Sample records for handling cytotoxic drugs

  1. Documentation forms for monitoring occupational surveillance of healthcare workers who handle cytotoxic drugs.

    PubMed

    Parillo, V L

    1994-01-01

    To develop a procedure for medical surveillance of healthcare workers who handle cytotoxic drugs. Literature review and guidelines published by the Occupational Safety and Health Administration and the National Institute for Occupational Safety and Health. INFORMATION SELECTION: Studies of possible exposure screening tests, congenital defects in offspring, and case studies. Some degree of risk exists in handling cytotoxic drugs, but no reliable screening test for cytotoxic drug exposure has been developed. Reproductive hazards are possible when protective equipment is not used. Areas to be addressed when devising surveillance procedures include who to cover, what baseline data to gather, what periodic monitoring will be necessary (and at what interval it will be conducted), how to handle exposure incidents, and what documentation system will be used. A procedure using a baseline risk factor form and a yearly monitoring questionnaire was devised and implemented. Forms contain documentation of worker teaching. Most often, nurses are the healthcare workers who handle cytotoxic drugs. A consistent approach to monitoring healthcare workers is facilitated by using a defined procedure and standardized forms.

  2. Cytotoxic Drug Dispersal, Cytotoxic Safety, and Cytotoxic Waste Management: Practices and Proposed India-specific Guidelines

    PubMed Central

    Capoor, Malini R; Bhowmik, Kumar Tapas

    2017-01-01

    This article deals with practices related to cytotoxic drug dispersal, cytotoxic safety, and cytotoxic waste management and attempts at India-specific guidelines for their dispersal and disposal. The articles related to cytotoxic drug dispersal, cytotoxic safety, and cytotoxic waste management were reviewed from PubMed and their applicability in Indian health-care facilities (HCFs) was also reviewed. All HCFs dealing with cytotoxic drugs should consider cytotoxic policy, patient safety and health-care worker safety, and environmental monitoring program as per the available international guidelines customized as per Indian conditions. Utmost care in handling cytotoxic waste is quintessential. The formation of India-specific cytotoxic guidelines requires the inputs from all stakeholders. Cytotoxic waste, cytotoxic safety, and cytotoxic waste management should be the subject of a national strategy with an infrastructure, cradle-to-grave legislation, competent regulatory authority, and trained personnel. PMID:28900329

  3. [Preparation and administration of cytotoxic drugs: prickly innovation].

    PubMed

    Mullot, H; Simon, L; Payen, C; Gentes, P

    2005-06-01

    The requirement for safe and optimal administration of cytotoxic drugs led us to test a new product manufactured by Codan. The transfer set (CONNECT SET) and the administration set (CYTO-AD-SET) were assessed successively by pharmacist assistance within a centralized unit for cytotoxic drug preparation and by the nursing staff in an ambulatory unit. Transfer sets can be handled in the centralized units without using needles, but with an increased sterilization load and production cost. Assessment of the administration sets demonstrated time saving for the nursing staff. These materials require significant expenditures, careful training, and a change in treatment routine, but provide important time savings for the nursing staff and considerable improvement in the safety of handling cytotoxic drugs.

  4. Improving safety-related knowledge, attitude and practices of nurses handling cytotoxic anticancer drug: pharmacists' experience in a general hospital, Malaysia.

    PubMed

    Keat, Chan Huan; Sooaid, Nor Suhada; Yun, Cheng Yi; Sriraman, Malathi

    2013-01-01

    An increasing trend of cytotoxic drug use, mainly in cancer treatment, has increased the occupational exposure among the nurses. This study aimed to assess the change of nurses' safety-related knowledge as well as attitude levels and subsequently to assess the change of cytotoxic drug handling practices in wards after a series of pharmacist-based interventions. This prospective interventional study with a before and after design requested a single group of 96 nurses in 15 wards actively providing chemotherapy to answer a self-administered questionnaire. A performance checklist was then used to determine the compliance of all these wards with the recommended safety measures. The first and second assessments took 2 months respectively with a 9-month intervention period. Pharmacist-based interventions included a series of technical, educational and administrative support measures consisting of the initiation of closed-system cytotoxic drug reconstitution (CDR) services, courses, training workshops and guideline updates. The mean age of nurses was 32.2∓6.19 years. Most of them were female (93.8%) and married (72.9%). The mean knowledge score of nurses was significantly increased from 45.5∓10.52 to 73.4∓8.88 out of 100 (p<0.001) at the end of the second assessment. Overall, the mean practice score among the wards was improved from 7.6∓5.51 to 15.3∓2.55 out of 20 (p<0.001). The pharmacist-based interventions improved the knowledge, attitude and safe practices of nurses in cytotoxic drug handling. Further assessment may help to confirm the sustainability of the improved practices.

  5. Safe handling practices of cytotoxic drugs: the results of a chapter survey.

    PubMed

    Mahon, S M; Casperson, D S; Yackzan, S; Goodner, S; Hasse, B; Hawkins, J; Parham, J; Rimkus, C; Schlomer, M; Witcher, V

    1994-08-01

    To describe how nurses from a local Oncology Nursing Society (ONS) Chapter Implement Occupational Safety and Health Administration (OSHA) guidelines for handling cytotoxic drugs (CDs) in their individual practices and to identify barriers to implementing these guidelines. Mailed survey. ONS chapter in a large midwestern city. 103 nurses, 83 of whom handle CDs. Mean years in oncology nursing was 7.5. Mailed survey consisting of 48 questions on seven topics, as well as demographic questions. Roles in preparation and administration of CDs, management spills, patient care, and use of protective equipment in patient and family education practices; barriers to use of protective practices. Subjects used some protective equipment when preparing and administering CDs, but the type of equipment and its frequency of use did not specifically meet OSHA Guidelines. Rates of compliance with guidelines were better for management of spills and disposal of equipment. Verbal instructions for patients and families were employed but very few provided written instructions or explanations. Barriers to using protective equipment included a lack of time, problems with availability, and concerns about patient reactions. Barriers must be overcome and better safe-handling practices incorporated into practice to ensure the safety of nurses. More education is needed for family members who come into contact with patients receiving CDs. Future research to document the extent of the problem, including stratification of responses according to the quantity and frequency with which a nurse administers CDs. Better, and perhaps more frequent, staff and family education efforts are needed.

  6. Safe handling of cytotoxic compounds in a biopharmaceutical environment.

    PubMed

    Hensgen, Miriam I; Stump, Bernhard

    2013-01-01

    Handling cytotoxic drugs such as antibody-drug conjugates (ADCs) in a biopharmaceutical environment represents a challenge based on the potency of the compounds. These derivatives are dangerous to humans if they accidentally get in contact with the skin, are inhaled, or are ingested, either as pure compounds in their solid state or as a solution dissolved in a co-solvent. Any contamination of people involved in the manufacturing process has to be avoided. On the other hand, biopharmaceuticals need to be protected simultaneously against any contamination from the manufacturing personnel. Therefore, a tailor-made work environment is mandatory in order to manufacture ADCs. This asks for appropriate technical equipment to keep potential hazardous substances contained. In addition, clearly defined working procedures based on risk assessments as well as proper training for all personnel involved in the manufacturing process are needed to safely handle these highly potent pharmaceuticals.

  7. Therapeutic drug monitoring of antimetabolic cytotoxic drugs

    PubMed Central

    Lennard, L

    1999-01-01

    Therapeutic drug monitoring is not routinely used for cytotoxic agents. There are several reasons, but one major drawback is the lack of established therapeutic concentration ranges. Combination chemotherapy makes the establishment of therapeutic ranges for individual drugs difficult, the concentration-effect relationship for a single drug may not be the same as that when the drug is used in a drug combination. Pharmacokinetic optimization protocols for many classes of cytotoxic compounds exist in specialized centres, and some of these protocols are now part of large multicentre trials. Nonetheless, methotrexate is the only agent which is routinely monitored in most treatment centres. An additional factor, especially in antimetabolite therapy, is the existence of pharmacogenetic enzymes which play a major role in drug metabolism. Monitoring of therapy could include assay of phenotypic enzyme activities or genotype in addition to, or instead of, the more traditional measurement of parent drug or drug metabolites. The cytotoxic activities of mercaptopurine and fluorouracil are regulated by thiopurine methyltransferase (TPMT) and dihydropyrimidine dehydrogenase (DPD), respectively. Lack of TPMT functional activity produces life-threatening mercaptopurine myelotoxicity. Very low DPD activity reduces fluorouracil breakdown producing severe cytotoxicity. These pharmacogenetic enzymes can influence the bioavailability, pharmacokinetics, toxicity and efficacy of their substrate drugs. PMID:10190647

  8. Determination of the external contamination and cross-contamination by cytotoxic drugs on the surfaces of vials available on the Swiss market.

    PubMed

    Fleury-Souverain, Sandrine; Nussbaumer, Susanne; Mattiuzzo, Marc; Bonnabry, Pascal

    2014-04-01

    The external contamination and cross-contamination by cytotoxic drugs on the surface (outside and septum) of 133 vials from various manufacturers and available on the Swiss market were evaluated. All of the tested vials contained one of the following active ingredients: cyclophosphamide, cytarabine, doxorubicin, epirubicin, etoposide phosphate, gemcitabine, ifosfamide, irinotecan, methotrexate or vincristine. The validated wiping liquid chromatography-mass spectrometry method used in this study allowed for the simultaneous determination of these 10 cytotoxic drugs in less than 30 min. External contamination by cytotoxic drugs was detected on 63% of tested vials (outside and septum). The highest contamination level was observed on etoposide phosphate vials with 1896.66 ng of active ingredient on the outside of the vial. Approximately 20% of the contaminated vials had greater than 10 ng of cytotoxic drugs. Chemical contamination on the septum was detected on 38% of the vials. No contamination or very low levels of cytotoxic drugs, less than 1 ng per vial, were detected on the vials protected by plastic shrink-wrap. Traces of cytotoxic drugs different from the active ingredient were detected on 35% of the tested vials. Handling cytotoxic vials with gloves and having a procedure for the decontamination of vials are of the utmost importance for reducing exposure to cytotoxic drugs. Moreover, manufacturers must improve their procedures to provide products free from any contamination.

  9. Evaluation of cytotoxicity of some common ophthalmic drugs.

    PubMed

    Li, M; Chen, X-M; Liu, J-J; Wang, D-M; Gan, L; Lv, X; Qiao, Y

    2015-01-01

    The study was aimed at evaluating the in vitro cytotoxicity of some commonly used drugs in ophthalmology. Hydrocortisone sodium succinate, Dexamethasone sodium phosphate, 5-Fluorouracil, Tobramycin and Pilocarpine nitrate are frequently used in various indications involving eye care, and the aim was to test the safety of these in cell culture. The in vitro cytotoxicity was carried out on the NIH 3T3 cell line by the Sulforhodamine B (SRB) assay. With the exception of 5-Fluorouracil, none of the other drugs demonstrated appreciable cytotoxicity up to high concentrations of 200 µg/ml at 48 hours of drug exposure. Hydrocortisone sodium succinate, Dexamethasone sodium phosphate, Tobramycin and Pilocarpine nitrate were confirmed to be non-cytotoxic while 5-Fluorouracil was highly cytotoxic especially at 48 hours at very low concentrations.

  10. Chemotherapy drug handling in first opinion small animal veterinary practices in the United Kingdom: results of a questionnaire survey.

    PubMed

    Edery, E G

    2017-05-27

    To investigate how first opinion small animal veterinary surgeons in the UK handled chemotherapeutic agents, a questionnaire was distributed at the 2014 British Small Animal Veterinary Association congress and by internet. Chemotherapy was regularly offered by 70.4 per cent of the respondents. Gold standards defined according to available guidelines for safe handling of antineoplastic drugs were poorly followed by general practitioners with only 2 per cent of respondents complying with all of them. Dedicated facilities for preparation and administration of cytotoxic drugs were variably available among participants. The level of training of staff indirectly involved in handling chemotherapy was appropriate in less than 50 per cent of practices. No association was found between demographic characteristics of the sampled population and the decision to perform chemotherapy. The results of this study raise concerns about the safety of the veterinary staff in first opinion practices involved in handling chemotherapy. British Veterinary Association.

  11. Occupational exposure to cytotoxic drugs in two UK oncology wards

    PubMed Central

    Ziegler, E; Mason, H; Baxter, P

    2002-01-01

    Aims: To investigate the potential exposure to cytotoxic drugs of staff on two oncology wards in a large district, UK hospital under normal working conditions. Methods: Cytotoxic drug exposure was monitored in urine samples, surface wipes, and on disposable gloves by using a number of commonly used marker drugs, namely cyclophosphamide, ifosfamide, methotrexate, and the platino coordinated drugs. Questionnaire data on their work practices, potential exposure, use of protective personal equipment, and relevant training were collected from nursing, domestic, and clerical staff on two oncology wards. Results: The majority of staff were female with a mean age of 31 years. Roughly half of the staff studied were specifically trained nurses with an average of 3.5 years experience of administering cytotoxic drugs. No cytotoxic drug preparation or reconstitution was carried out on the wards. Disposable gloves, plastic armlets and aprons, but not eye protection, were invariably worn where there was potential exposure to cytotoxics. No cytotoxic drug was detected in any of the staff's urine samples. Isolated disposable latex gloves from nurses administering drugs showed some contamination, as did some surfaces within the wards' sluice rooms, but not in the ward areas where the drugs were stored and checked prior to administration. Conclusions: The risk management strategies in place, including use of personal protective equipment, staff training, and other organisational measures, have ensured that internal exposure is lower than the detection limits for the current biological monitoring methods. Levels of contamination appear significantly lower than earlier, non-UK published studies where different risk management strategies were in place and, in particular, ward staff may have been involved in some degree of cytotoxic drug reconstitution. PMID:12205233

  12. Protection behaviors for cytotoxic drugs in oncology nurses of chemotherapy centers in Shiraz hospitals, South of Iran.

    PubMed

    Abbasi, Khadijeh; Hazrati, Maryam; Mohammadbeigi, Abolfazl; Ansari, Jasem; Sajadi, Mahboubeh; Hosseinnazzhad, Azam; Moshiri, Esmail

    2016-01-01

    The use of antineoplastic agents for the treatment of cancer is an increasingly common practice in hospitals. As a result, workers involved with handling antineoplastic drugs may be accidentally exposed to these agents, placing them at potential risk for long-term adverse effects. This study aimed to determine the occupational protection status of clinical nursing staff exposed to cytotoxic drugs. The study was designed as an analytic descriptive survey. The research settings took place in six centers of chemotherapy in Shiraz, Iran. The participants were 86 nurses who worked in oncology units and administered cytotoxic drugs. Data were collected using a questionnaire and a checklist which was developed by the investigators to determine occupational protection status of clinical nursing staff exposed to cytotoxic drugs. Percentage calculations and the independent samples t -test were used to see the general distribution and analysis of data. To statistically analyze of the data, SPSS software (version 16) was applied. The mean age of participants was 30.52 ± 6.50 years and 66.27% of the nurses worked on inpatient oncology wards. The mean practice score was 21.1 ± 3.76 that ranged from 12.5 to 31. The independent samples t -test showed the outpatient nurses were weaker in practice (17.2 ± 2.52) in comparison with university hospitals (23.35 ± 3.02, P < 0.001). Occupational protection status of clinical nursing staff exposed to cytotoxic drugs especially during administration and disposal of medicines was poor and rarely trained with this subject and was observed under the standard conditions. There is deficiency in the understanding and related protection practices of clinical nursing staff vocationally exposed to cytotoxic drugs. It is recommended that all clinical nursing staff should receive full occupational protection training about these matters and the authorities provide standard conditions of oncology wards.

  13. Functional differentiation of cytotoxic cancer drugs and targeted cancer therapeutics.

    PubMed

    Winkler, Gian C; Barle, Ester Lovsin; Galati, Giuseppe; Kluwe, William M

    2014-10-01

    There is no nationally or internationally binding definition of the term "cytotoxic drug" although this term is used in a variety of regulations for pharmaceutical development and manufacturing of drugs as well as in regulations for protecting medical personnel from occupational exposure in pharmacy, hospital, and other healthcare settings. The term "cytotoxic drug" is frequently used as a synonym for any and all oncology or antineoplastic drugs. Pharmaceutical companies generate and receive requests for assessments of the potential hazards of drugs regularly - including cytotoxicity. This publication is intended to provide functional definitions that help to differentiate between generically-cytotoxic cancer drugs of significant risk to normal human tissues, and targeted cancer therapeutics that pose much lesser risks. Together with specific assessments, it provides comprehensible guidance on how to assess the relevant properties of cancer drugs, and how targeted therapeutics discriminate between cancer and normal cells. The position of several regulatory agencies in the long-term is clearly to regulate all drugs regardless of classification, according to scientific risk based data. Despite ongoing discussions on how to replace the term "cytotoxic drugs" in current regulations, it is expected that its use will continue for the near future. Copyright © 2014 Elsevier Inc. All rights reserved.

  14. Safety analysis of occupational exposure of healthcare workers to residual contaminations of cytotoxic drugs using FMECA security approach.

    PubMed

    Le, Laetitia Minh Mai; Reitter, Delphine; He, Sophie; Bonle, Franck Té; Launois, Amélie; Martinez, Diane; Prognon, Patrice; Caudron, Eric

    2017-12-01

    Handling cytotoxic drugs is associated with chemical contamination of workplace surfaces. The potential mutagenic, teratogenic and oncogenic properties of those drugs create a risk of occupational exposure for healthcare workers, from reception of starting materials to the preparation and administration of cytotoxic therapies. The Security Failure Mode Effects and Criticality Analysis (FMECA) was used as a proactive method to assess the risks involved in the chemotherapy compounding process. FMECA was carried out by a multidisciplinary team from 2011 to 2016. Potential failure modes of the process were identified based on the Risk Priority Number (RPN) that prioritizes corrective actions. Twenty-five potential failure modes were identified. Based on RPN results, the corrective actions plan was revised annually to reduce the risk of exposure and improve practices. Since 2011, 16 specific measures were implemented successively. In six years, a cumulative RPN reduction of 626 was observed, with a decrease from 912 to 286 (-69%) despite an increase of cytotoxic compounding activity of around 23.2%. In order to anticipate and prevent occupational exposure, FMECA is a valuable tool to identify, prioritize and eliminate potential failure modes for operators involved in the cytotoxic drug preparation process before the failures occur. Copyright © 2017 Elsevier B.V. All rights reserved.

  15. [The Necessity and the Current Status of Safe Handling of Anticancer Drugs].

    PubMed

    Kanda, Kiyoko

    2017-07-01

    Number of people who handle anticancer drugs in their profession is increasing. Anticancer drugs, which are hazardous drugs(HD), exert cytocidal effects on cancer cells, but many have also been shown to have mutagenicity, teratogenicity and carcinogenicity; therefore, safe handling of anticancer drugs is necessary. In July 2015, the first Japanese guidelines for exposure control measures, namely, the "Joint Guidelines for Safe Handling of Cancer Chemotherapy Drugs", were published jointly by 3 societies. Our guideline is the creation of the Japanese Society of Cancer Nursing(JSCN), Japanese Society of Medical Oncology(JSMO)and Japanese Society of Pharmaceutical Oncology(JASPO)and has a historical significance. This paper states the necessity of safe handling of anticancer drugs, Japan's recent movement of safe handling, the introduction of joint guidelines of safe handling of anticancer drugs, and new movement of safe handling of USP chapter 800 in the United States.

  16. Monitoring occupational exposure to cancer chemotherapy drugs

    NASA Technical Reports Server (NTRS)

    Baker, E. S.; Connor, T. H.

    1996-01-01

    Reports of the health effects of handling cytotoxic drugs and compliance with guidelines for handling these agents are briefly reviewed, and studies using analytical and biological methods of detecting exposure are evaluated. There is little conclusive evidence of detrimental health effects from occupational exposure to cytotoxic drugs. Work practices have improved since the issuance of guidelines for handling these drugs, but compliance with the recommended practices is still inadequate. Of 64 reports published since 1979 on studies of workers' exposure to these drugs, 53 involved studies of changes in cellular or molecular endpoints (biological markers) and 12 described chemical analyses of drugs or their metabolites in urine (2 involved both, and 2 reported the same study). The primary biological markers used were urine mutagenicity, sister chromatid exchange, and chromosomal aberrations; other studies involved formation of micronuclei and measurements of urinary thioethers. The studies had small sample sizes, and the methods were qualitative, nonspecific, subject to many confounders, and possibly not sensitive enough to detect most occupational exposures. Since none of the currently available biological and analytical methods is sufficiently reliable or reproducible for routine monitoring of exposure in the workplace, further studies using these methods are not recommended; efforts should focus instead on wide-spread implementation of improved practices for handling cytotoxic drugs.

  17. Safe handling of antineoplastic drugs.

    PubMed

    Harrison, B R

    1994-07-01

    Managers should be aware of the hazardous properties of antineoplastic drugs and of the procedures and equipment commonly recommended to provide a safe working environment for employees, patients, and visitors. Compliance with the many published guidelines should help ensure passage of the inevitable Occupational Safety and Health Administration (OSHA) or Joint Commission inspection. Acute and chronic toxicities of the antineoplastic drugs, the potential for exposure in the workplace, and the basic guidelines for safe handling of these agents are reviewed.

  18. Antidepressant drugs can modify cytotoxic action of temozolomide.

    PubMed

    Bielecka, A M; Obuchowicz, E

    2017-09-01

    Cancer patients often require antidepressant treatment due to comorbid depressive disorder. However, recent studies have demonstrated that antidepressant drugs affect the efficacy of chemotherapy and promote progression of cancer. Apart from the main mood-improving effect, antidepressant drugs also produce analgesic, anxiolytic, hypnotic and pro-cognitive actions. Patients suffering from brain cancer constitute the greatest percentage of depressive cancer patients. However, vital safety and efficacy issues related to combined therapy with temozolomide, the first-line cytostatic in patients diagnosed with glioblastoma multiforme, and antidepressant drugs have yet to be addressed. The aim of the present studies was to evaluate the effect of three antidepressant drugs (imipramine, fluoxetine and tranylcypromine) on the cytotoxic efficacy of temozolomide on T98G cells, a human glioblastoma cell line. In our experiments, we used a complex experimental in vitro system to mimic the instability of a tumour's oxygen supply, thereby reproducing conditions that occur inside the tumour. The effect of the interaction between temozolomide and antidepressant drugs on viability, apoptosis and intensity of divisions of glioblastoma cells was evaluated under different oxygen conditions. The results of our studies demonstrated that imipramine and tranylcypromine reduced the cytotoxic efficacy of temozolomide under some oxygen conditions while fluoxetine did not demonstrate such effects. © 2016 John Wiley & Sons Ltd.

  19. Closed-system drug-transfer devices plus safe handling of hazardous drugs versus safe handling alone for reducing exposure to infusional hazardous drugs in healthcare staff.

    PubMed

    Gurusamy, Kurinchi Selvan; Best, Lawrence Mj; Tanguay, Cynthia; Lennan, Elaine; Korva, Mika; Bussières, Jean-François

    2018-03-27

    Occupational exposure to hazardous drugs can decrease fertility and result in miscarriages, stillbirths, and cancers in healthcare staff. Several recommended practices aim to reduce this exposure, including protective clothing, gloves, and biological safety cabinets ('safe handling'). There is significant uncertainty as to whether using closed-system drug-transfer devices (CSTD) in addition to safe handling decreases the contamination and risk of staff exposure to infusional hazardous drugs compared to safe handling alone. To assess the effects of closed-system drug-transfer of infusional hazardous drugs plus safe handling versus safe handling alone for reducing staff exposure to infusional hazardous drugs and risk of staff contamination. We searched the Cochrane Central Register of Controlled Trials (CENTRAL), MEDLINE, Embase, OSH-UPDATE, CINAHL, Science Citation Index Expanded, economic evaluation databases, the World Health Organization International Clinical Trials Registry Platform, and ClinicalTrials.gov to October 2017. We included comparative studies of any study design (irrespective of language, blinding, or publication status) that compared CSTD plus safe handling versus safe handling alone for infusional hazardous drugs. Two review authors independently identified trials and extracted data. We calculated the risk ratio (RR) and mean difference (MD) with 95% confidence intervals (CI) using both fixed-effect and random-effects models. We assessed risk of bias according to the risk of bias in non-randomised studies of interventions (ROBINS-I) tool, used an intracluster correlation coefficient of 0.10, and we assessed the quality of the evidence using GRADE. We included 23 observational cluster studies (358 hospitals) in this review. We did not find any randomised controlled trials or formal economic evaluations. In 21 studies, the people who used the intervention (CSTD plus safe handling) and control (safe handling alone) were pharmacists or pharmacy

  20. Handling of hazardous drugs - Effect of an innovative teaching session for nursing students.

    PubMed

    Zimmer, Janine; Hartl, Stefanie; Standfuß, Katrin; Möhn, Till; Bertsche, Astrid; Frontini, Roberto; Neininger, Martina P; Bertsche, Thilo

    2017-02-01

    Imparting knowledge and practical skills in hazardous drug handling in nursing students' education is essential to prevent hazardous exposure and to preserve nurses' health. This study aimed at comparing routine nursing education with an additional innovative teaching session. A prospective controlled study in nursing students was conducted in two study periods: (i) a status-quo period (routine education on handling hazardous drugs) followed by (ii) an intervention period (additional innovative teaching session on handling hazardous drugs). Nursing students at a vocational school were invited to participate voluntarily. In both study periods (i) and (ii), the following factors were analysed: (a) knowledge of hazardous drug handling by questionnaire, (b) practical skills in hazardous drug handling (e.g. cleaning) by a simulated handling scenario, (c) contamination with drug residuals on the work surface by fluorescent imaging. Fifty-three nursing students were enrolled. (a) Median knowledge improved from status-quo (39% right answers) to intervention (65%, p<0.001), (b) practical skills improved from status-quo (53% of all participants cleaned the work surface) to intervention (92%, p<0.001). (c) Median number of particles/m 2 decreased from status-quo to intervention (932/97, p<0.001). Compared with routine education, knowledge and practical skills in hazardous drug handling were significantly improved after an innovative teaching session. Additionally, the amount of residuals on the work surface decreased. This indicates a lower risk for hazardous drug exposure. Copyright © 2016 Elsevier Ltd. All rights reserved.

  1. Melanosomal sequestration of cytotoxic drugs contributes to the intractability of malignant melanomas

    PubMed Central

    Chen, Kevin G.; Valencia, Julio C.; Lai, Barry; Zhang, Guofeng; Paterson, Jill K.; Rouzaud, François; Berens, Werner; Wincovitch, Stephen M.; Garfield, Susan H.; Leapman, Richard D.; Hearing, Vincent J.; Gottesman, Michael M.

    2006-01-01

    Multidrug resistance mechanisms underlying the intractability of malignant melanomas remain largely unknown. In this study, we demonstrate that the development of multidrug resistance in melanomas involves subcellular sequestration of intracellular cytotoxic drugs such as cis-diaminedichloroplatinum II (cisplatin; CDDP). CDDP is initially sequestered in subcellular organelles such as melanosomes, which significantly reduces its nuclear localization when compared with nonmelanoma/KB-3-1 epidermoid carcinoma cells. The melanosomal accumulation of CDDP remarkably modulates melanogenesis through a pronounced increase in tyrosinase activity. The altered melanogenesis manifested an ≈8-fold increase in both intracellular pigmentation and extracellular transport of melanosomes containing CDDP. Thus, our experiments provide evidence that melanosomes contribute to the refractory properties of melanoma cells by sequestering cytotoxic drugs and increasing melanosome-mediated drug export. Preventing melanosomal sequestration of cytotoxic drugs by inhibiting the functions of melanosomes may have great potential as an approach to improving the chemosensitivity of melanoma cells. PMID:16777967

  2. Melanosomal sequestration of cytotoxic drugs contributes to the intractability of malignant melanomas

    NASA Astrophysics Data System (ADS)

    Chen, Kevin G.; Valencia, Julio C.; Lai, Barry; Zhang, Guofeng; Paterson, Jill K.; Rouzaud, François; Berens, Werner; Wincovitch, Stephen M.; Garfield, Susan H.; Leapman, Richard D.; Hearing, Vincent J.; Gottesman, Michael M.

    2006-06-01

    Multidrug resistance mechanisms underlying the intractability of malignant melanomas remain largely unknown. In this study, we demonstrate that the development of multidrug resistance in melanomas involves subcellular sequestration of intracellular cytotoxic drugs such as cis-diaminedichloroplatinum II (cisplatin; CDDP). CDDP is initially sequestered in subcellular organelles such as melanosomes, which significantly reduces its nuclear localization when compared with nonmelanoma/KB-3-1 epidermoid carcinoma cells. The melanosomal accumulation of CDDP remarkably modulates melanogenesis through a pronounced increase in tyrosinase activity. The altered melanogenesis manifested an 8-fold increase in both intracellular pigmentation and extracellular transport of melanosomes containing CDDP. Thus, our experiments provide evidence that melanosomes contribute to the refractory properties of melanoma cells by sequestering cytotoxic drugs and increasing melanosome-mediated drug export. Preventing melanosomal sequestration of cytotoxic drugs by inhibiting the functions of melanosomes may have great potential as an approach to improving the chemosensitivity of melanoma cells. cancer | melanosomes | skin | tumor therapy | multidrug resistance

  3. An interdisciplinary computational/experimental approach to evaluate drug-loaded gold nanoparticle tumor cytotoxicity

    PubMed Central

    Curtis, Louis T; England, Christopher G; Wu, Min; Lowengrub, John; Frieboes, Hermann B

    2016-01-01

    Aim: Clinical translation of cancer nanotherapy has largely failed due to the infeasibility of optimizing the complex interaction of nano/drug/tumor/patient parameters. We develop an interdisciplinary approach modeling diffusive transport of drug-loaded gold nanoparticles in heterogeneously-vascularized tumors. Materials & methods: Evaluated lung cancer cytotoxicity to paclitaxel/cisplatin using novel two-layer (hexadecanethiol/phosphatidylcholine) and three-layer (with high-density-lipoprotein) nanoparticles. Computer simulations calibrated to in-vitro data simulated nanotherapy of heterogeneously-vascularized tumors. Results: Evaluation of free-drug cytotoxicity between monolayer/spheroid cultures demonstrates a substantial differential, with increased resistance conferred by diffusive transport. Nanoparticles had significantly higher efficacy than free-drug. Simulations of nanotherapy demonstrate 9.5% (cisplatin) and 41.3% (paclitaxel) tumor radius decrease. Conclusion: Interdisciplinary approach evaluating gold nanoparticle cytotoxicity and diffusive transport may provide insight into cancer nanotherapy. PMID:26829163

  4. Early surgical suction and washout for treatment of cytotoxic drug extravasations.

    PubMed

    Vandeweyer, E; Deraemaecker, R

    2000-02-01

    This case report is presented to assess safety and efficiency of early suction and saline washout of extravasated cytotoxic drugs. Through multiple small skin incisions, the area of extravasation is first suctioned and subsequently extensively washed out with saline. Incisions are left open and the arm is elevated for 24 hours. A complete healing was obtained in five days without any skin or soft tissue loss. No additional treatment was needed. Early referral and surgical treatment by suction and washout is a safe and reliable treatment protocol for major cytotoxic drug extravasation injuries.

  5. Bayesian Models Leveraging Bioactivity and Cytotoxicity Information for Drug Discovery

    PubMed Central

    Ekins, Sean; Reynolds, Robert C.; Kim, Hiyun; Koo, Mi-Sun; Ekonomidis, Marilyn; Talaue, Meliza; Paget, Steve D.; Woolhiser, Lisa K.; Lenaerts, Anne J.; Bunin, Barry A.; Connell, Nancy; Freundlich, Joel S.

    2013-01-01

    SUMMARY Identification of unique leads represents a significant challenge in drug discovery. This hurdle is magnified in neglected diseases such as tuberculosis. We have leveraged public high-throughput screening (HTS) data, to experimentally validate virtual screening approach employing Bayesian models built with bioactivity information (single-event model) as well as bioactivity and cytotoxicity information (dual-event model). We virtually screen a commercial library and experimentally confirm actives with hit rates exceeding typical HTS results by 1-2 orders of magnitude. The first dual-event Bayesian model identified compounds with antitubercular whole-cell activity and low mammalian cell cytotoxicity from a published set of antimalarials. The most potent hit exhibits the in vitro activity and in vitro/in vivo safety profile of a drug lead. These Bayesian models offer significant economies in time and cost to drug discovery. PMID:23521795

  6. Enhanced cytotoxicity of anticancer drug delivered by novel nanoscale polymeric carrier

    NASA Astrophysics Data System (ADS)

    Stoika, R.; Boiko, N.; Senkiv, Y.; Shlyakhtina, Y.; Panchuk, R.; Finiuk, N.; Filyak, Y.; Bilyy, R.; Kit, Y.; Skorohyd, N.; Klyuchivska, O.; Zaichenko, A.; Mitina, N.; Ryabceva, A.

    2013-04-01

    We compared in vitro action of highly toxic anticancer drug doxorubicin under its delivery to the mammalian tumor cells in free form and after encapsulation in novel bio-functionalized nanoscale polymeric carrier. Such encapsulation was found to enhance significantly drug uptake by the targeted cells, as well as its cytotoxic action. 10 times higher cytotoxicity of the carrier-immobilized doxorubicin comparing to its free form was demonstrated by direct cell counting, and 5 times higher cytotoxicity of encapsulated doxorubicin was shown by FACS analysis. The polymeric carrier itself did not possess significant toxicity in vitro or in vivo (laboratory mice). The carrier protected against negative side effects of doxorubicin in mice with experimental NK/Ly lymphoma. The life duration of tumor-bearing animals treated with doxorubicin-carrier complex was significantly longer than life duration in animals treated with free doxorubicin. Besides, the effective treatment dose of the carrier-delivered doxorubicin in tumor-bearing mice was 10 times lower than such dose of free doxorubicin. Thus, novel nanoscale polymers possess high potential as drug carrier.

  7. 21 CFR 203.32 - Drug sample storage and handling requirements.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... 21 Food and Drugs 4 2010-04-01 2010-04-01 false Drug sample storage and handling requirements. 203.32 Section 203.32 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN... contamination, deterioration, and adulteration. (b) Compliance with compendial and labeling requirements...

  8. Surgical treatment of ulcers caused by extravasation of cytotoxic drugs.

    PubMed

    D'Andrea, Francesco; Onesti, Maria Giuseppina; Nicoletti, Giovanni Francesco; Grella, Elisa; Renzi, Luca Francesco; Spalvieri, Cristina; Scuderi, Nicolò

    2004-01-01

    Despite preventive measures, the extravasation of cytotoxic drugs still occurs in 0.6% to 6% of cases. The aetiology is thought to be that tissue necrosis develops into a chronic ulcer, which causes problems if the harmful action of the drug is not blocked. From 1988-2002 at the Department of Plastic Surgery of Rome University "La Sapienza", 240 patients presented with extravasation of cytotoxic drugs; all had been treated with an original conservative protocol first described in 1994, based on the repeated local infiltration of a large quantity of saline solution (90-540 ml) into the area of extravasation. We considered only cases with actively necrotic lesions. Eleven of the 240 patients (5%) had ulcers ranging from small ulcers to extensive areas of tissue necrosis. Of the 11 patients, eight had already had ulcers, while the remaining three were those in whom our conservative protocol had not prevented necrosis. They were all operated on and given grafts, local flaps, reverse radial flaps, and free flaps.

  9. Cytotoxic drug use in treatment of dogs and cats with cancer by UK veterinary practices (2003 to 2004).

    PubMed

    Cave, T A; Norman, P; Mellor, D

    2007-07-01

    To describe the range and frequency of cytotoxic drugs prescribed within UK veterinary practices to treat dogs and cats with cancer, determine the effect of practice demographic variables on this practice and determine the frequency with which intravenous catheters were used during administration of parenteral cytotoxic drugs. A postal survey of 1838 veterinary practices providing care for dogs and cats within the UK. Prescription of cytotoxic drugs to treat dogs and cats with cancer during the preceding 12 months was reported by 70.8 per cent practices. The most widely prescribed agents were cyclophosphamide (65.4 per cent) and vincristine (63.5 per cent). Twenty-three per cent of responding practices had prescribed an antitumour antibiotic and 8.3 per cent had prescribed a platinum agent. The median frequency of prescription was between once a month and once every three months. Increasing frequency and range of cytotoxic drug prescription were associated with practice employment of higher numbers of veterinary surgeons and increased levels of pet insurance among practice clients. Almost a quarter of practices administering vesicant parenteral cytotoxic drugs failed to always use intravenous catheters to do so. Prescription of cytotoxic drugs, and therefore the potential for occupational exposure of staff, was widespread among UK veterinary practices providing care for dogs and cats.

  10. [Drug Dependence and Cytotoxicity of Law-evading Drugs: Their Identities Explored from Basic Research].

    PubMed

    Funada, Masahiko

    2016-01-01

      Cases of people experiencing disturbed consciousness or dyspnea, causing traffic accidents, or requiring ambulance transport to hospital due to abuse of law-evading chemical substances have become a serious social problem in Japan. Most law-evading herbal products are marketed as incense or herbs and consist of finely chopped, dry vegetative matter mixed with chemical substances (drugs). Analysis of the chemical substances in these herbal products has demonstrated that they contain synthetic cannabinoids. Because there are many cannabinoid compounds, even if a particular drug is regulated, similar compounds that differ only slightly in structure may be added in their place. Therefore a cat-and-mouse game exists between regulations on chemical substances and their propagation. This paper summarizes the pharmacological actions and dangers of chemical substances contained in law-evading herbal products by focusing on synthetic cannabinoids, as a group of chemical substances contained in these products. Furthermore, comprehensive designations of synthetic cannabinoids have been introduced as a new method of regulation that emphasizes the similarity of chemical structures; this paper also outlines the comprehensive designations. We established a psychic-dependence liability and cytotoxicity screening system for synthetic cannabinoids using animals (behavioral analysis in vivo) and cell cultures (cytotoxicity analysis in vitro). With our drug-screening system, we were able rapidly to evaluate and quantify psychic-dependence liabilities and cytotoxicity of synthetic cannabinoids contained in law-evading herbal products. These scientific data using our screening system contributed to the establishment of legislation for comprehensive designations of synthetic cannabinoids.

  11. Tunable cytotoxic aptamer-drug conjugates for the treatment of prostate cancer.

    PubMed

    Powell Gray, Bethany; Kelly, Linsley; Ahrens, Douglas P; Barry, Ashley P; Kratschmer, Christina; Levy, Matthew; Sullenger, Bruce A

    2018-05-01

    Therapies that can eliminate both local and metastatic prostate tumor lesions while sparing normal organ tissue are desperately needed. With the goal of developing an improved drug-targeting strategy, we turned to a new class of targeted anticancer therapeutics: aptamers conjugated to highly toxic chemotherapeutics. Cell selection for aptamers with prostate cancer specificity yielded the E3 aptamer, which internalizes into prostate cancer cells without targeting normal prostate cells. Chemical conjugation of E3 to the drugs monomethyl auristatin E (MMAE) and monomethyl auristatin F (MMAF) yields a potent cytotoxic agent that efficiently kills prostate cancer cells in vitro but does not affect normal prostate epithelial cells. Importantly, the E3 aptamer targets tumors in vivo and treatment with the MMAF-E3 conjugate significantly inhibits prostate cancer growth in mice, demonstrating the in vivo utility of aptamer-drug conjugates. Additionally, we report the use of antidotes to block E3 aptamer-drug conjugate cytotoxicity, providing a safety switch in the unexpected event of normal cell killing in vivo.

  12. A prospective three-step intervention study to prevent medication errors in drug handling in paediatric care.

    PubMed

    Niemann, Dorothee; Bertsche, Astrid; Meyrath, David; Koepf, Ellen D; Traiser, Carolin; Seebald, Katja; Schmitt, Claus P; Hoffmann, Georg F; Haefeli, Walter E; Bertsche, Thilo

    2015-01-01

    To prevent medication errors in drug handling in a paediatric ward. One in five preventable adverse drug events in hospitalised children is caused by medication errors. Errors in drug prescription have been studied frequently, but data regarding drug handling, including drug preparation and administration, are scarce. A three-step intervention study including monitoring procedure was used to detect and prevent medication errors in drug handling. After approval by the ethics committee, pharmacists monitored drug handling by nurses on an 18-bed paediatric ward in a university hospital prior to and following each intervention step. They also conducted a questionnaire survey aimed at identifying knowledge deficits. Each intervention step targeted different causes of errors. The handout mainly addressed knowledge deficits, the training course addressed errors caused by rule violations and slips, and the reference book addressed knowledge-, memory- and rule-based errors. The number of patients who were subjected to at least one medication error in drug handling decreased from 38/43 (88%) to 25/51 (49%) following the third intervention, and the overall frequency of errors decreased from 527 errors in 581 processes (91%) to 116/441 (26%). The issue of the handout reduced medication errors caused by knowledge deficits regarding, for instance, the correct 'volume of solvent for IV drugs' from 49-25%. Paediatric drug handling is prone to errors. A three-step intervention effectively decreased the high frequency of medication errors by addressing the diversity of their causes. Worldwide, nurses are in charge of drug handling, which constitutes an error-prone but often-neglected step in drug therapy. Detection and prevention of errors in daily routine is necessary for a safe and effective drug therapy. Our three-step intervention reduced errors and is suitable to be tested in other wards and settings. © 2014 John Wiley & Sons Ltd.

  13. Sulforaphane increases drug-mediated cytotoxicity toward cancer stem-like cells of pancreas and prostate.

    PubMed

    Kallifatidis, Georgios; Labsch, Sabrina; Rausch, Vanessa; Mattern, Juergen; Gladkich, Jury; Moldenhauer, Gerhard; Büchler, Markus W; Salnikov, Alexei V; Herr, Ingrid

    2011-01-01

    Despite intense efforts to develop treatments against pancreatic cancer, agents that cure this highly resistant and metastasizing disease are not available. Considerable attention has focused on broccoli compound sulforaphane (SF), which is suggested as combination therapy for targeting of pancreatic cancer stem cells (CSCs). However, there are concerns that antioxidative properties of SF may interfere with cytotoxic drugs-as suggested, e.g., for vitamins. Therefore we investigated a combination therapy using established pancreatic CSCs. Although cisplatin (CIS), gemcitabine (GEM), doxorubicin, 5-flurouracil, or SF effectively induced apoptosis and prevented viability, combination of a drug with SF increased toxicity. Similarly, SF potentiated the drug effect in established prostate CSCs revealing that SF enhances drug cytotoxicity also in other tumor entities. Most importantly, combined treatment intensified inhibition of clonogenicity and spheroid formation and aldehyde dehydrogenase 1 (ALDH1) activity along with Notch-1 and c-Rel expression indicating that CSC characteristics are targeted. In vivo, combination treatment was most effective and totally abolished growth of CSC xenografts and tumor-initiating potential. No pronounced side effects were observed in normal cells or mice. Our data suggest that SF increases the effectiveness of various cytotoxic drugs against CSCs without inducing additional toxicity in mice.

  14. [Adverse muscle effects of a podofyllotoxin-containing cytotoxic drug product with simvastatin].

    PubMed

    Kaipiainen-Seppänen, Oili; Savolainen, Elina; Elfving, Pia; Kononoff, Aulikki

    2009-01-01

    With the ageing population, drug interactions pose an increasing challenge to health professionals. We describe four patients, for whom concurrent administration of a podofyllotoxin-containing cytotoxic drug product and simvastatin caused severe adverse effects on muscles, including muscle pain, soreness or fatigue or weakness, and in some patients also disintegration of muscle tissue, i.e. rhabdomyolysis. The metabolism of both drugs proceeds via the common CYP3A4 enzyme pathway.

  15. Cytotoxic drug residues in urine of dogs receiving anticancer chemotherapy.

    PubMed

    Knobloch, A; Mohring, S A I; Eberle, N; Nolte, I; Hamscher, G; Simon, D

    2010-01-01

    The presence of cytotoxic drug residues in urine of dogs may represent an exposure risk for pet owners and other people as well as a potential environmental contaminant. However, studies on cytotoxic drug residues in excretions of clinical patients are lacking in veterinary oncology. Variable concentrations of cytotoxic residues are present in urine samples, depending on sampling time and substance. Client-owned dogs with lymphoma or mast cell tumors treated with standard chemotherapy protocols. Urine samples were collected before, directly after, and on days after administration of chemotherapy. Measurement of vincristine, vinblastine, cyclophosphamide, and doxorubicin residues in canine urine was performed by a quantitative liquid chromatography tandem mass spectrometry (LC/MS/MS) method. Median cyclophosphamide residue concentration was 398.2 microg/L directly after treatment (d0) and was below the level of detection on days 1-3 (d1, d2, d3). Median vincristine residue concentration was 53.8 microg/L directly after treatment and was 20.2, 11.4, and 6.6 microg/L on days 1, 2, and 3. Median vinblastine residues were 144.9 (d0), 70.8 (d1), 35.6 (d2), and 18.7 microg/L (d3) with low concentrations detectable for 7 days after treatment. Median urine doxorubicin concentrations were 354.0 (d0), 165.6 (d1), 156.9 (d2), and 158.2 microg/L (d3). Low concentrations of doxorubicin were measurable up to 21 days after administration. Variable concentrations of chemotherapeutics were measured in urine samples, depending on sampling time point and drug. Findings may inform current chemoprotection guidelines and help minimize exposure risks.

  16. Cell proliferation in dimethylhydrazine-induced colonic adenocarcinomata following cytotoxic drug treatment.

    PubMed

    Tutton, P J; Barkla, D H

    1978-08-25

    A stathmokinetic technique was used to study cell proliferation in dimethylhydrazine-induced adenocarcinomata of rat colon following treatment with cytotoxic drugs. The rate of cell division was significantly increased three days after treatment with 5,7-dihydroxytryptamine and seven days after treatment with 5-fluorouracil. Acceleration of tumour cell proliferation following 5,7-dihydroxytryptamine treatment was inhibited by treating animals with the antiseritoninergic drug Xylamidine Tosylate. Acceleration of tumour cell proliferation following 5-fluorouracil treatment was inhibited by treating animals either with the antiseritoninergic drug BW501 or with the histamine H2-receptor blocking drug Cimetidine.

  17. Treatment of a Solid Tumor Using Engineered Drug-Resistant Immunocompetent Cells and Cytotoxic Chemotherapy

    PubMed Central

    Dasgupta, Anindya; Shields, Jordan E.

    2012-01-01

    Abstract Multimodal therapy approaches, such as combining chemotherapy agents with cellular immunotherapy, suffers from potential drug-mediated toxicity to immune effector cells. Overcoming such toxic effects of anticancer cellular products is a potential critical barrier to the development of combined therapeutic approaches. We are evaluating an anticancer strategy that focuses on overcoming such a barrier by genetically engineering drug-resistant variants of immunocompetent cells, thereby allowing for the coadministration of cellular therapy with cytotoxic chemotherapy, a method we refer to as drug-resistant immunotherapy (DRI). The strategy relies on the use of cDNA sequences that confer drug resistance and recombinant lentiviral vectors to transfer nucleic acid sequences into immunocompetent cells. In the present study, we evaluated a DRI-based strategy that incorporates the immunocompetent cell line NK-92, which has intrinsic antitumor properties, genetically engineered to be resistant to both temozolomide and trimetrexate. These immune effector cells efficiently lysed neuroblastoma cell lines, which we show are also sensitive to both chemotherapy agents. The antitumor efficacy of the DRI strategy was demonstrated in vivo, whereby neuroblastoma-bearing NOD/SCID/γ-chain knockout (NSG) mice treated with dual drug-resistant NK-92 cell therapy followed by dual cytotoxic chemotherapy showed tumor regression and significantly enhanced survival compared with animals receiving either nonengineered cell-based therapy and chemotherapy, immunotherapy alone, or chemotherapy alone. These data show there is a benefit to using drug-resistant cellular therapy when combined with cytotoxic chemotherapy approaches. PMID:22397715

  18. Cytotoxic Activity of Salicylic Acid-Containing Drug Models with Ionic and Covalent Binding

    PubMed Central

    2015-01-01

    Three different types of drug delivery platforms based on imidazolium ionic liquids (ILs) were synthesized in high preparative yields, namely, the models involving (i) ionic binding of drug and IL; (ii) covalent binding of drug and IL; and (iii) dual binding using both ionic and covalent approaches. Seven ionic liquids containing salicylic acid (SA-ILs) in the cation or/and in the anion were prepared, and their cytotoxicity toward the human cell lines CaCo-2 (colorectal adenocarcinoma) and 3215 LS (normal fibroblasts) was evaluated. Cytotoxicity of SA-ILs was significantly higher than that of conventional imidazolium-based ILs and was comparable to the pure salicylic acid. It is important to note that the obtained SA-ILs dissolved in water more readily than salicylic acid, suggesting benefits of possible usage of traditional nonsoluble active pharmaceutical ingredients in an ionic liquid form. PMID:26617961

  19. Sulforaphane Increases Drug-mediated Cytotoxicity Toward Cancer Stem-like Cells of Pancreas and Prostate

    PubMed Central

    Kallifatidis, Georgios; Labsch, Sabrina; Rausch, Vanessa; Mattern, Juergen; Gladkich, Jury; Moldenhauer, Gerhard; Büchler, Markus W.; Salnikov, Alexei V.; Herr, Ingrid

    2011-01-01

    Despite intense efforts to develop treatments against pancreatic cancer, agents that cure this highly resistant and metastasizing disease are not available. Considerable attention has focused on broccoli compound sulforaphane (SF), which is suggested as combination therapy for targeting of pancreatic cancer stem cells (CSCs). However, there are concerns that antioxidative properties of SF may interfere with cytotoxic drugs—as suggested, e.g., for vitamins. Therefore we investigated a combination therapy using established pancreatic CSCs. Although cisplatin (CIS), gemcitabine (GEM), doxorubicin, 5-flurouracil, or SF effectively induced apoptosis and prevented viability, combination of a drug with SF increased toxicity. Similarly, SF potentiated the drug effect in established prostate CSCs revealing that SF enhances drug cytotoxicity also in other tumor entities. Most importantly, combined treatment intensified inhibition of clonogenicity and spheroid formation and aldehyde dehydrogenase 1 (ALDH1) activity along with Notch-1 and c-Rel expression indicating that CSC characteristics are targeted. In vivo, combination treatment was most effective and totally abolished growth of CSC xenografts and tumor-initiating potential. No pronounced side effects were observed in normal cells or mice. Our data suggest that SF increases the effectiveness of various cytotoxic drugs against CSCs without inducing additional toxicity in mice. PMID:20940707

  20. Microbiological challenge of four protective devices for the reconstitution of cytotoxic agents.

    PubMed

    De Prijck, K; D'Haese, E; Vandenbroucke, J; Coucke, W; Robays, H; Nelis, H J

    2008-12-01

    To evaluate the susceptibility to microbial contamination that occurs during simulated handling of protective devices for the preparation of cytotoxic drug solutions. Four devices, i.e. Chemoprotect spike, Clave connector, PhaSeal and Securmix were challenged with low and high inocula of micro-organisms. The cells, transferred to the connected vials during repeated manipulations of the devices were counted by means of solid-phase cytometry. Of the four devices, PhaSeal afforded the lowest transfer of micro-organisms. Secondly, the efficiency of procedures for the disinfection of an artificially contaminated rubber stopper was compared prior to connection of the vial to the PhaSeal device. Spraying or swabbing alone was inadequate, as opposed to a combination of spraying [0.5% or 2.0% (w/v) chlorhexidine in isopropanol] and swabbing [70% (v/v) isopropanol]. Although Phaseal afforded the lowest transfer of micro-organisms, adequate disinfection of the vial prior to connection remains required. Unlike aspects of operator protection, which are well documented, the microbiological safety of protective devices for the preparation of cytotoxic drugs has not been addressed in the literature. This study estimates the susceptibility to microbial contamination during handling of four commonly used devices.

  1. 6-mercaptopurine transport in human lymphocytes: Correlation with drug-induced cytotoxicity

    PubMed Central

    CONKLIN, Laurie S.; CUFFARI, Carmen; OKAZAKI, Toshihiko; MIAO, Yinglei; SAATIAN, Bahman; CHEN, Tian-E.; TSE, Ming; BRANT, Steven R.; LI, Xuhang

    2013-01-01

    OBJECTIVE 6-mercaptopurine (6-MP) is efficacious in the treatment of inflammatory bowel disease (IBD). However, about one-third of patients respond poorly to therapy. This study aimed to characterize the inherent differences in 6-MP transport that may contribute to the differences in treatment responses. METHODS Intracellular 6-MP accumulation was assayed in Epstein–Barr virus (EBV)-transformed lymphocytes from IBD patients, using 14C-radiolabeled 6-MP. Cell proliferation was determined by methyl thiazolyl tetrazolium (MTT) assay. Apoptosis was assayed based on the activation of caspase 3. The expressions of 15 potential 6-MP transporters were evaluated by reverse transcription-polymerase chain reaction (RT-PCR). RESULTS Intracellular 6-MP accumulation, varying significantly among patients, was carrier-dependent and partially sodium-dependent. 6-MP cytotoxicity was, at least in part, due to apoptosis and correlated with intracellular drug accumulation. The efflux transporters did not appear to contribute to the variability of intracellular drug accumulation between patients, since none correlated with drug accumulation or cyto-toxicity. Rather, differential expression of five influx/uptake transporters might be a key contributor to the difference in the accumulation of and susceptibility to the drug. CONCLUSIONS The heterogeneity of the drug transporters may be the reason for the therapeutic sensitivity of 6-MP in IBD patients. As the 6-MP uptake is a carrier-mediated and partially sodium-dependent process, future studies are necessary to evaluate the role of the putative transporters and their correlation with drug sensitivity in patients. PMID:22257476

  2. Albumin nanoparticle encapsulation of potent cytotoxic therapeutics shows sustained drug release and alleviates cancer drug toxicity.

    PubMed

    Wang, Hangxiang; Wu, Jiaping; Xu, Li; Xie, Ke; Chen, Chao; Dong, Yuehan

    2017-02-23

    We here provide the first report on the construction of nanoparticles formulating highly potent cytotoxic therapeutics using albumin. Maytansinoid DM1 can be efficiently integrated into albumin nanoparticles, resulting in remarkable alleviation of in vivo drug toxicity and expanding the repertoire of albumin technology available for cancer therapy.

  3. Polymeric nanoparticles affect the intracellular delivery, antiretroviral activity and cytotoxicity of the microbicide drug candidate dapivirine.

    PubMed

    das Neves, José; Michiels, Johan; Ariën, Kevin K; Vanham, Guido; Amiji, Mansoor; Bahia, Maria Fernanda; Sarmento, Bruno

    2012-06-01

    To assess the intracellular delivery, antiretroviral activity and cytotoxicity of poly(ε-caprolactone) (PCL) nanoparticles containing the antiretroviral drug dapivirine. Dapivirine-loaded nanoparticles with different surface properties were produced using three surface modifiers: poloxamer 338 NF (PEO), sodium lauryl sulfate (SLS) and cetyl trimethylammonium bromide (CTAB). The ability of nanoparticles to promote intracellular drug delivery was assessed in different cell types relevant for vaginal HIV transmission/microbicide development. Also, antiretroviral activity of nanoparticles was determined in different cell models, as well as their cytotoxicity. Dapivirine-loaded nanoparticles were readily taken up by different cells, with particular kinetics depending on the cell type and nanoparticles, resulting in enhanced intracellular drug delivery in phagocytic cells. Different nanoparticles showed similar or improved antiviral activity compared to free drug. There was a correlation between increased antiviral activity and increased intracellular drug delivery, particularly when cell models were submitted to a single initial short-course treatment. PEO-PCL and SLS-PCL nanoparticles consistently showed higher selectivity index values than free drug, contrasting with high cytotoxicity of CTAB-PCL. These results provide evidence on the potential of PCL nanoparticles to affect in vitro toxicity and activity of dapivirine, depending on surface engineering. Thus, this formulation approach may be a promising strategy for the development of next generation microbicides.

  4. Cytotoxicity of compounds from Xylopia aethiopica towards multi-factorial drug-resistant cancer cells.

    PubMed

    Kuete, Victor; Sandjo, Louis P; Mbaveng, Armelle T; Zeino, Maen; Efferth, Thomas

    2015-12-15

    Multidrug resistance (MDR) in cancer represent a major hurdle in chemotherapy. Previously, the methanol extract of the medicinal spice Xylopia aethiopica displayed considerable cytotoxicity against multidrug resistant (MDR) cancer cell lines. The present study was designed to assess the cytotoxicity of compounds, 16α-hydroxy-ent-kauran-19-oic acid (2), 3,4',5-trihydroxy-6″,6″-dimethylpyrano[2,3-g]flavone (3), isotetrandrine (5) and trans-tiliroside (6) derived from the methanol crude extract of Xylopia aethiopica against 9 drug-sensitive and -resistant cancer cell lines. The resazurin reduction assay was used to evaluate the cytotoxicity of these compounds, whilst caspase-Glo assay was used to detect caspase activation. Cell cycle, mitochondrial membrane potential (MMP) and levels of reactive oxygen species (ROS) were all analyzed via flow cytometry. Flavonoid 3 and alkaloid 5 also displayed IC50 values ranging from 2.61 µM (towards leukemia CCRF-CEM cells) to 18.60 µM (towards gliobastoma multiforme U87MG.ΔEGFR cells) and from 1.45 µM (towards HepG2 cells) to 7.28 µM (towards MDA-MB-231-pcDNA cells), respectively. IC50 values ranged from 0.20 µM (against CCRF-CEM cells) to 195.12 µM (against CEM/ADR5000 cells) for doxorubicin. Compound 3 induced apoptosis in leukemia CCRF-CEM cells mediated by the disruption of the MMP, whilst 5 induced apoptosis mediated by ROS production. Compounds 2 and 5 represent potential cytotoxic phytochemicals that deserve more investigations to develop novel antineoplastic drugs against multifactorial drug-resistant cancers. Copyright © 2015 Elsevier GmbH. All rights reserved.

  5. Lipid encapsulation of arsenic trioxide attenuates cytotoxicity and allows for controlled anticancer drug release.

    PubMed

    Chen, Haimei; MacDonald, Robert C; Li, Shuyou; Krett, Nancy L; Rosen, Steven T; O'Halloran, Thomas V

    2006-10-18

    Arsenic trioxide (ATO, As2O3) is emerging as a front line agent for treatment of acute promyelocytic leukemia with giving a complete remission rate of 83-95%. ATO also shows significant activity in relapsed/refactory multiple myeloma; however, efforts to expand clinical utility to other cancers have been limited by its toxicity profile at higher doses. New bioavailable, liposome encapsulated As(III) materials exhibit a significantly attenuated cytotoxicity that undergoes pH-triggered release of an active drug. The arsenic drugs are loaded into 100-nm-scale liposomes at high concentration (>270 mM) and excellent retention (shelf life > 6 months at 4 degrees C), as determined by inductively coupled plasma optical emission spectroscopy (ICP-OES), transmission electron microscopy (TEM), and energy-dispersive X-ray (EDX) diffraction. In the loading mechanism, arsenous acid crosses the bilayer membrane in exchange for acetic acid and an insoluble transitional metal (e.g., Ni2+, Co2+) arsenite salt is formed. The resultant liposomal arsenic nanoparticles appear to be stable in physiological situations but release the drug cargo in a lower pH environment, as encountered in intracellular endosomes. These drugs exhibit attenuated cytotoxicities against human lymphoma tumor cells compared with that of free As2O3. Controlled release of arsenic drugs, and hence control of toxicity, is feasible with this system. The results demonstrate that cytotoxicity can be controlled via transitions of the inorganic drug between solid and solution phases and suggest a mechanism for further improvement of the risk/benefit ratio of As2O3 in treatment of a variety of cancers.

  6. 6-Mercaptopurine transport in human lymphocytes: correlation with drug-induced cytotoxicity.

    PubMed

    Conklin, Laurie S; Cuffari, Carmen; Okazaki, Toshihiko; Miao, Yinglei; Saatian, Bahman; Chen, Tian-E; Tse, Ming; Brant, Steven R; Li, Xuhang

    2012-02-01

      6-mercaptopurine (6-MP) is efficacious in the treatment of inflammatory bowel disease (IBD). However, about one-third of patients respond poorly to therapy. This study aimed to characterize the inherent differences in 6-MP transport that may cotribute to the differences in treatment responses.   Intracellular 6-MP accumulation was assayed in Epstein-Barr virus (EBV)-transformed lymphocytes from IBD patients, using (14) C-radiolabeled 6-MP. Cell proliferation was determined by methyl thiazolyl tetrazolium (MTT) assay. Apoptosis was assayed based on the activation of caspase 3. The expressions of 15 potential 6-MP transporters were evaluated by reverse transcription-polymerase chain reaction (RT-PCR).   Intracellular 6-MP accumulation, varying significantly among patients, was carrier-dependent and partially sodium-dependent. 6-MP cytotoxicity was, at least in part, due to apoptosis and correlated with intracellular drug accumulation. The efflux transporters did not appear to contribute to the variability of intracellular drug accumulation between patients, since none correlated with drug accumulation or cytotoxicity. Rather, differential expression of five influx/uptake transporters might be a key contributor to the difference in the accumulation of and susceptibility to the drug.   The heterogeneity of the drug transporters may be the reason for the therapeutic sensitivity of 6-MP in IBD patients. As the 6-MP uptake is a carrier-mediated and partially sodium-dependent process, future studies are necessary to evaluate the role of the putative transporters and their correlation with drug sensitivity in patients. © 2012 The Authors. Journal of Digestive Diseases © 2012 Chinese Medical Association Shanghai Branch, Chinese Society of Gastroenterology, Renji Hospital Affiliated to Shanghai Jiaotong University School of Medicine and Blackwell Publishing Asia Pty Ltd.

  7. Murine tissues exposed to cytotoxic drugs display altered patterns of Candida albicans adhesion.

    PubMed Central

    López-Ribot, J L; McVay, C S; Chaffin, W L

    1994-01-01

    An ex vivo adhesion assay was used to examine the binding of Candida albicans yeast cells to tissues from mice treated with cytotoxic drugs such as lipopolysaccharide and the clinically used anticancer drugs doxorubicin, cisplatin, and vincristine. No major differences were observed in binding of the fungal cells to liver and kidney tissues from treated or untreated animals. All drug-treated spleens displayed altered patterns of C. albicans adhesion compared with the control group, with yeast cells bound not only to the marginal zone but also to the white and red pulp. Immunostaining for macrophages, which are proposed as the site of normal adhesion, showed no apparent differences between the control and the experimental spleens that could account for the change in adhesion patterns. Scanning electron microscopy images suggested that yeast binding to the white pulp of treated tissue is mediated through fibers, perhaps extracellular matrix components exposed as result of the cytotoxic treatment. Exposure of new attachment sites for C. albicans in treated tissues may facilitate initiation of infection. Images PMID:7927678

  8. 10 CFR 707.12 - Specimen collection, handling and laboratory analysis for drug testing.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... drug testing. 707.12 Section 707.12 Energy DEPARTMENT OF ENERGY WORKPLACE SUBSTANCE ABUSE PROGRAMS AT DOE SITES Procedures § 707.12 Specimen collection, handling and laboratory analysis for drug testing... collection to final disposition of specimens, and testing laboratories shall use appropriate cutoff levels in...

  9. 10 CFR 707.12 - Specimen collection, handling and laboratory analysis for drug testing.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... drug testing. 707.12 Section 707.12 Energy DEPARTMENT OF ENERGY WORKPLACE SUBSTANCE ABUSE PROGRAMS AT DOE SITES Procedures § 707.12 Specimen collection, handling and laboratory analysis for drug testing... collection to final disposition of specimens, and testing laboratories shall use appropriate cutoff levels in...

  10. 10 CFR 707.12 - Specimen collection, handling and laboratory analysis for drug testing.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... drug testing. 707.12 Section 707.12 Energy DEPARTMENT OF ENERGY WORKPLACE SUBSTANCE ABUSE PROGRAMS AT DOE SITES Procedures § 707.12 Specimen collection, handling and laboratory analysis for drug testing... collection to final disposition of specimens, and testing laboratories shall use appropriate cutoff levels in...

  11. 10 CFR 707.12 - Specimen collection, handling and laboratory analysis for drug testing.

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... drug testing. 707.12 Section 707.12 Energy DEPARTMENT OF ENERGY WORKPLACE SUBSTANCE ABUSE PROGRAMS AT DOE SITES Procedures § 707.12 Specimen collection, handling and laboratory analysis for drug testing... collection to final disposition of specimens, and testing laboratories shall use appropriate cutoff levels in...

  12. 10 CFR 707.12 - Specimen collection, handling and laboratory analysis for drug testing.

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... drug testing. 707.12 Section 707.12 Energy DEPARTMENT OF ENERGY WORKPLACE SUBSTANCE ABUSE PROGRAMS AT DOE SITES Procedures § 707.12 Specimen collection, handling and laboratory analysis for drug testing... collection to final disposition of specimens, and testing laboratories shall use appropriate cutoff levels in...

  13. In vitro cytotoxicity of CD8+ T cells in multi-drug-resistant tuberculosis. A preliminary report.

    PubMed

    Sada-Ovalle, Isabel; Torre-Bouscoulet, Luis; Valdez-Vázquez, Rafael; Lascurain, Ricardo

    2009-05-01

    Specific CD8+ T-cell cytotoxicity has been recognized as being involved in the elimination of drug-susceptible tuberculosis (DS-TB). Given that there is currently no information on the cytotoxic effector functions of CD8+ T cells in multi-drug-resistant tuberculosis (MDR-TB), our objective was to analyse the cytotoxic activity, both basal and stimulated, of CD8+ T cells from MDR-TB patients and compare it with that of DS-TB patients, as well as purified protein derivative (PPD)+ and PPD- subjects. Cytotoxic activity of CD8+ T cells from MDR-TB patients, DS-TB patients, PPD+ and PPD- subjects was measured by a colorimetric assay, using H37Rv culture filtrate protein as the antigenic stimulus. Twenty-eight subjects were studied (7 MDR-TB patients, 7 DS-TB patients, 7 PPD+ subjects and 7 PPD- subjects). In the presence of the antigenic stimulus, the cytotoxic activity of CD8+ T cells from MDR-TB patients (% lysis) increased from 6.7% to 59.6% (P < 0.001). In DS-TB patients lysis increased from 3.2% to 22.5% (P < 0.001), whereas in PPD+ subjects it increased from 2.7% to 12.0% (P < 0.001) and in PPD- subjects from 1.3% to 3.2% (P < 0.001). Basal cytotoxic activity was significantly higher for MDR-TB patients than PPD+ and PPD- subjects (P = 0.003), but not compared with that for DS-TB patients (P = 0.05). Stimulated cytotoxic activity was highest for MDR-TB patients. CD8+ T cells from MDR-TB patients showed an exaggerated cytotoxic activity after antigenic stimulation. Further studies are required to elucidate the role of this response in the immunopathogenesis of MDR-TB.

  14. Nurses' use of hazardous drug-handling precautions and awareness of national safety guidelines.

    PubMed

    Polovich, Martha; Martin, Susan

    2011-11-01

    To determine patterns of personal protective equipment (PPE) used by oncology nurses while handling hazardous drugs (HDs) and to assess knowledge of the 2004 National Institute for Occupational Safety and Health (NIOSH) Alert and its effect on precaution use. Descriptive, correlational. The Oncology Nursing Society 31st Annual Congress in Boston, MA, in 2006. 330 nurses who prepared and/or administered chemotherapy. Nurses described HD safe-handling precaution use by self-report survey. The availability and use of biologic safety cabinets and PPE. Respondents were well educated (57% had a bachelor's degree or more), experienced (X = 19, SD = 10.2 years in nursing and X = 12, SD = 7.9 years in oncology), and certified (70%; majority OCN®). Forty-seven percent of respondents were aware of the NIOSH Alert. Thirty-five percent of all participants and 93% of nurses in private practice settings reported preparing chemotherapy. Glove use (95%-100%) was higher than that reported in earlier studies, and gown use for drug preparation (65%), drug administration (50%), and handling excretions (23%) have remained unchanged. Double-gloving was rare (11%-18%). Nurses in private practices were less likely to have chemotherapy-designated PPE available, use PPE, and use spill kits for HD spills. Nurses have adopted glove use for HD handling; however, gown use remains comparatively low. Chemotherapy-designated PPE is not always provided by employers. Nurses lack awareness of current safety guidelines. Nurses must know about the risks of HD exposure and ways to reduce exposure. Employers must provide appropriate PPE and encourage its use. Alternative methods of disseminating safety recommendations are needed.

  15. Impact of the new handling recommendations for hazardous drugs in a hospital pharmacy service.

    PubMed

    García-Alcántara, Beatriz G; Perelló Alomar, Catalina; Moreno Centeno, Elena; Modamio, Pilar; Mariño, Eduardo L; Delgado Sánchez, Olga

    2017-03-01

    To describe the actions taken by the Pharmacy Unit in a tertiary hospital in order to adapt to the recommendations established by NIOSH 2014 for handling Hazardous Drugs. Method: A retrospective observational study. A list was prepared including all hazardous drugs according to NIOSH 2014 that were available at the hospital as marketed or foreign drugs, or used in clinical trials, and there was a review of the processes of acquisition, repackaging, preparation, circuits, organizational, dispensing and identification. Results: After the analysis, a report including all needs was prepared and sent to the Hospital Management. Any relevant information about the handling and administration of hazardous drugs was included in the prescription computer program. There were changes in the acquisition process of two drugs, in order to avoid splitting and multi-dose formulations. An alternative or improvement was found for 35 253 of the 75 779 units of hazardous drugs repackaged in one year. The Pharmacy Unit took over the preparation of four non-sterile medications, as well as the preparation of all sterile parenteral medications included in Lists 1 and 2 that were not previously prepared there, as well as one from List 3. Information was also included about the preparation processes of Magistral Formulations that involved hazardous drugs from Lists 2 or 3. The adaptation to the recommendations by NIOSH 2014 has represented a change, but also a significant reduction in the handling process of hazardous drugs by the healthcare staff, therefore reducing the risk of occupational exposure. Copyright AULA MEDICA EDICIONES 2014. Published by AULA MEDICA. All rights reserved.

  16. 76 FR 50740 - Draft Guidance for Industry and Food and Drug Administration Staff; Procedures for Handling...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-08-16

    ... DEPARTMENT OF HEALTH AND HUMAN SERVICES Food and Drug Administration [Docket No. FDA-2011-D-0514] Draft Guidance for Industry and Food and Drug Administration Staff; Procedures for Handling Section 522 Postmarket Surveillance Studies; Availability AGENCY: Food and Drug Administration, HHS. ACTION: Notice...

  17. Guidelines for safe handling of hazardous drugs: A systematic review

    PubMed Central

    Bernabeu-Martínez, Mari A.; Ramos Merino, Mateo; Santos Gago, Juan M.; Álvarez Sabucedo, Luis M.; Wanden-Berghe, Carmina

    2018-01-01

    Objective To review the scientific literature related to the safe handling of hazardous drugs (HDs). Method Critical analysis of works retrieved from MEDLINE, the Cochrane Library, Scopus, CINHAL, Web of Science and LILACS using the terms "Hazardous Substances", "Antineoplastic Agents" and "Cytostatic Agents", applying "Humans" and "Guidelines" as filters. Date of search: January 2017. Results In total, 1100 references were retrieved, and from those, 61 documents were selected based on the inclusion and exclusion criteria: 24 (39.3%) documents related to recommendations about HDs; 27 (44.3%) about antineoplastic agents, and 10 (33.3%) about other types of substances (monoclonal antibodies, gene medicine and other chemical and biological agents). In 14 (23.3%) guides, all the stages in the manipulation process involving a risk due to exposure were considered. Only one guide addressed all stages of the handling process of HDs (including stages with and without the risk of exposure). The most described stages were drug preparation (41 guides, 67.2%), staff training and/or patient education (38 guides, 62.3%), and administration (37 guides, 60.7%). No standardized informatics system was found that ensured quality management, traceability and minimization of the risks associated with these drugs. Conclusions Most of the analysed guidelines limit their recommendations to the manipulation of antineoplastics. The most frequently described activities were preparation, training, and administration. It would be convenient to apply ICTs (Information and Communications Technologies) to manage processes involving HDs in a more complete and simpler fashion. PMID:29750798

  18. Guidelines for safe handling of hazardous drugs: A systematic review.

    PubMed

    Bernabeu-Martínez, Mari A; Ramos Merino, Mateo; Santos Gago, Juan M; Álvarez Sabucedo, Luis M; Wanden-Berghe, Carmina; Sanz-Valero, Javier

    2018-01-01

    To review the scientific literature related to the safe handling of hazardous drugs (HDs). Critical analysis of works retrieved from MEDLINE, the Cochrane Library, Scopus, CINHAL, Web of Science and LILACS using the terms "Hazardous Substances", "Antineoplastic Agents" and "Cytostatic Agents", applying "Humans" and "Guidelines" as filters. Date of search: January 2017. In total, 1100 references were retrieved, and from those, 61 documents were selected based on the inclusion and exclusion criteria: 24 (39.3%) documents related to recommendations about HDs; 27 (44.3%) about antineoplastic agents, and 10 (33.3%) about other types of substances (monoclonal antibodies, gene medicine and other chemical and biological agents). In 14 (23.3%) guides, all the stages in the manipulation process involving a risk due to exposure were considered. Only one guide addressed all stages of the handling process of HDs (including stages with and without the risk of exposure). The most described stages were drug preparation (41 guides, 67.2%), staff training and/or patient education (38 guides, 62.3%), and administration (37 guides, 60.7%). No standardized informatics system was found that ensured quality management, traceability and minimization of the risks associated with these drugs. Most of the analysed guidelines limit their recommendations to the manipulation of antineoplastics. The most frequently described activities were preparation, training, and administration. It would be convenient to apply ICTs (Information and Communications Technologies) to manage processes involving HDs in a more complete and simpler fashion.

  19. A survey of manufacturing and handling practices for monoclonal antibodies by pharmacy, nursing and medical personnel.

    PubMed

    Alexander, M; King, J; Lingaratnam, S; Byrne, J; MacMillan, K; Mollo, A; Kirsa, S; Green, M

    2016-04-01

    There is a paucity of data available to assess the occupational health and safety risk associated with exposure to monoclonal antibodies. Industry standards and published guidelines are conflicting or outdated. Guidelines offer contrary recommendations based on an array of methodological approaches. This survey aimed to describe current practices, beliefs and attitudes relating to the handling of monoclonal antibodies by Australian medical, nursing and pharmacy clinicians. An electronic survey was distributed between June and September 2013. Respondents were surveyed on three focus areas: institutional guideline availability and content, current practices and attitudes. Demographic data relating to respondent and primary place of practice were also collected. A total of 222 clinicians completed the survey, with representation from all targeted professional groups and from a variety of geographic locations. 92% of respondents reported that their institution prepared or administered monoclonal antibodies, with 87% specifically handling anti-cancer monoclonal antibodies. Monoclonal antibodies were mostly prepared onsite (84-90%) and mostly within pharmacy clean-rooms (75%) and using cytotoxic cabinets (61%). 43% of respondents reported access to institutional monoclonal antibody handling guidelines with risk reduction strategies including training and education (71%), spill and waste management (71%), procedures for transportation (57%) and restricted handling (50%). Nurses had a stronger preference towards pharmacy manufacturing than both doctors and pharmacists for a range of clinical scenarios. 95% of all respondents identified that professional or regulatory body guidelines are an important resource when considering handling practices. Monoclonal antibodies are most commonly handled according to cytotoxic drug standards and often in the absence of formal guidelines. © The Author(s) 2014.

  20. Neuroprotective and nootropic drug noopept rescues α-synuclein amyloid cytotoxicity.

    PubMed

    Jia, Xueen; Gharibyan, Anna L; Öhman, Anders; Liu, Yonggang; Olofsson, Anders; Morozova-Roche, Ludmilla A

    2011-12-16

    Parkinson's disease is a common neurodegenerative disorder characterized by α-synuclein (α-Syn)-containing Lewy body formation and selective loss of dopaminergic neurons in the substantia nigra. We have demonstrated the modulating effect of noopept, a novel proline-containing dipeptide drug with nootropic and neuroprotective properties, on α-Syn oligomerization and fibrillation by using thioflavin T fluorescence, far-UV CD, and atomic force microscopy techniques. Noopept does not bind to a sterically specific site in the α-Syn molecule as revealed by heteronuclear two-dimensional NMR analysis, but due to hydrophobic interactions with toxic amyloid oligomers, it prompts their rapid sequestration into larger fibrillar amyloid aggregates. Consequently, this process rescues the cytotoxic effect of amyloid oligomers on neuroblastoma SH-SY5Y cells as demonstrated by using cell viability assays and fluorescent staining of apoptotic and necrotic cells and by assessing the level of intracellular oxidative stress. The mitigating effect of noopept against amyloid oligomeric cytotoxicity may offer additional benefits to the already well-established therapeutic functions of this new pharmaceutical. Copyright © 2011 Elsevier Ltd. All rights reserved.

  1. Adherence to Safe Handling Guidelines by Health Care Workers Who Administer Antineoplastic Drugs

    PubMed Central

    Boiano, James M.; Steege, Andrea L.; Sweeney, Marie H.

    2015-01-01

    The toxicity of antineoplastic drugs is well documented. Many are known or suspected human carcinogens where no safe exposure level exists. Authoritative guidelines developed by professional practice organizations and federal agencies for the safe handling of these hazardous drugs have been available for nearly three decades. As a means of evaluating the extent of use of primary prevention practices such as engineering, administrative and work practice controls, personal protective equipment (PPE), and barriers to using PPE, the National Institute for Safety and Health (NIOSH) conducted a web survey of health care workers in 2011. The study population primarily included members of professional practice organizations representing health care occupations which routinely use or come in contact with selected chemical agents. All respondents who indicated that they administered antineoplastic drugs in the past week were eligible to complete a hazard module addressing self-reported health and safety practices on this topic. Most (98%) of the 2069 respondents of this module were nurses. Working primarily in hospitals, outpatient care centers, and physician offices, respondents reported that they had collectively administered over 90 specific antineoplastic drugs in the past week, with carboplatin, cyclophosphamide, and paclitaxel the most common. Examples of activities which increase exposure risk, expressed as percent of respondents, included: failure to wear nonabsorbent gown with closed front and tight cuffs (42%); intravenous (I.V.) tubing primed with antineoplastic drug by respondent (6%) or by pharmacy (12%); potentially contaminated clothing taken home (12%); spill or leak of antineoplastic drug during administration (12%); failure to wear chemotherapy gloves (12%); and lack of hazard awareness training (4%). The most common reason for not wearing gloves or gowns was “skin exposure was minimal”; 4% of respondents, however, reported skin contact during handling

  2. Factors influencing oncology nurses' use of hazardous drug safe-handling precautions.

    PubMed

    Polovich, Martha; Clark, Patricia C

    2012-05-01

    To examine relationships among factors affecting nurses' use of hazardous drug (HD) safe-handling precautions, identify factors that promote or interfere with HD precaution use, and determine managers' perspectives on the use of HD safe-handling precautions. Cross-sectional, mixed methods; mailed survey to nurses who handle chemotherapy and telephone interviews with managers. Mailed invitation to oncology centers across the United States. 165 nurses who reported handling chemotherapy and 20 managers of nurses handling chemotherapy. Instruments measured the use of HD precautions and individual and organizational factors believed to influence precaution use. Data analysis included descriptive statistics and hierarchical regression. Manager interview data were analyzed using content analysis. Chemotherapy exposure knowledge, self-efficacy, perceived barriers, perceived risk, interpersonal influences, and workplace safety climate. Nurses were well educated, experienced, and certified in oncology nursing. The majority worked in outpatient settings and administered chemotherapy to an average of 6.8 patients per day. Exposure knowledge, self-efficacy for using personal protective equipment, and perceived risk of harm from HD exposure were high; total precaution use was low. Nurse characteristics did not predict HD precaution use. Fewer barriers, better workplace safety climate, and fewer patients per day were independent predictors of higher HD precaution use. HD handling policies were present, but many did not reflect current recommendations. Few managers formally monitored nurses' HD precaution use. Circumstances in the workplace interfere with nurses' use of HD precautions. Interventions should include fostering a positive workplace safety climate, reducing barriers, and providing appropriate nurse-patient ratios.

  3. Microvesicle- and exosome-mediated drug delivery enhances the cytotoxicity of Paclitaxel in autologous prostate cancer cells.

    PubMed

    Saari, Heikki; Lázaro-Ibáñez, Elisa; Viitala, Tapani; Vuorimaa-Laukkanen, Elina; Siljander, Pia; Yliperttula, Marjo

    2015-12-28

    Extracellular vesicles (EVs) are naturally occurring membrane particles that mediate intercellular communication by delivering molecular information between cells. In this study, we investigated the effectiveness of two different populations of EVs (microvesicle- and exosome-enriched) as carriers of Paclitaxel to autologous prostate cancer cells. EVs were isolated from LNCaP- and PC-3 prostate cancer cell cultures using differential centrifugation and characterized by electron microscopy, nanoparticle tracking analysis, and Western blot. The uptake of microvesicles and exosomes by the autologous prostate cancer cells was assessed by flow cytometry and confocal microscopy. The EVs were loaded with Paclitaxel and the effectiveness of EV-mediated drug delivery was assessed with viability assays. The distribution of EVs and EV-delivered Paclitaxel in cells was inspected by confocal microscopy. Our main finding was that the loading of Paclitaxel to autologous prostate cancer cell-derived EVs increased its cytotoxic effect. This capacity was independent of the EV population and the cell line tested. Although the EVs without the drug increased cancer cell viability, the net effect of enhanced cytotoxicity remained. Both EV populations delivered Paclitaxel to the recipient cells through endocytosis, leading to the release of the drug from within the cells. The removal of EV surface proteins did not affect exosomes, while the drug delivery mediated by microvesicles was partially inhibited. Cancer cell-derived EVs can be used as effective carriers of Paclitaxel to their parental cells, bringing the drug into the cells through an endocytic pathway and increasing its cytotoxicity. However, due to the increased cell viability, the use of cancer cell-derived EVs must be further investigated before any clinical applications can be designed. Copyright © 2015 The Authors. Published by Elsevier B.V. All rights reserved.

  4. 21 CFR 205.50 - Minimum requirements for the storage and handling of prescription drugs and for the establishment...

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ... 21 Food and Drugs 4 2013-04-01 2013-04-01 false Minimum requirements for the storage and handling of prescription drugs and for the establishment and maintenance of prescription drug distribution records. 205.50 Section 205.50 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) DRUGS: GENERAL...

  5. Chip-Based Dynamic Real-Time Quantification of Drug-Induced Cytotoxicity in Human Tumor Cells

    PubMed Central

    Wlodkowic, Donald; Skommer, Joanna; McGuinness, Dagmara; Faley, Shannon; Kolch, Walter; Darzynkiewicz, Zbigniew; Cooper, Jonathan M.

    2013-01-01

    Cell cytotoxicity tests are among the most common bioassays using flow cytometry and fluorescence imaging analysis. The permeability of plasma membranes to charged fluorescent probes serves, in these assays, as a marker distinguishing live from dead cells. Since it is generally assumed that probes, such as propidium iodide (PI) or 7-amino-actinomycin D (7-AAD), are themselves cytotoxic, they are currently generally used only as the end-point markers of assays for live versus dead cells. In the current study, we provide novel insights into potential applications of these classical plasma membrane integrity markers in the dynamic tracking of drug-induced cytotoxicity. We show that treatment of a number of different human tumor cell lines in cultures for up to 72 h with the PI, 7-AAD, SYTOX Green (SY-G), SYTOX Red (SYR), TO-PRO, and YO-PRO had no effect on cell viability assessed by the integrity of plasma membrane, cell cycle progression, and rate of proliferation. We subsequently explore the potential of dynamic labeling with these markers in real-time analysis, by comparing results from both conventional cytometry and microfluidic chips. Considering the simplicity of the staining protocols and their low cost combined with the potential for real-time data collection, we show how that real-time fluorescent imaging and Lab-on-a-Chip platforms have the potential to be used for automated drug screening routines. PMID:19572560

  6. 21 CFR 820.140 - Handling.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... 21 Food and Drugs 8 2010-04-01 2010-04-01 false Handling. 820.140 Section 820.140 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) MEDICAL DEVICES..., contamination, or other adverse effects to product do not occur during handling. ...

  7. Safety Management Status among Nurses Handling Anticancer Drugs: Nurse Awareness and Performance Following Safety Regulations.

    PubMed

    Jeong, Kyeong Weon; Lee, Bo-Young; Kwon, Myung Soon; Jang, Ji-Hye

    2015-01-01

    This study identified the actual conditions for safe anticancer drug management among nurses and the relationship between level of awareness and performance of anticancer drug safety regulations in terms of preparation, administration, and disposal. The respondents were 236 nurses working with chemotherapy in wards and outpatient clinics in five hospitals in and near Seoul. Safety regulations provided for the anticancer drug the Occupational Safety Health Administration (OSHA, 1999), as modified for an earlier study, were used. The results showed that the level of awareness and performance on the anticancer drug safety regulations indicate their preparation (3.38±0.55, 2.38±0.98), administration (3.52±0.46, 3.17±0.70), general handling and disposal (3.33±0.54, 2.42±0.90) on a scale 0 to 5. Also, there were significant differences in job positions, work experience, type of preparation, and continuing education and a positive relationship between the level of awareness and nursing performance. Thus, nurses should receive continuing education on the handling of anticancer drugs to improve the level of performance following safety regulations.

  8. Cytotoxicity assessment of porous silicon microparticles for ocular drug delivery.

    PubMed

    Korhonen, Eveliina; Rönkkö, Seppo; Hillebrand, Satu; Riikonen, Joakim; Xu, Wujun; Järvinen, Kristiina; Lehto, Vesa-Pekka; Kauppinen, Anu

    2016-03-01

    Porous silicon (PSi) is a promising material for the delivery and sustained release of therapeutic molecules in various tissues. Due to the constant rinsing of cornea by tear solution as well as the short half-life of intravitreal drugs, the eye is an attractive target for controlled drug delivery systems, such as PSi microparticles. Inherent barriers ensure that PSi particles are retained in the eye, releasing drugs at the desired speed until they slowly break down into harmless silicic acid. Here, we have examined the in vitro cytotoxicity of positively and negatively charged thermally oxidized (TOPSi) and thermally carbonized (TCPSi) porous silicon microparticles on human corneal epithelial (HCE) and retinal pigment epithelial (ARPE-19) cells. In addition to ocular assessment under an inverted microscope, cellular viability was evaluated using the CellTiter Blue™, CellTiter Fluor™, and lactate dehydrogenase (LDH) assays. CellTiter Fluor proved to be a suitable assay but due to non-specific and interfering responses, neither CellTiter Blue nor LDH assays should be used when evaluating PSi particles. Our results suggest that the toxicity of PSi particles is concentration-dependent, but at least at concentrations less than 200μg/ml, both positively and negatively charged PSi particles are well tolerated by human corneal and retinal epithelial cells and therefore applicable for delivering drug molecules into ocular tissues. Copyright © 2015 Elsevier B.V. All rights reserved.

  9. Genipin-induced inhibition of uncoupling protein-2 sensitizes drug-resistant cancer cells to cytotoxic agents.

    PubMed

    Mailloux, Ryan J; Adjeitey, Cyril Nii-Klu; Harper, Mary-Ellen

    2010-10-13

    Uncoupling protein-2 (UCP2) is known to suppress mitochondrial reactive oxygen species (ROS) production and is employed by drug-resistant cancer cells to mitigate oxidative stress. Using the drug-sensitive HL-60 cells and the drug-resistant MX2 subline as model systems, we show that genipin, a UCP2 inhibitor, sensitizes drug-resistant cells to cytotoxic agents. Increased MX2 cell death was observed upon co-treatment with genipin and different doses of menadione, doxorubicin, and epirubicin. DCFH-DA fluorimetry revealed that the increase in MX2 cell death was accompanied by enhanced cellular ROS levels. The drug-induced increase in ROS was linked to genipin-mediated inhibition of mitochondrial proton leak. State 4 and resting cellular respiratory rates were higher in the MX2 cells in comparison to the HL-60 cells, and the increased respiration was readily suppressed by genipin in the MX2 cells. UCP2 accounted for a remarkable 37% of the resting cellular oxygen consumption indicating that the MX2 cells are functionally reliant on this protein. Higher amounts of UCP2 protein were detected in the MX2 versus the HL-60 mitochondria. The observed effects of genipin were absent in the HL-60 cells pointing to the selectivity of this natural product for drug-resistant cells. The specificity of genipin for UCP2 was confirmed using CHO cells stably expressing UCP2 in which genipin induced an ∼22% decrease in state 4 respiration. These effects were absent in empty vector CHO cells expressing no UCP2. Thus, the chemical inhibition of UCP2 with genipin sensitizes multidrug-resistant cancer cells to cytotoxic agents.

  10. Ex vivo cytotoxic drug evaluation by DiSC assay to expedite identification of clinical targets: results with 8-chloro-cAMP.

    PubMed Central

    Bosanquet, A. G.; Burlton, A. R.; Bell, P. B.; Harris, A. L.

    1997-01-01

    There is a pressing need to reduce the time and cost of developing new cytotoxic agents and to accurately identify clinically active agents at an early stage. In this study, the differential staining cytotoxicity (DiSC) assay was used to assess the efficacy of the novel antitumour cAMP analogue, 8-chloro-cAMP (8-Cl-cAMP) (and its metabolite 8-Cl-adenosine) against 107 fresh specimens of human neoplastic and normal cells. Diagnoses included chronic and acute leukaemias, myeloma, non-Hodgkin's lymphoma (NHL) and miscellaneous solid tumours. The aim was to identify targets for subsequent phase I, II and III trials. 8-Cl-cAMP was tested at 4-985 microM, along with standard chemotherapeutic drugs. 8-Cl-cAMP and its metabolite caused no morphologically observable cell differentiation but induced dose-dependent cytotoxicity. Compared with untreated patients, previously treated chronic lymphocytic leukaemia (CLL) patients showed no increase in ex vivo resistance to 8-Cl-cAMP (P = 0.878); minimal cross-resistance with other cytotoxic drugs was detected. Compared with normal cells (mean LC90 = 1803 microM), 8-Cl-cAMP showed significant ex vivo activity against CLL (117.0 microM; P < 0.0001) and NHL (140.0 microM; P < 0.0001), of which eight were mantle cell NHL (84.7 microM), and greatest activity against cells from patients with acute myeloid leukaemia (AML; mean LC90 = 24.3 microM; in vitro therapeutic index 74-fold, P < 0.0001). Solid tumour specimens were comparatively resistant to 8-Cl-cAMP. The results highlight the clinical potential of 8-Cl-cAMP, point to several new phase I, II and III trial possibilities and provide a rationale for the inclusion of ex vivo cytotoxic drug evaluation in the drug development process. PMID:9275029

  11. Efficacy and safety of cytotoxic drug chemotherapy after first-line EGFR-TKI treatment in elderly patients with non-small-cell lung cancer harboring sensitive EGFR mutations.

    PubMed

    Imai, Hisao; Minemura, Hiroyuki; Sugiyama, Tomohide; Yamada, Yutaka; Kaira, Kyoichi; Kanazawa, Kenya; Kasai, Takashi; Kaburagi, Takayuki; Minato, Koichi

    2018-05-08

    Epidermal growth factor receptor-tyrosine kinase inhibitor (EGFR-TKI) is effective as first-line chemotherapy for patients with advanced non-small-cell lung cancer (NSCLC) harboring sensitive EGFR mutations. However, whether the efficacy of second-line cytotoxic drug chemotherapy after first-line EGFR-TKI treatment is similar to that of first-line cytotoxic drug chemotherapy in elderly patients aged ≥ 75 years harboring sensitive EGFR mutations is unclear. Therefore, we aimed to investigate the efficacy and safety of cytotoxic drug chemotherapy after first-line EGFR-TKI treatment in elderly patients with NSCLC harboring sensitive EGFR mutations. We retrospectively evaluated the clinical effects and safety profiles of second-line cytotoxic drug chemotherapy after first-line EGFR-TKI treatment in elderly patients with NSCLC harboring sensitive EGFR mutations (exon 19 deletion/exon 21 L858R mutation). Between April 2008 and December 2015, 78 elderly patients with advanced NSCLC harboring sensitive EGFR mutations received first-line EGFR-TKI at four Japanese institutions. Baseline characteristics, regimens, responses to first- and second-line treatments, whether or not patients received subsequent treatment, and if not, the reasons for non-administration were recorded. Overall, 20 patients with a median age of 79.5 years (range 75-85 years) were included in our analysis. The overall response, disease control, median progression-free survival, and overall survival rates were 15.0, 60.0%, 2.4, and 13.2 months, respectively. Common adverse events included leukopenia, neutropenia, anemia, thrombocytopenia, malaise, and anorexia. Major grade 3 or 4 toxicities included leukopenia (25.0%) and neutropenia (45.0%). No treatment-related deaths were noted. Second-line cytotoxic drug chemotherapy after first-line EGFR-TKI treatment among elderly patients with NSCLC harboring sensitive EGFR mutations was effective and safe and showed equivalent outcomes to first

  12. Evaluation of DNA damage and cytotoxicity of polyurethane-based nano- and microparticles as promising biomaterials for drug delivery systems

    NASA Astrophysics Data System (ADS)

    Caon, Thiago; Zanetti-Ramos, Betina Giehl; Lemos-Senna, Elenara; Cloutet, Eric; Cramail, Henri; Borsali, Redouane; Soldi, Valdir; Simões, Cláudia Maria Oliveira

    2010-06-01

    The in vitro cytotoxicity and DNA damage evaluation of biodegradable polyurethane-based micro- and nanoparticles were carried out on animal fibroblasts. For cytotoxicity measurement and primary DNA damage evaluation, MTT and Comet assays were used, respectively. Different formulations were tested to evaluate the influence of chemical composition and physicochemical characteristics of particles on cell toxicity. No inhibition of cells growth surrounding the polyurethane particles was observed. On the other hand, a decrease of cell viability was verified when the anionic surfactant sodium dodecyl sulfate (SDS) was used as droplets stabilizer of monomeric phase. Polyurethane nanoparticles stabilized with Tween 80 and Pluronic F68 caused minor cytotoxic effects. These results indicated that the surface charge plays an important role on cytotoxicity. Particles synthesized from MDI displayed a higher cytotoxicity than those synthesized from IPDI. Size and physicochemical properties of the particles may explain the higher degree of DNA damage produced by two tested formulations. In this way, a rational choice of particles' constituents based on their cytotoxicity and genotoxicity could be very useful for conceiving biomaterials to be used as drug delivering systems.

  13. A Rapid Survival Assay to Measure Drug-Induced Cytotoxicity and Cell Cycle Effects

    PubMed Central

    Valiathan, Chandni; McFaline, Jose L.

    2012-01-01

    We describe a rapid method to accurately measure the cytotoxicity of mammalian cells upon exposure to various drugs. Using this assay, we obtain survival data in a fraction of the time required to perform the traditional clonogenic survival assay, considered the gold standard. The dynamic range of the assay allows sensitivity measurements on a multi-log scale allowing better resolution of comparative sensitivities. Moreover, the results obtained contain additional information on cell cycle effects of the drug treatment. Cell survival is obtained from a quantitative comparison of proliferation between drug-treated and untreated cells. During the assay, cells are treated with a drug and, following a recovery period, allowed to proliferate in the presence of BrdU. Cells that synthesize DNA in the presence of bromodeoxyuridine (BrdU) exhibit quenched Hoechst fluorescence easily detected by flow cytometry; quenching is used to determine relative proliferation in treated versus untreated cells. Finally, the multi-well setup of this assay allows the simultaneous screening of multiple cell lines, multiple doses, or multiple drugs to accurately measure cell survival and cell cycle changes after drug treatment. PMID:22133811

  14. Gold Nanoparticles Cytotoxicity

    NASA Astrophysics Data System (ADS)

    Mironava, Tatsiana

    Over the last two decades gold nanoparticles (AuNPs) have been used for many scientific applications and have attracted attention due to the specific chemical, electronic and optical size dependent properties that make them very promising agents in many fields such as medicine, imagine techniques and electronics. More specifically, biocompatible gold nanoparticles have a huge potential for use as the contrast augmentation agent in X-ray Computed Tomography and Photo Acoustic Tomography for early tumor diagnostic as well these nanoparticles are extensively researched for enhancing the targeted cancer treatment effectiveness such as photo-thermal and radiotherapy. In most biomedical applications biocompatible gold nanoparticles are labeled with specific tumor or other pathology targeting antibodies and used for site specific drug delivery. However, even though gold nanoparticles poses very high level of anti cancer properties, the question of their cytotoxicity ones they are released in normal tissue has to be researched. Moreover, the huge amount of industrially produced gold nanoparticles raises the question of these particles being a health hazard, since the penetration is fairly easy for the "nano" size substances. This study focuses on the effect of AuNPs on a human skin tissue, since it is fall in both categories -- the side effects for biomedical applications and industrial workers and users' exposure during production and handling. Therefore, in the present project, gold nanoparticles stabilized with the biocompatible agent citric acid were generated and characterized by Transmission Electron Microscopy (TEM) and Scanning Electron Microscopy (SEM). The cytotoxic effect of AuNPs release to healthy skin tissue was modeled on 3 different cell types: human keratinocytes, human dermal fibroblasts, and human adipose derived stromal (ADS) cells. The AuNPs localization inside the cell was found to be cell type dependent. Overall cytotoxicity was found to be dependent

  15. Development of drug-loaded chitosan-vanillin nanoparticles and its cytotoxicity against HT-29 cells.

    PubMed

    Li, Pu-Wang; Wang, Guang; Yang, Zi-Ming; Duan, Wei; Peng, Zheng; Kong, Ling-Xue; Wang, Qing-Huang

    2016-01-01

    Chitosan as a natural polysaccharide derived from chitin of arthropods like shrimp and crab, attracts much interest due to its inherent properties, especially for application in biomedical materials. Presently, biodegradable and biocompatible chitosan nanoparticles are attractive for drug delivery. However, some physicochemical characteristics of chitosan nanoparticles still need to be further improved in practice. In this work, chitosan nanoparticles were produced by crosslinking chitosan with 3-methoxy-4-hydroxybenzaldehyde (vanillin) through a Schiff reaction. Chitosan nanoparticles were 200-250 nm in diameter with smooth surface and were negatively charged with a zeta potential of - 17.4 mV in neutral solution. Efficient drug loading and drug encapsulation were achieved using 5-fluorouracil as a model of hydrophilic drug. Drug release from the nanoparticles was constant and controllable. The in vitro cytotoxicity against HT-29 cells and cellular uptake of the chitosan nanoparticles were evaluated by methyl thiazolyl tetrazolium method, confocal laser scanning microscope and flow cytometer, respectively. The results indicate that the chitosan nanoparticles crosslinked with vanillin are a promising vehicle for the delivery of anticancer drugs.

  16. Cytotoxic drugs in drinking water: a prediction and risk assessment exercise for the thames catchment in the United kingdom.

    PubMed

    Rowney, Nicole C; Johnson, Andrew C; Williams, Richard J

    2009-12-01

    Cytotoxic, also known as antineoplastic, drugs remain an important weapon in the fight against cancer. This study considers the water quality implications for the Thames catchment (United Kingdom) arising from the routine discharge of these drugs after use, down the drain and into the river. The review focuses on 13 different cytotoxic drugs from the alkylating agent, antimetabolite, and anthracycline antibiotic families. A geographic-information-system-based water quality model was used in the present study. The model was informed by literature values on consumption, excretion, and fate data to predict raw drinking water concentrations at the River Thames abstraction points at Farmoor, near Oxford, and Walton, in West London. To discover the highest plausible values, upper boundary values for consumption and excretion together with lower removal values for sewage treatment were used. The raw drinking water cytotoxic drug maximum concentrations at Walton (the higher of the two) representative of mean and low flow conditions were predicted to be 11 and 20 ng/L for the five combined alkylating agents, 2 and 4 ng/L for the three combined antimetabolites, and 0.05 and 0.10 ng/L the for two combined anthracycline antibiotics, respectively. If they were to escape into tap water, then the highest predicted concentrations would still be a factor of between 25 and 40 below the current recommended daily doses of concern. Although the risks may be negligible for healthy adults, more concern may be associated with special subgroup populations, such as pregnant women, their fetuses, and breast-feeding infants, due to their developmental vulnerability.

  17. Cytotoxicity and biocompatibility evaluation of N,O-carboxymethyl chitosan/oxidized alginate hydrogel for drug delivery application.

    PubMed

    Li, Xingyi; Kong, Xiangye; Zhang, Zhaoliang; Nan, Kaihui; Li, LingLi; Wang, XianHou; Chen, Hao

    2012-06-01

    In this paper, covalently cross-linked hydrogel composed of N,O-carboxymethyl chitosan and oxidized alginate was developed intending for drug delivery application. In vitro/vivo cytocompatibility and biocompatibility of the developed hydrogel were preliminary evaluated. In vitro cytocompatibility test showed that the developed hydrogel exhibited good cytocompatibility against NH3T3 cells after 3-day incubation. According to the results of acute toxicity test, there was no obvious cytotoxicity for major organs during the period of 21-day intraperitoneal administration. Meanwhile, the developed hydrogel did not induce any cutaneous reaction within 72 h of subcutaneous injection followed by slow degradation and adsorption with the time evolution. Moreover, the extraction of developed hydrogel had nearly 0% of hemolysis ratio, which indicated the good hemocompatibility of hydrogel. Based on the above results, it may be concluded that the developed N,O-carboxymethyl chitosan/oxidized alginate hydrogel with non-cytotoxicity and good biocompatibility might suitable for the various drug delivery applications. Copyright © 2012 Elsevier B.V. All rights reserved.

  18. Anticancer drugs in surface waters: what can we say about the occurrence and environmental significance of cytotoxic, cytostatic and endocrine therapy drugs?

    PubMed

    Besse, Jean-Philippe; Latour, Jean-François; Garric, Jeanne

    2012-02-01

    This study considers the implications and research needs arising from anticancer (also referred to as antineoplastic) drugs being released into the aquatic environment, for the entire therapeutic classes used: cytotoxic, cytostatic and endocrine therapy drugs. A categorization approach, based on French consumption amounts, allowed to highlight parent molecules and several metabolites on which further occurrence and ecotoxicological studies should be conducted. Investigations of consumption trends at a national and a local scale show an increase in the use of anticancer drugs between 2004 and 2008, thus leading to increased levels released in the environment. It therefore appears necessary to continue surveying their presence in surface waters and in wastewater treatment plant (WWTP) effluents. Furthermore, due to the rise of anticancer home treatments, most of the prescribed molecules are now available in town pharmacies. Consequently, hospital effluents are no longer the main expected entry route of anticancer drugs into the aquatic environment. Concerning ecotoxicological risks, current knowledge remains insufficient to support a definitive conclusion. Risk posed by cytotoxic molecules is still not well documented and it is not possible to conclude on their long-term effects on non-target organisms. To date, ecotoxicological effects have been assessed using standardized or in vitro assays. Such tests however may not be suitable for anticancer drugs, and further work should focus on full-life cycle or even multigenerational tests. Environmental significance (i.e. occurrence and effects) of cytostatics (protein kinases inhibitors and monoclonal antibodies), if any, is not documented. Protein kinases inhibitors, in particular, deserve further investigation due to their universal mode of action. Finally, concerning endocrine therapy drugs, molecules such as antiestrogen Tamoxifen and its active metabolites, could be of concern. Overall, to accurately assess the

  19. Semisynthesis, cytotoxicity, antiviral activity, and drug interaction liability of 7-O-methylated analogues of flavonolignans from milk thistle.

    PubMed

    Althagafy, Hanan S; Graf, Tyler N; Sy-Cordero, Arlene A; Gufford, Brandon T; Paine, Mary F; Wagoner, Jessica; Polyak, Stephen J; Croatt, Mitchell P; Oberlies, Nicholas H

    2013-07-01

    Silymarin, an extract of the seeds of milk thistle (Silybum marianum), is used as an herbal remedy, particularly for hepatoprotection. The main chemical constituents in silymarin are seven flavonolignans. Recent studies explored the non-selective methylation of one flavonolignan, silybin B, and then tested those analogues for cytotoxicity and inhibition of both cytochrome P450 (CYP) 2C9 activity in human liver microsomes and hepatitis C virus infection in a human hepatoma (Huh7.5.1) cell line. In general, enhanced bioactivity was observed with the analogues. To further probe the biological consequences of methylation of the seven major flavonolignans, a series of 7-O-methylflavonolignans were generated. Optimization of the reaction conditions permitted selective methylation at the phenol in the 7-position in the presence of each metabolite's 4-5 other phenolic and/or alcoholic positions without the use of protecting groups. These 7-O-methylated analogues, in parallel with the corresponding parent compounds, were evaluated for cytotoxicity against Huh7.5.1 cells; in all cases the monomethylated analogues were more cytotoxic than the parent compounds. Moreover, parent compounds that were relatively non-toxic and inactive or weak inhibitors of hepatitis C virus infection had enhanced cytotoxicity and anti-HCV activity upon 7-O-methylation. Also, the compounds were tested for inhibition of major drug metabolizing enzymes (CYP2C9, CYP3A4/5, UDP-glucuronsyltransferases) in pooled human liver or intestinal microsomes. Methylation of flavonolignans differentially modified inhibitory potency, with compounds demonstrating both increased and decreased potency depending upon the compound tested and the enzyme system investigated. In total, these data indicated that monomethylation modulates the cytotoxic, antiviral, and drug interaction potential of silymarin flavonolignans. Copyright © 2013 Elsevier Ltd. All rights reserved.

  20. Degradable Magnetic Composites for Minimally Invasive Interventions: Device Fabrication, Targeted Drug Delivery, and Cytotoxicity Tests.

    PubMed

    Peters, Christian; Hoop, Marcus; Pané, Salvador; Nelson, Bradley J; Hierold, Christofer

    2016-01-20

    Superparamagnetic nanoparticles and a functional, degradable polymer matrix based on poly(ethylene glycol) are combined to enable fully degradable magnetic microdevices for minimally invasive biomedical applications. A bioinspired helical microrobot platform mimicking Escherichia coli bacteria is fabricated and actuated using weak rotating magnetic fields. Locomotion based on corkscrew propulsion, targeted drug delivery, and low-degradation-product cytotoxicity are demonstrated. © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  1. Magnetic microgels for drug targeting applications: Physical-chemical properties and cytotoxicity evaluation

    NASA Astrophysics Data System (ADS)

    Turcu, Rodica; Craciunescu, Izabell; Garamus, Vasil M.; Janko, Christina; Lyer, Stefan; Tietze, Rainer; Alexiou, Christoph; Vekas, Ladislau

    2015-04-01

    Magnetoresponsive microgels with high saturation magnetization values have been obtained by a strategy based on the miniemulsion method using high colloidal stability organic carrier ferrofluid as primary material. Hydrophobic nanoparticles Fe3O4/oleic acid are densely packed into well-defined spherical nanoparticle clusters coated with polymers with sizes in the range 40-350 nm. Physical-chemical characteristics of magnetic microgels were investigated by TEM, SAXS, XPS and VSM measurements with the focus on the structure-properties relationship. The impact of magnetic microgels loaded with anticancer drug mitoxantrone (MTO) on the non-adherent human T cell leukemia line Jurkat was investigated in multiparameter flow cytometry. We showed that both MTO and microgel-loaded MTO penetrate into cells and both induce apoptosis and later secondary necrosis in a time- and dose dependent manner. In contrast, microgels without MTO are not cytotoxic in the corresponding concentrations. Our results show that MTO-loaded microgels are promising structures for application in magnetic drug targeting.

  2. iCELLigence real-time cell analysis system for examining the cytotoxicity of drugs to cancer cell lines

    PubMed Central

    Türker Şener, Leyla; Albeni̇z, Gürcan; Di̇nç, Bi̇rcan; Albeni̇z, Işil

    2017-01-01

    The recently developed iCELLigence™ real-time cell analyzer (RTCA) can be used for the label-free real-time monitoring of cancer cell proliferation, viability, invasion and cytotoxicity. The RTCA system uses 16-well microtiter plates with a gold microelectrode biosensor array that measures impedance when cells adhere to the microelectrodes causing an alternating current. By measuring the electric field generated in this process, the RTCA system can be used for the analysis of cell proliferation, viability, morphology and migration. The present review aimed to summarize the working method of the RTCA system, in addition to discussing the research performed using the system for various applications, including cancer drug discovery via measuring cytotoxicity. PMID:28962095

  3. Anticancer drug development from traditional cytotoxic to targeted therapies: evidence of shorter drug research and development time, and shorter drug lag in Japan.

    PubMed

    Kawabata-Shoda, E; Masuda, S; Kimura, H

    2012-10-01

    Concern about the drug lag, the delay in marketing approval between one country and another, for anticancer drugs has increased in Japan. Although a number of studies have investigated the drug lag, none has investigated it in relation to the transition of anticancer therapy from traditional cytotoxic drugs to molecularly targeted agents. Our aim was to investigate current trend in oncology drug lag between the US and Japan and identify oncology drugs approved in only one of the two countries. Publicly and commercially available data sources were used to identify drugs approved in the US and Japan as of 31 December 2010 and the data used to calculate the drug lag for individual drugs. Fifty-one drugs were approved in both the US and Japan, whereas 34 and 19 drugs were approved only in the US or Japan, respectively. Of the 19 drugs approved only in Japan, 12 had not been subject to development for a cancer indication in the US, and all were approved before 1996 in Japan. Of the 34 drugs approved only in the US, 20 had not been subject to development in Japan, and none was in the top 25 by annual US anticancer drug-class sales. For drugs approved in both countries, the mean approval lag of the molecularly targeted drugs (MTDs) was significantly shorter than that of the non-molecularly targeted drugs (non-MTDs) (3·3 vs. 5·4 years). Further, mean R&D time of the MTDs was significantly shorter than that of non-MTDs (10·0 vs. 13·7 years). The price of MTDs had increased on average by 6·6% annually in the US, whereas it had decreased on average by 4·3% biyearly in Japan. The emergence of new molecularly targeted agents has contributed to reducing the approval lag, most likely due to improvements in R&D strategy. © 2012 Blackwell Publishing Ltd.

  4. Topical dimethylsulfoxide for the prevention of soft tissue injury after extravasation of vesicant cytotoxic drugs: a prospective clinical study.

    PubMed

    Bertelli, G; Gozza, A; Forno, G B; Vidili, M G; Silvestro, S; Venturini, M; Del Mastro, L; Garrone, O; Rosso, R; Dini, D

    1995-11-01

    To evaluate the activity and tolerability of dimethylsulfoxide (DMSO) in the prevention of soft tissue toxicity after extravasation of cytotoxic drugs. From June 1991 to December 1994, all patients who had an extravasation during intravenous (IV) infusion of cytotoxic drugs in our institution were considered for an open, prospective study of preventive treatment with 99% DMSO, applied topically on the extravasation site every 8 hours for 7 days. Intermittent local cooling (for 1 hour three times daily) on the first 3 days was also used. One hundred forty-four patients with extravasations of doxorubicin (n = 11), epirubicin (n = 46), mitomycin (n = 5), mitoxantrone (n = 13), cisplatin (n = 44), carboplatin (n = 6), ifosfamide (n = 14), and fluorouracil (n = 5) entered the study; 127 were assessable. Only one patient suffered an ulceration. The treatment was well tolerated, with mild local burning and a characteristic breath odor being the only side effects of DMSO application, even in cases in which treatment continued for up to 6 weeks to obtain remission of the symptoms of extravasation. Topical DMSO is an effective and safe antidote that may be used with local cooling after extravasations of vesicant drugs other than those drugs for which standard interventions are defined.

  5. Cytotoxicity of dental alloys, metals, and ceramics assessed by millipore filter, agar overlay, and MTT tests.

    PubMed

    Sjögren, G; Sletten, G; Dahl, J E

    2000-08-01

    Biocompatibility of dental materials is dependent on the release of elements from the materials. In addition, the composition, pretreatment, and handling of the materials influence the element release. This study evaluated the cytotoxicity of dental alloys, metals, and ceramics, with specific emphasis on the effects of altering the composition and the pretreatment. By using cells from a mouse fibroblast cell line and the agar overlay test, Millipore filter test, and MTT test, cytotoxicity of various metals, metal alloys, and ceramics for dental restoration were studied. Effects of altering the composition of a high noble gold alloy and of pretreatment of a ceramic-bonding alloy were also studied. In addition, the release of elements into the cell culture medium by the materials studied was measured using an inductively coupled plasma optical emission spectrophotometer. The results of the MTT test were analyzed statistically using ANOVA and Scheffé test at a significance level of P <.05. Specimens manufactured from materials intended for dental restorations and handled in accordance with the manufacturers' instructions were ranked from "noncytotoxic" to "mildly cytotoxic" according to the agar overlay and Millipore filter tests. For the MTT test, no significant differences were observed between these materials and controls, with the exception of JS C-gold and unalloyed titanium. The modified materials were ranked from "mildly cytotoxic" to "moderately cytotoxic" in the agar overlay and Millipore filter tests and from "noncytotoxic" to "moderately cytotoxic" in the MTT test. Thus, cytotoxicity was related to the alloy composition and treatment. The release of Cu and Zn seemed to be important for the cytotoxic effect. Alterations in the composition and the pretreatment can greatly influence the cytotoxicity, and the results stress the importance of carefully following the manufacturers' instructions when handling dental materials.

  6. New approach of delivering cytotoxic drugs towards CAIX expressing cells: A concept of dual-target drugs.

    PubMed

    van Kuijk, Simon J A; Parvathaneni, Nanda Kumar; Niemans, Raymon; van Gisbergen, Marike W; Carta, Fabrizio; Vullo, Daniela; Pastorekova, Silvia; Yaromina, Ala; Supuran, Claudiu T; Dubois, Ludwig J; Winum, Jean-Yves; Lambin, Philippe

    2017-02-15

    Carbonic anhydrase IX (CAIX) is a hypoxia-regulated and tumor-specific protein that maintains the pH balance of cells. Targeting CAIX might be a valuable approach for specific delivery of cytotoxic drugs, thereby reducing normal tissue side-effects. A series of dual-target compounds were designed and synthesized incorporating a sulfonamide, sulfamide, or sulfamate moiety combined with several different anti-cancer drugs, including the chemotherapeutic agents chlorambucil, tirapazamine, and temozolomide, two Ataxia Telangiectasia and Rad3-related protein inhibitors (ATRi), and the anti-diabetic biguanide agent phenformin. An ATRi derivative (12) was the only compound to show a preferred efficacy in CAIX overexpressing cells versus cells without CAIX expression when combined with radiation. Its efficacy might however not solely depend on binding to CAIX, since all described compounds generally display low activity as carbonic anhydrase inhibitors. The hypothesis that dual-target compounds specifically target CAIX expressing tumor cells was therefore not confirmed. Even though dual-target compounds remain an interesting approach, alternative options should also be investigated as novel treatment strategies. Copyright © 2016 The Authors. Published by Elsevier Masson SAS.. All rights reserved.

  7. Hollow superparamagnetic iron oxide nanoshells as a hydrophobic anticancer drug carrier: intracelluar pH-dependent drug release and enhanced cytotoxicity

    NASA Astrophysics Data System (ADS)

    Zhu, Xiao-Ming; Yuan, Jing; Leung, Ken Cham-Fai; Lee, Siu-Fung; Sham, Kathy W. Y.; Cheng, Christopher H. K.; Au, Doris W. T.; Teng, Gao-Jun; Ahuja, Anil T.; Wang, Yi-Xiang J.

    2012-08-01

    With curcumin and doxorubicin (DOX) base as model drugs, intracellular delivery of hydrophobic anticancer drugs by hollow structured superparamagnetic iron oxide (SPIO) nanoshells (hydrodynamic diameter: 191.9 +/- 2.6 nm) was studied in glioblastoma U-87 MG cells. SPIO nanoshell-based encapsulation provided a stable aqueous dispersion of the curcumin. After the SPIO nanoshells were internalized by U-87 MG cells, they localized at the acidic compartments of endosomes and lysosomes. In endosome/lysosome-mimicking buffers with a pH of 4.5-5.5, pH-dependent drug release was observed from curcumin or DOX loaded SPIO nanoshells (curcumin/SPIO or DOX/SPIO). Compared with the free drug, the intracellular curcumin content delivered via curcumin/SPIO was 30 fold higher. Increased intracellular drug content for DOX base delivered via DOX/SPIO was also confirmed, along with a fast intracellular DOX release that was attributed to its protonation in the acidic environment. DOX/SPIO enhanced caspase-3 activity by twofold compared with free DOX base. The concentration that induced 50% cytotoxic effect (CC50) was 0.05 +/- 0.03 μg ml-1 for DOX/SPIO, while it was 0.13 +/- 0.02 μg ml-1 for free DOX base. These results suggested SPIO nanoshells might be a promising intracellular carrier for hydrophobic anticancer drugs.

  8. Synthesis, characterization and in vitro cytotoxicity analysis of a novel cellulose based drug carrier for the controlled delivery of 5-fluorouracil, an anticancer drug

    NASA Astrophysics Data System (ADS)

    Anirudhan, Thayyath S.; Nima, Jayachandran; Divya, Peethambaran L.

    2015-11-01

    The present investigation concerns the development and evaluation of a novel drug delivery system, aminated-glycidylmethacrylate grafted cellulose-grafted polymethacrylic acid-succinyl cyclodextrin (Cell-g-(GMA/en)-PMA-SCD) for the controlled release of 5-Fluorouracil, an anticancer drug. The prepared drug carrier was characterized by FT-IR, XRD and SEM techniques. Binding kinetics and isotherm studies of 5-FU onto Cell-g-(GMA/en)-PMA-SCD were found to follow pseudo-second-order and Langmuir model respectively. Maximum binding capacity of drug carrier was found to be 149.09 mg g-1 at 37 °C. Swelling studies, in vitro release kinetics, drug loading efficiency and encapsulation efficiency of Cell-g-(GMA/en)-PMA-SCD were studied. The release kinetics was analyzed using Ritger-Peppas equation at pH 7.4. Cytotoxicity analysis on MCF-7 (human breast carcinoma) cells indicated that the drug carrier shows sustained and controlled release of drug to the target site. Hence, it is evident from this investigation that Cell-g-(GMA/en)-PMA-SCD could be a promising carrier for 5-FU.

  9. Evaluation of the cytotoxicity of dihydroxytryptamines and 5-hydroxytryptamine antagonists as cytotoxic agents in dimethylhydrazine-induced adenocarcinomata.

    PubMed

    Tutton, P J; Barkla, D H

    1978-01-01

    The cytotoxicity of 5,6-dihydroxytryptamine (5,6-DHT), 5,7-dihydroxytryptamine (5,7-DHT), bromolysergic acid diethylamide (BOL), methysergide, and cyproheptadine, and also of 5,6-DHT together with either BOL, methysergide, or cyproheptadine in dimethylhydrazine-induced (DMH) carcinomata of rat colon was evaluated by estimating the percentage of necrotic cells in histological sections of tissues taken 15 h after injection of each of the drugs. In addition, the influence of methysergide and cyproheptadine on the tumour cell mitotic rate was estimated by means of a stathmokinetic technique. Both 5,6-DHT and 5,7-DHT were cytotoxic at each dose tested and for each of these agents the percentage of necrotic cells was directly correlated with the dose of drug used. BOL was not found to be cytotoxic to the colonic carcinomata, whereas both methysergide and cyproheptadine did cause detectable tumour cell necrosis. Methysergide was also found to accelerate tumour cell proliferation, whereas cyproheptadine did not. BOL competitively inhibited the cytotoxicity of 5,6-DHT and neither methysergide nor cyproheptadine potentiated the effect of 5,6 DHT.

  10. Cellular pharmacodynamics of the cytotoxic guanidino-containing drug CHS 828. Comparison with methylglyoxal-bis(guanylhydrazone).

    PubMed

    Ekelund, S; Sjöholm, A; Nygren, P; Binderup, L; Larsson, R

    2001-04-20

    N-(6-(4-chlorophenoxy)hexyl)-N'-cyano-N"-4-pyridylguanidine (CHS 828) is a new guanidino-containing compound with antitumoral activity both in vitro and in vivo. Its activity profile differs from those of standard cytotoxic drugs but the mechanism of action is not yet fully understood. CHS 828 is presently in early phase I and II clinical trials. In the present study, the pharmacodynamic effects at the cellular level of CHS 828 was compared to another compound containing two guanidino groups, methylglyoxal-bis(guanylhydrazone) (MGBG). MGBG is known to inhibit the synthesis of polyamines, which are important in, e.g., proliferation and macromolecular synthesis. The concentration-response relationship of CHS 828 closely resembled that of MGBG and the drugs were similar with respect to inhibition of DNA and protein synthesis. On the other hand, CHS 828 induced a significant increase in cellular metabolism while MGBG did not. The cytotoxic effect of MGBG was reversed by the addition of exogenous polyamines, while that of CHS 828 was unaffected. Unlike MGBG, there was also no effect of CHS 828 on the levels of decarboxylating enzymes in the polyamine biosynthesis. In conclusion, CHS 828 does not appear to share any major mechanisms of action with the polyamine synthesis inhibitor MGBG. Further studies will be required to define the exact mechanism of action of CHS 828.

  11. Cetuximab Prevents Methotrexate-Induced Cytotoxicity in Vitro through Epidermal Growth Factor Dependent Regulation of Renal Drug Transporters

    PubMed Central

    2017-01-01

    The combination of methotrexate with epidermal growth factor receptor (EGFR) recombinant antibody, cetuximab, is currently being investigated in treatment of head and neck carcinoma. As methotrexate is cleared by renal excretion, we studied the effect of cetuximab on renal methotrexate handling. We used human conditionally immortalized proximal tubule epithelial cells overexpressing either organic anion transporter 1 or 3 (ciPTEC-OAT1/ciPTEC-OAT3) to examine OAT1 and OAT3, and the efflux pumps breast cancer resistance protein (BCRP), multidrug resistance protein 4 (MRP4), and P-glycoprotein (P-gp) in methotrexate handling upon EGF or cetuximab treatment. Protein kinase microarrays and knowledge-based pathway analysis were used to predict EGFR-mediated transporter regulation. Cytotoxic effects of methotrexate were evaluated using the dimethylthiazol bromide (MTT) viability assay. Methotrexate inhibited OAT-mediated fluorescein uptake and decreased efflux of Hoechst33342 and glutathione-methylfluorescein (GS-MF), which suggested involvement of OAT1/3, BCRP, and MRP4 in transepithelial transport, respectively. Cetuximab reversed the EGF-increased expression of OAT1 and BCRP as well as their membrane expressions and transport activities, while MRP4 and P-gp were increased. Pathway analysis predicted cetuximab-induced modulation of PKC and PI3K pathways downstream EGFR/ERBB2/PLCg. Pharmacological inhibition of ERK decreased expression of OAT1 and BCRP, while P-gp and MRP4 were increased. AKT inhibition reduced all transporters. Exposure to methotrexate for 24 h led to a decreased viability, an effect that was reversed by cetuximab. In conclusion, cetuximab downregulates OAT1 and BCRP while upregulating P-gp and MRP4 through an EGFR-mediated regulation of PI3K-AKT and MAPKK-ERK pathways. Consequently, cetuximab attenuates methotrexate-induced cytotoxicity, which opens possibilities for further research into nephroprotective comedication therapies. PMID:28493713

  12. Cetuximab Prevents Methotrexate-Induced Cytotoxicity in Vitro through Epidermal Growth Factor Dependent Regulation of Renal Drug Transporters.

    PubMed

    Caetano-Pinto, Pedro; Jamalpoor, Amer; Ham, Janneke; Goumenou, Anastasia; Mommersteeg, Monique; Pijnenburg, Dirk; Ruijtenbeek, Rob; Sanchez-Romero, Natalia; van Zelst, Bertrand; Heil, Sandra G; Jansen, Jitske; Wilmer, Martijn J; van Herpen, Carla M L; Masereeuw, Rosalinde

    2017-06-05

    The combination of methotrexate with epidermal growth factor receptor (EGFR) recombinant antibody, cetuximab, is currently being investigated in treatment of head and neck carcinoma. As methotrexate is cleared by renal excretion, we studied the effect of cetuximab on renal methotrexate handling. We used human conditionally immortalized proximal tubule epithelial cells overexpressing either organic anion transporter 1 or 3 (ciPTEC-OAT1/ciPTEC-OAT3) to examine OAT1 and OAT3, and the efflux pumps breast cancer resistance protein (BCRP), multidrug resistance protein 4 (MRP4), and P-glycoprotein (P-gp) in methotrexate handling upon EGF or cetuximab treatment. Protein kinase microarrays and knowledge-based pathway analysis were used to predict EGFR-mediated transporter regulation. Cytotoxic effects of methotrexate were evaluated using the dimethylthiazol bromide (MTT) viability assay. Methotrexate inhibited OAT-mediated fluorescein uptake and decreased efflux of Hoechst33342 and glutathione-methylfluorescein (GS-MF), which suggested involvement of OAT1/3, BCRP, and MRP4 in transepithelial transport, respectively. Cetuximab reversed the EGF-increased expression of OAT1 and BCRP as well as their membrane expressions and transport activities, while MRP4 and P-gp were increased. Pathway analysis predicted cetuximab-induced modulation of PKC and PI3K pathways downstream EGFR/ERBB2/PLCg. Pharmacological inhibition of ERK decreased expression of OAT1 and BCRP, while P-gp and MRP4 were increased. AKT inhibition reduced all transporters. Exposure to methotrexate for 24 h led to a decreased viability, an effect that was reversed by cetuximab. In conclusion, cetuximab downregulates OAT1 and BCRP while upregulating P-gp and MRP4 through an EGFR-mediated regulation of PI3K-AKT and MAPKK-ERK pathways. Consequently, cetuximab attenuates methotrexate-induced cytotoxicity, which opens possibilities for further research into nephroprotective comedication therapies.

  13. Ionic liquid-in-oil microemulsion as a potential carrier of sparingly soluble drug: characterization and cytotoxicity evaluation.

    PubMed

    Moniruzzaman, Muhammad; Tamura, Miki; Tahara, Yoshiro; Kamiya, Noriho; Goto, Masahiro

    2010-11-15

    Pharmaceutical industries have posed challenges in the topical and transdermal administration of drugs which are poorly soluble or insoluble in water and most of organic solvents. In an approach to overcome this limitation, ionic liquid-in-oil (IL/o) microemulsions (MEs) were employed to increase the solubility of a sparingly soluble drug to enhance its topical and transdermal delivery. The formulation of MEs was composed of a blend of nonionic surfactants, polyoxyethylene sorbitan monooleate (Tween-80) and sorbitan laurate (Span-20), isopropyl myristate (IPM) as an oil phase, and IL [C(1)mim] [(CH(3)O)(2)PO(2)] (dimethylimidazolium dimethylphosphate) as a pseudophase. Among various weight ratios of Tween-80 to Span-20 investigated in the ME systems, the ratio 3:2 showed excellent solubility and skin permeation enhancing effect for acyclovir (ACV) used as a model sparingly soluble drug. The size and size distribution of the ME droplets with and without drug were determined by dynamic light scattering. The permeability study of ACV incorporated in IL droplets as well as other formulations was performed into and across the Yucatan micropig (YMP) porcine skin, and the use of IL/o MEs has been shown to dramatically increase ACV administration. Finally, the cytotoxicity of the new carrier was evaluated in vitro using the reconstructed human epidermal model LabCyte™ EPI-MODEL12. It was found that the cell viability of IL/o MEs containing 4wt% IL was over 80% compared to Dulbecco's Phosphate-Buffered Salines, indicating low cytotoxicity of the carrier. Taken together these results, it can be assumed that IL-assisted nonaqueous ME could serve as a versatile and efficient nanodelivery system for insoluble or sparingly soluble drug molecules that require solubilizing agents for delivery. Copyright © 2010 Elsevier B.V. All rights reserved.

  14. Novel antibody drug conjugates containing exatecan derivative-based cytotoxic payloads.

    PubMed

    Nakada, Takashi; Masuda, Takeshi; Naito, Hiroyuki; Yoshida, Masao; Ashida, Shinji; Morita, Koji; Miyazaki, Hideki; Kasuya, Yuji; Ogitani, Yusuke; Yamaguchi, Junko; Abe, Yuki; Honda, Takeshi

    2016-03-15

    Trastuzumab conjugates consisting of exatecan derivatives were prepared and their biological activities and physicochemical properties were evaluated. The ADCs showed strong efficacy and a low aggregation rate. The exatecan derivatives were covalently connected via a peptidyl spacer (Gly-Gly-Phe-Gly), which is assumed to be stable in circulation, and were cleaved by lysosomal enzymes following ADC internalization into tumor tissue. These anti-HER2 ADCs exhibited a high potency, specifically against HER2-positive cancer cell lines in vitro. The ADCs, bearing exatecan derivatives which have more than two methylene chains, exhibited superior cytotoxicity. It was speculated that steric hindrance of the cleavable amide moiety could be involved in the drug release. The adequate alkyl lengths of exatecan derivatives (13, 14, 15) were from two to four in terms of aggregation rate. The ADC having a hydrophilic moiety showed good efficacy in a HER2-positive and Trastuzumab-resistant breast carcinoma cell model in mice. Copyright © 2016 Elsevier Ltd. All rights reserved.

  15. Comparative trial of endocrine versus cytotoxic treatment in advanced breast cancer.

    PubMed Central

    Priestman, T; Baum, M; Jones, V; Forbes, J

    1977-01-01

    Ninety-two women with advanced breast cancer were allocated at random to receive either cytotoxic or endocrine treatment. Out of 45 women included in the cytotoxic treatment group, 22 (49%) achieved complete or partial remission of their disease, whereas of the 47 included in the endocrine treatment group, only 10 (21%) achieved such remission. Significantly longer survival times in the cytotoxic treatment group were most apparent among premenopausal women, 75% of such patients responding to cytotoxic drugs (median survival 46 weeks) compared with only 11% benefiting from ovarian ablation (median survival 12 weeks). In postmenopausal women with predominantly soft-tissue disease, however, additive hormonal treatment with tamoxifen produced remission rates and survival times equivalent to those produced by cytotoxic drugs. PMID:324570

  16. Drug release patterns and cytotoxicity of PEG-poly(aspartate) block copolymer micelles in cancer cells.

    PubMed

    Eckman, Allison M; Tsakalozou, Eleftheria; Kang, Nayon Y; Ponta, Andrei; Bae, Younsoo

    2012-07-01

    To test physicochemical and biological properties of PEG-poly(aspartate) [PEG-p(Asp)] block copolymer micelles entrapping doxorubicin hydrochloride (DOX) through ionic interaction. PEG-p(Asp) was synthesized from 5 kDa PEG and 20 Asp units. Carboxyl groups of p(Asp) were present as benzyl ester [PEG-p(Asp/Bz)], sodium salt [PEG-p(Asp/Na)] or free acid [PEG-p(Asp/H)]. Block copolymers and DOX were mixed at various ratios to prepare polymer micelles, which were subsequently characterized to determine particle size, drug loading and release patterns, and cytotoxicity against prostate (PC3 and DU145) and lung (A549) cancer cell lines. PEG-p(Asp/Bz), Na- and H-micelles entrapped 1.1, 56.8 and 40.6 wt.% of DOX, respectively. Na- and H-micelles (<100 nm) showed time-dependent DOX release at pH 7.4, which was accelerated at pH 5.0. Na-micelles were most stable at pH 7.4, retaining 31.8% of initial DOX for 48 h. Cytotoxicity of Na-micelles was 23.2% (A549), 28.5% (PC3) and 45.9% (DU145) more effective than free DOX. Ionic interaction appeared to entrap DOX efficiently in polymer micelles from PEG-p(Asp) block copolymers. Polymer micelles possessing counter ions (Na) of DOX in the core were the most stable, releasing drugs for prolonged time in a pH-dependent manner, and suppressing cancer cells effectively.

  17. Structure-activity models of oral clearance, cytotoxicity, and LD50: a screen for promising anticancer compounds

    PubMed Central

    Boik, John C; Newman, Robert A

    2008-01-01

    Background Quantitative structure-activity relationship (QSAR) models have become popular tools to help identify promising lead compounds in anticancer drug development. Few QSAR studies have investigated multitask learning, however. Multitask learning is an approach that allows distinct but related data sets to be used in training. In this paper, a suite of three QSAR models is developed to identify compounds that are likely to (a) exhibit cytotoxic behavior against cancer cells, (b) exhibit high rat LD50 values (low systemic toxicity), and (c) exhibit low to modest human oral clearance (favorable pharmacokinetic characteristics). Models were constructed using Kernel Multitask Latent Analysis (KMLA), an approach that can effectively handle a large number of correlated data features, nonlinear relationships between features and responses, and multitask learning. Multitask learning is particularly useful when the number of available training records is small relative to the number of features, as was the case with the oral clearance data. Results Multitask learning modestly but significantly improved the classification precision for the oral clearance model. For the cytotoxicity model, which was constructed using a large number of records, multitask learning did not affect precision but did reduce computation time. The models developed here were used to predict activities for 115,000 natural compounds. Hundreds of natural compounds, particularly in the anthraquinone and flavonoids groups, were predicted to be cytotoxic, have high LD50 values, and have low to moderate oral clearance. Conclusion Multitask learning can be useful in some QSAR models. A suite of QSAR models was constructed and used to screen a large drug library for compounds likely to be cytotoxic to multiple cancer cell lines in vitro, have low systemic toxicity in rats, and have favorable pharmacokinetic properties in humans. PMID:18554402

  18. Structure-activity models of oral clearance, cytotoxicity, and LD50: a screen for promising anticancer compounds.

    PubMed

    Boik, John C; Newman, Robert A

    2008-06-13

    Quantitative structure-activity relationship (QSAR) models have become popular tools to help identify promising lead compounds in anticancer drug development. Few QSAR studies have investigated multitask learning, however. Multitask learning is an approach that allows distinct but related data sets to be used in training. In this paper, a suite of three QSAR models is developed to identify compounds that are likely to (a) exhibit cytotoxic behavior against cancer cells, (b) exhibit high rat LD50 values (low systemic toxicity), and (c) exhibit low to modest human oral clearance (favorable pharmacokinetic characteristics). Models were constructed using Kernel Multitask Latent Analysis (KMLA), an approach that can effectively handle a large number of correlated data features, nonlinear relationships between features and responses, and multitask learning. Multitask learning is particularly useful when the number of available training records is small relative to the number of features, as was the case with the oral clearance data. Multitask learning modestly but significantly improved the classification precision for the oral clearance model. For the cytotoxicity model, which was constructed using a large number of records, multitask learning did not affect precision but did reduce computation time. The models developed here were used to predict activities for 115,000 natural compounds. Hundreds of natural compounds, particularly in the anthraquinone and flavonoids groups, were predicted to be cytotoxic, have high LD50 values, and have low to moderate oral clearance. Multitask learning can be useful in some QSAR models. A suite of QSAR models was constructed and used to screen a large drug library for compounds likely to be cytotoxic to multiple cancer cell lines in vitro, have low systemic toxicity in rats, and have favorable pharmacokinetic properties in humans.

  19. The Histone Deacetylase Inhibitor Valproic Acid Exerts a Synergistic Cytotoxicity with the DNA-Damaging Drug Ellipticine in Neuroblastoma Cells

    PubMed Central

    Cerna, Tereza; Hrabeta, Jan; Eckschlager, Tomas; Frei, Eva; Schmeiser, Heinz H.

    2018-01-01

    Neuroblastoma (NBL) originates from undifferentiated cells of the sympathetic nervous system. Chemotherapy is judged to be suitable for successful treatment of this disease. Here, the influence of histone deacetylase (HDAC) inhibitor valproate (VPA) combined with DNA-damaging chemotherapeutic, ellipticine, on UKF-NB-4 and SH-SY5Y neuroblastoma cells was investigated. Treatment of these cells with ellipticine in combination with VPA led to the synergism of their anticancer efficacy. The effect is more pronounced in the UKF-NB-4 cell line, the line with N-myc amplification, than in SH-SY5Y cells. This was associated with caspase-3-dependent induction of apoptosis in UKF-NB-4 cells. The increase in cytotoxicity of ellipticine in UKF-NB-4 by VPA is dictated by the sequence of drug administration; the increased cytotoxicity was seen only after either simultaneous exposure to these drugs or after pretreatment of cells with ellipticine before their treatment with VPA. The synergism of treatment of cells with VPA and ellipticine seems to be connected with increased acetylation of histones H3 and H4. Further, co-treatment of cells with ellipticine and VPA increased the formation of ellipticine-derived DNA adducts, which indicates an easier accessibility of ellipticine to DNA in cells by its co-treatment with VPA and also resulted in higher ellipticine cytotoxicity. The results are promising for in vivo studies and perhaps later for clinical studies of combined treatment of children suffering from high-risk NBL. PMID:29304031

  20. 21 CFR 878.5070 - Air-handling apparatus for a surgical operating room.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... 21 Food and Drugs 8 2011-04-01 2011-04-01 false Air-handling apparatus for a surgical operating room. 878.5070 Section 878.5070 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND....5070 Air-handling apparatus for a surgical operating room. (a) Identification. Air-handling apparatus...

  1. 21 CFR 878.5070 - Air-handling apparatus for a surgical operating room.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... 21 Food and Drugs 8 2010-04-01 2010-04-01 false Air-handling apparatus for a surgical operating room. 878.5070 Section 878.5070 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND....5070 Air-handling apparatus for a surgical operating room. (a) Identification. Air-handling apparatus...

  2. Assessment of Aprotinin Loaded Microemulsion Formulations for Parenteral Drug Delivery: Preparation, Characterization, in vitro Release and Cytotoxicity Studies.

    PubMed

    Okur, Neslihan Üstündağ; Özdemir, Derya İlem; Kahyaoğlu, Şennur Görgülü; Şenyiğit, Zeynep Ay; Aşıkoğlu, Makbule; Genç, Lütfi; Karasulu, H Yeşim

    2015-01-01

    The object of the current study was to prepare novel microemulsion formulations of aprotinin for parenteral delivery and to compare in vitro characteristics and release behaviour of different Technetium-99m ((99m)Tc)-Aprotinin loaded microemulsion formulations. In addition, cytotoxicity of microemulsion formulation was evaluated with cell culture studies on human immortalized pancreatic duct epithelial-like cells. For this aim, firstly, pseudo-ternary phase diagrams were plotted to detect the formulation region and optimal microemulsions were characterized for their thermodynamic stability, conductivity, particle size, zeta potential, viscosity, pH and in vitro release properties. For in vitro release studies aprotinin was labelled with (99m)Tc and labelling efficiency, radiochemical purity and stability of the radiolabeled complex were determined by several chromatography techniques. Radiolabeling efficiency of (99m)Tc-Aprotinin was found over than 90% without any significant changes up to 6 hours after labelling at room temperature. After that, in vitro release studies of (99m)Tc-Aprotinin loaded microemulsions were performed with two different methods; dissolution from diffusion cells and dialysis bags. Both methods showed that release rate of (99m)Tc- Aprotinin from microemulsion could be controlled by microemulsion formulations. Drug release from the optimized microemulsion formulations was found lower compared to drug solution at the end of six hours. According to stability studies, the optimized formulation was found to be stable over a period of 12 months. Also, human immortalized pancreatic duct epithelial-like cells were used to evaluate the cytotoxicity of optimum formulation. Developed microemulsion did not reveal cytotoxicity. In conclusion the present study indicated that the M1-APT microemulsion is appropriate for intravenous application of aprotinin.

  3. Small-scale screening of anticancer drugs acting specifically on neural stem/progenitor cells derived from human-induced pluripotent stem cells using a time-course cytotoxicity test.

    PubMed

    Fukusumi, Hayato; Handa, Yukako; Shofuda, Tomoko; Kanemura, Yonehiro

    2018-01-01

    Since the development of human-induced pluripotent stem cells (hiPSCs), various types of hiPSC-derived cells have been established for regenerative medicine and drug development. Neural stem/progenitor cells (NSPCs) derived from hiPSCs (hiPSC-NSPCs) have shown benefits for regenerative therapy of the central nervous system. However, owing to their intrinsic proliferative potential, therapies using transplanted hiPSC-NSPCs carry an inherent risk of undesired growth in vivo . Therefore, it is important to find cytotoxic drugs that can specifically target overproliferative transplanted hiPSC-NSPCs without damaging the intrinsic in vivo stem-cell system. Here, we examined the chemosensitivity of hiPSC-NSPCs and human neural tissue-derived NSPCs (hN-NSPCs) to the general anticancer drugs cisplatin, etoposide, mercaptopurine, and methotrexate. A time-course analysis of neurospheres in a microsphere array identified cisplatin and etoposide as fast-acting drugs, and mercaptopurine and methotrexate as slow-acting drugs. Notably, the slow-acting drugs were eventually cytotoxic to hiPSC-NSPCs but not to hN-NSPCs, a phenomenon not evident in the conventional endpoint assay on day 2 of treatment. Our results indicate that slow-acting drugs can distinguish hiPSC-NSPCs from hN-NSPCs and may provide an effective backup safety measure in stem-cell transplant therapies.

  4. Transport and cytotoxicity of the anticancer drug 3-bromopyruvate in the yeast Saccharomyces cerevisiae.

    PubMed

    Lis, Paweł; Zarzycki, Marek; Ko, Young H; Casal, Margarida; Pedersen, Peter L; Goffeau, Andre; Ułaszewski, Stanisław

    2012-02-01

    We have investigated the cytotoxicity in Saccharomyces cerevisiae of the novel antitumor agent 3-bromopyruvate (3-BP). 3-BP enters the yeast cells through the lactate/pyruvate H(+) symporter Jen1p and inhibits cell growth at minimal inhibitory concentration of 1.8 mM when grown on non-glucose conditions. It is not submitted to the efflux pumps conferring Pleiotropic Drug Resistance in yeast. Yeast growth is more sensitive to 3-BP than Gleevec (Imatinib methanesulfonate) which in contrast to 3-BP is submitted to the PDR network of efflux pumps. The sensitivity of yeast to 3-BP is increased considerably by mutations or chemical treatment by buthionine sulfoximine that decrease the intracellular concentration of glutathione.

  5. Pseudomonas aeruginosa invasion and cytotoxicity are independent events, both of which involve protein tyrosine kinase activity.

    PubMed

    Evans, D J; Frank, D W; Finck-Barbançon, V; Wu, C; Fleiszig, S M

    1998-04-01

    Pseudomonas aeruginosa clinical isolates exhibit invasive or cytotoxic phenotypes. Cytotoxic strains acquire some of the characteristics of invasive strains when a regulatory gene, exsA, that controls the expression of several extracellular proteins, is inactivated. exsA mutants are not cytotoxic and can be detected within epithelial cells by gentamicin survival assays. The purpose of this study was to determine whether epithelial cell invasion precedes and/or is essential for cytotoxicity. This was tested by measuring invasion (gentamicin survival) and cytotoxicity (trypan blue staining) of PA103 mutants deficient in specific exsA-regulated proteins and by testing the effect of drugs that inhibit invasion for their effect on cytotoxicity. A transposon mutant in the exsA-regulated extracellular factor exoU was neither cytotoxic nor invasive. Furthermore, several of the drugs that inhibited invasion did not prevent cytotoxicity. These results show that invasion and cytotoxicity are mutually exclusive events, inversely regulated by an exsA-encoded invasion inhibitor(s). Both involve host cell protein tyrosine kinase (PTK) activity, but they differ in that invasion requires Src family tyrosine kinases and calcium-calmodulin activity. PTK inhibitor drugs such as genistein may have therapeutic potential through their ability to block both invasive and cytotoxicity pathways via an action on the host cell.

  6. Eco-friendly biosynthesis, anticancer drug loading and cytotoxic effect of capped Ag-nanoparticles against breast cancer

    NASA Astrophysics Data System (ADS)

    Naz, M.; Nasiri, N.; Ikram, M.; Nafees, M.; Qureshi, M. Z.; Ali, S.; Tricoli, A.

    2017-11-01

    The work aimed to prepare silver nanoparticles (Ag-NPs) from silver nitrate and various concentrations of the seed extract ( Setaria verticillata) by a green synthetic route. The chemical and physical properties of the resulting Ag-NPs were investigated by X-ray diffraction (XRD), transmission electron microscopy (TEM), Fourier transform infrared (FTIR) spectrometry and ultraviolet-visible (UV-Vis) spectrophotometry. Anticancer activity of Ag-NPs (5-20 nm) had dose-dependent cytotoxic effect against breast cancer (MCF7-FLV) cells. The in vitro toxicity was studied on adult earthworms (Lumbricina) resulting in statistically significant ( P < 0.05) inhibition. The prepared NPs were loaded with hydrophilic anticancer drugs (ACD), doxorubicin (DOX) and daunorubicin (DNR), for developing a novel drug delivery carrier having significant adsorption capacity and efficiency to remove the side effects of the medicines effective for leukemia chemotherapy.

  7. 21 CFR 58.47 - Facilities for handling test and control articles.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... 21 Food and Drugs 1 2010-04-01 2010-04-01 false Facilities for handling test and control articles. 58.47 Section 58.47 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN... for handling test and control articles. (a) As necessary to prevent contamination or mixups, there...

  8. 21 CFR 1250.32 - Food-handling operations.

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ... 21 Food and Drugs 8 2014-04-01 2014-04-01 false Food-handling operations. 1250.32 Section 1250.32 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) REGULATIONS UNDER CERTAIN OTHER ACTS ADMINISTERED BY THE FOOD AND DRUG ADMINISTRATION INTERSTATE CONVEYANCE...

  9. 21 CFR 1250.32 - Food-handling operations.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... 21 Food and Drugs 8 2010-04-01 2010-04-01 false Food-handling operations. 1250.32 Section 1250.32 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) REGULATIONS UNDER CERTAIN OTHER ACTS ADMINISTERED BY THE FOOD AND DRUG ADMINISTRATION INTERSTATE CONVEYANCE...

  10. 21 CFR 1250.32 - Food-handling operations.

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ... 21 Food and Drugs 8 2013-04-01 2013-04-01 false Food-handling operations. 1250.32 Section 1250.32 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) REGULATIONS UNDER CERTAIN OTHER ACTS ADMINISTERED BY THE FOOD AND DRUG ADMINISTRATION INTERSTATE CONVEYANCE...

  11. 21 CFR 1250.32 - Food-handling operations.

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ... 21 Food and Drugs 8 2012-04-01 2012-04-01 false Food-handling operations. 1250.32 Section 1250.32 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) REGULATIONS UNDER CERTAIN OTHER ACTS ADMINISTERED BY THE FOOD AND DRUG ADMINISTRATION INTERSTATE CONVEYANCE...

  12. 21 CFR 1250.32 - Food-handling operations.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... 21 Food and Drugs 8 2011-04-01 2011-04-01 false Food-handling operations. 1250.32 Section 1250.32 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) REGULATIONS UNDER CERTAIN OTHER ACTS ADMINISTERED BY THE FOOD AND DRUG ADMINISTRATION INTERSTATE CONVEYANCE...

  13. Characterization of Thermally Activated Metalloenediyne Cytotoxicity in Human Melanoma Cells.

    PubMed

    Keller, Eric J; Porter, Meghan; Garrett, Joy E; Varie, Meredith; Wang, Haiyan; Pollok, Karen E; Turchi, John J; Zaleski, Jeffrey M; Dynlacht, Joseph R

    2018-05-15

    Enediynes are a highly cytotoxic class of compounds. However, metallation of these compounds may modulate their activation, and thus their cytotoxicity. We previously demonstrated that cytotoxicity of two different metalloenediynes, including (Z)-N,N'-bis[1-pyridyl-2-yl-meth-(E)-ylidene]octa-4-ene-2,6-diyne-1,8-diamine] (PyED), is potentiated when the compounds are administered to HeLa cells during hyperthermia treatment at concentrations that are minimally or not cytotoxic at 37°C. In this study, we further characterized the concentration, time and temperature dependence of cytotoxicity of PyED on human U-1 melanoma cells. We also investigated the potential mechanisms by which PyED cytotoxicity is enhanced during hyperthermia treatment. Cell killing with PyED was dependent on concentration, temperature during treatment and time of exposure. Potentiation of cytotoxicity was observed when cells were treated with PyED at temperatures ≥39.5°C, and enhancement of cell killing increased with temperature and with increasing time at a given temperature. All cells treated with PyED were shown to have DNA damage, but substantially more damage was observed in cells treated with PyED during heating. DNA repair was also inhibited in cells treated with the drug during hyperthermia. Thus, potentiation of PyED cytotoxicity by hyperthermia may be due to enhancement of drug-induced DNA lesions, and/or the inhibition of repair of sublethal DNA damage. While the selective thermal activation of PyED supports the potential clinical utility of metalloenediynes as cancer thermochemotherapeutic agents, therapeutic gain could be optimized by identifying compounds that produce minimal toxicity at 37°C but which become activated and show enhancement of cytotoxicity within a tumor subjected to localized hyperthermic or thermal ablative treatment, or which might act as bifunctional agents. We thus also describe the development and initial characterization of a novel cofactor complex of Py

  14. Handling of drug-related emergencies: an evaluation of emergency medical dispatch.

    PubMed

    Tonje, Lorem; Elisabeth, Saether; Lars, Wik

    2009-02-01

    Documenting the quality of emergency dispatch centres handling of emergency calls regarding intoxicated unconscious patients. Interview with eight emergency dispatch centre directors and a nationwide survey among 313 dispatchers in Norway were performed. In addition, a customized scoring system was used to evaluate dispatcher log recordings of real cases. The recordings were compared with information from corresponding ambulance records. Ninety-nine percent of the dispatchers stated that they used the Norwegian protocol for medical emergencies and 89% of them found it useful. The interviews, the survey, and the recordings, however, documented frequent deviation from the protocol. This instructs ambulance dispatch for any unconscious patient, but 21% stated that they would not dispatch any resource for an unconscious patient without further survey in alcohol-related cases. This was significantly more often (P<0.05) than for the narcotic, combination and prescription - drug-related cases with 4, 10 and 7%, respectively. The recordings revealed deviation from the protocol with dispatchers only determining the patients' level of consciousness and respiratory status in 64 and 70% of the cases, respectively. For 16% of the cases, the dispatcher did not ask the caller about consciousness at all, even though these patients later were found with reduced consciousness. On the basis of the interviews and the survey, cases were handled according to guidelines. The log recordings, however, disclosed deviation from the protocol. Alcohol intoxication was associated with higher rate of deviation from the protocol compared with other intoxications.

  15. Cytotoxicity potentials of eleven Bangladeshi medicinal plants.

    PubMed

    Khatun, Amina; Rahman, Mahmudur; Haque, Tania; Rahman, Md Mahfizur; Akter, Mahfuja; Akter, Subarna; Jhumur, Afrin

    2014-01-01

    Various forms of cancer are rising all over the world, requiring newer therapy. The quest of anticancer drugs both from natural and synthetic sources is the demand of time. In this study, fourteen extracts of different parts of eleven Bangladeshi medicinal plants which have been traditionally used for the treatment of different types of carcinoma, tumor, leprosy, and diseases associated with cancer were evaluated for their cytotoxicity for the first time. Extraction was conceded using methanol. Phytochemical groups like reducing sugars, tannins, saponins, steroids, gums, flavonoids, and alkaloids were tested using standard chromogenic reagents. Plants were evaluated for cytotoxicity by brine shrimp lethality bioassay using Artemia salina comparing with standard anticancer drug vincristine sulphate. All the extracts showed potent to moderate cytotoxicity ranging from LC50 2 to 115 µg/mL. The highest toxicity was shown by Hygrophila spinosa seeds (LC50 = 2.93 µg/mL) and the lowest by Litsea glutinosa leaves (LC50 = 114.71 µg/mL) in comparison with standard vincristine sulphate (LC50 = 2.04 µg/mL). Among the plants, the plants traditionally used in different cancer and microbial treatments showed highest cytotoxicity. The results support their ethnomedicinal uses and require advanced investigation to elucidate responsible compounds as well as their mode of action.

  16. Internalization of Ineffective Platinum Complex in Nanocapsules Renders It Cytotoxic.

    PubMed

    Vrana, Oldrich; Novohradsky, Vojtech; Medrikova, Zdenka; Burdikova, Jana; Stuchlikova, Olga; Kasparkova, Jana; Brabec, Viktor

    2016-02-18

    Anticancer therapy by platinum complexes, based on nanocarrier-based delivery, may offer a new approach to improve the efficacy and tolerability of the platinum family of anticancer drugs. The original rules for the design of new anticancer platinum drugs were affected by the fact that, although cisplatin (cis-[PtCl2 (NH3)2) was an anticancer drug, its isomer transplatin was not cytotoxic. For the first time, it is demonstrated that simple encapsulation of an inactive platinum compound in phospholipid bilayers transforms it into an efficient cytotoxic agent. Notably, the encapsulation of transplatin makes it possible to overcome the resistance mechanisms operating in cancer cells treated with cisplatin and prevents inactivation of transplatin in the extracellular environment. It is also shown that transplatin delivered to the cells in nanocapsules, in contrast to free (nonencapsulated) complex, forms cytotoxic cross-links on DNA. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  17. Cytotoxic and glycosaminoglycan priming activities of novel 4-anilinequinazoline β-D-xylosides.

    PubMed

    Wang, Jinpeng; Chang, Yajing; Dong, Xueyang; Zhang, Renshuai; Tang, Yang; Zhang, Meng; Yu, Rilei; Jiang, Tao; Zhang, Lijuan

    2018-06-30

    β-D-xylosides with cytotoxic aglycones have augmented cytotoxicity towards animal cells because β-D-xyloside-primed glycosaminoglycans further enhance the aglycone's cytotoxicity. In this study, we designed and synthesized different 4-anilinequinazoline β-D-xylosides and found that compounds 7-10 possessing 3-chloro-4-((3-fluorobenzyl)oxy)aniline group as in anticancer drug lapatinib also primed glycosaminoglycans and were highly cytotoxic to cancer cells. Copyright © 2018. Published by Elsevier Ltd.

  18. Handling Kids in Crisis with Care

    ERIC Educational Resources Information Center

    Bushinski, Cari

    2018-01-01

    The Handle with Care program helps schools help students who experience trauma. While at the scene of an event like a domestic violence call, drug raid, or car accident, law enforcement personnel determine the names and school of any children present. They notify that child's school to "handle ___ with care" the next day, and the school…

  19. Predicting cytotoxicity from heterogeneous data sources with Bayesian learning.

    PubMed

    Langdon, Sarah R; Mulgrew, Joanna; Paolini, Gaia V; van Hoorn, Willem P

    2010-12-09

    We collected data from over 80 different cytotoxicity assays from Pfizer in-house work as well as from public sources and investigated the feasibility of using these datasets, which come from a variety of assay formats (having for instance different measured endpoints, incubation times and cell types) to derive a general cytotoxicity model. Our main aim was to derive a computational model based on this data that can highlight potentially cytotoxic series early in the drug discovery process. We developed Bayesian models for each assay using Scitegic FCFP_6 fingerprints together with the default physical property descriptors. Pairs of assays that are mutually predictive were identified by calculating the ROC score of the model derived from one predicting the experimental outcome of the other, and vice versa. The prediction pairs were visualised in a network where nodes are assays and edges are drawn for ROC scores >0.60 in both directions. We observed that, if assay pairs (A, B) and (B, C) were mutually predictive, this was often not the case for the pair (A, C). The results from 48 assays connected to each other were merged in one training set of 145590 compounds and a general cytotoxicity model was derived. The model has been cross-validated as well as being validated with a set of 89 FDA approved drug compounds. We have generated a predictive model for general cytotoxicity which could speed up the drug discovery process in multiple ways. Firstly, this analysis has shown that the outcomes of different assay formats can be mutually predictive, thus removing the need to submit a potentially toxic compound to multiple assays. Furthermore, this analysis enables selection of (a) the easiest-to-run assay as corporate standard, or (b) the most descriptive panel of assays by including assays whose outcomes are not mutually predictive. The model is no replacement for a cytotoxicity assay but opens the opportunity to be more selective about which compounds are to be

  20. The hypertension drug, verapamil, activates Nrf2 by promoting p62-dependent autophagic Keap1 degradation and prevents acetaminophen-induced cytotoxicity.

    PubMed

    Lee, Da Hyun; Park, Jeong Su; Lee, Yu Seol; Sung, Su Haeng; Lee, Yong-Ho; Bae, Soo Han

    2017-02-01

    Nuclear factor erythroid 2-related factor 2 (Nrf2) provides a cellular defense against oxidative stress by inducing the expression of antioxidant and detoxification enzymes. The calcium antagonist, verapamil, is an FDA-approved drug prescribed for the treatment of hypertension. Here, we show that verapamil acts as a potent Nrf2 activator without causing cytotoxicity, through degradation of Kelch-like ECH-associated protein 1 (Keap1), a Nrf2 repressor. Furthermore, verapamilinduced Keap1 degradation is prominently mediated by a p62-dependent autophagic pathway. Correspondingly, verapamil protects cells from acetaminophen-induced oxidative damage through Nrf2 activation. These results demonstrated the underlying mechanisms for the protective role of verapamil against acetaminophen-induced cytotoxicity. [BMB Reports 2017; 50(2): 91-96].

  1. Comparison of intracellular drug retention, DNA damage and cytotoxicity of derivatives of doxorubicin and daunorubicin in a human colon adenocarcinoma cell line (LoVo).

    PubMed

    Belvedere, G; Suarato, A; Geroni, C; Giuliani, F C; D'Incalci, M

    1989-11-01

    Formation of DNA single strand breaks (SSB) was assayed by alkaline elution in LoVo cells treated with doxorubicin, daunorubicin and six derivatives of these drugs modified either in the chromophore or the sugar. Seven compounds showed a biphasic relationship (initial increase and then a decrease) for the formation of DNA-SSB over the concentration range 0.05-10 micrograms/ml. At a drug concentration in the range causing an increase of DNA damage very fast repair of DNA-SSB was observed for 4'-deoxydoxorubicin and 4-demethoxydaunorubicin; the kinetics of DNA-SSB investigated after drug removal at a drug concentration reducing DNA-SSB showed a time dependent increase of DNA damage for both drugs although with different patterns. 4'-Deoxydoxorubicin reduced the effect of radiations on the rate of elution of DNA in a way resembling the formation of DNA interstrand cross links (ISC) at concentrations at which DNA-SSB were reduced. DNA-ISC were not produced by chemical reactions occurring during sample processing for alkaline elution and this derivative was not metabolized by LoVo cells. The IC50 of the anthracyclines were on a several log range, though for most of the derivatives the cytotoxicity curve showed a plateau at growth inhibition of about 15-30% at increasing intracellular drug levels. A relationship between DNA damage and cytotoxicity was observed only in a very small range of DNA-SSB. It is likely that the different effects of these anthracyclines on the formation of DNA-SSB depend on a qualitatively different interaction between drug-DNA and topoisomerase II when the drug concentration is raised.

  2. Lecithin/TPGS-based spray-dried self-microemulsifying drug delivery systems: In vitro pulmonary deposition and cytotoxicity.

    PubMed

    Ishak, Rania A H; Osman, Rihab

    2015-05-15

    The aim of the present work was to develop a new solid self-microemulsifying drug delivery system (SMEDDS) for the pulmonary delivery of the poorly water-soluble anti-cancer drug atorvastatin (AVT). Microemulsion (ME) was first developed using isopropyl myristate (IPM), a combination of 2 biocompatible surfactants: lecithin/d-α-tocopheryl polyethylene glycol succinate (TPGS) and ethanol as co-surfactant. Two types of lecithin with different phosphatidylcholine (PC) contents were compared. Phase diagram, physico-chemical characterization and stability studies were used to investigate ME region. Solid SMEDDS were then prepared by spray-drying the selected ME using a combination of carriers composed of sugars, leucine as dispersibility enhancer with or without polyethylene glycol (PEG) 6000. Yield, flow properties, particle size and in vitro pulmonary deposition were used to characterize the spray-dried powders. Reconstituted MEs were characterized in terms of morphology, particle size and size distribution. In vitro cytotoxicity study was undertaken on lung cancer cell line for the selected MEs and SD-SMEDDS formulae. Results showed that the most satisfactory MEs properties were obtained with 1:3 lecithin/TPGS, 1:1 lecithin/oil and 1:1 surfactant/co-surfactant ratios. A larger ME area was obtained with lecithin containing 100% PC compared to the less expensive lecithin containing 20% PC. By manipulating spray drying parameters, carrier composition and ratio of ME lipids to carrier, microparticles with more than 70% of respirable fraction could be prepared. The ME was efficiently recovered in simulated lung fluid even after removal of alcohol. The concurrent delivery of AVT with TPGS in solid SMEDDS greatly enhanced the cytotoxic activity on lung cancer cells. Copyright © 2015 Elsevier B.V. All rights reserved.

  3. Potentiation by Tumor Necrosis Factor of Mitoxantrone Cytotoxicity to Human Ovarian Cancer Cell Lines

    PubMed Central

    Parodi, Silvio; Billi, Giovanna; Oliva, Cristina; Venturing, Marco; Noviello, Elvira; Conte, PierFranco

    1992-01-01

    The cytotoxic activity of human recombinant tumor necrosis factor (rHuTNF) (from 0.01 to 10000 U/ml) was assayed on six human ovarian cancer cell lines and one human cervical carcinoma cell line using a crystal violet assay. rHuTNF was cytotoxic to four cell lines (A2780, A2774, SW626, PAD, while 3 cell lines (IGROV1, SKOV3, Mel80) were marginally sensitive to its activity. However, under the same experimental conditions rHuTNF markedly enhanced the cytotoxicity of mitoxantrone, a chemotherapeutic drug targeted at DNA topoisomerase II, in six cell lines. The potentiation of mitoxantrone cytotoxicity was not caused by increased drug accumulation after rHuTNF treatment. No significant increase in cytotoxicity to Me180 cell line was seen when rHuTNF was added to mitoxantrone. PMID:1517145

  4. Prevention of cytotoxic drug induced skin ulcers with dimethyl sulfoxide (DMSO) and alpha-tocopherole.

    PubMed

    Ludwig, C U; Stoll, H R; Obrist, R; Obrecht, J P

    1987-03-01

    Accidental subcutaneous extravasation of several antineoplastic agents may provoke skin ulcerations for which there has been no simple and effective treatment. Since January 1983 we have treated all patients in our institution sustaining extravasation by a cytotoxic drug with a combination of DMSO and alpha-Tocopherole. During the first 48 hr after extravasation a mixture of 10% alpha-Tocopherole acetate and 90% DMSO was topically applied. The bandage was changed every 12 hr. So far eight patients with extravasation of an anthracycline or Mitomycin were treated on this protocol. No skin ulceration, functional or neurovascular impairment occurred in any of these patients. The only toxic effect observed by this treatment was a minor skin irritation. The combination of DMSO and alpha-Tocopherole seems to prevent skin ulceration induced by anthracyclines and Mitomycin.

  5. 21 CFR 58.107 - Test and control article handling.

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ... 21 Food and Drugs 1 2014-04-01 2014-04-01 false Test and control article handling. 58.107 Section... GOOD LABORATORY PRACTICE FOR NONCLINICAL LABORATORY STUDIES Test and Control Articles § 58.107 Test and control article handling. Procedures shall be established for a system for the handling of the test and...

  6. 21 CFR 58.107 - Test and control article handling.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... 21 Food and Drugs 1 2011-04-01 2011-04-01 false Test and control article handling. 58.107 Section... GOOD LABORATORY PRACTICE FOR NONCLINICAL LABORATORY STUDIES Test and Control Articles § 58.107 Test and control article handling. Procedures shall be established for a system for the handling of the test and...

  7. 21 CFR 58.107 - Test and control article handling.

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ... 21 Food and Drugs 1 2012-04-01 2012-04-01 false Test and control article handling. 58.107 Section... GOOD LABORATORY PRACTICE FOR NONCLINICAL LABORATORY STUDIES Test and Control Articles § 58.107 Test and control article handling. Procedures shall be established for a system for the handling of the test and...

  8. 21 CFR 58.107 - Test and control article handling.

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ... 21 Food and Drugs 1 2013-04-01 2013-04-01 false Test and control article handling. 58.107 Section... GOOD LABORATORY PRACTICE FOR NONCLINICAL LABORATORY STUDIES Test and Control Articles § 58.107 Test and control article handling. Procedures shall be established for a system for the handling of the test and...

  9. Comparison between xCELLigence biosensor technology and conventional cell culture system for real-time monitoring human tenocytes proliferation and drugs cytotoxicity screening.

    PubMed

    Chiu, Chih-Hao; Lei, Kin Fong; Yeh, Wen-Ling; Chen, Poyu; Chan, Yi-Sheng; Hsu, Kuo-Yao; Chen, Alvin Chao-Yu

    2017-10-16

    Local injections of anesthetics, NSAIDs, and corticosteroids for tendinopathies are empirically used. They are believed to have some cytotoxicity toward tenocytes. The maximal efficacy dosages of local injections should be determined. A commercial 2D microfluidic xCELLigence system had been developed to detect real-time cellular proliferation and their responses to different stimuli and had been used in several biomedical applications. The purpose of this study is to determine if human tenocytes can successfully proliferate inside xCELLigence system and the result has high correlation with conventional cell culture methods in the same condition. First passage of human tenocytes was seeded in xCELLigence and conventional 24-well plates. Ketorolac tromethamine, bupivacaine, methylprednisolone, and betamethasone with different concentrations (100, 50, and 10% diluted of clinical usage) were exposed in both systems. Gene expression of type I collagen, type III collagen, tenascin-C, decorin, and scleraxis were compared between two systems. Human tenocytes could proliferate both in xCELLigence and conventional cell culture systems. Cytotoxicity of each drug revealed dose-dependency when exposed to tenocytes in both systems. Significance was found between groups. All the four drugs had comparable cytotoxicity in their 100% concentration. When 50% concentration was used, betamethasone had a relatively decreased cytotoxicity among them in xCELLigence but not in conventional culture. When 10% concentration was used, betamethasone had the least cytotoxicity. Strong and positive correlation was found between cell index of xCELLigence and result of WST-1 assay (Pearson's correlation [r] = 0.914). Positive correlation of gene expression between tenocytes in xCELLigence and conventional culture was also observed. Type I collagen: [r] = 0.823; type III collagen: [r] = 0.899; tenascin-C: [r] = 0.917; decorin: [r] = 0.874; and scleraxis: [r] = 0.965. Human

  10. Nanoparticle-Delivered Chemotherapy: Old Drugs in New Packages.

    PubMed

    Lee, Michael S; Dees, E Claire; Wang, Andrew Z

    2017-03-15

    Cytotoxic chemotherapies have a narrow therapeutic window, with high peaks and troughs of plasma concentration. Novel nanoparticle formulations of cytotoxic chemotherapy drugs can enhance pharmacokinetic characteristics and facilitate passive targeting of drugs to tumors via the enhanced permeability and retention effect, thus mitigating toxicity. Nanoparticle vehicles currently in clinical use or undergoing clinical investigation for anticancer therapies include liposomes, polymeric micelles, protein-drug nanoparticles, and dendrimers. Multiple nanoparticle formulations of existing cytotoxic chemotherapies are approved for use in several indications, with clinical data indeed showing optimization of pharmacokinetics and different toxicity profiles compared with their parent drugs. There are also many new nanoparticle drug formulations in development and undergoing early- and late-phase clinical trials, including several that utilize active targeting or triggered release based on environmental stimuli. Here, we review the rationale for nanoparticle formulations of existing or previously investigated cytotoxic drugs, describe currently approved nanoparticle formulations of drugs, and discuss some of the most promising clinical trials currently underway.

  11. Robot-assisted preparation of oncology drugs: the role of nurses.

    PubMed

    Palma, Elisabetta; Bufarini, Celestino

    2012-12-15

    Since 2007, the preparation of cancer drugs at the Pharmacy of the University Hospital of Ancona has been progressively robotized. Currently, the process of preparation of intravenous cancer drugs is almost totally automated (95%). At present, the Cytotoxic laboratory of Ancona is the sole, in Europe, that can count on two robots. The robots handle 56 oncology molecules, which correspond to more than 160 different vials. The production rate in 2011 exceeded 19,000 preparations. The quality of compounding and the sterility controls are satisfactory, every step of the process is traceable. The nursing staff played a fundamental role in the robot development process. The nursing staff and the pharmacists are still collaborating with the robotic engineers in order to increase efficiency, ergonomics and user-friendliness of the robots. Copyright © 2012 Elsevier B.V. All rights reserved.

  12. Salient Features and Outline of the Joint Japanese Guidelines for Safe Handling of Cancer Chemotherapy Drugs

    PubMed Central

    Kanda, Kiyoko; Hirai, Kazue; Iino, Keiko; Nomura, Hisanaga; Yasui, Hisateru; Kano, Taro; Ichikawa, Chisato; Hiura, Sumiko; Morita, Tomoko; Mitsuma, Ayako; Komatsu, Hiroko

    2017-01-01

    The purpose of this paper is to introduce the outline and describe the salient features of the “Joint Guidelines for Safe Handling of Cancer Chemotherapy Drugs” (hereinafter, “Guideline”), which were published in July 2015. The purpose of this Guideline is to provide guidance to protect against occupational exposure to hazardous drugs (HDs) to all medical personnel involved in cancer chemotherapy, including physicians, pharmacists, and nurses and home health-care providers. The Guideline was developed according to the Medical Information Network Distribution Service guidance for developing clinical practice guidelines, with reference to five authoritative guidelines used worldwide. PubMed, Cumulative Index to Nursing and Allied Health Literature, Ichushi-Web, and Cochrane Central Register of Controlled Trials were used for a systematic search of the literature. Eight clinical questions (CQs) were eventually established, and the strength of recommendation for each CQ is presented based on 867 references. The salient features of the Guideline are that it was jointly developed by three societies (Japanese Society of Cancer Nursing, Japanese Society of Medical Oncology, and Japanese Society of Pharmaceutical Oncology), contains descriptions including the definition of HDs and the concept of hierarchy of controls, and addresses exposure control measures during handling of chemotherapy drugs. Our future task is to collect additional evidence for the recommended exposure control measures and to assess whether publication of the Guideline has led to adherence of measures to prevent occupational exposure. PMID:28966958

  13. Non-cytotoxic differentiation treatment of renal cell cancer

    PubMed Central

    Negrotto, Soledad; Hu, Zhenbo; Alcazar, Oscar; Ng, Kwok Peng; Triozzi, Pierre; Lindner, Daniel; Rini, Brian; Saunthararajah, Yogen

    2013-01-01

    Current drug therapy for metastatic renal cell cancer (RCC) results in temporary disease control but not cure, necessitating continued investigation into alternative mechanistic approaches. Drugs that inhibit chromatin-modifying enzymes involved in transcription repression (chromatin-relaxing drugs) could have a role, by inducing apoptosis, and/or through differentiation pathways. At low doses, the cytosine analogue decitabine can be used to deplete DNA methyl-transferase 1 (DNMT1), modify chromatin and alter differentiation without causing apoptosis (cytotoxicity). Non-cytotoxic regimens of decitabine were evaluated for in vitro and in vivo efficacy against RCC cell lines, including a p53 mutated RCC cell line developed from a patient with treatment refractory metastatic RCC. The cell-division permissive mechanism of action, absence of early apoptosis or DNA damage, increase in expression of HNF4α (a key driver associated with the mesenchymal to epithelial transition), decrease in mesenchymal marker expression, increase in epithelial marker expression, and late increase in cyclin dependent kinase inhibitor CDKN1B (p27) protein, was consistent with differentiation-mediated cell cycle exit. In vivo blood counts and animal weights were consistent with minimal toxicity of therapy. The distinctive mechanism of action of a dose and schedule of decitabine designed for non-cytotoxic depletion of DNMT1 suggests a potential role in treating RCC. PMID:21303982

  14. Lysosomotropic cationic drugs induce cytostatic and cytotoxic effects: Role of liposolubility and autophagic flux and antagonism by cholesterol ablation

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Parks, Alexandre; Marceau, François, E-mail: franc

    Cation trapping in acidic cell compartments determines an antiproliferative effect that has a potential interest in oncology, as shown by clinical data and trials involving chloroquine and hydroxychloroquine. To further characterize the mechanism of this effect, we studied a series of 6 substituted triethylamine (s-Et{sub 3}N) drugs that encompasses a wide range of liposolubility (amiodarone, quinacrine, chloroquine, hydroxychloroquine, lidocaine, and procainamide). Three tumor cell lines and primary human endothelial cells were exploited in proliferation assays (48 h, cell counts). Accumulation of the autophagic effector LC3 II and the apoptotic marker cleaved PARP1 (immunoblots), cytotoxicity, cell cycle analysis and endocytic functionmore » were further tested in the p53-null histiocytic lymphoma U937 line. A profound and desynchronized antiproliferative effect was observed in response to all s-Et{sub 3}Ns with essentially no cell type specificity. Predictors of s-Et{sub 3}N potency were liposolubility and the acute accumulation of the autophagic effector LC3 II (6 h-treatments). For each s-Et{sub 3}N, there was an antiproliferative concentration range where cytotoxicity and apoptosis were not triggered in U937 cells (24–48 h-treatments). Quinacrine was the most potent cytostatic drug (1–5 μM). Co-treatment of cells with inhibitors of cholesterol, β-cyclodextrin or lovastatin, partially reversed the antiproliferative effect of each s-Et{sub 3}N. The cytopathology induced by cationic drug accumulation includes a cytostatic effect. Its intensity is cell type- and p53-independent, but predicted by the inhibition of autophagic flux and by the liposolubility of individual drugs and alleviated by cholesterol ablation. The superiority of quinacrine, biomarker value of LC3 II and antagonism by a statin may be clinically relevant. - Highlights: • Cation trapping in acidic cell compartments induces a cytostatic effect. • A series of substituted triethylamines

  15. Drug residues in serum of dogs receiving anticancer chemotherapy.

    PubMed

    Knobloch, A; Mohring, S A I; Eberle, N; Nolte, I; Hamscher, G; Simon, D

    2010-01-01

    The presence of drug residues in blood samples can represent an occupational hazard. However, studies on cytotoxic drug residues in serum of dogs are lacking in veterinary oncology. To evaluate possible occupational hazards associated with handling of blood samples from dogs receiving oncolytic drugs 7 days after treatment. Twenty-seven client-owned dogs treated for lymphoma or mast cell tumors with vincristine, vinblastine, cyclophosphamide, or doxorubicin. Prospective, observational study. Serum samples were either taken 7 days after administration of vincristine, cyclophosphamide, doxorubicin (lymphoma), and vinblastine (mast cell tumor), or 1-2 days after the last concurrent oral administration of cyclophosphamide (mast cell tumor). Additionally, serum was collected within 5 minutes of treatment. Measurement of drug residues in serum was performed by liquid chromatography tandem mass spectrometry (LC/MS/MS). In 33 samples collected within 5 minute of treatment, the median serum concentrations were vincristine: 37 microg/L (range: 11-87 microg/L), vinblastine: 13 microg/L (range: 13-35 microg/L), cyclophosphamide: 2,484 microg/L (range: 1,209-2,778 microg/L), doxorubicin: 404 microg/L (range: 234-528 microg/L). In 81 serum samples collected 7 days after treatment vinblastine (7 microg/L) was detected in 1 sample, and cyclophosphamide (7 and 9 microg/L) in 2 samples collected 1-2 days after oral administration of cyclophosphamide. Medications were not detected in any of the other samples. Handling of blood samples from dogs receiving oncolytic chemotherapy 7 days after treatment with vincristine, vinblastine, cyclophosphamide, and doxorubicin should not present a health hazard.

  16. Genome-wide identification of genetic determinants for the cytotoxicity of perifosine

    PubMed Central

    2008-01-01

    Perifosine belongs to the class of alkylphospholipid analogues, which act primarily at the cell membrane, thereby targeting signal transduction pathways. In phase I/II clinical trials, perifosine has induced tumour regression and caused disease stabilisation in a variety of tumour types. The genetic determinants responsible for its cytotoxicity have not been comprehensively studied, however. We performed a genome-wide analysis to identify genes whose expression levels or genotypic variation were correlated with the cytotoxicity of perifosine, using public databases on the US National Cancer Institute (NCI)-60 human cancer cell lines. For demonstrating drug specificity, the NCI Standard Agent Database (including 171 drugs acting through a variety of mechanisms) was used as a control. We identified agents with similar cytotoxicity profiles to that of perifosine in compounds used in the NCI drug screen. Furthermore, Gene Ontology and pathway analyses were carried out on genes more likely to be perifosine specific. The results suggested that genes correlated with perifosine cytotoxicity are connected by certain known pathways that lead to the mitogen-activated protein kinase signalling pathway and apoptosis. Biological processes such as 'response to stress', 'inflammatory response' and 'ubiquitin cycle' were enriched among these genes. Three single nucleotide polymorphisms (SNPs) located in CACNA2DI and EXOC4 were found to be correlated with perifosine cytotoxicity. Our results provided a manageable list of genes whose expression levels or genotypic variation were strongly correlated with the cytotoxcity of perifosine. These genes could be targets for further studies using candidate-gene approaches. The results also provided insights into the pharmacodynamics of perifosine. PMID:19129090

  17. 21 CFR 1250.35 - Health of persons handling food.

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ... 21 Food and Drugs 8 2013-04-01 2013-04-01 false Health of persons handling food. 1250.35 Section 1250.35 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) REGULATIONS UNDER CERTAIN OTHER ACTS ADMINISTERED BY THE FOOD AND DRUG ADMINISTRATION INTERSTATE CONVEYANCE...

  18. 21 CFR 1250.35 - Health of persons handling food.

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ... 21 Food and Drugs 8 2014-04-01 2014-04-01 false Health of persons handling food. 1250.35 Section 1250.35 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) REGULATIONS UNDER CERTAIN OTHER ACTS ADMINISTERED BY THE FOOD AND DRUG ADMINISTRATION INTERSTATE CONVEYANCE...

  19. 21 CFR 1250.28 - Source and handling of ice.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... 21 Food and Drugs 8 2010-04-01 2010-04-01 false Source and handling of ice. 1250.28 Section 1250.28 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) REGULATIONS UNDER CERTAIN OTHER ACTS ADMINISTERED BY THE FOOD AND DRUG ADMINISTRATION INTERSTATE CONVEYANCE...

  20. Size, Loading Efficiency, and Cytotoxicity of Albumin-Loaded Chitosan Nanoparticles: An Artificial Neural Networks Study.

    PubMed

    Baharifar, Hadi; Amani, Amir

    2017-01-01

    When designing nanoparticles for drug delivery, many variables such as size, loading efficiency, and cytotoxicity should be considered. Usually, smaller particles are preferred in drug delivery because of longer blood circulation time and their ability to escape from immune system, whereas smaller nanoparticles often show increased toxicity. Determination of parameters which affect size of particles and factors such as loading efficiency and cytotoxicity could be very helpful in designing drug delivery systems. In this work, albumin (as a protein drug model)-loaded chitosan nanoparticles were prepared by polyelectrolyte complexation method. Simultaneously, effects of 4 independent variables including chitosan and albumin concentrations, pH, and reaction time were determined on 3 dependent variables (i.e., size, loading efficiency, and cytotoxicity) by artificial neural networks. Results showed that concentrations of initial materials are the most important factors which may affect the dependent variables. A drop in the concentrations decreases the size directly, but they simultaneously decrease loading efficiency and increase cytotoxicity. Therefore, an optimization of the independent variables is required to obtain the most useful preparation. Copyright © 2016 American Pharmacists Association®. Published by Elsevier Inc. All rights reserved.

  1. pH- and thermo-responsive microcontainers as potential drug delivery systems: Morphological characteristic, release and cytotoxicity studies.

    PubMed

    Efthimiadou, Eleni K; Tapeinos, Christos; Tziveleka, Leto-Aikaterini; Boukos, Nikos; Kordas, George

    2014-04-01

    Polymeric pH- and thermo-sensitive microcontainers (MCs) were developed as a potential drug delivery system for cancer therapy. It is well known that cancer cells exhibit notable characteristics such as acidic pH due to glycolytic cycle and higher temperature due to their higher proliferation rate. Based on these characteristics, we constructed a dual pH- and thermo-sensitive material for specific drug release on the pathological tissue. The MC's fabrication is based on a two-step procedure, in which, the first step involves the core synthesis and the second one is related to the shell formation. The core consists of poly(methyl methacrylate (PMMA), while the shell consists of PMMA, poly(isopropylacrylamide), poly(acrylic acid) and poly(divinylbenzene). Three different types of MCs were synthesized based on the seed polymerization method. The synthesized MCs were characterized structurally by Fourier transform infrared and morphologically by scanning electron microscopy. Dynamic light scattering was also used to study their behavior in aqueous solution under different pH and temperature conditions. For the loading and release study, the anthracycline drug daunorubicin (DNR) was used as a model drug, and its release properties were evaluated under different pH and thermo-conditions. Cytotoxicity studies were also carried out against MCF-7 breast cancer and 3T3 mouse embryonic fibroblast cells. According to our results, the synthesized microcontainers present desired pH and thermo behavior and can be applied in drug delivery systems. It is worth mentioning that the synthesized microcontainers which incorporated the drug DNR exhibit higher toxicity than the free drug. Copyright © 2014 Elsevier B.V. All rights reserved.

  2. Cytotoxic and apoptotic effects of bortezomib and gefitinib compared to alkylating agents on human glioblastoma cells.

    PubMed

    Pédeboscq, Stéphane; L'Azou, Béatrice; Passagne, Isabelle; De Giorgi, Francesca; Ichas, François; Pometan, Jean-Paul; Cambar, Jean

    2008-01-01

    Glioblastoma is a malignant astrocytic tumor with a median survival of about 12 months for which new therapeutic strategies are required. We therefore examined the cytotoxicity of anticancer drugs with different mechanisms of action on two human glioblastoma cell lines expressing various levels of EGFR (epidermal growth factor receptor). Apoptosis induced by these anticancer agents was evaluated by flow cytometry. The cytotoxicity of alkylating drugs followed a dose-effect curve and cytotoxicity index values were lower with carboplatin than with BCNU and temozolomide. Anti-EGFR gefitinib (10 microM) cytotoxicity on DBTRG.05-MG expressing high levels of EGFR was significantly higher than on U87-MG expressing low levels of EGFR. Carboplatin and temozolomide cytotoxicity was potentiated with the addition of gefitinib on DBTRG.05-MG. Among the anticancer agents tested, the proteasome inhibitor bortezomib was the most cytotoxic with very low IC50 on the two cell lines. Moreover, all anticancer drugs tested induced apoptosis in a concentration-dependent manner. Bortezomib proved to be a more potent inductor of apoptosis than gefitinib and alkylating agents. These results show the efficacy of bortezomib and of the association between conventional chemotherapy and gefitinib on glioblastoma cells and therefore suggest the interest of these molecules in the treatment of glioblastoma.

  3. Intracellular delivery of etoposide loaded biodegradable nanoparticles: cytotoxicity and cellular uptake studies.

    PubMed

    Yadav, Khushwant S; Jacob, Sheeba; Sachdeva, Geetanjali; Sawant, Krutika K

    2011-08-01

    The preferred delivery systems for anticancer drugs would be the one which would have selective and effective destruction of cancer cells. In the present study etoposide (ETO) loaded nanoparticles (NP) were prepared using PLGA (ETO-PLGA NP), PLGA-MPEG block copolymer (ETO-PLGA-MPEG NP) and PLGA-Pluronic copolymer (ETO-PLGA-PLU NP) and they were evaluated for cytotoxicity and cellular uptake studies using two cancer cell lines, L1210 and DU145. The IC50 values for L1210 cells were 18.0, 6.2, 4.8 and 5.4 microM and for DU145 cells the IC50 values were 98.4, 75.1, 60.1 and 71.3 microM for ETO, ETO-PLGA NP, ETO-PLGA-MPEG NP and ETO-PLGA-PLU NP respectively. The increased cytotoxicities were attributed to increased uptake of the NPs by the cells. Moreover the ETO loaded PLGA-MPEG NP and PLGA-Pluronic NP showed a sustained cytotoxic effect till 5 days on both the cell lines. Results of the long term cytotoxicity study concluded that the drug loaded PLGA nanoparticulate formulations were efficient in decreasing the viability of the L1210 cells over a period of three days, whereas the pure drug exerted its maximum efficiency on the day one itself. Z-stack confocal images of NPs showed fluorescence activity in each section of DU 145 and L1210 cells indicating that the nanoparticles were internalized by the cells. The study concluded that ETO loaded PLGA NPs had higher cytotoxicity compared with that of the free drug and ETO-PLGA-MPEG NP and ETO-PLGA-PLU NP had higher cell uptake efficiency compared with that of ETO-PLGA NP. The developed PLGA based NPs shows promise to be used for cancer therapy.

  4. Cytotoxic and antibacterial substances against multi-drug resistant pathogens from marine sponge symbiont: Citrinin, a secondary metabolite of Penicillium sp.

    PubMed

    Subramani, Ramesh; Kumar, Rohitesh; Prasad, Pritesh; Aalbersberg, William; Retheesh, S T

    2013-04-01

    To Isolate, purify, characterize, and evaluate the bioactive compounds from the sponge-derived fungus Penicillium sp. FF001 and to elucidate its structure. The fungal strain FF001 with an interesting bioactivity profile was isolated from a marine Fijian sponge Melophlus sp. Based on conidiophores aggregation, conidia development and mycelia morphological characteristics, the isolate FF001 was classically identified as a Penicillium sp. The bioactive compound was identified using various spectral analysis of UV, high resolution electrospray ionization mass spectra, 1H and 13C NMR spectral data. Further minimum inhibitory concentrations (MICs) assay and brine shrimp cytotoxicity assay were also carried out to evaluate the biological properties of the purified compound. Bioassay guided fractionation of the EtOAc extract of a static culture of this Penicillium sp. by different chromatographic methods led the isolation of an antibacterial, anticryptococcal and cytotoxic active compound, which was identified as citrinin (1). Further, citrinin (1) is reported for its potent antibacterial activity against methicillin-resistant Staphylococcus aureus (S. aureus), rifampicin-resistant S. aureus, wild type S. aureus and vancomycin-resistant Enterococcus faecium showed MICs of 3.90, 0.97, 1.95 and 7.81 µg/mL, respectively. Further citrinin (1) displayed significant activity against the pathogenic yeast Cryptococcus neoformans (MIC 3.90 µg/mL), and exhibited cytotoxicity against brine shrimp larvae LD50 of 96 µg/mL. Citrinin (1) is reported from sponge associated Penicillium sp. from this study and for its strong antibacterial activity against multi-drug resistant human pathogens including cytotoxicity against brine shrimp larvae, which indicated that sponge associated Penicillium spp. are promising sources of natural bioactive metabolites.

  5. Cytotoxic and antibacterial substances against multi-drug resistant pathogens from marine sponge symbiont: Citrinin, a secondary metabolite of Penicillium sp.

    PubMed Central

    Subramani, Ramesh; Kumar, Rohitesh; Prasad, Pritesh; Aalbersberg, William

    2013-01-01

    Objective To Isolate, purify, characterize, and evaluate the bioactive compounds from the sponge-derived fungus Penicillium sp. FF001 and to elucidate its structure. Methods The fungal strain FF001 with an interesting bioactivity profile was isolated from a marine Fijian sponge Melophlus sp. Based on conidiophores aggregation, conidia development and mycelia morphological characteristics, the isolate FF001 was classically identified as a Penicillium sp. The bioactive compound was identified using various spectral analysis of UV, high resolution electrospray ionization mass spectra, 1H and 13C NMR spectral data. Further minimum inhibitory concentrations (MICs) assay and brine shrimp cytotoxicity assay were also carried out to evaluate the biological properties of the purified compound. Results Bioassay guided fractionation of the EtOAc extract of a static culture of this Penicillium sp. by different chromatographic methods led the isolation of an antibacterial, anticryptococcal and cytotoxic active compound, which was identified as citrinin (1). Further, citrinin (1) is reported for its potent antibacterial activity against methicillin-resistant Staphylococcus aureus (S. aureus), rifampicin-resistant S. aureus, wild type S. aureus and vancomycin-resistant Enterococcus faecium showed MICs of 3.90, 0.97, 1.95 and 7.81 µg/mL, respectively. Further citrinin (1) displayed significant activity against the pathogenic yeast Cryptococcus neoformans (MIC 3.90 µg/mL), and exhibited cytotoxicity against brine shrimp larvae LD50 of 96 µg/mL. Conclusions Citrinin (1) is reported from sponge associated Penicillium sp. from this study and for its strong antibacterial activity against multi-drug resistant human pathogens including cytotoxicity against brine shrimp larvae, which indicated that sponge associated Penicillium spp. are promising sources of natural bioactive metabolites. PMID:23620853

  6. 21 CFR 58.107 - Test and control article handling.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... 21 Food and Drugs 1 2010-04-01 2010-04-01 false Test and control article handling. 58.107 Section 58.107 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES GENERAL... designed to preclude the possibility of contamination, deterioration, or damage. (c) Proper identification...

  7. Penicillium spp.: prolific producer for harnessing cytotoxic secondary metabolites.

    PubMed

    Koul, Mytre; Singh, Shashank

    2017-01-01

    Secondary metabolites from fungal endophytes have become an interesting, attractive, and alternative source for novel pharmaceuticals. Several novel compounds with diversified chemical structures have been isolated from endophytic fungi. The genus Penicillium has been exploited worldwide for its biosynthetic potential for producing highly versatile cytotoxic secondary metabolites. Many of the compounds isolated from various species of the genus Penicillium have shown promising in-vitro as well as in-vivo growth-inhibitory properties against different human cancers. Thus, in relation to this genus, Penicillium represents the most dependable source of cytotoxic compounds with potential applications as leads for anticancer drugs. This review outlines endophytic secondary metabolites from the genus Penicillium with a relevant role as cytotoxic agents.

  8. Increasing the cytotoxicity of doxorubicin in breast cancer MCF-7 cells with multidrug resistance using a mesoporous silica nanoparticle drug delivery system.

    PubMed

    Wang, Xin; Teng, Zhaogang; Wang, Haiyan; Wang, Chunyan; Liu, Ying; Tang, Yuxia; Wu, Jiang; Sun, Jin; Wang, Hai; Wang, Jiandong; Lu, Guangming

    2014-01-01

    Resistance to cytotoxic chemotherapy is the main cause of therapeutic failure and death in women with breast cancer. Overexpression of various members of the superfamily of adenosine triphosphate binding cassette (ABC)-transporters has been shown to be associated with multidrug resistance (MDR) phenotype in breast cancer cells. MDR1 protein promotes the intracellular efflux of drugs. A novel approach to address cancer drug resistance is to take advantage of the ability of nanocarriers to sidestep drug resistance mechanisms by endosomal delivery of chemotherapeutic agents. Doxorubicin (DOX) is an anthracycline antibiotic commonly used in breast cancer chemotherapy and a substrate for ABC-mediated drug efflux. In the present study, we developed breast cancer MCF-7 cells with overexpression of MDR1 and designed mesoporous silica nanoparticles (MSNs) which were used as a drug delivery system. We tested the efficacy of DOX in the breast cancer cell line MCF-7/MDR1 and in a MCF-7/MDR1 xenograft nude mouse model using the MSNs drug delivery system. Our data show that drug resistance in the human breast cancer cell line MCF-7/MDR1 can be overcome by treatment with DOX encapsulated within mesoporous silica nanoparticles.

  9. Enhanced sensitivity of A549 cells to the cytotoxic action of anticancer drugs via suppression of Nrf2 by procyanidins from Cinnamomi Cortex extract

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ohnuma, Tomokazu; Matsumoto, Takashi; Itoi, Ayano

    Highlights: {yields} We found a novel inhibitor of Nrf2 known as a chemoresistance factor. {yields} Overexpressed Nrf2 in lung cancer cells was suppressed by Cinnamomi Cortex extract. {yields} Cytotoxic action of anticancer drugs in cells treated with the extract was enhanced. {yields} Procyanidin tetramers and pentamers were active components in suppressing Nrf2. -- Abstract: Nuclear factor-E2-related factor 2 (Nrf2) is an important cytoprotective transcription factor because Nrf2-regulated enzymes play a key role in antioxidant and detoxification processes. Recent studies have reported that lung cancer cells overexpressing Nrf2 exhibit increased resistance to chemotherapy. Suppression of overexpressed Nrf2 is needed for amore » new therapeutic approach against lung cancers. In the present study, we found that Cinnamomi Cortex extract (CCE) has an ability to suppress Nrf2-regulated enzyme activity and Nrf2 expression in human lung cancer A549 cells with high Nrf2 activity. Moreover, we demonstrated that CCE significantly enhances sensitivity of A549 cells to the cytotoxic action of doxorubicin and etoposide as well as increasing the intracellular accumulation of both drugs. These results suggest that CCE might be an effective concomitant agent to reduce anticancer drug resistance derived from Nrf2 overexpression. Bioactivity-guided fractionation revealed that procyanidin tetramers and pentamers contained in CCE were active components in suppressing Nrf2.« less

  10. Influence of multidrug resistance and drug transport proteins on chemotherapy drug metabolism.

    PubMed

    Joyce, Helena; McCann, Andrew; Clynes, Martin; Larkin, Annemarie

    2015-05-01

    Chemotherapy involving the use of anticancer drugs remains an important strategy in the overall management of patients with metastatic cancer. Acquisition of multidrug resistance remains a major impediment to successful chemotherapy. Drug transporters in cell membranes and intracellular drug metabolizing enzymes contribute to the resistance phenotype and determine the pharmacokinetics of anticancer drugs in the body. ATP-binding cassette (ABC) transporters mediate the transport of endogenous metabolites and xenobiotics including cytotoxic drugs out of cells. Solute carrier (SLC) transporters mediate the influx of cytotoxic drugs into cells. This review focuses on the substrate interaction of these transporters, on their biology and what role they play together with drug metabolizing enzymes in eliminating therapeutic drugs from cells. The majority of anticancer drugs are substrates for the ABC transporter and SLC transporter families. Together, these proteins have the ability to control the influx and the efflux of structurally unrelated chemotherapeutic drugs, thereby modulating the intracellular drug concentration. These interactions have important clinical implications for chemotherapy because ultimately they determine therapeutic efficacy, disease progression/relapse and the success or failure of patient treatment.

  11. Evaluation of clay/poly (L-lactide) microcomposites as anticancer drug, 6-mercaptopurine reservoir through in vitro cytotoxicity, oxidative stress markers and in vivo pharmacokinetics.

    PubMed

    Kevadiya, Bhavesh D; Chettiar, Shiva Shankaran; Rajkumar, Shalini; Bajaj, Hari C; Gosai, Kalpeshgiri A; Brahmbhatt, Harshad

    2013-12-01

    Intercalation of 6-mercaptopurine (6-MP), an antineoplastic drug in interlayer gallery of Na(+)-clay (MMT) was further entrapped in poly (L-lactide) matrix to form microcomposite spheres (MPs) in order to reduce the cell toxicity and enhance in vitro release and pharmacokinetic proficiency. The drug-clay hybrid was fabricated via intercalation by ion-exchange method to form MPs from hybrid. In vitro drug release showed controlled pattern, fitted to kinetic models suggested controlled exchange and partial diffusion through swollen matrix of clay inter layered gallery. The in vitro efficacy of formulated composites drug was tested in Human neuroblastoma cell line (IMR32) by various cell cytotoxic and oxidative stress marker indices. In vivo pharmacokinetics suggested that the intensity of formulated drug level in plasma was within remedial borders as compared to free drug. These clay based composites therefore have great potential of becoming a new dosage form of 6-MP. Copyright © 2013 Elsevier B.V. All rights reserved.

  12. 21 CFR 1250.35 - Health of persons handling food.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... 21 Food and Drugs 8 2010-04-01 2010-04-01 false Health of persons handling food. 1250.35 Section 1250.35 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED... SANITATION Food Service Sanitation on Land and Air Conveyances, and Vessels § 1250.35 Health of persons...

  13. 21 CFR 1250.35 - Health of persons handling food.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... 21 Food and Drugs 8 2011-04-01 2011-04-01 false Health of persons handling food. 1250.35 Section 1250.35 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED... SANITATION Food Service Sanitation on Land and Air Conveyances, and Vessels § 1250.35 Health of persons...

  14. 21 CFR 1250.35 - Health of persons handling food.

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ... 21 Food and Drugs 8 2012-04-01 2012-04-01 false Health of persons handling food. 1250.35 Section 1250.35 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED... SANITATION Food Service Sanitation on Land and Air Conveyances, and Vessels § 1250.35 Health of persons...

  15. Synthesis of non-cytotoxic poly(ester-amine) dendrimers as potential solubility enhancers for drugs: methotrexate as a case study.

    PubMed

    Soto-Castro, Delia; Cruz-Morales, Jorge A; Ramírez Apan, María Teresa; Guadarrama, Patricia

    2010-11-09

    This study describes the synthesis of two new families of dendrimers based on the esterification of N-alkylated 3-amine-1-propanol with two different cores, adipic acid (1st and 2nd generations) and ethylenediamine (generation 1.5), both with carboxylic acid end groups, offering a wide variety of further modifications at the periphery. According to the cytotoxic evaluation of the dendrimers and their possible degradation products within cell lines, these materials could be considered as innocuous. In preliminary studies, the synthesized dendrimers proved to be potential enhancers of solubility of highly hydrophobic drugs, like methotrexate, widely used in chemotherapy.

  16. Cytotoxic Components Against Human Oral Squamous Cell Carcinoma Isolated from Andrographis paniculata.

    PubMed

    Suzuki, Ryuichiro; Matsushima, Yasuaki; Okudaira, Noriyuki; Sakagami, Hiroshi; Shirataki, Yoshiaki

    2016-11-01

    The 5-year survival rate of patients with oral cancer has remained approximately 50% during the past 30 years, possibly due to the poor tumor selectivity of conventional anticancer drugs. This prompted us to search for new candidates for anticancer drugs that have higher cytotoxicity and tumor selectivity. Dried leaves of Andrographis paniculata were supplied from a market in Shanghai. The methanolic fraction of A. paniculata was further fractionated to identify cytotoxic principles by spectroscopic analysis and comparison with literature values. Viable cell number was determined by the 3-[4,5-dimethylthiazol-2-yl]-2,5-diphenyltetrazolium bromide method, and tumor specificity was calculated by relative cytotoxicity against oral squamous cell carcinoma cell lines compared to that against normal oral cells. Apoptosis induction was detected by cleaved poly (ADP-ribose) polymerase and caspase-3 on western blot analysis. Major cytotoxicity in the methanol extract of a leaf of A. paniculata was recovered by partitioning with EtOAc, followed by silica gel chromatography. Further purification with reversed-phase high-performance liquid chromatography led to isolation of four known cytotoxic compounds, 14-deoxyandrographolide, andrographolide, neoandrographolide and deoxyandrographiside. Among them, andrographolide had the greatest cytotoxicity and tumor specificity, also inducing caspase-3 activation of HSC-2 oral squamous cell carcinoma cells. The present study identified andrographolide as a major antitumor principle in the methanolic extract of leaves of A. paniculata. Copyright© 2016 International Institute of Anticancer Research (Dr. John G. Delinassios), All rights reserved.

  17. Interactions of polymeric drug carriers with DDT reduce their combined cytotoxicity.

    PubMed

    Zhang, Xuejiao; Lei, Lei; Zhang, Haiyan; Zhang, Siyu; Xing, Weiwei; Wang, Jin; Li, Haibo; Zhao, Qing; Xing, Baoshan

    2018-06-07

    Attention has been paid to the environmental distribution and fate of nanomedicines. However, their effects on the toxicity of environmental pollutants are lack of knowledge. In this study, the negatively charged poly (ethylene glycol)-b-poly (L-lactide-co-glycolide) (mPEG-PLA) and positively charged polyethyleneimine-palmitate (PEI-PA) nanomicelles were synthesized and served as model drug carriers to study the interaction and combined toxicity with dichlorodiphenyltrichloroethane (DDT). DDT exerted limited effect on the biointerfacial behavior of mPEG-PLA nanomicelles, whereas it significantly mitigated the attachment of PEI-PA nanomicelles on the model cell membrane as monitored by quartz crystal microbalance with dissipation (QCM-D). The cytotoxicity of DDT towards NIH 3T3 cells was greatly decreased by either co-treatment or pre-treatment with the nanomicelles according to the results of real-time cell analysis (RTCA). The cell viability of NIH 3T3 exposed to DDT was increased up to 90% by the co-treatment with mPEG-PLA nanomicelles. Three possible reasons were proposed: (1) decreased amount of free DDT in the cell culture medium due to the partitioning of DDT into nanomicelles; (2) mitigated cellular uptake of nanomicelle-DDT complexes due to the complex agglomeration or electrostatic repulsion between complexes and cell membrane; (3) detoxification effect in the lysosome upon endocytosis of nanomicelle-DDT complexes. Copyright © 2018 Elsevier Ltd. All rights reserved.

  18. Cytotoxicity of the indole alkaloid reserpine from Rauwolfia serpentina against drug-resistant tumor cells.

    PubMed

    Abdelfatah, Sara A A; Efferth, Thomas

    2015-02-15

    The antihypertensive reserpine is an indole alkaloid from Rauwolfia serpentina and exerts also profound activity against cancer cells in vitro and in vivo. The present investigation was undertaken to investigate possible modes of action to explain its activity toward drug-resistant tumor cells. Sensitive and drug-resistant tumor cell lines overexpressing P-glycoprotein (ABCB1/MDR1), breast cancer resistance protein (ABCG2/BCRP), mutation-activated epidermal growth factor receptor (EGFR), wild-type and p53-knockout cells as well as the NCI panel of cell lines from different tumor origin were analyzed. Reserpine's cytotoxicity was investigated by resazurin and sulforhodamine assays, flow cytometry, and COMPARE and hierarchical cluster analyses of transcriptome-wide microarray-based RNA expressions. P-glycoprotein- or BCRP overexpressing tumor cells did not reveal cross-resistance to reserpine. EGFR-overexpressing cells were collateral sensitive and p53- Knockout cells cross-resistant to this drug compared to their wild-type parental cell lines. Reserpine increased the uptake of doxorubicin in P-glycoprotein-overexpressing cells, indicating that reserpine inhibited the efflux function of P-glycoprotein. Using molecular docking, we found that reserpine bound with even higher binding energy to P-glycoprotein and EGFR than the control drugs verapamil (P-glycoprotein inhibitor) and erlotinib (EGFR inhibitor). COMPARE and cluster analyses of microarray data showed that the mRNA expression of a panel of genes predicted the sensitivity or resistance of the NCI tumor cell line panel with statistical significance. The genes belonged to diverse pathways and biological functions, e.g. cell survival and apoptosis, EGFR activation, regulation of angiogenesis, cell mobility, cell adhesion, immunological functions, mTOR signaling, and Wnt signaling. The lack of cross-resistance to most resistance mechanisms and the collateral sensitivity in EGFR-transfectants compared to wild

  19. Cytotoxicity and Antineoplastic Activities of Alkylamines and Their Borane Derivatives

    PubMed Central

    Tse, Elaine Y.; Muhammad, Rosallah A.

    1996-01-01

    The alkylamines and their related boron derivatives demonstrated potent cytotoxicity against the growth of murine and human tissue cultured cells. These agents did not necessarily require the boron atom to possess potent cytotoxic action in certain tumor lines. Their ability to suppress tumor cell growth was based on their inhibition of DNA and protein syntheses. DNA synthesis was reduced because purine synthesis was blocked at the enzyme site of IMP dehydrogenase by the agents. In addition ribonucleotide reductase and nucleoside kinase activities were reduced by the agents which would account for the reduced d[NTP] pools. The DNA template or molecule may be a target of the drugs with regard to binding of the drug to nucleoside bases or intercalaction of the drug between DNA base pairs. Only some Of the agents caused DNA fragmentation with reduced DNA viscosity. These effects would contribute to overall cell death afforded by the agents. PMID:18472803

  20. Polysaccharide-capped silver Nanoparticles inhibit biofilm formation and eliminate multi-drug-resistant bacteria by disrupting bacterial cytoskeleton with reduced cytotoxicity towards mammalian cells

    NASA Astrophysics Data System (ADS)

    Sanyasi, Sridhar; Majhi, Rakesh Kumar; Kumar, Satish; Mishra, Mitali; Ghosh, Arnab; Suar, Mrutyunjay; Satyam, Parlapalli Venkata; Mohapatra, Harapriya; Goswami, Chandan; Goswami, Luna

    2016-04-01

    Development of effective anti-microbial therapeutics has been hindered by the emergence of bacterial strains with multi-drug resistance and biofilm formation capabilities. In this article, we report an efficient green synthesis of silver nanoparticle (AgNP) by in situ reduction and capping with a semi-synthetic polysaccharide-based biopolymer (carboxymethyl tamarind polysaccharide). The CMT-capped AgNPs were characterized by UV, DLS, FE-SEM, EDX and HR-TEM. These AgNPs have average particle size of ~20-40 nm, and show long time stability, indicated by their unchanged SPR and Zeta-potential values. These AgNPs inhibit growth and biofilm formation of both Gram positive (B. subtilis) and Gram negative (E. coli and Salmonella typhimurium) bacterial strains even at concentrations much lower than the minimum inhibitory concentration (MIC) breakpoints of antibiotics, but show reduced or no cytotoxicity against mammalian cells. These AgNPs alter expression and positioning of bacterial cytoskeletal proteins FtsZ and FtsA. CMT-capped AgNPs can effectively block growth of several clinical isolates and MDR strains representing different genera and resistant towards multiple antibiotics belonging to different classes. We propose that the CMT-capped AgNPs can have potential bio-medical application against multi-drug-resistant microbes with minimal cytotoxicity towards mammalian cells.

  1. Polysaccharide-capped silver Nanoparticles inhibit biofilm formation and eliminate multi-drug-resistant bacteria by disrupting bacterial cytoskeleton with reduced cytotoxicity towards mammalian cells

    PubMed Central

    Sanyasi, Sridhar; Majhi, Rakesh Kumar; Kumar, Satish; Mishra, Mitali; Ghosh, Arnab; Suar, Mrutyunjay; Satyam, Parlapalli Venkata; Mohapatra, Harapriya; Goswami, Chandan; Goswami, Luna

    2016-01-01

    Development of effective anti-microbial therapeutics has been hindered by the emergence of bacterial strains with multi-drug resistance and biofilm formation capabilities. In this article, we report an efficient green synthesis of silver nanoparticle (AgNP) by in situ reduction and capping with a semi-synthetic polysaccharide-based biopolymer (carboxymethyl tamarind polysaccharide). The CMT-capped AgNPs were characterized by UV, DLS, FE-SEM, EDX and HR-TEM. These AgNPs have average particle size of ~20–40 nm, and show long time stability, indicated by their unchanged SPR and Zeta-potential values. These AgNPs inhibit growth and biofilm formation of both Gram positive (B. subtilis) and Gram negative (E. coli and Salmonella typhimurium) bacterial strains even at concentrations much lower than the minimum inhibitory concentration (MIC) breakpoints of antibiotics, but show reduced or no cytotoxicity against mammalian cells. These AgNPs alter expression and positioning of bacterial cytoskeletal proteins FtsZ and FtsA. CMT-capped AgNPs can effectively block growth of several clinical isolates and MDR strains representing different genera and resistant towards multiple antibiotics belonging to different classes. We propose that the CMT-capped AgNPs can have potential bio-medical application against multi-drug-resistant microbes with minimal cytotoxicity towards mammalian cells. PMID:27125749

  2. Development and effect of different bioactive silicate glass scaffolds: in vitro evaluation for use as a bone drug delivery system.

    PubMed

    Soundrapandian, Chidambaram; Mahato, Arnab; Kundu, Biswanath; Datta, Someswar; Sa, Biswanath; Basu, Debebrata

    2014-12-01

    Local drug delivery systems to bone have attracted appreciable attention due to their efficacy to improve drug delivery, healing and regeneration. In this paper, development and characterization of new formulations of bioactive glass into a porous scaffold has been reported for its suitability to act as a drug delivery system in the management of bone infections, in vitro. Two new glass compositions based on SiO2-Na2O-ZnO-CaO-MgO-P2O5 system (BGZ and MBG) have been developed which after thorough chemical and phase evaluation, studied for acellular static in vitro bioactivity in SBF. Porous scaffolds made of these glasses have been fabricated and characterized thoroughly for bioactivity study, SEM, XRD, in vitro cytotoxicity, MTT assay and wound healing assay using human osteocarcoma cells. Finally, gatifloxacin was loaded into the porous scaffold by vacuum infiltration method and in vitro drug release kinetics have been studied with varying parameters including dissolution medium (PBS and SBF) and with/without impregnation chitosan. Suitable model has also been proposed for the kinetics. 63-66% porous and 5-50μm almost unimodal porous MBG and BGZ bioactive glass scaffolds were capable of releasing drugs successfully for 43 days at concentrations to treat orthopedic infections. In addition, it was also observed that the release of drug followed Peppas-Korsmeyer release pattern based on Fickian diffusion, while 0.5-1% chitosan coating on the scaffolds decreased the burst release and overall release of drug. The results also indicated that MBG based scaffolds were bioactive, biocompatible, noncytotoxic and exhibited excellent wound healing potential while BGZ was mildly cytotoxic with moderate wound healing potential. These results strongly suggest that MBG scaffolds appear to be a suitable bone drug delivery system in orthopedic infections treatment and as bone void fillers, but BGZ should be handled with caution or studied elaborately in detail further to ascertain

  3. 21 CFR 1250.45 - Food handling facilities on railroad conveyances.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... 21 Food and Drugs 8 2010-04-01 2010-04-01 false Food handling facilities on railroad conveyances. 1250.45 Section 1250.45 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN... facilities on railroad conveyances. (a) Both kitchens and pantries of cars hereafter constructed or...

  4. Model-based optimization of G-CSF treatment during cytotoxic chemotherapy.

    PubMed

    Schirm, Sibylle; Engel, Christoph; Loibl, Sibylle; Loeffler, Markus; Scholz, Markus

    2018-02-01

    Although G-CSF is widely used to prevent or ameliorate leukopenia during cytotoxic chemotherapies, its optimal use is still under debate and depends on many therapy parameters such as dosing and timing of cytotoxic drugs and G-CSF, G-CSF pharmaceuticals used and individual risk factors of patients. We integrate available biological knowledge and clinical data regarding cell kinetics of bone marrow granulopoiesis, the cytotoxic effects of chemotherapy and pharmacokinetics and pharmacodynamics of G-CSF applications (filgrastim or pegfilgrastim) into a comprehensive model. The model explains leukocyte time courses of more than 70 therapy scenarios comprising 10 different cytotoxic drugs. It is applied to develop optimized G-CSF schedules for a variety of clinical scenarios. Clinical trial results showed validity of model predictions regarding alternative G-CSF schedules. We propose modifications of G-CSF treatment for the chemotherapies 'BEACOPP escalated' (Hodgkin's disease), 'ETC' (breast cancer), and risk-adapted schedules for 'CHOP-14' (aggressive non-Hodgkin's lymphoma in elderly patients). We conclude that we established a model of human granulopoiesis under chemotherapy which allows predictions of yet untested G-CSF schedules, comparisons between them, and optimization of filgrastim and pegfilgrastim treatment. As a general rule of thumb, G-CSF treatment should not be started too early and patients could profit from filgrastim treatment continued until the end of the chemotherapy cycle.

  5. 6-mercaptopurine and daunorubicin double drug liposomes-preparation, drug-drug interaction and characterization.

    PubMed

    Agrawal, Vineet; Paul, Manash K; Mukhopadhyay, Anup K

    2005-01-01

    This article addresses and investigates the dual incorporation of daunorubicin (DR) and 6-mercaptopurine (6-MP) in liposomes for better chemotherapy. These drugs are potential candidates for interaction due to the quinone (H acceptor) and hydroxyl (H donor) groups on DR and 6-MP, respectively. Interactions between the two drugs in solution were monitored by UV/Vis and fluorescence spectroscopy. Interaction between the two drugs inside the liposomes was evaluated by HPLC (for 6-MP) and by fluorescence spectroscopy (for daunorubicin) after phospholipase-mediated liposome lysis. Our results provide evidence for the lack of interaction between the two drugs in solution and in liposomes. The entrapment efficiencies of 6-MP in the neutral Phosphatidyl choline (PC):Cholesterol (Chol):: 2:1 and anionic PC:Chol:Cardiolipin (CL) :: 4:5:1 single and double drug liposomes were found to be 0.4% and 1.5% (on average), respectively. The entrapment efficiencies of DR in the neutral and anionic double drug liposomes were found to be 55% and 31%, respectively. The corresponding entrapment of daunorubicin in the single drug liposomes was found to be 62% on average. Our thin layer chromatography (TLC) and transmission electron microscopy (TEM) results suggest stability of lipid and liposomes, thus pointing plausible existence of double drug liposomes. Cytotoxicity experiments were performed by using both single drug and double drug liposomes. By comparing the results of phase contrast and fluorescence microscopy, it was observed that the double drug liposomes were internalized in the jurkat and Hut78 (highly resistant cell line) leukemia cells as viewed by the fluorescence of daunorubicin. The cytotoxicity was dose dependent and had shown a synergistic effect when double drug liposome was used.

  6. Management of cytotoxic extravasation - ASORS expert opinion for diagnosis, prevention and treatment.

    PubMed

    de Wit, Maike; Ortner, Petra; Lipp, Hans-Peter; Sehouli, Jalid; Untch, Michael; Ruhnke, Markus; Mayer-Steinacker, Regine; Bokemeyer, Carsten; Jordan, Karin

    2013-01-01

    Cytotoxic extravasation is a rare but potentially serious and painful complication of intravenous drug administration in oncology. Literature is anecdotal, and systematic clinical trials are scarce. The German working group for Supportive Care in Cancer (ASORS) has prepared an expert opinion for the diagnosis, prophylaxis and management of cytotoxic extravasation based on an interdisciplinary expert panel. A Pubmed search was conducted for diagnosis, risk factors, symptoms, prophylaxis, and treatment of extravasation by the respective responsible expert. A writing committee compiled the manuscript and proposed the level of recommendation. In a consensus meeting, 13 experts reviewed and discussed the current practice in diagnosis and management of cytotoxic extravasation. In a telephone voting among the experts, the level of recommendation by ASORS was determined. Every effort should be made to reduce the risk of extravasation. Staff training, patient education, usage of right materials and infusion techniques have been identified to be mandatory to minimalize the risk of extravasation. Extravasation must be diagnosed as soon as possible, and specific therapy including antidotes dependent on the extravasated drug should be initiated immediately. An extravasation emergency set should be available wherever intravenous cytotoxics are applied. Documentation and post-treatment follow-up are recommended. We have developed a literature- and expert-based consensus recommendation to avoid cytotoxic extravasation. It also provides practical management instructions which should help to avoid surgery and serious late effects. Copyright © 2013 S. Karger AG, Basel.

  7. Hydrophobic Drug-Loaded PEGylated Magnetic Liposomes for Drug-Controlled Release

    NASA Astrophysics Data System (ADS)

    Hardiansyah, Andri; Yang, Ming-Chien; Liu, Ting-Yu; Kuo, Chih-Yu; Huang, Li-Ying; Chan, Tzu-Yi

    2017-05-01

    Less targeted and limited solubility of hydrophobic-based drug are one of the serious obstacles in drug delivery system. Thus, new strategies to enhance the solubility of hydrophobic drug and controlled release behaviors would be developed. Herein, curcumin, a model of hydrophobic drug, has been loaded into PEGylated magnetic liposomes as a drug carrier platform for drug controlled release system. Inductive magnetic heating (hyperthermia)-stimulated drug release, in vitro cellular cytotoxicity assay of curcumin-loaded PEGylated magnetic liposomes and cellular internalization-induced by magnetic guidance would be investigated. The resultant of drug carriers could disperse homogeneously in aqueous solution, showing a superparamagnetic characteristic and could inductive magnetic heating with external high-frequency magnetic field (HFMF). In vitro curcumin release studies confirmed that the drug carriers exhibited no significant release at 37 °C, whereas exhibited rapid releasing at 45 °C. However, it would display enormous (three times higher) curcumin releasing under the HFMF exposure, compared with that without HFMF exposure at 45 °C. In vitro cytotoxicity test shows that curcumin-loaded PEGylated magnetic liposomes could efficiently kill MCF-7 cells in parallel with increasing curcumin concentration. Fluorescence microscopy observed that these drug carriers could internalize efficiently into the cellular compartment of MCF-7 cells. Thus, it would be anticipated that the novel hydrophobic drug-loaded PEGylated magnetic liposomes in combination with inductive magnetic heating are promising to apply in the combination of chemotherapy and thermotherapy for cancer therapy.

  8. Low direct cytotoxicity of loxoprofen on gastric mucosal cells.

    PubMed

    Yamakawa, Naoki; Suemasu, Shintaro; Kimoto, Ayumi; Arai, Yasuhiro; Ishihara, Tomoaki; Yokomizo, Kazumi; Okamoto, Yoshinari; Otsuka, Masami; Tanaka, Ken-Ichiro; Mizushima, Tohru

    2010-01-01

    Pro-drugs of non-steroidal anti-inflammatory drugs (NSAIDs), such as loxoprofen are widely used for clinical purposes because they are not so harmful to the gastrointestinal mucosa. We recently showed that NSAIDs such as indomethacin and celecoxib have direct cytotoxicity (ability to induce necrosis and apoptosis in gastric mucosal cells) due to their membrane permeabilizing activities, which is involved in NSAID-induced gastric lesions. We show here that under conditions where indomethacin and celecoxib clearly induce necrosis and apoptosis, loxoprofen and its active metabolite loxoprofen-OH, do not have such effects in primary culture of guinea pig gastric mucosal cells. Loxoprofen and loxoprofen-OH induced apoptosis more effectively in cultured human gastric cancer cells than in the primary culture. Loxoprofen and loxoprofen-OH exhibited much lower membrane permeabilizing activities than did indomethacin and celecoxib. We thus consider that the low direct cytotoxicity of loxoprofen observed in vitro is involved in its relative safety on production of gastric lesions in clinical situation.

  9. Anti-inflammatory, gastroprotective, and cytotoxic effects of Sideritis scardica extracts.

    PubMed

    Tadić, Vanja M; Jeremic, Ivica; Dobric, Silva; Isakovic, Aleksandra; Markovic, Ivanka; Trajkovic, Vladimir; Bojovic, Dragica; Arsic, Ivana

    2012-03-01

    Sideritis scardica Griseb. (ironwort, mountain tea), an endemic plant of the Balkan Peninsula, has been used in traditional medicine in the treatment of gastrointestinal complaints, inflammation, and rheumatic disorders. This study aimed to evaluate its gastroprotective and anti-inflammatory activities. Besides, continuously increasing interest in assessing the role of the plant active constituents preventing the risk of cancer was a reason to make a detailed examination of the investigated ethanol, diethyl ether, ethyl acetate, and N-butanol extracts regarding cytotoxicity. Oral administration of the investigated extracts caused a dose-dependent anti-inflammatory effect in a model of carrageenan-induced rat paw edema. Gastroprotective activity of the extracts was investigated using an ethanol-induced acute stress ulcer in rats. The cytotoxic activity of plant extracts was assessed on PBMC, B16, and HL-60 cells and compared to the cytotoxicity of phenolic compounds identified in extracts. Apoptotic and necrotic cell death were analyzed by double staining with fluoresceinisothiocyanate (FITC)-conjugated annexin V and PI. The developed HPLC method enabled qualitative fingerprint analysis of phenolic compounds in the investigated extracts. Compared to the effect of the positive control, the anti-inflammatory drug indomethacine (4 mg/kg), which produced a 50 % decrease in inflammation, diethyl ether and N-butanol extracts exhibited about the same effect in doses of 200 and 100 mg/kg (53.6 and 48.7 %; 48.4 and 49.9 %, respectively). All investigated extracts produced dose-dependent gastroprotective activity with the efficacy comparable to that of the reference drug ranitidine. The diethyl ether extract showed significant dose-dependent cytotoxicity on B16 cells and HL-60 cells, decreasing cell growth to 51.3 % and 77.5 % of control, respectively, when used at 100 µg/mL. It seems that phenolic compounds (apigenin, luteolin, and their corresponding glycosides) are

  10. The delayed luminescence spectroscopy as tool to investigate the cytotoxic effect on human cancer cells of drug-loaded nanostructured lipid carrier

    NASA Astrophysics Data System (ADS)

    Grasso, R.; Gulino, M.; Scordino, A.; Musumeci, F.; Campisi, A.; Bonfanti, R.; Carbone, C.; Puglisi, G.

    2016-05-01

    The first results concerning the possibility to use Delayed Luminescence spectroscopy to evaluate the in vitro induction of cytotoxic effects on human glioblastoma cells of nanostructured lipid carrier and drug-loaded nanostructured lipid carrier are showed in this contribution. We tested the effects of nanostructured lipid carrier, ferulic acid and ferulic acidloaded nanostructured lipid carrier on U-87MG cell line. The study seems to confirm the ability of Delayed Luminescence to be sensible indicator of alterations induced on functionality of the mitochondrial respiratory chain complex I in U-87MG cancer cells when treated with nanostructured lipid carriers.

  11. Effect of citral on the cytotoxicity of doxorubicin in human B-lymphoma cells.

    PubMed

    Dangkong, Darinee; Limpanasithikul, Wacharee

    2015-02-01

    Doxorubicin is a chemotherapy agent used in non-Hodgkin's lymphoma but side effects limit its use. Citral is a mixture of neral and geranial found in essential oils of lemon grass. We evaluated the activity of citral, doxorubicin, and combination on cytotoxicity, apoptosis, and anti-proliferative effects using human lymphoma Ramos cells. Cells were treated with doxorubicin alone or in combination with citral (10, 20, and 40 μM). Cytotoxic and apoptosis studies were done after 24 and 18 h incubations, respectively. Cytotoxic effects of citral on normal human peripheral blood mononuclear cells (PBMCs) were also investigated for its safety. Changes in the expression of BCL-2 family genes were analyzed by quantitative RT-PCR. Citral had cytotoxicity on cells with an IC50 value of 77.19 ± 4.95 µM. Citral at concentrations of 10, 20, and 40 µM additively increased the cytotoxic and apoptotic effects of doxorubicin, leading to decreased IC50 (µM) of the drug from 2.50 ± 0.01 to 2.16 ± 0.03, 1.90 ± 0.04, and 1.23 ± 0.04, respectively. Enhanced cytotoxicity was not observed in normal human PBMCs. Citral (40 µM) in combination with doxorubicin (1.5 µM) increased the expression of pro-apoptotic protein BAK but significantly decreased the expression of anti-apoptotic protein BCL-XL to 5.26-fold compared with doxorubicin-treated cells. It did not change the anti-proliferative activity of drug. Citral potentiated cytotoxicity of doxorubicin by increasing apoptotic effects. We conclude that citral may have beneficial effects in patients with B cell lymphoma treated with chemotherapy.

  12. Formulation, characterization and cytotoxicity studies of alendronate sodium-loaded solid lipid nanoparticles.

    PubMed

    Ezzati Nazhad Dolatabadi, Jafar; Hamishehkar, Hamed; Eskandani, Morteza; Valizadeh, Hadi

    2014-05-01

    Solid lipid nanoparticles (SLNs) are novel drug delivery system for drug targeting in various routs of administration such as parenteral, oral, ophthalmic and topical. These carriers have some advantages such as high drug payload, increased drug stability, the possibility of incorporation of lipophilic and hydrophilic drugs, and low biotoxicity. In this study, alendronate sodium was used as a hydrophilic model drug and was incorporated into SLNs. Hot homogenization method was used for preparation of alendronate sodium-loaded SLN formulations and the encapsulation efficiency of drug in SLNs was determined by ultrafiltration method using centrifugal devices. Scanning electron microscopy (SEM) was carried out to study the morphological behaviors of prepared SLNs like sphericity. Several cytotoxicity studies including MTT, DAPI staining and DNA fragmentation assays were used for biocompatibility assays. High drug encapsulation efficiency (70-85%) was achieved by drug determination through derivatization with o-phthalaldehyde. The physical stability of drug-loaded SLNs in aqueous dispersions was assessed in terms of size and drug leakage during two weeks. Scanning electron microscopy images showed spherical particles in the nanometer range confirming the obtained data from size analyzer. Several cytotoxicity studies including MTT, DAPI staining and DNA fragmentation assays as well as flow cytometry analysis confirmed the low toxicity of alendronate-loaded SLNs. The cost-efficient procedure, the avoidance of organic solvents application, acceptable reproducibility, ease of manufacturing under mild preparation conditions, high level of drug encapsulation, desirable physical stability and biocompatibility are the advantages of the proposed SLN formulations. Copyright © 2014 Elsevier B.V. All rights reserved.

  13. Cytotoxicity of ketamine, xylazine and Hellabrunn mixture in liver-, heart- and kidney-derived cells from fallow deer.

    PubMed

    Kovacova, Veronika; Abdelsalam, Ehdaa Eltayeb Eltigani; Bandouchova, Hana; Brichta, Jiri; Havelkova, Barbora; Piacek, Vladimir; Vitula, Frantisek; Pikula, Jiri

    2016-12-18

    Chemical restraint of wild animals is practiced to accomplish intended procedures such as capture, clinical examination, collection of diagnostic samples, treatment and/or transport. Extra-label use of animal medicinal drugs is often necessary in wildlife because most approved therapeutics do not list wild species on the labelling. Here, we used cellular in vitro models, a cutting-edge tool of biomedical research, to examine cytotoxicity of anaesthetic agents in fallow deer and extrapolate these data for anaesthetic risks in wildlife. We examined the cytotoxic effects of ketamine, xylazine, and ketamine-xylazine, i.e. the Hellabrunn mixture, on liver-, heart- and kidney-derived cell cultures prepared from a fallow deer (Dama dama) specimen. In line with preliminary studies we exposed cells to 10 µM, 50 µM, 100 µM, 1 mM, and 10 mM ketamine or xylazine. The combination of ketamine-xylazine was dosed at 0.025+0.02 mg/ml, 0.05+0.04 mg/ml, 0.75+0.06 mg/ml, 0.1+0.08 mg/ml, and 0.125+0.1 mg/ml per one well containing 10 000 cells. The quantification of cytotoxicity was based on lactate dehydrogenase activity released from damaged cells. Liver-derived cells show higher sensitivity to the cytotoxic effects of both ketamine and xylazine administered as single drugs when compared with cells cultured from the heart and kidney. The Hellabrunn mixture induced significantly higher cytotoxicity for kidney-derived cells ranging from 16.78% to 35.6%. Single and combined exposures to ketamine and xylazine resulted only in high-dose cytotoxicity in the heart-derived cells. Our results indicate that immobilization drugs significantly differ in their cytotoxic effects on cells derived from various organs of the fallow deer.

  14. Triggering of the TRPV2 channel by cannabidiol sensitizes glioblastoma cells to cytotoxic chemotherapeutic agents.

    PubMed

    Nabissi, Massimo; Morelli, Maria Beatrice; Santoni, Matteo; Santoni, Giorgio

    2013-01-01

    The aggressive behavior of Glioblastoma multiforme (GBM) is mainly due to high invasiveness and proliferation rate as well as to high resistance to standard chemotherapy. Several chemotherapeutic agents like temozolomide (TMZ), carmustine (BCNU) or doxorubicin (DOXO) have been employed for treatment of GBM, but they display limited efficacy. Therefore, it is important to identify new treatment modalities to improve therapeutic effects and enhance GBM chemosensitivity. Recently, activation of the transient receptor potential vanilloid type 2 (TRPV2) has been found to inhibit human GBM cell proliferation and overcome BCNU resistance of GBM cells. Herein, we evaluated the involvement of cannabidiol (CBD)-induced TRPV2 activation, in the modulation of glioma cell chemosensitivity to TMZ, BCNU and DOXO. We found that CBD increases TRPV2 expression and activity. CBD by triggering TRPV2-dependent Ca(2+) influx increases drug uptake and synergizes with cytotoxic agents to induce apoptosis of glioma cells, whereas no effects were observed in normal human astrocytes. Moreover, as the pore region of transient receptor potential (TRP) channels is critical for ion channel permeation, we demonstrated that deletion of TRPV2 poredomain inhibits CBD-induced Ca(2+) influx, drug uptake and cytotoxic effects. Overall, we demonstrated that co-administration of cytotoxic agents together with the TRPV2 agonist CBD increases drug uptake and parallelly potentiates cytotoxic activity in human glioma cells.

  15. 21 CFR 58.47 - Facilities for handling test and control articles.

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ... 21 Food and Drugs 1 2012-04-01 2012-04-01 false Facilities for handling test and control articles... for handling test and control articles. (a) As necessary to prevent contamination or mixups, there shall be separate areas for: (1) Receipt and storage of the test and control articles. (2) Mixing of the...

  16. 21 CFR 58.47 - Facilities for handling test and control articles.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... 21 Food and Drugs 1 2011-04-01 2011-04-01 false Facilities for handling test and control articles... for handling test and control articles. (a) As necessary to prevent contamination or mixups, there shall be separate areas for: (1) Receipt and storage of the test and control articles. (2) Mixing of the...

  17. 21 CFR 58.47 - Facilities for handling test and control articles.

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ... 21 Food and Drugs 1 2013-04-01 2013-04-01 false Facilities for handling test and control articles... for handling test and control articles. (a) As necessary to prevent contamination or mixups, there shall be separate areas for: (1) Receipt and storage of the test and control articles. (2) Mixing of the...

  18. 21 CFR 58.47 - Facilities for handling test and control articles.

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ... 21 Food and Drugs 1 2014-04-01 2014-04-01 false Facilities for handling test and control articles... for handling test and control articles. (a) As necessary to prevent contamination or mixups, there shall be separate areas for: (1) Receipt and storage of the test and control articles. (2) Mixing of the...

  19. Photoactive platinum(II) complexes of nonsteroidal anti-inflammatory drug naproxen: Interaction with biological targets, antioxidant activity and cytotoxicity.

    PubMed

    Srivastava, Payal; Singh, Khushbu; Verma, Madhu; Sivakumar, Sri; Patra, Ashis K

    2018-01-20

    The effect on the therapeutic efficacy of Pt(II) complexes on combining non-steroidal anti-inflammatory drugs (NSAIDs) is an attractive strategy to circumvent chronic inflammation mediated by cancer and metastasis. Two square-planar platinum(II) complexes: [Pt(dach)(nap)Cl] (1) and [Pt(dach)(nap) 2 ] (2), where dach = (1R,2R)-dichloro(cyclohexane-1,2-diamine) and NSAID drug naproxen (nap), have been designed for studying their biological activity. The naproxen bound to the Pt(II) centre get released upon photoirradiation with low-power UV-A light as confirmed by the significant enhancement in emission intensities of the complexes. The compounds were evaluated for their photophysical properties, photostability, reactivity with 5'-guanosine monophophosphate (5'-GMP), interactions with CT-DNA and BSA, antioxidant activity and reactive oxygen species mediated photo-induced DNA damage properties. ESI-MS studies demonstrated the formation of bis-adduct with 5'-GMP and the formation of Pt II -DNA crosslinks by gel electrophoretic mobility shift assay and ITC studies. The interaction of the complexes 1 and 2 with the CT-DNA exhibits potential binding affinity (K b  ∼ 10 4  M -1 , K app ∼ 10 5  M -1 ), implying intercalation to CT-DNA through planar naphthyl ring of the complexes. Both the complexes also exhibit strong binding affinity towards BSA (K BSA ∼ 10 5  M -1 ). The complexes exhibit efficient DNA damage activity on irradiation at 365 nm via formation of singlet oxygen ( 1 O 2 ) and hydroxyl radical ( • OH) under physiological conditions. Both the complexes were cytotoxic in dark and exhibit significant enhancement of cytotoxicity upon photo-exposure against HeLa and HepG2 cancer cells giving IC 50 values ranging from 8 to 12 μM for 1 and 2. The cellular internalization data showed cytosolic and nuclear localization of the complexes in the HeLa cells. Copyright © 2017 Elsevier Masson SAS. All rights reserved.

  20. Alteration of the carbohydrate for deoxyguanosine analogs markedly changes DNA replication fidelity, cell cycle progression and cytotoxicity

    PubMed Central

    O’Konek, Jessica J.; Ladd, Brendon; Flanagan, Sheryl A.; Im, Mike M.; Boucher, Paul D.; Thepsourinthone, Tico S.; Secrist, John A.; Shewach, Donna S.

    2011-01-01

    Nucleoside analogs are efficacious cancer chemotherapeutics due to their incorporation into tumor cell DNA. However, they exhibit vastly different antitumor efficacies, suggesting that incorporation produces divergent effects on DNA replication. Here we have evaluated the consequences of incorporation on DNA replication and its fidelity for three structurally related deoxyguanosine analogs: ganciclovir (GCV), currently in clinical trials in a suicide gene therapy approach for cancer, D-carbocyclic 2′-deoxyguanosine (CdG) and penciclovir (PCV). GCV and CdG elicited similar cytotoxicity at low concentrations, whereas PCV was 10–100-fold less cytotoxic in human tumor cells. DNA replication fidelity was evaluated using a supF plasmid-based mutation assay. Only GCV induced a dose-dependent increase in mutation frequency, predominantly GC→TA transversions, which contributed to cytotoxicity and implicated the ether oxygen in mutagenicity. Activation of mismatch repair with hydroxyurea decreased mutations but failed to repair the GC→TA transversions. GCV slowed S-phase progression and CdG also induced a G2/M block, but both drugs allowed completion of one cell cycle after drug treatment followed by cell death in the second cell cycle. In contrast, PCV induced a lengthy early S-phase block due to profound suppression of DNA synthesis, with cell death in the first cell cycle after drug treatment. These data suggest that GCV and CdG elicit superior cytotoxicity due to their effects in template DNA, whereas strong inhibition of nascent strand synthesis by PCV may protect against cytotoxicity. Nucleoside analogs based on the carbohydrate structures of GCV and CdG is a promising area for antitumor drug development. PMID:20004674

  1. Cytotoxicity of lapachol metabolites produced by probiotics.

    PubMed

    Oliveira Silva, E; Cruz de Carvalho, T; Parshikov, I A; Alves dos Santos, R; Silva Emery, F; Jacometti Cardoso Furtado, N A

    2014-07-01

    Probiotics are currently added to a variety of functional foods to provide health benefits to the host and are commonly used by patients with gastrointestinal complaints or diseases. The therapeutic effects of lapachol continue to inspire studies to obtain derivatives with improved bioactivity and lower unwanted effects. Therefore, the general goal of this study was to show that probiotics are able to convert lapachol and are important to assess the effects of bacterial metabolism on drug performance and toxicity. The microbial transformations of lapachol were carried out by Bifidobacterium sp. and Lactobacillus acidophilus and different metabolites were produced in mixed and isolated cultures. The cytotoxic activities against breast cancer and normal fibroblast cell lines of the isolated metabolites (4α-hydroxy-2,2-dimethyl-5-oxo-2,3,4,4α,5,9β-hexahydroindeno[1,2-β]pyran-9β-carboxilic acid, a new metabolite produced by mixed culture and dehydro-α-lapachone produced by isolated cultures) were assessed and compared with those of lapachol. The new metabolite displayed a lower activity against a breast cancer cell line (IC50 = 532.7 μmol l(-1) ) than lapachol (IC50 = 72.3 μmol l(-1) ), while dehydro-α-lapachone (IC50 = 10.4 μmol l(-1) ) displayed a higher activity than lapachol. The present study is the first to demonstrate that probiotics are capable of converting lapachol into the most effective cytotoxic compound against a breast cancer cell line. Probiotics have been used in dairy products to promote human health and have the ability to metabolize drugs and other xenobiotics. Naphthoquinones, such as lapachol, are considered privileged scaffolds due to their high propensity to interact with biological targets. The present study is the first to demonstrate that probiotics are capable of converting lapachol into the most effective cytotoxic compound against a breast cancer cell line. The developed approach highlights the importance of probiotics to assess

  2. Cytotoxic activity screening of Bangladeshi medicinal plant extracts.

    PubMed

    Akter, Raushanara; Uddin, Shaikh J; Grice, I Darren; Tiralongo, Evelin

    2014-01-01

    The cytotoxic activity of 23 crude methanol extracts from 19 Bangladeshi medicinal plants was investigated against healthy mouse fibroblasts (NIH3T3), healthy monkey kidney (VERO) and four human cancer cell lines (gastric, AGS; colon, HT-29; and breast, MCF-7 and MDA-MB-231) using MTT assay. High cytotoxicity across all cell lines tested was exhibited by Aegiceras corniculatum (fruit) and Hymenodictyon excelsum (bark) extracts (IC50 values ranging from 0.0005 to 0.9980 and 0.08 to 0.44 mg/mL, respectively). Fourteen extracts from 11 plant species, namely Clitoria ternatea (flower and leaf), Dillenia indica (leaf), Diospyros peregrina (leaf), Dipterocarpus turbinatus (bark and leaf), Ecbolium viride (leaf), Glinus oppositifolius (whole plant), Gnaphalium luteoalbum (leaf), Jasminum sambac (leaf), Lannea coromandelica (bark and leaf), Mussaenda glabrata (leaf) and Saraca asoca (leaf), were also significantly cytotoxic (IC50 < 1.0 mg/mL) against at least one of the cancer cell lines tested. More selectively, Avicennia alba (leaf), C. ternatea (flower and leaf), Caesalpinia pulcherrima (leaf), E. viride (leaf) and G. oppositifolius (whole plant) showed cytotoxicity only against both of the breast cancer cell lines (MCF-7 and MDA-MB-231). In contrast, C. ternatea (flower and leaf) exhibited high cytotoxic activity against MDA-MB-231 (IC50 values of 0.11 and 0.49 mg/mL, respectively), whereas E. viride and G. oppositifolius whole plant extracts exhibited high activity against MCF-7 cells (IC50 values of 0.06 and 0.15 mg/mL, respectively). The cytotoxic activity test results for 9 of the plant species correlate with their traditional use as anticancer agents, thus making them interesting sources for further drug development.

  3. 'Atrophic telogen effluvium' from cytotoxic drugs and a randomized controlled trial to investigate the possible protective effect of pretreatment with a topical vitamin D analogue in humans.

    PubMed

    Bleiker, T O; Nicolaou, N; Traulsen, J; Hutchinson, P E

    2005-07-01

    Hair loss from cytotoxic drugs is classically ascribed to the loss of fractured hairs (anagen effluvium). Telogen hair loss has also been described but some authors have denied any effect on the hair cycle. There are conflicting reports on a protective effect of pretreatment with a vitamin D analogue on cytotoxic drug-induced hair loss in rodents. To investigate the process of cytotoxic hair loss and any protective effect on the hair of pretreatment with topical calcipotriol. Breast cancer patients who were about to receive cycles of chemotherapy with cyclophosphamide 600 mg m(-2), methotrexate 40 mg m(-2) and 5-fluorouracil 600 mg m(-2) were recruited and randomized to receive calcipotriol scalp solution 50 microg mL(-1) or vehicle. The solution was applied twice daily from 4 days prior to chemotherapy and continued for 14 days in each treatment cycle. Shed, plucked and cut hairs were sampled. Absolute shed rates, the proportion of major hair types, the presence of proximal hair shaft changes, regrowth (using the new anagen hair count) and hair density were assessed. Ten patients receiving calcipotriol and 14 receiving vehicle completed three treatment cycles and nine from both groups completed six cycles. There was no detectable effect of calcipotriol on the proportion of patients experiencing minimal hair loss from chemotherapy, shed rates, plucked telogen and fractured hair counts, the morphology of shed and plucked hair, hair regrowth or hair density. Combining results of the treatment groups, there was a large variation in the impact of chemotherapy on hair loss, from total loss in five patients to no obvious loss in five. Excluding the latter, during chemotherapy shed telogen hairs (mean 81% of shed hairs) predominated over fractured (12%) and anagen hairs (6%) (P = 0.0002). The major pathological change was proximal hair shaft tapering, baseline mean 3% of shed hairs rising to 48% (P = 0.0005) during treatment, and there was a consequent decrease in normal

  4. Synthesis and topoisomerase II inhibitory and cytotoxic activity of oxiranylmethoxy- and thiiranylmethoxy-chalcone derivatives.

    PubMed

    Na, Younghwa; Nam, Jung-Min

    2011-01-01

    In order to find potential anticancer drug candidate targeting topoisomerases enzyme, we have designed and synthesized oxiranylmethoxy- and thiiranylmethoxy-retrochalcone derivatives and evaluated their pharmacological activity including topoisomerases inhibitory and cytotoxic activity. Of the compounds prepared compound 25 showed comparable or better cytotoxic activity against cancer cell lines tested. Compound 25 inhibited MCF7 (IC(50): 0.49 ± 0.21 μM) and HCT15 (IC(50): 0.23 ± 0.02 μM) carcinoma cell growth more efficiently than references. In the topoisomerases inhibition test, all the compounds were inactive to topoisomerase I but moderate inhibitors to topoisomerase II enzyme. Especially, compound 25 inhibited topoisomerase II activity with comparable extent to etoposide at 100 μM concentrations. Correlation between cytotoxicity and topoisomerase II inhibitory activity implies that compound 25 can be a possible lead compound for anticancer drug impeding the topoisomerase II function. Copyright © 2010 Elsevier Ltd. All rights reserved.

  5. Hippo pathway mediates resistance to cytotoxic drugs.

    PubMed

    Gujral, Taranjit S; Kirschner, Marc W

    2017-05-02

    Chemotherapy is widely used for cancer treatment, but its effectiveness is limited by drug resistance. Here, we report a mechanism by which cell density activates the Hippo pathway, which in turn inactivates YAP, leading to changes in the regulation of genes that control the intracellular concentrations of gemcitabine and several other US Food and Drug Administration (FDA)-approved oncology drugs. Hippo inactivation sensitizes a diverse panel of cell lines and human tumors to gemcitabine in 3D spheroid, mouse xenografts, and patient-derived xenograft models. Nuclear YAP enhances gemcitabine effectiveness by down-regulating multidrug transporters as well by converting gemcitabine to a less active form, both leading to its increased intracellular availability. Cancer cell lines carrying genetic aberrations that impair the Hippo signaling pathway showed heightened sensitivity to gemcitabine. These findings suggest that "switching off" of the Hippo-YAP pathway could help to prevent or reverse resistance to some cancer therapies.

  6. 21 CFR 878.5070 - Air-handling apparatus for a surgical operating room.

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ... 21 Food and Drugs 8 2014-04-01 2014-04-01 false Air-handling apparatus for a surgical operating room. 878.5070 Section 878.5070 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) MEDICAL DEVICES GENERAL AND PLASTIC SURGERY DEVICES Therapeutic Devices § 878...

  7. 21 CFR 878.5070 - Air-handling apparatus for a surgical operating room.

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ... 21 Food and Drugs 8 2012-04-01 2012-04-01 false Air-handling apparatus for a surgical operating room. 878.5070 Section 878.5070 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) MEDICAL DEVICES GENERAL AND PLASTIC SURGERY DEVICES Therapeutic Devices § 878...

  8. 21 CFR 878.5070 - Air-handling apparatus for a surgical operating room.

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ... 21 Food and Drugs 8 2013-04-01 2013-04-01 false Air-handling apparatus for a surgical operating room. 878.5070 Section 878.5070 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) MEDICAL DEVICES GENERAL AND PLASTIC SURGERY DEVICES Therapeutic Devices § 878...

  9. Antimicrobial and cytotoxic effects of Mexican medicinal plants.

    PubMed

    Jacobo-Salcedo, Maria del Rosario; Alonso-Castro, Angel Josabad; Salazar-Olivo, Luis A; Carranza-Alvarez, Candy; González-Espíndola, Luis Angel; Domínguez, Fabiola; Maciel-Torres, Sandra Patricia; García-Lujan, Concepción; González-Martínez, Marisela del Rocio; Gómez-Sánchez, Maricela; Estrada-Castillón, Eduardo; Zapata-Bustos, Rocio; Medellin-Milán, Pedro; García-Carrancá, Alejandro

    2011-12-01

    The antimicrobial effects of the Mexican medicinal plants Guazuma ulmifolia, Justicia spicigera, Opuntia joconostle, O. leucotricha, Parkinsonia aculeata, Phoradendron longifolium, P. serotinum, Psittacanthus calyculatus, Tecoma stans and Teucrium cubense were tested against several human multi-drug resistant pathogens, including three Gram (+) and five Gram (-) bacterial species and three fungal species using the disk-diffusion assay. The cytotoxicity of plant extracts on human cancer cell lines and human normal non-cancerous cells was also evaluated using the MTT assay. Phoradendron longifolium, Teucrium cubense, Opuntia joconostle, Tecoma stans and Guazuma ulmifolia showed potent antimicrobial effects against at least one multidrug-resistant microorganism (inhibition zone > 15 mm). Only Justicia spicigera and Phoradendron serotinum extracts exerted active cytotoxic effects on human breast cancer cells (IC50 < or = 30 microg/mL). The results showed that Guazuma ulmifolia produced potent antimicrobial effects against Candida albicans and Acinetobacter lwoffii, whereas Justicia spicigera and Phoradendron serotinum exerted the highest toxic effects on MCF-7 and HeLa, respectively, which are human cancer cell lines. These three plant species may be important sources of antimicrobial and cytotoxic agents.

  10. Comparison of generation 3 polyamidoamine dendrimer and generation 4 polypropylenimine dendrimer on drug loading, complex structure, release behavior, and cytotoxicity

    PubMed Central

    Shao, Naimin; Su, Yunzhang; Hu, Jingjing; Zhang, Jiahai; Zhang, Hongfeng; Cheng, Yiyun

    2011-01-01

    Background Polyamidoamine (PAMAM) and polypropylenimine (PPI) dendrimers are the commercially available and most widely used dendrimers in pharmaceutical sciences and biomedical engineering. In the present study, the loading and release behaviors of generation 3 PAMAM and generation 4 PPI dendrimers with the same amount of surface amine groups (32 per dendrimer) were compared using phenylbutazone as a model drug. Methods The dendrimer-phenylbutazone complexes were characterized by 1H nuclear magnetic resonance and nuclear Overhauser effect techniques, and the cytotoxicity of each dendrimer was evaluated. Results Aqueous solubility results suggest that the generation 3 PAMAM dendrimer has a much higher loading ability towards phenylbutazone in comparison with the generation 4 PPI dendrimer at high phenylbutazone-dendrimer feeding ratios. Drug release was much slower from the generation 3 PAMAM matrix than from the generation 4 PPI dendrimer. In addition, the generation 3 PAMAM dendrimer is at least 50-fold less toxic than generation 4 PPI dendrimer on MCF-7 and A549 cell lines. Conclusion Although the nuclear Overhauser effect nuclear magnetic resonance results reveal that the generation 4 PPI dendrimer with a more hydrophobic interior encapsulates more phenylbutazone, the PPI dendrimer-phenylbutazone inclusion is not stable in aqueous solution, which poses a great challenge during drug development. PMID:22267921

  11. Design and characteristics of cytotoxic fibroblast growth factor 1 conjugate for fibroblast growth factor receptor-targeted cancer therapy.

    PubMed

    Szlachcic, Anna; Zakrzewska, Malgorzata; Lobocki, Michal; Jakimowicz, Piotr; Otlewski, Jacek

    2016-01-01

    Fibroblast growth factor receptors (FGFRs) are attractive candidate cancer therapy targets as they are overexpressed in multiple types of tumors, such as breast, prostate, bladder, and lung cancer. In this study, a natural ligand of FGFR, an engineered variant of fibroblast growth factor 1 (FGF1V), was conjugated to a potent cytotoxic drug, monomethyl auristatin E (MMAE), and used as a targeting agent for cancer cells overexpressing FGFRs, similar to antibodies in antibody-drug conjugates. The FGF1V-valine-citrulline-MMAE conjugate showed a favorable stability profile, bound FGFRs on the cell surface specifically, and efficiently released the drug (MMAE) upon cleavage by the lysosomal protease cathepsin B. Importantly, the conjugate showed a prominent cytotoxic effect toward cell lines expressing FGFR. FGF1V-vcMMAE was highly cytotoxic at concentrations even an order of magnitude lower than those found for free MMAE. This effect was FGFR-specific as cells lacking FGFR did not show any increased mortality.

  12. Design and characteristics of cytotoxic fibroblast growth factor 1 conjugate for fibroblast growth factor receptor-targeted cancer therapy

    PubMed Central

    Szlachcic, Anna; Zakrzewska, Malgorzata; Lobocki, Michal; Jakimowicz, Piotr; Otlewski, Jacek

    2016-01-01

    Fibroblast growth factor receptors (FGFRs) are attractive candidate cancer therapy targets as they are overexpressed in multiple types of tumors, such as breast, prostate, bladder, and lung cancer. In this study, a natural ligand of FGFR, an engineered variant of fibroblast growth factor 1 (FGF1V), was conjugated to a potent cytotoxic drug, monomethyl auristatin E (MMAE), and used as a targeting agent for cancer cells overexpressing FGFRs, similar to antibodies in antibody–drug conjugates. The FGF1V–valine–citrulline–MMAE conjugate showed a favorable stability profile, bound FGFRs on the cell surface specifically, and efficiently released the drug (MMAE) upon cleavage by the lysosomal protease cathepsin B. Importantly, the conjugate showed a prominent cytotoxic effect toward cell lines expressing FGFR. FGF1V–vcMMAE was highly cytotoxic at concentrations even an order of magnitude lower than those found for free MMAE. This effect was FGFR-specific as cells lacking FGFR did not show any increased mortality. PMID:27563235

  13. National Cancer Institute Pediatric Preclinical Testing Program: Model Description for In Vitro Cytotoxicity Testing

    PubMed Central

    Kang, Min H.; Smith, Malcolm A.; Morton, Christopher L.; Keshelava, Nino; Houghton, Peter J.; Reynolds, C. Patrick

    2010-01-01

    Background The National Cancer Institute (NCI) has established the Pediatric Preclinical Testing Program (PPTP) for testing drugs against in vitro and in vivo childhood cancer models to aid in the prioritization of drugs considered for early phase pediatric clinical trials. Procedures In vitro cytotoxicity testing employs a semi-automated fluorescence-based digital imaging cytotoxicity assay (DIMSCAN) that has a 4-log dynamic range of detection. Curve fitting of the fractional survival data of the cell lines in response to various concentrations of the agents was used to calculate relative IC50, absolute IC50, and Ymin values The panel of 23 pediatric cancer cell lines included leukemia (n=6), lymphoma (n=2), rhabdomyosarcoma (n=4), brain tumors (n=3), Ewing family of tumors (EFT, n=4), and neuroblastoma (n=4). The doubling times obtained using DIMSCAN were incorporated into data analyses to estimate the relationship between input cell numbers and final cell number. Results We report in vitro activity data for three drugs (vincristine, melphalan, and etoposide) that are commonly used for pediatric cancer and for the mTOR inhibitor rapamycin, an agent that is currently under preclinical investigation for cancer. To date, the PPTP has completed in vitro testing of 39 investigational and approved agents for single drug activity and two investigational agents in combination with various “standard” chemotherapy drugs. Conclusions This robust in vitro cytotoxicity testing system for pediatric cancers will enable comparisons to response data for novel agents obtained from xenograft studies and from clinical trials. PMID:20922763

  14. General Characteristics and Cytotoxic Effects of Nano-Poly (Butyl Cyanoacrylate) Containing Carboplatin on Ovarian Cancer Cells

    PubMed Central

    Kanaani, Leila; Far, Meysam Ebrahimi; Kazemi, S Maryam; Choupani, Edris; Tabrizi, Maral Mazloumi; Shahmabadi, Hasan Ebrahimi; Khiyavi, Azim Akbarzadeh

    2017-01-01

    The initial response to treatment and subsequent development of resistance to carboplatin are very important challenges. Use of nano drug delivery is a new method to replace standard chemotherapy. In this research, both non-PEGylated and PEGylated nanoparticles (NPs) were prepared by mini-emulsion polymerization of poly (butyl cyanoacrylate) (PBCA) NPs. Characteristics such as size, polydispersity index (PDI), zeta potential, drug release, and stability were examined. In addition, infrared spectroscopy was used for description of the produced NPs. Then, cytotoxicity effects of both formulations were studied on the A2780CIS ovarian cancer cell line with incubation for 24, 48, and 72h. Examination of characteristics of loaded carboplatin on the PBCA NPs under suitable laboratory conditions showed a positive effect of PEG on their properties. Cytotoxicity studies demonstrated greater toxicity with both formulations of nano-drugs than the free drug. The results indicated that PBCA NPs can be considered as suitable candidates for nano-drugs in chemotherapy. PMID:28240014

  15. Prolonged cytotoxic effect of colchicine released from biodegradable microspheres.

    PubMed

    Muvaffak, Asli; Gurhan, Ismet; Hasirci, Nesrin

    2004-11-15

    One the main problems of cancer chemotherapy is the unwanted damage to normal cells caused by the high toxicities of anticancer drugs. Any system of controlled drug delivery that would reduce the total amount of drug required, and thus reduce the side effects, would potentially help to improve chemotherapy. In this respect, biodegradable gelatin microspheres were prepared by water/oil emulsion polymerization and by crosslinking with glutaraldehyde (GTA) as the drug-carrier system. Microspheres were loaded with colchicine, a model antimitotic drug, which was frequently used as an antimitotic agent in cancer research involving cell cultures. Microsphere sizes, swelling and degradation properties, drug-release kinetics, and cytotoxities were studied. Swelling characteristics of microspheres changed upon changing GTA concentration. A decrease in swelling values was recorded as GTA crosslink density was increased. In vitro drug release in PBS (0.01M, pH 7.4) showed rapid colchicine release up to approximately 83% (at t = 92 h) for microspheres with low GTA (0.05% v/v), whereas a slower release profile (only approximately 39%) was obtained for microspheres with high GTA (0.50% v/v) content, for the same period. Cytotoxicity tests with MCF-7, HeLa and H-82 cancer cell lines showed that free colchicine was very toxic, showing an approximately 100% lethal effect in both HeLa and H-82 cell lines and more than 50% decrease in viability in MCF-7 cells in 4 days. Indeed, entrapped colchicine indicated similar initial high toxic effect on cell viability in MCF-7 cell line and this effect became more dominant as colchicine continued to be released from microspheres in the same period. In conclusion, the control of the release rate of colchicine from gelatin microspheres was achieved under in vitro conditions by gelatin through the alteration of crosslinking conditions. Indeed, the results suggested the potential application of gelatin microspheres crosslinked with GTA as a

  16. Cytotoxicity Testing: Cell Experiments

    NASA Astrophysics Data System (ADS)

    Grünert, Renate; Westendorf, Aron; Buczkowska, Magdalena; Hänsch, Mareike; Grüunert, Sybil; Bednarski, Patrick J.

    Screening for new anticancer agents has traditionally been done with in vitro cell culture methods. Even in the genomic era of target-driven drug design, screening for cytotoxic activity is still a standard tool in the search for new anticancer agents, especially if the mode of action of a substance is not yet known. A wide variety of cell culture methods with unique end-points are available for testing the anticancer potential of a substance. Each has its advantages and disadvantages, which must be weighed in the decision to use a particular method. Often several complementary methods are used to gain information on the mode of action of a substance.

  17. Cytotoxicity and inhibitory properties against topoisomerase II of doxorubicin and its formamidine derivatives.

    PubMed

    Kik, Krzysztof; Studzian, Kazimierz; Wasowska-Łukawska, Małgorzata; Oszczapowicz, Irena; Szmigiero, Leszek

    2009-01-01

    This work was undertaken to compare cytotoxicity, DNA damaging properties and effect on DNA cleavage by topoisomerase II of the anthracycline drug doxorubicin (DOX) and its two derivatives with a formamidino group containing a cyclic amine moiety such as morpholine (DOXM) or hexamethyleneimine (DOXH). The tetrazolium dye colorimetric assay was used to determine the cytotoxic activity of anthracyclines toward L1210 leukemia cells. DNA damage was measured by alkaline elution technique. The effect of anthracyclines on DNA cleavage was studied in a cell-free system containing supercoiled pBR322 DNA and purified human topoisomerase II. The cytotoxicity data and the results of studies on the mechanism of DNA break formation by anthracyclines at the cellular level and in the cell-free system showed that the presence of the formamidino group in the doxorubicin molecule reduced its ability to stimulate DNA cleavage by DNA topoisomerase II. DNA topoisomerase II is not a primary cellular target for DOXM or DOXH. An advantageous feature of formamidinoanthracyclines is their mechanism of cytotoxic action which is not related to the inhibition of DNA topoisomerase II. Therefore this class of anthracyclines seems to be a good source for selection of an anticancer drug directed toward cancer cells with the developed multidrug resistance attributed to the presence of altered DNA topoisomerase II.

  18. Safety in the preparation of cytotoxic drugs: How to integrate gravimetric control in the quality assurance policy?

    PubMed

    Lecordier, J; Heluin, Y; Plivard, C; Bureau, A; Mouawad, C; Chaillot, B; Lahet, J-J

    2011-02-01

    We present the way to integrate gravimetric control (GC) in a centralized preparation of cytotoxic drugs unit. Two different modalities are described. In the first strategy, the balance is located inside the isolator, whereas in the second, it is located outside in order to remove many technical and ergonomic constraints. These two modalities are compared in terms of benefits and limits. GC consists in comparing the observed weight variation with the expected weight variation using a precision balance. According to the B-in strategy, this variation is directly attributable to the weight of the cytotoxic solution injected, whereas with the B-out strategy, the weight of various additional components must be taken into account. Five hundred and seventy-seven preparations have been weighed. For "B-in" strategy, the 95% confidence interval is [1.02-1.14%] and every preparation is below the threshold of 5%. For "B-out" strategy, the 95% confidence interval is [2.34-2.63%] and 94% of preparations are below the threshold of 5%. B-in strategy is distinctly more precise than B-out strategy and can be applied to all preparations. However, B-out strategy is a feasible option in practice and enables the detection of an important mistake. All in all, results obtained from B-out strategy can be considered as a quality indicator in the production line. Results of GC are helpful in the final step of release, which the pharmacist is responsible for. Many contributions in the quality assurance policy could justify using of GC in every unit. Copyright © 2011 Elsevier Masson SAS. All rights reserved.

  19. Analysis of the cytotoxicity of carbon-based nanoparticles, diamond and graphite, in human glioblastoma and hepatoma cell lines.

    PubMed

    Zakrzewska, Karolina Ewa; Samluk, Anna; Wierzbicki, Mateusz; Jaworski, Sławomir; Kutwin, Marta; Sawosz, Ewa; Chwalibog, André; Pijanowska, Dorota Genowefa; Pluta, Krzysztof Dariusz

    2015-01-01

    Nanoparticles have attracted a great deal of attention as carriers for drug delivery to cancer cells. However, reports on their potential cytotoxicity raise questions of their safety and this matter needs attentive consideration. In this paper, for the first time, the cytotoxic effects of two carbon based nanoparticles, diamond and graphite, on glioblastoma and hepatoma cells were compared. First, we confirmed previous results that diamond nanoparticles are practically nontoxic. Second, graphite nanoparticles exhibited a negative impact on glioblastoma, but not on hepatoma cells. The studied carbon nanoparticles could be a potentially useful tool for therapeutics delivery to the brain tissue with minimal side effects on the hepatocytes. Furthermore, we showed the influence of the nanoparticles on the stable, fluorescently labeled tumor cell lines and concluded that the labeled cells are suitable for drug cytotoxicity tests.

  20. Brief early handling increases morphine dependence in adult rats.

    PubMed

    Vazquez, Vincent; Penit-Soria, Jacqueline; Durand, Claudette; Besson, Marie-Jo; Giros, Bruno; Daugé, Valérie

    2006-06-30

    Short early manipulations of rodent postnatal environment may trigger long-term effects on neurobiological and behavioural phenotypes in adulthood. However, little is known about such effects of handling on the vulnerability to develop drug dependence. The present study aimed to analyze the long-term effects of a brief handling (1 min) on morphine and ethanol dependence and on the preproenkephalin (PPE) mRNA and mu opioid receptor levels. Handled rats showed a significant increase in morphine (25mg/l) but not ethanol (10%) consumption and preference after 7 weeks and no difference in morphine (2 and 5mg/kg) conditioned place preference. No difference of preproenkephalin mRNA and mu opioid receptor levels was detected in the mesolimbic system between both groups. These data emphasize that human brief handling, which can lead to morphine dependence development, constitutes in itself an experimental treatment and not a control condition.

  1. Evaluation of cytotoxicity of surfactants used in self-micro emulsifying drug delivery systems and their effects on paracellular transport in Caco-2 cell monolayer.

    PubMed

    Ujhelyi, Zoltán; Fenyvesi, Ferenc; Váradi, Judit; Fehér, Pálma; Kiss, Tímea; Veszelka, Szilvia; Deli, Mária; Vecsernyés, Miklós; Bácskay, Ildikó

    2012-10-09

    The objective of this study was to examine the cellular effects of the members of two non-ionic amphiphilic tenside groups and their mixtures on human Caco-2 cell monolayers as dependent upon their chemical structures and physicochemical properties. The first group of polyethylene glycol esters is represented by Polysorbates and Labrasol alone and in blends, while the members of the second group. Capryol 90, Capryol PGMC, Lauroglycol 90 and Lauroglycol FCC were used as propylene glycol esters. They are increasingly used in SMEDDS as recent tensides or co-tensides to increase hydrophobic bioavailability of a drug. Critical micelle concentration was measured by determination of surface tension. CMC refers to the ability of solubilization of surfactants. Cytotoxicity tests were performed on Caco-2 cell monolayers by MTT and LDH methods. Paracellular permeability as a marker of the integrity of cell monolayers, was examined with Lucifer yellow assays combined with TransEpithelial Electrical Resistance (TEER) measurements. The effect of these surfactants on tight junctions as evidence for paracellular pathway was also characterized. The results of cytotoxicity assays were in agreement, and showed significant differences among the cytotoxic properties of surfactants in a concentration-dependent manner. Polysorbates 20, 60, 80 are the most toxic compounds. In the case of Labrasol, the degree of esterification and lack of sorbit component decreased cytotoxicity. If the hydrophyl head was changed from polyethylene glycol to propylene glycol the main determined factor of cytotoxicity was the monoester content and the length of carbon chain. In our CMC experiments, we found that only Labrasol showed expressed cytotoxicity above the CMC. It refers to good ability of micelle solubilization of Labrasol. In our paracellular transport experiments each of polyethylene glycol surfactants (Polysorbates and Labrasol) altered TEER values, but propylene glycol esters did not modify the

  2. 21 CFR 1250.38 - Toilet and lavatory facilities for use of food-handling employees.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... 21 Food and Drugs 8 2010-04-01 2010-04-01 false Toilet and lavatory facilities for use of food-handling employees. 1250.38 Section 1250.38 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) REGULATIONS UNDER CERTAIN OTHER ACTS ADMINISTERED BY THE FOOD AND DRUG ADMINISTRATION INTERSTATE CONVEYANCE...

  3. [Design of next generation antibody drug conjugates].

    PubMed

    Zhu, Gui-Dong; Fu, Yang-Xin

    2013-07-01

    Chemotherapy remains one of the major tools, along with surgery, radiotherapy, and more recently targeted therapy, in the war against cancer. There have appeared a plethora of highly potent cytotoxic drugs but the poor discriminability between cancerous and healthy cells of these agents limits their broader application in clinical settings. Therapeutic antibodies have emerged as an important class of biological anticancer agents, thanks to their ability in specific binding to tumor-associated antigens. While this important class of biologics can be used as single agents for the treatment of cancer through antibody-dependent cell cytotoxicity (ADCC), their therapeutical efficacy is often limited. Antitumor antibody drug conjugates (ADCs) combine the target-specificity of monoclonal antibody (mAb) and the highly active cell-killing drugs, taking advantages of the best characteristics out of both components. Thus, insufficiency of most naked mAbs in cancer therapy has been circumvented by arming the immunoglobulin with cytotoxic drugs. Here mAbs are used as vehicles to transport potent payloads to tumor cells. ADCs contain three main components: antibody, linker and cytotoxics (also frequently referred as payload). Antibodies can recognize and specifically bind to the tumor-specific antigens, leading to an antibody-assisted internalization, and payload release. While ADC has demonstrated tremendous success, a number of practical challenges limit the broader applications of this new class of anticancer therapy, including inefficient cellular uptake, low cytotoxicity, and off-target effects. This review article aims to cover recent advances in optimizing linkers with increased stability in circulation while allowing efficient payload release within tumor cells. We also attempt to provide some practical strategies in resolving the current challenges in this attractive research area, particularly to those new to the field.

  4. Potentiation of antiproliferative drug activity by lonidamine in hepatocellular carcinoma cells.

    PubMed

    Ricotti, L; Tesei, A; De Paola, F; Milandri, C; Amadori, D; Frassineti, G L; Ulivi, P; Zoli, W

    2003-10-01

    The ability of lonidamine (LND), a derivative of indazole-carboxylic acid, to modulate the cytotoxic activity of anticancer drugs was investigated in two human hepatocarcinoma (HCC) cell lines. The cytotoxicity of drugs used singly, in association or in sequence was evaluated using the Sulforhodamine B (SRB) assay. LND did not appreciably potentiate the effect of antitumor drugs when given before or simultaneously, in either cell line. Conversely, a synergistic interaction was observed in both cell lines when LND was given after conventional drugs. LND produced a moderate decrease in S-phase cell fraction and did not induce apoptosis. Conversely, paclitaxel (TAX) induced an important block in G2 and an increase in apoptosis. Following a 48-h TAX wash out, a progressive passage of cells from G2 to M phase was observed with a corresponding increase in apoptotic cells. Post-treatment with LND increased the cytotoxicity of some antitumor drugs, especially TAX, in hepatocarcinoma cells, possibly by preventing, as an energolytic drug, cell damage repair or by producing an additional effect on microtubule stabilization.

  5. Evaluation of anticancer effects and enhanced doxorubicin cytotoxicity of xanthine derivatives using canine hemangiosarcoma cell lines.

    PubMed

    Motegi, Tomoki; Katayama, Masaaki; Uzuka, Yuji; Okamura, Yasuhiko

    2013-10-01

    Methylxanthine derivatives increase cAMP and are known to have diuretic, cardiac, and central nervous system stimulatory effects. Moreover, caffeine inhibits the development of tumors induced by various carcinogens. The aim of this work was to elucidate the anticancer effects on apoptosis of xanthine derivatives alone and with doxorubicin in canine hemangiosarcoma cells. Xanthine derivatives with or without doxorubicin were administered to cells, and the effects were investigated by measuring tumor cell proliferation, cell death (cytotoxicity) induction, and apoptosis by the expression of annexin V or caspase 3/7. Both caffeine and theophylline induced apoptosis, and the treated cells expressed annexin V and caspase 3/7. Both drugs enhanced doxorubicin-induced cytotoxicity; however, hypoxanthine showed no effect. These results indicate that theophylline is similar to caffeine; both drugs may enhance doxorubicin-induced cytotoxicity by inhibiting ATM/ATR kinases. Our data suggest that caffeine and theophylline have anticancer effects and can improve the treatment effect in canine hemangiosarcoma patients. Copyright © 2013 Elsevier Ltd. All rights reserved.

  6. Platinum anticancer agents and antidepressants: desipramine enhances platinum-based cytotoxicity in human colon cancer cells

    PubMed Central

    Kabolizadeh, Peyman; Engelmann, Brigitte J.; Pullen, Nicholas; Stewart, Jennifer K.; Ryan, John J.

    2011-01-01

    A unique synergistic effect on platinum drug cytotoxicity is noted in the presence of the tricyclic anti-depressant desipramine. Desipramine is used for treating neuropathic pain, particularly in prostate cancer patients. The clinically used drugs cisplatin (cis-[PtCl2(NH3)2]), oxaliplatin [1,2-diaminocyclohexaneoxalatoplatinum(II)], and the cationic trinuclear agent BBR3464 [{trans-PtCl(NH3)2}2-μ-(trans-Pt(NH3)2(H2N(CH2)6NH2)2)]4+, which has undergone evaluation in phase II clinical trials for activity in lung and ovarian cancers, were evaluated. Surprisingly, desipramine greatly augments the cytotoxicity of all the platinum-based chemotherapeutics in HCT116 colorectal carcinoma cell lines. Desipramine enhanced cellular accumulation of cisplatin, but had no effect on the accumulation of oxaliplatin or BBR3464, suggesting that enhanced accumulation could not be a consistent means by which desipramine altered the platinum-drug-mediated cytotoxicity. The desipramine/cisplatin combination resulted in increased levels of p53 as well as mitochondrial damage, caspase activation, and poly(ADP ribose) polymerase cleavage, suggesting that desipramine may synergize with cisplatin more than with other platinum chemotherapeutics partly by activating distinct apoptotic pathways. The study argues that desipramine may be a means of enhancing chemoresponsiveness of platinum drugs and the results warrant further investigation. The results emphasize the importance of understanding the differential pharmacological action of adjuvants employed in combinations with cancer chemotherapeutics. PMID:21918844

  7. Oncology pharmacy units: a safety policy for handling hazardous drugs and related waste in low- and middle-income African countries-Angolan experience.

    PubMed

    da Conceição, Ana Vaz; Bernardo, Dora; Lopes, Lygia Vieira; Miguel, Fernando; Bessa, Fernanda; Monteiro, Fernando; Santos, Cristina; Oliveira, Blasques; Santos, Lúcio Lara

    2015-01-01

    In African countries, higher rates of late-stage cancers at the time of first diagnosis are a reality. In this context, hazardous drugs (HDs), such as chemotherapy, play an important role and have immense benefits for patients' treatment. HDs should be handled under specific conditions. At least a class 5 environment primary engineering control (PEC), physically located in an appropriate buffer area, is mandatory for sterile HDs compounding, as well as administrative control, personal protective equipment, work practices and other engineering and environmental controls, in order to protect the environment, patient, and worker. The aim of this study is to describe the Angolan experience regarding the development of oncology pharmacy units and discuss international evidence-based guidelines on handling HDs and related waste. Measures to incorporate modern and economical solutions to upgrade or build adequate and safe facilities and staff training, in order to comply with international guidelines in this area, are crucial tasks for African countries of low and middle income.

  8. [Cytotoxicity of chimera peptides incorporating sequences of cyclin kinases inhibitors].

    PubMed

    Kharchenko, V P; Kulinich, V G; Lunin, V G; Filiasova, E I; Shishkin, A M; Sergeenko, O V; Riazanova, E M; Voronina, O L; Bozhenko, V K

    2007-01-01

    The study is concerned with proapoptotic properties of chimera peptides which incorporate sequences of inhibitors of cyclin kinases p161NK4a and p21CIP/WAF1 as well as internalized sequences (Antp and tat). Sequences of the p16 type appeared to be more cytotoxic than the p21 one. Cytotoxic effect proved dependent on orientation with respect to the C or N terminal point of a polypeptide chain rather than on chimera sequence extent. Although p16 endogenous synthesis did not influence chimera peptide levels, apoptosis did not take place in certain cellular lines. Due to the rather unsophisticated nature of such synthesis, it might be used in designing individually-tailored chemotherapeutic drugs.

  9. Antibody drug conjugates - Trojan horses in the war on cancer.

    PubMed

    Iyer, U; Kadambi, V J

    2011-01-01

    Antibody drug conjugates (ADCs) consist of an antibody attached to a cytotoxic drug by means of a linker. ADCs provide a way to couple the specificity of a monoclonal antibody (mAb) to the cytotoxicity of a small-molecule drug and, therefore, are promising new therapies for cancer. ADCs are prodrugs that are inactive in circulation but exert their cytotoxicity upon binding to the target cancer cell. Earlier unsuccessful attempts to generate ADCs with therapeutic value have emphasized the important role each component plays in determining the efficacy and safety of the final ADC. Scientific advances in engineering antibodies for maximum efficacy as anticancer agents, identification of highly cytotoxic molecules, and generation of linkers with increased stability in circulation have all contributed to the development of the many ADCs that are currently in clinical trials. This review discusses parameters that guide the selection of the components of an ADC to increase its therapeutic window, provides a brief look at ADCs currently in clinical trials, and discusses future challenges in this field. Copyright © 2011. Published by Elsevier Inc.

  10. [Radiation Anticarcinogenesis by Thiazolidine Pro-drug

    NASA Technical Reports Server (NTRS)

    Warters, Raymond L.; Roberts, Jeanette C.; Fain, Heidi

    1999-01-01

    The original goal of this work was to determine the capacity of selected aminothiols to modulate radiation induced cytotoxicity, mutagenesis and carcinogenesis in a human mammary epithelial cell line. The conclusions from this work are that WR-1065 is the "gold standard" for protection against radiation induced cytotoxicity, mutagenesis and carcinogenesis. While a potent radiation protector, WR-1065 is cytotoxic in vitro and in vivo. Our rationale for a study of the thiazolidine pro-drugs was that these compounds are neither toxic in vitro or in vivo. The results obtained during this funding period indicate that the thiazolidine pro-drugs are as potent as WR-1065 as protectors against radiation induced mutation induction, and thus presumably against radiation induced carcinogenesis. Our results indicate that the thiazolidine prodrugs are excellent candidates to test as non-toxic anticarcinogens for protecting astronauts from cancer induction during space travel.

  11. Analysis of the Cytotoxicity of Carbon-Based Nanoparticles, Diamond and Graphite, in Human Glioblastoma and Hepatoma Cell Lines

    PubMed Central

    Wierzbicki, Mateusz; Jaworski, Sławomir; Kutwin, Marta; Sawosz, Ewa; Chwalibog, André; Pijanowska, Dorota Genowefa; Pluta, Krzysztof Dariusz

    2015-01-01

    Nanoparticles have attracted a great deal of attention as carriers for drug delivery to cancer cells. However, reports on their potential cytotoxicity raise questions of their safety and this matter needs attentive consideration. In this paper, for the first time, the cytotoxic effects of two carbon based nanoparticles, diamond and graphite, on glioblastoma and hepatoma cells were compared. First, we confirmed previous results that diamond nanoparticles are practically nontoxic. Second, graphite nanoparticles exhibited a negative impact on glioblastoma, but not on hepatoma cells. The studied carbon nanoparticles could be a potentially useful tool for therapeutics delivery to the brain tissue with minimal side effects on the hepatocytes. Furthermore, we showed the influence of the nanoparticles on the stable, fluorescently labeled tumor cell lines and concluded that the labeled cells are suitable for drug cytotoxicity tests. PMID:25816103

  12. Combination chemotherapy increases cytotoxicity of multiple myeloma cells by modification of nuclear factor (NF)-κB activity

    PubMed Central

    Salem, Kelley; Brown, Charles O.; Schibler, Jeanine; Goel, Apollina

    2012-01-01

    The NF-κB signaling pathway is critical in myeloma cell proliferation, inhibition of apoptosis, and emergence of therapy resistance. The chemotherapeutic drugs, dexamethasone (Dex) and bortezomib (BTZ), are widely used in clinical protocols for multiple myeloma (MM) and inhibit the NF-κB signaling pathway by distinct mechanisms. This study evaluates the efficacy of combination therapy with Dex and BTZ and investigates the mechanistic underpinning of endogenous and therapy-induced NF-κB activation in MM. Human myeloma cells and bone marrow stromal cells (BMSCs) were used in monocultures and co-cultures to determine the cytotoxic effects of Dex and/or BTZ. Our results show that combined treatment of Dex with BTZ enhanced direct apoptosis of drug-sensitive and drug-resistant myeloma cells. In the presence of BMSCs, Dex plus BTZ combination inhibited ionizing radiation (IR)-induced interleukin (IL)-6 secretion from BMSCs and induced myeloma cytotoxicity. Mechanistically, Dex treatment increased IκBα protein and mRNA expression and compensated for BTZ-induced IκBα degradation. Dex plus BTZ combination inhibited basal and therapy-induced NF-κB activity with cytotoxicity in myeloma cells resistant to BTZ. Furthermore, combination therapy down-regulated the NF-κB targeted gene expression of IL-6 and manganese superoxide dismutase (MnSOD), which can induce chemo- and radio-resistance in MM. This study provides mechanistic rationale for combining the NF-κB-targeting drugs Dex and BTZ in myeloma therapy and supports potential combinations of these drugs with radiotherapy and additional chemotherapeutic drugs, for clinical benefit in MM. PMID:23063726

  13. Safe disposal of cytotoxic waste: an evaluation of an air-tight system.

    PubMed

    Craig, Gemma; Wadey, Charlotte

    2017-09-07

    A 3-month evaluation was undertaken at the Kent Oncology Centre's chemotherapy day unit (CDU) to trial an air-tight sealing disposal system for cytotoxic waste management. Research has identified the potential risk to staff who handle waste products that are hazardous to health. Staff safety was a driving force behind a trial of a new way of working. This article provides an overview of the evaluation of the Pactosafe system in one clinical area, examining reviews by oncology healthcare workers, the practicalities in the clinical setting, training, cost effectiveness and the environmental benefits.

  14. The novel oral imatinib microemulsions: physical properties, cytotoxicity activities and improved Caco-2 cell permeability.

    PubMed

    Gundogdu, Evren; Karasulu, Hatice Yesim; Koksal, Cinel; Karasulu, Ercüment

    2013-01-01

    The objective of this study was to formulate imatinib (IM) loaded to water-in-oil (w/o) microemulsions as an alternative formulation for cancer therapy and to evaluate the cytotoxic effect of microemulsions Caco-2 and MCF-7. Moreover, permeability studies were also performed with Caco-2 cells. W/o microemulsion systems were developed by using pseudo-ternary phase diagram. According to cytotoxicity studies, all formulations did not exert a cytotoxic effect on Caco-2 cells. Furthermore, all formulations had a significant cytotoxic effect on MCF-7 cells and the cytotoxic effect of M3IM was significantly more than that of other microemulsions and IM solution (p < 0.05). The permeability studies of IM across Caco-2 cells showed that permeability value from apical to basolateral was higher than permeability value of other formulations. In conclusion, the microemulsion formulations as a drug carrier, especially M3IM formulation, may be used as an effective alternative breast cancer therapy for oral delivery of IM.

  15. Nanoparticle-mediated combination chemotherapy and photodynamic therapy overcomes tumor drug resistance in vitro.

    PubMed

    Khdair, Ayman; Handa, Hitesh; Mao, Guangzhao; Panyam, Jayanth

    2009-02-01

    Drug resistance limits the success of many anticancer drugs. Reduced accumulation of the drug at its intracellular site of action because of overexpression of efflux transporters such as P-glycoprotein (P-gp) is a major mechanism of drug resistance. In this study, we investigated whether photodynamic therapy (PDT) using methylene blue, also a P-gp inhibitor, can be used to enhance doxorubicin-induced cytotoxicity in drug-resistant tumor cells. Aerosol OT (AOT)-alginate nanoparticles were used as a carrier for the simultaneous cellular delivery of doxorubicin and methylene blue. Methylene blue was photoactivated using light of 665 nm wavelength. Induction of apoptosis and necrosis following treatment with combination chemotherapy and PDT was investigated in drug-resistant NCI/ADR-RES cells using flow cytometry and fluorescence microscopy. Effect of encapsulation in nanoparticles on the intracellular accumulation of doxorubicin and methylene blue was investigated qualitatively using fluorescence microscopy and was quantitated using HPLC. Encapsulation in AOT-alginate nanoparticles significantly enhanced the cytotoxicity of combination therapy in resistant tumor cells. Nanoparticle-mediated combination therapy resulted in a significant induction of both apoptosis and necrosis. Improvement in cytotoxicity could be correlated with enhanced intracellular and nuclear delivery of the two drugs. Further, nanoparticle-mediated combination therapy resulted in significantly elevated reactive oxygen species (ROS) production compared to single drug treatment. In conclusion, nanoparticle-mediated combination chemotherapy and PDT using doxorubicin and methylene blue was able to overcome resistance mechanisms and resulted in improved cytotoxicity in drug-resistant tumor cells.

  16. Trypanocide, cytotoxic, and antifungal activities of Momordica charantia.

    PubMed

    Santos, Karla K A; Matias, Edinardo F F; Sobral-Souza, Celestina E; Tintino, Saulo R; Morais-Braga, Maria F B; Guedes, Glaucia M M; Santos, Francisco A V; Sousa, Ana Carla A; Rolón, Miriam; Vega, Celeste; de Arias, Antonieta Rojas; Costa, José G M; Menezes, Irwin R A; Coutinho, Henrique D M

    2012-02-01

    Chagas disease, caused by Trypanosoma cruzi, is a public health problem. Currently, chemotherapy is the only available treatment for this disease, and the drugs used, nifurtimox and benzonidazol, present high toxicity levels. An alternative for replacing these drugs are natural extracts from Momordica charantia L. (Cucurbitaceae) used in traditional medicine because of their antimicrobial and biological activities. In this study, we evaluated the extract of M. charantia for its antiepimastigote, antifungal, and cytotoxic activities. An ethanol extract of leaves from M. charantia was prepared. To research in vitro antiepimastigote activity, T. cruzi CL-B5 clone was used. Epimastigotes were inoculated at a concentration of 1 × 10(5) cells/mL in 200 µl tryptose-liver infusion. For the cytotoxicity assay, J774 macrophages were used. The antifungal activity was evaluated by microdilution using strains of Candida albicans, Candida tropicalis, and Candida krusei. The effective concentration capable of killing 50% of parasites (IC(50)) was 46.06 µg/mL. The minimum inhibitory concentration (MIC) was ≤ 1024 µg/mL. Metronidazole showed a potentiation of its antifungal effect when combined with an extract of M. charantia. Our results indicate that M. charantia could be a source of plant-derived natural products with antiepimastigote and antifungal-modifying activity with moderate toxicity.

  17. Synthetic miR-145 Mimic Enhances the Cytotoxic Effect of the Antiangiogenic Drug Sunitinib in Glioblastoma.

    PubMed

    Liu, Hongwei; Liu, Zhixiong; Jiang, Bing; Huo, Lei; Liu, Jinfang; Lu, Jingchen

    2015-06-01

    Although aggressive therapeutic regimen has been applied in the treatment of Glioblastoma (GBM), the prognosis of patients with GBM remains poor. Preclinical studies have demonstrated the efficacy of Suntinib in GBM both in vitro and in vivo. In this study, we showed that the cytotoxicity was enhanced by transfection with miR-145 mimic. In addition, we suggested that the enhanced cytotoxicity of Sunitinib by miR-145 mimic was mediated by inhibition of both P-gp and Bcrp.

  18. Identification of cancer-cytotoxic modulators of PDE3A by predictive chemogenomics | Office of Cancer Genomics

    Cancer.gov

    High cancer death rates indicate the need for new anticancer therapeutic agents. Approaches to discovering new cancer drugs include target-based drug discovery and phenotypic screening. Here, we identified phosphodiesterase 3A modulators as cell-selective cancer cytotoxic compounds through phenotypic compound library screening and target deconvolution by predictive chemogenomics.

  19. Quantitative Structure-Cytotoxicity Relationship of Cinnamic Acid Phenetyl Esters.

    PubMed

    Uesawa, Yoshihiro; Sakagami, Hiroshi; Okudaira, Noriyuki; Toda, Kazuhiro; Takao, Koichi; Kagaya, Hajime; Sugita, Yoshiaki

    2018-02-01

    Many phenolic acid phenethyl esters possess diverse biological effects including antioxidant, cytoprotective, anti-inflammation and anti-tumor activities. However, most previous antitumor studies have not considered the cytotoxicity against normal cells. Ten cinnamic acid phenetyl esters were subjected to quantitative structure-activity relationship (QSAR) analysis, based on their cytotoxicity and tumor-specificity, in order to find their new biological activities. Cytotoxicity against four human oral squamous cell carcinoma cell lines and three oral normal mesenchymal cells was determined by the 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide (MTT) method. Tumor specificity (TS) was evaluated by the ratio of the mean 50% cytotoxic concentration (CC 50 ) against normal oral cells to that against human oral squamous cell carcinoma cell lines. Potency-selectivity expression (PSE) value was calculated by dividing the TS value by CC 50 against tumor cells. Apoptosis markers were detected by western blot analysis. Physicochemical, structural and quantum-chemical parameters were calculated based on the conformations optimized by force-field minimization. Western blot analysis demonstrated that [ 9 ] stimulated the cleavage of caspase-3, suggesting the induction of apoptosis. QSAR analysis demonstrated that TS values were correlated with shape, size and ionization potential. Chemical modification of the lead compound may be a potential choice for designing a new type of anticancer drugs. Copyright© 2018, International Institute of Anticancer Research (Dr. George J. Delinasios), All rights reserved.

  20. Human cytotoxic T-lymphocyte membrane-camouflaged nanoparticles combined with low-dose irradiation: a new approach to enhance drug targeting in gastric cancer.

    PubMed

    Zhang, Lianru; Li, Rutian; Chen, Hong; Wei, Jia; Qian, Hanqing; Su, Shu; Shao, Jie; Wang, Lifeng; Qian, Xiaoping; Liu, Baorui

    2017-01-01

    Cell membrane-derived nanoparticles are becoming more attractive because of their ability to mimic many features of their source cells. This study reports on a biomimetic delivery platform based on human cytotoxic T-lymphocyte membranes. In this system, the surface of poly-lactic- co -glycolic acid nanoparticles was camouflaged using T-lymphocyte membranes, and local low-dose irradiation (LDI) was used as a chemoattractant for nanoparticle targeting. The T-lymphocyte membrane coating was verified using dynamic light scattering, transmission electron microscopy, and confocal laser scanning microscopy. This new platform reduced nanoparticle phagocytosis by macrophages to 23.99% ( P =0.002). Systemic administration of paclitaxel-loaded T-lymphocyte membrane-coated nanoparticles inhibited the growth of human gastric cancer by 56.68% in Balb/c nude mice. Application of LDI at the tumor site significantly increased the tumor growth inhibition rate to 88.50%, and two mice achieved complete remission. Furthermore, LDI could upregulate the expression of adhesion molecules in tumor vessels, which is important in the process of leukocyte adhesion and might contribute to the localization of T-lymphocyte membrane-encapsulated nanoparticles in tumors. Therefore, this new drug-delivery platform retained both the long circulation time and tumor site accumulation ability of human cytotoxic T lymphocytes, while local LDI could significantly enhance tumor localization.

  1. Effects of antibody, drug and linker on the preclinical and clinical toxicities of antibody-drug conjugates

    PubMed Central

    Donaghy, Heather

    2016-01-01

    ABSTRACT Antibody-drug conjugates (ADCs) represent a new class of cancer therapeutics. Their design involves a tumor-specific antibody, a linker and a cytotoxic payload. They were designed to allow specific targeting of highly potent cytotoxic agents to tumor cells whilst sparing normal cells. Frequent toxicities that may be driven by any of the components of an ADC have been reported. There are currently more than 50 ADCs in active clinical development, and a further ∼20 that have been discontinued. For this review, the reported toxicities of ADCs were analysed, and the mechanisms for their effects are explored in detail. Methods to reduce toxicities, including dosing strategies and drug design, are discussed. The toxicities reported for active and discontinued drugs are important to drive the rational design and improve the therapeutic index of ADCs of the future. PMID:27045800

  2. A porphyrin-based metal–organic framework as a pH-responsive drug carrier

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lin, Wenxin; Hu, Quan; Jiang, Ke

    A low cytotoxic porphyrin-based metal–organic framework (MOF) PCN-221, which exhibited high PC12 cell viability via 3-(4,5-dimethylthiazol-2-yl)−2,5-diphenyl tetrazolium (MTT) assay, was selected as an oral drug carrier. Methotrexate (MTX) was chosen as the model drug molecule which was absorbed into inner pores and channels of MOFs by diffusion. PCN-221 showed high drug loading and sustained release behavior under physiological environment without “burst effect”. The controlled pH-responsive release of drugs by PCN-221 revealed its promising application in oral drug delivery. - Graphical abstract: The porous crystals PCN-221 with pore openings (MOF) PCN-221 was prepared exhibiting low cytotoxicity. PCN-221 showed high drug Methotrexatemore » loading and controlled pH-responsive release of Methotrexate. - Highlights: • A porphyrin-based metal–organic framework (MOF) PCN-221 was prepared showing low cytotoxicity. • PCN-221 showed high drug Methotrexate loading. • PCN-221 showed controlled pH-responsive release of Methotrexate.« less

  3. Mapping Genes that Contribute to Daunorubicin-Induced Cytotoxicity

    PubMed Central

    Duan, Shiwei; Bleibel, Wasim K.; Huang, Rong Stephanie; Shukla, Sunita J.; Wu, Xiaolin; Badner, Judith A.; Dolan, M. Eileen

    2009-01-01

    Daunorubicin is an anthracycline antibiotic agent used in the treatment of hematopoietic malignancies. Toxicities associated with this agent include myelosuppression and cardiotoxicity; however, the genes or genetic determinants that contribute to these toxicities are unknown. We present an unbiased genome-wide approach that incorporates heritability, whole-genome linkage analysis, and linkage-directed association to uncover genetic variants contributing to the sensitivity to daunorubicin-induced cytotoxicity. Cell growth inhibition in 324 Centre d’ Etude du Polymorphisme Humain lymphoblastoid cell lines (24 pedigrees) was evaluated following treatment with daunorubicin for 72 h. Heritability analysis showed a significant genetic component contributing to the cytotoxic phenotypes (h2 = 0.18–0.63at 0.0125, 0.025, 0.05, 0.1, 0.2, and 1.0 µmol/L daunorubicin and at the IC50, the dose required to inhibit 50% cell growth). Whole-genome linkage scans at all drug concentrations and IC50 uncovered 11 regions with moderate peak LOD scores (>1.5), including 4q28.2 to 4q32.3 with a maximum LOD score of 3.18. The quantitative transmission disequilibrium tests were done using 31,312 high-frequency single-nucleotide polymorphisms (SNP) located in the 1 LOD confidence interval of these 11 regions. Thirty genes were identified as significantly associated with daunorubicin-induced cytotoxicity (P ≤ 2.0 × 10−4, false discovery rate ≤ 0.1). Pathway and functional gene ontology analysis showed that these genes were overrepresented in the phosphatidylinositol signaling system, axon guidance pathway, and GPI-anchored proteins family. Our findings suggest that a proportion of susceptibility to daunorubicin-induced cytotoxicity may be controlled by genetic determinants and that analysis using linkage-directed association studies with dense SNP markers can be used to identify the genetic variants contributing to cytotoxicity. PMID:17545624

  4. Cytotoxicity Test Based on Human Cells Labeled with Fluorescent Proteins: Fluorimetry, Photography, and Scanning for High-Throughput Assay.

    PubMed

    Kalinina, Marina A; Skvortsov, Dmitry A; Rubtsova, Maria P; Komarova, Ekaterina S; Dontsova, Olga A

    2018-06-01

    High- and medium-throughput assays are now routine methods for drug screening and toxicology investigations on mammalian cells. However, a simple and cost-effective analysis of cytotoxicity that can be carried out with commonly used laboratory equipment is still required. The developed cytotoxicity assays are based on human cell lines stably expressing eGFP, tdTomato, mCherry, or Katushka2S fluorescent proteins. Red fluorescent proteins exhibit a higher signal-to-noise ratio, due to less interference by medium autofluorescence, in comparison to green fluorescent protein. Measurements have been performed on a fluorescence scanner, a plate fluorimeter, and a camera photodocumentation system. For a 96-well plate assay, the sensitivity per well and the measurement duration were 250 cells and 15 min for the scanner, 500 cells and 2 min for the plate fluorimeter, and 1000 cells and less than 1 min for the camera detection. These sensitivities are similar to commonly used MTT (tetrazolium dye) assays. The used scanner and the camera had not been previously applied for cytotoxicity evaluation. An image processing scheme for the high-resolution scanner is proposed that significantly diminishes the number of control wells, even for a library containing fluorescent substances. The suggested cytotoxicity assay has been verified by measurements of the cytotoxicity of several well-known cytotoxic drugs and further applied to test a set of novel bacteriotoxic compounds in a medium-throughput format. The fluorescent signal of living cells is detected without disturbing them and adding any reagents, thus allowing to investigate time-dependent cytotoxicity effects on the same sample of cells. A fast, simple and cost-effective assay is suggested for cytotoxicity evaluation based on mammalian cells expressing fluorescent proteins and commonly used laboratory equipment.

  5. Thermosensitive nanospheres with a gold layer revealed as low-cytotoxic drug vehicles.

    PubMed

    Qin, Jian; Jo, Yun Suk; Ihm, Jong Eun; Kim, Do Kyung; Muhammed, Mamoun

    2005-09-27

    In this paper, the positive effect of a gold layer on cell viability is demonstrated by examining the results given by 3-(4,5-dimethylthiazol-2-yl)-5-(3-carboxymethoxyphenyl)-2-(4-sulfop henyl)-2H-tetrazolium (MTS) assay and two-color cell fluorescence viability (TCCV) assay. These cytotoxicity tests were performed with human cervical adenocarcinoma cells (HeLa cell line) and transformed African green monkey kidney fibroblast cells (Cos-7 cell line). To fabricate the nanostructures as drug vehicles, first, poly(l,l-lactide-co-ethylene glycol) (PLLA-PEG) and poly(N-isopropylacrylamide-co-D,D-lactide) (PNIPAAm-PDLA) were synthesized, and then two kinds of thermosensitive nanospheres comprising "shell-in-shell" structures without a gold layer (PLLA-PEG@PNIPAAm-PDLA) and with a gold layer (Au@PLLA-PEG@PNIPAAm-PDLA) were constructed by a modified double-emulsion method (MDEM). Both of them displayed a unique thermosensitive character exhibiting the lower critical solubility temperature (LCST) at 36.7 degrees C which was confirmed by UV-vis spectroscopy and differential scanning calorimetry (DSC). The release profiles of entrapped bovine serum albumin (BSA) were monitored at 22 and 37 degrees C, respectively, to reveal the thermal dependence on the release rate. In cell viability tests, both PLLA-PEG@PNIPAAm-PDLA and Au@PLLA-PEG@PNIPAAm-PDLA showed excellent cell viability, and furthermore, Au@PLLA-PEG@PNIPAAm-PDLA, particularly at high doses, exhibited more enhanced cell viability than PLLA-PEG@PNIPAAm-PDLA. This effect is mainly attributed to the gold layer which binds the protein molecules first and consequently facilitates transmembrane uptake of essential nutrients in the cell media, resulting in favorable cell proliferation.

  6. Synthesis and Cytotoxic Activities of Difluoro-Dimethoxy Chalcones.

    PubMed

    Yamali, Cem; Gul, Halise Inci; Ozgun, Dilan Ozmen; Sakagam, Hiroshi; Umemura, Naoki; Kazaz, Cavit; Gul, Mustafa

    2017-01-01

    Although anticancer chemotherapeutics are available in markets, side effects related to the drugs in clinical use lead to researchers to investigate new drug candidates which are more safe, potent and selective than others. Chalcones are popular with their anticancer activities with the several reported mechanisms including inhibition of angiogenesis, inhibition of tubulin polymerization, and induction of apoptosis etc. This study was focused on to synthesize of 1-(2,4/2,6-difluorophenyl)-3-(2,3/2,4/2,5/3,4- dimethoxyphenyl)-2-propen-1-ones (1-8) and investigate their cytotoxic properties with possible mechanism of action. The compounds were synthesized by Claisen-Schmidt condensation. The chemical structures were confirmed by 1H NMR, 13C NMR, DEPT, COSY, HMQC, HMBC, 19F NMR and HRMS. In vitro cytotoxic effects of the compounds against human tumour cell lines [gingival carcinoma (Ca9-22), oral squamous cell carcinoma (HSC-2)] and human normal oral cells [gingival fibroblasts (HGF), periodontal ligament fibroblasts (HPLF)] were evaluated via MTT test. All compounds had higher cytotoxicity than reference compound 5-Fluorouracil (5-FU). The compounds 3-7 had higher potency selectivity expression values (PSE) than 5-FU and PSE values of the compounds were over 100. All chalcone derivatives seem good candidates for further studies according to very remarkable and high PSE values. It was clearly demonstrated that compound 7 can induce early apoptosis at a concentration of 10 µM and dose-dependent late apoptosis starting at 10 µM. Compound 7 induced cleavage of the apoptosis marker PARP. The results indicate that new chalcones reported here can promote apoptosis in human tumour cell lines. Copyright© Bentham Science Publishers; For any queries, please email at epub@benthamscience.org.

  7. A Dual Anticancer Efficacy Molecule: A Selective Dark Cytotoxicity Photosensitizer.

    PubMed

    Chen, Jyun-Wei; Chang, Cheng-Chung

    2016-11-09

    Unlike traditional binary nanostructures that construct chemotherapy drugs and photodynamic therapy photosensitizers, we introduce a molecule with a chemo-photodynamic dual therapy function. A water-soluble aggregation-induced emission enhancement (AIEE) fluorogen, NV-12P, was designed and synthesized based on asymmetric 1,6-disubstituted naphthalene and can generate particular reactive oxygen species to undergo type I photodynamic therapy under irradiation. Furthermore, this compound can specifically localize in mitochondria and, after biological evaluation, can cause mitochondrial dysfunction and potent cytotoxicity to cancer cells but not normal cells. We conclude that this compound is a potential dual-toxic efficacy molecule because it exhibits selective dark cytotoxicity and efficient photodamage in cancer cells. Additionally, we also supported the optimal combinational treatment course for the best chemo-phototherapy efficacy.

  8. pH-responsive polymer-drug conjugates as multifunctional micelles for cancer-drug delivery

    NASA Astrophysics Data System (ADS)

    Kang, Yang; Ha, Wei; Liu, Ying-Qian; Ma, Yuan; Fan, Min-Min; Ding, Li-Sheng; Zhang, Sheng; Li, Bang-Jing

    2014-08-01

    We developed a novel linear pH-sensitive conjugate methoxy poly(ethylene glycol)-4β-aminopodophyllotoxin (mPEG-NPOD-I) by a covalently linked 4β-aminopodophyllotoxin (NPOD) and PEG via imine bond, which was amphiphilic and self-assembled to micelles in an aqueous solution. The mPEG-NPOD-I micelles simultaneously served as an anticancer drug conjugate and as drug carriers. As a drug conjugate, mPEG-NPOD-I showed a significantly faster NPOD release at a mildly acidic pH of 5.0 and 4.0 than a physiological pH of 7.4. Notably, it was confirmed that this drug conjugate could efficiently deliver NPOD to the nuclei of the tumor cells and led to much more cytotoxic effects to A549, Hela, and HepG2 cancer cells than the parent NPOD. The half maximal inhibitory concentration (IC50) of mPEG-NPOD-I was about one order magnitude lower than that of the NPOD. In vivo, mPEG-NPOD-I reduced the size of the tumors significantly, and the biodistribution studies indicated that this drug conjugate could selectively accumulate in tumor tissues. As drug carriers, the mPEG-NPOD-I micelles encapsulated hydrophobic PTX with drug-loading efficiencies of 57% and drug-loading content of 16%. The loaded PTX also showed pH-triggered fast release behavior, and good additive cytotoxicity effect was observed for the PEG-NPOD-I/PTX. We are convinced that these multifunctional drug conjugate micelles have tremendous potential for targeted cancer therapy.

  9. pH-responsive polymer-drug conjugates as multifunctional micelles for cancer-drug delivery.

    PubMed

    Kang, Yang; Ha, Wei; Liu, Ying-Qian; Ma, Yuan; Fan, Min-Min; Ding, Li-Sheng; Zhang, Sheng; Li, Bang-Jing

    2014-08-22

    We developed a novel linear pH-sensitive conjugate methoxy poly(ethylene glycol)-4β-aminopodophyllotoxin (mPEG-NPOD-I) by a covalently linked 4β-aminopodophyllotoxin (NPOD) and PEG via imine bond, which was amphiphilic and self-assembled to micelles in an aqueous solution. The mPEG-NPOD-I micelles simultaneously served as an anticancer drug conjugate and as drug carriers. As a drug conjugate, mPEG-NPOD-I showed a significantly faster NPOD release at a mildly acidic pH of 5.0 and 4.0 than a physiological pH of 7.4. Notably, it was confirmed that this drug conjugate could efficiently deliver NPOD to the nuclei of the tumor cells and led to much more cytotoxic effects to A549, Hela, and HepG2 cancer cells than the parent NPOD. The half maximal inhibitory concentration (IC₅₀) of mPEG-NPOD-I was about one order magnitude lower than that of the NPOD. In vivo, mPEG-NPOD-I reduced the size of the tumors significantly, and the biodistribution studies indicated that this drug conjugate could selectively accumulate in tumor tissues. As drug carriers, the mPEG-NPOD-I micelles encapsulated hydrophobic PTX with drug-loading efficiencies of 57% and drug-loading content of 16%. The loaded PTX also showed pH-triggered fast release behavior, and good additive cytotoxicity effect was observed for the PEG-NPOD-I/PTX. We are convinced that these multifunctional drug conjugate micelles have tremendous potential for targeted cancer therapy.

  10. Potentiometric Biosensor for Studying Hydroquinone Cytotoxicity in vitro

    PubMed Central

    Wang, Yanyan; Chen, Qiang; Zeng, Xiangqun

    2009-01-01

    Many processes in living cells have electrochemical characteristics that are suitable for measurement by potentiometric biosensors. Potentiometric biosensors allow non invasive, real-time monitoring of the extracellular environment changes by measuring the potential at cell/sensor interface. This can be used as an indicator for overall cell cytotoxicity. The present work employs a potentiometric sensor array to investigate the cytotoxicity of hydroquinone to cultured mammalian V79 cells. Various electrode substrates (Au, PPy-HQ and PPy-PS) used for cell growth were designed and characterized. The controllable release of hydroquinone from PPy substrates was studied. Our results showed that hydroquinone exposure affected cell proliferation and delayed cell growth and attachment in a dose-dependent manner. Additionally, we have shown that exposure of V79 cells to hydroquinone at low doses (i.e 5μM) for more than 15 hours allows V79 cells to gain enhanced adaptability to survive exposure to high toxic HQ doses afterwards. Compared with traditional methods, the potentiometric biosensor not only provides non-invasive and real time monitoring of the cellular reactions but also is more sensitive for in vitro cytotoxicity study. By real time and non-invasive monitoring of the extracellular potential in vitro, the potentiometric sensor system represents a promising biosensor system for drug discovery. PMID:19926470

  11. 21 CFR 1.406 - How will FDA handle classified information in an informal hearing?

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ... 21 Food and Drugs 1 2014-04-01 2014-04-01 false How will FDA handle classified information in an... Animal Consumption What Is the Appeal Process for A Detention Order? § 1.406 How will FDA handle... disclosure in the interest of national security (“classified information”), FDA will not provide you with...

  12. 21 CFR 1.406 - How will FDA handle classified information in an informal hearing?

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... 21 Food and Drugs 1 2011-04-01 2011-04-01 false How will FDA handle classified information in an... Animal Consumption What Is the Appeal Process for A Detention Order? § 1.406 How will FDA handle... disclosure in the interest of national security (“classified information”), FDA will not provide you with...

  13. 21 CFR 1.406 - How will FDA handle classified information in an informal hearing?

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ... 21 Food and Drugs 1 2012-04-01 2012-04-01 false How will FDA handle classified information in an... Animal Consumption What Is the Appeal Process for A Detention Order? § 1.406 How will FDA handle... disclosure in the interest of national security (“classified information”), FDA will not provide you with...

  14. 21 CFR 1.406 - How will FDA handle classified information in an informal hearing?

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... 21 Food and Drugs 1 2010-04-01 2010-04-01 false How will FDA handle classified information in an... Animal Consumption What Is the Appeal Process for A Detention Order? § 1.406 How will FDA handle... disclosure in the interest of national security (“classified information”), FDA will not provide you with...

  15. 21 CFR 1.406 - How will FDA handle classified information in an informal hearing?

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ... 21 Food and Drugs 1 2013-04-01 2013-04-01 false How will FDA handle classified information in an... Animal Consumption What Is the Appeal Process for A Detention Order? § 1.406 How will FDA handle... disclosure in the interest of national security (“classified information”), FDA will not provide you with...

  16. Effect of Cytotoxic Therapy on Sexuality and Gonadal Function

    DTIC Science & Technology

    1981-01-01

    have produced toxicities involving multiple organ and testosterone levels fall. systems. Drug induced azoospermia and amenor- In women FSH stimulates ...Additionally, several men complained that Summary although their libido was satisfactory, orgasm The dose of a cytotoxic agent that produces was not...some of the men enced irritability and some became physically PATIENTS LIBIDO RATING: MALES 10 9 8 SEXUAL ACTIVITY 5 Fig. 1. Correlation of WEEKLY 4

  17. Technical considerations in the preparation and dispensing of chemotherapy.

    PubMed

    Peters, B G

    1995-01-01

    The safe handling of cytotoxic agents is intimately related to the technical aspects of drug preparation, dispensing, and administration. The appropriate equipment, supplies, protective clothing, and waste disposal systems must be available to the health care worker who is called upon to prepare cytotoxic agents. In addition, the health care worker must be adequately trained in and familiar with the safe use of these products and equipment and the preparation techniques or manipulations necessary during cytotoxic drug compounding. The article describes in detail and reviews the technical considerations, such as aseptic technique, proper use of the biological safety cabinet, gowning and gloving, labeling, and waste disposal, that are essential to the safe preparation and dispensing of chemotherapy.

  18. Cocaine-induced locomotor activity is increased by prior handling in adolescent but not adult female rats

    PubMed Central

    Maldonado, Antoniette M.; Kirstein, Cheryl L.

    2017-01-01

    Adolescence is a period of transition that is associated with increased levels of stress and a heightened propensity to initiate drug use. Neuronal development is still occurring during this transitional period, which includes the continued development of the dopamine system during the adolescent period. In the present study, the effects of pre-test handling on cocaine-induced locomotor activity were investigated among female adolescent and young adult rats upon presentation to a novel environment. On postnatal days (PND) 41–44 and 56–59 animals were handled (b.i.d.) in the colony room for 3 min. On PND 45 or PND 60, animals were removed from the colony room, weighed, and administered an acute injection of either cocaine or saline and presented to a novel environment where behavior was recorded for 30 min. Adolescent females (PND 45) that were handled prior to cocaine administration demonstrated elevated levels of cocaine-induced activity relative to their age-matched non-handled counterparts and also to their handled-adult counterparts. In contrast, among non-handled animals, young adults (PND 60) exhibited elevated drug-induced locomotion at several time points during the trial. Non-handled adolescent animals demonstrated the previously described “hyporesponsive” behavioral profile relative to their non-handled adult counterparts. The results from the present experiment indicate that adolescent animals may be more sensitive to basic laboratory manipulations such as pre-test handling, and care must be taken when utilizing adolescent animals in behavioral testing. Handling appears to be a sensitive manipulation in elucidating differences in cocaine-induced behavioral activation between ages. PMID:16176824

  19. Emergence of cytotoxic resistance in cancer cell populations: Single-cell mechanisms and population-level consequences

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lorenzi, Tommaso; Chisholm, Rebecca H.; Lorz, Alexander

    We formulate an individual-based model and a population model of phenotypic evolution, under cytotoxic drugs, in a cancer cell population structured by the expression levels of survival-potential and proliferation-potential. We apply these models to a recently studied experimental system. Our results suggest that mechanisms based on fundamental laws of biology can reversibly push an actively-proliferating, and drug-sensitive, cell population to transition into a weakly-proliferative and drug-tolerant state, which will eventually facilitate the emergence of more potent, proliferating and drug-tolerant cells.

  20. Heterocyclic Drug-polymer Conjugates for Cancer Targeted Drug Delivery.

    PubMed

    Kaur, Harmeet; Desai, Sapna D; Kumar, Virender; Rathi, Pooja; Singh, Jasbir

    2016-01-01

    New polymer therapeutics like polymer-drug conjugates (PDCs) are developing day by day. Heterocyclic drugs with excellent cytotoxic properties are available, but lack of their specificity makes them available to the normal cells also, which is the main cause of their toxicity. Drugs in the form of PDCs make delivery possible to the specific sites. Most of the PDCs are designed with the aim to either target and/or to get activated in specific cancer microenvironments. Therefore, the most exploited targets for cancer drug delivery are; cancer cell enzymes, heat shock protein 90 (HSP90), multi-drug resistance (MDR) proteins, angiogenesis, apoptosis and cell membrane receptors (e.g., folates, transferrin, etc.). In this review, we will summarize PDCs of heterocyclic drugs, like doxorubicin (DOX), daunorubicin, paclitaxel (PTX), docetaxel (DTX), cisplatin, camptothecin (CPT), geldanamycin (GDM), etc., and some of their analogs for efficient delivery of drugs to cancer cells.

  1. Cytotoxic effects of basic FGF and heparin binding EGF conjugated with cytotoxin saporin on vascular cell cultures.

    PubMed

    Chen, C; Li, J; Micko, C J; Pierce, G F; Cunningham, M R; Lumsden, A B

    1998-02-15

    Vascular smooth muscle cell (SMC) proliferation is an integral component of intimal lesion formation. In this study we compared the mitogenic effects of basic fibroblast growth factor (bFGF) and heparin binding epidermal growth factor (HBEGF) and the cytotoxic effects of bFGF and HBEGF conjugated with plant cytotoxin saporin (SAP) on vascular cell cultures. Human vascular SMCs and endothelial cells were cultured and FGF receptor-1 (FGFR-1) and EGF receptor (EGFR) expression were detected by immunohistochemical staining. Cells were grown in 24-well plates. Variable amounts of testing drugs (bFGF, HBEGF, SAP, bFGF-SAP, or HBEGF-SAP) were added to quadruplicate wells after 24 h. Cells without drugs were used as control. The total number of cells was counted at 72 h using a hemocytometer. The cultured human vascular SMCs and endothelial cells expressed both FGFR-1 and EGFR with predominant perinuclear localization. bFGF and HBEGF demonstrated equally potent mitogenic effects on SMC proliferation. SAP alone showed a limited cytotoxic effect on both SMCs and endothelial cells. bFGF had a more potent effect on endothelial cell proliferation than HBEGF. bFGF-SAP was equally cytotoxic for both SMCs and endothelial cells, while HBEGF-SAP had a more selectively cytotoxic effect on SMCs than on endothelial cells. These data suggest that the mitogenic effects of bFGF and HBEGF and the cytotoxic effects of bFGF-SAP and HBEGF-SAP may both be mediated by their corresponding growth factor receptors. Because of its selective cytotoxic effect on SMCs, HBEGF-SAP may become a more attractive agent for controlling intimal lesion formation.

  2. Euterpe oleracea pulp extract: Chemical analyses, antibiofilm activity against Staphylococcus aureus, cytotoxicity and interference on the activity of antimicrobial drugs.

    PubMed

    Dias-Souza, Marcus Vinícius; Dos Santos, Renan Martins; Cerávolo, Isabela Penna; Cosenza, Gustavo; Ferreira Marçal, Pedro Henrique; Figueiredo, Flávio Jr Barbosa

    2018-01-01

    Euterpe oleracea (Açaí) fruit are widely consumed at the Brazilian Amazon region, and biological potentials such as immunomodulatory and antioxidant have been described for its extracts. However, its antimicrobial properties remain poorly investigated. Here, the antimicrobial and antibiofilm activities of the methanolic extract of an artisanally-manufactured açaí pulp (MEAP) were evaluated against clinical isolates of Staphylococcus aureus. Besides, MEAP interference on the activity of antimicrobial drugs of clinical relevance was explored, and its cytotoxicity against hepatocellular carcinoma cells (HepG2) was investigated. Biochemical and physicochemical properties of the pulp were investigated, and the presence of polyphenols on the extract was confirmed. For the first time, we report that the methanolic extract of açaí pulp is effective against planktonic cells and biofilms of S. aureus, and also decreased the proliferation of HepG2 cells. Statistically significant synergism was observed when the extract was combined to the tested antimicrobials except for erythromycin, and all biochemical and physicochemical parameters ranged within the accepted values established by the Brazilian legislation. Our data open doors for more studies on the antimicrobial activity of phytomolecules isolated from Euterpe oleracea extracts, and also for its combined use with antimicrobial drugs. Copyright © 2017 Elsevier Ltd. All rights reserved.

  3. Behavior of platinum(iv) complexes in models of tumor hypoxia: cytotoxicity, compound distribution and accumulation.

    PubMed

    Schreiber-Brynzak, Ekaterina; Pichler, Verena; Heffeter, Petra; Hanson, Buck; Theiner, Sarah; Lichtscheidl-Schultz, Irene; Kornauth, Christoph; Bamonti, Luca; Dhery, Vineet; Groza, Diana; Berry, David; Berger, Walter; Galanski, Markus; Jakupec, Michael A; Keppler, Bernhard K

    2016-04-01

    Hypoxia in solid tumors remains a challenge for conventional cancer therapeutics. As a source for resistance, metastasis development and drug bioprocessing, it influences treatment results and disease outcome. Bioreductive platinum(iv) prodrugs might be advantageous over conventional metal-based therapeutics, as biotransformation in a reductive milieu, such as under hypoxia, is required for drug activation. This study deals with a two-step screening of experimental platinum(iv) prodrugs with different rates of reduction and lipophilicity with the aim of identifying the most appropriate compounds for further investigations. In the first step, the cytotoxicity of all compounds was compared in hypoxic multicellular spheroids and monolayer culture using a set of cancer cell lines with different sensitivities to platinum(ii) compounds. Secondly, two selected compounds were tested in hypoxic xenografts in SCID mouse models in comparison to satraplatin, and, additionally, (LA)-ICP-MS-based accumulation and distribution studies were performed for these compounds in hypoxic spheroids and xenografts. Our findings suggest that, while cellular uptake and cytotoxicity strongly correlate with lipophilicity, cytotoxicity under hypoxia compared to non-hypoxic conditions and antitumor activity of platinum(iv) prodrugs are dependent on their rate of reduction.

  4. Protective Effects of Liposomal N-Acetylcysteine against Paraquat-Induced Cytotoxicity and Gene Expression

    PubMed Central

    Mitsopoulos, Panagiotis; Suntres, Zacharias E.

    2011-01-01

    Paraquat (PQ) is a herbicide that preferentially accumulates in the lung and exerts its cytotoxicity via the generation of reactive oxygen species (ROS). There is no specific treatment for paraquat poisoning. Attempts have been made to increase the antioxidant status in the lung using antioxidants (e.g., superoxide dismutase, vitamin E, N-acetylcysteine) but the outcome from such treatments is limited. Encapsulation of antioxidants in liposomes improves their therapeutic potential against oxidant-induced lung damage because liposomes facilitate intracellular delivery and prolong the retention of entrapped agents inside the cell. In the present study, we compared the effectiveness of conventional N-acetylcysteine (NAC) and liposomal-NAC (L-NAC) against PQ-induced cytotoxicity and examined the mechanism(s) by which these antioxidant formulations conferred cytoprotection. The effects of NAC or L-NAC against PQ-induced cytotoxicity in A549 cells were assessed by measuring cellular PQ uptake, intracellular glutathione content, ROS levels, mitochondrial membrane potential, cellular gene expression, inflammatory cytokine release and cell viability. Pretreatment of cells with L-NAC was significantly more effective than pretreatment with the conventional drug in reducing PQ-induced cytotoxicity, as indicated by the biomarkers used in this study. Our results suggested that the delivery of NAC as a liposomal formulation improves its effectiveness in counteracting PQ-induced cytotoxicity. PMID:21584258

  5. Resistance to Antibody-Drug Conjugates.

    PubMed

    García-Alonso, Sara; Ocaña, Alberto; Pandiella, Atanasio

    2018-05-01

    Antibody-drug conjugates (ADC) are multicomponent molecules constituted by an antibody covalently linked to a potent cytotoxic agent. ADCs combine high target specificity provided by the antibody together with strong antitumoral properties provided by the attached cytotoxic agent. At present, four ADCs have been approved and over 60 are being explored in clinical trials. Despite their effectiveness, resistance to these drugs unfortunately occurs. Efforts to understand the bases underlying such resistance are being carried out with the final purpose of counteracting them. In this review, we report described mechanisms of resistance to ADCs used in the clinic along with other potential ones that may contribute to resistance acquisition. We also discuss strategies to overcome resistance to ADCs. Cancer Res; 78(9); 2159-65. ©2018 AACR . ©2018 American Association for Cancer Research.

  6. Correlation between luminescence intensity and cytotoxicity in cell-based cytotoxicity assay using luciferase.

    PubMed

    Wakuri, S; Yamakage, K; Kazuki, Y; Kazuki, K; Oshimura, M; Aburatani, S; Yasunaga, M; Nakajima, Y

    2017-04-01

    The luciferase reporter assay has become one of the conventional methods for cytotoxicity evaluation. Typically, the decrease of luminescence expressed by a constitutive promoter is used as an index of cytotoxicity. However, to our knowledge, there have been no reports of the correlation between cytotoxicity and luminescence intensity. In this study, to accurately verify the correlation between them, beetle luciferase was stably expressed in human hepatoma HepG2 cells harboring the multi-integrase mouse artificial chromosome vector. We showed that the cytotoxicity assay using luciferase does not depend on the stability of luciferase protein and the kind of constitutive promoter. Next, HepG2 cells in which green-emitting beetle luciferase was expressed under the control of CAG promoter were exposed to 58 compounds. The luminescence intensity and cytotoxicity curves of cells exposed to 48 compounds showed similar tendencies, whereas those of cells exposed to 10 compounds did not do so, although the curves gradually approached each other with increasing exposure time. Finally, we demonstrated that luciferase expressed under the control of a constitutive promoter can be utilized both as an internal control reporter for normalizing a test reporter and for monitoring cytotoxicity when two kinds of luciferases are simultaneously used in the cytotoxicity assay. Copyright © 2017 Elsevier Inc. All rights reserved.

  7. Bioanalysis of antibody-drug conjugates: American Association of Pharmaceutical Scientists Antibody-Drug Conjugate Working Group position paper.

    PubMed

    Gorovits, Boris; Alley, Stephen C; Bilic, Sanela; Booth, Brian; Kaur, Surinder; Oldfield, Phillip; Purushothama, Shobha; Rao, Chetana; Shord, Stacy; Siguenza, Patricia

    2013-05-01

    Antibody-drug conjugates (ADCs) typically consist of a cytotoxic drug covalently bound to an antibody by a linker. These conjugates have the potential to substantially improve efficacy and reduce toxicity compared with cytotoxic small-molecule drugs. Since ADCs are generally complex heterogeneous mixtures of multiple species, these novel therapeutic products present unique bioanalytical challenges. The growing number of ADCs being developed across the industry suggests the need for alignment of the bioanalytical methods or approaches used to assess the multiple species and facilitate consistent interpretation of the bioanalytical data. With limited clinical data, the current strategies that can be used to provide insight into the relationship between the multiple species and the observed clinical safety and efficacy are still evolving. Considerations of the bioanalytical strategies for ADCs based on the current industry practices that take into account the complexity and heterogeneity of ADCs are discussed.

  8. Evaluation of cytotoxic, analgesic, antidiarrheal and phytochemical properties of Hygrophila spinosa (T. Anders) whole plant.

    PubMed

    Bellah, S M Faysal; Islam, Md Nur; Karim, Md Rezaul; Rahaman, Md Masudur; Nasrin, Mst Samima; Rahman, Md Atiar; Reza, A S M Ali

    2017-03-01

    Synthetic drugs are going to be replaced by plant-derived traditional drugs due to their cost effectiveness, relatively less harmfulness, and efficacy against multidrug resistance organisms. Hygrophila spinosa (Acanthaceae) has been used in a wide range of ailments including flatulence, diarrhea, dysentery, gonorrhea, and menorrhagia. Therefore, we investigated the cytotoxic, antinociceptive, and antidiarrheal effects of H. spinosa ethanol extract (EExHs). Preliminary phytochemical screening was accomplished by established methods modified in experimental protocol. EExHs was undertaken for cytotoxic assay by Brine shrimp lethality bioassay, antinociceptive action by acetic acid induced writhing test, and antidiarrheal activity by castor oil induced antidiarrheal test. Data were analyzed by GraphPad Prism 6.0 software using Dunnett's test for multiple comparisons. Reducing sugar, steroid, glycoside, tannin, alkaloid, saponins, and flavonoids were found to be present in EExHs. Lethal concentration (LC50) of EExHs for brine shrimps was 50.59 µg/mL which was relatively lower than that of the standard drug vincristine sulfate. In acetic acid induced writhing test, oral administration of EExHs at three different doses (125, 250, and 500 mg/kg) decreased writhing in dose-dependent manner while the highest dose (500 mg/kg) achieved the maximum percentages of pain inhibition (58.8%). Diclofenac sodium (25 mg/kg) was used as a reference antinociceptive drug. The antidiarrheal action of EExHs was not found to be very promising for further use; however, the pure compounds from EExHs could be analyzed to justify the effects. This research demonstrates that the secondary metabolites guided cytotoxic and analgesic effects could be extensively studied in multiple models to confirm the effects.

  9. Manzamine alkaloids: isolation, cytotoxicity, antimalarial activity and SAR studies.

    PubMed

    Ashok, Penta; Ganguly, Swastika; Murugesan, Sankaranarayanan

    2014-11-01

    The infectious disease Malaria is caused by different species of the genus Plasmodium. Resistance to quinoline antimalarial drugs and decreased susceptibility to artemisinin-based combination therapy have increased the need for novel antimalarial agents. Historically, natural products have been used for the treatment of infectious diseases. Identification of natural products and their semi-synthetic derivatives with potent antimalarial activity is an important method for developing novel antimalarial agents. Manzamine alkaloids are a unique group of β-carboline alkaloids isolated from various species of marine sponge displaying potent antimalarial activity against drug-sensitive and -resistant strains of Plasmodium. In this review, we demonstrate antimalarial potency, cytotoxicity and antimalarial SAR of manzamine alkaloids. Copyright © 2014 Elsevier Ltd. All rights reserved.

  10. MSH3 mismatch repair protein regulates sensitivity to cytotoxic drugs and a histone deacetylase inhibitor in human colon carcinoma cells.

    PubMed

    Park, Jae Myung; Huang, Shengbing; Tougeron, David; Sinicrope, Frank A

    2013-01-01

    MSH3 is a DNA mismatch repair (MMR) gene that undergoes frequent somatic mutation in colorectal cancers (CRCs) with MMR deficiency. MSH3, together with MSH2, forms the MutSβ heteroduplex that interacts with interstrand cross-links induced by drugs such as cisplatin. To date, the impact of MSH3 on chemosensitivity is unknown. We utilized isogenic HCT116 (MLH1-/MSH3-) cells where MLH1 is restored by transfer of chromosome 3 (HCT116+ch3) and also MSH3 by chromosome 5 (HCT116+3+5). We generated HCT116+3+5, SW480 (MLH1+/MSH3+) and SW48 (MLH1-/MSH3+) cells with shRNA knockdown of MSH3. Cells were treated with 5-fluorouracil (5-FU), SN-38, oxaliplatin, or the histone deacetylase (HDAC) inhibitor PCI-24781 and cell viability, clonogenic survival, DNA damage and apoptosis were analyzed. MSH3-deficient vs proficient CRC cells showed increased sensitivity to the irinotecan metabolite SN-38 and to oxaliplatin, but not 5-FU, as shown in assays for apoptosis and clonogenic survival. In contrast, suppression of MLH1 attenuated the cytotoxic effect of 5-FU, but did not alter sensitivity to SN-38 or oxaliplatin. The impact of MSH3 knockdown on chemosensitivity to SN-38 and oxaliplatin was maintained independent of MLH1 status. In MSH3-deficient vs proficient cells, SN-38 and oxaliplatin induced higher levels of phosphorylated histone H2AX and Chk2, and similar results were found in MLH1-proficient SW480 cells. MSH3-deficient vs proficient cells showed increased 53BP1 nuclear foci after irradiation, suggesting that MSH3 can regulate DNA double strand break (DSB) repair. We then utilized PCI-24781 that interferes with homologous recombination (HR) indicated by a reduction in Rad51 expression. The addition of PCI-24781 to oxaliplatin enhanced cytotoxicity to a greater extent compared to either drug alone. MSH3 status can regulate the DNA damage response and extent of apoptosis induced by chemotherapy. The ability of MSH3 to regulate chemosensitivity was independent of MLH1 status

  11. Piplartine Analogues and Cytotoxic Evaluation against Glioblastoma.

    PubMed

    da Nóbrega, Flávio Rogério; Ozdemir, Ozlem; Nascimento Sousa, Sheila Cristina S; Barboza, Joice Nascimento; Turkez, Hasan; de Sousa, Damião Pergentino

    2018-06-08

    Piplartine ( 1 ) is an alkamide extracted from plants of the genus Piper which shows several pharmacological properties, including antitumor activity. To improve this activity, a series of analogues based on 1 have been synthesized by esterification and amidation using the 3,4,5-trimethoxycinnamic acid-like starting material. During the study, the moieties 3-(3,4,5-trimethoxyphenyl)acrylate and 3-(3,4,5-trimethoxyphenyl)acrylamide were maintained on esters and amides respectively. Meanwhile, functional changes were exploited, and it was revealed that the presence of two aromatic rings in the side-chain was important to improve the cytotoxic activity against the U87MG cell line, such as the compound ( E )-benzhydryl 3-(3,4,5-trimethoxyphenyl)acrylate ( 10 ), an ester that exhibited strong cytotoxicity and a similar level of potency to that of paclitaxel, a positive control. Compound 10 had a marked concentration-dependent inhibitory effect on the viability of the U87MG cell line with apoptotic and oxidative processes, showing good potential for altering main molecular pathways to prevent tumor development. Moreover, it has strong bioavailability with non-genotoxic and non-cytotoxic properties on human blood cells. In conclusion, the findings of the present study demonstrated that compound 10 is a promising agent that may find applications combatting diseases associated with oxidative stress and as a prototype for the development of novel drugs used in the treatment of glioblastoma.

  12. Atorvastatin Promotes Cytotoxicity and Reduces Migration and Proliferation of Human A172 Glioma Cells.

    PubMed

    Oliveira, Karen A; Dal-Cim, Tharine; Lopes, Flávia G; Ludka, Fabiana K; Nedel, Cláudia B; Tasca, Carla I

    2018-02-01

    Malignant gliomas have resistance mechanisms to chemotherapy that enable tumor invasiveness and aggressiveness. Alternative therapies in cancer treatment, as statins, have been suggested to decrease proliferation, inhibit cell migration, and induce cell death. The aim of this study was to evaluate the effect of atorvastatin (ATOR) on cell viability, migration, proliferation, apoptosis, and autophagy in A172 human glioma cells. Temozolomide (TMZ), a chemotherapic used to glioma treatment, was tested as a comparison to cytotoxic effects on gliomas. Cell viability was also assessed in primary culture of cortical astrocytes. ATOR treatment (0.1 to 20 μM) did not alter astrocytic viability. However, in glioma cells, ATOR showed cytotoxic effect at 10 and 20 μM concentrations. TMZ (500 μM) reduced cell viability similarly to ATOR, and drug association did not show additive effect on cell viability. ATOR, TMZ, and their association decreased cell migration. ATOR also decreased glioma cell proliferation. ATOR increased apoptosis, and TMZ association showed a potentiation effect, enhancing it. ATOR and TMZ treatment increased acidic vesicular organelle (AVO) presence in A172 cells, an indicative of autophagy. ATOR effect of reducing A172 cell viability did not alter glutamate transport and glutamine synthetase activity, but it was partially prevented through antagonism of ionotropic and metabotropic glutamate receptors. Our data shows a cytotoxic effect of ATOR on glioma cells, whereas no toxicity was observed to astrocytes. ATOR showed similar cytotoxic effect as TMZ to glioma cells, and it may be a safer drug, regarding side effect induction, than chemotherapic agents.

  13. The anticancer natural product ophiobolin A induces cytotoxicity by covalent modification of phosphatidylethanolamine.

    PubMed

    Chidley, Christopher; Trauger, Sunia A; Birsoy, Kıvanç; O'Shea, Erin K

    2016-07-12

    Phenotypic screens allow the identification of small molecules with promising anticancer activity, but the difficulty in characterizing the mechanism of action of these compounds in human cells often undermines their value as drug leads. Here, we used a loss-of-function genetic screen in human haploid KBM7 cells to discover the mechanism of action of the anticancer natural product ophiobolin A (OPA). We found that genetic inactivation of de novo synthesis of phosphatidylethanolamine (PE) mitigates OPA cytotoxicity by reducing cellular PE levels. OPA reacts with the ethanolamine head group of PE in human cells to form pyrrole-containing covalent cytotoxic adducts and these adducts lead to lipid bilayer destabilization. Our characterization of this unusual cytotoxicity mechanism, made possible by unbiased genetic screening in human cells, suggests that the selective antitumor activity displayed by OPA may be due to altered membrane PE levels in cancer cells.

  14. FluxCTTX: A LIMS-based tool for management and analysis of cytotoxicity assays data

    PubMed Central

    2015-01-01

    Background Cytotoxicity assays have been used by researchers to screen for cytotoxicity in compound libraries. Researchers can either look for cytotoxic compounds or screen "hits" from initial high-throughput drug screens for unwanted cytotoxic effects before investing in their development as a pharmaceutical. These assays may be used as an alternative to animal experimentation and are becoming increasingly important in modern laboratories. However, the execution of these assays in large scale and different laboratories requires, among other things, the management of protocols, reagents, cell lines used as well as the data produced, which can be a challenge. The management of all this information is greatly improved by the utilization of computational tools to save time and guarantee quality. However, a tool that performs this task designed specifically for cytotoxicity assays is not yet available. Results In this work, we have used a workflow based LIMS -- the Flux system -- and the Together Workflow Editor as a framework to develop FluxCTTX, a tool for management of data from cytotoxicity assays performed at different laboratories. The main work is the development of a workflow, which represents all stages of the assay and has been developed and uploaded in Flux. This workflow models the activities of cytotoxicity assays performed as described in the OECD 129 Guidance Document. Conclusions FluxCTTX presents a solution for the management of the data produced by cytotoxicity assays performed at Interlaboratory comparisons. Its adoption will contribute to guarantee the quality of activities in the process of cytotoxicity tests and enforce the use of Good Laboratory Practices (GLP). Furthermore, the workflow developed is complete and can be adapted to other contexts and different tests for management of other types of data. PMID:26696462

  15. Modeling the effects of space structure and combination therapies on phenotypic heterogeneity and drug resistance in solid tumors.

    PubMed

    Lorz, Alexander; Lorenzi, Tommaso; Clairambault, Jean; Escargueil, Alexandre; Perthame, Benoît

    2015-01-01

    Histopathological evidence supports the idea that the emergence of phenotypic heterogeneity and resistance to cytotoxic drugs can be considered as a process of selection in tumor cell populations. In this framework, can we explain intra-tumor heterogeneity in terms of selection driven by the local cell environment? Can we overcome the emergence of resistance and favor the eradication of cancer cells by using combination therapies? Bearing these questions in mind, we develop a model describing cell dynamics inside a tumor spheroid under the effects of cytotoxic and cytostatic drugs. Cancer cells are assumed to be structured as a population by two real variables standing for space position and the expression level of a phenotype of resistance to cytotoxic drugs. The model takes explicitly into account the dynamics of resources and anticancer drugs as well as their interactions with the cell population under treatment. We analyze the effects of space structure and combination therapies on phenotypic heterogeneity and chemotherapeutic resistance. Furthermore, we study the efficacy of combined therapy protocols based on constant infusion and bang-bang delivery of cytotoxic and cytostatic drugs.

  16. Effects of Handling and Vehicle Injections on Adrenocorticotropic and Corticosterone Concentrations in Sprague–Dawley Compared with Lewis Rats

    PubMed Central

    Deutsch-Feldman, Molly; Picetti, Roberto; Seip-Cammack, Katharine; Zhou, Yan; Kreek, Mary Jeanne

    2015-01-01

    The hypothalamic–pituitary–adrenal (HPA) axis is a key factor in the trajectory of the addiction-like cycle (a pattern of behavior characterized by escalating drug use, withdrawal, and relapse) in preclinical and clinical studies. Concentrations of HPA hormones change in laboratory animals in response to standard experimental procedures, including handling and vehicle injections. We compared HPA activity in adult male Lewis (inbred) and Sprague–Dawley (outbred) rats, 2 common strains in rodent models of addiction, after different schedules of handling and saline injections, to explore the extent to which HPA responses differ by strain and whether interindividual differences underlie addiction vulnerability. The 4 treatment conditions were no, short, or long handling and saline injections. In handled groups, rats were handled for 1 to 2 min for 3 times daily and were euthanized after 7 d (short handling) or 14 d (long handling). The injection schedule in the saline injection group mimicked that in a model of binge-like cocaine exposure. Across all treatment groups, concentrations of adrenocorticotropic hormone were higher in Sprague–Dawley than in Lewis rats. In Sprague–Dawley rats, corticosterone concentrations decreased after continued handling but remained constant in Lewis rats. Interindividual variability in hormone levels was greater in Sprague–Dawley than Lewis rats, although corticosterone variability decreased after continued handling. Prolactin did not differ between groups of either Sprague–Dawley and Lewis rats before or after handling. This study underscores the importance of prolonged handling before experimenter-provided drug-administration paradigms and of strain-associated differences that may affect study outcomes. PMID:25651089

  17. 21 CFR 1250.28 - Source and handling of ice.

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ... 21 Food and Drugs 8 2014-04-01 2014-04-01 false Source and handling of ice. 1250.28 Section 1250... ice. Ice coming in contact with food or drink and not manufactured on the conveyance shall be obtained from sources approved by competent health authorities. All ice coming in contact with food or drink...

  18. 21 CFR 1250.28 - Source and handling of ice.

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ... 21 Food and Drugs 8 2012-04-01 2012-04-01 false Source and handling of ice. 1250.28 Section 1250... ice. Ice coming in contact with food or drink and not manufactured on the conveyance shall be obtained from sources approved by competent health authorities. All ice coming in contact with food or drink...

  19. 21 CFR 1250.28 - Source and handling of ice.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... 21 Food and Drugs 8 2011-04-01 2011-04-01 false Source and handling of ice. 1250.28 Section 1250... ice. Ice coming in contact with food or drink and not manufactured on the conveyance shall be obtained from sources approved by competent health authorities. All ice coming in contact with food or drink...

  20. 21 CFR 1250.28 - Source and handling of ice.

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ... 21 Food and Drugs 8 2013-04-01 2013-04-01 false Source and handling of ice. 1250.28 Section 1250... ice. Ice coming in contact with food or drink and not manufactured on the conveyance shall be obtained from sources approved by competent health authorities. All ice coming in contact with food or drink...

  1. Controlled Release of Nor-β-lapachone by PLGA Microparticles: A Strategy for Improving Cytotoxicity against Prostate Cancer Cells.

    PubMed

    Costa, Marcilia P; Feitosa, Anderson C S; Oliveira, Fátima C E; Cavalcanti, Bruno C; da Silva, Eufrânio N; Dias, Gleiston G; Sales, Francisco A M; Sousa, Bruno L; Barroso-Neto, Ito L; Pessoa, Cláudia; Caetano, Ewerton W S; Di Fiore, Stefano; Fischer, Rainer; Ladeira, Luiz O; Freire, Valder N

    2016-07-02

    Prostate cancer is one of the most common malignant tumors in males and it has become a major worldwide public health problem. This study characterizes the encapsulation of Nor-β-lapachone (NβL) in poly(d,l-lactide-co-glycolide) (PLGA) microcapsules and evaluates the cytotoxicity of the resulting drug-loaded system against metastatic prostate cancer cells. The microcapsules presented appropriate morphological features and the presence of drug molecules in the microcapsules was confirmed by different methods. Spherical microcapsules with a size range of 1.03 ± 0.46 μm were produced with an encapsulation efficiency of approximately 19%. Classical molecular dynamics calculations provided an estimate of the typical adsorption energies of NβL on PLGA. Finally, the cytotoxic activity of NβL against PC3M human prostate cancer cells was demonstrated to be significantly enhanced when delivered by PLGA microcapsules in comparison with the free drug.

  2. Reducing Mouse Anxiety during Handling: Effect of Experience with Handling Tunnels

    PubMed Central

    Gouveia, Kelly; Hurst, Jane L.

    2013-01-01

    Handling stress is a well-recognised source of variation in animal studies that can also compromise the welfare of research animals. To reduce background variation and maximise welfare, methods that minimise handling stress should be developed and used wherever possible. Recent evidence has shown that handling mice by a familiar tunnel that is present in their home cage can minimise anxiety compared with standard tail handling. As yet, it is unclear whether a tunnel is required in each home cage to improve response to handling. We investigated the influence of prior experience with home tunnels among two common strains of laboratory mice: ICR(CD-1) and C57BL/6. We compared willingness to approach the handler and anxiety in an elevated plus maze test among mice picked up by the tail, by a home cage tunnel or by an external tunnel shared between cages. Willingness to interact with the handler was much greater for mice handled by a tunnel, even when this was unfamiliar, compared to mice picked up by the tail. Once habituated to handling, C57BL/6 mice were most interactive towards a familiar home tunnel, whereas the ICR strain showed strong interaction with all tunnel handling regardless of any experience of a home cage tunnel. Mice handled by a home cage or external tunnel showed less anxiety in an elevated plus maze than those picked up by the tail. This study shows that using a tunnel for routine handling reduces anxiety among mice compared to tail handling regardless of prior familiarity with tunnels. However, as home cage tunnels can further improve response to handling in some mice, we recommend that mice are handled with a tunnel provided in their home cage where possible as a simple practical method to minimise handling stress. PMID:23840458

  3. Reducing mouse anxiety during handling: effect of experience with handling tunnels.

    PubMed

    Gouveia, Kelly; Hurst, Jane L

    2013-01-01

    Handling stress is a well-recognised source of variation in animal studies that can also compromise the welfare of research animals. To reduce background variation and maximise welfare, methods that minimise handling stress should be developed and used wherever possible. Recent evidence has shown that handling mice by a familiar tunnel that is present in their home cage can minimise anxiety compared with standard tail handling. As yet, it is unclear whether a tunnel is required in each home cage to improve response to handling. We investigated the influence of prior experience with home tunnels among two common strains of laboratory mice: ICR(CD-1) and C57BL/6. We compared willingness to approach the handler and anxiety in an elevated plus maze test among mice picked up by the tail, by a home cage tunnel or by an external tunnel shared between cages. Willingness to interact with the handler was much greater for mice handled by a tunnel, even when this was unfamiliar, compared to mice picked up by the tail. Once habituated to handling, C57BL/6 mice were most interactive towards a familiar home tunnel, whereas the ICR strain showed strong interaction with all tunnel handling regardless of any experience of a home cage tunnel. Mice handled by a home cage or external tunnel showed less anxiety in an elevated plus maze than those picked up by the tail. This study shows that using a tunnel for routine handling reduces anxiety among mice compared to tail handling regardless of prior familiarity with tunnels. However, as home cage tunnels can further improve response to handling in some mice, we recommend that mice are handled with a tunnel provided in their home cage where possible as a simple practical method to minimise handling stress.

  4. In vitro evaluation of cytotoxic activity of flower, leaf, stem and root extracts of five Artemisia species

    PubMed Central

    Gordanian, B.; Behbahani, M.; Carapetian, J.; Fazilati, M.

    2014-01-01

    The present study was carried out to investigate cytotoxic activity of flower, leaf, stem and root extracts of five Artemisia species against breast cancer cell line (MCF7) and human embryonic kidney normal cell line (HEK293). The studied Artemisia species were A. absinthium, A. vulgaris, A. incana, A. fragrans and A. spicigera. The cytotoxic activity was measured by MTT assay at different concentrations (62.5, 125, 250, 500 μg/ml). Among these five species, methanol extracts of flower, leaf, stem and root of A. absinthium and A. vulgaris exhibited considerable cytotoxic activity. The flower extracts of these two species were found to have higher cytotoxic effect on MCF7 cell with an IC50 value of 221.5 and >500 μg/ml, respectively. Leaf methanol extract of A. incana also showed cytotoxic activity. Cytotoxic activity of different extracts of A. absinthium, A. vulgaris and A. incana against MCF7 was 10%-40% more than HEK293 cells. Not only the extracts of A. spicigera and A. fragrans did not show any cytotoxic effect against both cell lines, but also increased the number of cells. This study revealed that A. absinthium and A. vulgaris may have a great potential to explore new anticancer drugs. PMID:25657777

  5. Differential role of thiopurine methyltransferase in the cytotoxic effects of 6-mercaptopurine and 6-thioguanine on human leukemia cells.

    PubMed

    Karim, Hazhar; Ghalali, Aram; Lafolie, Pierre; Vitols, Sigurd; Fotoohi, Alan K

    2013-07-26

    The thiopurine antimetabolites, 6-mercaptopurine (6-MP) and 6-thioguanine (6-TG) are inactive pro-drugs that require intracellular metabolism for activation to cytotoxic metabolites. Thiopurine methyltransferase (TPMT) is one of the most important enzymes in this process metabolizing both 6-MP and 6-TG to different methylated metabolites including methylthioinosine monophosphate (meTIMP) and methylthioguanosine monophosphate (meTGMP), respectively, with different suggested pharmacological and cytotoxic properties. While meTIMP is a potent inhibitor of de novo purine synthesis (DNPS) and significantly contributes to the cytotoxic effects of 6-MP, meTGMP, does not add much to the effects of 6-TG, and the cytotoxicity of 6-TG seems to be more dependent on incorporation of thioguanine nucleotides (TGNs) into DNA rather than inhibition of DNPS. In order to investigate the role of TPMT in metabolism and thus, cytotoxic effects of 6-MP and 6-TG, we knocked down the expression of the gene encoding the TPMT enzyme using specifically designed small interference RNA (siRNA) in human MOLT4 leukemia cells. The knock-down was confirmed at RNA, protein, and enzyme function levels. Apoptosis was determined using annexin V and propidium iodide staining and FACS analysis. The results showed a 34% increase in sensitivity of MOLT4 cells to 1μM 6-TG after treatment with TPMT-targeting siRNA, as compared to cells transfected with non-targeting siRNA, while the sensitivity of the cells toward 6-MP was not affected significantly by down-regulation of the TPMT gene. This differential contribution of the enzyme TPMT to the cytotoxicity of the two thiopurines is probably due to its role in formation of the meTIMP, the cytotoxic methylated metabolite of 6-MP, while in case of 6-TG methylation by TPMT substantially deactivates the drug. Copyright © 2013 Elsevier Inc. All rights reserved.

  6. The synthesis and application of heparin-based smart drug carrier.

    PubMed

    Li, Qingxuan; Gan, Lu; Tao, Hong; Wang, Qian; Ye, Lin; Zhang, Aiying; Feng, Zengguo

    2016-04-20

    Heparin based polymer drug which could self-assemble into sphere micelle in water was firstly prepared by grafting paclitaxel (PTX) into the hydroxyl of heparin via aconitic bond as pH sensitive spacer. Positive charged drug DOX·HCl and cationic folic acid (CFA) can be further loaded into the polymer drug via electrostatic interaction in aqueous solution so as to prepare smart drug carrier. The drug carrier was able to release more PTX and DOX at pH 4.8 than that at pH 7.4, exhibiting pH sensitivity for two drugs. Furthermore, tumor cell cytotoxicity test proved it possessed significant cytotoxicity against tumor cells MDA-MB-231 as well as its active tumor targeting ability resulting from the loading of CFA. Cellular uptake and intracellular distribution were further revealed by confocal laser scanning microscopy (CLSM). In conclusion, this paper not only provided a simple strategy but also indicated heparin is a versatile platform for the design of smart drug carrier. The as-prepared drug carrier also showed promising potential in chemotherapy. Copyright © 2015 Elsevier Ltd. All rights reserved.

  7. Bioactive Lignans from Zanthoxylum alatum Roxb. stem bark with cytotoxic potential.

    PubMed

    Mukhija, Minky; Lal Dhar, Kanaya; Nath Kalia, Ajudhia

    2014-02-27

    Zanthoxylum alatum is used in traditional medicinal systems for number of disorders like cholera, diabetes, cough, diarrhea, fever, headache, microbial infections, toothache, inflammation and cancer. The aim of the present study was to evaluate Zanthoxylum alatum stem bark for its cytotoxic potential and to isolate the bioactive constituents. Cytotoxicity of the different extracts and isolated compounds was studied on lung carcinoma cell line (A549) and pancreatic carcinoma cell line (MIA-PaCa) using MTT assay. Isolation of compounds from most active extract (petroleum ether) was done on silica gel column. Structure elucidation was done by using various spectrophotometric techniques like UV, IR, (1)H NMR, (13)C NMR and mass spectroscopy. The type of cell death caused by most active compound C was explored by fluorescence microscopy using the acridine orange/ethidium bromide method. Petroleum ether extract of plant has shown significant cytotoxic potential. Three lignans sesamin (A), kobusin (B), and 4'O demethyl magnolin (C) has been isolated. All lignans showed cytotoxic activities in different ranges. Compound C was the novel bioactive compound from a plant source and found to be most active. In apoptosis study, treatment caused typical apoptotic morphological changes. It enhances the apoptosis at IC50 dose (21.72 µg/mL) however showing necrotic cell death at higher dose after 24h on MIA-PaCa cell lines. Petroleum ether extract (60-80 °C) of Zanthoxylum alatum has cytotoxic potential. The lignans isolated from the petroleum ether extract were responsible for the cytotoxic potential of the extract. 4'O demethyl magnolin was novel compound from Zanthoxylum alatum. Hence the Zanthoxylum alatum can be further explored for the development of anticancer drug. Copyright © 2014 Elsevier Ireland Ltd. All rights reserved.

  8. Cytotoxicity of metal and semiconductor nanoparticles indicated by cellular micromotility.

    PubMed

    Tarantola, Marco; Schneider, David; Sunnick, Eva; Adam, Holger; Pierrat, Sebastien; Rosman, Christina; Breus, Vladimir; Sönnichsen, Carsten; Basché, Thomas; Wegener, Joachim; Janshoff, Andreas

    2009-01-27

    In the growing field of nanotechnology, there is an urgent need to sensitively determine the toxicity of nanoparticles since many technical and medical applications are based on controlled exposure to particles, that is, as contrast agents or for drug delivery. Before the in vivo implementation, in vitro cell experiments are required to achieve a detailed knowledge of toxicity and biodegradation as a function of the nanoparticles' physical and chemical properties. In this study, we show that the micromotility of animal cells as monitored by electrical cell-substrate impedance analysis (ECIS) is highly suitable to quantify in vitro cytotoxicity of semiconductor quantum dots and gold nanorods. The method is validated by conventional cytotoxicity testing and accompanied by fluorescence and dark-field microscopy to visualize changes in the cytoskeleton integrity and to determine the location of the particles within the cell.

  9. Molecular mechanisms of cisplatin cytotoxicity in acute promyelocytic leukemia cells.

    PubMed

    Kumar, Sanjay; Tchounwou, Paul B

    2015-12-01

    Cis-diamminedichloroplatinum (II) (cisplatin) is a widely used anti-tumor drug for the treatment of a broad range of human malignancies with successful therapeutic outcomes for head and neck, ovarian, and testicular cancers. It has been found to inhibit cell cycle progression and to induce oxidative stress and apoptosis in acute promyelocytic leukemia (APL) cells. However, its molecular mechanisms of cytotoxic action are poorly understood. We hypothesized that cisplatin induces cytotoxicity through DNA adduct formation, oxidative stress, transcriptional factors (p53 and AP-1), cell cycle regulation, stress signaling and apoptosis in APL cells. We used the APL cell line as a model, and applied a variety of molecular tools to elucidate the cytotoxic mode of action of cisplatin. We found that cisplatin inhibited cell proliferation by a cytotoxicity, characterized by DNA damage and modulation of oxidative stress. Cisplatin also activated p53 and phosphorylated activator protein (AP-1) component, c-Jun at serine (63, 73) residue simultaneously leading to cell cycle arrest through stimulation of p21 and down regulation of cyclins and cyclin dependent kinases in APL cell lines. It strongly activated the intrinsic pathway of apoptosis through alteration of the mitochondrial membrane potential, release of cytochrome C, and up-regulation of caspase 3 activity. It also down regulated the p38MAPK pathway. Overall, this study highlights the molecular mechanisms that underline cisplatin toxicity to APL cells, and provides insights into selection of novel targets and/or design of therapeutic agents to treat APL.

  10. Controlling Properties and Cytotoxicity of Chitosan Nanocapsules by Chemical Grafting

    PubMed Central

    De Matteis, Laura; Alleva, Maria; Serrano-Sevilla, Inés; García-Embid, Sonia; Stepien, Grazyna; Moros, María; de la Fuente, Jesús M.

    2016-01-01

    The tunability of the properties of chitosan-based carriers opens new ways for the application of drugs with low water-stability or high adverse effects. In this work, the combination of a nanoemulsion with a chitosan hydrogel coating and the following poly (ethylene glycol) (PEG) grafting is proven to be a promising strategy to obtain a flexible and versatile nanocarrier with an improved stability. Thanks to chitosan amino groups, a new easy and reproducible method to obtain nanocapsule grafting with PEG has been developed in this work, allowing a very good control and tunability of the properties of nanocapsule surface. Two different PEG densities of coverage are studied and the nanocapsule systems obtained are characterized at all steps of the optimization in terms of diameter, Z potential and surface charge (amino group analysis). Results obtained are compatible with a conformation of PEG molecules laying adsorbed on nanoparticle surface after covalent linking through their amino terminal moiety. An improvement in nanocapsule stability in physiological medium is observed with the highest PEG coverage density obtained. Cytotoxicity tests also demonstrate that grafting with PEG is an effective strategy to modulate the cytotoxicity of developed nanocapsules. Such results indicate the suitability of chitosan as protective coating for future studies oriented toward drug delivery. PMID:27706041

  11. Enhancement of cellular uptake and cytotoxicity of curcumin-loaded PLGA nanoparticles by conjugation with anti-P-glycoprotein in drug resistance cancer cells.

    PubMed

    Punfa, Wanisa; Yodkeeree, Supachai; Pitchakarn, Pornsiri; Ampasavate, Chadarat; Limtrakul, Pornngarm

    2012-06-01

    To compare the anti-cancer activity and cellular uptake of curcumin (Cur) delivered by targeted and non-targeted drug delivery systems in multidrug-resistant cervical cancer cells. Cur was entrapped into poly (DL-lactide-co-glycolide) (PLGA) nanoparticles (Cur-NPs) in the presence of modified-pluronic F127 stabilizer using nano-precipitation technique. On the surface of Cur-NPs, the carboxy-terminal of modified pluronic F127 was conjugated to the amino-terminal of anti-P-glycoprotein (P-gp) (Cur-NPs-APgp). The physical properties of the Cur-NPs, including particle size, zeta potential, particle morphology and Cur release kinetics, were investigated. Cellular uptake and specificity of the Cur-NPs and Cur-NPs-APgp were detected in cervical cancer cell lines KB-V1 (higher expression of P-gp) and KB-3-1 (lower expression of P-gp) using fluorescence microscope and flow cytometry, respectively. Cytotoxicity of the Cur-NPs and Cur-NPs-APgp was determined using MTT assay. The particle size of Cur-NPs and Cur-NPs-APgp was 127 and 132 nm, respectively. The entrapment efficiency and actual loading of Cur-NPs-APgp (60% and 5 μg Cur/mg NP) were lower than those of Cur-NPs (99% and 7 μg Cur/mg NP). The specific binding of Cur-NPs-APgp to KB-V1 cells was significantly higher than that to KB-3-1 cells. Cellular uptake of Cur-NPs-APgp into KB-V1 cells was higher, as compared to KB-3-1 cells. However, the cellular uptake of Cur-NPs and Cur-NPs-IgG did not differ between the two types of cells. Besides, the cytotoxicity of Cur-NPs-APgp in KB-V1 cells was higher than those of Cur and Cur-NPs. The results demonstrate that Cur-NPs-APgp targeted to P-gp on the cell surface membrane of KB-V1 cells, thus enhancing the cellular uptake and cytotoxicity of Cur.

  12. 35Year Research History of Cytotoxicity and Cancer: a Quantitative and Qualitative Analysis.

    PubMed

    Farghadani, Reyhaneh; Haerian, Batoul Sadat; Ebrahim, Nader Ale; Muniandy, Sekaran

    2016-01-01

    Cancer is the leading cause of morbidity and mortality worldwide, characterized by irregular cell growth. Cytotoxicity or killing tumor cells that divide rapidly is the basic function of chemotherapeutic drugs. However, these agents can damage normal dividing cells, leading to adverse effects in the body. In view of great advances in cancer therapy, which are increasingly reported each year, we quantitatively and qualitatively evaluated the papers published between 1981 and December 2015, with a closer look at the highly cited papers (HCPs), for a better understanding of literature related to cytotoxicity in cancer therapy. Online documents in the Web of Science (WOS) database were analyzed based on the publication year, the number of times they were cited, research area, source, language, document type, countries, organizationenhanced and funding agencies. A total of 3,473 publications relevant to the target key words were found in the WOS database over 35 years and 86% of them (n=2,993) were published between 20002015. These papers had been cited 54,330 times without self citation from 1981 to 2015. Of the 3,473 publications, 17 (3,557citations) were the most frequently cited ones between 2005 and 2015. The topmost HCP was about generating a comprehensive preclinical database (CCLE) with 825 (23.2%) citations. One third of the remaining HCPs had focused on drug discovery through improving conventional therapeutic agents such as metformin and ginseng. Another 33% of the HCPs concerned engineered nanoparticles (NPs) such as polyamidoamine (PAMAM) dendritic polymers, PTX/SPIOloaded PLGAs and cell derived NPs to increase drug effectiveness and decrease drug toxicity in cancer therapy. The remaining HCPs reported novel factors such as miR205, Nrf2 and p27 suggesting their interference with development of cancer in targeted cancer therapy. In conclusion, analysis of 35year publications and HCPs on cytotoxicity in cancer in the present report provides opportunities for

  13. In Vitro antibacterial and in Vivo cytotoxic activities of Grewia paniculata.

    PubMed

    Nasrin, Mahmuda; Dash, Pritesh Ranjan; Ali, Mohammad Shawkat

    2015-01-01

    Grewia paniculata (Family: Malvaceae) has been used to treat inflammation, respiratory disorders and fever. It is additionally employed for other health conditions including colds, diarrhea and as an insecticide in Bangladesh. The aim of the present study was to investigate the antibacterial and cytotoxic activities of different extracts of Grewia paniculata. The antibacterial activity was evaluated against both gram negative and gram positive bacteria using disc diffusion method by determination of the diameter of zone of inhibition. Cytotoxic activity was performed by brine shrimp (Artemia salina) lethality bioassay. In disc diffusion method, all the natural products (400 μg/disc) showed moderate to potent activity against all the tested bacteria. The ethanol extract of bark (EEB) and ethanol fraction of bark (EFB) (400 μg/disc) exhibited highest activity against Shigella dysenteriae with a zone of inhibition of 23±1.63 mm and 23±1.77 mm respectively. In the brine shrimp lethality bioassay all the extracts showed moderate cytotoxic activity when compared with the standard drug vincristin sulphate. For example, LC50 value of the ethanol fraction of bark (EFB) was 3.01 μg/ml while the LC50 of vincristine sulphate was 0.52 μg/ml. The results suggest that all the natural products possess potent antibacterial and moderate cytotoxic.

  14. Mechanism-Based Tumor-Targeting Drug Delivery System. Validation of Efficient Vitamin Receptor-Mediated Endocytosis and Drug Release

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Chen, S.; Wong, S.; Zhao, X.

    An efficient mechanism-based tumor-targeting drug delivery system, based on tumor-specific vitamin-receptor mediated endocytosis, has been developed. The tumor-targeting drug delivery system is a conjugate of a tumor-targeting molecule (biotin: vitamin H or vitamin B-7), a mechanism-based self-immolative linker and a second-generation taxoid (SB-T-1214) as the cytotoxic agent. This conjugate (1) is designed to be (i) specific to the vitamin receptors overexpressed on tumor cell surface and (ii) internalized efficiently through receptor-mediated endocytosis, followed by smooth drug release via glutathione-triggered self-immolation of the linker. In order to monitor and validate the sequence of events hypothesized, i.e., receptor-mediated endocytosis of the conjugate,more » drug release, and drug-binding to the target protein (microtubules), three fluorescent/fluorogenic molecular probes (2, 3, and 4) were designed and synthesized. The actual occurrence of these processes was unambiguously confirmed by means of confocal fluorescence microscopy (CFM) and flow cytometry using L1210FR leukemia cells, overexpressing biotin receptors. The molecular probe 4, bearing the taxoid linked to fluorescein, was also used to examine the cell specificity (i.e., efficacy of receptor-based cell targeting) for three cell lines, L1210FR (biotin receptors overexpressed), L1210 (biotin receptors not overexpressed), and WI38 (normal human lung fibroblast, biotin receptor negative). As anticipated, the molecular probe 4 exhibited high specificity only to L1210FR. To confirm the direct correlation between the cell-specific drug delivery and anticancer activity of the probe 4, its cytotoxicity against these three cell lines was also examined. The results clearly showed a good correlation between the two methods. In the same manner, excellent cell-specific cytotoxicity of the conjugate 1 (without fluorescein attachment to the taxoid) against the same three cell lines was confirmed. This

  15. The impact of drugs on male fertility: a review.

    PubMed

    Semet, M; Paci, M; Saïas-Magnan, J; Metzler-Guillemain, C; Boissier, R; Lejeune, H; Perrin, J

    2017-07-01

    Beside cytotoxic drugs, other drugs can impact men's fertility through various mechanisms. Via the modification of the hypothalamic-pituitary-gonadal axis hormones or by non-hormonal mechanisms, drugs may directly and indirectly induce sexual dysfunction and spermatogenesis impairment and alteration of epididymal maturation. This systematic literature review summarizes existing data about the negative impact and associations of pharmacological treatments on male fertility (excluding cytotoxic drugs), with a view to making these data more readily available for medical staff. In most cases, these effects on spermatogenesis/sperm maturation/sexual function are reversible after the discontinuation of the drug. When a reprotoxic treatment cannot be stopped and/or when the impact on semen parameters/sperm DNA is potentially irreversible (Sulfasalazine Azathioprine, Mycophenolate mofetil and Methotrexate), the cryopreservation of spermatozoa before treatment must be proposed. Deleterious impacts on fertility of drugs with very good or good level of evidence (Testosterone, Sulfasalazine, Anabolic steroids, Cyproterone acetate, Opioids, Tramadol, GhRH analogues and Sartan) are developed. © 2017 American Society of Andrology and European Academy of Andrology.

  16. Effects of the ACTH(4-9) analogue, ORG 2766, on vincristine cytotoxicity in two human lymphoma cell lines, U937 and U715.

    PubMed Central

    Kiburg, B.; van de Loosdrecht, A. A.; Schweitzer, K. M.; Ossenkoppele, G. J.; Müller, L. J.; Heimans, J. J.; Huijgens, P. C.

    1994-01-01

    The use of cytotoxic drug vincristine (VCR) is limited by the occurrence of peripheral neuropathy. A neurotrophic ACTH(4-9) analogue, ORG 2766, is being studied for its protective effect. Possible modulatory effects of ORG 2766 on tumour cell growth and interference with the cytotoxic efficacy of VCR were studied in two human lymphoma cell lines, U937 and U715. The effects of ORG 2766 on cell growth and survival and on VCR-mediated cytotoxicity were investigated using two MTT-based assays to study direct cytotoxic effects and to assess residual growth after pretreatment. Treatment with ORG 2766 alone had no effect on cell growth and survival. Neither did this drug affect VCR cytotoxicity. However, after 96 h pretreatment with ORG 2766 and a culture period of 7 days, a reduction in residual growth and a potentiation of VCR-induced inhibition of growth capacity was observed in U715 cells, and to some extent also in U937 cells. It is concluded that ORG 2766 has no stimulatory effects on tumour growth and does not negatively interfere with VCR-mediated cytotoxicity. Rather it enhances the cytostatic effect of VCR. It is suggested that ORG 2766 can safely be used in clinical trials investigating the ability of ORG 2766 to counteract VCR-induced neurotoxicity. PMID:8123480

  17. A Comparative Cytotoxic Evaluation of Disulfiram Encapsulated PLGA Nanoparticles on MCF-7 Cells

    PubMed Central

    Fasehee, Hamidreza; Ghavamzadeh, Ardeshir; Alimoghaddam, Kamran; Ghaffari, Seyed-Hamidollah; Faghihi, Shahab

    2017-01-01

    Background: Disulfiram is oral aldehyde dehydrogenase (ALDH) inhibitor that has been used in the treatment of alcoholism. Recent studies show that this drug has anticancer properties; however, its rapid degradation has limited its clinical application. Encapsulation of disulfiram polymeric nanoparticles (NPs) may improve its anticancer activities and protect rapid degradation of the drug. Materials and Methods: A poly (lactide-co-Glycolide) (PLGA) was developed for encapsulation of disulfiram and its delivery into breast cancer cells. Disulfiram encapsulated PLGA NPs were prepared by nanoprecipitation method and were characterized by Scanning Electron Microscopy (SEM). The loading and encapsulation efficiency of NPs were determined using UV-Visible spectroscopy. Cell cytotoxicity of free and encapsulated form of disulfiram is also determined using MTT assay. Results: Disulfiram encapsulated PLGA NPs had uniform size with 165 nm. Drug loading and entrapment efficiency were 5.35 ±0.03% and 58.85±1.01%. The results of MTT assay showed that disulfiram encapsulated PLGA NPs were more potent in induction of apoptosis compare to free disulfiram. Conclusion: Based on the results obtained in the present study it can be concluded that encapsulation of disulfiram with PLGA can protect its degradation in improve its cytotoxicity on breast cancer cells. PMID:28875004

  18. A Comparative Cytotoxic Evaluation of Disulfiram Encapsulated PLGA Nanoparticles on MCF-7 Cells.

    PubMed

    Fasehee, Hamidreza; Ghavamzadeh, Ardeshir; Alimoghaddam, Kamran; Ghaffari, Seyed-Hamidollah; Faghihi, Shahab

    2017-04-01

    Background: Disulfiram is oral aldehyde dehydrogenase (ALDH) inhibitor that has been used in the treatment of alcoholism. Recent studies show that this drug has anticancer properties; however, its rapid degradation has limited its clinical application. Encapsulation of disulfiram polymeric nanoparticles (NPs) may improve its anticancer activities and protect rapid degradation of the drug. Materials and Methods: A poly (lactide-co-Glycolide) (PLGA) was developed for encapsulation of disulfiram and its delivery into breast cancer cells. Disulfiram encapsulated PLGA NPs were prepared by nanoprecipitation method and were characterized by Scanning Electron Microscopy (SEM). The loading and encapsulation efficiency of NPs were determined using UV-Visible spectroscopy. Cell cytotoxicity of free and encapsulated form of disulfiram is also determined using MTT assay. Results: Disulfiram encapsulated PLGA NPs had uniform size with 165 nm. Drug loading and entrapment efficiency were 5.35 ±0.03% and 58.85±1.01%. The results of MTT assay showed that disulfiram encapsulated PLGA NPs were more potent in induction of apoptosis compare to free disulfiram. Conclusion: Based on the results obtained in the present study it can be concluded that encapsulation of disulfiram with PLGA can protect its degradation in improve its cytotoxicity on breast cancer cells.

  19. Impact of closed-system drug transfer device on exposure of environment and healthcare provider to cyclophosphamide in Japanese hospital.

    PubMed

    Miyake, Tomohiro; Iwamoto, Takuya; Tanimura, Manabu; Okuda, Masahiro

    2013-12-01

    In spite of current recommended safe handling procedures, the potential for the exposure of healthcare providers to hazardous drugs exists in the workplace. A reliance on biological safety cabinets to provide total protection against the exposure to hazardous drugs is insufficient. Preventing workplace contamination is the best strategy to minimize cytotoxic drug exposure in healthcare providers. This study was conducted to compare surface contamination and personnel exposure to cyclophosphamide before and after the implementation of a closed-system drug transfer device, PhaSeal, under the influence of cleaning according to the Japanese guidelines. Personnel exposure was evaluated by collecting 24 h urine samples from 4 pharmacists. Surface contamination was assessed by the wiping test. Four of 6 wipe samples collected before PhaSeal indicated a detectable level of cyclophosphamide. About 7 months after the initiation of PhaSeal, only one of 6 wipe samples indicated a detectable level of cyclophosphamide. Although all 4 employees who provided urine samples had positive results for the urinary excretion of cyclophosphamide before PhaSeal, these levels returned to minimal levels in 2 pharmacists after PhaSeal. In combination with the biological safety cabinet and cleaning according to the Japanese guidelines, PhaSeal further reduces surface contamination and healthcare providers exposure to cyclophosphamide to almost undetectable levels.

  20. Structural requirements for bioactivation of anticonvulsants to cytotoxic metabolites in vitro.

    PubMed Central

    Riley, R J; Kitteringham, N R; Park, B K

    1989-01-01

    The formation of cytotoxic metabolites from the anticonvulsants phenytoin and carbamazepine was investigated in vitro using a hepatic microsomal enzyme system and human mononuclear leucocytes as target cells. Both drugs were metabolised to cytotoxic products. In order to assess the structural requirements for this bioactivation, a series of structurally related compounds was investigated. It was found that molecules which contain either an amide function or an aryl ring may undergo activation in vitro, but only the metabolism-dependent toxicity of the latter is potentiated by pre-treatment of the target cells with an epoxide hydrolase inhibitor. Taken collectively, these data are consistent with the concept that reactive epoxide metabolites of both phenytoin and carbamazepine may produce toxicity in individuals with an inherited deficiency in epoxide hydrolase. PMID:2590607

  1. Handling alters cocaine-induced activity in adolescent but not adult male rats

    PubMed Central

    Maldonado, Antoniette M.; Kirstein, Cheryl L.

    2017-01-01

    The developmental period of adolescence is one that is characterized by increased levels of stress and vulnerability to drugs. Pre-test handling is an experimental manipulation that is used to acclimate animals prior to behavioral testing and exposure to a novel environment. Therefore, the present study was conducted in order to address the issue of pre-test handling of adolescent and adult male rats on subsequent cocaine-induced locomotor activity upon presentation to a novel environment. On days one through four, postnatal day (PND) 41–44 or PND 56–59, respectively, animals were handled b.i.d. for three minutes. On the fifth day, PND 45 or PND 60, animals were administered 30 mg/kg/ip cocaine or saline and immediately placed in a novel environment where locomotor activity was measured for 30 minutes. Cocaine increased locomotor activity similarly in all non-handled animals, regardless of age. Interestingly, adolescent animals expressed a differential effect when handled prior to an acute cocaine administration. Specifically, handling increased cocaine-induced locomotor activity in adolescent but not adult animals. These findings indicate that adolescent males that have been acclimated to the handling procedure experience significantly more behavioral reactivity than do adults to a high dose of cocaine upon exposure to a novel environment. PMID:15708784

  2. Multi-step high-throughput conjugation platform for the development of antibody-drug conjugates.

    PubMed

    Andris, Sebastian; Wendeler, Michaela; Wang, Xiangyang; Hubbuch, Jürgen

    2018-07-20

    Antibody-drug conjugates (ADCs) form a rapidly growing class of biopharmaceuticals which attracts a lot of attention throughout the industry due to its high potential for cancer therapy. They combine the specificity of a monoclonal antibody (mAb) and the cell-killing capacity of highly cytotoxic small molecule drugs. Site-specific conjugation approaches involve a multi-step process for covalent linkage of antibody and drug via a linker. Despite the range of parameters that have to be investigated, high-throughput methods are scarcely used so far in ADC development. In this work an automated high-throughput platform for a site-specific multi-step conjugation process on a liquid-handling station is presented by use of a model conjugation system. A high-throughput solid-phase buffer exchange was successfully incorporated for reagent removal by utilization of a batch cation exchange step. To ensure accurate screening of conjugation parameters, an intermediate UV/Vis-based concentration determination was established including feedback to the process. For conjugate characterization, a high-throughput compatible reversed-phase chromatography method with a runtime of 7 min and no sample preparation was developed. Two case studies illustrate the efficient use for mapping the operating space of a conjugation process. Due to the degree of automation and parallelization, the platform is capable of significantly reducing process development efforts and material demands and shorten development timelines for antibody-drug conjugates. Copyright © 2018 Elsevier B.V. All rights reserved.

  3. Urinary cyclophosphamide excretion and micronuclei frequencies in peripheral lymphocytes and in exfoliated buccal epithelial cells of nurses handling antineoplastics.

    PubMed

    Burgaz, S; Karahalil, B; Bayrak, P; Taşkin, L; Yavuzaslan, F; Bökesoy, I; Anzion, R B; Bos, R P; Platin, N

    1999-02-02

    In this study, urinary cyclophosphamide (CP) excretion rate, as well as micronuclei (MN) in peripheral lymphocytes and in buccal epithelial cells were determined for 26 nurses handling antineoplastics and 14 referents matched for age and sex. In urine samples of 20 out of 25 exposed nurses CP excretion rate was found in a range of 0.02-9.14 microg CP/24 h. Our results of the analyses of CP in urine demonstrates that when the nurses were handling CP (and other antineoplastic drugs) this particular compound was observed in urine. The mean values (+/-SD) of MN frequencies (%) in peripheral lymphocytes from the nurses and controls were 0.61 (+/-0. 32) and 0.28 (+/-0.16), respectively (p<0.01). The mean value (+/-SD) of MN frequency (%) in buccal epithelial cells of nurses was 0.16 (+/-0.19) and also mean MN frequency in buccal epithelial cells for controls was found to be as 0.08 (+/-0.08), (p>0.05). Age, sex and smoking habits have not influenced the parameters analyzed in this study. Handling time of antineoplastics, use of protective equipment and handling frequency of drugs have no effect on urinary and cytogenetic parameters analyzed. No correlation was found between the urinary CP excretion and the cytogenetic findings in nurses. Neither could we find any relationship between two cytogenetic endpoints. Our results have identified the possible genotoxic damage of oncology nurses related to occupational exposure to at least one antineoplastic agent, which is used as a marker for drug handling. As a whole, there is concern that the present handling practices of antineoplastic drugs used in the several hospitals in Ankara will not be sufficient to prevent exposure. Copyright 1999 Elsevier Science B.V.

  4. Novel Spray Dried Glycerol 2-Phosphate Cross-Linked Chitosan Microparticulate Vaginal Delivery System—Development, Characterization and Cytotoxicity Studies

    PubMed Central

    Szymańska, Emilia; Szekalska, Marta; Czarnomysy, Robert; Lavrič, Zoran; Srčič, Stane; Miltyk, Wojciech; Winnicka, Katarzyna

    2016-01-01

    Chitosan microparticulate delivery systems containing clotrimazole were prepared by a spray drying technique using glycerol 2-phosphate as an ion cross-linker. The impact of a cross-linking ratio on microparticle characteristics was evaluated. Drug-free and drug-loaded unmodified or ion cross-linked chitosan microparticles were examined for the in vitro cytotoxicity in VK2/E6E7 human vaginal epithelial cells. The presence of glycerol 2-phosphate influenced drug loading and encapsulation efficacy in chitosan microparticles. By increasing the cross-linking ratio, the microparticles with lower diameter, moisture content and smoother surface were observed. Mucoadhesive studies displayed that all formulations possessed mucoadhesive properties. The in vitro release profile of clotrimazole was found to alter considerably by changing the glycerol 2-phosphate/chitosan ratio. Results from cytotoxicity studies showed occurrence of apoptotic cells in the presence of chitosan and ion cross-linked chitosan microparticles, followed by a loss of membrane potential suggesting that cell death might go through the mitochondrial apoptotic pathway. PMID:27690062

  5. Poly(N-vinylpyrrolidone)-block-poly(vinyl acetate) as a drug delivery vehicle for hydrophobic drugs.

    PubMed

    Bailly, Nathalie; Thomas, Mark; Klumperman, Bert

    2012-12-10

    Poly((N-vinylpyrrolidone)-block-poly(vinyl acetate)) (PVP-b-PVAc) block copolymers of varying molecular weight and hydrophobic block lengths were synthesized via controlled radical polymerization and investigated as carriers for the solubilization of highly hydrophobic riminophenazine compounds. These compounds have recently been shown to exhibit a strong activity against a variety of cancer types. PVP-b-PVAc self-assembles into polymer vesicles in aqueous media, and the dialysis method was used to load the water-insoluble drug (clofazimine) into these polymer vesicles. The polymer vesicles were characterized by 1H NMR spectroscopy to confirm vesicle formation and the incorporation of the anticancer drugs into the polymer vesicles. Dynamic light scattering was used to determine the particle size and particle size distribution of the drug-loaded vesicles as well as the stability of the vesicles under physiological conditions. The size of the polymer vesicles did not increase upon loading with clofazimine, and the particle size of 180-200 nm and the narrow particle size distribution were maintained. The morphology of the vesicles was examined by transmission electron microscopy. The polymer vesicles had a relatively high drug loading capacity of 20 wt %. In vitro cytotoxicity studies of PVP-b-PVAc and drug-loaded PVP-b-PVAc were performed against MDA-MB-231 multidrug-resistant breast epithelial cancer cells and MCF12A nontumorigenic breast epithelial cells. In vitro experiments demonstrated that the PVP-b-PVAc drug carrier showed no cytotoxicity, which confirms the biocompatibility of the PVP-b-PVAc drug carrier. The results indicate that the present PVP-b-PVAc block copolymer could be a potential candidate as a drug carrier for hydrophobic drugs.

  6. The relevancy of controlled nanocrystallization on rifampicin characteristics and cytotoxicity

    PubMed Central

    Mohyeldin, Salma M; Mehanna, Mohammed M; Elgindy, Nazik A

    2016-01-01

    Purpose This article investigated the influence of novel rifampicin nanosuspension (RIF NS) for enhancing drug delivery properties. Methods RIF NS was fabricated using the antisolvent precipitation technique. The impact of solvent type and flow rate, stabilizer type and concentration, and stirring time and apparatus together with the solvent–antisolvent volume ratio on its controlled nanocrystallization has been evaluated. NSs were characterized by transmission electron microscopy, particle size and zeta potential analysis, solubility, and dissolution profiles. The compatibility between RIF and the stabilizer was investigated via Fourier transform infrared spectroscopy and the differential scanning calorimetry techniques. The shelf-life stability of the RIF NS was assessed within a period of 3 months at different storage temperatures. Cell cytotoxicity was evaluated using 3(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide (MTT) assay on lung epithelial cells. Results Polyvinyl alcohol at 0.4% w/v, 1:15 methanol to deionized water volume ratio and 30-minutes sonication were the optimal parameters for RIF NS preparation. Nanocrystals were obtained with a nanometeric particle size (101 nm) and a negative zeta potential (−26 mV). NS exhibited a 50-fold enhancement in RIF solubility and 97% of RIF was dissolved after 10 minutes. The RIF NS was stable at 4±0.5°C with no significant change in particle size or zeta potential. The MTT cytotoxicity assay of RIF NS demonstrated a good safety profile and reduction in cell cytotoxicity with half maximal inhibitory concentration values of 0.5 and 0.8 mg/mL for free RIF and RIF NS, respectively. Conclusion A novel RIF NS could be followed as an approach for enhancing RIF physicochemical characteristics with a prominence of a safer and better drug delivery. PMID:27274244

  7. The role of interleukin-18 in glioblastoma pathology implies therapeutic potential of two old drugs-disulfiram and ritonavir.

    PubMed

    Kast, Richard E

    2015-04-09

    Based on reporting in the last several years, an impressive but dismal list of cytotoxic chemotherapies that fail to prolong the median overall survival of patients with glioblastoma has prompted the development of treatment protocols designed to interfere with growth-facilitating signaling systems by using non-cytotoxic, non-oncology drugs. Recent recognition of the pro-mobility stimulus, interleukin-18, as a driver of centrifugal glioblastoma cell migration allows potential treatment adjuncts with disulfiram and ritonavir. Disulfiram and ritonavir are well-tolerated, non-cytotoxic, non-oncology chemotherapeutic drugs that are marketed for the treatment of alcoholism and human immunodeficiency virus (HIV) infection, respectively. Both drugs exhibit an interleukin-18-inhibiting function. Given the favorable tolerability profile of disulfiram and ritonavir, the unlikely drug-drug interaction with temozolomide, and the poor prognosis of glioblastoma, trials of addition of disulfiram and ritonavir to current standard initial treatment of glioblastoma would be warranted.

  8. Sprag Handle Wrenches

    NASA Technical Reports Server (NTRS)

    Vranishm, John M.

    2010-01-01

    Sprag handle wrenches have been proposed for general applications in which conventional pawl-and-ratchet wrenches and sprag and cam "clickless" wrenches are now used. Sprag handle wrenches are so named because they would include components that would function both as parts of handles and as sprags (roller locking/unlocking components). In comparison with all of the aforementioned conventional wrenches, properly designed sprag handle wrenches could operate with much less backlash; in comparison with the conventional clickless wrenches, sprag handle wrenches could be stronger and less expensive (because the sprags would be larger and more easily controllable than are conventional sprags and cams).

  9. Side effects of oxysterols: cytotoxicity, oxidation, inflammation, and phospholipidosis.

    PubMed

    Vejux, A; Malvitte, L; Lizard, G

    2008-07-01

    Oxysterols are 27-carbon atom molecules resulting from autoxidation or enzymatic oxidation of cholesterol. They are present in numerous foodstuffs and have been demonstrated to be present at increased levels in the plasma of patients with cardiovascular diseases and in atherosclerotic lesions. Thus, their role in lipid disorders is widely suspected, and they might also be involved in important degenerative diseases such as Alzheimer's disease, osteoporosis, and age-related macular degeneration. Since atherosclerosis is associated with the presence of apoptotic cells and with oxidative and inflammatory processes, the ability of some oxysterols, especially 7-ketocholesterol and 7beta-hydroxycholesterol, to trigger cell death, activate inflammation, and modulate lipid homeostasis is being extensively studied, especially in vitro. Thus, since there are a number of essential considerations regarding the physiological/pathophysiological functions and activities of the different oxysterols, it is important to determine their biological activities and identify their signaling pathways, when they are used either alone or as mixtures. Oxysterols may have cytotoxic, oxidative, and/or inflammatory effects, or none whatsoever. Moreover, a substantial accumulation of polar lipids in cytoplasmic multilamellar structures has been observed with cytotoxic oxysterols, suggesting that cytotoxic oxysterols are potent inducers of phospholipidosis. This basic knowledge about oxysterols contributes to a better understanding of the associated pathologies and may lead to new treatments and new drugs. Since oxysterols have a number of biological activities, and as oxysterol-induced cell death is assumed to take part in degenerative pathologies, the present review will focus on the cytotoxic activities of these compounds, the corresponding cell death signaling pathways, and associated events (oxidation, inflammation, and phospholipidosis).

  10. Lack of genotoxicity in medical oncology nurses handling antineoplastic drugs: effect of work environment and protective equipment.

    PubMed

    Gulten, Tuna; Evke, Elif; Ercan, Ilker; Evrensel, Turkkan; Kurt, Ender; Manavoglu, Osman

    2011-01-01

    In this study we aimed to investigate the genotoxic effects of antineoplastic agents in occupationally exposed oncology nurses. Genotoxic effects mean the disruptive effects in the integrity of DNA and they are associated with cancer development. Biomonitoring of health care workers handling antineoplastic agents is helpful for the evaluation of exposure to cytostatics. The study included an exposed and two control groups. The exposed group (n=9) was comprised of oncology nurses. The first (n=9) and second (n=10) control groups were comprised of subjects who did not come into contact with antineoplastic drugs working respectively in the same department with oncology nurses and in different departments. Genotoxicity evaluation was performed using SCE analysis. After applying culture, harvest and chromosome staining procedures, a total of 25 metaphases were analyzed per person. Kruskal Wallis test was used to perform statistical analysis. A statistically significant difference of sister chromatid exchange frequencies was not observed between the exposed and control groups. Lack of genotoxicity in medical oncology nurses might be due to good working conditions with high standards of technical equipment and improved personal protection.

  11. Evaluation of the cytotoxic and genotoxic potential of lecithin/chitosan nanoparticles

    NASA Astrophysics Data System (ADS)

    Taner, Gökçe; Yeşilöz, Recep; Özkan Vardar, Deniz; Şenyiğit, Taner; Özer, Özgen; Degen, Gisela H.; Başaran, Nurşen

    2014-02-01

    Nanoparticles-based drug targeting delivery systems have been introduced in the treatment for various diseases because of their effective properties, although there have been conflicting results on the toxicity of nanoparticles. In the present study, the aim was to evaluate the cytotoxicity and the genotoxicity of different concentrations of lecithin/chitosan nanoparticles with and without clobetasol-17-propionate (CP) by neutral red uptake (NRU) cytotoxicity assay and single cell gel electrophoresis (Comet) and cytokinesis-blocked micronucleus assays. The IC50 values of lecithin/chitosan nanoparticles with/without CP were found as 1.9 and 1.8 %, respectively, in the NRU cytotoxicity test. High concentrations of lecithin/chitosan nanoparticles induced DNA damage in human lymphocytes as evaluated by comet assay. The micronucleus frequency was increased by the lecithin/chitosan treatment in a dose-dependent manner. Also at the two highest concentrations, a significant increase in micronucleus formation was observed. Lecithin/chitosan nanoparticles with CP did not increase the frequency of micronucleus and also did not induce additional DNA damage when compared with lecithin/chitosan nanoparticles without CP; therefore, CP itself has not found to be genotoxic at the studied concentration.

  12. Antibacterial, antidiarrhoeal, and cytotoxic activities of methanol extract and its fractions of Caesalpinia bonducella (L.) Roxb leaves

    PubMed Central

    2013-01-01

    Background Caesalpinia bonducella is an important medicinal plant for its traditional uses against different types of diseases. Therefore, the present study investigated the antimicrobial, antidiarrhoeal, and cytotoxic activities of the methanol extract and ethyl acetate, chloroform, and petroleum ether (pet. ether) fractions of C. bonducella leaves. Methods The antibacterial potentialities of methanol extract and its fractions of C. bonducella leaves were investigated by the disc diffusion method against four gram-positive and five gram-negative bacteria at 300, 500 and 800 μg/disc. Kanamycin (30 μg/disc) was used as the standard drug. Antidiarrhoeal activities of leaf extracts were evaluated at two doses (200 and 400 mg/kg) and compared with loperamide in a castor oil-induced diarrhoeal model in rat. The fractions were subjected to a brine shrimp lethality test to evaluate their cytotoxicity. Results The methanol extract and other three fractions exhibited better activities at higher concentrations. Amongst, the chloroform fraction showed maximum activity at all three concentrations (300, 500, and 800 μg/disc) against almost all bacteria. S. aureus and P. aeruginosa showed better sensitivities to all extracts at all three concentrations excluding the pet. ether fraction. Bacillus megaterium and Klebsiella spp. were two bacteria amongst nine that showed lowest sensitivity to the extracts. Maximum zone of inhibition (25-mm) was obtained by the methanol extract at an 800 μg/disc concentration against S. aureus. In the antidiarrhoeal test, all fractions exhibited dose-dependent actions, which were statistically significant (p < 0.05). Ethyl acetate fraction exerted maximum inhibition (51.11%) against defecation, whereas 57.75% inhibition was obtained for loperamide. Moderate cytotoxicity was found for the methanol extract and its three fractions compared with the standard drug vincristine sulfate in the brine shrimp bioassay. In the present study, the LC

  13. Antibacterial, antidiarrhoeal, and cytotoxic activities of methanol extract and its fractions of Caesalpinia bonducella (L.) Roxb leaves.

    PubMed

    Billah, Muhammad Mutassim; Islam, Rafikul; Khatun, Hajera; Parvin, Shahnaj; Islam, Ekramul; Islam, Sm Anisul; Mia, Akbar Ali

    2013-05-12

    Caesalpinia bonducella is an important medicinal plant for its traditional uses against different types of diseases. Therefore, the present study investigated the antimicrobial, antidiarrhoeal, and cytotoxic activities of the methanol extract and ethyl acetate, chloroform, and petroleum ether (pet. ether) fractions of C. bonducella leaves. The antibacterial potentialities of methanol extract and its fractions of C. bonducella leaves were investigated by the disc diffusion method against four gram-positive and five gram-negative bacteria at 300, 500 and 800 μg/disc. Kanamycin (30 μg/disc) was used as the standard drug. Antidiarrhoeal activities of leaf extracts were evaluated at two doses (200 and 400 mg/kg) and compared with loperamide in a castor oil-induced diarrhoeal model in rat. The fractions were subjected to a brine shrimp lethality test to evaluate their cytotoxicity. The methanol extract and other three fractions exhibited better activities at higher concentrations. Amongst, the chloroform fraction showed maximum activity at all three concentrations (300, 500, and 800 μg/disc) against almost all bacteria. S. aureus and P. aeruginosa showed better sensitivities to all extracts at all three concentrations excluding the pet. ether fraction. Bacillus megaterium and Klebsiella spp. were two bacteria amongst nine that showed lowest sensitivity to the extracts. Maximum zone of inhibition (25-mm) was obtained by the methanol extract at an 800 μg/disc concentration against S. aureus. In the antidiarrhoeal test, all fractions exhibited dose-dependent actions, which were statistically significant (p < 0.05). Ethyl acetate fraction exerted maximum inhibition (51.11%) against defecation, whereas 57.75% inhibition was obtained for loperamide. Moderate cytotoxicity was found for the methanol extract and its three fractions compared with the standard drug vincristine sulfate in the brine shrimp bioassay. In the present study, the LC50 values of the methanol crude

  14. Characterization and cytotoxicity evaluation of biocompatible amino acid esters used to convert salicylic acid into ionic liquids.

    PubMed

    Moshikur, Rahman Md; Chowdhury, Md Raihan; Wakabayashi, Rie; Tahara, Yoshiro; Moniruzzaman, Muhammad; Goto, Masahiro

    2018-07-30

    The technological utility of active pharmaceutical ingredients (APIs) is greatly enhanced when they are transformed into ionic liquids (ILs). API-ILs have better solubility, thermal stability, and the efficacy in topical delivery than solid or crystalline drugs. However, toxicological issue of API-ILs is the main challenge for their application in drug delivery. To address this issue, 11 amino acid esters (AAEs) were synthesized and investigated as biocompatible counter cations for the poorly water-soluble drug salicylic acid (Sal) to form Sal-ILs. The AAEs were characterized using 1 H and 13 C NMR, FTIR, elemental, and thermogravimetric analyses. The cytotoxicities of the AAE cations, Sal-ILs, and free Sal were investigated using mammalian cell lines (L929 and HeLa). The toxicities of the AAE cations greatly increased with inclusion of long alkyl chains, sulfur, and aromatic rings in the side groups of the cations. Ethyl esters of alanine, aspartic acid, and proline were selected as a low cytotoxic AAE. The cytotoxicities of the Sal-ILs drastically increased compared with the AAEs on incorporation of Sal into the cations, and were comparable to that of free Sal. Interestingly, the water miscibilities of the Sal-ILs were higher than that of free Sal, and the Sal-ILs were miscible with water at any ratio. A skin permeation study showed that the Sal-ILs penetrated through skin faster than the Sal sodium salt. These results suggest that AAEs could be used in biomedical applications to eliminate the use of traditional toxic solvents for transdermal delivery of poorly water-soluble drugs. Copyright © 2018 Elsevier B.V. All rights reserved.

  15. Handling Practices of Fresh Leafy Greens in Restaurants: Receiving and Training†

    PubMed Central

    COLEMAN, ERIK; DELEA, KRISTIN; EVERSTINE, KAREN; REIMANN, DAVID; RIPLEY, DANNY

    2015-01-01

    Multiple foodborne illness outbreaks have been associated with the consumption of fresh produce. Investigations have indicated that microbial contamination throughout the farm-to-fork continuum often contributed to these outbreaks. Researchers have hypothesized that handling practices for leafy greens in restaurants may support contamination by and proliferation and amplification of pathogens that cause foodborne illness outbreaks. However, limited data are available on how workers handle leafy greens in restaurants. The purpose of this study was to collect descriptive data on handling practices of leafy greens in restaurants, including restaurant characteristics, types of leafy greens used, produce receipt, and food safety training and certification. As a federal collaborative partner with the Environmental Health Specialists Network (EHS-Net) of the Centers for Disease Control and Prevention, the U.S. Food and Drug Administration (FDA) recommended that EHS-Net participants survey handling practices for leafy greens in restaurants. The recommendations in the FDA’s Guide to Minimize Microbial Food Safety Hazards of Leafy Greens are significant to this study for comparison of the results. The survey revealed that appropriate handling procedures assist in the mitigation of other unsafe handling practices for leafy greens. These results are significant because the FDA guidance for the safe handling of leafy greens was not available until 2009, after the survey had been completed. The information provided from this study can be used to promote additional efforts that will assist in developing interventions to prevent future foodborne illness outbreaks associated with leafy greens. PMID:24290691

  16. In vitro cytotoxic screening of selected Saudi medicinal plants.

    PubMed

    Almehdar, Hussein; Abdallah, Hossam M; Osman, Abdel-Moneim M; Abdel-Sattar, Essam A

    2012-04-01

    Many natural products from plants have been identified to exert anticancer activity. It might be expected to be a challenge to look at the Saudi plants in order to discover new sources for new molecules which may have anticancer activity. The methanolic extracts of forty species of plants traditionally used in Saudi Arabia for the treatment of a variety of diseases were tested in vitro for their potential anticancer activity on different human cancer cell lines. The cytotoxic activity of the methanolic extracts of the tested plants were determined using three human cancer cell lines, namely, breast cancer (MCF7), hepatocellular carcinoma (HEPG2), and cervix cancer (HELA) cells. In addition, human normal melanocyte (HFB4) was used as normal nonmalignant cells. Sulforhodamine B colorimetric assay was used to evaluate the in vitro cytotoxic activity of the different extracts. The growth inhibition of 50% (IC(50)) for each extract was calculated from the optical density of treated and untreated cells. Doxorubicin, a broad-spectrum anticancer drug, was used as the positive control. Nine plant extracts were chosen for further fractionation based on their activity and availability. Interesting cytotoxic activity was observed for Hypoestes forskaolii, Withania somnifera, Solanum glabratum, Adenium obesum, Pistacia vera oleoresin, Caralluma quadrangula, Eulophia petersii, Phragmanthera austroarabica, and Asparagus officinalis. Other extracts showed poor activity.

  17. Transportation and handling loads

    NASA Technical Reports Server (NTRS)

    Ostrem, F. E.

    1971-01-01

    Criteria and recommended practices are presented for the prediction and verification of transportation and handling loads for the space vehicle structure and for monitoring these loads during transportation and handling of the vehicle or major vehicle segments. Elements of the transportation and handling systems, and the forcing functions and associated loads are described. The forcing functions for common carriers and typical handling devices are assessed, and emphasis is given to the assessment of loads at the points where the space vehicle is supported during transportation and handling. Factors which must be considered when predicting the loads include the transportation and handling medium; type of handling fixture; transport vehicle speed; types of terrain; weather (changes in pressure of temperature, wind, etc.); and dynamics of the transportation modes or handling devices (acceleration, deceleration, and rotations of the transporter or handling device).

  18. Denatured protein-coated docetaxel nanoparticles: Alterable drug state and cytosolic delivery.

    PubMed

    Zhang, Li; Xiao, Qingqing; Wang, Yiran; Zhang, Chenshuang; He, Wei; Yin, Lifang

    2017-05-15

    Many lead compounds have a low solubility in water, which substantially hinders their clinical application. Nanosuspensions have been considered a promising strategy for the delivery of water-insoluble drugs. Here, denatured soy protein isolate (SPI)-coated docetaxel nanosuspensions (DTX-NS) were developed using an anti-solvent precipitation-ultrasonication method to improve the water-solubility of DTX, thus improving its intracellular delivery. DTX-NS, with a diameter of 150-250nm and drug-loading up to 18.18%, were successfully prepared by coating drug particles with SPI. Interestingly, the drug state of DTX-NS was alterable. Amorphous drug nanoparticles were obtained at low drug-loading, whereas at a high drug-loading, the DTX-NS drug was mainly present in the crystalline state. Moreover, DTX-NS could be internalized at high levels by cancer cells and enter the cytosol by lysosomal escape, enhancing cell cytotoxicity and apoptosis compared with free DTX. Taken together, denatured SPI has a strong stabilization effect on nanosuspensions, and the drug state in SPI-coated nanosuspensions is alterable by changing the drug-loading. Moreover, DTX-NS could achieve cytosolic delivery, generating enhanced cell cytotoxicity against cancer cells. Copyright © 2017 Elsevier B.V. All rights reserved.

  19. Realizing drug repositioning by adapting a recommendation system to handle the process.

    PubMed

    Ozsoy, Makbule Guclin; Özyer, Tansel; Polat, Faruk; Alhajj, Reda

    2018-04-12

    Drug repositioning is the process of identifying new targets for known drugs. It can be used to overcome problems associated with traditional drug discovery by adapting existing drugs to treat new discovered diseases. Thus, it may reduce associated risk, cost and time required to identify and verify new drugs. Nowadays, drug repositioning has received more attention from industry and academia. To tackle this problem, researchers have applied many different computational methods and have used various features of drugs and diseases. In this study, we contribute to the ongoing research efforts by combining multiple features, namely chemical structures, protein interactions and side-effects to predict new indications of target drugs. To achieve our target, we realize drug repositioning as a recommendation process and this leads to a new perspective in tackling the problem. The utilized recommendation method is based on Pareto dominance and collaborative filtering. It can also integrate multiple data-sources and multiple features. For the computation part, we applied several settings and we compared their performance. Evaluation results show that the proposed method can achieve more concentrated predictions with high precision, where nearly half of the predictions are true. Compared to other state of the art methods described in the literature, the proposed method is better at making right predictions by having higher precision. The reported results demonstrate the applicability and effectiveness of recommendation methods for drug repositioning.

  20. Exploration of a Doxorubicin-Polymer Conjugate in Lipid-Polymer Hybrid Nanoparticle Drug Delivery

    NASA Astrophysics Data System (ADS)

    Lough, Emily

    Nanoparticle (NP) drug delivery is a major focus in the research community because of its potential to use existing drugs in safer and more effective ways. Chemotherapy encapsulation in NPs shields the drug from the rest of the body while it is within the NP, with less systemic exposure leading to fewer off-target effects of the drug. However, passive loading of drugs into NPs is a suboptimal method, often leading to burst release upon administration. This work explores the impact of incorporating the drug-polymer conjugate doxorubicin-poly (lactic-co-glycolic) acid (Dox-PLGA) into a lipid-polymer hybrid nanoparticle (LPN). The primary difference in using a drug-polymer conjugate for NP drug delivery is the drug's release kinetics. Dox-PLGA LPNs showed a more sustained and prolonged release profile over 28 days compared to LPNs with passively loaded, unconjugated doxorubicin. This sustained release translates to cytotoxicity; when systemic circulation was simulated using dialysis, Dox-PLGA LPNs retained their cytotoxicity at a higher level than the passively loaded LPNs. The in vivo implication of preserving cytotoxic potency through a slower release profile is that the majority of Dox delivered via Dox-PLGA LPNs will be kept within the LPN until it reaches the tumor. This will result in fewer systemic side effects and more effective treatments given the higher drug concentration at the tumor site. An intriguing clinical application of this drug delivery approach lies in using Dox-PLGA LPNs to cross the blood-brain barrier (BBB). The incorporation of Dox-PLGA is hypothesized to have a protective effect on the BBB as its slow release profile will prevent drug from harming the BBB. Using induced pluripotent stem cells differentiated to human brain microvascular endothelial cells that comprise the BBB, the Dox-PLGA LPNs were shown to be less destructive to the BBB than their passively loaded counterparts. Dox-PLGA LPNs showed superior cytotoxicity against plated tumor

  1. MSH3 Mismatch Repair Protein Regulates Sensitivity to Cytotoxic Drugs and a Histone Deacetylase Inhibitor in Human Colon Carcinoma Cells

    PubMed Central

    Park, Jae Myung; Huang, Shengbing; Tougeron, David; Sinicrope, Frank A.

    2013-01-01

    Background MSH3 is a DNA mismatch repair (MMR) gene that undergoes frequent somatic mutation in colorectal cancers (CRCs) with MMR deficiency. MSH3, together with MSH2, forms the MutSβ heteroduplex that interacts with interstrand cross-links induced by drugs such as cisplatin. To date, the impact of MSH3 on chemosensitivity is unknown. Methods We utilized isogenic HCT116 (MLH1−/MSH3−) cells where MLH1 is restored by transfer of chromosome 3 (HCT116+ch3) and also MSH3 by chromosome 5 (HCT116+3+5). We generated HCT116+3+5, SW480 (MLH1+/MSH3+) and SW48 (MLH1−/MSH3+) cells with shRNA knockdown of MSH3. Cells were treated with 5-fluorouracil (5-FU), SN-38, oxaliplatin, or the histone deacetylase (HDAC) inhibitor PCI-24781 and cell viability, clonogenic survival, DNA damage and apoptosis were analyzed. Results MSH3-deficient vs proficient CRC cells showed increased sensitivity to the irinotecan metabolite SN-38 and to oxaliplatin, but not 5-FU, as shown in assays for apoptosis and clonogenic survival. In contrast, suppression of MLH1 attenuated the cytotoxic effect of 5-FU, but did not alter sensitivity to SN-38 or oxaliplatin. The impact of MSH3 knockdown on chemosensitivity to SN-38 and oxaliplatin was maintained independent of MLH1 status. In MSH3-deficient vs proficient cells, SN-38 and oxaliplatin induced higher levels of phosphorylated histone H2AX and Chk2, and similar results were found in MLH1-proficient SW480 cells. MSH3-deficient vs proficient cells showed increased 53BP1 nuclear foci after irradiation, suggesting that MSH3 can regulate DNA double strand break (DSB) repair. We then utilized PCI-24781 that interferes with homologous recombination (HR) indicated by a reduction in Rad51 expression. The addition of PCI-24781 to oxaliplatin enhanced cytotoxicity to a greater extent compared to either drug alone. Conclusion MSH3 status can regulate the DNA damage response and extent of apoptosis induced by chemotherapy. The ability of MSH3 to regulate

  2. Propofol depresses cisplatin cytotoxicity via the inhibition of gap junctions.

    PubMed

    Zhang, Yuan; Wang, Xiyan; Wang, Qin; Ge, Hui; Tao, Liang

    2016-06-01

    The general anesthetic, propofol, affects chemotherapeutic activity, however, the mechanism underlying its effects remains to be fully elucidated. Our previous study showed that tramadol and flurbiprofen depressed the cytotoxicity of cisplatin via the inhibition of gap junction (GJ) intercellular communication (GJIC) in connexin (Cx)32 HeLa cells. The present study investigated whether the effects of propofol on the cytotoxicity of cisplatin were mediated by GJ in U87 glioma cells and Cx26‑transfected HeLa cells. Standard colony formation assay was used to determine the cytotoxicity of cisplatin. Parachute dye coupling assay was used to measure GJ function, and western blot analysis was used to determine the expression levels of Cx32. The results revealed that exposure of the U87 glioma cells and the Cx26-transfected HeLa cells to cisplatin for 1 h reduced clonogenic survival in low density cultures (without GJs) and high density cultures (with GJs). However, the toxic effect was higher in the high density culture. In addition, pretreatment of the cells with propofol significantly reduced cisplatin‑induced cytotoxicity, but only in the presence of functional GJs. Furthermore, propofol significantly inhibited dye coupling through junctional channels, and a long duration of exposure of the cells to propofol downregulated the expression levels of Cx43 and Cx26. These results demonstrated that the inhibition of GJIC by propofol affected the therapeutic efficacy of chemotherapeutic drugs. The present study provides evidence of a novel mechanism underlying the effects of analgesics in counteracting chemotherapeutic efficiency.

  3. Sugar-modified poly(propylene imine) dendrimers as drug delivery agents for cytarabine to overcome drug resistance.

    PubMed

    Szulc, Aleksandra; Pulaski, Lukasz; Appelhans, Dietmar; Voit, Brigitte; Klajnert-Maculewicz, Barbara

    2016-11-20

    Maltose-modified poly(propylene imine) glycodendrimers (PPI-m OS) of the 4th generation provide a promising strategy for leukemia treatment. Anticancer therapy with nucleoside analog drugs such as cytarabine (Ara-C) frequently has limited efficacy due to drug resistance, inefficient uptake and accumulation of the drug inside cancer cells where it has to be transformed into the active triphosphate congener. The cationic nature of PPI dendrimers makes it possible to form complexes with nucleotide Ara-C triphosphate forms (Ara-CTP). The aim of this work was to test the concept of applying PPI glycodendrimers as drug delivery devices in order to facilitate the delivery of activated cytarabine to cancer cells to overcome metabolic limitations of the drug. The study has been carried out using 1301 and HL-60 leukemic cell lines as well as peripheral blood mononuclear cells. The results of cytotoxicity and apoptosis assays showed enhanced activity of Ara-C triphosphate form (Ara-CTP) complexed with PPI-m dendrimers in relation to free Ara-C and Ara-CTP against 1301 leukemic cells. Secondly, enhanced uptake and cytotoxicity of Ara-CTP-dendrimers complexes toward 1301 cells with blocked human equilibrative nucleoside transporter - hENT1 suggested that this combination might be a versatile candidate for chemotherapy against resistant acute lymphoblastic leukemia cells with lower expression of hENT1. Copyright © 2016 Elsevier B.V. All rights reserved.

  4. Synthesization, Characterization, and in Vitro Evaluation of Cytotoxicity of Biomaterials Based on Halloysite Nanotubes.

    PubMed

    Sánchez-Fernández, Antonio; Peña-Parás, Laura; Vidaltamayo, Román; Cué-Sampedro, Rodrigo; Mendoza-Martínez, Ana; Zomosa-Signoret, Viviana C; Rivas-Estilla, Ana M; Riojas, Paulina

    2014-12-04

    Halloysite is an aluminosilicate clay that has been widely used for controlled drug delivery, immobilization of enzymes, and for the capture of circulating tumor cells (CTCs). Surface modification of halloysite by organosilanes has been explored to improve their properties. In this study halloysite clay nanotubes (HNTs) were functionalized by two different organosilanes: Trimethoxy(propyl)silane (TMPS), and Triethoxy(octyl)silane (EOS). Untreated and modified samples were characterized by scanning electron microscopy (SEM), X-ray diffractometry (XRD), thermogravimetrical analysis (TGA), and Fourier transform infrared spectroscopy (FTIR). Results showed a strong interaction of organosilanes with the chemical groups present in HNTs. Biocompatibility and cytotoxicity of these nanomaterials were determined using C6 rat glioblastoma cells. Our results indicate that prior to functionalization, HNTs show a high biocompatibility and low cytotoxicity. However, HNTs functionalized with EOS and TMPS showed high cytotoxicity by inducing apoptosis. These results allow the identification of potential applications in biomedical areas for HNTs.

  5. Synthesization, Characterization, and in Vitro Evaluation of Cytotoxicity of Biomaterials Based on Halloysite Nanotubes

    PubMed Central

    Sánchez-Fernández, Antonio; Peña-Parás, Laura; Vidaltamayo, Román; Cué-Sampedro, Rodrigo; Mendoza-Martínez, Ana; Zomosa-Signoret, Viviana C.; Rivas-Estilla, Ana M.; Riojas, Paulina

    2014-01-01

    Halloysite is an aluminosilicate clay that has been widely used for controlled drug delivery, immobilization of enzymes, and for the capture of circulating tumor cells (CTCs). Surface modification of halloysite by organosilanes has been explored to improve their properties. In this study halloysite clay nanotubes (HNTs) were functionalized by two different organosilanes: Trimethoxy(propyl)silane (TMPS), and Triethoxy(octyl)silane (EOS). Untreated and modified samples were characterized by scanning electron microscopy (SEM), X-ray diffractometry (XRD), thermogravimetrical analysis (TGA), and Fourier transform infrared spectroscopy (FTIR). Results showed a strong interaction of organosilanes with the chemical groups present in HNTs. Biocompatibility and cytotoxicity of these nanomaterials were determined using C6 rat glioblastoma cells. Our results indicate that prior to functionalization, HNTs show a high biocompatibility and low cytotoxicity. However, HNTs functionalized with EOS and TMPS showed high cytotoxicity by inducing apoptosis. These results allow the identification of potential applications in biomedical areas for HNTs. PMID:28788274

  6. Cytotoxicity of gold nanoparticles with different structures and surface-anchored chiral polymers.

    PubMed

    Deng, Jun; Yao, Mengyun; Gao, Changyou

    2017-04-15

    Nanoparticles (NPs) can have profound effects on cell biology. However, the potential adverse effects of gold nanoparticles (AuNPs) with different surface chirality and structures have not been elucidated. In this study, monolayers of poly(acryloyl-l(d)-valine (l(d)-PAV) chiral molecules were anchored on the surfaces of gold nanocubes (AuNCs) and nanooctahedras (AuNOs), respectively. The l-PAV-AuNCs and d-PAV-AuNCs, or the l-PAV-AuNOs and d-PAV-AuNOs, had identical physicochemical properties in terms of size, morphology and ligand density except of the reverse molecular chirality on the particle surfaces, respectively. The l-PAV capped AuNCs and AuNOs exhibited larger cytotoxicity to A549 cells than the D-PAV coated ones, and the PAV-AuNOs had larger cytotoxicity than PAV-AuNCs when being capped with the same type of enantiomers, respectively. The cytotoxicity was positively correlated with the cellular uptake amount, and thereby the production of intracellular reactive oxygen species (ROS). • Gold nanoparticles with different structure and surface chirality are fabricated. • The structure and surface chirality at the nanoscale can influence cytotoxicity and genotoxicity. • A new perspective on designing nanoparticles for drug delivery, bioimaging and diagnosis. Copyright © 2017 Acta Materialia Inc. Published by Elsevier Ltd. All rights reserved.

  7. Functionalized graphene oxides for drug loading, release and delivery of poorly water soluble anticancer drug: A comparative study.

    PubMed

    Karki, Neha; Tiwari, Himani; Pal, Mintu; Chaurasia, Alok; Bal, Rajaram; Joshi, Penny; Sahoo, Nanda Gopal

    2018-05-18

    In this work, the modification of graphene oxides (GOs) have been done with hydrophilic and biodegradable polymer, polyvinylpyrrolidone (PVP) and other excipient β -cyclodextrin (β-CD) through covalent functionalization for efficient loading and compatible release of sparingly water soluble aromatic anticancer drug SN-38 (7-ethyl-10-hydroxy camptothecin). The drug was loaded onto both GO-PVP and GO-β-CD through the π-π interactions.The release of drug from both the nanocarriers were analyzed in different pH medium of pH 7 (water, neutral medium), pH 5 (acidic buffer) and pH 12 (basic buffer). The loading capacity and the cell killing activity of SN-38 loaded on functionalized GO were investigated comprehensively in human breast cancer cells MCF-7.Our findings shown that the cytotoxicity of SN-38 loaded to the polymer modified GO was comparatively higher than free SN-38. In particular, SN-38 loaded GO-PVP nanocarrier has more cytotoxic effect than GO-β-CD nanocarrier against MCF-7 cells, indicating that SN-38 loaded GO-PVP nanocarrier can be used as promising material for drug delivery and biological applications. Copyright © 2018 Elsevier B.V. All rights reserved.

  8. The enriched fraction of Vernonia cinerea L. induces apoptosis and inhibits multi-drug resistance transporters in human epithelial cancer cells.

    PubMed

    Appadath Beeran, Asmy; Maliyakkal, Naseer; Rao, Chamallamudi Mallikarjuna; Udupa, Nayanabhirama

    2014-12-02

    Vernonia cinerea Less. (VC) of the family Asteraceaes is considered as the sacred plant; 'Dasapushpam' which is ethnopharmacologically significant to the people of Kerala in India. In fact, VC has been used in the traditional system of medicine (Ayurveda) for the treatment of various ailments including cancer. Cytotoxicity of the ethanolic extract of VC (VC-ET), petroleum ether fraction (VC-PET), dichloromethane fraction (VC-DCM), n-butyl alcohol fraction (VC-BT), and rest fraction (VC-R) was evaluated in cervical carcinoma (HeLa), lung adenocarcinoma (A549), breast cancer (MCF-7), and colon carcinoma (Caco-2) cells using Sulforhodamine B (SRB) assay. The apoptotic effects of VC-DCM were assessed in cancer cells using Annexin V assay. The effects of VC-DCM on multi-drug resistance (MDR) transporters in HeLa, A549, MCF-7, and Caco-2 cells were evaluated using flow cytometry based functional assays. Similarly, drug uptake in cancer cells and sensitization of cancer cells towards chemotherapeutic drugs in the presence of VC-DCM were studied using Daunorubicin (DNR) accumulation assay and SRB assay, respectively. Cytotoxicity assay revealed that the enriched fraction of VC (VC-DCM) possessed dose-dependent cytotoxic effects in human epithelial cancer cells (HeLa, A549, MCF-7, and Caco-2). Further, treatment of cancer cells (HeLa, A549, MCF-7, and Caco-2) with VC-DCM led to a significant increase in both early and late apoptosis, indicating the induction of apoptosis. Interestingly, VC-DCM significantly inhibited functional activity of MDR transporters (ABC-B1 and ABC-G2), enhanced DNR-uptake in cancer cells, and sensitized cancer cells towards chemotherapeutic drug-mediated cytotoxicity, thus indicating the ability of VC-DCM to reverse MDR in cancer and enhance the cytotoxic effects of anticancer drugs. A methodological investigation on the anti-cancer properties of Vernonia cinerea Less. (VC) revealed that an enriched fraction of VC (VC-DCM) possessed cytotoxic

  9. Breakable mesoporous silica nanoparticles for targeted drug delivery

    NASA Astrophysics Data System (ADS)

    Maggini, Laura; Cabrera, Ingrid; Ruiz-Carretero, Amparo; Prasetyanto, Eko A.; Robinet, Eric; de Cola, Luisa

    2016-03-01

    ``Pop goes the particle''. Here we report on the preparation of redox responsive mesoporous organo-silica nanoparticles containing disulfide (S-S) bridges (ss-NPs) that, even upon the exohedral grafting of targeting ligands, retained their ability to undergo structural degradation, and increase their local release activity when exposed to a reducing agent. This degradation could be observed also inside glioma C6 cancer cells. Moreover, when anticancer drug-loaded pristine and derivatized ss-NPs were fed to glioma C6 cells, the responsive hybrids were more effective in their cytotoxic action compared to non-breakable particles. The possibility of tailoring the surface functionalization of this hybrid, yet preserving its self-destructive behavior and enhanced drug delivery properties, paves the way for the development of effective biodegradable materials for in vivo targeted drug delivery.``Pop goes the particle''. Here we report on the preparation of redox responsive mesoporous organo-silica nanoparticles containing disulfide (S-S) bridges (ss-NPs) that, even upon the exohedral grafting of targeting ligands, retained their ability to undergo structural degradation, and increase their local release activity when exposed to a reducing agent. This degradation could be observed also inside glioma C6 cancer cells. Moreover, when anticancer drug-loaded pristine and derivatized ss-NPs were fed to glioma C6 cells, the responsive hybrids were more effective in their cytotoxic action compared to non-breakable particles. The possibility of tailoring the surface functionalization of this hybrid, yet preserving its self-destructive behavior and enhanced drug delivery properties, paves the way for the development of effective biodegradable materials for in vivo targeted drug delivery. Electronic supplementary information (ESI) available: Full experimental procedures, additional SEM and TEM images of particles, complete UV-Vis and PL-monitored characterization of the breakdown of

  10. Guanidino-containing drugs in cancer chemotherapy: biochemical and clinical pharmacology.

    PubMed

    Ekelund, S; Nygren, P; Larsson, R

    2001-05-15

    The pharmacology and clinical application of three guanidino-containing compounds are reviewed in this commentary with special focus on a new member of this group of drugs, CHS 828 [N-(6-(4-chlorophenoxy)hexyl)-N'-cyano-N"-4-pyridylguanidine]. m-Iodobenzylguanidine (MIBG) and methylglyoxal bis(guanylhydrazone) (MGBG) have been extensively studied, preclinically as well as clinically, and have established use as anticancer agents. MIBG has structural similarities to the neurotransmitter, norepinephrine, and MGBG is a structural analog of the natural polyamine spermidine. CHS 828 is a pyridyl cyanoguanidine newly recognized as having cytotoxic effects when screening antihypertensive compounds. Apart from having the guanidino groups in common, there are many differences between these drugs in both structure and their mechanisms of action. However, they all inhibit mitochondrial function, a seemingly unique feature among chemotherapeutic drugs. In vitro in various cell lines and primary cultures of patient tumor cells and in vivo in various tumor models, CHS 828 has cytotoxic properties unlike any of the standard cytotoxic drugs with which it has been compared. Among these are non-cross-resistance to standard drugs and pronounced activity in tumor models acknowledged to be highly drug-resistant. Similar to MIBG, CHS 828 induces an early increase in extracellular acidification, due to stimulation of the glycolytic flux. Furthermore, ATP levels decrease, and the syntheses of DNA and protein are shut off after approximately 30 hr of exposure, indicating active cell death. CHS 828 is now in early clinical trials, the results of which are eagerly awaited.

  11. Essential oils: in vitro activity against Leishmania amazonensis, cytotoxicity and chemical composition.

    PubMed

    Andrade, Milene Aparecida; Azevedo, Clênia Dos Santos; Motta, Flávia Nader; Santos, Maria Lucília Dos; Silva, Camila Lasse; Santana, Jaime Martins de; Bastos, Izabela M D

    2016-11-08

    The current chemotherapy for cutaneous leishmaniosis (CL) has a series of drug limitations such as toxic side effects, long duration, high costs and drug resistance, which requires the development of new drugs or effective alternatives to the CL treatment. Essential oils (EOs) are complex mixtures of secondary metabolites from various plants. It has been shown that several EOs, or their constituents, have inhibitory activity against protozoa. Thus, this study aims to evaluate the biological activity of different essential oils (EOs) on Leishmania (L.) amazonensis promastigotes forms, as well as their cytotoxicity on mammalian cells and chemical composition. Sixteen EOs were evaluated by mean of IC 50 /24 h and cytotoxicity against L6 cells (CC 50 /24 h) using Resazurin assay. Only those EOs that presented better results for IC 50 /24 h were submitted to GC-MS analysis to determine their chemical constitution. The EO from Cinnamodendron dinisii, Matricaria chamomilla, Myroxylon peruiferum, Salvia sclarea, Bulnesia sarmientoi, Ferula galbaniflua, Siparuna guianensis and Melissa officinalis were the most active against L. amazonensis with IC50/24 h ranging from 54.05 to 162.25 μg/mL. Analysis of EOs by GC-MS showed mainly the presence of β-farnesene (52.73 %) and bisabolol oxide (12.09 %) for M. chamomilla; α-copaene (13.41 %), safrole (8.35 %) and δ-cadinene (7.08 %) for M. peruiferum; linalool (28.80 %) and linalyl acetate (60.08 %) for S. sclarea; guaiol (48.29 %) and 2-undecanone (19.49 %) for B. sarmientoi; ethyl phthalate (13.09 %) and methyl-8-pimaren-18-oate (41.82 %) for F. galbaniflua; and neral (37.18 %) and citral (5.02 %) for M. officinalis. The EO from F. galbaniflua showed to be effective against L. amazonensis promastigotes forms and presented low cytotoxic activity against L6 cells. Thus, it represents a strong candidate for future studies aiming its molecular activity on these pathogenic parasites.

  12. An appraisal of drug development timelines in the Era of precision oncology

    PubMed Central

    Jardim, Denis Leonardo; Schwaederle, Maria; Hong, David S.; Kurzrock, Razelle

    2016-01-01

    The effects of incorporating a biomarker-based (personalized or precision) selection strategy on drug development timelines for new oncology drugs merit investigation. Here we accessed documents from the Food and Drug Administration (FDA) database for anticancer agents approved between 09/1998 and 07/2014 to compare drugs developed with and without a personalized strategy. Sixty-three drugs were included (28 [44%] personalized and 35 [56%] non-personalized). No differences in access to FDA-expedited programs were observed between personalized and non-personalized drugs. A personalized approach for drug development was associated with faster clinical development (Investigational New Drug [IND] to New Drug Application [NDA] submission; median = 58.8 months [95% CI 53.8–81.8] vs. 93.5 months [95% CI 73.9–112.9], P =.001), but a similar approval time (NDA submission to approval; median=6.0 months [95% CI 5.5–8.4] vs. 6.1 months [95% CI 5.9–8.3], P = .756) compared to a non-personalized strategy. In the multivariate model, class of drug stratified by personalized status (targeted personalized vs. targeted non-personalized vs. cytotoxic) was the only independent factor associated with faster total time of clinical drug development (clinical plus approval phase, median = 64.6 vs 87.1 vs. 112.7 months [cytotoxic], P = .038). Response rates (RR) in early trials were positively correlated with RR in registration trials (r = 0.63, P = <.001), and inversely associated with total time of drug development (r = −0.29, P = .049). In conclusion, targeted agents were developed faster than cytotoxic agents. Shorter times to approval were associated, in multivariate analysis, with a biomarker-based clinical development strategy. PMID:27419632

  13. Emerging antibody-drug conjugates for treating lymphoid malignancies.

    PubMed

    Wolska-Washer, Anna; Robak, Pawel; Smolewski, Piotr; Robak, Tadeusz

    2017-09-01

    Antibody-drug conjugates (ADC) are monoclonal antibodies (Mabs) attached to biologically active drugs through specialized chemical linkers. They deliver and release cytotoxic agents at the tumor site, reducing the likelihood of systemic exposure and therefore toxicity. These agents should improve the potency of chemotherapy by increasing the accumulation of cytotoxic the drug within or near the neoplastic cells with reduced systemic effects. Areas covered: A literature review was conducted of the MEDLINE database PubMed for articles in English examining Mabs, B-cell receptor pathway inhibitors and immunomodulating drugs. Publications from 2000 through April 2017 were scrutinized. Conference proceedings from the previous five years of the American Society of Hematology, European Hematology Association, American Society of Clinical Oncology, and ACR/ARHP Annual Scientific Meetings were searched manually. Additional relevant publications were obtained by reviewing the references from the chosen articles. Expert opinion: Newer ADCs show promise as treatment for several hematologic malignancies, especially lymphoma, multiple myeloma, and leukemia. However, definitive data from ongoing and future clinical trials will aid in better defining the status of these agents in the treatment of these diseases.

  14. AgHalo: A Facile Fluorogenic Sensor to Detect Drug-Induced Proteome Stress.

    PubMed

    Liu, Yu; Fares, Matthew; Dunham, Noah P; Gao, Zi; Miao, Kun; Jiang, Xueyuan; Bollinger, Samuel S; Boal, Amie K; Zhang, Xin

    2017-07-17

    Drug-induced proteome stress that involves protein aggregation may cause adverse effects and undermine the safety profile of a drug. Safety of drugs is regularly evaluated using cytotoxicity assays that measure cell death. However, these assays provide limited insights into the presence of proteome stress in live cells. A fluorogenic protein sensor is reported to detect drug-induced proteome stress prior to cell death. An aggregation prone Halo-tag mutant (AgHalo) was evolved to sense proteome stress through its aggregation. Detection of such conformational changes was enabled by a fluorogenic ligand that fluoresces upon AgHalo forming soluble aggregates. Using 5 common anticancer drugs, we exemplified detection of differential proteome stress before any cell death was observed. Thus, this sensor can be used to evaluate drug safety in a regime that the current cytotoxicity assays cannot cover and be generally applied to detect proteome stress induced by other toxins. © 2017 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  15. Cytotoxicity of ferrocenyl-ethynyl phosphine metal complexes of gold and platinum.

    PubMed

    Fourie, Eleanor; Erasmus, Elizabeth; Swarts, Jannie C; Jakob, Alexander; Lang, Heinrich; Joone, Gisela K; VAN Rensburg, Constance E J

    2011-03-01

    Ferrocene derivatives may possess antineoplastic activity. Those with low ferrocenyl reduction potentials often have the highest anticancer activity, as cell components have to oxidise them to the active ferrocenium species before cytotoxicity can be recorded. Some gold(I) complexes also possess anticancer activity. This study examined the cytotoxicity of ferrocenyl-ethynyl and ruthenocenyl-ethynyl complexes of gold and platinum. The results were related to the ease of iron oxidation in the ferrocenyl fragment and compared with the cytotoxicity of cisplatin, [(H(3)N)(2)PtCl(2)] and [Au(PPh(2)CH(2)CH(2)PPh(2))(2)]Cl. Ferrocene-containing gold and platinum complexes of the type Fc-C≡C-PPh(2), 1, and Fc-C≡C-PPh(2)→M with Fc=ferrocenyl (Fe(II)(η(5)-C(5)H(5)) (η(5)-C(5)H(4))), Ph=phenyl (C(6)H(5)) and M=Au-Cl, 2, Au-C≡C-Fc, 3, or Au-C≡C-Rc, 4 (Rc=ruthenocenyl, (Ru(II)(η(5)-C(5)H(5)) (η(5)-C(5)H(4))) and the complex [(Fc-C≡C-PPh(2))(2)PtCl(2)], 5, were investigated. Cytotoxicity tests were determined on the HeLa (human cervix epitheloid) cancer cell line, ATCC CCL-2. Cell survival was measured by means of the colorometric 3-(4,5-dimethylthiazol-2-yl)-diphenyltetrazolium bromide assay. The IC(50) values of compounds 1-4 from four experiments causing 50% cell growth inhibition, ranged between 4.6 and 27 μmol dm(-3). Drug activity was inversely proportional to the sum of all formal reduction potentials, E(o'), of the ferrocenyl groups of the Fc-C≡C-PPh(2) and Fc-C≡C-ligands coordinated to the gold centre. The Fc-C≡C-PPh(2)→Au-Cl complex, compound 2, was most cytotoxic with IC(50)=4.6 μmol dm(-3) , demonstrating the beneficial effect the Cl(-) ion has on the cytotoxicity of these neutral gold complexes. The platinum complex [(Fc-C≡C-PPh(2))(2)PtCl(2)], compound 5, resembling the structure of cisplatin, in principle should exhibit good cytotoxicity, but was not tested due to its total insolubility in any biocompatible medium.

  16. Antibody-drug conjugates: Promising and efficient tools for targeted cancer therapy.

    PubMed

    Nasiri, Hadi; Valedkarimi, Zahra; Aghebati-Maleki, Leili; Majidi, Jafar

    2018-09-01

    Over the recent decades, the use of antibody-drug conjugates (ADCs) has led to a paradigm shift in cancer chemotherapy. Antibody-based treatment of various human tumors has presented dramatic efficacy and is now one of the most promising strategies used for targeted therapy of patients with a variety of malignancies, including hematological cancers and solid tumors. Monoclonal antibodies (mAbs) are able to selectively deliver cytotoxic drugs to tumor cells, which express specific antigens on their surface, and has been suggested as a novel category of agents for use in the development of anticancer targeted therapies. In contrast to conventional treatments that cause damage to healthy tissues, ADCs use mAbs to specifically attach to antigens on the surface of target cells and deliver their cytotoxic payloads. The therapeutic success of future ADCs depends on closely choosing the target antigen, increasing the potency of the cytotoxic cargo, improving the properties of the linker, and reducing drug resistance. If appropriate solutions are presented to address these issues, ADCs will play a more important role in the development of targeted therapeutics against cancer in the next years. We review the design of ADCs, and focus on how ADCs can be exploited to overcome multiple drug resistance (MDR). © 2018 Wiley Periodicals, Inc.

  17. In Vitro and In Vivo Evaluation of Cysteine and Site Specific Conjugated Herceptin Antibody-Drug Conjugates

    PubMed Central

    Jackson, Dowdy; Atkinson, John; Guevara, Claudia I.; Zhang, Chunying; Kery, Vladimir; Moon, Sung-Ju; Virata, Cyrus; Yang, Peng; Lowe, Christine; Pinkstaff, Jason; Cho, Ho; Knudsen, Nick; Manibusan, Anthony; Tian, Feng; Sun, Ying; Lu, Yingchun; Sellers, Aaron; Jia, Xiao-Chi; Joseph, Ingrid; Anand, Banmeet; Morrison, Kendall; Pereira, Daniel S.; Stover, David

    2014-01-01

    Antibody drug conjugates (ADCs) are monoclonal antibodies designed to deliver a cytotoxic drug selectively to antigen expressing cells. Several components of an ADC including the selection of the antibody, the linker, the cytotoxic drug payload and the site of attachment used to attach the drug to the antibody are critical to the activity and development of the ADC. The cytotoxic drugs or payloads used to make ADCs are typically conjugated to the antibody through cysteine or lysine residues. This results in ADCs that have a heterogeneous number of drugs per antibody. The number of drugs per antibody commonly referred to as the drug to antibody ratio (DAR), can vary between 0 and 8 drugs for a IgG1 antibody. Antibodies with 0 drugs are ineffective and compete with the ADC for binding to the antigen expressing cells. Antibodies with 8 drugs per antibody have reduced in vivo stability, which may contribute to non target related toxicities. In these studies we incorporated a non-natural amino acid, para acetyl phenylalanine, at two unique sites within an antibody against Her2/neu. We covalently attached a cytotoxic drug to these sites to form an ADC which contains two drugs per antibody. We report the results from the first direct preclinical comparison of a site specific non-natural amino acid anti-Her2 ADC and a cysteine conjugated anti-Her2 ADC. We report that the site specific non-natural amino acid anti-Her2 ADCs have superior in vitro serum stability and preclinical toxicology profile in rats as compared to the cysteine conjugated anti-Her2 ADCs. We also demonstrate that the site specific non-natural amino acid anti-Her2 ADCs maintain their in vitro potency and in vivo efficacy against Her2 expressing human tumor cell lines. Our data suggests that site specific non-natural amino acid ADCs may have a superior therapeutic window than cysteine conjugated ADCs. PMID:24454709

  18. Preliminary phytochemical analysis, Antioxidant and cytotoxicity test of Carissa edulis Vahl dried fruits

    NASA Astrophysics Data System (ADS)

    Fowsiya, J.; Madhumitha, G.

    2017-11-01

    Plants are the main source of medicine which is used in traditional as well as modern medicine in recent years for curing many diseases. Carissa edulis Vahl is one of the traditional plants which have healing property on diarrhea, toothache and chest pain. The present work aims on phytochemical, antioxidant and in vitro cytotoxicity test of C. edulis dried fruits. The different solvent extracts obtained from petroleum ether, ethyl acetate, chloroform, ethanol and water have been evaluated the presence of phytochemicals. Several assays were carried out like total antioxidant, DPPH, reducing power and thiobarbituric acid to investigate the free radical scavenging property. In addition, the cytotoxicity study also carried out on human lung cancer cells (A549). Among different solvent extract, ethanol exhibited strong antioxidant activity. Additionally, the in vitro cytotoxicity test of C. edulis on human lung cancer cell (A549) showed IC50 value 405.704 ± 2.42 μg/mL. Therefore, C. edulis could be useful as a potential preventive intervention for free radicals mediated diseases as well as an antioxidant drug in the pharmaceutical industry.

  19. Mechanisms Underlying Cytotoxicity Induced by Engineered Nanomaterials: A Review of In Vitro Studies

    PubMed Central

    Nogueira, Daniele R.; Mitjans, Montserrat; Rolim, Clarice M. B.; Vinardell, M. Pilar

    2014-01-01

    Engineered nanomaterials are emerging functional materials with technologically interesting properties and a wide range of promising applications, such as drug delivery devices, medical imaging and diagnostics, and various other industrial products. However, concerns have been expressed about the risks of such materials and whether they can cause adverse effects. Studies of the potential hazards of nanomaterials have been widely performed using cell models and a range of in vitro approaches. In the present review, we provide a comprehensive and critical literature overview on current in vitro toxicity test methods that have been applied to determine the mechanisms underlying the cytotoxic effects induced by the nanostructures. The small size, surface charge, hydrophobicity and high adsorption capacity of nanomaterial allow for specific interactions within cell membrane and subcellular organelles, which in turn could lead to cytotoxicity through a range of different mechanisms. Finally, aggregating the given information on the relationships of nanomaterial cytotoxic responses with an understanding of its structure and physicochemical properties may promote the design of biologically safe nanostructures. PMID:28344232

  20. Pharmacologic modification of the cytotoxic effects of cadmium in LLC-PK sub 1 cells

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Battaglia, D.R.; Kahan, B.S.; Niewenhuis, R.J.

    1989-02-09

    Recent results from our laboratories have shown that exposure to cadmium causes LLC-PK{sub 1} cells to shrink, detach and assume a spherical shape. The purpose of the present studies was to determine whether various pharmacologic agents can reduce or prevent these cytotoxic effects of Cd{sup 2+}. Confluent monolayers of LLC-PK{sub 1} cells were incubated with the drugs of interest (50 microM final concentration) for 2 hours. CadCl{sub 2} (final concentration = 75 microM) was then added and the cells were incubated for another 20 hours. Morphologic changes were assessed qualitatively by viewing the cells with a phase contrast microscope. Themore » extent of Cd{sup 2+}-induced cellular damage was also quantified by staining the cells that remained on the growing surface with methylene blue, solubilizing the stained cells, and determining the absorbance at 660 nm. The results showed that several drugs, particularly the calmodulin antagonists trifluoperazine chlorpromazine, and the calcium channel blocker verapamil, significant reduced the severity of Cd{sup 2+}-induced cytotoxicity. By contrast, a variety of other agents, such as chlorpromazine sulfoxide, trifluoperazine sulfoxide, phenytoin and zinc, had no such protective effect. These findings indicate that Ca{sup 2+} antagonists can attenuate the cytotoxic effects of Cd{sup 2+} and that Cd{sup 2+} may produce some of its effects by activating Ca{sup 2+} -dependent systems.« less

  1. Drugs: What You Should Know (For Teens)

    MedlinePlus

    ... need. Several kinds of treatment are available for drug addiction . The two main types are behavioral (helping a ... handling relapses. It can be hard to overcome drug addiction without professional help and treatment. It takes time ...

  2. Impact of diffusion barriers to small cytotoxic molecules on the efficacy of immunotherapy in breast cancer.

    PubMed

    Das, Hiranmoy; Wang, Zhihui; Niazi, M Khalid Khan; Aggarwal, Reeva; Lu, Jingwei; Kanji, Suman; Das, Manjusri; Joseph, Matthew; Gurcan, Metin; Cristini, Vittorio

    2013-01-01

    Molecular-focused cancer therapies, e.g., molecularly targeted therapy and immunotherapy, so far demonstrate only limited efficacy in cancer patients. We hypothesize that underestimating the role of biophysical factors that impact the delivery of drugs or cytotoxic cells to the target sites (for associated preferential cytotoxicity or cell signaling modulation) may be responsible for the poor clinical outcome. Therefore, instead of focusing exclusively on the investigation of molecular mechanisms in cancer cells, convection-diffusion of cytotoxic molecules and migration of cancer-killing cells within tumor tissue should be taken into account to improve therapeutic effectiveness. To test this hypothesis, we have developed a mathematical model of the interstitial diffusion and uptake of small cytotoxic molecules secreted by T-cells, which is capable of predicting breast cancer growth inhibition as measured both in vitro and in vivo. Our analysis shows that diffusion barriers of cytotoxic molecules conspire with γδ T-cell scarcity in tissue to limit the inhibitory effects of γδ T-cells on cancer cells. This may increase the necessary ratios of γδ T-cells to cancer cells within tissue to unrealistic values for having an intended therapeutic effect, and decrease the effectiveness of the immunotherapeutic treatment.

  3. Preparing cytotoxic agents in an isolator.

    PubMed

    Favier, M; Hansel, S; Bressolle, F

    1993-11-01

    The design of an isolator and its use by an oncology satellite pharmacy for preparing cytotoxic drugs are described. The isolator (Iso Concept, Boulogne, France) is a totally enclosed ventilated biological-safety cabinet of class III polyvinyl chloride (PVC) with positive air pressure, a half-suit with a rotating seal, and attached neoprene gloves. There are three work-stations, one for the half-suit and two along one side of the isolator. The ventilation and air filtration system consists of one entry pipe with a full ventilation-filtration box fitted with one prefilter, one blower, one ball valve, one high-efficiency particulate air (HEPA) filter, one airtight nipple connected to an automatic sterilizer, alarms, and one exhaust pipe protected by a HEPA filter. The air lock consists of a rigid, transparent Plexiglas pass-through. The chamber is sterilized with heated compressed air mixed with 3.5% peracetic acid. Maintenance includes regular changing of gloves and HEPA filters; checking of the integrity of the PVC, half-suit, and gloves; and washing and decontamination procedures. Preparation of cytotoxics is planned in advance with prescription data and manufacturing sheets. In the half-suit, a pharmacy technician reads the label, supervises preparation of the sterile admixture, and writes a label. The operators on the side of the unit read the manufacturing sheet and prepare the dose identified by the label.(ABSTRACT TRUNCATED AT 250 WORDS)

  4. Community pharmacists' knowledge of and attitudes toward oral chemotherapy.

    PubMed

    O'Bryant, Cindy L; Crandell, Brian C

    2008-01-01

    To assess community pharmacists' attitude toward and knowledge of oral chemotherapy (OC) in terms of drug indications, general dosing principles, drug interactions, adverse effects, and special handling precautions. Descriptive, nonexperimental, cross-sectional survey. Colorado, Kansas, and the southeastern United States in May and June 2005. 1,080 pharmacists in four divisions of a large community pharmacy chain. Web-based survey. Pharmacist knowledge of and attitude toward OC. 243 surveys were returned (response rate 22.5%). Overall, pharmacists answered 49.7% of knowledge questions correctly. Pharmacists were most knowledgeable about general dosing principles (69%) and least knowledgeable about adverse effects (45%) and special handling (25%) of OC. Higher scores were seen for pharmacists who dispensed a greater number of OC prescriptions. Percentages of correct responses did not vary based on years of experience or number of OC continuing pharmacy education (CPE) programs attended. On a Likert-type scale of 1 (low) to 5 (high), the average comfort in dispensing OC was 2.4. On average, pharmacists indicated that knowing about OC was important to their practice (3.7) and expressed interest in participating in additional CPE programs on OC (4.2). Of respondents, 94.7% indicated that their pharmacy did not have a counting tray devoted to cytotoxic drugs. This survey identified several areas in which pharmacists' knowledge of OC could be enhanced. Handling of OC is an area of important need, given the low number of pharmacists reporting separate counting trays for cytotoxic drugs.

  5. Organic-inorganic hybrid nanoparticles controlled delivery system for anticancer drugs.

    PubMed

    Di Martino, Antonio; Guselnikova, Olga A; Trusova, Marina E; Postnikov, Pavel S; Sedlarik, Vladimir

    2017-06-30

    The use of organic-inorganic hybrid nanocarriers for controlled release of anticancer drugs has been gained a great interest, in particular, to improve the selectivity and efficacy of the drugs. In this study, iron oxide nanoparticles were prepared then surface modified via diazonium chemistry and coated with chitosan, and its derivative chitosan-grafted polylactic acid. The purpose was to increase the stability of the nanoparticles in physiological solution, heighten drug-loading capacity, prolong the release, reduce the initial burst effect and improve in vitro cytotoxicity of the model drug doxorubicin. The materials were characterized by DLS, ζ-potential, SEM, TGA, magnetization curves and release kinetics studies. Results confirmed the spherical shape, the presence of the coat and the advantages of using chitosan, particularly its amphiphilic derivative, as a coating agent, thereby surpassing the qualities of simple iron oxide nanoparticles. The coated nanoparticles exhibited great stability and high encapsulation efficiency for doxorubicin, at over 500μg per mg of carrier. Moreover, the intensity of the initial burst was clearly diminished after coating, hence represents an advantage of using the hybrid system over simple iron oxide nanoparticles. Cytotoxicity studies demonstrate the increase in cytotoxicity of doxorubicin when loaded in nanoparticles, indirectly proving the role played by the carrier and its surface properties in cell uptake. Copyright © 2017 Elsevier B.V. All rights reserved.

  6. Dual-functional transdermal drug delivery system with controllable drug loading based on thermosensitive poloxamer hydrogel for atopic dermatitis treatment

    NASA Astrophysics Data System (ADS)

    Wang, Wenyi; Wat, Elaine; Hui, Patrick C. L.; Chan, Ben; Ng, Frency S. F.; Kan, Chi-Wai; Wang, Xiaowen; Hu, Huawen; Wong, Eric C. W.; Lau, Clara B. S.; Leung, Ping-Chung

    2016-04-01

    The treatment of atopic dermatitis (AD) has long been viewed as a problematic issue by the medical profession. Although a wide variety of complementary therapies have been introduced, they fail to combine the skin moisturizing and drug supply for AD patients. This study reports the development of a thermo-sensitive Poloxamer 407/Carboxymethyl cellulose sodium (P407/CMCs) composite hydrogel formulation with twin functions of moisture and drug supply for AD treatment. It was found that the presence of CMCs can appreciably improve the physical properties of P407 hydrogel, which makes it more suitable for tailored drug loading. The fabricated P407/CMCs composite hydrogel was also characterized in terms of surface morphology by field emission scanning electron microscopy (FE-SEM), rheological properties by a rheometer, release profile in vitro by dialysis method and cytotoxicity test. More importantly, the findings from transdermal drug delivery behavior revealed that P407/CMCs showed desirable percutaneous performance. Additionally, analysis of cytotoxicity test suggested that P407/CMCs composite hydrogel is a high-security therapy for clinical trials and thus exhibits a promising way to treat AD with skin moisturizing and medication.

  7. Dual-functional transdermal drug delivery system with controllable drug loading based on thermosensitive poloxamer hydrogel for atopic dermatitis treatment

    PubMed Central

    Wang, Wenyi; Wat, Elaine; Hui, Patrick C. L.; Chan, Ben; Ng, Frency S. F.; Kan, Chi-Wai; Wang, Xiaowen; Hu, Huawen; Wong, Eric C. W.; Lau, Clara B. S.; Leung, Ping-Chung

    2016-01-01

    The treatment of atopic dermatitis (AD) has long been viewed as a problematic issue by the medical profession. Although a wide variety of complementary therapies have been introduced, they fail to combine the skin moisturizing and drug supply for AD patients. This study reports the development of a thermo-sensitive Poloxamer 407/Carboxymethyl cellulose sodium (P407/CMCs) composite hydrogel formulation with twin functions of moisture and drug supply for AD treatment. It was found that the presence of CMCs can appreciably improve the physical properties of P407 hydrogel, which makes it more suitable for tailored drug loading. The fabricated P407/CMCs composite hydrogel was also characterized in terms of surface morphology by field emission scanning electron microscopy (FE-SEM), rheological properties by a rheometer, release profile in vitro by dialysis method and cytotoxicity test. More importantly, the findings from transdermal drug delivery behavior revealed that P407/CMCs showed desirable percutaneous performance. Additionally, analysis of cytotoxicity test suggested that P407/CMCs composite hydrogel is a high-security therapy for clinical trials and thus exhibits a promising way to treat AD with skin moisturizing and medication. PMID:27090158

  8. Functionalized silica nanoparticles as a carrier for Betamethasone Sodium Phosphate: Drug release study and statistical optimization of drug loading by response surface method.

    PubMed

    Ghasemnejad, M; Ahmadi, E; Mohamadnia, Z; Doustgani, A; Hashemikia, S

    2015-11-01

    Mesoporous silica nanoparticles with a hexagonal structure (SBA-15) were synthesized and modified with (3-aminopropyl) triethoxysilane (APTES), and their performance as a carrier for drug delivery system was studied. Chemical structure and morphology of the synthesized and modified SBA-15 were characterized by SEM, BET, TEM, FT-IR and CHN technique. Betamethasone Sodium Phosphate (BSP) as a water soluble drug was loaded on the mesoporous silica particle for the first time. The response surface method was employed to obtain the optimum conditions for the drug/silica nanoparticle preparation, by using Design-Expert software. The effect of time, pH of preparative media, and drug/silica ratio on the drug loading efficiency was investigated by the software. The maximum loading (33.69%) was achieved under optimized condition (pH: 1.8, time: 3.54 (h) and drug/silica ratio: 1.7). The in vitro release behavior of drug loaded particles under various pH values was evaluated. Finally, the release kinetic of the drug was investigated using the Higuchi and Korsmeyer-Peppas models. Cell culture and cytotoxicity assays revealed the synthesized product doesn't have any cytotoxicity against human bladder cell line 5637. Accordingly, the produced drug-loaded nanostructures can be applied via different routes, such as implantation and topical or oral administration. Copyright © 2015 Elsevier B.V. All rights reserved.

  9. Cytotoxicity of 18 Cameroonian medicinal plants against drug sensitive and multi-factorial drug resistant cancer cells.

    PubMed

    Mbaveng, Armelle T; Manekeng, Hermione T; Nguenang, Gaelle S; Dzotam, Joachim K; Kuete, Victor; Efferth, Thomas

    2018-08-10

    Recommendations have been made stating that ethnopharmacological usages such as immune and skin disorders, inflammatory, infectious, parasitic and viral diseases should be taken into account if selecting plants for anticancer screening, since these reflect disease states bearing relevance to cancer or cancer-like symptoms. Cameroonian medicinal plants investigated in this work are traditionally used to treat cancer or ailments with relevance to cancer or cancer-like symptoms. In this study, 21 methanol extracts from 18 Cameroonian medicinal plants were tested in leukemia CCRF-CEM cells, and the best extracts were further tested on a panel of human cancer cell lines, including various multi-drug-resistant (MDR) phenotypes. Mechanistic studies were performed with the three best extracts. Resazurin reduction assay was used to evaluate cytotoxicity and ferroptotic effects of methanol extracts from different plants. Flow cytometry was used to analyze cell cycle, apoptosis, mitochondrial membrane potential (MMP), and reactive oxygen species (ROS) of extracts from Curcuma longa rhizomes (CLR), Lycopersicon esculentum leaves (LEL), and Psidium guajava bark (PGB). In a pre-screening of all extracts, 13 out of 21 (61.9%) had IC 50 values below 80 µg/mL. Six of these active extracts displayed IC 50 values below 30 µg/mL: Cola pachycarpa leaves (CPL), Curcuma longa rhizomes (CLR), Lycopersicon esculentum leaves, Persea americana bark (PAB), Physalis peruviana twigs (PPT) and Psidium guajava bark (PGB). The best extracts displayed IC 50 values from 6.25 µg/mL (against HCT116 p53 -/- ) to 10.29 µg/mL (towards breast adenocarcinoma MDA-MB-231-BCRP cells) for CLR, from 9.64 µg/mL (against breast adenocarcinoma MDA-MB-231 cells) to 57.74 µg/mL (against HepG2 cells) for LEL and from 1.29 µg/mL (towards CEM/ADR5000 cells) to 62.64 µg/mL (towards MDA-MB-231 cells) for PGB. CLR and PGB induced apoptosis in CCRF-CEM cells via caspases activation, MMP depletion

  10. Synthesis, Characterization and Cytotoxicity Evaluation of Nitric Oxide-Iron Oxide magnetic Nanoparticles

    NASA Astrophysics Data System (ADS)

    Haddad, P. S.; Britos, T. N.; Santos, M. C.; Seabra, A. B.; Palladino, M. V.; Justo, G. Z.

    2015-05-01

    The present work is focused on the synthesis, characterization and cytotoxic evaluation of superparamagnetic iron oxide nanoparticles (SPIONs). SPIONs have been proposed for an increasing number of biomedical applications, such as drug-delivery. To this end, toxicological studies of their potential effects in biological systems must be better evaluated. The aim of this study was to examine the in vitro cytotoxicity of thiolated (SH) and S-nitrosated (S-NO) SPIONs in cancer cell lines. SPIONs were prepared by the coprecipitation method using ferrous and ferric chlorides in aqueous solution. The nanoparticles (Fe3O4) were coated with thiol containing molecule cysteine (Cys) (molar ratio SPIONs:ligand = 1:20), leading to the formation of an aqueous dispersion of thiolated nanoparticles (SH- SPIONs). These particles were characterized by Fourier transform infrared spectroscopy (FTIR), X-ray diffraction (XRD), transmission electron microscopy (TEM) and vibrating sample magnetometer (VSM). The results obtained showed that Cys-SPIONs have a mean diameter of 14 nm at solid state and present super paramagnetic behavior at room temperature. Thiol groups on the surface of the nanoparticles were nitrosated through the addition of sodium nitrite leading to the formation of S-NOCys-SPIONs (S-nitrosated-Cys-SPIONs), which act as spontaneous nitric oxide (NO) donor). The cytotoxicity of thiolated and S-nitrosated nanoparticles was evaluated in acute T cell leukemia (Jurkat cell line) and Lewis lung carcinoma (3LL) cells. The results showed that at low concentrations thiolated (Cys) and S- nitrosated (S-NOCyst) SPIONs display low cytotoxicity in both cell types. However, at higher concentrations, Cys-SPIONs exhibited cytotoxic effects, whereas S-NOCys-SPIONs protected them, and also promoted cell proliferation.

  11. Developing a novel fiber optic fluorescence device for multiplexed high-throughput cytotoxic screening.

    PubMed

    Lee, Dennis; Barnes, Stephen

    2010-01-01

    The need for new pharmacological agents is unending. Yet the drug discovery process has changed substantially over the past decade and continues to evolve in response to new technologies. There is presently a high demand to reduce discovery time by improving specific lab disciplines and developing new technology platforms in the area of cell-based assay screening. Here we present the developmental concept and early stage testing of the Ab-Sniffer, a novel fiber optic fluorescence device for high-throughput cytotoxicity screening using an immobilized whole cell approach. The fused silica fibers are chemically functionalized with biotin to provide interaction with fluorescently labeled, streptavidin functionalized alginate-chitosan microspheres. The microspheres are also functionalized with Concanavalin A to facilitate binding to living cells. By using lymphoma cells and rituximab in an adaptation of a well-known cytotoxicity protocol we demonstrate the utility of the Ab-Sniffer for functional screening of potential drug compounds rather than indirect, non-functional screening via binding assay. The platform can be extended to any assay capable of being tied to a fluorescence response including multiple target cells in each well of a multi-well plate for high-throughput screening.

  12. In vitro cytotoxicity of Indonesian stingless bee products against human cancer cell lines

    PubMed Central

    Kustiawan, Paula M.; Puthong, Songchan; Arung, Enos T.; Chanchao, Chanpen

    2014-01-01

    Objective To screen crude extracts of propolis, bee pollen and honey from four stingless bee species [Trigona incisa (T. incisa)], Timia apicalis, Trigona fusco-balteata and Trigona fuscibasis) native to East Kalimantan, Indonesia for cytotoxic activity against five human cancer cell lines (HepG2, SW620, ChaGo-I, KATO-III and BT474). Methods All samples were extracted with methanol, and then subpartitioned with n-hexane and ethyl acetate. Each crude extract was screened at 20 µg/mL for in vitro cytotoxicity against the cell lines using the 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide assay. In addition, four previously shown bioactive components from propolis (apigenin, caffeic acid phenyl ester, kaempferol and naringenin) and two chemotherapeutic drugs (doxorubicin and 5-fluorouracil) were used to evaluate the sensitivity of the cell lines. Results Overall, crude extracts from propolis and honey had higher cytotoxic activities than bee pollen, but the activity was dependent upon the extraction solvent, bee species and cell line. Propolis extracts from T. incisa and Timia apicalis showed the highest and lowest cytotoxic activity, respectively. Only the HepG2 cell line was broadly sensitive to the honey extracts. For pure compounds, doxorubicin was the most cytotoxic, the four propolis compounds the least, but the ChaGo-I cell line was sensitive to kaempferol at 10 µg/mL and KATO-III was sensitive to kaempferol and apigenin at 10 µg/mL. All pure compounds were effective against the BT474 cell line. Conclusions Propolis from T. incisa and Trigona fusco-balteata contain an in vitro cytotoxic activity against human cancer cell lines. Further study is required, including the isolation and characterization of the active antiproliferative agent(s). PMID:25183275

  13. In vitro cytotoxicity of Indonesian stingless bee products against human cancer cell lines.

    PubMed

    Kustiawan, Paula M; Puthong, Songchan; Arung, Enos T; Chanchao, Chanpen

    2014-07-01

    To screen crude extracts of propolis, bee pollen and honey from four stingless bee species [Trigona incisa (T. incisa)], Timia apicalis, Trigona fusco-balteata and Trigona fuscibasis) native to East Kalimantan, Indonesia for cytotoxic activity against five human cancer cell lines (HepG2, SW620, ChaGo-I, KATO-III and BT474). All samples were extracted with methanol, and then subpartitioned with n-hexane and ethyl acetate. Each crude extract was screened at 20 µg/mL for in vitro cytotoxicity against the cell lines using the 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide assay. In addition, four previously shown bioactive components from propolis (apigenin, caffeic acid phenyl ester, kaempferol and naringenin) and two chemotherapeutic drugs (doxorubicin and 5-fluorouracil) were used to evaluate the sensitivity of the cell lines. Overall, crude extracts from propolis and honey had higher cytotoxic activities than bee pollen, but the activity was dependent upon the extraction solvent, bee species and cell line. Propolis extracts from T. incisa and Timia apicalis showed the highest and lowest cytotoxic activity, respectively. Only the HepG2 cell line was broadly sensitive to the honey extracts. For pure compounds, doxorubicin was the most cytotoxic, the four propolis compounds the least, but the ChaGo-I cell line was sensitive to kaempferol at 10 µg/mL and KATO-III was sensitive to kaempferol and apigenin at 10 µg/mL. All pure compounds were effective against the BT474 cell line. Propolis from T. incisa and Trigona fusco-balteata contain an in vitro cytotoxic activity against human cancer cell lines. Further study is required, including the isolation and characterization of the active antiproliferative agent(s).

  14. Evaluation of cytotoxicity of new trans-palladium(II) complex in human cells in vitro.

    PubMed

    Kontek, Renata; Matławska-Wasowska, Ksenia; Kalinowska-Lis, Urszula; Kontek, Bogdan; Ochocki, Justyn

    2011-01-01

    Studies of cytotoxicity allow to elucidate the mechanisms by which chemical compounds influence cells and tissues. On the basis of the structural analogy between platinum(II) and palladium(II) complexes, a variety of studies on palladium(II) compounds as potential anticancer drugs have been carried out (1, 2). The cytotoxicity was evaluated by MTT assay. Abilities of trans-palladium(II) complex containing diethyl (pyridin-2-ylmethyl)phosphates as non-leaving ligands (trans-[PdCl2(2-pmOpe 2)]) to induce apoptosis and necrosis in normal lymphocytes, A549 cells and HT29 cell lines were performed by use of fluorochrome staining. The obtained results revealed, that the new trans-palladium(II) complex was more cytotoxic against A549 and HT29 tumor cells than on the normal lymphocytes in vitro. The novel complex induces apoptosis in all tested cells, but in lymphocytes to a lesser degree. The compound tested also induced significant amounts of necrotic cells, which exceeded the level of apoptotic cell fractions. The results demonstrate that the trans-Pd(II) complex showed substantial cytotoxic activity against A549 and HT29 tumor cells and indicate that the new trans-palladium(II) complex effectively inhibited cancer cells growth.

  15. Handling and restraint.

    PubMed

    Donovan, John; Brown, Patricia

    2006-07-01

    For the safety of the handler and the animal, proper methods for handling and restraining laboratory animals should be followed. Improper handling can result in increased stress and injury to the animal. In addition, the handler risks injury from bite wounds or scratches inflicted when the animal becomes fearful or anxious. By using sure, direct movements with a determined attitude, the animal can be easily handled and restrained. Animals can be restrained either manually or in a plastic restrainer. The protocols in this unit describe handling and manual restraint of mice, rats, hamsters, and rabbits. Alternate protocols describe restraint using the plastic restrainer.

  16. Handling and restraint.

    PubMed

    Donovan, John; Brown, Patricia

    2004-09-01

    For the safety of the handler and the animal, proper methods for handling and restraining laboratory animals should be followed. Improper handling can result in increased stress and injury to the animal. In addition, the handler risks injury from bite wounds or scratches inflicted when the animal becomes fearful or anxious. By using sure, direct movements with a determined attitude, the animal can be easily handled and restrained. Animals can be restrained either manually or in a plastic restrainer. The protocols in this unit describe handling and manual restraint of mice, rats, hamsters, and rabbits. Alternate protocols describe restraint using the plastic restrainer.

  17. Cytotoxic chemotherapy and the evolution of cellular and viral resistance to antiretroviral therapy in HIV- infected individuals with lymphoma.

    PubMed

    McFaul, Katie; Liptrott, Neill; Cox, Alison; Martin, Phillip; Egan, Deirdre; Owen, Andrew; Kelly, Sarah; Karolia, Zeenat; Shaw, Kate; Bower, Mark; Boffito, Marta

    2016-09-01

    The use of combination antiretroviral therapy (cART) and cytotoxic chemotherapy for HIV-associated lymphoma runs the risks of inducing HIV drug resistance. This study examined two possible mechanisms: altered expression of membrane drug transporter protein (MTP) and acquisition of mutations in pro-viral DNA. Expression levels of MTP and pro-viral DNA resistance mutation analysis were performed on peripheral blood mononuclear cells (PBMC) before, during, and after chemotherapy. Twenty nine patients completed the three time point estimations. There were no significant variations before, during, and after chemotherapy in the expression of four MTPs: ABCB1, ABCC1, ABCC2, and SLCO3A1 (OATP3A1). Pro-viral DNA sequencing revealed that only one patient developed a new nucleos/tide reverse transcriptase inhibitor-associated mutation (184V) during the course of the study, giving a mutation rate of 0.0027 per person per year. In conclusion, concomitant administration of cytotoxic chemotherapy and cART does not induce expression of MTP. Furthermore, no significant changes in viral resistance were observed pre- and post-chemotherapy, suggesting mutagenic cytotoxic chemotherapy seems not to induce mutations in HIV pro-viral DNA.

  18. Oncology drug discovery: planning a turnaround.

    PubMed

    Toniatti, Carlo; Jones, Philip; Graham, Hilary; Pagliara, Bruno; Draetta, Giulio

    2014-04-01

    We have made remarkable progress in our understanding of the pathophysiology of cancer. This improved understanding has resulted in increasingly effective targeted therapies that are better tolerated than conventional cytotoxic agents and even curative in some patients. Unfortunately, the success rate of drug approval has been limited, and therapeutic improvements have been marginal, with too few exceptions. In this article, we review the current approach to oncology drug discovery and development, identify areas in need of improvement, and propose strategies to improve patient outcomes. We also suggest future directions that may improve the quality of preclinical and early clinical drug evaluation, which could lead to higher approval rates of anticancer drugs.

  19. Containment challenges in HPAPI manufacture for ADC generation.

    PubMed

    Dunny, Elizabeth; O'Connor, Imelda; Bones, Jonathan

    2017-06-01

    Antibody-drug conjugates (ADCs) are emerging as an impactful class of therapeutics for the treatment of cancer because of their ability to harness the specificity of an antibody and the cytotoxic potential of the payload to target and destroy cancer cells. However, the potent nature of the cytotoxic payload creates associated manufacturing challenges for active pharmaceutical ingredient (API) manufacturers, because huge investment in containment technology is required to ensure the protection of operators and the environment. Here, we examine the differing attitudes to high-potency categorisation and levels of containment control. We also provide an overview of the most widely used containment strategies for facility design, powder handling, purification, analysis, and cleaning. Finally, we briefly consider the health and safety regulatory challenges associated with the manufacture of cytotoxic payloads for use in antibody-drug conjugates. Copyright © 2017 Elsevier Ltd. All rights reserved.

  20. The endoperoxide ascaridol shows strong differential cytotoxicity in nucleotide excision repair-deficient cells

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Abbasi, Rashda; Efferth, Thomas; Kuhmann, Christine

    2012-03-15

    Targeting synthetic lethality in DNA repair pathways has become a promising anti-cancer strategy. However little is known about such interactions with regard to the nucleotide excision repair (NER) pathway. Therefore, cell lines with a defect in the NER genes ERCC6 or XPC and their normal counterparts were screened with 53 chemically defined phytochemicals isolated from plants used in traditional Chinese medicine for differential cytotoxic effects. The screening revealed 12 drugs that killed NER-deficient cells more efficiently than proficient cells. Five drugs were further analyzed for IC{sub 50} values, effects on cell cycle distribution, and induction of DNA damage. Ascaridol wasmore » the most effective compound with a difference of > 1000-fold in resistance between normal and NER-deficient cells (IC{sub 50} values for cells with deficiency in ERCC6: 0.15 μM, XPC: 0.18 μM, and normal cells: > 180 μM). NER-deficiency combined with ascaridol treatment led to G2/M-phase arrest, an increased percentage of subG1 cells, and a substantially higher DNA damage induction. These results were confirmed in a second set of NER-deficient and -proficient cell lines with isogenic background. Finally, ascaridol was characterized for its ability to generate oxidative DNA damage. The drug led to a dose-dependent increase in intracellular levels of reactive oxygen species at cytotoxic concentrations, but only NER-deficient cells showed a strongly induced amount of 8-oxodG sites. In summary, ascaridol is a cytotoxic and DNA-damaging compound which generates intracellular reactive oxidative intermediates and which selectively affects NER-deficient cells. This could provide a new therapeutic option to treat cancer cells with mutations in NER genes. -- Highlights: ► Thousand-fold higher Ascaridol activity in NER-deficient versus proficient cells. ► Impaired repair of Ascaridol-induced oxidative DNA damage in NER-deficient cells. ► Selective activity of Ascaridol opens new

  1. Safe procedure development to manage hazardous drugs in the workplace.

    PubMed

    Gaspar Carreño, Marisa; Achau Muñoz, Rubén; Torrico Martín, Fátima; Agún Gonzalez, Juan José; Sanchez Santos, Jose Cristobal; Cercos Lletí, Ana Cristina; Ramos Orozco, Pedro

    2017-03-01

    To develop a safety working procedure for the employees in the Intermutual Hospital de Levante (HIL) in those areas of activity that deal with the handling of hazardous drugs (MP). The procedure was developed in six phases: 1) hazard definition; 2) definition and identification of processes and development of general correct work practices about hazardous drugs' selection and special handling; 3) detection, selection and set of specific recommendations to handle with hazardous drugs during the processes of preparation and administration included in the hospital GFT; 4) categorization of risk during the preparation/administration and development of an identification system; 5) information and training of professionals; 6) implementation of the identification measures and prevention guidelines. Six processes were detected handling HD. During those processes, thirty HD were identified included in the hospital GFT and a safer alternative was found for 6 of them. The HD were classified into 4 risk categories based on those measures to be taken during the preparation and administration of each of them. The development and implementation of specific safety-work processes dealing with medication handling, allows hospital managers to accomplish effectively with their legal obligations about the area of prevention and provides healthcare professional staff with the adequate techniques and safety equipment to avoid possible dangers and risks of some drugs. Copyright AULA MEDICA EDICIONES 2014. Published by AULA MEDICA. All rights reserved.

  2. Templates of patient brochures for the preparation, administration and safe-handling of oral chemotherapy.

    PubMed

    Siden, Rivka; Kem, Ravie; Ostrenga, Andrew; Nicksy, Darcy; Bernhardt, Brooke; Bartholomew, Joy

    2014-06-01

    The increased use of oral chemotherapy for the treatment of cancer introduces new challenges for patients and caregivers. Among them are the ability to swallow oral solid dosage forms, the proper administration of the agents and the safe-handling of chemotherapeutic drugs in the home. Since these drugs are hazardous, proper preparation, administration, and disposition introduces a variety of safety issues. The increased toxicity of these drugs coupled with complicated dosing regimens and the occasional need to dilute the drug or measure a liquid dosage form require careful instruction of the patient and/or caregivers. The purpose of this project was to create templates for writing patient instruction brochures. A group of clinicians specializing in oncology from several institutions in the United States and Canada met through a series of conference calls. The group included pharmacists with a specialty in pediatric oncology, investigational drug pharmacists, and an oncology nurse practitioner. National guidelines and practices at each institution were used for the creation of templates to be used in developing templates for medication and formulation-specific instruction brochures. The group developed six templates. The templates ranged in scope from instructions on the administration of intact tablets or capsules to directions on opening capsules or crushing tablets and mixing the content with foods or liquids. Thirty-three drug-specific brochures were developed using the templates. Templates of patient brochures and drug-specific brochures on the safe handling of chemotherapy in the home can be created using a collaborative, multi-institutional approach.

  3. pH-sensitive niosomes: Effects on cytotoxicity and on inflammation and pain in murine models.

    PubMed

    Rinaldi, Federica; Del Favero, Elena; Rondelli, Valeria; Pieretti, Stefano; Bogni, Alessia; Ponti, Jessica; Rossi, François; Di Marzio, Luisa; Paolino, Donatella; Marianecci, Carlotta; Carafa, Maria

    2017-12-01

    pH-sensitive nonionic surfactant vesicles (niosomes) by polysorbate-20 (Tween-20) or polysorbate-20 derivatized by glycine (added as pH sensitive agent), were developed to deliver Ibuprofen (IBU) and Lidocaine (LID). For the physical-chemical characterization of vesicles (mean size, size distribution, zeta potential, vesicle morphology, bilayer properties and stability) dynamic light scattering (DLS), small angle X-ray scattering and fluorescence studies were performed. Potential cytotoxicity was evaluated on immortalized human keratinocyte cells (HaCaT) and on immortalized mouse fibroblasts Balb/3T3. In vivo antinociceptive activity (formalin test) and anti-inflammatory activity tests (paw edema induced by zymosan) in murine models were performed on drug-loaded niosomes. pH-sensitive niosomes were stable in the presence of 0 and 10% fetal bovine serum, non-cytotoxic and able to modify IBU or LID pharmacological activity in vivo. The synthesis of stimuli responsive surfactant, as an alternative to add pH-sensitive molecules to niosomes, could represent a promising delivery strategy for anesthetic and anti-inflammatory drugs.

  4. Reversible cytotoxic oedema in the splenium of the corpus callosum related to tetracycline therapy.

    PubMed

    Grühbaum, Barbara; Salzer, Hans; Nasel, Christian; Lernbass, Isolde

    2010-10-01

    We report a symptomatic girl with reversible circumscribed cytotoxic oedema in the splenium of the corpus callosum (CC) that occurred, to our knowledge, for the first time in relation to tetracycline treatment. After stopping tetracycline therapy the girl recovered completely and the CC lesion, clearly visible on diffusion-weighted MR imaging (DWI), disappeared. Reversible circumscribed cytotoxic oedema (CCO) of the splenium of the CC is a well-defined entity that is found to be associated with administration of antiepileptic drugs, alterations in therapy using arginin-vasopressin and metronidazole or infections with influenza and rotavirus. CCO of splenium of the CC is clearly visible on DWI, shows no enhancement after administration of contrast medium and is completely reversible in most cases.

  5. Receptor tyrosine kinase inhibitors and cytotoxic drugs affect pleural mesothelioma cell proliferation: insight into EGFR and ERK1/2 as antitumor targets.

    PubMed

    Barbieri, Federica; Würth, Roberto; Favoni, Roberto E; Pattarozzi, Alessandra; Gatti, Monica; Ratto, Alessandra; Ferrari, Angelo; Bajetto, Adriana; Florio, Tullio

    2011-11-15

    Malignant pleural mesothelioma (MPM) is an aggressive chemotherapy-resistant cancer. Up-regulation of epidermal growth factor receptor (EGFR) plays an important role in MPM development and EGFR-tyrosine kinase inhibitors (TKIs) may represent novel therapeutic options. We tested the effects of the EGFR TKIs gefitinib and erlotinib and TKIs targeted to other growth factors (VEGFR and PDGFR), in comparison to standard antineoplastic agents, in two human MPM cell lines, IST-Mes2 and ZL55. All drugs showed IC(50) values in the micromolar range: TKIs induced cytostatic effects at concentrations up to the IC(50,) while conventional drug growth-inhibitory activity was mainly cytotoxic. Moreover, the treatment of IST-Mes2 with TKIs (gefitinib and imatinib mesylate) in combination with cisplatin and gemcitabine did not show additivity. Focusing on the molecular mechanisms underlying the antiproliferative and pro-apoptotic effects of EGFR-TKIs, we observed that gefitinib induced the formation and stabilization of inactive EGFR homodimers, even in absence of EGF, as demonstrated by EGFR B(max) and number of sites/cell. The analysis of downstream effectors of EGFR signaling demonstrated that EGF-induced proliferation, reverted by gefitinib, involved ERK1/2 activation, independently from Akt pathway. Gefitinib inhibits MPM cell growth and survival, preventing EGF-dependent activation of ERK1/2 pathway by blocking EGFR-TK phosphorylation and stabilizing inactive EGFR dimers. Along with the molecular definition of TKIs pharmacological efficacy in vitro, these results may contribute to delve deep into the promising but still controversial role for targeted and conventional drugs in the therapy of MPM. Copyright © 2011 Elsevier Inc. All rights reserved.

  6. A transcriptomics data-driven gene space accurately predicts liver cytopathology and drug-induced liver injury

    PubMed Central

    Kohonen, Pekka; Parkkinen, Juuso A.; Willighagen, Egon L.; Ceder, Rebecca; Wennerberg, Krister; Kaski, Samuel; Grafström, Roland C.

    2017-01-01

    Predicting unanticipated harmful effects of chemicals and drug molecules is a difficult and costly task. Here we utilize a ‘big data compacting and data fusion’—concept to capture diverse adverse outcomes on cellular and organismal levels. The approach generates from transcriptomics data set a ‘predictive toxicogenomics space’ (PTGS) tool composed of 1,331 genes distributed over 14 overlapping cytotoxicity-related gene space components. Involving ∼2.5 × 108 data points and 1,300 compounds to construct and validate the PTGS, the tool serves to: explain dose-dependent cytotoxicity effects, provide a virtual cytotoxicity probability estimate intrinsic to omics data, predict chemically-induced pathological states in liver resulting from repeated dosing of rats, and furthermore, predict human drug-induced liver injury (DILI) from hepatocyte experiments. Analysing 68 DILI-annotated drugs, the PTGS tool outperforms and complements existing tests, leading to a hereto-unseen level of DILI prediction accuracy. PMID:28671182

  7. Curcumin-cyclodextrin encapsulated chitosan nanoconjugates with enhanced solubility and cell cytotoxicity.

    PubMed

    Popat, Amirali; Karmakar, Surajit; Jambhrunkar, Siddharth; Xu, Chun; Yu, Chengzhong

    2014-05-01

    Curcumin (CUR), a naturally derived anti-cancer cocktail is arguably the most widely studied neutraceutical. Despite a lot of promises, it is yet to reach the market as an active anti-cancer formulation. In the present study, we have prepared highly soluble (3 mg/ml) CUR-γ-hydroxypropyl cyclodextrin (CUR-CD) hollow spheres. CUR-CD hollow spheres were prepared by a novel and scalable spray drying method. CUR-CD was then encapsulated into positively charged biodegradable chitosan (CUR-CD-CS) nanoparticles. The CUR-CD-CS nanoparticles were characterised by TEM, SEM, DLS, drug loading and in vitro release. We tested the efficacy of these CUR-CD-CS nanoparticles in SCC25 cell lines using MTT assay and investigated its cellular uptake mechanism. We also studied Oligo DNA loading in CUR-CD-CS nanoparticles and its delivery via confocal imaging and FACS analysis. Our results demonstrated that CUR-CD-CS nanoparticles showed superior in vitro release performance and higher cytotoxicity in SCC25 cell line amongst all tested formulations. The cytotoxicity results were corroborated by cell cycle analysis and apoptosis test, showing nearly 100% apoptotic cell death in the case of CUR-CD-CS nanoparticles. Compared to CS nanoparticles, CS-CD nanoformulation showed higher cellular delivery of Cy3-Oligo DNA which was tested quantitatively using flowcytometry analysis, indicating that CD not only enhanced CUR solubility but also boosted the cellular uptake. Our study shows that rationally designed bio-degradable natural biomaterials have great potential as next generation nano-carriers for hydrophobic drug delivery such as CUR with potential of dual drug-gene delivery. Copyright © 2014 Elsevier B.V. All rights reserved.

  8. HPLC profiling of phenolics and flavonoids of Adonidia merrillii fruits and their antioxidant and cytotoxic properties.

    PubMed

    Vafaei, Ali; Bin Mohamad, Jamaludin; Karimi, Ehsan

    2018-03-12

    In this study the antioxidant and cytotoxicity activity of the Adonidia merrillii fruits were investigated using different solvent polarities (methanol, ethyl acetate and water). The results showed that the total phenolic and flavonoid contents of the methanolic extract was higher compare with other extract with respective values of 17.80 ± 0.45 mg gallic acid equivalents/g dry weight (DW) and 5.43 ± 0.33 mg rutin equivalents/g DW. Beside that The RP-HPLC analyses indicated the presence of gallic acid, pyrogallol, caffeic acid, vanillic acid, syringic acid, naringin and rutin. In the DPPH, NO2 and ABTS scavenging assays, the methanolic extract exhibited higher antioxidant activity as compared to the ethyl acetate and water extracts. The extracts exhibited moderate to weak cytotoxic activity in the assays using human hepatocytes (Chang liver cells) and NIH/3T3 (fibroblasts cell) cell lines. The findings showed the Adonidia merrillii fruit extracts to possess considerable antioxidant and cytotoxicity properties. The fruit, therefore, is a potential candidate for further work to discover antioxidant and cytotoxic drugs from natural sources.

  9. Targeting Antibacterial Agents by Using Drug-Carrying Filamentous Bacteriophages

    PubMed Central

    Yacoby, Iftach; Shamis, Marina; Bar, Hagit; Shabat, Doron; Benhar, Itai

    2006-01-01

    Bacteriophages have been used for more than a century for (unconventional) therapy of bacterial infections, for half a century as tools in genetic research, for 2 decades as tools for discovery of specific target-binding proteins, and for nearly a decade as tools for vaccination or as gene delivery vehicles. Here we present a novel application of filamentous bacteriophages (phages) as targeted drug carriers for the eradication of (pathogenic) bacteria. The phages are genetically modified to display a targeting moiety on their surface and are used to deliver a large payload of a cytotoxic drug to the target bacteria. The drug is linked to the phages by means of chemical conjugation through a labile linker subject to controlled release. In the conjugated state, the drug is in fact a prodrug devoid of cytotoxic activity and is activated following its dissociation from the phage at the target site in a temporally and spatially controlled manner. Our model target was Staphylococcus aureus, and the model drug was the antibiotic chloramphenicol. We demonstrated the potential of using filamentous phages as universal drug carriers for targetable cells involved in disease. Our approach replaces the selectivity of the drug itself with target selectivity borne by the targeting moiety, which may allow the reintroduction of nonspecific drugs that have thus far been excluded from antibacterial use (because of toxicity or low selectivity). Reintroduction of such drugs into the arsenal of useful tools may help to combat emerging bacterial antibiotic resistance. PMID:16723570

  10. Cytotoxic chalcones from some Indonesian Cryptocarya

    NASA Astrophysics Data System (ADS)

    Kurniadewi, F.; Syah, Y. M.; Juliawaty, L. D.; Hakim, E. H.; Koyama, K.; Kinoshita, K.

    2017-07-01

    Malignant tumors are one of the main causes of death in the world. Until now the search for cytotoxic (antitumor) compounds from nature, particularly from plants, is being a continuation activities. One group of plants that produce potential cytotoxic compounds is the Cryptocarya, one of the large genera of the Lauraceae family. As a part of our chemical and cytotoxic evaluation of the Cryptocarya species, we examined three species of Indonesian Cryptocarya. The sample of the wood of C. konishii hayata was collected from Cibodas Botanical Garden, West Java while the stem bark of C. phoebeopsis and C. cagayanensis were obtained from Sorong, Papua. Our investigation of flavonoid constituents on these species afforded three chalcone compounds i.e. desmethylinfectocaryone (1), infectocaryone (2) and cryptocaryone (3). The molecular structures of the isolated compounds were determined based on spectroscopic data, including UV, IR, 1D and 2D NMR. Cytotoxic effects of the compounds were evaluated using MTT [3-(4,5-dimethylthiazolyl-2)-2, 5-diphenyltetrazolium bromide] assay. Compound 1, 2 and 3 displayed strong cytotoxic properties (IC50 < 2 μg/mL) against Murine Leukemia P388 and HL 60 (blood premyelocytic leukemia) cells whereas 2 and 3 exhibited strong cytotoxicity properties against HCT116 (colon cancer). Cryptocaryone (3) also showed moderate cytotoxic properties (IC50 < 10 μg/mL) towards A549 (human lung adenocarcinoma epithelial) cells.

  11. Drug sampling in dermatology.

    PubMed

    Reid, Erika E; Alikhan, Ali; Brodell, Robert T

    2012-01-01

    The use of drug samples in a dermatology clinic is controversial. Drug samples are associated with influencing physician prescribing patterns often toward costlier drugs, increasing health care costs, increasing waste, inducing potential conflicts of interest, and decreasing the quality of patient education. On the other hand, they have the potential to help those in financial need, to improve adherence and convenience, and to expose patients to better drugs. Although some academic centers have banned drug samples altogether, many academic and private practices continue to distribute drug samples. Given the controversy of the topic, physicians who wish to distribute drug samples must do so in an ethical manner. We believe, when handled properly, drug sampling can be used in an ethical manner. Copyright © 2012 Elsevier Inc. All rights reserved.

  12. Oxcarbazepine-induced cytotoxicity and genotoxicity in human lymphocyte cultures with or without metabolic activation.

    PubMed

    Atlı Şekeroğlu, Zülal; Kefelioğlu, Haluk; Kontaş Yedier, Seval; Şekeroğlu, Vedat; Delmecioğlu, Berrin

    2017-03-01

    There has been considerable debate about the relationship between epilepsy and cancer. Oxcarbazepine (OXC) is used for treating certain types of seizures in patients with epilepsy. There have been no detailed investigations about genotoxicity of OXC and its metabolites. Therefore, the aim of this study is to investigate the cytotoxic and genotoxic effects of OXC and its metabolites on cultured human lymphocytes. The cytotoxicity and genotoxicity of OXC on human peripheral blood lymphocytes were examined in vitro by sister chromatid exchange (SCE), chromosomal aberration (CA) and micronucleus (MN) tests. Cultures were treated with 125, 250 and 500 μg/ml of OXC in the presence (3 h treatment) and absence (24 h and 48 h treatment) of a metabolic activator (S9 mix). Dimethyl sulfoxide (DMSO) was used as a solvent control. OXC showed cytotoxic activities due to significant decreases in mitotic index (MI), proliferation index (PI) and nuclear division index (NDI) in the absence of S9 mix when compared with solvent control. Metabolites of OXC also significantly reduced MI and PI in cultures with S9 mix. OXC significantly increased the CAs, aberrant cells, SCE and MN values in the presence and absence of S9 mix. Our results indicated that both OXC and its metabolites have cytotoxic, cytostatic and genotoxic potential on human peripheral blood lymphocyte cultures under the experimental conditions. Further studies are necessary to elucidate the relationship between cytotoxic, cytostatic and genotoxic effects, and to make a possible risk assessment in patients receiving therapy with this drug.

  13. Cytotoxicity and cytochrome P450 inhibitory activities of Clinacanthus nutans.

    PubMed

    Quah, Suk Yen; Chin, Jin Han; Akowuah, Gabriel Akyirem; Khalivulla, Shaik Ibrahim; Yeong, Siew Wei; Sabu, Mandumpal Chacko

    2017-03-01

    Clinacanthus nutans Lindau (family: Acanthaceae), also known as "Sabah Snake Grass" or "Belalai Gajah" in Malaysia, has been widely used by Malaysians due to its anticancer property. However, the anticancer activity of C. nutans leaves extract and its safe use need to be further investigated. The objectives of the present study were to evaluate the cytotoxic effects of methanol leaves extract of C. nutans in various human cancer cell lines and to evaluate the in vitro effect of C. nutans leaves on the activity of CYP3A4 and CYP2E1 in human liver microsomes. The cytotoxic effects of methanol extract of C. nutans leaves in various cancer cell lines (Hep-G2, A549, HT-29, MDA-MB-231, MCF-7, and CRL 1739) and normal cells (3T3) were determined using 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide (MTT) cell proliferation assay. The activities of CYP3A4 and CYP2E1 were determined using simple spectrophotometric methods. Results obtained showed that the methanol extract of C. nutans leaves exhibited the highest cytotoxic effect against Hep-G2 cell lines (liver cancer) (IC50=13.33 μg/mL), followed by breast cancer oestrogen negative (MDA-MB-231) (IC50 of 18.67 μg/mL). Methanol leaves extract of C. nutans showed significant inhibition (p<0.05) in CYP3A4 and CYP2E1 activity in human liver microsomes. In conclusion, methanol leaves extract of C. nutans exhibited the highest cytotoxic activity against liver cancer cells (Hep-G2). There is a possibility that herb-drug interaction could occur with C. nutans through inhibitory effects on CYP3A4. Additionally, inhibition of C. nutans on CYP2E1 could show anti-carcinogenesis effects in human liver microsomes.

  14. The Key Role of Mitochondrial Apoptotic Pathway in the Cytotoxic Effect of Mushroom Extracts on Cancer Cells.

    PubMed

    Han, Mei; Ling, Ming-Tat; Chen, Jiezhong

    2015-01-01

    Mushroom extracts have been extensively studied for their medicinal effects. They can stimulate immune responses and thus have been explored in cancer treatment. Recently, it has also been shown that some mushroom extracts can produce direct cytotoxic effect on cancer cells. In this review, we summarize the cytotoxic effect of mushroom extracts in cancer treatment revealed by both in vitro and in vivo studies. We also summarize the current understanding of the mechanisms associated with such an effect with an emphasis on the mitochondrial apoptotic pathway. The recent finding that mushroom extracts have direct cytotoxic effects supplements their known immune stimulating effects. Thus, novel anticancer agents based on new findings from mushroom extracts may soon be added to the present pool of anticancer drugs. Specifically, we propose that nanodelivery of the bioactive compounds of mushroom extracts to mitochondria will further increase their potential treatment efficacy.

  15. Peptide-Drug Conjugate: A Novel Drug Design Approach.

    PubMed

    Ma, Liang; Wang, Chao; He, Zihao; Cheng, Biao; Zheng, Ling; Huang, Kun

    2017-01-01

    More than 100 years ago, German physician Paul Ehrlich first proposed the concept of selectively delivering "magic bullets" to tumors through targeting agents. The targeting therapy with antibody-drug conjugates (ADCs) and peptide-drug conjugate (PDCs), which are usually composed of monoclonal antibodies or peptides, toxic payloads and cleavage/ noncleavage linkers, has been extensively studied for decades. The conjugates enable selective delivery of cytotoxic payloads to target cells, which results in improved efficacy, reduced systemic toxicity and improved pharmacokinetics (PK)/pharmacodynamics (PD) compared with traditional chemotherapy. PDC and ADC share similar concept, but with vastly different structures and properties. Humanized antibodies introduce high specificity and prolonged half-life, while small molecule weight peptides exhibit higher drug loading and enhanced tissue penetration capacity, and the flexible linear or cyclic peptides are also modified more easily. In this review, the principles of design, synthesis approaches and the latest advances of PDCs are summarized. Copyright© Bentham Science Publishers; For any queries, please email at epub@benthamscience.org.

  16. Oxidative Stress Induced in Nurses by Exposure to Preparation and Handling of Antineoplastic Drugs in Mexican Hospitals: A Multicentric Study

    PubMed Central

    Gómez-Oliván, Leobardo Manuel; Miranda-Mendoza, Gerardo Daniel; Cabrera-Galeana, Paula Anel; Galar-Martínez, Marcela; Islas-Flores, Hariz; SanJuan-Reyes, Nely; Neri-Cruz, Nadia; García-Medina, Sandra

    2014-01-01

    The impact of involuntary exposure to antineoplastic drugs (AD) was studied in a group of nurses in diverse hospitals in Mexico. The results were compared with a group of unexposed nurses. Anthropometric characteristics and the biochemical analysis were analyzed in both groups. Also, lipid peroxidation level (LPX), protein carbonyl content (PCC), and activity of the antioxidant enzymes superoxide dismutase (SOD), catalase (CAT), and glutathione peroxidase (GPx) were evaluated in blood of study participants as oxidative stress (OS) biomarkers. The group of occupationally exposed (OE) nurses consisted of 30 individuals ranging in age from 25 to 35 years. The control group included 30 nurses who were not occupationally exposed to the preparation and handling of AD and whose anthropometric and biochemical characteristics were similar to those of the OE group. All biomarkers evaluated were significantly increased (P < 0.5) in OE nurses compared to the control group. Results show that the assessment of OS biomarkers is advisable in order to evaluate exposure to AD in nurses. PMID:24719678

  17. Oxidative stress induced in nurses by exposure to preparation and handling of antineoplastic drugs in Mexican hospitals: a multicentric study.

    PubMed

    Gómez-Oliván, Leobardo Manuel; Miranda-Mendoza, Gerardo Daniel; Cabrera-Galeana, Paula Anel; Galar-Martínez, Marcela; Islas-Flores, Hariz; Sanjuan-Reyes, Nely; Neri-Cruz, Nadia; García-Medina, Sandra

    2014-01-01

    The impact of involuntary exposure to antineoplastic drugs (AD) was studied in a group of nurses in diverse hospitals in Mexico. The results were compared with a group of unexposed nurses. Anthropometric characteristics and the biochemical analysis were analyzed in both groups. Also, lipid peroxidation level (LPX), protein carbonyl content (PCC), and activity of the antioxidant enzymes superoxide dismutase (SOD), catalase (CAT), and glutathione peroxidase (GPx) were evaluated in blood of study participants as oxidative stress (OS) biomarkers. The group of occupationally exposed (OE) nurses consisted of 30 individuals ranging in age from 25 to 35 years. The control group included 30 nurses who were not occupationally exposed to the preparation and handling of AD and whose anthropometric and biochemical characteristics were similar to those of the OE group. All biomarkers evaluated were significantly increased (P < 0.5) in OE nurses compared to the control group. Results show that the assessment of OS biomarkers is advisable in order to evaluate exposure to AD in nurses.

  18. Receptor-mediated cytotoxicity of alpha-MSH fragments containing melphalan in a human melanoma cell line.

    PubMed

    Morandini, R; Süli-Vargha, H; Libert, A; Loir, B; Botyánszki, J; Medzihradszky, K; Ghanem, G

    1994-01-02

    Four alpha-MSH drug conjugates have been synthesized, 2 C-terminal (Pep 3 and 4) and 2 central fragments (Pep 1 and 2), the latter being the 4-10 sequence known to be the main alpha-MSH-receptor-recognition site. Melphalan was introduced into each sequence at different locations. Their ability to recognize alpha-MSH receptors as well as their cytotoxic effects were compared in 3 cell lines: melanoma, carcinoma and fibroblast cells. Pep 1 and 2 were able to specifically bind to MSH receptors on melanoma cells by displacing labelled alpha-MSH from its binding sites at concentrations similar to the 4-10 heptapeptide sequence known to contain the main receptor-recognition site. They subsequently penetrate the cell, most probably by a receptor internalization mechanism, since about half of their effect could be inhibited by competition at the receptor level. Significant and selective cytotoxic effects to melanoma cells could be observed after only 2 hr exposure to the drug conjugates. Interestingly, these 2 conjugates, differing only in melphalan position, showed completely different cytotoxicity in terms of IC50 values, Pep 1 being 24 times more toxic to all cells; but the 2 were equally specific to melanoma cells. However, they both were less toxic to all cells than melphalan itself. Furthermore, Pep 1 and 2 were able to block the receptor and, unlike Pep 3 and 4, their cytotoxic effect could be significantly inhibited by an alpha-MSH agonist. Pep 3 and 4 were 5 to 10 times less toxic than melphalan to melanoma and carcinoma cells and 50 times less to fibroblast cells, and did not show any cell-type selectivity. They were less toxic than Pep 1 to melanoma and carcinoma cells by a factor of 2, but equally toxic to fibroblasts. In contrast, they were more toxic than Pep 2 to fibroblasts, melanoma and carcinoma by a factor of 3, 10 and 24 respectively. Our data strongly suggest a receptor-mediated cytotoxicity mechanism occurring with alpha-MSH central fragments in human

  19. Hydrophobic drug-triggered self-assembly of nanoparticles from silk-elastin-like protein polymers for drug delivery.

    PubMed

    Xia, Xiao-Xia; Wang, Ming; Lin, Yinan; Xu, Qiaobing; Kaplan, David L

    2014-03-10

    Silk-elastin-like protein polymers (SELPs) combine the mechanical and biological properties of silk and elastin. These properties have led to the development of various SELP-based materials for drug delivery. However, SELPs have rarely been developed into nanoparticles, partially due to the complicated fabrication procedures, nor assessed for potential as an anticancer drug delivery system. We have recently constructed a series of SELPs (SE8Y, S2E8Y, and S4E8Y) with various ratios of silk to elastin blocks and described their capacity to form micellar-like nanoparticles upon thermal triggering. In this study, we demonstrate that doxorubicin, a hydrophobic antitumor drug, can efficiently trigger the self-assembly of SE8Y (SELPs with silk to elastin ratio of 1:8) into uniform micellar-like nanoparticles. The drug can be loaded in the SE8Y nanoparticles with an efficiency around 6.5% (65 ng doxorubicin/μg SE8Y), S2E8Y with 6%, and S4E8Y with 4%, respectively. In vitro studies with HeLa cell lines demonstrate that the protein polymers are not cytotoxic (IC50 > 200 μg/mL), while the doxorubicin-loaded SE8Y nanoparticles showed a 1.8-fold higher cytotoxicity than the free drug. Confocal laser scanning microscopy (CLSM) and flow cytometry indicate significant uptake of the SE8Y nanoparticles by the cells and suggest internalization of the nanoparticles through endocytosis. This study provides an all-aqueous, facile method to prepare nanoscale, drug-loaded SELPs packages with potential for tumor cell treatments.

  20. Interleukin-1 or tumor necrosis factor-alpha augmented the cytotoxic effect of mycobacteria on human fibroblasts: application to evaluation of pathogenesis of clinical isolates of Mycobacterium tuberculosis and M. avium complex.

    PubMed

    Takii, T; Abe, C; Tamura, A; Ramayah, S; Belisle, J T; Brennan, P J; Onozaki, K

    2001-03-01

    Mycobacteria-induced in vitro events reflecting human tuberculosis can contribute to the evaluation of the pathogenesis of Mycobacterium tuberculosis (MTB). In this study, we propose such an in vitro method based on live mycobacteria-induced cytotoxicity to human cell lines. When human lung-derived normal fibroblast cell line MRC-5 was infected with various strains of mycobacteria (M. tuberculosis H(37)Rv and H(37) Ra, Mycobacterium avium 427S and 2151SmO, and Mycobacterium bovis BCG Pasteur and Tokyo), the fibroblasts were killed by mycobacteria according to the degree of virulence. Other human originated macrophage (U-937, THP-1), myeloid (HL-60), and epithelial carcinoma (A549) cell lines exhibited a similar cytotoxic response to virulent mycobacteria. MRC-5 was most susceptible to virulent mycobacteria among various human cell lines examined. The cytotoxicity was enhanced by the proinflammatory cytokines, interleukin-1 (IL-1) and tumor necrosis factor-a (TNF-alpha), which in the absence of mycobacteria stimulate the growth of normal human fibroblasts. This in vitro evaluation system was applied to clinical isolates of drug-sensitive MTB (DS-MTB), drug-resistant MTB (DR-MTB) including multidrug-resistant (MDR-MTB), and M. avium complex (MAC). MTB strains (n = 24) exhibited strong cytotoxic activity, but MAC strains (n = 5) had only weak activity. Furthermore, there was no significant difference in cytotoxicity between DS-MTB (n = 11) and DR-MTB (n = 13). Collectively, these results suggest that this new in vitro system is useful for evaluating the pathogenesis of mycobacteria and that there was no difference in the pathogenesis between drug-susceptible and drug-resistant clinical isolates.

  1. Noscapinoids bearing silver nanocrystals augmented drug delivery, cytotoxicity, apoptosis and cellular uptake in B16F1, mouse melanoma skin cancer cells.

    PubMed

    Soni, Naina; Jyoti, Kiran; Jain, Upendra Kumar; Katyal, Anju; Chandra, Ramesh; Madan, Jitender

    2017-06-01

    Noscapine (Nos) and reduced brominated analogue of noscapine (Red-Br-Nos) prevent cellular proliferation and induce apoptosis in cancer cells either alone or in combination with other chemotherapeutic drugs. However, owing to poor physicochemical properties, Nos and Red-Br-Nos have demonstrated their anticancer activity at higher and multiple doses. Therefore, in present investigation, silver nanocrystals of noscapinoids (Nos-Ag 2+ nanocrystals and Red-Br-Nos-Ag 2+ nanocrystals) were customized to augment drug delivery, cytotoxicity, apoptosis and cellular uptake in B16F1 mouse melanoma cancer cells. Nos-Ag 2+ nanocrystals and Red-Br-Nos-Ag 2+ nanocrystals were prepared separately by precipitation method. The mean particle size of Nos-Ag 2+ nanocrystals was measured to be 25.33±3.52nm, insignificantly (P>0.05) different from 27.43±4.51nm of Red-Br-Nos-Ag 2+ nanocrystals. Furthermore, zeta-potential of Nos-Ag 2+ nanocrystals was determined to be -25.3±3.11mV significantly (P<0.05) different from -15.2±3.33mV of Red-Br-Nos-Ag 2+ nanocrystals. The shape of tailored nanocrystals was slightly spherical and or irregular in shape. The architecture of Nos-Ag 2+ nanocrystals and Red-Br-Nos-Ag 2+ nanocrystals was crystalline in nature. FT-IR spectroscopy evinced the successful interaction of Ag 2+ nanocrystals with Nos and Red-Br-Nos, respectively. The superior therapeutic efficacy of tailored nanocrystals was measured in terms of enhanced cytotoxicity, apoptosis and cellular uptake. The Nos-Ag 2+ nanocrystals and Red-Br-Nos-Ag 2+ nanocrystals exhibited an IC 50 of 16.6μM and 6.5μM, significantly (P<0.05) lower than 38.5μM of Nos and 10.3μM of Red-Br-Nos, respectively. Finally, cellular morphological alterations in B16F1 cells upon internalization of Nos-Ag 2+ nanocrystals and Red-Br-Nos-Ag 2+ nanocrystals provided the evidences for accumulation within membrane-bound cytoplasmic vacuoles and in enlarged lysosomes and thus triggered mitochondria mediated apoptosis via

  2. Antimycobacterial potency and cytotoxicity study of three medicinal plants.

    PubMed

    Tsouh Fokou, Patrick Valere; Appiah-Opong, Regina; Yeboah-Manu, Dorothy; Kissi-Twum, Abena Adomah; Yamthe, Lauve Rachel Tchokouaha; Mokale Kognou, Aristide Laurel; Addo, Phyllis; Boyom, Fabrice Fekam; Nyarko, Alexander Kwadwo

    2016-12-01

    Mycobacterial infections including tuberculosis, leprosy, and buruli ulcer are among the most prevalent, debilitating, and deadly tropical diseases, especially in Sub-Saharan Africa. The development of drug resistance to the currently available drugs and the poor compliance emphasize the need for new chemotherapeutic agents. This study was designed to evaluate the in vitro activity of Cleistopholis patens, Annona reticulata, and Greenwayodendron suaveolens against Mycobacterium smegmatis. The safety on normal liver cells was also assessed. The crude extracts, fractions, and subfractions were tested against M. smegmatis and for cell cytotoxicity on WRL-68, normal human hepatocyte using microdilution resazurin-based assays. The phytochemical screening was performed using standard methods. Most of the extracts, fractions, and subfractions inhibited the growth of M. smegmatis with minimum inhibitory concentration (MIC) values ranging from 6.25μg/mL to 125μg/mL. The subfractions P12 and P29 from G. suaveolens twig were more potent with MIC values of 6.25μg/mL and 25μg/mL, respectively. Fruit crude extract and root CH 2 Cl 2 fraction from A. reticulata also showed activity with MIC values of 50μg/mL and 25μg/mL, respectively. Crude extracts from the twig and stem bark of C. patens displayed inhibition at MIC values of 125μg/mL and 100μg/mL, respectively. Majority of active extracts showed no cell cytotoxicity, except the extract from C. patens with IC 50 ranging from 41.40μg/mL to 93.78μg/mL. The chemical investigation of the promising extracts revealed the presence of phenols, alkaloids, glycosides, triterpenes, and acetogenins. The results achieved from this preliminary antimycobacterial drug discovery study supported the traditional claims of C. patens, A. reticulata, and G. suaveolens in the treatment of mycobacterial infections. Meanwhile, further fractionation is required to characterize the active ingredients. Copyright © 2016.

  3. A Mini-Electrochemical System with Integrated Micropipet Tip and Pencil Graphite Electrode for Measuring Cytotoxicity.

    PubMed

    Wu, Dong-Mei; Guo, Xiao-Ling; Wang, Qian; Li, Jin-Lian; Cui, Ji-Wen; Zhou, Shi; Hao, Su-E

    2017-01-01

    A novel mini-electrochemical system has been developed for evaluating cytotoxicity of anticancer drugs based on trace cell samples. The mini-electrochemical system was integrated by using pencil graphite modified with threonine as working electrode, an Ag/AgCl reference electrode and a micropipet tip as electrochemical cell. The mini-electrochemical system dramatically reduces sample volumes from 500 μL in a traditional electrochemical system to 10 μL, and exhibits excellent electrocatalytic activity toward oxidation of purine from MCF-7 cells due to increased sensitivity provided by threonine. Moreover, the relationship between peak current and the cell concentration in the range from 3.0 × l0 3 to 7.0 × l0 6 cells/mL was studied, and a nonlinear exponential relationship between them was established over a wide concentration range. In evaluating the effect of anticancer drugs on cell viability, the results of drug cytotoxicity test based on cyclophosphamide were in close agreement with classical 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium (MTT) assays. The proposed device is so simple, cheap, and easy to operate that it could be applied to single-use applications. The mini-electrochemical system proved to be a useful tool and can be applied to electrochemical studies of cancer cells as well as other biological samples such as proteins and DNA.

  4. Phenotypic drug profiling in droplet microfluidics for better targeting of drug-resistant tumors.

    PubMed

    Sarkar, S; Cohen, N; Sabhachandani, P; Konry, T

    2015-12-07

    Acquired drug resistance is a key factor in the failure of chemotherapy. Due to intratumoral heterogeneity, cancer cells depict variations in intracellular drug uptake and efflux at the single cell level, which may not be detectable in bulk assays. In this study we present a droplet microfluidics-based approach to assess the dynamics of drug uptake, efflux and cytotoxicity in drug-sensitive and drug-resistant breast cancer cells. An integrated droplet generation and docking microarray was utilized to encapsulate single cells as well as homotypic cell aggregates. Drug-sensitive cells showed greater death in the presence or absence of Doxorubicin (Dox) compared to the drug-resistant cells. We observed heterogeneous Dox uptake in individual drug-sensitive cells while the drug-resistant cells showed uniformly low uptake and retention. Dox-resistant cells were classified into distinct subsets based on their efflux properties. Cells that showed longer retention of extracellular reagents also demonstrated maximal death. We further observed homotypic fusion of both cell types in droplets, which resulted in increased cell survival in the presence of high doses of Dox. Our results establish the applicability of this microfluidic platform for quantitative drug screening in single cells and multicellular interactions.

  5. Suppressing the cytotoxicity of CuO nanoparticles by uptake of curcumin/BSA particles

    NASA Astrophysics Data System (ADS)

    Zhang, Wenjing; Jiang, Pengfei; Chen, Ying; Luo, Peihua; Li, Guanqun; Zheng, Botuo; Chen, Wei; Mao, Zhengwei; Gao, Changyou

    2016-05-01

    The adverse effects of metal-based nanoparticles on human beings and the environment have received extensive attention recently. It is urgently required to develop a simple and effective method to suppress the toxicity of metal-based nanomaterials. In this study, a hydrophobic antioxidant and a chelation agent curcumin (CUR) were encapsulated into bovine serum albumin (BSA) particles by a simple co-precipitation method, and followed by glutaraldehyde cross-linking. The CUR/BSA particles had an average size of 300 nm in diameter with a negatively charged surface and sustained curcumin release properties. The cellular uptake and cytotoxicity of CUR/BSA particles were followed on A549 cells, HepG2 cells and RAW264.7 cells. The CUR/BSA particles had higher intracellular accumulation and lower cytotoxicity compared with the free curcumin at the same drug concentration. The CUR/BSA particles could suppress the cytotoxicity generated by CuO nanoparticles as a result of decrease of both the intracellular reactive oxygen species (ROS) level and Cu2+ concentration, while the free curcumin did not show any obvious detoxicating effect. The detoxicating effects of CUR/BSA particles were further studied in an intratracheal instillation model in vivo, demonstrating significant reduction of toxicity and inflammatory response in rat lungs induced by CuO nanoparticles. The concept-proving study demonstrates the potential of the CUR/BSA particles in suppressing cytotoxicity of metal-based nanomaterials, which is a paramount requirement for the safe application of nanotechnology.

  6. Cytotoxicity of polyamines to Amoeba proteus: role of polyamine oxidase.

    PubMed

    Schenkel, E; Dubois, J G; Helson-Cambier, M; Hanocq, M

    1996-02-01

    It has been shown that oxidation of polyamines by polyamine oxidases can produce toxic compounds (H2O2, aldehydes, ammonia) and that the polyamine oxidase-polyamine system is implicated, in vitro, in the death of several parasites. Using Amoeba proteus as an in vitro model, we studied the cytotoxicity to these cells of spermine, spermidine, their acetyl derivatives, and their hypothetical precursors. Spermine and N1-acetylspermine were more toxic than emetine, an amoebicidal reference drug. Spermine presented a short-term toxicity, but a 48-h contact time was necessary for the high toxicity of spermidine. The uptake by Amoeba cells of the different polyamines tested was demonstrated. On the other hand, a high polyamine oxidase activity was identified in Amoeba proteus crude extract. Spermine (theoretical 100%) and N1-acetylspermine (64%) were the best substrates at pH 9.5, while spermidine, its acetyl derivatives, and putrescine were very poorly oxidized by this enzyme (3-20%). Spermine oxidase activity was inhibited by phenylhydrazine (nil) and isoniazid (approximately 50%). Mepacrine did not inhibit the enzyme activity at pH 8. Neither monoamine nor diamine oxidase activity (approximately 10%) was found. It must be emphasized that spermine, the best enzyme substrate, is the most toxic polyamine. This finding suggests that knowledge of polyamine oxidase specificity can be used to modulate the cytotoxicity of polyamine derivatives. Amoeba proteus was revealed as a simple model for investigation of the connection between cytotoxicity and enzyme activity.

  7. Predicting drug-target interaction for new drugs using enhanced similarity measures and super-target clustering.

    PubMed

    Shi, Jian-Yu; Yiu, Siu-Ming; Li, Yiming; Leung, Henry C M; Chin, Francis Y L

    2015-07-15

    Predicting drug-target interaction using computational approaches is an important step in drug discovery and repositioning. To predict whether there will be an interaction between a drug and a target, most existing methods identify similar drugs and targets in the database. The prediction is then made based on the known interactions of these drugs and targets. This idea is promising. However, there are two shortcomings that have not yet been addressed appropriately. Firstly, most of the methods only use 2D chemical structures and protein sequences to measure the similarity of drugs and targets respectively. However, this information may not fully capture the characteristics determining whether a drug will interact with a target. Secondly, there are very few known interactions, i.e. many interactions are "missing" in the database. Existing approaches are biased towards known interactions and have no good solutions to handle possibly missing interactions which affect the accuracy of the prediction. In this paper, we enhance the similarity measures to include non-structural (and non-sequence-based) information and introduce the concept of a "super-target" to handle the problem of possibly missing interactions. Based on evaluations on real data, we show that our similarity measure is better than the existing measures and our approach is able to achieve higher accuracy than the two best existing algorithms, WNN-GIP and KBMF2K. Our approach is available at http://web.hku.hk/∼liym1018/projects/drug/drug.html or http://www.bmlnwpu.org/us/tools/PredictingDTI_S2/METHODS.html. Copyright © 2015 Elsevier Inc. All rights reserved.

  8. Choline- versus imidazole-based ionic liquids as functional ingredients in topical delivery systems: cytotoxicity, solubility, and skin permeation studies.

    PubMed

    Santos de Almeida, Tânia; Júlio, Ana; Saraiva, Nuno; Fernandes, Ana Sofia; Araújo, Maria Eduarda M; Baby, André Rolim; Rosado, Catarina; Mota, Joana Portugal

    2017-11-01

    Poor drug solubility represents a problem for the development of topical formulations. Since ionic liquids (ILs) can be placed in either lipophilic or hydrophilic solutions, they may be advantageous vehicles in such delivery systems. Nonetheless, it is vital to determine their usefulness when used at concentrations were cell viability is maintained, which was considered herein. Five different ILs were prepared-three imidazole-based ILs: [C2mim][Br], [C4mim][Br], and [C6mim][Br]; and two choline-based ILs: [Cho][Phe] and [Cho][Glu]. Their cytotoxicity in human keratinocytes (HaCat cells), their influence in drug solubility and in percutaneous permeation, using pig skin membranes, was evaluated. Caffeine and salicylic acid were used as model actives. Choline-based ILs proved to be more suitable as functional ingredients, since they showed higher impact on drug solubility and a lower cytotoxicity. The major solubility enhancement was observed for caffeine and further solubility studies were carried out with this active in several concentrations of the choline-based ILs (0.1; 0.2; 0.5; 1.0; 3.0 and 5.0%, w/w) at 25 °C and 32 °C. Solubility was greatly influenced by concentrations up to 0.5%. The choline-based ILs showed no significant impact on the skin permeation, for both actives. The size of the imidazole-based ILs alkyl chain enhances the caffeine solubility and permeation, but also the ILs cytotoxicity. Stable O/W emulsions and gels were prepared containing the less toxic choline-based ILs and caffeine. Our results indicate that the choline-based ILs were effective functional ingredients, since, when used at nontoxic concentrations, they allowed a higher drug loading, while maintaining the stability of the formulations.

  9. Hydrazone linked doxorubicin-PLA prodrug nanoparticles with high drug loading

    NASA Astrophysics Data System (ADS)

    Gatti, Simone; Agostini, Azzurra; Capasso Palmiero, Umberto; Colombo, Claudio; Peviani, Marco; Biffi, Alessandra; Moscatelli, Davide

    2018-07-01

    An optimal drug delivery system should be characterized by biocompatibility, biodegradability, high drug loading and favorable drug release profile. To achieve this goal a hydrazone linked doxorubicin-poly(lactic acid) prodrug (PLA-DOX) was synthesized by the functionalization of a short polymer chain produced by ring opening polymerization. The hydrophobic prodrug generated in this way was nanoprecipitated using a block copolymer to form polymeric nanoparticles (NPs) with a quantitative loading efficiency and a high and tunable drug loading. The effects of the concentration of the PLA-DOX prodrug and surfactant were studied by dynamic light scattering showing a range of NP size between 50 and 90 nm and monodispersed size distributions with polydispersity indexes lower then 0.27 up to a maximum DOX concentration of 27% w/w. The release profile of DOX from these NPs, tested at different pH conditions, showed a higher release rate in acidic conditions, consistent with the nature of the hydrazone bond which was used to conjugate the drug to the polymer. In vitro cytotoxicity studies performed on BV2 microglia-like cell line highlighted a specific cytotoxic effect of these NPs suggesting the maintenance of the drug efficacy and a modified release profile upon encapsulation of DOX in the NPs.

  10. In vitro cytotoxicity analysis of doxorubicin-loaded/superparamagnetic iron oxide colloidal nanoassemblies on MCF7 and NIH3T3 cell lines

    PubMed Central

    Tomankova, Katerina; Polakova, Katerina; Pizova, Klara; Binder, Svatopluk; Havrdova, Marketa; Kolarova, Mary; Kriegova, Eva; Zapletalova, Jana; Malina, Lukas; Horakova, Jana; Malohlava, Jakub; Kolokithas-Ntoukas, Argiris; Bakandritsos, Aristides; Kolarova, Hana; Zboril, Radek

    2015-01-01

    One of the promising strategies for improvement of cancer treatment is based on magnetic drug delivery systems, thus avoiding side effects of standard chemotherapies. Superparamagnetic iron oxide (SPIO) nanoparticles have ideal properties to become a targeted magnetic drug delivery contrast probes, named theranostics. We worked with SPIO condensed colloidal nanocrystal clusters (MagAlg) prepared through a new soft biomineralization route in the presence of alginate as the polymeric shell and loaded with doxorubicin (DOX). The aim of this work was to study the in vitro cytotoxicity of these new MagAlg–DOX systems on mouse fibroblast and breast carcinoma cell lines. For proper analysis and understanding of cell behavior after administration of MagAlg–DOX compared with free DOX, a complex set of in vitro tests, including production of reactive oxygen species, comet assay, cell cycle determination, gene expression, and cellular uptake, were utilized. It was found that the cytotoxic effect of MagAlg–DOX system is delayed compared to free DOX in both cell lines. This was attributed to the different mechanism of internalization of DOX and MagAlg–DOX into the cells, together with the fact that the drug is strongly bound on the drug nanocarriers. We discovered that nanoparticles can attenuate or even inhibit the effect of DOX, particularly in the tumor MCF7 cell line. This is a first comprehensive study on the cytotoxic effect of DOX-loaded SPIO compared with free DOX on healthy and cancer cell lines, as well as on the induced changes in gene expression. PMID:25673990

  11. Cytotoxicity of doxrubicin loaded single-walled carbon nanotubes.

    PubMed

    Ünlü, Ayhan; Meran, Mehdi; Dinc, Bircan; Karatepe, Nilgün; Bektaş, Muhammet; Güner, F Seniha

    2018-05-24

    Carbon nanotube (CNTs) is a new alternative for efficient drug delivery and it has a great potential to change drug delivery system profile in pharmaceutical industry. One of the important advantage of CNTs is their needle-like, cylindrical shape. This shape provides a high surface area for multiple connections and adsorption onto for millions of therapeutic molecules. CNTs can be internalized by cells via endocytosis, passive diffusion and phagocytosis and release the drug with different effects like pH and temperature. The acidic nature of cancer cells and the susceptibility of CNTs to release the drug in the acidic environment have made it a promising area of research in cancer drug delivery. In this research, we investigated cell viability, cytotoxicity and drug delivery in breast cancer cell line by designing non-covalent single walled carbon nanotubes (SWNT)-doxorubicin (DOX) supramolecular complex that can be developed for cancer therapy. Applied high concentrations of DOX loaded SWNTs changed the actin structure of the cells and prevented the proliferation of the cells. It was showed that doxorubicin loaded SWNTs were more effective than free doxorubicin at relatively small concentrations. Once we applied same procedure for short and long (short: 1-1.3 µm; long: 2.5-4 µm) SWNTs and compared the results, more disrupted cell structure and reduction in cell proliferation were observed for long CNTs. DOX is bounded more to nanotubes in basic medium, less bound in acidic environment. Cancer cells were also examined for concentration at which they were effective by applying DOX and it was seen that 3.68 µM doxorubicin kills more than 55% of the cells.

  12. Understanding alterations in drug handling with aging: a focus on the pharmacokinetics of maintenance immunosuppressants in the elderly.

    PubMed

    Gabardi, Steven; Tullius, Stefan G; Krenzien, Felix

    2015-08-01

    This review presents current knowledge of the impact of age on the pharmacokinetics of maintenance immunosuppressants. Over the past decade, there has been a steady increase in older patients on organ transplant waiting lists. As a result, the average age of transplant recipients has significantly increased. The survival and quality-of-life benefits of transplantation in the elderly population have been demonstrated. Advancing age is associated with changes in immune responses, as well as changes in drug handling. Immunosenescence is a physiological part of aging and is linked to reduced rejection rates, but also higher rates of diabetes, infections and malignancies. Physiologic changes associated with age can have a significant impact on the pharmacokinetics of the maintenance immunosuppressive agents. Taken together, these age-related changes impact older transplant candidates and may have significant implications for managing immunosuppression in the elderly. Despite the lack of formal efficacy, safety and pharmacokinetic studies of individual immunosuppressants in the elderly transplant population, there are enough data available for practitioners to be able to adequately manage their older patients. A proficient understanding of the factors that impact the pharmacokinetics of the immunosuppressants in the elderly is essential to managing these patients successfully.

  13. Depressed spontaneous cell-mediated cytotoxicity in Crohn's disease.

    PubMed

    Beeken, W L; Macpherson, B R; Gundel, R M; St Andre-Ukena, S; Wood, S G; Sylwester, D L

    1983-02-01

    Cytotoxicity of peripheral blood mononuclear cells of 30 patients with Crohn's disease (CD) and 30 matched controls was assayed by measuring isotope release from 75Se-L-methionine labelled RPMI 4788 human colon cancer cells. Effector populations were studied with and without monocyte depletion after 4 and 24 hr incubations in 10% fetal calf serum or autologous serum or plasma. Cytotoxicity was negligible at 4 hr. Twenty-four hour cytotoxicity was consistently lower in CD patients than in healthy controls, mean values ranging from 13.6 +/- 2.7% (s.e.m.) to 19.5 +/- 3.7% in patients and from 27.2 +/- 4.1% to 33.6 +/- 5.3% in controls. Cytotoxicity of disease controls was not significantly different from that of healthy subjects. Cytotoxicity was reduced by monocyte depletion, was weakly and inversely related to disease activity, was relatively stable for up to 24 months and was not HLA restricted. Cell lysis was attributable to spontaneous cell-mediated cytotoxicity. Antibody-dependent cellular cytotoxicity and antibody-complement-dependent cytotoxicity were not detected.

  14. Depressed spontaneous cell-mediated cytotoxicity in Crohn's disease.

    PubMed Central

    Beeken, W L; Macpherson, B R; Gundel, R M; St Andre-Ukena, S; Wood, S G; Sylwester, D L

    1983-01-01

    Cytotoxicity of peripheral blood mononuclear cells of 30 patients with Crohn's disease (CD) and 30 matched controls was assayed by measuring isotope release from 75Se-L-methionine labelled RPMI 4788 human colon cancer cells. Effector populations were studied with and without monocyte depletion after 4 and 24 hr incubations in 10% fetal calf serum or autologous serum or plasma. Cytotoxicity was negligible at 4 hr. Twenty-four hour cytotoxicity was consistently lower in CD patients than in healthy controls, mean values ranging from 13.6 +/- 2.7% (s.e.m.) to 19.5 +/- 3.7% in patients and from 27.2 +/- 4.1% to 33.6 +/- 5.3% in controls. Cytotoxicity of disease controls was not significantly different from that of healthy subjects. Cytotoxicity was reduced by monocyte depletion, was weakly and inversely related to disease activity, was relatively stable for up to 24 months and was not HLA restricted. Cell lysis was attributable to spontaneous cell-mediated cytotoxicity. Antibody-dependent cellular cytotoxicity and antibody-complement-dependent cytotoxicity were not detected. PMID:6601555

  15. Identification of yeast DNA topoisomerase II mutants resistant to the antitumor drug doxorubicin: implications for the mechanisms of doxorubicin action and cytotoxicity.

    PubMed

    Patel, S; Sprung, A U; Keller, B A; Heaton, V J; Fisher, L M

    1997-10-01

    Doxorubicin is a therapeutically useful anticancer drug that exerts multiple biological effects. Its antitumor and cardiotoxic properties have been ascribed to anthracycline-mediated free radical damage to DNA and membranes. Evidence for this idea comes in part from the selection by doxorubicin from stationary phase yeast cells of mutants (petites) deficient in mitochondrial respiration and therefore defective in free radical generation. However, doxorubicin also binds to DNA topoisomerase II, converting the enzyme into a DNA damaging agent through the trapping of a covalent enzyme-DNA complex termed the 'cleavable complex.' We have used yeast to determine whether stabilization of cleavable complexes plays a role in doxorubicin action and cytotoxicity. A plasmid-borne yeast TOP2 gene was mutagenized with hydroxylamine and used to transform drug-permeable yeast strain JN394t2-4, which carries a temperature-sensitive top2-4 mutation in its chromosomal TOP2 gene. Selection in growth medium at the nonpermissive temperature of 35 degrees in the presence of doxorubicin resulted in the isolation of plasmid-borne top2 mutants specifying functional doxorubicin-resistant DNA topoisomerase II. Single-point changes of Gly748 to Glu or Ala642 to Ser in yeast topoisomerase II, which lie in and adjacent to the CAP-like DNA binding domain, respectively, were identified as responsible for resistance to doxorubicin, implicating these regions in drug action. None of the mutants selected in JN394t2-4, which has a rad52 defect in double-strand DNA break repair, was respiration-deficient. We conclude that topoisomerase II is an intracellular target for doxorubicin and that the genetic background and/or cell proliferation status can determine the relative importance of topoisomerase II- versus free radical-killing.

  16. Automatic liquid handling for life science: a critical review of the current state of the art.

    PubMed

    Kong, Fanwei; Yuan, Liang; Zheng, Yuan F; Chen, Weidong

    2012-06-01

    Liquid handling plays a pivotal role in life science laboratories. In experiments such as gene sequencing, protein crystallization, antibody testing, and drug screening, liquid biosamples frequently must be transferred between containers of varying sizes and/or dispensed onto substrates of varying types. The sample volumes are usually small, at the micro- or nanoliter level, and the number of transferred samples can be huge when investigating large-scope combinatorial conditions. Under these conditions, liquid handling by hand is tedious, time-consuming, and impractical. Consequently, there is a strong demand for automated liquid-handling methods such as sensor-integrated robotic systems. In this article, we survey the current state of the art in automatic liquid handling, including technologies developed by both industry and research institutions. We focus on methods for dealing with small volumes at high throughput and point out challenges for future advancements.

  17. Dosing of antirheumatic drugs in renal disease and dialysis.

    PubMed

    Swarup, Areena; Sachdeva, Namita; Schumacher, H Ralph

    2004-08-01

    Many patients with rheumatic diseases have their management complicated by renal problems. Renal failure modifies the metabolism of many drugs, especially by retention. Questions often arise about the effects of renal failure on the handling of drugs commonly used in rheumatology. For which drugs must we be especially concerned about increased toxicity? Patients on chronic dialysis may also need a variety of drugs for rheumatic disease. How are our drugs dialyzed, and which of these can be safety used and how best to use them?Decisions about dosing of rheumatic drugs are often required for the patients with chronic renal insufficiency or on long-term dialysis, although many drugs have not been formally studied in these settings. Patients with renal insufficiency are excluded from most drug trials. Data for some of these drugs have to be extrapolated based on the information available about the pharmacokinetics of the drug.This review addresses dosing of commonly used drugs in rheumatology in patients with chronic renal insufficiency or failure. It is compiled from a MEDLINE search of papers dealing with renal handling of antirheumatic drugs and suggestions for dose adjustments for these drugs. Drugs reviewed include commonly used disease-modifying antirheumatic drugs (DMARDS), drugs used for treatment of gout, commonly used nonsteroidal antnflammatory drugs (NSAIDS) and the newer COX-2 inhibitors.

  18. Efficient RNA drug delivery using red blood cell extracellular vesicles.

    PubMed

    Usman, Waqas Muhammad; Pham, Tin Chanh; Kwok, Yuk Yan; Vu, Luyen Tien; Ma, Victor; Peng, Boya; Chan, Yuen San; Wei, Likun; Chin, Siew Mei; Azad, Ajijur; He, Alex Bai-Liang; Leung, Anskar Y H; Yang, Mengsu; Shyh-Chang, Ng; Cho, William C; Shi, Jiahai; Le, Minh T N

    2018-06-15

    Most of the current methods for programmable RNA drug therapies are unsuitable for the clinic due to low uptake efficiency and high cytotoxicity. Extracellular vesicles (EVs) could solve these problems because they represent a natural mode of intercellular communication. However, current cellular sources for EV production are limited in availability and safety in terms of horizontal gene transfer. One potentially ideal source could be human red blood cells (RBCs). Group O-RBCs can be used as universal donors for large-scale EV production since they are readily available in blood banks and they are devoid of DNA. Here, we describe and validate a new strategy to generate large-scale amounts of RBC-derived EVs for the delivery of RNA drugs, including antisense oligonucleotides, Cas9 mRNA, and guide RNAs. RNA drug delivery with RBCEVs shows highly robust microRNA inhibition and CRISPR-Cas9 genome editing in both human cells and xenograft mouse models, with no observable cytotoxicity.

  19. Glucose Modulation Induces Lysosome Formation and Increases Lysosomotropic Drug Sequestration via the P-Glycoprotein Drug Transporter*

    PubMed Central

    Seebacher, Nicole A.; Lane, Darius J. R.; Jansson, Patric J.; Richardson, Des R.

    2016-01-01

    Pgp is functional on the plasma membrane and lysosomal membrane. Lysosomal-Pgp can pump substrates into the organelle, thereby trapping certain chemotherapeutics (e.g. doxorubicin; DOX). This mechanism serves as a “safe house” to protect cells against cytotoxic drugs. Interestingly, in contrast to DOX, lysosomal sequestration of the novel anti-tumor agent and P-glycoprotein (Pgp) substrate, di-2-pyridylketone-4,4-dimethyl-3-thiosemicarbazone (Dp44mT), induces lysosomal membrane permeabilization. This mechanism of lysosomal-Pgp utilization enhances cytotoxicity to multidrug-resistant cells. Consequently, Dp44mT has greater anti-tumor activity in drug-resistant relative to non-Pgp-expressing tumors. Interestingly, stressors in the tumor microenvironment trigger endocytosis for cell signaling to assist cell survival. Hence, this investigation examined how glucose variation-induced stress regulated early endosome and lysosome formation via endocytosis of the plasma membrane. Furthermore, the impact of glucose variation-induced stress on resistance to DOX was compared with Dp44mT and its structurally related analogue, di-2-pyridylketone 4-cyclohexyl-4-methyl-3-thiosemicarbazone (DpC). These studies showed that glucose variation-induced stress-stimulated formation of early endosomes and lysosomes. In fact, through the process of fluid-phase endocytosis, Pgp was redistributed from the plasma membrane to the lysosomal membrane via early endosome formation. This lysosomal-Pgp actively transported the Pgp substrate, DOX, into the lysosome where it became trapped as a result of protonation at pH 5. Due to increased lysosomal DOX trapping, Pgp-expressing cells became more resistant to DOX. In contrast, cytotoxicity of Dp44mT and DpC was potentiated due to more lysosomes containing functional Pgp under glucose-induced stress. These thiosemicarbazones increased lysosomal membrane permeabilization and cell death. This mechanism has critical implications for drug-targeting in

  20. Cytotoxic Activity of Holothuria leucospilota Extract against Leishmania infantum In Vitro

    PubMed Central

    Khademvatan, Shahram; Eskandari, Alborz; Saki, Jasem; Foroutan-Rad, Masoud

    2016-01-01

    Leishmaniasis is a tropical parasitic infection. The resistance and toxicity issues are the major complications and remain significant consequences related to the treatment of leishmaniasis with the recent and classical drugs. Thus there is an immediate requirement to develop new compounds for the treatment of this protozoan disease. Sea cucumbers or holothurians are potentially presented as the marine sources of antimicrobial and cytotoxic compounds. The aim of this study was investigation of in vitro antileishmanial activity of methanol extract of body wall, coelomic fluid, and cuvierian organs of Holothuria leucospilota obtained from coastal parts of Persian Gulf against Leishmania infantum promastigotes and axenic amastigotes. The colorimetric MTT assay was used to determine L. infantum promastigotes and axenic amastigotes viability at different concentrations of the extracts and drug control (Glucantime®) at time dependent manner and the results are represented as IC50 (50% of inhibitory concentration). Coelomic fluid was the most active extract among the three different extracts of H. leucospilota against L. infantum promastigotes and axenic amastigotes with IC50s of 62.33 μg/mL and 22.4 μg/mL and 73 μg/mL and 46 μg/mL at 48 and 72 hours after treatment, respectively. Cuvierian organs extract showed less toxicity with IC50s more than 1000 μg/mL for both Leishmania infantum axenic amastigotes and promastigotes forms after 48 and 72 hours of exposure. Results acquired from the present study propose that the sea cucumber H. leucospilota may be a provoking source of antileishmanial compounds and could be a lead source in the development of the potent antileishmanial and cytotoxic drugs. PMID:27022392

  1. The effect of learning via module versus lecture teaching methods on the knowledge and practice of oncology nurses about safety standards with cytotoxic drugs in Shiraz University of Medical Sciences.

    PubMed

    Abbasi, Khadijeh; Hazrati, Maryam; Mohamadi, Nasrin Pourali; Rajaeefard, Abdolreza

    2013-11-01

    Several studies have established that all nurses need continuing education, especially those who are working in oncology wards. In the current programs, there are just two general patterns for teaching: Teacher-centered and student-centered patterns. In this study, the effect of teacher-centered (lecture) and student-centered (module) teaching methods in relation to safety standards with cytotoxic drugs on the knowledge and practice of oncology nurses was compared. This research was a quasi-experimental study with two intervention groups (module and lecture) and a control group. In this study, 86 nurses in Shiraz, Fars province in 2011, who participated in the prescription of cytotoxic drugs to patients were selected and randomly divided into three groups. The module group used a self-directed module, the lecture group was taught by an experienced lecturer in the classroom and the control group did not receive any intervention. Data in relation to knowledge and practice of oncology nurses in the three groups were collected before and 8 weeks after the intervention by using a questionnaire and checklist. To analyze the data paired-samples t-test and one way ANOVA analysis were used. Knowledge and practice scores increased significantly from baseline in both intervention groups, but there was no significant difference between the scores of the two groups. No considerable changes were observed in the control group. Both module and lecture methods have similar effects on improving the knowledge and practice of nurses in oncology wards. Therefore, considering the advantages of student-centered educational methods, the work load of nurses and the sensitivity of their jobs, we suggest using module.

  2. Endophytic Fungi—Alternative Sources of Cytotoxic Compounds: A Review

    PubMed Central

    Uzma, Fazilath; Mohan, Chakrabhavi D.; Hashem, Abeer; Konappa, Narasimha M.; Rangappa, Shobith; Kamath, Praveen V.; Singh, Bhim P.; Mudili, Venkataramana; Gupta, Vijai K.; Siddaiah, Chandra N.; Chowdappa, Srinivas; Alqarawi, Abdulaziz A.; Abd_Allah, Elsayed F.

    2018-01-01

    Cancer is a major cause of death worldwide, with an increasing number of cases being reported annually. The elevated rate of mortality necessitates a global challenge to explore newer sources of anticancer drugs. Recent advancements in cancer treatment involve the discovery and development of new and improved chemotherapeutics derived from natural or synthetic sources. Natural sources offer the potential of finding new structural classes with unique bioactivities for cancer therapy. Endophytic fungi represent a rich source of bioactive metabolites that can be manipulated to produce desirable novel analogs for chemotherapy. This review offers a current and integrative account of clinically used anticancer drugs such as taxol, podophyllotoxin, camptothecin, and vinca alkaloids in terms of their mechanism of action, isolation from endophytic fungi and their characterization, yield obtained, and fungal strain improvement strategies. It also covers recent literature on endophytic fungal metabolites from terrestrial, mangrove, and marine sources as potential anticancer agents and emphasizes the findings for cytotoxic bioactive compounds tested against specific cancer cell lines. PMID:29755344

  3. Cytotoxicity and apoptosis of ovarian and breast cancer cell lines induced by OVS1 monoclonal antibody and paclitaxel.

    PubMed

    Moongkarndi, Primchanien; Kaslungka, Sineenart; Kosem, Nuttavut; Junnu, Sarawut; Jongsomboonkusol, Suna; Theptaranon, Yodsaward; Neungton, Neelobol

    2003-03-01

    OVS1 monoclonal antibody (MAb) produced against ovarian cancer is currently used to identify mucinous cystadenocarcinoma antigen as a tumor marker secreted in serum. The potential of OVS1 MAb in ovarian cancer treatment was studied by evaluating the induction of cytotoxicity and apoptosis of SKOV3 ovarian cancer and BT549 breast cancer cell lines induced by OVS1. Paclitaxel, an antitumor drug, was used as positive control and applied as a combined drug together with OVS1 MAb. OVS1 MAb and paclitaxel were found by MTT assay to induce cytotoxicity against both cell lines. The ED50 of OVS1 MAb were 26.25 and 25.00 microg/ml and of paclitaxel were 21.88 and 9.20 nM against SKOV3 and BT549 cell lines, respectively. The quantitative amount of cells determined by fluorimetric assay was correlated to the results of the MTT assay. The combined application of OVS1 MAb and paclitaxel on these two cell lines resulted in a greater cytotoxicity than observed by either agent alone. OVS1 MAb and paclitaxel applied against both cell lines induced the morphological changes of apoptotic cell death at 24 hours visualized by two color fluorescence dyes, Ho33342 and propidium iodide. Combination of the two substances enhanced the rate of apoptosis compared to either OVS1 MAb or paclitaxel given alone. DNA fragmentation was detected in an agarose gel electrophoresis after treating cells with OVS1 MAb and paclitaxel at 24 hours. These findings on the induction of cytotoxicity and apoptosis by OVS1 MAb on cancer cell lines have implications on the potential application of OVS1 MAb for clinical therapy.

  4. Suppression of ErbB-2 in androgen-independent human prostate cancer cells enhances cytotoxic effect by gemcitabine in an androgen-reduced environment.

    PubMed

    Zhang, Li; Davis, Jeffrey S; Zelivianski, Stanislav; Lin, Fen-Fen; Schutte, Rachel; Davis, Thomas L; Hauke, Ralph; Batra, Surinder K; Lin, Ming-Fong

    2009-11-18

    We examined the efficacy of combination treatments utilizing cytotoxic drugs plus inhibitors to members of the ErbB-ERK signal pathway in human prostate cancer (PCa) LNCaP C-81 cells. Under an androgen-reduced condition, 50nM gemcitabine caused about 40% growth suppression on C-81 cells. Simultaneous treatment of gemcitabine plus 10microM AG825 produced 60% suppression (p<0.03); while, 85% growth inhibition (p<0.02) was seen if AG825 was added to gemcitabine-treated cells after a 24h-interval. Our data thus showed that in androgen-reduced conditions, inhibition of ErbB-2 increases the cytotoxic efficacy of gemcitabine in PCa cells. This finding has significant implications in the choice of drugs for combination therapy as well as the order of administration for treating cancer patients.

  5. S-adenosylmethionine regulates thiopurine methyltransferase activity and decreases 6-mercaptopurine cytotoxicity in MOLT lymphoblasts.

    PubMed

    Milek, Miha; Karas Kuzelicki, Natasa; Smid, Alenka; Mlinaric-Rascan, Irena

    2009-06-15

    Six-mercaptopurine (6-MP) is a pro-drug widely used in treatment of various diseases, including acute lymphoblastic leukaemia (ALL). Side-effects of thiopurine therapy have been correlated with thiopurine methyltransferase (TPMT) activity. We propose a novel TPMT-mediated mechanism of S-adenosylmethionine (SAM)-specific effects on 6-mercaptopurine (6-MP) induced cytotoxicity in a model cell line for acute lymphoblastic leukemia (MOLT). Our results show that exogenous SAM (10-50microM) rescues cells from the toxic effects of 6-MP (5microM) by delaying the onset of apoptosis. We prove that the extent of methylthioinosine monophosphate (MeTIMP) induced inhibition of de novo purine synthesis (DNPS) determines the concentrations of intracellular ATP, and consequently SAM, which acts as a positive modulator of TPMT activity. This leads to a greater conversion of 6-MP to inactive 6-methylmercaptopurine, and thus lower availability of thioinosine monophosphate for the biotransformation to cytotoxic thioguanine nucleotides (TGNs) and MeTIMP. We further show that the addition of exogenous SAM to 6-MP treated cells maintains intracellular SAM levels, TPMT activity and protein levels, all of which are diminished in cells incubated with 6-MP. Since TPMT mRNA levels remained unaltered, the effect of SAM appears to be restricted to protein stabilisation rather than an increase of TPMT expression. We thus propose that SAM reverses the extent of 6-MP cytotoxicity, by acting as a TPMT-stabilizing factor. This study provides new insights into the pharmacogenetics of thiopurine drugs. Identification of SAM as critical modulator of TPMT activity and consequently thiopurine toxicity may set novel grounds for the rationalization of thiopurine therapy.

  6. Construction and characterization of a pure protein hydrogel for drug delivery application.

    PubMed

    Xu, Xu; Xu, ZhaoKang; Yang, XiaoFeng; He, YanHao; Lin, Rong

    2017-02-01

    Injectable hydrogels have a variety of applications, including regenerative medicine, tissue engineering and controlled drug delivery. In this paper, we reported on a pure protein hydrogel based on tetrameric recombinant proteins for the potential drug delivery application. This protein hydrogel was formed instantly by simply mixing two recombinant proteins (ULD-TIP1 and ULD-GGGWRESAI) through the specific protein-peptide interaction. The protein hydrogel was characterized by rheology and scanning electron microscopy (SEM). In vitro cytotoxicity test indicated that the developed protein hydrogel had no apparent cytotoxicity against L-929 cells and HCEC cells after 48h incubation. The formed protein hydrogels was gradually degraded after incubation in phosphate buffered solution (PBS, pH=7.4) for a period of 144h study, as indicated by in vitro degradation test. Encapsulation of model drug (sodium diclofenac; DIC) were achieved by simple mixing of drugs with hydrogelator and the entrapped drugs was almost completely released from hydrogels within 24h via a diffusion manner. As a conclusion, the simple and mild preparation procedure and good biocompatibility of protein hydrogel would render its good promising candidate for drug delivery applications. Copyright © 2016 Elsevier B.V. All rights reserved.

  7. Mathematical modeling of antibody drug conjugates with the target and tubulin dynamics to predict AUC.

    PubMed

    Byun, Jong Hyuk; Jung, Il Hyo

    2018-04-14

    Antibody drug conjugates (ADCs)are one of the most recently developed chemotherapeutics to treat some types of tumor cells. They consist of monoclonal antibodies (mAbs), linkers, and potent cytotoxic drugs. Unlike common chemotherapies, ADCs combine selectively with a target at the surface of the tumor cell, and a potent cytotoxic drug (payload) effectively prevents microtubule polymerization. In this work, we construct an ADC model that considers both the target of antibodies and the receptor (tubulin) of the cytotoxic payloads. The model is simulated with brentuximab vedotin, one of ADCs, and used to investigate the pharmacokinetic (PK) characteristics of ADCs in vivo. It also predicts area under the curve (AUC) of ADCs and the payloads by identifying the half-life. The results show that dynamical behaviors fairly coincide with the observed data and half-life and capture AUC. Thus, the model can be used for estimating some parameters, fitting experimental observations, predicting AUC, and exploring various dynamical behaviors of the target and the receptor. Copyright © 2018 Elsevier Ltd. All rights reserved.

  8. The Effect of Ultrafine Process on the Dissolution, Antibacterial Activity, and Cytotoxicity of Coptidis rhizoma

    PubMed Central

    Jiang, Zhen-Yu; Deng, Hai-Ying; Yu, Zhi-Jun; Ni, Jun-Yan; Kang, Si-He

    2016-01-01

    Background: The dosage of herb ultrafine particle (UFP) depended on the increased level of its dissolution, toxicity, and efficacy. Objective: The dissolution, antibacterial activity, and cytotoxicity of Coptidis rhizoma (CR) UFP were compared with those of traditional decoction (TD). Materials and Methods: The dissolution of berberine (BBR) of CR TD and UFP was determined by high-performance liquid chromatography. The antibacterial activity of CR extract was assayed by plate-hole diffusion and broth dilution method; the inhibitory effect of rat serums against bacteria growth was evaluated after orally given CR UFP or TD extract. The cytotoxicity of CR extract was evaluated by 3-(4,5-dimethylthiazol-2-Yl)-2,5-diphenyltetrazolium bromide assay. Results: The dissolution amount of BBR from CR UFP increased 6–8-folds in comparison to TD at 2 min, the accumulative amount of BBR in both UFP and TD group increased in a time-dependent manner. The minimal inhibitory concentrations and minimal bactericidal concentrations of CR UFP extract decreased to 1/2~1/4 of those of TD extract. The inhibitory effect of rat serums against bacteria growth decreased time-dependently, and no statistical difference was observed between two groups at each time point. The 50% cytotoxic concentrations of UFP extract increased 1.66~1.97 fold than those of TD. Conclusions: The antibacterial activity and cytotoxicity of CR UFP increased in a dissolution-effect manner in vitro, the increased level of cytotoxicity was lower than that of antibacterial activity, and the inhibitory effect of rat serums containing drugs of UFP group did not improve. SUMMARY Ultrafine grinding process caused a rapid increase of BBR dissolution from CR.The antibacterial activity and cytotoxicity of UFP extract in vitro increased in a dissolution-effect manner, but the cytotoxicity increased lower than the antibacterial activity.The antibacterial activity of rat serums of UFP group did not improve in comparison to that

  9. Zirconium phosphate nanoplatelets: a biocompatible nanomaterial for drug delivery to cancer

    NASA Astrophysics Data System (ADS)

    Saxena, Vipin; Diaz, Agustin; Clearfield, Abraham; Batteas, James D.; Hussain, Muhammad Delwar

    2013-02-01

    The objective of this study was to evaluate the biocompatibility of zirconium phosphate (ZrP) nanoplatelets (NPs), and their use in drug delivery. ZrP and doxorubicin-intercalated ZrP (DOX:ZrP) NPs were characterized by using X-Ray Powder Diffraction (XRPD), Thermogravimetric Analysis (TGA), Transmission Electron Micrography (TEM), Scanning Electron Microscopy (SEM) and Atomic Force Microscopy (AFM). Biocompatibility of ZrP NPs was evaluated in human embryonic kidney (HEK-293), breast cancer (MCF-7), metastatic breast cancer (MDA-MB-231), ovarian cancer (OVCAR-3), resistant cancer (NCI-RES/ADR) cells and mouse macrophage (RAW 264.7) cell lines. Hemocompatibility of ZrP NPs was evaluated with human red blood cells. Simulated body fluid (SBF) of pH 7.4 was used to determine the in vitro release of doxorubicin from DOX:ZrP NPs. Cellular uptake and in vitro cytotoxicity studies of DOX:ZrP NPs were determined in MDA-MB-231. The ZrP nanomaterial can be prepared in the 100-200 nm size range with a platelet-like shape. The ZrP NPs themselves are biocompatible, hemocompatible and showed no toxicity to the macrophage cells. ZrP NPs can intercalate high loads (35% w/w) of doxorubicin between their layers. The release of DOX was sustained for about 2 weeks. DOX:ZrP NPs showed higher cellular uptake and increased cytotoxicity than free DOX in MDA-MB-231 cells. ZrP NPs are highly biocompatible, can intercalate large amounts of drugs and sustain the release of drugs. ZrP NPs improved the cellular uptake and cytotoxicity of DOX to MDA-MB-231 cells. ZrP NPs are promising nanocarriers for drug delivery in cancer therapy.The objective of this study was to evaluate the biocompatibility of zirconium phosphate (ZrP) nanoplatelets (NPs), and their use in drug delivery. ZrP and doxorubicin-intercalated ZrP (DOX:ZrP) NPs were characterized by using X-Ray Powder Diffraction (XRPD), Thermogravimetric Analysis (TGA), Transmission Electron Micrography (TEM), Scanning Electron Microscopy (SEM

  10. Robotic liquid handling and automation in epigenetics.

    PubMed

    Gaisford, Wendy

    2012-10-01

    Automated liquid-handling robots and high-throughput screening (HTS) are widely used in the pharmaceutical industry for the screening of large compound libraries, small molecules for activity against disease-relevant target pathways, or proteins. HTS robots capable of low-volume dispensing reduce assay setup times and provide highly accurate and reproducible dispensing, minimizing variation between sample replicates and eliminating the potential for manual error. Low-volume automated nanoliter dispensers ensure accuracy of pipetting within volume ranges that are difficult to achieve manually. In addition, they have the ability to potentially expand the range of screening conditions from often limited amounts of valuable sample, as well as reduce the usage of expensive reagents. The ability to accurately dispense lower volumes provides the potential to achieve a greater amount of information than could be otherwise achieved using manual dispensing technology. With the emergence of the field of epigenetics, an increasing number of drug discovery companies are beginning to screen compound libraries against a range of epigenetic targets. This review discusses the potential for the use of low-volume liquid handling robots, for molecular biological applications such as quantitative PCR and epigenetics.

  11. How to Deal with the Drug Problem on Campus

    ERIC Educational Resources Information Center

    Hecklinger, Fred J.

    1971-01-01

    The author contends that an educational program is worth very little without an effective policy on handling illegal drug activity. Presented is a proposal for an institutional response toward dealing with the use of illegal drugs on campus. (Author)

  12. Parallel shRNA and CRISPR-Cas9 screens enable antiviral drug target identification.

    PubMed

    Deans, Richard M; Morgens, David W; Ökesli, Ayşe; Pillay, Sirika; Horlbeck, Max A; Kampmann, Martin; Gilbert, Luke A; Li, Amy; Mateo, Roberto; Smith, Mark; Glenn, Jeffrey S; Carette, Jan E; Khosla, Chaitan; Bassik, Michael C

    2016-05-01

    Broad-spectrum antiviral drugs targeting host processes could potentially treat a wide range of viruses while reducing the likelihood of emergent resistance. Despite great promise as therapeutics, such drugs remain largely elusive. Here we used parallel genome-wide high-coverage short hairpin RNA (shRNA) and clustered regularly interspaced short palindromic repeats (CRISPR)-Cas9 screens to identify the cellular target and mechanism of action of GSK983, a potent broad-spectrum antiviral with unexplained cytotoxicity. We found that GSK983 blocked cell proliferation and dengue virus replication by inhibiting the pyrimidine biosynthesis enzyme dihydroorotate dehydrogenase (DHODH). Guided by mechanistic insights from both genomic screens, we found that exogenous deoxycytidine markedly reduced GSK983 cytotoxicity but not antiviral activity, providing an attractive new approach to improve the therapeutic window of DHODH inhibitors against RNA viruses. Our results highlight the distinct advantages and limitations of each screening method for identifying drug targets, and demonstrate the utility of parallel knockdown and knockout screens for comprehensive probing of drug activity.

  13. Fabrication and characterization of silk fibroin-coated liposomes for ocular drug delivery.

    PubMed

    Dong, Yixuan; Dong, Pin; Huang, Di; Mei, Liling; Xia, Yaowen; Wang, Zhouhua; Pan, Xin; Li, Ge; Wu, Chuanbin

    2015-04-01

    The unique structure and protective mechanisms of the eye result in low bioavailability of ocular drugs. Using a mucoadhesive material is an efficient solution to improve ocular drug therapeutic efficacy. This study was designed to prepare a liposomal formulation coated by a novel adhesive excipient, silk fibroin (SF), for topical ocular drug delivery. The regenerated silk fibroins (SFs) with different dissolving time were coated onto the ibuprofen-loaded liposomes. The morphology, drug encapsulation efficiency, in vitro release and in vitro corneal permeation of SF-coated liposomes (SLs) were investigated in comparison with the conventional liposome. Cellular adhesion and cytotoxicity assay of SF and SLs were tested using human corneal epithelial cells (HCEC). SLs showed sustained drug release and in vitro corneal permeation of ibuprofen as compared to drug solution and conventional liposome. The cellular fluorescence appeared after 7 min of exposure to SF, and the intensity increased sustainedly up to 12h with no detectable cytotoxicity. Higher fluorescence intensity of Nile red in SLs was observed in a short period of 15 min showing a rapid uptake. These favorable properties make SF-coated liposome be a promising ocular drug delivery system. Copyright © 2015 Elsevier B.V. All rights reserved.

  14. The effect of neonatal handling on adult feeding behavior is not an anxiety-like behavior.

    PubMed

    Silveira, P P; Portella, A K; Clemente, Z; Gamaro, G D; Dalmaz, C

    2005-02-01

    Brief periods of handling during the neonatal period have been shown to have profound and long-lasting physiological consequences. Previous studies performed in our laboratory have demonstrated that handling the pups during the neonatal period leads to increased sweet food ingestion in adult life. The objective of this study is to verify if this effect could be explained by the enhanced anxiety levels in these animals. Litters were divided in: (1) intact; (2) handled (10 min in an incubator/day) and (3) handled + tactile stimulation (10 min/day). Procedures were performed on days 1-10 after birth. When adults, rats were tested in the elevated plus maze apparatus, light dark exploration test and open field test. They were also tested for sweet food ingestion, being injected with 2 mg/kg diazepam or vehicle 60 min before the test. Handling and handling + tactile stimulation do not alter performance in the plus maze test, but handled rats presented more crossings in the light/dark exploration test and open field (two-way ANOVA). Females also spent more % time in the open arms in the plus maze and more time in the lit compartment in the light/dark test, presenting more crossings in both tests. Both treated rats (handled and handled + tactile stimulation groups) consumed more sweet food than intact ones (two-way ANOVA). When diazepam was injected prior to the measurement of sweet food ingestion, there was no effect of the drug. We suggest that handling during the neonatal period leads to plastic alterations in the central nervous system of these animals, causing an increased ingestion of palatable food in adult life, and this alteration does not express an anxiety-like behavior.

  15. In-vitro cytotoxicity assessment of carbon-nanodot-conjugated Fe-aminoclay (CD-FeAC) and its bio-imaging applications.

    PubMed

    Kang, Kyoung Suk; Lee, Hyun Uk; Kim, Moon Il; Park, So Young; Chang, Sung-Jin; Park, Ji-Ho; Huh, Yun Suk; Lee, Jouhahn; Yang, Mino; Lee, Young-Chul; Park, Hyun Gyu

    2015-11-26

    We have investigated the cytotoxic assay of Fe-aminoclay (FeAC) nanoparticles (NPs) and simultaneous imaging in HeLa cells by photoluminescent carbon nanodots (CD) conjugation. Non-cytotoxic, photostable, and CD NPs are conjugated with cationic FeAC NPs where CD NPs play a role in bio-imaging and FeAC NPs act as a substrate for CD conjugation and help to uptake of NPs into cancer cells due to positively charged surface of FeAC NPs in physiological media. As increase of CD-FeAC NPs loading in HeLa cell in vitro, it showed slight cytotoxicity at 1000 μg/mL but no cytotoxicity for normal cells up to concentration of 1000 μg/mL confirmed by two 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide (MTT) and neutral red (NR) assays, with further observations by 4',6-diamidino-2-phenylindole (DAPI) stained confocal microscopy images, possessing that CD-FeAC NPs can be used as potential drug delivery platforms in cancer cells with simultaneous imaging. Graphical abstract CD conjugation with organo-building blocks of delaminated FeAC NPs.

  16. The effect of poloxamer 188 on nanoparticle morphology, size, cancer cell uptake, and cytotoxicity.

    PubMed

    Yan, Fei; Zhang, Chao; Zheng, Yi; Mei, Lin; Tang, Lina; Song, Cunxian; Sun, Hongfan; Huang, Laiqiang

    2010-02-01

    The aim of this work was to investigate the effect of triblock copolymer poloxamer 188 on nanoparticle morphology, size, cancer cell uptake, and cytotoxicity. Docetaxel-loaded nanoparticles were prepared by oil-in-water emulsion/solvent evaporation technique using biodegradable poly(lactic-co-glycolic acid) (PLGA) with or without addition of poloxamer 188, respectively. The resulting nanoparticles were found to be spherical with a rough and porous surface. The nanoparticles had an average size of around 200 nm with a narrow size distribution. The in vitro drug-release profile of both nanoparticle formulations showed a biphasic release pattern. An increased level of uptake of PLGA/poloxamer 188 nanoparticles in the docetaxel-resistant MCF-7 TAX30 human breast cancer cell line could be found in comparison with that of PLGA nanoparticles. In addition, the docetaxel-loaded PLGA/poloxamer 188 nanoparticles achieved a significantly higher level of cytotoxicity than that of docetaxel-loaded PLGA nanoparticles and Taxotere (P < .05). In conclusion, the results showed advantages of docetaxel-loaded PLGA nanoparticles incorporated with poloxamer 188 compared with the nanoparticles without incorporation of poloxamer 188 in terms of sustainable release and efficacy in breast cancer chemotherapy. The effects of poloxamer 188, a triblock copolymer were studied on nanoparticle morphology, size, cancer cell uptake and cytotoxicity. An increased level of uptake of PLGA/poloxamer 188 nanoparticles in resistant human breast cancer cell line was demonstrated, resulting in a significantly higher level of cytotoxicity. Copyright 2010 Elsevier Inc. All rights reserved.

  17. Cytotoxicity, DNA binding and localisation of novel bis-naphthalimidopropyl polyamine derivatives.

    PubMed

    Pavlov, V; Kong Thoo Lin, P; Rodilla, V

    2001-07-31

    Bis-naphthalimidopropyl spermidine (BNIPSpd), spermine (BNIPSpm) and oxa-spermine (BNIPOSpm) showed high in vitro cytotoxicity against human breast cancer MCF-7 cells with IC(50) values of 1.38, 2.91 and 8.45 microM, respectively. These compounds were found to effectively displace the intercalating agent ethidium bromide bound to the calf thymus DNA using fluorimetric methods (C(50) 0.08-0.12 microM) and their apparent equilibrium binding constants (K(app)) were calculated to be in the range of 10.5-18 x 10(7) M(-1). Furthermore, strong stabilisation of calf thymus DNA duplex in the presence of bis-naphthalimidopropyl polyamine derivatives (BNIPSpd, BNIPSpm and BNIPOSpm) was observed by UV spectrophotometric analysis (T(m)=93.3-97 degrees C compared with 75 degrees C for calf thymus DNA without drug). Because of their inherent fluorescence, these compounds were localised preferentially inside the nucleus as evidenced by their direct observation under the fluorescence microscope. The results obtained suggest that the cytotoxic activity of the bis-naphthalimidopropyl polyamines may be in part, caused by their effects on DNA.

  18. Isolation and structural elucidation of cytotoxic compounds from the root bark of Diospyros quercina (Baill.) endemic to Madagascar

    PubMed Central

    Ruphin, Fatiany Pierre; Baholy, Robijaona; Emmanuel, Randrianarivo; Amelie, Raharisololalao; Martin, Marie-Therese; Koto–te-Nyiwa, Ngbolua

    2014-01-01

    Objective To isolate and characterize the cytotoxic compounds from Diospyros quercina (Baill.) G.E. Schatz & Lowry (Ebenaceae). Methods An ethno-botanical survey was conducted in the south of Madagascar from July to August 2010. Bio-guided fractionation assay was carried out on the root bark of Diospyros quercina, using cytotoxicity bioassay on murine P388 leukemia cell lines as model. The structures of the cytotoxic compounds were elucidated by 1D and 2D NMR spectroscopy and mass spectrometry. Results Biological experiments resulted in the isolation of three bioactive pure compounds (named TR-21, TR-22, and TR-23) which exhibited very good in vitro cytotoxic activities with the IC50 values of (0.017 5±0.0060) µg/mL, (0.089±0.005) µg/mL and (1.027±0.070) µg/mL respectively. Thus, they support the claims of traditional healers and suggest the possible correlation between the chemical composition of this plant and its wide use in Malagasy folk medicine to treat cancer. Conclusions The ability of isolated compounds in this study to inhibit cell growth may represent a rational explanation for the use of Diospyros quercina root bark in treating cancer by Malagasy traditional healers. Further studies are, therefore, necessary to evaluate the in vivo anti-neoplastic activity of these cytotoxic compounds as effective anticancer drugs. PMID:25182433

  19. Targeting Tumor Associated Phosphatidylserine with New Zinc Dipicolylamine-Based Drug Conjugates.

    PubMed

    Liu, Yu-Wei; Shia, Kak-Shan; Wu, Chien-Huang; Liu, Kuan-Liang; Yeh, Yu-Cheng; Lo, Chen-Fu; Chen, Chiung-Tong; Chen, Yun-Yu; Yeh, Teng-Kuang; Chen, Wei-Han; Jan, Jiing-Jyh; Huang, Yu-Chen; Huang, Chen-Lung; Fang, Ming-Yu; Gray, Brian D; Pak, Koon Y; Hsu, Tsu-An; Huang, Kuan-Hsun; Tsou, Lun K

    2017-07-19

    A series of zinc(II) dipicolylamine (ZnDPA)-based drug conjugates have been synthesized to probe the potential of phosphatidylserine (PS) as a new antigen for small molecule drug conjugate (SMDC) development. Using in vitro cytotoxicity and plasma stability studies, PS-binding assay, in vivo pharmacokinetic studies, and maximum tolerated dose profiles, we provided a roadmap and the key parameters required for the development of the ZnDPA based drug conjugate. In particular, conjugate 24 induced tumor regression in the COLO 205 xenograft model and exhibited a more potent antitumor effect with a 70% reduction of cytotoxic payload compared to that of the marketed irinotecan when dosed at the same regimen. In addition to the validation of PS as an effective pharmacodelivery target for SMDC, our work also provided the foundation that, if applicable, a variety of therapeutic agents could be conjugated in the same manner to treat other PS-associated diseases.

  20. Genotoxicity and Cytotoxicity Evaluation of the Neolignan Analogue 2-(4-Nitrophenoxy)-1Phenylethanone and its Protective Effect Against DNA Damage

    PubMed Central

    Hanusch, Alex Lucas; de Oliveira, Guilherme Roberto; de Sabóia-Morais, Simone Maria Teixeira; Machado, Rafael Cosme; dos Anjos, Murilo Machado; Chen Chen, Lee

    2015-01-01

    Neolignans are secondary metabolites found in various groups of Angiosperms. They belong to a class of natural compounds with great diversity of chemical structures and pharmacological activities. These compounds are formed by linking two phenylpropanoid units. Several compounds that have ability to prevent genetic damage have been isolated from plants, and can be used to prevent or delay the development of tumor cells. Genetic toxicology evaluation is widely used in risk assessment of new drugs in preclinical screening tests. In this study, we evaluated the genotoxicity and cytotoxicity of the neolignan analogue 2-(4-nitrophenoxy)-1-phenylethanone (4NF) and its protective effect against DNA damage using the mouse bone marrow micronucleus test and the comet assay in mouse peripheral blood. Our results showed that this neolignan analogue had no genotoxic activity and was able to reduce induced damage both in mouse bone marrow and peripheral blood. Although the neolignan analogue 4NF was cytotoxic, it reduced cyclophosphamide-induced cytotoxicity. In conclusion, it showed no genotoxic action, but exhibited cytotoxic, antigenotoxic, and anticytotoxic activities. PMID:26554835

  1. Cytotoxicity and mutagenicity of fluoxetine hydrochloride (Prozac), with or without vitamins A and C, in plant and animal model systems.

    PubMed

    Düsman, E; Almeida, I V; Mariucci, R G; Mantovani, M S; Vicentini, V E P

    2014-01-28

    Fluoxetine, commonly known as Prozac, is the first representative of the so-called new generation of antidepressants that promise efficacy, with few side effects, against deep depression, nervous bulimia, and anxiety. As there is a growing number of people suffering from anxiety and depression; consequently, the use of fluoxetine is also increasing. Verifying absence of drug effects such as cytotoxicity or mutagenicity is of great importance. Certain vitamins, such as vitamin A (retinol, retinoids) and vitamin C (ascorbic acid) protect and are extremely active against mutagens. We evaluated the cytotoxic and mutagenic activity of fluoxetine, with and without concomitant administration of vitamin A or C, in Allium cepa meristem cells and Wistar rat bone marrow cells. The A. cepa meristem cells showed fluoxetine cytotoxicity; concomitant treatment with vitamin A or C proved non-protective. Treatment of Wistar rats with fluoxetine intraperitoneally or via gavage did not affect cell division or cause clastogenic effects. Vitamin A and C did not affect the cytotoxicity or mutagenicity of fluoxetine in the rat cells.

  2. Photo-inducible Crosslinked Nanoassemblies for pH-Controlled Drug Release

    PubMed Central

    Dickerson, Matthew; Winquist, Nickolas; Bae, Younsoo

    2014-01-01

    Purpose To control drug release from block copolymer nanoassemblies by variation in the degree of photo-crosslinking and inclusion of acid sensitive linkers. Methods Poly(ethylene glycol)-poly(aspartate-hydrazide-cinnamate) (PEG-CNM) block copolymers were prepared and conjugated with a model drug, doxorubicin (DOX), through acid sensitive hydrazone linkers. The block copolymers formed photo-inducible, self-assembled nanoassemblies (piSNAs), which were used to produce photo-inducible crosslinked nanoassemblies (piCNAs) through UV crosslinking. The nanoassemblies were characterized to determine particle size, surface charge, pH- and crosslinking-dependent DOX release, in vitro cytotoxicity, and intracellular uptake as a function of photo-crosslinking degree. Results Nanoassemblies with varying photo-crosslinking degrees were successfully prepared while retaining particle size and surface charge. Photo-crosslinking caused no noticeable change in DOX release from the nanoassemblies at pH 7.4, but the DOX-loaded nanoassemblies modulated drug release as a function of crosslinking at pH 6.0. The nanoassemblies showed similar cytotoxicity regardless of crosslinking degrees, presumably due to the low cellular uptake and cell nucleus drug accumulation. Conclusion Photo-crosslinking is useful to control drug release from pH-sensitive block copolymer nanoassemblies as a function of crosslinking without altering the particle properties, and thus providing unique tools to investigate the pharmaceutical effects of drug release on cellular response. PMID:24254196

  3. CARRIER/CASK HANDLING SYSTEM DESCRIPTION DOCUMENT

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    E.F. Loros

    2000-06-23

    The Carrier/Cask Handling System receives casks on railcars and legal-weight trucks (LWTs) (transporters) that transport loaded casks and empty overpacks to the Monitored Geologic Repository (MGR) from the Carrier/Cask Transport System. Casks that come to the MGR on heavy-haul trucks (HHTs) are transferred onto railcars before being brought into the Carrier/Cask Handling System. The system is the interfacing system between the railcars and LWTs and the Assembly Transfer System (ATS) and Canister Transfer System (CTS). The Carrier/Cask Handling System removes loaded casks from the cask transporters and transfers the casks to a transfer cart for either the ATS or CTS,more » as appropriate, based on cask contents. The Carrier/Cask Handling System receives the returned empty casks from the ATS and CTS and mounts the casks back onto the transporters for reshipment. If necessary, the Carrier/Cask Handling System can also mount loaded casks back onto the transporters and remove empty casks from the transporters. The Carrier/Cask Handling System receives overpacks from the ATS loaded with canisters that have been cut open and emptied and mounts the overpacks back onto the transporters for disposal. If necessary, the Carrier/Cask Handling System can also mount empty overpacks back onto the transporters and remove loaded overpacks from them. The Carrier/Cask Handling System is located within the Carrier Bay of the Waste Handling Building System. The system consists of cranes, hoists, manipulators, and supporting equipment. The Carrier/Cask Handling System is designed with the tooling and fixtures necessary for handling a variety of casks. The Carrier/Cask Handling System performance and reliability are sufficient to support the shipping and emplacement schedules for the MGR. The Carrier/Cask Handling System interfaces with the Carrier/Cask Transport System, ATS, and CTS as noted above. The Carrier/Cask Handling System interfaces with the Waste Handling Building System for

  4. Postproduction Handling and Administration of Protein Pharmaceuticals and Potential Instability Issues.

    PubMed

    Nejadnik, M Reza; Randolph, Theodore W; Volkin, David B; Schöneich, Christian; Carpenter, John F; Crommelin, Daan J A; Jiskoot, Wim

    2018-04-14

    The safety and efficacy of protein pharmaceuticals depend not only on biological activity but also on purity levels. Impurities may be process related because of limitations in manufacturing or product related because of protein degradation occurring throughout the life history of a product. Although the pharmaceutical biotechnology industry has made great progress in improving bulk and drug product manufacturing as well as company-controlled storage and transportation conditions to minimize the level of degradation, there is less control over the many factors that may subsequently affect product quality after the protein pharmaceuticals are released and shipped by the manufacturer. Routine handling or unintentional mishandling of therapeutic protein products may cause protein degradation that remains unnoticed but can potentially compromise the clinical safety and efficacy of the product. In this commentary, we address some potential risks associated with (mis)handling of protein pharmaceuticals after release by the manufacturer. We summarize the environmental stress factors that have been shown to cause protein degradation and that may be encountered during typical handling procedures of protein pharmaceuticals in a hospital setting or during self-administration by patients. Moreover, we provide recommendations for improvements in product handling to help ensure the quality of protein pharmaceuticals during use. Copyright © 2018 American Pharmacists Association®. Published by Elsevier Inc. All rights reserved.

  5. Anticancer drugs during pregnancy.

    PubMed

    Miyamoto, Shingo; Yamada, Manabu; Kasai, Yasuyo; Miyauchi, Akito; Andoh, Kazumichi

    2016-09-01

    Although cancer diagnoses during pregnancy are rare, they have been increasing with the rise in maternal age and are now a topic of international concern. In some cases, the administration of chemotherapy is unavoidable, though there is a relative paucity of evidence regarding the administration of anticancer drugs during pregnancy. As more cases have gradually accumulated and further research has been conducted, we are beginning to elucidate the appropriate timing for the administration of chemotherapy, the regimens that can be administered with relative safety, various drug options and the effects of these drugs on both the mother and fetus. However, new challenges have arisen, such as the effects of novel anticancer drugs and the desire to bear children during chemotherapy. In this review, we outline the effects of administering cytotoxic anticancer drugs and molecular targeted drugs to pregnant women on both the mother and fetus, as well as the issues regarding patients who desire to bear children while being treated with anticancer drugs. © The Author 2016. Published by Oxford University Press. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com.

  6. Enzyme induction and cytotoxicity in human hepatocytes by chlorpyrifos and N,N-diethyl-m-toluamide (DEET).

    PubMed

    Das, Parikshit C; Cao, Yan; Rose, Randy L; Cherrington, Nathan; Hodgson, Ernest

    2008-01-01

    Xenobiotics, including drugs and environmental chemicals, can influence cytochrome P450 (CYP) levels by altering the transcription of CYP genes. To minimize potential drug-pesticide and pesticide-pesticide interactions it is important to evaluate the potential of pesticides to induce CYP isoforms and to cause cytotoxicity in humans. The present study was designed to examine chlorpyrifos and DEET mediated induction of CYP isoforms and also to characterize their potential cytotoxic effects on primary human hepatocytes. DEET significantly induced CYP3A4, CYP2B6, CYP2A6 and CYP1A2 mRNA expression while chlorpyrifos induced CYP1A1, CYP1A2 and CYP3A4 mRNA, and to a lesser extent, CYP1B1 and CYP2B6 mRNA in primary human hepatocytes. Chlorpyrifos and DEET also mediated the expression of CYP isoforms, particularly CYP3A4, CYP2B6 and CYP1A1, as shown by CYP3A4-specific protein expression, testosterone metabolism and CYP1Al-specific activity assays. DEET is a mild, while chlorpyrifos is a relatively potent, inducer of adenylate kinase and caspase-3/7, an indicator of apoptosis, while inducing 15-20% and 25-30% cell death, respectively. Therefore, DEET and chlorpyrifos mediated induction of CYP mRNA and functional CYP isoforms together with their cytotoxic potential in human hepatocytes suggests that exposure to chlorpyrifos and/or DEET should be considered in human health impact analysis.

  7. Alumina Handling Dustiness

    NASA Astrophysics Data System (ADS)

    Authier-Martin, Monique

    Dustiness of calcined alumina is a major concern, causing undesirable working conditions and serious alumina losses. These losses occur primarily during unloading and handling or pot loading and crust breaking. The handling side of the problem is first addressed. The Perra pulvimeter constitutes a simple and reproducible tool to quantify handling dustiness and yields results in agreement with plant experience. Attempts are made to correlate dustiness with bulk properties (particle size, attrition index, …) for a large number of diverse aluminas. The characterization of the dust generated with the Perra pulvimeter is most revealing. The effect of the addition of E.S.P. dust is also reported.

  8. Comparison of intracellular accumulation and cytotoxicity of free mTHPC and mTHPC-loaded PLGA nanoparticles in human colon carcinoma cells.

    PubMed

    Löw, Karin; Knobloch, Thomas; Wagner, Sylvia; Wiehe, Arno; Engel, Andrea; Langer, Klaus; von Briesen, Hagen

    2011-06-17

    The second generation photosensitizer mTHPC was approved by the European Medicines Agency (EMA) for the palliative treatment of advanced head and neck cancer in October 2001. It is known that mTHPC possesses a significant phototoxicity against a variety of human cancer cells in vitro but also exhibits dark toxicity and can cause adverse effects (especially skin photosensitization). Due to its poor water solubility, the administration of hydrophobic photosensitizer still presents several difficulties. To overcome the administration problems, the use of nanoparticles as drug carrier systems is much investigated. Nanoparticles based on poly(lactic-co-glycolic acid) (PLGA) have been extensively studied as delivery systems into tumours due to their biocompatibility and biodegradability. The goal of this study was the comparison of free mTHPC and mTHPC-loaded PLGA nanoparticles concerning cytotoxicity and intracellular accumulation in human colon carcinoma cells (HT29). The nanoparticles delivered the photosensitizer to the colon carcinoma cells and enabled drug release without losing its activity. The cytotoxicity assays showed a time- and concentration-dependent decrease in cell proliferation and viability after illumination. However, first and foremost mTHPC lost its dark toxic effects using the PLGA nanoparticles as a drug carrier system. Therefore, PLGA nanoparticles are a promising drug carrier system for the hydrophobic photosensitizer mTHPC.

  9. Folic acid-targeted disulfide-based cross-linking micelle for enhanced drug encapsulation stability and site-specific drug delivery against tumors

    PubMed Central

    Zhang, Yumin; Zhou, Junhui; Yang, Cuihong; Wang, Weiwei; Chu, Liping; Huang, Fan; Liu, Qiang; Deng, Liandong; Kong, Deling; Liu, Jianfeng; Liu, Jinjian

    2016-01-01

    Although the shortcomings of small molecular antitumor drugs were efficiently improved by being entrapped into nanosized vehicles, premature drug release and insufficient tumor targeting demand innovative approaches that boost the stability and tumor responsiveness of drug-loaded nanocarriers. Here, we show the use of the core cross-linking method to generate a micelle with enhanced drug encapsulation ability and sensitivity of drug release in tumor. This kind of micelle could increase curcumin (Cur) delivery to HeLa cells in vitro and improve tumor accumulation in vivo. We designed and synthesized the core cross-linked micelle (CCM) with polyethylene glycol and folic acid-polyethylene glycol as the hydrophilic units, pyridyldisulfide as the cross-linkable and hydrophobic unit, and disulfide bond as the cross-linker. CCM showed spherical shape with a diameter of 91.2 nm by the characterization of dynamic light scattering and transmission electron microscope. Attributed to the core cross-linking, drug-loaded CCM displayed higher Nile Red or Cur-encapsulated stability and better sensitivity to glutathione than noncross-linked micelle (NCM). Cellular uptake and in vitro antitumor studies proved the enhanced endocytosis and better cytotoxicity of CCM-Cur against HeLa cells, which had a high level of glutathione. Meanwhile, the folate receptor-mediated drug delivery (FA-CCM-Cur) further enhanced the endocytosis and cytotoxicity. Ex vivo imaging studies showed that CCM-Cur and FA-CCM-Cur possessed higher tumor accumulation until 24 hours after injection. Concretely, FA-CCM-Cur exhibited the highest tumor accumulation with 1.7-fold of noncross-linked micelle Cur and 2.8-fold of free Cur. By combining cross-linking of the core with active tumor targeting of FA, we demonstrated a new and effective way to design nanocarriers for enhanced drug encapsulation, smart tumor responsiveness, and elevated tumor accumulation. PMID:27051287

  10. A Nitric Oxide Storage and Transport System That Protects Activated Macrophages from Endogenous Nitric Oxide Cytotoxicity*

    PubMed Central

    Lok, Hiu Chuen; Sahni, Sumit; Jansson, Patric J.; Kovacevic, Zaklina; Hawkins, Clare L.; Richardson, Des R.

    2016-01-01

    Nitric oxide (NO) is integral to macrophage cytotoxicity against tumors due to its ability to induce iron release from cancer cells. However, the mechanism for how activated macrophages protect themselves from endogenous NO remains unknown. We previously demonstrated by using tumor cells that glutathione S-transferase P1 (GSTP1) sequesters NO as dinitrosyl-dithiol iron complexes (DNICs) and inhibits NO-mediated iron release from cells via the transporter multidrug resistance protein 1 (MRP1/ABCC1). These prior studies also showed that MRP1 and GSTP1 protect tumor cells against NO cytotoxicity, which parallels their roles in defending cancer cells from cytotoxic drugs. Considering this, and because GSTP1 and MRP1 are up-regulated during macrophage activation, this investigation examined whether this NO storage/transport system protects macrophages against endogenous NO cytotoxicity in two well characterized macrophage cell types (J774 and RAW 264.7). MRP1 expression markedly increased upon macrophage activation, and the role of MRP1 in NO-induced 59Fe release was demonstrated by Mrp1 siRNA and the MRP1 inhibitor, MK571, which inhibited NO-mediated iron efflux. Furthermore, Mrp1 silencing increased DNIC accumulation in macrophages, indicating a role for MRP1 in transporting DNICs out of cells. In addition, macrophage 59Fe release was enhanced by silencing Gstp1, suggesting GSTP1 was responsible for DNIC binding/storage. Viability studies demonstrated that GSTP1 and MRP1 protect activated macrophages from NO cytotoxicity. This was confirmed by silencing nuclear factor-erythroid 2-related factor 2 (Nrf2), which decreased MRP1 and GSTP1 expression, concomitant with reduced 59Fe release and macrophage survival. Together, these results demonstrate a mechanism by which macrophages protect themselves against NO cytotoxicity. PMID:27866158

  11. Ergonomic material-handling device

    DOEpatents

    Barsnick, Lance E.; Zalk, David M.; Perry, Catherine M.; Biggs, Terry; Tageson, Robert E.

    2004-08-24

    A hand-held ergonomic material-handling device capable of moving heavy objects, such as large waste containers and other large objects requiring mechanical assistance. The ergonomic material-handling device can be used with neutral postures of the back, shoulders, wrists and knees, thereby reducing potential injury to the user. The device involves two key features: 1) gives the user the ability to adjust the height of the handles of the device to ergonomically fit the needs of the user's back, wrists and shoulders; and 2) has a rounded handlebar shape, as well as the size and configuration of the handles which keep the user's wrists in a neutral posture during manipulation of the device.

  12. Poly-L-arginine: Enhancing Cytotoxicity and Cellular Uptake of Doxorubicin and Necrotic Cell Death.

    PubMed

    Movafegh, Bahareh; Jalal, Razieh; Mohammadi, Zobeideh; Aldaghi, Seyyede Araste

    2018-04-11

    Cell resistance to doxorubicin and its toxicity to healthy tissue reduce its efficiency. The use of cell penetrating peptides as drug delivery system along with doxorubicin is a strategy to reduce its side effects. In this study, the influence of poly-L-arginine on doxorubicin cytotoxicity, its cellular uptake and doxorubicin-induced apoptosis on human prostate cancer DU145 cells are assessed. The cytotoxicity of doxorubicin and poly-L-arginine, alone and in combination, in DU145 cells was evaluated at different exposure times using MTT assay. The influence of poly-L-arginine on doxorubicin delivery into cells was evaluated by fluorescence microscopy and ultraviolet spectroscopy. DAPI and ethidium bromide-acridine orange stainings, flow cytometry using annexin V/propidium iodide, western blot analysis with anti-p21 antibody and caspase-3 activity were used to examine the influence of poly-L-arginine on doxorubicin-induced cell death. Poly-L-arginine had no cytotoxicity at low concentrations and short exposure times. Poly-L-arginine increased the cytotoxic effect of doxorubicin in DU145 cells in a time-dependent manner. But no significant reduction was found in HFF cell viability. Poly-L-arginine seems to facilitate doxorubicin uptake and increase its intracellular concentration. 24 h combined treatment of cells with doxorubicin (0.5 μM) and poly-L-arginine (1 μg ml-1) caused a small increase in doxorubicin-induced apoptosis and significant elevated necrosis in DU145 cells as compared to each agent alone. Conlusion: Our results indicate that poly-L-arginine at lowest and highest concentrations act as proliferation-inducing and antiproliferative agents, respectively. Between these concentrations, poly-L-arginine increases the cellular uptake of doxorubicin and its cytotoxicity through induction of necrosis. Copyright© Bentham Science Publishers; For any queries, please email at epub@benthamscience.org.

  13. The impact of different strategies to handle missing data on both precision and bias in a drug safety study: a multidatabase multinational population-based cohort study.

    PubMed

    Martín-Merino, Elisa; Calderón-Larrañaga, Amaia; Hawley, Samuel; Poblador-Plou, Beatriz; Llorente-García, Ana; Petersen, Irene; Prieto-Alhambra, Daniel

    2018-01-01

    Missing data are often an issue in electronic medical records (EMRs) research. However, there are many ways that people deal with missing data in drug safety studies. To compare the risk estimates resulting from different strategies for the handling of missing data in the study of venous thromboembolism (VTE) risk associated with antiosteoporotic medications (AOM). New users of AOM (alendronic acid, other bisphosphonates, strontium ranelate, selective estrogen receptor modulators, teriparatide, or denosumab) aged ≥50 years during 1998-2014 were identified in two Spanish (the Base de datos para la Investigación Farmacoepidemiológica en Atención Primaria [BIFAP] and EpiChron cohort) and one UK (Clinical Practice Research Datalink [CPRD]) EMR. Hazard ratios (HRs) according to AOM (with alendronic acid as reference) were calculated adjusting for VTE risk factors, body mass index (that was missing in 61% of patients included in the three databases), and smoking (that was missing in 23% of patients) in the year of AOM therapy initiation. HRs and standard errors obtained using cross-sectional multiple imputation (MI) (reference method) were compared to complete case (CC) analysis - using only patients with complete data - and longitudinal MI - adding to the cross-sectional MI model the body mass index/smoking values as recorded in the year before and after therapy initiation. Overall, 422/95,057 (0.4%), 19/12,688 (0.1%), and 2,051/161,202 (1.3%) VTE cases/participants were seen in BIFAP, EpiChron, and CPRD, respectively. HRs moved from 100.00% underestimation to 40.31% overestimation in CC compared with cross-sectional MI, while longitudinal MI methods provided similar risk estimates compared with cross-sectional MI. Precision for HR improved in cross-sectional MI versus CC by up to 160.28%, while longitudinal MI improved precision (compared with cross-sectional) only minimally (up to 0.80%). CC may substantially affect relative risk estimation in EMR-based drug

  14. Cytotoxicity of titanium and titanium alloying elements.

    PubMed

    Li, Y; Wong, C; Xiong, J; Hodgson, P; Wen, C

    2010-05-01

    It is commonly accepted that titanium and the titanium alloying elements of tantalum, niobium, zirconium, molybdenum, tin, and silicon are biocompatible. However, our research in the development of new titanium alloys for biomedical applications indicated that some titanium alloys containing molybdenum, niobium, and silicon produced by powder metallurgy show a certain degree of cytotoxicity. We hypothesized that the cytotoxicity is linked to the ion release from the metals. To prove this hypothesis, we assessed the cytotoxicity of titanium and titanium alloying elements in both forms of powder and bulk, using osteoblast-like SaOS(2) cells. Results indicated that the metal powders of titanium, niobium, molybdenum, and silicon are cytotoxic, and the bulk metals of silicon and molybdenum also showed cytotoxicity. Meanwhile, we established that the safe ion concentrations (below which the ion concentration is non-toxic) are 8.5, 15.5, 172.0, and 37,000.0 microg/L for molybdenum, titanium, niobium, and silicon, respectively.

  15. Curcumin analog cytotoxicity against breast cancer cells: exploitation of a redox-dependent mechanism.

    PubMed

    Sun, Aiming; Lu, Yang J; Hu, Haipeng; Shoji, Mamoru; Liotta, Dennis C; Snyder, James P

    2009-12-01

    A series of novel curcumin analogs, symmetrical dienones, were previously shown to possess cytotoxic, anti-angiogenic and anti-tumor activities. Analogs 1 (EF24) and 2 (EF31) share the dienone scaffold and serve as Michael acceptors. We propose that the anti-cancer effects of 1 and 2 are mediated in part by redox-mediated induction of apoptosis. In order to support this concept, 1 and 2 were treated with L-glutathione (GSH) and cysteine-containing dipeptides under mild conditions to form colorless water-soluble adducts, which were identified by LC/MS. Comparison of the cytotoxic action of 1, 2 and the corresponding conjugates, 1-(GSH)(2) and 2-(GSH)(2), illustrated that the two classes of compounds exhibit essentially identical cell killing capabilities. Compared with the yellow, somewhat light sensitive and nearly water insoluble compounds 1 and 2, the glutathione conjugates represent a promising new series of stable and soluble anti-tumor pro-drugs.

  16. Quantifying the effects of antiangiogenic and chemotherapy drug combinations on drug delivery and treatment efficacy

    PubMed Central

    Yιlmaz, Defne; Phipps, Colin; Kohandel, Mohammad

    2017-01-01

    Tumor-induced angiogenesis leads to the development of leaky tumor vessels devoid of structural and morphological integrity. Due to angiogenesis, elevated interstitial fluid pressure (IFP) and low blood perfusion emerge as common properties of the tumor microenvironment that act as barriers for drug delivery. In order to overcome these barriers, normalization of vasculature is considered to be a viable option. However, insight is needed into the phenomenon of normalization and in which conditions it can realize its promise. In order to explore the effect of microenvironmental conditions and drug scheduling on normalization benefit, we build a mathematical model that incorporates tumor growth, angiogenesis and IFP. We administer various theoretical combinations of antiangiogenic agents and cytotoxic nanoparticles through heterogeneous vasculature that displays a similar morphology to tumor vasculature. We observe differences in drug extravasation that depend on the scheduling of combined therapy; for concurrent therapy, total drug extravasation is increased but in adjuvant therapy, drugs can penetrate into deeper regions of tumor. PMID:28922358

  17. Quantifying the effects of antiangiogenic and chemotherapy drug combinations on drug delivery and treatment efficacy.

    PubMed

    Yonucu, Sirin; Yιlmaz, Defne; Phipps, Colin; Unlu, Mehmet Burcin; Kohandel, Mohammad

    2017-09-01

    Tumor-induced angiogenesis leads to the development of leaky tumor vessels devoid of structural and morphological integrity. Due to angiogenesis, elevated interstitial fluid pressure (IFP) and low blood perfusion emerge as common properties of the tumor microenvironment that act as barriers for drug delivery. In order to overcome these barriers, normalization of vasculature is considered to be a viable option. However, insight is needed into the phenomenon of normalization and in which conditions it can realize its promise. In order to explore the effect of microenvironmental conditions and drug scheduling on normalization benefit, we build a mathematical model that incorporates tumor growth, angiogenesis and IFP. We administer various theoretical combinations of antiangiogenic agents and cytotoxic nanoparticles through heterogeneous vasculature that displays a similar morphology to tumor vasculature. We observe differences in drug extravasation that depend on the scheduling of combined therapy; for concurrent therapy, total drug extravasation is increased but in adjuvant therapy, drugs can penetrate into deeper regions of tumor.

  18. Tissue compatibility and pharmacokinetics of three potential subcutaneous injectables for low-pH drug solutions.

    PubMed

    Wu, Zimei; Tucker, Ian G; Razzak, Majid; McSporran, Keith; Medlicott, Natalie J

    2010-07-01

    The aim of the study was to investigate the tissue tolerance and bioavailability of four formulations containing 5% ricobendazole solubilised at low pH, following subcutaneous injection in sheep. Formulations were: a water-in-oil emulsion, a microemulsion, a hydroxypropyl-beta-cyclodextrin (HP-beta-CD, 20%) drug solution, and a low-pH drug solution (reference). In-vitro cytotoxicity of the formulations was investigated in L929 fibroblasts using MTS viability and lactate dehydrogenase leakage assays. Each formulation and respective vehicle was injected into either side of the back of a sheep to investigate the tissue tolerance and pharmacokinetics. In-vitro studies suggested that both the emulsion and the microemulsion are unlikely to give a burst release of the low-pH drug solution in aqueous media. The microemulsion showed the greatest in-vitro cytotoxic effect but no significant difference was observed between the other formulations. In sheep, the three new formulations and vehicles caused little or no injection-site reactions compared with a marked response to the reference formulation. Bioavailabilities of HP-beta-CD formulation, emulsion and microemulsion formulations, relative to the reference formulation, were 194, 155 and 115%, respectively. The three new subcutaneous injectables showed promise for reducing irritation of low-pH solubilised ricobendazole. HP-beta-CD significantly enhanced the drug absorption. Controlling the burst release of the low-pH drug solution may improve tissue tolerance and minimise post-injection precipitation, and hence increase drug bioavailability. The in-vitro cytotoxicity studies did not predict the in-vivo irritation effects.

  19. Are diamond nanoparticles cytotoxic?

    PubMed

    Schrand, Amanda M; Huang, Houjin; Carlson, Cataleya; Schlager, John J; Omacr Sawa, Eiji; Hussain, Saber M; Dai, Liming

    2007-01-11

    Finely divided carbon particles, including charcoal, lampblack, and diamond particles, have been used for ornamental and official tattoos since ancient times. With the recent development in nanoscience and nanotechnology, carbon-based nanomaterials (e.g., fullerenes, nanotubes, nanodiamonds) attract a great deal of interest. Owing to their low chemical reactivity and unique physical properties, nanodiamonds could be useful in a variety of biological applications such as carriers for drugs, genes, or proteins; novel imaging techniques; coatings for implantable materials; and biosensors and biomedical nanorobots. Therefore, it is essential to ascertain the possible hazards of nanodiamonds to humans and other biological systems. We have, for the first time, assessed the cytotoxicity of nanodiamonds ranging in size from 2 to 10 nm. Assays of cell viability such as mitochondrial function (MTT) and luminescent ATP production showed that nanodiamonds were not toxic to a variety of cell types. Furthermore, nanodiamonds did not produce significant reactive oxygen species. Cells can grow on nanodiamond-coated substrates without morphological changes compared to controls. These results suggest that nanodiamonds could be ideal for many biological applications in a diverse range of cell types.

  20. Cytotoxic and bioactive properties of different color tulip flowers and degradation kinetic of tulip flower anthocyanins.

    PubMed

    Sagdic, Osman; Ekici, Lutfiye; Ozturk, Ismet; Tekinay, Turgay; Polat, Busra; Tastemur, Bilge; Bayram, Okan; Senturk, Berna

    2013-08-01

    This study was conducted to determine the potential use of anthocyanin-based extracts (ABEs) of wasted tulip flowers as food/drug colorants. For this aim, wasted tulip flowers were samples and analyzed for their bioactive properties and cytotoxicity. Total phenolic contents of the extracts of the claret red (126.55 mg of gallic acid equivalent (GAE)/g dry extract) and orange-red (113.76 mg GAE/g dry extract) flowers were the higher than those of the other tulip flowers. Total anthocyanin levels of the violet, orange-red, claret red and pink tulip flower extracts were determined as 265.04, 236.49, 839.08 and 404.45 mg pelargonidin 3-glucoside/kg dry extract, respectively and these levels were higher than those of the other flowers. The extracts were more effective for the inhibition of Listeria monocytogenes, Staphylococcus aureus and Yersinia enterocolitica compared to other tested bacteria. Additionally, the cytotoxic effects of five different tulip flower extracts on human breast adenocarcinoma (MCF-7) cell line were investigated. The results showed that the orange red, pink and violet extracts had no cytotoxic activity against MCF-7 cell lines while yellow and claret red extracts appeared to be toxic for the cells. Overall, the extracts of tulip flowers with different colors possess remarkable bioactive and cytotoxic properties. Copyright © 2013 Elsevier Ltd. All rights reserved.

  1. Endosulfan decreases cytotoxic activity of nonspecific cytotoxic cells and expression of granzyme gene in Oreochromis niloticus.

    PubMed

    Téllez-Bañuelos, Martha Cecilia; Ortiz-Lazareno, Pablo Cesar; Jave-Suárez, Luis Felipe; Siordia-Sánchez, Victor Hugo; Bravo-Cuellar, Alejandro; Santerre, Anne; Zaitseva, Galina P

    2014-05-01

    The effect of the organochlorinated insecticide endosulfan, on the cytotoxic activity of Nile tilapia nonspecific cytotoxic cells (NCC) was assessed. Juvenile Nile tilapia were exposed to endosulfan (7 ppb) for 96 h and splenic NCC were isolated. Flow cytometric phenotyping of NCC was based on the detection of the NCC specific membrane signaling protein NCCRP-1 by using the monoclonal antibody Mab 5C6; granzyme expression was evaluated by quantitative RT-PCR. The cytotoxic activity of sorted NCC on HL-60 tumoral cells was assessed using propidium iodide (PI) staining of DNA in HL-60 nuclei, indicating dead cells. Nile tilapia splenic NCC had the ability to kill HL-60 tumoral cells, however, the exposure to endosulfan significantly reduced, by a 65%, their cytotoxic activity when using the effector:target ratio of 40:1. Additionally, the exposure to endosulfan tended to increase the expression of NCCRP-1, which is involved in NCC antigen recognition and signaling. Moreover, it decreased the expression of the granzyme gene in exposed group as compared with non-exposed group; however significant differences between groups were not detected. In summary, the acute exposure of Nile tilapia to sublethal concentration of endosulfan induces alteration in function of NCC: significant decrease of cytotoxic activity and a tendency to lower granzyme expression, severe enough to compromise the immunity of this species. Copyright © 2014 Elsevier Ltd. All rights reserved.

  2. Assessment of in vitro genotoxic and cytotoxic effects of flurbiprofen on human cultured lymphocytes.

    PubMed

    Timocin, Taygun; Ila, Hasan Basri; Dordu, Tuba; Husunet, Mehmet Tahir; Tazehkand, Mostafa Norizadeh; Valipour, Ebrahim; Topaktas, Mehmet

    2016-01-01

    Flurbiprofen is non-steroidal anti-inflammatory drug which is commonly used for its analgesic, antipyretic, and anti-inflammatory effects. The purpose of the study was to explore the genotoxic and cytotoxic effects of flurbiprofen in human cultured lymphocytes by sister chromatid exchange, chromosome aberration, and cytokinesis-blocked micronucleus tests. 10, 20, 30, and 40 μg/mL concentrations of flurbiprofen (solvent is DMSO) were used to treatment of human cultured lymphocytes at two different treatment periods (24 and 48 h). Flurbiprofen had no significant genotoxic effect in any of these tests. But exposing to flurbiprofen for 24 and 48 h led to significant decrease on proliferation index, mitotic index, and nuclear division index (NDI). Also, all decreases were concentration-dependent (except NDI at 24 h treatment period). Consequently, the findings of this research showed that flurbiprofen had cytotoxic effects in human blood lymphocytes.

  3. Pathogenesis of Brain Edema and Investigation into Anti-Edema Drugs

    PubMed Central

    Michinaga, Shotaro; Koyama, Yutaka

    2015-01-01

    Brain edema is a potentially fatal pathological state that occurs after brain injuries such as stroke and head trauma. In the edematous brain, excess accumulation of extracellular fluid results in elevation of intracranial pressure, leading to impaired nerve function. Despite the seriousness of brain edema, only symptomatic treatments to remove edema fluid are currently available. Thus, the development of novel anti-edema drugs is required. The pathogenesis of brain edema is classified as vasogenic or cytotoxic edema. Vasogenic edema is defined as extracellular accumulation of fluid resulting from disruption of the blood-brain barrier (BBB) and extravasations of serum proteins, while cytotoxic edema is characterized by cell swelling caused by intracellular accumulation of fluid. Various experimental animal models are often used to investigate mechanisms underlying brain edema. Many soluble factors and functional molecules have been confirmed to induce BBB disruption or cell swelling and drugs targeted to these factors are expected to have anti-edema effects. In this review, we discuss the mechanisms and involvement of factors that induce brain edema formation, and the possibility of anti-edema drugs targeting them. PMID:25941935

  4. Cytotoxic constituents of ethyl acetate fraction from Dianthus superbus.

    PubMed

    Ding, Chengli; Zhang, Wu; Li, Jie; Lei, Jiachuan; Yu, Jianqing

    2013-01-01

    The ethyl acetate fraction (EE-DS) from Dianthus superbus was found to possess the cytotoxic activity against cancer cells in previous study. To investigate cytotoxic constituents, the bioassay-guided isolation of compounds from EE-DS was performed. Two dianthramides (1 and 2), three flavonoids (3-5), two coumarins (6 and 7) and three other compounds (8-10) were obtained. Structures of isolated compounds were identified by spectroscopic analysis. Cytotoxicity of the compounds against HepG2 cells was evaluated. Compound 1 showed the strongest cytotoxicity, compounds 10, 4, 3 and 5 had moderate cytotoxicity.

  5. Direct, Differential Effects of Tamoxifen, 4-Hydroxytamoxifen, and Raloxifene on Cardiac Myocyte Contractility and Calcium Handling

    PubMed Central

    Asp, Michelle L.; Martindale, Joshua J.; Metzger, Joseph M.

    2013-01-01

    Tamoxifen (Tam), a selective estrogen receptor modulator, is in wide clinical use for the treatment and prevention of breast cancer. High Tam doses have been used for treatment of gliomas and cancers with multiple drug resistance, but long QT Syndrome is a side effect. Tam is also used experimentally in mice for inducible gene knockout in numerous tissues, including heart; however, the potential direct effects of Tam on cardiac myocyte mechanical function are not known. The goal of this study was to determine the direct, acute effects of Tam, its active metabolite 4-hydroxytamoxifen (4OHT), and related drug raloxifene (Ral) on isolated rat cardiac myocyte mechanical function and calcium handling. Tam decreased contraction amplitude, slowed relaxation, and decreased Ca2+ transient amplitude. Effects were primarily observed at 5 and 10 μM Tam, which is relevant for high dose Tam treatment in cancer patients as well as Tam-mediated gene excision in mice. Myocytes treated with 4OHT responded similarly to Tam-treated cells with regard to both contractility and calcium handling, suggesting an estrogen-receptor independent mechanism is responsible for the effects. In contrast, Ral increased contraction and Ca2+ transient amplitudes. At 10 μM, all drugs had a time-dependent effect to abolish cellular contraction. In conclusion, Tam, 4OHT, and Ral adversely and differentially alter cardiac myocyte contractility and Ca2+ handling. These findings have important implications for understanding the Tam-induced cardiomyopathy in gene excision studies and may be important for understanding effects on cardiac performance in patients undergoing high-dose Tam therapy. PMID:24205315

  6. Quantitative structure-cytotoxicity relationship of phenylpropanoid amides.

    PubMed

    Shimada, Chiyako; Uesawa, Yoshihiro; Ishihara, Mariko; Kagaya, Hajime; Kanamoto, Taisei; Terakubo, Shigemi; Nakashima, Hideki; Takao, Koichi; Saito, Takayuki; Sugita, Yoshiaki; Sakagami, Hiroshi

    2014-07-01

    A total of 12 phenylpropanoid amides were subjected to quantitative structure-activity relationship (QSAR) analysis, based on their cytotoxicity, tumor selectivity and anti-HIV activity, in order to investigate on their biological activities. Cytotoxicity against four human oral squamous cell carcinoma (OSCC) cell lines and three human oral normal cells was determined by the 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide (MTT) method. Tumor selectivity was evaluated by the ratio of the mean CC50 (50% cytotoxic concentration) against normal oral cells to that against OSCC cell lines. Anti-HIV activity was evaluated by the ratio of CC50 to EC50 (50% cytoprotective concentration from HIV infection). Physicochemical, structural, and quantum-chemical parameters were calculated based on the conformations optimized by the LowModeMD method followed by density functional theory (DFT) method. Twelve phenylpropanoid amides showed moderate cytotoxicity against both normal and OSCC cell lines. N-Caffeoyl derivatives coupled with vanillylamine and tyramine exhibited relatively higher tumor selectivity. Cytotoxicity against normal cells was correlated with descriptors related to electrostatic interaction such as polar surface area and chemical hardness, whereas cytotoxicity against tumor cells correlated with free energy, surface area and ellipticity. The tumor-selective cytotoxicity correlated with molecular size (surface area) and electrostatic interaction (the maximum electrostatic potential). The molecular size, shape and ability for electrostatic interaction are useful parameters for estimating the tumor selectivity of phenylpropanoid amides. Copyright© 2014 International Institute of Anticancer Research (Dr. John G. Delinassios), All rights reserved.

  7. Interactions between Chloramphenicol, Carrier Polymers, and Bacteria-Implications for Designing Electrospun Drug Delivery Systems Countering Wound Infection.

    PubMed

    Preem, Liis; Mahmoudzadeh, Mohammad; Putrinš, Marta; Meos, Andres; Laidmäe, Ivo; Romann, Tavo; Aruväli, Jaan; Härmas, Riinu; Koivuniemi, Artturi; Bunker, Alex; Tenson, Tanel; Kogermann, Karin

    2017-12-04

    Antibacterial drug-loaded electrospun nano- and microfibrous dressings are of major interest as novel topical drug delivery systems in wound care. In this study, chloramphenicol (CAM)-loaded polycaprolactone (PCL) and PCL/poly(ethylene oxide) (PEO) fiber mats were electrospun and characterized in terms of morphology, drug distribution, physicochemical properties, drug release, swelling, cytotoxicity, and antibacterial activity. Computational modeling together with physicochemical analysis helped to elucidate possible interactions between the drug and carrier polymers. Strong interactions between PCL and CAM together with hydrophobicity of the system resulted in much slower drug release compared to the hydrophilic ternary system of PCL/PEO/CAM. Cytotoxicity studies confirmed safety of the fiber mats to murine NIH 3T3 cells. Disc diffusion assay demonstrated that both fast and slow release fiber mats reached effective concentrations and had similar antibacterial activity. A biofilm formation assay revealed that both blank matrices are good substrates for the bacterial attachment and formation of biofilm. Importantly, prolonged release of CAM from drug-loaded fibers helps to avoid biofilm formation onto the dressing and hence avoids the treatment failure.

  8. Genetically engineered nanocarriers for drug delivery.

    PubMed

    Shi, Pu; Gustafson, Joshua A; MacKay, J Andrew

    2014-01-01

    Cytotoxicity, low water solubility, rapid clearance from circulation, and off-target side-effects are common drawbacks of conventional small-molecule drugs. To overcome these shortcomings, many multifunctional nanocarriers have been proposed to enhance drug delivery. In concept, multifunctional nanoparticles might carry multiple agents, control release rate, biodegrade, and utilize target-mediated drug delivery; however, the design of these particles presents many challenges at the stage of pharmaceutical development. An emerging solution to improve control over these particles is to turn to genetic engineering. Genetically engineered nanocarriers are precisely controlled in size and structure and can provide specific control over sites for chemical attachment of drugs. Genetically engineered drug carriers that assemble nanostructures including nanoparticles and nanofibers can be polymeric or non-polymeric. This review summarizes the recent development of applications in drug and gene delivery utilizing nanostructures of polymeric genetically engineered drug carriers such as elastin-like polypeptides, silk-like polypeptides, and silk-elastin-like protein polymers, and non-polymeric genetically engineered drug carriers such as vault proteins and viral proteins.

  9. Genetically engineered nanocarriers for drug delivery

    PubMed Central

    Shi, Pu; Gustafson, Joshua A; MacKay, J Andrew

    2014-01-01

    Cytotoxicity, low water solubility, rapid clearance from circulation, and off-target side-effects are common drawbacks of conventional small-molecule drugs. To overcome these shortcomings, many multifunctional nanocarriers have been proposed to enhance drug delivery. In concept, multifunctional nanoparticles might carry multiple agents, control release rate, biodegrade, and utilize target-mediated drug delivery; however, the design of these particles presents many challenges at the stage of pharmaceutical development. An emerging solution to improve control over these particles is to turn to genetic engineering. Genetically engineered nanocarriers are precisely controlled in size and structure and can provide specific control over sites for chemical attachment of drugs. Genetically engineered drug carriers that assemble nanostructures including nanoparticles and nanofibers can be polymeric or non-polymeric. This review summarizes the recent development of applications in drug and gene delivery utilizing nanostructures of polymeric genetically engineered drug carriers such as elastin-like polypeptides, silk-like polypeptides, and silk-elastin-like protein polymers, and non-polymeric genetically engineered drug carriers such as vault proteins and viral proteins. PMID:24741309

  10. Antimycobacterial and cytotoxic activity of selected medicinal plant extracts

    PubMed Central

    Nguta, Joseph M.; Appiah-Opong, Regina; Nyarko, Alexander K.; Yeboah-Manu, Dorothy; Addo, Phyllis G.A.; Otchere, Isaac; Kissi-Twum, Abena

    2016-01-01

    Ethnopharmacological relevance Tuberculosis (TB) caused by Mycobacterium tuberculosis remains an ongoing threat to human health. Several medicinal plants are used traditionally to treat tuberculosis in Ghana. The current study was designed to investigate the antimycobacterial activity and cytotoxicity of crude extracts from five selected medicinal plants. Material and methods The microplate alamar blue assay (MABA) was used for antimycobacterial studies while the CellTiter 96® AQueous Assay, which is composed of solutions of a novel tetrazolium compound [3-(4,5-dimethylthiazol-2-yl)-5-(3-carboxymethoxyphenyl)-2-(4-sulfophenyl)-2H-tetrazolium, inner salt; MTS] and an electron coupling reagent (phenazine methosulfate) PMS, was used for cytotoxic studies. Correlation coefficients were used to compare the activity of crude extracts against nonpathogenic strains and the pathogenic Mycobacterium tuberculosis subsp.tuberculosis. Results Results of the MIC determinations indicated that all the crude extracts were active on all the three tested mycobacterial strains. Minimum inhibitory concentration values as low as 156.3 µg/mL against M. tuberculosis; Strain H37Ra (ATCC® 25,177™) were recorded from the leaves of Solanum torvum Sw. (Solanaceae). Cytotoxicity of the extracts varied, and the leaves from S. torvum had the most promising selectivity index. Activity against M. tuberculosis; Strain H37Ra was the best predictor of activity against pathogenic Mycobacterium tuberculosis subsp.tuberculosis (correlation coefficient=0.8). Conclusion The overall results of the present study provide supportive data on the use of some medicinal plants for tuberculosis treatment. The leaves of Solanum torvum are a potential source of anti-TB natural products and deserve further investigations to develop novel anti-TB agents against sensitive and drug resistant strains of M. tuberculosis. PMID:26875647

  11. A multifunctional lipid nanoparticle for co-delivery of paclitaxel and curcumin for targeted delivery and enhanced cytotoxicity in multidrug resistant breast cancer cells

    PubMed Central

    Baek, Jong-Suep; Cho, Cheong-Weon

    2017-01-01

    The objective of the work was to develop a multifunctional nanomedicine based on a folate-conjugated lipid nanoparticles loaded with paclitaxel and curcumin. The novel system combines therapeutic advantageous of efficient targeted delivery via folate and timed-release of curcumin and paclitaxel via 2-hydroxypropyl-ß-cyclodextrin, thereby overcoming multidrug resistance in breast cancer cells (MCF-7/ADR). The faster release of curcumin from the folate-conjugated curcumin and paclitaxel-loaded lipid nanoparticles enables sufficient p-glycoprotein inhibition, which allows increased cellular uptake and cytotoxicity of paclitaxel. In western blot assay, curcumin can efficiently inhibit the expression of p-glycoprotein, conformed the enhancement of cytotoxicity by paclitaxel. Furthermore, folate-conjugated curcumin and paclitaxel-loaded lipid nanoparticles exhibited increased uptake of paclitaxel and curcumin into MCF-7/ADR cells through the folate receptor-mediated internalization. Taken together, these results indicate that folate-conjugated curcumin and paclitaxel-loaded lipid nanoparticles enables the enhanced, folate-targeted delivery of multiple anticancer drugs by inhibiting the multi-drug resistance efficiently, which may also serve as a useful nano-system for co-delivery of other anticancer drugs. PMID:28423731

  12. New tailored substituted benzothiazole Schiff base Cu(II)/Zn(II) antitumor drug entities: effect of substituents on DNA binding profile, antimicrobial and cytotoxic activity.

    PubMed

    Zehra, Siffeen; Shavez Khan, Mohammad; Ahmad, Iqbal; Arjmand, Farukh

    2018-05-07

    New tailored Cu(II) & Zn(II) metal-based antitumor drug entities were synthesized from substituted benzothiazole o‒vanillin Schiff base ligands. The complexes were thoroughly characterized by elemental analysis, spectroscopic studies {IR, 1 H & 13 C NMR, ESI-MS, EPR} and magnetic susceptibility measurements. The structure activity relationship (SAR) studies of benzothiazole Cu(II) & Zn(II) complexes having molecular formulas [C 30 H 22 CuN 5 O 7 S 2 ], [C 30 H 20 Cl 2 CuN 5 O 7 S 2 ], [C 30 H 20 CuF 2 N 5 O 7 S 2 ], [C 30 H 22 N 4 O 4 S 2 Zn], [C 30 H 20 Cl 2 N 4 O 4 S 2 Zn], and [C 30 H 20 F 2 N 5 O 7 S 2 Zn], with CT‒DNA were performed by employing absorption, emission titrations, and hydrodynamic measurements. The DNA binding affinity was quantified by K b and K sv values which gave higher binding propensity for chloro-substituted Cu(II) [C 30 H 20 Cl 2 CuN 5 O 7 S 2 ] complex, suggestive of groove binding mode with subtle partial intercalation. Molecular properties and drug likeness profile were assessed for the ligands and all the Lipinski's rules were found to be obeyed. The antimicrobial potential of ligands and their Cu(II) & Zn(II) complexes were screened against some notably important pathogens viz., E. coli, S. aureus, P. aeruginosa, B. subtilis, and C. albicans. The cytotoxicity of the complexes [C 30 H 20 Cl 2 CuN 5 O 7 S 2 ], [C 30 H 20 CuF 2 N 5 O 7 S 2 ], [C 30 H 20 Cl 2 N 4 O 4 S 2 Zn], and [C 30 H 20 F 2 N 5 O 7 S 2 Zn] were evaluated against five human cancer cell lines viz., MCF‒7 (breast), MIA‒PA‒CA‒2 (pancreatic), HeLa (cervix) and Hep‒G2 (Hepatoma) and A498 (Kidney) by SRB assay which revealed that chloro-substituted [C 30 H 20 Cl 2 CuN 5 O 7 S 2 ] complex, exhibited pronounced specific cytotoxicity with GI 50 value of 4.8 μg/ml against HeLa cell line. Molecular docking studies were also performed to explore the binding modes and orientation of the complexes in the DNA helix.

  13. Free radicals generated by tantalum implants antagonize the cytotoxic effect of doxorubicin.

    PubMed

    Chen, Muwan; Hein, San; Le, Dang Q S; Feng, Wenzhou; Foss, Morten; Kjems, Jørgen; Besenbacher, Flemming; Zou, Xuenong; Bünger, Cody

    2013-05-01

    Little is known about the interaction between antineoplastic drugs and implants in bone cancer patients. We investigated the interaction between commercially available porous tantalum (Ta) implants and the chemotherapeutic drug, Doxorubicin (DOX). DOX solutions were prepared in the presence of Ta implant. The changes in fluorescence intensity of the DOX chromophore were measured by spectrofluorometry and the efficacy of DOX was evaluated by viability of rabbit rectal tumor cells (VX2). After 5 min interaction of the DOX solution (5 μg/ml) with the Ta implant, the fluorescent intensity of the DOX solution was 85% degraded, and only 20% the drug efficacy to kill VX2 cells was retained. However, after adding a reducing agent, Dithiothreitol (DTT, 10 μg/ml), 80% of the original fluorescence and 50% of the drug efficacy were restored while UV irradiation enhanced drug degradation in the presence of Ta implant. The action of DTT and UV irradiation indicated that reactive oxygen species (ROS) were involved in the drug degradation mechanism. We detected that Ta implants in aqueous medium produced hydroxyl radicals. Cells showed higher intracellular ROS activity when culture medium was incubated with the Ta implant prior to cell culture. It is concluded that the porous Ta implant antagonizes the cytotoxicity of DOX via ROS generation of the porous Ta implant. Copyright © 2013 Elsevier B.V. All rights reserved.

  14. A survey of needle handling practices and needlestick injuries in veterinary technicians.

    PubMed

    Weese, J Scott; Faires, Meredith

    2009-12-01

    A survey of veterinary technicians identified that needlestick injuries are very common, with 210/226 (93%) technicians reporting at least one needlestick injury over the course of their career. One hundred sixty-seven (74%) had experienced a needlestick injury during the preceding year. Exposure to animal blood and various drugs was common. It was particularly concerning that needlestick injuries involving chemotherapeutic agents and prostaglandin were reported. Eight (3.5%) technicians had required medical care for a needlestick injury and 2 (0.8%) had lost time at work. The approach to sharps handling and needlestick injury avoidance was poor and most needlestick injuries had not been reported to employers. Measures need to be undertaken to improve sharps handling practices to reduce the number of needlestick injuries among veterinary technicians.

  15. Delivery of chemotherapeutic drugs in tumour cell-derived microparticles.

    PubMed

    Tang, Ke; Zhang, Yi; Zhang, Huafeng; Xu, Pingwei; Liu, Jing; Ma, Jingwei; Lv, Meng; Li, Dapeng; Katirai, Foad; Shen, Guan-Xin; Zhang, Guimei; Feng, Zuo-Hua; Ye, Duyun; Huang, Bo

    2012-01-01

    Cellular microparticles are vesicular plasma membrane fragments with a diameter of 100-1,000 nanometres that are shed by cells in response to various physiological and artificial stimuli. Here we demonstrate that tumour cell-derived microparticles can be used as vectors to deliver chemotherapeutic drugs. We show that tumour cells incubated with chemotherapeutic drugs package these drugs into microparticles, which can be collected and used to effectively kill tumour cells in murine tumour models without typical side effects. We describe several mechanisms involved in this process, including uptake of drug-containing microparticles by tumour cells, synthesis of additional drug-packaging microparticles by these cells that contribute to the cytotoxic effect and the inhibition of drug efflux from tumour cells. This study highlights a novel drug delivery strategy with potential clinical application.

  16. Nanoencapsulation of gallic acid and evaluation of its cytotoxicity and antioxidant activity.

    PubMed

    de Cristo Soares Alves, Aline; Mainardes, Rubiana Mara; Khalil, Najeh Maissar

    2016-03-01

    Gallic acid is an important polyphenol compound presenting various biological activities. The objective of this study was to prepare, characterize and evaluate poly(lactic-co-glycolic acid) (PLGA) nanoparticles coated or not with polysorbate 80 (PS80) containing gallic acid. Nanoparticles coated or not with PS80 were produced by emulsion solvent evaporation method and presented a mean size of around 225 nm, gallic acid encapsulation efficiency of around 26% and zeta potential of -22 mV. Nanoparticle formulations were stable during storage, except nanoparticles coated with PS80 stored at room temperature. In vitro release profile demonstrated a quite sustained gallic acid release from nanoparticles and PS80-coating decreased drug release. Cytotoxicity over red blood cells was assessed and gallic acid-loaded PLGA nanoparticles at all analyzed concentrations demonstrated lack of hemolysis, while PS80-nanoparticles containing gallic acid were cytotoxic only in higher concentrations. Antioxidant potential of nanoparticles containing gallic acid was assessed and PLGA uncoated nanoparticles presented greater efficacy than PS80-coated PLGA nanoparticles. Copyright © 2015 Elsevier B.V. All rights reserved.

  17. DUPA conjugation of a cytotoxic indenoisoquinoline topoisomerase I inhibitor for selective prostate cancer cell targeting.

    PubMed

    Roy, Jyoti; Nguyen, Trung Xuan; Kanduluru, Ananda Kumar; Venkatesh, Chelvam; Lv, Wei; Reddy, P V Narasimha; Low, Philip S; Cushman, Mark

    2015-04-09

    Prostate-specific membrane antigen (PSMA) is overexpressed in most prostate cancer cells while being present at low or undetectable levels in normal cells. This difference provides an opportunity to selectively deliver cytotoxic drugs to prostate cancer cells while sparing normal cells that lack PSMA, thus improving potencies and reducing toxicities. PSMA has high affinity for 2-[3-(1,3-dicarboxypropyl)ureido]pentanedioic acid (DUPA) (Ki = 8 nM). After binding to a DUPA-drug conjugate, PSMA internalizes, unloads the conjugate, and returns to the surface. In the present studies, an indenoisoquinoline topoisomerase I inhibitor was conjugated to DUPA via a peptide linker and a drug-release segment that facilitates intracellular cleavage to liberate the drug cargo. The DUPA-indenoisoquinoline conjugate exhibited an IC50 in the low nanomolar range in 22RV1 cell cultures and induced a complete cessation of tumor growth with no toxicity, as determined by loss of body weight and death of treated mice.

  18. Multifunctional quantum dot-polypeptide hybrid nanogel for targeted imaging and drug delivery

    NASA Astrophysics Data System (ADS)

    Yang, Jie; Yao, Ming-Hao; Wen, Lang; Song, Ji-Tao; Zhang, Ming-Zhen; Zhao, Yuan-Di; Liu, Bo

    2014-09-01

    A new type of multifunctional quantum dot (QD)-polypeptide hybrid nanogel with targeted imaging and drug delivery properties has been developed by metal-affinity driven self-assembly between artificial polypeptides and CdSe-ZnS core-shell QDs. On the surface of QDs, a tunable sandwich-like microstructure consisting of two hydrophobic layers and one hydrophilic layer between them was verified by capillary electrophoresis, transmission electron microscopy, and dynamic light scattering measurements. Hydrophobic and hydrophilic drugs can be simultaneously loaded in a QD-polypeptide nanogel. In vitro drug release of drug-loaded QD-polypeptide nanogels varies strongly with temperature, pH, and competitors. A drug-loaded QD-polypeptide nanogel with an arginine-glycine-aspartic acid (RGD) motif exhibited efficient receptor-mediated endocytosis in αvβ3 overexpressing HeLa cells but not in the control MCF-7 cells as analyzed by confocal microscopy and flow cytometry. In contrast, non-targeted QD-polypeptide nanogels revealed minimal binding and uptake in HeLa cells. Compared with the original QDs, the QD-polypeptide nanogels showed lower in vitro cytotoxicity for both HeLa cells and NIH 3T3 cells. Furthermore, the cytotoxicity of the targeted QD-polypeptide nanogel was lower for normal NIH 3T3 cells than that for HeLa cancer cells. These results demonstrate that the integration of imaging and drug delivery functions in a single QD-polypeptide nanogel has the potential for application in cancer diagnosis, imaging, and therapy.A new type of multifunctional quantum dot (QD)-polypeptide hybrid nanogel with targeted imaging and drug delivery properties has been developed by metal-affinity driven self-assembly between artificial polypeptides and CdSe-ZnS core-shell QDs. On the surface of QDs, a tunable sandwich-like microstructure consisting of two hydrophobic layers and one hydrophilic layer between them was verified by capillary electrophoresis, transmission electron

  19. Controlled drug delivery from composites of nanostructured porous silicon and poly(L-lactide).

    PubMed

    McInnes, Steven J P; Irani, Yazad; Williams, Keryn A; Voelcker, Nicolas H

    2012-07-01

    Porous silicon (pSi) and poly(L-lactide) (PLLA) both display good biocompatibility and tunable degradation behavior, suggesting that composites of both materials are suitable candidates as biomaterials for localized drug delivery into the human body. The combination of a pliable and soft polymeric material with a hard inorganic porous material of high drug loading capacity may engender improved control over degradation and drug release profiles and be beneficial for the preparation of advanced drug delivery devices and biodegradable implants or scaffolds. In this work, three different pSi and PLLA composite formats were prepared. The first format involved grafting PLLA from pSi films via surface-initiated ring-opening polymerization (pSi-PLLA [grafted]). The second format involved spin coating a PLLA solution onto oxidized pSi films (pSi-PLLA [spin-coated]) and the third format consisted of a melt-cast PLLA monolith containing dispersed pSi microparticles (pSi-PLLA [monoliths]). The surface characterization of these composites was performed via infrared spectroscopy, scanning electron microscopy, atomic force microscopy and water contact angle measurements. The composite materials were loaded with a model cytotoxic drug, camptothecin (CPT). Drug release from the composites was monitored via fluorimetry and the release profiles of CPT showed distinct characteristics for each of the composites studied. In some cases, controlled CPT release was observed for more than 5 days. The PLLA spin coat on pSi and the PLLA monolith containing pSi microparticles both released a CPT payload in accordance with the Higuchi and Ritger-Peppas release models. Composite materials were also brought into contact with human lens epithelial cells to determine the extent of cytotoxicity. We observed that all the CPT containing materials were highly efficient at releasing bioactive CPT, based on the cytotoxicity data.

  20. The Role of BH3-Mimetic Drugs in the Treatment of Pediatric Hepatoblastoma

    PubMed Central

    Lieber, Justus; Armeanu-Ebinger, Sorin; Fuchs, Jörg

    2015-01-01

    Pediatric hepatoblastoma (HB) is commonly treated by neoadjuvant chemotherapy and surgical tumor resection according to international multicenter trial protocols. Complete tumor resection is essential and survival rates up to 95% have now been achieved in those tumors classified as standard-risk HB. Drug resistance and occurrence of metastases remain the major challenges in the treatment of HB, especially in high-risk tumors. These conditions urgently require the development of alternative therapeutic strategies. One of those alternatives is the modulation of apoptosis in HB cells. HBs regularly overexpress anti-apoptotic proteins of the Bcl-family in comparison to healthy liver tissue. This fact may contribute to the development of chemoresistance of HB cells. Synthetic small inhibitory molecules with BH3-mimetic effects, such as ABT-737 and obatoclax, enhance the susceptibility of tumor cells to different cytotoxic drugs and thereby affect initiator proteins of the apoptosis cascade via the intrinsic pathway. Besides additive effects on HB cell viability when used in combination with cytotoxic drugs, BH3-mimetics also play a role in preventing metastasation by reducing adhesion and inhibiting cell migration abilities. Presumably, including additive BH3-mimetic drugs into existing therapeutic regimens in HB patients might allow dose reduction of established cytotoxic drugs and thereby associated immanent side effects, while maintaining the antitumor activity. Furthermore, reduction of tumor growth and inhibition of tumor cell dissemination may facilitate complete surgical tumor resection, which is mandatory in this tumor type resulting in improved survival rates in high-risk HB. Currently, there are phase I and phase II clinical trials in several cancer entities using this potential target. This paper reviews the available literature regarding the use of BH3-mimetic drugs as single agents or in combination with chemotherapy in various malignancies and focuses on

  1. Quantitative Structure-Cytotoxicity Relationship of Oleoylamides.

    PubMed

    Sakagami, Hiroshi; Uesawa, Yoshihiro; Ishihara, Mariko; Kagaya, Hajime; Kanamoto, Taisei; Terakubo, Shigemi; Nakashima, Hideki; Takao, Koichi; Sugita, Yoshiaki

    2015-10-01

    Eighteen oleoylamides were subjected to quantitative structure-activity relationship analysis based on their cytotoxicity, tumor selectivity and anti-HIV activity, in order to assess their biological activities. Cytotoxicity against four human oral squamous cell carcinoma (OSCC) cell lines and five human oral normal cells (gingival fibroblast, periodontal ligament fibroblast, pulp cell, oral keratinocyte, primary gingival epithelial cells) was determined by the 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide (MTT) method. Tumor-selectivity (TS) was evaluated by the ratio of the mean 50% cytotoxic concentration (CC50) against normal human oral cells to that against OSCC cell lines. Potency-selectivity expression (PSE) was determined by the ratio of TS to CC50 against OSCC. Anti-HIV activity was evaluated by the ratio of CC50 to the concentration leading to 50% cytoprotection from HIV infection (EC50). Physicochemical, structural and quantum-chemical parameters were calculated based on the conformations optimized by the LowModeMD method. Among 18 derivatives, compounds 8: with a catechol group) and 18: with a (2-pyridyl)amino group) had the highest TS. On the other hand, doxorubicin and 5-fluorouracil (5-FU) were more highly cytotoxic to normal epithelial cells, displaying unexpectedly lower TS and PSE values. None of the compounds had anti-HIV activity. Among 330 chemical descriptors, 75, 73 and 19 descriptors significantly correlated to the cytotoxicity to normal and tumor cells, and TS, respectively. Multivariate statistics with chemical descriptors for molecular polarization and hydrophobicity may be useful for the evaluation of cytotoxicity and TS of oleoylamides. Copyright© 2015 International Institute of Anticancer Research (Dr. John G. Delinassios), All rights reserved.

  2. Non-Cytotoxic Quantum Dot–Chitosan Nanogel Biosensing Probe for Potential Cancer Targeting Agent

    PubMed Central

    Maxwell, Tyler; Banu, Tahmina; Price, Edward; Tharkur, Jeremy; Campos, Maria Gabriela Nogueira; Gesquiere, Andre; Santra, Swadeshmukul

    2015-01-01

    Quantum dot (Qdot) biosensors have consistently provided valuable information to researchers about cellular activity due to their unique fluorescent properties. Many of the most popularly used Qdots contain cadmium, posing the risk of toxicity that could negate their attractive optical properties. The design of a non-cytotoxic probe usually involves multiple components and a complex synthesis process. In this paper, the design and synthesis of a non-cytotoxic Qdot-chitosan nanogel composite using straight-forward cyanogen bromide (CNBr) coupling is reported. The probe was characterized by spectroscopy (UV-Vis, fluorescence), microscopy (Fluorescence, Scanning Electron Microscopy (SEM), Transmission Electron Microscopy (TEM) and Dynamic Light Scattering. This activatable (“OFF”/“ON”) probe contains a core–shell Qdot (CdS:Mn/ZnS) capped with dopamine, which acts as a fluorescence quencher and a model drug. Dopamine capped “OFF” Qdots can undergo ligand exchange with intercellular glutathione, which turns the Qdots “ON” to restore fluorescence. These Qdots were then coated with chitosan (natural biocompatible polymer) functionalized with folic acid (targeting motif) and Fluorescein Isothiocyanate (FITC; fluorescent dye). To demonstrate cancer cell targetability, the interaction of the probe with cells that express different folate receptor levels was analyzed, and the cytotoxicity of the probe was evaluated on these cells and was shown to be nontoxic even at concentrations as high as 100 mg/L. PMID:28347126

  3. Students' Strategies for Exception Handling

    ERIC Educational Resources Information Center

    Rashkovits, Rami; Lavy, Ilana

    2011-01-01

    This study discusses and presents various strategies employed by novice programmers concerning exception handling. The main contributions of this paper are as follows: we provide an analysis tool to measure the level of assimilation of exception handling mechanism; we present and analyse strategies to handle exceptions; we present and analyse…

  4. Cytotoxicity of South-African medicinal plants towards sensitive and multidrug-resistant cancer cells.

    PubMed

    Saeed, Mohamed E M; Meyer, Marion; Hussein, Ahmed; Efferth, Thomas

    2016-06-20

    Traditional medicine plays a major role for primary health care worldwide. Cancer belongs to the leading disease burden in industrialized and developing countries. Successful cancer therapy is hampered by the development of resistance towards established anticancer drugs. In the present study, we investigated the cytotoxicity of 29 extracts from 26 medicinal plants of South-Africa against leukemia cell lines, most of which are used traditionally to treat cancer and related symptoms. We have investigated the plant extracts for their cytotoxic activity towards drug-sensitive parental CCRF-CEM leukemia cells and their multidrug-resistant P-glycoprotein-overexpressing subline, CEM/ADR5000 by means of the resazurin assay. A panel of 60 NCI tumor cell lines have been investigated for correlations between selected phytochemicals from medicinal plants and the expression of resistance-conferring genes (ABC-transporters, oncogenes, tumor suppressor genes). Seven extracts inhibited both cell lines (Acokanthera oppositifolia, Hypoestes aristata, Laurus nobilis, Leonotis leonurus, Plectranthus barbatus, Plectranthus ciliates, Salvia apiana). CEM/ADR5000 cells exhibited a low degree of cross-resistance (3.35-fold) towards the L. leonurus extract, while no cross-resistance was observed to other plant extracts, although CEM/ADR5000 cells were highly resistant to clinically established drugs. The log10IC50 values for two out of 14 selected phytochemicals from these plants (acovenoside A and ouabain) of 60 tumor cell lines were correlated to the expression of ABC-transporters (ABCB1, ABCB5, ABCC1, ABCG2), oncogenes (EGFR, RAS) and tumor suppressors (TP53). Sensitivity or resistance of the cell lines were not statistically associated with the expression of these genes, indicating that multidrug-resistant, refractory tumors expressing these genes may still respond to acovenoside A and ouabain. The bioactivity of South African medicinal plants may represent a basis for the development

  5. Anticancer drug delivery with transferrin targeted polymeric chitosan vesicles.

    PubMed

    Dufes, Christine; Muller, Jean-Marc; Couet, William; Olivier, Jean-Christophe; Uchegbu, Ijeoma F; Schätzlein, Andreas G

    2004-01-01

    The study reports the initial biological evaluation of targeted polymeric glycol chitosan vesicles as carrier systems for doxorubicin (Dox). Transferrin (Tf) was covalently bound to the Dox-loaded palmitoylated glycol chitosan (GCP) vesicles using dimethylsuberimidate (DMSI). For comparison, glucose targeted niosomes were prepared using N-palmitoyl glucosamine. Biological properties were studied using confocal microscopy, flow cytometry, and cytotoxicity assays as well as a mouse xenograft model. Tf vesicles were taken up rapidly with a plateau after 1-2 h and Dox reached the nucleus after 60-90 min. Uptake was not increased with the use of glucose ligands, but higher uptake and increased cytotoxicity were observed for Tf targeted as compared to GCP Dox alone. In the drug-resistant A2780AD cells and in A431 cells, the relative increase in activity was significantly higher for the Tf-GCP vesicles than would have been expected from the uptake studies. All vesicle formulations had a superior in vivo safety profile compared to the free drug. The in vitro advantage of targeted Tf vesicles did not translate into a therapeutic advantage in vivo. All vesicles reduced tumor size on day 2 but were overall less active than the free drug.

  6. Fast dissolving drug-drug eutectics with improved compressibility and synergistic effects.

    PubMed

    Thipparaboina, Rajesh; Thumuri, Dinesh; Chavan, Rahul; Naidu, V G M; Shastri, Nalini R

    2017-06-15

    Combinational therapy has become increasingly popular in recent times due to various advantages like greater therapeutic effect, reduced number of prescriptions, lower administrative costs, and an increase in patient compliance. Drug-drug multicomponent adducts could help in combination of drugs at supramolecular level. Two drug-drug eutectics of etodolac with paracetamol (EP) and etodolac with propranolol hydrochloride (EPHC) were successfully designed and synthesized for the first time. These eutectics significantly improved dissolution and material properties. A 6 to 9 fold enhancement in % dissolution efficiency was found at 1min suggesting the fast dissolving capabilities of the eutectic mixtures when compared to plain drug. In addition, eutectic mixtures have shown improved hardness compared to plain drugs. EP and EPHC have shown around 5 fold and 3 fold improvements in hardness respectively at 10MPa when compared to plain etodolac. Cell culture studies have shown improved effects of EP. Western blotting analysis revealed that the said combination successfully reduced various inflammatory mediators like TNF-α, COX-2 and IL-6. Whereas, the eutectic combination EPHC has shown enhanced cytotoxic effects with synergistic combination index and favorable dose reduction index. The generated multi-component systems EP and EPHC with fast dissolving capabilities, improved hardness at lower pressures and synergistic effects represent prospective combinations for effective treatment of osteoarthritis and cancer chemotherapy respectively. Copyright © 2017 Elsevier B.V. All rights reserved.

  7. Toxins from the Caribbean sea anemone Bunodeopsis globulifera increase cisplatin-induced cytotoxicity of lung adenocarcinoma cells

    PubMed Central

    2013-01-01

    Background Lung cancer causes 1.4 million deaths worldwide while non-small-cell lung cancer (NSCLC) represents 80-85% of the cases. Cisplatin is a standard chemotherapy against this type of cancer; however, tumor cell resistance to this drug limits its efficacy. Sea anemones produce compounds with pharmacological activities that may be useful for augmenting cisplatin efficacy. This study aimed to evaluate the pharmacological activities of crude venom (CV) from the sea anemone Bunodeopsis globulifera and four derived fractions (F1, F2, F3 and F4) to test their increase efficiency cisplatin cytotoxicity in human lung adenocarcinoma cells. Results Pre-exposure to CV, F1 and F2 fractions increases cisplatin cytotoxicity in human lung adenocarcinoma cells under specific conditions. Exposure to CV at 50 μgmL-1 induced a reduction of approximately 50% in cell viability, while a similar cytotoxic effect was observed when cell culture was exposed to F1 at 25 μgmL -1 or F2 at 50 μgmL-1. The cell culture exposure to F1 (10 μgmL-1) fraction combined with cisplatine (25 μM) provoked a decrease in MTT reduction until 65.57% while F2 (25 μgmL-1) fraction combined with cisplatin (10 μM) provoked a decrease in MTT reduction of 72.55%. Conclusions The F1 fraction had the greatest effect on the lung adenocarcinoma cell line compared with CV and F2. The combination of antineoplastic drugs and sea anemone toxins might allow a reduction of chemotherapeutic doses and thus mitigate side effects. PMID:24499018

  8. Establishment of HK-2 Cells as a Relevant Model to Study Tenofovir-Induced Cytotoxicity

    PubMed Central

    Murphy, Rachel A.; Stafford, Reagan M.; Petrasovits, Brooke A.; Boone, Megann A.; Valentovic, Monica A.

    2017-01-01

    Tenofovir (TFV) is an antiviral drug approved for treating Human Immunodeficiency Virus (HIV) and Hepatitis B. TFV is administered orally as the prodrug tenofovir disoproxil fumarate (TDF) which then is deesterified to the active drug TFV. TFV induces nephrotoxicity characterized by renal failure and Fanconi Syndrome. The mechanism of this toxicity remains unknown due to limited experimental models. This study investigated the cellular mechanism of cytotoxicity using a human renal proximal tubular epithelial cell line (HK-2). HK-2 cells were grown for 48 h followed by 24 to 72 h exposure to 0–28.8 μM TFV or vehicle, phosphate buffered saline (PBS). MTT (MTT, 3-(4,5-dimethylthiazol-2-yl)-2,5-Diphenyltetrazolium Bromide) and Trypan blue indicated that TFV diminished cell viability at 24–72 h. TFV decreased ATP levels at 72 h when compared to vehicle, reflecting mitochondrial dysfunction. TFV increased the oxidative stress biomarkers of protein carbonylation and 4-hydroxynonenol (4-HNE) adduct formation. Tumor necrosis factor alpha (TNFα) was released into the media following exposure to 14.5 and 28.8 μM TFV. Caspase 3 and 9 cleavage was induced by TFV compared to vehicle at 72 h. These studies show that HK-2 cells are a sensitive model for TFV cytotoxicity and suggest that mitochondrial stress and apoptosis occur in HK-2 cells treated with TFV. PMID:28257038

  9. Cytotoxicity of four categories of dental cements.

    PubMed

    Schmid-Schwap, Martina; Franz, Alexander; König, Franz; Bristela, Margit; Lucas, Trevor; Piehslinger, Eva; Watts, David C; Schedle, Andreas

    2009-03-01

    Assessment of dental material biocompatibility is gaining increasing importance for both patients and dentists. Dental cements may be in contact with oral soft tissues for prolonged periods of time and play an important role in prosthetic rehabilitation. The aim of the present study was to evaluate eight dental cements using a standardized L929-fibroblast cell culture test. For each material, fresh specimens (added to the cultures immediately after preparation) and specimens preincubated for 7 days in cell culture medium were prepared according to the manufacturers' recommendations. After exposure to test specimens, cell numbers were compared to glass controls. The main outcome was a two-sided 95% confidence interval for the mean value of the standardized cell number for each substance investigated. Fresh specimens of all tested cements showed significant cytotoxicity, which diminished after 7 days preincubation. Cytotoxicity of fresh adhesive and self-adhesive resin cements was lower when specimens were dual-cured compared to self-cured. A rank order of cytotoxicity was established based on mean values: Nexus 2 (dual-cured) showed least cytotoxicity, followed by Variolink II (dual-cured), Nexus 2 (self-cured), Harvard, RelyxUnicem (dual-cured), Panavia 21, Fujicem, Durelon, Variolink II (self-cured), RelyxUnicem (self-cured), Maxcem (dual-cured) and Maxcem (self-cured). When bondings were added to Nexus 2 or Variolink II specimens, a slight increase in cytotoxicity was observed. Adhesive resin cements showed less cytotoxicity than self-adhesive and chemically setting cements. Bonding only slightly influenced cytotoxicity of the adhesive resin cements. Dual-cured specimens of adhesive and self-adhesive resin cements showed significantly less toxicity than self-cured specimens.

  10. In-vitro assessment of cytotoxicity of halloysite nanotubes against HepG2, HCT116 and human peripheral blood lymphocytes.

    PubMed

    Ahmed, Farrukh Rafiq; Shoaib, Muhammad Harris; Azhar, Mudassar; Um, Soong Ho; Yousuf, Rabia Ismail; Hashmi, Shahkamal; Dar, Ahsana

    2015-11-01

    Halloysite is a clay mineral with chemical similarity to kaolin, a pharmaceutical ingredient. It consists of mainly aluminosilicate nanotubular particles in the size range of ∼ 200-1000 nm. Many studies have tried to empirically explore this novel clay for its potential in drug delivery systems but no work has yet studied its cytotoxicity from the perspective of oral drug delivery system. In this study, the halloysite nanotubes (HNTs) were subjected to size distribution analyses, which reveal more than 50% of nanotubes in the size range of 500 nm and rest mainly in the sub micrometer range. HNTs were then evaluated for in-vitro cytotoxicity against HCT116 (colorectal carcinoma) and HepG2 (hepatocellular carcinoma) cells which represent the earliest entry point and the first accumulating organ, respectively, for nanoparticles en-route to systemic circulation after oral delivery. Moreover, HNTs were tested for their cytogenetic toxicity against human peripheral blood lymphocytes. Both these results collectively indicated that HNTs are generally safe at practical concentrations of excipients for oral dosage forms. Copyright © 2015 Elsevier B.V. All rights reserved.

  11. A porphyrin-based metal-organic framework as a pH-responsive drug carrier

    NASA Astrophysics Data System (ADS)

    Lin, Wenxin; Hu, Quan; Jiang, Ke; Yang, Yanyu; Yang, Yu; Cui, Yuanjing; Qian, Guodong

    2016-05-01

    A low cytotoxic porphyrin-based metal-organic framework (MOF) PCN-221, which exhibited high PC12 cell viability via 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyl tetrazolium (MTT) assay, was selected as an oral drug carrier. Methotrexate (MTX) was chosen as the model drug molecule which was absorbed into inner pores and channels of MOFs by diffusion. PCN-221 showed high drug loading and sustained release behavior under physiological environment without "burst effect". The controlled pH-responsive release of drugs by PCN-221 revealed its promising application in oral drug delivery.

  12. Association between occupational exposure levels of antineoplastic drugs and work environment in five hospitals in Japan.

    PubMed

    Yoshida, Jin; Koda, Shigeki; Nishida, Shozo; Yoshida, Toshiaki; Miyajima, Keiko; Kumagai, Shinji

    2011-03-01

    The aim of the present study was to evaluate the measurement of contamination by antineoplastic drugs for safer handling of such drugs by medical workers. We investigated the relationship between the contamination level of antineoplastic drugs and the conditions of their handling. Air samples and wipe samples were collected from equipment in the preparation rooms of five hospitals (hospitals A-E). These samples were subjected to measurement of the amounts of cyclophosphamide (CPA), fluorouracil (5FU), gemcitabine (GEM), and platinum-containing drugs (Pt). Twenty-four-hour urine samples were collected from the pharmacists who handled or audited, the antineoplastic drugs were analyzed for CPA and Pt. Pt was detected from air samples inside BSC in hospital B. Antineoplastic drugs were detected from wipe samples of the BSC in hospitals A, B, D, and E and of other equipment in the preparation rooms in hospitals A, B, C, and D. Cyclophosphamide and 5FU were detected from wipe samples of the air-conditioner filter in hospital A, and CPA was detected from that in hospital D. Cyclophosphamide was detected from urine samples of workers in hospitals B, D, and E. The contamination level of antineoplastic drugs was suggested to be related with the amount of drugs handled, cleaning methods of the equipment, and the skill level of the technique of maintaining negative pressure inside a vial. In order to reduce the contamination and exposure to antineoplastic drugs in the hospital work environment very close to zero, comprehensive safety precautions, including adequate mixing and cleaning methods was required in addition to BSC and closed system device.

  13. Identification of cytotoxic agents disrupting synovial sarcoma oncoprotein interactions by proximity ligation assay.

    PubMed

    Laporte, Aimée N; Ji, Jennifer X; Ma, Limin; Nielsen, Torsten O; Brodin, Bertha A

    2016-06-07

    Conventional cytotoxic therapies for synovial sarcoma provide limited benefit. Drugs specifically targeting the product of its driver translocation are currently unavailable, in part because the SS18-SSX oncoprotein functions via aberrant interactions within multiprotein complexes. Proximity ligation assay is a recently-developed method that assesses protein-protein interactions in situ. Here we report use of the proximity ligation assay to confirm the oncogenic association of SS18-SSX with its co-factor TLE1 in multiple human synovial sarcoma cell lines and in surgically-excised human tumor tissue. SS18-SSX/TLE1 interactions are disrupted by class I HDAC inhibitors and novel small molecule inhibitors. This assay can be applied in a high-throughput format for drug discovery in fusion-oncoprotein associated cancers where key effector partners are known.

  14. Synthesis of 1,2,4-triazole-linked urea/thiourea conjugates as cytotoxic and apoptosis inducing agents.

    PubMed

    Tokala, Ramya; Bale, Swarna; Janrao, Ingle Pavan; Vennela, Aluri; Kumar, Niggula Praveen; Senwar, Kishna Ram; Godugu, Chandraiah; Shankaraiah, Nagula

    2018-06-01

    A new series of 1,2,4-triazole-linked urea and thiourea conjugates have been synthesized and evaluated for their in vitro cytotoxicity against selected human cancer cell lines namely, breast (MCF-7, MDA-MB-231), lung (A549) prostate (DU145) and one mouse melanoma (B16-F10) cell line and compared with reference drug. The compound 5t showed significant cytotoxicity on MCF-7 breast cancer cell line with a IC 50 value of 7.22 ± 0.47 µM among all the tested compounds. Notably, induction of apoptosis by compound 5t on MCF-7 cells was evaluated using different staining techniques such as acridine orange/ethidium bromide (AO/EB), annexin V-FITC/PI, and DAPI. Further, clonogenic assay indicates the inhibition of colony formation on MCF-7 cells by compound 5t. Moreover, the flow-cytometric analysis also revealed that compound 5t caused the arrest of cells at G0/G1 phase of cell cycle. In addition, the compounds when tested on normal human cells (L-132) were found to be safer with low cytotoxicity profile. Copyright © 2018 Elsevier Ltd. All rights reserved.

  15. Characteristics and cytotoxicity of folate-modified curcumin-loaded PLA-PEG micellar nano systems with various PLA:PEG ratios.

    PubMed

    Phan, Quoc Thong; Le, Mai Huong; Le, Thi Thu Huong; Tran, Thi Hong Ha; Xuan, Phuc Nguyen; Ha, Phuong Thu

    2016-06-30

    Targeting delivery system use natural drugs for tumor cells is an appealing platform help to reduce the side effects and enhance the therapeutic effects of the drug. In this study, we synthesized curcumin (Cur) loaded (D, L Poly lactic - Poly ethylenglycol) micelle (Cur/PLA-PEG) with the ratio of PLA/PEG of 3:1 2:1 1:1 1:2 and 1:3 (w/w) and another micelle modified by folate (Cur/PLA-PEG-Fol) for targeting cancer therapy. The PLA-PEG copolymer was synthesized by ring opening polymerization method. After loading onto the micelle, solubility of Cur increased from 0.38 to 0.73mgml(-1). The average size of prepared Cur/PLA-PEG micelles was from 60 to 69nm (corresponding to the ratio difference of PLA/PEG) and the drug encapsulating efficiency was from 48.8 to 91.3%. Compared with the Cur/PLA-PEG micelles, the size of Cur/PLA-PEG-Fol micelles were from 80 to 86nm and showed better in vitro cellular uptake and cytotoxicity towards HepG2 cells. The cytotoxicity of the NPs however depends much on the PEG component. The results demonstrated that Folate-modified micelles could serve as a potential nano carrier to improve solubility, anti-cancer activity of Cur and targeting ability of the system. Copyright © 2016 Elsevier B.V. All rights reserved.

  16. Anti-inflammatory and cytotoxic activities of Bursera copallifera

    PubMed Central

    Columba-Palomares, M. F. María C.; Villareal, Dra. María L.; Acevedo Quiroz, M. C. Macdiel E.; Marquina Bahena, M. C. Silvia; Álvarez Berber, Dra. Laura P.; Rodríguez-López, Dra. Verónica

    2015-01-01

    Background: The plant species Bursera copallifera (DC) bullock is used in traditional medicine to treat inflammation. The leaves of this plant can be prepared as an infusion to treat migraines, bronchitis, and dental pain Objective: The purpose of this study was to determine the anti-inflammatory and cytotoxic activities of organic extracts from the stems, stem bark, and leaves of B. copallifera, which was selected based on the knowledge of its traditional use. Materials and Methods: We evaluated the ability of extracts to inhibit mouse ear inflammation in response to topical application of 12-O tetradecanoylphorbol-13-acetate. The extracts with anti-inflammatory activity were evaluated for their inhibition of pro-inflammatory enzymes. In addition, the in vitro cytotoxic activities of the organic extracts were evaluated using the sulforhodamine B assay. Results: The hydroalcoholic extract of the stems (HAS) exhibited an anti-inflammatory activity of 54.3% (0.5 mg/ear), whereas the anti-inflammatory activity of the dichloromethane-methanol extract from the leaves (DMeL) was 55.4% at a dose of 0.1 mg/ear. Methanol extract from the leaves (MeL) showed the highest anti-inflammatory activity (IC50 = 4.4 μg/mL), hydroalcoholic extract of leaves, and DMeL also reduce the enzyme activity, (IC50 = 6.5 μg/mL, IC50 = 5.7 μg/mL), respectively, from stems HAS exhibit activity at the evaluated concentrations (IC50 =6.4 μg/mL). The hydroalcoholic extract of the stems exhibited the highest cytotoxic activity against a breast adenocarcinoma cell line (MCF7, IC50 = 0.90 μg/mL), whereas DMeL exhibited an IC50 value of 19.9 μg/mL. Conclusion: In conclusion, extracts from leaves and stems inhibited cyclooxygenase-1, which is the target enzyme for nonsteroidal anti inflammatory drugs, and some of these extracts demonstrated substantial antiproliferative effects against the MCF7 cell line. These results validate the traditional use of B. copallifera. PMID:26664022

  17. Anti-inflammatory and cytotoxic activities of Bursera copallifera.

    PubMed

    Columba-Palomares, M F María C; Villareal, Dra María L; Acevedo Quiroz, M C Macdiel E; Marquina Bahena, M C Silvia; Álvarez Berber, Dra Laura P; Rodríguez-López, Dra Verónica

    2015-10-01

    The plant species Bursera copallifera (DC) bullock is used in traditional medicine to treat inflammation. The leaves of this plant can be prepared as an infusion to treat migraines, bronchitis, and dental pain. The purpose of this study was to determine the anti-inflammatory and cytotoxic activities of organic extracts from the stems, stem bark, and leaves of B. copallifera, which was selected based on the knowledge of its traditional use. We evaluated the ability of extracts to inhibit mouse ear inflammation in response to topical application of 12-O tetradecanoylphorbol-13-acetate. The extracts with anti-inflammatory activity were evaluated for their inhibition of pro-inflammatory enzymes. In addition, the in vitro cytotoxic activities of the organic extracts were evaluated using the sulforhodamine B assay. The hydroalcoholic extract of the stems (HAS) exhibited an anti-inflammatory activity of 54.3% (0.5 mg/ear), whereas the anti-inflammatory activity of the dichloromethane-methanol extract from the leaves (DMeL) was 55.4% at a dose of 0.1 mg/ear. Methanol extract from the leaves (MeL) showed the highest anti-inflammatory activity (IC50 = 4.4 μg/mL), hydroalcoholic extract of leaves, and DMeL also reduce the enzyme activity, (IC50 = 6.5 μg/mL, IC50 = 5.7 μg/mL), respectively, from stems HAS exhibit activity at the evaluated concentrations (IC50 =6.4 μg/mL). The hydroalcoholic extract of the stems exhibited the highest cytotoxic activity against a breast adenocarcinoma cell line (MCF7, IC50 = 0.90 μg/mL), whereas DMeL exhibited an IC50 value of 19.9 μg/mL. In conclusion, extracts from leaves and stems inhibited cyclooxygenase-1, which is the target enzyme for nonsteroidal anti inflammatory drugs, and some of these extracts demonstrated substantial antiproliferative effects against the MCF7 cell line. These results validate the traditional use of B. copallifera.

  18. A mutated dph3 gene causes sensitivity of Schizosaccharomyces pombe cells to cytotoxic agents.

    PubMed

    Villahermosa, Desirée; Knapp, Karen; Fleck, Oliver

    2017-12-01

    Dph3 is involved in diphthamide modification of the eukaryotic translation elongation factor eEF2 and in Elongator-mediated modifications of tRNAs, where a 5-methoxycarbonyl-methyl moiety is added to wobble uridines. Lack of such modifications affects protein synthesis due to inaccurate translation of mRNAs at ribosomes. We have discovered that integration of markers at the msh3 locus of Schizosaccharomyces pombe impaired the function of the nearby located dph3 gene. Such integrations rendered cells sensitive to the cytotoxic drugs hydroxyurea and methyl methanesulfonate. We constructed dph3 and msh3 strains with mutated ATG start codons (ATGmut), which allowed investigating drug sensitivity without potential interference by marker insertions. The dph3-ATGmut and a dph3::loxP-ura4-loxM gene disruption strain, but not msh3-ATGmut, turned out to be sensitive to hydroxyurea and methyl methanesulfonate, likewise the strains with cassettes integrated at the msh3 locus. The fungicide sordarin, which inhibits diphthamide modified eEF2 of Saccharomyces cerevisiae, barely affected survival of wild type and msh3Δ S. pombe cells, while the dph3Δ mutant was sensitive. The msh3-ATG mutation, but not dph3Δ or the dph3-ATG mutation caused a defect in mating-type switching, indicating that the ura4 marker at the dph3 locus did not interfere with Msh3 function. We conclude that Dph3 is required for cellular resistance to the fungicide sordarin and to the cytotoxic drugs hydroxyurea and methyl methanesulfonate. This is likely mediated by efficient translation of proteins in response to DNA damage and replication stress.

  19. Steroids from the rhizome of Anemarrhena asphodeloides and their cytotoxic activities.

    PubMed

    Sun, Yu; Wu, Jie; Sun, Xue; Huang, Xiaoxiao; Li, Lingzhi; Liu, Qingbo; Song, ShaoJiang

    2016-07-01

    Cancer remains a major killer worldwide. To search for novel naturally occurring compounds that are cytotoxic to cancer cells to be used as lead structures for drug development, five new steroids (1-5) along with seven known ones (6-12) were isolated from the rhizome of Anemarrhena asphodeloides Bge. Their structures were established by detailed spectral studies, including 1D-NMR, 2D-NMR, HR-ESI-MS and by comparison with literature data. These compounds exhibited different levels of growth inhibition against A549, HepG2, Hep3B, Bcap37 and MCF7 cell lines in vitro. Compounds 9, 10 and 11 showed potent inhibitory against all the tested cell lines with IC50 values ranging from 0.35±0.15 to 25.53±0.31μM. The three compounds displayed stronger inhibitory activities against A549, HepG2 and Hep3B cell lines compared with the positive control 5-fluorouracil. The experimental data obtained permit us to identify the roles of the sugar moieties, hydroxyl group, double bond and F-ring with regard to their cytotoxic activities. Copyright © 2016 Elsevier Ltd. All rights reserved.

  20. Antagonism of cytotoxic chemotherapy in neuroblastoma cell lines by 13-cis-retinoic acid is mediated by the anti-apoptotic Bcl-2 family proteins

    PubMed Central

    Hadjidaniel, Michael Daniel; Reynolds, Charles Patrick

    2010-01-01

    13-cis-retinoic acid (13-cis-RA), is given at completion of cytotoxic therapy to control minimal residual disease in neuroblastoma. We investigated the effect of combining 13-cis-RA with cytotoxic agents employed in neuroblastoma therapy using a panel of 6 neuroblastoma cell lines. The effect of 13-cis-RA on the mitochondrial apoptotic pathway, was studied by flow cytometry, cytotoxicity by DIMSCAN, and protein expression by immuoblotting. Pre-treatment and direct combination of 13-cis-RA with etoposide, topotecan, cisplatin, melphalan, or doxorubicin markedly antagonized the cytotoxicity of those agents in 4 out of 6 tested neuroblastoma cell lines, increasing fractional cell survival by 1 to 3 logs. The inhibitory concentration of drugs (IC99) increased from clinically achievable levels to non-achievable levels: > 5-fold (cisplatin) to > 7-fold (etoposide). In SMS-KNCR neuroblastoma cells, 13-cis-RA upregulated expression of Bcl-2 and Bcl-xL RNA and protein, and this was associated with protection from etoposide-mediated apoptosis at the mitochondrial level. A small molecule inhibitor of the Bcl-2 family of proteins (ABT-737) restored mitochondrial membrane potential loss and apoptosis in response to cytotoxic agents in 13-cis-RA treated cells. Prior selection for resistance to RA did not diminish the response to cytotoxic treatment. Thus, combining 13-cis-RA with cytotoxic chemotherapy significantly reduced the cytotoxiciity for neuroblastoma in vitro, mediated at least in part via the anti-apoptotic Bcl-2 family of proteins. PMID:21159604

  1. 46 CFR 111.106-13 - Cargo handling devices or cargo pump rooms handling flammable or combustible cargoes.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... pierced by fixed lights, drive shafts, and pump-engine control rods, provided that the shafts and rods are... 46 Shipping 4 2014-10-01 2014-10-01 false Cargo handling devices or cargo pump rooms handling... OSVs § 111.106-13 Cargo handling devices or cargo pump rooms handling flammable or combustible cargoes...

  2. Multiple emulsions as effective platforms for controlled anti-cancer drug delivery.

    PubMed

    Dluska, Ewa; Markowska-Radomska, Agnieszka; Metera, Agata; Tudek, Barbara; Kosicki, Konrad

    2017-09-01

    Developing pH-responsive multiple emulsion platforms for effective glioblastoma multiforme therapy with reduced toxicity, a drug release study and modeling. Cancer cell line: U87 MG, multiple emulsions with pH-responsive biopolymer and encapsulated doxorubicin (DOX); preparation of multiple emulsions in a Couette-Taylor flow biocontactor, in vitro release study of DOX (fluorescence intensity analysis), in vitro cytotoxicity study (alamarBlue cell viability assay) and numerical simulation of DOX release rates. The multiple emulsions offered a high DOX encapsulation efficiency (97.4 ± 1%) and pH modulated release rates of a drug. Multiple emulsions with a low concentration of DOX (0.02 μM) exhibited broadly advanced cell (U87 MG) cytotoxicity than free DOX solution used at the same concentration. Emulsion platforms could be explored for potential delivery of chemotherapeutics in glioblastoma multiforme therapy.

  3. Surface modification of graphene oxide nanosheets by protamine sulfate/sodium alginate for anti-cancer drug delivery application

    NASA Astrophysics Data System (ADS)

    Xie, Meng; Zhang, Feng; Liu, Lijiao; Zhang, Yanan; Li, Yeping; Li, Huaming; Xie, Jimin

    2018-05-01

    In order to improve the efficiency of anticancer drug delivery, a graphene oxide (GO) based drug delivery system modificated by natural peptide protamine sulfate (PRM) and sodium alginate (SA) was established via electrostatic attraction at each step of adsorption based on layer-by-layer self-assembly. The nanocomposites were then loaded with anticancer drug doxorubicin hydrochloride (DOX) to estimate the feasibility as drug carriers. The nanocomposites loaded with DOX revealed a remarkable pH-sensitive drug release property. The modification with protamine sulfate and sodium alginate could not only impart the nanocomposites an improved dispersibility and stability under physiological pH, but also suppress the protein adhesion. Due to the high water dispersibility and the small particle size, GO-PRM/SA nanocomposites were able to be uptaken by MCF-7 cells. It was found that GO-PRM/SA nanocomposites exhibited no obvious cytotoxicity towards MCF-7 cells, while GO-PRM/SA-DOX exhibited better cytotoxicity than GO-DOX. Therefore, the GO-PRM/SA nanocomposites were feasible as drug delivery vehicles.

  4. Cytotoxicity associated with electrospun polyvinyl alcohol.

    PubMed

    Pathan, Saif G; Fitzgerald, Lisa M; Ali, Syed M; Damrauer, Scott M; Bide, Martin J; Nelson, David W; Ferran, Christiane; Phaneuf, Tina M; Phaneuf, Matthew D

    2015-11-01

    Polyvinyl alcohol (PVA) is a synthetic, water-soluble polymer, with applications in industries ranging from textiles to biomedical devices. Research on electrospinning of PVA has been targeted toward optimizing or finding novel applications in the biomedical field. However, the effects of electrospinning on PVA biocompatibility have not been thoroughly evaluated. In this study, the cytotoxicity of electrospun PVA (nPVA) which was not crosslinked after electrospinning was assessed. PVA polymers of several molecular weights were dissolved in distilled water and electrospun using the same parameters. Electrospun PVA materials with varying molecular weights were then dissolved in tissue culture medium and directly compared against solutions of nonelectrospun PVA polymer in human coronary artery smooth muscle cells and human coronary artery endothelial cells cultures. All nPVA solutions were cytotoxic at a threshold molar concentration that correlated with the molecular weight of the starting PVA polymer. In contrast, none of the nonelectrospun PVA solutions caused any cytotoxicity, regardless of their concentration in the cell culture. Evaluation of the nPVA material by differential scanning calorimetry confirmed that polymer degradation had occurred after electrospinning. To elucidate the identity of the nPVA component that caused cytotoxicity, nPVA materials were dissolved, fractionated using size exclusion columns, and the different fractions were added to HCASMC and human coronary artery endothelial cells cultures. These studies indicated that the cytotoxic component of the different nPVA solutions were present in the low-molecular-weight fraction. Additionally, the amount of PVA present in the 3-10 kg/mol fraction was approximately sixfold greater than that in the nonelectrospun samples. In conclusion, electrospinning of PVA resulted in small-molecular-weight fractions that were cytotoxic to cells. This result demonstrates that biocompatibility of electrospun

  5. Comparative study of in vitro and in vivo drug effects on cell-mediated cytotoxicity.

    PubMed Central

    Borel, J F

    1976-01-01

    Cell-mediated cytolysis (CMC) was assayed in a system using spleen cells from mice (C57BL/6) sensitized with allogeneic tumour cells (DBA/2 mastocytoma P-815). Anti-inflammatory drugs, immunosuppressives, inhibitors of cell division and other agents were investigated for their capacity to inhibit CMC in three different ways. First, inhibition of CMC after in vitro addition of drug was observed with corticosteroids, some immunosuppressives and inhibitors of cell division. Secondly, suppression of CMC after a single drug administration to sensitized mice shortly before being killed was found with corticosteroids, several immunosuppressives and irradiation. Thirdly, prevention of development of CMC by repeated drug treatment (immunosuppressive schedule) was achieved with most immunosuppressives and cytostatic drugs. Non-steroidal anti-inflammatory drugs were inactive in these tests. Correlation of effects between the three procedures was very poor and it is suggested that various mechanisms may be involved in the different assays. PMID:824198

  6. Hyaluronic acid in complexes with surfactants: The efficient tool for reduction of the cytotoxic effect of surfactants on human cell types.

    PubMed

    Sauerová, Pavla; Pilgrová, Tereza; Pekař, Miloslav; Hubálek Kalbáčová, Marie

    2017-10-01

    The cationic surfactants carbethoxypendecinium bromide (Septonex) and cetyltrimethylammonium bromide (CTAB) are known to be harmful for certain cell types (bacteria, fungi, mammal cells, etc.). Colloidal complexes of these surfactants with negatively-charged hyaluronic acid (HyA) were prepared for potential drug and/or universal delivery applications. The complexes were tested for their cytotoxic effect on different human cell types - osteoblasts, keratinocytes and fibroblasts. Both the CTAB-HyA and Septonex-HyA complexes were found to reduce the cytotoxicity induced by surfactants alone concerning all the tested concentrations. Moreover, we suggested the limits of HyA protection provided by the surfactant-HyA complexes, e.g. the importance of the amount of HyA applied. We also determined the specific sensitivity of different cell types to surfactant treatment. Keratinocytes were more sensitive to CTAB, while osteoblasts and fibroblasts were more sensitive to Septonex. Moreover, it was indirectly shown that CTAB combines lethal toxicity with cell metabolism induction, while Septonex predominantly causes lethal toxicity concerning fibroblasts. This comprehensive study of the effect of surfactant-HyA complexes on various human cell types revealed that HyA represents a useful CTAB or Septonex cytotoxic effect modulator at diverse levels. Potential applications for these complexes include drug and/or nucleic acid delivery systems, diagnostic dye carriers and cosmetics production. Copyright © 2017 Elsevier B.V. All rights reserved.

  7. Cytotoxicity evaluation of a new set of 2-aminobenzo[de]iso-quinoline-1,3-diones.

    PubMed

    Al-Salahi, Rashad; Alswaidan, Ibrahim; Marzouk, Mohamed

    2014-12-04

    A new series of 2-amino-benzo[de]isoquinoline-1,3-diones was synthesized and fully characterized in our previous paper. Here, their cytotoxic effects have been evaluated in vitro in relation to colon HCT-116, hepatocellular Hep-G2 and breast MCF-7 cancer cell lines, using a crystal violet viability assay. The IC50-values of the target compounds are reported in µg/mL, using doxorubicin as a reference drug. The findings revealed that compounds 14, 15, 16, 21 and 22 had significant cytotoxic effects against HCT-116, MCF-7 and Hep-G2 cell lines. Their IC50 values ranged between 1.3 and 8.3 μg/mL in relation to doxorubicin (IC50 ≈ 0.45-0.89 μg/mL). Therefore, these compounds could be used as templates for furthering the development and design of more potent antitumor agents through structural modification.

  8. A cytotoxic serine proteinase isolated from mouse submandibular gland.

    PubMed

    Shimamura, T; Nagumo, N; Ikigai, H; Murakami, K; Okubo, S; Toda, M; Ohnishi, R; Tomita, M

    1989-08-01

    We have isolated a novel cytotoxic factor from the submandibular glands of male BALB/c mice by Sephadex G-50 gel filtration chromatography and reverse-phase HPLC. The cytotoxic factor is a serine proteinase, which belongs to the mouse glandular kallikrein (mGK) family, with an Mr of approximately 27,000. The purified serine proteinase showed cytotoxic activity against mouse thymocytes in a dose-dependent manner, and a serine proteinase inhibitor, diisopropyl fluorophosphate, blocked its cytotoxic activity.

  9. Evaluation of the In Vitro Cytotoxicity of Crosslinked Biomaterials

    PubMed Central

    Wang, Martha O.; Etheridge, Julie M.; Thompson, Joshua A.; Vorwald, Charlotte E.; Dean, David; Fisher, John P.

    2013-01-01

    This study evaluated the in vitro cytotoxicity of poly(propylene fumarate) (PPF). PPF is an aliphatic biodegradable polymer that has been well characterized for use in bone tissue engineering scaffolds. Four different cell types, human mesenchymal stem cells (hMSC), fibroblasts (L929), pre-osteoblasts (MC3T3), and canine mesenchymal stem cells (cMSC), were used to evaluate the cytotoxicity of PPF. These cell types represent the tissues that PPF would interact with in vivo as a bone tissue scaffold. The sol fraction of the PPF films was measured and then utilized to estimate crosslinking density. Cytotoxicity was evaluated using XTT assay and fluorescence imaging. Results showed that PPF supported similar cell metabolic activities of hMSC, L929, MC3T3 and cMSC compared to the non-cytotoxic control, high density polyethylene (HDPE) and were statistically different than those cultured with the cytotoxic control, a polyurethane film containing 0.1% zinc diethyldithiocarbamate (ZCF). Results showed differing cellular responses to ZCF, the cytotoxic control. The L929 cells had the lowest cell metabolic activity levels after exposure to ZCF compared to the cell metabolic activity levels of the MC3T3, hMSC or cMSC cells. Qualitative verification of the results using fluorescence imaging demonstrated no change in cell morphology, vacuolization, or detachment when cultured with PPF compared to HDPE or blank media cultures. Overall the cytotoxicity response of the cells to PPF was demonstrated to be similar to the cytotoxic response of cells to known non-cytotoxic materials (HDPE). PMID:23627804

  10. Synergistic effects of ICI 182,780 on the cytotoxicity of cisplatin in cervical carcinoma cell lines.

    PubMed

    García-López, Patricia; Rodríguez-Dorantes, Mauricio; Pérez-Cárdenas, Enrique; Cerbón, Marco; Mohar-Betancourt, Alejandro

    2004-06-01

    We investigated the ability of the novel pure antiestrogen ICI 182,780 to modulate the cytotoxic effects of cisplatin in several cervical cancer cell lines. The effect of cisplatin alone and cisplatin combined with ICI 182,780 on cellular death was studied using an assay based on a tetrazolium dye (sodium 3'-[1-(phenylamino-carbonyl)-3,4-tetrazolium], XTT). Before and after treatment with ICI 182,780, expression of the estrogen and progesterone receptor genes were assessed by a reverse transcriptase polymerase chain reaction (RT-PCR). Cell-cycle modifications after combined treatment with cisplatin and ICI 182,780 were studied by flow cytometry. Analysis of the data by the isobologram method showed that the combination of ICI 182,780 and cisplatin produced a synergistic antiproliferative effect in cervical cancer cells. The effect of ICI 182,780 on the cytotoxicity of cisplatin could be mediated, at least partially, by inhibition of estrogen and progesterone gene expression and by arresting the cell cycle at the G(2)/M phase. Our results suggest that ICI 182,780 can improve the efficacy of cisplatin in cancer cells and that this antihormonal drug therapy may be a useful candidate for further evaluation in combination with antineoplastic drugs, particularly cisplatin, in the treatment of cancer.

  11. Enhancing Cell Nucleus Accumulation and DNA Cleavage Activity of Anti-Cancer Drug via Graphene Quantum Dots

    NASA Astrophysics Data System (ADS)

    Wang, Chong; Wu, Congyu; Zhou, Xuejiao; Han, Ting; Xin, Xiaozhen; Wu, Jiaying; Zhang, Jingyan; Guo, Shouwu

    2013-10-01

    Graphene quantum dots (GQDs) maintain the intrinsic layered structural motif of graphene but with smaller lateral size and abundant periphery carboxylic groups, and are more compatible with biological system, thus are promising nanomaterials for therapeutic applications. Here we show that GQDs have a superb ability in drug delivery and anti-cancer activity boost without any pre-modification due to their unique structural properties. They could efficiently deliver doxorubicin (DOX) to the nucleus through DOX/GQD conjugates, because the conjugates assume different cellular and nuclear internalization pathways comparing to free DOX. Also, the conjugates could enhance DNA cleavage activity of DOX markedly. This enhancement combining with efficient nuclear delivery improved cytotoxicity of DOX dramatically. Furthermore, the DOX/GQD conjugates could also increase the nuclear uptake and cytotoxicity of DOX to drug-resistant cancer cells indicating that the conjugates may be capable to increase chemotherapy efficacy of anti-cancer drugs that are suboptimal due to the drug resistance.

  12. Probing the biocompatibility of MoS2 nanosheets by cytotoxicity assay and electrical impedance spectroscopy

    NASA Astrophysics Data System (ADS)

    Shah, Pratikkumar; Narayanan, Tharangattu N.; Li, Chen-Zhong; Alwarappan, Subbiah

    2015-08-01

    Transition metal dichalgogenides such as MoS2 have recently emerged as hot two-dimensional (2D) materials due to their superior electronic and catalytic properties. Recently, we have reported the usefulness of MoS2 nanosheets toward the electrochemical detection of neurotransmitters and glucose (Narayanan et al 2014 Nanotechnology 25 335702). Furthermore, there are reports available in the literature that demonstrate the usefulness of MoS2 nanosheets for biosensing and energy storage applications (Zhu et al 2013 J. Am. Chem. Soc. 135 5998-6001 Pumera and Loo 2014 Trends Anal. Chem. 61 49-53 Lee et al 2014 Sci. Rep. 4 7352; Stephenson et al 2014 Energy Environ. Sci. 7 209-31). Understanding the cytotoxic effect of any material is very important prior to employing them for any in vivo biological applications such as implantable sensors, chips, or carriers for drug delivery and cell imaging purposes. Herein, we report the cytotoxicity of the MoS2 nanosheets based on the cytotoxic assay results and electrical impedance analysis using rat pheochromocytoma cells (PC12) and rat adrenal medulla endothelial cells (RAMEC). Our results indicated that the MoS2 nanosheets synthesized in our work are safe 2D nanosheets for futuristic biomedical applications.

  13. Investigation of T-2 Mycotoxin-Induced Cytotoxicity in vitro and Protective Effects of Flavonoid Compounds

    DTIC Science & Technology

    1986-01-01

    Quercetin , a flavonoid compound was able to decrease the effect of T-2 toxin when the drug was added within an hour of mixing the T-2 toxin with the...were examined microscopically using a Neubauer hemocytometer and viability of at least 200 cells was deter- mined. Quercetin or other flavonold... quercetin and additional OMSO had a cytotoxic effect on the thymocytes. RESULTS Figure 1 shows the results of 8 separate experiments performed at 2 week

  14. [Polymeric drug carriers activated by ultrasounds energy].

    PubMed

    Kik, Krzysztof; Lwow, Felicja; Szmigiero, Leszek

    2007-01-01

    In the last two decades an extensive research on the employment of ultrasounds in anticancer therapy has been noticed. So far ultrasounds have been widely used in medicine for diagnostic purposes (ultrasonography), but their great therapeutic potential and the development of polymer based antineoplastic drug carriers have persuaded many investigators to start research on the employment of ultrasounds in anticancer therapy. A new therapeutic concept based on the controlled drug's molecules release from their transporting polymer carriers has been proposed. Cavitation, a phenomenon characteristic for the action of ultrasounds, is used to destroy polymeric drug carriers and for drug release in target sites. The sonodynamic therapy (SDT) which utilizes ultrasonic waves for "acoustic drug activation" leading to the enhancement of cytotoxic activity of some drugs has also been developed. Furthermore, a long standing research on ultrasounds resulted in a new concept based on hyperthermia. This method of cancer treatment does not require any chemotherapeutic agent to be applied.

  15. Cytotoxic activity of Cuphea aequipetala.

    PubMed

    Avila, Elisa Vega; Aguilar, Rafaela Tapia; Estrada, Manuel Jiménez; Ortega, Ma Luisa Villarreal; Ramos, Rubén Román

    2004-01-01

    Cuphea aequipetala (Lytraceae) is a perennial plant that has been used in Mexican traditional medicine to treat different types of tumors since prehispanic times. In the present work the cytotoxic potential of different fractions from acetone-water extract from the whole plant was investigated using a sulforhodamine B assay. Fractions were subjected to a bioscreening assay using several cell lines: HEp-2 (human larynx carcinoma), HCT-15 (human colon cancer) and DU-145 (human prostate carcinoma). Colchicine was used as positive control. Data are presented as the dose that inhibited 50.0% control growth (ED50). The cytotoxic activity is selective since the ED50 is different for the three cell lines employed. The highest activity was seen against the DU-145 cell line. "E" and PB1 fractions had the highest cytotoxic activities with ED50 values of 0.418 and 2.40 microg/ml respectively, on the DU-145 cell line. The "E" fraction was a yellow powder; it was methanol soluble and contained at least four separate components when separated by thin-layer chromatography. PB1 was a solid with metallic appearance; it was water soluble and its two dimensional chromatography showed 9 spots. These fractions have cytotoxic actives because their ED50 is less than 20 microg/ml and they will be further characterized.

  16. Helicopter Handling Qualities

    NASA Technical Reports Server (NTRS)

    1982-01-01

    Helicopters are used by the military and civilian communities for a variety of tasks and must be capable of operating in poor weather conditions and at night. Accompanying extended helicopter operations is a significant increase in pilot workload and a need for better handling qualities. An overview of the status and problems in the development and specification of helicopter handling-qualities criteria is presented. Topics for future research efforts by government and industry are highlighted.

  17. Extemporaneous compounding of oral liquid dosage formulations and alternative drug delivery methods for anticancer drugs.

    PubMed

    Lam, Masha S H

    2011-02-01

    Oncology pharmacists face a constant challenge with patients who cannot swallow oral anticancer drugs, making extemporaneous oral liquid preparation a requirement. Improper extemporaneous preparation of these agents, especially with the traditional chemotherapy with a narrow therapeutic index, may increase the risk of over- or underdosing. In community pharmacies, multiple barriers exist that prevent these pharmacies from preparing extemporaneous oral anticancer drug formulations for a patient's use at home. In a home setting, patients or caregivers without proper counseling and education on how to safely handle chemotherapy are at increased risk for exposure to these drugs. Based on a review of the literature, compounding recipes are available for 46% of oral anticancer agents. A paucity of data exists on dose uniformity, bioequivalence, and stability of extemporaneous oral liquid formulations of anticancer drugs. Pharmacists must have an understanding of the basic scientific principles that are an essential foundation for the proper preparation of extemporaneous oral anticancer liquid formulations. The collaborative effort of a multidisciplinary team can also help identify different barriers in the community setting, especially in areas where community pharmacies may lack resources for the extemporaneous compounding of oral chemotherapy, and to find ways to coordinate better pharmaceutical care. There are great opportunities for oncology pharmacists, as well as community pharmacists, as a resource for educating and monitoring patients receiving oral chemotherapy to ensure dosing accuracy, safe administration, and proper disposal of hazardous drugs. Development of national guidelines to promote standards of practice in the community and/or home setting is urgently needed to help improve the safety of dispensing and handling oral chemotherapeutic agents, including extemporaneously compounded oral liquid formulations of these drugs.

  18. A non-cytotoxic N-dehydroabietylamine derivative with potent antimalarial activity.

    PubMed

    Sadashiva, Maralinganadoddi P; Gowda, Raghavendra; Wu, Xianzhu; Inamdar, Gajanan S; Kuzu, Omer F; Rangappa, Kanchugarakoppal S; Robertson, Gavin P; Gowda, D Channe

    2015-08-01

    Malaria caused by the Plasmodium parasites continues to be an enormous global health problem owing to wide spread drug resistance of parasites to many of the available antimalarial drugs. Therefore, development of new classes of antimalarial agents is essential to effectively treat malaria. In this study, the efficacy of naturally occurring diterpenoids, dehydroabietylamine and abietic acid, and their synthetic derivatives was assessed for antimalarial activity. Dehydroabietylamine and its N-trifluoroacetyl, N-tribromoacetyl, N-benzoyl, and N-benzyl derivatives showed excellent activity against P. falciparum parasites with IC50 values of 0.36 to 2.6 µM. Interestingly, N-dehydroabietylbenzamide showed potent antimalarial activity (IC50 0.36), and negligible cytotoxicity (IC50 >100 µM) to mammalian cells; thus, this compound can be an important antimalarial drug. In contrast, abietic acid was only marginally effective, exhibiting an IC50 value of ~82 µM. Several carboxylic group-derivatives of abietic acid were moderately active with IC50 values of ~8.2 to ~13.3 µM. These results suggest that a detailed understanding of the structure-activity relationship of abietane diterpenoids might provide strategies to exploit this class of compounds for malaria treatment. Copyright © 2015 Elsevier Inc. All rights reserved.

  19. A cationic amphiphilic peptide ABP-CM4 exhibits selective cytotoxicity against leukemia cells.

    PubMed

    Chen, Yu Qing; Min, Cui; Sang, Ming; Han, Yang Yang; Ma, Xiao; Xue, Xiao Qing; Zhang, Shuang Quan

    2010-08-01

    Some cationic antibacterial peptides exhibit a broad spectrum of cytotoxic activity against cancer cells, which could provide a new class of anticancer drugs. In the present study, the anticancer activity of ABP-CM4, an antibacterial peptide from Bombyx mori, against leukemic cell lines THP-1, K562 and U937 was evaluated, and the cytotoxicity compared with the effects on non-cancerous mammalian cells, including peripheral blood mononuclear cells (PBMCs), HEK-293 and erythrocytes. ABP-CM4 reduced the number of viable cells of the leukemic cell lines after exposure for 24h. The reduction was concentration dependent, and the IC50 values ranged from 14 to 18 microM. Conversely, ABP-CM4, even at 120 microM, exhibited no cytotoxicity toward HEK-293 or PBMCs, indicating that there was no significant effect on these two types of non-cancer cells. ABP-CM4 at a concentration of 200 microM had no hemolytic activity on mammalian erythrocytes. Together, these results suggested a selective cytotoxicity in leukemia cells. Flow cytometry demonstrated that the binding activity of ABP-CM4 to leukemia cells was much higher than that to HEK-293 or PBMCs, and there was almost no binding to erythrocytes. FITC-labeled ABP-CM4 molecules were examined under a confocal microscope and found to be concentrated at the surface of leukemia cells and changes of the cell membrane were determined by a cell permeability assay, which led us to the conclusion that ABP-CM4 could act at the cell membrane for its anticancer activity on leukemia cells. Collectively, our results indicated that ABP-CM4 has the potential for development as a novel antileukemic agent. Copyright 2010 Elsevier Inc. All rights reserved.

  20. A photosensitizer delivered by bispecific antibody redirected T lymphocytes enhances cytotoxicity against EpCAM-expressing carcinoma cells upon light irradiation.

    PubMed

    Blaudszun, André-René; Moldenhauer, Gerhard; Schneider, Marc; Philippi, Anja

    2015-01-10

    Recently conducted clinical trials have provided impressive evidence that chemotherapy resistant metastatic melanoma and several hematological malignancies can be cured using adoptive T cell therapy or T cell-recruiting bispecific antibodies. However, a significant fraction of patients did not benefit from these treatments. Here we have evaluated the feasibility of a novel combination therapy which aims to further enhance the killing potential of bispecific antibody-redirected T lymphocytes by using these cells as targeted delivery system for photosensitizing agents. For a first in vitro proof-of-concept study, ex vivo activated human donor T cells were loaded with a poly(styrene sulfonate) (PSS)-complex of the model photosensitizer 5,10,15,20-tetrakis(3-hydroxyphenyl)porphyrin (mTHPP). In the absence of light and when loading with the water-soluble PSS/mTHPP-complex occurred at a tolerable concentration, viability and cytotoxic function of loaded T lymphocytes were not impaired. When "drug-enhanced" T cells were co-cultivated with EpCAM-expressing human carcinoma cells, mTHPP was transferred to target cells. Notably, in the presence of a bispecific antibody, which cross-links effector and target cells thereby inducing the cytolytic activity of cytotoxic T lymphocytes, significantly more photosensitizer was transferred. Consequently, upon irradiation of co-cultures, redirected drug-loaded T cells were more effective in killing A549 lung and SKOV-3 ovarian carcinoma cells than retargeted unloaded T lymphocytes. Particularly, the additive approach using redirected unloaded T cells in combination with appropriate amounts of separately applied PSS/mTHPP was less efficient as well. Thus, by loading T lymphocytes with a stimulus-sensitive anti-cancer drug, we were able to enhance the cytotoxic capacity of carrier cells. Photosensitizer boosted T cells could open new perspectives for adoptive T cell therapy as well as targeted photodynamic therapy. Copyright © 2014

  1. PLGA-soya lecithin based micelles for enhanced delivery of methotrexate: Cellular uptake, cytotoxic and pharmacokinetic evidences.

    PubMed

    Singh, Anupama; Thotakura, Nagarani; Kumar, Rajendra; Singh, Bhupinder; Sharma, Gajanand; Katare, Om Prakash; Raza, Kaisar

    2017-02-01

    Biocompatible and biodegradable polymers like PLGA have revolutionized the drug delivery approaches. However, poor drug loading and substantially high lipophilicity, pave a path for further tailing of this promising agent. In this regard, PLGA was feathered with biocompatible phospholipid and polymeric micelles were developed for delivery of Methotrexate (MTX) to cancer cells. The nanocarriers (114.6nm±5.5nm) enhanced the cytotoxicity of MTX by 2.13 folds on MDA-MB-231 cells. Confocal laser scanning microscopy confirmed the increased intracellular delivery. The carrier decreased the protein binding potential and enhanced the bioavailable fraction of MTX. Pharmacokinetic studies vouched substantial enhancement in AUC and bioresidence time, promising an ideal carrier to effectively deliver the drug to the site of action. The developed nanocarriers offer potential to deliver the drug in the interiors of cancer cells in an effective manner for improved therapeutic action. Copyright © 2016 Elsevier B.V. All rights reserved.

  2. In vitro antiplasmodial and cytotoxic properties of some medicinal plants from western Burkina Faso.

    PubMed

    Sanon, Souleymane; Gansane, Adama; Ouattara, Lamoussa P; Traore, Abdoulaye; Ouedraogo, Issa N; Tiono, Alfred; Taramelli, Donatella; Basilico, Nicoletta; Sirima, Sodiomon B

    2013-01-01

    Resistance of malaria parasites to existing drugs complicates treatment, but an antimalarial vaccine that could protect against this disease is not yet available. It is therefore necessary to find new effective and affordable medicines. Medicinal plants could be a potential source of antimalarial agents. Some medicinal plants from Burkina Faso were evaluated for their antiplasmodial and cytotoxic properties in vitro . Crude dichloromethane, methanol, water-methanol, aqueous and alkaloids extracts were prepared for 12 parts of 10 plants. Chloroquine-resistant malaria strain K1 was used for the in vitro sensibility assay. The Plasmodium lactacte dehydrogenase technique was used to determine the 50% inhibitory concentration of parasites activity (IC 50 ). The cytotoxic effects were determined with HepG2 cells, using the tetrazolium-based colorimetric technique, and the selectivity index (SI) was calculated. Sixty crude extracts were prepared. Seven extracts from Terminalia avicenoides showed IC 50 < 5 µg/mL. The IC 50 of dichloromethane, methanol, aqueous and alkaloids extracts ranged between 1.6 µg/mL and 4.5 µg/mL. Three crude extracts from Combretum collinum and three from Ficus capraefolia had an IC 50 ranging between 0.2 µg/mL and 2.5 µg/mL. Crude extracts from these three plants had no cytotoxic effect, with SI > 1. The other plants have mostly moderate or no antimalarial effects. Some extracts from Cordia myxa , Ficus capraefolia and Opilia celtidifolia showed cytotoxicity, with an SI ranging between 0.4 and 0.9. Our study showed a good antiplasmodial in vitro activity of Terminalia avicenoides, Combretum collinum and Ficus capraefolia . These three plants may contain antiplasmodial molecules that could be isolated by bio-guided phytochemical studies.

  3. Cytotoxicity of natural ginseng glycosides and semisynthetic analogues.

    PubMed

    Atopkina, L N; Malinovskaya, G V; Elyakov, G B; Uvarova, N I; Woerdenbag, H J; Koulman, A; Pras, N; Potier, P

    1999-02-01

    The cytotoxicity of natural glycosides from Ginseng, semisynthetic analogues and related triterpenes of the dammarane series, isolated from the leaves of the Far-East species of the genus Betula was studied in order to elucidate structure-activity relationships. Some of the compounds studied were active against the human lung carcinoma GLC4 and adenocarcinoma COLO 320 cell lines. The natural glycosides displayed the lowest cytotoxicity. The triterpenes of the dammarane series used as starting aglycones for semisynthetic derivatives were moderately cytotoxic. The dammarane triterpenes possessing keto groups and their semisynthetic glucosides were the most active compounds tested. Cytotoxic effects of the dammarane glucosides were inversely proportional both to the number of sugars attached to the aglycones and to the number of hydroxy groups of the aglycones. The type of side chain and the configuration of the hydroxy group at C-3 in aglycones did not have a significant influence on the cytotoxicity.

  4. Evaluation of patritumab with or without erlotinib in combination with standard cytotoxic agents against pediatric sarcoma xenograft models.

    PubMed

    Bandyopadhyay, Abhik; Favours, Edward; Phelps, Doris A; Pozo, Vanessa Del; Ghilu, Samson; Kurmashev, Dias; Michalek, Joel; Trevino, Aron; Guttridge, Denis; London, Cheryl; Hirotani, Kenji; Zhang, Ling; Kurmasheva, Raushan T; Houghton, Peter J

    2018-02-01

    Integrating molecularly targeted agents with cytotoxic drugs used in curative treatment of pediatric cancers is complex. An evaluation was undertaken with the ERBB3/Her3-specific antibody patritumab (P) either alone or with the ERBB1/epidermal growth factor receptor inhibitor erlotinib (E) in combination with standard cytotoxic agents, cisplatin, vincristine, and cyclophosphamide, in pediatric sarcoma xenograft models that express receptors and ligands targeted by these agents. Tumor models were selected based upon ERBB3 expression and phosphorylation, and ligand (heregulin) expression. Patritumab, E, or these agents combined was evaluated without or with concomitant cytotoxic agents using procedures developed by the Pediatric Preclinical Testing Program. Full doses of cytotoxic agents were tolerated when combined with P, whereas dose reductions of 25% (vincristine, cisplatin) or 50% (cyclophosphamide) were required when combined with P + E. Patritumab, E alone, or in combination did not significantly inhibit growth of any tumor model, except for Rh18 xenografts (E alone). Patritumab had no single-agent activity and marginally enhanced the activity of vincristine and cisplatin only in Ewing sarcoma ES-4. P + E did not increase the antitumor activity of vincristine or cisplatin, whereas dose-reduced cyclophosphamide was significantly less active than cyclophosphamide administered at its maximum tolerated dose when combined with P + E. P had no single-agent activity, although it marginally potentiated the activity of vincristine and cisplatin in one of three models studied. However, the addition of E necessitated dose reduction of each cytotoxic agent, abrogating the enhancement observed with P alone. © 2017 Wiley Periodicals, Inc.

  5. Ergonomics and patient handling.

    PubMed

    McCoskey, Kelsey L

    2007-11-01

    This study aimed to describe patient-handling demands in inpatient units during a 24-hour period at a military health care facility. A 1-day total population survey described the diverse nature and impact of patient-handling tasks relative to a variety of nursing care units, patient characteristics, and transfer equipment. Productivity baselines were established based on patient dependency, physical exertion, type of transfer, and time spent performing the transfer. Descriptions of the physiological effect of transfers on staff based on patient, transfer, and staff characteristics were developed. Nursing staff response to surveys demonstrated how patient-handling demands are impacted by the staff's physical exertion and level of patient dependency. The findings of this study describe the types of transfers occurring in these inpatient units and the physical exertion and time requirements for these transfers. This description may guide selection of the most appropriate and cost-effective patient-handling equipment required for specific units and patients.

  6. Cytotoxicity and cellular uptake of doxorubicin and its formamidine derivatives in HL60 sensitive and HL60/MX2 resistant cells.

    PubMed

    Kik, Krzysztof; Wasowska-Lukawska, Malgorzata; Oszczapowicz, Irena; Szmigiero, Leszek

    2009-04-01

    In this work a comparison was made of the cytotoxicity and cellular uptake of doxorubicin (DOX) and two of its derivatives containing a formamidino group (-N=CH-N<) at the 3' position with morpholine (DOXM) or hexamethyleneimine (DOXH) ring. All tests were performed in doxorubicin-sensitive HL60 and -resistant HL60/MX2 cells which are known for the presence of altered topoisomerase II. Cytotoxic activity of DOX toward HL60/MX2 cells was about 195 times lower when compared with the sensitive HL60 cell line. DOXM and DOXH were approximately 20 times more active in resistant cells than DOX. It was found that the uptake of DOX was lower in resistant cells by about 16%, while that of DOXM and DOXH was lower by about 36% and 19%, respectively. Thus the changes in the cellular uptake of anthracyclines are not associated with the fact that cytotoxicity of DOXM and DOXH exceed the cytotoxicity of DOX. Experiments in cell-free system containing human topoisomerase II showed that topoisomerase II is not inhibited by DOXM and DOXH. Formamidinoanthracyclines may be more useful than parent drugs in therapy against tumor cells with altered topoisomerase II activity.

  7. 3-D DNA methylation phenotypes correlate with cytotoxicity levels in prostate and liver cancer cell models

    PubMed Central

    2013-01-01

    Background The spatial organization of the genome is being evaluated as a novel indicator of toxicity in conjunction with drug-induced global DNA hypomethylation and concurrent chromatin reorganization. 3D quantitative DNA methylation imaging (3D-qDMI) was applied as a cell-by-cell high-throughput approach to investigate this matter by assessing genome topology through represented immunofluorescent nuclear distribution patterns of 5-methylcytosine (MeC) and global DNA (4,6-diamidino-2-phenylindole = DAPI) in labeled nuclei. Methods Differential progression of global DNA hypomethylation was studied by comparatively dosing zebularine (ZEB) and 5-azacytidine (AZA). Treated and untreated (control) human prostate and liver cancer cells were subjected to confocal scanning microscopy and dedicated 3D image analysis for the following features: differential nuclear MeC/DAPI load and codistribution patterns, cell similarity based on these patterns, and corresponding differences in the topology of low-intensity MeC (LIM) and low in intensity DAPI (LID) sites. Results Both agents generated a high fraction of similar MeC phenotypes across applied concentrations. ZEB exerted similar effects at 10–100-fold higher drug concentrations than its AZA analogue: concentration-dependent progression of global cytosine demethylation, validated by measuring differential MeC levels in repeat sequences using MethyLight, and the concurrent increase in nuclear LIM densities correlated with cellular growth reduction and cytotoxicity. Conclusions 3D-qDMI demonstrated the capability of quantitating dose-dependent drug-induced spatial progression of DNA demethylation in cell nuclei, independent from interphase cell-cycle stages and in conjunction with cytotoxicity. The results support the notion of DNA methylation topology being considered as a potential indicator of causal impacts on chromatin distribution with a conceivable application in epigenetic drug toxicology. PMID:23394161

  8. Assembling of stimuli-responsive tumor targeting polypyrrole nanotubes drug carrier system for controlled release.

    PubMed

    Chen, Jian; Li, Xiufang; Li, Jiawen; Li, Jianbing; Huang, Ling; Ren, Tao; Yang, Xiao; Zhong, Shian

    2018-08-01

    A stimuli-responsive polypyrrole (PPy) nanotubes drug carrier system has been designed to deliver anticancer drugs to tumor cells in a targeted and controlled manner. The PPy nanotubes drug carrier was fabricated by a template method. The nanotubes surface was functionalized with cleavable acylhydrazone and disulfide bonds by attaching thiolated β-cyclodextrin (β-CD). The solubilizing poly(ethylene glycol) polymer (PEG), attached with an adamantane (Ad) entity at one end and a folate (FA) entity at the other end, was introduced onto the nanotubes surface via β-cyclodextrin-adamantane interaction. The synthesized FA-PEG-Ad-β-CD-PPy showed excellent biocompatibility and low cytotoxicity for two cell lines. Doxorubicin (Dox) loaded FA-PEG-Ad-β-CD-PPy nanotubes showed a triggered in vitro drug release behavior in the presence of acidic media and reducing agents. The folate-mediated endocytosis and intracellular release of Dox-loaded nanoparticles were confirmed by fluorescence microscopy and cell viability evaluations. In the in vitro study, Dox loaded within the nanoparticles showed enhanced selectivity for cancerous cells and reduced cytotoxicity for normal cells compared to free Dox. The PPy based targeted drug vehicle shows excellent promise for drug delivery. Copyright © 2018 Elsevier B.V. All rights reserved.

  9. Synthesis and Cytotoxicities of Royleanone Derivatives.

    PubMed

    Li, Cheng-Ji; Xia, Fan; Wu, Rong; Tan, Hong-Sheng; Xu, Hong-Xi; Xu, Gang; Qin, Hong-Bo

    2018-06-16

    Carnosic acid was used as starting material to synthesize royleanone derivatives featured C11-C14 para quinone. The importance of C-20 group of royleanone derivatives was verified by the cytotoxicity assay of royleanonic acid, miltionone I and deoxyneocrptotanshinone. Following our synthetic route, 15 amide derivatives were synthesized and 8 compounds exhibited moderate cytotoxic activities against three human cancer lines in vitro.

  10. Pharmaceutical differences between block copolymer self-assembled and cross-linked nanoassemblies as carriers for tunable drug release.

    PubMed

    Lee, Hyun Jin; Bae, Younsoo

    2013-02-01

    To identify the effects of cross-linkers and drug-binding linkers on physicochemical and biological properties of polymer nanoassembly drug carriers. Four types of polymer nanoassemblies were synthesized from poly(ethylene glycol)-poly(aspartate) [PEG-p(Asp)] block copolymers: self-assembled nanoassemblies (SNAs) and cross-linked nanoassemblies (CNAs) to each of which an anticancer drug doxorubicin (DOX) was loaded by either physical entrapment or chemical conjugation (through acid-sensitive hydrazone linkers). Drug loading in nanoassemblies was 27 ~ 56% by weight. The particle size of SNA changed after drug and drug-binding linker entrapment (20 ~ 100 nm), whereas CNAs remained 30 ~ 40 nm. Drug release rates were fine-tunable by using amide cross-linkers and hydrazone drug-binding linkers in combination. In vitro cytotoxicity assays using a human lung cancer A549 cell line revealed that DOX-loaded nanoassemblies were equally potent as free DOX with a wide range of drug release half-life (t(1/2) = 3.24 ~ 18.48 h, at pH 5.0), but 5 times less effective when t(1/2) = 44.52 h. Nanoassemblies that incorporate cross-linkers and drug-binding linkers in combination have pharmaceutical advantages such as uniform particle size, physicochemical stability, fine-tunable drug release rates, and maximum cytotoxicity of entrapped drug payloads.

  11. The impact of different strategies to handle missing data on both precision and bias in a drug safety study: a multidatabase multinational population-based cohort study

    PubMed Central

    Martín-Merino, Elisa; Calderón-Larrañaga, Amaia; Hawley, Samuel; Poblador-Plou, Beatriz; Llorente-García, Ana; Petersen, Irene; Prieto-Alhambra, Daniel

    2018-01-01

    Background Missing data are often an issue in electronic medical records (EMRs) research. However, there are many ways that people deal with missing data in drug safety studies. Aim To compare the risk estimates resulting from different strategies for the handling of missing data in the study of venous thromboembolism (VTE) risk associated with antiosteoporotic medications (AOM). Methods New users of AOM (alendronic acid, other bisphosphonates, strontium ranelate, selective estrogen receptor modulators, teriparatide, or denosumab) aged ≥50 years during 1998–2014 were identified in two Spanish (the Base de datos para la Investigación Farmacoepidemiológica en Atención Primaria [BIFAP] and EpiChron cohort) and one UK (Clinical Practice Research Datalink [CPRD]) EMR. Hazard ratios (HRs) according to AOM (with alendronic acid as reference) were calculated adjusting for VTE risk factors, body mass index (that was missing in 61% of patients included in the three databases), and smoking (that was missing in 23% of patients) in the year of AOM therapy initiation. HRs and standard errors obtained using cross-sectional multiple imputation (MI) (reference method) were compared to complete case (CC) analysis – using only patients with complete data – and longitudinal MI – adding to the cross-sectional MI model the body mass index/smoking values as recorded in the year before and after therapy initiation. Results Overall, 422/95,057 (0.4%), 19/12,688 (0.1%), and 2,051/161,202 (1.3%) VTE cases/participants were seen in BIFAP, EpiChron, and CPRD, respectively. HRs moved from 100.00% underestimation to 40.31% overestimation in CC compared with cross-sectional MI, while longitudinal MI methods provided similar risk estimates compared with cross-sectional MI. Precision for HR improved in cross-sectional MI versus CC by up to 160.28%, while longitudinal MI improved precision (compared with cross-sectional) only minimally (up to 0.80%). Conclusion CC may substantially

  12. Interleukin-2 activation of cytotoxic cells in postmastectomy seroma.

    PubMed

    Gercel-Taylor, C; Hoffman, J P; Taylor, D D; Owens, K J; Eisenberg, B L

    1996-02-15

    Lymphocytes were isolated from breast seroma fluids and used to study the mechanism of activation of cytotoxic lymphocytes and possible role of immunological potentiation following surgery in breast cancer patients. Single or serial samples were obtained from patients who had undergone mastectomy or lumpectomy with axillary node dissection. Lymphocytes were activated with rIL-2 (interleukin-2) and their cytotoxic activity was studied against Daudi and K562 cells and against a breast tumor line (SKBr-3). All of the patients (21/21) responded to IL-2 stimulation by significant activation of cytotoxic activity. The unstimulated cytotoxic activity of these cells against NK targets was low with less than 10% specific release in cytotoxicity assays. In simultaneous experiments, autologous seroma fluid was included during activation of lymphocytes to study possible regulatory molecules that may be present. In 17/21 patients, the presence of their seroma fluid, during the activation period, enhanced or did not effect the cytotoxic potential of their lymphocytes; inhibition was observed when seroma fluids from 4/21 patients were included. Analysis of the cytotoxic population derived from combined IL-2 and seroma treatments indicates the presence of cells with increased expression of CD56, and CD2, as well as in some cases CD16 expression. Cytotoxic lymphocytes derived from IL-2 and seroma treatments appeared to be more effective killers. Modulation of CD2 expression with seroma alone appeared to result in the generation of this highly cytotoxic population. This study demonstrates the role of CD2 expression in the effectiveness of LAK cell killing and also potential benefit of an immunotherapeutic approach to the postoperative treatment of carcinoma of the breast.

  13. Human Milk Handling and Storage Practices Among Peer Milk-Sharing Mothers.

    PubMed

    Reyes-Foster, Beatriz M; Carter, Shannon K; Hinojosa, Melanie Sberna

    2017-02-01

    Peer milk sharing, the noncommercial sharing of human milk from one parent or caretaker directly to another for the purposes of feeding a child, appears to be an increasing infant-feeding practice. Although the U.S. Food and Drug Administration has issued a warning against the practice, little is known about how people who share human milk handle and store milk and whether these practices are consistent with clinical safety protocols. Research aim: This study aimed to learn about the milk-handling practices of expressed human milk by milk-sharing donors and recipient caretakers. In this article, we explore the degree to which donors and recipients adhere to the Academy of Breastfeeding Medicine clinical recommendations for safe handling and storage. Online surveys were collected from 321 parents engaged in peer milk sharing. Univariate descriptive statistics were used to describe the safe handling and storage procedures for milk donors and recipients. A two-sample t-test was used to compare safety items common to each group. Multivariate ordinary least squares regression analysis was used to examine sociodemographic correlates of milk safety practices within the sample group. Findings indicate that respondents engaged in peer milk sharing report predominantly positive safety practices. Multivariate analysis did not reveal any relationship between safety practices and sociodemographic characteristics. The number of safe practices did not differ between donors and recipients. Parents and caretakers who participate in peer human milk sharing report engaging in practices that should reduce risk of bacterial contamination of expressed peer shared milk. More research on this particular population is recommended.

  14. Discovery of peptide drug carrier candidates for targeted multi-drug delivery into prostate cancer cells.

    PubMed

    Bashari, O; Redko, B; Cohen, A; Luboshits, G; Gellerman, G; Firer, M A

    2017-11-01

    Metastatic castration-resistant prostate cancer (mCRPC) remains essentially incurable. Targeted Drug Delivery (TDD) systems may overcome the limitations of current mCRPC therapies. We describe the use of strict criteria to isolate novel prostate cancer cell targeting peptides that specifically deliver drugs into target cells. Phage from a libraries displaying 7mer peptides were exposed to PC-3 cells and only internalized phage were recovered. The ability of these phage to internalize into other prostate cancer cells (LNCaP, DU-145) was validated. The displayed peptides of selected phage clones were synthesized and their specificity for target cells was validated in vitro and in vivo. One peptide (P12) which specifically targeted PC-3 tumors in vivo was incorporated into mono-drug (Chlorambucil, Combretastatin or Camptothecin) and dual-drug (Chlorambucil/Combretastatin or Chlorambucil/Camptothecin) PDCs and the cytotoxic efficacy of these conjugates for target cells was tested. Conjugation of P12 into dual-drug PDCs allowed discovery of new drug combinations with synergistic effects. The use of strict selection criteria can lead to discovery of novel peptides for use as drug carriers for TDD. PDCs represent an effective alternative to current modes of free drug chemotherapy for prostate cancer. Copyright © 2017. Published by Elsevier B.V.

  15. Identification of drug-resistant subpopulations in canine hemangiosarcoma.

    PubMed

    Khammanivong, A; Gorden, B H; Frantz, A M; Graef, A J; Dickerson, E B

    2016-09-01

    Canine hemangiosarcoma is a rapidly progressive disease that is poorly responsive to conventional chemotherapy. Despite numerous attempts to advance treatment options and improve outcomes, drug resistance remains a hurdle to successful therapy. To address this problem, we used recently characterized progenitor cell populations derived from canine hemangiosarcoma cell lines and grown as non-adherent spheres to identify potential drug resistance mechanisms as well as drug-resistant cell populations. Cells from sphere-forming cultures displayed enhanced resistance to chemotherapy drugs, expansion of dye-excluding side populations and altered ATP-binding cassette (ABC) transporter expression. Invasion studies demonstrated variability between cell lines as well as between sphere and monolayer cell populations. Collectively, our results suggest that sphere cell populations contain distinct subpopulations of drug-resistant cells that utilize multiple mechanisms to evade cytotoxic drugs. Our approach represents a new tool for the study of drug resistance in hemangiosarcoma, which could alter approaches for treating this disease. © 2014 John Wiley & Sons Ltd.

  16. Identification of drug-resistant subpopulations in canine hemangiosarcoma

    PubMed Central

    Khammanivong, A.; Gorden, B. H.; Frantz, A. M.; Graef, A. J.; Dickerson, E. B.

    2017-01-01

    Canine hemangiosarcoma is a rapidly progressive disease that is poorly responsive to conventional chemotherapy. Despite numerous attempts to advance treatment options and improve outcomes, drug resistance remains a hurdle to successful therapy. To address this problem, we used recently characterized progenitor cell populations derived from canine hemangiosarcoma cell lines and grown as non-adherent spheres to identify potential drug resistance mechanisms as well as drug-resistant cell populations. Cells from sphere-forming cultures displayed enhanced resistance to chemotherapy drugs, expansion of dye-excluding side populations and altered ATP-binding cassette (ABC) transporter expression. Invasion studies demonstrated variability between cell lines as well as between sphere and monolayer cell populations. Collectively, our results suggest that sphere cell populations contain distinct subpopulations of drug-resistant cells that utilize multiple mechanisms to evade cytotoxic drugs. Our approach represents a new tool for the study of drug resistance in hemangiosarcoma, which could alter approaches for treating this disease. PMID:25112808

  17. Evaluating beneficial drug effects in a non‐interventional setting: a review of effectiveness studies based on Swedish Prescribed Drug Register data

    PubMed Central

    Hoffmann, Mikael

    2017-01-01

    Aims To describe and assess current effectiveness studies published up to 2014 using Swedish Prescribed Drug Register (SPDR) data. Methods Study characteristics were extracted. Each study was assessed concerning the clinical relevance of the research question, the risk of bias according to a structured checklist, and as to whether its findings contributed to new knowledge. The biases encountered and ways of handling these were retrieved. Results A total of 24 effectiveness studies were included in the review, the majority on cardiovascular or psychiatric disease (n = 17; 71%). The articles linked data from four (interquartile range: three to four) registers, and were published in 21 different journals with an impact factor ranging from 1.58 to 51.66. All articles had a clinically relevant research question. According to the systematic quality assessments, the overall risk of bias was low in one (4%), moderate in eight (33%) and high in 15 (62%) studies. Overall, two (8%) studies were assessed as contributing to new knowledge. Frequently occurring problems were selection bias making the comparison groups incomparable, treatment bias with suboptimal handling of drug exposure and an intention‐to‐treat approach, and assessment bias including immortal time bias. Good examples of how to handle bias problems included propensity score matching and sensitivity analyses. Conclusion Although this review illustrates that effectiveness studies based on dispensed drug register data can contribute to new evidence of intended effects of drug treatment in clinical practice, the expectations of such data to provide valuable information need to be tempered due to methodological issues. PMID:27928842

  18. Drug Self-Delivery Systems Based on Hyperbranched Polyprodrugs towards Tumor Therapy.

    PubMed

    Duan, Xiao; Chen, Jianxin; Wu, Yalan; Wu, Si; Shao, Dongyan; Kong, Jie

    2018-04-16

    Amphiphilic hyperbranched polyprodrugs (DOX-S-S-PEG) with drug repeat units in hydrophobic core linked by disulfide bonds were developed as drug self-delivery systems for cancer therapy. The hydroxyl groups and the amine group in doxorubicin (DOX) were linked by 3,3'-dithiodipropanoic acid as hydrophobic hyperbranched cores, then amino-terminated polyethylene glycol monomethyl ether (mPEG-NH 2 ) as hydrophilic shell was linked to hydrophobic cores to form amphiphilic and glutathione (GSH)-responsive micelle of hyperbranched polyprodrugs. The amphiphilic micelles can be disrupted under GSH (1 mg mL -1 ) circumstance. Cell viability of A549 cells and 293T cells was evaluated by CCK-8 and Muse Annexin V & Dead Cell Kit. The disrupted polyprodrugs maintained drug activity for killing tumor cells. Meanwhile, the undisrupted polyprodrugs possessed low cytotoxicity to normal cells. The cell uptake experiments showed that the micelles of DOX-S-S-PEG were taken up by A549 cells and distributed to cell nuclei. Thus, the drug self-delivery systems with drug repeat units in hydrophobic cores linked by disulfide bonds showed significant special advantages: 1) facile one-pot synthesis; 2) completely without toxic or non-degradable polymers; 3) DOX itself functions as fluorescent labeled molecule and self-delivery carrier; 4) drug with inactive form in hyperbranched cores and low cytotoxicity to normal cells. These advantages make them excellent drug self-delivery systems for potential high efficient cancer therapy. © 2018 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  19. 7 CFR 1210.307 - Handle.

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... AND ORDERS; MISCELLANEOUS COMMODITIES), DEPARTMENT OF AGRICULTURE WATERMELON RESEARCH AND PROMOTION PLAN Watermelon Research and Promotion Plan Definitions § 1210.307 Handle. Handle means to grade, pack...

  20. 7 CFR 1210.307 - Handle.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... AND ORDERS; MISCELLANEOUS COMMODITIES), DEPARTMENT OF AGRICULTURE WATERMELON RESEARCH AND PROMOTION PLAN Watermelon Research and Promotion Plan Definitions § 1210.307 Handle. Handle means to grade, pack...