Sample records for hands-on inquiry-based science

  1. The effect of inquiry-based, hands-on labs on achievement in middle school science

    NASA Astrophysics Data System (ADS)

    Miller, Donna Kaye Green

    The purpose of this quasi-experimental study was to measure the difference in science achievement between students who had been taught with an inquiry-based, hands-on pedagogical approach and those who had not. Improving student academic achievement and standardized test scores is the major objective of teachers, parents, school administrators, government entities, and students themselves. One major barrier to this academic success in Georgia, and the entire United States, has been the paucity of success in middle level science classes. Many studies have been conducted to determine the learning approaches that will best enable students to not only acquire a deeper understanding of science concepts, but to equip them to apply that new knowledge in their daily activities. Inquiry-based, hands-on learning involves students participating in activities that reflect methods of scientific investigation. The effective utilization of the inquiry-based learning approach demands inclusion of learners in a self-directed learning environment, the ability to think critically, and an understanding of how to reflect and reason scientifically. The treatment group using an inquiry-based, hands-on program did score slightly higher on the CRCT. However, the results revealed that there was not a significant difference in student achievement. This study showed that the traditionally instructed control group had slightly higher interest in science than the inquiry-based treatment group. The findings of this research study indicated that the NCLB mandates might need to be altered if there are no significant academic gains that result from the use of inquiry-based strategies.

  2. A 2200-Year Old Inquiry-Based, Hands-On Experiment in Today's Science Classrooms

    ERIC Educational Resources Information Center

    Sotiriou, S.; Bogner, F. X.

    2015-01-01

    The ancient Eratosthenes experiment concerning the earth's circumference offers the opportunity of an inquiry-based revival in today's science classrooms: A multinational European science education initiative (acronym: OSR) introduced this experiment as a hands-on basis to extract the required variables and to exchange results with classroom peers…

  3. Action Research Using Entomological Research to Promote Hands-On Science Inquiry in a High-Poverty, Midwest Urban High School

    NASA Astrophysics Data System (ADS)

    Stockmann, Dustin

    The purpose of this mixed-methods action research study was to examine to what extent entomological research can promote students' hands-on learning in a high-poverty, urban, secondary setting. In reviewing the literature, the researcher was not able to find a specific study that investigated how entomological research could promote the hands-on learning of students. The researcher did find evidence that research on learning in a secondary setting was important to student growth. It should also be noted that support was established for the implementation of hands-on science inquiry in the classroom setting. The study's purpose was to aid educators in their instruction by combining research-based strategies and hands-on science inquiry. The surveys asked 30 students to rate their understanding of three basic ideas. These core ideas were entomological research, hands-on science inquiry, and urban studies. These core ideas provided the foundation for the study. The questionnaires were based on follow-up ideas from the surveys. Two interview sessions were used to facilitate this one-on-one focus. Because the study included only 30 student participants, its findings may not be totally replicable. Further study investigating the links between entomological research and hands-on science learning in an urban environment is needed.

  4. Adapting a successful inquiry-based immersion program to create an Authentic, Hands- on, Field based Curriculum in Environmental Science at Barnard College

    NASA Astrophysics Data System (ADS)

    Kenna, T. C.; Pfirman, S.; Mailloux, B. J.; Martin, S.; Kelsey, R.; Bower, P.

    2008-12-01

    Adapting a successful inquiry-based immersion program to create an Authentic, Hands-on, Field based Curriculum in Environmental Science at Barnard College T. C. Kenna, S. Pfirman, B. J. Mailloux, M. Stute, R. Kelsey, and P. Bower By adapting a successful inquiry-based immersion program (SEA semester) to the typical college format of classes, we are improving the technical and quantitative skills of undergraduate women and minorities in environmental science and improving their critical thinking and problem-solving by exposing our students to open-ended real-world environmental issues. Our approach uses the Hudson River Estuary as a natural laboratory. In a series of hands-on inquiry-based activities, students use advanced equipment to collect data and samples. Each class session introduces new analytical and data analysis techniques. All classes have the connecting theme of the river. Working with real data is open-ended. Our major findings as indicated by surveys as well as journaling throughout the semester are that the field- based experience significantly contributed to student learning and engagement. Journaling responses indicated that nearly all students discussed the importance and excitement of an authentic research experience. Some students were frustrated with data irregularities, uncertainty in methods and data, and the general challenge of a curriculum with inherent ambiguity. The majority were satisfied with the aims of the course to provide an integrative experience. All students demonstrated transfer of learned skills. This project has had a significant impact on our undergraduate female students: several students have pursued senior thesis projects stemming from grant activities, stating that the field activities were the highlight of their semester. Some students love the experience and want more. Others decide that they want to pursue a different career. All learn how science is conducted and have a better foundation to understand concepts such

  5. Fifth graders' science inquiry abilities: A comparative study of students in hands-on and textbook curricula

    NASA Astrophysics Data System (ADS)

    Pine, Jerome; Aschbacher, Pamela; Roth, Ellen; Jones, Melanie; McPhee, Cameron; Martin, Catherine; Phelps, Scott; Kyle, Tara; Foley, Brian

    2006-05-01

    A large number of American elementary school students are now studying science using the hands-on inquiry curricula developed in the 1990s: Insights; Full Option Science System (FOSS); and Science and Technology for Children (STC). A goal of these programs, echoed in the National Science Education Standards, is that children should gain abilities to do scientific inquiry and understanding about scientific inquiry. We have studied the degree to which students can do inquiries by using four hands-on performance assessments, which required one or three class periods. To be fair, the assessments avoided content that is studied in depth in the hands-on programs. For a sample of about 1000 fifth grade students, we compared the performance of students in hands-on curricula with an equal number of students with textbook curricula. The students were from 41 classrooms in nine school districts. The results show little or no curricular effect. There was a strong dependence on students' cognitive ability, as measured with a standard multiple-choice instrument. There was no significant difference between boys and girls. Also, there was no difference on a multiple-choice test, which used items released from the Trends in International Mathematics and Science Study (TIMSS). It is not completely clear whether the lack of difference on the performance assessments was a consequence of the assessments, the curricula, and/or the teaching.

  6. The relationship between inquiry-based science instruction and student achievement

    NASA Astrophysics Data System (ADS)

    Suarez, Michael Louis

    Teaching science through inquiry has become a focus of recent educational reform in Mississippi and other states. Based on the Constructivist learning theory, inquiry instruction can take many forms, but generally follows the scientific method by requiring students to learn concepts through experimentation and real-world, hands-on experiences. This dissertation examines the relationship between the amounts of time spent using inquiry-based science instruction and student achievement as measured by the Mississippi State Science Assessment. The study also identifies teacher perceptions of inquiry and the amount of professional development received by participants on using inquiry-based instructional techniques. Finally, this study identifies factors that hinder the use of inquiry. Using a 24-question written survey, the researcher collected quantitative data from 204 science teachers in grades K-8 in four southern Mississippi school districts. Participants rated their average amount of time spent using inquiry-based science instruction in their classrooms. These results were then compared to each school's average test score on the 2009-2010 Mississippi State Science Assessment using a Spearman rho correlation. A significant positive relationship was found between amounts of time spent using inquiry-based science instruction and student achievement. The participants also indicated their perceptions of inquiry, amount of professional development, and deterrents to inquiry usage on a five-point Likert scale survey. Overall, participants held a favorable opinion of inquiry-based instruction and felt that it was important for their students' success. Over half of participants had not attended professional development on inquiry-based instruction. A majority indicated a desire for professional development. The most commonly identified factor hindering the use of inquiry was a lack of materials and resources. Many participants also indicated that time constraints prevented

  7. 3Hs Education: Examining hands-on, heads-on and hearts-on early childhood science education

    NASA Astrophysics Data System (ADS)

    Zeynep Inan, Hatice; Inan, Taskin

    2015-08-01

    Active engagement has become the focus of many early childhood science education curricula and standards. However, active engagement usually emphasizes getting children engaged with science solely through hands-on activities. Active engagement by way of hands, heads, and hearts are kept separate and rarely discussed in terms of getting all to work together, although inquiry-based education and student interest have been accepted as important in science education. The current study is an inquiry-based research. It aims to describe and examine projects and activity stations for preschoolers in a Turkish preschool classroom bringing together the pieces of the puzzle of science education, called here 'Hands-Heads-Hearts-on Science Education'. The study, conducted from a qualitative-interpretivist paradigm, reveals that activity stations and projects create a context for hands-on (active engagement), heads-on (inquiry based or mental-engagement), and hearts-on (interest based) science education. It is found that activity stations and projects, when maintained by appropriate teacher-support, create a playful context in which children can be actively and happily engaged in science-related inquiry.

  8. Cultural Earth Science in Hawai`i: Hands-on Place-Based Investigations that Merge Traditional Knowledge with Earth Science Inquiry

    NASA Astrophysics Data System (ADS)

    Moxey, L.; Dias, R. K.; Legaspi, E.

    2011-12-01

    During the summer of 2011, the Mālama Ke Ahupua`a (to care of our watershed) GEARUP summer program provided 25 under-served and under-represented minority public high school students (Hawaiian, part-Hawaiian, Filipino, Pacific Islanders) from Farrington High School (Kalihi, Honolulu) with a hands-on place-based multidiscipline course located within Manoa Valley (Ahupua`a O Kona) with the objective of engaging participants in scientific environmental investigations while exploring Hawaii's linkages between traditional knowledge, culture and science. The 4-week field program enabled students to collect samples along the perennial Manoa Stream and conduct water quality assessments throughout the Manoa watershed. Students collected science quality data from eight different sampling stations by means of field- and laboratory-based quantitative water quality testing equipment and GPS/GIS technology. While earning Hawaii DOE academic credits, students were able to document changes along the stream as related to pollution and urbanization. While conducting the various scientific investigations, students also participated in cultural fieldtrips and activities that highlighted the linkages between historical sustainable watershed uses by native Hawaiian communities, and their connections with natural earth processes. Additionally, students also participated in environmental service-learning projects that highlight the Hawaiian values of laulima (teamwork), mālama (to care for), and imi `ike (to seek knowledge). By contextualizing and merging hands-on place-based earth science inquiry with native Hawaiian traditional knowledge, students experienced the natural-cultural significance of their ahupua`a (watershed). This highlighted the advantages for promoting environmental literacy and geoscience education to under-served and under-represented minority populations in Hawaii from a rich native Hawaiian cultural framework.

  9. Teaching science as inquiry in US and in Japan: A cross-cultural comparison of science teachers' understanding of, and attitudes toward inquiry-based teaching

    NASA Astrophysics Data System (ADS)

    Tosa, Sachiko

    Since the publication of the National Science Education Standards in 1996, learning science through inquiry has been regarded as the heart of science education. However, the TIMSS 1999 Video Study showed that inquiry-based teaching has been taking place less in the United States than in Japan. This study examined similarities and differences in how Japanese and American middle-school science teachers think and feel about inquiry-based teaching. Teachers' attitudes toward the use of inquiry in science teaching were measured through a survey instrument (N=191). Teachers' understanding of inquiry-based teaching was examined through interviews and classroom observations in the United States (N=9) and Japan (N=15). The results show that in spite of the variations in teachers' definitions of inquiry-based teaching, teachers in both countries strongly agree with the idea of inquiry-based teaching. However, little inquiry-based teaching was observed in either of the countries for different reasons. The data indicate that Japanese teachers did not generally help students construct their own understanding of scientific concepts in spite of well-planned lesson structures and activity set-ups. On the other hand, the observational data indicate that American teachers often lacked meaningful science content in spite of their high level of pedagogical knowledge. The need for addressing the importance of scientific concepts in teacher preparation programs in higher education institutions in the US is advocated. To the Japanese science education community, the need for teachers' acquisition of instructional strategies for inquiry-based teaching is strongly addressed.

  10. A Study on Using Hands-On Science Inquiries to Promote the Geology Learning of Preservice Teachers

    ERIC Educational Resources Information Center

    Lai, Ching-San

    2015-01-01

    This study aims to investigate the geology learning performance of preservice teachers. A total of 31 sophomores (including 11 preservice teachers) from an educational university in Taiwan participated in this study. The course arrangements include class teaching and hands-on science inquiry activities. The study searches both quantitative and…

  11. Inquiry-Based Science Education: A Scenario on Zambia's High School Science Curriculum

    ERIC Educational Resources Information Center

    Chabalengula, Vivien M.; Mumba, Frackson

    2012-01-01

    This paper is aimed at elucidating the current state of inquiry-based science education (IBSE) in Zambia's high school science curriculum. Therefore, we investigated Zambian teachers' conceptions of inquiry; determined inquiry levels in the national high school science curriculum materials, which include syllabi, textbooks and practical exams; and…

  12. The effect of inquiry based science instruction on student understanding

    NASA Astrophysics Data System (ADS)

    Nail, Jessica Lynette

    According to the TIMSS Study (2007), the United States is falling behind in the subjects of math and science. In order for the students in the United States to develop scientific literacy and remain competitive globally, inquiry must be the priority when teaching science (NRC, 1996; AAAS, 1990). The main purpose of this research was to see if inquiry-based instruction in the science classroom had a significant effect on student understanding and retention of information in a rural school in Virginia. The effect of inquiry-based science instruction on gender was also examined. The researcher implemented a four-week, inquiry-based unit on Virginia Sol 6.7, written in the 5 E learning style to 358 sixth-grade students and compared their posttest gains and delayed posttest scores to a control group consisting of 268 students. The control group received traditional teaching methods. The results for the posttest gains produced a p = 0.01. Therefore, there was a significant difference in the experimental group, which received the treatment, when compared to the control group, which did not receive treatment. A t test was also used to compare the delayed test scores of the experimental group to the control group. The results showed a p < 0.0001 when comparing the experimental group, which received the four-week inquiry-based science instruction treatment, to the control, which did not receive the treatment. This t test showed a very highly significant difference between the experimental group and the control group. Based on these results, it is imperative that Virginia begin implementing inquiry-based instruction in the science classroom.

  13. A study of the long term impact of an inquiry-based science program on student's attitudes towards science and interest in science careers

    NASA Astrophysics Data System (ADS)

    Gibson, Helen Lussier

    showed a decrease in their attitude towards science and their interest in science careers over time, compared to the participants. The interviews suggested that students enjoyed the inquiry-based approach that was used at camp. In addition, students said they found the hands-on inquiry-based approach used at camp more interesting than traditional methods of instruction (lectures and note taking) used at school. Recommendations for future research are presented.

  14. At the Elbows of Scientists: Shaping Science Teachers' Conceptions and Enactment of Inquiry-Based Instruction

    NASA Astrophysics Data System (ADS)

    McLaughlin, Cheryl A.; MacFadden, Bruce J.

    2014-12-01

    This study stemmed from concerns among researchers that reform efforts grounded in promoting inquiry as the basis for teaching science have not achieved the desired changes in American science classrooms. Many science teachers assume that they are employing inquiry-based strategies when they use cookbook investigations with highly structured step-by-step instructions. Additionally, most science teachers equate hands-on activities with classroom inquiry and, as such, repeatedly use prepackaged, disconnected activities to break the monotony of direct instruction. Despite participation in numerous professional development activities, many science teachers continue to hold misconceptions about inquiry that influence the way they design and enact instruction. To date, there is very limited research exploring the role of inquiry-based professional development in facilitating desired changes in science teachers' conceptions of inquiry. This qualitative study of five high school science teachers explores the ways in which authentic inquiry experiences with a team of scientists in Panama shaped their conceptions and reported enactments of inquiry-based instruction. Our findings suggest that professional development experiences engaging science teachers in authentic research with scientists have the potential to change teachers' naïve conceptions of inquiry, provided that necessary supports are provided for reflection and lesson design.

  15. Inquiry and groups: student interactions in cooperative inquiry-based science

    NASA Astrophysics Data System (ADS)

    Woods-McConney, Amanda; Wosnitza, Marold; Sturrock, Keryn L.

    2016-03-01

    Science education research has recommended cooperative inquiry based science in the primary science context for more than two decades but after more than 20 years, student achievement in science has not substantially improved. This study, through direct observation and analysis, investigated content-related student interactions in an authentic inquiry based primary science class setting. Thirty-one upper primary students were videotaped working in cooperative inquiry based science activities. Cooperative talk and negotiation of the science content was analysed to identify any high-level group interactions. The data show that while all groups have incidences of high-level content-related group interactions, the frequency and duration of these interactions were limited. No specific pattern of preceding events was identified and no episodes of high-level content-related group interactions were immediately preceded by the teacher's interactions with the groups. This in situ study demonstrated that even without any kind of scaffolding, specific skills in knowing how to implement cooperative inquiry based science, high-level content-related group interactions did occur very briefly. Support for teachers to develop their knowledge and skills in facilitating cooperative inquiry based science learning is warranted to ensure that high-level content-related group interactions and the associated conceptual learning are not left to chance in science classrooms.

  16. Structural equation model of the relationships among inquiry-based instruction, attitudes toward science, achievement in science, and gender

    NASA Astrophysics Data System (ADS)

    Wallace, Stephen R.

    The purpose of this study was to clarify the muddled state of the magnitude and direction of the relationships among inquiry-based instruction, attitudes toward science, and science achievement, as students progressed from middle school into high school. The problem under investigation was two-fold. The first was to create and test a structural equation model describing the direction and magnitude of the relationships. The second was to determine gender differences in the relationships. Data collected from the Longitudinal Study of American Youth (LSAY) over a three-year period were used to create and test the structural equation model. Results of this study indicate inquiry-based instruction is effective in positively influencing 7th- and 8th-grade students' understandings of science concepts. Additionally, inquiry-based instruction does not have an adverse influence on science achievement in 9th grade. If the primary goal is science achievement, then an inquiry-based approach to instruction is effective. On the other hand, if the primary goal of science instruction is to positively influence students' attitudes toward science (in particular, perceptions of the usefulness of science) then inquiry-based approaches may not be the most effective method of instruction. Inquiry-based instruction adversely influences 7th-grade males' attitudes toward science and has no significant influence on 7th-grade females' attitudes toward science. In 8th grade, inquiry-based instruction has no significant influence on either genders' attitudes toward science. Not until the 9th grade does inquiry-based instruction have a significantly positive influence on males' and females' perceptions of the usefulness of science. Additionally, prior attitudes toward science significantly influences science achievement only in 8th grade and science achievement influences attitudes toward science only in 9th grade. Recommendations for further research are based on the findings and limitations of

  17. Science Achievement of Students in Co-Taught, Inquiry-Based Classrooms

    ERIC Educational Resources Information Center

    Brusca-Vega, Rita; Brown, Kathleen; Yasutake, David

    2011-01-01

    This case investigation followed the progress of middle students with disabilities, their peers, and teachers in co-taught science classrooms where a hands-on, inquiry-based curriculum was used. Students with disabilities (n=21), including learning disabilities, mild intellectual impairment, and mild autism were placed in co-taught classes with…

  18. Teaching genetics using hands-on models, problem solving, and inquiry-based methods

    NASA Astrophysics Data System (ADS)

    Hoppe, Stephanie Ann

    Teaching genetics can be challenging because of the difficulty of the content and misconceptions students might hold. This thesis focused on using hands-on model activities, problem solving, and inquiry-based teaching/learning methods in order to increase student understanding in an introductory biology class in the area of genetics. Various activities using these three methods were implemented into the classes to address any misconceptions and increase student learning of the difficult concepts. The activities that were implemented were shown to be successful based on pre-post assessment score comparison. The students were assessed on the subjects of inheritance patterns, meiosis, and protein synthesis and demonstrated growth in all of the areas. It was found that hands-on models, problem solving, and inquiry-based activities were more successful in learning concepts in genetics and the students were more engaged than tradition styles of lecture.

  19. Effects of Web Based Inquiry Science Environment on Cognitive Outcomes in Biological Science in Correlation to Emotional Intelligence

    ERIC Educational Resources Information Center

    Manoj, T. I.; Devanathan, S.

    2010-01-01

    This research study is the report of an experiment conducted to find out the effects of web based inquiry science environment on cognitive outcomes in Biological science in correlation to Emotional intelligence. Web based inquiry science environment (WISE) provides a platform for creating inquiry-based science projects for students to work…

  20. The inquiry continuum: Science teaching practices and student performance on standardized tests

    NASA Astrophysics Data System (ADS)

    Jernnigan, Laura Jane

    Few research studies have been conducted related to inquiry-based scientific teaching methodologies and NCLB-required state testing. The purpose of this study was to examine the relationship between the strategies used by seventh-grade science teachers in Illinois and student scores on the Illinois Standards Achievement Test (ISAT) to aid in determining best practices/strategies for teaching middle school science. The literature review defines scientific inquiry by placing teaching strategies on a continuum of scientific inquiry methodologies from No Inquiry (Direct Instruction) through Authentic Inquiry. Five major divisions of scientific inquiry: structured inquiry, guided inquiry, learning cycle inquiry, open inquiry, and authentic inquiry, have been identified and described. These five divisions contain eight sub-categories: demonstrations; simple or hands-on activities; discovery learning; variations of learning cycles; problem-based, event-based, and project-based; and student inquiry, science partnerships, and Schwab's enquiry. Quantitative data were collected from pre- and posttests and surveys given to the participants: five seventh grade science teachers in four Academic Excellence Award and Spotlight Award schools and their 531 students. Findings revealed that teachers reported higher inquiry scores for themselves than for their students; the two greatest reported factors limiting teachers' use of inquiry were not enough time and concern about discipline and large class size. Although the correlation between total inquiry and mean difference of pre- and posttest scores was not statistically significant, the survey instrument indicated how often teachers used inquiry in their classes, not the type of inquiry used. Implications arose from the findings that increase the methodology debate between direction instruction and inquiry-based teaching strategies; teachers are very knowledgeable about the Illinois state standards, and various inquiry-based methods

  1. Engaging Nature of Science to Preservice Teachers through Inquiry-Based Classroom

    ERIC Educational Resources Information Center

    Nuangchalerm, Prasart

    2013-01-01

    Inquiry-based classroom is widely distributed in the school science based on its useful and effective instruction. Science teachers are key elements allowing students to have scientific inquiry. If teachers understand and imply inquiry-based learning into science classroom, students will learn science as scientific inquiry and understand nature of…

  2. Girls on Ice: An Inquiry-Based Wilderness Science Education Program

    NASA Astrophysics Data System (ADS)

    Pettit, E. C.; Koppes, M. N.

    2001-12-01

    We developed a wilderness science education program for high school girls. The program offers opportunities for students to explore and learn about mountain glaciers and the alpine landscape through scientific field studies with geologists and glaciologists. Our purpose is to give students a feeling for the natural processes that create the alpine world and provide an environment that fosters the critical thinking necessary to all scientific inquiry. The program is currently being offered through the North Cascades Institute, a non-profit organization offering outdoor education programs for the general public. We lead eight girls for a weeklong expedition to the remote USGS South Cascade Glacier Research Station in Washington's North Cascades. For four days, we explore the glacier and the nearby alpine valleys. We encourage the girls to observe and think like scientists through making observations and inferences. They develop their own experiments to test ideas about glacier dynamics and geomorphology. In addition to scientific exploration, we engage the students in discussions about the philosophy of science and its role in our everyday lives. Our program exemplifies the success of hands-on, inquiry-based teaching in small groups for science education in the outdoors. The wilderness setting and single gender field team inspires young women's interest in science and provides a challenging environment that increases their physical and intellectual self-confidence.

  3. Mapping Science in Discourse-based Inquiry Classrooms

    NASA Astrophysics Data System (ADS)

    Yeneayhu, Demeke Gesesse

    Abstract The purpose of this study was to investigate how discourse-based inquiry science lessons provided opportunities for students to develop a network of semantic relations among core ideas and concepts in science. It was a naturalistic inquiry classroom lessons observation study on three science teachers--- a middle school science teacher and two high school physics teachers in an urban school district located in the Western New York region. Discourse and thematic analysis drawn from the theory of Systemic Functional Linguistics were utilized as guiding framework and analysis tools. Analysis of the pre-observation and post-observation interviews of the participant teachers revealed that all of the three teachers participated in at least one inquiry-based science teaching teacher professional development program and they all thought their classroom teaching practice was inquiry-based. Analysis of their classroom lesson videos that each participant teacher taught on a specific science topic revealed that the middle school teacher was found to be a traditional teacher-dominated classroom whereas the two high school physics teachers' classroom teaching approach was found to be discourse-based inquiry. One of the physics teachers who taught on a topic of Magnetic Interaction used relatively structured and guided-inquiry classroom investigations. The other physics teacher who taught on a topic of Color Mixing utilized open-ended classroom investigations where the students planned and executed the series of classroom science investigations with minimal guidance from the teacher. The traditional teacher-based classroom communicative pattern was found to be dominated by Triadic Dialogue and most of the science thematics were jointly developed by the teacher and the students, but the students' role was limited to providing responses to the teacher's series questions. In the guided-inquiry classroom, the common communicative pattern was found to be True Dialogue and most

  4. Connecting Inquiry and the Nature of Science

    ERIC Educational Resources Information Center

    Peters, Erin

    2006-01-01

    Inquiry has been one of the most prominent reforms in science education. One of the goals of teaching through inquiry methods is to enable students to have experiences that are authentic to scientists' experiences. Too often, inquiry science is taught as either the "scientific method" or as "hands-on," disconnected activities…

  5. Calculator-Controlled Robots: Hands-On Mathematics and Science Discovery

    ERIC Educational Resources Information Center

    Tuchscherer, Tyson

    2010-01-01

    The Calculator Controlled Robots activities are designed to engage students in hands-on inquiry-based missions. These activities address National science and technology standards, as well as specifically focusing on mathematics content and process standards. There are ten missions and three exploration extensions that provide activities for up to…

  6. Facilitating Elementary Science Teachers' Implementation of Inquiry-Based Science Teaching

    ERIC Educational Resources Information Center

    Qablan, Ahmad M.; DeBaz, Theodora

    2015-01-01

    Preservice science teachers generally feel that the implementation of inquiry-based science teaching is very difficult to manage. This research project aimed at facilitating the implementation of inquiry-based science teaching through the use of several classroom strategies. The evaluation of 15 classroom strategies from 80 preservice elementary…

  7. Mentoring a new science teacher in reform-based ways: A focus on inquiry

    NASA Astrophysics Data System (ADS)

    Schomer, Scott D.

    The processes, understandings, and uses of inquiry are identified by the National Science Education Standards (National Research Council, 1996) as a key component of science instruction. Currently, there are few examples in the literature demonstrating how teachers go about co-constructing inquiry-based activities and how mentors can promote the use of reform-based practices by novices. The purpose of this interpretive case study was to investigate how a mentor and her protege collaboratively developed, implemented and assessed three inquiry-based experiences. The questions that guided this research were: (1) How does the mentor assist protege growth in the development, implementation and assessment of inquiry-based experiences for secondary science students? (2) How are the protege's perceptions of inquiry influenced by her participation in developing, implementing and assessing inquiry-based experiences for secondary science students? The co-construction of the inquiry activities and the facilitation provided by the mentor represented Lev Vygotsky's (1978) social construction of information as the mentor guided the protege beyond her cognitive zone of proximal development. The participants in this study were a veteran science teacher who was obtaining her mentor certification, or Teacher Support Specialist, and her protege who was a science teacher in the induction phase of her career. Data were collected through in-depth, semi-structured interviews, tape recordings of planning sessions, researcher field notes, and email reflections during the co-construction process. Inductive analysis of the data led to the identification of common categories and subsequent findings, which reflected what the mentor and protege discussed about inquiry and the process of collaboration. The six themes that emerged from this study led to several implications that are significant for science teacher preparation and the mentoring community. The teachers indicated tools, such as the

  8. Ocean Science in a K-12 setting: Promoting Inquiry Based Science though Graduate Student and Teacher Collaboration

    NASA Astrophysics Data System (ADS)

    Lodico, J. M.; Greely, T.; Lodge, A.; Pyrtle, A.; Ivey, S.; Madeiros, A.; Saleem, S.

    2005-12-01

    The University of South Florida, College of Marine Science Oceans: GK-12 Teaching Fellowship Program is successfully enriching science learning via the oceans. Funded by the National Science Foundation, the program provides a unique opportunity among scientists and K-12 teachers to interact with the intention of bringing ocean science concepts and research to the classroom environment enhance the experience of learning and doing science, and to promote `citizen scientists' for the 21st century. The success of the program relies heavily on the extensive summer training program where graduate students develop teaching skills, create inquiry based science activities for a summer Oceanography Camp for Girls program and build a relationship with their mentor teacher. For the last year and a half, two graduate students from the College of Marine Science have worked in cooperation with teachers from the Pinellas county School District, Southside Fundamental Middle School. Successful lesson plans brought into a 6th grade Earth Science classroom include Weather and climate: Global warming, The Geologic timescale: It's all about time, Density: Layering liquids, and Erosion processes: What moves water and sediment. The school and students have benefited greatly from the program experiencing hands-on inquiry based science and the establishment of an after school science club providing opportunities for students to work on their science fair projects and pursuit other science interests. Students are provided scoring rubrics and their progress is creatively assessed through KWL worksheets, concept maps, surveys, oral one on one and classroom discussions and writing samples. The year culminated with a series of hands on lessons at the nearby beach, where students demonstrated their mastery of skills through practical application. Benefits to the graduate student include improved communication of current science research to a diverse audience, a better understanding of the

  9. Effects of an Inquiry-Based Science Program on Critical Thinking, Science Process Skills, Creativity, and Science Fair Achievement of Middle School Students

    ERIC Educational Resources Information Center

    Longo, Christopher M.

    2012-01-01

    This study investigated the impact of an inquiry-based science program on the critical thinking skills, science process skills, creativity, and science fair achievement of middle school students. Although research indicates the connection between inquiry and achievement, there is limited empirical research relating specific inquiry-based programs…

  10. The Effect of Student-Centered Approaches on Students' Interest and Achievement in Science: Relevant Topic-Based, Open and Guided Inquiry-Based, and Discussion-Based Approaches

    NASA Astrophysics Data System (ADS)

    Kang, Jingoo; Keinonen, Tuula

    2017-04-01

    Since students have lost their interest in school science, several student-centered approaches, such as using topics that are relevant for students, inquiry-based learning, and discussion-based learning have been implemented to attract pupils into science. However, the effect of these approaches was usually measured in small-scale research, and thus, the large-scale evidence supporting student-centered approaches in general use is insufficient. Accordingly, this study aimed to investigate the effect of student-centered approaches on students' interest and achievement by analyzing a large-scale data set derived from Program for International Student Assessment (PISA) 2006, to add evidence for advocating these approaches in school science, and to generalize the effects on a large population. We used Finnish PISA 2006 data, which is the most recent data that measures science literacy and that contains relevant variables for the constructs of this study. As a consequence of the factor analyses, four teaching methods were grouped as student-centered approaches (relevant topic-based, open and guided inquiry-based, and discussion-based approaches in school science) from the Finnish PISA 2006 sample. The structural equation modeling result indicated that using topics relevant for students positively affected students' interest and achievement in science. Guided inquiry-based learning was also indicated as a strong positive predictor for students' achievement, and its effect was also positively associated with students' interest. On the other hand, open inquiry-based learning was indicated as a strong negative predictor for students' achievement, as was using discussion in school science. Implications and limitations of the study were discussed.

  11. Hands-On Science Mysteries for Grades 3-6: Standards-Based Inquiry Investigations

    ERIC Educational Resources Information Center

    Taris, James Robert; Taris, Louis James

    2006-01-01

    In "Hands-On Science Mysteries for Grades 3-6," the authors connect science to real-world situations by investigating actual mysteries and phenomena, such as the strange heads on Easter Island, the ghost ship "Mary Celeste," and the "Dancing Stones" of Death Valley. The labs are designed to encourage the development…

  12. Do science coaches promote inquiry-based instruction in the elementary science classroom?

    NASA Astrophysics Data System (ADS)

    Wicker, Rosemary Knight

    The South Carolina Mathematics and Science Coaching Initiative established a school-based science coaching model that was effective in improving instruction by increasing the level of inquiry-based instruction in elementary science classrooms. Classroom learning environment data from both teacher groups indicated considerable differences in the quality of inquiry instruction for those classrooms of teachers supported by a science coach. All essential features of inquiry were demonstrated more frequently and at a higher level of open-ended inquiry in classrooms with the support of a science coach than were demonstrated in classrooms without a science coach. However, from teacher observations and interviews, it was determined that elementary schoolteacher practice of having students evaluate conclusions and connect them to current scientific knowledge was often neglected. Teachers with support of a science coach reported changes in inquiry-based instruction that were statistically significant. This mixed ethnographic study also suggested that the Mathematics and Science Coaching Initiative Theory of Action for Instructional Improvement was an effective model when examining the work of science coaches. All components of effective school infrastructure were positively impacted by a variety of science coaching strategies intended to promote inquiry. Professional development for competent teachers, implementation of researched-based curriculum, and instructional materials support were areas highly impacted by the work of science coaches.

  13. Experimental Comparison of Inquiry and Direct Instruction in Science

    ERIC Educational Resources Information Center

    Cobern, William; Schuster, David; Adams, Betty

    2010-01-01

    It is evident that "experientially-based" instruction and "active student engagement" are advantageous for effective science learning. However, "hands-on" and "minds-on" aspects can occur in both inquiry and direct science instruction, and convincing comparative evidence for the superiority of either mode…

  14. The Effectiveness of Guided Inquiry-based Learning Material on Students’ Science Literacy Skills

    NASA Astrophysics Data System (ADS)

    Aulia, E. V.; Poedjiastoeti, S.; Agustini, R.

    2018-01-01

    The purpose of this research is to describe the effectiveness of guided inquiry-based learning material to improve students’ science literacy skills on solubility and solubility product concepts. This study used Research and Development (R&D) design and was implemented to the 11th graders of Muhammadiyah 4 Senior High School Surabaya in 2016/2017 academic year with one group pre-test and post-test design. The data collection techniques used were validation, observation, test, and questionnaire. The results of this research showed that the students’ science literacy skills are different after implementation of guided inquiry-based learning material. The guided inquiry-based learning material is effective to improve students’ science literacy skills on solubility and solubility product concepts by getting N-gain score with medium and high category. This improvement caused by the developed learning material such as lesson plan, student worksheet, and science literacy skill tests were categorized as valid and very valid. In addition, each of the learning phases in lesson plan has been well implemented. Therefore, it can be concluded that the guided inquiry-based learning material are effective to improve students’ science literacy skills on solubility and solubility product concepts in senior high school.

  15. Effects of Inquiry-Based Science Instruction on Science Achievement and Interest in Science: Evidence from Qatar

    ERIC Educational Resources Information Center

    Areepattamannil, Shaljan

    2012-01-01

    The author sought to investigate the effects of inquiry-based science instruction on science achievement and interest in science of 5,120 adolescents from 85 schools in Qatar. Results of hierarchical linear modeling analyses revealed the substantial positive effects of science teaching and learning with a focus on model or applications and…

  16. Deaf, Hard-of-Hearing, and Hearing Signing Undergraduates’ Attitudes toward Science in Inquiry-Based Biology Laboratory Classes

    PubMed Central

    Gormally, Cara

    2017-01-01

    For science learning to be successful, students must develop attitudes toward support future engagement with challenging social issues related to science. This is especially important for increasing participation of students from underrepresented populations. This study investigated how participation in inquiry-based biology laboratory classes affected students’ attitudes toward science, focusing on deaf, hard-of-hearing, and hearing signing students in bilingual learning environments (i.e., taught in American Sign Language and English). Analysis of reflection assignments and interviews revealed that the majority of students developed positive attitudes toward science and scientific attitudes after participating in inquiry-based biology laboratory classes. Attitudinal growth appears to be driven by student value of laboratory activities, repeated direct engagement with scientific inquiry, and peer collaboration. Students perceived that hands-on experimentation involving peer collaboration and a positive, welcoming learning environment were key features of inquiry-based laboratories, affording attitudinal growth. Students who did not perceive biology as useful for their majors, careers, or lives did not develop positive attitudes. Students highlighted the importance of the climate of the learning environment for encouraging student contribution and noted both the benefits and pitfalls of teamwork. Informed by students’ characterizations of their learning experiences, recommendations are made for inquiry-based learning in college biology. PMID:28188279

  17. Investigation of Inquiry-based Science Pedagogy among Middle Level Science Teachers: A Qualitative Study

    NASA Astrophysics Data System (ADS)

    Weiland, Sunny Minelli

    This study implemented a qualitative approach to examine the phenomenon of "inquiry-based science pedagogy or inquiry instruction" as it has been experienced by individuals. Data was collected through online open-ended surveys, focus groups, and teacher reported self-reflections to answer the research questions: 1) How do middle level science teachers conceptualize "inquiry-based instruction?" 2) What are preferred instructional strategies for implementation in middle level science classrooms? And 3) How do middle level science teachers perceive the connection between science instruction and student learning? The participants within this research study represent 33 percent of teachers in grades 5 through 9 within six school districts in northeastern Pennsylvania. Of the 12 consent forms originally obtained, 10 teachers completed all three phases of the data collection, including the online survey, participation in focus groups, and teacher self-reflection. 60 percent of the participants taught only science, and 40 percent taught all content areas. Of the ten participants, 50 percent were certified teachers of science and 50 percent were certified as teachers of elementary education. 70 percent of the research participants reflected having obtained a master's, with 60 percent of these degrees being received in areas of education, and 10 percent in the area of science. The research participants have a total of 85 collective years of experience as professional educators, with the average years of experience being 8.5 years. Analysis of data revealed three themes related to research question #1) How do middle-level science teachers conceptualize inquiry-based instruction? and sub-question #1) How do middle-level science teachers characterize effective instruction? The themes that capture the essence of teachers' formulation of inquiry-based instruction that emerged in this study were student centered, problem solving, and hands-on . Analysis of data revealed one theme

  18. Inquiry-based Learning and Digital Libraries in Undergraduate Science Education

    NASA Astrophysics Data System (ADS)

    Apedoe, Xornam S.; Reeves, Thomas C.

    2006-12-01

    The purpose of this paper is twofold: to describe robust rationales for integrating inquiry-based learning into undergraduate science education, and to propose that digital libraries are potentially powerful technological tools that can support inquiry-based learning goals in undergraduate science courses. Overviews of constructivism and situated cognition are provided with regard to how these two theoretical perspectives have influenced current science education reform movements, especially those that involve inquiry-based learning. The role that digital libraries can play in inquiry-based learning environments is discussed. Finally, the importance of alignment among critical pedagogical dimensions of an inquiry-based pedagogical framework is stressed in the paper, and an example of how this can be done is presented using earth science education as a context.

  19. The science experience: The relationship between an inquiry-based science program and student outcomes

    NASA Astrophysics Data System (ADS)

    Poderoso, Charie

    Science education reforms in U.S. schools emphasize the importance of students' construction of knowledge through inquiry. Organizations such as the National Science Foundation (NSF), the National Research Council (NRC), and the American Association for the Advancement of Science (AAAS) have demonstrated a commitment to searching for solutions and renewed efforts to improve science education. One suggestion for science education reform in U.S. schools was a transition from traditional didactic, textbook-based to inquiry-based instructional programs. While inquiry has shown evidence for improved student learning in science, what is needed is empirical evidence of those inquiry-based practices that affect student outcomes in a local context. This study explores the relationship between instructional programs and curricular changes affecting student outcomes in the Santa Ana Unified District (SAUSD): It provides evidence related to achievement and attitudes. SAUSD employs two approaches to teaching in the middle school science classrooms: traditional and inquiry-based approaches. The Leadership and Assistance for Science Education Reform (LASER) program is an inquiry-based science program that utilizes resources for implementation of the University of California Berkeley's Lawrence Hall of Science Education for Public Understanding Program (SEPUP) to support inquiry-based teaching and learning. Findings in this study provide empirical support related to outcomes of seventh-grade students, N = 328, in the LASER and traditional science programs in SAUSD.

  20. Inquiry-based instruction in secondary science classrooms: A survey of teacher practice

    NASA Astrophysics Data System (ADS)

    Gejda, Linda Muggeo

    The purpose of this quantitative investigation was to describe the extent to which secondary science teachers, who were certified through Connecticut's BEST portfolio assessment process between 1997 and 2004 and had taught secondary science during the past academic year, reported practicing the indicators of inquiry-based instruction in the classroom and the factors that they perceived facilitated, obstructed, or informed that practice. Indicators of inquiry-based instruction were derived from the Biological Sciences Curriculum Study (BSCS) 5E model (Bybee, 1997). The method for data collection was a researcher-developed, self-report, questionnaire entitled "Inquiry-based Instruction in Secondary Science Classrooms: A Survey", which was developed and disseminated using a slightly modified Dillman (2000) approach. Almost all of the study participants reported practicing the 5Es (engage, explore, explain, elaborate, and evaluate) of inquiry-based instruction in their secondary science classrooms. Time, resources, the need to cover material for mandatory assessments, the science topics or concepts being taught, and professional development on inquiry-based instruction were reported to be important considerations in participants' decisions to practice inquiry-based instruction in their science classrooms. A majority of the secondary science teachers participating in this study indicated they had the time, access to resources and the professional development opportunities they needed to practice inquiry-based instruction in their secondary classrooms. Study participants ranked having the time to teach in an inquiry-based fashion and the need to cover material for mandated testing as the biggest obstacles to their practice of inquiry-based instruction in the secondary classroom. Classroom experience and collegial exchange informed the inquiry-based instruction practice of the secondary science teachers who participated in this study. Recommendations for further research

  1. Hands-on-Science: Using Education Research to Construct Learner-Centered Classes

    NASA Astrophysics Data System (ADS)

    Ludwig, R. R.; Chimonidou, A.; Kopp, S.

    2014-07-01

    Research into the process of learning, and learning astronomy, can be informative for the development of a course. Students are better able to incorporate and make sense of new ideas when they are aware of their own prior knowledge (Resnick et al. 1989; Confrey 1990), have the opportunity to develop explanations from their own experience in their own words (McDermott 1991; Prather et al. 2004), and benefit from peer instruction (Mazur 1997; Green 2003). Students in astronomy courses often have difficulty understanding many different concepts as a result of difficulties with spatial reasoning and a sense of scale. The Hands-on-Science program at UT Austin incorporates these research-based results into four guided-inquiry, integrated science courses (50 students each). They are aimed at pre-service K-5 teachers but are open to other majors as well. We find that Hands-on-Science students not only attain more favorable changes in attitude towards science, but they also outperform students in traditional lecture courses in content gains. Workshop Outcomes: Participants experienced a research-based, guided-inquiry lesson about the motion of objects in the sky and discussed the research methodology for assessing students in such a course.

  2. Inquiry and Groups: Student Interactions in Cooperative Inquiry-Based Science

    ERIC Educational Resources Information Center

    Woods-McConney, Amanda; Wosnitza, Marold; Sturrock, Keryn L.

    2016-01-01

    Science education research has recommended cooperative inquiry based science in the primary science context for more than two decades but after more than 20 years, student achievement in science has not substantially improved. This study, through direct observation and analysis, investigated content-related student interactions in an authentic…

  3. Effects of Web based inquiry on physical science teachers and students in an urban school district

    NASA Astrophysics Data System (ADS)

    Stephens, Joanne

    An inquiry approach in teaching science has been advocated by many science educators for the past few decades. Due to insufficient district funding for science teaching, inadequate science laboratory facilities, and outdated science materials, inquiry teaching has been difficult for many science teachers, particularly science teachers in urban settings. However, research shows that the availability of computers with high speed Internet access has increased in all school districts. This study focused on the effects of inservice training on teachers and using web based science inquiry activities with ninth grade physical science students. Participants were 16 science teachers and 474 physical science students in an urban school district of a large southern U.S. city. Students were divided into control and experimental groups. The students in the experimental group participated in web based inquiry activities. Students in the control group were taught using similar methods, but not web based science activities. Qualitative and quantitative data were collected over a nine-week period using instruments and focus group interviews of students' and teachers' perceptions of the classroom learning environment, students' achievement, lesson design and classroom implementation, science content of lesson, and classroom culture. The findings reported that there were no significant differences in teachers' perception of the learning environment before and after implementing web based inquiry activities. The findings also reported that there were no overall significant differences in students' perceptions of the learning environment and achievement, pre-survey to post-survey, pre-test to post-test, between the control group and experimental group. Additional findings disclosed that students in the experimental group learned in a collaborative environment. The students confirmed that collaborating with others contributed to a deeper understanding of the science content. This study

  4. Comparing Two Inquiry Professional Development Interventions in Science on Primary Students' Questioning and Other Inquiry Behaviours

    NASA Astrophysics Data System (ADS)

    Nichols, Kim; Burgh, Gilbert; Kennedy, Callie

    2017-02-01

    Developing students' skills to pose and respond to questions and actively engage in inquiry behaviours enables students to problem solve and critically engage with learning and society. The aim of this study was to analyse the impact of providing teachers with an intervention in inquiry pedagogy alongside inquiry science curriculum in comparison to an intervention in non-inquiry pedagogy alongside inquiry science curriculum on student questioning and other inquiry behaviours. Teacher participants in the comparison condition received training in four inquiry-based science units and in collaborative strategic reading. The experimental group, the community of inquiry (COI) condition, received training in facilitating a COI in addition to training in the same four inquiry-based science units. This study involved 227 students and 18 teachers in 9 primary schools across Brisbane, Australia. The teachers were randomly allocated by school to one of the two conditions. The study followed the students across years 6 and 7 and students' discourse during small group activities was recorded, transcribed and coded for verbal inquiry behaviours. In the second year of the study, students in the COI condition demonstrated a significantly higher frequency of procedural and substantive higher-order thinking questions and other inquiry behaviours than those in the comparison condition. Implementing a COI within an inquiry science curriculum develops students' questioning and science inquiry behaviours and allows teachers to foster inquiry skills predicated by the Australian Science Curriculum. Provision of inquiry science curriculum resources alone is not sufficient to promote the questioning and other verbal inquiry behaviours predicated by the Australian Science Curriculum.

  5. Conducting Science Inquiry in Primary Classrooms: Case Studies of Two Preservice Teachers' Inquiry-Based Practices

    ERIC Educational Resources Information Center

    Leonard, Jacqueline; Boakes, Norma; Moore, Cara M.

    2009-01-01

    This study examined the impact of an intervention designed to promote inquiry-based instruction among early childhood/elementary preservice teachers in Earth science. Preservice teachers participated in training sessions and community-based internships to deepen Earth science content knowledge and develop inquiry-based practices. Analyses of Earth…

  6. A rights-based approach to science literacy using local languages: Contextualising inquiry-based learning in Africa

    NASA Astrophysics Data System (ADS)

    Babaci-Wilhite, Zehlia

    2017-06-01

    This article addresses the importance of teaching and learning science in local languages. The author argues that acknowledging local knowledge and using local languages in science education while emphasising inquiry-based learning improve teaching and learning science. She frames her arguments with the theory of inquiry, which draws on perspectives of both dominant and non-dominant cultures with a focus on science literacy as a human right. She first examines key assumptions about knowledge which inform mainstream educational research and practice. She then argues for an emphasis on contextualised learning as a right in education. This means accounting for contextualised knowledge and resisting the current trend towards de-contextualisation of curricula. This trend is reflected in Zanzibar's recent curriculum reform, in which English replaced Kiswahili as the language of instruction (LOI) in the last two years of primary school. The author's own research during the initial stage of the change (2010-2015) revealed that the effect has in fact proven to be counterproductive, with educational quality deteriorating further rather than improving. Arguing that language is essential to inquiry-based learning, she introduces a new didactic model which integrates alternative assumptions about the value of local knowledge and local languages in the teaching and learning of science subjects. In practical terms, the model is designed to address key science concepts through multiple modalities - "do it, say it, read it, write it" - a "hands-on" experiential combination which, she posits, may form a new platform for innovation based on a unique mix of local and global knowledge, and facilitate genuine science literacy. She provides examples from cutting-edge educational research and practice that illustrate this new model of teaching and learning science. This model has the potential to improve learning while supporting local languages and culture, giving local languages their

  7. Kindergarten Teachers' Understanding of the Elements of Implementing Inquiry-Based Science Instruction

    NASA Astrophysics Data System (ADS)

    Blevins, Kathryn

    The purpose of this basic qualitative research study was to identify the extent to which kindergarten teachers understand and implement inquiry-based instruction in their science classrooms. This study was conducted in response to the indication that traditional didactic teaching methods were not enough to adequately prepare American students to compete in the global economy. Inquiry is a teaching method that could prepare students for the critical thinking skills needed to enter society in the 21st century. It is vital that teachers be sufficiently trained in teaching using the necessary components of inquiry-based instruction. This study could be used to inform leaders in educational administration of the gaps in teachers' understanding as it pertains to inquiry, thus allowing for the delivery of professional development that will address teachers' needs. Existing literature on inquiry-based instruction provides minimal information on kindergarten teachers' understanding and usage of inquiry to teach science content, and this information would be necessary to inform administrators in their response to supporting teachers in the implementation of inquiry. The primary research question for this study was "To what extent do kindergarten teachers understand the elements of implementing inquiry-based lessons in science instruction?" The 10 participants in this study were all kindergarten teachers in a midsized school district in the Mid-Atlantic region of the United States. Data were collected using face-to-face semistructured interviews, observations of the teachers implementing what they perceived to be inquiry-based instruction, and the analysis of lesson plans to indicate the components used to plan for inquiry-instruction. The findings of this study indicated that while teachers believed inquiry to be a beneficial method for teaching science, they did not understand the components of inquiry and tended to implement lesson plans created at the district level. By

  8. How to Support Primary Teachers' Implementation of Inquiry: Teachers' Reflections on Teaching Cooperative Inquiry-Based Science

    ERIC Educational Resources Information Center

    Gillies, Robyn M.; Nichols, Kim

    2015-01-01

    Many primary teachers face challenges in teaching inquiry science, often because they believe that they do not have the content knowledge or pedagogical skills to do so. This is a concern given the emphasis attached to teaching science through inquiry where students do not simply learn about science but also do science. This study reports on the…

  9. The effect of inquiry science activity in educational productivity

    NASA Astrophysics Data System (ADS)

    Shimizu, Kinya

    This is a study the effect of inquiry science activity on the science achievement of junior high school students. Since the post-sputnik curriculum improvement project, science educators have supported the effect of inquiry activities. In terms of the effect of laboratory activity, however, the literature review indicated that the controlled experimental studies have failed to present the effect of laboratory activities. For example, Blosser suggested more rigid experimental design, such as longer treatment and larger sample. On the other hand, some of the recent case studies of effect of laboratory are successful to support the effect and the other recent classroom ethnographic studies indicated that the laboratory activities are implemented in inappropriate situation. This study investigates the effect of inquiry activities by using the national survey to balance the internal and external validity. In order to control the environmental effect and student aptitude, the study adopted the structural model of science achievement suggested by Reynolds and Walberg in 1991. The study utilized the extensive student and teacher data reports from the Longitudinal Study of American Youth (LSAY) to examine these differences and interactions quantitatively. The study utilized two independent variables: (1) teachers' report of the degree of their teaching emphasis on inquiry skill, and (2) teachers' report of the frequency of hands-on method. The effects of these instructional qualities are estimated in terms of the science achievement score of their student. The study utilized path analysis techniques in order to understand the complex relationship among the nine productivity factors; which are (1) motivation, (2) prior ability, (3) development, (4) home environment, (5) peer environment, (6) media environment, (7) classroom environment, (8) instructional quantity, and (9) instructional quality. The result failed to support the effectiveness of the hands-on science teaching

  10. The function of questions in Omani fourth grade inquiry-based science classrooms: A sociocultural perspective

    NASA Astrophysics Data System (ADS)

    Al-Shaibani, Madiha Ahmed

    2005-11-01

    Studies indicate that science education reforms are globally converging. Many countries are adopting the globally advocated science education reforms for the purpose of obtaining the competitive edge in science education and technology that are viewed as the driving forces of modern economies. Globally, science education reforms are emphasizing paradigm shifts in which constructivist instructional are foregrounded. Many science education curricular documents advocate teaching science through engaging students in scientific inquiry. As a result, science classrooms are becoming more student-centered where students are typically actively engaged in inquiry learning. Even though inquiry instruction has become the common approach in teaching science, the actual implementation of inquiry in classrooms indicates that there is a big gap between the intended inquiry advocated in curricula documents and the actual practices in classroom settings. One of the main features of inquiry instruction is student questions. Authentic student questions are essential for the initiating and main scientific inquiry. However, studies have also illustrated the rarity of student questions in classrooms. This dearth in student questions has been attributed to the discursive practices in classrooms. Classrooms that implement the traditional IRE discourse structure tend to have less student questions. On the other hand, reflective questioning is considered a more appropriate classroom discourse structure because it intentionally invites student questions and engages students in classroom discussions. This qualitative study addresses the issue of questioning in fourth grade inquiry-based science classrooms of the Omani Basic Education system. Methods employed in this study included: participant observation, individual interviews, focus group interviews and the collection of artifacts. Findings of this study illustrated the rarity of student questions in the classrooms. However this

  11. The Effect of a Collaborative Mentoring Program on Beginning Science Teachers' Inquiry-based Teaching Practice

    NASA Astrophysics Data System (ADS)

    Nam, Jeonghee; Seung, Eulsun; Go, MunSuk

    2013-03-01

    This study investigated how a collaborative mentoring program influenced beginning science teachers' inquiry-based teaching and their reflection on practice. The one-year program consisted of five one-on-one mentoring meetings, weekly science education seminars, weekly mentoring group discussions, and self-evaluation activities. The participants were three beginning science teachers and three mentors at the middle school level (7-9th grades) in an urban area of South Korea. For each beginning teacher, five lessons were evaluated in terms of lesson design/implementation, procedural knowledge, and classroom culture by using the Reformed Teaching Observation Protocol. Five aspects of the beginning teachers' reflections were identified. This study showed that a collaborative mentoring program focusing on inquiry-based science teaching encouraged the beginning teachers to reflect on their own perceptions and teaching practice in terms of inquiry-based science teaching, which led to changes in their teaching practice. This study also highlighted the importance of collaborative interactions between the mentors and the beginning teachers during the mentoring process.

  12. The influence inquiry-based science has on elementary teachers' perception of instruction and self-efficacy

    NASA Astrophysics Data System (ADS)

    Lewis, Felecia J.

    The nature and purpose of this study was to examine the self-efficacy of teachers who use an inquiry-based science program to provide authentic experiences within the elementary school setting. It is essential to explore necessary improvements to bring about effective science education. Using a mixed methods study, the researcher conducted interviews with elementary teachers from five elementary schools within the same school district. The interviews focused on the teachers' experiences with inquiry-based science and their perceptions of quality science instruction. The Teachers' Sense of Efficacy Scale was used to collect quantitative data regarding the teachers' perception of instructional practice and student engagement. The study revealed that limited science content knowledge, inadequate professional development, and a low sense of self-efficacy have a substantial effect on teacher outcomes, instructional planning, and ability to motivate students to participate in inquiry-based learning. It will take a collective effort from administrators, teachers, parents, and students to discover ways to improve elementary science education.

  13. Place-Based Investigations and Authentic Inquiry

    ERIC Educational Resources Information Center

    Sarkar, Somnath; Frazier, Richard

    2008-01-01

    Although many science students perform hands-on activities as inquiry exercises, such activities sometimes remain disconnected in the student's mind and fail to nurture a deeper understanding of methods of science and the role these methods play in scientific inquiry. Students may be able to reiterate the steps of the standard "scientific…

  14. An Inquiry-Based Science Activity Centred on the Effects of Climate Change on Ocean Ecosystems

    ERIC Educational Resources Information Center

    Boaventura, Diana; Guilherme, Elsa; Faria, Cláudia

    2016-01-01

    We propose an inquiry-based science activity centred on the effects of climate change on ocean ecosystems. This activity can be used to improve acquisition of knowledge on the effects of climate change and to promote inquiry skills, such as researching, reading and selecting relevant information, identifying a problem, focusing on a research…

  15. Supporting Inquiry-based Earth System Science Instruction with Middle and High School Earth Science Teachers

    NASA Astrophysics Data System (ADS)

    Finkel, L.; Varner, R.; Froburg, E.; Smith, M.; Graham, K.; Hale, S.; Laura, G.; Brown, D.; Bryce, J.; Darwish, A.; Furman, T.; Johnson, J.; Porter, W.; von Damm, K.

    2007-12-01

    The Transforming Earth System Science Education (TESSE) project, a partnership between faculty at the University of New Hampshire, Pennsylvania State University, Elizabeth City State University and Dillard University, is designed to enrich the professional development of in-service and pre-service Earth science teachers. One goal of this effort is to help teachers use an inquiry-based approach to teaching Earth system science in their classrooms. As a part of the TESSE project, 42 pre-service and in-service teachers participated in an intensive two-week summer institute at UNH taught by Earth scientists and science educators from TESSE partnership institutions. The institute included instruction about a range of Earth science system topics as well as an introduction to teaching Earth science using an inquiry-based approach. In addition to providing teachers with information about inquiry-based science teaching in the form of sample lesson plans and opportunities to revise traditional lessons and laboratory exercises to make them more inquiry-based, TESSE instructors modeled an inquiry- based approach in their own teaching as much as possible. By the end of the Institute participants had developed lesson plans, units, or year-long course overviews in which they were expected to explain the ways in which they would include an inquiry-based approach in their Earth science teaching over the course of the school year. As a part of the project, graduate fellows (graduate students in the earth sciences) will work with classroom teachers during the academic year to support their implementation of these plans as well as to assist them in developing a more comprehensive inquiry-based approach in the classroom.

  16. Teacher Discourse Strategies Used in Kindergarten Inquiry-Based Science Learning

    ERIC Educational Resources Information Center

    Harris, Karleah; Crabbe, Jordan Jimmy; Harris, Charlene

    2017-01-01

    This study examines teacher discourse strategies used in kindergarten inquiry-based science learning as part of the Scientific Literacy Project (SLP) (Mantzicopoulos, Patrick & Samarapungavan, 2005). Four public kindergarten science classrooms were chosen to implement science teaching strategies using a guided-inquiry approach. Data were…

  17. Differentiated Science Inquiry

    ERIC Educational Resources Information Center

    Llewellyn, Douglas

    2010-01-01

    Given that each child learns differently, it makes sense that one type of science instruction does not fit all. Best-selling author Douglas Llewellyn gives teachers standards-based strategies for differentiating inquiry-based science instruction to more effectively meet the needs of all students. This book takes the concept of inquiry-based…

  18. Deaf, Hard-of-Hearing, and Hearing Signing Undergraduates' Attitudes toward Science in Inquiry-Based Biology Laboratory Classes.

    PubMed

    Gormally, Cara

    2017-01-01

    For science learning to be successful, students must develop attitudes toward support future engagement with challenging social issues related to science. This is especially important for increasing participation of students from underrepresented populations. This study investigated how participation in inquiry-based biology laboratory classes affected students' attitudes toward science, focusing on deaf, hard-of-hearing, and hearing signing students in bilingual learning environments (i.e., taught in American Sign Language and English). Analysis of reflection assignments and interviews revealed that the majority of students developed positive attitudes toward science and scientific attitudes after participating in inquiry-based biology laboratory classes. Attitudinal growth appears to be driven by student value of laboratory activities, repeated direct engagement with scientific inquiry, and peer collaboration. Students perceived that hands-on experimentation involving peer collaboration and a positive, welcoming learning environment were key features of inquiry-based laboratories, affording attitudinal growth. Students who did not perceive biology as useful for their majors, careers, or lives did not develop positive attitudes. Students highlighted the importance of the climate of the learning environment for encouraging student contribution and noted both the benefits and pitfalls of teamwork. Informed by students' characterizations of their learning experiences, recommendations are made for inquiry-based learning in college biology. © 2017 C. Gormally. CBE—Life Sciences Education © 2017 The American Society for Cell Biology. This article is distributed by The American Society for Cell Biology under license from the author(s). It is available to the public under an Attribution–Noncommercial–Share Alike 3.0 Unported Creative Commons License (http://creativecommons.org/licenses/by-nc-sa/3.0).

  19. Using inquiry-based instructional strategies in third-grade science

    NASA Astrophysics Data System (ADS)

    Harris, Fanicia D.

    The purpose of the study was to determine if the use of inquiry-based instructional strategies as compared to traditional instructional strategies would increase third-grade students' achievement in science, based on the pretest/posttest of the school system and the Georgia Criterion-Referenced Competency Test (CRCT). Inquiry-based instruction, presented students with a question, an observation, a data set, or a hypothesis for problem solving such as scientists use when working in real-world situations. This descriptive research employed a quantitative strategy using a pretest/posttest control group design. The research compared the science academic achievement levels of one Grade 3 class [N=14] exposed to a teacher's inquiry-based instructional strategies as compared to one Grade 3 class [ N=18] exposed to a teacher's traditional instructional strategies. The study compared the science academic performance levels of third-grade students as measured by pretest/posttest mean scores from the school system-based assessment and the Georgia CRCT. Four research hypotheses were examined. Based on the overall findings from this study, both the experimental group and the control group significantly increased their mean scores from the pretests to the posttests. The amount of gain from the pretest to the posttest was significantly greater for the experimental group than the control group for pretest/posttest 1 [t(12) = 8.79, p < .01] and pretest/posttest 2 [t(12) = 9.40, p < .01]. The experimental group significantly outperformed the control group with regard to their mean number of items answered correctly on the life sciences test [t(27) = -1.95, p = .06]. Finally, the control group did not outperform the experimental group on any of the comparisons made throughout this study. The results of this study provide empirical support for the effectiveness of the use of inquiry-based learning strategies, given that the experimental group outperformed the control group on all four

  20. Inquiry-Based Learning in China: Lesson Learned for School Science Practices

    ERIC Educational Resources Information Center

    Nuangchalerm, Prasart

    2014-01-01

    Inquiry-based learning is widely considered for science education in this era. This study aims to explore inquiry-based learning in teacher preparation program and the findings will help us to understanding what inquiry-based classroom is and how inquiry-based learning are. Data were collected by qualitative methods; classroom observation,…

  1. Hands-On Optics science camps and clubs

    NASA Astrophysics Data System (ADS)

    Walker, Constance E.; Sparks, Robert T.; Pompea, Stephen M.

    2007-06-01

    Hands-On Optics (HOO) is a National Science Foundation funded program to bring optics education to traditionally underserved middle school students. We have developed six modules that teach students optics concepts through hands-on, inquiry-based activities. The modules have been used extensively in after-school and non-school settings such as in the Boys and Girls Clubs in South Tucson, Arizona and the Boys and Girls Club in Sells, Arizona on the Tohono O'odham reservation. We will describe these programs and the lessons learned in these settings. These modules also form the basis for a week-long optics camp that provides students with approximately 40 hours of instruction time in optics. We will provide an outline of the activities and concepts covered in the camp. These camps provide an ideal way to encourage interest in optics before career choices are developed.

  2. Meaningful Science: Teachers Doing Inquiry + Teaching Science.

    ERIC Educational Resources Information Center

    Kielborn, Terrie L., Ed.; Gilmer, Penny J., Ed.

    This publication relates the experiences of seven K-8 teachers who participated in a science education doctoral cohort group during which each of the teachers engaged in a different real-world scientific research project. The idea was to immerse teachers in scientific research so that they could experience inquiry in science first-hand and become…

  3. Bridging Inquiry-Based Science and Constructionism: Exploring the Alignment between Students Tinkering with Code of Computational Models and Goals of Inquiry

    ERIC Educational Resources Information Center

    Wagh, Aditi; Cook-Whitt, Kate; Wilensky, Uri

    2017-01-01

    Research on the design of learning environments for K-12 science education has been informed by two bodies of literature: inquiry-based science and Constructionism. Inquiry-based science has emphasized engagement in activities that reflect authentic scientific practices. Constructionism has focused on designing intuitively accessible authoring…

  4. Inquiry-Based Science and Technology Enrichment Program: Green Earth Enhanced with Inquiry and Technology

    NASA Astrophysics Data System (ADS)

    Kim, Hanna

    2011-12-01

    This study investigated the effectiveness of a guided inquiry integrated with technology, in terms of female middle-school students' attitudes toward science/scientists and content knowledge regarding selective science concepts (e.g., Greenhouse Effect, Air/Water Quality, Alternative Energy, and Human Health). Thirty-five female students who were entering eighth grade attended an intensive, 1-week Inquiry-Based Science and Technology Enrichment Program which used a main theme, "Green Earth Enhanced with Inquiry and Technology." We used pre- and post-attitude surveys, pre- and post-science content knowledge tests, and selective interviews to collect data and measure changes in students' attitudes and content knowledge. The study results indicated that at the post-intervention measures, participants significantly improved their attitudes toward science and science-related careers and increased their content knowledge of selected science concepts ( p < .05).

  5. Primary Teachers' Reflections on Inquiry- and Context-Based Science Education

    NASA Astrophysics Data System (ADS)

    Walan, Susanne; Mc Ewen, Birgitta

    2017-04-01

    Inquiry- and context-based teaching strategies have been proven to stimulate and motivate students' interests in learning science. In this study, 12 teachers reflected on these strategies after using them in primary schools. The teachers participated in a continuous professional development (CPD) programme. During the programme, they were also introduced to a teaching model from a European project, where inquiry- and context-based education (IC-BaSE) strategies were fused. The research question related to teachers' reflections on these teaching strategies, and whether they found the model to be useful in primary schools after testing it with their students. Data collection was performed during the CPD programme and consisted of audio-recorded group discussions, individual portfolios and field notes collected by researchers. Results showed that compared with using only one instructional strategy, teachers found the new teaching model to be a useful complement. However, their discussions also showed that they did not reflect on choices of strategies or purposes and aims relating to students' understanding, or the content to be taught. Before the CPD programme, teachers discussed the use of inquiry mainly from the aspect that students enjoy practical work. After the programme, they identified additional reasons for using inquiry and discussed the importance of knowing why inquiry is performed. However, to develop teachers' knowledge of instructional strategies as well as purposes for using certain strategies, there is need for further investigations among primary school teachers.

  6. Sustaining inquiry-based teaching methods in the middle school science classroom

    NASA Astrophysics Data System (ADS)

    Murphy, Amy Fowler

    This dissertation used a combination of case study and phenomenological research methods to investigate how individual teachers of middle school science in the Alabama Math, Science, and Technology Initiative (AMSTI) program sustain their use of inquiry-based methods of teaching and learning. While the overall context for the cases was the AMSTI program, each of the four teacher participants in this study had a unique, individual context as well. The researcher collected data through a series of interviews, multiple-day observations, and curricular materials. The interview data was analyzed to develop a textural, structural, and composite description of the phenomenon. The Reformed Teaching Observation Protocol (RTOP) was used along with the Assesing Inquiry Potential (AIP) questionnaire to determine the level of inquiry-based instruction occuring in the participants classrooms. Analysis of the RTOP data and AIP data indicated all of the participants utilized inquiry-based methods in their classrooms during their observed lessons. The AIP data also indicated the level of inquiry in the AMSTI curricular materials utilized by the participants during the observations was structured inquiry. The findings from the interview data suggested the ability of the participants to sustain their use of structured inquiry was influenced by their experiences with, beliefs about, and understandings of inquiry. This study contributed to the literature by supporting existing studies regarding the influence of teachers' experiences, beliefs, and understandings of inquiry on their classroom practices. The inquiry approach stressed in current reforms in science education targets content knowledge, skills, and processes needed in a future scientifically literate citizenry.

  7. Connecting Inquiry and Values in Science Education. An Approach Based on John Dewey's Philosophy

    NASA Astrophysics Data System (ADS)

    Lee, Eun Ah; Brown, Matthew J.

    2018-03-01

    Conducting scientific inquiry is expected to help students make informed decisions; however, how exactly it can help is rarely explained in science education standards. According to classroom studies, inquiry that students conduct in science classes seems to have little effect on their decision-making. Predetermined values play a large role in students' decision-making, but students do not explore these values or evaluate whether they are appropriate to the particular issue they are deciding, and they often ignore relevant scientific information. We explore how to connect inquiry and values, and how this connection can contribute to informed decision-making based on John Dewey's philosophy. Dewey argues that scientific inquiry should include value judgments and that conducting inquiry can improve the ability to make good value judgments. Value judgment is essential to informed, rational decision-making, and Dewey's ideas can explain how conducting inquiry can contribute to make an informed decision through value judgment. According to Dewey, each value judgment during inquiry is a practical judgment guiding action, and students can improve their value judgments by evaluating their actions during scientific inquiry. Thus, we suggest that students need an opportunity to explore values through scientific inquiry and that practicing value judgment will help informed decision-makings.

  8. Differential Performance by English Language Learners on an Inquiry-Based Science Assessment

    NASA Astrophysics Data System (ADS)

    Turkan, Sultan; Liu, Ou Lydia

    2012-10-01

    The performance of English language learners (ELLs) has been a concern given the rapidly changing demographics in US K-12 education. This study aimed to examine whether students' English language status has an impact on their inquiry science performance. Differential item functioning (DIF) analysis was conducted with regard to ELL status on an inquiry-based science assessment, using a multifaceted Rasch DIF model. A total of 1,396 seventh- and eighth-grade students took the science test, including 313 ELL students. The results showed that, overall, non-ELLs significantly outperformed ELLs. Of the four items that showed DIF, three favored non-ELLs while one favored ELLs. The item that favored ELLs provided a graphic representation of a science concept within a family context. There is some evidence that constructed-response items may help ELLs articulate scientific reasoning using their own words. Assessment developers and teachers should pay attention to the possible interaction between linguistic challenges and science content when designing assessment for and providing instruction to ELLs.

  9. Inquiry-based science: Preparing human capital for the 21 st century and beyond

    NASA Astrophysics Data System (ADS)

    Boyd, Yolanda F.

    High school students need to graduate with 21st century skills to be college and career ready and to be competitive in a global marketplace. A positive trend exists favoring inquiry-based instructional practices that purportedly not only increase science content knowledge, but also 21 st century skill development. A suburban school district, Areal Township (pseudonym), implemented an inquiry-based science program based on this trend; however, the degree to which the program has been meeting students' needs for science content knowledge and 21st century skills development has not been explored. If we were to understand the process by which an inquiry-based science program contributes to attainment of science content and 21st century skill development, then we might be able to improve the delivery of the program and provide a model to be adopted by other schools. Therefore, the purpose of this descriptive case study was to engage with multiple stakeholders to formatively assess the successes and obstacles for helping students to achieve science content and 21st century skills through an inquiry-based curriculum. Using constructivist theory, this study aimed to address the following central research question: How does the implementation of an inquiry-based program within the Areal Township School District (ATSD) support the acquisition of science content knowledge and the development of 21st century skills? This study found that 21st century skill development is embedded in inquiry-based instructional practices. These practices engage students in meaningful learning that spirals in content and is measured using diverse assessments. Time to do inquiry-based science and adequate time for collegial collaboration were obstacles for educators in grades K-5. Other obstacles were turnkey professional development and a lack of ongoing program monitoring, as a result of imposed extrinsic factors from state and federal mandates. Lastly, it was discovered that not all parts of

  10. The effect of inquiry-based learning experiences on adolescents' science-related career aspiration in the Finnish context

    NASA Astrophysics Data System (ADS)

    Kang, Jingoo; Keinonen, Tuula

    2017-08-01

    Much research has been conducted to investigate the effects of inquiry-based learning on students' attitude towards science and future involvement in the science field, but few of them conducted in-depth studies including young learners' socio-cognitive background to explore mechanisms which explain how inquiry experiences influence on career choices. Hence, the aim of this study was to investigate in what ways and to what extent the inquiry learning experiences in school science affect students' future career orientation in the context of socio-cognitive mechanisms based on socio-cognitive career theory(SCCT). For the purpose, Programme for International Student Assessment (PISA) 2015 data were used focusing on science literacy, and the sample of Finnish 15-year-old students (N = 5782) was analysed by structural equation modelling with the hypothesised Inquiry-SCCT model. The results of the study showed that inquiry learning experiences were indicated as a positive predictor for the students' career aspiration, and most of its effects were mediated by outcome expectations. Indeed, although self-efficacy and interest in learning science indicated positive correlations with future aspiration, outcome expectation presented the highest correlation with the science-related career. Gender differences were found in the model, but girls indicated higher outcome expectation and career aspiration than boys in Finland.

  11. Inquiry-Based Science: Turning Teachable Moments into Learnable Moments

    ERIC Educational Resources Information Center

    Haug, Berit S.

    2014-01-01

    This study examines how an inquiry-based approach to teaching and learning creates teachable moments that can foster conceptual understanding in students, and how teachers capitalize upon these moments. Six elementary school teachers were videotaped as they implemented an integrated inquiry-based science and literacy curriculum in their…

  12. Development of interest in science and interest in teaching elementary science: Influence of informal, school, and inquiry methods course experiences

    NASA Astrophysics Data System (ADS)

    Bulunuz, Mizrap

    Inquiry-based science instruction is a major goal of science education reform. However, there is little research examining how preservice elementary teachers might be motivated to teach through inquiry. This quantitative study was designed to examine the role of background experiences and an inquiry science methods course on interest in science and interest in teaching science. The course included many activities and assignments at varying levels of inquiry, designed to teach content and inquiry methods and to model effective teaching. The study involved analyses of surveys completed by students in the course on their experiences with science before, during, and at the end of the course. The following questions guided the design of this study and analysis of the data: (1) What science background experiences (school, home, and informal education) do participants have and how do those experiences affect initial interest in science? (2) Among the hands-on activities in the methods course, is there a relationship between level of inquiry of the activity and the motivational quality (interesting, fun, and learning) of the activity? (3) Does the course affect participants' interest and attitude toward science? (4) What aspects of the course contribute to participants' interest in teaching science and choice to teach science? Descriptive and inferential analysis of a background survey revealed that participants with high and low initial interest in science differed significantly on remembering about elementary school science and involvement in science related activities in childhood/youth. Analysis of daily ratings of each hands-on activity on motivational qualities (fun, interest, and learning) indicated that there were significant differences in motivational quality of the activities by level of inquiry with higher levels of inquiry rated more positively. Pre/post surveys indicated that participants increased in interest in science and a number of variables reflecting

  13. Investigating Teachers' Beliefs in the Implementation of Science Inquiry and Science Fair in Three Boston High Schools

    NASA Astrophysics Data System (ADS)

    De Barros Miller, Anne Marie

    In previous decades, inquiry has been the focus of science education reform in the United States. This study sought to investigate how teachers' beliefs affect their implementation of inquiry science and science fair. It was hypothesized that science teachers' beliefs about inquiry science and science fair are predictive of their implementation of such strategies. A case study approach and semi-structured interviews were employed to collect the data, and an original thematic approach was created to analyze the data. Findings seem to suggest that science teachers who embrace science inquiry and science fair believe these practices enhance students' performance, facilitate their learning experience, and allow them to take ownership of their learning. However, results also suggest that teachers who do not fully embrace inquiry science as a central teaching strategy tend to believe that it is not aligned with standardized tests and requires higher cognitive skills from students. Overall, the study seems to indicate that when inquiry is presented as a prescribed teaching approach, this elicits strong negative feelings/attitudes amongst science teachers, leading them not only to resist inquiry as a teaching tool, but also dissuading them from participating in science fair. Additionally, the findings suggest that such feelings among teachers could place the school at risk of not implementing inquiry science and science fair. In conclusion, the study reveals that science inquiry and science fair should not be prescribed to teachers as a top-down, mandatory approach for teaching science. In addition, the findings suggest that adequate teacher training in content knowledge and pedagogy in science inquiry and science fair should be encouraged, as this could help build a culture of science inquiry and implementation amongst teachers. This should go hand-in-hand with offering mentoring to science teachers new to inquiry and science fair for 2-5 years.

  14. Inquiry-Based Science Instruction in High School Biology Courses: A Multiple Case Study

    ERIC Educational Resources Information Center

    Aso, Eze

    2014-01-01

    A lack of research exists about how secondary school science teachers use inquiry-based instruction to improve student learning. The purpose of this qualitative study was to explore how science teachers used inquiry-based instruction to improve student learning in high school biology courses. The conceptual framework was based on Banchi and Bell's…

  15. The Effect on Elementary Science Education Based on Student's Pre-Inquiry

    ERIC Educational Resources Information Center

    Kang, Houn Tae; Noh, Suk Goo

    2017-01-01

    In this research, after extracting the pre-inquiries (student-level question) for which students had curiosity in the elementary science and analyzing their correlation with the elementary science curriculum, highly correlated inquiries (meaningful pre-inquiries) were selected and applied in class. After organizing an experiment group and a…

  16. The Proof of the Pudding?: A Case Study of an "At-Risk" Design-Based Inquiry Science Curriculum

    NASA Astrophysics Data System (ADS)

    Chue, Shien; Lee, Yew-Jin

    2013-12-01

    When students collaboratively design and build artifacts that require relevant understanding and application of science, many aspects of scientific literacy are developed. Design-based inquiry (DBI) is one such pedagogy that can serve these desired goals of science education well. Focusing on a Projectile Science curriculum previously found to be implemented with satisfactory fidelity, we investigate the many hidden challenges when using DBI with Grade 8 students from one school in Singapore. A case study method was used to analyze video recordings of DBI lessons conducted over 10 weeks, project presentations, and interviews to ascertain the opportunities for developing scientific literacy among participants. One critical factor that hindered learning was task selection by teachers, which emphasized generic scientific process skills over more important cognitive and epistemic learning goals. Teachers and students were also jointly engaged in forms of inquiry that underscored artifact completion over deeper conceptual and epistemic understanding of science. Our research surfaced two other confounding factors that undermined the curriculum; unanticipated teacher effects and the underestimation of the complexity of DBI and of inquiry science in general. Thus, even though motivated or experienced teachers can implement an inquiry science curriculum with good fidelity and enjoy school-wide support, these by themselves will not guarantee deep learning of scientific literacy in DBI. Recommendations are made for navigating the hands- and minds-on aspects of learning science that is an asset as well as inherent danger during DBI teaching.

  17. Determinants of Benin elementary school science teachers' orientation toward inquiry-based instructional practices

    NASA Astrophysics Data System (ADS)

    Gado, Issaou

    The Republic of Benin (West Africa) undertook a nationwide curriculum reform that put an emphasis on inquiry-based instructional practices. Little, if any, research has been conducted to explore factors that could be related to teachers' orientation toward inquiry instructional practices. The purpose of this research study was to investigate factors and concerns that determine Benin elementary school teachers' orientation toward the use of inquiry-based instruction in the teaching of science. The study followed a naturalistic inquiry methodology combining a correlational ex post facto design and an observational case-study design. The theory of Planned Behavior was the conceptual framework used to design the study. Two hundred (N = 200) elementary school teachers and three (n = 3) case study participants were purposively selected. Data was gathered via the Revised Science Attitude Scale (Thompson & Shrigley, 1986), the Science Teachers' Ideological Preference Scale (Jones & Harty, 1978), open-ended questions, interviews, and classroom observations using audiorecorders, videorecorders, and the researcher-contextualized version of the Observational System for the Analysis of Classroom Instruction (Hough, 1966). Qualitative and quantitative data provided a deeper understanding of participants' responses. Quantitative measures indicated that Benin elementary school teachers have positive attitudes toward school science, significant positive orientation toward both inquiry-based instruction and traditional non inquiry-based instruction, and higher orientation toward inquiry-based instruction than traditional non inquiry-based instruction. Attitude toward handling materials for investigations was found to significantly contribute to the prediction of participants' inquiry orientation. Qualitative analyses of participants' responses indicated that the expectations of educational leaders, individual motivation to comply with the program, a perceived control of the

  18. Formative Assessment to Support Students' Competences in Inquiry-Based Science Education

    ERIC Educational Resources Information Center

    Grob, Regula; Holmeier, Monika; Labudde, Peter

    2017-01-01

    Inquiry-based education has been part of innovative science teaching for the last few decades. With the competence orientation now underlying many national curricula, one of the emerging questions is how the development of student competences can be fostered in the context of inquiry-based science education. One approach to supporting students in…

  19. Demonstrating Inquiry-Based Teaching Competencies in the Life Sciences--Part 2

    ERIC Educational Resources Information Center

    Thompson, Stephen

    2007-01-01

    This set of botany demonstrations is a continuation of the inquiry-based lecture activities that provide realistic connections to the history and nature of science and employ technology in data collection. The demonstrations also provide examples of inquiry-based teaching practices in the life sciences. (Contains 5 figures.) [For Part 1, see…

  20. Inquiry-Based Instruction and Teaching about Nature of Science: Are They Happening?

    ERIC Educational Resources Information Center

    Capps, Daniel K.; Crawford, Barbara A.

    2013-01-01

    Anecdotal accounts from science educators suggest that few teachers are teaching science as inquiry. However, there is little empirical evidence to support this claim. This study aimed to provide evidence-based documentation of the state-of-use of inquiry-based instruction and explicit instruction about nature of science (NOS). We examined the…

  1. Impact on Scientific Inquiry of a Backwards-Faded Scaffolding Approach to Inquiry-based Space Science for Non-Science Majoring Undergraduates

    NASA Astrophysics Data System (ADS)

    Lyons, D. J.; Slater, S. J.; Slater, T. F.

    2011-12-01

    Exploring the impact of a novel inquiry-based earth and space science laboratory curriculum designed using the Backwards Faded Scaffolding inquiry teaching framework on non-science majoring undergraduate students' views of the nature of scientific inquiry (NOSI), this study focused on two aspects of NOSI: The Distinction between Data and Evidence (DvE), and The Multiple Methods of Science (MMS). In the first stage, student participant views of NOSI were measured using the VOSI-4 research instrument before and after the intervention. In the second stage, the quantitative results were used to strategically design a qualitative investigation, in which the four lab instructors were interviewed about their observations of how the student participants interacted with the intervention curriculum as compared to traditional lab activities, as well as their suggestions as to how the curriculum may or may not have contributed to the results of the first stage. These interviews were summarized and analyzed for common themes as to how the intervention curriculum influenced the students' understandings of the two aspect of NOSI. According to the results of a Wilcoxon Signed Rank test, there was a significant shift in the distributions of both samples toward a more informed understanding of DvE after the intervention curriculum was administered, while there was no significant change in either direction for understanding of MMS. The results of the instructor interview analysis suggested that the intervention curriculum provided multiple opportunities for students to evaluate and determine the relevance of data in the context of producing evidence-based conclusions directly related to specific research questions, thereby supporting the development of more informed views of DvE.

  2. The Impact of Hands-On-Approach on Student Academic Performance in Basic Science and Mathematics

    ERIC Educational Resources Information Center

    Ekwueme, Cecilia O.; Ekon, Esther E.; Ezenwa-Nebife, Dorothy C.

    2015-01-01

    Children can learn mathematics and sciences effectively even before being exposed to formal school curriculum if basic Mathematics and Sciences concepts are communicated to them early using activity oriented (Hands-on) method of teaching. Mathematics and Science are practical and activity oriented and can best be learnt through inquiry (Okebukola…

  3. The Effect of Inquiry-Based Learning Experiences on Adolescents' Science-Related Career Aspiration in the Finnish Context

    ERIC Educational Resources Information Center

    Kang, Jingoo; Keinonen, Tuula

    2017-01-01

    Much research has been conducted to investigate the effects of inquiry-based learning on students' attitude towards science and future involvement in the science field, but few of them conducted in-depth studies including young learners' socio-cognitive background to explore mechanisms which explain how inquiry experiences influence on career…

  4. An Analysis of Pre-Service Elementary Teachers' Understanding of Inquiry-Based Science Teaching

    ERIC Educational Resources Information Center

    Lee, Carole K.; Shea, Marilyn

    2016-01-01

    This study examines how pre-service elementary teachers (PSETs) view inquiry-based science learning and teaching, and how the science methods course builds their confidence to teach inquiry science. Most PSETs think that inquiry is asking students questions rather than a formal set of pedagogical tools. In the present study, three groups of PSETs…

  5. Primary teachers conducting inquiry projects: effects on attitudes towards teaching science and conducting inquiry

    NASA Astrophysics Data System (ADS)

    van Aalderen-Smeets, Sandra I.; Walma van der Molen, Juliette H.; van Hest, Erna G. W. C. M.; Poortman, Cindy

    2017-01-01

    This study used an experimental, pretest-posttest control group design to investigate whether participation in a large-scale inquiry project would improve primary teachers' attitudes towards teaching science and towards conducting inquiry. The inquiry project positively affected several elements of teachers' attitudes. Teachers felt less anxious about teaching science and felt less dependent on contextual factors compared to the control group. With regard to attitude towards conducting inquiry, teachers felt less anxious and more able to conduct an inquiry project. There were no effects on other attitude components, such as self-efficacy beliefs or relevance beliefs, or on self-reported science teaching behaviour. These results indicate that practitioner research may have a partially positive effect on teachers' attitudes, but that it may not be sufficient to fully change primary teachers' attitudes and their actual science teaching behaviour. In comparison, a previous study showed that attitude-focused professional development in science education has a more profound impact on primary teachers' attitudes and science teaching behaviour. In our view, future interventions aiming to stimulate science teaching should combine both approaches, an explicit focus on attitude change together with familiarisation with inquiry, in order to improve primary teachers' attitudes and classroom practices.

  6. An investigation into the factors that motivate teachers to implement inquiry in the science classroom

    NASA Astrophysics Data System (ADS)

    Robbins, Beth Schieber

    Inquiry-based science teaching is an inductive approach to science instruction that originated in constructivist learning theory and requires students to be active participants in their own learning process. In an inquiry-based classroom, students actively construct their knowledge of science through hands-on, engaged practices and inquiry-based approaches. Inquiry-based teaching stands in contrast to more traditional forms of teaching that see students as empty vessels to be filled by the teacher with rote facts. Despite calls from the NSF, the NRC, and the AAAS for more inquiry-based approaches to teaching science, research has shown that many teachers still do not use inquiry-based approaches. Teachers have cited difficulties including lack of time, high-stakes testing, a shortage of materials, problems with school-wide logistics, rigid science curricula, student passivity, and lack of prerequisite skills. The objective of this mixed-methods study was to examine to what extent specific, identifiable personality traits contribute to the likelihood that a teacher will use inquiry in the science classroom, and what factors figure predominantly as teachers' reasons for implementing inquiry. The findings of the study showed that the null hypotheses were not rejected. However, reduced conscientiousness and increased openness may be significant in indicating why teachers use inquiry-based teaching methods and avenues for further research. In addition, the qualitative results aligned with previous findings that showed that lack of resources (e.g., time and money) and peer support act as powerful barriers to implementing inquiry-based teaching. Inquiry teachers are flexible, come to teaching as a second or third career, and their classrooms can be characterized as chaotic, fun, and conducive to learning through engagement. The study suggests changes in practice among administrators and teachers. With adjustments in methods and survey instruments, additional research

  7. The influence of the Inquiry Institute on elementary teachers' perceptions of inquiry learning in the science classroom

    NASA Astrophysics Data System (ADS)

    Williams-Rossi, Dara

    Despite the positive outcomes for inquiry-based science education and recommendations from national and state standards, many teachers continue to rely upon more traditional methods of instruction This causal-comparative study was designed to determine the effects of the Inquiry Institute, a professional development program that is intended to strengthen science teachers' pedagogical knowledge and provide practice with inquiry methods based from a constructivist approach. This study will provide a understanding of a cause and effect relationship within three levels of the independent variable---length of participation in the Inquiry Institute (zero, three, or six days)---to determine whether or not the three groups differ on the dependent variables---beliefs, implementation, and barriers. Quantitative data were collected with the Science Inquiry Survey, a researcher-developed instrument designed to also ascertain qualitative information with the use of open-ended survey items. One-way ANOVAs were applied to the data to test for a significant difference in the means of the three groups. The findings of this study indicate that lengthier professional development in the Inquiry Institute holds the most benefits for the participants.

  8. Integrating Inquiry-Based Science and Education Methods Courses in a "Science Semester" for Future Elementary Teachers

    NASA Astrophysics Data System (ADS)

    Madsen, J.; Fifield, S.; Allen, D.; Brickhouse, N.; Dagher, Z.; Ford, D.; Shipman, H.

    2001-05-01

    In this NSF-funded project we will adapt problem-based learning (PBL) and other inquiry-based approaches to create an integrated science and education methods curriculum ("science semester") for elementary teacher education majors. Our goal is to foster integrated understandings of science and pedagogy that future elementary teachers need to effectively use inquiry-based approaches in their classrooms. This project responds to calls to improve science education for all students by making preservice teachers' experiences in undergraduate science courses more consistent with reforms at the K-12 level. The involved faculty teach three science courses (biology, earth science, physical science) and an elementary science education methods course that are degree requirements for elementary teacher education majors. Presently, students take the courses in variable sequences and at widely scattered times. Too many students fail to appreciate the value of science courses to their future careers as teachers, and when they reach the methods course in the junior year they often retain little of the science content studied earlier. These episodic encounters with science make it difficult for students to learn the content, and to translate their understandings of science into effective, inquiry-based teaching strategies. To encourage integrated understandings of science concepts and pedagogy we will coordinate the science and methods courses in a junior-year science semester. Traditional subject matter boundaries will be crossed to stress shared themes that teachers must understand to teach standards-based elementary science. We will adapt exemplary approaches that support both learning science and learning how to teach science. Students will work collaboratively on multidisciplinary PBL activities that place science concepts in authentic contexts and build learning skills. "Lecture" meetings will be large group active learning sessions that help students understand difficult

  9. Improving Student Science Literacy through an Inquiry-Based, Integrated Science Curriculum and Review of Science Media.

    ERIC Educational Resources Information Center

    Bardeen, Karen

    This project studied the effects of an inquiry-based, integrated science course on student science literacy. The course was aligned to state and national science standards. The target population consisted of sophomore, junior, and senior high-school students in an upper-middle class suburb of a major Midwestern city. Questionnaires, tests, and…

  10. The Effect of a Collaborative Mentoring Program on Beginning Science Teachers' Inquiry-Based Teaching Practice

    ERIC Educational Resources Information Center

    Nam, Jeonghee; Seung, Eulsun; Go, MunSuk

    2013-01-01

    This study investigated how a collaborative mentoring program influenced beginning science teachers' inquiry-based teaching and their reflection on practice. The one-year program consisted of five one-on-one mentoring meetings, weekly science education seminars, weekly mentoring group discussions, and self-evaluation activities. The participants…

  11. The Invisible Hand of Inquiry-Based Learning

    ERIC Educational Resources Information Center

    Bennett, Mark

    2015-01-01

    The key elements of learning in a classroom remain largely invisible. Teachers cannot expect every student to learn to their fullest capacity; yet they can augment learning within a classroom through inquiry-based learning. In this article, the author describes inquiry-based learning and how to begin this process in the classroom.

  12. The impact of inquiry-based learning on the critical thinking dispositions of pre-service science teachers

    NASA Astrophysics Data System (ADS)

    Arsal, Zeki

    2017-07-01

    In the study, the impact of inquiry-based learning on pre-service teachers' critical thinking dispositions was investigated. The sample of the study comprised of 56 pre-service teachers in the science education teacher education programme at the public university in the north of Turkey. In the study, quasi-experimental design with an experimental and a control group were applied to find out the impact of inquiry-based learning on the critical thinking dispositions of the pre-service teachers in the teacher education programme. The results showed that the pre-service teachers in the experimental group did not show statistically significant greater progress in terms of critical thinking dispositions than those in the control group. Teacher educators who are responsible for pedagogical courses in the teacher education programme should consider that the inquiry-based learning could not be effective method to improve pre-service teachers' critical thinking dispositions. The results are discussed in relation to potential impact on science teacher education and implications for future research.

  13. Inquiry based learning with a virtual microscope

    NASA Astrophysics Data System (ADS)

    Kelley, S. P.; Sharples, M.; Tindle, A.; Villasclaras-Fernández, E.

    2012-12-01

    As part of newly funded initiative, the Wolfson OpenScience Laboratory, we are linking a tool for inquiry based learning, nQuire (http://www.nquire.org.uk) with the virtual microscope for Earth science (http://www.virtualmicroscope.co.uk) to allow students to undertake projects and gain from inquiry based study thin sections of rocks without the need for a laboratory with expensive petrological microscopes. The Virtual Microscope (VM) was developed for undergraduate teaching of petrology and geoscience, allowing students to explore rock hand specimens and thin sections in a browser window. The system is based on HTML5 application and allows students to scan and zoom the rocks in a browser window, view in ppl and xpl conditions, and rotate specific areas to view birefringence and pleochroism. Importantly the VM allows students to gain access to rare specimens such as Moon rocks that might be too precious to suffer loss or damage. Experimentation with such specimens can inspire the learners' interest in science and allows them to investigate relevant science questions. Yet it is challenging for learners to engage in scientific processes, as they may lack scientific investigation skills or have problems in planning their activities; for teachers, managing inquiry activities is a demanding task (Quintana et al., 2004). To facilitate the realization of inquiry activities, the VM is being integrated with the nQuire tool. nQuire is a web tool that guides and supports students through the inquiry process (Mulholland et al., 2011). Learners are encouraged to construct their own personally relevant hypothesis, pose scientific questions, and plan the method to answer them. Then, the system enables users to collect and analyze data, and share their conclusions. Teachers can monitor their students' progress through inquiries, and give them access to new parts of inquiries as they advance. By means of the integration of nQuire and the VM, inquiries that involve collecting data

  14. Designing a Web-Based Science Learning Environment for Model-Based Collaborative Inquiry

    NASA Astrophysics Data System (ADS)

    Sun, Daner; Looi, Chee-Kit

    2013-02-01

    The paper traces a research process in the design and development of a science learning environment called WiMVT (web-based inquirer with modeling and visualization technology). The WiMVT system is designed to help secondary school students build a sophisticated understanding of scientific conceptions, and the science inquiry process, as well as develop critical learning skills through model-based collaborative inquiry approach. It is intended to support collaborative inquiry, real-time social interaction, progressive modeling, and to provide multiple sources of scaffolding for students. We first discuss the theoretical underpinnings for synthesizing the WiMVT design framework, introduce the components and features of the system, and describe the proposed work flow of WiMVT instruction. We also elucidate our research approach that supports the development of the system. Finally, the findings of a pilot study are briefly presented to demonstrate of the potential for learning efficacy of the WiMVT implementation in science learning. Implications are drawn on how to improve the existing system, refine teaching strategies and provide feedback to researchers, designers and teachers. This pilot study informs designers like us on how to narrow the gap between the learning environment's intended design and its actual usage in the classroom.

  15. Inquiry-Based Laboratory Practices in a Science Teacher Training Program

    ERIC Educational Resources Information Center

    Yakar, Zeha; Baykara, Hatice

    2014-01-01

    In this study, the effects of inquiry-based learning practices on the scientific process skills, creative thinking, and attitudes towards science experiments of preservice science teachers have been analyzed. A non-experimental quantitative analysis method, the single-group pre test posttest design, has been used. In order to observe the…

  16. Inquiry-based science in the middle grades: Assessment of learning in urban systemic reform

    NASA Astrophysics Data System (ADS)

    Marx, Ronald W.; Blumenfeld, Phyllis C.; Krajcik, Joseph S.; Fishman, Barry; Soloway, Elliot; Geier, Robert; Tali Tal, Revital

    2004-12-01

    Science education standards established by American Association for the Advancement of Science (AAAS) and the National Research Council (NRC) urge less emphasis on memorizing scientific facts and more emphasis on students investigating the everyday world and developing deep understanding from their inquiries. These approaches to instruction challenge teachers and students, particularly urban students who often have additional challenges related to poverty. We report data on student learning spanning 3 years from a science education reform collaboration with the Detroit Public Schools. Data were collected from nearly 8,000 students who participated in inquiry-based and technology-infused curriculum units that were collaboratively developed by district personnel and staff from the University of Michigan as part of a larger, district-wide systemic reform effort in science education. The results show statistically significant increases on curriculum-based test scores for each year of participation. Moreover, the strength of the effects grew over the years, as evidenced by increasing effect size estimates across the years. The findings indicate that students who historically are low achievers in science can succeed in standards-based, inquiry science when curriculum is carefully developed and aligned with professional development and district policies. Additional longitudinal research on the development of student understanding over multiple inquiry projects, the progress of teacher enactment over time, and the effect of changes in the policy and administrative environment would further contribute to the intellectual and practical tools necessary to implement meaningful standards-based systemic reform in science.

  17. Supporting Inquiry in Science Classrooms with the Web

    ERIC Educational Resources Information Center

    Simons, Krista; Clark, Doug

    2005-01-01

    This paper focuses on Web-based science inquiry and five representative science learning environments. The discussion centers around features that sustain science inquiry, namely, data-driven investigation, modeling, collaboration, and scaffolding. From the perspective of these features five science learning environments are detailed: Whyville,…

  18. A Science Teacher's Wisdom of Practice in Teaching Inquiry-Based Oceanography.

    ERIC Educational Resources Information Center

    Nelson, Tamara Holmlund

    Inquiry-based research is recommended as a method for helping more students understand the nature of science as well as learn the substance of scientific knowledge, yet there is much to learn about how teachers might adapt inquiry for science teaching and what teachers need to know in order to do this. This case study of an exemplary teacher's…

  19. Preservice Elementary Teachers' Adaptation of Science Curriculum Materials for Inquiry-Based Elementary Science

    ERIC Educational Resources Information Center

    Forbes, Cory T.

    2011-01-01

    Curriculum materials are important resources with which teachers make pedagogical decisions about the design of science learning environments. To become well-started beginning elementary teachers capable of engaging their students in inquiry-based science, preservice elementary teachers need to learn to use science curriculum materials…

  20. Mentoring and Community: Inquiry as Stance and Science as Inquiry

    ERIC Educational Resources Information Center

    Melville, Wayne; Bartley, Anthony

    2010-01-01

    In this article, we investigate how mentoring relationships founded on inquiry as stance can work to emphasize the conditions that promote the development of teachers of science as inquiry. Drawing on data collected through semi-structured interviews, we have developed two narrative case studies based on the two mentoring relationships that exist…

  1. Targeted Courses in Inquiry Science for Future Elementary School Teachers

    ERIC Educational Resources Information Center

    Steinberg, Richard; Wyner, Yael; Borman, Greg; Salame, Issa I.

    2015-01-01

    This study reports on targeted science courses for undergraduate childhood education majors. We describe an inquiry-oriented, three-course sequence spanning physical, life, and environmental science. All three courses are hands-on and are designed to reflect the content and pedagogy most important to future elementary school teachers.

  2. The perceptions of inquiry held by greater Houston area science supervisors

    NASA Astrophysics Data System (ADS)

    Aoki, Jon Michael

    of inquiry held by the science teachers whom they work with. Both of these implications may limit the process of integrating inquiry into the classroom. The third implication is that a rubric can be designed based on the results of this study to help determine which categories or components of inquiry the participant needs assistance with. Implications for further research include increasing the sample size, describing the effects of teaching and/or science supervisor experience on the perceptions of inquiry, determining the effects of advanced degrees on inquiry perceptions, and investigating the effects of research experience on inquiry perceptions. (Abstract shortened by UMI.)

  3. Transformative Professional Development: Inquiry-Based College Science Teaching Institutes

    ERIC Educational Resources Information Center

    Zhao, Ningfeng; Witzig, Stephen B.; Weaver, Jan C.; Adams, John E.; Schmidt, Frank

    2012-01-01

    Two Summer Institutes funded by the National Science Foundation were held for current and future college science faculty. The overall goal was to promote learning and practice of inquiry-based college science teaching. We developed a collaborative and active learning format for participants that involved all phases of the 5E learning cycle of…

  4. The effects of inquiry-based science on the social and communicative skills of students with low-incidence disabilities

    NASA Astrophysics Data System (ADS)

    D'Angelo, Heather Hopkins

    This research utilized inquiry based science as a vehicle to implement and maintain social skills training for secondary students, ages 14 to 20, with low-incidence disabilities in a self-contained classroom. This three year action research study examined the effects of an inquiry based science curriculum on the level and quantity of social skills used by students with one or more of the following challenges: significant learning disability (functioning more than two grade levels below grade level), emotional/social disability, mental retardation, Autism, and/or varying degrees of brain damage. Through the use of video recording, the students in the study were analyzed based on the level of social interaction and the amount of socialization that took place during inquiry based science. The skills sought were based on the social and communication skills earmarked in the students' weekly social skills training class and their Individualized Education Plans (IEP). Based on previous research in social skills training it has been determined that where social skills training is lacking are in the areas of transfer and maintenance of skills. Due to the natural social behavior that must take place in inquiry based science this group of students were found to exhibit gains in (1) quantity of social interactions on topic; (2) developing higher levels of social interactions (sharing, taking other's suggestions, listening and responding appropriately, etc.); and (3) maintenance of social skills taught outside of formal social skills training. These gains were seen overall in the amount of student involvement during inquiry based science verses teacher involvement. Such increases are depicted through students' verbal exchanges, excerpts from field notes, and student reflections. The findings of this research is expected to guide special educators, administrators and directors of curriculum as to how to better create curriculum for this specific population where social skills

  5. 4-H Science Inquiry Video Series

    ERIC Educational Resources Information Center

    Green, Jeremy W.; Black, Lynette; Willis, Patrick

    2013-01-01

    Studies support science inquiry as a positive method and approach for 4-H professionals and volunteers to use for teaching science-based practices to youth. The development of a science inquiry video series has yielded positive results as it relates to youth development education and science. The video series highlights how to conduct science-rich…

  6. Earthquake!: An Event-Based Science Module. Student Edition. Earth Science Module.

    ERIC Educational Resources Information Center

    Wright, Russell G.

    This book is designed for middle school students to learn scientific literacy through event-based science. Unlike traditional curricula, the event-based earth science module is a student-centered, interdisciplinary, inquiry-oriented program that emphasizes cooperative learning, teamwork, independent research, hands-on investigations, and…

  7. A Rights-Based Approach to Science Literacy Using Local Languages: Contextualising Inquiry-Based Learning in Africa

    ERIC Educational Resources Information Center

    Babaci-Wilhite, Zehlia

    2017-01-01

    This article addresses the importance of teaching and learning science in local languages. The author argues that acknowledging local knowledge and using local languages in science education while emphasising inquiry-based learning improve teaching and learning science. She frames her arguments with the theory of inquiry, which draws on…

  8. Inquiry Learning in the Singaporean Context: Factors affecting student interest in school science

    NASA Astrophysics Data System (ADS)

    Jocz, Jennifer Ann; Zhai, Junqing; Tan, Aik Ling

    2014-10-01

    Recent research reveals that students' interest in school science begins to decline at an early age. As this lack of interest could result in fewer individuals qualified for scientific careers and a population unprepared to engage with scientific societal issues, it is imperative to investigate ways in which interest in school science can be increased. Studies have suggested that inquiry learning is one way to increase interest in science. Inquiry learning forms the core of the primary syllabus in Singapore; as such, we examine how inquiry practices may shape students' perceptions of science and school science. This study investigates how classroom inquiry activities relate to students' interest in school science. Data were collected from 425 grade 4 students who responded to a questionnaire and 27 students who participated in follow-up focus group interviews conducted in 14 classrooms in Singapore. Results indicate that students have a high interest in science class. Additionally, self-efficacy and leisure-time science activities, but not gender, were significantly associated with an increased interest in school science. Interestingly, while hands-on activities are viewed as fun and interesting, connecting learning to real-life and discussing ideas with their peers had a greater relation to student interest in school science. These findings suggest that inquiry learning can increase Singaporean students' interest in school science; however, simply engaging students in hands-on activities is insufficient. Instead, student interest may be increased by ensuring that classroom activities emphasize the everyday applications of science and allow for peer discussion.

  9. Inquiry-based science education: towards a pedagogical framework for primary school teachers

    NASA Astrophysics Data System (ADS)

    van Uum, Martina S. J.; Verhoeff, Roald P.; Peeters, Marieke

    2016-02-01

    Inquiry-based science education (IBSE) has been promoted as an inspiring way of learning science by engaging pupils in designing and conducting their own scientific investigations. For primary school teachers, the open nature of IBSE poses challenges as they often lack experience in supporting their pupils during the different phases of an open IBSE project, such as formulating a research question and designing and conducting an investigation. The current study aims to meet these challenges by presenting a pedagogical framework in which four domains of scientific knowledge are addressed in seven phases of inquiry. The framework is based on video analyses of pedagogical interventions by primary school teachers participating in open IBSE projects. Our results show that teachers can guide their pupils successfully through the process of open inquiry by explicitly addressing the conceptual, epistemic, social and/or procedural domain of scientific knowledge in the subsequent phases of inquiry. The paper concludes by suggesting further research to validate our framework and to develop a pedagogy for primary school teachers to guide their pupils through the different phases of open inquiry.

  10. Influence of subject matter discipline and science content knowledge on National Board Certified science teachers' conceptions, enactment, and goals for inquiry

    NASA Astrophysics Data System (ADS)

    Breslyn, Wayne Gene

    The present study investigated differences in the continuing development of National Board Certified Science Teachers' (NBCSTs) conceptions of inquiry across the disciplines of biology, chemistry, earth science, and physics. The central research question of the study was, "How does a NBCST's science discipline (biology, chemistry, earth science, or physics) influence their conceptions, enactment, and goals for inquiry-based teaching and learning?" A mixed methods approach was used that included an analysis of the National Board portfolio entry, Active Scientific Inquiry, for participants (n=48) achieving certification in the 2007 cohort. The portfolio entry provided detailed documentation of teachers' goals and enactment of an inquiry lesson taught in their classroom. Based on the results from portfolio analysis, participant interviews were conducted with science teachers (n=12) from the 2008 NBCST cohort who represented the science disciplines of biology, chemistry, earth science, and physics. The interviews provided a broader range of contexts to explore teachers' conceptions, enactment, and goals of inquiry. Other factors studied were disciplinary differences in NBCSTs' views of the nature of science, the relation between their science content knowledge and use of inquiry, and changes in their conceptions of inquiry as result of the NB certification process. Findings, based on a situated cognitive framework, suggested that differences exist between biology, chemistry, and earth science teachers' conceptions, enactment, and goals for inquiry. Further, individuals teaching in more than one discipline often held different conceptions of inquiry depending on the discipline in which they were teaching. Implications for the research community include being aware of disciplinary differences in studies on inquiry and exercising caution in generalizing findings across disciplines. In addition, teachers who teach in more than one discipline can highlight the contextual

  11. Digging into Inquiry-Based Earth Science Research

    ERIC Educational Resources Information Center

    Schultz, Bryan; Yates, Crystal; Schultz, Jayne M.

    2008-01-01

    To help eighth-grade students experience the excitement of Earth science research, the authors developed an inquiry-based project in which students evaluated and cataloged their campus geology and soils. Following class discussions of rock-weathering and soil-forming processes, students worked in groups to excavate multiple soil pits in the school…

  12. Content analysis of science material in junior school-based inquiry and science process skills

    NASA Astrophysics Data System (ADS)

    Patonah, S.; Nuvitalia, D.; Saptaningrum, E.

    2018-03-01

    The purpose of this research is to obtain the characteristic map of science material content in Junior School which can be optimized using inquiry learning model to tone the science process skill. The research method used in the form of qualitative research on SMP science curriculum document in Indonesia. Documents are reviewed on the basis of the basic competencies of each level as well as their potential to trace the skills of the science process using inquiry learning models. The review was conducted by the research team. The results obtained, science process skills in grade 7 have the potential to be trained using the model of inquiry learning by 74%, 8th grade by 83%, and grade 9 by 75%. For the dominant process skills in each chapter and each level is the observing skill. Follow-up research is used to develop instructional inquiry tools to trace the skills of the science process.

  13. How Select Groups of Preservice Science Teachers with Inquiry Orientations View Teaching and Learning Science through Inquiry

    NASA Astrophysics Data System (ADS)

    Ward, Peggy

    Although hailed as a powerful form of instruction, in most teaching and learning contexts, inquiry-based instruction is fraught with ambiguous and conflicting definitions and descriptions. Yet little has been written about the experiences preservice science teacher have regarding their learning to teach science through inquiry. This project sought to understand how select preservice secondary science teachers enrolled in three UTeach programs in Arkansas conceptualize inquiry instruction and how they rationalize its value in a teaching and learning context. The three teacher education programs investigated in this study are adoption sites aligned with the UTeach Program in Austin, TX that distinguishes itself in part by its inquiry emphasis. Using a mixed method investigation design, this study utilized two sources of data to explore the preservice science teachers' thinking. In the first phase, a modified version of the Pedagogy of Science teaching Tests (POSTT) was used to identify select program participants who indicated preferences for inquiry instruction over other instructional strategies. Secondly, the study used an open-ended questionnaire to explore the selected subjects' beliefs and conceptions of teaching and learning science in an inquiry context. The study also focused on identifying particular junctures in the prospective science teachers' education preparation that might impact their understanding about inquiry. Using a constant comparative approach, this study explored 19 preservice science teachers' conceptions about inquiry. The results indicate that across all levels of instruction, the prospective teachers tended to have strong student-centered teaching orientations. Except subjects in for the earliest courses, subjects' definitions and descriptions of inquiry tended toward a few of the science practices. More advanced subjects, however, expressed more in-depth descriptions. Excluding the subjects who have completed the program, multiple

  14. Effectiveness and Accountability of the Inquiry-Based Methodology in Middle School Science

    ERIC Educational Resources Information Center

    Hardin, Cade

    2009-01-01

    When teaching science, the time allowed for students to make discoveries on their own through the inquiry method directly conflicts with the mandated targets of a broad spectrum of curricula. Research shows that using an inquiry-based approach can encourage student motivation and increase academic achievement (Wolf & Fraser, 2008, Bryant, 2006,…

  15. What Kindergarten Students Learn in Inquiry-Based Science Classrooms

    ERIC Educational Resources Information Center

    Samarapungavan, Ala; Patrick, Helen; Mantzicopoulos, Panayota

    2011-01-01

    The purpose of this study was to examine how participation in an inquiry-based science program impacts kindergarten students' science learning and motivation. The study was implemented as part of a larger, federally funded research project, the Scientific Literacy Project or SLP (Mantzicopoulos, Patrick, & Samarapungavan, 2005). The study…

  16. Inquiry-Based Science and Technology Enrichment Program for Middle School-Aged Female Students

    ERIC Educational Resources Information Center

    Kim, Hanna

    2016-01-01

    This study investigates the effects of an intensive 1-week Inquiry-Based Science and Technology Enrichment Program (InSTEP) designed for middle school-aged female students. InSTEP uses a guided/open inquiry approach that is deepened and redefined as eight sciences and engineering practices in the Next Generation Science Standards, which aimed at…

  17. Using Inquiry-Based Instruction for Teaching Science to Students with Learning Disabilities

    ERIC Educational Resources Information Center

    Aydeniz, Mehmet; Cihak, David F.; Graham, Shannon C.; Retinger, Larryn

    2012-01-01

    The purpose of this study was to examine the effects of inquiry-based science instruction for five elementary students with learning disabilities (LD). Students participated in a series of inquiry-based activities targeting conceptual and application-based understanding of simple electric circuits, conductors and insulators, parallel circuits, and…

  18. The effect of guided inquiry-based instruction in secondary science for students with learning disabilities

    NASA Astrophysics Data System (ADS)

    Eliot, Michael H.

    Students with learning disabilities (SWLDs) need to attain academic rigor to graduate from high school and college, as well as achieve success in life. Constructivist theories suggest that guided inquiry may provide the impetus for their success, yet little research has been done to support this premise. This study was designed to fill that gap. This quasi-experimental study compared didactic and guided inquiry-based teaching of science concepts to secondary SWLDs in SDC science classes. The study examined 38 students in four classes at two diverse, urban high schools. Participants were taught two science concepts using both teaching methods and posttested after each using paper-and-pencil tests and performance tasks. Data were compared to determine increases in conceptual understanding by teaching method, order of teaching method, and exposure one or both teaching methods. A survey examined participants' perceived self-efficacy under each method. Also, qualitative comparison of the two test formats examined appropriate use with SWLDs. Results showed significantly higher scores after the guided inquiry method on concept of volume, suggesting that guided inquiry does improve conceptual understanding over didactic instruction in some cases. Didactic teaching followed by guided inquiry resulted in higher scores than the reverse order, indicating that SWLDs may require direct instruction in basic facts and procedures related to a topic prior to engaging in guided inquiry. Also application of both teaching methods resulted in significantly higher scores than a single method on the concept of density, suggesting that SWLDs may require more in depth instruction found using both methods. No differences in perceived self-efficacy were shown. Qualitative analysis both assessments and participants' behaviors during testing support the use of performance tasks over paper-and-pencil tests with SWLDs. Implications for education include the use of guided inquiry to increase SWLDs

  19. Conducting Guided Inquiry in Science Classes Using Authentic, Archived, Web-Based Data

    ERIC Educational Resources Information Center

    Ucar, Sedat; Trundle, Kathy Cabe

    2011-01-01

    Students are often unable to collect the real-time data necessary for conducting inquiry in science classrooms. Web-based, real-time data could, therefore, offer a promising tool for conducting scientific inquiries within classroom environments. This study used a quasi-experimental research design to investigate the effects of inquiry-based…

  20. Inquiry-based Science Instruction in High School Biology Courses: A Multiple Case Study

    NASA Astrophysics Data System (ADS)

    Aso, Eze

    A lack of research exists about how secondary school science teachers use inquiry-based instruction to improve student learning. The purpose of this qualitative study was to explore how science teachers used inquiry-based instruction to improve student learning in high school biology courses. The conceptual framework was based on Banchi and Bell's model of increasing levels of complexity for inquiry-based instruction. A multiple case study research design was conducted of biology programs at 3 high schools in an urban school district in the northeastern region of the United States. Participants included 2 biology teachers from each of the 3 high schools. Data were collected from individual interviews with biology teachers, observations of lessons in biology, and documents related to state standards, assessments, and professional development. The first level of data analysis involved coding and categorizing the interview and observation data. A content analysis was used for the documents. The second level of data analysis involved examining data across all sources and all cases for themes and discrepancies. According to study findings, biology teachers used confirmation, structure, and guided inquiry to improve student learning. However, they found open inquiry challenging and frustrating to implement because professional development about scaffolding of instruction over time was needed, and students' reading and writing skills needed to improve. This study contributes to positive social change by providing educators and researchers with a deeper understanding about how to scaffold levels of inquiry-based science instruction in order to help students become scientifically literate citizens.

  1. Investigation of Inquiry-Based Science Pedagogy among Middle Level Science Teachers: A Qualitative Study

    ERIC Educational Resources Information Center

    Weiland, Sunny Minelli

    2012-01-01

    This study implemented a qualitative approach to examine the phenomenon of "inquiry-based science pedagogy or inquiry instruction" as it has been experienced by individuals. Data was collected through online open-ended surveys, focus groups, and teacher reported self-reflections to answer the research questions: 1) How do middle level…

  2. An educational ethnography of teacher-developed science curriculum implementation: Enacting conceptual change-based science inquiry with Hispanic students

    NASA Astrophysics Data System (ADS)

    Brunsell, Eric Steven

    An achievement gap exists between White and Hispanic students in the United States. Research has shown that improving the quality of instruction for minority students is an effective way to narrow this gap. Science education reform movements emphasize that science should be taught using a science inquiry approach. Extensive research in teaching and learning science also shows that a conceptual change model of teaching is effective in helping students learn science. Finally, research into how Hispanic students learn best has provided a number of suggestions for science instruction. The Inquiry for Conceptual Change model merges these three research strands into a comprehensive yet accessible model for instruction. This study investigates two questions. First, what are teachers' perceptions of science inquiry and its implementation in the classroom? Second, how does the use of the Inquiry for Conceptual Change model affect the learning of students in a predominantly Hispanic, urban neighborhood. Five teachers participated in a professional development project where they developed and implemented a science unit based on the Inquiry for Conceptual Change model. Three units were developed and implemented for this study. This is a qualitative study that included data from interviews, participant reflections and journals, student pre- and post-assessments, and researcher observations. This study provides an in-depth description of the role of professional development in helping teachers understand how science inquiry can be used to improve instructional quality for students in a predominantly Hispanic, urban neighborhood. These teachers demonstrated that it is important for professional development to be collaborative and provide opportunities for teachers to enact and reflect on new teaching paradigms. This study also shows promising results for the ability of the Inquiry for Conceptual Change model to improve student learning.

  3. Impact of backwards faded scaffolding approach to inquiry-based astronomy laboratory experiences on undergraduate non-science majors' views of scientific inquiry

    NASA Astrophysics Data System (ADS)

    Lyons, Daniel J.

    This study explored the impact of a novel inquiry-based astronomy laboratory curriculum designed using the Backwards Faded Scaffolding inquiry teaching framework on non-science majoring undergraduate students' views of the nature of scientific inquiry (NOSI). The study focused on two aspects of NOSI: The Distinction between Data and Evidence (DvE), and The Multiple Methods of Science (MMS). Participants were 220 predominately non-science majoring undergraduate students at a small, doctoral granting, research-extensive university in the Rocky Mountain region of the United States. The student participants were enrolled in an introductory astronomy survey course with an associated laboratory section and were selected in two samples over consecutive fall and spring semesters. The participants also included four of the graduate student instructors who taught the laboratory courses using the intervention curriculum. In the first stage, student participant views of NOSI were measured using the VOSI-4 research instrument before and after the intervention curriculum was administered. The responses were quantified, and the distributions of pre and posttest scores of both samples were separately analyzed to determine if there was a significant improvement in understanding of either of the two aspects of NOSI. The results from both samples were compared to evaluate the consistency of the results. In the second stage, the quantitative results were used to strategically design a qualitative investigation, in which the four lab instructors were interviewed about their observations of how the student participants interacted with the intervention curriculum as compared to traditional lab activities, as well as their suggestions as to how the curriculum may or may not have contributed to the results of the first stage. These interviews were summarized and analyzed for common themes as to how the intervention curriculum influenced the students' understandings of the two aspect of

  4. WISE Science: Web-based Inquiry in the Classroom. Technology, Education--Connections

    ERIC Educational Resources Information Center

    Slotta, James D.; Linn, Marcia C.

    2009-01-01

    This book shares the lessons learned by a large community of educational researchers and science teachers as they designed, developed, and investigated a new technology-enhanced learning environment known as WISE: The Web-Based Inquiry Science Environment. WISE offers a collection of free, customizable curriculum projects on topics central to the…

  5. Alternative certification science teachers' understanding and implementation of inquiry-based instruction in their beginning years of teaching

    NASA Astrophysics Data System (ADS)

    Demir, Abdulkadir

    The purpose of this phenomenographic study was to: (a) understand how beginning science teachers recruited from various science disciplines and prepared in an Alternative Teacher Certification Program (ATCP) implemented inquiry during their initial years of teaching; (b) describe constraints and needs that these beginning science teachers perceived in implementing inquiry-based science instruction; and (c) understand the relation between what they learned in their ATCP and their practice of teaching science through inquiry. The participants of this study consisted of four ATCP teachers who are in their beginning years of teaching. Semi-structured interviews, classroom observation, field notes, and artifacts used as source of data collection. The beginning science teachers in this study held incomplete views of inquiry. These views of inquiry did not reflect inquiry as described in NRC (2000)---essential features of inquiry,---nor did they reflect views of faculty members involved in teaching science methods courses. Although the participants described themselves as reform-oriented, there were inconsistencies between their views and practices. Their practice of inquiry did not reflect inquiry either as outlined by essential features of inquiry (NRC, 2000) or inquiry as modeled in activities used in their ATCP. The research participants' perceived constraints and needs in their implementation of inquiry-based activities. Their perceived constraints included logistical and student constraints and school culture. The perceived needs included classroom management, pedagogical skills, practical knowledge, discipline, successful grade-specific models of inquiry, and access to a strong support system. Prior professional work experience, models and activities used in the ATCP, and benefits of inquiry to student learning were the declared factors that facilitated the research participants' practice of inquiry-based teaching.

  6. Professional development in inquiry-based science for elementary teachers of diverse student groups

    NASA Astrophysics Data System (ADS)

    Lee, Okhee; Hart, Juliet E.; Cuevas, Peggy; Enders, Craig

    2004-12-01

    As part of a larger project aimed at promoting science and literacy for culturally and linguistically diverse elementary students, this study has two objectives: (a) to describe teachers' initial beliefs and practices about inquiry-based science and (b) to examine the impact of the professional development intervention (primarily through instructional units and teacher workshops) on teachers' beliefs and practices related to inquiry-based science. The research involved 53 third- and fourth-grade teachers at six elementary schools in a large urban school district. At the end of the school year, teachers reported enhanced knowledge of science content and stronger beliefs about the importance of science instruction with diverse student groups, although their actual practices did not change significantly. Based on the results of this first year of implementation as part of a 3-year longitudinal design, implications for professional development and further research are discussed.

  7. The 5E Instructional Model: A Learning Cycle Approach for Inquiry-Based Science Teaching

    ERIC Educational Resources Information Center

    Duran, Lena Ballone; Duran, Emilio

    2004-01-01

    The implementation of inquiry-based teaching is a major theme in national science education reform documents such as "Project 2061: Science for All Americans" (Rutherford & Alhgren, 1990) and the "National Science Education Standards" (NRC, 1996). These reports argue that inquiry needs to be a central strategy of all…

  8. Metaconceptually-Enhanced Simulation-Based Inquiry: Effects on Eighth Grade Students' Conceptual Change and Science Epistemic Beliefs

    ERIC Educational Resources Information Center

    Huang, Kun; Ge, Xun; Eseryel, Deniz

    2017-01-01

    This study investigated the effects of metaconceptually-enhanced, simulation-based inquiry learning on eighth grade students' conceptual change in science and their development of science epistemic beliefs. Two experimental groups studied the topics of motion and force using the same computer simulations but with different simulation guides: one…

  9. Shifting to an Inquiry-Based Experience

    ERIC Educational Resources Information Center

    Corder, Gregory; Slykhuis, Julie

    2011-01-01

    Teaching science with an inquiry-based approach can seem like an impossible challenge. However, it is achievable. One way to begin is by converting a cookbook-style lab (from the internet or a textbook) into an inquiry-based science experience. To convert a cookbook lab into an inquiry-based science experience, the authors propose the following…

  10. Talking Science: Developing a Discourse of Inquiry

    ERIC Educational Resources Information Center

    Hackling, Mark; Smith, Pru; Murcia, Karen

    2010-01-01

    A key principle of inquiry-based science education is that the process of inquiry must include opportunities for the exploration of questions and ideas, as well as reasoning with ideas and evidence. Teaching and learning Science therefore involves teachers managing a discourse that supports inquiry and students engaging in talk that facilitates…

  11. Teaching Science through Inquiry

    ERIC Educational Resources Information Center

    Wilcox, Jesse; Kruse, Jerrid W.; Clough, Michael P.

    2015-01-01

    Science education efforts have long emphasized inquiry, and inquiry and scientific practices are prominent in contemporary science education reform documents (NRC 1996; NGSS Lead States 2013). However, inquiry has not become commonplace in science teaching, in part because of misunderstandings regarding what it means and entails (Demir and Abell…

  12. Inquiry-based laboratory investigations and student performance on standardized tests in biological science

    NASA Astrophysics Data System (ADS)

    Patke, Usha

    Achievement data from the 3rd International Mathematics and Sciences Study and Program for International Student Assessment in science have indicated that Black students from economically disadvantaged families underachieve at alarming rates in comparison to White and economically advantaged peer groups. The study site was a predominately Black, urban school district experiencing underachievement. The purpose of this correlational study was to examine the relationship between students' use of inquiry-based laboratory investigations and their performance on the Biology End of Course Test, as well as to examine the relationship while partialling out the effects of student gender. Constructivist theory formed the theoretical foundation of the study. Students' perceived levels of experience with inquiry-based laboratory investigations were measured using the Laboratory Program Variable Inventory (LPVI) survey. LPVI scores of 256 students were correlated with test scores and were examined by student gender. The Pearson correlation coefficient revealed a small direct correlation between students' experience in inquiry-based laboratory investigation classes and standardized test scores on the Biology EOCT. A partial correlational analysis indicated that the correlation remained after controlling for gender. This study may prompt a change from teacher-centered to student-centered pedagogy at the local site in order to increase academic achievement for all students. The results of this study may also influence administrators and policy makers to initiate local, state, or nationwide curricular development. A change in curriculum may promote social change as students become more competent, and more able, to succeed in life beyond secondary school.

  13. Effect of Inquiry-Based Learning Approach on Student Resistance in a Science and Technology Course

    ERIC Educational Resources Information Center

    Sever, Demet; Guven, Meral

    2014-01-01

    The aim of this study was to identify the resistance behaviors of 7th grade students exhibited during their Science and Technology course teaching-learning processes, and to remove the identified resistance behaviors through teaching-learning processes that were constructed based on the inquiry-based learning approach. In the quasi-experimentally…

  14. Inquiry-based science instruction and performance literacy for students who are deaf or hard of hearing.

    PubMed

    Wang, Ye

    2011-01-01

    Deaf and hard of hearing students, who cannot successfully access and utilize information in print, experience various difficulties in conventional science instruction, which heavily relies on lectures and textbooks. The purpose of the present review is threefold. First, an overview of inquiry-based science instruction reform, including the so-ciohistorical forces behind the movement, is presented. Then, the author examines the empirical research on science education for students who are deaf or hard of hearing from the 1970s to the present and identifies and rates inquiry-based practice. After discussing the difficulty of using science texts with deaf and hard of hearing students, the author introduces a conceptual framework that integrates inquiry-based instruction and the construct of performance literacy. She suggests that this integration should enable students who are deaf or hard of hearing to access the general education curriculum.

  15. Earth Science for Educators: Preparing 7-12 Teachers for Standards-based, Inquiry Instruction

    NASA Astrophysics Data System (ADS)

    Sloan, H.

    2002-05-01

    "Earth Science for Educators" is an innovative, standards-based, graduate level teacher education curriculum that presents science content and pedagogic technique in parallel. The curriculum calls upon the resources and expertise of the American Museum of Natural History (AMNH) to prepare novice New York City teachers for teaching Earth Science. One of the goals of teacher education is to assure and facilitate science education reform through preparation of K-12 teachers who understand and are able to implement standard-based instruction. Standards reflect not only the content knowledge students are expected to attain but also the science skills and dispositions towards science they are expected to develop. Melding a list of standards with a curriculum outline to create inquiry-based classroom instruction that reaches a very diverse population of learners is extremely challenging. "Earth Science for Educators" helps novice teachers make the link between standards and practice by constantly connecting standards with instruction they receive and activities they carry out. Development of critical thinking and enthusiasm for inquiry is encouraged through engaging experience and contact with scientists and their work. Teachers are taught Earth systems science content through modeling of a wide variety of instruction and assessment methods based upon authentic scientific inquiry and aimed at different learning styles. Use of fieldwork and informal settings, such as the Museum, familiarizes novice teachers with ways of drawing on community resources for content and instructional settings. Metacognitive reflection that articulates standards, practice, and the teachers' own learning experience help draw out teachers' insights into their students' learning. The innovation of bring science content together with teaching methods is key to preparing teachers for standards-based, inquiry instruction. This curriculum was successfully piloted with a group of 28 novice teachers as

  16. Designing a Web-Based Science Learning Environment for Model-Based Collaborative Inquiry

    ERIC Educational Resources Information Center

    Sun, Daner; Looi, Chee-Kit

    2013-01-01

    The paper traces a research process in the design and development of a science learning environment called WiMVT (web-based inquirer with modeling and visualization technology). The WiMVT system is designed to help secondary school students build a sophisticated understanding of scientific conceptions, and the science inquiry process, as well as…

  17. ERESE: An online forum for research-based earth science inquiry

    NASA Astrophysics Data System (ADS)

    Symons, C. M.; Koppers, A.; Helly, M.; Staudigel, H.; Miller, S. P.

    2007-12-01

    The Enduring Resources for Earth Science Education (ERESE) Project bridges the gap between earth science research and science education by providing a forum for electronic collaboration between practicing scientists and classroom teachers. By combining the resources of Scripps Institution of Oceanography (SIO) and the expertise of educators, ERESE leverages a wide variety of assets to provide state-of-the-art, online digital resources through two National Science Digital Library collections: Earthref.org (http://www.Earthref.org/ERESE) and SIOExplorer (http://SIOExplorer.ucsd.edu). Earthref.org provides a wealth of plate tectonic-related content appropriate for designing and enacting inquiry lessons. The SIOExplorer Digital Library houses marine geophysical data from over 800 research cruises each containing a variety of data types from meteorological, to oceanographic, geophysical and navigational data. Built on successful collaboration between scientists and middle and high school teachers from across the country beginning in 2004, ERESE has expanded into a multifaceted repository for thought-provoking earth science data and images, virtual field trips and inquiry lessons designed by our partner teachers. More than static interfaces, both Earthref.org and SIOExplorer introduce users to current topics in science, seeking to answer outstanding questions about the earth, its processes, formation, and future. To provide a starting point for new users to design and contribute lessons to Earthref.org we have created a basic inquiry lesson plan template that models the process of investigating a real scientific problem. The template is designed on the basis of our five-stage model of inquiry adapted to the National Science Education Standards. As with all inquiry lessons, our model focuses on the shift of power from the teacher at the outset of the lesson to the students upon completion of the lesson.

  18. Influence of an extensive inquiry-based field experience on pre-service elementary student teachers' science teaching beliefs

    NASA Astrophysics Data System (ADS)

    Bhattacharyya, Sumita

    This study examined the effects of an extensive inquiry-based field experience on pre-service elementary teachers' personal agency beliefs (PAB) about teaching science and their ability to effectively implement science instruction. The research combined quantitative and qualitative approaches within an ethnographic research tradition. A comparison was made between the pre and posttest scores for two groups. The experimental group utilized the inquiry method; the control group did not. The experimental group had the stronger PAB pattern. The field experience caused no significant differences to the context beliefs of either groups, but did to the capability beliefs. The number of college science courses taken by pre-service elementary teachers' was positively related to their post capability belief (p = .0209). Qualitative information was collected through case studies which included observation of classrooms, assessment of lesson plans and open-ended, extended interviews of the participants about their beliefs in their teaching abilities (efficacy beliefs), and in teaching environments (context beliefs). The interview data were analyzed by the analytic induction method to look for themes. The emerging themes were then grouped under several attributes. Following a review of the attributes a number of hypotheses were formulated. Each hypothesis was then tested across all the cases by the constant comparative method. The pattern of relationship that emerged from the hypotheses testing clearly suggests a new hypothesis that there is a spiral relationship among the ability to establish communicative relationship with students, desire for personal growth and improvement, and greater content knowledge. The study concluded that inquiry based student teaching should be encouraged to train school science teachers. But the meaning and the practice of the inquiry method should be clearly delineated to ensure its correct implementation in the classroom. A survey should be

  19. Inquiry-Based Instruction and High Stakes Testing

    NASA Astrophysics Data System (ADS)

    Cothern, Rebecca L.

    Science education is a key to economic success for a country in terms of promoting advances in national industry and technology and maximizing competitive advantage in a global marketplace. The December 2010 Program for International Student Assessment (PISA) ranked the United States 23rd of 65 countries in science. That dismal standing in science proficiency impedes the ability of American school graduates to compete in the global market place. Furthermore, the implementation of high stakes testing in science mandated by the 2007 No Child Left Behind (NCLB) Act has created an additional need for educators to find effective science pedagogy. Research has shown that inquiry-based science instruction is one of the predominant science instructional methods. Inquiry-based instruction is a multifaceted teaching method with its theoretical foundation in constructivism. A correlational survey research design was used to determine the relationship between levels of inquiry-based science instruction and student performance on a standardized state science test. A self-report survey, using a Likert-type scale, was completed by 26 fifth grade teachers. Participants' responses were analyzed and grouped as high, medium, or low level inquiry instruction. The unit of analysis for the achievement variable was the student scale score average from the state science test. Spearman's Rho correlation data showed a positive relationship between the level of inquiry-based instruction and student achievement on the state assessment. The findings can assist teachers and administrators by providing additional research on the benefits of the inquiry-based instructional method. Implications for positive social change include increases in student proficiency and decision-making skills related to science policy issues which can help make them more competitive in the global marketplace.

  20. An analysis of elementary teachers' perceptions of teaching science as inquiry

    NASA Astrophysics Data System (ADS)

    Domjan, Heather Nicole

    The purpose of this study is to describe elementary school teachers' perceptions of science as inquiry in science instruction. A descriptive survey research design was used to collect data regarding elementary science teachers' knowledge and beliefs related to inquiry and its role in science education. The written section of the survey was analyzed and interpreted descriptively through phenomenological data and the constant comparative method (Glaser & Strauss, 1967; Lincoln & Guba, 1985). The researcher used the constant comparative method to identify statements, perceptions, and impressions that occurred over time during the study (Janesick, 1994). Ninety-two elementary school teachers who teach science in a large suburban district southwest of Houston, Texas were administered a three part Understanding Science as Inquiry Survey (USAI) developed by the researcher. Participants communicated in writing personal definitions of inquiry in elementary science as well as determined to what extent inquiry was used in four elementary science classroom scenarios. The survey items were based on the following four components of inquiry described by Inquiry and the National Science Education Standards (2000): (1) conceptual knowledge, (2) process skills, (3) nature of science, and (4) affect. The study describes elementary school teachers' perceptions about science as inquiry. Conclusions for Part A of the USAI Survey indicate that participants define inquiry as: mostly process skills, some conceptual knowledge, and very little affect with no perception of the nature of science. The Likert scale ratings for the scenarios in Part B of the USAI Survey reveal that participants have varied perceptions regarding teaching science as inquiry. The written section of Part B reveals participants' perceptions to be similar to that of their Likert scale ratings except in scenario one. The researcher concludes that the participants in this study appear to have an incomplete understanding

  1. The Effect of Inquiry-Based Learning Method on Students' Academic Achievement in Science Course

    ERIC Educational Resources Information Center

    Abdi, Ali

    2014-01-01

    The purpose of this study was to investigate the effects of inquiry-based learning method on students' academic achievement in sciences lesson. A total of 40 fifth grade students from two different classes were involved in the study. They were selected through purposive sampling method. The group which was assigned as experimental group was…

  2. Barriers Inhibiting Inquiry-Based Science Teaching and Potential Solutions: Perceptions of Positively Inclined Early Adopters

    NASA Astrophysics Data System (ADS)

    Fitzgerald, Michael; Danaia, Lena; McKinnon, David H.

    2017-07-01

    In recent years, calls for the adoption of inquiry-based pedagogies in the science classroom have formed a part of the recommendations for large-scale high school science reforms. However, these pedagogies have been problematic to implement at scale. This research explores the perceptions of 34 positively inclined early-adopter teachers in relation to their implementation of inquiry-based pedagogies. The teachers were part of a large-scale Australian high school intervention project based around astronomy. In a series of semi-structured interviews, the teachers identified a number of common barriers that prevented them from implementing inquiry-based approaches. The most important barriers identified include the extreme time restrictions on all scales, the poverty of their common professional development experiences, their lack of good models and definitions for what inquiry-based teaching actually is, and the lack of good resources enabling the capacity for change. Implications for expectations of teachers and their professional learning during educational reform and curriculum change are discussed.

  3. At the Elbows of Scientists: Shaping Science Teachers' Conceptions and Enactment of Inquiry-Based Instruction

    ERIC Educational Resources Information Center

    McLaughlin, Cheryl A.; MacFadden, Bruce J.

    2014-01-01

    This study stemmed from concerns among researchers that reform efforts grounded in promoting inquiry as the basis for teaching science have not achieved the desired changes in American science classrooms. Many science teachers assume that they are employing inquiry-based strategies when they use cookbook investigations with highly structured…

  4. Investigating inquiry beliefs and nature of science (NOS) conceptions of science teachers as revealed through online learning

    NASA Astrophysics Data System (ADS)

    Atar, Hakan Yavuz

    Creating a scientifically literate society appears to be the major goal of recent science education reform efforts (Abd-El-Khalick, Boujaoude, Dushl, Lederman, Hofstein, Niaz, Tregust, & Tuan, 2004). Recent national reports in the U.S, such as Shaping the Future, New Expectations for Undergraduate Education in Science, Mathematics, Engineering, and Technology (NSF,1996), Inquiry in Science and In Classroom, Inquiry and the National Science Education Standards (NRC, 2001), Pursuing excellence: Comparison of international eight-grade mathematics and science achievement from a U.S. perspective (NCES, 2001), and Standards for Science Teacher Preparation (NSTA 2003) appear to agree on one thing: the vision of creating a scientifically literate society. It appears from science education literature that the two important components of being a scientifically literate individual are developing an understanding of nature of science and ability to conduct scientific inquiries. Unfortunately, even though teaching science through inquiry has been recommended in national reports since the 1950's, it has yet to find its way into many science classrooms (Blanchard, 2006; Yerrick, 2000). Science education literature identfies several factors for this including: (1) lack of content knowledge (Anderson, 2002; Lee, Hart Cuevas, & Enders, 2004; Loucks-Horsely, Hewson, Love, & Stiles, 1998; Moscovici, 1999; Smith & Naele, 1989; Smith, 1989); (2) high stake tests (Aydeniz, 2006); (3) teachers' conflicting beliefs with inquiry-based science education reform (Blanchard, 2006; Wallace & Kang, 2004); and, (4) lack of collaboration and forums for communication (Anderson, 2002; Davis, 2003; Loucks-Horsely, Hewson, Love, & Stiles, 1998; Wallace & Kang, 2004). In addition to the factors stated above this study suggest that some of the issues and problems that have impeded inquiry instruction to become the primary approach to teaching science in many science classrooms might be related to

  5. Bringing Inquiry Science to K-5 Classrooms

    NASA Astrophysics Data System (ADS)

    Schachtel, Paula L.; Messina, D. L.; McDermott, L. C.

    2006-12-01

    As a science coach in the Seattle School District, I am responsible for helping other elementary teachers teach science. For several years, I have been participating in a program that consists of intensive NSF Summer Institutes and an ongoing academic-year Continuation Course. Teachers in this program work through modules in Physics by Inquiry, a research-based curriculum developed by the Physics Education Group at the University of Washington.1 I will discuss how this type of professional development has deepened my understanding of topics in physical science, helped me to teach science by inquiry to my own students, and enabled me to assist my colleagues in implementing inquiry science in their K-5 classrooms. Sponsored by Lillian C. McDermott. 1. A research-based curriculum developed by L.C. McDermott and the Physics Education Group at the University of Washington, Physics by Inquiry, New York, NY, John Wiley & Sons, Inc. (1996.)

  6. The Influence of an Extensive Inquiry-Based Field Experience on Pre-Service Elementary Student Teachers' Science Teaching Beliefs

    NASA Astrophysics Data System (ADS)

    Bhattacharyya, Sumita; Volk, Trudi; Lumpe, Andrew

    2009-06-01

    This study examined the effects of an extensive inquiry-based field experience on pre service elementary teachers’ personal agency beliefs, a composite measure of context beliefs and capability beliefs related to teaching science. The research combined quantitative and qualitative approaches and included an experimental group that utilized the inquiry method and a control group that used traditional teaching methods. Pre- and post-test scores for the experimental and control groups were compared. The context beliefs of both groups showed no significant change as a result of the experience. However, the control group’s capability belief scores, lower than those of the experimental group to start with, declined significantly; the experimental group’s scores remained unchanged. Thus, the inquiry-based field experience led to an increase in personal agency beliefs. The qualitative data suggested a new hypothesis that there is a spiral relationship among teachers’ ability to establish communicative relationships with students, desire for personal growth and improvement, ability to implement multiple instructional strategies, and possession of substantive content knowledge. The study concludes that inquiry-based student teaching should be encouraged in the training of elementary school science teachers. However, the meaning and practice of the inquiry method should be clearly delineated to ensure its correct implementation in the classroom.

  7. Oak Ridge National Laboratory`s (ORNL) ecological and physical science study center: A hands-on science program for K-12 students

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bradshaw, S.P.

    1994-12-31

    In our tenth year of educational service and outreach, Oak Ridge National Laboratory`s Ecological and Physical Science Study Center (EPSSC) provides hands-on, inquiry-based science activities for area students and teachers. Established in 1984, the EPSSC now hosts over 20,000 student visits. Designed to foster a positive attitude towards science, each unit includes activities which reinforce the science concept being explored. Outdoor science units provide field experience at the Department of Energy`s Oak Ridge National Environmental Research Park and outreach programs are offered on-site in area schools. Other programs are offered as extensions of the EPSSC core programs, including on-site studentmore » science camps, all-girl programs, outreach science camps, student competitions, teacher in-service presentations and teacher workshops.« less

  8. Kuwaiti Science Teachers' Beliefs and Intentions Regarding the Use of Inquiry-Based Instruction

    ERIC Educational Resources Information Center

    Alhendal, Dalal; Marshman, Margaret; Grootenboer, Peter

    2016-01-01

    To improve the quality of education, the Kuwaiti Ministry of Education has encouraged schools to implement inquiry-based instruction. This study identifies psychosocial factors that predict teachers' intention to use inquiry-based instruction in their science classrooms. An adapted model of Ajzen's (1985) theory of planned behaviour--the Science…

  9. Assessing Gains in Science Teaching Self-Efficacy after Completing an Inquiry-Based Earth Science Course

    ERIC Educational Resources Information Center

    Gray, Kyle

    2017-01-01

    Preservice elementary teachers are often required to take an Earth Science content course as part of their teacher education program but typically enter the course with little knowledge of key Earth Science concepts and are uncertain in their ability to teach science. This study investigated whether completing an inquiry-based Earth Science course…

  10. Impact of a Professional Development Program Using Data-Loggers on Science Teachers' Attitudes towards Inquiry-Based Teaching

    ERIC Educational Resources Information Center

    Tosa, Sachiko; Martin, Fred

    2010-01-01

    This study examined how a professional development program which incorporates the use of electronic data-loggers could impact on science teachers' attitudes towards inquiry-based teaching. The participants were 28 science or technology teachers who attended workshops offered in the United States and Japan. The professional development program…

  11. The experiences of science teachers' particpation in an inquiry-based professional development

    NASA Astrophysics Data System (ADS)

    Jackson, Emily A.

    Once a leader in science, technology, engineering, and mathematics (STEM) education, the United States (U.S.) is now far behind many countries. There is growing concern that the U.S. is not preparing a sufficient number of students in the areas of STEM. Despite advancement of inquiry learning in science, the extent to which inquiry learning has been implemented on a classroom level falls short. The purpose of this study was to learn about the experiences of science teachers' participation in an inquiry-based professional development. A mixed method research design was used for this study to collect data from ten Project MISE participants. The qualitative data was collected using semi-structured, in-depth individual interviews, focus group interviews, observations, and document analysis of teacher portfolios and analyzed using constant comparative method. The quantitative data were collected through administration of a pretest and posttest instrument that measures the content knowledge of the science teachers and analyzed using descriptive statistics and paired t-test. The participants of this mixed methods study provided compelling evidence that Project MISE has a profound impact on their instructional practice, networking abilities, opportunities for reflection, and content knowledge.

  12. Argumentation and Equity in Inquiry-Based Science Instruction: Reasoning Patterns of Teachers and Students

    NASA Astrophysics Data System (ADS)

    Irish, Tobias E. L.

    This multiple case study explores issues of equity in science education through an examination of how teachers' reasoning patterns compare with students' reasoning patterns during inquiry-based lessons. It also examines the ways in which teachers utilize students' cultural and linguistic resources, or funds of knowledge, during inquiry-based lessons and the ways in which students utilize their funds of knowledge, during inquiry-based lessons. Three middle school teachers and a total of 57 middle school students participated in this study. The data collection involved classroom observations and multiple interviews with each of the teachers individually and with small groups of students. The findings indicate that the students are capable of far more complex reasoning than what was elicited by the lessons observed or what was modeled and expected by the teachers, but that during the inquiry-based lessons they conformed to the more simplistic reasoning patterns they perceived as the expected norm of classroom dialogue. The findings also indicate that the students possess funds of knowledge that are relevant to science topics, but very seldom use these funds in the context of their inquiry-based lessons. In addition, the teachers in this study very seldom worked to elicit students' use of their funds in these contexts. The few attempts they did make involved the use of analogies, examples, or questions. The findings from this study have implications for both teachers and teacher educators in that they highlight similarities and differences in reasoning that can help teachers establish instructional congruence and facilitate more equitable science instruction. They also provide insight into how students' cultural and linguistic resources are utilized during inquiry-based science lessons.

  13. A phenomenological study of assessment methods in the inquiry-based science classroom: How do educators decide?

    NASA Astrophysics Data System (ADS)

    Tash, Gina G.

    The purpose of this phenomenological study was to describe the experiences of science educators as they select and develop assessment methods for inquiry learning. Balancing preparations for standardized tests and authentic inquiry assessment experiences can be challenging for science educators. The review of literature revealed that current research focused on instructional methods and assessment, students' assessment experiences, and teachers' instructional methods experiences. There remains a gap in current literature regarding the experiences of science educators as they select and develop assessment methods for inquiry learning. This study filled the gap by providing a description of the experiences of science educators as they select and develop assessments for inquiry learning. The participants in this study were 16 fifth through eighth grade science teachers who participate in the Alabama Math, Science, and Technology Initiative (AMSTI) in northwest Alabama. A phenomenological research method was chosen in order to describe the experiences of AMSTI science teachers as they select and develop assessments for inquiry learning. Data were collected through interviews and focus group discussions. The data analysis used a modified Stevick-Colaizzi-Keen framework. The results showed AMSTI science teachers use a variety of assessment resources and methods, feel pressures to meet Adequate Yearly Progress (AYP), and implement varying degrees of change in their assessment process due to No Child Left Behind (NCLB). Contributing a positive social change, this study's findings supplied science teachers with descriptions of successful inquiry classrooms and creative assessments that correspond to inquiry-based learning methods.

  14. Impact of National Assessment of Educational Progress (NAEP) use and score interpretation on states' inquiry-based science education policies and practices: A descriptive study

    NASA Astrophysics Data System (ADS)

    Conley, David M.

    This study examined the influence of use and interpretation of National Assessment of Educational Progress (NAEP) science results on science education policies and practices in the United States, in the context of teaching and learning through inquiry and the assessment of student inquiry achievement. State assessment directors, NAEP coordinators, and science education specialists nationwide were invited to participate in the study by responding to a Web-based self-administered survey instrument. Sixty-seven percent of the population responded, providing both quantitative and qualitative data through selected-response and open-ended survey items, respectively. The findings of this study revealed that: (a) not all states interpret NAEP science results as an indicator of students' abilities to undertake inquiry investigations or understand the nature of inquiry---in fact, states view their own science assessments as more indicative of expectations regarding inquiry achievement; (b) most states have made changes to science curricular frameworks and assessments since the last NAEP science administration in 2000, so that more emphasis is placed on inquiry-based instruction and assessment of inquiry achievement---however, NAEP results have had a minor influence on these changes; (c) fewer states have made changes in legislation, policies, and professional development that reflect greater emphasis on inquiry, and those that did felt that NAEP results had no significant impact; (d) NAEP's influence has changed since the No Child Left Behind (NCLB) Act of 2001, but it remains minor since NAEP is still perceived as a "low stakes" test; (e) state officials believe NAEP's influence will increase significantly after the results of NAEP science 2005 are released and interpreted and as NCLB accountability provisions in science take hold in 2007--2008. The implications of the study's findings are discussed in reference to the theoretical and practical knowledge-bases concerning

  15. Experimental Comparison of Inquiry and Direct Instruction in Science

    ERIC Educational Resources Information Center

    Cobern, William W.; Schuster, David; Adams, Betty; Applegate, Brooks; Skjold, Brandy; Undreiu, Adriana; Loving, Cathleen C.; Gobert, Janice D.

    2010-01-01

    There are continuing educational and political debates about "inquiry" versus "direct" teaching of science. Traditional science instruction has been largely direct but in the US, recent national and state science education standards advocate inquiry throughout K-12 education. While inquiry-based instruction has the advantage of modelling aspects…

  16. Experimental comparison of inquiry and direct instruction in science

    NASA Astrophysics Data System (ADS)

    Cobern, William W.; Schuster, David; Adams, Betty; Applegate, Brooks; Skjold, Brandy; Undreiu, Adriana; Loving, Cathleen C.; Gobert, Janice D.

    2010-04-01

    There are continuing educational and political debates about 'inquiry' versus 'direct' teaching of science. Traditional science instruction has been largely direct but in the US, recent national and state science education standards advocate inquiry throughout K-12 education. While inquiry-based instruction has the advantage of modelling aspects of the nature of real scientific inquiry, there is little unconfounded comparative research into the effectiveness and efficiency of the two instructional modes for developing science conceptual understanding. This research undertook a controlled experimental study comparing the efficacy of carefully designed inquiry instruction and equally carefully designed direct instruction in realistic science classroom situations at the middle school grades. The research design addressed common threats to validity. We report on the nature of the instructional units in each mode, research design, methods, classroom implementations, monitoring, assessments, analysis and project findings.

  17. Is Inquiry-Based Science Teaching Worth the Effort? Some Thoughts Worth Considering

    ERIC Educational Resources Information Center

    Zhang, Lin

    2016-01-01

    Inquiry-based science teaching has been advocated by many science educational standards and reports from around the world. Disagreements about and concerns with this teaching approach, however, are often ignored. Opposing ideas and conflicting results have been bouncing around in the field. It seems that the field carries on with a hope that…

  18. Teachers' Perspectives on Online Virtual Labs vs. Hands-On Labs in High School Science

    NASA Astrophysics Data System (ADS)

    Bohr, Teresa M.

    This study of online science teachers' opinions addressed the use of virtual labs in online courses. A growing number of schools use virtual labs that must meet mandated laboratory standards to ensure they provide learning experiences comparable to hands-on labs, which are an integral part of science curricula. The purpose of this qualitative case study was to examine teachers' perceptions of the quality and effectiveness of high school virtual labs. The theoretical foundation was constructivism, as labs provide student-centered activities for problem solving, inquiry, and exploration of phenomena. The research questions focused on experienced teachers' perceptions of the quality of virtual vs. hands-on labs. Data were collected through survey questions derived from the lab objectives of The Next Generation Science Standards . Eighteen teachers rated the degree of importance of each objective and also rated how they felt virtual labs met these objectives; these ratings were reported using descriptive statistics. Responses to open-ended questions were few and served to illustrate the numerical results. Many teachers stated that virtual labs are valuable supplements but could not completely replace hands-on experiences. Studies on the quality and effectiveness of high school virtual labs are limited despite widespread use. Comprehensive studies will ensure that online students have equal access to quality labs. School districts need to define lab requirements, and colleges need to specify the lab experience they require. This study has potential to inspire positive social change by assisting science educators, including those in the local school district, in evaluating and selecting courseware designed to promote higher order thinking skills, real-world problem solving, and development of strong inquiry skills, thereby improving science instruction for all high school students.

  19. The Science Management Observation Protocol: Using Structured Observations to Improve Teachers' Management of Inquiry-Based Classrooms

    ERIC Educational Resources Information Center

    Sampson, Victor

    2004-01-01

    With the publication of the National Science Education Standards and the Benchmarks for Science Literacy, people now have a thorough idea of what an inquiry-based teacher is, and what he or she needs to do within a classroom in order to be successful. However, one major barrier in learning how to become an effective inquiry-based science teacher…

  20. A Well-Started Beginning Elementary Teacher's Beliefs and Practices in Relation to Reform Recommendations about Inquiry-Based Science

    ERIC Educational Resources Information Center

    Avraamidou, Lucy

    2017-01-01

    Given reform recommendations emphasizing scientific inquiry and empirical evidence pointing to the difficulties beginning teachers face in enacting inquiry-based science, this study explores a well-started beginning elementary teacher's (Sofia) beliefs about inquiry-based science and related instructional practices. In order to explore Sofia's…

  1. Integrating Various Apps on BYOD (Bring Your Own Device) into Seamless Inquiry-Based Learning to Enhance Primary Students' Science Learning

    NASA Astrophysics Data System (ADS)

    Song, Yanjie; Wen, Yun

    2018-04-01

    Despite that BYOD (Bring Your Own Device) technology model has been increasingly adopted in education, few studies have been reported on how to integrate various apps on BYOD into inquiry-based pedagogical practices in primary schools. This article reports a case study, examining what apps on BYOD can help students enhance their science learning, and how students develop their science knowledge in a seamless inquiry-based learning environment supported by these apps. A variety of qualitative data were collected and analyzed. The findings show that the affordances of the apps on BYOD could help students improve their science knowledge without time and place constraints and gain a better sense of ownership in learning.

  2. Student's social interaction in inquiry-based science education: how experiences of flow can increase motivation and achievement

    NASA Astrophysics Data System (ADS)

    Ellwood, Robin; Abrams, Eleanor

    2017-02-01

    This research investigated how student social interactions within two approaches to an inquiry-based science curriculum could be related to student motivation and achievement outcomes. This qualitative case study consisted of two cases, Off-Campus and On-Campus, and used ethnographic techniques of participant observation. Research participants included eight eighth grade girls, aged 13-14 years old. Data sources included formal and informal participant interviews, participant journal reflections, curriculum artifacts including quizzes, worksheets, and student-generated research posters, digital video and audio recordings, photographs, and researcher field notes. Data were transcribed verbatim and coded, then collapsed into emergent themes using NVIVO 9. The results of this research illustrate how setting conditions that promote focused concentration and communicative interactions can be positively related to student motivation and achievement outcomes in inquiry-based science. Participants in the Off-Campus case experienced more frequent states of focused concentration and out performed their peers in the On-Campus case on 46 % of classroom assignments. Off-Campus participants also designed and implemented a more cognitively complex research project, provided more in-depth analyses of their research results, and expanded their perceptions of what it means to act like a scientist to a greater extent than participants in the On-Campus case. These results can be understood in relation to Flow Theory. Student interactions that promoted the criteria necessary for initiating flow, which included having clearly defined goals, receiving immediate feedback, and maintaining a balance between challenges and skills, fostered enhanced student motivation and achievement outcomes. Implications for science teaching and future research include shifting the current focus in inquiry-based science from a continuum that progresses from teacher-directed to open inquiry experiences to a

  3. The effect of concept mapping on preservice elementary teachers' knowledge of science inquiry teaching

    NASA Astrophysics Data System (ADS)

    Jackson, Diann Carol

    This study examined the effect of concept mapping as a method of stimulating reflection on preservice elementary teachers' knowledge of science inquiry instruction methods. Three intact classes of science education preservice teachers participated in a non-randomized comparison group with a pretest and posttest design to measure the influence of mapping on participants' knowledge of inquiry science instruction. All groups followed the same course syllabus, in class activities, readings, assignments and assessment tasks. The manner in which they presented their ideas about inquiry science teaching varied. Groups constructed pre-lesson, post-lesson, and homework lists or maps across three inquiry based instruction modules (ecosystems, food chains, and electricity). Equivalent forms of the Teaching Science Inventory (TSI) were used to investigate changes in preservice teachers' propositional knowledge about how to teach using inquiry science instruction methods. Equivalent forms of the Science Lesson Planning (SLP) test were used to investigate changes in preservice teachers' application knowledge about how to teach using inquiry science instruction methods. Data analysis included intrarater reliability, ANOVAs, ANCOVAs, and correlations between lists and maps and examination responses. SLP and TSI scores improved from the pretest to the posttest in each of the three study groups. The results indicate that, in general, there were basically no relationships between the treatment and outcome measures. In addition, there were no significant differences between the three groups in their knowledge about how to teach science. Conclusions drawn from this study include, first, the learners did learn how to teach science using inquiry. Second, in this study there is little evidence to support that concept mapping was more successful than the listing strategy in improving preservice elementary teachers' knowledge of teaching science using inquiry science instruction methods.

  4. An exploration of middle school science teachers' understandings and teaching practice of science as inquiry

    NASA Astrophysics Data System (ADS)

    Castle, Margaret Ann

    understanding of science increases (Akkus, Gunel & Hand, 2007; Gibson, 2002; Liu, Lee & Linn, 2010). As a result, it is important to explore middle school science teachers' definition of science as inquiry because of its importance in how their understandings are reflected in their practice. Researchers must witness, first- hand, what is taking place in middle school science classrooms with respect to the teaching of scientific inquiry before recommendations for improvements can be made. We must also allow opportunities for middle school science teachers to broach, examine, explore, interpret and report implementation strategies when practicing the elements of scientific inquiry as a science content area. It then stands to reason that more research needs to be done to: (1) assess teachers' knowledge related to reform-based teaching, (2) investigate teachers' views about the goals and purposes of inquiry, and (3) investigate the processes by which teachers carry out SI and motivation for undertaking such a complex and difficult to manage form of instruction. The purpose of this study was to examine middle school science teachers' understandings and skills related to scientific inquiry; how those understandings and skills were translated into classroom practice, and the role the school district played in the development of such understandings and skills.

  5. Action Research Study. A Framework To Help Move Teachers toward an Inquiry-Based Science Teaching Approach.

    ERIC Educational Resources Information Center

    Staten, Mary E.

    This action research study developed a framework for moving teachers toward an inquiry-based approach to teaching science, emphasizing elements, strategies, and supports necessary to encourage and sustain teachers' use of inquiry-based science instruction. The study involved a literature review, participant observation, focus group discussions,…

  6. Teaching Science with Web-Based Inquiry Projects: An Exploratory Investigation

    ERIC Educational Resources Information Center

    Webb, Aubree M.; Knight, Stephanie L.; Wu, X. Ben; Schielack, Jane F.

    2014-01-01

    The purpose of this research is to explore a new computer-based interactive learning approach to assess the impact on student learning and attitudes toward science in a large university ecology classroom. A comparison was done with an established program to measure the relative impact of the new approach. The first inquiry project, BearCam, gives…

  7. Empowering Rural Appalachian Youth Through Integrated Inquiry-based Earth Science

    NASA Astrophysics Data System (ADS)

    Cartwright, T. J.; Hogsett, M.

    2009-05-01

    Science education must be relevant and inspiring to keep students engaged and receptive to learning. Reports suggest that science education reform can be advanced by involving students in active research (NSF 1996). Through a 2-year Geoscience Education award from the National Science Foundation, a program called IDGE (Integrated Design for Geoscience Education) has targeted low-income, under-represented, and minority high school students in rural Appalachia in inquiry-based projects, international collaboration, and an international environmental expedition incorporating the GLOBE program protocols. This program targeted Upward Bound students at Marshall University in Huntington, West Virginia. The Upward Bound is a federally-supported program targeting low-income, under-represented, and minority students for inclusion in a summer academic- enrichment program. IDGE builds on the mission of Upward Bound by encouraging underprivileged students to investigate science and scientific careers. This outreach has proven to be successful in enhancing positive attitudes and understanding about science and increasing the number of students considering science careers. IDGE has found that students must be challenged to observe the world around them and to consider how their decisions affect the future of our planet, thus making geoscience relevant and interesting to the students. By making the geoscience course inquiry-based and incorporating field research that is relevant to local environmental issues, it becomes possible for students to bridge the gap between science in theory and science in practice while remaining engaged. Participants were able to broaden environmental connections through an ecological expedition experience to Costa Rica, serving as an opportunity to broaden the vision of students as members of an international community of learners and scientists through their experiences with a diverse natural environment. This trip, in coordination with the inclusion

  8. An Inquiry-Based Contextual Approach as the Primary Mode of Learning Science with Microcomputer-Based Laboratory Technology

    ERIC Educational Resources Information Center

    Espinoza, Fernando; Quarless, Duncan

    2010-01-01

    Science instruction can be designed to be laboratory-data driven. We report on an investigation of the use of thematic inquiry-based tasks with active incorporation of mathematics, science, and microcomputer-based laboratory technology in standards-correlated activities that enhanced learning experiences. Activities involved students in two major…

  9. Inquiry-Based Science and Technology Enrichment Program for Middle School-Aged Female Students

    NASA Astrophysics Data System (ADS)

    Kim, Hanna

    2016-04-01

    This study investigates the effects of an intensive 1-week Inquiry-Based Science and Technology Enrichment Program (InSTEP) designed for middle school-aged female students. InSTEP uses a guided/open inquiry approach that is deepened and redefined as eight sciences and engineering practices in the Next Generation Science Standards, which aimed at increasing female students' interest in science and science-related careers. This study examined the effectiveness of InSTEP on 123 female students' pre-assessment and post-assessment changes in attitudes toward science and content knowledge of selected science concepts. An attitude survey, a science content test with multiple-choice questions, written assignments, and interviews to collect data were all used to measure students' attitudes and content knowledge. A within-group, repeated measure design was conducted, and the results indicated that at the post-intervention level, InSTEP increased the participants' positive attitudes toward science, science-related careers, and content knowledge of selected science concepts.

  10. Argumentation-Based Collaborative Inquiry in Science through Representational Work: Impact on Primary Students' Representational Fluency

    ERIC Educational Resources Information Center

    Nichols, Kim; Gillies, Robyn; Hedberg, John

    2016-01-01

    This study explored the impact of argumentation-promoting collaborative inquiry and representational work in science on primary students' representational fluency. Two hundred sixty-six year 6 students received instruction on natural disasters with a focus on collaborative inquiry. Students in the Comparison condition received only this…

  11. Motion in action: A study of second graders' trajectories of experience during guided inquiry science instruction

    NASA Astrophysics Data System (ADS)

    Hapgood, Susanna Elizabeth

    This interpretive case study describes a 10-day inquiry science program of study of motion down inclined planes during which a class of 21 second graders investigated scientific relationships such as mass and speed, speed and momentum, and mass and momentum via both text-based experiences ("second-hand investigations") and hands-on materials-based experiments ("first-hand investigations"). Data sources included over 11 hours of videotaped instruction in addition to children's written work, class-generated artifacts, and paper-and-pencil pre- and posttests. Content analyses informed by both sociocultural and developmental perspectives revealed that, in addition to a significant increase in pre- to posttest scores, children in the class engaged in several processes integral to inquiry, namely, (a) using data as evidence, (b) evaluating investigative procedures, and (c) making sense of multiple forms of representations. In addition, the study describes the range of and shifts in children's ideas about scientific relationships fundamental to developing an understanding of motion. Many children were observed to make causal attributions involving a relationship between two variables, such as the mass and momentum of a ball rolling down a ramp. Discussed are mediating factors such as the teacher's role in scaffolding the class's investigations and features of the innovative "scientists' notebook" texts, which were integral to the instruction. Also presented is evidence of first-hand and second-hand investigations working in concert to provide the elementary school students with rich opportunities to learn and to express their developing understandings of scientific ideas. This study provides a rare glimpse of primary-grade inquiry-based science instruction within a classroom context.

  12. The development of guided inquiry-based learning devices on photosynthesis and respiration matter to train science literacy skills

    NASA Astrophysics Data System (ADS)

    Choirunnisak; Ibrahim, M.; Yuliani

    2018-01-01

    The purpose of this research was to develop a guided inquiry-based learning devices on photosynthesis and respiration matter that are feasible (valid, practical, and effective) to train students’ science literacy. This research used 4D development model and tested on 15 students of biology education 2016 the State University of Surabaya with using one group pretest-posttest design. Learning devices developed include (a) Semester Lesson Plan (b) Lecture Schedule, (c) Student Activity Sheet, (d) Student Textbook, and (e) testability of science literacy. Research data obtained through validation method, observation, test, and questionnaire. The results were analyzed descriptively quantitative and qualitative. The ability of science literacy was analyzed by n-gain. The results of this research showed that (a) learning devices that developed was categorically very valid, (b) learning activities performed very well, (c) student’s science literacy skills improved that was a category as moderate, and (d) students responses were very positively to the learning that already held. Based on the results of the analysis and discussion, it is concluded that the development of guided inquiry-based learning devices on photosynthesis and respiration matter was feasible to train students literacy science skills.

  13. Urban Middle School Students' Reflections on Authentic Science Inquiry

    ERIC Educational Resources Information Center

    Rivera Maulucci, María S.; Brown, Bryan A.; Grey, Salina T.; Sullivan, Shayna

    2014-01-01

    This study explores the experiences of six urban middle school students in an authentic science inquiry program. Drawing on data including teaching journal entries, student work folders, and semi-structured focus group interviews of six participants, the findings explore six dimensions of authentic science inquiry, an approach to science inquiry…

  14. CAREER Educational Outreach: Inquiry-based Atmospheric Science Lessons for K-12 students

    NASA Astrophysics Data System (ADS)

    Courville, Z.; Carbaugh, S.; Defrancis, G.; Donegan, R.; Brown, C.; Perovich, D. K.; Richter-Menge, J.

    2011-12-01

    Climate Comics is a collaborative outreach effort between the Montshire Museum of Science, in Norwich, VT, the Cold Regions Research and Engineering Laboratory (CRREL) research staff, and freelance artist and recent graduate of the Center for Cartoon Studies in White River Junction, VT, Sam Carbaugh. The project involves the cartoonist, the education staff from the museum, and researchers from CRREL creating a series of comic books with polar science and research themes, including sea ice monitoring, sea ice albedo, ice cores, extreme microbial activity, and stories and the process of fieldwork. The aim of the comic series is to provide meaningful science information in a comic-format that is both informative and fun, while highlighting current polar research work done at the lab. The education staff at the Montshire Museum develops and provides a series of hands-on, inquiry-based activity descriptions to complement each comic book, and CRREL researchers provide science background information and reiterative feedback about the comic books as they are being developed. Here, we present the motivation for using the comic-book medium to present polar research topics, the process involved in creating the comics, some unique features of the series, and the finished comic books themselves. Cartoon illustrating ways snow pack can be used to determine past climate information.

  15. Developing Mental Models about Air Using Inquiry-Based Instruction with Kindergartners

    ERIC Educational Resources Information Center

    Van Hook, Stephen; Huziak, Tracy; Nowak, Katherine

    2005-01-01

    This study examines the development of mental models of air by kindergarten students after completing a series of hands-on, inquiry-based science lessons. The lessons focused on two properties of air: (1) that air takes up space and (2) that it is made of particles ("balls of air"). The students were interviewed about their ideas of air and about…

  16. Comparing an Inquiry-Based Approach Known as the Science Writing Heuristic to Traditional Science Teaching Practices: Are There Differences?

    ERIC Educational Resources Information Center

    Akkus, Recai; Gunel, Murat; Hand, Brian

    2007-01-01

    Many state and federal governments have mandated in such documents as the National Science Education Standards that inquiry strategies should be the focus of the teaching of science within school classrooms. The difficult part for success is changing teacher practices from perceived traditional ways of teaching to more inquiry-based approaches.…

  17. Science inquiry learning environments created by National Board Certified Teachers

    NASA Astrophysics Data System (ADS)

    Saderholm, Jon

    participants to treatment and control groups and dependent pre- and post-tests (Shadish, Cook, & Campbell, 2002). Teacher and student NOS understanding was measured using the Student Understanding of Science and Science Inquiry (SUSSI) instrument (Liang, et. al, 2006). Science inquiry environment was measured with the Elementary Science Inquiry Survey (ESIS) (Dunbar, 2002) which was given both to teachers and their students. Science inquiry environment measurements were triangulated with observations of a stratified random sub-sample of participating teachers. Observations were structured using the low-inference Collaboratives for Excellence in Teaching Practice (CETP) Classroom Observation Protocol (COP) (Lawrenz, Huffman, & Appleldoorn 2002), and the high-inference Reform Teaching Observation Protocol (RTOP) (Piburn & Sawada, 2000). NBCTs possessed more informed view of NOS than did non-NBCTs. Additionally, high school science teachers possessed more informed views regarding NOS than did middle school science teachers, with the most informed views belonging to high school science NBCTs. High school science NBCTs created learning environments in which students engaged in science inquiry behaviors significantly more frequently than did high school science non-NBCTs. Middle school science NBCTs, on the other hand, did not create learning environments that differed in significant ways from those of middle school science non-NBCTs. Students of high school science NBCTs possessed significantly higher science reasoning than did students of high school science non-NBCTs. Middle school students of science NBCTs possessed no more science reasoning ability than did middle school students of science non-NBCTs. NOS understanding displayed by students of both middle school and high school science NBCTs was not distinguished from students of non-NBCTs. Classroom science inquiry environment created by non-NBCTs were correlated with science teachers' perceptions of factors determining the

  18. Influence of teacher-directed scientific inquiry on students' primal inquiries in two science classrooms

    NASA Astrophysics Data System (ADS)

    Stone, Brian Andrew

    Scientific inquiry is widely used but pervasively misunderstood in elementary classrooms. The use of inquiry is often attached to direct instruction models of teaching, or is even passed as textbook readings or worksheets. Previous literature on scientific inquiry suggests a range or continuum beginning with teacher-directed inquiry on one extreme, which involves a question, process, and outcome that are predetermined by the teacher. On the other end of the continuum is an element of inquiry that is extremely personal and derived from innate curiosity without external constraints. This authentic inquiry is defined by the study as primal inquiry. If inquiry instruction is used in the elementary classroom, it is often manifested as teacher-directed inquiry, but previous research suggests the most interesting, motivating, and lasting content is owned by the individual and exists within the individual's own curiosity, questioning and processes. Therefore, the study examined the impact of teacher-directed inquiry in two elementary fourth grade classrooms on climate-related factors including interest, motivation, engagement, and student-generated inquiry involvement. The study took place at two elementary classrooms in Arizona. Both were observed for ten weeks during science instruction over the course of one semester. Field notes were written with regard for the inquiry process and ownership, along with climate indicators. Student journals were examined for evidence of primal inquiry, and twenty-two students were interviewed between the two classrooms for evidence of low climate-related factors and low inquiry involvement. Data from the three sources were triangulated. The results of this qualitative study include evidence for three propositions, which were derived from previous literature. Strong evidence was provided in support of all three propositions, which suggest an overall negative impact on climate-related factors of interest, motivation, and engagement for

  19. Exploring Elementary Pre-Service Teachers' Experiences and Learning Outcomes in a Revised Inquiry-Based Science Lesson: An Action Research

    ERIC Educational Resources Information Center

    Kazempour, Mahsa; Amirshokoohi, Aidin

    2013-01-01

    In order for teachers to implement inquiry-based teaching practices, they must have experienced inquiry-based learning especially during science content and methods courses. Although the impacts of inquiry-based instruction on various cognitive and affective domains have been studied and documented little attention has been paid to "how"…

  20. The Transformative Potential of Engaging in Science Inquiry-Based Challenges: The ATSE Wonder of Science Challenge

    ERIC Educational Resources Information Center

    Tomas, Louisa; Jackson, Cliff; Carlisle, Karen

    2014-01-01

    In 2012, the Australian Academy of Technological Sciences and Engineering (ATSE) piloted the "Wonder of Science Challenge" with a view to enhance school students' interest in Science, Technology, Engineering and Mathematics (STEM). Students in 15 schools across northern Queensland were provided with an inquiry-based research problem and…

  1. Implementation of Inquiry-Based Science Education in Different Countries: Some Reflections

    ERIC Educational Resources Information Center

    Rundgren, Carl-Johan

    2018-01-01

    In this forum article, I reflect on issues related to the implementation of inquiry-based science education (IBSE) in different countries. Regarding education within the European Union (EU), the Bologna system has in later years provided extended coordination and comparability at an organizational level. However, the possibility of the EU to…

  2. Tornado! An Event-Based Science Module. Student Edition. Meteorology Module.

    ERIC Educational Resources Information Center

    Wright, Russell G.

    This book is designed for middle school students to learn scientific literacy through event-based science. Unlike traditional curricula, the event-based earth science module is a student-centered, interdisciplinary, inquiry-oriented program that emphasizes cooperative learning, teamwork, independent research, hands-on investigations, and…

  3. Volcano!: An Event-Based Science Module. Student Edition. Geology Module.

    ERIC Educational Resources Information Center

    Wright, Russell G.

    This book is designed for middle school students to learn scientific literacy through event-based science. Unlike traditional curricula, the event-based earth science module is a student-centered, interdisciplinary, inquiry-oriented program that emphasizes cooperative learning, teamwork, independent research, hands-on investigations, and…

  4. Enabling People Who Are Blind to Experience Science Inquiry Learning through Sound-Based Mediation

    ERIC Educational Resources Information Center

    Levy, S. T.; Lahav, O.

    2012-01-01

    This paper addresses a central need among people who are blind, access to inquiry-based science learning materials, which are addressed by few other learning environments that use assistive technologies. In this study, we investigated ways in which learning environments based on sound mediation can support science learning by blind people. We used…

  5. Collaborating to Improve Inquiry-Based Teaching in Elementary Science and Mathematics Methods Courses

    ERIC Educational Resources Information Center

    Magee, Paula A.; Flessner, Ryan

    2012-01-01

    This study examines the effect of promoting inquiry-based teaching (IBT) through collaboration between a science methods course and mathematics methods course in an elementary teacher education program. During the collaboration, preservice elementary teacher (PST) candidates experienced 3 different types of inquiry as a way to foster increased…

  6. Science Fairs: A Qualitative Study of Their Impact on Student Science Inquiry Learning and Attitudes toward STEM

    ERIC Educational Resources Information Center

    Schmidt, Kathleen M.; Kelter, Paul

    2017-01-01

    Little is known about the impact of science fair participation on student science inquiry learning. Furthermore, there is only a small research base relating to science fair participation and student attitudes toward science, technology, engineering, and mathematics (STEM) careers and coursework. In this study, 41 seventh-grade science fair…

  7. Understanding the Development of a Hybrid Practice of Inquiry-Based Science Instruction and Language Development: A Case Study of One Teacher's Journey Through Reflections on Classroom Practice

    NASA Astrophysics Data System (ADS)

    Capitelli, Sarah; Hooper, Paula; Rankin, Lynn; Austin, Marilyn; Caven, Gennifer

    2016-04-01

    This qualitative case study looks closely at an elementary teacher who participated in professional development experiences that helped her develop a hybrid practice of using inquiry-based science to teach both science content and English language development (ELD) to her students, many of whom are English language learners (ELLs). This case study examines the teacher's reflections on her teaching and her students' learning as she engaged her students in science learning and supported their developing language skills. It explicates the professional learning experiences that supported the development of this hybrid practice. Closely examining the pedagogical practice and reflections of a teacher who is developing an inquiry-based approach to both science learning and language development can provide insights into how teachers come to integrate their professional development experiences with their classroom expertise in order to create a hybrid inquiry-based science ELD practice. This qualitative case study contributes to the emerging scholarship on the development of teacher practice of inquiry-based science instruction as a vehicle for both science instruction and ELD for ELLs. This study demonstrates how an effective teaching practice that supports both the science and language learning of students can develop from ongoing professional learning experiences that are grounded in current perspectives about language development and that immerse teachers in an inquiry-based approach to learning and instruction. Additionally, this case study also underscores the important role that professional learning opportunities can play in supporting teachers in developing a deeper understanding of the affordances that inquiry-based science can provide for language development.

  8. Sustaining Inquiry-Based Teaching Methods in the Middle School Science Classroom

    ERIC Educational Resources Information Center

    Murphy, Amy Fowler

    2012-01-01

    This dissertation used a combination of case study and phenomenological research methods to investigate how individual teachers of middle school science in the Alabama Math, Science, and Technology Initiative (AMSTI) program sustain their use of inquiry-based methods of teaching and learning. While the overall context for the cases was the AMSTI…

  9. The Impact of an Inquiry-Based Geoscience Field Course on Pre-Service Teachers

    ERIC Educational Resources Information Center

    Nugent, Gwen; Toland, Michael D.; Levy, Richard; Kunz, Gina; Harwood, David; Green, Denise; Kitts, Kathy

    2012-01-01

    The purpose of this quasi-experimental study was to determine the effects of a field-based, inquiry-focused course on pre-service teachers' geoscience content knowledge, attitude toward science, confidence in teaching science, and inquiry understanding and skills. The field-based course was designed to provide students with opportunities to…

  10. The Science Semester: Cross-Disciplinary Inquiry for Prospective Elementary Teachers

    NASA Astrophysics Data System (ADS)

    Ford, Danielle J.; Fifield, Steve; Madsen, John; Qian, Xiaoyu

    2013-10-01

    We describe the Science Semester, a semester-long course block that integrates three science courses and a science education methods course for elementary teacher education majors, and examine prospective elementary teachers’ developing conceptions about inquiry, science teaching efficacy, and reflections on learning through inquiry. The Science Semester was designed to provide inquiry-oriented and problem-based learning experiences, opportunities to examine socially relevant issues through cross-disciplinary perspectives, and align with content found in elementary curricula and standards. By the end of the semester, prospective elementary teachers moved from naïve to intermediate understandings of inquiry and significantly increased self-efficacy for science teaching as measured on one subscore of the STEBI-B. Reflecting on the semester, prospective teachers understood and appreciated the goals of the course and the PBL format, but struggled with the open-ended and student-directed elements of the course.

  11. The PRIME Partnership: 9th Graders, Graduate Students and Integrated, Inquiry-Based Science

    NASA Astrophysics Data System (ADS)

    Gaffney, A. M.; Miguelez, S.

    2001-12-01

    The PRIME program (Partnership for Research in Inquiry-based Math, science and engineering Education) is a collaboration between the UW Colleges of Education and Engineering and several Seattle-area school districts. This project, funded by the NSF GK-12 program, pairs UW graduate students from math, science and engineering disciplines with local middle school teachers. The graduate student spends a year working with the teacher, on projects designed to meet the needs and interests of the specific partnership and classroom. In the partnership, the graduate student spends 15 hours per week in the classroom, interacting with the students, as well as additional planning time outside of the classroom. Goals of the PRIME program are enriched learning by middle school students, professional development for middle school teachers, improved communication and teaching skills for the graduate students, and strengthened partnerships between the University of Washington and local school districts. The goal of our partnership was to develop an inquiry-based, 9th grade unit that integrates the pre-existing Earth Science and Chemistry units, and to assess the effectiveness of teaching Chemistry in the context of Earth Science. We have observed that students often become engaged and excited when they do hands-on activities that utilize the intrinsic understanding that they have of concepts that draw upon experiences in their daily lives. When science is taught and learned in one such context - in the context of the natural world - the students may gain a more solid fundamental understanding of the science that they learn. The day-to-day activities for this unit vary widely. We started each topic with a question designed to get the students thinking independently and to identify the preconceptions that the students brought into the classroom. Discussions of students' preconceptions served as a justification and springboard for the subsequent activities and experiments. Examples of

  12. A well-started beginning elementary teacher's beliefs and practices in relation to reform recommendations about inquiry-based science

    NASA Astrophysics Data System (ADS)

    Avraamidou, Lucy

    2017-06-01

    Given reform recommendations emphasizing scientific inquiry and empirical evidence pointing to the difficulties beginning teachers face in enacting inquiry-based science, this study explores a well-started beginning elementary teacher's (Sofia) beliefs about inquiry-based science and related instructional practices. In order to explore Sofia's beliefs and instructional practices, several kinds of data were collected in a period of 9 months: a self-portrait and an accompanying narrative, a personal philosophy assignment, three interviews, three journal entries, ten lesson plans, and ten videotaped classroom observations. The analysis of these data showed that Sofia's beliefs and instructional practices were reform-minded. She articulated contemporary beliefs about scientific inquiry and how children learn science and was able to translate these beliefs into practice. Central to Sofia's beliefs about science teaching were scientific inquiry and engaging students in investigations with authentic data, with a prevalent emphasis on the role of evidence in the construction of scientific claims. These findings are important to research aiming at supporting teachers, especially beginning ones, to embrace reform recommendations.

  13. How does a Next Generation Science Standard Aligned, Inquiry Based, Science Unit Impact Student Achievement of Science Practices and Student Science Efficacy in an Elementary Classroom?

    NASA Astrophysics Data System (ADS)

    Whittington, Kayla Lee

    This study examined the impact of an inquiry based Next Generation Science Standard aligned science unit on elementary students' understanding and application of the eight Science and Engineering Practices and their relation in building student problem solving skills. The study involved 44 second grade students and three participating classroom teachers. The treatment consisted of a school district developed Second Grade Earth Science unit: What is happening to our playground? that was taught at the beginning of the school year. Quantitative results from a Likert type scale pre and post survey and from student content knowledge assessments showed growth in student belief of their own abilities in the science classroom. Qualitative data gathered from student observations and interviews performed at the conclusion of the Earth Science unit further show gains in student understanding and attitudes. This study adds to the existing literature on the importance of standard aligned, inquiry based science curriculum that provides time for students to engage in science practices.

  14. Teaching Neuroscience to Science Teachers: Facilitating the Translation of Inquiry-Based Teaching Instruction to the Classroom

    PubMed Central

    Roehrig, G. H.; Michlin, M.; Schmitt, L.; MacNabb, C.; Dubinsky, J. M.

    2012-01-01

    In science education, inquiry-based approaches to teaching and learning provide a framework for students to building critical-thinking and problem-solving skills. Teacher professional development has been an ongoing focus for promoting such educational reforms. However, despite a strong consensus regarding best practices for professional development, relatively little systematic research has documented classroom changes consequent to these experiences. This paper reports on the impact of sustained, multiyear professional development in a program that combined neuroscience content and knowledge of the neurobiology of learning with inquiry-based pedagogy on teachers’ inquiry-based practices. Classroom observations demonstrated the value of multiyear professional development in solidifying adoption of inquiry-based practices and cultivating progressive yearly growth in the cognitive environment of impacted classrooms. PMID:23222837

  15. Teaching neuroscience to science teachers: facilitating the translation of inquiry-based teaching instruction to the classroom.

    PubMed

    Roehrig, G H; Michlin, M; Schmitt, L; MacNabb, C; Dubinsky, J M

    2012-01-01

    In science education, inquiry-based approaches to teaching and learning provide a framework for students to building critical-thinking and problem-solving skills. Teacher professional development has been an ongoing focus for promoting such educational reforms. However, despite a strong consensus regarding best practices for professional development, relatively little systematic research has documented classroom changes consequent to these experiences. This paper reports on the impact of sustained, multiyear professional development in a program that combined neuroscience content and knowledge of the neurobiology of learning with inquiry-based pedagogy on teachers' inquiry-based practices. Classroom observations demonstrated the value of multiyear professional development in solidifying adoption of inquiry-based practices and cultivating progressive yearly growth in the cognitive environment of impacted classrooms.

  16. Inquiry-Based Science Education Competencies of Primary School Teachers: A Literature Study and Critical Review of the American National Science Education Standards

    ERIC Educational Resources Information Center

    Alake-Tuenter, Ester; Biemans, Harm J. A.; Tobi, Hilde; Wals, Arjen E. J.; Oosterheert, Ida; Mulder, Martin

    2012-01-01

    Inquiry-based science education is an important innovation. Researchers and teachers consider it to be stimulating for pupils' application of research skills, construction of meaning and acquiring scientific knowledge. However, there is ambiguity as to what competencies are required to teach inquiry-based science. Our purpose is to develop a…

  17. "Almost Everything We Do Includes Inquiry": Fostering Inquiry-Based Teaching and Learning with Preschool Teachers

    ERIC Educational Resources Information Center

    Hollingsworth, Heidi L.; Vandermaas-Peeler, Maureen

    2017-01-01

    Given the increased emphasis on science in early learning standards, two studies were conducted to investigate preschool teachers' efficacy for teaching science and their inquiry-based teaching practices. Fifty-one teachers completed a survey of their efficacy for teaching science and understanding of inquiry methods. Teachers reported moderate…

  18. Inquiry and Flow in Science Education

    ERIC Educational Resources Information Center

    Gyllenpalm, Jakob

    2018-01-01

    Ellwood's and Abrams's paper, "Students's social interaction in inquiry-based science education: how experiences of flow can increase motivation and achievement," describes two groups of students and their experiences in an extended inquiry unit. For one of these, the Off-Campus group, several educational aspects were enhanced compared…

  19. The Development of Scientific Literacy through Nature of Science (NoS) within Inquiry Based Learning Approach

    NASA Astrophysics Data System (ADS)

    Widowati, A.; Widodo, E.; Anjarsari, P.; Setuju

    2017-11-01

    Understanding of science instructional leading to the formation of student scientific literacy, seems not yet fully understood well by science teachers. Because of this, certainly needs to be reformed because science literacy is a major goal in science education for science education reform. Efforts of development science literacy can be done by help students develop an information conception of the Nature of Science (NoS) and apply inquiry approach. It is expected that students’ science literacy can develop more optimal by combining NoS within inquiry approach. The purpose of this research is to produce scientific literacy development model of NoS within inquiry-based learning. The preparation of learning tools will be maked through Research and Development (R & D) following the 4-D model (Define, Design, Develop, and Disseminate) and Borg & Gall. This study is a follow-up of preliminary research results about the inquiry profile of junior high school students indicating that most categories are quite good. The design of the model NoS within inquiry approach for developing scientific literacy is using MER Model in development educational reconstruction. This research will still proceed to the next stage that is Develop.

  20. The Influence Inquiry-Based Science Has on Elementary Teachers' Perception of Instruction and Self-Efficacy

    ERIC Educational Resources Information Center

    Lewis, Felecia J.

    2017-01-01

    The nature and purpose of this study was to examine the self-efficacy of teachers who use an inquiry-based science program to provide authentic experiences within the elementary school setting. It is essential to explore necessary improvements to bring about effective science education. Using a mixed methods study, the researcher conducted…

  1. Science Classroom Inquiry (SCI) Simulations: A Novel Method to Scaffold Science Learning

    PubMed Central

    Peffer, Melanie E.; Beckler, Matthew L.; Schunn, Christian; Renken, Maggie; Revak, Amanda

    2015-01-01

    Science education is progressively more focused on employing inquiry-based learning methods in the classroom and increasing scientific literacy among students. However, due to time and resource constraints, many classroom science activities and laboratory experiments focus on simple inquiry, with a step-by-step approach to reach predetermined outcomes. The science classroom inquiry (SCI) simulations were designed to give students real life, authentic science experiences within the confines of a typical classroom. The SCI simulations allow students to engage with a science problem in a meaningful, inquiry-based manner. Three discrete SCI simulations were created as website applications for use with middle school and high school students. For each simulation, students were tasked with solving a scientific problem through investigation and hypothesis testing. After completion of the simulation, 67% of students reported a change in how they perceived authentic science practices, specifically related to the complex and dynamic nature of scientific research and how scientists approach problems. Moreover, 80% of the students who did not report a change in how they viewed the practice of science indicated that the simulation confirmed or strengthened their prior understanding. Additionally, we found a statistically significant positive correlation between students’ self-reported changes in understanding of authentic science practices and the degree to which each simulation benefitted learning. Since SCI simulations were effective in promoting both student learning and student understanding of authentic science practices with both middle and high school students, we propose that SCI simulations are a valuable and versatile technology that can be used to educate and inspire a wide range of science students on the real-world complexities inherent in scientific study. PMID:25786245

  2. Science classroom inquiry (SCI) simulations: a novel method to scaffold science learning.

    PubMed

    Peffer, Melanie E; Beckler, Matthew L; Schunn, Christian; Renken, Maggie; Revak, Amanda

    2015-01-01

    Science education is progressively more focused on employing inquiry-based learning methods in the classroom and increasing scientific literacy among students. However, due to time and resource constraints, many classroom science activities and laboratory experiments focus on simple inquiry, with a step-by-step approach to reach predetermined outcomes. The science classroom inquiry (SCI) simulations were designed to give students real life, authentic science experiences within the confines of a typical classroom. The SCI simulations allow students to engage with a science problem in a meaningful, inquiry-based manner. Three discrete SCI simulations were created as website applications for use with middle school and high school students. For each simulation, students were tasked with solving a scientific problem through investigation and hypothesis testing. After completion of the simulation, 67% of students reported a change in how they perceived authentic science practices, specifically related to the complex and dynamic nature of scientific research and how scientists approach problems. Moreover, 80% of the students who did not report a change in how they viewed the practice of science indicated that the simulation confirmed or strengthened their prior understanding. Additionally, we found a statistically significant positive correlation between students' self-reported changes in understanding of authentic science practices and the degree to which each simulation benefitted learning. Since SCI simulations were effective in promoting both student learning and student understanding of authentic science practices with both middle and high school students, we propose that SCI simulations are a valuable and versatile technology that can be used to educate and inspire a wide range of science students on the real-world complexities inherent in scientific study.

  3. Relationship between teacher preparedness and inquiry-based instructional practices to students' science achievement: Evidence from TIMSS 2007

    NASA Astrophysics Data System (ADS)

    Martin, Lynn A.

    The purpose of this study was to examine the relationship between teachers' self-reported preparedness for teaching science content and their instructional practices to the science achievement of eighth grade science students in the United States as demonstrated by TIMSS 2007. Six hundred eighty-seven eighth grade science teachers in the United States representing 7,377 students responded to the TIMSS 2007 questionnaire about their instructional preparedness and their instructional practices. Quantitative data were reported. Through correlation analysis, the researcher found statistically significant positive relationships emerge between eighth grade science teachers' main area of study and their self-reported beliefs about their preparedness to teach that same content area. Another correlation analysis found a statistically significant negative relationship existed between teachers' self-reported use of inquiry-based instruction and preparedness to teach chemistry, physics and earth science. Another correlation analysis discovered a statistically significant positive relationship existed between physics preparedness and student science achievement. Finally, a correlation analysis found a statistically significant positive relationship existed between science teachers' self-reported implementation of inquiry-based instructional practices and student achievement. The data findings support the conclusion that teachers who have feelings of preparedness to teach science content and implement more inquiry-based instruction and less didactic instruction produce high achieving science students. As science teachers obtain the appropriate knowledge in science content and pedagogy, science teachers will feel prepared and will implement inquiry-based instruction in science classrooms.

  4. Science Teachers' Understanding and Practice of Inquiry-Based Instruction in Uganda

    NASA Astrophysics Data System (ADS)

    Ssempala, Fredrick

    High school students in Uganda perform poorly in science subjects despite the Ugandan government's efforts to train science teachers and build modern science laboratories in many public high schools. The poor performance of students in science subjects has been largely blamed on the inability by many science teachers to teach science through Inquiry-Based Instruction (IBI) to motivate the students to learn science. However, there have been no empirical studies done to establish the factors that influence science teachers' understanding and practice of IBI in Uganda. Most of the published research on IBI has been conducted in developed countries, where the prevailing contexts are very different from the contexts in developing countries such as Uganda. Additionally, few studies have explored how professional development (PD) training workshops on inquiry and nature of science (NOS) affect chemistry teachers' understanding and practice of IBI. My purpose in this multi-case exploratory qualitative study was to explore the effect of a PD workshop on inquiry and NOS on chemistry teachers' understanding and practice of IBI in Kampala city public schools in Uganda. I also explored the relationship between chemistry teachers' NOS understanding and the nature of IBI implemented in their classrooms and the internal and external factors that influence teachers' understanding and practice of IBI. I used a purposive sampling procedure to identify two schools of similar standards from which I selected eight willing chemistry teachers (four from each school) to participate in the study. Half of the teachers (those from School A) attended the PD workshop on inquiry and NOS for six days, while the control group (those from School B) did not. I collected qualitative data through semi-structured interviews, classroom observation, and document analysis. I analyzed these data by structural, conceptual and theoretical coding approach. I established that all the participating chemistry

  5. The effect of explicit, inquiry instruction on freshman college science majors' understanding of the nature of science

    NASA Astrophysics Data System (ADS)

    Kenyon, Lisa Orvik

    Reform efforts have placed strong emphasis on teaching practices that should help students learn about the nature of science. Researchers have examined two general instructional approaches, explicit and implicit, believed to be useful in teaching science. Of these two approaches, researchers emphasize explicit instruction as the more effective approach when enhancing students' views of the scientific endeavor (Abd-El-Khalick & Lederman, 2000; Bell, 2001; Billeh & Hasan, 1975; Carey & Stauss, 1968; Schwartz et al., 2000). Furthermore, recent studies (Schwartz et al ., 2000, 2001) indicate that teaching science inquiry through investigative activities and reflective discussions have demonstrated to be most effective for understanding science. The purpose of this study was to describe the effect of explicit, inquiry instruction on the understanding of freshman college science majors regarding the nature of science. Participants included 74 freshman college science majors, 50 students in the experimental group and 24 students in the control group. The experimental group was exposed to the treatment of the study, which took place in a Succeeding in Science course. The course content included explicit instruction on the nature of science, emphasizing scientific inquiry and the processes that scientists carry out in their work. The course reflected three aspects of inquiry-based science that are discussed in the Inquiry and the National Science Education Standards (2000) which are (1) to learn the principles and concepts of science; (2) to participate in scientific investigations; and (3) to reflect on the epistemology of science. The research design of this study used a pretest-posttest instrument, The Views of Nature of Science Questionnaire Form C (VNOS-C) (Lederman et al., 2001) and an essay paper at the end of the course to assess students' understanding about the nature of science. The results from the VNOS-C were analyzed using analysis of covariance in which the

  6. Findings from TIMSS 2007: What Drives Utilization of Inquiry-Based Science Instruction?

    ERIC Educational Resources Information Center

    Kuzhabekova, Aliya

    2015-01-01

    Prior research has shown that greatest student achievement in sciences is attributed to "inquiry-based instructional approach", in which the goal of science teaching is nurturing attitudes and skills necessary for independent quest for scientific knowledge. While prior research has clearly demonstrated positive instructional effects of…

  7. Toxic Leak!: An Event-Based Science Module. Student Edition. Groundwater Module.

    ERIC Educational Resources Information Center

    Wright, Russell G.

    This book is designed for the middle school students to learn scientific literacy through event-based science. Unlike traditional curricula, the event-based earth science module is a student-centered, interdisciplinary, inquiry-oriented program that emphasizes cooperative learning, teamwork, independent research, hands-on investigations, and…

  8. Oil Spill! An Event-Based Science Module. Student Edition. Oceanography Module.

    ERIC Educational Resources Information Center

    Wright, Russell G.

    This book is designed for middle school students to learn scientific literacy through event-based science. Unlike traditional curricula, the event-based earth science module is a student-centered, interdisciplinary, inquiry-oriented program that emphasizes cooperative learning, teamwork, independent research, hands-on investigations, and…

  9. The Role of Investigations in Promoting Inquiry-Based Science Education in Ireland

    ERIC Educational Resources Information Center

    Kennedy, Declan

    2014-01-01

    This paper describes recent developments in Ireland to promote a greater interest in science among students in the 12-15 age group by means of practical work involving Inquiry Based Science Education (IBSE). The tasks, know as Investigations, are a component of the assessment of the subject Science which is studied as part of the Junior…

  10. Inquiry-Based Science Education: Scaffolding Pupils' Self-Directed Learning in Open Inquiry

    ERIC Educational Resources Information Center

    van Uum, Martina S. J.; Verhoeff, Roald P.; Peeters, Marieke

    2017-01-01

    This paper describes a multiple case study on open inquiry-based learning in primary schools. During open inquiry, teachers often experience difficulties in balancing support and transferring responsibility to pupils' own learning. To facilitate teachers in guiding open inquiry, we developed hard and soft scaffolds. The hard scaffolds consisted of…

  11. Physiology Should Be Taught as Science Is Practiced: An Inquiry-Based Activity to Investigate the "Alkaline Tide"

    ERIC Educational Resources Information Center

    Lujan, Heidi L.; DiCarlo, Stephen E.

    2015-01-01

    The American Association for the Advancement of Science (AAAS) strongly recommends that "science be taught as science is practiced." This means that the teaching approach must be consistent with the nature of scientific inquiry. In this article, the authors describe how they added scientific inquiry to a large lecture-based physiology…

  12. Improving science inquiry with elementary students of diverse backgrounds

    NASA Astrophysics Data System (ADS)

    Cuevas, Peggy; Lee, Okhee; Hart, Juliet; Deaktor, Rachael

    2005-03-01

    This study examined the impact of an inquiry-based instructional intervention on (a) children's ability to conduct science inquiry overall and to use specific skills in inquiry, and (b) narrowing the gaps in children's ability among demographic subgroups of students. The intervention consisted of instructional units, teacher workshops, and classroom practices. The study involved 25 third- and fourth-grade students from six elementary schools representing diverse linguistic and cultural groups. Quantitative results demonstrated that the intervention enhanced the inquiry ability of all students regardless of grade, achievement, gender, ethnicity, socioeconomic status (SES), home language, and English proficiency. Particularly, low-achieving, low-SES, and English for Speakers of Other Languages (ESOL) exited students made impressive gains. The study adds to the existing literature on designing learning environments that foster science inquiry of all elementary students.

  13. Inquiry-Based Instruction: Does School Environmental Context Matter?

    ERIC Educational Resources Information Center

    Pea, Celestine H.

    2012-01-01

    In a larger study on teachers' beliefs about science teaching, one component looks at how school environmental context factors influence inquiry-based science instruction. Research shows that three broad categories of school environmental factors (human, sociocultural, design) impact inquiry-based teaching in some way. A mixed-method, sequential,…

  14. The Impact of Inquiry-Based Learning on the Critical Thinking Dispositions of Pre-Service Science Teachers

    ERIC Educational Resources Information Center

    Arsal, Zeki

    2017-01-01

    In the study, the impact of inquiry-based learning on pre-service teachers' critical thinking dispositions was investigated. The sample of the study comprised of 56 pre-service teachers in the science education teacher education programme at the public university in the north of Turkey. In the study, quasi-experimental design with an experimental…

  15. Coaching to Build Support for Inquiry-Based Teaching

    ERIC Educational Resources Information Center

    Bransfield, Paula; Holt, Patrice; Nastasi, Patricia

    2007-01-01

    In teaching science today, the emphasis is on inquiry-based pedagogies, with the expectation that students in the science classroom will be exposed to the theories and practices of scientists in the science community. However, for many science teachers, implementing inquiry in the classroom is a daunting task. In the traditional classroom setting,…

  16. Analyzing students' attitudes towards science during inquiry-based lessons

    NASA Astrophysics Data System (ADS)

    Kostenbader, Tracy C.

    Due to the logistics of guided-inquiry lesson, students learn to problem solve and develop critical thinking skills. This mixed-methods study analyzed the students' attitudes towards science during inquiry lessons. My quantitative results from a repeated measures survey showed no significant difference between student attitudes when taught with either structured-inquiry or guided-inquiry lessons. The qualitative results analyzed through a constant-comparative method did show that students generate positive interest, critical thinking and low level stress during guided-inquiry lessons. The qualitative research also gave insight into a teacher's transition to guided-inquiry. This study showed that with my students, their attitudes did not change during this transition according to the qualitative data however, the qualitative data did how high levels of excitement. The results imply that students like guided-inquiry laboratories, even though they require more work, just as much as they like traditional laboratories with less work and less opportunity for creativity.

  17. A Study on the Effectiveness of a Pilot Inquiry-Based Middle School Science Program on Non-Cognitive Outcomes and Academic Achievement

    ERIC Educational Resources Information Center

    Dionisio, Rui Meira

    2017-01-01

    The randomized research study assessed the effect of an inquiry-based science (IBS) program on non-cognitive outcomes and academic achievement. The study was the result of a grant that was awarded by Professional Resources in Science and Mathematics (PRISM), a program affiliated with Montclair State University in conjunction with Bristol-Myers…

  18. Effects of gender and role selection in cooperative learning groups on science inquiry achievement

    NASA Astrophysics Data System (ADS)

    Affhalter, Maria Geralyn

    An action research project using science inquiry labs and cooperative learning groups examined the effects of same-gender and co-educational classrooms on science achievement and teacher-assigned or self-selected group roles on students' role preferences. Fifty-nine seventh grade students from a small rural school district participated in two inquiry labs in co-educational classrooms or in an all-female classroom, as determined by parents at the beginning of the academic year. Students were assigned to the same cooperative groups for the duration of the study. Pretests and posttests were administered for each inquiry-based science lab. Posttest assessments included questions for student reflection on role assignment and role preference. Instruction did not vary and a female science teacher taught all class sections. The same-gender classroom and co-ed classrooms produced similar science achievement scores on posttests. Students' cooperative group roles, whether teacher-assigned or self-selected, produced similar science achievement scores on posttests. Male and female students shared equally in favorable and unfavorable reactions to their group roles during the science inquiry labs. Reflections on the selection of the leader role revealed a need for females in co-ed groups to be "in charge". When reflecting on her favorite role of leader, one female student in a co-ed group stated, "I like to have people actually listen to me".

  19. Primary Teachers Conducting Inquiry Projects: Effects on Attitudes towards Teaching Science and Conducting Inquiry

    ERIC Educational Resources Information Center

    van Aalderen-Smeets, Sandra I.; Walma van der Molen, Juliette H.; van Hest, Erna G. W. C. M.; Poortman, Cindy

    2017-01-01

    This study used an experimental, pretest-posttest control group design to investigate whether participation in a large-scale inquiry project would improve primary teachers' attitudes towards teaching science and towards conducting inquiry. The inquiry project positively affected several elements of teachers' attitudes. Teachers felt less anxious…

  20. Inquiry-Based Teaching: An Example of Descriptive Science in Action

    ERIC Educational Resources Information Center

    Rehorek, Susan J.

    2004-01-01

    Inquiry-based learning is more work than passive learning, and there is a body of students who prefer to take the easier route. But there is also a body of students who wish to explore science. Two descriptive evolutionary experiments conducted by university freshman/sophomore biology majors, enrolled in General Zoology are described.

  1. The Utilization of Inquiry-Based Science Instruction in Connecticut

    NASA Astrophysics Data System (ADS)

    Bozzuto, David M.

    The purpose of this study was to explore the perspectives of practitioners of inquiry-based instruction from 35 Connecticut school districts. The source of the participants, Connecticut State Science Assessment Advisory Committee members, and their involvement in science education acted to bound the research. Using a multiple case study design, data were gathered from 28 participants: teachers n = 21, curriculum leaders n = 4, professional development experts n = 2, and state education advisor/ teacher preparation expert n = 1 involved with Connecticut schools. Each participant was asked to complete an online demographic and inquiry utilization questionnaire. From the results of the questionnaires, a cadre of 11 participants was selected to participate in semi-structured interviews. A round of follow-up interviews of five key participants was conducted to further clarify the phenomenon. Two of the follow up interviewees were observed using the EQUIP rubric to assess inquiry implementation. Artifacts such as minutes, PowerPoint presentations, and a reflexive journal were collected throughout the study. An inductive approach to content analysis of data from the survey and interviews was used to explore constructs, themes, and patterns. After segmentation took place, the data were categorized to allow patterns and constructs to emerge. The data were reduced based on the emergent design and those reductions, or themes, were informed by ongoing data collection using constant comparison as different levels of codes emerge. Data collection further informed data analysis and future data collection. Initial coding of patterns was reduced until theoretical saturation occurred and the data allowed five thematic findings to emerge from the data. The five themes were: teach, process, impasse, develop, and support. The significance of each theme and its implication for practitioners and researchers were discussed and offered, respectively.

  2. Inquiry-Based Science Education: Towards a Pedagogical Framework for Primary School Teachers

    ERIC Educational Resources Information Center

    van Uum, Martina S. J.; Verhoeff, Roald P.; Peeters, Marieke

    2016-01-01

    Inquiry-based science education (IBSE) has been promoted as an inspiring way of learning science by engaging pupils in designing and conducting their own scientific investigations. For primary school teachers, the open nature of IBSE poses challenges as they often lack experience in supporting their pupils during the different phases of an open…

  3. A cognitive framework to inform the design of professional development supporting teachers' classroom assessment of inquiry-based science

    NASA Astrophysics Data System (ADS)

    Matese, Gabrielle

    Inquiry-based science places new demands on teachers for assessing students' growth, both of deep conceptual understanding as well as developing inquiry skills. In addition, new ideas about classroom assessment, such as the importance of formative assessment, are gaining currency. While we have ideas about what classroom assessment consistent with inquiry-based pedagogy might look like, and why it is necessary, we have little understanding of what it takes to implement it. That teachers face a challenge in doing so is well-documented. Researchers have noted that teachers attempting changes in classroom assessment often bring with them incompatible beliefs, knowledge, and practices. However, noting general incompatibility is insufficient to support addressing these issues through professional development. In response to this need, I initiated a research project to identify and describe in more detail the categories of beliefs, knowledge and skills that play an important role in inquiry-based science assessment practices. I created an assessment framework outlining specific categories of beliefs, knowledge, and skills affecting particular classroom assessment practices. I then used the framework to examine teachers' classroom assessment practices and to create comparative cases between three middle-school science teachers, highlighting how the different cognitive factors affect four particular assessment practices. The comparative cases demonstrate the framework's utility for analyzing and explicating teacher assessment practices. As a tool for analyzing and understanding teacher practice, the framework supports the design of professional development. To demonstrate the value of the framework, I draw on the comparative cases to identify implications for the design of professional development to support teachers' classroom assessment of inquiry-based science. In this dissertation I provide a brief overview of the framework and its rationale, present an example of the

  4. Preparing pre-service teachers to integrate technology into inquiry-based science education: Three case studies in The Netherlands

    NASA Astrophysics Data System (ADS)

    Tran, Trinh-Ba; van den Berg, Ed; Ellermeijer, Ton; Beishuizen, Jos

    2016-05-01

    Integration of technology ( e.g. measuring with sensors, video measurement, and modeling) into secondary-school science teaching is a need globally recognized. A central issue of incorporating these technologies in teaching is how to turn manipulations of equipment and software into manipulations of ideas. Therefore, preparation for pre-service teachers to apply ICT tools should be combined with the issues of minds-on inquiring and meaning-making. From this perspective, we developed a course within the post-graduate teacher-education program in the Netherlands. During the course, pre-service teachers learnt not only to master ICT skills but also to design, teach, and evaluate an inquiry-based lesson in which the ICT tool was integrated. Besides three life sessions, teachers' learning scenario also consisted of individual tasks which teachers could carry out mostly in the school or at home with support materials and online assistance. We taught three iterations of the course within a design-research framework in 2013, 2014 and collected data on the teacher learning processes and outcomes. The analyses of these data from observation, interviews, questionnaires, and documents were to evaluate implementation of the course, then suggest for revisions of the course set-up, which was executed and then assessed again in a subsequent case study. Main outcomes of the three case studies can be summarized as follows: within a limited time (3 life sessions spread over 2-3 months), the heterogeneous groups of pre-service teachers achieved a reasonable level of competence regarding the use of ICT tools in inquiry-based lessons. The blended set-up with support materials, especially the Coach activities and the lesson-plan form for an ICT-integrated inquiry-based lesson, contributed to this result under the condition that the course participants really spent considerable time outside the life sessions. There was a need for more time for hands-on, in-group activities in life

  5. The Effect of Reflective Discussions following Inquiry-Based Laboratory Activities on Students' Views of Nature of Science

    ERIC Educational Resources Information Center

    Yacoubian, Hagop A.; BouJaoude, Saouma

    2010-01-01

    This research investigated the effect of reflective discussions following inquiry-based laboratory activities on students' views of the tentative, empirical, subjective, and social aspects of nature of science (NOS). Thirty-eight grade six students from a Lebanese school participated in the study. The study used a pretest-posttest control-group…

  6. Effective, Sustained Inquiry-Based Instruction Promotes Higher Science Proficiency Among All Groups: A 5-Year Analysis

    NASA Astrophysics Data System (ADS)

    Marshall, Jeff C.; Alston, Daniel M.

    2014-11-01

    Student's performance in science classrooms has continued to languish throughout the USA. Even though proficiency rates on national tests such as National Assessment of Educational Progress are higher for Caucasian students than African-Americans and Hispanics, all groups lack achieving desired proficiency rates. Further, the Next Generation Science Standards detail a new higher benchmark for all students. This study analyzes a professional development (PD) project, entitled Inquiry in Motion, designed to (a) facilitate teacher transformation toward greater quantity and quality of inquiry-based instruction, (b) improve student achievement in science practices and science concepts, and (c) begin to narrow the achievement gap among various groups. This 5-year PD study included 11 schools, 74 middle school teachers, and 9,981 students from diverse, high minority populations. Findings from the quasi-experimental study show statistically significant gains for all student groups (aggregate, males, females, Caucasians, African-Americans, and Hispanics) on all three science Measure of Academic Progress tests (composite, science practices, and science concepts) when compared to students of non-participating teachers. In addition to an increase in overall performance for all groups, a narrowing of the achievement gap of minority students relative to Caucasian students was seen. When combined with other studies, this study affirms that, when facilitated effectively, inquiry-based instruction may benefit all students, for all demographic groups measured.

  7. The Effect of Guided-Inquiry Instruction on 6th Grade Turkish Students' Achievement, Science Process Skills, and Attitudes Toward Science

    NASA Astrophysics Data System (ADS)

    Koksal, Ela Ayse; Berberoglu, Giray

    2014-01-01

    The purpose of this study is to investigate the effectiveness of guided-inquiry approach in science classes over existing science and technology curriculum in developing content-based science achievement, science process skills, and attitude toward science of grade level 6 students in Turkey. Non-equivalent control group quasi-experimental design was used to investigate the treatment effect. There were 162 students in the experimental group and 142 students in the control group. Both the experimental and control group students took the Achievement Test in Reproduction, Development, and Growth in Living Things (RDGLT), Science Process Skills Test, and Attitudes Toward Science Questionnaire, as pre-test and post-test. Repeated analysis of variance design was used in analyzing the data. Both the experimental and control group students were taught in RDGLT units for 22 class hours. The results indicated the positive effect of guided-inquiry approach on the Turkish students' cognitive as well as affective characteristics. The guided inquiry enhanced the experimental group students' understandings of the science concepts as well as the inquiry skills more than the control group students. Similarly, the experimental group students improved their attitudes toward science more than the control group students as a result of treatment. The guided inquiry seems a transition between traditional teaching method and student-centred activities in the Turkish schools.

  8. Students talk about energy in project-based inquiry science

    NASA Astrophysics Data System (ADS)

    Harrer, Benedikt W.; Flood, Virginia J.; Wittmann, Michael C.

    2013-01-01

    We examine the types of emergent language eighth grade students in rural Maine middle schools use when they discuss energy in their first experiences with Project-Based Inquiry Science: Energy, a research-based curriculum that uses a specific language for talking about energy. By comparative analysis of the language used by the curriculum materials to students' language, we find that students' talk is at times more aligned with a Stores and Transfer model of energy than the Forms model supported by the curriculum.

  9. Effects of Inquiry-Based Instruction on Science Achievement for Students with Disabilities: An Analysis of the Literature

    ERIC Educational Resources Information Center

    Rizzo, Karen L.; Taylor, Jonte C.

    2016-01-01

    In comparison to the past, more students with disabilities are being included in the general education classroom for science instruction. Though inquiry-based instruction has not shown to be an effective practice for students with disabilities, it is vastly becoming the dominant practice in science education. The purpose of this review is to…

  10. Abductive Science Inquiry Using Mobile Devices in the Classroom

    ERIC Educational Resources Information Center

    Ahmed, Sohaib; Parsons, David

    2013-01-01

    Recent advancements in digital technology have attracted the interest of educators and researchers to develop technology-assisted inquiry-based learning environments in the domain of school science education. Traditionally, school science education has followed deductive and inductive forms of inquiry investigation, while the abductive form of…

  11. Dealing with the Ambiguities of Science Inquiry

    ERIC Educational Resources Information Center

    Tan, Yuen Sze Michelle; Caleon, Imelda Santos

    2016-01-01

    The current vision of science education in myriad educational contexts encourages students to learn through the process of science inquiry. Science inquiry has been used to promote conceptual learning and engage learners in an active process of meaning-making and investigation to understand the world around them. The science inquiry process…

  12. Linking Science Inquiry Skills in a Holistic Approach.

    ERIC Educational Resources Information Center

    Gabel, Connie

    The quest for the inclusion of science inquiry in the curriculum now spans three centuries. In the late 1800s and early 1900s, Armstrong, Dewey, and others espoused the teaching of science inquiry. The launch of Sputnik in 1957 began the strong emphasis on inquiry. Renewed interest in inquiry occurred in the late 1980s and 1990s with science…

  13. Deepening Inquiry: What Processes of Making Music Can Teach Us about Creativity and Ontology for Inquiry Based Science Education

    ERIC Educational Resources Information Center

    Gershon, Walter S.; Oded, Ben-Horin

    2014-01-01

    Drawing from their respective work at the intersection of music and science, the coauthors argue that engaging in processes of making music can help students more deeply engage in the kinds of creativity associated with inquiry based science education (IBSE) and scientists better convey their ideas to others. Of equal importance, the processes of…

  14. Fire!: An Event-Based Science Module. Student Edition. Chemistry and Fire Ecology Module.

    ERIC Educational Resources Information Center

    Wright, Russell G.

    This book is designed for middle school students to learn scientific literacy through event-based science. Unlike traditional curricula, the event-based earth science module is a student-centered, interdisciplinary, inquiry-oriented program that emphasizes cooperative learning, teamwork, independent research, hands-on investigations, and…

  15. We Look More, Listen More, Notice More: Impact of Sustained Professional Development on Head Start Teachers' Inquiry-Based and Culturally-Relevant Science Teaching Practices

    NASA Astrophysics Data System (ADS)

    Roehrig, Gillian H.; Dubosarsky, Mia; Mason, Annie; Carlson, Stephan; Murphy, Barbara

    2011-10-01

    Despite many scholars' recommendations, science is often avoided during early childhood education. Among the reasons provided by early childhood teachers for the exclusion of science from their daily routines included science anxiety, low self-efficacy with respect to teaching science, lack of experience participating in science activities as students, or the notion that literacy and language are more important during the early years. In minority populations the problem is even greater due to identification of science with the `culture of. This article presents results from Ah Neen Dush, a sustained and transformative professional development program for Head Start teachers on an American Indian Reservation. The goal of the program is to support early childhood teachers in developing inquiry-based and culturally-relevant teaching practices. Through analysis of teachers' classroom practices, surveys and interviews, we explore changes in teachers' attitudes toward science and inquiry-based practices. Classroom observations were conducted using CLASS (Classroom assessment Scoring System), a tool used to evaluate the quality of classroom interactions. After 1 year of professional development teachers' attitudes were found to improve and after 2 years teachers classroom practices were more inquiry-based with statistically significant increases in CLASS observation scores.

  16. Teacher candidates in an online post-baccalaureate science methods course: Implications for teaching science inquiry with technology

    NASA Astrophysics Data System (ADS)

    Colon, Erica L.

    Online learning is becoming more prevalent in today's education and is changing the way students learn and instructors teach. This study proposed using an informative case study design within a multilevel conceptual framework as teacher candidates were learning to teach and use science inquiry while in an online post-baccalaureate science methods course. The purposes were to (a) explore whether the teacher candidates had a thorough understanding of scientific inquiry and how to implement higher-order thinking skills, (b) examine whether or not the teacher candidates used a variety of computer-based instructional technologies when choosing instructional objectives, and (c) identify barriers that impede teacher candidates from using science inquiry or technology singly, or the ability to incorporate technology into learning science inquiry. The findings indicate that an online approach in preparing science teachers holds great potential for using innovative technology to teach science inquiry. First, the teacher candidates did incorporate essential features of classroom inquiry, however it was limited and varied in the type of inquiry used. Second, of the 86 lesson plans submitted by the teacher candidates, less than twelve percent of the learning objectives involved higher-order skills that promoted science inquiry. Third, results supported that when using technology in their lesson planning, participants had widely varying backgrounds in reference to their familiarity with technology. However, even though each participant used some form or another, the technology used was fairly low level. Finally, when discussing implementing inquiry-based science in the lesson plans, this study identified time as a reason that participants may not be pushing for more inquiry-based lessons. The researcher also identifies that school placements were a huge factor in the amount of inquiry-based skills coded in the lesson plans. The study concludes that online teacher preparation

  17. Carroll County hands-on elementary science

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Herlocker, H.G.; Dunkleberger, G.L.

    1994-12-31

    Carroll County Hands-on Elementary Science is a nationally recognized Elementary Science Curriculum which has been disseminated in forty states, Puerto Rico, The Virgin Islands, Saipan, and Samoa. The curriculum is a non-textbook, process-based, constructivist approach to teaching science. Unique features of this curriculum include its teacher-written daily lesson plan format, its complete kit of science supplies, and its complete set of Spanish materials. In order to be included by the National Diffusion Network, Hands-on Elementary Science collected data to support the following claims: the program enhances teacher and student attitudes toward science; the program changes both the amount and themore » type of science instruction; the program is adaptable and transportable; the teacher training component is effective. The poster display will feature sample activities, data which demonstrates the effectiveness of the staff development plan, and samples which show the degree to which the program supports selected state curriculum frameworks.« less

  18. Assessing Dimensions of Inquiry Practice by Middle School Science Teachers Engaged in a Professional Development Program

    NASA Astrophysics Data System (ADS)

    Lakin, Joni M.; Wallace, Carolyn S.

    2015-03-01

    Inquiry-based teaching promotes students' engagement in problem-solving and investigation as they learn science concepts. Current practice in science teacher education promotes the use of inquiry in the teaching of science. However, the literature suggests that many science teachers hold incomplete or incorrect conceptions of inquiry. Teachers, therefore, may believe they are providing more inquiry experiences than they are, reducing the positive impact of inquiry on science interest and skills. Given the prominence of inquiry in professional development experiences, educational evaluators need strong tools to detect intended use in the classroom. The current study focuses on the validity of assessments developed for evaluating teachers' use of inquiry strategies and classroom orientations. We explored the relationships between self-reported inquiry strategy use, preferences for inquiry, knowledge of inquiry practices, and related pedagogical content knowledge. Finally, we contrasted students' and teachers' reports of the levels of inquiry-based teaching in the classroom. Self-reports of inquiry use, especially one specific to the 5E instructional model, were useful, but should be interpreted with caution. Teachers tended to self-report higher levels of inquiry strategy use than their students perceived. Further, there were no significant correlations between either knowledge of inquiry practices or PCK and self-reported inquiry strategy use.

  19. "Kindergarten, can I have your eyes and ears?" politeness and teacher directive choices in inquiry-based science classrooms

    NASA Astrophysics Data System (ADS)

    Oliveira, Alandeom Wanderlei

    2009-12-01

    This study explores elementary teachers' social understandings and employment of directives and politeness while facilitating inquiry science lessons prior and subsequent to their participation in a summer institute in which they were introduced to the scholarly literature on regulative discourse (directives used by teachers to regulate student behavior). A grounded theory analysis of the institute professional development activities revealed that teachers developed an increased awareness of the authoritative functions served by impolite or direct directives (i.e., pragmatic awareness). Furthermore, a comparative microethnographic analysis of participants' inquiry-based classroom practices revealed that after the institute teachers demonstrated an increased ability to share authority with students by strategically making directive choices that were more polite, indirect, inclusive, involvement-focused and creative. Such ability led to a reduced emphasis on teacher regulation of student compliance with classroom behavioral norms and an increased focus on the discursive organization of the inquiry-based science learning/teaching process. Despite teachers' increased pragmatic awareness, teacher-student linguistic relationships did not become entirely symmetrical subsequent to their participation in the summer institute (i.e., teacher authority was not completely relinquished or lost). Based on such findings, it is argued that teachers need to develop higher levels of pragmatic awareness to become effectively prepared to engage in language-mediated teacher-student interaction in the context of inquiry-based science classroom discourse.

  20. Using Inquiry-Based Interventions to Improve Secondary Students' Interest in Science and Technology

    ERIC Educational Resources Information Center

    Potvin, Patrice; Hasni, Abdelkrim; Sy, Ousmane

    2017-01-01

    Nine secondary school teachers participated in a five day training program where they developed inquiry-based pedagogical interventions for their science classes. Student interest and self-concept in school science and technology were measured before and after the interventions. Increases in interest and self-concept were compared with the results…

  1. Teacher Perceptions of Inquiry and STEM Education in Bangladesh

    NASA Astrophysics Data System (ADS)

    Shahidullah, Kazi K.

    This dissertation reports lower secondary science teachers perceptions of current practice in Dhaka, Bangladesh concerning inquiry and STEM Education in order to establish a baseline of data for reform of science education in Bangladesh. Bangladesh has been trying to incorporate inquiry-based science curricula since the 1970s. Over time, the science curricula also aligned with different international science education movements such as Science for All, Scientific Literacy, Science, Technology, and Society. Science, Technology, Engineering, and Mathematics (STEM) is the most recent science education movement in international science education. This study explored current practices and perceptions of lower secondary science teachers in order to establish a baseline of current practice so that future reform recommendations may be pursued and recommendations made for Bangladesh to overcome the inquiry-based challenges and to incorporate new STEM-based science education trends happening in the US and throughout the world. The study explored science teachers perceptions and readiness to transform their science classrooms based on self-reported survey. The survey utilized Likert-type scale with range 1 (very strongly disagree) to 6 (very strongly agree) among four hundred lower secondary science teachers, teacher training college faculty, and university faculty. The data is presented in four different categories: curriculum, instruction, assessment, and professional development. Results indicated that the participants understand and practice a certain level of inquiry in their science classrooms, though they do not have adequate professional development. Participants also stated that they do not have sufficient instructional materials and the curriculum is not articulated enough to support inquiry. On the other hand, the participants reported that they understand and practice a certain degree of inquiry and STEM-based science education, but they also state that the

  2. A Template for Open Inquiry: Using Questions to Encourage and Support Inquiry in Earth and Space Science

    ERIC Educational Resources Information Center

    Hermann, Ronald S.; Miranda, Rommel J.

    2010-01-01

    This article provides an instructional approach to helping students generate open-inquiry research questions, which the authors call the "open-inquiry question template." This template was created based on their experience teaching high school science and preservice university methods courses. To help teachers implement this template, they…

  3. Experiencing the Implementation of New Inquiry Science Curricula

    ERIC Educational Resources Information Center

    Ower, Peter S.

    2017-01-01

    Using a phenomenological methodology, a cohort of four experienced science teachers was interviewed about their experience transitioning from traditional, teacher and fact-centered science curricula to inquiry-based curricula. Each teacher participated in two interviews that focused on their teaching backgrounds, their experience teaching the…

  4. Inquiry-based science education: scaffolding pupils' self-directed learning in open inquiry

    NASA Astrophysics Data System (ADS)

    van Uum, Martina S. J.; Verhoeff, Roald P.; Peeters, Marieke

    2017-12-01

    This paper describes a multiple case study on open inquiry-based learning in primary schools. During open inquiry, teachers often experience difficulties in balancing support and transferring responsibility to pupils' own learning. To facilitate teachers in guiding open inquiry, we developed hard and soft scaffolds. The hard scaffolds consisted of documents with explanations and/or exercises regarding difficult parts of the inquiry process. The soft scaffolds included explicit references to and additional explanations of the hard scaffolds. We investigated how teacher implementation of these scaffolds contributed to pupils' self-directed learning during open inquiry. Four classes of pupils, aged 10-11, were observed while they conducted an inquiry lesson module of about 10 lessons in their classrooms. Data were acquired via classroom observations, audio recordings, and interviews with teachers and pupils. The results show that after the introduction of the hard scaffolds by the teacher, pupils were able and willing to apply them to their investigations. Combining hard scaffolds with additional soft scaffolding promoted pupils' scientific understanding and contributed to a shared guidance of the inquiry process by the teacher and her pupils. Our results imply that the effective use of scaffolds is an important element to be included in teacher professionalisation.

  5. Pre-Service Teacher as Researcher: The Value of Inquiry in Learning Science

    NASA Astrophysics Data System (ADS)

    Hohloch, Janice M.; Grove, Nathaniel; Lowery Bretz, Stacey

    2007-09-01

    A pre-service science and mathematics teacher participated in an action research project to reform a chemistry course required of elementary and middle childhood pre-service teachers. Activities to emphasize a hands-on approach to learning chemistry and to model teaching science through inquiry for these pre-service teachers are described. The value of a research experience for pre-service teachers, both upon their student teaching and as a classroom teacher, is discussed.

  6. Closing the Gap: Inquiry in Research and the Secondary Science Classroom

    ERIC Educational Resources Information Center

    Gengarelly, Lara M.; Abrams, Eleanor D.

    2009-01-01

    Teaching students how to conduct authentic scientific inquiry is an essential aspect of recent science education reform efforts. Our National Science Foundation-funded GK-12 program paired science graduate students--fellows--with secondary science teachers in order to enhance inquiry-based instruction. This research examined the roles of the…

  7. Inquiry-Based Science and Technology Enrichment Program: Green Earth Enhanced with Inquiry and Technology

    ERIC Educational Resources Information Center

    Kim, Hanna

    2011-01-01

    This study investigated the effectiveness of a guided inquiry integrated with technology, in terms of female middle-school students' attitudes toward science/scientists and content knowledge regarding selective science concepts (e.g., Greenhouse Effect, Air/Water Quality, Alternative Energy, and Human Health). Thirty-five female students who were…

  8. Investigation of Science Inquiry Items for Use on an Alternate Assessment Based on Modified Achievement Standards Using Cognitive Lab Methodology

    ERIC Educational Resources Information Center

    Dickenson, Tammiee S.; Gilmore, Joanna A.; Price, Karen J.; Bennett, Heather L.

    2013-01-01

    This study evaluated the benefits of item enhancements applied to science-inquiry items for incorporation into an alternate assessment based on modified achievement standards for high school students. Six items were included in the cognitive lab sessions involving both students with and without disabilities. The enhancements (e.g., use of visuals,…

  9. Science Teachers' Views and Stereotypes of Religion, Scientists and Scientific Research: A Call for Scientist-Science Teacher Partnerships to Promote Inquiry-Based Learning

    ERIC Educational Resources Information Center

    Mansour, Nasser

    2015-01-01

    Despite a growing consensus regarding the value of inquiry-based learning (IBL) for students' learning and engagement in the science classroom, the implementation of such practices continues to be a challenge. If science teachers are to use IBL to develop students' inquiry practices and encourage them to think and act as scientists, a better…

  10. Bringing Hands-on Activities and Real Scientists to Students: Bishop Museum's X-treme Science Exhibit, Holoholo Science Program, and Planned Science Learning Center

    NASA Astrophysics Data System (ADS)

    Hills, D. J.; Fullerton, K.; Hoddick, C.; Ali, N.; Mosher, M. K.

    2002-12-01

    Bishop Museum developed the "X-treme Science: Exploring Oceans, Volcanoes, and Outer Space" museum exhibit in conjunction with NASA as part of their goal to increase educational outreach. A key element of the exhibit was the inclusion of real scientists describing what they do, and fostering the interaction between scientists and students. Highlights of the exhibit were interviews with local (Hawaii-based) scientists involved in current ocean, volcano, and space research. These interviews were based on questions that students provided, and were available during the exhibit at interactive kiosks. Lesson plans were developed by local teachers and scientists, and provided online to enhance the exhibit. However, one limitation of the museum exhibit was that not all students in the state could visit, or spend enough time with it. To serve more remote schools, and to provide for additional enrichment for those who did attend, the education department at Bishop Museum developed a traveling program with the X-treme Science exhibit as the basis. The Holoholo (Hawaiian for "fun outing") Science program brings a scientist into the classroom with a hands-on scientific inquiry activity. The activity is usually a simplified version of a problem that the scientist actually deals with. The students explore the activity, reach conclusions, and discuss their results. They are then given the opportunity to question the scientist about the activity and about what the scientist does. This allows students to understand that science is not something mystical, but rather something attainable. A key element of Holoholo remains the active participation of real-life scientists in the experience. The scientists who have participated in the program have had overwhelmingly positive experiences. Bishop Museum is developing a science learning center, with the objective of meeting local and national science standards using inquiry based science. The unifying theme of all three of these projects is

  11. Inquiry-Based Science Instruction and Performance Literacy for Students Who Are Deaf or Hard of Hearing

    ERIC Educational Resources Information Center

    Wang, Ye

    2011-01-01

    Deaf and hard of hearing students, who cannot successfully access and utilize information in print, experience various difficulties in conventional science instruction, which heavily relies on lectures and textbooks. The purpose of the present review is threefold. First, an overview of inquiry-based science instruction reform, including the…

  12. Enhancing Hispanic Minority Undergraduates' Botany Laboratory Experiences: Implementation of an Inquiry-Based Plant Tissue Culture Module Exercise

    ERIC Educational Resources Information Center

    Siritunga, Dimuth; Navas, Vivian; Diffoot, Nanette

    2012-01-01

    Early involvement of students in hands-on research experiences are known to demystify research and promote the pursuit of careers in science. But in large enrollment departments such opportunities for undergraduates to participate in research are rare. To counteract such lack of opportunities, inquiry-based laboratory module in plant tissue…

  13. The Proof of the Pudding?: A Case Study of an "At-Risk" Design-Based Inquiry Science Curriculum

    ERIC Educational Resources Information Center

    Chue, Shien; Lee, Yew-Jin

    2013-01-01

    When students collaboratively design and build artifacts that require relevant understanding and application of science, many aspects of scientific literacy are developed. Design-based inquiry (DBI) is one such pedagogy that can serve these desired goals of science education well. Focusing on a Projectile Science curriculum previously found to be…

  14. Parsesciencing: A Basic Science Mode of Inquiry.

    PubMed

    Parse, Rosemarie Rizzo

    2016-10-01

    The purpose of this article is to introduce the language for the mode of inquiry, now known as Parsesciencing. The language for the Humanbecoming Hermeneutic Sciencing was introduced in an earlier volume of Nursing Science Quarterly. Language both reflects and cocreates meaning. The language of sciencing is everchanging; it is an evolutionary emergent, shifting as new ideas cocreate horizons beyond. The language set forth here is to articulate more explicitly meanings of the modes of inquiry consistent with the humanbecoming paradigm and distinct from modes of inquiry in other disciplines. In dwelling with the findings of published and unpublished studies that were guided by humanbecoming, new insights arose, and with creative conceptualizing these new insights gave birth to new meanings, thus different language. The language introduced here includes the following: Parsesciencing as coming to know the meanings of universal humanuniverse living experiences, horizon of inquiry, foreknowings, inquiry stance, mode of inquiry, historians, dialoging-engaging, scholar, distilling-fusing, discerning extant moment, transmogrifying, transsubstantiating, and newknowings. Note: an example of the new language with a Parsesciencing inquiry on the universal humanuniverse living experience of feeling unsure by Sandra Bunkers appears later in this issue. © The Author(s) 2016.

  15. A Large-Scale Inquiry-Based Astronomy Intervention Project: Impact on Students' Content Knowledge Performance and Views of their High School Science Classroom

    NASA Astrophysics Data System (ADS)

    Fitzgerald, Michael; McKinnon, David H.; Danaia, Lena; Deehan, James

    2016-12-01

    In this paper, we present the results from a study of the impact on students involved in a large-scale inquiry-based astronomical high school education intervention in Australia. Students in this intervention were led through an educational design allowing them to undertake an investigative approach to understanding the lifecycle of stars more aligned with the `ideal' picture of school science. Through the use of two instruments, one focused on content knowledge gains and the other on student views of school science, we explore the impact of this design. Overall, students made moderate content knowledge gains although these gains were heavily dependent on the individual teacher, the number of times a teacher implemented and the depth to which an individual teacher went with the provided materials. In terms of students' views, there were significant global changes in their views of their experience of the science classroom. However, there were some areas where no change or slightly negative changes of which some were expected and some were not. From these results, we comment on the necessity of sustained long-period implementations rather than single interventions, the requirement for similarly sustained professional development and the importance of monitoring the impact of inquiry-based implementations. This is especially important as inquiry-based approaches to science are required by many new curriculum reforms, most notably in this context, the new Australian curriculum currently being rolled out.

  16. Instructional Approaches on Science Performance, Attitude and Inquiry Ability in a Computer-Supported Collaborative Learning Environment

    ERIC Educational Resources Information Center

    Chen, Ching-Huei; Chen, Chia-Ying

    2012-01-01

    This study examined the effects of an inquiry-based learning (IBL) approach compared to that of a problem-based learning (PBL) approach on learner performance, attitude toward science and inquiry ability. Ninety-six students from three 7th-grade classes at a public school were randomly assigned to two experimental groups and one control group. All…

  17. The effects of inquiry instruction on student learning in technology-based undergraduate chemistry laboratories

    NASA Astrophysics Data System (ADS)

    Meade, Karen Marie

    The purpose of this study was to identify conceptual and attitudinal effects of inquiry learning in technology-based undergraduate chemistry laboratories. There were 428 participants who were registered in general chemistry laboratory at the University of Iowa in the Spring of 2002. Conceptual and attitudinal pretest and posttest results were quantitative in nature. Qualitative results were collected from questionnaires and focus groups. Quantitative data were analyzed using a repeated measures analysis of variance to identify differences between treatment groups. A high-inquiry treatment group was open-ended and required student decisions regarding data collection, data representation, and interpretation. The low-inquiry treatment involved collaboration and traditional learning strategies. Major findings of this study were: (1) Pretest to posttest conceptual gains were significant for both treatment groups. Low-inquiry students performed significantly better on exploration questions than high-inquiry students. (2) Process skills developed at higher levels for high-inquiry students than low-inquiry students. (3) Positive attitudes decreased significantly for all students from pretest to posttest. More favorable attitudes toward science enjoyment and the ability to do well in science were found for high-inquiry students. More favorable attitudes toward science enjoyment and the ability to do well in science were found for low-inquiry males and high-inquiry females. (4) More favorable attitudes toward the nature of science caused by use of the learning cycle were reported by high-inquiry students. (5) Low-inquiry students reported more favorable attitudes toward technologies in the laboratory than did high-inquiry students. Favorable attitudes toward the use of infrared spectrometers and unfavorable attitudes toward the use of pH meters were reported by both treatment groups. (6) More formal reasoning skills were reported by high-inquiry students. Both groups

  18. The Challenges of Science Inquiry Teaching for Pre-Service Teachers in Elementary Classrooms: Difficulties on and under the Scene

    NASA Astrophysics Data System (ADS)

    Yoon, Hye-Gyoung; Joung, Yong Jae; Kim, Mijung

    2012-06-01

    In the context of the emphasis on inquiry teaching in science education, this study looks into how pre-service elementary teachers understand and practise science inquiry teaching during field experience. By examining inquiry lesson preparation, practice, and reflections of pre-service elementary teachers, we attempt to understand the difficulties they encounter and what could result from those difficulties in their practice. A total of 16 seniors (fourth-year students) in an elementary teacher education program participated in this study. In our findings, we highlight three difficulties `on the lesson' that are related to teaching practices that were missing in the classrooms: (1) developing children's own ideas and curiosity, (2) guiding children in designing valid experiments for their hypotheses, (3) scaffolding children's data interpretation and discussion and another three difficulties `under the lesson' that are related to problems with the pre-service teachers' conceptualization of the task: (4) tension between guided and open inquiry, (5) incomplete understanding of hypothesis, and (6) lack of confidence in science content knowledge. Based on these findings, we discuss how these difficulties are complexly related in the pre-service teachers' understandings and action. Several suggestions for science teacher education for inquiry teaching, especially hypothesis-based inquiry teaching, are then explored.

  19. Experiencing the Implementation of New Inquiry Science Curricula

    NASA Astrophysics Data System (ADS)

    Ower, Peter S.

    Using a phenomenological methodology, a cohort of four experienced science teachers was interviewed about their experience transitioning from traditional, teacher and fact-centered science curricula to inquiry-based curricula. Each teacher participated in two interviews that focused on their teaching backgrounds, their experience teaching the prior traditional curriculum, and their experience teaching the new inquiry-based curriculum. The findings are presented as a narrative of each teachers' experience with the new curriculum implementation. Analyzing the data revealed four key themes. 1) The teachers felt trapped by the old curriculum as it did not align with their positive views of teaching science through inquiry. 2) The teachers found a way to fit their beliefs and values into the old and new curriculum. This required changes to the curriculum. 3) The teachers attempted to make the science curriculum as meaningful as possible for their students. 4) The teachers experienced a balancing act between their beliefs and values and the various aspects of the curriculum. The revealed essence of the curriculum transition is one of freedom and reconciliation of their beliefs. The teachers experienced the implementation of the new curriculum as a way to ensure their values and beliefs of science education were embedded therein. They treated the new curriculum as a malleable structure to impart their grander ideas of science education (e.g. providing important skills for future careers, creating a sense of wonder, future problem solving) to the students. Their changes were aligned with the philosophy of the curriculum kits they were implementing. Thus, the fidelity of the curriculum's philosophy was not at risk even though the curriculum kits were not taught as written. This study showed that phenomenological methods are able to reveal the relationship between a teacher's prior experiences, values and beliefs and their current instructional philosophy in science

  20. What Is a Scientific Experiment? The Impact of a Professional Development Course on Teachers' Ability to Design an Inquiry-Based Science Curriculum

    ERIC Educational Resources Information Center

    Pérez, María del Carmen B.; Furman, Melina

    2016-01-01

    Designing inquiry-based science lessons can be a challenge for secondary school teachers. In this study we evaluated the development of in-service teachers' lesson plans as they took part in a 10-month professional development course in Peru which engaged teachers in the design of inquiry-based lessons. At the beginning, most teachers designed…

  1. Facilitating Family Group Inquiry at Science Museum Exhibits

    ERIC Educational Resources Information Center

    Gutwill, Joshua P.; Allen, Sue

    2010-01-01

    We describe a study of programs to deepen families' scientific inquiry practices in a science museum setting. The programs incorporated research-based learning principles from formal and informal educational environments. In a randomized experimental design, two versions of the programs, called "inquiry games," were compared to two control…

  2. Challenges and Support When Teaching Science Through an Integrated Inquiry and Literacy Approach

    NASA Astrophysics Data System (ADS)

    Ødegaard, Marianne; Haug, Berit; Mork, Sonja M.; Ove Sørvik, Gard

    2014-12-01

    In the Budding Science and Literacy project, we explored how working with an integrated inquiry-based science and literacy approach may challenge and support the teaching and learning of science at the classroom level. By studying the inter-relationship between multiple learning modalities and phases of inquiry, we wished to illuminate possible dynamics between science inquiry and literacy in an integrated science approach. Six teachers and their students were recruited from a professional development course for the current classroom study. The teachers were to try out the Budding Science teaching model. This paper presents an overall video analysis of our material demonstrating variations and patterns of inquiry-based science and literacy activities. Our analysis revealed that multiple learning modalities (read it, write it, do it, and talk it) are used in the integrated approach; oral activities dominate. The inquiry phases shifted throughout the students' investigations, but the consolidating phases of discussion and communication were given less space. The data phase of inquiry seems essential as a driving force for engaging in science learning in consolidating situations. The multiple learning modalities were integrated in all inquiry phases, but to a greater extent in preparation and data. Our results indicate that literacy activities embedded in science inquiry provide support for teaching and learning science; however, the greatest challenge for teachers is to find the time and courage to exploit the discussion and communication phases to consolidate the students' conceptual learning.

  3. Focusing on the Processes of Science Using Inquiry-oriented Astronomy Labs for Learning Astronomy

    NASA Astrophysics Data System (ADS)

    Speck, Angela; Ruzhitskaya, L.; Whittington, A.; Witzig, S.

    2010-01-01

    The U.S. National Science Education Standards provide guidelines for teaching science through inquiry, where students actively develop their understanding of science by combining scientific knowledge with reasoning and thinking skills. Inquiry activities include reading scientific literature, generating hypotheses, designing and carrying out investigations, interpreting data, and formulating conclusions. Inquiry-based instruction emphasizes questions, evidence, and explanation, the essential features of inquiry. We present two projects designed to develop learning materials for laboratory experiences in an undergraduate astronomy course. First, we engage students in inquiry-based learning by using "mini-journal” articles that follow the format of a scientific journal article, including a title, authors, abstract, introduction, methods, results, discussion and citations to peer-reviewed literature. The mini-journal provides a scaffold and serves as a springboard for students to develop and carry out their own follow-up investigation. They then present their findings in the form of their own mini-journal. This mini-journal format more directly reflects and encourages scientific practice. We use this technique in both introductory and upper level courses. The second project develops 3D virtual reality environments to help students interact with scientific constructs, and the use of collaborative learning tools to motivate student activity, deepen understanding and support knowledge building.

  4. Comparing Two Inquiry Professional Development Interventions in Science on Primary Students' Questioning and Other Inquiry Behaviours

    ERIC Educational Resources Information Center

    Nichols, Kim; Burgh, Gilbert; Kennedy, Callie

    2017-01-01

    Developing students' skills to pose and respond to questions and actively engage in inquiry behaviours enables students to problem solve and critically engage with learning and society. The aim of this study was to analyse the impact of providing teachers with an intervention in inquiry pedagogy alongside inquiry science curriculum in comparison…

  5. Inquiry Identity and Science Teacher Professional Development

    ERIC Educational Resources Information Center

    Bryce, Nadine; Wilmes, Sara E. D.; Bellino, Marissa

    2016-01-01

    An effective inquiry-oriented science teacher possesses more than the skills of teaching through investigation. They must address philosophies, and ways of interacting as a member of a group of educators who value and practice science through inquiry. Professional development opportunities can support inquiry identity development, but most often…

  6. A comparison of hands-on inquiry instruction to lectureinstruction with special needs high school biology students

    NASA Astrophysics Data System (ADS)

    Jensen-Ruopp, Helga Spitko

    A comparison of hands-on inquiry instruction with lecture instruction was presented to 134 Patterns and Process Biology students. Students participated in seven biology lessons that were selected from Biology Survey of Living Things (1992). A pre and post paper and pencil assessment was used as the data collecting instrument. The treatment group was taught using hands-on inquiry strategies while the non-treatment group was taught in the lecture method of instruction. The team teaching model was used as the mode of presentation to the treatment group and the non-treatment group. Achievement levels using specific criterion; novice (0% to 50%), developing proficiency (51% to 69%), accomplished (70% to 84) and exceptional or mastery level (85% to 100%) were used as a guideline to tabulate the results of the pre and post assessment. Rubric tabulation was done to interpret the testing results. The raw data was plotted using percentage change in test score totals versus reading level score by gender as well as percentage change in test score totals versus auditory vocabulary score by gender. Box Whisker plot comparative descriptive of individual pre and post test scores for the treatment and non-treatment group was performed. Analysis of covariance (ANCOVA) using MINITAB Statistical Software version 14.11 was run on data of the seven lessons, as well as on gender (male results individual and combined, and female results individual and combined) results. Normal Probability Plots for total scores as well as individual test scores were performed. The results suggest that hands-on inquiry based instruction when presented to special needs students including; at-risk; English as a second language limited, English proficiency and special education inclusive students' learning may enhance individual student achievement.

  7. The Inquiry Based Science and Technology Education Program (IN-STEP): The Evaluation of the First Year

    ERIC Educational Resources Information Center

    Corcoran, Thomas B.

    2008-01-01

    This is the first report on the evaluation of the Inquiry Based Science and Technology Education Program (IN-STEP), an innovative and ambitious science education initiative for lower secondary schools being undertaken by a public-private partnership in Thailand funded by MSD-Thailand, an affiliate of Merck & Co. IN-STEP is a public-private…

  8. Do individual differences in children's curiosity relate to their inquiry-based learning?

    NASA Astrophysics Data System (ADS)

    van Schijndel, Tessa J. P.; Jansen, Brenda R. J.; Raijmakers, Maartje E. J.

    2018-06-01

    This study investigates how individual differences in 7- to 9-year-olds' curiosity relate to the inquiry-learning process and outcomes in environments differing in structure. The focus on curiosity as individual differences variable was motivated by the importance of curiosity in science education, and uncertainty being central to both the definition of curiosity and the inquiry-learning environment. Curiosity was assessed with the Underwater Exploration game (Jirout, J., & Klahr, D. (2012). Children's scientific curiosity: In search of an operational definition of an elusive concept. Developmental Review, 32, 125-160. doi:10.1016/j.dr.2012.04.002), and inquiry-based learning with the newly developed Scientific Discovery task, which focuses on the principle of designing informative experiments. Structure of the inquiry-learning environment was manipulated by explaining this principle or not. As intelligence relates to learning and possibly curiosity, it was taken into account. Results showed that children's curiosity was positively related to their knowledge acquisition, but not to their quality of exploration. For low intelligent children, environment structure positively affected their quality of exploration, but not their knowledge acquisition. There was no interaction between curiosity and environment structure. These results support the existence of two distinct inquiry-based learning processes - the designing of experiments, on the one hand, and the reflection on performed experiments, on the other - and link children's curiosity to the latter process.

  9. Scientists' conceptions of scientific inquiry: Revealing a private side of science

    NASA Astrophysics Data System (ADS)

    Reiff, Rebecca R.

    Science educators, philosophers, and pre-service teachers have contributed to conceptualizing inquiry but missing from the inquiry forum is an in-depth research study concerning science faculty conceptions of scientific inquiry. The science education literature has tended to focus on certain aspects of doing, teaching, and understanding scientific inquiry without linking these concepts. As a result, conceptions of scientific inquiry have been disjointed and are seemingly unrelated. Furthermore, confusion surrounding the meaning of inquiry has been identified as a reason teachers are not using inquiry in instruction (Welch et al., 1981). Part of the confusion surrounding scientific inquiry is it has been defined differently depending on the context (Colburn, 2000; Lederman, 1998; Shymansky & Yore, 1980; Wilson & Koran, 1976). This lack of a common conception of scientific inquiry is the reason for the timely nature of this research. The result of scientific journeys is not to arrive at a stopping point or the final destination, but to refuel with questions to drive the pursuit of knowledge. A three-member research team conducted Interviews with science faculty members using a semi-structured interview protocol designed to probe the subject's conceptions of scientific inquiry. The participants represented a total of 52 science faculty members from nine science departments (anthropology, biology, chemistry, geology, geography, school of health, physical education and recreation (HPER), medical sciences, physics, and school of environmental science) at a large mid-western research university. The method of analysis used by the team was grounded theory (Strauss & Corbin, 1990; Glaser & Strauss, 1967), in which case the frequency of concepts, patterns, and themes were coded to categorize scientists' conceptions of scientific inquiry. The results from this study address the following components: understanding and doing scientific inquiry, attributes of scientists engaged

  10. The Effectiveness of a Guided Inquiry-Based, Teachers' Professional Development Programme on Saudi Students' Understanding of Density

    ERIC Educational Resources Information Center

    Almuntasheri, S.; Gillies, R. M.; Wright, T.

    2016-01-01

    Despite a general consensus on the educational effectiveness of inquiry-based instruction, the enacted type of inquiry in science classrooms remains debatable in many countries including Saudi Arabia. This study compared guided-inquiry based teachers' professional development to teacher-directed approach in supporting Saudi students to understand…

  11. Inquiry identity and science teacher professional development

    NASA Astrophysics Data System (ADS)

    Bryce, Nadine; Wilmes, Sara E. D.; Bellino, Marissa

    2016-06-01

    An effective inquiry-oriented science teacher possesses more than the skills of teaching through investigation. They must address philosophies, and ways of interacting as a member of a group of educators who value and practice science through inquiry. Professional development opportunities can support inquiry identity development, but most often they address teaching practices from limited cognitive perspectives, leaving unexplored the shifts in identity that may accompany teachers along their journey in becoming skilled in inquiry-oriented instruction. In this forum article, we envision Victoria Deneroff's argument that "professional development could be designed to facilitate reflexive transformation of identity within professional learning environments" (2013, p. 33). Instructional coaching, cogenerative dialogues, and online professional communities are discussed as ways to promote inquiry identity formation and collaboration in ways that empower and deepen science teachers' conversations related to personal and professional efficacy in the service of improved science teaching and learning.

  12. Science Faculty Belief Systems in a Professional Development Program: Inquiry in College Laboratories

    NASA Astrophysics Data System (ADS)

    Hutchins, Kristen L.; Friedrichsen, Patricia J.

    2012-12-01

    The purpose of this study was to investigate how science faculty members' belief systems about inquiry-based teaching changed through their experience in a professional development program. The program was designed to support early career science faculty in learning about inquiry and incorporating an inquiry-based approach to teaching laboratories. Data sources for this qualitative study included three semi-structured interviews, observations during the program and during faculty members' implementation in their courses, and a researcher's journal. In the first phase of data analysis, we created profiles for each of the four participants. Next, we developed assertions, and tested for confirming and disconfirming evidence across the profiles. The assertions indicated that, through the professional development program, participants' knowledge and beliefs about inquiry-based teaching shifted, placing more value on student-directed learning and classroom inquiry. Participants who were internally motivated to participate and held incoming positive attitudes toward the mini-journal inquiry-based approach were more likely to incorporate the approach in their future practice. Students' responses played a critical role in participants' belief systems and their decision to continue using the inquiry-based format. The findings from this study have implications for professional development design.

  13. Inquiry science as a discourse: New challenges for teachers, students, and the design of curriculum materials

    NASA Astrophysics Data System (ADS)

    Tzou, Carrie Teh-Li

    Science education reform emphasizes learning science through inquiry as a way to engage students in the processes of science at the same time that they learn scientific concepts. However, inquiry involves practices that are challenging for students because they have underlying norms with which students may be unfamiliar. We therefore cannot expect students to know how to engage in such practices simply by giving them opportunities to do so, especially if the norms for inquiry practices violate traditional classroom norms for engaging with scientific ideas. Teachers therefore play a key role in communicating expectations for inquiry. In this dissertation, I present an analytical framework for characterizing two teachers' enactments of an inquiry curriculum. This framework, based on Gee's (1996) notion of Discourses, describes inquiry practices in terms of three dimensions: cognitive, social, and linguistic. I argue that each of these dimensions presents challenges to students and, therefore, sites at which teachers' support is important for students' participation in inquiry practices. I use this framework to analyze two teachers' support of inquiry practices as they enact an inquiry-based curriculum. I explore three questions in my study: (1) what is the nature of teachers' support of inquiry practices? (2) how do teachers accomplish goals along multiple dimensions of inquiry?, and (3) what aspects of inquiry are in tension and how can we describe teachers' practice in terms of the tradeoff spaces between elements of inquiry in tension? In order to study these questions, I studied two eighth grade teachers who both enacted the same inquiry-based science curriculum developed by me and others in the context of a large design-based research project called IQWST (Investigating and Questioning my World through Science and Technology. I found that the teachers provided support for inquiry along all three dimensions, sometimes in ways in which the dimensions were

  14. Science Teachers' Views and Stereotypes of Religion, Scientists and Scientific Research: A call for scientist-science teacher partnerships to promote inquiry-based learning

    NASA Astrophysics Data System (ADS)

    Mansour, Nasser

    2015-07-01

    Despite a growing consensus regarding the value of inquiry-based learning (IBL) for students' learning and engagement in the science classroom, the implementation of such practices continues to be a challenge. If science teachers are to use IBL to develop students' inquiry practices and encourage them to think and act as scientists, a better understanding of factors that influence their attitudes towards scientific research and scientists' practices is very much needed. Within this context there is a need to re-examine the science teachers' views of scientists and the cultural factors that might have an impact on teachers' views and pedagogical practices. A diverse group of Egyptian science teachers took part in a quantitative-qualitative study using a questionnaire and in-depth interviews to explore their views of scientists and scientific research, and to understand how they negotiated their views of scientists and scientific research in the classroom, and how these views informed their practices of using inquiry in the classroom. The findings highlighted how the teachers' cultural beliefs and views of scientists and scientific research had constructed idiosyncratic pedagogical views and practices. The study suggested implications for further research and argued for teacher professional development based on partnerships with scientists.

  15. Brokering at the boundary: A prospective science teacher engages students in inquiry

    NASA Astrophysics Data System (ADS)

    Meis Friedrichsen, Patricia; Munford, Danusa; Orgill, Marykay

    2006-05-01

    Using a theoretical perspective of communities of practice, this case study examines a prospective chemistry teacher's inquiry-based teaching during his practicum. Conrad was a former student of an inquiry-oriented science course, Inquiry Empowering Technologies (IET). The research questions were (a) How did Conrad translate the IET inquiry practices during his practicum?; (b) How did the mentor teacher shape Conrad's participation?; (c) In what ways did Conrad negotiate new meanings of inquiry as a result of his practicum? Interview transcripts were the primary data source. Conrad carried many of the IET inquiry practices into his practicum. He equated inquiry with the use of evidence and had students create evidence-based explanations for how soap works. He chose not to incorporate the tentative nature of science. Although traditional in his own teaching, the mentor teacher supported Conrad by allowing him to teach through inquiry and by removing time constraints. As a result of his practicum, Conrad negotiated new meanings of inquiry teaching and developed an expanded view of technology. Conrad believed that high school students needed guidance when engaging in inquiry and that the tentative nature of science does not transfer to secondary chemistry. Implications for theory and practice are given.

  16. Science Teacher Educators' Engagement with Pedagogical Content Knowledge and Scientific Inquiry in Predominantly Paper-Based Distance Learning Programs

    ERIC Educational Resources Information Center

    Fraser, William J.

    2017-01-01

    This article focuses on the dilemmas science educators face when having to introduce Pedagogical Content Knowledge (PCK) to science student teachers in a predominantly paper-based distance learning environment. It draws on the premise that science education is bound by the Nature of Science (NOS), and by the Nature of Scientific Inquiry (NOSI).…

  17. New science teachers' descriptions of inquiry enactment

    NASA Astrophysics Data System (ADS)

    Dreon, Oliver, Jr.

    This phenomenological study demonstrates the influence that affective factors have on beginning teachers' ability to enact instructional practices. Through narratives shared in interviews and web log postings, two beginning science teachers' emotional engagement with their instructional practices, especially that of implementing inquiry-based instruction, and the resulting impact these emotions had on professional decision-making were evidenced. Anxiety emerged as the most significant impacting emotion on instructional decision-making with the participants. Through their stories, the two participants describe how their emotions and views of self influence whether they continue using inquiry pedagogy or alter their lesson to adopt more didactic means of instruction. These emotions arise from their feelings of being comfortable teaching the content (self-efficacy), from the unpredictability of inquiry lessons (control beliefs), from how they perceive their students as viewing them (teacher identity) and from various school constraints (agency). This research also demonstrates how intertwined these aspects are, informing each other in a complex, dialectical fashion. The participants' self-efficacy and professional identity emerge from their interactions with the community (their students and colleagues) and the perceived agency afforded by their schools' curricula and administration. By providing descriptions of teachers' experiences enacting inquiry pedagogy, this study expands our understanding of factors that influence teachers' instructional practices and provides a basis for reforming science teacher preparation.

  18. Neuroscience in middle schools: a professional development and resource program that models inquiry-based strategies and engages teachers in classroom implementation.

    PubMed

    MacNabb, Carrie; Schmitt, Lee; Michlin, Michael; Harris, Ilene; Thomas, Larry; Chittendon, David; Ebner, Timothy J; Dubinsky, Janet M

    2006-01-01

    The Department of Neuroscience at the University of Minnesota and the Science Museum of Minnesota have developed and implemented a successful program for middle school (grades 5-8) science teachers and their students, called Brain Science on the Move. The overall goals have been to bring neuroscience education to underserved schools, excite students about science, improve their understanding of neuroscience, and foster partnerships between scientists and educators. The program includes BrainU, a teacher professional development institute; Explain Your Brain Assembly and Exhibit Stations, multimedia large-group presentation and hands-on activities designed to stimulate student thinking about the brain; Class Activities, in-depth inquiry-based investigations; and Brain Trunks, materials and resources related to class activities. Formal evaluation of the program indicated that teacher neuroscience knowledge, self-confidence, and use of inquiry-based strategies and neuroscience in their classrooms have increased. Participating teachers increased the time spent teaching neuroscience and devoted more time to "inquiry-based" teaching versus "lecture-based teaching." Teachers appreciated in-depth discussions of pedagogy and science and opportunities for collegial interactions with world-class researchers. Student interest in the brain and in science increased. Since attending BrainU, participating teachers have reported increased enthusiasm about teaching and have become local neuroscience experts within their school communities.

  19. The Connection Between Forms of Guidance for Inquiry-Based Learning and the Communicative Approaches Applied—a Case Study in the Context of Pre-service Teachers

    NASA Astrophysics Data System (ADS)

    Lehtinen, Antti; Lehesvuori, Sami; Viiri, Jouni

    2017-09-01

    Recent research has argued that inquiry-based science learning should be guided by providing the learners with support. The research on guidance for inquiry-based learning has concentrated on how providing guidance affects learning through inquiry. How guidance for inquiry-based learning could promote learning about inquiry (e.g. epistemic practices) is in need of exploration. A dialogic approach to classroom communication and pedagogical link-making offers possibilities for learners to acquire these practices. The focus of this paper is to analyse the role of different forms of guidance for inquiry-based learning on building the communicative approach applied in classrooms. The data for the study comes from an inquiry-based physics lesson implemented by a group of five pre-service primary science teachers to a class of sixth graders. The lesson was video recorded and the discussions were transcribed. The data was analysed by applying two existing frameworks—one for the forms of guidance provided and another for the communicative approaches applied. The findings illustrate that providing non-specific forms of guidance, such as prompts, caused the communicative approach to be dialogic. On the other hand, providing the learners with specific forms of guidance, such as explanations, shifted the communication to be more authoritative. These results imply that different forms of guidance provided by pre-service teachers can affect the communicative approach applied in inquiry-based science lessons, which affects the possibilities learners are given to connect their existing ideas to the scientific view. Future research should focus on validating these results by also analysing inservice teachers' lessons.

  20. Learning Environments and Inquiry Behaviors in Science Inquiry Learning: How Their Interplay Affects the Development of Conceptual Understanding in Physics

    ERIC Educational Resources Information Center

    Bumbacher, Engin; Salehi, Shima; Wierzchula, Miriam; Blikstein, Paulo

    2015-01-01

    Studies comparing virtual and physical manipulative environments (VME and PME) in inquiry-based science learning have mostly focused on students' learning outcomes but not on the actual processes they engage in during the learning activities. In this paper, we examined experimentation strategies in an inquiry activity and their relation to…

  1. Science Teachers' Perceptions of the Relationship Between Game Play and Inquiry Learning

    NASA Astrophysics Data System (ADS)

    Mezei, Jessica M.

    The implementation of inquiry learning in American science classrooms remains a challenge. Teachers' perceptions of inquiry learning are predicated on their past educational experiences, which means outdated methods of learning may influence teachers' instructional approaches. In order to enhance their understanding and ultimately their implementation of inquiry learning, teachers need new and more relevant models. This study takes a preliminary step exploring the potential of game play as a valuable experience for science teachers. It has been proposed that game play and inquiry experiences can embody constructivist processes of learning, however there has been little work done with science teachers to systematically explore the relationship between the two. Game play may be an effective new model for teacher education and it is important to understand if and how teachers relate game playing experience and knowledge to inquiry. This study examined science teachers' game playing experiences and their perceptions of inquiry experiences and evaluated teacher's recognition of learning in both contexts. Data was collected through an online survey (N=246) and a series of follow-up interviews (N=29). Research questions guiding the study were: (1) What is the nature of the relationship between science teachers' game experience and their perceptions of inquiry? (2) How do teachers describe learning in and from game playing as compared with inquiry science learning? and (3) What is the range of similarities and differences teachers articulate between game play and inquiry experiences?. Results showed weak quantitative links between science teachers' game experiences and their perceptions of inquiry, but identified promising game variables such as belief in games as learning tools, game experiences, and playing a diverse set of games for future study. The qualitative data suggests that teachers made broad linkages in terms of parallels of both teaching and learning. Teachers

  2. Giving children space: A phenomenological exploration of student experiences in space science inquiry

    NASA Astrophysics Data System (ADS)

    Horne, Christopher R.

    This study explores the experiences of 4th grade students in an inquiry-based space science classroom. At the heart of the study lies the essential question: What is the lived experience of children engaged in the process of space science inquiry? Through the methodology of phenomenological inquiry, the author investigates the essence of the lived experience of twenty 4th grade students as well as the reflections of two high school students looking back on their 4th grade space science experience. To open the phenomenon more deeply, the concept of space is explored as an overarching theme throughout the text. The writings of several philosophers including Martin Heidegger and Hans-Georg Gadamer are opened up to understand the existential aspects of phenomenology and the act of experiencing the classroom as a lived human experience. The methodological structure for the study is based largely on the work of Max van Manen (2003) in his seminal work, Researching Lived Experience, which describes a structure of human science research. A narrative based on classroom experiences, individual conversations, written reflections, and group discussion provides insight into the students' experiences. Their stories and thoughts reveal the themes of activity , interactivity, and "inquiractivity," each emerging as an essential element of the lived experience in the inquiry-based space science classroom. The metaphor of light brings illumination to the themes. Activity in the classroom is associated with light's constant and rapid motion throughout the Milky Way and beyond. Interactivity is seen through students' interactions just as light's reflective nature is seen through the illumination of the planets. Finally, inquiractivity is connected to questioning, the principal aspect of the inquiry-based classroom just as the sun is the essential source of light in our solar system. As the era of No Child Left Behind fades, and the next generation of science standards emerge, the

  3. Effects of Scaffolds and Scientific Reasoning Ability on Web-Based Scientific Inquiry

    ERIC Educational Resources Information Center

    Wu, Hui-Ling; Weng, Hsiao-Lan; She, Hsiao-Ching

    2016-01-01

    This study examined how background knowledge, scientific reasoning ability, and various scaffolding forms influenced students' science knowledge and scientific inquiry achievements. The students participated in an online scientific inquiry program involving such activities as generating scientific questions and drawing evidence-based conclusions,…

  4. Reforming High School Science for Low-Performing Students Using Inquiry Methods and Communities of Practice

    NASA Astrophysics Data System (ADS)

    Bolden, Marsha Gail

    Some schools fall short of the high demand to increase science scores on state exams because low-performing students enter high school unprepared for high school science. Low-performing students are not successful in high school for many reasons. However, using inquiry methods have improved students' understanding of science concepts. The purpose of this qualitative research study was to investigate the teachers' lived experiences with using inquiry methods to motivate low-performing high school science students in an inquiry-based program called Xtreem Science. Fifteen teachers were selected from the Xtreem Science program, a program designed to assist teachers in motivating struggling science students. The research questions involved understanding (a) teachers' experiences in using inquiry methods, (b) challenges teachers face in using inquiry methods, and (c) how teachers describe student's response to inquiry methods. Strategy of data collection and analysis included capturing and understanding the teachers' feelings, perceptions, and attitudes in their lived experience of teaching using inquiry method and their experience in motivating struggling students. Analysis of interview responses revealed teachers had some good experiences with inquiry and expressed that inquiry impacted their teaching style and approach to topics, and students felt that using inquiry methods impacted student learning for the better. Inquiry gave low-performing students opportunities to catch up and learn information that moved them to the next level of science courses. Implications for positive social change include providing teachers and school district leaders with information to help improve performance of the low performing science students.

  5. Impacts and Characteristics of Computer-Based Science Inquiry Learning Environments for Precollege Students

    ERIC Educational Resources Information Center

    Donnelly, Dermot F.; Linn, Marcia C.; Ludvigsen, Sten

    2014-01-01

    The National Science Foundation-sponsored report "Fostering Learning in the Networked World" called for "a common, open platform to support communities of developers and learners in ways that enable both to take advantage of advances in the learning sciences." We review research on science inquiry learning environments (ILEs)…

  6. The Effect of Serious Video Game Play on Science Inquiry Scores

    NASA Astrophysics Data System (ADS)

    Hilosky, Alexandra Borzillo

    American students are not developing the science inquiry skills needed to solve complex 21st century problems, thus impacting the workforce. In 2009, American high school students ranked 21 out of 26 in the category of problem-solving according to the Program for International Student Assessment. Serious video games have powerful epistemic value and are beneficial with respect to enhancing inquiry, effective problem-solving. The purpose of this correlational, quantitative study was to test Gee's assumption regarding the cycle of thinking (routinization, automatization, and deroutinization) by determining whether players status was a significant predictor of science inquiry scores, controlling for age, gender, and major. The 156 non-random volunteers who participated in this study were enrolled in a 2-year college in the northeastern U.S. Multiple regression analyses revealed that major was the strongest overall (significant) predictor, b = -.84, t(149) = -3.70, p < .001, even though gamer status served as a significant predictor variable for Stage 1 only, b = -.48, t(149) = -2.37, p = .019. Participants who reported playing serious video games scored .48 points higher than non-players of serious video games regardless of age, gender, and major, which supports previous studies that have found significant differences in scientific inquiry abilities related to forming hypotheses and identifying problems based on serious video game play. Recommendations include using serious games as instructional tools and to assess student learning (formative and summative), especially among non-traditional learners.

  7. Implementing Inquiry Gradually with Preservice Science Teachers as Students

    ERIC Educational Resources Information Center

    Keçeci, Gonca

    2017-01-01

    This study is done to have preservice science teachers chance to implement inquiry before expecting them to implement inquiry in their classrooms and to develop the preservice science teachers' inquiry skills and self-efficacy of science. The study group is composed of preservice science teachers who chose the 2nd grade Biology Laboratory course…

  8. A Metasynthesis of the Complementarity of Culturally Responsive and Inquiry-Based Science Education in K-12 Settings: Implications for Advancing Equitable Science Teaching and Learning

    ERIC Educational Resources Information Center

    Brown, Julie C.

    2017-01-01

    Employing metasynthesis as a method, this study examined 52 empirical articles on culturally relevant and responsive science education in K-12 settings to determine the nature and scope of complementarity between culturally responsive and inquiry-based science practices (i.e., science and engineering practices identified in the National Research…

  9. Professional development, practice, and teacher discourse communities: How an urban high school science teacher negotiated inquiry practice

    NASA Astrophysics Data System (ADS)

    Deneroff, Victoria Matzenauer

    This is an ethnographic case study of one urban high school science teacher who was attempting to use inquiry-based teaching in her practice. Rather than focusing on pedagogy, the study examines the social networks and communities of practice in which Marie Gonzalez participated. I make the argument that science teaching is a Discourse (Gee, 1990), and that teaching inquiry science means constructing an identity as a participant in what I call the Discourse of Inquiry. I also use discourse analysis to tease out a Discourse of Traditional Science Teaching. I conclude that the Traditional and Inquiry Discourses mediate a teacher's ideas of what it means to teach, and that, while Inquiry teachers are "bilingual", that is, able to participate in both Discourses, Traditional teachers are deaf to the Discourse of Inquiry. Moreover, in my study there is convincing evidence that administrators charged with evaluation were also unfamiliar with the Discourse of Inquiry and were therefore unable to provide support for Marie's inquiry practice. In light of these findings, it is not at all surprising that Marie found it quite difficult to use inquiry-based pedagogy. In order for teachers to adopt discourse-based reforms such as inquiry, the Discourse must be available to teachers in their workplaces.

  10. An Exploration of Elementary Teachers' Beliefs and Perceptions About Science Inquiry: A Mixed Methods Study

    NASA Astrophysics Data System (ADS)

    Hamadeh, Linda

    In order for science-based inquiry instruction to happen on a large scale in elementary classrooms across the country, evidence must be provided that implementing this reform can be realistic and practical, despite the challenges and obstacles teachers may face. This study sought to examine elementary teachers' knowledge and understanding of, attitudes toward, and overall perceptions of inquiry-based science instruction, and how these beliefs influenced their inquiry practice in the classroom. It offered a description and analysis of the approaches elementary science teachers in Islamic schools reported using to promote inquiry within the context of their science classrooms, and addressed the challenges the participating teachers faced when implementing scientific inquiry strategies in their instruction. The research followed a mixed method approach, best described as a sequential two-strand design (Teddlie & Tashakkori, 2006). Sequential mixed designs develop two methodological strands that occur chronologically, and in the case of this research, QUAN→QUAL. Findings from the study supported the notion that the school and/or classroom environment could be a contextual factor that influenced some teachers' classroom beliefs about the feasibility of implementing science inquiry. Moreover, although teacher beliefs are influential, they are malleable and adaptable and influenced primarily by their own personal direct experiences with inquiry instruction or lack of.

  11. Inquiry-Based Learning: A Framework for Assessing Science in the Early Years

    ERIC Educational Resources Information Center

    Marian, Hazel; Jackson, Claire

    2017-01-01

    This article draws on current literature leading to the development of a holistic framework to support practitioners in observation and assessment of childrens evolving inquiry skills. Evidence from the 2011 Trends in International Maths and Science Study (TIMSS) in England identifies a decline of year five student achievement in science. A…

  12. Science teachers' utilization of Internet and inquiry-based laboratory lessons after an Internet-delivered professional development program

    NASA Astrophysics Data System (ADS)

    Lee, Kathryn Martell

    Much of the professional development in the past decades has been single incident experiences. The heart of inservice growth is the sustained development of current knowledge and practices, vital in science education, as reflected in the National Science Education Standards' inquiry and telecommunications components. This study was an exploration of an Internet-delivered professional development experience, utilizing multiple session interactive real-time data sources and semester-long sustained telementoring. Two groups of inservice teachers participated in the study, with only one group receiving a telementored coaching component. Measures of the dependent variable (delivery of an inquiry-based laboratory lesson sequence) were obtained by videotape, and predictive variables (self-analysis of teaching style and content delivery interviews) were administered to the forty veteran secondary school science teacher volunteers. Results showed that teachers in the group receiving semester-long coaching performed significantly better on utilizing the Internet for content research and inquiry-based lesson sequence delivery than the group not receiving the coaching. Members of the coached group were able to select a dedicated listserv, e-mail, chatline or telephone as the medium of coaching. While the members of the coached group used the listserv, the overwhelming preference was to be coached via the telephone. Qualitative analysis indicated that the telephone was selected for its efficiency of time, immediacy of response, and richer dialogue. Perceived barriers to the implementation of the Internet as a real-time data source in science classrooms included time for access, obsolesce of equipment, and logistics of computer to student ratios. These findings suggest that the group of science teachers studied (1) benefited from a sustained coaching experience for inquiry-based lesson delivery, (2) perceived the Internet as a source of content for their curriculum rather than a

  13. Paths through interpretive territory: Two teachers' enactment of a technology-rich, inquiry-fostering science curriculum

    NASA Astrophysics Data System (ADS)

    McDonald, Scott Powell

    New understandings about how people learn and constructivist pedagogy pose challenges for teachers. Science teachers face an additional challenge of developing inquiry-based pedagogy to foster complex reasoning skills. Theory provides only fuzzy guidance as to how constructivist or inquiry pedagogy can be accomplished in a wide variety of contexts and local constraints. This study contributes to the understanding of the development of constructivist, inquiry-based pedagogy by addressing the question: How do teachers interpret and enact a technology-rich, inquiry fostering science curricula for fifth grade students' biodiversity learning? This research is a case study of two teachers chosen as critical contrasting cases and represent differences across multiple criteria including: urban I suburban, teaching philosophy, and content preparation. The two fifth grade teachers each enacted BioKIDS: Kids' Inquiry in Diverse Species, an eight week curriculum focused on biodiversity. BioKIDS incorporates multiple learning technologies to support student learning including handheld computer software designed to help students collect field data, and a web-based resource for data on local animal species. The results of this study indicate there are tensions teachers must struggle with when setting goals during enactment of inquiry science curricula. They must find a balance between an emphasis on authentic learning and authentic science, and between natural history and natural science. Authentic learning focuses on students' interests and lives; Authentic science focuses on students working with the tools and processes of science. Natural history focuses on the foundational skills in science of observation and classification. Natural science focuses on analytical science drawing on data to develop claims about the world. These two key tensions in teachers' goal setting were critical in defining and understanding differences in how teachers interpreted a curriculum to meet

  14. Over Reported and Misunderstood? A Study of Teachers' Reported Enactment and Knowledge of Inquiry-Based Science Teaching

    ERIC Educational Resources Information Center

    Capps, Daniel K.; Shemwell, Jonathan T.; Young, Ashley M.

    2016-01-01

    Science education reforms worldwide call on teachers to engage students in investigative approaches to instruction, like inquiry. Studies of teacher self-reported enactment indicate that inquiry is used frequently in the classroom, suggesting a high level of proficiency with inquiry that would be amenable to inquiry reform. However, it is unclear…

  15. Attitudes and beliefs, about inquiry science, of middle level and secondary science teachers in northwest Arkansas and northwest Oklahoma

    NASA Astrophysics Data System (ADS)

    Dockers, Jean E.

    A This study attempted to close gaps in the literature with regards to implementation of inquiry practices in secondary science classrooms. In addition, the areas and ways in which practice ties to beliefs and experiences in the area of inquiry were examined. This study introduces an instrument that could be used to assess teachers' attitudes and beliefs about inquiry teaching practices and potential barriers to teaching science using an inquiry approach. Because the efficacy of reform efforts rests largely with teachers, their voices need to be included in the design and implementation of inquiry---based curriculum. This study helps to clarify the need for future research to examine inquiry as a pedagogical approach. If we desire pre-service teachers to teach using an inquiry approach when they have their own classrooms, they must know how to plan, implement, and assess inquiry science lessons, not just have experienced "inquiry lessons" as a student. One unique finding in this study was in the area of licensure and teaching style. Other studies found that in general traditionally licensed teachers felt better prepared to teach. This study found that participants who were alternatively certified incorporated characteristics of inquiry less often than those with traditional certification. This indicates that more research is needed in the area of certification and the affect it may have on quality of instruction for specific content areas like science.

  16. The Science Semester: Cross-Disciplinary Inquiry for Prospective Elementary Teachers

    ERIC Educational Resources Information Center

    Ford, Danielle J.; Fifield, Steve; Madsen, John; Qian, Xiaoyu

    2013-01-01

    We describe the Science Semester, a semester-long course block that integrates three science courses and a science education methods course for elementary teacher education majors, and examine prospective elementary teachers' developing conceptions about inquiry, science teaching efficacy, and reflections on learning through inquiry. The…

  17. Developing Elementary Teachers' Understandings of Hedges and Personal Pronouns in Inquiry-Based Science Classroom Discourse

    NASA Astrophysics Data System (ADS)

    Oliveira, Alandeom W.

    2010-02-01

    This study examined the effectiveness of introducing elementary teachers to the scholarly literature on personal pronouns and hedges in classroom discourse, a professional development strategy adopted during a summer institute to enhance teachers’ social understanding (i.e., their understanding of the social functions of language in science discussions). Teachers became aware of how hedges can be employed to remain neutral toward students’ oral contributions to classroom discussions, invite students to share their opinions and articulate their own ideas, and motivate students to inquire. Teachers recognized that the combined use of I and you can render their feedback authoritative, you can shift the focus from the investigation to students’ competence, and we can lead to authority loss. It is argued that explicitness, reflectivity, and contextualization are essential features of professional development programs aimed at improving teachers’ understandings of the social dimension of inquiry-based science classrooms and preparing teachers to engage in inquiry-based teacher-student interactions.

  18. What We've Learned about Assessing Hands-On Science.

    ERIC Educational Resources Information Center

    Shavelson, Richard J.; Baxter, Gail P.

    1992-01-01

    A recent study compared hands-on scientific inquiry assessment to assessments involving lab notebooks, computer simulations, short-answer paper-and-pencil problems, and multiple-choice questions. Creating high quality performance assessments is a costly, time-consuming process requiring considerable scientific and technological know-how. Improved…

  19. Giving Children Space: A Phenomenological Exploration of Student Experiences in Space Science Inquiry

    ERIC Educational Resources Information Center

    Horne, Christopher R.

    2011-01-01

    This study explores the experiences of 4th grade students in an inquiry-based space science classroom. At the heart of the study lies the essential question: What is the lived experience of children engaged in the process of space science inquiry? Through the methodology of phenomenological inquiry, the author investigates the essence of the lived…

  20. Comparison of Student Achievement Using Didactic, Inquiry-Based, and the Combination of Two Approaches of Science Instruction

    NASA Astrophysics Data System (ADS)

    Foster, Hyacinth Carmen

    Science educators and administrators support the idea that inquiry-based and didactic-based instructional strategies have varying effects on students' acquisition of science concepts. The research problem addressed whether incorporating the two approaches covered the learning requirements of all students in science classes, enabling them to meet state and national standards. The purpose of this quasiexperimental, posttest design research study was to determine if student learning and achievement in high school biology classes differed for each type of instructional method. Constructivism theory suggested that each learner creates knowledge over time because of the learners' interactions with the environment. The optimal teaching method, didactic (teacher-directed), inquiry-based, or a combination of two approaches instructional method, becomes essential if students are to discover ways to learn information. The research question examined which form of instruction had a significant effect on student achievement in biology. The data analysis consisted of single-factor, independent-measures analysis of variance (ANOVA) that tested the hypotheses of the research study. Locally, the results indicated greater and statistically significant differences in standardized laboratory scores for students who were taught using the combination of two approaches. Based on these results, biology instructors will gain new insights into ways of improving the instructional process. Social change may occur as the science curriculum leadership applies the combination of two instructional approaches to improve acquisition of science concepts by biology students.

  1. The Impact of Inquiry Based Instruction on Science Process Skills and Self-Efficacy Perceptions of Pre-Service Science Teachers at a University Level Biology Laboratory

    ERIC Educational Resources Information Center

    Sen, Ceylan; Sezen Vekli, Gülsah

    2016-01-01

    The aim of this study is to determine the influence of inquiry-based teaching approach on pre-service science teachers' laboratory self-efficacy perceptions and scientific process skills. The quasi experimental model with pre-test-post-test control group design was used as an experimental design in this research. The sample of this study included…

  2. A Statewide Partnership for Implementing Inquiry Science

    NASA Astrophysics Data System (ADS)

    Lytle, Charles

    The North Carolina Infrastructure for Science Education (NC-ISE) is a statewide partnership for implementing standards-based inquiry science using exemplary curriculum materials in the public schools of North Carolina. North Carolina is the 11th most populous state in the USA with 8,000,000 residents, 117 school districts and a geographic area of 48,718 miles. NC-ISE partners include the state education agency, local school systems, three branches of the University of North Carolina, the state mathematics and science education network, businesses, and business groups. The partnership, based upon the Science for All Children model developed by the National Science Resources Centre, was initiated in 1997 for improvement in teaching and learning of science and mathematics. This research-based model has been successfully implemented in several American states during the past decade. Where effectively implemented, the model has led to significant improvements in student interest and student learning. It has also helped reduce the achievement gap between minority and non-minority students and among students from different economic levels. A key program element of the program is an annual Leadership Institute that helps teams of administrators and teachers develop a five-year strategic plan for their local systems. Currently 33 of the117 local school systems have joined the NC-ISE Program and are in various stages of implementation of inquiry science in grades K-8.

  3. Lost in Translation? Deconstructing Science in the News through an Inquiry-Based Course

    ERIC Educational Resources Information Center

    Rangachari, P. K.

    2006-01-01

    This report describes an experiment to introduce freshmen science students to inquiry-based learning. The overarching theme was the communication of scientific information to the public by the mass media. Students, working in groups, deconstructed news items (many dealing with basic biomedical issues) and assessed the veracity of statements with…

  4. An interpretative study of elementary school teachers' conceptions of the nature of inquiry and of their roles while participating in an inquiry based science curriculum

    NASA Astrophysics Data System (ADS)

    Stucke, Ann Hancock

    inquirers falls short of students' pursuing answers to their own questions. Conclusions. The themes that emerged from the data suggest that practicing teachers involved in a project using inquiry-based kits don't have an adequate concept of the nature of science and of inquiry in particular as reflected by the NSES and this seems to influence their concepts of their students' roles as inquirers.

  5. Teacher Students' Dilemmas When Teaching Science through Inquiry

    ERIC Educational Resources Information Center

    Krämer, Philipp; Nessler, Stefan H.; Schlüter, Kirsten

    2015-01-01

    Background: Inquiry-based science education (IBSE) is suitable to teach scientific contents as well as to foster scientific skills. Similar conclusions are drawn by studies with respect to scientific literacy, motivational aspects, vocabulary knowledge, conceptual understandings, critical thinking, and attitudes toward science. Nevertheless, IBSE…

  6. Assessing Dimensions of Inquiry Practice by Middle School Science Teachers Engaged in a Professional Development Program

    ERIC Educational Resources Information Center

    Lakin, Joni M.; Wallace, Carolyn S.

    2015-01-01

    Inquiry-based teaching promotes students' engagement in problem-solving and investigation as they learn science concepts. Current practice in science teacher education promotes the use of inquiry in the teaching of science. However, the literature suggests that many science teachers hold incomplete or incorrect conceptions of inquiry.…

  7. Exploring prospective secondary science teachers' understandings of scientific inquiry and Mendelian genetics concepts using computer simulation

    NASA Astrophysics Data System (ADS)

    Cakir, Mustafa

    The primary objective of this case study was to examine prospective secondary science teachers' developing understanding of scientific inquiry and Mendelian genetics. A computer simulation of basic Mendelian inheritance processes (Catlab) was used in combination with small-group discussions and other instructional scaffolds to enhance prospective science teachers' understandings. The theoretical background for this research is derived from a social constructivist perspective. Structuring scientific inquiry as investigation to develop explanations presents meaningful context for the enhancement of inquiry abilities and understanding of the science content. The context of the study was a teaching and learning course focused on inquiry and technology. Twelve prospective science teachers participated in this study. Multiple data sources included pre- and post-module questionnaires of participants' view of scientific inquiry, pre-posttests of understandings of Mendelian concepts, inquiry project reports, class presentations, process videotapes of participants interacting with the simulation, and semi-structured interviews. Seven selected prospective science teachers participated in in-depth interviews. Findings suggest that while studying important concepts in science, carefully designed inquiry experiences can help prospective science teachers to develop an understanding about the types of questions scientists in that field ask, the methodological and epistemological issues that constrain their pursuit of answers to those questions, and the ways in which they construct and share their explanations. Key findings included prospective teachers' initial limited abilities to create evidence-based arguments, their hesitancy to include inquiry in their future teaching, and the impact of collaboration on thinking. Prior to this experience the prospective teachers held uninformed views of scientific inquiry. After the module, participants demonstrated extended expertise in

  8. "I am a scientist": How setting conditions that enhance focused concentration positively relate to student motivation and achievement outcomes in inquiry-based science

    NASA Astrophysics Data System (ADS)

    Ellwood, Robin B.

    This research investigated how student social interactions within two approaches to an inquiry-based science curriculum could be related to student motivation and achievement outcomes. This qualitative case study consisted of two cases, Off-Campus and On-Campus, and used ethnographic techniques of participant observation. Research participants included eight eighth grade girls, aged thirteen to fourteen years old. Data sources included formal and informal participant interviews, participant journal reflections, curriculum artifacts including quizzes, worksheets, and student-generated research posters, digital video and audio recordings, photographs, and researcher field notes. Data were transcribed verbatim and coded, then collapsed into emergent themes using NVIVO 9. The results of this research illustrate how setting conditions that promote focused concentration and communicative interactions can be positively related to student motivation and achievement outcomes in inquiry-based science. Participants in the Off-Campus case experienced more frequent states of focused concentration and out performed their peers in the On-Campus case on forty-six percent of classroom assignments. Off-Campus participants also designed and implemented a more cognitively complex research project, provided more in-depth analyses of their research results, and expanded their perceptions of what it means to act like a scientist to a greater extent than participants in the On-Campus case. These results can be understood in relation to Flow Theory. Student interactions that promoted the criteria necessary for initiating flow, which included having clearly defined goals, receiving immediate feedback, and maintaining a balance between challenges and skills, fostered enhanced student motivation and achievement outcomes. This research also illustrates the positive gains in motivation and achievement outcomes that emerge from student experiences with extended time in isolated areas referred to

  9. The impact of science teachers' epistemological beliefs on authentic inquiry: A multiple-case study

    NASA Astrophysics Data System (ADS)

    Jackson, Dionne Bennett

    The purpose of this study was to examine how science teachers' epistemological beliefs impacted their use of authentic inquiry in science instruction. Participants in this multiple-case study included a total of four teachers who represented the middle, secondary and post-secondary levels. Based on the results of the pilot study conducted with a secondary science teacher, adjustments were made to the interview questions and observation protocol. Data collection for the study included semi-structured interviews, direct observations of instructional techniques, and the collection of artifacts. The cross case analysis revealed that the cases epistemological beliefs were mostly Transitional and the method of instruction used most was Discussion. Two of the cases exhibited consistent beliefs and instructional practices, whereas the other two exhibited beliefs beyond their instruction. The findings of this study support the literature on the influence of contextual factors and professional development on teacher beliefs and practice. The findings support and contradict literature relevant to the consistency of teacher beliefs with instruction. This study's findings revealed that the use of reform-based instruction, or Authentic Inquiry, does not occur when science teachers do not have the beliefs and experiences necessary to implement this form of instruction.

  10. Implementing inquiry-based kits within a professional development school model

    NASA Astrophysics Data System (ADS)

    Jones, Mark Thomas

    2005-07-01

    Implementation of guided inquiry teaching for the first time carries inherent problems for science teachers. Reform efforts on inquiry-based science teaching are often unsustainable and are not sensitive to teachers' needs and abilities as professionals. Professional development schools are meant to provide a research-based partnership between a public school and a university. These collaborations can provide support for the professional development of teachers. This dissertation reports a study focused on the implementation of inquiry-based science kits within the support of one of these collaborations. The researcher describes the difficulties and successful adaptations experienced by science teachers and how a coteaching model provided support. These types of data are needed in order to develop a bottom-up, sustainable process that will allow teachers to implement inquiry-based science. A qualitative methodology with "researcher as participant" was used in this study of two science teachers during 2002--2003. These two teachers were supported by a coteaching model, which included preservice teachers for each teacher as well as a supervising professor. Data were collected from the researcher's direct observations of coteachers' practice. Data were also collected from interviews and reflective pieces from the coteachers. Triangulation of the data on each teacher's case supported the validity of the findings. Case reports were prepared from these data for each classroom teacher. These case reports were used and cross-case analysis was conducted to search for major themes and findings in the study. Major findings described the hurdles teachers encounter, examples of adaptations observed in the teachers' cases and the supportive interactions with their coteachers while implementing the inquiry-based kits. In addition, the data were used to make recommendations for future training and use of the kits and the coteaching model. Results from this study showed that the

  11. The Relative Effects of Inquiry-Based and Commonplace Science Teaching on Students' Knowledge, Reasoning and Argumentation about Sleep Concepts: A Randomized Control Trial

    ERIC Educational Resources Information Center

    Wilson, Christopher D.; Taylor, Joseph A.; Kowalski, Susan M.; Carlson, Janet

    2009-01-01

    From Dewey to the Standards, inquiry has been an increasingly prominent theme in multiple science education reform movements, yet the transition from theory and advocacy to practice and policy has been disappointing. While there is a growing body of research which suggests that student understanding is enhanced by inquiry-based teaching, only…

  12. Inquiry Coaching: Scientists & Science Educators Energizing the Next Generation

    NASA Astrophysics Data System (ADS)

    Shope, R. E.; Alcantara Valverde, L.

    2007-05-01

    A recent National Academy of Sciences report recommends that science educators focus strategically on teaching the practice of science. To accomplish this, we have devised and implemented the Science Performance Laboratory, a collaborative research, education, and workforce model that brings scientists and science educators together to conduct scientific inquiry. In this session, we demonstrate how to form active inquiry teams around Arctica Science Research content areas related to the International Polar Year. We use the term "Arctica Science Research" to refer to the entire scope of exploration and discovery relating to: polar science and its global connections; Arctic and Antarctic research and climate sciences; ice and cryospheric studies on Earth; polar regions of the Moon, Mars, and Mercury; icy worlds throughout the Solar System, such as Europa, Enceladus, Titan, Pluto and the Comets; cryovolcanism; ice in interstellar space, and beyond. We apply the notion of teaching the practice science by enacting three effective strategies: 1) The Inquiry Wheel Game, in which we develop an expanded understanding of what has been traditionally taught as "the scientific method"; 2) Acting Out the Science Story, in which we develop a physicalized expression of our conceptual understanding; and 3) Selecting Success Criteria for Inquiry Coaching, in which we reframe how we evaluate science learning as we teach the practice of science.

  13. The Effects of Teacher-Introduced Multimodal Representations and Discourse on Students' Task Engagement and Scientific Language during Cooperative, Inquiry-Based Science

    ERIC Educational Resources Information Center

    Gillies, Robyn M.; Baffour, Bernard

    2017-01-01

    The study sought to determine the effects of teacher-introduced multimodal representations and discourse on students' task engagement and scientific language during cooperative, inquiry-based science. The study involved eight Year 6 teachers in two conditions (four very effective teachers and four effective teachers) who taught two units of…

  14. The Effect of Guided-Inquiry Instruction on 6th Grade Turkish Students' Achievement, Science Process Skills, and Attitudes toward Science

    ERIC Educational Resources Information Center

    Koksal, Ela Ayse; Berberoglu, Giray

    2014-01-01

    The purpose of this study is to investigate the effectiveness of guided-inquiry approach in science classes over existing science and technology curriculum in developing content-based science achievement, science process skills, and attitude toward science of grade level 6 students in Turkey. Non-equivalent control group quasi-experimental design…

  15. Integrating Various Apps on BYOD (Bring Your Own Device) into Seamless Inquiry-Based Learning to Enhance Primary Students' Science Learning

    ERIC Educational Resources Information Center

    Song, Yanjie; Wen, Yun

    2018-01-01

    Despite that BYOD (Bring Your Own Device) technology model has been increasingly adopted in education, few studies have been reported on how to integrate various apps on BYOD into inquiry-based pedagogical practices in primary schools. This article reports a case study, examining what apps on BYOD can help students enhance their science learning,…

  16. Inquiry-Based Examination of Chemical Disruption of Bacterial Biofilms

    ERIC Educational Resources Information Center

    Redelman, Carly V.; Hawkins, Misty A. W.; Drumwright, Franklin R.; Ransdell, Beverly; Marrs, Kathleen; Anderson, Gregory G.

    2012-01-01

    Inquiry-based instruction in the sciences has been demonstrated as a successful educational strategy to use for both high school and college science classrooms. As participants in the NSF Graduate STEM Fellows in K-12 Education (GK-12) Program, we were tasked with creating novel inquiry-based activities for high school classrooms. As a way to…

  17. The effects of inquiry-based summer enrichment activities on rising eighth graders' knowledge of science processes, attitude toward science, and perceptions of scientists

    NASA Astrophysics Data System (ADS)

    Moore, Juanita Martin

    The purpose of this research was to examine the effects of summer science enrichment on eighth-graders' science process skills knowledge, attitude toward science and perceptions of scientists. A single group pre- and post-test design was used to test participants in a summer science enrichment camp, which took place over a three-week period in the summer of 2000. Participants, all of whom were residents of the Mississippi area known as the Delta, lived on the campus of Mississippi Valley State University for the entire course of the camp. Activities included several guided inquiry-based projects such as water rocket design and solar or battery-powered car design. Participants also took trips to an environmental camp in north Mississippi and to the Stennis Space Center on the Mississippi Gulf Coast. Participants worked on their projects in groups, supervised by an undergraduate student "mentor". Participants were encouraged to keep journals of their experiences throughout the camp, and the researcher developed a rubric to evaluate student journals for process knowledge, evidence of planning, reflective thought, and disposition toward science. Tests were used to evaluate student knowledge of process skills, attitude toward science, and perceptions of scientists. On the Test of Integrated Process Skills (Dillashaw & Okey, 1983), the students showed significant improvement overall, but when evaluated separately, males showed significant improvement while females did not. On the Attitude toward Science in School Assessment (Germane, 1988), data indicated that attitude toward science improved significantly for the group as a whole, but upon closer inspection, indicated a significant improvement for the female students only. On Chamber's Draw-a-Scientist Test (1983), analysis of student drawings indicated no significant change in stereotypical images of scientists for the group overall. However, boys' scores indicated a significant improvement when analyzed separately

  18. Examining Science Teachers' Development of Interdisciplinary Science Inquiry Pedagogical Knowledge and Practices

    ERIC Educational Resources Information Center

    Chowdhary, Bhawna; Liu, Xiufeng; Yerrick, Randy; Smith, Erica; Grant, Brooke

    2014-01-01

    The current literature relates to how teachers develop knowledge and practice of science inquiry, but little has been reported on how teachers develop interdisciplinary science inquiry (ISI) knowledge and practice. This study examines the effect of university research experiences, ongoing professional development, and in-school support on…

  19. The Use of Wikis in a Science Inquiry-Based Project in a Primary School

    ERIC Educational Resources Information Center

    Lau, Wilfred W. F.; Lui, Vicky; Chu, Samuel K. W.

    2017-01-01

    This study explored the use of wikis in a science inquiry-based project conducted with Primary 6 students (aged 11-12). It used an online wiki-based platform called PBworks and addressed the following research questions: (1) What are students' attitudes toward learning with wikis? (2) What are students' interactions in online group collaboration…

  20. Using an Inquiry Approach to Teach Science to Secondary School Science Teachers

    ERIC Educational Resources Information Center

    McBride, John W.; Bhatti, Muhammad I.; Hannan, Mohammad A.; Feinberg, Martin

    2004-01-01

    Leaders in science education have actively promoted inquiry science since the 1960s and continue to do so today. The US National Science Education Standards recommend that science instruction and learning should be well grounded in inquiry. In spite of these efforts, however, little has changed in the way science is taught. Teacher-talk and…

  1. Got Inquiry?

    ERIC Educational Resources Information Center

    Bergman, Daniel J.; Olson, Joanne

    2011-01-01

    Many elementary teachers encounter science lessons with a hands-on component that requires very little engaged thinking by the students. The good news is that any teacher can create successful minds-on inquiry opportunities by adding key instructional strategies to a typical "cookbook" activity. The authors discuss some of these strategies using a…

  2. The Utility of Inquiry-Based Exercises in Mexican Science Classrooms: Reports from a Professional Development Workshop for Science Teachers in Quintana Roo, Mexico

    NASA Astrophysics Data System (ADS)

    Racelis, A. E.; Brovold, A. A.

    2010-12-01

    The quality of science teaching is of growing importance in Mexico. Mexican students score well below the world mean in math and science. Although the government has recognized these deficiencies and has implemented new policies aimed to improve student achievement in the sciences, teachers are still encountering in-class barriers to effective teaching, especially in public colleges. This paper reports on the utility of inquiry based exercises in Mexican classrooms. In particular, it describes a two-day professional development workshop with science teachers at the Instituto Tecnologico Superior in Felipe Carrillo Puerto in the Mexican state of Quintana Roo. Felipe Carrillo Puerto is an indigenous municipality where a significant majority of the population speak Maya as their first language. This alone presents a unique barrier to teaching science in the municipality, but accompanied with other factors such as student apathy, insufficient prior training of both students and teachers, and pressure to deliver specific science curriculum, science teachers have formidable challenges for effective science teaching. The goals of the workshop were to (1) have a directed discussion regarding science as both content and process, (2) introduce inquiry based learning as one tool of teaching science, and (3) get teachers to think about how they can apply these techniques in their classes.

  3. Dilemmas of Teaching Inquiry in Elementary Science Methods

    ERIC Educational Resources Information Center

    Newman, William J., Jr.; Abell, Sandra K.; Hubbard, Paula D.; McDonald, James; Otaala, Justine; Martini, Mariana

    2004-01-01

    Because various definitions of inquiry exist in the science education literature and in classroom practice, elementary science methods students and instructors face dilemmas during the study of inquiry. Using field notes, instructor anecdotal notes, student products, and course artifacts, science methods course instructors created fictional…

  4. The Stratigraphic Sandwich. An Inquiry-Based Lesson on Geologic Principles

    ERIC Educational Resources Information Center

    Hermann, Ronald S.; Miranda, Rommel J.

    2013-01-01

    This article describes an approach in which students develop and apply definitions prior to their formal introduction to new vocabulary. The example given is an inquiry-based lesson on geologic principles. This approach is illustrated with a lesson that has been used with high school Earth science students on the principles of stratigraphy, though…

  5. Challenges and Support When Teaching Science through an Integrated Inquiry and Literacy Approach

    ERIC Educational Resources Information Center

    Ødegaard, Marianne; Haug, Berit; Mork, Sonja M.; Sørvik, Gard Ove

    2014-01-01

    In the Budding Science and Literacy project, we explored how working with an integrated inquiry-based science and literacy approach may challenge and support the teaching and learning of science at the classroom level. By studying the inter-relationship between multiple learning modalities and phases of inquiry, we wished to illuminate possible…

  6. The effects of hands-on-science instruction on the science achievement of middle school students

    NASA Astrophysics Data System (ADS)

    Wiggins, Felita

    Student achievement in the Twenty First Century demands a new rigor in student science knowledge, since advances in science and technology require students to think and act like scientists. As a result, students must acquire proficient levels of knowledge and skills to support a knowledge base that is expanding exponentially with new scientific advances. This study examined the effects of hands-on-science instruction on the science achievement of middle school students. More specifically, this study was concerned with the influence of hands-on science instruction versus traditional science instruction on the science test scores of middle school students. The subjects in this study were one hundred and twenty sixth-grade students in six classes. Instruction involved lecture/discussion and hands-on activities carried out for a three week period. Specifically, the study ascertained the influence of the variables gender, ethnicity, and socioeconomic status on the science test scores of middle school students. Additionally, this study assessed the effect of the variables gender, ethnicity, and socioeconomic status on the attitudes of sixth grade students toward science. The two instruments used to collect data for this study were the Prentice Hall unit ecosystem test and the Scientific Work Experience Programs for Teachers Study (SWEPT) student's attitude survey. Moreover, the data for the study was treated using the One-Way Analysis of Covariance and the One-Way Analysis of Variance. The following findings were made based on the results: (1) A statistically significant difference existed in the science performance of middle school students exposed to hands-on science instruction. These students had significantly higher scores than the science performance of middle school students exposed to traditional instruction. (2) A statistically significant difference did not exist between the science scores of male and female middle school students. (3) A statistically

  7. Connecting Mathematics in Primary Science Inquiry Projects

    ERIC Educational Resources Information Center

    So, Winnie Wing-mui

    2013-01-01

    Science as inquiry and mathematics as problem solving are conjoined fraternal twins attached by their similarities but with distinct differences. Inquiry and problem solving are promoted in contemporary science and mathematics education reforms as a critical attribute of the nature of disciplines, teaching methods, and learning outcomes involving…

  8. Preservice science teachers' experiences with repeated, guided inquiry

    NASA Astrophysics Data System (ADS)

    Slack, Amy B.

    The purpose of this study was to examine preservice science teachers' experiences with repeated scientific inquiry (SI) activities. The National Science Education Standards (National Research Council, 1996) stress students should understand and possess the abilities to do SI. For students to meet these standards, science teachers must understand and be able to perform SI; however, previous research demonstrated that many teachers have naive understandings in this area. Teacher preparation programs provide an opportunity to facilitate the development of inquiry understandings and abilities. In this study, preservice science teachers had experiences with two inquiry activities that were repeated three times each. The research questions for this study were (a) How do preservice science teachers' describe their experiences with repeated, guided inquiry activities? (b) What are preservice science teachers' understandings and abilities of SI? This study was conducted at a large, urban university in the southeastern United States. The 5 participants had bachelor's degrees in science and were enrolled in a graduate science education methods course. The researcher was one of the course instructors but did not lead the activities. Case study methodology was used. Data was collected from a demographic survey, an open-ended questionnaire with follow-up interviews, the researcher's observations, participants' lab notes, personal interviews, and participants' journals. Data were coded and analyzed through chronological data matrices to identify patterns in participants' experiences. The five domains identified in this study were understandings of SI, abilities to conduct SI, personal feelings about the experience, science content knowledge, and classroom implications. Through analysis of themes identified within each domain, the four conclusions made about these preservice teachers' experiences with SI were that the experience increased their abilities to conduct inquiry

  9. Supporting Young Children's Explanations through Inquiry Science in Preschool

    ERIC Educational Resources Information Center

    Peterson, Shira May; French, Lucia

    2008-01-01

    This study examines the ways in which preschool teachers support the development of children's explanatory language through science inquiry. Two classrooms in a preschool center using a science inquiry curriculum were videotaped during a 5-week unit on color mixing. Videotapes were analyzed for how teachers facilitated children's explanatory…

  10. Understanding the Influence of Intrinsic and Extrinsic Factors on Inquiry-Based Science Education at Township Schools in South Africa

    ERIC Educational Resources Information Center

    Ramnarain, Umesh

    2016-01-01

    This mixed-methods research investigated teachers' perceptions of intrinsic factors (personal attributes of the teacher) and extrinsic factors (environmental) influencing the implementation of inquiry-based science learning at township (underdeveloped urban area) high schools in South Africa. Quantitative data were collected by means of an adapted…

  11. Technology-Based Inquiry for Middle School

    ERIC Educational Resources Information Center

    Christmann, Edwin

    2006-01-01

    Activities featured in this new compendium--a collection of 26 articles published in Science Scope, NSTA's member journal for middle school teachers--will show how. Technology-Based Inquiry offers fresh approaches that teachers and students can use to explore physical science, Earth and space science, life science, and more. It covers the…

  12. SEAS (Student Experiments At Sea): Helping Teachers Foster Authentic Student Inquiry in the Science Classroom

    NASA Astrophysics Data System (ADS)

    Goehring, L.; Kelsey, K.; Carlson, J.

    2005-12-01

    Teacher professional development designed to promote authentic research in the classroom is ultimately aimed at improving student scientific literacy. In addition to providing teachers with opportunities to improve their understanding of science through research experiences, we need to help facilitate similar learning in students. This is the focus of the SEAS (Student Experiments At Sea) program: to help students learn science by doing science. SEAS offers teachers tools and a framework to help foster authentic student inquiry in the classroom. SEAS uses the excitement of deep-sea research, as well as the research facilities and human resources that comprise the deep-sea scientific community, to engage student learners. Through SEAS, students have the opportunity to practice inquiry skills and participate in research projects along side scientists. SEAS is a pilot program funded by NSF and sponsored by the Ridge 2000 research community. The pilot includes inquiry-based curricular materials, facilitated interaction with scientists, opportunities to engage students in research projects, and teacher training. SEAS offers a framework of resources designed to help translate inquiry skills and approaches to the classroom environment, recognizing the need to move students along the continuum of scientific inquiry skills. This framework includes hands-on classroom lessons, Classroom to Sea labs where students compare their investigations with at-sea investigations, and a student experiment competition. The program also uses the Web to create a virtual ``scientific community'' including students. Lessons learned from this two year pilot emphasize the importance of helping teachers feel knowledgeable and experienced in the process of scientific inquiry as well as in the subject. Teachers with experience in scientific research were better able to utilize the program. Providing teachers with access to scientists as a resource was also important, particularly given the

  13. Science Teacher Attitudes toward Inquiry-Based Teaching and Learning

    ERIC Educational Resources Information Center

    DiBiase, Warren; McDonald, Judith R.

    2015-01-01

    The purpose of this study was to determine teachers' attitudes, values, and beliefs about inquiry. The participants of this study were 275 middle grade and secondary science teachers from four districts in North Carolina. Issues such as class size, accountability, curricular demands, and administrative support are perceived as constraints,…

  14. Hands-on Science. Exploring Magnification.

    ERIC Educational Resources Information Center

    Kepler, Lynne

    1993-01-01

    Presents hands-on science activities using inexpensive, hand-held microscopes and slides made from simple, readily available materials. The article describes how to introduce students to microscopes and presents directions for using the microscopes and making slides. A student page investigates fingerprints with microscopes. (SM)

  15. The Influence of Repeated Teaching and Reflection on Preservice Teachers' Views of Inquiry and Nature of Science

    NASA Astrophysics Data System (ADS)

    Lotter, Christine; Singer, Jonathan; Godley, Jenice

    2009-12-01

    This study describes the influence of a secondary science methods program on secondary science preservice teachers’ views and enactment of nature of science and inquiry-based instructional practices. Built into the structure of this program were three cycles of practice teaching and reflection in which the preservice teachers focused on key pedagogical ideas in classroom settings with middle and high school students. The nine secondary preservice teachers improved both their understanding and enactment of inquiry and nature of science throughout the program period. This study provides evidence of the importance of incorporating multiple low-stakes practicum experiences that are closely tied to methods course goals that are highly scaffolded through both methods instructor and cooperating teacher support and tied to analytic self-reflection.

  16. Guided-Inquiry Lessons Raise Scores on the Sixth Grade Georgia Science Test

    NASA Astrophysics Data System (ADS)

    Page, Purlie M.

    At the local level, G Middle School has the highest district-wide percentage of 6th grade science students who are not meeting standards. It is imperative that G middle school take corrective action to reduce the number of students failing to meet state science standards. Dewey's theory of conceptual framework, which involves knowledge constructed on a person's personal experience and mind activity through active forms of learning, guided this study. The goal of the study was to determine whether inquiry-based science modules produce greater 6th grade science achievement, as measured by an equivalent instrument of the science section of the Georgia Criterion-Referenced Competency Test, when compared to traditional instruction among eastern Georgia 6th graders. The sample consisted of 230 students in the nonintervention group and 119 students in the intervention group. All students were from intact classes. At the end of the intervention, an independent t test was conducted to analyze the scores. According to the study t test, (t = 12.33, df = 304.56, p < 0.05), the difference between the means was statistically significant. This project's potential impact on social change includes increasing student motivation towards, comprehension of, and interest in science concepts. At the local level, these inquiry lessons can be shared with science teachers across grade levels and within the district to improve county-wide science scores. An increase in student interest and comprehension of science concepts could ultimately lead to the United States producing more students in the fields of science, technology, engineering, and mathematics (STEM) education.

  17. The Role Played by Contextual Challenges in Practising Inquiry-Based Science Teaching in Tanzania "Secondary Schools"

    ERIC Educational Resources Information Center

    Mkimbili, Selina Thomas; Tiplic, Dijana; Ødegaard, Marianne

    2017-01-01

    Our study aims to explore the practice of Inquiry-based Science Teaching (IBST) in schools with contextual challenges in Tanzania. The study draws on multiple data sources. Eleven teachers purposively selected were interviewed. Also, out of 11 teachers, seven were observed in their practical sessions. Participants were selected from community…

  18. The effects of a technology-enhanced inquiry instructional model on students' understanding of science in Thailand

    NASA Astrophysics Data System (ADS)

    Lertwanasiriwan, Chaiwuti

    The study examined the effects of a technology-enhanced inquiry instructional model on students' understanding of science in Thailand. A mixed quantitative research design was selected for the research design. A pretest-posttest control-group design was implemented for the experimental research. A causal-comparative design using questionnaire and classroom observation was employed for the non-experimental research. Two sixth-grade classrooms at a medium-sized public school in Bangkok, Thailand were randomly selected for the study - one as the control group and the other as the experimental group. The 34 students in the control group only received the inquiry instructional model, while the 35 students in the experimental group received the technology-enhanced inquiry instructional model. Both groups of students had been taught by the same science teacher for 15 weeks (three periods per week). The results and findings from the study seemed to indicate that both the technology-enhanced inquiry instructional model and the inquiry instructional model significantly improve students' understanding of science. However, it might be claimed that students receiving the technology-enhanced inquiry instructional model gain more than students only receiving the inquiry instructional model. In addition, the technology-enhanced inquiry instructional model seemed to support the assessment during the 5E Model's evaluation stage. Most students appeared to have very good attitudes toward using it in the science classroom suggesting that the technology-enhanced inquiry instructional model motivates students to learn science.

  19. Neuroscience in Middle Schools: A Professional Development and Resource Program That Models Inquiry-based Strategies and Engages Teachers in Classroom Implementation

    PubMed Central

    MacNabb, Carrie; Schmitt, Lee; Michlin, Michael; Harris, Ilene; Thomas, Larry; Chittendon, David; Ebner, Timothy J.

    2006-01-01

    The Department of Neuroscience at the University of Minnesota and the Science Museum of Minnesota have developed and implemented a successful program for middle school (grades 5–8) science teachers and their students, called Brain Science on the Move. The overall goals have been to bring neuroscience education to underserved schools, excite students about science, improve their understanding of neuroscience, and foster partnerships between scientists and educators. The program includes BrainU, a teacher professional development institute; Explain Your Brain Assembly and Exhibit Stations, multimedia large-group presentation and hands-on activities designed to stimulate student thinking about the brain; Class Activities, in-depth inquiry-based investigations; and Brain Trunks, materials and resources related to class activities. Formal evaluation of the program indicated that teacher neuroscience knowledge, self-confidence, and use of inquiry-based strategies and neuroscience in their classrooms have increased. Participating teachers increased the time spent teaching neuroscience and devoted more time to “inquiry-based” teaching versus “lecture-based teaching.” Teachers appreciated in-depth discussions of pedagogy and science and opportunities for collegial interactions with world-class researchers. Student interest in the brain and in science increased. Since attending BrainU, participating teachers have reported increased enthusiasm about teaching and have become local neuroscience experts within their school communities. PMID:17012205

  20. Deaf, Hard-of-Hearing, and Hearing Signing Undergraduates' Attitudes toward Science in Inquiry-Based Biology Laboratory Classes

    ERIC Educational Resources Information Center

    Gormally, Cara

    2017-01-01

    For science learning to be successful, students must develop attitudes toward support future engagement with challenging social issues related to science. This is especially important for increasing participation of students from underrepresented populations. This study investigated how participation in inquiry-based biology laboratory classes…

  1. Ongoing Inquiry

    ERIC Educational Resources Information Center

    Ashbrook, Peggy

    2011-01-01

    An in-depth science inquiry is an ongoing investigation in which children are introduced to materials through hands-on experiences and, with teacher guidance, begin to investigate a question that they can answer through their own actions, observations, and with teacher-assisted research. Qualities that make an experience appropriate to include in…

  2. An Investigation of Teacher Impact on Student Inquiry Science Performance Using a Hierarchical Linear Model

    ERIC Educational Resources Information Center

    Liu, Ou Lydia; Lee, Hee-Sun; Linn, Marcia C.

    2010-01-01

    Teachers play a central role in inquiry science classrooms. In this study, we investigate how seven teacher variables (i.e., gender, experience, perceived importance of inquiry and traditional teaching, workshop attendance, partner teacher, use of technology) affect student knowledge integration understanding of science topics drawing on previous…

  3. Relationship between Preferred and Actual Opinions about Inquiry-Based Instruction Classroom

    ERIC Educational Resources Information Center

    Nuangchalerm, Prasart

    2017-01-01

    Based on 10 preservice science teachers in 4 schools, this study presents a detailed analysis of how preservice teacher expectation interacts with school practicum and authentic classroom action of inquiry-based instruction. Classroom observation, lesson plan analysis, and interviews revealed that inquiry-based instruction in the expectation and…

  4. Hands-on Science: Does It Matter What Students' Hands Are On?

    ERIC Educational Resources Information Center

    Triona, Lara M.; Klahr, David

    2007-01-01

    Hands-on science typically uses physical materials to give students first-hand experience in scientific methodologies, but the recent availability of virtual laboratories raises an important question about whether what students' hands are on matters to their learning. The overall findings of two articles that employed simple comparisons of…

  5. Experience and Reflection: Preservice Science Teachers' Capacity for Teaching Inquiry

    NASA Astrophysics Data System (ADS)

    Melville, Wayne; Fazio, Xavier; Bartley, Anthony; Jones, Doug

    2008-10-01

    In this article, we investigate the relationship between preservice teachers’ inquiry experience and their capacity to reflect on the challenges involved in implementing inquiry into classrooms. For data, we draw on the personal narratives of preservice science teachers enrolled in science instruction courses. Preservice teachers with extensive inquiry experiences perceive implementation challenges principally in terms of teaching and student learning. This contrasts with the perceptions of preservice teachers with limited inquiry experience for whom the main concerns relate to the negative perceptions of others, time, the curriculum, and materials. By identifying these perceptions, it may be possible to develop courses that assist limited and moderate-experience preservice teachers’ move toward the perceptions of their more inquiry experienced colleagues.

  6. Revisiting the Authoritative-Dialogic Tension in Inquiry-Based Elementary Science Teacher Questioning

    NASA Astrophysics Data System (ADS)

    Van Booven, Christopher D.

    2015-05-01

    Building on the 'questioning-based discourse analytical' framework developed by Singapore-based science educator and discourse analyst, Christine Chin, this study investigated the extent to which fifth-grade science teachers' use of questions with either an authoritative or dialogic orientation differentially restricted or expanded the quality and complexity of student responses in the USA. The author analyzed approximately 10 hours of classroom discourse from elementary science classrooms organized around inquiry-based science curricula and texts. Teacher questions and feedback were classified according to their dialogic orientation and contextually inferred structural purpose, while student understanding was operationalized as a dynamic interaction between cognitive process, syntacto-semantic complexity, and science knowledge type. The results of this study closely mirror Chin's and other scholars' findings that the fixed nature of authoritatively oriented questioning can dramatically limit students' opportunities to demonstrate higher order scientific understanding, while dialogically oriented questions, by contrast, often grant students the discursive space to demonstrate a greater breadth and depth of both canonical and self-generated knowledge. However, certain teacher questioning sequences occupying the 'middle ground' between maximal authoritativeness and dialogicity revealed patterns of meaningful, if isolated, instances of higher order thinking. Implications for classroom practice are discussed along with recommendations for future research.

  7. Time on Text and Science Achievement for High School Biology Students

    ERIC Educational Resources Information Center

    Wyss, Vanessa L.; Dolenc, Nathan; Kong, Xiaoqing; Tai, Robert H.

    2013-01-01

    The conflict between the amount of material to be addressed in high school science classes, the need to prepare students for standardized tests, and the amount of time available forces science educators to make difficult pedagogical decisions on a daily basis. Hands-on and inquiry-based learning offer students more authentic learning experiences…

  8. Modeling "Tiktaalik": Using a Model-Based Inquiry Approach to Engage Community College Students in the Practices of Science during an Evolution Unit

    ERIC Educational Resources Information Center

    Baze, Christina L.; Gray, Ron

    2018-01-01

    Inquiry methods have been successful in improving science literacy in students of all ages. Model-Based Inquiry (MBI) is an instructional model that engages students in the practices of science through the collaborative development of scientific models to explain an anchoring phenomenon. Student ideas are tested through engagement in content-rich…

  9. Science Camps for Introducing Nature of Scientific Inquiry Through Student Inquiries in Nature: Two Applications with Retention Study

    NASA Astrophysics Data System (ADS)

    Leblebicioglu, G.; Abik, N. M.; Capkinoglu, E.; Metin, D.; Dogan, E. Eroglu; Cetin, P. S.; Schwartz, R.

    2017-08-01

    Scientific inquiry is widely accepted as a method of science teaching. Understanding its characteristics, called Nature of Scientific Inquiry (NOSI), is also necessary for a whole conception of scientific inquiry. In this study NOSI aspects were taught explicitly through student inquiries in nature in two summer science camps. Students conducted four inquiries through their questions about surrounding soil, water, plants, and animals under the guidance of university science educators. At the end of each investigation, students presented their inquiry. NOSI aspects were made explicit by one of the science educators in the context of the investigations. Effectiveness of the science camp program and its retention were determined by applying Views of Scientific Inquiry (VOSI-S) (Schwartz et al. 2008) questionnaire as pre-, post-, and retention test after two months. The patterns in the data were similar. The science camp program was effective in developing three of six NOSI aspects which were questions guide scientific research, multiple methods of research, and difference between data and evidence. Students' learning of these aspects was retained. Discussion about these and the other three aspects is included in the paper. Implications of differences between school and out-of-school science experiences are also discussed.

  10. Learning Environment, Attitudes and Achievement among Middle-School Science Students Using Inquiry-Based Laboratory Activities

    ERIC Educational Resources Information Center

    Wolf, Stephen J.; Fraser, Barry J.

    2008-01-01

    This study compared inquiry and non-inquiry laboratory teaching in terms of students' perceptions of the classroom learning environment, attitudes toward science, and achievement among middle-school physical science students. Learning environment and attitude scales were found to be valid and related to each other for a sample of 1,434 students in…

  11. Chemistry Teachers' Perceived Benefits and Challenges of Inquiry-Based Instruction in Inclusive Chemistry Classrooms

    ERIC Educational Resources Information Center

    Mumba, F.; Banda, A.; Chabalengula, V. M.

    2015-01-01

    Studies on inquiry-based instruction in inclusive science teaching have mainly focused on elementary and middle school levels. Little is known about inquiry-based instruction in high school inclusive science classes. Yet, such classes have become the norm in high schools, fulfilling the instructional needs of students with mild disabilities. This…

  12. Investigating the Relationship between Teachers' Nature of Science Conceptions and Their Practice of Inquiry Science

    ERIC Educational Resources Information Center

    Atar, Hakan Yavuz; Gallard, Alejandro

    2011-01-01

    In addition to recommending inquiry as the primary approach to teaching science, developers of recent reform efforts in science education have also strongly suggested that teachers develop a sound understanding of the nature of science. Most studies on teachers' NOS conceptions and inquiry beliefs investigated these concepts of teachers' NOS…

  13. Teacher Use of Evidence to Customize Inquiry Science Instruction

    ERIC Educational Resources Information Center

    Gerard, Libby F.; Spitulnik, Michele; Linn, Marcia C.

    2010-01-01

    This study investigated how professional development featuring evidence-based customization of technology-enhanced curriculum projects can improve inquiry science teaching and student knowledge integration in earth science. Participants included three middle school sixth-grade teachers and their classes of students (N = 787) for three consecutive…

  14. Multiple Modes of Inquiry in Earth Science

    ERIC Educational Resources Information Center

    Kastens, Kim A.; Rivet, Ann

    2008-01-01

    To help teachers enrich their students' understanding of inquiry in Earth science, this article describes six modes of inquiry used by practicing geoscientists (Earth scientists). Each mode of inquiry is illustrated by using examples of seminal or pioneering research and provides pointers to investigations that enable students to experience these…

  15. Science Inquiry as Knowledge Transformation: Investigating Metacognitive and Self-regulation Strategies to Assist Students in Writing about Scientific Inquiry Tasks

    NASA Astrophysics Data System (ADS)

    Collins, Timothy A.

    2011-12-01

    Science inquiry is central to the science education reform efforts that began in the early 1990's. It is both a topic of instruction and a process to be experienced. Student engagement in the process of scientific inquiry was the focus of this study. The process of scientific inquiry can be conceived as a two-part task. In the initial part of the task, students identify a question or problem to study and then carry out an investigation to address the issue. In the second part of the task, students analyze their data to propose explanations and then report their findings. Knowing that students struggle with science inquiry tasks, this study sought to investigate ways to help students become more successful with the communication demands of science inquiry tasks. The study took place in a high school chemistry class. Students in this study completed a total of three inquiry tasks over the course of one school year. Students were split into four experimental groups in order to determine the effect of goal setting, metacognitive prompts, and sentence stems on student inquiry tasks. The quality of the student written work was assessed using a scoring rubric familiar to the students. In addition, students were asked at four different times in the school year to respond to a self-efficacy survey that measured student self-efficacy for chemistry content and science inquiry processes. Student self-efficacy for the process of scientific inquiry was positive and did not change over the course of the study while student scores on the science inquiry tasks rose significantly. The metacognitive prompts and instruction in goal setting did not have any effect on student inquiry scores. Results related to the effect of the sentence stems were mixed. An analysis of student work indicated that students who received high marks on their initial inquiry task in this study were the ones that adopted the use of the sentence stems. Students who received low marks on their initial inquiry

  16. Inquiry-Based Integrated Science Education: Implementation of Local Content “Soil Washing” Project To Improve Junior High School Students’ Environmental Literacy

    NASA Astrophysics Data System (ADS)

    Syifahayu

    2017-02-01

    The study was conducted based on teaching and learning problems led by conventional method that had been done in the process of learning science. It gave students lack opportunities to develop their competence and thinking skills. Consequently, the process of learning science was neglected. Students did not have opportunity to improve their critical attitude and creative thinking skills. To cope this problem, the study was conducted using Project-Based Learning model through inquiry-based science education about environment. The study also used an approach called Sains Lingkungan and Teknologi masyarakat - “Saling Temas” (Environmental science and Technology in Society) which promoted the local content in Lampung as a theme in integrated science teaching and learning. The study was a quasi-experimental with pretest-posttest control group design. Initially, the subjects were given a pre-test. The experimental group was given inquiry learning method while the control group was given conventional learning. After the learning process, the subjects of both groups were given post-test. Quantitative analysis was performed using the Mann-Whitney U-test and also a qualitative descriptive. Based on the result, environmental literacy skills of students who get inquiry learning strategy, with project-based learning model on the theme soil washing, showed significant differences. The experimental group is better than the control group. Data analysis showed the p-value or sig. (2-tailed) is 0.000 <α = 0.05 with the average N-gain of experimental group is 34.72 and control group is 16.40. Besides, the learning process becomes more meaningful.

  17. Inquiry-Based Learning Using Everyday Objects: Hands-On Instructional Strategies That Promote Active Learning in Grades 3-8.

    ERIC Educational Resources Information Center

    Alvarado, Amy Edmonds; Herr, Patricia R.

    This book explores the concept of using everyday objects as a process initiated both by students and teachers, encouraging growth in student observation, inquisitiveness, and reflection in learning. After "Introduction: Welcome to Inquiry-Based Learning using Everyday Objects (Object-Based Inquiry), there are nine chapters in two parts. Part 1,…

  18. Implementation of inquiry-based science education in different countries: some reflections

    NASA Astrophysics Data System (ADS)

    Rundgren, Carl-Johan

    2017-03-01

    In this forum article, I reflect on issues related to the implementation of inquiry-based science education (IBSE) in different countries. Regarding education within the European Union (EU), the Bologna system has in later years provided extended coordination and comparability at an organizational level. However, the possibility of the EU to influence the member countries regarding the actual teaching and learning in the classrooms is more limited. In later years, several EU-projects focusing on IBSE have been funded in order to make science education in Europe better, and more motivating for students. Highlighting what Heinz and her colleagues call the policy of `soft governance' of the EU regarding how to improve science education in Europe, I discuss the focus on IBSE in the seventh framework projects, and how it is possible to maintain more long-lasting results in schools through well-designed teacher professional development programs. Another aspect highlighted by Heinz and her colleagues is how global pressures on convergence in education interact with educational structures and traditions in the individual countries. The rise of science and science education as a global culture, encompassing contributions from all around the world, is a phenomenon of great potential and value to humankind. However, it is important to bear in mind that if science and science education is going to become a truly global culture, local variation and differences regarding foci and applications of science in different cultures must be acknowledged.

  19. The Impact of High School Science Teachers' Beliefs, Curricular Enactments and Experience on Student Learning during an Inquiry-Based Urban Ecology Curriculum

    ERIC Educational Resources Information Center

    McNeill, Katherine L.; Pimentel, Diane Silva; Strauss, Eric G.

    2013-01-01

    Inquiry-based curricula are an essential tool for reforming science education yet the role of the teacher is often overlooked in terms of the impact of the curriculum on student achievement. Our research focuses on 22 teachers' use of a year-long high school urban ecology curriculum and how teachers' self-efficacy, instructional practices,…

  20. Hands-on optics: an informal science education initiative

    NASA Astrophysics Data System (ADS)

    Johnson, Anthony M.; Pompea, Stephen M.; Arthurs, Eugene G.; Walker, Constance E.; Sparks, Robert T.

    2007-09-01

    The project is collaboration between two scientific societies, the Optical Society of America (OSA) and SPIE - The International Society for Optical Engineering and the National Optical Astronomy Observatory (NOAO). The program is designed to bring science education enrichment to thousands of underrepresented middle school students in more than ten states, including female and minority students, who typically have not been the beneficiaries of science and engineering resources and investments. HOO provides each teacher with up to six activity modules, each containing enough materials for up to 30 students to participate in 6-8 hours of hands-on optics-related activities. Sample activities, developed by education specialists at NOAO, include building kaleidoscopes and telescopes, communicating with a beam of light, and a hit-the-target laser beam challenge. Teachers engage in two days of training and, where possible, are partnered with a local optics professional (drawn from the local rosters of SPIE and OSA members) who volunteers to spend time with the teacher and students as they explore the module activities. Through these activities, students gain experience and understanding of optics principles, as well as learning the basics of inquiry, critical thinking, and problem solving skills involving optics, and how optics interfaces with other disciplines. While the modules were designed for use in informal after- school or weekend sessions, the number of venues has expanded to large and small science centers, Boys and Girls Clubs, Girl Scouts, summer camps, family workshops, and use in the classroom.

  1. Hands-On Science: Is It an Acid or a Base? These Colorful Tests Tell All!

    ERIC Educational Resources Information Center

    VanCleave, Janice

    1998-01-01

    Two hands-on science activities for K-6 students teach them how to determine if something is an acid or a base. The activities require acid/base indicator juice, testing strips, and a base solution. A recipe for making them in the classroom using red cabbage and baking soda is provided. (SM)

  2. Development of guided inquiry-based laboratory worksheet on topic of heat of combustion

    NASA Astrophysics Data System (ADS)

    Sofiani, D.; Nurhayati; Sunarya, Y.; Suryatna, A.

    2018-03-01

    Chemistry curriculum reform shows an explicit shift from traditional approach to scientific inquiry. This study aims to develop a guided inquiry-based laboratory worksheet on topic of heat of combustion. Implementation of this topic in high school laboratory is new because previously some teachers only focused the experiment on determining the heat of neutralization. The method used in this study was development research consisted of three stages: define, design, and develop. In the define stage, curriculum analysis and material analysis were performed. In the design stage, laboratory optimization and product preparation were conducted. In the development stage, the product was evaluated by the experts and tested to a total of 20 eleventh-grade students. The instruments used in this study were assessment sheet and students’ response questionnaire. The assessment results showed that the guided inquiry-based laboratory worksheet has very good quality based on the aspects of content, linguistic, and graphics. The students reacted positively to the use of this guided inquiry-based worksheet as demonstrated by the results from questionnaire. The implications of this study is the laboratory activity should be directed to development of scientific inquiry skills in order to enhance students’ competences as well as the quality of science education.

  3. The Relationship in Biology between the Nature of Science and Scientific Inquiry

    ERIC Educational Resources Information Center

    Kremer, Kerstin; Specht, Christiane; Urhahne, Detlef; Mayer, Jürgen

    2014-01-01

    Informed understandings of nature of science and scientific inquiry are generally accepted goals of biology education. This article points out central features of scientific inquiry with relation to biology and the nature of science in general terms and focuses on the relationship of students' inquiry skills in biology and their beliefs on the…

  4. Meta-analysis of the effectiveness of computer-based laboratory versus traditional hands-on laboratory in college and pre-college science instructions

    NASA Astrophysics Data System (ADS)

    Onuoha, Cajetan O.

    The purpose of this research study was to determine the overall effectiveness of computer-based laboratory compared with the traditional hands-on laboratory for improving students' science academic achievement and attitudes towards science subjects at the college and pre-college levels of education in the United States. Meta-analysis was used to synthesis the findings from 38 primary research studies conducted and/or reported in the United States between 1996 and 2006 that compared the effectiveness of computer-based laboratory with the traditional hands-on laboratory on measures related to science academic achievements and attitudes towards science subjects. The 38 primary research studies, with total subjects of 3,824 generated a total of 67 weighted individual effect sizes that were used in this meta-analysis. The study found that computer-based laboratory had small positive effect sizes over the traditional hands-on laboratory (ES = +0.26) on measures related to students' science academic achievements and attitudes towards science subjects (ES = +0.22). It was also found that computer-based laboratory produced more significant effects on physical science subjects compared to biological sciences (ES = +0.34, +0.17).

  5. Graduate Student and High School Teacher Partnerships Implementing Inquiry-Based Lessons in Earth Science

    NASA Astrophysics Data System (ADS)

    Smith, M. A.; Preston, L.; Graham, K.

    2007-12-01

    Partnering science graduate students with high school teachers in their classroom is a mutually beneficial relationship. Graduate students who may become future university level faculty are exposed to teaching, classroom management, outreach scholarship, and managing time between teaching and research. Teachers benefit by having ready access to knowledgeable scientists, a link to university resources, and an additional adult in the classroom. Partnerships in Research Opportunities to Benefit Education (PROBE), a recent NSF funded GK-12 initiative, formed partnerships between science and math graduate students from the University of New Hampshire (UNH) and local high school science teachers. A primary goal of this program was to promote inquiry-based science lessons. The teacher-graduate student teams worked together approximately twenty hours per week on researching, preparing, and implementing new lessons and supervising student-led projects. Several new inquiry-based activities in Geology and Astronomy were developed as a result of collaboration between an Earth Science graduate student and high school teacher. For example, a "fishbowl" activity was very successful in sparking a classroom discussion about how minerals are used in industrial materials. The class then went on to research how to make their own paint using minerals. This activity provided a capstone project at the end of the unit about minerals, and made real world connections to the subject. A more involved geology lesson was developed focusing on the currently popular interest in forensics. Students were assigned with researching how geology can play an important part in solving a crime. When they understood the role of geologic concepts within the scope of the forensic world, they used techniques to solve their own "crime". Astronomy students were responsible for hosting and teaching middle school students about constellations, using a star- finder, and operating an interactive planetarium

  6. Informal Science Learning through Inquiry: Effects on Preschool Students' Achievement in Early Science Learning

    ERIC Educational Resources Information Center

    Samsudin, Mohd Ali; Haniza, Noor Hasyimah; Ismail, Juliah; Abd-Talib, Corrienna

    2015-01-01

    This study was undertaken to explore the effects of informal science learning outside the classroom on preschool students' achievement in the Early Science learning topic (plant-related topics that presented concepts about tree leaves, height and roots) using an inquiry method. A sample of 64 preschool students was selected using purposive…

  7. Behavioral Objectives, Science Processes, and Learning from Inquiry-Oriented Instructional Materials.

    ERIC Educational Resources Information Center

    Anderson, Elaine J.; And Others

    Investigated was the effect of systematically combined high and low level cognitive objectives upon the acquisition of science learning. An instructional unit based on a Biological Sciences Curriculum Study (BSCS) Inquiry Slide Set (structure and function, control of blood sugar, a homeostatic mechanism) was chosen because it included stimuli for…

  8. Crawl into Inquiry-Based Learning: Hermit Crab Experiments

    ERIC Educational Resources Information Center

    Wolf, Maya; Laferriere, Alix

    2009-01-01

    There is a particular need for inquiry-based lessons in the early elementary grades, when students are starting to develop their analytical skills. In this article, the authors present a 2-tiered inquiry-based lesson plan for 1st and 2nd grades that has been successfully used by graduate teaching fellows involved in the National Science Foundation…

  9. Microteaching Lesson Study: An Approach to Prepare Teacher Candidates to Teach Science through Inquiry

    ERIC Educational Resources Information Center

    Zhou, George; Xu, Judy

    2017-01-01

    Inquiry-based teaching has become the most recommended approach in science education for a few decades; however, it is not a common practice yet in k-12 school classrooms. In order to prepare future teachers to teach science through inquiry, a Microteaching Lesson Study (MLS) approach was employed in our science methods courses. Instead of asking…

  10. The Impact of a Practice-Teaching Professional Development Model on Teachers' Inquiry Instruction and Inquiry Efficacy Beliefs

    ERIC Educational Resources Information Center

    Lotter, Christine R.; Thompson, Stephen; Dickenson, Tammiee S.; Smiley, Whitney F.; Blue, Genine; Rea, Mary

    2018-01-01

    This study examined changes in middle school teachers' beliefs about inquiry, implementation of inquiry practices, and self-efficacy to teach science through inquiry after participating in a year-long professional development program. The professional development model design was based on Bandura's (1986) social cognitive theory of learning and…

  11. The Effects of Gender and Type of Inquiry Curriculum on Sixth Grade Students' Science Process Skills and Epistemological Beliefs in Science

    NASA Astrophysics Data System (ADS)

    Zaleta, Kristy L.

    The purpose of this study was to investigate the impact of gender and type of inquiry curriculum (open or structured) on science process skills and epistemological beliefs in science of sixth grade students. The current study took place in an urban northeastern middle school. The researcher utilized a sample of convenience comprised of 303 sixth grade students taught by four science teachers on separate teams. The study employed mixed methods with a quasi-experimental design, pretest-posttest comparison group with 17 intact classrooms of students. Students' science process skills and epistemological beliefs in science (source, certainty, development, and justification) were measured before and after the intervention, which exposed different groups of students to different types of inquiry (structured or open). Differences between comparison and treatment groups and between male and female students were analyzed after the intervention, on science process skills, using a two-way analysis of covariance (ANCOVA), and, on epistemological beliefs in science, using a two-way multivariate analysis of covariance (MANCOVA). Responses from two focus groups of open inquiry students were cycle coded and examined for themes and patterns. Quantitative measurements indicated that girls scored significantly higher on science process skills than boys, regardless of type of inquiry instruction. Neither gender nor type of inquiry instruction predicted students' epistemological beliefs in science after accounting for students' pretest scores. The dimension Development accounted for 10.6% of the variance in students' science process skills. Qualitative results indicated that students with sophisticated epistemological beliefs expressed engagement with the open-inquiry curriculum. Students in both the sophisticated and naive beliefs groups identified challenges with the curriculum and improvement in learning as major themes. The types of challenges identified differed between the groups

  12. An Inquiry-Based Vision Science Activity for Graduate Students and Postdoctoral Research Scientists

    NASA Astrophysics Data System (ADS)

    Putnam, N. M.; Maness, H. L.; Rossi, E. A.; Hunter, J. J.

    2010-12-01

    The vision science activity was originally designed for the 2007 Center for Adaptive Optics (CfAO) Summer School. Participants were graduate students, postdoctoral researchers, and professionals studying the basics of adaptive optics. The majority were working in fields outside vision science, mainly astronomy and engineering. The primary goal of the activity was to give participants first-hand experience with the use of a wavefront sensor designed for clinical measurement of the aberrations of the human eye and to demonstrate how the resulting wavefront data generated from these measurements can be used to assess optical quality. A secondary goal was to examine the role wavefront measurements play in the investigation of vision-related scientific questions. In 2008, the activity was expanded to include a new section emphasizing defocus and astigmatism and vision testing/correction in a broad sense. As many of the participants were future post-secondary educators, a final goal of the activity was to highlight the inquiry-based approach as a distinct and effective alternative to traditional laboratory exercises. Participants worked in groups throughout the activity and formative assessment by a facilitator (instructor) was used to ensure that participants made progress toward the content goals. At the close of the activity, participants gave short presentations about their work to the whole group, the major points of which were referenced in a facilitator-led synthesis lecture. We discuss highlights and limitations of the vision science activity in its current format (2008 and 2009 summer schools) and make recommendations for its improvement and adaptation to different audiences.

  13. From Words to Concepts: Focusing on Word Knowledge When Teaching for Conceptual Understanding within an Inquiry-Based Science Setting

    ERIC Educational Resources Information Center

    Haug, Berit S.; Ødegaard, Marianne

    2014-01-01

    This qualitative video study explores how two elementary school teachers taught for conceptual understanding throughout different phases of science inquiry. The teachers implemented teaching materials with a focus on learning science key concepts through the development of word knowledge. A framework for word knowledge was applied to examine the…

  14. Hands On Earth Science.

    ERIC Educational Resources Information Center

    Weisgarber, Sherry L.; Van Doren, Lisa; Hackathorn, Merrianne; Hannibal, Joseph T.; Hansgen, Richard

    This publication is a collection of 13 hands-on activities that focus on earth science-related activities and involve students in learning about growing crystals, tectonics, fossils, rock and minerals, modeling Ohio geology, geologic time, determining true north, and constructing scale-models of the Earth-moon system. Each activity contains…

  15. Using Technology to Promote Science Inquiry

    ERIC Educational Resources Information Center

    Hubbell, Elizabeth R.; Kuhn, Matt

    2007-01-01

    This article makes the case for infusing technology into the five stages of the science inquiry process established by the National Science Education Standards--engagement, planning, investigating, analyzing, and communicating.

  16. Bilingual Language Supports in Online Science Inquiry Environments

    ERIC Educational Resources Information Center

    Clark, Douglas B.; Touchman, Stephanie; Martinez-Garza, Mario; Ramirez-Marin, Frank; Drews, Tina Skjerping

    2012-01-01

    Research over the past fifteen years has investigated and developed online science inquiry environments to support students engaging in authentic scientific inquiry practices. This research has focused on developing activity structures and tools to scaffold students in engaging in different aspects of these practices, but relatively little of this…

  17. Questioning the Validity of Inquiry Assessment in a High Stakes Physical Sciences Examination

    ERIC Educational Resources Information Center

    Ramnarain, Umesh

    2014-01-01

    The South African science curriculum advocates an inquiry-based approach to practical work. Inquiry is a complex and multifaceted activity involving both cognitive and physical activity; thus, paper-and-pencil items do not provide the authentic context for this assessment. This study investigates the construct validity of inquiry-related questions…

  18. Curriculum-Dependent and Curriculum-Independent Factors in Preservice Elementary Teachers' Adaptation of Science Curriculum Materials for Inquiry-Based Science

    ERIC Educational Resources Information Center

    Forbes, Cory T.

    2013-01-01

    In this nested mixed methods study I investigate factors influencing preservice elementary teachers' adaptation of science curriculum materials to better support students' engagement in science as inquiry. Analyses focus on two "reflective teaching assignments" completed by 46 preservice elementary teachers in an undergraduate elementary science…

  19. Inquiry Based-Computational Experiment, Acquisition of Threshold Concepts and Argumentation in Science and Mathematics Education

    ERIC Educational Resources Information Center

    Psycharis, Sarantos

    2016-01-01

    Computational experiment approach considers models as the fundamental instructional units of Inquiry Based Science and Mathematics Education (IBSE) and STEM Education, where the model take the place of the "classical" experimental set-up and simulation replaces the experiment. Argumentation in IBSE and STEM education is related to the…

  20. Examining the Effects of Model-Based Inquiry on Concepetual Understanding and Engagement in Science

    NASA Astrophysics Data System (ADS)

    Baze, Christina L.

    Model-Based Inquiry (MBI) is an instructional model which engages students in the scientific practices of modeling, explanation, and argumentation while they work to construct explanations for natural phenomena. This instructional model has not been previously studied at the community college level. The purpose of this study is to better understand how MBI affects the development of community college students' conceptual understanding of evolution and engagement in the practices of science. Mixed-methods were employed to collect quantitative and qualitative data through the multiple-choice Concepts Inventory of Natural Selection, student artifacts, and semi-structured interviews. Participants were enrolled in Biology Concepts, an introductory class for non-science majors, at a small, rural community college in the southwestern United States. Preliminary data shows that conceptual understanding is not adversely affected by the implementation of MBI, and that students gain valuable insights into the practices of science. Specifically, students who participated in the MBI intervention group gained a better understanding of the role of models in explaining and predicting phenomena and experienced feeling ownership of their ideas, an appropriate depth of thinking, more opportunities for collaboration, and coherence and context within the unit. Implications of this study will be of interest to postsecondary science educators and researchers who seek to reform and improve science education.

  1. Blended Inquiry with Hands-On and Virtual Laboratories: The Role of Perceptual Features during Knowledge Construction

    ERIC Educational Resources Information Center

    Toth, Eva Erdosne; Ludvico, Lisa R.; Morrow, Becky L.

    2014-01-01

    This study examined the characteristics of virtual and hands-on inquiry environments for the development of blended learning in a popular domain of bio-nanotechnology: the separation of different-sized DNA fragments using gel-electrophoresis, also known as DNA-fingerprinting. Since the latest scientific developments in nano- and micro-scale tools…

  2. Investigating the Role of an Inquiry-Based Biology Lab Course on Student Attitudes and Views toward Science

    PubMed Central

    Jeffery, Erica; Nomme, Kathy; Deane, Thomas; Pollock, Carol; Birol, Gülnur

    2016-01-01

    Students’ academic experiences can influence their conceptualization of science. In contrast experts hold particular beliefs, perceptions, opinions, and attitudes about science that are often absent in first-year undergraduate students. Shifts toward more expert-like attitudes and views have been linked to improved student engagement, critical-thinking ability, conceptual understanding, and academic performance. In this study, we investigate shifts in attitudes and views toward science by students in four biology classes with differences in student enrollment, academic support, and instruction. We observe significant, positive effects of enrollment in a guided-inquiry lab course and academic performance on the percentage of expert-like student attitudes and views at the end of term. We also identify variation in two aspects of student attitudes and views: 1) confidence and interest and 2) understanding and acceptance. In particular, enrollment in the lab course boosts student confidence and interest in scientific inquiry in the short term, even for students with low academic performance or little English-language experience. Our results suggest that low-performing students in particular may require additional opportunities for experiential learning or greater academic support to develop expert-like perceptions of biology as a science. PMID:27856549

  3. Pre-service elementary teachers' understanding of scientific inquiry and its role in school science

    NASA Astrophysics Data System (ADS)

    Macaroglu, Esra

    The purpose of this research was to explore pre-service elementary teachers' developing understanding of scientific inquiry within the context of their elementary science teaching and learning. More specifically, the study examined 24 pre-service elementary teachers' emerging understanding of (1) the nature of science and scientific inquiry; (2) the "place" of scientific inquiry in school science; and (3) the roles and responsibilities of teachers and students within an inquiry-based learning environment. Data sources consisted primarily of student-generated artifacts collected throughout the semester, including pre/post-philosophy statements and text-based materials collected from electronic dialogue journals. Individual data sources were open-coded to identify concepts and categories expressed by students. Cross-comparisons were conducted and patterns were identified. Assertions were formed with these patterns. Findings are hopeful in that they suggest pre-service teachers can develop a more contemporary view of scientific inquiry when immersed in a context that promotes this perspective. Not surprisingly, however, the prospective teachers encountered a number of barriers when attempting to translate their emerging ideas into practice. More research is needed to determine which teacher preparation experiences are most powerful in supporting pre-service teachers as they construct a framework for science teaching and learning that includes scientific inquiry as a central component.

  4. Using Lunar Sample Disks and Resources to Promote Scientific Inquiry

    NASA Technical Reports Server (NTRS)

    Graff, Paige; Allen, Jaclyn; Runco, Susan

    2014-01-01

    This poster presentation will illustrate the use of NASA Lunar Sample Disks and resources to promote scientific inquiry and address the Next Generation Science Standards. The poster will present information on the Lunar Sample Disks, housed and managed by the Astromaterials Research and Exploration Science (ARES) Directorate at the NASA Johnson Space Center. The poster will also present information on an inquiry-based planetary sample and impact cratering unit designed to introduce students in grades 4-10 to the significance of studying the rocks, soils, and surfaces of a planetary world. The unit, consisting of many hands-on activities, provides context and background information to enhance the impact of the Lunar Sample Disks.

  5. Exploring the meaning of practicing classroom inquiry from the perspectives of National Board Certified Science Teachers

    NASA Astrophysics Data System (ADS)

    Karaman, Ayhan

    of science teachers. Second, it examined the meaning of practicing classroom inquiry for National Board Certified Science Teachers [NBCSTs]. Based on the specific cases of four NBCSTs, this naturalistic inquiry study was conducted to answer to those questions with the involvement of the following qualitative data sources: classroom observations, in-depth teacher interviews, and document analyses of teacher portfolios. The specific cases in this study indicated that undergoing the performance assessment process of NBC played an affirmational role for National Board Certified Science Teachers [NBCSTs] in their professional development. Their successful completion of the portfolio assessment process created a sharpened confidence into their existing notions and ways of teaching science. In the study, not all teachers were equally open to science education reform ideas. This meant that NBC experience strengthened the conventional notions of teaching science held by some teachers rather than generating a higher affiliation with the reform ideas. The teacher cases presented in this study denoted that teachers' conceptions of classroom inquiry were driven both by scientific and constructivist rationales. However, NBCSTs failed to create broader operational definitions of classroom inquiry. They tended to reduce the meaning of classroom inquiry into empirical investigations of students. The conventional representation of the scientific method as a stepwise linear process influenced teachers' understandings and practices of classroom inquiry. NBCSTs used inquiry in their classrooms to introduce their students to the cognitive processes and the actions of practicing scientists but not necessarily to teach scientific principles. Their reluctance to teach scientific principles through inquiry developed in parallel to their tendency of associating classroom inquiry with the highest levels of student autonomy. Participant teachers' particular understandings of scientific literacy

  6. Appreciative Inquiry and Implementation Science in Leadership Development.

    PubMed

    Bleich, Michael R; Hessler, Christine

    2016-05-01

    Appreciative inquiry was developed to initiate and animate change. As implementation science gains a foothold in practice settings to bridge theory, evidence, and practice, appreciative inquiry takes on new meaning as a leadership intervention and training tool. J Contin Educ Nurs. 2016;47(5):207-209. Copyright 2016, SLACK Incorporated.

  7. Collaboration Modality, Cognitive Load, and Science Inquiry Learning in Virtual Inquiry Environments

    ERIC Educational Resources Information Center

    Erlandson, Benjamin E.; Nelson, Brian C.; Savenye, Wilhelmina C.

    2010-01-01

    Educational multi-user virtual environments (MUVEs) have been shown to be effective platforms for situated science inquiry curricula. While researchers find MUVEs to be supportive of collaborative scientific inquiry processes, the complex mix of multi-modal messages present in MUVEs can lead to cognitive overload, with learners unable to…

  8. Improving Inquiry Teaching through Reflection on Practice

    ERIC Educational Resources Information Center

    Lotter, Christine R.; Miller, Cory

    2017-01-01

    In this paper, we explore middle school science teachers' learning of inquiry-based instructional strategies through reflection on practice teaching sessions during a summer enrichment program with middle level students. The reflection sessions were part of a larger year-long inquiry professional development program in which teachers learned…

  9. Argument Based Science Inquiry (ABSI) Learning Model in Voltaic Cell Concept

    NASA Astrophysics Data System (ADS)

    Subarkah, C. Z.; Fadilah, A.; Aisyah, R.

    2017-09-01

    Voltaic Cell is a sub-concept of electrochemistry that is considered difficult to be comprehended by learners Voltaic Cell is a sub concept of electrochemistry that is considered difficult to be understood by learners so that impacts on student activity in learning process. Therefore the learning model Argument Based Science Inquiry (ABSI) will be applied to the concept of Voltaic cell. This research aims to describe students’ activities during learning process using ABSI model and to analyze students’ competency to solve ABSI-based worksheets (LK) of Voltaic Cell concept. The method used in this research was the “mix-method-quantitative-embedded” method with subjects of the study: 39 second-semester students of Chemistry Education study program. The student activity is quite good during ABSI learning. The students’ ability to complete worksheet (LK) for every average phase is good. In the phase of exploration of post instruction understanding, it is categorized very good, and in the phase of negotiation shape III: comparing science ideas to textbooks or other printed resources merely reach enough category. Thus, the ABSI learning has improved the student levels of activity and students’ competency to solve the ABSI-based worksheet (LK).

  10. Investigating the Influence of a Mixed Face-to-Face and Website Professional Development Course on the Inquiry-Based Conceptions of High School Science and Mathematics Teachers

    ERIC Educational Resources Information Center

    Tuan, Hsiao-Lin; Yu, Chung-Chieh; Chin, Chi-Chin

    2017-01-01

    The purposes of this study are to report the influences of a mixed delivery professional development [PD] course involving face-to-face classes and the mentoring assisted inquiry-based teaching [MAIT] website that addressed the conceptual change and self-efficacy of high school mathematics and science teachers' conceptions of inquiry-based…

  11. An Inquiry-Based Approach to Teaching Photosynthesis & Cellular Respiration

    ERIC Educational Resources Information Center

    O'Connell, Dan

    2008-01-01

    Recent studies of American science education have highlighted the need for more inquiry-based lessons. For example, when the National Research Counsel evaluated the Advanced Placement (AP) Biology program, it pointed out, "AP laboratory exercises tend to be "cookbook" rather than inquiry based. This criticism is particularly apt for the lab…

  12. An Exploration of Students' Science Learning Interest Related to Their Cognitive Anxiety, Cognitive Load, Self-Confidence and Learning Progress Using Inquiry-Based Learning with an iPad

    ERIC Educational Resources Information Center

    Hong, Jon-Chao; Hwang, Ming-Yueh; Tai, Kai-Hsin; Tsai, Chi-Ruei

    2017-01-01

    Based on the cognitive-affective theory, the present study designed a science inquiry learning model, "predict-observe-explain" (POE), and implemented it in an app called "WhyWhy" to examine the effectiveness of students' science inquiry learning practice. To understand how POE can affect the cognitive-affective learning…

  13. Teacher students' dilemmas when teaching science through inquiry

    NASA Astrophysics Data System (ADS)

    Krämer, Philipp; Nessler, Stefan H.; Schlüter, Kirsten

    2015-09-01

    Background: Inquiry-based science education (IBSE) is suitable to teach scientific contents as well as to foster scientific skills. Similar conclusions are drawn by studies with respect to scientific literacy, motivational aspects, vocabulary knowledge, conceptual understandings, critical thinking, and attitudes toward science. Nevertheless, IBSE is rarely adopted in schools. Often barriers for teachers account for this lack, with the result that even good teachers struggle to teach science as inquiry. More importantly, studies indicate that several barriers and constraints could be ascribed to problems teacher students have at the university stage. Purpose: The purpose of this explorative investigation is to examine the problems teacher students have when teaching science through inquiry. In order to draw a holistic picture of these problems, we identified problems from three different points of view leading to the research question: What problems regarding IBSE do teacher students have from an objective, a subjective, and a self-reflective perspective? Design & method: Using video analysis and observation tools as well as qualitative content analysis and open questionnaires we identified problems from each perspective. Results: The objectively stated problems comprise the lack of essential features of IBSE especially concerning 'Supporting pupils' own investigations' and 'Guiding analysis and conclusions.' The subjectively perceived problems comprise concerns about 'Teachers' abilities' and 'Pupils' abilities,' 'Differentiated instruction' and institutional frame 'Conditions' while the self-reflectively noticed problems mainly comprise concerns about 'Allowing inquiry,' 'Instructional Aspects,' and 'Pupils' behavior.' Conclusions: Each of the three different perspectives provides plenty of problems, partially overlapping, partially complementing one another, and partially revealing completely new problems. Consequently, teacher educators have to consider these

  14. Scaffolded Inquiry-Based Instruction with Technology: A Signature Pedagogy for STEM Education

    ERIC Educational Resources Information Center

    Crippen, Kent J.; Archambault, Leanna

    2012-01-01

    Inquiry-based instruction has become a hallmark of science education and increasingly of integrated content areas, including science, technology, engineering, and mathematics (STEM) education. Because inquiry-based instruction very clearly contains surface, deep, and implicit structures as well as engages students to think and act like scientists,…

  15. Engaging Non-Science Majors Through Citizen Science Projects In Inquiry-Based Introductory Geoscience Laboratory Courses

    NASA Astrophysics Data System (ADS)

    Humphreys, R. R.; Hall, C.; Colgan, M. W.; Rhodes, E.

    2010-12-01

    Although inquiry-based/problem-based methods have been successfully incorporated in undergraduate lecture classes, a survey of commonly used laboratory manuals indicates that few non-major geoscience laboratory classes use these strategies. The Department of Geology and Environmental Geosciences faculty members have developed a successful introductory Environmental Geology Laboratory course for undergraduate non-majors that challenges traditional teaching methodology as illustrated in most laboratory manuals. The Environmental Geology lab activities employ active learning methods to engage and challenge students. Crucial to establishing an open learning environment is capturing the attention of non-science majors from the moment they enter the classroom. We use catastrophic ‘gloom and doom’ current events to pique the imagination with images, news stories, and videos. Once our students are hooked, we can further the learning process with use of other teaching methods: an inquiry-based approach that requires students take control of their own learning, a cooperative learning approach that requires the participation of all team members in peer learning, and a problem/case study learning approach that primarily relies on activities distilled from current events. The final outcome is focused on creating innovative methods to communicate the findings to the general public. With the general public being the audience for their communiqué, students are less intimated, more focused, and more involved in solving the problem. During lab sessions, teams of students actively engage in mastering course content and develop essential communication skills while exploring real-world scenarios. These activities allow students to use scientific reasoning and concepts to develop solutions for scenarios such as volcanic eruptions, coastal erosion/sea level rise, flooding or landslide hazards, and then creatively communicate their solutions to the public. For example, during a two

  16. Science is Elementary, A Science Teaching Resource Publication, 1992-1993.

    ERIC Educational Resources Information Center

    Science is Elementary, 1993

    1993-01-01

    These resource magazines for K-6 educators are published to promote the teaching of science, mathematics, and technology through participatory, inquiry-based methods. Each issue provides resources and hands-on activities for educators that focus on one theme. Issues in volume 5 cover the themes of geology, math and science integration, tropical…

  17. In harmony: inquiry based learning in a blended physics and music class

    NASA Astrophysics Data System (ADS)

    Hechter, Richard P.; Bergman, Daniel

    2016-11-01

    The power of music to resonate within us transcends conventional boundaries established in cultural, geographic, and political contexts. In our world, as physics educators, so does the resonating of physics phenomena. Secondary level physics is a perfect place to blend these two genres. While advocating for STEM-based education is at the forefront of pedagogical reform, seldom do we use this cross-boundary vision as the foundation to teach and learn in true collaboration of science and arts classrooms. As music enthusiasts, and physics educators, we developed new resources for a blended music and physics class through inquiry-based learning activities. Punctuated with modern technology, we aimed our activities for an engaging learning experience towards developing conceptual understandings of sound and harmonics at the grade 11 level. The umbrella activity shared here was designed to engage a wide range of students through the universal language of music, and provide them a hands-on and minds-on experience to explore harmonics through both music and physics lenses. It is our intention to provide readers with an overview of the activity, a description of exemplar student-designed inquiry-based investigations, and helpful suggestions for potential for use in reader’s classrooms.

  18. The Effects of Scaffolded Simulation-Based Inquiry Learning on Fifth-Graders' Representations of the Greenhouse Effect

    ERIC Educational Resources Information Center

    Kukkonen, Jari Ensio; Kärkkäinen, Sirpa; Dillon, Patrick; Keinonen, Tuula

    2014-01-01

    Research has demonstrated that simulation-based inquiry learning has significant advantages for learning outcomes when properly scaffolded. For successful learning in science with simulation-based inquiry, one needs to ascertain levels of background knowledge so as to support learners in making, evaluating and modifying hypotheses, conducting…

  19. Inquiry-Based Environmental Science Investigations with the Fantastic Fruit Fly

    ERIC Educational Resources Information Center

    Beals, Ashlie M.; Krall, Rebecca M.

    2010-01-01

    The use of inquiry in life science can be particularly daunting because of the additional management and care living systems require. However, there are some low-maintenance organisms that work well in the classroom. One of these is the common fruit fly, "Drosophila melanogaster." Its small size, low cost, easy availability and maintenance, and…

  20. The Challenges of Science Inquiry Teaching for Pre-Service Teachers in Elementary Classrooms: Difficulties on and under the Scene

    ERIC Educational Resources Information Center

    Yoon, Hye-Gyoung; Joung, Yong Jae; Kim, Mijung

    2012-01-01

    In the context of the emphasis on inquiry teaching in science education, this study looks into how pre-service elementary teachers understand and practice science inquiry teaching during field experience. By examining inquiry lesson preparation, practice, and reflections of pre-service elementary teachers, we attempt to understand the difficulties…

  1. Evaluating Students' Perceptions of Library and Science Inquiry: Validation of Two New Learning Environment Questionnaires

    ERIC Educational Resources Information Center

    Schultz-Jones, Barbara A.; Ledbetter, Cynthia E.

    2013-01-01

    As part of a larger study, the How My Library Supports Inquiry and the How My Science Class Supports Inquiry questionnaires were developed for evaluating the extent of inquiry-based teaching in classrooms and school libraries and the effect of this instruction on student literacy and, by extension, the social good. Each has 28 items in seven…

  2. The utility of human sciences in nursing inquiry.

    PubMed

    Pratt, Maria

    2012-01-01

    This paper targets novice nurse researchers to highlight how the perspectives of human sciences are useful in understanding people's experiences. There is a need to address the utility of human sciences or the humanistic philosophy that values the understanding of subjective experiences in nursing, given that the mainstream development of nursing knowledge is still influenced by the positivist and post-positivist research paradigms. Discussion papers on Heideggerian hermeneutic phenomenology, human sciences, and qualitative research were accessed through the databases Cinahl and Medline over the past 30 years. Seminal works on phenomenology were addressed in this paper. Using Heideggerian hermeneutic phenomenology as a commonly referenced human philosophy and methodology, this paper discusses how Heidegger's (1962) perspective may be used in nursing practice and research. Van Manen's (1990) descriptions of phenomenological science are discussed to address the perspective's value in nursing inquiry and to reveal the biases associated with this humanistic approach. The limitations of human sciences should not deter nurse researchers from using this type of nursing inquiry as it can provide an important framework in nursing research, practice and knowledge development. The author's perspective as a graduate student highlights the importance of human sciences in exploring the experiences of people vital in the delivery of nursing practice. However, researchers wishing to undertake humanistic inquiry should learn the philosophical and methodological underpinnings of their chosen humanistic approach.

  3. The Effect of Scientific Inquiry Learning Model Based on Conceptual Change on Physics Cognitive Competence and Science Process Skill (SPS) of Students at Senior High School

    ERIC Educational Resources Information Center

    Sahhyar; Nst, Febriani Hastini

    2017-01-01

    The purpose of this research was to analyze the physics cognitive competence and science process skill of students using scientific inquiry learning model based on conceptual change better than using conventional learning. The research type was quasi experiment and two group pretest-posttest designs were used in this study. The sample were Class…

  4. Urban 5th Graders Conceptions during a Place-Based Inquiry Unit on Watersheds

    ERIC Educational Resources Information Center

    Endreny, Anna Henderson

    2010-01-01

    This study aimed to determine how 33 urban 5th grade students' science conceptions changed during a place-based inquiry unit on watersheds. Research on watershed and place-based education was used as a framework to guide the teaching of the unit as well as the research study. A teacher-researcher designed the curriculum, taught the unit and…

  5. Science teachers' knowledge, beliefs, values, and concerns of teaching through inquiry

    NASA Astrophysics Data System (ADS)

    Assiri, Yahya Ibrahim

    This study investigated elementary science teachers' knowledge, beliefs, values, and concerns of teaching through inquiry. A mixed-methods research design was utilized to address the research questions. Since this study was designed as a mixed-methods research approach, the researcher gathered two type of data: quantitative and qualitative. The study was conducted in Mohayel School District, Saudi Arabia. The information was collected from 51 participants using a questionnaire with multiple choice questions; also, 11 participants were interviewed. After collecting the data, descriptive and comparative approaches were used. In addition, themes and codes were used to obtain the results. The results indicated that the mean of elementary science teachers' knowledge was 51.23%, which was less than 60% which was the acceptable score. Also, the qualitative results showed that science teachers had a limited background of teaching through inquiry. In addition, the elementary science teachers had a high level of belief to teach science through inquiry since the mean was 3.99 out of 5.00. These quantitative results were confirmed by the qualitative data. Moreover, the overall mean of elementary science teachers was 4.01, which indicated that they believed in the importance of teaching science through inquiry which was also confirmed by the responses of teachers in the interviews. Also, the findings indicated that elementary school science teachers had concerns about teaching science through inquiry since the overall mean was 3.53. In addition, the interviewees mentioned that they faced some obstacles when they teach by inquiry, such as time, resources, class size, and the teachers' background. Generally, the results did not show any significant differences among elementary science teachers' knowledge, beliefs, values, and concerns depending on gender, level of education, and teaching experience. However, the findings indicated there was one significant difference which was

  6. Sweet Science for ALL! Supporting Inquiry-Based Learning through M&Ms Investigation for English Language Learners

    ERIC Educational Resources Information Center

    Song, Youngjin; Higgins, Teresa; Harding-DeKam, Jenni

    2014-01-01

    This article describes a series of inquiry-based lessons that provide English language learners (ELLs) with opportunities to experience science and engineering practices with conceptual understanding as well as to develop their language proficiency in elementary classrooms. The four-lesson sequence models how various types of instructional…

  7. Making sense of shared sense-making in an inquiry-based science classroom: Toward a sociocultural theory of mind

    NASA Astrophysics Data System (ADS)

    Ladewski, Barbara G.

    Despite considerable exploration of inquiry and reflection in the literatures of science education and teacher education/teacher professional development over the past century, few theoretical or analytical tools exist to characterize these processes within a naturalistic classroom context. In addition, little is known regarding possible developmental trajectories for inquiry or reflection---for teachers or students---as these processes develop within a classroom context over time. In the dissertation, I use a sociocultural lens to explore these issues with an eye to the ways in which teachers and students develop shared sense-making, rather than from the more traditional perspective of individual teacher activity or student learning. The study includes both theoretical and empirical components. Theoretically, I explore the elaborations of sociocultural theory needed to characterize teacher-student shared sense-making as it develops within a classroom context, and, in particular, the role of inquiry and reflection in that sense-making. I develop a sociocultural model of shared sense-making that attempts to represent the dialectic between the individual and the social, through an elaboration of existing sociocultural and psychological constructs, including Vygotsky's zone of proximal development and theory of mind. Using this model as an interpretive framework, I develop a case study that explores teacher-student shared sense-making within a middle-school science classroom across a year of scaffolded introduction to inquiry-based science instruction. The empirical study serves not only as a test case for the theoretical model, but also informs our understanding regarding possible developmental trajectories and important mechanisms supporting and constraining shared sense-making within inquiry-based science classrooms. Theoretical and empirical findings provide support for the idea that perspectival shifts---that is, shifts of point-of-view that alter relationships

  8. Introducing Ocean Science Research to Two-Year College (2YC) Students Through Inquiry-Based Experiences

    NASA Astrophysics Data System (ADS)

    Gamage, K. R.

    2016-02-01

    An effective approach to introduce 2YC students to ocean science research is through propagating inquiry-based experiences into existing geosciences courses using a series of research activities. The proposed activity is based on scientific ocean drilling, where students begin their research experience (pre-field activity) by reading articles from scientific journals and analyzing and interpreting core and log data on a specific research topic. At the end of the pre-field activity, students will visit the Gulf Coast Repository to examine actual cores, smear slides, thin sections etc. After the visit, students will integrate findings from their pre-field and field activities to produce a term paper. These simple activities allow students to experience in the iterative process of scientific research, illuminates how scientists approach ocean science, and can be the hook to get students interested in pursuing ocean science as a career.

  9. Measure, Then Show: Grasping Human Evolution Through an Inquiry-Based, Data-driven Hominin Skulls Lab.

    PubMed

    Bayer, Chris N; Luberda, Michael

    2016-01-01

    Incomprehension and denial of the theory of evolution among high school students has been observed to also occur when teachers are not equipped to deliver a compelling case also for human evolution based on fossil evidence. This paper assesses the outcomes of a novel inquiry-based paleoanthropology lab teaching human evolution to high-school students. The inquiry-based Be a Paleoanthropologist for a Day lab placed a dozen hominin skulls into the hands of high-school students. Upon measuring three variables of human evolution, students explain what they have observed and discuss findings. In the 2013/14 school year, 11 biology classes in 7 schools in the Greater New Orleans area participated in this lab. The interviewed teacher cohort unanimously agreed that the lab featuring hominin skull replicas and stimulating student inquiry was a pedagogically excellent method of delivering the subject of human evolution. First, the lab's learning path of transforming facts to data, information to knowledge, and knowledge to acceptance empowered students to themselves execute part of the science that underpins our understanding of deep time hominin evolution. Second, although challenging, the hands-on format of the lab was accessible to high-school students, most of whom were readily able to engage the lab's scientific process. Third, the lab's exciting and compelling pedagogy unlocked higher order thinking skills, effectively activating the cognitive, psychomotor and affected learning domains as defined in Bloom's taxonomy. Lastly, the lab afforded students a formative experience with a high degree of retention and epistemic depth. Further study is warranted to gauge the degree of these effects.

  10. Can an Inquiry Approach Improve College Student Learning in a Teaching Laboratory?

    ERIC Educational Resources Information Center

    Rissing, Steven W.; Cogan, John G.

    2009-01-01

    We present an inquiry-based, hands-on laboratory exercise on enzyme activity for an introductory college biology course for science majors. We measure student performance on a series of objective and subjective questions before and after completion of this exercise; we also measure performance of a similar cohort of students before and after…

  11. Impact of problem finding on the quality of authentic open inquiry science research projects

    NASA Astrophysics Data System (ADS)

    Labanca, Frank

    2008-11-01

    Problem finding is a creative process whereby individuals develop original ideas for study. Secondary science students who successfully participate in authentic, novel, open inquiry studies must engage in problem finding to determine viable and suitable topics. This study examined problem finding strategies employed by students who successfully completed and presented the results of their open inquiry research at the 2007 Connecticut Science Fair and the 2007 International Science and Engineering Fair. A multicase qualitative study was framed through the lenses of creativity, inquiry strategies, and situated cognition learning theory. Data were triangulated by methods (interviews, document analysis, surveys) and sources (students, teachers, mentors, fair directors, documents). The data demonstrated that the quality of student projects was directly impacted by the quality of their problem finding. Effective problem finding was a result of students using resources from previous, specialized experiences. They had a positive self-concept and a temperament for both the creative and logical perspectives of science research. Successful problem finding was derived from an idiosyncratic, nonlinear, and flexible use and understanding of inquiry. Finally, problem finding was influenced and assisted by the community of practicing scientists, with whom the students had an exceptional ability to communicate effectively. As a result, there appears to be a juxtaposition of creative and logical/analytical thought for open inquiry that may not be present in other forms of inquiry. Instructional strategies are suggested for teachers of science research students to improve the quality of problem finding for their students and their subsequent research projects.

  12. Elementary teachers' perceptions of science inquiry and professional development challenges and opportunities

    NASA Astrophysics Data System (ADS)

    Jones, Kathleen M.

    Inquiry science, including a focus on evidence-based discourse, is essential to spark interest in science education in the early grades and maintain that interest throughout children's schooling. The researcher was interested in two broad areas: inquiry science in the elementary classroom and the need/desire for professional development opportunities for elementary teachers related to science education, and specifically professional development focused on inquiry science. A cross sectional survey design was prepared and distributed in May 2005 and usable responses were received from 228 elementary teachers from the south-central area of Pennsylvania which was a representative sample of socio-economical and geographical factors. Areas of particular interest in the results section include: (1) The use of Science Kits which is popular, but may not have the desired impact since they are "adjusted" by teachers often removing the opportunity for evidence-based discourse by the students. This may be partly based on the lack of time dedicated to science instruction and, secondly, the teachers' lack of comfort with the science topics. Another issue arising from science kits is the amount of preparation time required to utilize them. (2) Teachers demonstrated understanding of the high qualities of professional development but, when it came to science content professional development, they were more inclined to opt for short-term opportunities as opposed to long-term learning opportunities. Since elementary teachers are generalists and most schools are not focusing on science, the lack of attention to a subject where they are least comfortable is understandable, but disappointing. (3) There is a great need for more training in evidence--based discourse so teachers can implement this needed skill and increase students' understanding of science content so they are more able to compete in the international science and math measurements. (4) Professional development, especially

  13. Changing Practice: An Evaluation of the Impact of a Nature of Science Inquiry-Based Professional Development Programme on Primary Teachers

    ERIC Educational Resources Information Center

    Murphy, Clíona; Smith, Greg; Varley, Janet; Razi, Özge

    2015-01-01

    This study investigates how a two-year continuing professional development (CPD) programme, with an emphasis on teaching about science through inquiry, impacted the experiences of, approaches to and attitudes towards teaching science of 17 primary teachers in Dublin. Data sources included interview, questionnaire and reflective journal strategies.…

  14. The Effects of Scaffolded Simulation-Based Inquiry Learning on Fifth-Graders' Representations of the Greenhouse Effect

    NASA Astrophysics Data System (ADS)

    Kukkonen, Jari Ensio; Kärkkäinen, Sirpa; Dillon, Patrick; Keinonen, Tuula

    2014-02-01

    Research has demonstrated that simulation-based inquiry learning has significant advantages for learning outcomes when properly scaffolded. For successful learning in science with simulation-based inquiry, one needs to ascertain levels of background knowledge so as to support learners in making, evaluating and modifying hypotheses, conducting experiments and interpreting data, and to regulate the learning process. This case study examines the influence of scaffolded simulation-based inquiry learning on fifth-graders' (n = 21) models of the greenhouse effect. The pupils were asked to make annotated drawings about the greenhouse effect both before and after scaffolding through simulation-based instructional interventions. The data were analysed qualitatively to investigate the impact of the interventions on the representations that pupils used in their descriptions of the greenhouse effect. It was found that scaffolded simulation-based inquiry learning noticeably enriched the concepts pupils used in their representations leading to better understanding of the phenomenon. In many cases, the fifth graders produced quite sophisticated representations.

  15. Student's Social Interaction in Inquiry-Based Science Education: How Experiences of Flow Can Increase Motivation and Achievement

    ERIC Educational Resources Information Center

    Ellwood, Robin; Abrams, Eleanor

    2018-01-01

    This research investigated how student social interactions within two approaches to an inquiry-based science curriculum could be related to student motivation and achievement outcomes. This qualitative case study consisted of two cases, Off-Campus and On-Campus, and used ethnographic techniques of participant observation. Research participants…

  16. Professional Development for Technology-Enhanced Inquiry Science

    ERIC Educational Resources Information Center

    Gerard, Libby F.; Varma, Keisha; Corliss, Stephanie B.; Linn, Marcia C.

    2011-01-01

    The knowledge integration framework is used to analyze studies on professional development in technology-enhanced science involving more than 2,350 teachers and 138,0000 students. The question of how professional development enhances teachers' support for students' inquiry science learning is the focus of the work. A literature search using the…

  17. Impact of an engineering design-based curriculum compared to an inquiry-based curriculum on fifth graders' content learning of simple machines

    NASA Astrophysics Data System (ADS)

    Marulcu, Ismail; Barnett, Michael

    2016-01-01

    Background: Elementary Science Education is struggling with multiple challenges. National and State test results confirm the need for deeper understanding in elementary science education. Moreover, national policy statements and researchers call for increased exposure to engineering and technology in elementary science education. The basic motivation of this study is to suggest a solution to both improving elementary science education and increasing exposure to engineering and technology in it. Purpose/Hypothesis: This mixed-method study examined the impact of an engineering design-based curriculum compared to an inquiry-based curriculum on fifth graders' content learning of simple machines. We hypothesize that the LEGO-engineering design unit is as successful as the inquiry-based unit in terms of students' science content learning of simple machines. Design/Method: We used a mixed-methods approach to investigate our research questions; we compared the control and the experimental groups' scores from the tests and interviews by using Analysis of Covariance (ANCOVA) and compared each group's pre- and post-scores by using paired t-tests. Results: Our findings from the paired t-tests show that both the experimental and comparison groups significantly improved their scores from the pre-test to post-test on the multiple-choice, open-ended, and interview items. Moreover, ANCOVA results show that students in the experimental group, who learned simple machines with the design-based unit, performed significantly better on the interview questions. Conclusions: Our analyses revealed that the design-based Design a people mover: Simple machines unit was, if not better, as successful as the inquiry-based FOSS Levers and pulleys unit in terms of students' science content learning.

  18. Assessing Conceptual Understanding via Literacy-Infused, Inquiry-Based Science among Middle School English Learners and Economically-Challenged Students

    ERIC Educational Resources Information Center

    Lara-Alecio, Rafael; Irby, Beverly J.; Tong, Fuhui; Guerrero, Cindy; Koch, Janice; Sutton-Jones, Kara L.

    2018-01-01

    The overarching purpose of our study was to compare performances of treatment and control condition students who completed a literacy-infused, inquiry-based science intervention through sixth grade as measured by a big idea assessment tool which we refer to as the Big Ideas in Science Assessment (BISA). First, we determine the concurrent validity…

  19. Inquiry Science: The Gateway to English Language Proficiency

    NASA Astrophysics Data System (ADS)

    Zwiep, Susan Gomez; Straits, William J.

    2013-12-01

    This paper presents findings from a 4-year project that developed and implemented a blended inquiry science and English Language Development (ELD) program in a large urban California school district. The sample included over 2,000 students in Kindergarten through 5th grade. Participating students' English and science achievement was compared to a similar group of students who were using the district's established English language development curriculum. Student performance on statemandated English and science assessments were analyzed using Mann-Whitney U tests for overall performance and by number of years of treatment. Modest but statistically significant improvement was found for students who participated in the blended program. Results from this study suggest that restricting instructional minutes for science to provide additional time for ELD and English language arts may be unnecessary. Rather, allowing consistent time for science instruction that incorporates ELD instruction along with inquiry science experiences may provide the authentic and purposeful context students need to develop new language without restricting access to science content.

  20. The Relation between Middle School Science Teachers' Science Content Preparation, Professional Development, and Pedagogical Content Knowledge and Their Attitudes and Beliefs towards Inquiry-Based Instruction

    ERIC Educational Resources Information Center

    Cwik, Lawrence C.

    2012-01-01

    This study is a quantitative investigation of the relation of middle school science teachers' attitudes and beliefs about inquiry-based instruction to their accumulated amounts of science content preparation, content and pedagogical professional development, and their pedagogical content knowledge. Numerous researchers have found that even though…

  1. Project LITE: Light Inquiry Through Experiments

    NASA Astrophysics Data System (ADS)

    Brecher, Kenneth

    2007-06-01

    "Project LITE: Light Inquiry Through Experiments" is a science education project aimed at developing interactive hands-on and eyes-on curriculum, software and materials about light and optics. These are being developed for use in undergraduate astronomy courses, but they can also be used to advantage in physics, chemistry, Earth science and psychology courses throughout the K-12 and undergraduate curriculum.

  2. Enhancing Teacher Beliefs through an Inquiry-Based Professional Development Program

    PubMed Central

    McKeown, Tammy R.; Abrams, Lisa M.; Slattum, Patricia W.; Kirk, Suzanne V.

    2017-01-01

    Inquiry-based instructional approaches are an effective means to actively engage students with science content and skills. This article examines the effects of an ongoing professional development program on middle and high school teachers’ efficacy beliefs, confidence to teach research concepts and skills, and science content knowledge. Professional development activities included participation in a week long summer academy, designing and implementing inquiry-based lessons within the classroom, examining and reflecting upon practices, and documenting ways in which instruction was modified. Teacher beliefs were assessed at three time points, pre- post- and six months following the summer academy. Results indicate significant gains in reported teaching efficacy, confidence, and content knowledge from pre- to post-test. These gains were maintained at the six month follow-up. Findings across the three different time points suggest that participation in the professional development program strongly influenced participants’ fundamental beliefs about their capacity to provide effective instruction in ways that are closely connected to the features of inquiry-based instruction. PMID:29732236

  3. Enhancing Teacher Beliefs through an Inquiry-Based Professional Development Program.

    PubMed

    McKeown, Tammy R; Abrams, Lisa M; Slattum, Patricia W; Kirk, Suzanne V

    2016-01-01

    Inquiry-based instructional approaches are an effective means to actively engage students with science content and skills. This article examines the effects of an ongoing professional development program on middle and high school teachers' efficacy beliefs, confidence to teach research concepts and skills, and science content knowledge. Professional development activities included participation in a week long summer academy, designing and implementing inquiry-based lessons within the classroom, examining and reflecting upon practices, and documenting ways in which instruction was modified. Teacher beliefs were assessed at three time points, pre- post- and six months following the summer academy. Results indicate significant gains in reported teaching efficacy, confidence, and content knowledge from pre- to post-test. These gains were maintained at the six month follow-up. Findings across the three different time points suggest that participation in the professional development program strongly influenced participants' fundamental beliefs about their capacity to provide effective instruction in ways that are closely connected to the features of inquiry-based instruction.

  4. Inquiry-Based Learning in Teacher Education: A Primary Humanities Example

    ERIC Educational Resources Information Center

    Preston, Lou; Harvie, Kate; Wallace, Heather

    2015-01-01

    Inquiry-based learning features strongly in the new Australian Humanities and Social Sciences curriculum and increasingly in primary school practice. Yet, there is little research into, and few exemplars of, inquiry approaches in the primary humanities context. In this article, we outline and explain the implementation of a place-based simulation…

  5. The (Non)Making/Becoming of Inquiry Practicing Science Teachers

    ERIC Educational Resources Information Center

    Sharma, Ajay; Muzaffar, Irfan

    2012-01-01

    Teacher education programs have adopted preparing science teachers that teach science through inquiry as an important pedagogic agenda. However, their efforts have not met with much success. While traditional explanations for this failure focus largely on preservice science teachers' knowledge, beliefs and conceptions regarding science and science…

  6. Supporting Teachers' Understanding of Nature of Science and Inquiry Through Personal Experience and Perception of Inquiry as a Dynamic Process

    NASA Astrophysics Data System (ADS)

    Zion, Michal; Schwartz, Renee S.; Rimerman-Shmueli, Esther; Adler, Idit

    2018-05-01

    One of today's challenges in science education involves the development of appropriate conceptions of inquiry teaching and realizing how these experiences can support students' understanding of the nature of science and inquiry (NOS and NOSI). To meet this challenge, we developed a course for in-service science teachers, in which explicit-reflective instruction of NOS was coupled with an open inquiry process. This process included documentation tools adjusted to emphasize the dynamic, logical, and reflective aspects of scientific inquiry. Teachers' documentations, reflections, and questionnaires were examined for indications of perceptual connection between comprehending the essence of dynamic open inquiry and understanding certain NOS tenets. The results indicated that the in-service teachers experienced all criteria of dynamic open inquiry, however not to the same extent. By focusing on four teachers who clearly addressed changes in their perspective of NOS and NOSI, we were able to examine the nature of those changes, and relate them to the teachers' personal experiences and perceptions of the characteristics of dynamic open inquiry. Our results suggest that the participants' personal experiences and perceptions of the dynamic characteristics of open inquiry play a crucial role in shaping their understanding of NOS and NOSI. The findings of this research underscore the importance of enhancing teachers' personal experiences and perceptions of the dynamic characteristics of open inquiry, as a vehicle to improve their understanding of NOS and NOSI.

  7. The Relationship of Teacher-Facilitated, Inquiry-Based Instruction to Student Higher-Order Thinking

    ERIC Educational Resources Information Center

    Marshall, Jeff C.; Horton, Robert M.

    2011-01-01

    Commissions, studies, and reports continue to call for inquiry-based learning approaches in science and math that challenge students to think critically and deeply. While working with a group of middle school science and math teachers, we conducted more than 100 classroom observations, assessing several attributes of inquiry-based instruction. We…

  8. Designing for Learner Engagement in Middle School Science: Technology, Inquiry, and the Hierarchies of Engagement

    ERIC Educational Resources Information Center

    Harmer, Andrea J.; Cates, Ward Mitchell

    2007-01-01

    Engaging middle-school students in scientific inquiry is typically recognized as important, but difficult. Designed to foster learner engagement, this method used an online, problem-based, science inquiry that investigated the West Nile virus during four weeks of collaborative classroom sessions. The inquiry prototype was authored in WISE, the…

  9. Using inquiry-based instruction to meet the standards of No Child Left Behind for middle school earth science

    NASA Astrophysics Data System (ADS)

    Harris, Michael W.

    This study examined the effectiveness of a specific instructional strategy employed to improve performance on the end-of-the-year Criterion-Referenced Competency Test (CRCT) as mandated by the No Child Left Behind (NCLB) Act of 2001. A growing body of evidence suggests that the perceived pressure to produce adequate aggregated scores on the CRCT causes teachers to neglect other relevant aspects of teaching and attend less to individualized instruction. Rooted in constructivist theory, inquiry-based programs provide a o developmental plan of instruction that affords the opportunity for each student to understand their academic needs and strengths. However, the utility of inquiry-based instruction is largely unknown due to the lack of evaluation studies. To address this problem, this quantitative evaluation measured the impact of the Audet and Jordan inquiry-based instructional model on CRCT test scores of 102 students in a sixth-grade science classroom in one north Georgia school. A series of binomial tests of proportions tested differences between CRCT scores of the program participants and those of a matched control sample selected from other district schools that did not adopt the program. The study found no significant differences on CRCT test scores between the treatment and control groups. The study also found no significant performance differences among genders in the sample using inquiry instruction. This implies that the utility of inquiry education might exist outside the domain of test scores. This study can contribute to social change by informing a reevaluation of the instructional strategies that ideally will serve NCLB high-stakes assessment mandates, while also affording students the individual-level skills needed to become productive members of society.

  10. An examination of how middle school science teachers conduct collaborative inquiry and reflection about students' conceptual understanding

    NASA Astrophysics Data System (ADS)

    Todd-Gibson, Christine

    This qualitative case study examined how middle school science teachers conducted collaborative inquiry and reflection about students' conceptual understanding, and how individual teachers in the middle school science group acted and made reflections in response to their collaborative inquiry. It also examined external influences that affected the teachers' ability to engage in collaborative inquiry. Observational, written, and interview data were collected from observations of teachers' face-to-face meetings and reflections, individual interviews, a focus group interview, and online reflections. The results of this study revealed that collaborative inquiry is a form of professional development that includes answering curricular questions through observation, communication, action, and reflection. This approach was developed and implemented by middle school science teachers. The premise of an inquiry is based on a need with students. Middle school science teachers came to consensus about actions to affect students' conceptual understanding, took action as stated, and shared their reflections of the actions taken with consideration to current and upcoming school activities. Activities involved teachers brainstorming and sharing with one another, talking about how the variables were merged into their curriculum, and how they impacted students' conceptual understanding. Teachers valued talking with one another about science content and pedagogy, but did find the inquiry portion of the approach to require more development. The greatest challenge to conducting collaborative inquiry and reflection was embedding teacher inquiry within a prescribed inquiry that was already being conducted by the Sundown School District. Collaborative inquiry should be structured so that it meets the needs of teachers in order to attend to the needs of students. A conducive atmosphere for collaborative inquiry and reflection is one in which administrators make the process mandatory and

  11. Partnership with informal education learning centers to develop hands-on activities for research outreach efforts

    NASA Astrophysics Data System (ADS)

    Courville, Z.; Haynes, R.; DeFrancis, G.; Koh, S.; Ringelberg, D.

    2012-12-01

    Outreach informed by scientific research plays an important role in fostering interest in science by making science and scientists accessible, fun, and interesting. Developing an interest in science in young, elementary-aged students through outreach is a rewarding endeavor for researchers, in that audiences are usually receptive, requirements for broader impacts are met, and bonds are formed between researchers and members of their local and surrounding communities. Promoting such interest among young students is imperative not only for an individual researcher's own self interest, but also for the strength of American science and innovation moving forward, and is the responsibility of the current generation of scientists. Developing genuine and successful inquiry-based, hands-on activities for elementary-aged students is outside the expertise of many researchers. Partnering with an informal education learning center (i.e. science museum or after-school program) provides researchers with the expertise they might be lacking in such endeavors. Here, we present a series of polar-, engineering- and microbiology-themed hands-on activities that have been developed by researchers at a government lab in partnership with a local science museum. Through a series of workshops, the science education staff at the museum provided researchers with background and instruction on inquiry and hands-on activities, and then collaborated with the researchers to develop activities which were later demonstrated at the museum to museum-goers. Education staff provided feedback about the presentation of the activities for further refinement. The program provided an opportunity for researchers to develop fun, on-target and age-appropriate science activities for elementary-aged students, an audience for outreach, and enabled general public audiences the chance to interact with researchers and scientists in an informal setting.

  12. Design and Inquiry: Bases for an Accommodation between Science and Technology Education in the Curriculum?

    ERIC Educational Resources Information Center

    Lewis, Theodore

    2006-01-01

    This article examines the merits of the proposition that design and inquiry are conceptual parallels. It does so by first looking closely at the inquiry-related discourse within science education, then at aspects of the design discourse within engineering, and finally within technology education. Convergences and divergences of these two streams…

  13. Analyzing the Effects of One-to-One Learning on Inquiry-Based Instruction

    ERIC Educational Resources Information Center

    Henderson-Rosser, Aleigha; Sauers, Nicholas J.

    2017-01-01

    This study examined the impact of a one-to-one iPad program on inquiry-based instruction (IBI) in an all-girls science, technology, engineering, and mathematics-focused school with 99% African American students. Case study research was used and included three teachers at the school for the purpose of this study. Data collection included pre- and…

  14. The Impact of a Professional Development Model on Middle School Science Teachers' Efficacy and Implementation of Inquiry

    ERIC Educational Resources Information Center

    Lotter, Christine; Smiley, Whitney; Thompson, Stephen; Dickenson, Tammiee

    2016-01-01

    This study investigated a professional development model designed to improve teachers' inquiry teaching efficacy as well as the quality of their inquiry instruction through engaging teachers in practice-teaching and reflection sessions. The programme began with a two-week summer Institute focused on both inquiry pedagogy and science content and…

  15. Urban schools' teachers enacting project-based science

    NASA Astrophysics Data System (ADS)

    Tal, Tali; Krajcik, Joseph S.; Blumenfeld, Phyllis C.

    2006-09-01

    What teaching practices foster inquiry and promote students to learn challenging subject matter in urban schools? Inquiry-based instruction and successful inquiry learning and teaching in project-based science (PBS) were described in previous studies (Brown & Campione, [1990]; Crawford, [1999]; Krajcik, Blumenfeld, Marx, Bass, & Fredricks, [1998]; Krajcik, Blumenfeld, Marx, & Solloway, [1994]; Minstrell & van Zee, [2000]). In this article, we describe the characteristics of inquiry teaching practices that promote student learning in urban schools. Teaching is a major factor that affects both achievement of and attitude of students toward science (Tamir, [1998]). Our involvement in reform in a large urban district includes the development of suitable learning materials and providing continuous and practiced-based professional development (Fishman & Davis, in press; van Es, Reiser, Matese, & Gomez, [2002]). Urban schools face particular challenges when enacting inquiry-based teaching practices like those espoused in PBS. In this article, we describe two case studies of urban teachers whose students achieved high gains on pre- and posttests and who demonstrated a great deal of preparedness and commitment to their students. Teachers' attempts to help their students to perform well are described and analyzed. The teachers we discuss work in a school district that strives to bring about reform in mathematics and science through systemic reform. The Center for Learning Technologies in Urban Schools (LeTUS) collaborates with the Detroit Public Schools to bring about reform in middle-school science. Through this collaboration, diverse populations of urban-school students learn science through inquiry-oriented projects and the use of various educational learning technologies. For inquiry-based science to succeed in urban schools, teachers must play an important role in enacting the curriculum while addressing the unique needs of students. The aim of this article is to

  16. Presto: Open Inquiry!

    ERIC Educational Resources Information Center

    Hermann, Ronald S.; Miranda, Rommel J.

    2010-01-01

    Although inquiry-based science teaching has been around since the 1960s, many teachers are slow to incorporate inquiry principles into their science lessons. The authors address this issue by using an analogy between a magician's card trick and open inquiry. This analogy was chosen to portray a difference of perspective and demonstrate how the…

  17. Increasing participation in the Earth sciences through engagement of K-12 educators in Earth system science analysis, inquiry and problem- based learning and teaching

    NASA Astrophysics Data System (ADS)

    Burrell, S.

    2012-12-01

    Given low course enrollment in geoscience courses, retention in undergraduate geoscience courses, and granting of BA and advanced degrees in the Earth sciences an effective strategy to increase participation in this field is necessary. In response, as K-12 education is a conduit to college education and the future workforce, Earth science education at the K-12 level was targeted with the development of teacher professional development around Earth system science, inquiry and problem-based learning. An NSF, NOAA and NASA funded effort through the Institute for Global Environmental Strategies led to the development of the Earth System Science Educational Alliance (ESSEA) and dissemination of interdisciplinary Earth science content modules accessible to the public and educators. These modules formed the basis for two teacher workshops, two graduate level courses for in-service teachers and two university course for undergraduate teacher candidates. Data from all three models will be presented with emphasis on the teacher workshop. Essential components of the workshop model include: teaching and modeling Earth system science analysis; teacher development of interdisciplinary, problem-based academic units for implementation in the classroom; teacher collaboration; daily workshop evaluations; classroom observations; follow-up collaborative meetings/think tanks; and the building of an on-line professional community for continued communication and exchange of best practices. Preliminary data indicate increased understanding of Earth system science, proficiency with Earth system science analysis, and renewed interest in innovative delivery of content amongst teachers. Teacher-participants reported increased student engagement in learning with the implementation of problem-based investigations in Earth science and Earth system science thinking in the classroom, however, increased enthusiasm of the teacher acted as a contributing factor. Teacher feedback on open

  18. Impact of initiatives to implement science inquiry: a comparative study of the Turkish, Israeli, Swedish and Czech science education systems

    NASA Astrophysics Data System (ADS)

    Heinz, Jana; Enghag, Margareta; Stuchlikova, Iva; Cakmakci, Gultekin; Peleg, Ran; Baram-Tsabari, Ayelet

    2017-09-01

    This empirical study investigates factors that influence the implementation of science inquiry in the education systems of Turkey, Israel, Sweden and the Czech Republic. Data was collected by means of recordings of science experts' discussions as part of an EU-funded project called Science-Teacher Education Advanced Methods (2009-2012). Results of the qualitative analysis reveal that the following general indicators provide insight into the extent of implementation of inquiry-based science education (IBSE): (1) curriculum (2) assessment (3) policy and (4) teacher professionalization systems. In a second step comparative analyses of the four countries' education systems were conducted with regard to these indicators. To compare these factors we refer to both the framework of neo-institutional theories that explore the emergence of isomorphic educational models and to results from comparative studies emphasizing the influence of the countries' individual structure and cultural practices on modifying global pressure to convergence. Results show that in each of the countries these indicators influence the implementation of science inquiry to varying degrees. Moreover, as a result of the comparative analyses further country specific factors important for implementing science inquiry were found: (5) the need to improve existing teaching methods, (6) predominant teaching patterns, (7) infrastructure that enables changes in education and (8) education system's general goals that correlate with reforms.

  19. Measure, Then Show: Grasping Human Evolution Through an Inquiry-Based, Data-driven Hominin Skulls Lab

    PubMed Central

    Luberda, Michael

    2016-01-01

    Incomprehension and denial of the theory of evolution among high school students has been observed to also occur when teachers are not equipped to deliver a compelling case also for human evolution based on fossil evidence. This paper assesses the outcomes of a novel inquiry-based paleoanthropology lab teaching human evolution to high-school students. The inquiry-based Be a Paleoanthropologist for a Day lab placed a dozen hominin skulls into the hands of high-school students. Upon measuring three variables of human evolution, students explain what they have observed and discuss findings. In the 2013/14 school year, 11 biology classes in 7 schools in the Greater New Orleans area participated in this lab. The interviewed teacher cohort unanimously agreed that the lab featuring hominin skull replicas and stimulating student inquiry was a pedagogically excellent method of delivering the subject of human evolution. First, the lab’s learning path of transforming facts to data, information to knowledge, and knowledge to acceptance empowered students to themselves execute part of the science that underpins our understanding of deep time hominin evolution. Second, although challenging, the hands-on format of the lab was accessible to high-school students, most of whom were readily able to engage the lab’s scientific process. Third, the lab’s exciting and compelling pedagogy unlocked higher order thinking skills, effectively activating the cognitive, psychomotor and affected learning domains as defined in Bloom’s taxonomy. Lastly, the lab afforded students a formative experience with a high degree of retention and epistemic depth. Further study is warranted to gauge the degree of these effects. PMID:27513927

  20. Factors Influencing Science Content Accuracy in Elementary Inquiry Science Lessons

    NASA Astrophysics Data System (ADS)

    Nowicki, Barbara L.; Sullivan-Watts, Barbara; Shim, Minsuk K.; Young, Betty; Pockalny, Robert

    2013-06-01

    Elementary teachers face increasing demands to engage children in authentic science process and argument while simultaneously preparing them with knowledge of science facts, vocabulary, and concepts. This reform is particularly challenging due to concerns that elementary teachers lack adequate science background to teach science accurately. This study examined 81 in-classroom inquiry science lessons for preservice education majors and their cooperating teachers to determine the accuracy of the science content delivered in elementary classrooms. Our results showed that 74 % of experienced teachers and 50 % of student teachers presented science lessons with greater than 90 % accuracy. Eleven of the 81 lessons (9 preservice, 2 cooperating teachers) failed to deliver accurate science content to the class. Science content accuracy was highly correlated with the use of kit-based resources supported with professional development, a preference for teaching science, and grade level. There was no correlation between the accuracy of science content and some common measures of teacher content knowledge (i.e., number of college science courses, science grades, or scores on a general science content test). Our study concluded that when provided with high quality curricular materials and targeted professional development, elementary teachers learn needed science content and present it accurately to their students.

  1. Effects of explicit instruction on the acquisition of students' science inquiry skills in grades 5 and 6 of primary education

    NASA Astrophysics Data System (ADS)

    Kruit, P. M.; Oostdam, R. J.; van den Berg, E.; Schuitema, J. A.

    2018-03-01

    In most primary science classes, students are taught science inquiry skills by way of learning by doing. Research shows that explicit instruction may be more effective. The aim of this study was to investigate the effects of explicit instruction on the acquisition of inquiry skills. Participants included 705 Dutch fifth and sixth graders. Students in an explicit instruction condition received an eight-week intervention of explicit instruction on inquiry skills. In the lessons of the implicit condition, all aspects of explicit instruction were absent. Students in the baseline condition followed their regular science curriculum. In a quasi-experimental pre-test-post-test design, two paper-and-pencil tests and three performance assessments were used to examine the acquisition and transfer of inquiry skills. Additionally, questionnaires were used to measure metacognitive skills. The results of a multilevel analysis controlling for pre-tests, general cognitive ability, age, gender and grade level indicated that explicit instruction facilitates the acquisition of science inquiry skills. Specifically on the performance assessment with an unfamiliar topic, students in the explicit condition outperformed students of both the implicit and baseline condition. Therefore, this study provides a strong argument for including an explicit teaching method for developing inquiry skills in primary science education.

  2. The Teaching of Anthropogenic Climate Change and Earth Science via Technology-Enabled Inquiry Education

    NASA Technical Reports Server (NTRS)

    Bush, Drew; Sieber, Renee; Seiler, Gale; Chandler, Mark

    2016-01-01

    A gap has existed between the tools and processes of scientists working on anthropogenic global climate change (AGCC) and the technologies and curricula available to educators teaching the subject through student inquiry. Designing realistic scientific inquiry into AGCC poses a challenge because research on it relies on complex computer models, globally distributed data sets, and complex laboratory and data collection procedures. Here we examine efforts by the scientific community and educational researchers to design new curricula and technology that close this gap and impart robust AGCC and Earth Science understanding. We find technology-based teaching shows promise in promoting robust AGCC understandings if associated curricula address mitigating factors such as time constraints in incorporating technology and the need to support teachers implementing AGCC and Earth Science inquiry. We recommend the scientific community continue to collaborate with educational researchers to focus on developing those inquiry technologies and curricula that use realistic scientific processes from AGCC research and/or the methods for determining how human society should respond to global change.

  3. Preparing Historically Underserved Students for STEM Careers: The Role of an Inquiry-based High School Science Sequence Beginning with Physics

    NASA Astrophysics Data System (ADS)

    Bridges, Jon P.

    Improving the STEM readiness of students from historically underserved groups is a moral and economic imperative requiring greater attention and effort than has been shown to date. The current literature suggests a high school science sequence beginning with physics and centered on developing conceptual understanding, using inquiry labs and modeling to allow students to explore new ideas, and addressing and correcting student misconceptions can increase student interest in and preparation for STEM careers. The purpose of this study was to determine if the science college readiness of historically underserved students can be improved by implementing an inquiry-based high school science sequence comprised of coursework in physics, chemistry, and biology for every student. The study used a retrospective cohort observational design to address the primary research question: are there differences between historically underserved students completing a Physics First science sequence and their peers completing a traditional science sequence in 1) science college-readiness test scores, 2) rates of science college-and career-readiness, and 3) interest in STEM? Small positive effects were found for all three outcomes for historically underserved students in the Physics First sequence.

  4. Expressive Thought and Non-Rational Inquiry.

    ERIC Educational Resources Information Center

    Newton, Richard F.

    A significant problem with inquiry teaching is that too much emphasis is placed on inquiry as a logical, scientific, and rational way of knowing. Feelings and mood are rarely dealt with except in rather off-handed remarks about intuitive leaps and creative encounters. Few consider what a model of inquiry based on mood and feeling might look like.…

  5. Crossing the Border from Science Student to Science Teacher: Preservice Teachers' Views and Experiences Learning to Teach Inquiry

    NASA Astrophysics Data System (ADS)

    Kang, Emily J. S.; Bianchini, Julie A.; Kelly, Gregory J.

    2013-04-01

    Preservice science teachers face numerous challenges in understanding and teaching science as inquiry. Over the course of their teacher education program, they are expected to move from veteran science students with little experience learning their discipline through inquiry instruction to beginning science teachers adept at implementing inquiry in their own classrooms. In this study, we used Aikenhead's (Sci Educ 81: 217-238, 1997, Science Educ 85:180-188, 2001) notion of border crossing to describe this transition preservice teachers must make from science student to science teacher. We examined what one cohort of eight preservice secondary science teachers said, did, and wrote as they both conducted a two-part inquiry investigation and designed an inquiry lesson plan. We conducted two types of qualitative analyses. One, we drew from Costa (Sci Educ 79: 313-333, 1995) to group our preservice teacher participants into one of four types of potential science teachers. Two, we identified successes and struggles in preservice teachers' attempts to negotiate the cultural border between veteran student and beginning teacher. In our implications, we argue that preservice teachers could benefit from explicit opportunities to navigate the border between learning and teaching science; such opportunities could deepen their conceptions of inquiry beyond those exclusively fashioned as either student or teacher.

  6. NASA's Student Glovebox: An Inquiry-Based Technology Educator's Guide.

    ERIC Educational Resources Information Center

    Rosenberg, Carla B.; Rogers, Melissa J. B.

    This inquiry-based activity discusses the development of a glovebox like those used on the International Space Station and Space Shuttle. A glovebox is a box used for experimentation in which the user inserts hands into gloved access holes in order to work in the box. Activities concerning the study of liquid droplets are included to give students…

  7. How to Help Teachers Develop Inquiry Teaching: Perspectives from Experienced Science Teachers

    ERIC Educational Resources Information Center

    Tseng, Chung-Hsien; Tuan, Hsiao-Lin; Chin, Chi-Chin

    2013-01-01

    This study has two purposes: the first is to explore experienced science teachers' perspectives on inquiry teaching, and the second is to categorize these perspectives into patterns. Fifteen junior high school science teachers experienced at inquiry teaching were selected, and a semi-structured interview was conducted to collect the teachers'…

  8. Infusing Authentic Inquiry into Biotechnology

    NASA Astrophysics Data System (ADS)

    Hanegan, Nikki L.; Bigler, Amber

    2009-10-01

    Societal benefit depends on the general public's understandings of biotechnology (Betsch in World J Microbiol Biotechnol 12:439-443, 1996; Dawson and Cowan in Int J Sci Educ 25(1):57-69, 2003; Schiller in Business Review: Federal Reserve Bank of Philadelphia (Fourth Quarter), 2002; Smith and Emmeluth in Am Biol Teach 64(2):93-99, 2002). A National Science Foundation funded survey of high school biology teachers reported that hands-on biotechnology education exists in advanced high school biology in the United States, but is non-existent in mainstream biology coursework (Micklos et al. in Biotechnology labs in American high schools, 1998). The majority of pre-service teacher content preparation courses do not teach students appropriate content knowledge through the process of inquiry. A broad continuum exists when discussing inquiry-oriented student investigations (Hanegan et al. in School Sci Math J 109(2):110-134, 2009). Depending on the amount of structure in teacher lessons, inquiries can often be categorized as guided or open. The lesson can be further categorized as simple or authentic (Chinn and Malhotra in Sci Educ 86(2):175-218, 2002). Although authentic inquiries provide the best opportunities for cognitive development and scientific reasoning, guided and simple inquiries are more often employed in the classroom (Crawford in J Res Sci Teach 37(9):916-937, 2000; NRC in Inquiry and the national science education standards: a guide for teaching and learning, 2000). For the purposes of this study we defined inquiry as "authentic" if original research problems were resolved (Hanegan et al. in School Sci Math J 109(2):110-134, 2009; Chinn and Malhotra in Sci Educ 86(2):175-218, 2002; Roth in Authentic school science: knowing and learning in open-inquiry science laboratories, 1995). The research question to guide this study through naturalistic inquiry research methods was: How will participants express whether or not an authentic inquiry experience enhanced

  9. Implementing Inquiry Kit Curriculum: Obstacles, Adaptations, and Practical Knowledge Development in Two Middle School Science Teachers

    ERIC Educational Resources Information Center

    Jones, Mark T.; Eick, Charles J.

    2007-01-01

    Two elementary certified middle school science teachers are studied for changes in practical knowledge supporting the implementation of kit-based inquiry as part of a schoolwide reform effort. Emphasis is placed on studying how these two pilot teachers enact guided inquiry within their unique pedagogical and curricular interests, and what…

  10. Teacher and Student Reflections on ICT-Rich Science Inquiry

    ERIC Educational Resources Information Center

    Williams, P. John; Otrel-Cass, Kathrin

    2017-01-01

    Background: Inquiry learning in science provides authentic and relevant contexts in which students can create knowledge to solve problems, make decisions and find solutions to issues in today's world. The use of electronic networks can facilitate this interaction, dialogue and sharing, and adds a new dimension to classroom pedagogy. Purpose: This…

  11. `Grasp of Practice' as a Reasoning Resource for Inquiry and Nature of Science Understanding

    NASA Astrophysics Data System (ADS)

    Ford, Michael

    2008-02-01

    This article articulates how a ‘grasp of practice’ serves as a reasoning resource for inquiry and citizenship abilities associated with nature of science (NOS) understanding. Theoretically, this resource is elaborated through an overlapping concern with ‘practice’ in two literatures, science studies and psychology of learning, bringing attention to two key roles in scientific practice, Critiquers and Constructors of claims. Empirically, this resource is made plausible by the results of an expert-novice study and a classroom study. In the expert-novice study, reactions of scientists and laypeople to science-related claims in the popular media were contrasted, underlining the appropriate ways scientists tend to Critique such claims. In the classroom study, sixth-grade students engaged in a 2-week ramp experiment, experiencing first hand the roles of Critiquers and Constructors of claims, and were subsequently assessed with a novel experimental task. Performances suggest that students had attained a grasp of practice, going well beyond mere execution of methods or procedures. These results challenge a common assumption that declarative knowledge best characterizes learning targets for supporting inquiry and NOS understanding.

  12. Changes in Students' Views about Nature of Scientific Inquiry at a Science Camp

    NASA Astrophysics Data System (ADS)

    Leblebicioglu, G.; Metin, D.; Capkinoglu, E.; Cetin, P. S.; Eroglu Dogan, E.; Schwartz, R.

    2017-12-01

    Although nature of science (NOS) and nature of scientific inquiry (NOSI) are related to each other, they are differentiated as NOS is being more related to the product of scientific inquiry (SI) which is scientific knowledge whereas NOSI is more related to the process of SI (Schwartz et al. 2008). Lederman et al. (Journal of Research in Science Teaching, 51, 65-8, 2014) determined eight NOSI aspects for K-16 context. In this study, a science camp was conducted to teach scientific inquiry (SI) and NOSI to 24 6th and 7th graders (16 girls and 8 boys). The core of the program was guided inquiry in nature. The children working in small groups under guidance of science advisors conducted four guided-inquiries in the nature in morning sessions on nearby plants, animals, water, and soil. NOSI aspects were made explicit during and at the end of each inquiry session. Views about scientific inquiry (VASI) (Lederman et al. Journal of Research in Science Teaching, 51, 65-8, 2014) questionnaire was applied as pre- and post-test. The results of the study showed that children developed in all eight NOSI aspects, but higher developments were observed in "scientific investigations all begin with a question" and "there is no single scientific method," and "explanations are developed from data and what is already known" aspects. It was concluded that the science camp program was effective in teaching NOSI.

  13. Changes in Students' Views about Nature of Scientific Inquiry at a Science Camp

    NASA Astrophysics Data System (ADS)

    Leblebicioglu, G.; Metin, D.; Capkinoglu, E.; Cetin, P. S.; Eroglu Dogan, E.; Schwartz, R.

    2017-11-01

    Although nature of science (NOS) and nature of scientific inquiry (NOSI) are related to each other, they are differentiated as NOS is being more related to the product of scientific inquiry (SI) which is scientific knowledge whereas NOSI is more related to the process of SI (Schwartz et al. 2008). Lederman et al. ( Journal of Research in Science Teaching, 51, 65-8, 2014) determined eight NOSI aspects for K-16 context. In this study, a science camp was conducted to teach scientific inquiry (SI) and NOSI to 24 6th and 7th graders (16 girls and 8 boys). The core of the program was guided inquiry in nature. The children working in small groups under guidance of science advisors conducted four guided-inquiries in the nature in morning sessions on nearby plants, animals, water, and soil. NOSI aspects were made explicit during and at the end of each inquiry session. Views about scientific inquiry (VASI) (Lederman et al. Journal of Research in Science Teaching, 51, 65-8, 2014) questionnaire was applied as pre- and post-test. The results of the study showed that children developed in all eight NOSI aspects, but higher developments were observed in "scientific investigations all begin with a question" and "there is no single scientific method," and "explanations are developed from data and what is already known" aspects. It was concluded that the science camp program was effective in teaching NOSI.

  14. Is Inquiry the Answer?

    ERIC Educational Resources Information Center

    Booth, Gregory

    2001-01-01

    Conducts an action research investigation to determine which type of student benefits more from inquiry-based science laboratories. Designs two labs on diffusion and osmosis using both traditional and inquiry-based approaches and assesses student learning in these settings. (YDS)

  15. Investigating the Role of an Inquiry-Based Biology Lab Course on Student Attitudes and Views toward Science.

    PubMed

    Jeffery, Erica; Nomme, Kathy; Deane, Thomas; Pollock, Carol; Birol, Gülnur

    2016-01-01

    Students' academic experiences can influence their conceptualization of science. In contrast experts hold particular beliefs, perceptions, opinions, and attitudes about science that are often absent in first-year undergraduate students. Shifts toward more expert-like attitudes and views have been linked to improved student engagement, critical-thinking ability, conceptual understanding, and academic performance. In this study, we investigate shifts in attitudes and views toward science by students in four biology classes with differences in student enrollment, academic support, and instruction. We observe significant, positive effects of enrollment in a guided-inquiry lab course and academic performance on the percentage of expert-like student attitudes and views at the end of term. We also identify variation in two aspects of student attitudes and views: 1) confidence and interest and 2) understanding and acceptance. In particular, enrollment in the lab course boosts student confidence and interest in scientific inquiry in the short term, even for students with low academic performance or little English-language experience. Our results suggest that low-performing students in particular may require additional opportunities for experiential learning or greater academic support to develop expert-like perceptions of biology as a science. © 2016 E. Jeffery et al. CBE—Life Sciences Education © 2016 The American Society for Cell Biology. This article is distributed by The American Society for Cell Biology under license from the author(s). It is available to the public under an Attribution–Noncommercial–Share Alike 3.0 Unported Creative Commons License (http://creativecommons.org/licenses/by-nc-sa/3.0).

  16. Employing Inquiry-Based Computer Simulations and Embedded Scientist Videos to Teach Challenging Climate Change and Nature of Science Concepts

    ERIC Educational Resources Information Center

    Cohen, Edward Charles

    2013-01-01

    Design based research was utilized to investigate how students use a greenhouse effect simulation in order to derive best learning practices. During this process, students recognized the authentic scientific process involving computer simulations. The simulation used is embedded within an inquiry-based technology-mediated science curriculum known…

  17. The Pedagogical Orientations of South African Physical Sciences Teachers Towards Inquiry or Direct Instructional Approaches

    NASA Astrophysics Data System (ADS)

    Ramnarain, Umesh; Schuster, David

    2014-08-01

    In recent years, inquiry-based science instruction has become widely advocated in science education standards in many countries and, hence, in teacher preparation programmes. Nevertheless, in practice, one finds a wide variety of science instructional approaches. In South Africa, as in many countries, there is also a great disparity in school demographic situations, which can also affect teaching practices. This study investigated the pedagogical orientations of in-service physical sciences teachers at a diversity of schools in South Africa. Assessment items in a Pedagogy of Science Teaching Test (POSTT) were used to identify teachers' science teaching orientations, and reasons for pedagogical choices were probed in interviews. The findings reveal remarkable differences between the orientations of teachers at disadvantaged township schools and teachers at more privileged suburban schools. We found that teachers at township schools have a strong `active direct' teaching orientation overall, involving direct exposition of the science followed by confirmatory practical work, while teachers at suburban schools exhibit a guided inquiry orientation, with concepts being developed via a guided exploration phase. The study identified contextual factors such as class size, availability of resources, teacher competence and confidence, time constraints, student ability, school culture and parents' expectations as influencing the methods adopted by teachers. In view of the recent imperative for inquiry-based learning in the new South African curriculum, this study affirms the context specificity of curriculum implementation (Bybee 1993) and suggests situational factors beyond the curriculum mandate that need to be addressed to achieve successful inquiry-based classroom instruction in science.

  18. Hands-on Science. Why Do Mittens Work?

    ERIC Educational Resources Information Center

    Kepler, Lynne

    1996-01-01

    This article presents hands-on, experiential science activities that use mittens to teach elementary students about classification and insulation. The first involves children sorting mittens. The second has them find out for themselves why mittens keep their hands warm. Across-the-curriculum activities are also described. (SM)

  19. The Impact of a Multi-Year, Multi-School District K-6 Professional Development Programme Designed to Integrate Science Inquiry and Language Arts on Students' High-Stakes Test Scores

    NASA Astrophysics Data System (ADS)

    Shymansky, James A.; Wang, Tzu-Ling; Annetta, Leonard A.; Yore, Larry D.; Everett, Susan A.

    2013-04-01

    This paper is a report of a quasi-experimental study on the impact of a systemic 5-year, K-6 professional development (PD) project on the 'high stakes' achievement test scores of different student groups in rural mid-west school districts in the USA. The PD programme utilized regional summer workshops, district-based leadership teams and distance delivery technologies to help teachers learn science concepts and inquiry teaching strategies associated with a selection of popular science inquiry kits and how to adapt inquiry science lessons in the kits to teach and reinforce skills in the language arts-i.e. to teach more than science when doing inquiry science. Analyses of the school district-level pre-post high-stakes achievement scores of 33 school districts participating in the adaptation of inquiry PD and a comparative group of 23 school districts revealed that both the Grade 3 and Grade 6 student-cohorts in the school districts utilizing adapted science inquiry lessons significantly outscored their student-cohort counterparts in the comparative school districts. The positive school district-level high-stakes test results, which serve as the basis for state and local decision making, suggest that an inquiry adaptation strategy and a combination of regional live workshop and distance delivery technologies with ongoing local leadership and support can serve as a viable PD option for K-6 science.

  20. Teaching Aquatic Science as Inquiry through Professional Development: Teacher Characteristics and Student Outcomes

    ERIC Educational Resources Information Center

    Duncan Seraphin, Kanesa; Harrison, George M.; Philippoff, Joanna; Brandon, Paul R.; Nguyen, Thanh Truc T.; Lawton, Brian E.; Vallin, Lisa M.

    2017-01-01

    We present an inquiry-based, aquatic science professional development (PD) for upper-elementary, middle, and high school teachers and examine changes in student outcomes in light of participating teachers' characteristics and the grade band of the students. Our study lends support to the assertion that inquiry- and content-focused PD, paired with…

  1. Promoting inquiry-based teaching in laboratory courses: are we meeting the grade?

    PubMed

    Beck, Christopher; Butler, Amy; da Silva, Karen Burke

    2014-01-01

    Over the past decade, repeated calls have been made to incorporate more active teaching and learning in undergraduate biology courses. The emphasis on inquiry-based teaching is especially important in laboratory courses, as these are the courses in which students are applying the process of science. To determine the current state of research on inquiry-based teaching in undergraduate biology laboratory courses, we reviewed the recent published literature on inquiry-based exercises. The majority of studies in our data set were in the subdisciplines of biochemistry, cell biology, developmental biology, genetics, and molecular biology. In addition, most exercises were guided inquiry, rather than open ended or research based. Almost 75% of the studies included assessment data, with two-thirds of these studies including multiple types of assessment data. However, few exercises were assessed in multiple courses or at multiple institutions. Furthermore, assessments were rarely based on published instruments. Although the results of the studies in our data set show a positive effect of inquiry-based teaching in biology laboratory courses on student learning gains, research that uses the same instrument across a range of courses and institutions is needed to determine whether these results can be generalized. © 2014 C. Beck et al. CBE—Life Sciences Education © 2014 The American Society for Cell Biology. This article is distributed by The American Society for Cell Biology under license from the author(s). It is available to the public under an Attribution–Noncommercial–Share Alike 3.0 Unported Creative Commons License (http://creativecommons.org/licenses/by-nc-sa/3.0).

  2. Agriscience Student Engagement in Scientific Inquiry: Representations of Scientific Processes and Nature of Science.

    PubMed

    Grady, Julie R; Dolan, Erin L; Glasson, George E

    2010-01-01

    Students' experiences with science integrated into agriscience courses contribute to their developing epistemologies of science. The purpose of this case study was to gain insight into the implementation of scientific inquiry in an agriscience classroom. Also of interest was how the tenets of the nature of science were reflected in the students' experiments. Participants included an agriscience teacher and her fifteen students who were conducting plant experiments to gain insight into the role of a gene disabled by scientists. Data sources included classroom observations, conversations with students, face-to-face interviews with the teacher, and students' work. Analysis of the data indicated that the teacher viewed scientific inquiry as a mechanical process with little emphasis on the reasoning that typifies scientific inquiry. Students' participation in their experiments also centered on the procedural aspects of inquiry with little attention to scientific reasoning. There was no explicit attention to the nature of science during the experiments, but the practice implied correct, incorrect, and underdeveloped conceptions of the nature of science. Evidence from the study suggests a need for collaboration between agriscience and science teacher educators to design and conduct professional development focused on scientific inquiry and nature of science for preservice and practicing teachers.

  3. Agriscience Student Engagement in Scientific Inquiry: Representations of Scientific Processes and Nature of Science

    PubMed Central

    Grady, Julie R.; Dolan, Erin L.; Glasson, George E.

    2013-01-01

    Students’ experiences with science integrated into agriscience courses contribute to their developing epistemologies of science. The purpose of this case study was to gain insight into the implementation of scientific inquiry in an agriscience classroom. Also of interest was how the tenets of the nature of science were reflected in the students’ experiments. Participants included an agriscience teacher and her fifteen students who were conducting plant experiments to gain insight into the role of a gene disabled by scientists. Data sources included classroom observations, conversations with students, face–to–face interviews with the teacher, and students’ work. Analysis of the data indicated that the teacher viewed scientific inquiry as a mechanical process with little emphasis on the reasoning that typifies scientific inquiry. Students’ participation in their experiments also centered on the procedural aspects of inquiry with little attention to scientific reasoning. There was no explicit attention to the nature of science during the experiments, but the practice implied correct, incorrect, and underdeveloped conceptions of the nature of science. Evidence from the study suggests a need for collaboration between agriscience and science teacher educators to design and conduct professional development focused on scientific inquiry and nature of science for preservice and practicing teachers. PMID:23935256

  4. Enhancing Primary Science: An Exploration of Teachers' Own Ideas of Solutions to Challenges in Inquiry- and Context-Based Teaching

    ERIC Educational Resources Information Center

    Walan, Susanne; Mc Ewen, Birgitta; Gericke, Niklas

    2016-01-01

    Studies of inquiry- and context-based science education (IC-BaSE) have shown that teachers find these approaches problematic. In this study, 12 primary school teachers' reflections on challenges related to IC-BaSE are explored. The aim of the study was to investigate which challenges primary teachers experience when working with IC-BaSE and how…

  5. Development and validation of an instrument for evaluating inquiry-based tasks in science textbooks

    NASA Astrophysics Data System (ADS)

    Yang, Wenyuan; Liu, Enshan

    2016-12-01

    This article describes the development and validation of an instrument that can be used for content analysis of inquiry-based tasks. According to the theories of educational evaluation and qualities of inquiry, four essential functions that inquiry-based tasks should serve are defined: (1) assisting in the construction of understandings about scientific concepts, (2) providing students opportunities to use inquiry process skills, (3) being conducive to establishing understandings about scientific inquiry, and (4) giving students opportunities to develop higher order thinking skills. An instrument - the Inquiry-Based Tasks Analysis Inventory (ITAI) - was developed to judge whether inquiry-based tasks perform these functions well. To test the reliability and validity of the ITAI, 4 faculty members were invited to use the ITAI to collect data from 53 inquiry-based tasks in the 3 most widely adopted senior secondary biology textbooks in Mainland China. The results indicate that (1) the inter-rater reliability reached 87.7%, (2) the grading criteria have high discriminant validity, (3) the items possess high convergent validity, and (4) the Cronbach's alpha reliability coefficient reached 0.792. The study concludes that the ITAI is valid and reliable. Because of its solid foundations in theoretical and empirical argumentation, the ITAI is trustworthy.

  6. Perceptions of Elementary Teachers from an Urban School District in Southern California Regarding Their Inquiry-Based Science Instructional Practices, Assessment Methods, and Professional Development

    ERIC Educational Resources Information Center

    Ugwu, Romanus Iroabuchi

    2012-01-01

    The purpose of this mixed-methods study was to describe the perceptions of elementary teachers from an urban school district in Southern California regarding their inquiry-based science instructional practices, assessment methods and professional development. The district's inquiry professional development called the California Mathematics and…

  7. Saint Mary's College Teacher Science Institute: Converting Teachers to Using Guided Inquiry for Science Curricula

    ERIC Educational Resources Information Center

    McCarthy, Deborah; Bellina, Joseph J., Jr.

    2003-01-01

    In 1988 Saint Mary's College received a grant from Lilly Endowment, Inc. to create a program to improve the quality of science education in the local public and private schools. As part of applying that grant we created one-week summer work-shops for elementary and middle school teachers (K-8) based on guided inquiry methods of education. Each…

  8. Hands on the sun: Teaching SEC science through hands on inquiery and direct observation

    NASA Astrophysics Data System (ADS)

    Mayo, L.; Cline, T.; Lewis, E.

    2003-04-01

    Hands on the Sun is a model partnership between the NASA Sun Earth Connection Education Forum (SECEF), Coronado Instruments, Space Science Institute, NOAO/Kitt Peak, Flandrau Planetarium, Astronomical League, and professional astronomers. This joint venture uses experiential learning, provocative talks, and direct observation in both formal and informal education venues to teach participants (K-12 educators, amateur astronomers, and the general public) about the sun, its impact on the Earth, and the importance of understanding the sun-Earth system. The program consists of three days of workshops and activities including tours and observing sessions on Kitt Peak including the National Solar Observatory, planetarium shows, exhibits on space weather, and professional development workshops targeted primarily at Hispanic public school science teachers which are intended to provide hands on activities demonstrating solar and SEC science that can be integrated into the classroom science curriculum. This talk will describe the many facets of this program and discuss our plans for future events.

  9. The interdisciplinary effect of hands-on science as measured by the Tennessee Comprehensive Assessment Program (TCAP)

    NASA Astrophysics Data System (ADS)

    Cherry, Elvis H.

    This study examined the difference in scale scores from Tennessee's standardized test the Tennessee Comprehensive Assessment Program (TCAP). Archival data from the years 2002 and 2005 were compared using ANOVA tests at < .01 and < .05 levels. TCAP/NCE Scale Scores for academic subjects of Science, Math, Social Studies and Reading were used. 3922 student test results were divided into groups based on the number of years the student had a trained hands-on science teacher. Trained hands-on science teachers were identified from Metropolitan Nashville Public Schools (MNPS) Science Department inservice records, which gave information on the teacher's participation in The Hands-on Science Initiative, Biology Gateway and Physical Science training. This information included not only that the teacher had be trained but also the dates of training. The study revealed 1600 students who attended MNPS between the years 2002 and 2005; in grades five through seven that never had a hands-on science trained teacher. About 1600 students in those same years had a hands-on science teacher for only one year, and 588 students had a hands-on science teacher for two of the three years. Lastly of the 3922 students in the study there were 44 students who had a hands-on science teacher for all three years. The results of the ANOVA test showed statistically significant gains in science, math and social studies but not in reading for students who had trained hands-on science teachers for at least one year.

  10. A case study on modeling and independent practice cycles in teaching beginning science inquiry

    NASA Astrophysics Data System (ADS)

    Sadeghpour-Kramer, Margaret Ann Plattenberger

    With increasing pressure to produce high standardized test scores, school systems will be looking for the surest ways to increase scores. Decision makers uninformed about the value of inquiry science may recommend more direct teaching methods and curricula in the hope that students will more quickly accumulate factual information for high test scores. This researcher and other proponents of inquiry science suggest that the best preparation for any test is the ability to use all available information and problem solving skills to think through to a solution. This study proposes to test the theory that inquiry problem solving skills need to be modeled and practiced in increasingly independent situations to be learned. Students tend to copy what they have been led to believe is correct, and to avoid continued copying, their skills must be applied in new situations requiring independent practice and improvement. This study follows ten sixth grade students, selected for maximum variation, as they participate in a series of five cycles of modeling and practicing inquiry science investigations as part of an ongoing unit on water quality. The cycles were designed to make the students increasingly independent in their use of inquiry. The results showed that all ten students made significant progress from copying teacher modeling in investigation #1 towards independent inquiry, with nine of the ten achieving acceptable to good beginning independent inquiry in investigation #5. Each case was analyzed independently using such case study methodology as pattern matching, case study protocols, and theoretical propositions. Constant comparison and other case study methods were used in a cross-case analysis. Eight cases confirmed a matching set of propositions and the hypothesis, in literal replication, and the other two cases confirmed a set of propositions and the hypothesis through theoretical replication. The study suggests to educators that repeated cycles of modeling and

  11. Promoting Inquiry-Based Teaching in Laboratory Courses: Are We Meeting the Grade?

    PubMed Central

    Butler, Amy; Burke da Silva, Karen

    2014-01-01

    Over the past decade, repeated calls have been made to incorporate more active teaching and learning in undergraduate biology courses. The emphasis on inquiry-based teaching is especially important in laboratory courses, as these are the courses in which students are applying the process of science. To determine the current state of research on inquiry-based teaching in undergraduate biology laboratory courses, we reviewed the recent published literature on inquiry-based exercises. The majority of studies in our data set were in the subdisciplines of biochemistry, cell biology, developmental biology, genetics, and molecular biology. In addition, most exercises were guided inquiry, rather than open ended or research based. Almost 75% of the studies included assessment data, with two-thirds of these studies including multiple types of assessment data. However, few exercises were assessed in multiple courses or at multiple institutions. Furthermore, assessments were rarely based on published instruments. Although the results of the studies in our data set show a positive effect of inquiry-based teaching in biology laboratory courses on student learning gains, research that uses the same instrument across a range of courses and institutions is needed to determine whether these results can be generalized. PMID:25185228

  12. New Science Teachers' Descriptions of Inquiry Enactment

    ERIC Educational Resources Information Center

    Dreon, Oliver, Jr.

    2008-01-01

    This phenomenological study demonstrates the influence that affective factors have on beginning teachers' ability to enact instructional practices. Through narratives shared in interviews and web log postings, two beginning science teachers' emotional engagement with their instructional practices, especially that of implementing inquiry-based…

  13. Teacher argumentation in the secondary science classroom: Images of two modes of scientific inquiry

    NASA Astrophysics Data System (ADS)

    Gray, Ron E.

    The purpose of this exploratory study was to examine scientific arguments constructed by secondary science teachers during instruction. The analysis focused on how arguments constructed by teachers differed based on the mode of inquiry underlying the topic. Specifically, how did the structure and content of arguments differ between experimentally and historically based topics? In addition, what factors mediate these differences? Four highly experienced high school science teachers were observed daily during instructional units for both experimental and historical science topics. Data sources include classroom observations, field notes, reflective memos, classroom artifacts, a nature of science survey, and teacher interviews. The arguments were analyzed for structure and content using Toulmin's argumentation pattern and Walton's schemes for presumptive reasoning revealing specific patterns of use between the two modes of inquiry. Interview data was analyzed to determine possible factors mediating these patterns. The results of this study reveal that highly experienced teachers present arguments to their students that, while simple in structure, reveal authentic images of science based on experimental and historical modes of inquiry. Structural analysis of the data revealed a common trend toward a greater amount of scientific data used to evidence knowledge claims in the historical science units. The presumptive reasoning analysis revealed that, while some presumptive reasoning schemes remained stable across the two units (e.g. 'causal inferences' and 'sign' schemes), others revealed different patterns of use including the 'analogy', 'evidence to hypothesis', 'example', and 'expert opinion' schemes. Finally, examination of the interview and survey data revealed five specific factors mediating the arguments constructed by the teachers: view of the nature of science, nature of the topic, teacher personal factors, view of students, and pedagogical decisions. These

  14. The Effect of the Inquiry-Based Learning Approach on Student's Critical-Thinking Skills

    ERIC Educational Resources Information Center

    Duran, Meltem; Dökme, Ilbilge

    2016-01-01

    The purpose of this study is to determine the effect of an activity set developed according to the inquiry-based learning (IBL) approach in the unit "Particulate Structure of Matter" on students' critical-thinking skills in science and technology courses. The study was conducted with 90 students from the 6th grade attending four, 6th…

  15. Effects of Scaled-Up Professional Development Courses about Inquiry-Based Learning on Teachers

    ERIC Educational Resources Information Center

    Maass, Katja; Engeln, Katrin

    2018-01-01

    Although well researched in educational studies, inquiry-based learning, a student-centred way of teaching, is far away from being implemented in day-to-day science and mathematics teaching on a large scale. It is a challenge for teachers to adopt this new way of teaching in an often not supportive school context. Therefore it is important to…

  16. Transforming a Traditional Inquiry-Based Science Unit into a STEM Unit for Elementary Pre-service Teachers: A View from the Trenches

    NASA Astrophysics Data System (ADS)

    Schmidt, Matthew; Fulton, Lori

    2016-04-01

    The need to prepare students with twenty-first-century skills through STEM-related teaching is strong, especially at the elementary level. However, most teacher education preparation programs do not focus on STEM education. In an attempt to provide an exemplary model of a STEM unit, we used a rapid prototyping approach to transform an inquiry-based unit on moon phases into one that integrated technology in a meaningful manner to develop technological literacy and scientific concepts for pre-service teachers (PSTs). Using qualitative case study methodology, we describe lessons learned related to the development and implementation of a STEM unit in an undergraduate elementary methods course, focusing on the impact the inquiry model had on PSTs' perceptions of inquiry-based science instruction and how the integration of technology impacted their learning experience. Using field notes and survey data, we uncovered three overarching themes. First, we found that PSTs held absolutist beliefs and had a need for instruction on inquiry-based learning and teaching. Second, we determined that explicit examples of effective and ineffective technology use are needed to help PSTs develop an understanding of meaningful technology integration. Finally, the rapid prototyping approach resulted in a successful modification of the unit, but caused the usability of our digital instructional materials to suffer. Our findings suggest that while inquiry-based STEM units can be implemented in existing programs, creating and testing these prototypes requires significant effort to meet PSTs' learning needs, and that iterating designs is essential to successful implementation.

  17. Improving Inquiry Teaching through Reflection on Practice

    NASA Astrophysics Data System (ADS)

    Lotter, Christine R.; Miller, Cory

    2017-08-01

    In this paper, we explore middle school science teachers' learning of inquiry-based instructional strategies through reflection on practice teaching sessions during a summer enrichment program with middle level students. The reflection sessions were part of a larger year-long inquiry professional development program in which teachers learned science content and inquiry pedagogy. The program included a 2-week summer institute in which teachers participated in science content sessions, practice teaching to middle level students, and small group-facilitated reflection sessions on their teaching. For this study, data collection focused on teachers' recorded dialogue during the facilitator - run reflection sessions, the teachers' daily written reflections, a final written reflection, and a written reflection on a videotaped teaching session. We investigated the teachers' reflection levels and the themes teachers focused on during their reflection sessions. Teachers were found to reflect at various reflection levels, from simple description to a more sophisticated focus on how to improve student learning. Recurrent themes point to the importance of providing situated learning environments, such as the practice teaching with immediate reflection for teachers to have time to practice new instructional strategies and gain insight from peers and science educators on how to handle student learning issues.

  18. Assessing Problem Solving Competence through Inquiry-Based Teaching in School Science Education

    ERIC Educational Resources Information Center

    Zervas, Panagiotis; Sotiriou, Sofoklis; Tiemann, Rüdiger; Sampson, Demetrios G.

    2015-01-01

    Nowadays, there is a consensus that inquiry-based learning contributes to developing students' scientific literacy in schools. Inquiry-based teaching strategies are promoted for the development (among others) of the cognitive processes that cultivate problem solving (PS) competence. The build up of PS competence is a central objective for most…

  19. ECHOS: Early Childhood Hands-On Science Efficacy Study

    ERIC Educational Resources Information Center

    Brown, Judy A.; Greenfield, Daryl B.; Bell, Elizabeth; Juárez, Cheryl Lani; Myers, Ted; Nayfeld, Irena

    2013-01-01

    "ECHOS: Early Childhood Hands-On Science" was developed at the Miami Science Museum as a comprehensive set of science lessons sequenced to lead children toward a deeper understanding of science content and the use of science process skills. The purpose of the research is to determine whether use of the "ECHOS" model will…

  20. Exploring Exemplary Elementary Teachers' Conceptions and Implementation of Inquiry Science

    ERIC Educational Resources Information Center

    Morrison, Judith A.

    2013-01-01

    This study was an exploration of the conceptions of inquiry science held by exemplary elementary teachers. The origins of these conceptions were explored in order to establish how best to improve elementary teachers' understanding and implementation of inquiry science teaching. Four focus group sessions were held as well as classroom observations.…

  1. Does Hands-On Science Practices Make an Impact on Achievement in Science? A Meta-Analysis

    ERIC Educational Resources Information Center

    Caglak, Serdar

    2017-01-01

    This study aimed to investigate to what extent the use of hands-on science activities influences on students? academic achievement in science. Review of literature revealed several research studies focusing upon such aim and thus, a meta-analysis of these researches was carried out to obtain an overall effect size estimate of hands-on science…

  2. A Case-Based Scenario with Interdisciplinary Guided-Inquiry in Chemistry and Biology: Experiences of First Year Forensic Science Students

    ERIC Educational Resources Information Center

    Cresswell, Sarah L.; Loughlin, Wendy A.

    2017-01-01

    In this paper, insight into forensic science students' experiences of a case-based scenario with an interdisciplinary guided-inquiry experience in chemistry and biology is presented. Evaluation of student experiences and interest showed that the students were engaged with all aspects of the case-based scenario, including the curriculum theory…

  3. How Do Technology-Enhanced Inquiry Science Units Impact Classroom Learning?

    ERIC Educational Resources Information Center

    Lee, Hee-Sun; Linn, Marcia C.; Varma, Keisha; Liu, Ou Lydia

    2010-01-01

    We investigated how student understanding of complex science topics was impacted when 27 teachers switched from typical to inquiry instruction in a delayed cohort comparison design study. For the same set of science topics, the teachers used typical methods of instruction in the first year and online, visualization rich inquiry units in the second…

  4. Tides, Krill, Penguins, Oh My!: Scientists and Teachers Partner in Project CONVERGE to Bring Collaborative Antarctic Research, Authentic Data, and Scientific Inquiry into the Hands of NJ and NY Students

    NASA Astrophysics Data System (ADS)

    Hunter-thomson, K. I.; Kohut, J. T.; Florio, K.; McDonnell, J. D.; Ferraro, C.; Clark, H.; Gardner, K.; Oliver, M. J.

    2016-02-01

    How do you get middle and high school students excited about scientific inquiry? Have them join a collaborative research team in Antarctica! A comprehensive education program brought ocean science, marine ecology, and climate change impact research to more than 950 students in 2014-15 to increase their exposure to and excitement of current research. The program was integrated into a collaborative research project, involving five universities, that worked to characterize the connection between ocean circulation, plankton distribution, penguin foraging behavior, and climate change around Palmer Station, Antarctica. The scientists and education team co-led a weeklong workshop to expose 22 teachers to the research science, build relationships among the teachers and scientists, and refine the program to most effectively communicate the research to their students. In the fall, teachers taught NGSS-aligned, hands-on, data-focused classroom lessons to provide their students the necessary content to understand the project hypotheses using multiple science practices. Through a professional science blog and live video calls from Antarctica, students followed and discussed the science teams work while they were in the field. To apply the science practices the students had learned about, they designed, conducted, and analyzed their own ocean-related, inquiry-based research investigation as the culminating component of the program (results were presented at a Student Research Symposium attended by the science team). Of their own choosing, roughly half of the students used raw data from the CONVERGE research (including krill, CODAR, penguin, and glider data) for their investigations. This presentation will focus on the evaluation results of the education program to identify the aspects that successfully engaged teachers and students with scientific inquiry, science practices, and authentic data as well as the replicability of this integrated scientist-teacher partnership and

  5. Enhancing Teachers' Application of Inquiry-Based Strategies Using a Constructivist Sociocultural Professional Development Model

    NASA Astrophysics Data System (ADS)

    Brand, Brenda R.; Moore, Sandra J.

    2011-05-01

    This two-year school-wide initiative to improve teachers' pedagogical skills in inquiry-based science instruction using a constructivist sociocultural professional development model involved 30 elementary teachers from one school, three university faculty, and two central office content supervisors. Research was conducted for investigating the impact of the professional development activities on teachers' practices, documenting changes in their philosophies, instruction, and the learning environment. This report includes teachers' accounts of philosophical as well as instructional changes and how these changes shaped the learning environment. For the teachers in this study, examining their teaching practices in learner-centered collaborative group settings encouraged them to critically analyze their instructional practices, challenging their preconceived ideas on inquiry-based strategies. Additionally, other factors affecting teachers' understanding and use of inquiry-based strategies were highlighted, such as self-efficacy beliefs, prior experiences as students in science classrooms, teacher preparation programs, and expectations due to federal, state, and local mandates. These factors were discussed and reconciled, as they constructed new understandings and adapted their strategies to become more student-centered and inquiry-based.

  6. Evaluation of a High School Fair Program for Promoting Successful Inquiry-based Learning

    NASA Astrophysics Data System (ADS)

    Betts, Julia Nykeah

    The success of inquiry-based learning (IBL) in supporting science literacy can be challenged when students encounter obstacles in the absence of proper support. This research is intended to evaluate the effectiveness of an Oregon public school district's regional science fair coaching program in promoting inquiry skills and positive attitudes toward science in participating high school students. The purpose of this study was to better understand students' perception of program support, obstacles or barriers faced by students, and potential benefits of IBL facilitated by the science fair program. Data included responses to informal and semi-structured interviews, an anonymous survey, a Skills assessment of final project displays, and an in-depth case study on three students' experiences. Results suggest that the science fair program can properly engage participants in authentic IBL. However, when assessing the participant's final project displays, I found that previous fair experience did not significantly increase mean scores as identified by the official Oregon Department of Education (ODE) scoring guides. Based on results from the case study, it is suggested that participants' low science self-concept, poor understanding of inquiry skills, and inability to engage in reflective discourse may reduce students' abilities to truly benefit. Recommendations to address this discrepancy include identifying specific needs of students through a pre--fair survey to develop more targeted support, and providing new opportunities to develop skills associated with science-self concept, understanding of inquiry and reflective discourse. In addition, results suggest that students would benefit from more financial support in the form of grants, and more connections with knowledgeable mentors.

  7. Science Action Labs Part 3: Puzzlers. An Innovative Collection of Hands-On Science Activities and Labs.

    ERIC Educational Resources Information Center

    Shevick, Ed

    This book contains hands-on science laboratory activities for grades 4 through 9 that use discrepant events to challenge students. All of the "puzzlers" are based upon science principles and include directions for building gadgets that explain the "puzzlers." Topics covered include: volume conservation, magnetic phenomena,…

  8. Hands-On Science Reform, Science Achievement, and the Elusive Goal of "science for All" in a Diverse Elementary School District

    NASA Astrophysics Data System (ADS)

    Echevarria, Marissa

    Given the emphasis on "science for all" in national reform documents, this study analyzed student science achievement scores in hands-on reform versus traditional classrooms for 3,667 students in Grades 3 to 6 by gender, ethnicity, free or reduced lunch status, parent education, and level of English proficiency to determine whether these subgroups performed better or worse in reform classrooms. Teachers in reform classrooms used exemplary hands-on science kits and attended 1-day in-service training per kit. Teachers in traditional classrooms used the regular activity-based science curriculum with textbook. Gender differences favoring boys appeared in both types of classrooms, but were larger in the reform classrooms. Boys from lower socioeconomic levels performed better in reform classrooms, but limited-English-proficient boys performed worse. Parent education was significantly related to higher achievement for boys only in reform classrooms. For girls this relation was significant only in traditional classrooms. White girls performed significantly worse in reform classroom, but there were no differences for Asian and Hispanic girls. Implications for adapting hands-on science reform to meet student needs are discussed.

  9. The Development and Validation of an Instrument to Measure Preservice Teachers' Self-Efficacy in Regard to The Teaching of Science as Inquiry

    NASA Astrophysics Data System (ADS)

    Dira Smolleck, Lori; Zembal-Saul, Carla; Yoder, Edgar P.

    2006-06-01

    The purpose of this study was to develop, validate, and establish the reliability of an instrument that measures preservice teachers' self-efficacy in regard to the teaching of science as inquiry. The instrument, Teaching Science as Inquiry (TSI), is based upon the work of Bandura (1977, 1981, 1982, 1986, 1989, 1995, 1997), Riggs (1988), and Enochs and Riggs (1990). Self-efficacy in regard to the teaching of science as inquiry was measured through the use of a 69-item Likert-type scale instrument designed by the author of the study. Based on the standardized development processes used and the associated evidence, the TSI appears to be a content and construct valid instrument with high internal reliability for use with preservice elementary teachers to assess self-efficacy beliefs in regard to the teaching of science as inquiry.

  10. The Development and Validation of an Instrument to Measure Preservice Teachers' Self-Efficacy in Regard to The Teaching of Science as Inquiry

    NASA Astrophysics Data System (ADS)

    Smolleck, Lori Dira; Zembal-Saul, Carla; Yoder, Edgar P.

    2006-06-01

    The purpose of this study was to develop, validate, and establish the reliability of an instrument that measures preservice teachers' self-efficacy in regard to the teaching of science as inquiry. The instrument, Teaching Science as Inquiry (TSI), is based upon the work of Bandura (1977, 1981, 1982, 1986, 1989, 1995, 1997), Riggs (1988), and Enochs and Riggs (1990). Self-efficacy in regard to the teaching of science as inquiry was measured through the use of a 69-item Likert-type scale instrument designed by the author of the study. Based on the standardized development processes used and the associated evidence, the TSI appears to be a content and construct valid instrument with high internal reliability for use with preservice elementary teachers to assess self-efficacy beliefs in regard to the teaching of science as inquiry.

  11. The Impact of High School Science Teachers' Beliefs, Curricular Enactments and Experience on Student Learning During an Inquiry-based Urban Ecology Curriculum

    NASA Astrophysics Data System (ADS)

    McNeill, Katherine L.; Silva Pimentel, Diane; Strauss, Eric G.

    2013-10-01

    Inquiry-based curricula are an essential tool for reforming science education yet the role of the teacher is often overlooked in terms of the impact of the curriculum on student achievement. Our research focuses on 22 teachers' use of a year-long high school urban ecology curriculum and how teachers' self-efficacy, instructional practices, curricular enactments and previous experience impacted student learning. Data sources included teacher belief surveys, teacher enactment surveys, a student multiple-choice assessment focused on defining and identifying science concepts and a student open-ended assessment focused on scientific inquiry. Results from the two hierarchical linear models indicate that there was significant variation between teachers in terms of student achievement. For the multiple-choice assessment, teachers who spent a larger percentage of time on group work and a smaller percentage of time lecturing had greater student learning. For the open-ended assessment, teachers who reported a higher frequency of students engaging in argument and sharing ideas had greater student learning while teachers who adapted the curriculum more had lower student learning. These results suggest the importance of supporting the active role of students in instruction, emphasising argumentation, and considering the types of adaptations teachers make to curriculum.

  12. Peer Sharing Facilitates the Effect of Inquiry-Based Projects on Science Learning

    ERIC Educational Resources Information Center

    Chung, Hui-Min; Behan, Kristina Jackson

    2010-01-01

    Authentic assessment exercises are similar to real-world tasks that would be expected by a professional. An authentic assessment in combination with an inquiry-based learning activity enhances students' learning and rehearses them for their future roles, whether as scientists or as informed citizens. Over a period of 2 years, we experimented with…

  13. Unpacking the Complex Relationship between Beliefs, Practice, and Change Related to Inquiry-Based Instruction of One Science Teacher

    ERIC Educational Resources Information Center

    Lebak, Kimberly

    2015-01-01

    This case study examines the complex relationship between beliefs, practice, and change related to inquiry-based instruction of one science teacher teaching in a high-poverty urban school. This study explores how video-supported collaboration with peers can provide the catalyst for change. Transcribed collaborative dialogue sessions, written…

  14. Environmental Inquiry by College Students: Original Research and Peer Review Using Web-Based Collaborative Tools. Preliminary Quantitative Data Analysis.

    ERIC Educational Resources Information Center

    Cakir, Mustafa; Carlsen, William S.

    The Environmental Inquiry (EI) program (Cornell University and Pennsylvania State University) supports inquiry based, student-centered science teaching on selected topics in the environmental sciences. Texts to support high school student research are published by the National Science Teachers Association (NSTA) in the domains of environmental…

  15. Development and Validation of an Instrument for Evaluating Inquiry-Based Tasks in Science Textbooks

    ERIC Educational Resources Information Center

    Yang, Wenyuan; Liu, Enshan

    2016-01-01

    This article describes the development and validation of an instrument that can be used for content analysis of inquiry-based tasks. According to the theories of educational evaluation and qualities of inquiry, four essential functions that inquiry-based tasks should serve are defined: (1) assisting in the construction of understandings about…

  16. Relationship Between Teacher Inquiry Science Instruction Self-Efficacy and Student Achievement

    NASA Astrophysics Data System (ADS)

    Hanners, Grace D.

    Standardized test data indicate that student achievement in science is a problem both nationally and locally. At the study site, only a small percentage of fifth-grade students score at the advanced level on the Maryland state science assessment (MSA). In addition, the performance of African American, economically disadvantaged, and special education students is well below that of the general student population. Some studies have shown that teacher self-efficacy affects student achievement. Therefore, the purpose of this study was to explore the relationship between fifth-grade teacher inquiry science instruction self-efficacy scores and the scores of their students on the MSA. Bandura's work on the effect of self-efficacy on human behavior provided the theoretical basis for this study. The research questions examined the relationship between teacher inquiry science instructional self-efficacy scores and students' science MSA scores as well as the relationship by student subgroups. A correlational research design was used. The Teaching Science as Inquiry survey instrument was used to quantify teacher self-efficacy, and archival MSA data were the source for student scores. The study included data from 22 teachers and 1,625 of their students. A 2-tailed Pearson coefficient analysis revealed significant, positive relationships with regard to overall student achievement ( r20 = .724, p < .01) and the achievement of each of the subgroups (African American: r20 = .549, p < .01; economically disadvantaged: r20 = .655, p < .01; and special education: r18 = .532, p < .05). The results of this study present an opportunity for positive social change because the local school system can provide professional development that may increase teacher inquiry science instruction self-efficacy as a possible means to improve overall science achievement and to reduce achievement gaps.

  17. At-Risk and Bilingual Fifth-Grade Students' On-Task Behavior and Conceptual Understanding in Earth Science-Related Topics during Inquiry-, Technology-, and Game-Based Activities

    NASA Astrophysics Data System (ADS)

    McNeal, K.; Vasquez, Y.; Avandano, C.; Moreno, K.; Besinaiz, J.

    2007-12-01

    The Graduate K-12 (GK12) program has been developed by NSF to support the national effort to advance scientific knowledge through educational partnerships. This paper highlights research conducted during the 2006-2007 school year with the Texas A&M University GK12 project. Two elementary schools with very high numbers of at risk students - those who are poor, speak English as their second language, and have a history of failing state-mandated tests were identified to be the field site for the GK12 project. In these two, high-minority (97% and 40% African American and Hispanic) schools, 80% and 56% of the children have been identified by the state as at risk; 94% and 52% are classified as economically disadvantaged; and 46% and 2% are limited English proficient, respectively. In the past year, 30% and 73% of fifth grade students in these schools passed the science portion of the Texas Assessment of Knowledge and Skills (TAKS) test. Data collected during a three- week period where GK12 fellows taught the fifth graders Earth science-related topics is presented. During the implementation, students were engaged in technology-, inquiry-, and game-based activities. Students were divided into low-, medium-, and high-abilities in one school, and regular and bilingual groups in the other. Pre- post open-ended multiple choice tests indicated that all but the low performing students' conceptual understanding (CU) significantly (p < 0.05) improved during the IT activity. The low and high student groups' CU significantly improved during the inquiry activity, and the high and bilingual students' CU significantly improved for the game activities. Classroom observation assessments showed that there was a significant (p < 0.10) positive (0.347) correlation between on-task behavior and CU. Significant differences between student groups' CU and on-task behavior indicated that technology-based activities showed greatest differences between the low- ability learners and the other

  18. Can an Inquiry Approach Improve College Student Learning in a Teaching Laboratory?

    PubMed Central

    Cogan, John G.

    2009-01-01

    We present an inquiry-based, hands-on laboratory exercise on enzyme activity for an introductory college biology course for science majors. We measure student performance on a series of objective and subjective questions before and after completion of this exercise; we also measure performance of a similar cohort of students before and after completion of an existing, standard, “direct” exercise over the same topics. Although student performance on these questions increased significantly after completion of the inquiry exercise, it did not increase after completion of the control, standard exercise. Pressure to “cover” many complex topics as preparation for high-stakes examinations such as the Medical College Admissions Test may account for persistence of highly efficient, yet dubiously effective “cookbook” laboratory exercises in many science classes. PMID:19255136

  19. The Impact of Achievement Goals on the Help-Seeking Attitudes, Perceptions, and Behaviors of Middle-School Science Students Participating in Inquiry-Based Education

    ERIC Educational Resources Information Center

    Schmidt, Kimi Lynn

    2010-01-01

    The purpose of this study was to investigate how mastery-oriented inquiry-based education influences the help-seeking attitudes, perceptions, and behaviors of middle-school students after participating in a 5-week intervention program. Four eighth-grade science classes consisting of 123 students in one middle-school in the San Francisco Bay…

  20. Exciting middle and high school students about immunology: an easy, inquiry-based lesson.

    PubMed

    Lukin, Kara

    2013-03-01

    High school students in the United States are apathetic about science, technology, engineering and mathematics (STEM), and the workforce pipeline in these areas is collapsing. The lack of understanding of basic principles of biology means that students are unable to make educated decisions concerning their personal health. To address these issues, we have developed a simple, inquiry-based outreach lesson centered on a mouse dissection. Students learn key concepts in immunology and enhance their understanding of human organ systems. The experiment highlights aspects of the scientific method and authentic data collection and analysis. This hands-on activity stimulates interest in biology, personal health and careers in STEM fields. Here, we present all the information necessary to execute the lesson effectively with middle and high school students.