed

    Liu, Xiang; Saat, M Rapik; Barkan, Christopher P L

    2013-09-15

    Rail transportation plays a critical role to safely and efficiently transport hazardous materials. A number of strategies have been implemented or are being developed to reduce the risk of hazardous materials release from train accidents. Each of these risk reduction strategies has its safety benefit and corresponding implementation cost. However, the cost effectiveness of the integration of different risk reduction strategies is not well understood. Meanwhile, there has been growing interest in the U.S. rail industry and government to best allocate resources for improving hazardous materials transportation safety. This paper presents an optimization model that considers the combination of two types of risk reduction strategies, broken rail prevention and tank car safety design enhancement. A Pareto-optimality technique is used to maximize risk reduction at a given level of investment. The framework presented in this paper can be adapted to address a broader set of risk reduction strategies and is intended to assist decision makers for local, regional and system-wide risk management of rail hazardous materials transportation. Copyright © 2013 Elsevier B.V. All rights reserved.

  1. 49 CFR 173.212 - Non-bulk packagings for solid hazardous materials in Packing Group II.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... 49 Transportation 2 2011-10-01 2011-10-01 false Non-bulk packagings for solid hazardous materials... Hazardous Materials Other Than Class 1 and Class 7 § 173.212 Non-bulk packagings for solid hazardous materials in Packing Group II. (a) When § 172.101 of this subchapter specifies that a solid hazardous...

  2. 49 CFR 173.212 - Non-bulk packagings for solid hazardous materials in Packing Group II.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... 49 Transportation 2 2010-10-01 2010-10-01 false Non-bulk packagings for solid hazardous materials... Hazardous Materials Other Than Class 1 and Class 7 § 173.212 Non-bulk packagings for solid hazardous materials in Packing Group II. (a) When § 172.101 of this subchapter specifies that a solid hazardous...

  3. 49 CFR 173.213 - Non-bulk packagings for solid hazardous materials in Packing Group III.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... 49 Transportation 2 2010-10-01 2010-10-01 false Non-bulk packagings for solid hazardous materials... Hazardous Materials Other Than Class 1 and Class 7 § 173.213 Non-bulk packagings for solid hazardous materials in Packing Group III. (a) When § 172.101 of this subchapter specifies that a solid hazardous...

  4. 49 CFR 173.211 - Non-bulk packagings for solid hazardous materials in Packing Group I.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... 49 Transportation 2 2011-10-01 2011-10-01 false Non-bulk packagings for solid hazardous materials... Hazardous Materials Other Than Class 1 and Class 7 § 173.211 Non-bulk packagings for solid hazardous materials in Packing Group I. (a) When § 172.101 of this subchapter specifies that a solid hazardous...

  5. 49 CFR 173.213 - Non-bulk packagings for solid hazardous materials in Packing Group III.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... 49 Transportation 2 2011-10-01 2011-10-01 false Non-bulk packagings for solid hazardous materials... Hazardous Materials Other Than Class 1 and Class 7 § 173.213 Non-bulk packagings for solid hazardous materials in Packing Group III. (a) When § 172.101 of this subchapter specifies that a solid hazardous...

  6. 49 CFR 173.211 - Non-bulk packagings for solid hazardous materials in Packing Group I.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... 49 Transportation 2 2010-10-01 2010-10-01 false Non-bulk packagings for solid hazardous materials... Hazardous Materials Other Than Class 1 and Class 7 § 173.211 Non-bulk packagings for solid hazardous materials in Packing Group I. (a) When § 172.101 of this subchapter specifies that a solid hazardous...

  7. Mars Sample Handling Protocol Workshop Series: Workshop 4

    NASA Technical Reports Server (NTRS)

    Race Margaret S. (Editor); DeVincenzi, Donald L. (Editor); Rummel, John D. (Editor); Acevedo, Sara E. (Editor)

    2001-01-01

    In preparation for missions to Mars that will involve the return of samples to Earth, it will be necessary to prepare for the receiving, handling, testing, distributing, and archiving of martian materials here on Earth. Previous groups and committees have studied selected aspects of sample return activities, but specific detailed protocols for the handling and testing of returned samples must still be developed. To further refine the requirements for sample hazard testing and to develop the criteria for subsequent release of sample materials from quarantine, the NASA Planetary Protection Officer convened a series of workshops in 2000-2001. The overall objective of the Workshop Series was to produce a Draft Protocol by which returned martian sample materials can be assessed for biological hazards and examined for evidence of life (extant or extinct) while safeguarding the purity of the samples from possible terrestrial contamination. This report also provides a record of the proceedings of Workshop 4, the final Workshop of the Series, which was held in Arlington, Virginia, June 5-7, 2001. During Workshop 4, the sub-groups were provided with a draft of the protocol compiled in May 2001 from the work done at prior Workshops in the Series. Then eight sub-groups were formed to discuss the following assigned topics: Review and Assess the Draft Protocol for Physical/Chemical Testing Review and Assess the Draft Protocol for Life Detection Testing Review and Assess the Draft Protocol for Biohazard Testing Environmental and Health/Monitoring and Safety Issues Requirements of the Draft Protocol for Facilities and Equipment Contingency Planning for Different Outcomes of the Draft Protocol Personnel Management Considerations in Implementation of the Draft Protocol Draft Protocol Implementation Process and Update Concepts This report provides the first complete presentation of the Draft Protocol for Mars Sample Handling to meet planetary protection needs. This Draft Protocol

  8. Guidance for conducting hazardous materials flow surveys

    DOT National Transportation Integrated Search

    1995-01-01

    This report provides guidance on how to conduct a commodity flow study for hazardous materials moving by highway. It discusses the need for this type of study and details how to review baseline information and design the study. It includes examples a...

  9. 49 CFR 175.25 - Notification at air passenger facilities of hazardous materials restrictions.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... restrictions on hazardous materials in baggage. (d) Signage. When the check in process is not conducted... permitted and forbidden hazardous materials may be completed through signage (electronic or otherwise...

  10. Natural and technologic hazardous material releases during and after natural disasters: a review.

    PubMed

    Young, Stacy; Balluz, Lina; Malilay, Josephine

    2004-04-25

    Natural disasters may be powerful and prominent mechanisms of direct and indirect hazardous material (hazmat) releases. Hazardous materials that are released as the result of a technologic malfunction precipitated by a natural event are referred to as natural-technologic or na-tech events. Na-tech events pose unique environmental and human hazards. Disaster-associated hazardous material releases are of concern, given increases in population density and accelerating industrial development in areas subject to natural disasters. These trends increase the probability of catastrophic future disasters and the potential for mass human exposure to hazardous materials released during disasters. This systematic review summarizes direct and indirect disaster-associated releases, as well as environmental contamination and adverse human health effects that have resulted from natural disaster-related hazmat incidents. Thorough examination of historic disaster-related hazmat releases can be used to identify future threats and improve mitigation and prevention efforts.

  11. 75 FR 53593 - Hazardous Materials: Minor Editorial Corrections and Clarifications

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-09-01

    ... transportation, Packaging and containers, Radioactive materials, Reporting and recordkeeping requirements... section specifies general requirements for packaging hazardous materials for transportation by aircraft... contamination on motor vehicles used to transport Class 7 radioactive materials under exclusive use conditions...

  12. 33 CFR 155.310 - Containment of oil and hazardous material cargo discharges.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 33 Navigation and Navigable Waters 2 2010-07-01 2010-07-01 false Containment of oil and hazardous material cargo discharges. 155.310 Section 155.310 Navigation and Navigable Waters COAST GUARD, DEPARTMENT OF HOMELAND SECURITY (CONTINUED) POLLUTION OIL OR HAZARDOUS MATERIAL POLLUTION PREVENTION REGULATIONS...

  13. Safe Transportation of Hazardous Materials Act of 2009

    THOMAS, 111th Congress

    Rep. Gonzalez, Charles A. [D-TX-20

    2009-12-16

    House - 12/17/2009 Referred to the Subcommittee on Railroads, Pipelines, and Hazardous Materials. (All Actions) Tracker: This bill has the status IntroducedHere are the steps for Status of Legislation:

  14. Safe Transportation of Hazardous Materials Act of 2011

    THOMAS, 112th Congress

    Rep. Gonzalez, Charles A. [D-TX-20

    2011-11-04

    House - 11/07/2011 Referred to the Subcommittee on Railroads, Pipelines, and Hazardous Materials. (All Actions) Tracker: This bill has the status IntroducedHere are the steps for Status of Legislation:

  15. Hazardous material transportation and the security externality : what should be done?

    DOT National Transportation Integrated Search

    2013-04-01

    This project examined the safety and security externalities which exists in the : transportation of hazardous materials (particularly Toxic Inhalant Hazards) and : identified alterative mitigation strategies. The combination of terrorist attack...

  16. 75 FR 5167 - Office of Hazardous Materials Safety; Notice of Delays In Processing of Special Permits Applications

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-02-01

    ... DEPARTMENT OF TRANSPORTATION Pipeline and Hazardous Materials Safety Administration Office of Hazardous Materials Safety; Notice of Delays In Processing of Special Permits Applications AGENCY: Pipeline..., Office of Hazardous Materials Special Permits and Approvals, Pipeline and Hazardous Materials Safety...

  17. 75 FR 78800 - Office of Hazardous Materials Safety; Notice of Delays in Processing of Special Permits Applications

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-12-16

    ... DEPARTMENT OF TRANSPORTATION Pipeline and Hazardous Materials Safety Administration Office of Hazardous Materials Safety; Notice of Delays in Processing of Special Permits Applications AGENCY: Pipeline..., Office of Hazardous Materials Special Permits and Approvals, Pipeline and Hazardous Materials Safety...

  18. 49 CFR 176.99 - Permit requirements for certain hazardous materials.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... 49 Transportation 2 2010-10-01 2010-10-01 false Permit requirements for certain hazardous materials. 176.99 Section 176.99 Transportation Other Regulations Relating to Transportation PIPELINE AND... CARRIAGE BY VESSEL Special Requirements for Barges § 176.99 Permit requirements for certain hazardous...

  19. Safe gas handling and system design for the large scale production of amorphous silicon based solar cells

    NASA Astrophysics Data System (ADS)

    Fortmann, C. M.; Farley, M. V.; Smoot, M. A.; Fieselmann, B. F.

    1988-07-01

    Solarex is one of the leaders in amorphous silicon based photovoltaic production and research. The large scale production environment presents unique safety concerns related to the quantity of dangerous materials as well as the number of personnel handling these materials. The safety measures explored by this work include gas detection systems, training, and failure resistant gas handling systems. Our experiences with flow restricting orifices in the CGA connections and the use of steel cylinders is reviewed. The hazards and efficiency of wet scrubbers for silane exhausts are examined. We have found it to be useful to provide the scrubbler with temperature alarms.

  20. 76 FR 8658 - Bulk Solid Hazardous Materials: Harmonization With the International Maritime Solid Bulk Cargoes...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-02-15

    ... Solid Hazardous Materials: Harmonization With the International Maritime Solid Bulk Cargoes (IMSBC) Code..., the Coast Guard amended its regulations governing the carriage of solid hazardous materials in bulk to... hazardous bulk solid materials not addressed in the amended regulations. This notice announces that the...

  1. 9 CFR 94.15 - Animal products and materials; movement and handling.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... 9 Animals and Animal Products 1 2011-01-01 2011-01-01 false Animal products and materials; movement and handling. 94.15 Section 94.15 Animals and Animal Products ANIMAL AND PLANT HEALTH INSPECTION SERVICE, DEPARTMENT OF AGRICULTURE EXPORTATION AND IMPORTATION OF ANIMALS (INCLUDING POULTRY) AND ANIMAL...

  2. 9 CFR 94.15 - Animal products and materials; movement and handling.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... 9 Animals and Animal Products 1 2010-01-01 2010-01-01 false Animal products and materials; movement and handling. 94.15 Section 94.15 Animals and Animal Products ANIMAL AND PLANT HEALTH INSPECTION SERVICE, DEPARTMENT OF AGRICULTURE EXPORTATION AND IMPORTATION OF ANIMALS (INCLUDING POULTRY) AND ANIMAL...

  3. Household Hazardous Materials and Their Labels: A Reference for Teachers.

    ERIC Educational Resources Information Center

    Dean, Lillian F.

    Household hazardous materials are products or wastes which are toxic, corrosive, reactive, and/or ignitable. Although common products such as pesticides, oils, gasoline, solvents, cleaners, and polishes are hazardous, students and adults are not always aware of potential dangers. This sourcebook contains definitions and examples of household…

  4. WASTE HANDLING BUILDING VENTILATION SYSTEM DESCRIPTION DOCUMENT

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    P.A. Kumar

    2000-06-21

    The Waste Handling Building Ventilation System provides heating, ventilation, and air conditioning (HVAC) for the contaminated, potentially contaminated, and uncontaminated areas of the Monitored Geologic Repository's (MGR) Waste Handling Building (WHB). In the uncontaminated areas, the non-confinement area ventilation system maintains the proper environmental conditions for equipment operation and personnel comfort. In the contaminated and potentially contaminated areas, in addition to maintaining the proper environmental conditions for equipment operation and personnel comfort, the contamination confinement area ventilation system directs potentially contaminated air away from personnel in the WHB and confines the contamination within high-efficiency particulate air (HEPA) filtration units. Themore » contamination confinement areas ventilation system creates airflow paths and pressure zones to minimize the potential for spreading contamination within the building. The contamination confinement ventilation system also protects the environment and the public by limiting airborne releases of radioactive or other hazardous contaminants from the WHB. The Waste Handling Building Ventilation System is designed to perform its safety functions under accident conditions and other Design Basis Events (DBEs) (such as earthquakes, tornadoes, fires, and loss of the primary electric power). Additional system design features (such as compartmentalization with independent subsystems) limit the potential for cross-contamination within the WHB. The system provides status of important system parameters and equipment operation, and provides audible and/or visual indication of off-normal conditions and equipment failures. The Waste Handling Building Ventilation System confines the radioactive and hazardous material within the building such that the release rates comply with regulatory limits. The system design, operations, and maintenance activities incorporate ALARA (as low as is

  5. Options in Extraterrestrial Sample Handling and Study

    NASA Technical Reports Server (NTRS)

    Papanastassiou, Dimitri A.

    2000-01-01

    This presentation mentions important service functions such as: sample preservation, hazard assessment, and handling. It also discuss how preliminary examination of samples is necessary for sample hazard assessment and for sample allocations. Clean facilities and clean sample handling are required. Conflicts, cross contamination issues will be present and need to be resolved. Extensive experience is available for extraterrestrial samples and must be sought and applied. Extensive experience is available in studies of pathogenicity and must be sought and applied as necessary. Advisory and oversight structures must also be in place

  6. Hazardous Materials Technology: A Community College's Response to a Critical Employment Need.

    ERIC Educational Resources Information Center

    Friedel, Janice N.; And Others

    Studies conducted by the Eastern Iowa Community College District in 1986 revealed a lack of credit programs and curricula for training individuals in the technical aspects of hazardous materials management and need for hazardous materials technicians by local industry. In response, an associate of applied science (AAS) degree program in Hazardous…

  7. 48 CFR 252.223-7006 - Prohibition on storage and disposal of toxic and hazardous materials.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... disposal of toxic and hazardous materials. 252.223-7006 Section 252.223-7006 Federal Acquisition... and disposal of toxic and hazardous materials. As prescribed in 223.7103(a), use the following clause: Prohibition on Storage and Disposal of Toxic and Hazardous Materials (APR 2012) (a) Definitions. As used in...

  8. 48 CFR 252.223-7006 - Prohibition on storage and disposal of toxic and hazardous materials.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... disposal of toxic and hazardous materials. 252.223-7006 Section 252.223-7006 Federal Acquisition... and disposal of toxic and hazardous materials. As prescribed in 223.7103(a), use the following clause: Prohibition on Storage and Disposal of Toxic and Hazardous Materials (APR 1993) (a) Definitions. As used in...

  9. 48 CFR 252.223-7006 - Prohibition on storage and disposal of toxic and hazardous materials.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... disposal of toxic and hazardous materials. 252.223-7006 Section 252.223-7006 Federal Acquisition... and disposal of toxic and hazardous materials. As prescribed in 223.7103(a), use the following clause: Prohibition on Storage and Disposal of Toxic and Hazardous Materials (APR 2012) (a) Definitions. As used in...

  10. 48 CFR 252.223-7006 - Prohibition on storage and disposal of toxic and hazardous materials.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... disposal of toxic and hazardous materials. 252.223-7006 Section 252.223-7006 Federal Acquisition... and disposal of toxic and hazardous materials. As prescribed in 223.7103(a), use the following clause: Prohibition on Storage and Disposal of Toxic and Hazardous Materials (APR 1993) (a) Definitions. As used in...

  11. Hazards on Hazards, Ensuring Spacecraft Safety While Sampling Asteroid Surface Materials

    NASA Astrophysics Data System (ADS)

    Johnson, C. A.; DellaGiustina, D. N.

    2016-12-01

    The near-Earth object Bennu is a carbonaceous asteroid that is a remnant from the earliest stages of the solar-system formation. It is also a potentially hazardous asteroid with a relatively high probability of impacting Earth late in the 22nd century. While the primary focus of the NASA funded OSIRIS-REx mission is the return of pristine organic material from the asteroid's surface, information about Bennu's physical and chemical properties gleaned throughout operations will be critical for a possible future impact mitigation mission. In order to ensure a regolith sample can be successfully acquired, the sample site and surrounding area must be thoroughly assessed for any potential hazards to the spacecraft. The OSIRIS-REx Image Processing Working Group has been tasked with generating global and site-specific hazard maps using mosaics and a trio of fea­­­ture identification techniques. These techniques include expert-lead manual classification, internet-based amateur classification using the citizen science platform CosmoQuest, and automated classification using machine learning and computer vision tools. Because proximity operations around Bennu do not begin until the end of 2018, we have an opportunity to test t­­­he performance of our software on analogue surfaces of other asteroids from previous NASA and other space agencies missions. The entire pipeline from image processing and mosaicking to hazard identification, analysis and mapping will be performed on asteroids of varying size, shape and surface morphology. As a result, upon arrival at Bennu, we will have the software and processes in place to quickly and confidently produce the hazard maps needed to ensure the success of our mission.

  12. Delivering meat carcasses/cuts to craft-butcher shops: an investigation of work characteristics and manual handling hazards.

    PubMed

    Okunribido, Olanrewaju O; Gingell, Alison

    2014-11-01

    This study investigated delivery scenarios of service drivers working in the retail meat industry. The methodology included analysis of accident reports, and field investigations of deliveries at craft-butcher shop premises, including semi-structured interviews with managers and workers. The findings provide greater clarity about the hazards in this job, and suggest for peripatetic delivery activities, four main factors on which decisions about risk and good practice may be made: composition of the orders; characteristics of the delivery vehicle/truck; handling method most often used; and, the road/access conditions. Crown Copyright © 2014. Published by Elsevier Ltd. All rights reserved.

  13. 49 CFR 176.146 - Segregation from non-hazardous materials.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... 49 Transportation 2 2010-10-01 2010-10-01 false Segregation from non-hazardous materials. 176.146... VESSEL Detailed Requirements for Class 1 (Explosive) Materials Segregation § 176.146 Segregation from non... for “away from” segregation apply. (2) An explosive substance or article which has a secondary...

  14. 49 CFR 176.146 - Segregation from non-hazardous materials.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... 49 Transportation 2 2011-10-01 2011-10-01 false Segregation from non-hazardous materials. 176.146... VESSEL Detailed Requirements for Class 1 (Explosive) Materials Segregation § 176.146 Segregation from non... for “away from” segregation apply. (2) An explosive substance or article which has a secondary...

  15. 76 FR 15046 - Office of Hazardous Materials Safety; Notice of Applications for Modification of Special Permit

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-03-18

    ... DEPARTMENT OF TRANSPORTATION Pipeline and Hazardous Materials Safety Administration Office of Hazardous Materials Safety; Notice of Applications for Modification of Special Permit AGENCY: Pipeline and Hazardous Materials Safety Administration (PHMSA), DOT. ACTION: List of applications for modification of...

  16. 33 CFR 154.1045 - Response plan development and evaluation criteria for facilities that handle, store, or transport...

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 33 Navigation and Navigable Waters 2 2013-07-01 2013-07-01 false Response plan development and... (CONTINUED) POLLUTION FACILITIES TRANSFERRING OIL OR HAZARDOUS MATERIAL IN BULK Response Plans for Oil Facilities § 154.1045 Response plan development and evaluation criteria for facilities that handle, store, or...

  17. 33 CFR 154.1045 - Response plan development and evaluation criteria for facilities that handle, store, or transport...

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 33 Navigation and Navigable Waters 2 2011-07-01 2011-07-01 false Response plan development and... (CONTINUED) POLLUTION FACILITIES TRANSFERRING OIL OR HAZARDOUS MATERIAL IN BULK Response Plans for Oil Facilities § 154.1045 Response plan development and evaluation criteria for facilities that handle, store, or...

  18. 33 CFR 154.1045 - Response plan development and evaluation criteria for facilities that handle, store, or transport...

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... 33 Navigation and Navigable Waters 2 2012-07-01 2012-07-01 false Response plan development and... (CONTINUED) POLLUTION FACILITIES TRANSFERRING OIL OR HAZARDOUS MATERIAL IN BULK Response Plans for Oil Facilities § 154.1045 Response plan development and evaluation criteria for facilities that handle, store, or...

  19. 33 CFR 154.1045 - Response plan development and evaluation criteria for facilities that handle, store, or transport...

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 33 Navigation and Navigable Waters 2 2014-07-01 2014-07-01 false Response plan development and... (CONTINUED) POLLUTION FACILITIES TRANSFERRING OIL OR HAZARDOUS MATERIAL IN BULK Response Plans for Oil Facilities § 154.1045 Response plan development and evaluation criteria for facilities that handle, store, or...

  20. 75 FR 27273 - Hazardous Materials; Packages Intended for Transport by Aircraft

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-05-14

    ...PHMSA proposes to amend requirements in the Hazardous Materials Regulations to enhance the integrity of inner packagings or receptacles of combination packagings containing liquid hazardous material by ensuring they remain intact when subjected to the reduced pressure and other forces encountered in air transportation. In order to substantially decrease the likelihood of a hazardous materials release, the proposed amendments: prescribe specific test protocols and standards for determining whether an inner packaging or receptacle is capable of meeting the pressure differential requirements specified in the regulations and, consistent with the 2011-2012 edition of the International Civil Aviation Organization Technical Instructions for the Safe Transport of Dangerous Goods by Aircraft (ICAO Technical Instructions), require the closures on all inner packagings containing liquids within a combination packaging to be secured by a secondary means or, under certain circumstances, permit the use of a liner.

  1. Biennial report on hazardous materials transportation : calendar years 1994-1995

    DOT National Transportation Integrated Search

    1996-01-01

    Hazardous materials (HM) are substances or : materials determined by the U.S. Department of : Transportation (DOT), or otherwise specified : by statute, to have inherent characteristics, : which may pose an unreasonable risk to the : public's health ...

  2. 76 FR 65779 - Office of Hazardous Materials Safety; Notice of Applications for Modification of Special Permit

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-10-24

    ... DEPARTMENT OF TRANSPORTATION Pipeline and Hazardous Materials Safety Administration Office of... processing of, special permits from the Department of Transportation's Hazardous Material Regulations (49 CFR... special permit is published in accordance with Part 107 of the Federal hazardous materials transportation...

  3. Hazardous Materials Verification and Limited Characterization Report on Sodium and Caustic Residuals in Materials and Fuel Complex Facilities MFC-799/799A

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Gary Mecham

    2010-08-01

    This report is a companion to the Facilities Condition and Hazard Assessment for Materials and Fuel Complex Sodium Processing Facilities MFC-799/799A and Nuclear Calibration Laboratory MFC-770C (referred to as the Facilities Condition and Hazards Assessment). This report specifically responds to the requirement of Section 9.2, Item 6, of the Facilities Condition and Hazards Assessment to provide an updated assessment and verification of the residual hazardous materials remaining in the Sodium Processing Facilities processing system. The hazardous materials of concern are sodium and sodium hydroxide (caustic). The information supplied in this report supports the end-point objectives identified in the Transition Planmore » for Multiple Facilities at the Materials and Fuels Complex, Advanced Test Reactor, Central Facilities Area, and Power Burst Facility, as well as the deactivation and decommissioning critical decision milestone 1, as specified in U.S. Department of Energy Guide 413.3-8, “Environmental Management Cleanup Projects.” Using a tailored approach and based on information obtained through a combination of process knowledge, emergency management hazardous assessment documentation, and visual inspection, this report provides sufficient detail regarding the quantity of hazardous materials for the purposes of facility transfer; it also provides that further characterization/verification of these materials is unnecessary.« less

  4. 76 FR 2950 - Office of Hazardous Materials Safety; Notice of Applications for Modification of Special Permit

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-01-18

    ... DEPARTMENT OF TRANSPORTATION Pipeline and Hazardous Materials Safety Administration Office of... processing of, special permits from the Department of Transportation's Hazardous Material Regulations (49 CFR... 107 of the Federal hazardous materials transportation law (49 U.S.C. 5117(b); 49 CFR 1.53(b)). Issued...

  5. Risk assessment of manual material handling activities (case study: PT BRS Standard Industry)

    NASA Astrophysics Data System (ADS)

    Deviani; Triyanti, V.

    2017-12-01

    The process of moving material manually has the potential for injury to workers. The risk of injury will increase if we do not pay attention to the working conditions. The purpose of this study is to assess and analyze the injury risk level in manual handling material activity, as well as to improve the condition. The observed manual material handling activities is pole lifting and goods loading. These activities were analyzed using Job Strain Index method, Rapid Entire Body Assessment, and Chaffin’s 2D Planar Static Model. The results show that most workers who perform almost all activities have a high level of risk level with the score of JSI and REBA exceeds 9 points. For some activities, the estimated compression forces in the lumbar area also exceed the standard limits of 3400 N. Concerning this condition, several suggestions for improvement were made, improving the composition of packing, improving body posture, and making guideline posters.

  6. Apparatus for remote handling of materials. [mixing or analyzing dangerous chemicals

    NASA Technical Reports Server (NTRS)

    Kimball, R. B.; Hodder, D. T.; Wrinkle, W. W. (Inventor)

    1974-01-01

    Apparatus for remote handling of materials are described. A closed housing is provided with first and second containers and first and second reservoirs for holding materials to be mixed. The materials are transferable from the reservoirs to the first container where they are mixed. The mixed materials are then conveyed from the first container to the second container preferably by dumping the mixed materials into a funnel positioned over the second container. The second container is then moved to a second position for analysis of the mixed materials. For example, the materials may be ignited and the flame analyzed. Access, such as a sight port, is provided in the housing at the analysis position. The device provides a simple and inexpensive apparatus for safely mixing a pyrophoric material and an oxidizer which together form a thermite type mixture that burns to produce a large quantity of heat and light.

  7. Gender involvement in manual material handling (mmh) tasks in agriculture and technology intervention to mitigate the resulting musculoskeletal disorders.

    PubMed

    Singh, Suman; Sinwal, Neelima; Rathore, Hemu

    2012-01-01

    The lifting and carrying of loads in agriculture on small landholdings are unavoidable. Rural communities often lack access to appropriate technologies which may result in various health hazards. The objective was to study gender participation in agricultural activities involving manual material handling tasks, to assess MSDs experienced in various MMH tasks and to evaluate traditional method and designed technology. The study was conducted on 100 agricultural workers. Data on gender participation in MMH tasks in household, animal husbandry and agriculture and resulting MSDs was gathered. Pre and post assessment of technology intervention was done for NIOSH Lifting Index, QEC, and RPE. The results revealed greater susceptibility of females to musculoskeletal problems in most of the household and animal husbandry tasks. The hand trucks designed were pushing type with power grasp handle. The respondents were advised to carry 5 kg of weight per lift instead of lifting more weight in one lift/minute while filling the hand truck. By decreasing the weight and increasing the number of lifts per minute the respondents were seen falling in green zone indicating significant reduction in NIOSH lifting index. QEC scores concluded that for filling the hand truck 5 kg of weight should be carried to keep the exposure level low.

  8. 49 CFR 173.2a - Classification of a material having more than one hazard.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... explosives. 3 Denotes an impossible combination. 4 For pesticides only, where a material has the hazards of... 5.2 (organic peroxide) material that meets the definition of any other hazard class or division as...

  9. 49 CFR 173.2a - Classification of a material having more than one hazard.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... explosives. 3 Denotes an impossible combination. 4 For pesticides only, where a material has the hazards of... 5.2 (organic peroxide) material that meets the definition of any other hazard class or division as...

  10. 49 CFR 173.2a - Classification of a material having more than one hazard.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... explosives. 3 Denotes an impossible combination. 4 For pesticides only, where a material has the hazards of... 5.2 (organic peroxide) material that meets the definition of any other hazard class or division as...

  11. 49 CFR 173.2a - Classification of a material having more than one hazard.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... explosives. 3 Denotes an impossible combination. 4 For pesticides only, where a material has the hazards of... 5.2 (organic peroxide) material that meets the definition of any other hazard class or division as...

  12. Household Hazardous Waste and Demolition

    EPA Pesticide Factsheets

    Household wastes that are toxic, corrosive, ignitable, or reactive are known as Household Hazardous Waste (HHW). Household Hazardous Waste may be found during residential demolitions, and thus require special handling for disposal.

  13. Design and simulation of integration system between automated material handling system and manufacturing layout in the automotive assembly line

    NASA Astrophysics Data System (ADS)

    Seha, S.; Zamberi, J.; Fairu, A. J.

    2017-10-01

    Material handling system (MHS) is an important part for the productivity plant and has recognized as an integral part of today’s manufacturing system. Currently, MHS has growth tremendously with its technology and equipment type. Based on the case study observation, the issue involving material handling system contribute to the reduction of production efficiency. This paper aims to propose a new design of integration between material handling and manufacturing layout by investigating the influences of layout and material handling system. A method approach tool using Delmia Quest software is introduced and the simulation result is used to assess the influences of the integration between material handling system and manufacturing layout in the performance of automotive assembly line. The result show, the production of assembly line output increases more than 31% from the current system. The source throughput rate average value went up to 252 units per working hour in model 3 and show the effectiveness of the pick-to-light system as efficient storage equipment. Thus, overall result shows, the application of AGV and the pick-to-light system gave a large significant effect in the automotive assembly line. Moreover, the change of layout also shows a large significant improvement to the performance.

  14. 40 CFR 262.215 - Unwanted material that is not solid or hazardous waste.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 40 Protection of Environment 26 2011-07-01 2011-07-01 false Unwanted material that is not solid or... (CONTINUED) SOLID WASTES (CONTINUED) STANDARDS APPLICABLE TO GENERATORS OF HAZARDOUS WASTE Alternative... Eligible Academic Entities § 262.215 Unwanted material that is not solid or hazardous waste. (a) If an...

  15. 40 CFR 262.215 - Unwanted material that is not solid or hazardous waste.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 40 Protection of Environment 25 2010-07-01 2010-07-01 false Unwanted material that is not solid or... (CONTINUED) SOLID WASTES (CONTINUED) STANDARDS APPLICABLE TO GENERATORS OF HAZARDOUS WASTE Alternative... Eligible Academic Entities § 262.215 Unwanted material that is not solid or hazardous waste. (a) If an...

  16. 49 CFR 173.2a - Classification of a material having more than one hazard.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... 49 Transportation 2 2010-10-01 2010-10-01 false Classification of a material having more than one... SHIPPERS-GENERAL REQUIREMENTS FOR SHIPMENTS AND PACKAGINGS General § 173.2a Classification of a material having more than one hazard. (a) Classification of a material having more than one hazard. Except as...

  17. 77 FR 70895 - New Marking Standards for Parcels Containing Hazardous Materials

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-11-28

    ... exception of certain infectious substances, certain patient specimens and certain radioactive materials as... the Postal Service intends to provide appropriate labeling, marking, and packaging material. Response... POSTAL SERVICE 39 CFR Part 111 New Marking Standards for Parcels Containing Hazardous Materials...

  18. 41 CFR 109-44.702-3 - Hazardous materials.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... 41 Public Contracts and Property Management 3 2011-01-01 2011-01-01 false Hazardous materials. 109-44.702-3 Section 109-44.702-3 Public Contracts and Property Management Federal Property Management Regulations System (Continued) DEPARTMENT OF ENERGY PROPERTY MANAGEMENT REGULATIONS UTILIZATION AND DISPOSAL...

  19. Numerical investigation of debris materials prior to debris flow hazards using satellite images

    NASA Astrophysics Data System (ADS)

    Zhang, N.; Matsushima, T.

    2018-05-01

    The volume of debris flows occurred in mountainous areas is mainly affected by the volume of debris materials deposited at the valley bottom. Quantitative evaluation of debris materials prior to debris flow hazards is important to predict and prevent hazards. At midnight on 7th August 2010, two catastrophic debris flows were triggered by the torrential rain from two valleys in the northern part of Zhouqu City, NW China, resulting in 1765 fatalities and huge economic losses. In the present study, a depth-integrated particle method is adopted to simulate the debris materials, based on 2.5 m resolution satellite images. In the simulation scheme, the materials are modeled as dry granular solids, and they travel down from the slopes and are deposited at the valley bottom. The spatial distributions of the debris materials are investigated in terms of location, volume and thickness. Simulation results show good agreement with post-disaster satellite images and field observation data. Additionally, the effect of the spatial distributions of the debris materials on subsequent debris flows is also evaluated. It is found that the spatial distributions of the debris materials strongly influence affected area, runout distance and flow discharge. This study might be useful in hazard assessments prior to debris flow hazards by investigating diverse scenarios in which the debris materials are unknown.

  20. 46 CFR 54.20-2 - Fabrication for hazardous materials (replaces UW-2(a)).

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... 46 Shipping 2 2010-10-01 2010-10-01 false Fabrication for hazardous materials (replaces UW-2(a)). 54.20-2 Section 54.20-2 Shipping COAST GUARD, DEPARTMENT OF HOMELAND SECURITY (CONTINUED) MARINE ENGINEERING PRESSURE VESSELS Fabrication by Welding § 54.20-2 Fabrication for hazardous materials (replaces UW...

  1. 46 CFR 54.20-2 - Fabrication for hazardous materials (replaces UW-2(a)).

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... 46 Shipping 2 2012-10-01 2012-10-01 false Fabrication for hazardous materials (replaces UW-2(a)). 54.20-2 Section 54.20-2 Shipping COAST GUARD, DEPARTMENT OF HOMELAND SECURITY (CONTINUED) MARINE ENGINEERING PRESSURE VESSELS Fabrication by Welding § 54.20-2 Fabrication for hazardous materials (replaces UW...

  2. 46 CFR 54.20-2 - Fabrication for hazardous materials (replaces UW-2(a)).

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... 46 Shipping 2 2013-10-01 2013-10-01 false Fabrication for hazardous materials (replaces UW-2(a)). 54.20-2 Section 54.20-2 Shipping COAST GUARD, DEPARTMENT OF HOMELAND SECURITY (CONTINUED) MARINE ENGINEERING PRESSURE VESSELS Fabrication by Welding § 54.20-2 Fabrication for hazardous materials (replaces UW...

  3. 46 CFR 54.20-2 - Fabrication for hazardous materials (replaces UW-2(a)).

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... 46 Shipping 2 2014-10-01 2014-10-01 false Fabrication for hazardous materials (replaces UW-2(a)). 54.20-2 Section 54.20-2 Shipping COAST GUARD, DEPARTMENT OF HOMELAND SECURITY (CONTINUED) MARINE ENGINEERING PRESSURE VESSELS Fabrication by Welding § 54.20-2 Fabrication for hazardous materials (replaces UW...

  4. 46 CFR 54.20-2 - Fabrication for hazardous materials (replaces UW-2(a)).

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... 46 Shipping 2 2011-10-01 2011-10-01 false Fabrication for hazardous materials (replaces UW-2(a)). 54.20-2 Section 54.20-2 Shipping COAST GUARD, DEPARTMENT OF HOMELAND SECURITY (CONTINUED) MARINE ENGINEERING PRESSURE VESSELS Fabrication by Welding § 54.20-2 Fabrication for hazardous materials (replaces UW...

  5. 14 CFR 420.65 - Handling of solid propellants.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... 14 Aeronautics and Space 4 2010-01-01 2010-01-01 false Handling of solid propellants. 420.65 Section 420.65 Aeronautics and Space COMMERCIAL SPACE TRANSPORTATION, FEDERAL AVIATION ADMINISTRATION... from the closest debris or explosive hazard source in an explosive hazard facility. ...

  6. 14 CFR 420.65 - Handling of solid propellants.

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... 14 Aeronautics and Space 4 2012-01-01 2012-01-01 false Handling of solid propellants. 420.65 Section 420.65 Aeronautics and Space COMMERCIAL SPACE TRANSPORTATION, FEDERAL AVIATION ADMINISTRATION... from the closest debris or explosive hazard source in an explosive hazard facility. ...

  7. 14 CFR 420.65 - Handling of solid propellants.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... 14 Aeronautics and Space 4 2011-01-01 2011-01-01 false Handling of solid propellants. 420.65 Section 420.65 Aeronautics and Space COMMERCIAL SPACE TRANSPORTATION, FEDERAL AVIATION ADMINISTRATION... from the closest debris or explosive hazard source in an explosive hazard facility. ...

  8. Practices and technologies in hazardous material transportation and security.

    DOT National Transportation Integrated Search

    2011-11-23

    "The University of Arkansas (UA) team is responsible for investigating practices of : hazardous material transportation in the private sector. The UA team is a subcontractor : to the project Petrochemical Transportation Security, Development of...

  9. 9 CFR 310.22 - Specified risk materials from cattle and their handling and disposition.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... and their handling and disposition. 310.22 Section 310.22 Animals and Animal Products FOOD SAFETY AND... for use as human food does in the United States: (1) The brain, skull, eyes, trigeminal ganglia...) Specified risk materials are inedible and prohibited for use as human food. (c) Specified risk materials...

  10. 9 CFR 310.22 - Specified risk materials from cattle and their handling and disposition.

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... and their handling and disposition. 310.22 Section 310.22 Animals and Animal Products FOOD SAFETY AND... for use as human food does in the United States: (1) The brain, skull, eyes, trigeminal ganglia...) Specified risk materials are inedible and prohibited for use as human food. (c) Specified risk materials...

  11. 9 CFR 310.22 - Specified risk materials from cattle and their handling and disposition.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... and their handling and disposition. 310.22 Section 310.22 Animals and Animal Products FOOD SAFETY AND... for use as human food does in the United States: (1) The brain, skull, eyes, trigeminal ganglia...) Specified risk materials are inedible and prohibited for use as human food. (c) Specified risk materials...

  12. 9 CFR 310.22 - Specified risk materials from cattle and their handling and disposition.

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... and their handling and disposition. 310.22 Section 310.22 Animals and Animal Products FOOD SAFETY AND... for use as human food does in the United States: (1) The brain, skull, eyes, trigeminal ganglia...) Specified risk materials are inedible and prohibited for use as human food. (c) Specified risk materials...

  13. 9 CFR 310.22 - Specified risk materials from cattle and their handling and disposition.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... and their handling and disposition. 310.22 Section 310.22 Animals and Animal Products FOOD SAFETY AND... for use as human food does in the United States: (1) The brain, skull, eyes, trigeminal ganglia...) Specified risk materials are inedible and prohibited for use as human food. (c) Specified risk materials...

  14. Hazardous Materials in Marine Transportation: A Practical Course.

    ERIC Educational Resources Information Center

    Haas, Thomas J.; Kichner, Jerzy J.

    1987-01-01

    Describes a course offered at the United States Coast Guard Academy that deals with the marine transportation of hazardous materials. Outlines the major topics covered in the course, including marine transportation regulations. Discusses the use of lectures, laboratory demonstrations, and "hands-on" activities in the instructional…

  15. SLUG HANDLING DEVICES

    DOEpatents

    Gentry, J.R.

    1958-09-16

    A device is described for handling fuel elements of a neutronic reactor. The device consists of two concentric telescoped contalners that may fit about the fuel element. A number of ratchet members, equally spaced about the entrance to the containers, are pivoted on the inner container and spring biased to the outer container so thnt they are forced to hear against and hold the fuel element, the weight of which tends to force the ratchets tighter against the fuel element. The ratchets are released from their hold by raising the inner container relative to the outer memeber. This device reduces the radiation hazard to the personnel handling the fuel elements.

  16. Natural radioactivity and radiation hazards in some building materials used in Isparta, Turkey

    NASA Astrophysics Data System (ADS)

    Mavi, B.; Akkurt, I.

    2010-09-01

    The activity concentrations of uranium, thorium and potassium can vary from material to material and it should be measured as the radiation is hazardous for human health. Thus first studies have been planned to obtain radioactivity of building material used in the Isparta region of Turkey. The radioactivity of some building materials used in this region has been measured using a γ-ray spectrometry, which contains a NaI(Tl) detector connected to MCA. The specific activity for 226Ra, 232Th and 40K, from the selected building materials, were in the range 17.91-58.88, 6.77-19.49 and 65.72-248.76 Bq/kg, respectively. Absorbed dose rate in air ( D), annual effective dose (AED), radium equivalent activities (Ra eq), and external hazard index ( Hex) associated with the natural radionuclide are calculated to assess the radiation hazard of the natural radioactivity in the building materials. It was found that none of the results exceeds the recommended limit value.

  17. 77 FR 23117 - Rigging Equipment for Material Handling Construction Standard; Correction and Technical Amendment

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-04-18

    ...OSHA is correcting its sling standard for construction titled ``Rigging Equipment for Material Handling'' by removing the rated capacity tables and making minor, nonsubstantive revisions to the regulatory text.

  18. 76 FR 13313 - Hazardous Materials: Cargo Tank Motor Vehicle Loading and Unloading Operations

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-03-11

    ... hazardous materials in quantities of 3,000 liters or greater to identify the causes of the incidents and to... involving tanks with a capacity of 3,000 liters or greater revealed that 90% of the incidents occur by... incidental storage of hazardous materials in bulk packagings having a capacity greater than 3,000 liters. The...

  19. 77 FR 60334 - New Marking Standards for Parcels Containing Hazardous Materials

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-10-03

    ... substances, certain patient specimens and certain radioactive materials as noted in section 135 of Mailing... due to its form, quantity, and packaging. Not all hazardous materials permitted to be shipped as a... mailable limited quantity materials that meet USPS quantity limitations and packaging requirements. All...

  20. 77 FR 22504 - Hazardous Materials; Packages Intended for Transport by Aircraft

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-04-16

    ... material to absorb the entire contents of the inner packaging, before being placed in its outer package... combination packaging intended for the air transportation of liquid hazardous materials is capable of..., leakproof receptacle or intermediate packaging containing sufficient absorbent material to absorb the entire...

  1. 46 CFR 153.40 - Determination of materials that are hazardous.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... Section 153.40 Shipping COAST GUARD, DEPARTMENT OF HOMELAND SECURITY (CONTINUED) CERTAIN BULK DANGEROUS CARGOES SHIPS CARRYING BULK LIQUID, LIQUEFIED GAS, OR COMPRESSED GAS HAZARDOUS MATERIALS General § 153.40... Table 4 of Part 154. (e) Materials that are NLSs under MARPOL Annex II. (f) Liquids, liquefied gases...

  2. 46 CFR 153.40 - Determination of materials that are hazardous.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... Section 153.40 Shipping COAST GUARD, DEPARTMENT OF HOMELAND SECURITY (CONTINUED) CERTAIN BULK DANGEROUS CARGOES SHIPS CARRYING BULK LIQUID, LIQUEFIED GAS, OR COMPRESSED GAS HAZARDOUS MATERIALS General § 153.40... Table 4 of Part 154. (e) Materials that are NLSs under MARPOL Annex II. (f) Liquids, liquefied gases...

  3. 46 CFR 153.40 - Determination of materials that are hazardous.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... Section 153.40 Shipping COAST GUARD, DEPARTMENT OF HOMELAND SECURITY (CONTINUED) CERTAIN BULK DANGEROUS CARGOES SHIPS CARRYING BULK LIQUID, LIQUEFIED GAS, OR COMPRESSED GAS HAZARDOUS MATERIALS General § 153.40... Table 4 of Part 154. (e) Materials that are NLSs under MARPOL Annex II. (f) Liquids, liquefied gases...

  4. 46 CFR 153.40 - Determination of materials that are hazardous.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... Section 153.40 Shipping COAST GUARD, DEPARTMENT OF HOMELAND SECURITY (CONTINUED) CERTAIN BULK DANGEROUS CARGOES SHIPS CARRYING BULK LIQUID, LIQUEFIED GAS, OR COMPRESSED GAS HAZARDOUS MATERIALS General § 153.40... Table 4 of Part 154. (e) Materials that are NLSs under MARPOL Annex II. (f) Liquids, liquefied gases...

  5. 46 CFR 153.40 - Determination of materials that are hazardous.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... Section 153.40 Shipping COAST GUARD, DEPARTMENT OF HOMELAND SECURITY (CONTINUED) CERTAIN BULK DANGEROUS CARGOES SHIPS CARRYING BULK LIQUID, LIQUEFIED GAS, OR COMPRESSED GAS HAZARDOUS MATERIALS General § 153.40... Table 4 of Part 154. (e) Materials that are NLSs under MARPOL Annex II. (f) Liquids, liquefied gases...

  6. Evaluation in industry of a draft code of practice for manual handling.

    PubMed

    Ashby, Liz; Tappin, David; Bentley, Tim

    2004-05-01

    This paper reports findings from a study which evaluated the draft New Zealand Code of Practice for Manual Handling. The evaluation assessed the ease of use, applicability and validity of the Code and in particular the associated manual handling hazard assessment tools, within New Zealand industry. The Code was studied in a sample of eight companies from four sectors of industry. Subjective feedback and objective findings indicated that the Code was useful, applicable and informative. The manual handling hazard assessment tools incorporated in the Code could be adequately applied by most users, with risk assessment outcomes largely consistent with the findings of researchers using more specific ergonomics methodologies. However, some changes were recommended to the risk assessment tools to improve usability and validity. The evaluation concluded that both the Code and the tools within it would benefit from simplification, improved typography and layout, and industry-specific information on manual handling hazards.

  7. Biennial report summary of hazardous materials transportation, 2005-2006

    DOT National Transportation Integrated Search

    2007-01-01

    The Federal hazmat law requires the United States (U.S.) Department of Transportation : (DOT) to protect the public from the risks to life, property, and the environment inherent in : commercial transportation of hazardous materials. The Pipeline and...

  8. Effect of a worktable position on head and shoulder posture and shoulder muscles in manual material handling.

    PubMed

    Kim, Min-Hee; Yoo, Won-Gyu

    2015-06-05

    According to a recent research, manual working with high levels of static contraction, repetitive loads, or extreme working postures involving the neck and shoulder muscles causes an increased risk of neck and shoulder musculoskeletal disorders. We investigated the effects of the forwardly worktable position on head and shoulder angles and shoulder muscle activity in manual material handling tasks. The forward head and shoulder angles and the activity of upper trapezius, levator scapulae, and middle deltoid muscle activities of 15 workers were measured during performing of manual material handling in two tasks that required different forward head and shoulder angles. The second manual material task required a significantly increased forward head and shoulder angle. The upper trapezius and levator scapulae muscle activity in second manual material task was increased significantly compared with first manual material task. The middle deltoid muscle activity in second manual material task was not significantly different compared with first manual material task. Based on this result, the forward head and shoulder angles while performing manual work need to be considered in selection of the forward distance of a worktable form the body. The high level contractions of the neck and shoulder muscles correlated with neck and shoulder pain. Therefore, the forward distance of a worktable can be an important factor in preventing neck and shoulder pain in manual material handling workers.

  9. HAZARDOUS SUBSTANCES DATA BANK (HSDB)

    EPA Science Inventory

    Hazardous Substances Data Bank (HSDB) is a factual, non-bibliographic data bank focusing upon the toxicology of potentially hazardous chemicals. It is enhanced with data from such related areas as emergency handling procedures, environmental fate, human exposure, detection method...

  10. The Heroes' Problems: Exploring the Potentials of Google Glass for Biohazard Handling Professionals

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Chang, Jack Shen-Kuen; Henry, Michael J.; Burtner, Edwin R.

    2015-06-23

    In “white powder incidents” or other suspicious and risky situations relating to deadly diseases or chemicals (e.g., Ebola investigation), those who handle the potentially hazardous materials are the heroes who spearhead the first responder’s operations. Although well trained, these heroes need to manage complex problems and make life-or-death decisions while handling the unknown and dangerous. We are motivated to explore how Google Glass can facilitate those heroes’ missions. To this end, we conducted contextual inquiry on six biohazard-handling, Personal Protective Equipment (PPE)-wearing professionals. With an inductive thematic analysis, we summarized the heroes’ workflow and four groups of “Heroes’ Problems”. Amore » unique “A3 Model” (Awareness, Analysis, Action) was generated to encapsulate our qualitative findings and proposed Glass features. The findings serve as the groundwork for our future development.« less

  11. 49 CFR 383.121 - Requirements for hazardous materials endorsement.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ...) FEDERAL MOTOR CARRIER SAFETY ADMINISTRATION, DEPARTMENT OF TRANSPORTATION FEDERAL MOTOR CARRIER SAFETY REGULATIONS COMMERCIAL DRIVER'S LICENSE STANDARDS; REQUIREMENTS AND PENALTIES Required Knowledge and Skills...; (4) Passenger Carrying Buses and Hazardous Materials; (5) Attendance of Motor Vehicles; (6) Parking...

  12. 41 CFR 109-44.702-3 - Hazardous materials.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 41 Public Contracts and Property Management 3 2010-07-01 2010-07-01 false Hazardous materials. 109-44.702-3 Section 109-44.702-3 Public Contracts and Property Management Federal Property Management Regulations System (Continued) DEPARTMENT OF ENERGY PROPERTY MANAGEMENT REGULATIONS UTILIZATION AND DISPOSAL 44-DONATION OF PERSONAL PROPERTY 44.7...

  13. Coal tar-containing asphalt - resource or hazardous waste?

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Andersson-Skold, Y.; Andersson, K.; Lind, B.

    2007-09-30

    Coal tar was used in Sweden for the production of asphalt and for the drenching of stabilization gravel until 1973. The tar has high concentrations of polycyclic aromatic hydrocarbons (PAH), some of which may be strongly carcinogenic. Approximately 20 million tonnes of tar-containing asphalt is present in the public roads in Sweden. Used asphalt from rebuilding can be classified as hazardous waste according to the Swedish Waste Act. The cost of treating the material removed as hazardous waste can be very high due to the large amount that has to be treated, and the total environmental benefit is unclear. Themore » transport of used asphalt to landfill or combustion will affect other environmental targets. The present project, based on three case studies of road projects in Sweden, evaluates the consequences of four scenarios for handling the material: reuse, landfill, biological treatment, and incineration. The results show that reuse of the coal tar-containing materials in new road construction is the most favorable alternative in terms of cost, material use, land use, energy consumption, and air emissions.« less

  14. 78 FR 1119 - Hazardous Materials: Transportation of Lithium Batteries

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-01-07

    ... lithium ion cells and batteries with Watt-hours consistent with international standards; --Provisions for... ion batteries in vehicles; --Provisions for shipments of ``small production'' and prototype lithium...: Transportation of Lithium Batteries AGENCY: Pipeline and Hazardous Materials Safety Administration (PHMSA), DOT...

  15. Hazardous Materials Transportation Act. Hearing before the Subcommittee on Transportation, Tourism, and Hazardous Materials of the Committee on Energy and Commerce, House of Representatives, One Hundredth Congress, First Session, July 30, 1987

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Not Available

    About 1.5 billion tons of hazardous materials per year are moved in the US by truck, rail, barge, and air. The Hazardous Materials Transportation Act was the first attempt at a comprehensive Federal scheme for regulation. This hearing looks at the Secretary of Transportation's implementation of the statute for oversight and reauthorization responsibilities. Testimony was heard from 16 witnesses, representatives of Chemical Manufacturers Association, the American Trucking Association, the Association of American Railroads, the Department of Transportation, the Environmental Protection Agency, the Environmental Policy Institute, Office of Technology Assessment, Hazardous Materials Advisory Council, National Tank Truck Carriers, Federal Emergency Managementmore » Agency, National Paint and Coatings Association, and a representative from Ohio.« less

  16. 48 CFR 252.223-7006 - Prohibition on Storage, Treatment, and Disposal of Toxic or Hazardous Materials.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ..., Treatment, and Disposal of Toxic or Hazardous Materials. 252.223-7006 Section 252.223-7006 Federal..., Treatment, and Disposal of Toxic or Hazardous Materials. As prescribed in 223.7106, use the basic clause or..., TREATMENT, AND DISPOSAL OF TOXIC OR HAZARDOUS MATERIALS—BASIC (SEP 2014) (a) Definitions. As used in this...

  17. Experimental Study of Fire Hazards of Thermal-Insulation Material in Diesel Locomotive: Aluminum-Polyurethane

    PubMed Central

    Zhang, Taolin; Zhou, Xiaodong; Yang, Lizhong

    2016-01-01

    This work investigated experimentally and theoretically the fire hazards of thermal-insulation materials used in diesel locomotives under different radiation heat fluxes. Based on the experimental results, the critical heat flux for ignition was determined to be 6.15 kW/m2 and 16.39 kW/m2 for pure polyurethane and aluminum-polyurethane respectively. A theoretical model was established for both to predict the fire behaviors under different circumstances. The fire behavior of the materials was evaluated based on the flashover and the total heat release rate (HRR). The fire hazards levels were classified based on different experimental results. It was found that the fire resistance performance of aluminum-polyurethane is much better than that of pure-polyurethane under various external heat fluxes. The concentration of toxic pyrolysis volatiles generated from aluminum-polyurethane materials is much higher than that of pure polyurethane materials, especially when the heat flux is below 50 kW/m2. The hazard index HI during peak width time was proposed based on the comprehensive impact of time and concentrations. The predicted HI in this model coincides with the existed N-gas and FED models which are generally used to evaluate the fire gas hazard in previous researches. The integrated model named HNF was proposed as well to estimate the fire hazards of materials by interpolation and weighted average calculation. PMID:28773295

  18. Experimental Study of Fire Hazards of Thermal-Insulation Material in Diesel Locomotive: Aluminum-Polyurethane.

    PubMed

    Zhang, Taolin; Zhou, Xiaodong; Yang, Lizhong

    2016-03-05

    This work investigated experimentally and theoretically the fire hazards of thermal-insulation materials used in diesel locomotives under different radiation heat fluxes. Based on the experimental results, the critical heat flux for ignition was determined to be 6.15 kW/m² and 16.39 kW/m² for pure polyurethane and aluminum-polyurethane respectively. A theoretical model was established for both to predict the fire behaviors under different circumstances. The fire behavior of the materials was evaluated based on the flashover and the total heat release rate (HRR). The fire hazards levels were classified based on different experimental results. It was found that the fire resistance performance of aluminum-polyurethane is much better than that of pure-polyurethane under various external heat fluxes. The concentration of toxic pyrolysis volatiles generated from aluminum-polyurethane materials is much higher than that of pure polyurethane materials, especially when the heat flux is below 50 kW/m². The hazard index HI during peak width time was proposed based on the comprehensive impact of time and concentrations. The predicted HI in this model coincides with the existed N-gas and FED models which are generally used to evaluate the fire gas hazard in previous researches. The integrated model named HNF was proposed as well to estimate the fire hazards of materials by interpolation and weighted average calculation.

  19. Ceramics for Molten Materials Containment, Transfer and Handling on the Lunar Surface

    NASA Technical Reports Server (NTRS)

    Standish, Evan; Stefanescu, Doru M.; Curreri, Peter A.

    2009-01-01

    As part of a project on Molten Materials Transfer and Handling on the Lunar Surface, molten materials containment samples of various ceramics were tested to determine their performance in contact with a melt of lunar regolith simulant. The test temperature was 1600 C with contact times ranging from 0 to 12 hours. Regolith simulant was pressed into cylinders with the approximate dimensions of 1.25 dia x 1.25cm height and then melted on ceramic substrates. The regolith-ceramic interface was examined after processing to determine the melt/ceramic interaction. It was found that the molten regolith wetted all oxide ceramics tested extremely well which resulted in chemical reaction between the materials in each case. Alumina substrates were identified which withstood contact at the operating temperature of a molten regolith electrolysis cell (1600 C) for eight hours with little interaction or deformation. This represents an improvement over alumina grades currently in use and will provide a lifetime adequate for electrolysis experiments lasting 24 hours or more. Two types of non-oxide ceramics were also tested. It was found that they interacted to a limited degree with the melt resulting in little corrosion. These ceramics, Sic and BN, were not wetted as well as the oxides by the melt, and so remain possible materials for molten regolith handling. Tests wing longer holding periods and larger volumes of regolith are necessary to determine the ultimate performance of the tested ceramics.

  20. Safety in the Chemical Laboratory: Certifications for Professional Hazardous Materials and Waste Management.

    ERIC Educational Resources Information Center

    Fischer, Kenneth E.

    1988-01-01

    Discusses the need for determining a curriculum to provide qualified hazardous waste personnel. Describes the needed role of colleges and universities and current hazardous materials certification requirements. Lists requirements for 18 professional certifications. (MVL)

  1. Materials Handling and Structures 01.0302 for Agribusiness, Natural Resources, and Environmental Occupations.

    ERIC Educational Resources Information Center

    Finstad, Dennis; And Others

    The document presents unit plans which offer lists of experiences and competencies to be learned in the area of materials handling and structuring for agribusiness, natural resources, and environmental occupations. The units include: (1) farmstead planning and reorganization; (2) site preparation (contour, terraces, waterways; land measurements…

  2. Environmental Projects. Volume 9: Construction of hazardous materials storage facilities

    NASA Technical Reports Server (NTRS)

    1989-01-01

    Activities at the Goldstone Deep Space Communications Complex (GDSCC) are carried out in support of seven parabolic dish antennas. These activities may give rise to environmental hazards. This report is one in a series of reports describing environmental projects at GDSCC. The construction of two hazardous materials and wastes storage facilities and an acid-wash facility is described. An overview of the Goldstone complex is also presented along with a description of the environmental aspects of the GDSCC site.

  3. Identification of recently handled materials by analysis of latent human fingerprints using infrared spectromicroscopy.

    PubMed

    Grant, Ashleigh; Wilkinson, T J; Holman, Derek R; Martin, Michael C

    2005-09-01

    Analysis of fingerprints has predominantly focused on matching the pattern of ridges to a specific person as a form of identification. The present work focuses on identifying extrinsic materials that are left within a person's fingerprint after recent handling of such materials. Specifically, we employed infrared spectromicroscopy to locate and positively identify microscopic particles from a mixture of common materials in the latent human fingerprints of volunteer subjects. We were able to find and correctly identify all test substances based on their unique infrared spectral signatures. Spectral imaging is demonstrated as a method for automating recognition of specific substances in a fingerprint. We also demonstrate the use of attenuated total reflectance (ATR) and synchrotron-based infrared spectromicroscopy for obtaining high-quality spectra from particles that were too thick or too small, respectively, for reflection/absorption measurements. We believe the application of this rapid, nondestructive analytical technique to the forensic study of latent human fingerprints has the potential to add a new layer of information available to investigators. Using fingerprints to not only identify who was present at a crime scene, but also to link who was handling key materials, will be a powerful investigative tool.

  4. Construction of a naturally occurring radioactive material project in the BeAAT hazardous waste facilities.

    PubMed

    Abuahmad, H

    2015-06-01

    This paper does not necessarily reflect the views of the International Commission on Radiological Protection. Naturally occurring radioactive material (NORM) is produced during exploration and production operations of subsidiaries of the Abu Dhabi National Oil Company (ADNOC) in the United Arab Emirates, and accumulates in drilling tubulars, plant equipment, and components. These NORM hazardous wastes need to be managed in such a way that they do not damage human health and the environment. The primary radionuclides of concern in the oil and gas industries are radium-226 and radium-228. These radioisotopes are the decay products of uranium and thorium isotopes that are present in subsurface formations from which hydrocarbons are produced. While uranium and thorium are largely immobile, radium is slightly more soluble and may become mobilised in the fluid phases of the formation (International Association of Oil & Gas Producers, 2008). In order to treat and dispose of NORM waste products safely, ADNOC's subsidiary 'TAKREER' is developing a new facility, on behalf of all ADNOC subsidiaries, within the existing Central Environmental Protection Facilities (BeAAT) in Ruwais city. The NORM plant is envisaged to treat, handle, and dispose of NORM waste in the forms of scale, sludge, and contaminated equipment. The NORM treatment facility will cover activities such as decontamination, volume reduction, NORM handling, and concrete immobilisation of NORM waste into packages for designated landfilling. © The International Society for Prosthetics and Orthotics Reprints and permissions: sagepub.co.uk/journalsPermissions.nav.

  5. 75 FR 34682 - Bulk Solid Hazardous Materials: Harmonization With the International Maritime Solid Bulk Cargoes...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-06-18

    ...] RIN 1625-AB47 Bulk Solid Hazardous Materials: Harmonization With the International Maritime Solid Bulk... on June 17, 2010, entitled ``Bulk Solid Hazardous Materials: Harmonization With the International Maritime Solid Bulk Cargoes (IMSBC) Code.'' This correction provides correct information with regard to the...

  6. Hazard Control Extensions in a COTS Based Data Handling System

    NASA Astrophysics Data System (ADS)

    Vogel, Torsten; Rakers, Sven; Gronowski, Matthias; Schneegans, Joachim

    2011-08-01

    EML is an electromagnetic levitator for containerless processing of conductive samples on the International Space Station. This material sciences experiment is running in the European Drawer Rack (EDR) facility. The objective of this experiment is to gain insight into the parameters of liquid metal samples and their crystallisation processes without the influence of container walls. To this end the samples are electromagnetically positioned in a coil system and then heated up beyond their melting point in an ultraclean environment.The EML programme is currently under development by Astrium Space Transportation in Friedrichshafen and Bremen; jointly funded by ESA and DLR (on behalf of BMWi, contract 50WP0808). EML consists of four main modules listed in Table 1. The paper focuses mainly on the architecture and design of the ECM module and its contribution to a safe operation of the experiment. The ECM is a computer system that integrates the power supply to the EML experiment, control functions and video handling and compression features. Experiment control is performed by either telecommand or the execution of predefined experiment scripts.

  7. Threat Assessment of Hazardous Materials Transportation in Aircraft Cargo Compartments.

    DOT National Transportation Integrated Search

    1999-12-01

    The Volpe National Transportation Systems Center of the U.S. Department of Transportation's (DOT's) Research and Special Programs Administration (RSPA) has conducted a quantitative threat assessment for RSPA's Office of Hazardous Materials Safety (OH...

  8. Terrorism and hazardous material trucking: promoting perceived collective efficacy for terrorism prevention.

    PubMed

    James, Keith

    2008-01-01

    Hazardous-material trucking has recently been identified as an area of high potential risk for terrorism. Some recent theory and case study papers have argued for the importance of collective efficacy to disaster-response, terrorism prevention, and other rare-but-risky events. Therefore, a study based on the collective efficacy literature was done to test an intervention for increasing perceived collective efficacy for terrorism prevention among Canadian hazardous-material truck drivers. Results supported the impact of the intervention in increasing perceived efficacy for terrorism prevention. Implications for theory, research, and application are discussed.

  9. The Element of Surprise: Preparing for the Possibility of Hazardous Materials within Archival Collections

    ERIC Educational Resources Information Center

    Wiener, Judith A.

    2007-01-01

    Unprocessed archival collections can contain unknown and potentially hazardous materials that can be harmful to other collections and staff. Archival literature largely focuses on collection and personnel dangers posed by environmental hazards such as mold and insect infestation but not on pharmaceutical and chemical hazards. In this article, the…

  10. Removal of radioactive and other hazardous material from fluid waste

    DOEpatents

    Tranter, Troy J [Idaho Falls, ID; Knecht, Dieter A [Idaho Falls, ID; Todd, Terry A [Aberdeen, ID; Burchfield, Larry A [W. Richland, WA; Anshits, Alexander G [Krasnoyarsk, RU; Vereshchagina, Tatiana [Krasnoyarsk, RU; Tretyakov, Alexander A [Zheleznogorsk, RU; Aloy, Albert S [St. Petersburg, RU; Sapozhnikova, Natalia V [St. Petersburg, RU

    2006-10-03

    Hollow glass microspheres obtained from fly ash (cenospheres) are impregnated with extractants/ion-exchangers and used to remove hazardous material from fluid waste. In a preferred embodiment the microsphere material is loaded with ammonium molybdophosphonate (AMP) and used to remove radioactive ions, such as cesium-137, from acidic liquid wastes. In another preferred embodiment, the microsphere material is loaded with octyl(phenyl)-N-N-diisobutyl-carbamoylmethylphosphine oxide (CMPO) and used to remove americium and plutonium from acidic liquid wastes.

  11. Mars Sample Handling and Requirements Panel (MSHARP)

    NASA Technical Reports Server (NTRS)

    Carr, Michael H.; McCleese, Daniel J.; Bada, Jeffrey L.; Bogard, Donald D.; Clark, Benton C.; DeVincenzi, Donald; Drake, Michael J.; Nealson, Kenneth H.; Papike, James J.; Race, Margaret S.; hide

    1999-01-01

    In anticipation of the return of samples from Mars toward the end of the first decade of the next century, NASA's Office of Space Sciences chartered a panel to examine how Mars samples should be handled. The panel was to make recommendations in three areas: (1) sample collection and transport back to Earth; (2) certification of the samples as nonhazardous; and (3) sample receiving, curation, and distribution. This report summarizes the findings of that panel. The samples should be treated as hazardous until proven otherwise. They are to be sealed within a canister on Mars, and the canister is not to be opened until within a Biosafety Hazard Level 4 (BSL-4) containment facility here on Earth. This facility must also meet or exceed the cleanliness requirements of the Johnson Space Center (JSC) facility for curation of extraterrestrial materials. A containment facility meeting both these requirements does not yet exist. Hazard assessment and life detection experiments are to be done at the containment facility, while geochemical characterization is being performed on a sterilized subset of the samples released to the science community. When and if the samples are proven harmless, they are to be transferred to a curation facility, such as that at JSC.

  12. The effect of configuration on strength, durability, and handle of Kevlar fabric-based materials

    NASA Technical Reports Server (NTRS)

    Reuter, L. L.; Munson, J. B.

    1977-01-01

    Five Kevlar based laminates and three Kevlar based coated materials were designed, hand made, and tested against comparative conventional Dacron based materials for strength, peel, tear, puncture, creases, and handle. Emphasis was placed on evaluating geometric orientation of constituents, use of elastomeric film in place of high modulus films, and the use of flying thread loom bias reinforcement of Kevlar yarns. Whereas, the performance of the Kevlar laminates was severely degraded by crease effects, significant gains in overall performance factors were shown for the coated Kevlar materials.

  13. Hazardous materials training : DOT and private sector initiatives generally complement each other

    DOT National Transportation Integrated Search

    2000-07-01

    Every day, trucks and trains transport over 770,000 shipments of hazardous materials across the United States. Accidents involving these materials-spills, fires, and explosions-cost the United States over $459 million annually and can have serious co...

  14. Probability analysis of multiple-tank-car release incidents in railway hazardous materials transportation.

    PubMed

    Liu, Xiang; Saat, Mohd Rapik; Barkan, Christopher P L

    2014-07-15

    Railroads play a key role in the transportation of hazardous materials in North America. Rail transport differs from highway transport in several aspects, an important one being that rail transport involves trains in which many railcars carrying hazardous materials travel together. By contrast to truck accidents, it is possible that a train accident may involve multiple hazardous materials cars derailing and releasing contents with consequently greater potential impact on human health, property and the environment. In this paper, a probabilistic model is developed to estimate the probability distribution of the number of tank cars releasing contents in a train derailment. Principal operational characteristics considered include train length, derailment speed, accident cause, position of the first car derailed, number and placement of tank cars in a train and tank car safety design. The effect of train speed, tank car safety design and tank car positions in a train were evaluated regarding the number of cars that release their contents in a derailment. This research provides insights regarding the circumstances affecting multiple-tank-car release incidents and potential strategies to reduce their occurrences. The model can be incorporated into a larger risk management framework to enable better local, regional and national safety management of hazardous materials transportation by rail. Copyright © 2014 Elsevier B.V. All rights reserved.

  15. 14 CFR 420.67 - Storage or handling of liquid propellants.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... 14 Aeronautics and Space 4 2011-01-01 2011-01-01 false Storage or handling of liquid propellants. 420.67 Section 420.67 Aeronautics and Space COMMERCIAL SPACE TRANSPORTATION, FEDERAL AVIATION... Licensee § 420.67 Storage or handling of liquid propellants. (a) For an explosive hazard facility where...

  16. 14 CFR 420.67 - Storage or handling of liquid propellants.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... 14 Aeronautics and Space 4 2010-01-01 2010-01-01 false Storage or handling of liquid propellants. 420.67 Section 420.67 Aeronautics and Space COMMERCIAL SPACE TRANSPORTATION, FEDERAL AVIATION... Licensee § 420.67 Storage or handling of liquid propellants. (a) For an explosive hazard facility where...

  17. 14 CFR 420.67 - Storage or handling of liquid propellants.

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... 14 Aeronautics and Space 4 2012-01-01 2012-01-01 false Storage or handling of liquid propellants. 420.67 Section 420.67 Aeronautics and Space COMMERCIAL SPACE TRANSPORTATION, FEDERAL AVIATION... Licensee § 420.67 Storage or handling of liquid propellants. (a) For an explosive hazard facility where...

  18. Evaluation of Prototype Head Shield for Hazardous Material Tank Car

    DOT National Transportation Integrated Search

    1976-12-01

    The structural integrity of a prototype tank car head shield for hazardous material railroad tank cars was evaluated under conditions of freight car coupling at moderate to high speeds. This is one of the most severe environments encountered in norma...

  19. Removing Hazardous Materials from Buildings: A Training Curriculum

    DTIC Science & Technology

    2016-03-01

    Army Pamphlet DAIM-ODF OACSIM Facility Policy Division DHHS Department of Health and Human Services DoD Department of Defense DoDD Department of...materials have the potential to: – Damage human health and safety – Damage environmental systems through releases to the air, water, or soil • Certain...EPA, or otherwise identified as creating an environmental and/or human health hazard when deteriorated or disturbed, or when entering the waste

  20. Composite Materials for Hazard Mitigation of Reactive Metal Hydrides.

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Pratt, Joseph William; Cordaro, Joseph Gabriel; Sartor, George B.

    2012-02-01

    In an attempt to mitigate the hazards associated with storing large quantities of reactive metal hydrides, polymer composite materials were synthesized and tested under simulated usage and accident conditions. The composites were made by polymerizing vinyl monomers using free-radical polymerization chemistry, in the presence of the metal hydride. Composites with vinyl-containing siloxane oligomers were also polymerized with and without added styrene and divinyl benzene. Hydrogen capacity measurements revealed that addition of the polymer to the metal hydride reduced the inherent hydrogen storage capacity of the material. The composites were found to be initially effective at reducing the amount of heatmore » released during oxidation. However, upon cycling the composites, the mitigating behavior was lost. While the polymer composites we investigated have mitigating potential and are physically robust, they undergo a chemical change upon cycling that makes them subsequently ineffective at mitigating heat release upon oxidation of the metal hydride. Acknowledgements The authors would like to thank the following people who participated in this project: Ned Stetson (U.S. Department of Energy) for sponsorship and support of the project. Ken Stewart (Sandia) for building the flow-through calorimeter and cycling test stations. Isidro Ruvalcaba, Jr. (Sandia) for qualitative experiments on the interaction of sodium alanate with water. Terry Johnson (Sandia) for sharing his expertise and knowledge of metal hydrides, and sodium alanate in particular. Marcina Moreno (Sandia) for programmatic assistance. John Khalil (United Technologies Research Corp) for insight into the hazards of reactive metal hydrides and real-world accident scenario experiments. Summary In an attempt to mitigate and/or manage hazards associated with storing bulk quantities of reactive metal hydrides, polymer composite materials (a mixture of a mitigating polymer and a metal hydride) were synthesized and

  1. Chapter C. The Loma Prieta, California, Earthquake of October 17, 1989 - Fire, Police, Transportation and Hazardous Materials

    USGS Publications Warehouse

    Van Anne, Craig; Scawthorn, Charles R.

    1994-01-01

    The papers in this chapter discuss some of the failures and successes that resulted from the societal response by a multitude of agencies to the Loma Prieta earthquake. Some of the lessons learned were old ones relearned. Other lessons were obvious ones which had gone unnoticed. Still, knowledge gained from past earthquakes spawned planning and mitigation efforts which proved to be successful in limiting the aftermath effects of the Loma Prieta event. At least four major areas of response are presented in this chapter: the Oakland Police Department response to the challenge of controlled access to the Cypress freeway collapse area without inhibiting relief and recovery efforts; search and rescue of the freeway collapse and the monumental crisis management problem that accompanied it; the short- and long-term impact on transbay transportation systems to move a large work force from home to business; and the handling of hazardous material releases throughout the Bay Area.

  2. Method and apparatus for the management of hazardous waste material

    DOEpatents

    Murray, H. Jr.

    1995-02-21

    A container for storing hazardous waste material, particularly radioactive waste material, consists of a cylindrical body and lid of precipitation hardened C17510 beryllium-copper alloy, and a channel formed between the mated lid and body for receiving weld filler material of C17200 copper-beryllium alloy. The weld filler material has a precipitation hardening temperature lower than the aging kinetic temperature of the material of the body and lid, whereby the weld filler material is post weld heat treated for obtaining a weld having substantially the same physical, thermal, and electrical characteristics as the material of the body and lid. A mechanical seal assembly is located between an interior shoulder of the body and the bottom of the lid for providing a vacuum seal. 40 figs.

  3. Method and apparatus for the management of hazardous waste material

    DOEpatents

    Murray, Jr., Holt

    1995-01-01

    A container for storing hazardous waste material, particularly radioactive waste material, consists of a cylindrical body and lid of precipitation hardened C17510 beryllium-copper alloy, and a channel formed between the mated lid and body for receiving weld filler material of C17200 copper-beryllium alloy. The weld filler material has a precipitation hardening temperature lower than the aging kinetic temperature of the material of the body and lid, whereby the weld filler material is post weld heat treated for obtaining a weld having substantially the same physical, thermal, and electrical characteristics as the material of the body and lid. A mechanical seal assembly is located between an interior shoulder of the body and the bottom of the lid for providing a vacuum seal.

  4. 49 CFR Appendix B to Part 209 - Federal Railroad Administration Guidelines for Initial Hazardous Materials Assessments

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... hazardous materials are only safe for transportation when they are securely sealed in a proper package...) that a container or package for transportation of a hazardous material is safe, certified, or in.... —Listing an unauthorized, incorrect, non-working, or unmonitored (24 hrs. a day) emergency response...

  5. Hazardous Materials Management and Emergency Response training Center needs assessment

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    McGinnis, K.A.; Bolton, P.A.; Robinson, R.K.

    1993-09-01

    For the Hanford Site to provide high-quality training using simulated job-site situations to prepare the 4,000 Site workers and 500 emergency responders for known and unknown hazards a Hazardous Materials Management and Emergency Response Training Center is needed. The center will focus on providing classroom lecture as well as hands-on, realistic training. The establishment of the center will create a partnership among the US Department of Energy; its contractors; labor; local, state, and tribal governments; and Xavier and Tulane Universities of Louisiana. This report presents the background, history, need, benefits, and associated costs of the proposed center.

  6. Options and processes for spent catalyst handling and utilization.

    PubMed

    Marafi, M; Stanislaus, A

    2003-07-18

    The quantity of spent hydroprocessing catalysts discarded as solid wastes in the petroleum refining industries has increased remarkably in recent years due to a rapid growth in the hydroprocessing capacity to meet the rising demand for low-sulfur fuels. Due to their toxic nature, spent hydroprocessing catalysts have been branded as hazardous wastes, and the refiners are experiencing pressure from environmental authorities to handle them safely. Several alternative methods such as reclamation of metals, rejuvenation and reuse, disposal in landfills and preparation of useful materials using spent catalysts as raw materials are available to deal with the spent catalyst problem. The technical feasibility as well as the environmental and economic aspects of these options are reviewed. In addition, details of two bench-scale processes, one for rejuvenation of spent hydroprocessing catalysts, and the other for producing non-leachable synthetic aggregate materials that were developed in this laboratory, are presented in this paper.

  7. 49 CFR 171.15 - Immediate notice of certain hazardous materials incidents.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... (7) Type of incident and nature of hazardous material involvement and whether a continuing danger to... battery or battery-powered device. (c) Written report. Each person making a report under this section must...

  8. 49 CFR 171.15 - Immediate notice of certain hazardous materials incidents.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... (7) Type of incident and nature of hazardous material involvement and whether a continuing danger to... battery or battery-powered device. (c) Written report. Each person making a report under this section must...

  9. 49 CFR 171.15 - Immediate notice of certain hazardous materials incidents.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... such information is available; and (7) Type of incident and nature of hazardous material involvement...) occurs as a direct result of a battery or battery-powered device. (c) Written report. Each person making...

  10. 49 CFR 171.15 - Immediate notice of certain hazardous materials incidents.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... (7) Type of incident and nature of hazardous material involvement and whether a continuing danger to... battery or battery-powered device. (c) Written report. Each person making a report under this section must...

  11. Handling e-waste in developed and developing countries: initiatives, practices, and consequences.

    PubMed

    Sthiannopkao, Suthipong; Wong, Ming Hung

    2013-10-01

    Discarded electronic goods contain a range of toxic materials requiring special handling. Developed countries have conventions, directives, and laws to regulate their disposal, most based on extended producer responsibility. Manufacturers take back items collected by retailers and local governments for safe destruction or recovery of materials. Compliance, however, is difficult to assure, and frequently runs against economic incentives. The expense of proper disposal leads to the shipment of large amounts of e-waste to China, India, Pakistan, Nigeria, and other developing countries. Shipment is often through middlemen, and under tariff classifications that make quantities difficult to assess. There, despite the intents of national regulations and hazardous waste laws, most e-waste is treated as general refuse, or crudely processed, often by burning or acid baths, with recovery of only a few materials of value. As dioxins, furans, and heavy metals are released, harm to the environment, workers, and area residents is inevitable. The faster growth of e-waste generated in the developing than in the developed world presages continued expansion of a pervasive and inexpensive informal processing sector, efficient in its own way, but inherently hazard-ridden. Copyright © 2012 Elsevier B.V. All rights reserved.

  12. Why is weapons grade plutonium more hazardous to work with than highly enriched uranium?

    DOE PAGES

    Cournoyer, Michael E.; Costigan, Stephen A.; Schake, Bradley S.

    2015-08-01

    Highly Enriched Uranium and Weapons grade plutonium have assumed positions of dominant importance among the actinide elements because of their successful uses as explosive ingredients in nuclear weapons and the place they hold as key materials in the development of industrial use of nuclear power. While most chemists are familiar with the practical interest concerning HEU and WG Pu, fewer know the subtleties among their hazards. In this study, a primer is provided regarding the hazards associated with working with HEU and WG Pu metals and oxides. The care that must be taken to safely handle these materials is emphasizedmore » and the extent of the hazards is described. The controls needed to work with HEU and WG Pu metals and oxides are differentiated. Given the choice, one would rather work with HEU metal and oxides than WG Pu metal and oxides.« less

  13. Why is weapons grade plutonium more hazardous to work with than highly enriched uranium?

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Cournoyer, Michael E.; Costigan, Stephen A.; Schake, Bradley S.

    Highly Enriched Uranium and Weapons grade plutonium have assumed positions of dominant importance among the actinide elements because of their successful uses as explosive ingredients in nuclear weapons and the place they hold as key materials in the development of industrial use of nuclear power. While most chemists are familiar with the practical interest concerning HEU and WG Pu, fewer know the subtleties among their hazards. In this study, a primer is provided regarding the hazards associated with working with HEU and WG Pu metals and oxides. The care that must be taken to safely handle these materials is emphasizedmore » and the extent of the hazards is described. The controls needed to work with HEU and WG Pu metals and oxides are differentiated. Given the choice, one would rather work with HEU metal and oxides than WG Pu metal and oxides.« less

  14. Chlorine Gas: An Evolving Hazardous Material Threat and Unconventional Weapon

    PubMed Central

    Jones, Robert; Wills, Brandon; Kang, Christopher

    2010-01-01

    Chlorine gas represents a hazardous material threat from industrial accidents and as a terrorist weapon. This review will summarize recent events involving chlorine disasters and its use by terrorists, discuss pre-hospital considerations and suggest strategies for the initial management for acute chlorine exposure events. PMID:20823965

  15. 49 CFR 173.37 - Hazardous Materials in Flexible Bulk Containers.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... an external visual inspection by the person filling the Flexible Bulk Container to ensure: (1) The... transported in cargo transport units when offered for transportation by vessel. (7) Flexible Bulk Containers... 49 Transportation 2 2013-10-01 2013-10-01 false Hazardous Materials in Flexible Bulk Containers...

  16. 49 CFR 173.37 - Hazardous Materials in Flexible Bulk Containers.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... an external visual inspection by the person filling the Flexible Bulk Container to ensure: (1) The... transported in cargo transport units when offered for transportation by vessel. (7) Flexible Bulk Containers... 49 Transportation 2 2014-10-01 2014-10-01 false Hazardous Materials in Flexible Bulk Containers...

  17. Fire fighting aboard ships. Volume 1: Hazard analysis and behavior of combustible materials

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Stavitskiy, M.G.; Kortunov, M.F.; Sidoryuk, V.M.

    1983-01-01

    The volume zeros in on fire hazards on ships afloat or under construction/repair. It examines fire hazards peculiar to ships carrying particular cargoes, such as dry-cargo ships, tankers, and factory and fishing vessels. This volume examines specific features of fire-fighting equipment, along with the thermal behavior of materials used in shipbuilding.

  18. Oncology pharmacy units: a safety policy for handling hazardous drugs and related waste in low- and middle-income African countries-Angolan experience.

    PubMed

    da Conceição, Ana Vaz; Bernardo, Dora; Lopes, Lygia Vieira; Miguel, Fernando; Bessa, Fernanda; Monteiro, Fernando; Santos, Cristina; Oliveira, Blasques; Santos, Lúcio Lara

    2015-01-01

    In African countries, higher rates of late-stage cancers at the time of first diagnosis are a reality. In this context, hazardous drugs (HDs), such as chemotherapy, play an important role and have immense benefits for patients' treatment. HDs should be handled under specific conditions. At least a class 5 environment primary engineering control (PEC), physically located in an appropriate buffer area, is mandatory for sterile HDs compounding, as well as administrative control, personal protective equipment, work practices and other engineering and environmental controls, in order to protect the environment, patient, and worker. The aim of this study is to describe the Angolan experience regarding the development of oncology pharmacy units and discuss international evidence-based guidelines on handling HDs and related waste. Measures to incorporate modern and economical solutions to upgrade or build adequate and safe facilities and staff training, in order to comply with international guidelines in this area, are crucial tasks for African countries of low and middle income.

  19. Event probabilities and impact zones for hazardous materials accidents on railroads

    DOT National Transportation Integrated Search

    1983-11-01

    Procedures are presented for evaluating the probability and impacts of hazardous material accidents in rail transportation. The significance of track class for accident frequencies and of train speed for accident severity is quantified. Special atten...

  20. The role of hazardous material placards in transportation safety and security

    DOT National Transportation Integrated Search

    2004-01-15

    Following the events of September 11, 2001, the U.S. Department of Transportation (DOT) has taken steps to reduce vulnerabilities of hazardous materials in transportation through security enhancing initiatives directed at reducing their potential use...

  1. Some relevant parameters for assessing fire hazards of combustible mine materials using laboratory scale experiments

    PubMed Central

    Litton, Charles D.; Perera, Inoka E.; Harteis, Samuel P.; Teacoach, Kara A.; DeRosa, Maria I.; Thomas, Richard A.; Smith, Alex C.

    2018-01-01

    When combustible materials ignite and burn, the potential for fire growth and flame spread represents an obvious hazard, but during these processes of ignition and flaming, other life hazards present themselves and should be included to ensure an effective overall analysis of the relevant fire hazards. In particular, the gases and smoke produced both during the smoldering stages of fires leading to ignition and during the advanced flaming stages of a developing fire serve to contaminate the surrounding atmosphere, potentially producing elevated levels of toxicity and high levels of smoke obscuration that render the environment untenable. In underground mines, these hazards may be exacerbated by the existing forced ventilation that can carry the gases and smoke to locations far-removed from the fire location. Clearly, materials that require high temperatures (above 1400 K) and that exhibit low mass loss during thermal decomposition, or that require high heat fluxes or heat transfer rates to ignite represent less of a hazard than materials that decompose at low temperatures or ignite at low levels of heat flux. In order to define and quantify some possible parameters that can be used to assess these hazards, small-scale laboratory experiments were conducted in a number of configurations to measure: 1) the toxic gases and smoke produced both during non-flaming and flaming combustion; 2) mass loss rates as a function of temperature to determine ease of thermal decomposition; and 3) mass loss rates and times to ignition as a function of incident heat flux. This paper describes the experiments that were conducted, their results, and the development of a set of parameters that could possibly be used to assess the overall fire hazard of combustible materials using small scale laboratory experiments. PMID:29599565

  2. Some relevant parameters for assessing fire hazards of combustible mine materials using laboratory scale experiments.

    PubMed

    Litton, Charles D; Perera, Inoka E; Harteis, Samuel P; Teacoach, Kara A; DeRosa, Maria I; Thomas, Richard A; Smith, Alex C

    2018-04-15

    When combustible materials ignite and burn, the potential for fire growth and flame spread represents an obvious hazard, but during these processes of ignition and flaming, other life hazards present themselves and should be included to ensure an effective overall analysis of the relevant fire hazards. In particular, the gases and smoke produced both during the smoldering stages of fires leading to ignition and during the advanced flaming stages of a developing fire serve to contaminate the surrounding atmosphere, potentially producing elevated levels of toxicity and high levels of smoke obscuration that render the environment untenable. In underground mines, these hazards may be exacerbated by the existing forced ventilation that can carry the gases and smoke to locations far-removed from the fire location. Clearly, materials that require high temperatures (above 1400 K) and that exhibit low mass loss during thermal decomposition, or that require high heat fluxes or heat transfer rates to ignite represent less of a hazard than materials that decompose at low temperatures or ignite at low levels of heat flux. In order to define and quantify some possible parameters that can be used to assess these hazards, small-scale laboratory experiments were conducted in a number of configurations to measure: 1) the toxic gases and smoke produced both during non-flaming and flaming combustion; 2) mass loss rates as a function of temperature to determine ease of thermal decomposition; and 3) mass loss rates and times to ignition as a function of incident heat flux. This paper describes the experiments that were conducted, their results, and the development of a set of parameters that could possibly be used to assess the overall fire hazard of combustible materials using small scale laboratory experiments.

  3. Major Railroad Accidents Involving Hazardous Materials Release, Composite Summaries 1969-1978

    DOT National Transportation Integrated Search

    1980-07-31

    This report presents composite summaries describing 75 major railroad accidents in which hazardous materials were released. The selected accidents occurred during the years 1969-1978. The data contained in the individual summaries were derived from v...

  4. U.S. Department of Energy-Funded Performance Validation of Fuel Cell Material Handling Equipment (Presentation)

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kurtz, J.; Sprik, S.; Ramsden, T.

    2013-11-01

    This webinar presentation to the UK Hydrogen and Fuel Cell Association summarizes how the U.S. Department of Energy is enabling early fuel cell markets; describes objectives of the National Fuel Cell Technology Evaluation Center; and presents performance status of fuel cell material handling equipment.

  5. Exploration of GPS to enhance the safe transport of hazardous materials

    DOT National Transportation Integrated Search

    1997-12-01

    The report (1) documents a set of requirements for the performance of location systems that utilize the Global Positioning System (GPS), (2) identifies potential uses of GPS in hazardous materials transport, (3) develops service descriptions for the ...

  6. Analysis of potential hazards associated with 241Am loaded resins from nitrate media

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Schulte, Louis D.; Rubin, Jim; Fife, Keith William

    2016-02-19

    LANL has been contacted to provide possible assistance in safe disposition of a number of 241Am-bearing materials associated with local industrial operations. Among the materials are ion exchange resins which have been in contact with 241Am and nitric acid, and which might have potential for exothermic reaction. The purpose of this paper is to analyze and define the resin forms and quantities to the extent possible from available data to allow better bounding of the potential reactivity hazard of the resin materials. An additional purpose is to recommend handling procedures to minimize the probability of an uncontrolled exothermic reaction.

  7. A procedure for matching truck crash records with hazardous material release incidents and a comparative analysis of the determinants of truck crashes with hazardous material releases.

    DOT National Transportation Integrated Search

    2012-06-01

    In the current study, we quantified the number and location of hazardous release crashes and identified the events leading : to crashes, as well as the type of material released. This study, for the first time, combined two federal databases: the U.S...

  8. 78 FR 23503 - Hazardous Materials; Temporary Reduction of Registration Fees

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-04-19

    ... the annual registration fee to account for any unexpended balance in the Hazardous Materials Emergency Preparedness (HMEP) Fund. Due to an unexpended balance that has accumulated in the Fund, PHMSA is lowering the... and thus draw down the unexpended balance as soon as possible, PHMSA is issuing this final rule...

  9. Establishing powder-handling workflow practices and standard operating procedures: compounding pharmacy and safety.

    PubMed

    Prince, Bryan; Lundevall, Jeremy

    2014-01-01

    This is an ongoing discussion and analysis of powder-handling safety in the compounding pharmacy laboratory that started in the November/December 2013 issue of the International Journal of Pharmaceutical Compounding. In the previous technical article, we established that most chemical powders handled during compounding procedures have an established occupational exposure limits and that powders are micronized during manipulation. All micronized powders handled on an open bench create health hazards to the technicians and create a potential for cross-contamination to the lab environment. Proper identification of the chemical hazard and established standard operating procedures in direct correlation to Good Lab Practices when working inside a powder hood will positively improve the compounding pharmacy's work environment.

  10. 49 CFR 179.500-15 - Handling of tanks failing in tests.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... 49 Transportation 2 2010-10-01 2010-10-01 false Handling of tanks failing in tests. 179.500-15 Section 179.500-15 Transportation Other Regulations Relating to Transportation PIPELINE AND HAZARDOUS...-113 and 107A) § 179.500-15 Handling of tanks failing in tests. (a) Tanks rejected for failure in any...

  11. Hazardous Materials Emergency Response Training: The Colorado Training Institute. Innovations.

    ERIC Educational Resources Information Center

    Cole, Leslie

    The Colorado Training Institute (CTI), established in 1980, is a non-profit, instructional program devoted to promoting hazardous materials safety through education. It has trained over 3,000 emergency response personnel and industry officials and is a unique example of the private and public sectors working together to protect the public from…

  12. Integrating Hazardous Materials Characterization and Assessment Tools to Guide Pollution Prevention in Electronic Products and Manufacturing

    NASA Astrophysics Data System (ADS)

    Lam, Carl

    Due to technology proliferation, the environmental burden attributed to the production, use, and disposal of hazardous materials in electronics have become a worldwide concern. The major theme of this dissertation is to develop and apply hazardous materials assessment tools to systematically guide pollution prevention opportunities in the context of electronic product design, manufacturing and end-of-life waste management. To this extent, a comprehensive review is first provided on describing hazard traits and current assessment methods to evaluate hazardous materials. As a case study at the manufacturing level, life cycle impact assessment (LCIA)-based and risk-based screening methods are used to quantify chemical and geographic environmental impacts in the U.S. printed wiring board (PWB) industry. Results from this industrial assessment clarify priority waste streams and States to most effectively mitigate impact. With further knowledge of PWB manufacturing processes, select alternative chemical processes (e.g., spent copper etchant recovery) and material options (e.g., lead-free etch resist) are discussed. In addition, an investigation on technology transition effects for computers and televisions in the U.S. market is performed by linking dynamic materials flow and environmental assessment models. The analysis forecasts quantities of waste units generated and maps shifts in environmental impact potentials associated with metal composition changes due to product substitutions. This insight is important to understand the timing and waste quantities expected and the emerging toxic elements needed to be addressed as a consequence of technology transition. At the product level, electronic utility meter devices are evaluated to eliminate hazardous materials within product components. Development and application of a component Toxic Potential Indicator (TPI) assessment methodology highlights priority components requiring material alternatives. Alternative

  13. Installation Restoration General Environmental Technology Development. Task 6. Materials Handling of Explosive Contaminated Soil and Sediment.

    DTIC Science & Technology

    1985-06-01

    of chemical analysis and sensitivity testing on material samples . At this 4 time, these samples must be packaged and...preparation at a rate of three samples per hour. One analyst doing both sample preparation and the HPLC analysis can run 16 samples in an 8-hour day. II... study , sensitivity testing was reviewed to enable recommendations for complete analysis of contaminated soils. Materials handling techniques,

  14. Road screening and distribution route multi-objective robust optimization for hazardous materials based on neural network and genetic algorithm.

    PubMed

    Ma, Changxi; Hao, Wei; Pan, Fuquan; Xiang, Wang

    2018-01-01

    Route optimization of hazardous materials transportation is one of the basic steps in ensuring the safety of hazardous materials transportation. The optimization scheme may be a security risk if road screening is not completed before the distribution route is optimized. For road screening issues of hazardous materials transportation, a road screening algorithm of hazardous materials transportation is built based on genetic algorithm and Levenberg-Marquardt neural network (GA-LM-NN) by analyzing 15 attributes data of each road network section. A multi-objective robust optimization model with adjustable robustness is constructed for the hazardous materials transportation problem of single distribution center to minimize transportation risk and time. A multi-objective genetic algorithm is designed to solve the problem according to the characteristics of the model. The algorithm uses an improved strategy to complete the selection operation, applies partial matching cross shift and single ortho swap methods to complete the crossover and mutation operation, and employs an exclusive method to construct Pareto optimal solutions. Studies show that the sets of hazardous materials transportation road can be found quickly through the proposed road screening algorithm based on GA-LM-NN, whereas the distribution route Pareto solutions with different levels of robustness can be found rapidly through the proposed multi-objective robust optimization model and algorithm.

  15. 40 CFR 241.3 - Standards and procedures for identification of non-hazardous secondary materials that are solid...

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... identification of non-hazardous secondary materials that are solid wastes when used as fuels or ingredients in...) SOLID WASTES SOLID WASTES USED AS FUELS OR INGREDIENTS IN COMBUSTION UNITS Identification of Non-Hazardous Secondary Materials That Are Solid Wastes When Used as Fuels or Ingredients in Combustion Units...

  16. 49 CFR 175.25 - Notification at air passenger facilities of hazardous materials restrictions.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... 49 Transportation 2 2010-10-01 2010-10-01 false Notification at air passenger facilities of... MATERIALS REGULATIONS CARRIAGE BY AIRCRAFT General Information and Regulations § 175.25 Notification at air passenger facilities of hazardous materials restrictions. Each person who engages in for-hire air...

  17. Bi-Objective Modelling for Hazardous Materials Road–Rail Multimodal Routing Problem with Railway Schedule-Based Space–Time Constraints

    PubMed Central

    Sun, Yan; Lang, Maoxiang; Wang, Danzhu

    2016-01-01

    The transportation of hazardous materials is always accompanied by considerable risk that will impact public and environment security. As an efficient and reliable transportation organization, a multimodal service should participate in the transportation of hazardous materials. In this study, we focus on transporting hazardous materials through the multimodal service network and explore the hazardous materials multimodal routing problem from the operational level of network planning. To formulate this problem more practicably, minimizing the total generalized costs of transporting the hazardous materials and the social risk along the planned routes are set as the optimization objectives. Meanwhile, the following formulation characteristics will be comprehensively modelled: (1) specific customer demands; (2) multiple hazardous material flows; (3) capacitated schedule-based rail service and uncapacitated time-flexible road service; and (4) environmental risk constraint. A bi-objective mixed integer nonlinear programming model is first built to formulate the routing problem that combines the formulation characteristics above. Then linear reformations are developed to linearize and improve the initial model so that it can be effectively solved by exact solution algorithms on standard mathematical programming software. By utilizing the normalized weighted sum method, we can generate the Pareto solutions to the bi-objective optimization problem for a specific case. Finally, a large-scale empirical case study from the Beijing–Tianjin–Hebei Region in China is presented to demonstrate the feasibility of the proposed methods in dealing with the practical problem. Various scenarios are also discussed in the case study. PMID:27483294

  18. Safe procedure development to manage hazardous drugs in the workplace.

    PubMed

    Gaspar Carreño, Marisa; Achau Muñoz, Rubén; Torrico Martín, Fátima; Agún Gonzalez, Juan José; Sanchez Santos, Jose Cristobal; Cercos Lletí, Ana Cristina; Ramos Orozco, Pedro

    2017-03-01

    To develop a safety working procedure for the employees in the Intermutual Hospital de Levante (HIL) in those areas of activity that deal with the handling of hazardous drugs (MP). The procedure was developed in six phases: 1) hazard definition; 2) definition and identification of processes and development of general correct work practices about hazardous drugs' selection and special handling; 3) detection, selection and set of specific recommendations to handle with hazardous drugs during the processes of preparation and administration included in the hospital GFT; 4) categorization of risk during the preparation/administration and development of an identification system; 5) information and training of professionals; 6) implementation of the identification measures and prevention guidelines. Six processes were detected handling HD. During those processes, thirty HD were identified included in the hospital GFT and a safer alternative was found for 6 of them. The HD were classified into 4 risk categories based on those measures to be taken during the preparation and administration of each of them. The development and implementation of specific safety-work processes dealing with medication handling, allows hospital managers to accomplish effectively with their legal obligations about the area of prevention and provides healthcare professional staff with the adequate techniques and safety equipment to avoid possible dangers and risks of some drugs. Copyright AULA MEDICA EDICIONES 2014. Published by AULA MEDICA. All rights reserved.

  19. 49 CFR 172.312 - Liquid hazardous materials in non-bulk packagings.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... offered or intended for transportation by aircraft, packages containing flammable liquids in inner... offered or intended for transportation by aircraft, packages containing flammable liquids in inner... 49 Transportation 2 2011-10-01 2011-10-01 false Liquid hazardous materials in non-bulk packagings...

  20. 49 CFR 172.312 - Liquid hazardous materials in non-bulk packagings.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... offered or intended for transportation by aircraft, packages containing flammable liquids in inner... offered or intended for transportation by aircraft, packages containing flammable liquids in inner... 49 Transportation 2 2012-10-01 2012-10-01 false Liquid hazardous materials in non-bulk packagings...

  1. 49 CFR 172.312 - Liquid hazardous materials in non-bulk packagings.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... offered or intended for transportation by aircraft, packages containing flammable liquids in inner... offered or intended for transportation by aircraft, packages containing flammable liquids in inner... 49 Transportation 2 2010-10-01 2010-10-01 false Liquid hazardous materials in non-bulk packagings...

  2. Assessment of natural radioactivity and radiological hazards in building materials used in Yan'an, China.

    PubMed

    Lu, Xinwei; Li, Nan; Yang, Guang; Zhao, Caifeng

    2013-03-01

    The concentration of natural radionuclides in commonly used building materials collected from Yan'an, China, was determined using gamma ray spectroscopy with a NaI(Tl) detector. The activity concentration of ²²⁶Ra, ²³²Th, and ⁴⁰K in the studied building materials ranges from 9.4-73.1, 11.5-86.9, and 258.9-1,055.1 Bq kg⁻¹, respectively. The concentrations for these natural radionuclides were compared with the reported data of other countries and the world mean values for soil. The radium equivalent activity (Raeq), external hazard index (Hex), internal hazard index (Hin), indoor air absorbed dose rate, and annual effective dose rate due to natural radionuclides in samples were estimated to assess radiological hazards for people living in dwellings made of the studied building materials. The calculated Raeq values of all building materials (75.7-222.1 Bq kg⁻¹) are lower than the limit of 370 Bq kg⁻¹. The values of Hex and Hin are less than unity. The mean values of indoor air absorbed dose rates of all building materials (101.0 ± 14.1-177.0 ± 6.8 nGy h⁻¹) are higher than the world population-weighted average of 84 nGy h⁻¹, while the mean values of annual effective dose range from 0.50 ± 0.07-0.87 ± 0.03 mSv y⁻¹, which are lower than the recommended limit of 1 mSv y⁻¹. It is found that these materials may be used safely as construction materials and do not pose significant radiation hazards to inhabitants.

  3. A Mobile Robot for Remote Response to Incidents Involving Hazardous Materials

    NASA Technical Reports Server (NTRS)

    Welch, Richard V.

    1994-01-01

    This paper will describe a teleoperated mobile robot system being developed at JPL for use by the JPL Fire Department/HAZMAT Team. The project, which began in October 1990, is focused on prototyping a robotic vehicle which can be quickly deployed and easily operated by HAZMAT Team personnel allowing remote entry and exploration of a hazardous material incident site. The close involvement of JPL Fire Department personnel has been critical in establishing system requirements as well as evaluating the system. The current robot, called HAZBOT III, has been especially designed for operation in environments that may contain combustible gases. Testing of the system with the Fire Department has shown that teleoperated robots can successfully gain access to incident sites allowing hazardous material spills to be remotely located and identified. Work is continuing to enable more complex missions through enhancement of the operator interface and by allowing tetherless operation.

  4. 78 FR 16044 - Hazardous Materials Packaging-Composite Cylinder Standards; Public Meeting

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-03-13

    .... PHMSA-2013-0017; Notice No. 13-02] Hazardous Materials Packaging--Composite Cylinder Standards; Public..., marking, sale and use of non-DOT specification composite cylinders. The non-DOT specification cylinders... Organization (ISO) standards for composite cylinders ISO 11119 Parts - 1, -2, -3 incorporated by reference into...

  5. Hazardous materials responses in a mid-sized metropolitan area.

    PubMed

    Walter, Frank G; Bates, Gerry; Criss, Elizabeth A; Bey, Tareg; Spaite, Daniel W; Valenzuela, Terence

    2003-01-01

    To determine the chemicals involved in fire department hazardous materials (hazmat) responses and analyze the concomitant emergency medical services' patient care needs. The setting was a mid-sized metropolitan area in the southwestern United States with a population base of 400,000 and an incorporated area of 165 square miles. The authors conducted a retrospective evaluation of all fire department hazmat reports, with associated emergency medical services patient encounter forms, and in-patient hospital records from January 1, 1992, through December 31, 1994. The fire department hazardous materials control team responded to 468 hazmat incidents, involving 62 chemicals. The majority of incidents occurred on city streets, with a mean incident duration of 46 minutes. More than 70% of the responses involved flammable gases or liquids. A total of 32 incidents generated 85 patients, 53% of whom required transport for further evaluation and care. Most patients were exposed to airborne toxicants. Only two patients required hospital admission for carbon monoxide poisoning. Most hazmat incidents result in few exposed patients who require emergency medical services care. Most patients were exposed to airborne toxicants and very few required hospitalization. Routine data analysis such as this provides emergency response personnel with the opportunity to evaluate current emergency plans and identify areas where additional training may be necessary.

  6. 49 CFR 173.133 - Assignment of packing group and hazard zones for Division 6.1 materials.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... atmospheric pressure. Note 2: A liquid in Division 6.1 meeting criteria for Packing Group I, Hazard Zones A or... 49 Transportation 2 2012-10-01 2012-10-01 false Assignment of packing group and hazard zones for... Group Assignments and Exceptions for Hazardous Materials Other Than Class 1 and Class 7 § 173.133...

  7. Toxic hazards in aerial application.

    DOT National Transportation Integrated Search

    1962-04-01

    An analysis of the hazards accompanying the aerial application of toxic pest-control chemicals are presented. The nature of teh chemicals, teh symptoms of toxicity, recommended treatment, and suggestions for safe-handling, are discussed

  8. 49 CFR 173.133 - Assignment of packing group and hazard zones for Division 6.1 materials.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... pressure. Note 2: A liquid in Division 6.1 meeting criteria for Packing Group I, Hazard Zones A or B stated... 49 Transportation 2 2014-10-01 2014-10-01 false Assignment of packing group and hazard zones for... Group Assignments and Exceptions for Hazardous Materials Other Than Class 1 and Class 7 § 173.133...

  9. 49 CFR 173.133 - Assignment of packing group and hazard zones for Division 6.1 materials.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... pressure. Note 2: A liquid in Division 6.1 meeting criteria for Packing Group I, Hazard Zones A or B stated... 49 Transportation 2 2013-10-01 2013-10-01 false Assignment of packing group and hazard zones for... Group Assignments and Exceptions for Hazardous Materials Other Than Class 1 and Class 7 § 173.133...

  10. 49 CFR 173.33 - Hazardous materials in cargo tank motor vehicles.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... SHIPPERS-GENERAL REQUIREMENTS FOR SHIPMENTS AND PACKAGINGS Preparation of Hazardous Materials for... excess of ambient atmospheric pressure may not be used to load or unload any lading which may create an... tank motor vehicle having a MAWP of 25 psig or greater. (6) Substitute packagings. Unless otherwise...

  11. An FTIR point sensor for identifying chemical WMD and hazardous materials

    NASA Astrophysics Data System (ADS)

    Norman, Mark L.; Gagnon, Aaron M.; Reffner, John A.; Schiering, David W.; Allen, Jeffrey D.

    2004-03-01

    A new point sensor for identifying chemical weapons of mass destruction and other hazardous materials based on Fourier transform infrared (FT-IR) spectroscopy is presented. The sensor is a portable, fully functional FT-IR system that features a miniaturized Michelson interferometer, an integrated diamond attenuated total reflection (ATR) sample interface, and an embedded on-board computer. Samples are identified by an automated search algorithm that compares their infrared spectra to digitized databases that include reference spectra of nerve and blister agents, toxic industrial chemicals, and other hazardous materials. The hardware and software are designed for use by technicians with no background in infrared spectroscopy. The unit, which is fully self-contained, can be hand-carried and used in a hot zone by personnel in Level A protective gear, and subsequently decontaminated by spraying or immersion. Wireless control by a remote computer is also possible. Details of the system design and performance, including results of field validation tests, are discussed.

  12. Hazardous Materials Management and Emergency Response Training Center at Hanford

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ollero, J.; Muth, G.; Bergland, R.

    1994-12-31

    The Hanford Site will provide high-fidelity training using simulated job-site situations to prepare workers for known and unknown hazards. Hanford is developing the Hazardous Materials Management and Emergency Response (HAMMER) Training Center to operate as a user facility for the site, region and international labor unions. The center will focus on providing hands-on, realistic training situations. The Training Center is a partnership among U.S. Department of Energy (DOE); its contractors; labor; local, state, and tribal governments; Xavier and Tulane Universities of Louisiana and other Federal agencies. The hands-on training aids at HAMMER is justified based on regulatory training requirements, themore » desire for enhanced safety, and the commitment to continuous improvement of training quality.« less

  13. 40 CFR 262.210 - Making the hazardous waste determination in the laboratory before the unwanted material is...

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ...)(3) for acute hazardous waste, or § 261.5(g)(3) for hazardous waste. (e) An unwanted material that is... 40 Protection of Environment 27 2013-07-01 2013-07-01 false Making the hazardous waste....210 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) SOLID WASTES (CONTINUED...

  14. 40 CFR 262.210 - Making the hazardous waste determination in the laboratory before the unwanted material is...

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ...)(3) for acute hazardous waste, or § 261.5(g)(3) for hazardous waste. (e) An unwanted material that is... 40 Protection of Environment 26 2014-07-01 2014-07-01 false Making the hazardous waste....210 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) SOLID WASTES (CONTINUED...

  15. 40 CFR 262.210 - Making the hazardous waste determination in the laboratory before the unwanted material is...

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ...)(3) for acute hazardous waste, or § 261.5(g)(3) for hazardous waste. (e) An unwanted material that is... 40 Protection of Environment 27 2012-07-01 2012-07-01 false Making the hazardous waste....210 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) SOLID WASTES (CONTINUED...

  16. 40 CFR 262.210 - Making the hazardous waste determination in the laboratory before the unwanted material is...

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ...)(3) for acute hazardous waste, or § 261.5(g)(3) for hazardous waste. (e) An unwanted material that is... 40 Protection of Environment 25 2010-07-01 2010-07-01 false Making the hazardous waste....210 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) SOLID WASTES (CONTINUED...

  17. 40 CFR 262.210 - Making the hazardous waste determination in the laboratory before the unwanted material is...

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ...)(3) for acute hazardous waste, or § 261.5(g)(3) for hazardous waste. (e) An unwanted material that is... 40 Protection of Environment 26 2011-07-01 2011-07-01 false Making the hazardous waste....210 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) SOLID WASTES (CONTINUED...

  18. Hazardous material releases due to unsecured openings and lining failures, volume 1.

    DOT National Transportation Integrated Search

    1990-12-01

    In response to the large number of unintentional releases of hazardous : materials from railroad tank cars for which accidents were not the cause, the : Federal Railroad Administration (FRA) initiated this study to (1) recommend : procedures to ensur...

  19. 49 CFR 173.33 - Hazardous materials in cargo tank motor vehicles.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... the following conditions: (i) For compressed gases and certain refrigerated liquids that are not cryogenic liquids, the pressure prescribed in § 173.315 of this subchapter. (ii) For cryogenic liquids, the pressure prescribed in § 173.318 of this subchapter. (iii) For liquid hazardous materials loaded in DOT...

  20. Petroleum and hazardous material releases from industrial facilities associated with Hurricane Katrina.

    PubMed

    Santella, Nicholas; Steinberg, Laura J; Sengul, Hatice

    2010-04-01

    Hurricane Katrina struck an area dense with industry, causing numerous releases of petroleum and hazardous materials. This study integrates information from a number of sources to describe the frequency, causes, and effects of these releases in order to inform analysis of risk from future hurricanes. Over 200 onshore releases of hazardous chemicals, petroleum, or natural gas were reported. Storm surge was responsible for the majority of petroleum releases and failure of storage tanks was the most common mechanism of release. Of the smaller number of hazardous chemical releases reported, many were associated with flaring from plant startup, shutdown, or process upset. In areas impacted by storm surge, 10% of the facilities within the Risk Management Plan (RMP) and Toxic Release Inventory (TRI) databases and 28% of SIC 1311 facilities experienced accidental releases. In areas subject only to hurricane strength winds, a lower fraction (1% of RMP and TRI and 10% of SIC 1311 facilities) experienced a release while 1% of all facility types reported a release in areas that experienced tropical storm strength winds. Of industrial facilities surveyed, more experienced indirect disruptions such as displacement of workers, loss of electricity and communication systems, and difficulty acquiring supplies and contractors for operations or reconstruction (55%), than experienced releases. To reduce the risk of hazardous material releases and speed the return to normal operations under these difficult conditions, greater attention should be devoted to risk-based facility design and improved prevention and response planning.

  1. Legislative aspects of hazardous waste management.

    PubMed Central

    Friedman, M

    1983-01-01

    In the fall of 1976 Congress enacted the Resource Conservation and Recovery Act, commonly referred to as RCRA. The objective of the statute is to create an orderly system for the generation, handling and disposal of hazardous waste by means of a comprehensive tracking and record keeping mechanism. RCRA does not regulate directly by statute so much as it delegates rule making authority to the U.S. Environmental Protection Agency. Pursuant to its mandate to develop regulations in accordance with the broad criteria of RCRA, EPA has published extensive regulations. These regulations address hazardous waste generation, transportation, treatment, storage and handling and its final disposal. The statute also offers remedies available to both EPA and the public at large to ensure enforcement of the provisions of RCRA and the EPA regulations. Additionally, it sets guidelines for states to implement their own hazardous waste management programs. This article is intended to introduce this complicated statutory/regulatory package to scientists and health professionals. It outlines the provisions of RCRA and the EPA regulations, abbreviates early judicial decisions interpreting these provisions and sets forth a brief description of various state approaches to hazardous waste management. PMID:6825630

  2. Navy Occupational Health Information Management System (NOHIMS). Hazardous Materials Control Module. Users’ Manual

    DTIC Science & Technology

    1987-01-16

    Occupational Health Information Management System (NOHIMS) 6 Hazardous Materials Control Module (HMC) User’s Manual 7. Author(s) 8. Performing Organization...Materials Control (HMC) module of the Naval Medical Command’s (NAVMED) Navy Occupational Health Information Management System (NOHIMS). After presenting

  3. 76 FR 27300 - Hazardous Materials: Cargo Tank Motor Vehicle Loading and Unloading Operations

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-05-11

    ... Motor Vehicle Loading and Unloading Operations AGENCY: Pipeline and Hazardous Materials Safety... cargo tank motor vehicle proposals in this notice, we are providing affected entities as well as the...

  4. 78 FR 30258 - Hazardous Materials: Enhanced Enforcement Procedures-Resumption of Transportation

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-05-22

    ... 21st Century Act, or the MAP-21, which included the Hazardous Materials Transportation Safety... 6, 2012, the President signed the Moving Ahead for Progress in the 21st Century Act, or the MAP-21... This NPRM In MAP-21 Congress directed the Secretary to address certain transportation matters related...

  5. Comparative alternative materials assessment to screen toxicity hazards in the life cycle of CIGS thin film photovoltaics.

    PubMed

    Eisenberg, Daniel A; Yu, Mengjing; Lam, Carl W; Ogunseitan, Oladele A; Schoenung, Julie M

    2013-09-15

    Copper-indium-gallium-selenium-sulfide (CIGS) thin film photovoltaics are increasingly penetrating the market supply for consumer solar panels. Although CIGS is attractive for producing less greenhouse gas emissions than fossil-fuel based energy sources, CIGS manufacturing processes and solar cell devices use hazardous materials that should be carefully considered in evaluating and comparing net environmental benefits of energy products. Through this research, we present a case study on the toxicity hazards associated with alternative materials selection for CIGS manufacturing. We applied two numeric models, The Green Screen for Safer Chemicals and the Toxic Potential Indicator. To improve the sensitivity of the model outputs, we developed a novel, life cycle thinking based hazard assessment method that facilitates the projection of hazards throughout material life cycles. Our results show that the least hazardous CIGS solar cell device and manufacturing protocol consist of a titanium substrate, molybdenum metal back electrode, CuInS₂ p-type absorber deposited by spray pyrolysis, ZnS buffer deposited by spray ion layer gas reduction, ZnO:Ga transparent conducting oxide (TCO) deposited by sputtering, and the encapsulant polydimethylsiloxane. Copyright © 2013 Elsevier B.V. All rights reserved.

  6. Tetryl exposure: forgotten hazards of antique munitions.

    PubMed

    Alfaraj, Walla A; McMillan, Brian; Ducatman, Alan M; Werntz, Charles L

    2016-01-01

    Older yet still abundant munitions such as tetryl present easily forgotten health hazards and associated needs for worker protection. Symptoms and findings from 22 workers who were exposed to tetryl are summarized. This study highlights the health hazards from exposure to tetryl. Occupational health professionals need to maintain vigilance to protect workers from the risks of handling older munitions.

  7. A comparative life cycle assessment of material handling systems for sustainable mining.

    PubMed

    Erkayaoğlu, M; Demirel, N

    2016-06-01

    In this comprehensive LCA comparison study, main objectives are to investigate life cycle environmental impacts of off-highway mining trucks and belt conveyors in surface mining. The research methodology essentially entails determination of the functional unit as 20,000 tons/day coal production transported for 5 km distance. After the system boundary was selected as the entire life cycle of material handling systems including pre-manufacturing of steel parts and plastic components, manufacturing, transportation, and utilization data was compiled from equipment manufacturers and the Eco-invent database. Life cycle impact categories for both material-handling systems were identified and the developed model was implemented using SIMAPRO 7.3. Climate change and acidification were selected as major impact categories as they were considered to be major concerns in mining industry. Although manufacturing stage had a significant impact on all of the environmental parameters, utilization stage was the hotspot for the selected impact categories. The results of this study revealed that belt conveyors have a greater environmental burden in climate change impact category when compared to the trucks. On the other hand, trucks have a greater environmental burden in acidification impact category when compared to the belt conveyors. This study implied that technological improvement in fuel combustion and electricity generation is crucial for the improvement of environmental profiles of off-highway trucks and belt conveyors in the mining industry. The main novelty of this study is that it is the first initiative in applying LCA in the Turkish mining industry. Copyright © 2016 Elsevier Ltd. All rights reserved.

  8. Oil and Hazardous Materials Spill Response Technology Development, Strategic Plan

    DTIC Science & Technology

    2012-05-01

    the pollutant can be recovered, burned, or dispersed . Objectives:  Develop the means to divert and contain sinking and suspended oils in order to...Research and Development Center 1 Chelsea Street New London, CT 06320 10. Work Unit No. (TRAIS) 11. Contract or Grant No. 12...similar analysis of prevention efforts should be carried out in the future. 17. Key Words oil, hazardous material, oil spill, pollution

  9. Hazardous Materials Pharmacies - A Vital Component of a Robust P2 Program

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    McCarter, S.

    2006-07-01

    Integrating pollution prevention (P2) into the Department of Energy Integrated Safety Management (ISM) - Environmental Management System (EMS) approach, required by DOE Order 450.1, leads to an enhanced ISM program at large and complex installations and facilities. One of the building blocks to integrating P2 into a comprehensive environmental and safety program is the control and tracking of the amounts, types, and flow of hazardous materials used on a facility. Hazardous materials pharmacies (typically called HazMarts) provide a solid approach to resolving this issue through business practice changes that reduce use, avoid excess, and redistribute surplus. If understood from conceptmore » to implementation, the HazMart is a powerful tool for reducing pollution at the source, tracking inventory storage, controlling usage and flow, and summarizing data for reporting requirements. Pharmacy options can range from a strict, single control point for all hazardous materials to a virtual system, where the inventory is user controlled and reported over a common system. Designing and implementing HazMarts on large, diverse installations or facilities present a unique set of issues. This is especially true of research and development (R and D) facilities where the chemical use requirements are extensive and often classified. There are often multiple sources of supply; a wide variety of chemical requirements; a mix of containers ranging from small ampoules to large bulk storage tanks; and a wide range of tools used to track hazardous materials, ranging from simple purchase inventories to sophisticated tracking software. Computer systems are often not uniform in capacity, capability, or operating systems, making it difficult to use a server-based unified tracking system software. Each of these issues has a solution or set of solutions tied to fundamental business practices. Each requires an understanding of the problem at hand, which, in turn, requires good communication

  10. 78 FR 60755 - Hazardous Materials: Enhanced Enforcement Procedures-Resumption of Transportation

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-10-02

    .... Summary of MAP-21 and Final Rule V. Summary Review of Amendments VI. Regulatory Analyses and Notices A.... Executive Summary On July 6, 2012, the President signed the Moving Ahead for Progress in the 21st Century Act, or the MAP-21, which included the Hazardous Materials Transportation Safety Improvement Act of...

  11. Environmental and economic solutions: Pollution prevention technical assistance and the City of Los Angeles Hazardous and Toxic Materials Office

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Toy-Chen, D.; Joyce, M.M.

    1994-12-31

    The City of Los Angeles faces a challenge to assist industrial facilities to minimize and manage hazardous materials in order to sustain the local economy and natural environment. Industrial facilities in Los Angeles County released into the environment or transferred off-site 103,442,074 tons of hazardous materials and waste in 1988. This enormous quantity of hazardous waste requires generators to be in compliance with several environmental regulatory agencies. The City of Los Angeles Hazardous and Toxic Materials (HTM) Office has increased the awareness, commitments, and implementation of hazardous waste at the source, the amount of toxic pollutants discharged into the City`smore » publicly owned treatment works, surface and groundwaters, soils and atmosphere can be substantially reduced. Quantifying hazardous waste minimization progress is extremely difficult and complex. However, the HTM Office anticipates that if the challenge of pollution prevention is successful, more businesses will decide to remain in the region and Los Angeles residents will feel convinced that industry is making good faith efforts to protect the environment. Pollution prevention is a long term solution for the hazardous waste crisis that society has only recently recognized.« less

  12. 75 FR 31843 - Identification of Non-Hazardous Secondary Materials That Are Solid Waste

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-06-04

    ...On January 2, 2009, the Environmental Protection Agency (EPA or the Agency) issued an Advanced Notice of Proposed Rulemaking (ANPRM) to solicit comment on which non-hazardous secondary materials that are used as fuels or ingredients in combustion units are solid wastes under the Resource Conservation and Recovery Act (RCRA). The meaning of ``solid waste'' as defined under RCRA is of particular importance since it will determine whether a combustion unit is required to meet emissions standards for solid waste incineration units issued under section 129 of the Clean Air Act (CAA) or emissions standards for commercial, industrial, and institutional boilers issued under CAA section 112. CAA section 129 states that the term ``solid waste'' shall have the meaning ``established by the Administrator pursuant to [RCRA].'' EPA is proposing a definition of non-hazardous solid waste that would be used to identify whether non-hazardous secondary materials burned as fuels or used as ingredients in combustion units are solid waste. EPA is also proposing that non-hazardous secondary materials that have been discarded, and are therefore solid wastes, may be rendered products after they have been processed (altered chemically or physically) into a fuel or ingredient product. This proposed rule is necessary to identify units for the purpose of developing certain standards under sections 112 and 129 of the CAA. In addition to this proposed rule, EPA is concurrently proposing air emission requirements under CAA section 112 for industrial, commercial, and institutional boilers and process heaters, as well as air emission requirements under CAA section 129 for commercial and industrial solid waste incineration units.

  13. New approaches to wipe sampling methods for antineoplastic and other hazardous drugs in healthcare settings.

    PubMed

    Connor, Thomas H; Smith, Jerome P

    2016-09-01

    At the present time, the method of choice to determine surface contamination of the workplace with antineoplastic and other hazardous drugs is surface wipe sampling and subsequent sample analysis with a variety of analytical techniques. The purpose of this article is to review current methodology for determining the level of surface contamination with hazardous drugs in healthcare settings and to discuss recent advances in this area. In addition it will provide some guidance for conducting surface wipe sampling and sample analysis for these drugs in healthcare settings. Published studies on the use of wipe sampling to measure hazardous drugs on surfaces in healthcare settings drugs were reviewed. These studies include the use of well-documented chromatographic techniques for sample analysis in addition to newly evolving technology that provides rapid analysis of specific antineoplastic. Methodology for the analysis of surface wipe samples for hazardous drugs are reviewed, including the purposes, technical factors, sampling strategy, materials required, and limitations. The use of lateral flow immunoassay (LFIA) and fluorescence covalent microbead immunosorbent assay (FCMIA) for surface wipe sample evaluation is also discussed. Current recommendations are that all healthc a re settings where antineoplastic and other hazardous drugs are handled include surface wipe sampling as part of a comprehensive hazardous drug-safe handling program. Surface wipe sampling may be used as a method to characterize potential occupational dermal exposure risk and to evaluate the effectiveness of implemented controls and the overall safety program. New technology, although currently limited in scope, may make wipe sampling for hazardous drugs more routine, less costly, and provide a shorter response time than classical analytical techniques now in use.

  14. Reduction of Fire Hazard in Materials for Irrigators and Water Collectors in Cooling Towers

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Smirnov, N. V.; Konstantinova, N. I., E-mail: konstantinova-n@inbox.ru; Gordon, E. P.

    A way of reducing the fire hazard of PVC film used to make cooling-tower irrigators and water collectors is examined. A new generation of fire retardant, nanostructured magnesium hydroxide, is used to impart fire retardant properties. The fabrication technology is optimized with a roller-calendering manufacturing technique, and the permissible ranges of fire hazard indicators for materials in irrigators and water collectors are determined.

  15. 30 CFR 250.108 - What requirements must I follow for cranes and other material-handling equipment?

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 30 Mineral Resources 2 2010-07-01 2010-07-01 false What requirements must I follow for cranes and... Performance Standards § 250.108 What requirements must I follow for cranes and other material-handling equipment? (a) All cranes installed on fixed platforms must be operated in accordance with American...

  16. Research notes : naturally occurring hazardous materials, natural doesn't always equal healthy.

    DOT National Transportation Integrated Search

    2009-05-01

    The ultimate objective of this work is to assure that ODOT maintenance and construction activities take the presence of these hazardous materials into account. In this way, ODOT can protect the health of those who work on ODOT projects and the genera...

  17. Processing of solid mixed waste containing radioactive and hazardous materials

    DOEpatents

    Gotovchikov, Vitaly T.; Ivanov, Alexander V.; Filippov, Eugene A.

    1998-05-12

    Apparatus for the continuous heating and melting of a solid mixed waste bearing radioactive and hazardous materials to form separate metallic, slag and gaseous phases for producing compact forms of the waste material to facilitate disposal includes a copper split water-cooled (cold) crucible as a reaction vessel for receiving the waste material. The waste material is heated by means of the combination of a plasma torch directed into the open upper portion of the cold crucible and an electromagnetic flux produced by induction coils disposed about the crucible which is transparent to electromagnetic fields. A metallic phase of the waste material is formed in a lower portion of the crucible and is removed in the form of a compact ingot suitable for recycling and further processing. A glass-like, non-metallic slag phase containing radioactive elements is also formed in the crucible and flows out of the open upper portion of the crucible into a slag ingot mold for disposal. The decomposition products of the organic and toxic materials are incinerated and converted to environmentally safe gases in the melter.

  18. Processing of solid mixed waste containing radioactive and hazardous materials

    DOEpatents

    Gotovchikov, V.T.; Ivanov, A.V.; Filippov, E.A.

    1998-05-12

    Apparatus for the continuous heating and melting of a solid mixed waste bearing radioactive and hazardous materials to form separate metallic, slag and gaseous phases for producing compact forms of the waste material to facilitate disposal includes a copper split water-cooled (cold) crucible as a reaction vessel for receiving the waste material. The waste material is heated by means of the combination of a plasma torch directed into the open upper portion of the cold crucible and an electromagnetic flux produced by induction coils disposed about the crucible which is transparent to electromagnetic fields. A metallic phase of the waste material is formed in a lower portion of the crucible and is removed in the form of a compact ingot suitable for recycling and further processing. A glass-like, non-metallic slag phase containing radioactive elements is also formed in the crucible and flows out of the open upper portion of the crucible into a slag ingot mold for disposal. The decomposition products of the organic and toxic materials are incinerated and converted to environmentally safe gases in the melter. 6 figs.

  19. Material Selection for Cable Gland to Improved Reliability of the High-hazard Industries

    NASA Astrophysics Data System (ADS)

    Vashchuk, S. P.; Slobodyan, S. M.; Deeva, V. S.; Vashchuk, D. S.

    2018-01-01

    The sealed cable glands (SCG) are available to ensure safest connection sheathed single wire for the hazard production facility (nuclear power plant and others) the same as pilot cable, control cables, radio-frequency cables et al. In this paper, we investigate the specifics of the material selection of SCG with the express aim of hazardous man-made facility. We discuss the safe working conditions for cable glands. The research indicates the sintering powdered metals cables provide the reliability growth due to their properties. A number of studies have demonstrated the verification of material selection. On the face of it, we make findings indicating that double glazed sealed units could enhance reliability. We had evaluated sample reliability under fire conditions, seismic load, and pressure containment failure. We used the samples mineral insulated thermocouple cable.

  20. 49 CFR 172.205 - Hazardous waste manifest.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... 49 Transportation 2 2010-10-01 2010-10-01 false Hazardous waste manifest. 172.205 Section 172.205 Transportation Other Regulations Relating to Transportation PIPELINE AND HAZARDOUS MATERIALS SAFETY ADMINISTRATION, DEPARTMENT OF TRANSPORTATION HAZARDOUS MATERIALS REGULATIONS HAZARDOUS MATERIALS TABLE, SPECIAL PROVISIONS, HAZARDOUS MATERIALS...

  1. Epidemiological study of health hazards among workers handling engineered nanomaterials

    NASA Astrophysics Data System (ADS)

    Liou, Saou-Hsing; Tsou, Tsui-Chun; Wang, Shu-Li; Li, Lih-Ann; Chiang, Hung-Che; Li, Wan-Fen; Lin, Pin-Pin; Lai, Ching-Huang; Lee, Hui-Ling; Lin, Ming-Hsiu; Hsu, Jin-Huei; Chen, Chiou-Rong; Shih, Tung-Sheng; Liao, Hui-Yi; Chung, Yu-Teh

    2012-08-01

    The aim of this study was to establish and identify the health effect markers of workers with potential exposure to nanoparticles (20-100 nm) during manufacturing and/or application of nanomaterials. For this cross-sectional study, we recruited 227 workers who handled nanomaterials and 137 workers for comparison who did not from 14 plants in Taiwan. A questionnaire was used to collect data on exposure status, demographics, and potential confounders. The health effect markers were measured in the medical laboratory. Control banding from the Nanotool Risk Level Matrix was used to categorize the exposure risk levels of the workers. The results showed that the antioxidant enzyme, superoxide dismutase (SOD) in risk level 1 (RL1) and risk level 2 (RL2) workers was significantly ( p < 0.05) lower than in control workers. A significantly decreasing gradient was found for SOD (control > RL1 > RL2). Another antioxidant, glutathione peroxidase (GPX), was significantly lower only in RL1 workers than in the control workers. The cardiovascular markers, fibrinogen and ICAM (intercellular adhesion molecule), were significantly higher in RL2 workers than in controls and a significant dose-response with an increasing trend was found for these two cardiovascular markers. Another cardiovascular marker, interleukin-6, was significantly increased among RL1 workers, but not among RL2 workers. The accuracy rate for remembering 7-digits and reciting them backwards was significantly lower in RL2 workers (OR = 0.48) than in controls and a significantly reversed gradient was also found for the correct rate of backward memory (OR = 0.90 for RL1, OR = 0.48 for RL2, p < 0.05 in test for trend). Depression of antioxidant enzymes and increased expression of cardiovascular markers were found among workers handling nanomaterials. Antioxidant enzymes, such as SOD and GPX, and cardiovascular markers, such as fibrinogen, ICAM, and interluekin-6, are possible biomarkers for medical surveillance of

  2. Decision Support for Environmental Management of Industrial Non-Hazardous Secondary Materials: New Analytical Methods Combined with Simulation and Optimization Modeling

    EPA Science Inventory

    Non-hazardous solid materials from industrial processes, once regarded as waste and disposed in landfills, offer numerous environmental and economic advantages when put to beneficial uses (BUs). Proper management of these industrial non-hazardous secondary materials (INSM) requir...

  3. The use of historical imagery in the remediation of an urban hazardous waste site

    USGS Publications Warehouse

    Slonecker, E.T.

    2011-01-01

    The information derived from the interpretation of historical aerial photographs is perhaps the most basic multitemporal application of remote-sensing data. Aerial photographs dating back to the early 20th century can be extremely valuable sources of historical landscape activity. In this application, imagery from 1918 to 1927 provided a wealth of information about chemical weapons testing, storage, handling, and disposal of these hazardous materials. When analyzed by a trained photo-analyst, the 1918 aerial photographs resulted in 42 features of potential interest. When compared with current remedial activities and known areas of contamination, 33 of 42 or 78.5% of the features were spatially correlated with areas of known contamination or other remedial hazardous waste cleanup activity.

  4. 30 CFR 250.108 - What requirements must I follow for cranes and other material-handling equipment?

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 30 Mineral Resources 2 2011-07-01 2011-07-01 false What requirements must I follow for cranes and... follow for cranes and other material-handling equipment? (a) All cranes installed on fixed platforms must... Maintenance of Offshore Cranes (API RP 2D), incorporated by reference as specified in 30 CFR 250.198. (b) All...

  5. 46 CFR 111.106-11 - Classification of storage and handling locations of heated combustible liquid cargoes.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... HOMELAND SECURITY (CONTINUED) ELECTRICAL ENGINEERING ELECTRIC SYSTEMS-GENERAL REQUIREMENTS Hazardous... cargoes. (a) This section applies to locations surrounding the storage and handling of combustible liquid... hazardous locations in § 111.106-9 of this subpart apply. ...

  6. [Manual material handling risk assessment and ergonomic improvement in foodstuff retailing company].

    PubMed

    Maso, S; Maccà, I; Simonetti, A; Scopa, P; Paruzzolo, P; Bonacci, A; Murgolo, I; Bartolucci, G B

    2011-01-01

    The aim of this study is to assess and reduce the risk due to manual material handling in a company involved in the foodstuff retailing. The risk assessment was performed by NIOSH Variable Lifing Index in 13 different occupational conditions. As result the risk was present in any case, with VLI values ranging from 2.12 to 2.81. A good risk reduction has been accomplished correcting properly the most important multiplier involved in the computation of the revised NIOSH Lifting equation (lifting frequency and weight of heavier products). Even if the performed risk reduction has been significant, the residual risk is still higher than the level of acceptability.

  7. Managing Academe's Hazardous Materials.

    ERIC Educational Resources Information Center

    Thompson, Fay

    1991-01-01

    Those responsible for planning and management of colleges and universities must plan comprehensively for hazardous waste disposal. Federal and state regulations are increasing, landfill area is becoming scarce, and incineration costs are rising fast. High-level institutional commitment to a sound campus environment policy is essential. (MSE)

  8. Double-pulse standoff laser-induced breakdown spectroscopy for versatile hazardous materials detection

    NASA Astrophysics Data System (ADS)

    Gottfried, Jennifer L.; De Lucia, Frank C.; Munson, Chase A.; Miziolek, Andrzej W.

    2007-12-01

    We have developed a double-pulse standoff laser-induced breakdown spectroscopy (ST-LIBS) system capable of detecting a variety of hazardous materials at tens of meters. The use of a double-pulse laser improves the sensitivity and selectivity of ST-LIBS, especially for the detection of energetic materials. In addition to various metallic and plastic materials, the system has been used to detect bulk explosives RDX and Composition-B, explosive residues, biological species such as the anthrax surrogate Bacillus subtilis, and chemical warfare simulants at 20 m. We have also demonstrated the discrimination of explosive residues from various interferents on an aluminum substrate.

  9. Teaching about Hazardous and Toxic Materials. Teaching Activities in Environmental Education Series.

    ERIC Educational Resources Information Center

    Disinger, John F.; Lisowski, Marylin

    Designed to assist practitioners of both formal and non-formal settings, this 18th volume of the ERIC Clearinghouse for Science, Mathematics, and Environmental Education's Teaching Activities in Environmental Education series specifically focuses on the theme of hazardous and toxic materials. Initially, basic environmental concepts that deal with…

  10. Understanding and managing the movements of hazardous material shipments through Texas population centers.

    DOT National Transportation Integrated Search

    2009-08-01

    Every day almost a million shipments of hazardous materials move safely and securely along our nations transportation system, via any combination of modes. Only a small fraction of total shipments interrupt their planned journey due to an incident...

  11. Perception and prevalence of work-related health hazards among health care workers in public health facilities in southern India.

    PubMed

    Senthil, Arasi; Anandh, Balasubramanian; Jayachandran, Palsamy; Thangavel, Gurusamy; Josephin, Diana; Yamini, Ravindran; Kalpana, Balakrishnan

    2015-01-01

    Health care workers (HCWs) are exposed to occupational related health hazards. Measuring worker perception and the prevalence of these hazards can help facilitate better risk management for HCWs, as these workers are envisaged to be the first point of contact, especially in resource poor settings. To describe the perception of occupational health hazards and self-reported exposure prevalence among HCWs in Southern India. We used cross sectional design with stratified random sampling of HCWs from different levels of health facilities and categories in a randomly selected district in Southern India. Data on perception and exposure prevalence were collected using a structured interview schedule developed by occupational health experts and administered by trained investigators. A total of 482 HCWs participated. Thirty nine percent did not recognize work-related health hazards, but reported exposure to at least one hazard upon further probing. Among the 81·5% who reported exposure to biological hazard, 93·9% had direct skin contact with infectious materials. Among HCWs reporting needle stick injury, 70·5% had at least one in the previous three months. Ergonomic hazards included lifting heavy objects (42%) and standing for long hours (37%). Psychological hazards included negative feelings (20·3%) and verbal or physical abuse during work (20·5%). More than a third of HCWs failed to recognize work-related health hazards. Despite training in handling infectious materials, HCWs reported direct skin contact with infectious materials and needle stick injuries. RESULTS indicate the need for training oriented toward behavioral change and provision of occupational health services.

  12. The verification of hazardous ingredients disclosures in selected material safety data sheets.

    PubMed

    Welsh, M S; Lamesse, M; Karpinski, E

    2000-05-01

    Under the provisions of the Workplace Hazardous Materials Information System, workers in Canada must be provided with accurate and comprehensive Material Safety Data Sheets (MSDSs) describing controlled products used in the workplace. As part of an ongoing auditing project, the MSDSs of some controlled products in use under federal jurisdiction were assessed for accuracy and completeness of their ingredient disclosures. Chemical analyses of samples using gas chromatography-mass spectrometry, infrared spectrophotometry, X-ray fluorescence, and wet methods, were performed to verify the ingredient disclosures in accompanying MSDSs. In this article, analytical processes and results are presented for three cases in which MSDS ingredient disclosures were incomplete. The products included a synthetic lubricant used in a mining operation, a detergent concentrate used for aircraft cleaning, and an epoxy reducer used in aircraft maintenance. In each case, undisclosed hazardous ingredients were detected at concentrations which required their disclosure. In at least one of these cases, the information provided in other sections of the MSDS failed to adequately describe the hazards and required protective measures for the composition discovered. Because the results suggest circumstances in which the inaccurate MSDS could act as a mechanism for workplace injury, compliance measures including employer, inspector, and user education, improved MSDS writer qualifications, and the incorporation of chemical analysis in active auditing programs are recommended.

  13. [The Necessity and the Current Status of Safe Handling of Anticancer Drugs].

    PubMed

    Kanda, Kiyoko

    2017-07-01

    Number of people who handle anticancer drugs in their profession is increasing. Anticancer drugs, which are hazardous drugs(HD), exert cytocidal effects on cancer cells, but many have also been shown to have mutagenicity, teratogenicity and carcinogenicity; therefore, safe handling of anticancer drugs is necessary. In July 2015, the first Japanese guidelines for exposure control measures, namely, the "Joint Guidelines for Safe Handling of Cancer Chemotherapy Drugs", were published jointly by 3 societies. Our guideline is the creation of the Japanese Society of Cancer Nursing(JSCN), Japanese Society of Medical Oncology(JSMO)and Japanese Society of Pharmaceutical Oncology(JASPO)and has a historical significance. This paper states the necessity of safe handling of anticancer drugs, Japan's recent movement of safe handling, the introduction of joint guidelines of safe handling of anticancer drugs, and new movement of safe handling of USP chapter 800 in the United States.

  14. Safe handling of antineoplastic drugs.

    PubMed

    Harrison, B R

    1994-07-01

    Managers should be aware of the hazardous properties of antineoplastic drugs and of the procedures and equipment commonly recommended to provide a safe working environment for employees, patients, and visitors. Compliance with the many published guidelines should help ensure passage of the inevitable Occupational Safety and Health Administration (OSHA) or Joint Commission inspection. Acute and chronic toxicities of the antineoplastic drugs, the potential for exposure in the workplace, and the basic guidelines for safe handling of these agents are reviewed.

  15. Environmental management of industrial hazardous wastes in India.

    PubMed

    Dutta, Shantanu K; Upadhyay, V P; Sridharan, U

    2006-04-01

    Hazardous wastes are considered highly toxic and therefore disposal of such wastes needs proper attention so as to reduce possible environmental hazards. Industrial growth has resulted in generation of huge volume of hazardous wastes in the country. In addition to this, hazardous wastes sometimes get imported mainly from the western countries for re-processing or recycling. Inventorisation of hazardous wastes generating units in the country is not yet completed. Scientific disposal of hazardous wastes has become a major environmental issue in India. Hazardous Wastes (Management and Handling) Rules, 1989 have been framed by the Central Government and amended in 2000 and 2003 to deal with the hazardous wastes related environmental problems that may arise in the near future. This paper gives details about the hazardous wastes management in India. Health effects of the selected hazardous substances are also discussed in the paper.

  16. Thermal reactive hazards of HMX with contaminants.

    PubMed

    Peng, Deng-Jr; Chang, Cheng-Ming; Chiu, Miin

    2004-10-18

    In the past, many unexpected runaway accidents occurred in manufacturing processes, involving volatile chemical and explosive storage and transportation. Incompatible product reactions of high explosives must be carefully considered using loss prevention strategies for thermal hazards risk analysis. High explosive reactions vary via environmental changes, contact materials, or process situations, such as onset temperature and shifts in reaction type when high explosives are in contact with contaminants. Therefore, the manufacture and handling of high explosives require the utmost in safety and loss prevention. HMX (cyclotetramethyene tetranitramine) is one kind of high explosive widely used around the world which is stable with high detonation strength properties. In this study, the influences of contaminants on HMX are investigated. The studied contaminants include ferrous chloride tetrahydrate, ferric chloride hexahydrate, acetone solution, acetic acid, and nitric acid. DSC thermal curves and incompatible reaction kinetic evaluations were preformed using iron, chlorine and acid. Organic acetone solution has lesser effects on HMX. Hopefully, this study will lead to improved thermal hazards risk analysis and reduce accidents.

  17. 49 CFR 173.241 - Bulk packagings for certain low hazard liquid and solid materials.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... B of part 173 of this subchapter and the special provisions specified in column 7 of the § 172.101... for the specific hazardous material in Column (7) of the § 172.101 Table of this subchapter and the... performance level as specified in Column (5) of the § 172.101 Table for the material being transported. (1...

  18. 49 CFR 173.241 - Bulk packagings for certain low hazard liquid and solid materials.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... B of part 173 of this subchapter and the special provisions specified in column 7 of the § 172.101... for the specific hazardous material in Column (7) of the § 172.101 Table of this subchapter and the... performance level as specified in Column (5) of the § 172.101 Table for the material being transported. (1...

  19. 49 CFR 173.241 - Bulk packagings for certain low hazard liquid and solid materials.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... B of part 173 of this subchapter and the special provisions specified in column 7 of the § 172.101... for the specific hazardous material in Column (7) of the § 172.101 Table of this subchapter and the... performance level as specified in Column (5) of the § 172.101 Table for the material being transported. (1...

  20. 49 CFR 173.241 - Bulk packagings for certain low hazard liquid and solid materials.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... B of part 173 of this subchapter and the special provisions specified in column 7 of the § 172.101... for the specific hazardous material in Column (7) of the § 172.101 Table of this subchapter and the... performance level as specified in Column (5) of the § 172.101 Table for the material being transported. (1...