Sample records for hands-on science curriculum

  1. Carroll County hands-on elementary science

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Herlocker, H.G.; Dunkleberger, G.L.

    1994-12-31

    Carroll County Hands-on Elementary Science is a nationally recognized Elementary Science Curriculum which has been disseminated in forty states, Puerto Rico, The Virgin Islands, Saipan, and Samoa. The curriculum is a non-textbook, process-based, constructivist approach to teaching science. Unique features of this curriculum include its teacher-written daily lesson plan format, its complete kit of science supplies, and its complete set of Spanish materials. In order to be included by the National Diffusion Network, Hands-on Elementary Science collected data to support the following claims: the program enhances teacher and student attitudes toward science; the program changes both the amount and themore » type of science instruction; the program is adaptable and transportable; the teacher training component is effective. The poster display will feature sample activities, data which demonstrates the effectiveness of the staff development plan, and samples which show the degree to which the program supports selected state curriculum frameworks.« less

  2. Hands-on Science. Why Do Mittens Work?

    ERIC Educational Resources Information Center

    Kepler, Lynne

    1996-01-01

    This article presents hands-on, experiential science activities that use mittens to teach elementary students about classification and insulation. The first involves children sorting mittens. The second has them find out for themselves why mittens keep their hands warm. Across-the-curriculum activities are also described. (SM)

  3. Applying mathematical concepts with hands-on, food-based science curriculum

    PubMed Central

    Roseno, Ashley T.; Carraway-Stage, Virginia G.; Hoerdeman, Callan; Díaz, Sebastián R.; Eugene, Geist; Duffrin, Melani W.

    2015-01-01

    This article addresses the current state of the mathematics education system in the United States and provides a possible solution to the contributing issues. As a result of lower performance in primary mathematics, American students are not acquiring the necessary quantitative literacy skills to become successful adults. This study analyzed the impact of the FoodMASTER Intermediate curriculum on fourth-grade student’s mathematics knowledge. The curriculum is a part of the FoodMASTER Initiative, which is a compilation of programs utilizing food, a familiar and necessary part of everyday life, as a tool to teach mathematics and science. Students exposed to the curriculum completed a 20-item researcher-developed mathematics knowledge exam (Intervention n=288; Control n=194). Overall, the results showed a significant increase in mathematics knowledge from pre- to post-test. These findings suggest that students engaged in food-based science activities provided them with the context in which to apply mathematical concepts to an everyday experience. Therefore, the FoodMASTER approach was successful at improving students’ mathematics knowledge while building a foundation for becoming quantitatively literate adults. PMID:26494927

  4. Applying mathematical concepts with hands-on, food-based science curriculum.

    PubMed

    Roseno, Ashley T; Carraway-Stage, Virginia G; Hoerdeman, Callan; Díaz, Sebastián R; Eugene, Geist; Duffrin, Melani W

    2015-01-01

    This article addresses the current state of the mathematics education system in the United States and provides a possible solution to the contributing issues. As a result of lower performance in primary mathematics, American students are not acquiring the necessary quantitative literacy skills to become successful adults. This study analyzed the impact of the FoodMASTER Intermediate curriculum on fourth-grade student's mathematics knowledge. The curriculum is a part of the FoodMASTER Initiative, which is a compilation of programs utilizing food, a familiar and necessary part of everyday life, as a tool to teach mathematics and science. Students exposed to the curriculum completed a 20-item researcher-developed mathematics knowledge exam (Intervention n=288; Control n=194). Overall, the results showed a significant increase in mathematics knowledge from pre- to post-test. These findings suggest that students engaged in food-based science activities provided them with the context in which to apply mathematical concepts to an everyday experience. Therefore, the FoodMASTER approach was successful at improving students' mathematics knowledge while building a foundation for becoming quantitatively literate adults.

  5. Hands-On Whole Science. Pass the Beetles, Please.

    ERIC Educational Resources Information Center

    Kepler, Lynne

    1992-01-01

    Several hands-on whole science activities help elementary students learn about animals' diets and how they affect other animals. One activity involves identifying animals as carnivores, herbivores, or omnivores. Another has students construct food chains. Two across-the-curriculum ideas involve naming carnivores and preparing imaginary menus for…

  6. Hands on the sun: Teaching SEC science through hands on inquiery and direct observation

    NASA Astrophysics Data System (ADS)

    Mayo, L.; Cline, T.; Lewis, E.

    2003-04-01

    Hands on the Sun is a model partnership between the NASA Sun Earth Connection Education Forum (SECEF), Coronado Instruments, Space Science Institute, NOAO/Kitt Peak, Flandrau Planetarium, Astronomical League, and professional astronomers. This joint venture uses experiential learning, provocative talks, and direct observation in both formal and informal education venues to teach participants (K-12 educators, amateur astronomers, and the general public) about the sun, its impact on the Earth, and the importance of understanding the sun-Earth system. The program consists of three days of workshops and activities including tours and observing sessions on Kitt Peak including the National Solar Observatory, planetarium shows, exhibits on space weather, and professional development workshops targeted primarily at Hispanic public school science teachers which are intended to provide hands on activities demonstrating solar and SEC science that can be integrated into the classroom science curriculum. This talk will describe the many facets of this program and discuss our plans for future events.

  7. Food-based Science Curriculum Increases 4th Graders Multidisciplinary Science Knowledge

    PubMed Central

    Hovland, Jana A.; Carraway-Stage, Virginia G.; Cela, Artenida; Collins, Caitlin; Díaz, Sebastián R.; Collins, Angelo; Duffrin, Melani W.

    2013-01-01

    Health professionals and policymakers are asking educators to place more emphasis on food and nutrition education. Integrating these topics into science curricula using hand-on, food-based activities may strengthen students’ understanding of science concepts. The Food, Math, and Science Teaching Enhancement Resource (FoodMASTER) Initiative is a compilation of programs aimed at using food as a tool to teach mathematics and science. Previous studies have shown that students experiencing the FoodMASTER curriculum were very excited about the activities, became increasingly interested in the subject matter of food, and were able to conduct scientific observations. The purpose of this study was to: 1) assess 4th graders food-related multidisciplinary science knowledge, and 2) compare gains in food-related science knowledge after implementation of an integrated, food-based curriculum. During the 2009–2010 school year, FoodMASTER researchers implemented a hands-on, food-based intermediate curriculum in eighteen 4th grade classrooms in Ohio (n=9) and North Carolina (n=9). Sixteen classrooms in Ohio (n=8) and North Carolina (n=8), following their standard science curricula, served as comparison classrooms. Students completed a researcher-developed science knowledge exam, consisting of 13 multiple-choice questions administered pre- and post-test. Only subjects with pre- and post-test scores were entered into the sample (Intervention n=343; Control n=237). No significant differences were observed between groups at pre-test. At post-test, the intervention group scored (9.95±2.00) significantly higher (p=.000) than the control group (8.84±2.37) on a 13-point scale. These findings suggest the FoodMASTER intermediate curriculum is more effective than a standard science curriculum in increasing students’ multidisciplinary science knowledge related to food. PMID:25152539

  8. The Impact of Hands-On-Approach on Student Academic Performance in Basic Science and Mathematics

    ERIC Educational Resources Information Center

    Ekwueme, Cecilia O.; Ekon, Esther E.; Ezenwa-Nebife, Dorothy C.

    2015-01-01

    Children can learn mathematics and sciences effectively even before being exposed to formal school curriculum if basic Mathematics and Sciences concepts are communicated to them early using activity oriented (Hands-on) method of teaching. Mathematics and Science are practical and activity oriented and can best be learnt through inquiry (Okebukola…

  9. Adapting a successful inquiry-based immersion program to create an Authentic, Hands- on, Field based Curriculum in Environmental Science at Barnard College

    NASA Astrophysics Data System (ADS)

    Kenna, T. C.; Pfirman, S.; Mailloux, B. J.; Martin, S.; Kelsey, R.; Bower, P.

    2008-12-01

    Adapting a successful inquiry-based immersion program to create an Authentic, Hands-on, Field based Curriculum in Environmental Science at Barnard College T. C. Kenna, S. Pfirman, B. J. Mailloux, M. Stute, R. Kelsey, and P. Bower By adapting a successful inquiry-based immersion program (SEA semester) to the typical college format of classes, we are improving the technical and quantitative skills of undergraduate women and minorities in environmental science and improving their critical thinking and problem-solving by exposing our students to open-ended real-world environmental issues. Our approach uses the Hudson River Estuary as a natural laboratory. In a series of hands-on inquiry-based activities, students use advanced equipment to collect data and samples. Each class session introduces new analytical and data analysis techniques. All classes have the connecting theme of the river. Working with real data is open-ended. Our major findings as indicated by surveys as well as journaling throughout the semester are that the field- based experience significantly contributed to student learning and engagement. Journaling responses indicated that nearly all students discussed the importance and excitement of an authentic research experience. Some students were frustrated with data irregularities, uncertainty in methods and data, and the general challenge of a curriculum with inherent ambiguity. The majority were satisfied with the aims of the course to provide an integrative experience. All students demonstrated transfer of learned skills. This project has had a significant impact on our undergraduate female students: several students have pursued senior thesis projects stemming from grant activities, stating that the field activities were the highlight of their semester. Some students love the experience and want more. Others decide that they want to pursue a different career. All learn how science is conducted and have a better foundation to understand concepts such

  10. Hands-On Science Reform, Science Achievement, and the Elusive Goal of "science for All" in a Diverse Elementary School District

    NASA Astrophysics Data System (ADS)

    Echevarria, Marissa

    Given the emphasis on "science for all" in national reform documents, this study analyzed student science achievement scores in hands-on reform versus traditional classrooms for 3,667 students in Grades 3 to 6 by gender, ethnicity, free or reduced lunch status, parent education, and level of English proficiency to determine whether these subgroups performed better or worse in reform classrooms. Teachers in reform classrooms used exemplary hands-on science kits and attended 1-day in-service training per kit. Teachers in traditional classrooms used the regular activity-based science curriculum with textbook. Gender differences favoring boys appeared in both types of classrooms, but were larger in the reform classrooms. Boys from lower socioeconomic levels performed better in reform classrooms, but limited-English-proficient boys performed worse. Parent education was significantly related to higher achievement for boys only in reform classrooms. For girls this relation was significant only in traditional classrooms. White girls performed significantly worse in reform classroom, but there were no differences for Asian and Hispanic girls. Implications for adapting hands-on science reform to meet student needs are discussed.

  11. Rock Cycle. K-6 Science Curriculum.

    ERIC Educational Resources Information Center

    Blueford, J. R.; And Others

    Rock Cycle is one of the units of a K-6 unified science curriculum program. The unit consists of four organizing sub-themes: (1) chemistry (introducing the topics of matter, elements, compounds, and chemical bonding); (2) characteristics (presenting hands-on activities with rocks and minerals); (3) minerals (emphasizing the aesthetic and economic…

  12. Science Curriculum Guide. Kindergarten. Bulletin 1989, No. 70.

    ERIC Educational Resources Information Center

    Alabama State Dept. of Education, Montgomery.

    The purpose of this curriculum guide is to help teachers implement the Alabama Course of Study: Science. The major emphasis of the guide is to provide student-oriented, hands-on activities that engage students in "sciencing" behaviors. This guide has two major components, the table of contents and the activities. The table of contents…

  13. Hydromania: Summer Science Camp Curriculum.

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Moura, Joan

    1995-07-01

    In 1992, Bonneville Power Administration (BPA) and the US Department of Energy (DOE) began a collaborative pilot project with the Portland Parks and Recreation Community Schools Program and others to provide summer science camps to children in Grades 4--6. Camps run two weeks in duration between late June and mid-August. Sessions are five days per week, from 9 a.m. to 3 p.m. In addition to hands-on science and math curriculum, at least three field trips are incorporated into the educational learning experience. The purpose of the BPA/DOE summer camps is to make available opportunities for fun, motivating experiences in sciencemore » to students who otherwise would have difficulty accessing them. This includes inner city, minority, rural and low income students. Public law 101-510, which Congress passed in 1990, authorizes DOE facilities to establish collaborative inner-city and rural partnership programs in science and math. A primary goal of the BPA summer hands on science camps is to bring affordable science camp experiences to students where they live. It uses everyday materials to engage students` minds and to give them a sense that they have succeeded through a fun hands-on learning environment.« less

  14. Science Curriculum Guide. Grade 8. Bulletin 1989, No. 78.

    ERIC Educational Resources Information Center

    Alabama State Dept. of Education, Montgomery.

    The purpose of this curriculum guide is to help teachers implement the Alabama Course of Study: Science. The major emphasis of the guide is to provide student-oriented, hands-on activities that engage students in "sciencing" behaviors. This guide has two major components, the table of contents and the activities. The table of contents…

  15. Science Curriculum Guide. Grade 5. Bulletin 1989, No. 75.

    ERIC Educational Resources Information Center

    Alabama State Dept. of Education, Montgomery.

    The purpose of this curriculum guide is to help teachers implement the Alabama Course of Study: Science. The major emphasis of the guide is to provide student-oriented, hands-on activities that engage students in "sciencing" behaviors. This guide has two major components, the table of contents and the activities. The table of contents…

  16. Science Curriculum Guide. Grade 2. Bulletin 1989, No. 72.

    ERIC Educational Resources Information Center

    Alabama State Dept. of Education, Montgomery.

    The purpose of this curriculum guide is to help teachers implement the Alabama Course of Study: Science. The major emphasis of the guide is to provide student-oriented, hands-on activities that engage students in "sciencing" behaviors. This guide has to major components, the table of contents and the activities. The table of contents…

  17. Science Curriculum Guide. Grade 1. Bulletin 1989, No. 71.

    ERIC Educational Resources Information Center

    Alabama State Dept. of Education, Montgomery.

    The purpose of this curriculum guide is to help teachers implement the Alabama Course of Study: Science. The major emphasis of the guide is to provide student-oriented, hands-on activities that engage students in "sciencing" behaviors. This guide has to major components, the table of contents and the activities. The table of contents…

  18. Science Curriculum Guide. Grade 3. Bulletin 1989, No. 73.

    ERIC Educational Resources Information Center

    Alabama State Dept. of Education, Montgomery.

    The purpose of this curriculum guide is to help teachers implement the Alabama Course of Study: Science. The major emphasis of the guide is to provide student-oriented, hands-on activities that engage students in "sciencing" behaviors. This guide has two major components, the table of contents and the activities. The table of contents…

  19. Three Simple Hands-On Soil Exercises Extension Professionals Can Incorporate into Natural Sciences Curriculum

    ERIC Educational Resources Information Center

    Kleinschmidt, Andy

    2011-01-01

    The importance of healthy soil and of conveying the importance of soils starts by conveying a few basic concepts of soil science cannot be overstated. This article provides three hands-on exercises Extension professionals can add to natural resources or Master Gardener education curricula. These natural sciences exercises are easy to prepare for…

  20. Hand-Clap Songs across the Curriculum

    ERIC Educational Resources Information Center

    Batchelor, Katherine E.; Bintz, William P.

    2012-01-01

    This teaching tip focuses on using hand-clapping to teach content area material across the curriculum. We begin with a brief history of hand-clap songs, followed by a rationale for using them in content area literacy. Then, we describe the instructional lesson, share samples that resulted, and discuss lesson extensions. Our goal is to have…

  1. Hands-on curriculum teaches biomedical engineering concepts to home-schooled students.

    PubMed

    Sagstetter, Ann M; Nimunkar, Amit J; Tompkins, Willis J

    2009-01-01

    University level outreach has increased over the last decade to stimulate K-12 student interest in engineering related fields. Home schooling students are one of the groups that are valued for engineering admissions due to diligent study habits and high achievement scores. However, home schooled students have inadequate access to science, math, and engineering related resources, which precludes the development of interdisciplinary teaching methods. To address this problem, we have developed a hands-on, STEM based curriculum as a safe and comprehensive supplement to current home schooling curricula. The ultimate goal is to stimulate university-student relations and subsequently increase engineering recruitment opportunities. Our pre and post workshop survey comparisons demonstrate that integrating disciplines, via the manner presented in this study, provides a K-12 student-friendly engineering learning method.

  2. Toward a Unified Science Curriculum.

    ERIC Educational Resources Information Center

    Showalter, Victor M.

    The two major models of science curriculum change, textbook revision and national curriculum projects, are derived from, and reinforce, the present curriculum structure. This is undesirable in a time of increasing fluidity and change, because adaptation to new situations is difficult. Unified science, based on the premise that science is a unity,…

  3. Science Curriculum Resource Handbook: A Practical Guide for K-12 Science Curriculum.

    ERIC Educational Resources Information Center

    Cheek, Dennis W., Ed.; And Others

    This handbook is one of a series of practical references for curriculum developers, education faculty, veteran teachers, and student teachers. The handbook is designed to provide basic information on the background of the science curriculum, and current information on publications, standards, and special materials for K-12 science. Part 1 contains…

  4. A Guide to Hands-on Science.

    ERIC Educational Resources Information Center

    Blueford, Joyce R.

    1989-01-01

    Provides guidelines for a custom-made science program that integrates science, math, and technology. Describes the curriculum which is divided into themes including the applied sciences, cycles of the universe, plate tectonics, rock, water, and life. (Author/RT)

  5. Hands-on Science. Exploring Magnification.

    ERIC Educational Resources Information Center

    Kepler, Lynne

    1993-01-01

    Presents hands-on science activities using inexpensive, hand-held microscopes and slides made from simple, readily available materials. The article describes how to introduce students to microscopes and presents directions for using the microscopes and making slides. A student page investigates fingerprints with microscopes. (SM)

  6. Food-based science curriculum yields gains in nutrition knowledge.

    PubMed

    Carraway-Stage, Virginia; Hovland, Jana; Showers, Carissa; Díaz, Sebastián; Duffrin, Melani W

    2015-04-01

    Students may be receiving less than an average of 4 hours of nutrition instruction per year. Integrating nutrition with other subject areas such as science may increase exposure to nutrition education, while supporting existing academics. During the 2009-2010 school year, researchers implemented the Food, Math, and Science Teaching Enhancement Resource (FoodMASTER) Intermediate (FMI) curriculum in 18 fourth-grade classrooms, whereas 16 classrooms served as comparison. FMI is a hands-on, integrative curriculum for children in grades 3-5 that uses food as a tool to teach mathematics and science. Researchers developed a 28-item multiple-choice questionnaire to assess students' nutrition knowledge in 6 content areas. Students were evaluated at baseline and post-intervention. Data were analyzed using independent t tests. Analysis of covariance was employed to control for differences at baseline when assessing the effectiveness of the FMI curriculum to increase nutrition knowledge. A significant improvement was observed in total nutrition knowledge at post-intervention (adjusting for baseline) between groups (F [1] = 128.95; p < .01) and in all content areas post-intervention. Findings from this study suggest teachers were successfully able to integrate science and nutrition to meet multiple academic standards. More specifically, results showed implementation of the integrative FMI curriculum effectively improved fourth-graders' nutrition knowledge compared with students not exposed to FMI. © 2015, American School Health Association.

  7. Ocean Sciences as a Foundation for Curriculum Design

    NASA Astrophysics Data System (ADS)

    Rakhmenkulova, I.; Gorshkalev, S.; Odriozola, A.; Dominguez, A.; Greely, T.; Pyrtle, A.; Keiper, T.; Watkins, J.

    2005-05-01

    The GK-12 OCEANS program is an initiative of the National Science Foundation (NSF). This program provides marine science graduate students within the College of Marine Science, USF, weekly interactions with K-12 teachers and students in Pinellas County schools with the overall purpose of enhancing the quality and effectiveness of science teaching. The GK-12 OCEANS program provides hands-on and minds-on ocean science learning inquiries. Campbell Park Elementary is a Marine Science attractor school designed to provide a child-centered approach to learning that integrates marine science activities into the daily curriculum while meeting the required state education standards. In 2003-04 a GK-12 Fellow helped third and fourth grade teachers design new teaching curricula that integrated ocean sciences. The current 2004-04 Fellow and teachers are implementing the new curriculum, assessing feasibility and impact on students' learning. One characteristic of the new curriculum includes several field trips to local natural settings during which students have the opportunity to collect data the way scientists do, and use real scientific instruments and approaches. The information collected is then used in different activities within the classroom. These activities encourage the students to use inquiry as the basis of their learning experience, in which the application of scientific thinking and methods are keys. This process also requires the students to apply skills from other disciplines such as writing, reading, and math. Towards the end of the school year the students have the opportunity to highlight their accomplishments through two projects, 1) a hall display of different ocean zones, which includes habitat characteristics and species adaptations, and 2) a marine science experiment presented at the school science fair. The results and accomplishments from the implementation of these new curricula will be presented at the conference.

  8. Hands-on Science: Does It Matter What Students' Hands Are On?

    ERIC Educational Resources Information Center

    Triona, Lara M.; Klahr, David

    2007-01-01

    Hands-on science typically uses physical materials to give students first-hand experience in scientific methodologies, but the recent availability of virtual laboratories raises an important question about whether what students' hands are on matters to their learning. The overall findings of two articles that employed simple comparisons of…

  9. Inquiry-Based Science Education: A Scenario on Zambia's High School Science Curriculum

    ERIC Educational Resources Information Center

    Chabalengula, Vivien M.; Mumba, Frackson

    2012-01-01

    This paper is aimed at elucidating the current state of inquiry-based science education (IBSE) in Zambia's high school science curriculum. Therefore, we investigated Zambian teachers' conceptions of inquiry; determined inquiry levels in the national high school science curriculum materials, which include syllabi, textbooks and practical exams; and…

  10. On track for success: an innovative behavioral science curriculum model.

    PubMed

    Freedy, John R; Carek, Peter J; Dickerson, Lori M; Mallin, Robert M

    2013-01-01

    This article describes the behavioral science curriculum currently in place at the Trident/MUSC Family Medicine Residency Program. The Trident/MUSC Program is a 10-10-10 community-based, university-affiliated program in Charleston, South Carolina. Over the years, the Trident/MUSC residency program has graduated over 400 Family Medicine physicians. The current behavioral science curriculum consists of both required core elements (didactic lectures, clinical observation, Balint groups, and Resident Grand Rounds) as well as optional elements (longitudinal patient care experiences, elective rotations, behavioral science editorial experience, and scholars project with a behavioral science focus). All Trident/MUSC residents complete core behavioral science curriculum elements and are free to participate in none, some, or all of the optional behavioral science curriculum elements. This flexibility allows resident physicians to tailor the educational program in a manner to meet individual educational needs. The behavioral science curriculum is based upon faculty interpretation of existing "best practice" guidelines (Residency Review Committee-Family Medicine and AAFP). This article provides sufficient curriculum detail to allow the interested reader the opportunity to adapt elements of the behavioral science curriculum to other residency training programs. While this behavioral science track system is currently in an early stage of implementation, the article discusses track advantages as well as future plans to evaluate various aspects of this innovative educational approach.

  11. Discover science: Hands-on science workshops for elementary teachers and summer science camps for elementary students

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Gotlib, L.; Bibby, E.; Cullen, B.

    1994-12-31

    Teams of local mentor teachers (assisted by college students in the NC Teaching Fellows Program) run week-long workshops for elementary teachers (at four sites in 1993, six in 1994). Major funding for the camps is provided through The Glaxo Foundation, supplemented with local funds. The workshops focus on hands-on science (using inexpensive materials) and provide familiarity and experience with the new NC science curriculum and assessment program. The use of local resources is stressed (including visiting scientists and readily available store-bought materials). Each camp has its own theme and provides teachers with a variety of resources to be used withmore » students of all abilities. The mentor teachers then run week-long, all expense paid, non-residential science camps for elementary students (open to all students, but with females and minorities as target groups). Students take part in long-and short-term projects, working individually and in groups. Pre and post participation surveys of all participants were conducted and analyzed, with favorable results for both the student and teacher weeks. Additional activities include parent nights, and follow-up workshops. Eighty-nine teachers and 208 students participated in 1993.« less

  12. Hands On Earth Science.

    ERIC Educational Resources Information Center

    Weisgarber, Sherry L.; Van Doren, Lisa; Hackathorn, Merrianne; Hannibal, Joseph T.; Hansgen, Richard

    This publication is a collection of 13 hands-on activities that focus on earth science-related activities and involve students in learning about growing crystals, tectonics, fossils, rock and minerals, modeling Ohio geology, geologic time, determining true north, and constructing scale-models of the Earth-moon system. Each activity contains…

  13. Curriculum Process in Science Education

    NASA Astrophysics Data System (ADS)

    Adamčíková, Veronika; Tarábek, Paul

    2010-07-01

    Physics/science education in the communicative conception is defined as the continuous transfer of the knowledge and methods of physics into the minds of individuals who have not participated in creating them. This process, called the educational communication of physics/science, is performed by various educational agents—teachers, curriculum makers, textbook designers, university teachers and does not mean only a simple transfer of information, but it also involves teaching and instruction at all levels of the school system, the study, learning, and cognition of pupils, students and all other learners, the assessment and evaluation of learning outcomes, curriculum composition and design, the production of textbooks and other means of educational communication and, in addition, university education and the further training of teachers. The educational communication is carried out by the curriculum process of physics/science, which is a sequence of variant forms of curriculum mutually interconnected by curriculum transformations. The variant forms of curriculum are as follows: conceptual curriculum, intended curriculum, project (written) curriculum, operational curriculum, implemented curriculum, and attained curriculum.

  14. Effects of a novel science curriculum versus traditional science curriculum on problem solving skills and attitudes for 10th grade students

    NASA Astrophysics Data System (ADS)

    Gauchat, Carrie

    This study utilized both quantitative and qualitative methods in investigating how a novel science curriculum, geared towards the 21 st century student, affected skills and attitudes towards science for tenth grade students. The quantitative portion of the study was a quasi-experimental design since random groups were not possible. This portion of the study used a pretest/posttest design to measure any improvement in science skills, and a Likert scale survey to measure any improvements in students' attitudes. Statistical tests revealed no significant differences between students who received the novel curriculum versus those students who received a traditional curriculum. Both groups showed significant improvements in all skill areas. Qualitatively, the researcher used informal teacher interviews and student surveys to identify the most relevant and effective curriculum components for the 21st century student. The findings suggest that the task of creating a meaningful and relevant curriculum based on the necessary skills of this century is not an easy task. There is much more work to be done in this area, but according to the qualitative findings integrated design and student technology are promising.

  15. The Plastic Surgery Hand Curriculum.

    PubMed

    Silvestre, Jason; Levin, L Scott; Serletti, Joseph M; Chang, Benjamin

    2015-12-01

    Designing an effective hand rotation for plastic surgery residents is difficult. The authors address this limitation by elucidating the critical components of the hand curriculum during plastic surgery residency. Hand questions on the Plastic Surgery In-Service Training Exam for six consecutive years (2008 to 2013) were characterized by presence of imaging, vignette setting, question taxonomy, answer domain, anatomy, and topic. Answer references were quantified by source and year of publication. Two hundred sixty-six questions were related to hand surgery (22.7 percent of all questions; 44.3 per year) and 61 were accompanied by an image (22.9 percent). Vignettes tended to be clinic- (50.0 percent) and emergency room-based (35.3 percent) (p < 0.001). Questions required decision-making (60.5 percent) over interpretation (25.9 percent) and recall skills (13.5 percent) (p < 0.001). Answers focused on interventions (57.5 percent) over anatomy/pathology (25.2 percent) and diagnoses (17.3 percent) (p < 0.001). Nearly half of the questions focused on the digits. The highest yield topics were trauma (35.3 percent), reconstruction (24.4 percent), and aesthetic and functional problems (14.2 percent). The Journal of Hand Surgery (American volume) (20.5 percent) and Plastic and Reconstructive Surgery (18.0 percent) were the most-cited journals, and the median publication lag was 7 years. Green's Operative Hand Surgery was the most-referenced textbook (41.8 percent). These results will enable trainees to study hand surgery topics with greater efficiency. Faculty can use these results to ensure that tested topics are covered during residency training. Thus, a benchmark is established to improve didactic, clinical, and operative experiences in hand surgery.

  16. From Creeks to the Classroom: Hands-on Curriculum Units on the Web

    NASA Astrophysics Data System (ADS)

    Salter, I. Y.

    2005-12-01

    Archway School is in the process of developing 6 curriculum units to teach middle school students about the ecology and environmental science of the San Francisco Bay Area. This is being accomplished through integrated classroom, field trip, and creek restoration project activities. The creek where restoration work takes place becomes an outdoor laboratory for a wide array of classroom lessons tied to both National and California Science Education Standards. The entire curriculum, including all lesson plans, assessments, and examples of student work are being made available, free of charge, to teachers and educators via the Internet. Although the units were initially developed to teach about the natural and geological history of the San Francisco Bay Area, classroom activities are structured such that they could be used at any school and restoration work could be undertaken at any creek in the country. This presentation will showcase the curriculum and provide information so that educators may bring it home to their own institutions. Teachers will get a "tour" of 3 of the 6 curriculum units (Ecology, Watersheds, Earth History) and then have an opportunity to view activities that highlight the strengths of the program.

  17. Teachers' sense-making of curriculum structures and its impact on the implementation of an innovative reform-based science curriculum

    NASA Astrophysics Data System (ADS)

    Beckford-Smart, Meredith

    This study discusses the social interactions involved in teachers' enactment and use of new science curricula. The teachers studied participated in the LiFE program, a university-school partnership, which is an inquiry based science and nutrition education program. In this program fifth and sixth grade students learned science through the study of food. The program used the study of food and food systems to teach life sciences and nutrition through inquiry based studies. Through the partnership teachers received professional development which aimed to deepen their conceptual understandings of life science and develop skills in implementing inquiry-base teaching. Using qualitative research methods of ethnography and narrative inquiry to study teachers' sense-making of messages from curriculum structures, the intention was to explore how teachers' sense-making of these structures guided their classroom practices. Two research questions were addressed: (a) How do teachers make sense of curriculum given their perceptions, their school context and their curricular context; (b) What influence do their identities as science teachers/learners have on their enactment of an innovative science curriculum. I used comparative analysis to examine teacher's beliefs and identities as teachers/learners. In the process of studying these teachers an understanding of how teachers' stories and identities shape their use and enactment of science curriculum came to light. The initial analysis revealed four distinct teacher identities: (a) social responsibility teacher/learner; (b) experiential teacher/learner; (c) supportive institution teacher/learner; and (d) turning point teacher. Besides these distinct teacher identities three cross cutting themes emerged: (a) creating environments conducive to their teaching visions; (b) empowering student through science teaching; and (c) dealing with the uncertainty of teaching. The information gathered from this study will illuminate how these

  18. Environment in the science curriculum: the politics of change in the Pan-Canadian science curriculum development process

    NASA Astrophysics Data System (ADS)

    Hart, Paul

    2002-11-01

    This paper draws on the experience of the Pan-Canadian science curriculum development process as an instance of the more general problem of integrating science and environmental education. It problematizes the issue of incorporation of social and environmental dimensions within the science curriculum in terms of both policy and practice. The agenda of environmental education, as eco-philosophical and eco-political, provides a radically different base from which to explore the impact of change on science teachers and schools. Thus, the very idea of environmental education as an educational policy goal must be examined in light of conflicting agendas of science and environmental education. This paper argues that transforming structures and processes of school science to enable different teacher and student roles involves closing the gap between curriculum (policy) development and professional development as well as reconceptualizing science education, but from more overtly open moral value and political perspectives than have been considered in the literature of science education.

  19. Water in the Solar System: The Development of Science Education Curriculum Focused on Planetary Exploration

    NASA Astrophysics Data System (ADS)

    Edgar, L. A.; Anderson, R. B.; Gaither, T. A.; Milazzo, M. P.; Vaughan, R. G.; Rubino-Hare, L.; Clark, J.; Ryan, S.

    2017-12-01

    "Water in the Solar System" is an out-of-school time (OST) science education activity for middle school students that was developed as part of the Planetary Learning that Advances the Nexus of Engineering, Technology, and Science (PLANETS) project. The PLANETS project was selected in support of the NASA Science Mission Directorate's Science Education Cooperative Agreement Notice, with the goal of developing and disseminating OST curriculum and related professional development modules that integrate planetary science, technology, and engineering. "Water in the Solar System" is a science activity that addresses the abundance and availability of water in the solar system. The activity consists of three exercises based on the following guiding questions: 1) How much water is there on the Earth? 2) Where can you find water in the solar system? and 3) What properties affect whether or not water can be used by astronauts? The three exercises involve a scaling relationship demonstration about the abundance of useable water on Earth, a card game to explore where water is found in the solar system, and a hands-on exercise to investigate pH and salinity. Through these activities students learn that although there is a lot of water on Earth, most of it is not in a form that is accessible for humans to use. They also learn that most water in the solar system is actually farther from the sun, and that properties such as salinity and pH affect whether water can be used by humans. In addition to content for students, the activity includes background information for educators, and links to in-depth descriptions of the science content. "Water in the Solar System" was developed through collaboration between subject matter experts at the USGS Astrogeology Science Center, and curriculum and professional development experts in the Center for Science Teaching and Learning at Northern Arizona University. Here we describe our process of curriculum development, education objectives of

  20. The Extra Strand of the Maori Science Curriculum

    ERIC Educational Resources Information Center

    Stewart, Georgina

    2011-01-01

    This paper comments on the process of re-development of the Maori-medium Science (Putaiao) curriculum, as part of overall curriculum development in Aotearoa New Zealand. A significant difference from the English Science curriculum was the addition of an "extra strand" covering the history and philosophy of science. It is recommended that…

  1. Science and students with mental retardation: An analysis of curriculum features and learner characteristics

    NASA Astrophysics Data System (ADS)

    Scruggs, Thomas E.; Mastropieri, Margo A.

    Although much research has been conducted on the learning characteristics of individuals with mental retardation, science learning of such individuals has received far less attention. In this investigation, students with mental retardation were observed over a 2-year period, in order to determine how the characteristics of mental retardation manifested themselves in the context of inquiry-oriented, hands-on science curriculum. Analysis of all relevant data sources, including observations and field notes, videotape and audiotape recordings, student products, and interviews, suggested that several characteristics commonly attributed to students with mild mental retardation were observed to interact with the science curriculum. These characteristics included attention, semantic memory, logical reasoning, and outerdirectedness. However, teachers were skilled at adapting instruction to meet the special needs of these learners. Implications for teaching science to students with mental retardation are provided.

  2. Water Pollution, Environmental Science Curriculum Guide Supplement.

    ERIC Educational Resources Information Center

    McKenna, Harold J.

    This curriculum guide is a 40-day unit plan on water pollution developed, in part, from the National Science Foundation Environmental Science Institutes' Ninth Grade Environmental Science Curriculum Guide. This unit contains teacher lesson plans, suggested teacher and student modules, case studies, and activities to be developed by teachers…

  3. Fort Benton Science Curriculum Outline.

    ERIC Educational Resources Information Center

    Fort Benton Public Schools, MT.

    The science curriculum for the Fort Benton school system was developed with funds under Title III of the Elementary and Secondary Education Act to give students the background of a modern and forward-looking program in science taught in an imaginative, investigative, and inquiry-oriented fashion. The science curriculum guide outlines a planned…

  4. Hands-on earth science with students at schools for the Deaf

    NASA Astrophysics Data System (ADS)

    Cooke, M. L.

    2011-12-01

    Earth science teachers at schools for the Deaf face a variety of challenges. This community of students has a wide range of language skills, teaching resources can be limited and often teachers are not trained in geosciences. An NSF CAREER grant provided an opportunity to make a difference to this community and foster earth science learning at 8 schools for the Deaf around the country. We designed hands-on deformational sandboxes for the teachers and provided accompanying curriculum materials. The sandbox is a physical model of crustal deformation that students can manipulate to test hypotheses. The visual nature of the sandbox was well-suited for the spatial grammar of American Sign Language used by these students. Furthermore, language skills were enhanced by scaffolded observation, sketch, annotation, discussion, interpretation assignments. Geoscience training of teachers was strengthened with workshops and three 5-day field trips for teachers and selected students to Utah, western New England and southern California. The field trips provided opportunity for students to work as geoscientists observing, interpreting, discussing and presenting their investigations. Between field trips, we set up videoconferences from the UMass experimental lab with the high school earth science classrooms. These sessions facilitated dialog between students and researchers at UMass. While the project set out to provide geoscience learning opportunities for students at Schools for the Deaf, the long lasting impact was the improved geoscience training of teachers, most of whom had limited post-secondary earth science training. The success of the project also rested on the dedication of the teachers to their students and their willingness to try new approaches and experiences. By tapping into a community of 6 teachers, who already shared curriculum and had fantastic leadership, the project was able to have significant impact and exceed the initial goals. The project has led to a

  5. Primary Science Curriculum Guide, A. Beginning Science.

    ERIC Educational Resources Information Center

    Victoria Education Dept. (Australia).

    Suggestions for providing science experiences for children in kindergarten and grades one and two are given in this first part of the Victorian Education Department (Australia) guide to the elementary school science curriculum. (See SE 012 720 and SE 012 721 for additional guides to this curriculum.) The suggestions are illustrated by brief case…

  6. Work-Based Curriculum to Broaden Learners' Participation in Science: Insights for Designers

    NASA Astrophysics Data System (ADS)

    Bopardikar, Anushree; Bernstein, Debra; Drayton, Brian; McKenney, Susan

    2018-05-01

    Around the globe, science education during compulsory schooling is envisioned for all learners regardless of their educational and career aspirations, including learners bound to the workforce upon secondary school completion. Yet, a major barrier in attaining this vision is low learner participation in secondary school science. Because curricula play a major role in shaping enacted learning, this study investigated how designers developed a high school physics curriculum with positive learning outcomes in learners with varied inclinations. Qualitative analysis of documents and semistructured interviews with the designers focused on the curriculum in different stages—from designers' ideas about learning goals to their vision for enactment to the printed materials—and on the design processes that brought them to fruition. This revealed designers' emphases on fostering workplace connections via learning goals and activities, and printed supports. The curriculum supported workplace-inspired, hands-on design-and-build projects, developed to address deeply a limited set of standards aligned learning goals. The curriculum also supported learners' interactions with relevant workplace professionals. To create these features, the designers reviewed other curricula to develop vision and printed supports, tested activities internally to assess content coverage, surveyed states in the USA receiving federal school-to-work grants and reviewed occupational information to choose unit topics and career contexts, and visited actual workplaces to learn about authentic praxis. Based on the worked example, this paper offers guidelines for designing work-based science curriculum products and processes that can serve the work of other designers, as well as recommendations for research serving designers and policymakers.

  7. ECHOS: Early Childhood Hands-On Science Efficacy Study

    ERIC Educational Resources Information Center

    Brown, Judy A.; Greenfield, Daryl B.; Bell, Elizabeth; Juárez, Cheryl Lani; Myers, Ted; Nayfeld, Irena

    2013-01-01

    "ECHOS: Early Childhood Hands-On Science" was developed at the Miami Science Museum as a comprehensive set of science lessons sequenced to lead children toward a deeper understanding of science content and the use of science process skills. The purpose of the research is to determine whether use of the "ECHOS" model will…

  8. Does Hands-On Science Practices Make an Impact on Achievement in Science? A Meta-Analysis

    ERIC Educational Resources Information Center

    Caglak, Serdar

    2017-01-01

    This study aimed to investigate to what extent the use of hands-on science activities influences on students? academic achievement in science. Review of literature revealed several research studies focusing upon such aim and thus, a meta-analysis of these researches was carried out to obtain an overall effect size estimate of hands-on science…

  9. The effects of hands-on-science instruction on the science achievement of middle school students

    NASA Astrophysics Data System (ADS)

    Wiggins, Felita

    Student achievement in the Twenty First Century demands a new rigor in student science knowledge, since advances in science and technology require students to think and act like scientists. As a result, students must acquire proficient levels of knowledge and skills to support a knowledge base that is expanding exponentially with new scientific advances. This study examined the effects of hands-on-science instruction on the science achievement of middle school students. More specifically, this study was concerned with the influence of hands-on science instruction versus traditional science instruction on the science test scores of middle school students. The subjects in this study were one hundred and twenty sixth-grade students in six classes. Instruction involved lecture/discussion and hands-on activities carried out for a three week period. Specifically, the study ascertained the influence of the variables gender, ethnicity, and socioeconomic status on the science test scores of middle school students. Additionally, this study assessed the effect of the variables gender, ethnicity, and socioeconomic status on the attitudes of sixth grade students toward science. The two instruments used to collect data for this study were the Prentice Hall unit ecosystem test and the Scientific Work Experience Programs for Teachers Study (SWEPT) student's attitude survey. Moreover, the data for the study was treated using the One-Way Analysis of Covariance and the One-Way Analysis of Variance. The following findings were made based on the results: (1) A statistically significant difference existed in the science performance of middle school students exposed to hands-on science instruction. These students had significantly higher scores than the science performance of middle school students exposed to traditional instruction. (2) A statistically significant difference did not exist between the science scores of male and female middle school students. (3) A statistically

  10. Science, Math, and Technology. K-6 Science Curriculum.

    ERIC Educational Resources Information Center

    Blueford, J. R.; And Others

    Science, Math and Technology is one of the units of a K-6 unified science curriculum program. The unit consists of four organizing sub-themes: (1) science (with activities on observation, comparisons, and the scientific method); (2) technology (examining simple machines, electricity, magnetism, waves and forces); (3) mathematics (addressing skill…

  11. Surviving the Implementation of a New Science Curriculum

    NASA Astrophysics Data System (ADS)

    Lowe, Beverly; Appleton, Ken

    2015-12-01

    Queensland schools are currently teaching with the first National Curriculum for Australia. This new curriculum was one of a number of political responses to address the recurring low scores in literacy, mathematics, and science that continue to hold Australia in poor international rankings. Teachers have spent 2 years getting to know the new science curriculum through meetings, training, and exploring the new Australian curriculum documents. This article examines the support and preparation for implementation provided in two regional schools, with a closer look at six specific teachers and their science teaching practices as they attempted to implement the new science curriculum. The use of a survey, field observations, and interviews revealed the schools' preparation practices and the teachers' practices, including the support provided to implement the new science curriculum. A description and analysis of school support and preparation as well as teachers' views of their experiences implementing the new science curriculum reveal both achievements and shortcomings. Problematic issues for the two schools and teachers include time to read and comprehend the curriculum documents and content expectations as well as time to train and change the current processes effectively. The case teachers' experiences reveal implications for the successful and effective implementation of new curriculum and curriculum reform.

  12. Science 25. Curriculum Guide. Revised.

    ERIC Educational Resources Information Center

    Northwest Territories Dept. of Education, Yellowknife.

    This science curriculum is an activity-oriented program in which an attempt has been made to provide sufficient information for non-science specialists to enable them to offer an effective course at the grades 10 and 11 levels. This curriculum offers a solution to the unique needs of life in the Canadian Northwest Territories. The role of…

  13. Science Fun: Hands-On Science with Dr. Zed.

    ERIC Educational Resources Information Center

    Penrose, Gordon

    This book presents 65 simple, safe, and intriguing hands-on science activities. In doing these simple experiments, children can make a variety of discoveries that will surprise them. It includes many activities from discovering how people see color and what makes people's hair stand on end, to creating a tornado in a jar or a propeller-driven boat…

  14. Curriculum-Dependent and Curriculum-Independent Factors in Preservice Elementary Teachers' Adaptation of Science Curriculum Materials for Inquiry-Based Science

    ERIC Educational Resources Information Center

    Forbes, Cory T.

    2013-01-01

    In this nested mixed methods study I investigate factors influencing preservice elementary teachers' adaptation of science curriculum materials to better support students' engagement in science as inquiry. Analyses focus on two "reflective teaching assignments" completed by 46 preservice elementary teachers in an undergraduate elementary science…

  15. Curriculum Implementation and Reform: Teachers' Views about Kuwait's New Science Curriculum

    ERIC Educational Resources Information Center

    Alshammari, Ahmad

    2013-01-01

    The MoE (Ministry of Education) in the state of Kuwait is starting to reform the science curriculum in all school academic stages: primary (1-5) grades, intermediate (6-9) grades, and secondary (10-12) grades. The purpose of this study was to explore the opinions of science teachers about Kuwait's new sixth and seventh grade science curriculum,…

  16. Effect of an environmental science curriculum on students' leisure time activities

    NASA Astrophysics Data System (ADS)

    Blum, Abraham

    Cooley and Reed's active interest measurement approach was combined with Guttman's Facet Design to construct a systematic instrument for the assessment of the impact of an environmental science course on students' behavior outside school. A quasimatched design of teacher allocation to the experimental and control groups according to their preferred teaching style was used. A kind of dummy control curriculum was devised to enable valid comparative evaluation of a new course which differs from the traditional one in both content and goal. This made it possible to control most of the differing factors inherent in the old and new curriculum. The research instrument was given to 1000 students who were taught by 28 teachers. Students who learned according to the experimental curriculum increased their leisure time activities related to the environmental science curriculum significantly. There were no significant differences between boys and girls and between students with different achievement levels.

  17. Reinventing the Science Curriculum

    ERIC Educational Resources Information Center

    Bybee, Rodger W.; Van Scotter, Pamela

    2007-01-01

    For many, the dominant model of curriculum development in science includes generating a topic, clarifying science content, identifying activities associated with the topic, and figuring out an assessment. Unfortunately, this approach tends to overemphasize activities and underemphasize mastery of science concepts and the process of scientific…

  18. The Changing Science Curriculum

    ERIC Educational Resources Information Center

    Ediger, Marlow

    2014-01-01

    Science, as a curriculum area, has gone through many changes recently with the oncoming of the Common Core State Standards (CCSS), Science, Technology, Engineering, and Mathematics (STEM), as well as the Next Generation Science Standards (NGSS). Science is a part of everyday life which individuals experience. Even the drying up of a puddle of…

  19. Leading Change in the Primary Science Curriculum

    ERIC Educational Resources Information Center

    Waller, Nicky; Baker, Chris

    2014-01-01

    Nicky Waller and Chris Baker believe that change can be a good thing and explain how their training has helped others to adjust to the new science curriculum. In September 2013, teachers across England received the definitive version of the new primary curriculum "Leading Change in the Primary Science Curriculum." This course aimed to…

  20. Integrating the history of science into a middle school science curriculum

    NASA Astrophysics Data System (ADS)

    Huybrechts, Jeanne Marie

    This study examined the effect of incorporating the history of science into a middle school physical science curriculum on student attitudes toward science and the work of scientists. While there is wide support for including some science history in middle school science lessons within both the science and science-education communities, there is little curriculum designed to meet that objective. A series of five lessons was written specifically for the study. Each lesson included a brief biography of a scientist whose work was of historical significance, and a set of directions for duplicating one or more of the experiments done by that scientist. A thirty-question, Likert scale survey of the attitudes of middle school students toward science and the work of scientists was also written for this study. The survey was administered to two groups of students in a single middle school: One group---the experimental group---subsequently used the science history curriculum; the second (control) group did not. The same attitude survey was readministered to both groups of students after study of the science-history curriculum was completed. The results of the study indicate that there was no statistically significant difference between the pretest and posttest scores of either the experimental or control group students. Further analysis was done to determine whether there were differences between the pretest and posttest scores of boys and girls, or between "regular" or "honors" students. In both cases no statistically significant difference was found.

  1. Curriculum Profiles: A Resource of the EDC K-12 Science Curriculum Dissemination Center

    ERIC Educational Resources Information Center

    Education Development Center, Inc, 2005

    2005-01-01

    The purpose of this document is to provide useful information for teachers and school systems engaged in the process of examining and choosing science curriculum materials appropriate for their settings. The curriculum profiles include summaries of selected programs available for K?12 science curriculum programs. Each profile describes a number of…

  2. Testing the effect of a science-enhanced curriculum on the science achievement and agricultural competency of secondary agricultural education students

    NASA Astrophysics Data System (ADS)

    Haynes, James Christopher

    Scope and Method of Study. The purpose of this study was to determine if a science-enhanced curriculum produced by the Center for Agricultural and Environmental Research and Training (CAERT) taught in a secondary level animal science or horticulture course would improve students' understanding of selected scientific principles significantly, when compared to students who were instructed using a traditional curriculum. A secondary purpose was to determine the effect that the science-enhanced CAERT curriculum would have on students' agricultural knowledge when compared to students who were instructed using a traditional curriculum. The design of the study was ex post facto, causal comparative because no random assignment of the treatment group occurred. Findings and Conclusions. No statistically significant difference was found between the treatment and comparison groups regarding science achievement. However, the mean score of the treatment group was slightly larger than the comparison group indicating a slightly higher achievement level; a "Small" effect size (d = .16) for this difference was calculated. It was determined that a statistically significant difference (p < .05) existed in agriculture competency scores in animal science (p = .001) and horticulture (p = .000) as a result of the treatment. Moreover, this was considered to be a "very large" effect (d = 1.18) in animal science and a "large" effect (d = .92) in horticulture. When considering student achievement in science, this study found that the use of the science-enhanced CAERT curriculum did not result in a statistically significant increase (p < .05) in student performance as determined by the TerraNova3 science proficiency examination. However, students who were instructed using the CAERT curriculum scored better overall than those who were instructed using a "traditional" curriculum.

  3. Investigating the Transition Process when Moving from a Spiral Curriculum Alignment into a Field-Focus Science Curriculum Alignment in Middle School

    ERIC Educational Resources Information Center

    Alwardt, Randi Kay

    2011-01-01

    This investigation examined the transition from a spiral science curriculum to a field-focus science curriculum in middle school. A spiral science curriculum focuses on a small part of each field of science during each middle school year, more of a general science concept. In contrast to that, the base of a field-focus curriculum is that each…

  4. The effects of a new constructivist science curriculum (PIPS) for prospective elementary teachers

    NASA Astrophysics Data System (ADS)

    Liang, Ling L.

    This study examines the effectiveness of a new constructivist curriculum model (Powerful Ideas in Physical Science, PIPS) in promoting preservice teachers' understanding of science concepts, in fostering a learning environment supporting conceptual change, and in improving preservice teachers' attitudes toward science as well as their science teaching efficacy beliefs. The PIPS curriculum model integrates a conceptual change perspective with a hands-on, inquiry-based approach and other promising effective teaching strategies such as cooperative learning. Three instructors each taught one class section using the PIPS and one using the existing curriculum for an introductory science course. Their students were 121 prospective elementary teachers at a large mid-western university. ANCOVA and Repeated Measures Analyses of Variance were performed to analyze the scores on concept tests and attitude surveys. Data from videotaped observations of lab sessions and interviews of prospective teachers and their instructors were analyzed by employing a naturalistic inquiry method to get insights into the process of science learning and teaching for the prospective teachers. The interpretations were made based on the findings that could be corroborated by both methodologies. For the twelve prospective teachers interviewed, it was found that the PIPS model was more effective in promoting conceptual understanding and positive attitudes toward science learning for those with lower past science performance. The PIPS approach left more room for self-reflection on the development of understanding of science concepts in contrast to the lecture-lab type teaching. Factors that might have influenced the teacher trainees' attitudes and beliefs about learning and teaching science were identified and discussed. It was also found that better cooperative learning and a more supportive learning environment have been promoted in the PIPS classrooms. However, the differential treatment effects on

  5. Field Studies: Hands-on, Real-Science Research.

    ERIC Educational Resources Information Center

    Cunniff, Patricia A.; McMillen, Janet L.

    1996-01-01

    Describes an intensive three-week experience for 10th and 11th graders in a National Science Foundation Young Scholars Program. Two weeks of biology instruction precede one week of field research. The curriculum includes life histories of birds in the Chesapeake Bay area, reproductive ecology, aquatic ecology, entomology, and statistics. (DDR)

  6. Trash Conflicts: A Science and Social Studies Curriculum on the Ethics of Disposal. An Interdisciplinary Curriculum.

    ERIC Educational Resources Information Center

    Ballin, Amy; And Others

    Designed for middle school science and social studies classes, this document is a curriculum on waste disposal. Mathematics and language skills also are incorporated into many of the activities. In the study of trash disposal, science students benefit from understanding the social issues related to the problem. Social studies students need…

  7. Life Science Curriculum Guide. Bulletin 1614.

    ERIC Educational Resources Information Center

    Louisiana State Dept. of Education, Baton Rouge. Div. of Academic Programs.

    This curriculum guide, developed to establish statewide curriculum standards for the Louisiana Competency-based Education Program, contains the minimum competencies and process skills that should be included in a life science course. It consists of: (1) a rationale for an effective science program; (2) a list and description of four major goals of…

  8. Not-So-Messy Hands-On Science.

    ERIC Educational Resources Information Center

    Bryan, Denise; Denty, Amy

    2002-01-01

    Presents four elementary hands-on science activities that highlight animal adaptation (how birds' beaks are adapted to suit their habitats), the water cycle (how nature cleans rainwater that seeps into the ground), aquatic ecosystems (changes over time in an aquatic habitat), and animal habitats (all living beings' need for food, water, shelter,…

  9. Science Curriculum Guide, Level 3.

    ERIC Educational Resources Information Center

    Newark School District, DE.

    The third of four levels in a K-12 science curriculum is outlined. In Level 3 (grades 6-8), science areas include life science, earth science, and physical science (physics and chemistry). Conveniently listed are page locations for educational and instructional objectives, cross-referenced to science area (i.e., life science, animals, genetics)…

  10. Infusing Quantitative Approaches throughout the Biological Sciences Curriculum

    ERIC Educational Resources Information Center

    Thompson, Katerina V.; Cooke, Todd J.; Fagan, William F.; Gulick, Denny; Levy, Doron; Nelson, Kären C.; Redish, Edward F.; Smith, Robert F.; Presson, Joelle

    2013-01-01

    A major curriculum redesign effort at the University of Maryland is infusing all levels of our undergraduate biological sciences curriculum with increased emphasis on interdisciplinary connections and quantitative approaches. The curriculum development efforts have largely been guided by recommendations in the National Research Council's "Bio…

  11. Hands-On Environmental Science Activities. Teacher's Edition. First Edition.

    ERIC Educational Resources Information Center

    Kutscher, Eugene

    The ability of students to go beyond facts and to think critically, while at the same time enjoying and valuing the learning process, is fundamental to science and environmentalism. This book provides enrichment activities for the science curriculum that provide concrete connections with important world events. Each activity is self-contained and…

  12. Science Curriculum. Kindergarten through Grade Twelve.

    ERIC Educational Resources Information Center

    Fitchburg State Coll., MA. Dept. of Special Education.

    This science curriculum guide provides a framework for science teachers of grades K-12 in the Leominster Public School System, Massachusetts. It represents the efforts of teachers and higher education faculty. An introductory section provides a philosophical statement on the nature of science and perspectives in the learning and teaching of…

  13. 3Hs Education: Examining hands-on, heads-on and hearts-on early childhood science education

    NASA Astrophysics Data System (ADS)

    Zeynep Inan, Hatice; Inan, Taskin

    2015-08-01

    Active engagement has become the focus of many early childhood science education curricula and standards. However, active engagement usually emphasizes getting children engaged with science solely through hands-on activities. Active engagement by way of hands, heads, and hearts are kept separate and rarely discussed in terms of getting all to work together, although inquiry-based education and student interest have been accepted as important in science education. The current study is an inquiry-based research. It aims to describe and examine projects and activity stations for preschoolers in a Turkish preschool classroom bringing together the pieces of the puzzle of science education, called here 'Hands-Heads-Hearts-on Science Education'. The study, conducted from a qualitative-interpretivist paradigm, reveals that activity stations and projects create a context for hands-on (active engagement), heads-on (inquiry based or mental-engagement), and hearts-on (interest based) science education. It is found that activity stations and projects, when maintained by appropriate teacher-support, create a playful context in which children can be actively and happily engaged in science-related inquiry.

  14. Innovative Hands-on Activities for Middle School Science.

    ERIC Educational Resources Information Center

    Barry, Dana M.

    This paper contains some hands-on activities that relate science to art and language arts. The focus is placed on middle schools and activities engage students in the discovery that chemicals are used to draw and color. Students also read and write poetry and literature that employ science-related topics. A number of spin-off activities are…

  15. Promoting Female Students' Learning Motivation towards Science by Exercising Hands-On Activities

    ERIC Educational Resources Information Center

    Wen-jin, Kuo; Chia-ju, Liu; Shi-an, Leou

    2012-01-01

    The purpose of this study is to design different hands-on science activities and investigate which activities could better promote female students' learning motivation towards science. This study conducted three types of science activities which contains nine hands-on activities, an experience scale and a learning motivation scale for data…

  16. Professional Learning Communities (PLCs) as a Means for School-Based Science Curriculum Change

    NASA Astrophysics Data System (ADS)

    Browne, Christi L.

    The challenge of school-based science curriculum change and educational reform is often presented to science teachers and departments who are not necessarily prepared for the complexity of considerations that change movements require. The development of a Professional Learning Community (PLC) focused on a science department's curriculum change efforts, may provide the necessary tools to foster sustainable school-based curriculum science changes. This research presents a case study of an evolving science department PLC consisting of 10 middle school science teachers from the same middle school and their efforts of school-based science curriculum change. A transformative mixed model case study with qualitative data and deepened by quantitative analysis, was chosen to guide the investigation. Collected data worked to document the essential developmental steps, the occurrence and frequency of the five essential dimensions of successful PLCs, and the influences the science department PLC had on the middle school science department's progression through school-based science curriculum change, and the barriers, struggles and inhibiting actions of the science department PLC. Findings indicated that a science department PLC was unique in that it allowed for a focal science departmental lens of science curriculum change to be applied to the structure and function of the PLC and therefore the process, proceedings, and results were directly aligned to and driven by the science department. The science PLC, while logically difficult to set-up and maintain, became a professional science forum where the middle school science teachers were exposed to new science teaching and learning knowledge, explored new science standards, discussed effects on student science learning, designed and critically analyzed science curriculum change application. Conclusions resulted in the science department PLC as an identified tool providing the ability for science departmental actions to lead to

  17. A Low-Tech, Hands-On Approach To Teaching Sorting Algorithms to Working Students.

    ERIC Educational Resources Information Center

    Dios, R.; Geller, J.

    1998-01-01

    Focuses on identifying the educational effects of "activity oriented" instructional techniques. Examines which instructional methods produce enhanced learning and comprehension. Discusses the problem of learning "sorting algorithms," a major topic in every Computer Science curriculum. Presents a low-tech, hands-on teaching method for sorting…

  18. Uncovering Portuguese Teachers' Difficulties in Implementing Sciences Curriculum

    ERIC Educational Resources Information Center

    Vasconcelos, Clara; Torres, Joana; Moutinho, Sara; Martins, Idalina; Costa, Nilza

    2015-01-01

    Many countries recognize the positive and effective results of improving science education through the introduction of reforms in the sciences curriculum. However, some important issues are generally neglected like, for example, the involvement of the teachers in the reform process. Taking the sciences curriculum reform under analysis and…

  19. An Undergraduate Computer Science Curriculum for the Hearing Impaired.

    ERIC Educational Resources Information Center

    Perkins, A. Louise

    1995-01-01

    Presents an example section from a computer-science-integrated curriculum that was originally based on the Association of Computing Machinery (ACM) 1978 curriculum. The curriculum was designed to allow both instructors and students to move away from teaching and learning facts. (DDR)

  20. Linking Science and Statistics: Curriculum Expectations in Three Countries

    ERIC Educational Resources Information Center

    Watson, Jane M.

    2017-01-01

    This paper focuses on the curriculum links between statistics and science that teachers need to understand and apply in order to be effective teachers of the two fields of study. Meaningful statistics does not exist without context and science is the context for this paper. Although curriculum documents differ from country to country, this paper…

  1. Student achievement in science and mathematics on campuses that have implemented the CSCOPE curriculum model

    NASA Astrophysics Data System (ADS)

    Wilson, Emily R.

    The purpose of this study was to determine whether differences in student achievement exist between school campuses which followed a specific standards-based curriculum model (CSCOPE) and school campuses which followed a non-CSCOPE or traditional curriculum model. One-hundred and sixty CSCOPE curriculum campuses and 160 non-CSCOPE curriculum campuses were used in the study. Achievement data were collected on students in the fifth, eighth, and eleventh grades using the campuses percentage passing on the Texas Assessment of Knowledge and Skills (TAKS) for both science and mathematics. The TAKS is the state-mandated assessment system used to comply with federal testing guidelines. Data for the 2007-2008 school year were used for the elementary level while data from 2006-2007 and 2007-2008 were used for junior high (middle school) and high school levels. Data were analyzed by overall class as well as aggregated by ethnic classifications. Descriptive statistics were used to summarize achievement results and t-tests were utilized to analyze achievement differences between the two curriculum models. Overall fifth grade students in CSCOPE schools outperformed (p < .05) non-CSCOPE counterparts in science and mathematics. Also, fifth grade Hispanic students using CSCOPE curriculum scored higher (p < .05) than those in traditional curricula. Eighth grade students in CSCOPE schools performed better (p < .05) in science than students in non-CSCOPE schools. Finally, eighth grade Hispanic and White subgroups using CSCOPE curriculum outperformed ( p < .05) their ethnic counterparts using traditional curriculum models. The only statistically significant finding at the eleventh grade level was the African-American subgroup in science, but this subgroup had too small of a sample to infer the findings to the population. Thus, the results would tend to support use of the standardized curriculum model (CSCOPE) at lower levels whereas achievement in high school may not be differentially

  2. K-6 Science Curriculum.

    ERIC Educational Resources Information Center

    Blueford, J. R.; And Others

    A unified science approach is incorporated in this K-6 curriculum mode. The program is organized into six major cycles. These include: (1) science, math, and technology cycle; (2) universe cycle; (3) life cycle; (4) water cycle; (5) plate tectonics cycle; and (6) rock cycle. An overview is provided of each cycle's major concepts. The topic…

  3. Preservice Elementary Teachers' Adaptation of Science Curriculum Materials for Inquiry-Based Elementary Science

    ERIC Educational Resources Information Center

    Forbes, Cory T.

    2011-01-01

    Curriculum materials are important resources with which teachers make pedagogical decisions about the design of science learning environments. To become well-started beginning elementary teachers capable of engaging their students in inquiry-based science, preservice elementary teachers need to learn to use science curriculum materials…

  4. The influence of secondary science teachers' pedagogical content knowledge, educational beliefs and perceptions of the curriculum on implementation and science reform

    NASA Astrophysics Data System (ADS)

    Bonner, Portia Selene

    2001-07-01

    themes and sub-themes that attempts to explain how teachers begin with an intended curriculum but digress to the actual curriculum. The results of this study were consistent with previous research on teachers' beliefs and pedagogy but also revealed a new model to explain the interaction of the three constructs. Each instructor held individual beliefs about science, science teaching and pedagogy. However, there was some commonality with teachers' beliefs, pedagogy and perceptions that impacted the implementation of the curriculum. It is the interplay of teachers' educational beliefs, pedagogical content knowledge and perceptions of the curriculum that determines what is taught and instructional strategies used to teach a concept.

  5. The Proof of the Pudding?: A Case Study of an "At-Risk" Design-Based Inquiry Science Curriculum

    NASA Astrophysics Data System (ADS)

    Chue, Shien; Lee, Yew-Jin

    2013-12-01

    When students collaboratively design and build artifacts that require relevant understanding and application of science, many aspects of scientific literacy are developed. Design-based inquiry (DBI) is one such pedagogy that can serve these desired goals of science education well. Focusing on a Projectile Science curriculum previously found to be implemented with satisfactory fidelity, we investigate the many hidden challenges when using DBI with Grade 8 students from one school in Singapore. A case study method was used to analyze video recordings of DBI lessons conducted over 10 weeks, project presentations, and interviews to ascertain the opportunities for developing scientific literacy among participants. One critical factor that hindered learning was task selection by teachers, which emphasized generic scientific process skills over more important cognitive and epistemic learning goals. Teachers and students were also jointly engaged in forms of inquiry that underscored artifact completion over deeper conceptual and epistemic understanding of science. Our research surfaced two other confounding factors that undermined the curriculum; unanticipated teacher effects and the underestimation of the complexity of DBI and of inquiry science in general. Thus, even though motivated or experienced teachers can implement an inquiry science curriculum with good fidelity and enjoy school-wide support, these by themselves will not guarantee deep learning of scientific literacy in DBI. Recommendations are made for navigating the hands- and minds-on aspects of learning science that is an asset as well as inherent danger during DBI teaching.

  6. Science Curriculum Components Favored by Taiwanese Biology Teachers

    NASA Astrophysics Data System (ADS)

    Lin, Chen-Yung; Hu, Reping; Changlai, Miao-Li

    2005-09-01

    The new 1-9 curriculum framework in Taiwan provides a remarkable change from previous frameworks in terms of the coverage of content and the powers of teachers. This study employs a modified repertory grid technique to investigate biology teachers' preferences with regard to six curriculum components. One hundred and eighty-five in-service and pre-service biology teachers were asked to determine which science curriculum components they liked and disliked most of all to include in their biology classes. The data show that the rank order of these science curriculum components, from top to bottom, was as follows: application of science, manipulation skills, scientific concepts, social/ethical issues, problem-solving skills, and the history of science. They also showed that pre-service biology teachers, as compared with in-service biology teachers, favored problem-solving skills significantly more than manipulative skills, while in-service biology teachers, as compared with pre-service biology teachers, favored manipulative skills significantly more than problem-solving skills. Some recommendations for ensuring the successful implementation of the Taiwanese 1-9 curriculum framework are also proposed.

  7. An Undergraduate Environmental Science Curriculum.

    ERIC Educational Resources Information Center

    Gupta, Gian C.

    1982-01-01

    Describes a curriculum in Environmental Sciences adopted by the University of Maryland Eastern Shore. Includes lists of lower-level courses for the first two years, required courses, and recommended electives. Discusses cooperative education/on-the-job training component, implementation, and evaluation. (Author/JN)

  8. Ocean Sciences Sequence for Grades 6-8: Climate Change Curriculum Developed Through a Collaboration Between Scientists and Educators

    NASA Astrophysics Data System (ADS)

    Halversen, C.; Weiss, E. L.; Pedemonte, S.

    2016-02-01

    Today's youth have been tasked with the overwhelming job of addressing the world's climate future. The students who will become the scientists, policy makers, and citizens of tomorrow must gain a robust understanding of the causes and effects of climate change, as well as possible adaptation strategies. Currently, few high quality curriculum materials exist that address climate change in a developmentally appropriate manner. The NOAA-funded Ocean Sciences Sequence for Grades 6-8: The Ocean-Atmosphere Connection and Climate Change (OSS) addresses this gap by providing teachers with scientifically accurate climate change curriculum that hits on some of the most salient points in climate science, while simultaneously developing students' science process skills. OSS was developed through a collaboration between some of the nation's leading ocean and climate scientists and the Lawrence Hall of Science's highly qualified curriculum development team. Scientists were active partners throughout the entire development process, from initial brainstorming of key concepts and creating the conceptual storyline for the curriculum to final review of the content and activities. The goal was to focus strategically and effectively on core concepts within ocean and climate sciences that students should understand. OSS was designed in accordance with the latest research from the learning sciences and provides numerous opportunities for students to develop facility with science practices by "doing" science.Through hands-on activities, technology, informational readings, and embedded assessments, OSS deeply addresses a significant number of standards from the Next Generation Science Standards and is being used by many teachers as they explore the shifts required by NGSS. It also aligns with the Ocean Literacy and Climate Literacy Frameworks. OSS comprises 33 45-minute sessions organized into three thematic units, each driven by an exploratory question: (1) How do the ocean and atmosphere

  9. Science Curriculum Guide, Level 4.

    ERIC Educational Resources Information Center

    Newark School District, DE.

    The fourth of four levels in a K-12 science curriculum is outlined. In Level 4 (grades 9-12), science areas include earth science, biology, chemistry, and physics. Six major themes provide the basis for study in all levels (K-12). These are: Change, Continuity, Diversity, Interaction, Limitation, and Organization. In Level 4, all six themes are…

  10. Hands-On Science, 680 Hands at a Time: Shrinking the Large Lecture with a Collapsing Can Experiment.

    ERIC Educational Resources Information Center

    Shipman, Harry L.

    2001-01-01

    Explains how hands-on science activities can be done in a class designed as a lecture setting. Uses the collapsing can activity to demonstrate the birth of a black hole. Evaluates student responses to the hands-on approach. (YDS)

  11. NUCLEAR SCIENCE CURRICULUM PROJECT, PROJECT I, INSTRUCTIONAL SPECIFICATIONS.

    ERIC Educational Resources Information Center

    CAMAREN, JAMES

    ON THE PREMISE THAT A KNOWLEDGE OF NUCLEAR SCIENCE IS ESSENTIAL FOR INTELLIGENT DECISION-MAKING REGARDING ITS USES, THE NUCLEAR SCIENCE CURRICULUM PROJECT WAS DEVELOPED. ITS OBJECTIVE IS TO PROVIDE A PROGRAM THAT CAN BE EFFECTIVELY USED IN SCIENCE CLASSES TO PROVIDE AN UNDERSTANDING OF NUCLEAR SCIENCE AND ITS IMPACT ON SOCIETY. THOUGH TEACHER…

  12. Course and Curriculum Improvement Materials: Mathematics, Science, Social Sciences - Elementary, Intermediate, Secondary.

    ERIC Educational Resources Information Center

    National Science Foundation, Washington, DC.

    This is a list of curriculum improvement materials produced by major course and curriculum projects supported by the National Science Foundation's Division of Pre-College Education in Science. The materials are grouped by educational level (elementary, intermediate, and secondary) and within each level by broad discipline groupings (mathematics,…

  13. Integrating Technology, Curriculum, and Online Resources: A Multilevel Model Study of Impacts on Science Teachers and Students

    ERIC Educational Resources Information Center

    Ye, Lei

    2013-01-01

    This scale-up study investigated the impact of a teacher technology tool (Curriculum Customization Service, CCS), curriculum, and online resources on earth science teachers' attitudes, beliefs, and practices and on students' achievement and engagement with science learning. Participants included 73 teachers and over 2,000 ninth-grade students…

  14. The interdisciplinary effect of hands-on science as measured by the Tennessee Comprehensive Assessment Program (TCAP)

    NASA Astrophysics Data System (ADS)

    Cherry, Elvis H.

    This study examined the difference in scale scores from Tennessee's standardized test the Tennessee Comprehensive Assessment Program (TCAP). Archival data from the years 2002 and 2005 were compared using ANOVA tests at < .01 and < .05 levels. TCAP/NCE Scale Scores for academic subjects of Science, Math, Social Studies and Reading were used. 3922 student test results were divided into groups based on the number of years the student had a trained hands-on science teacher. Trained hands-on science teachers were identified from Metropolitan Nashville Public Schools (MNPS) Science Department inservice records, which gave information on the teacher's participation in The Hands-on Science Initiative, Biology Gateway and Physical Science training. This information included not only that the teacher had be trained but also the dates of training. The study revealed 1600 students who attended MNPS between the years 2002 and 2005; in grades five through seven that never had a hands-on science trained teacher. About 1600 students in those same years had a hands-on science teacher for only one year, and 588 students had a hands-on science teacher for two of the three years. Lastly of the 3922 students in the study there were 44 students who had a hands-on science teacher for all three years. The results of the ANOVA test showed statistically significant gains in science, math and social studies but not in reading for students who had trained hands-on science teachers for at least one year.

  15. A Perspective on the Intended Science Curriculum in Iceland and its `Transformation' over a Period of 50 Years

    NASA Astrophysics Data System (ADS)

    Thorolfsson, Meyvant; Finnbogason, Gunnar E.; Macdonald, Allyson

    2012-11-01

    In recent decades, a consensus has emerged among educators and scientists that all compulsory school students need good science education. The debate about its purpose and nature as a school subject in an emerging information society has not been as conclusive. To further understand this, it helps to examine how the science curriculum has transformed and what forces have shaped it as a core curricular area over time. This article sheds light on the transformation of the science curriculum for compulsory schools in Iceland in force from 1960 to 2010. Using criteria based on curriculum ideologies regarding the function of learners, instructors and subject matter in the learning process and the orientation of content and product versus process and development, it offers findings from content analysis of the intended science curriculum. The official curriculum was studied and conceptualised as it has evolved over time. The curriculum developers appear to have been striving for a compromise between conflicting views, resulting in what the authors of this article conceive as a 'kaleidoscopic quilt' of ideas over the period studied.

  16. Science Curriculum Design: Views from a Psychological Framework.

    ERIC Educational Resources Information Center

    Linn, Marcia C.

    It is now almost universally acknowledged that science education must be rejuvenated to serve the needs of American society. An emerging science of science education based on recent advances in psychological research could make this rejuvenation dramatic. Four aspects of psychological research relevant to science curriculum design are discussed:…

  17. Georgia science curriculum alignment and accountability: A blueprint for student success

    NASA Astrophysics Data System (ADS)

    Reining-Gray, Kimberly M.

    Current trends and legislation in education indicate an increased dependency on standardized test results as a measure for learner success. This study analyzed test data in an effort to assess the impact of curriculum alignment on learner success as well as teacher perceptions of the changes in classroom instruction due to curriculum alignment. Qualitative and quantitative design methods were used to determine the impact of science curriculum alignment in grades 9-12. To determine the impact of science curriculum alignment from the Quality Core Curriculum (QCC) to the Georgia Performance Standards (GPS) test data and teacher opinion surveys from one Georgia School system were examined. Standardized test scores before and after curriculum alignment were analyzed as well as teacher perception survey data regarding the impact of curriculum change. A quantitative teacher perception survey was administered to science teachers in the school system to identify significant changes in teacher perceptions or teaching strategies following curriculum realignment. Responses to the survey were assigned Likert scale values for analysis purposes. Selected teachers were also interviewed using panel-approved questions to further determine teacher opinions of curriculum realignment and the impact on student success and teaching strategies. Results of this study indicate significant changes related to curriculum alignment. Teachers reported a positive change in teaching strategies and instructional delivery as a result of curriculum alignment and implementation. Student scores also showed improvement, but more research is recommended in this area.

  18. An overview of conceptual understanding in science education curriculum in Indonesia

    NASA Astrophysics Data System (ADS)

    Widiyatmoko, A.; Shimizu, K.

    2018-03-01

    The purpose of this article is to discuss the term of “conceptual understanding” in science education curriculum in Indonesia. The implementation of 2013 Curriculum focuses on the acquisition of contextual knowledge in respective areas and environments. The curriculum seeks to develop students' evaluation skills in three areas: attitude, technical skills, and scientific knowledge. It is based on two layers of competencies: core and basic competencies. The core competencies in the curriculum 2013 represent the ability level to achieve the gradute competency standards of a students at each grade level. There are four mandatory core competencies for all educational levels and all subjects including science, which are spiritual, social, knowledge and skills competencies. In terms of knowledge competencies, conceptual understanding is an inseparable part of science concept since conceptual understanding is one of the basic competencies in science learning. This competency is a part of science graduation standard indicated in MoEC article number 20 in 2016. Therefore, conceptual understanding is needed by students for learning science successfully.

  19. Science CAP: Curriculum Assistance Program. [Multimedia.

    ERIC Educational Resources Information Center

    DEMCO, Inc., Madison, WI.

    Science Curriculum Assistance Program (Science CAP(TM)) is a multimedia package developed to create a model for preserving classroom science activities that can be shared and customized by teachers. This program is designed to assist teachers in preparing classroom science activities for grades five through eight, and to foster an environment of…

  20. From FRA to RFN, or How the Family Resemblance Approach Can Be Transformed for Science Curriculum Analysis on Nature of Science

    NASA Astrophysics Data System (ADS)

    Kaya, Ebru; Erduran, Sibel

    2016-12-01

    The inclusion of Nature of Science (NOS) in the science curriculum has been advocated around the world for several decades. One way of defining NOS is related to the family resemblance approach (FRA). The family resemblance idea was originally described by Wittgenstein. Subsequently, philosophers and educators have applied Wittgenstein's idea to problems of their own disciplines. For example, Irzik and Nola adapted Wittgenstein's generic definition of the family resemblance idea to NOS, while Erduran and Dagher reconceptualized Irzik and Nola's FRA-to-NOS by synthesizing educational applications by drawing on perspectives from science education research. In this article, we use the terminology of "Reconceptualized FRA-to-NOS (RFN)" to refer to Erduran and Dagher's FRA version which offers an educational account inclusive of knowledge about pedagogical, instructional, curricular and assessment issues in science education. Our motivation for making this distinction is rooted in the need to clarify the various accounts of the family resemblance idea.The key components of the RFN include the aims and values of science, methods and methodological rules, scientific practices, scientific knowledge as well as the social-institutional dimensions of science including the social ethos, certification, and power relations. We investigate the potential of RFN in facilitating curriculum analysis and in determining the gaps related to NOS in the curriculum. We analyze two Turkish science curricula published 7 years apart and illustrate how RFN can contribute not only to the analysis of science curriculum itself but also to trends in science curriculum development. Furthermore, we present an analysis of documents from USA and Ireland and contrast them to the Turkish curricula thereby illustrating some trends in the coverage of RFN categories. The results indicate that while both Turkish curricula contain statements that identify science as a cognitive-epistemic system, they

  1. The Impact of a Curriculum Course on Pre-Service Primary Teachers' Science Content Knowledge and Attitudes towards Teaching Science

    ERIC Educational Resources Information Center

    Murphy, Cliona; Smith, Greg

    2012-01-01

    Many primary school teachers have insufficient content and pedagogical knowledge of science. This lack of knowledge can often lead to a lack of confidence and competence in teaching science. This article explores the impact of a year-long science methodology (curriculum science) course on second year Bachelor of Education (BEd) students'…

  2. Performance Assessments in Science: Hands-On Tasks and Scoring Guides.

    ERIC Educational Resources Information Center

    Stecher, Brian M.; Klein, Stephen P.

    In 1992, RAND received a grant from the National Science Foundation to study the technical quality of performance assessments in science and to evaluate their feasibility for use in large-scale testing programs. The specific goals of the project were to assess the reliability and validity of hands-on science testing and to investigate the cost and…

  3. School Teachers' Experiences of Science Curriculum Reform

    NASA Astrophysics Data System (ADS)

    Ryder, Jim; Banner, Indira

    2013-02-01

    We examine teachers' experiences of a major reform of the school science curriculum for 14-16-year olds in England. This statutory reform enhances the range of available science courses and emphasises the teaching of socio-scientific issues and the nature of science, alongside the teaching of canonical science knowledge. This paper examines teachers' experiences of the reform and the factors that condition these experiences. A designed sample of 22 teachers discussed their experiences of the reform within a semi-structured interview. Our analysis considers how the external and internal structures within which teachers work interact with the personal characteristics of teachers to condition their experiences of the curriculum reform. In many cases, personal/internal/external contexts of teachers' work align, resulting in an overall working context that is supportive of teacher change. However, in other cases, tensions within these contexts result in barriers to change. We also explore cases in which external curriculum reform has stimulated the development of new contexts for teachers' work. We argue that curriculum reformers need to recognise the inevitability of multiple teaching goals within a highly differentiated department and school workplace. We also show how experiences of curriculum reform can extend beyond the learning of new knowledge and associated pedagogies to involve challenges to teachers' professional identities. We argue for the extended use of teacher role models within local communities of practice to support such 'identity work'.

  4. Infusion of Climate Change and Geospatial Science Concepts into Environmental and Biological Science Curriculum

    NASA Astrophysics Data System (ADS)

    Balaji Bhaskar, M. S.; Rosenzweig, J.; Shishodia, S.

    2017-12-01

    The objective of our activity is to improve the students understanding and interpretation of geospatial science and climate change concepts and its applications in the field of Environmental and Biological Sciences in the College of Science Engineering and Technology (COEST) at Texas Southern University (TSU) in Houston, TX. The courses of GIS for Environment, Ecology and Microbiology were selected for the curriculum infusion. A total of ten GIS hands-on lab modules, along with two NCAR (National Center for Atmospheric Research) lab modules on climate change were implemented in the "GIS for Environment" course. GIS and Google Earth Labs along with climate change lectures were infused into Microbiology and Ecology courses. Critical thinking and empirical skills of the students were assessed in all the courses. The student learning outcomes of these courses includes the ability of students to interpret the geospatial maps and the student demonstration of knowledge of the basic principles and concepts of GIS (Geographic Information Systems) and climate change. At the end of the courses, students developed a comprehensive understanding of the geospatial data, its applications in understanding climate change and its interpretation at the local and regional scales during multiple years.

  5. Interest-Based Curriculum for House Care Services: Science.

    ERIC Educational Resources Information Center

    Natchitoches Parish School Board, LA.

    The interest-based curriculum materials are designed to correlate the subjects of English, math, science, and home economics and infuse academic skills into the world of work. The House Care Science curriculum guide is divided into five units: (1) measurement, (2) household chemistry, (3) household electricity, (4) household machines, and (5)…

  6. Horizontal integration of the basic sciences in the chiropractic curriculum.

    PubMed

    Ward, Kevin P

    2010-01-01

    Basic science curricula at most chiropractic colleges consist of courses (eg, general anatomy, physiology, biochemistry, etc) that are taught as stand-alone content domains. The lack of integration between basic science disciplines causes difficulties for students who need to understand how the parts function together as an integrated whole and apply this understanding to solving clinical problems. More horizontally integrated basic science curricula could be achieved by several means: integrated Part I National Board of Chiropractic Examiners questions, a broader education for future professors, an increased emphasis on integration within the current model, linked courses, and an integrated, thematic basic science curriculum. Horizontally integrating basic science curricula would require significant efforts from administrators, curriculum committees, and instructional faculty. Once in place this curriculum would promote more clinically relevant learning, improved learning outcomes, and superior vertical integration.

  7. Horizontal Integration of the Basic Sciences in the Chiropractic Curriculum

    PubMed Central

    Ward, Kevin P.

    2010-01-01

    Basic science curricula at most chiropractic colleges consist of courses (eg, general anatomy, physiology, biochemistry, etc) that are taught as stand-alone content domains. The lack of integration between basic science disciplines causes difficulties for students who need to understand how the parts function together as an integrated whole and apply this understanding to solving clinical problems. More horizontally integrated basic science curricula could be achieved by several means: integrated Part I National Board of Chiropractic Examiners questions, a broader education for future professors, an increased emphasis on integration within the current model, linked courses, and an integrated, thematic basic science curriculum. Horizontally integrating basic science curricula would require significant efforts from administrators, curriculum committees, and instructional faculty. Once in place this curriculum would promote more clinically relevant learning, improved learning outcomes, and superior vertical integration. PMID:21048882

  8. Factors influencing teacher decisions on school, classroom, and curriculum

    NASA Astrophysics Data System (ADS)

    Crocker, Robert K.; Banfield, Helen

    This article describes a study designed to explore sources of influence on the judgments made by science teachers on school characteristics, classroom features, and properties of a science curriculum. The study had its theoretical basis in the concept that members of a social organization operate under certain functional paradigms, which govern their approach to events within the organization, and particularly to the implementation of innovations. Empirically, the study formed part of the Canadian contribution to the Second International Science Study, and was based on a survey of some 2000 Canadian teachers. The survey used an adaptation of policy capturing methodology, in which teachers were presented with variations in a hypothetical scenario designed to simulate a decision-making situation. Results suggest that teachers' judgments center around a number of factors, the primary ones being concern for student ability and interest, teaching methods, and school spirit and morale. On the other hand, variations in the scientific basis of a curriculum appear to exert little influence. The results are interpreted as indicators of the major elements of teacher functional paradigms.

  9. Mi-STAR: Designing Integrated Science Curriculum to Address the Next Generation Science Standards and Their Foundations

    NASA Astrophysics Data System (ADS)

    Gochis, E. E.; Huntoon, J. E.

    2015-12-01

    Mi-STAR (Michigan Science Teaching and Assessment Reform, http://mi-star.mtu.edu/) was funded by the Herbert H. and Grace A. Dow Foundation to reform K-12 science education to present science as an integrated body of knowledge that is applied to address societal issues. To achieve this goal, Mi-STAR is developing an integrated science curriculum for the middle grades that will be aligned with the Next Generation Science Standards (NGSS). Similar to the geosciences, the curriculum requires the integration of science, engineering and math content to explore 21st-century issues and demonstrates how these concepts can be used in service of society. The curriculum is based on the Mi-STAR Unit Specification Chart which pairs interdisciplinary themes with bundled NGSS Performance Expectations. Each unit is developed by a collaborative team of K-12 teachers, university STEM content experts and science education experts. Prior to developing a unit, each member on the team attends the on-line Mi-STAR Academy, completing 18+ hours of professional development (PD). This on-line PD program familiarizes teachers and experts with necessary pedagogical and content background knowledge, including NGSS and three-dimensional learning. With this background, teams use a staged, backwards design process to craft a multi-week unit based on a series of performance based tasks, or 'challenges' that engage students in actively doing science and engineering. Each unit includes Disciplinary Core Ideas from multiple disciplines, which focus on local and familiar examples that demonstrate the relevance of science in student's lives. Performance-based assessments are interwoven throughout the unit. Mi-STAR units will go through extensive pilot testing in several school districts across the state of Michigan. Additionally, the Mi-STAR program will develop teacher professional development programs to support implementation of the curriculum and design a pre-service teacher program in integrated

  10. Food Science 7075. Curriculum Guide.

    ERIC Educational Resources Information Center

    North Carolina State Dept. of Public Instruction, Raleigh. Div. of Vocational and Technical Education Services.

    This curriculum guide was developed as a resource for teachers to use in planning and implementing a competency-based instructional program on food science in the 11th and 12th grades. It contains materials for a 2-semester course, based on the North Carolina Program of Studies (revised 1992); it is designed to help students learn about the…

  11. Changing Curriculum: A Critical Inquiry into the Revision of the British Columbia Science Curriculum For Grades K-9

    NASA Astrophysics Data System (ADS)

    Searchfield, Mary A.

    In 2010 British Columbia's Ministry of Education started the process of redesigning the provincial school curriculum, Kindergarten to Grade 12. Mandatory implementation of the new curriculum was set for the 2016/17 school year for Grades K-9, and 2017/18 for Grades 10-12. With a concerted emphasis on personalized learning and through the frame of a Know-Do-Understand curriculum model, the new curriculum aims to meet the needs of today's learners, described as living in a technology-rich, fast-paced and ever-changing world, through a concept-based and competency-driven emphasis. This thesis is a critical analysis of the BC K-9 Science curriculum as written and published, looking specifically at how science is treated as a form of knowledge, its claimed presentation as a story, and on whether the intentions claimed by the designers are matched in the curriculum's final form.

  12. The Influence of Laboratory Instruction on Science Achievement and Attitude toward Science among Ninth Grade Students across Gender Differences.

    ERIC Educational Resources Information Center

    Freedman, Michael P.

    This study investigated the use of a hands-on laboratory program as a means of improving attitude toward science and increasing achievement levels in science knowledge among students in a ninth grade physical science course. Using a posttest-only control group design, a curriculum referenced objective final examination was used to measure student…

  13. Bringing Data Science, Xinformatics and Semantic eScience into the Graduate Curriculum

    NASA Astrophysics Data System (ADS)

    Fox, P.

    2012-04-01

    Committee on Information and Data (SCCID), features this excerpt from section 4.2.4 Data scientists and professionals: "An unfortunate state in the recognition of data science, is that there is a lack of appreciation of the need for a set of professional knowledge in skill in key areas, many of which have not been emphasized to date, e.g. professional approaches to the management of data over its lifecycle. As such, the effort required to be a data scientists is not valued sufficiently by the remainder of the scientific community." SCCID Recommendation 6 reads: "We recommend the development of education at university level in the new and vital field of data science. The curriculum included in appendix D can be used as a starting point for curriculum development. Appendix D. is entitled "Example curriculum for data science" and explicitly uses the "Curriculum for Data Science taught at Rensselaer Polytechnic Institute, USA" . This contribution will present relevant curriculum offerings at the Rensselaer Polytechnic Institute. http://tw.rpi.edu/web/Courses

  14. Curriculum optimization of College of Optical Science and Engineering

    NASA Astrophysics Data System (ADS)

    Wang, Xiaoping; Zheng, Zhenrong; Wang, Kaiwei; Zheng, Xiaodong; Ye, Song; Zhu, Yuhui

    2017-08-01

    The optimized curriculum of College of Optical Science and Engineering is accomplished at Zhejiang University, based on new trends from both research and industry. The curriculum includes general courses, foundation courses such as mathematics and physics, major core courses, laboratory courses and several module courses. Module courses include optical system designing, optical telecommunication, imaging and vision, electronics and computer science, optoelectronic sensing and metrology, optical mechanics and materials, basics and extension. These curricula reflect the direction of latest researches and relates closely with optoelectronics. Therefore, students may combine flexibly compulsory courses with elective courses, and establish the personalized curriculum of "optoelectronics + X", according to their individual strengths and preferences.

  15. What K-8 Principals Should Know about Hands-On Science

    ERIC Educational Resources Information Center

    Jorgenson, Olaf

    2005-01-01

    In an increasing number of schools and school systems, active, hands-on science is gaining momentum and realizing remarkable gains in students' science, literacy, and mathematics standardized test achievement. Two recent major research projects have documented significant improvements in objective test results, which are supported by extensive…

  16. Teachers and Science Curriculum Materials: Where We Are and Where We Need to Go

    ERIC Educational Resources Information Center

    Davis, Elizabeth A.; Janssen, Fred J. J. M.; Van Driel, Jan H.

    2016-01-01

    Curriculum materials serve as a key conceptual tool for science teachers, and better understanding how science teachers use these tools could help to improve both curriculum design and theory related to teacher learning and decision-making. The authors review the literature on teachers and science curriculum materials. The review is organised…

  17. Designing a Science Curriculum Fit for Purpose

    ERIC Educational Resources Information Center

    Millar, Robin

    2014-01-01

    The science curriculum to age 16 should be judged on how well it meets the needs of students who progress to A-level science courses and those (a larger number) who do not. To address the diversity of students' interests and aspirations, we need a clear view of the purposes of science education rooted in a view of the purposes of education itself.…

  18. Ocean Sciences Sequence for Grades 6-8: Climate Change Curriculum Developed Through a Collaboration Between Scientists and Educators

    NASA Astrophysics Data System (ADS)

    Weiss, E.; Skene, J.; Tran, L.

    2011-12-01

    Today's youth have been tasked with the overwhelming job of addressing the world's climate future. The students who will become the scientists, policy makers, and citizens of tomorrow must gain a robust understanding of the causes and effects of climate change, as well as possible adaptation strategies. Currently, there are few high quality curricula available to teachers that address these topics in a developmentally appropriate manner. The NOAA-funded Ocean Sciences Sequence for Grades 6-8 aims to address this gap by providing teachers with scientifically accurate climate change curriculum that hits on some of the most salient points in climate science, while simultaneously developing students' science process skills. The Ocean Sciences Sequence for Grades 6-8 is developed through a collaboration between some of the nation's leading ocean and climate scientists and the Lawrence Hall of Science's highly qualified GEMS (Great Explorations in Math & Science) curriculum development team. Scientists are active partners throughout the whole development process, from initial brainstorming of key concepts and creating the conceptual storyline for the curriculum to final review of the content and activities. As with all GEMS Sequences, the Ocean Sciences Sequence for Grades 6-8 is designed to provide significant scientific and educational depth, systematic assessments and informational readings, and incorporate new learning technologies. The goal is to focus strategically and effectively on the core concepts within ocean and climate sciences that students need to understand. This curriculum is designed in accordance with the latest research from the learning sciences, and provides numerous opportunities for students to develop inquiry skills and abilities as they learn about the practice of science through hands-on activities. The Ocean Sciences Sequence for Grades 6-8 addresses in depth a significant number of national, state, and district standards and benchmarks. It

  19. Earth and Life Science: Eighth Grade. Curriculum Guide.

    ERIC Educational Resources Information Center

    Harlandale Independent School District, San Antonio, TX. Career Education Center.

    The guide is arranged in vertical columns relating curriculum concepts in earth science to curriculum performance objectives, career concepts and career performance objectives, suggested teaching methods, and resource materials. The course for eighth graders attempts to place the curriculum concepts in order of increasing difficulty. Occupational…

  20. The Impact of Science Integrated Curriculum Supplements on Early Childhood Teachers' Attitudes and Beliefs towards Science while In-Service: A Multiple Case

    NASA Astrophysics Data System (ADS)

    Collins, Kellian L.

    Science at the early childhood level has been rarely taught as a single subject or integrated into the curriculum. One reason why early childhood educators avoid teaching science are their attitudes, beliefs, and lack of understanding scientific concepts as presented in traditional science curriculums. The intervention used by researchers for improving beliefs and attitudes in K-6 pre-service teachers towards teaching science in early childhood has been science method courses. For in service teachers, the intervention has been professional development workshops, seminars, and symposiums. Though these interventions have had a positive impact on teachers' attitudes and beliefs toward teaching science, the interventions have not necessarily guaranteed more science being taught in the preschool classroom. The specific problem investigated for this study was how to improve the interventions designed to improve preschool teachers' attitudes and beliefs so that they would feel more confident in teaching science to young children. The purpose of this study was to examine how implementing a one-week science integrated curriculum supplement could be an effective tool for improving preschool teachers' attitudes and beliefs toward teaching science. This study utilized the qualitative multiple case study research method. A logical model was created based on negative teacher attitudes and beliefs attributes that were the core components of the Preschool Teachers' Attitudes and Beliefs toward Science teaching (P-TABS) questionnaire. The negative attributes were paired with positive interventions and encapsulated in a one-week science integrated curriculum supplement based on the factors of teacher comfort, child benefit and challenges. The primary source of evidence for this study was the semi-structured interview. The researcher contacted 24 early childhood facilities, 44 emails were sent to preschool teachers, four teachers agreed to participate in the study. The results of the

  1. Children's Literature and the Science Curriculum

    ERIC Educational Resources Information Center

    Ediger, Marlow

    2010-01-01

    A quality children's literature program needs to be correlated with ongoing science lessons and units of study. It can enhance and enrich the science curriculum. Pupils tend to enjoy reading library books and the the literature may assist pupils to explore topics in greater depth. In addition to science experiments, demonstrations, and…

  2. Improving the Science Curriculum with Bioethics.

    ERIC Educational Resources Information Center

    Lundmark, Cathy

    2002-01-01

    Explains the importance of integrating bioethics into the science curriculum for student learning. Introduces a workshop designed for middle and high school science teachers teaching bioethics, its application to case studies, and how teachers can fit bioethics into their classroom. (YDS)

  3. Massachusetts Science and Technology Engineering Curriculum Framework

    ERIC Educational Resources Information Center

    Massachusetts Department of Education, 2006

    2006-01-01

    This 2006 "Massachusetts Science and Technology/Engineering Curriculum Framework" provides a guide for teachers and curriculum coordinators regarding specific content to be taught from PreK through high school. Following this "Organization" chapter, the "Framework" contains the following sections: (1) Philosophy and…

  4. Hands-on approach to teaching Earth system sciences using a information-computational web-GIS portal "Climate"

    NASA Astrophysics Data System (ADS)

    Gordova, Yulia; Gorbatenko, Valentina; Martynova, Yulia; Shulgina, Tamara

    2014-05-01

    A problem of making education relevant to the workplace tasks is a key problem of higher education because old-school training programs are not keeping pace with the rapidly changing situation in the professional field of environmental sciences. A joint group of specialists from Tomsk State University and Siberian center for Environmental research and Training/IMCES SB RAS developed several new courses for students of "Climatology" and "Meteorology" specialties, which comprises theoretical knowledge from up-to-date environmental sciences with practical tasks. To organize the educational process we use an open-source course management system Moodle (www.moodle.org). It gave us an opportunity to combine text and multimedia in a theoretical part of educational courses. The hands-on approach is realized through development of innovative trainings which are performed within the information-computational platform "Climate" (http://climate.scert.ru/) using web GIS tools. These trainings contain practical tasks on climate modeling and climate changes assessment and analysis and should be performed using typical tools which are usually used by scientists performing such kind of research. Thus, students are engaged in n the use of modern tools of the geophysical data analysis and it cultivates dynamic of their professional learning. The hands-on approach can help us to fill in this gap because it is the only approach that offers experience, increases students involvement, advance the use of modern information and communication tools. The courses are implemented at Tomsk State University and help forming modern curriculum in Earth system science area. This work is partially supported by SB RAS project VIII.80.2.1, RFBR grants numbers 13-05-12034 and 14-05-00502.

  5. Hands-On Optics science camps and clubs

    NASA Astrophysics Data System (ADS)

    Walker, Constance E.; Sparks, Robert T.; Pompea, Stephen M.

    2007-06-01

    Hands-On Optics (HOO) is a National Science Foundation funded program to bring optics education to traditionally underserved middle school students. We have developed six modules that teach students optics concepts through hands-on, inquiry-based activities. The modules have been used extensively in after-school and non-school settings such as in the Boys and Girls Clubs in South Tucson, Arizona and the Boys and Girls Club in Sells, Arizona on the Tohono O'odham reservation. We will describe these programs and the lessons learned in these settings. These modules also form the basis for a week-long optics camp that provides students with approximately 40 hours of instruction time in optics. We will provide an outline of the activities and concepts covered in the camp. These camps provide an ideal way to encourage interest in optics before career choices are developed.

  6. Language games: Christian fundamentalism and the science curriculum

    NASA Astrophysics Data System (ADS)

    Freund, Cheryl J.

    Eighty years after the Scope's Trial, the debate over evolution in the public school curriculum is alive and well. Historically, Christian fundamentalists, the chief opponents of evolution in the public schools, have used the court system to force policymakers, to adopt their ideology regarding evolution in the science curriculum. However, in recent decades their strategy has shifted from the courts to the local level, where they pressure teachers and school boards to include "alternate theories" and the alleged "flaws" and "inconsistencies" of evolution in the science curriculum. The purpose of this content analysis study was to answer the question: How do Christian fundamentalists employ rhetorical strategies to influence the science curriculum? The rhetorical content of several public legal and media documents resulting from a lawsuit filed against the Athens Public Schools by the American Center of Law and Justice were analyzed for the types of rhetorical strategies employed by the participants engaged in the scientific, legal, and public discourse communities. The study employed an analytical schema based on Ludwig Wittgenstein's theory of language games, Lawrence Prelli's theory of discourse communities, and Michael Apple's notion of constitutive and preference rules. Ultimately, this study revealed that adroit use of the constitutive and preference rules of the legal and public discourse communities allowed the school district to reframe the creation-evolution debate, thereby avoiding a public spectacle and ameliorating the power of creationist language to affect change in the science curriculum. In addition, the study reinforced the assertion that speakers enjoy the most persuasive power when they attend to the preference rules of the public discourse community.

  7. Science and Science Education Go Hand-in-Hand: The Impact of the NASA Science Mission Directorate Education and Public Outreach Program

    NASA Astrophysics Data System (ADS)

    Smith, D. A.; Peticolas, L.; Schwerin, T.; Shipp, S.; Manning, J. G.

    2014-07-01

    For nearly two decades, NASA has embedded education and public outreach (EPO) in its Earth and space science missions and research programs on the principle that science education is most effective when educators and scientists work hand-in-hand. Four Science EPO Forums organize the respective NASA Science Mission Directorate (SMD) Astrophysics, Earth Science, Heliophysics, and Planetary Science EPO programs into a coordinated, efficient, and effective nationwide effort. The NASA SMD EPO program evaluates EPO impacts that support NASA's policy of providing a direct return-on-investment for the American public, advances STEM education and literacy, and enables students and educators to participate in the practice of science as embodied in the 2013 Next Generation Science Standards. Leads of the four NASA SMD Science EPO Forums provided big-picture perspectives on NASA's effort to incorporate authentic science into the nation's STEM education and scientific literacy, highlighting examples of program effectiveness and impact. Attendees gained an increased awareness of the depth and breadth of NASA SMD's EPO programs and achievements, the magnitude of its impacts through representative examples, and the ways current and future EPO programs can build upon the work being done.

  8. Reaching Consensus on Essential Biomedical Science Learning Objectives in a Dental Curriculum.

    PubMed

    Best, Leandra; Walton, Joanne N; Walker, Judith; von Bergmann, HsingChi

    2016-04-01

    This article describes how the University of British Columbia Faculty of Dentistry reached consensus on essential basic biomedical science objectives for DMD students and applied the information to the renewal of its DMD curriculum. The Delphi Method was used to build consensus among dental faculty members and students regarding the relevance of over 1,500 existing biomedical science objectives. Volunteer panels of at least three faculty members (a basic scientist, a general dentist, and a dental specialist) and a fourth-year dental student were formed for each of 13 biomedical courses in the first two years of the program. Panel members worked independently and anonymously, rating each course objective as "need to know," "nice to know," "irrelevant," or "don't know." Panel members were advised after each round which objectives had not yet achieved a 75% consensus and were asked to reconsider their ratings. After a maximum of three rounds to reach consensus, a second group of faculty experts reviewed and refined the results to establish the biomedical science objectives for the renewed curriculum. There was consensus on 46% of the learning objectives after round one, 80% after round two, and 95% after round three. The second expert group addressed any remaining objectives as part of its review process. Only 47% of previous biomedical science course objectives were judged to be essential or "need to know" for the general dentist. The consensus reached by participants in the Delphi Method panels and a second group of faculty experts led to a streamlined, better integrated DMD curriculum to prepare graduates for future practice.

  9. A study of International Baccalaureate science teachers' choices in curriculum and instruction

    NASA Astrophysics Data System (ADS)

    Jauss, Lanett S.

    This study was designed to investigate the choices International Baccalaureate (IB) science teachers make in curriculum and instruction. Data was gathered via a survey completed by IB science teachers who had attended either an April, 2007 workshop in Reston, Virginia or a January, 2008 IB roundtable discussion in Kansas City, Missouri. Surveys solicited the different choices IB science teachers make for options, Internal Assessment (IA) activities, Theory of Knowledge (TOK) emphasis, and demographics. Teachers' reasons for their option choices were also analyzed. Statistical analysis was performed using SPSS descriptive statistics, Pearson's product-moment correlations, and linear regression. It was found that IB science teachers' most frequent reasons for their option choices were related to ease, interest, background, and available resources. IB science teachers used a variety of IA activities, with hands-on activities and worksheets being most frequent. IB science teachers did not emphasize inquiry, although they did include some aspects of it among their choices. IB science teachers preferred to use activities they design or those designed by other teachers. Years of teaching experience, both total and IB, were correlated to the level of use of some TOK tenets.

  10. 3"H"s Education: Examining Hands-On, Heads-On and Hearts-On Early Childhood Science Education

    ERIC Educational Resources Information Center

    Inan, Hatice Zeynep; Inan, Taskin

    2015-01-01

    Active engagement has become the focus of many early childhood science education curricula and standards. However, active engagement usually emphasizes getting children engaged with science solely through hands-on activities. Active engagement by way of hands, heads, and hearts are kept separate and rarely discussed in terms of getting all to work…

  11. Impact of a hands-on component on learning in the Fundamental Use of Surgical Energy™ (FUSE) curriculum: a randomized-controlled trial in surgical trainees.

    PubMed

    Madani, Amin; Watanabe, Yusuke; Vassiliou, Melina C; Fuchshuber, Pascal; Jones, Daniel B; Schwaitzberg, Steven D; Fried, Gerald M; Feldman, Liane S

    2014-10-01

    While energy devices are ubiquitous in the operating room, they remain poorly understood and can result in significant complications. The purpose of this study was to estimate the extent to which adding a novel bench-top component improves learning of SAGES' Fundamental Use of Surgical Energy™ (FUSE) electrosurgery curriculum among surgical trainees. Surgical residents participated in a 1-h didactic electrosurgery (ES) course, based on the FUSE curriculum. They were then randomized to one of two groups: an unstructured hands-on session where trainees used ES devices (control group) or a goal-directed hands-on training session (Sim group). Pre- and post-curriculum (immediate and at 3 months) assessments included knowledge of ES (multiple-choice examination), self-perceived competence for each of the 35 course objectives (questionnaire), and self-perceived comfort with performance of seven tasks related to safe use of ES. Data expressed as median[interquartile range], *p < 0.05. 56 (29 control; 27 Sim) surgical trainees completed the curriculum and assessments. Baseline characteristics, including pre-curriculum exam and questionnaire scores, were similar. Total score on the exam improved from 46%[40;54] to 84%[77;91]* for the entire cohort, with higher immediate post-curriculum scores in the Sim group compared to controls (89%[83;94] vs. 83%[71;86]*). At 3 months, performance on the exam declined in both groups, but remained higher in the Sim group (77%[69;90] vs 60%[51;80]*). Participants in both groups reported feeling greater comfort and competence post-curriculum (immediate and at 3 months) compared to baseline. This improvement was greater in the Sim group with a higher proportion feeling "Very Comfortable" or "Fully Competent" (Sim: 3/7 tasks and 28/35 objectives; control: 0/7 tasks and 10/35 objectives). A FUSE-based curriculum improved surgical trainees' knowledge and comfort in the safe use of electrosurgical devices. The addition of a structured

  12. Forensic Science Curriculum for High School Students

    NASA Astrophysics Data System (ADS)

    Burgess, Christiana J.

    Over the last several decades, forensic science---the application of science to civil and criminal legal matters---has become of increasing popularity with the public. The range of disciplines within the field is immense, offering individuals the potential for a unique career, regardless of their specific interests or expertise. In response to this growth, many organizations, both public and private, have recognized the need to create forensic science programs that strive to maintain and enhance the quality of forensic science education. Unfortunately, most of the emphasis placed on developing these materials relates to post-secondary education, and creates a significant lack of forensic science educational materials available in the U.S., especially in Oklahoma. The purpose of this project was to create a high school curriculum that provides the foundation for building a broad, yet comprehensive, overview of the field of forensic science and its associated disciplines. The overall goal was to create and provide course materials to high school teachers in order to increase their knowledge of forensic science such that they are able to teach its disciplines effectively and with accuracy. The Forensic Science Curriculum for High School Students includes sample lesson plans, PowerPoint presentations, and lab activities with step-by-step instructions.

  13. Elementary Science Curriculum, Grade 5.

    ERIC Educational Resources Information Center

    Stoneham Public Schools, MA.

    This is one of a set of curriculum guides for the Stoneham Elementary School Science Program (see SE 012 153 - SE 012 158). Each guide contains a chart illustrating the scope and sequence of the physical, life, and earth sciences introduced at each grade level. For each of the topics introduced at this grade level an overview of the topic, a list…

  14. Elementary Science Curriculum, Grade 6.

    ERIC Educational Resources Information Center

    Stoneham Public Schools, MA.

    This is one of a set of curriculum guides for the Stoneham Elementary School Science Program (see SE 012 153 - SE 012 158). Each guide contains a chart illustrating the scope and sequence of the physical, life, and earth sciences introduced at each grade level. For each of the topics introduced at this grade level an overview of the topic, a list…

  15. Champions or Helpers: Leadership in Curriculum Reform in Science

    ERIC Educational Resources Information Center

    Johnson, Elizabeth D.; Bird, Fiona L.; Fyffe, Jeanette; Yench, Emma

    2012-01-01

    This study describes the perceptions of embedded teaching and learning leadership teams working on curriculum reform in science teaching departments. The teams combined a formally recognised leader, School Director of Learning and Teaching, with a project-based, more junior academic, Curriculum Fellow, to better leverage support for curriculum…

  16. Measuring Science Curriculum Improvement Study Teachers' Attitudinal Changes Toward Science.

    ERIC Educational Resources Information Center

    Hovey, Larry Michael

    Investigated were three questions related to the relationship between a science teacher's attitude regarding the use of a newer science program, in this instance the Science Curriculum Improvement Study (SCIS): (1) Could the Projective Tests of Attitudes, originally designed for fifth-grade students, be modified for use with adults? (2) Is there a…

  17. Extending a Hands-On Test

    ERIC Educational Resources Information Center

    de Mestre, Neville

    2004-01-01

    This paper describes a "hands-on task" called Number Tiles, which is Task 43 in the collection constructed for the Mathematics Task Centre Project, and available at www.blackdouglas.com.au or www.curriculum.edu.au. This task is rich in possibilities and directions. It should be used as a planned curriculum experience at several year levels to…

  18. Comparative Study on Romanian School Science Curricula and the Curriculum of TIMSS 2007 Testing

    ERIC Educational Resources Information Center

    Ciascai, Liliana

    2009-01-01

    The results of Romanian school students in Science PISA and TIMSS testings have been and continue to be systematically slack. In the present paper we intend to do a comparative analysis of Science curriculum TIMSS 2007 and Romanian Science school curricula of 4th and 8th grades. This analysis, based on Bloom's taxonomy of cognitive domain,…

  19. Calculator-Controlled Robots: Hands-On Mathematics and Science Discovery

    ERIC Educational Resources Information Center

    Tuchscherer, Tyson

    2010-01-01

    The Calculator Controlled Robots activities are designed to engage students in hands-on inquiry-based missions. These activities address National science and technology standards, as well as specifically focusing on mathematics content and process standards. There are ten missions and three exploration extensions that provide activities for up to…

  20. Guidelines for Science Curriculum in Washington Schools.

    ERIC Educational Resources Information Center

    Duxbury, Alyn, Ed.

    This document contains guidelines for science curriculum in Washington State schools. Statements of philosophy and program goals are presented and explained. Four major program goals (which address societal demands) operationally describe science education toward the learning of: (1) factual and theoretical knowledge; (2) applied science skills;…

  1. Capsela Scientific: Hands-On Physical Science Curriculum for Grades 3-9.

    ERIC Educational Resources Information Center

    Swartz, Clifford; Friedman, Madeleine

    Many educators feel that elementary school science programs should concentrate on phenomena and concepts that are literally tangible. This document serves as the teaching manual which accompanies the Capsela modular system of manipulative and motorized models. The experiments in the manual are intended to provide a structured approach to using the…

  2. An Explorative Study on the Null Secondary Science Curriculum in Bangladesh

    ERIC Educational Resources Information Center

    Chowdhury, Tapashi Binte Mahmud; Siddique, Mohammed Nure Alam

    2017-01-01

    The aim of this study was to identify the content of secondary Science curriculum excluded in teaching and learning activities, the reasons behind the omission and its impact on students' learning in the context of Bangladesh. This study used qualitative methodology. Eight teachers were selected and interviewed to investigate what they excluded…

  3. Science-based occupations and the science curriculum: Concepts of evidence

    NASA Astrophysics Data System (ADS)

    Aikenhead, Glen S.

    2005-03-01

    What science-related knowledge is actually used by nurses in their day-to-day clinical reasoning when attending patients? The study investigated the knowledge-in-use of six acute-care nurses in a hospital surgical unit. It was found that the nurses mainly drew upon their professional knowledge of nursing and upon their procedural understanding that included a common core of concepts of evidence (concepts implicitly applied to the evaluation of data and the evaluation of evidence - the focus of this research). This core included validity triangulation, normalcy range, accuracy, and a general predilection for direct sensual access to a phenomenon over indirect machine-managed access. A cluster of emotion-related concepts of evidence (e.g. cultural sensitivity) was also discovered. These results add to a compendium of concepts of evidence published in the literature. Only a small proportion of nurses (one of the six nurses in the study) used canonical science content in their clinical reasoning, a result consistent with other research. This study also confirms earlier research on employees in science-rich workplaces in general, and on professional development programs for nurses specifically: canonical science content found in a typical science curriculum (e.g. high school physics) does not appear relevant to many nurses' knowledge-in-use. These findings support a curriculum policy that gives emphasis to students learning how to learn science content as required by an authentic everyday or workplace context, and to students learning concepts of evidence.

  4. A model marine-science curriculum for fourth-grade pupils in Florida

    NASA Astrophysics Data System (ADS)

    Schulte, Philip James

    This dissertation focused on the development of a model marine-science curriculum for fourth-grade pupils in the State of Florida. The curriculum was developed using grounded theory research method, including a component of data collected from an on-line survey administered to 106 professional educators and marine biologists. The results of the data collection and analysis showed a definitive necessity for teacher preparedness, multidisciplinary content, and inquiry-based science instruction. Further, three important factors emerged: (a) collaborative grouping increases achievement; (b) field excursions significantly impact student motivation; (c) standardized testing influences curriculum development. The curriculum is organized as an 11-day unit, with detailed lesson plans presented in standard curricular format and with all components correlated to the Florida State Educational Standards. The curriculum incorporates teacher preparation, multimedia presentations, computer-assisted instruction, scientific art appreciation, and replication as well as assessment factors. The curriculum addresses topics of ichthyology, marine animal identification, environmental conservation and protection, marine animal anatomy, water safety, environmental stewardship, and responsible angling techniques. The components of the curriculum were discussed with reference to the literature on which it was based and recommendations for future research were addressed.

  5. Mathematics and Science across the Curriculum.

    ERIC Educational Resources Information Center

    Thorson, Annette, Ed.

    2002-01-01

    This issue, intended for classroom teachers, provides a collection of essays organized around the theme of mathematics and science across the curriculum as well as a guide to instructional materials related to the theme. Topics addressed in the essays include experiencing mathematics through nature; connecting science, fiction, and real life;…

  6. Parallel Curriculum Units for Science, Grades 6-12

    ERIC Educational Resources Information Center

    Leppien, Jann H.; Purcell, Jeanne H.

    2011-01-01

    Based on the best-selling book "The Parallel Curriculum", this professional development resource gives multifaceted examples of rigorous learning opportunities for science students in Grades 6-12. The four sample units revolve around genetics, the convergence of science and society, the integration of language arts and biology, and the periodic…

  7. Development and Evaluation of an Experimental Curriculum for the New Quincy (Mass.) Vocational-Technical School. The Science Curriculum.

    ERIC Educational Resources Information Center

    Champagne, Audrey; Albert, Anne

    Activities concerning the development of the science curriculum of Project ABLE are summarized. The science curriculum attempts to relate science content to vocational areas where applicable, but emphasizes generalizations which the student will apply in his specific vocational field. Intended for 10th, 11th, and 12th grade students, the…

  8. The Influence of Undergraduate Science Curriculum Reform on Students' Perceptions of Their Quantitative Skills

    ERIC Educational Resources Information Center

    Matthews, Kelly E.; Adams, Peter; Goos, Merrilyn

    2015-01-01

    In this study, the Science Student Skills Inventory was used to gain understanding of student perceptions about their quantitative skills and compare perceptions of cohorts graduating before and after the implementation of a new science curriculum intent on developing quantitative skills. The study involved 600 responses from final-year…

  9. History of Science in the Physics Curriculum: A Directed Content Analysis of Historical Sources

    NASA Astrophysics Data System (ADS)

    Seker, Hayati; Guney, Burcu G.

    2012-05-01

    Although history of science is a potential resource for instructional materials, teachers do not have a tendency to use historical materials in their lessons. Studies showed that instructional materials should be adaptable and consistent with curriculum. This study purports to examine the alignment between history of science and the curriculum in the light of the facilitator model on the use of history of science in science teaching, and to expose possible difficulties in preparing historical materials. For this purpose, qualitative content analysis method was employed. Codes and themes were defined beforehand, with respect to levels and their sublevels of the model. The analysis revealed several problems with the alignment of historical sources for the physics curriculum: limited information about scientists' personal lives, the difficulty of linking with content knowledge, the lack of emphasis on scientific process in the physics curriculum, differences between chronology and sequence of topics, the lack of information about scientists' reasoning. Based on the findings of the analysis, it would be difficult to use original historical sources; educators were needed to simplify historical knowledge within a pedagogical perspective. There is a need for historical sources, like Harvard Case Histories in Experimental Science, since appropriate historical information to the curriculum objectives can only be obtained by simplifying complex information at the origin. The curriculum should leave opportunities for educators interested in history of science, even historical sources provides legitimate amount of information for every concepts in the curriculum.

  10. Disciplined knowledge: Differentiating and binding the elementary science curriculum

    NASA Astrophysics Data System (ADS)

    Hayes, Michael Thomas

    The purpose of this research was to investigate elementary science curriculum differentiation at two schools with widely divergent student demographics. Historically, elementary school students of ethnic-minority and low-socioeconomic backgrounds have not performed on traditional assessments of academic achievement and progress in science education at the same level as their White and more affluent peers. This inequality has long been of interest to the proponents of science education reform who are concerned with the ability of students to participate successfully in a democratic society and in the labor market. Differentiating the curriculum such that students, because of their socioeconomic, ethnic, or racial backgrounds, receive different knowledge, skills, and experiences is a key component of school activity that supports social inequality. Participants in the study included the teachers and students of four classrooms in two schools with student populations that differed in their socioeconomic and ethnic demographics. Qualitative research methods, including fieldnotes, audiorecordings, and interviews, were utilized to gather data. The collection and analysis of data were articulated in a developmental research process in which theories and interpretations were continuously constructed and tested for validity. The results of this research show that the science curricula at the two schools were different, with differences being understood in terms of the populations served. The particular form of differentiation observed in this study was closely correlated to elements of social discipline, knowledge segmentation and reconfiguration, time and pacing, control of bodies, and testing. The elementary science curriculum at the two schools differed in the formality and intensity with which the curriculum was constructed in adherence to these elements of discipline. Such differences cannot be understood in traditional terms as supporting White middle-class students

  11. 'Science in action': The politics of hands-on display at the New York Museum of Science and Industry.

    PubMed

    Sastre-Juan, Jaume

    2018-06-01

    This article analyzes the changing politics of hands-on display at the New York Museum of Science and Industry by following its urban deambulation within Midtown Manhattan, which went hand in hand with sharp shifts in promoters, narrative, and exhibition techniques. The museum was inaugurated in 1927 as the Museum of the Peaceful Arts on the 7th and 8th floors of the Scientific American Building. It changed its name in 1930 to the New York Museum of Science and Industry while on the 4th floor of the Daily News Building, and it was close to being renamed the Science Center when it finally moved in 1936 to the ground floor of the Rockefeller Center. The analysis of how the political agenda of the different promoters of the New York Museum of Science and Industry was spatially and performatively inscribed in each of its sites suggests that the 1930s boom of visitor-operated exhibits had nothing to do with an Exploratorium-like rhetoric of democratic empowerment. The social paternalistic ideology of the vocational education movement, the ideas on innovation of the early sociology of invention, and the corporate behavioral approach to mass communications are more suitable contexts in which to understand the changing politics of hands-on display in interwar American museums of science and industry.

  12. The Impact of a Geospatial Technology-Supported Energy Curriculum on Middle School Students' Science Achievement

    NASA Astrophysics Data System (ADS)

    Kulo, Violet; Bodzin, Alec

    2013-02-01

    Geospatial technologies are increasingly being integrated in science classrooms to foster learning. This study examined whether a Web-enhanced science inquiry curriculum supported by geospatial technologies promoted urban middle school students' understanding of energy concepts. The participants included one science teacher and 108 eighth-grade students classified in three ability level tracks. Data were gathered through pre/posttest content knowledge assessments, daily classroom observations, and daily reflective meetings with the teacher. Findings indicated a significant increase in the energy content knowledge for all the students. Effect sizes were large for all three ability level tracks, with the middle and low track classes having larger effect sizes than the upper track class. Learners in all three tracks were highly engaged with the curriculum. Curriculum effectiveness and practical issues involved with using geospatial technologies to support science learning are discussed.

  13. Computer Science (CS) in the Compulsory Education Curriculum: Implications for Future Research

    ERIC Educational Resources Information Center

    Passey, Don

    2017-01-01

    The subject of computer science (CS) and computer science education (CSE) has relatively recently arisen as a subject for inclusion within the compulsory school curriculum. Up to this present time, a major focus of technologies in the school curriculum has in many countries been on applications of existing technologies into subject practice (both…

  14. Square Wheels and Other Easy-To-Build Hands-On Science Activities. An Exploratorium Science Snackbook.

    ERIC Educational Resources Information Center

    Rathjen, Don; Doherty, Paul

    This book, part of The Exploratorium science "snackbook" series, explains science with a hands-on approach. Activities include: (1) "3-D Shadow"; (2) "Bits and Bytes"; (3) "Circuit Workbench"; (4) "Diamagnetic Repulsion"; (5) "Film Can Racer"; (6) "Fractal Patterns"; (7) "Hoop Nightmares"; (8) "Hydraulic Arm"; (9) "Hyperbolic Slot"; (10) "Light…

  15. History and Social Science Curriculum Framework.

    ERIC Educational Resources Information Center

    Massachusetts State Dept. of Education, Boston.

    This curriculum framework represents the first statewide guideline for learning, teaching, and assessment in history and social science for the Commonwealth of Massachusetts's public schools. The framework is based on sound research and effective practice and reflects a vision of how classrooms can and should look to assist all students to achieve…

  16. Life Cycle. K-6 Science Curriculum.

    ERIC Educational Resources Information Center

    Blueford, J. R.; And Others

    Life Cycle is one of the units of a K-6 unified science curriculum program. The unit consists of four organizing sub-themes: (1) past life (focusing on dinosaurs and fossil formation, types, and importance); (2) animal life (examining groups of invertebrates and vertebrates, cells, reproduction, and classification systems); (3) plant life…

  17. Science in Hawaii/Haawina Hoopapau: A Culturally Responsive Curriculum Project

    NASA Astrophysics Data System (ADS)

    Galloway, L. M.; Roberts, K.; Leake, D. W.; Stodden, R. S.; Crabbe, V.

    2005-12-01

    The marvels of modern science often fail to engage indigenous students, as the content and instructional style are usually rooted in the Western experience. This 3 year project, funded by the US Dept. of Education for the Education of Native Hawaiians, offers a curriculum that teaches science through (rather than just about) Native Hawaiian culture. The curriculum focuses on the interdependence of natural resources in our ahupuaa, or watersheds, and helps students strengthen their sense of place and self to malama i ka aina, to care for the land. Further, the curriculum is designed to: engage students in scientific study with relevant, interesting content and activities; improve student achievement of state department of education standards; increase student knowledge and skills in science, math and language arts; respond to the learning needs of Native Hawaiian and/or at-risk students. The project will be presented by a curriculum writer who created and adapted more than a year's worth of materials by teaming with kupuna (respected elders), local cultural experts and role models, educators (new, veteran, Hawaiian, non-Hawaiian, mainland, general and special education teachers), and professionals at the Center on Disability Studies at the University of Hawaii and ALU LIKE, Inc, a non-profit organization to assist Native Hawaiians. The materials created thus far are available for viewing at: www.scihi.hawaii.edu The curriculum, designed for grades 8-11 science classes, can be used to teach a year-long course, a unit, or single lesson related to astronomy, biology, botany, chemistry, geology, oceanography, physical and environmental sciences. This project is in its final year of field testing, polishing and dissemination, and therefore this session will encourage idea sharing, as does our copyright free Web site.

  18. Universe Cycle. K-6 Science Curriculum.

    ERIC Educational Resources Information Center

    Blueford, J. R.; And Others

    Universe Cycle is one of the units of a K-6 unified science curriculum program. The unit consists of four organizing sub-themes: (1) earth (providing activities on the physical shape of the earth and landform formations; (2) geography (emphasizing map reading skills); (3) universe (exploring the components, processes and future projects for the…

  19. A System-Science Approach towards Model Construction for Curriculum Development.

    ERIC Educational Resources Information Center

    Chang, Ren-Jung; Yang, Hui-Chin

    A new morphological model based on modern system science and engineering is constructed and proposed for curriculum research and development. A curriculum system is recognized as an engineering system that constitutes three components: clients, resources, and knowledge. Unlike the objective models that are purely rational and neatly sequential in…

  20. Science for Survival: The Modern Synthesis of Evolution and the Biological Sciences Curriculum Study

    ERIC Educational Resources Information Center

    Green, Lisa Anne

    2012-01-01

    In this historical dissertation, I examined the process of curriculum development in the Biological Sciences Curriculum Study (BSCS) in the United States during the period 1959-1963. The presentation of evolution in the high school texts was based on a more robust form of Darwinian evolution which developed during the 1930s and 1940s called…

  1. Achieving a coherent curriculum in second grade: Science as the organizer

    NASA Astrophysics Data System (ADS)

    Park Rogers, Meredith A.

    The purpose of this study was to examine how a team of four second grade teachers used their approach to teaching science as a means for designing and implementing a coherent curriculum. Within this study, curriculum coherency refers to making logical instructional connections that are both visible and explicit for students. A teacher using a common teaching strategy or critical thinking skills in such a way that the commonalities between subject areas are clearly demonstrated to students is one example of curriculum coherency. The research framework guiding this study was phenomenology; I used a case study method for data analysis. The primary data source was field notes gathered during 10 weeks of classroom observations. Secondary data sources included observations of team meetings, two sets of interviews with each of the four teachers, an interview with the school principal, and artifacts used and developed by the teachers. An analysis of the data led me to interpret the following findings: (1) the teachers viewed science as a tool to motivate their students to learn and believed in teaching science through an inquiry-based approach; (2) they described science inquiry as a process of thinking organized around questions, and saw their teaching role as shifting between guided and open classroom inquiry; (3) they taught all subjects using an inquiry-based approach, emphasized the process skills associated with doing scientific inquiry, and consistently used the language of the process skills throughout their instruction of all disciplines; (4) their team's collaborative approach played a significant role in achieving their vision of a coherent curriculum; the successfulness of their collaboration relied on the unique contributions of each member and her commitment to professional development. This study demonstrates how an inquiry-based science curriculum can provide educators with an effective model for designing and implementing a coherent curriculum. Furthermore

  2. The effects of an integrated Algebra 1/physical science curriculum on student achievement in Algebra 1, proportional reasoning and graphing abilities

    NASA Astrophysics Data System (ADS)

    Lawrence, Lettie Carol

    1997-08-01

    The purpose of this investigation was to determine if an integrated curriculum in algebra 1/physical science facilitates acquisition of proportional reasoning and graphing abilities better than a non-integrated, traditional, algebra 1 curriculum. Also, this study was to ascertain if the integrated algebra 1/physical science curriculum resulted in greater student achievement in algebra 1. The curriculum used in the experimental class was SAM 9 (Science and Mathematics 9), an investigation-based curriculum that was written to integrate physical science and basic algebra content. The experiment was conducted over one school year. The subjects in the study were 61 ninth grade students. The experimental group consisted of one class taught concurrently by a mathematics teacher and a physical science teacher. The control group consisted of three classes of algebra 1 students taught by one mathematics teacher and taking physical science with other teachers in the school who were not participating in the SAM 9 program. This study utilized a quasi-experimental non-randomized control group pretest-posttest design. The investigator obtained end-of-algebra 1 scores from student records. The written open-ended graphing instruments and the proportional reasoning instrument were administered to both groups as pretests and posttests. The graphing instruments were also administered as a midtest. A two sample t-test for independent means was used to determine significant differences in achievement on the end-of-course algebra 1 test. Quantitative data from the proportional reasoning and graphing instruments were analyzed using a repeated measures analysis of variance to determine differences in scores over time for the experimental and control groups. The findings indicate no significant difference between the experimental and control groups on the end-of-course algebra 1 test. Results also indicate no significant differences in proportional reasoning and graphing abilities between

  3. Science Curriculum Guide, Levels 1 and 2.

    ERIC Educational Resources Information Center

    Newark School District, DE.

    The first two of four levels in a K-12 science curriculum are outlined. In Level 1 (grades K-2) and Level 2 (grades 3-5), science areas include the study of living things, matter and energy, and solar system and universe. Conveniently listed are page locations for educational and instructional objectives, cross-referenced to science area and coded…

  4. Science Teachers' Perception on Multicultural Education Literacy and Curriculum Practices

    ERIC Educational Resources Information Center

    Huang, Hsiu-Ping; Cheng, Ying-Yao; Yang, Cheng-Fu

    2017-01-01

    This study aimed to explore the current status of teachers' multicultural education literacy and multicultural curriculum practices, with a total of 274 elementary school science teachers from Taitung County as survey participants. The questionnaire used a Likert-type four-point scale which content included the teachers' perception of…

  5. Science as the Center of a Coherent, Integrated Early Childhood Curriculum

    ERIC Educational Resources Information Center

    French, Lucia

    2004-01-01

    This article describes the ScienceStart! Curriculum, an early childhood curriculum that takes coherently organized science content as the hub of an integrated approach. ScienceStart! maps onto the typical preschool day and may be adapted for use in full-day or half-day preschool programs. It is designed to support the important developmental…

  6. MICHIGAN SCIENCE CURRICULUM COMMITTEE JUNIOR HIGH SCHOOL PROJECT. (TITLE SUPPLIED).

    ERIC Educational Resources Information Center

    VAN DEVENTER, W.C.

    REPORTED ARE THE RESULTS OF A CURRICULUM RESEARCH PROJECT OF THE MICHIGAN SCIENCE CURRICULUM COMMITTEE JUNIOR HIGH SCHOOL PROJECT FOR USE IN TEACHING JUNIOR HIGH SCHOOL UNIFIED SCIENCE. THE COMMITTEE USED PREVIOUS RESEARCH DATA, PARTICULARLY IN THE AREA OF INSTRUCTION AND INQUIRY TRAINING, TO DEVELOP 13 UNITS INCLUDING 55 OPEN-ENDED LABORATORY…

  7. Science Action Labs Part 3: Puzzlers. An Innovative Collection of Hands-On Science Activities and Labs.

    ERIC Educational Resources Information Center

    Shevick, Ed

    This book contains hands-on science laboratory activities for grades 4 through 9 that use discrepant events to challenge students. All of the "puzzlers" are based upon science principles and include directions for building gadgets that explain the "puzzlers." Topics covered include: volume conservation, magnetic phenomena,…

  8. The Innovative Immersion of Mobile Learning into a Science Curriculum in Singapore: an Exploratory Study

    NASA Astrophysics Data System (ADS)

    Sun, Daner; Looi, Chee-Kit; Wu, Longkai; Xie, Wenting

    2016-08-01

    With advancements made in mobile technology, increasing emphasis has been paid to how to leverage the affordances of mobile technology to improve science learning and instruction. This paper reports on a science curriculum supported by an inquiry-based framework and mobile technologies. It was developed by teachers and researchers in a multiyear program of school-based research. The foci of this paper is on the design principles of the curriculum and its enactment, and the establishment of a teacher learning community. Through elucidating the design features of the innovative curriculum and evaluating teacher and student involvement in science instruction and learning, we introduce the science curriculum, called Mobilized 5E Science Curriculum (M5ESC), and present a representative case study of how one experienced teacher and her class adopted the curriculum. The findings indicate the intervention promoted this teacher's questioning competency, enabled her to interact with students frequently and flexibly in class, and supported her technology use for promoting different levels of cognition. Student learning was also improved in terms of test achievement and activity performance in and out of the classroom. We propose that the study can be used to guide the learning design of mobile technology-supported curricula, as well as teacher professional development for curriculum enactment.

  9. Science and Technology Teachers' Views of Primary School Science and Technology Curriculum

    ERIC Educational Resources Information Center

    Yildiz-Duban, Nil

    2013-01-01

    This phenomenographic study attempts to explicit science and technology teachers' views of primary school science and technology curriculum. Participants of the study were selected through opportunistic sampling and consisted of 30 science and technology teachers teaching in primary schools in Afyonkarahisar, Turkey. Data were collected through an…

  10. The Art and Science Connection. Hands-On Activities for Primary Students.

    ERIC Educational Resources Information Center

    Tolley, Kimberley

    Most people think that the artist and the scientist live in two totally different worlds. However, art and science are only two different ways of understanding and knowing the world. To help primary students make a connection between art and science, a collection of hands-on activities have been developed. By engaging in these activities that…

  11. The Art and Science Connection: Hands-on Activities for Intermediate Students.

    ERIC Educational Resources Information Center

    Tolley, Kimberley

    Most people think that the artist and the scientist live in two totally different worlds. However, art and science are only two different ways of understanding and knowing the world. To help intermediate students make a connection between art and science, a collection of hands-on activities have been developed. By engaging in these activities that…

  12. Revising and Updating the Animal Science Components of the Connecticut Vocational Agriculture Curriculum.

    ERIC Educational Resources Information Center

    Mannebach, Alfred J.; And Others

    This guide is intended for use in teaching Connecticut's revised animal science curriculum at regional vocational agriculture centers. Like its predecessor, this curriculum includes exploratory (intended for grades 9 and 10) and specialized (intended for grades 11 and 12) animal science units and is based on the following major areas of…

  13. The Science Curriculum. The Report of the National Forum for School Science (Crystal City, Virginia, November 14-15, 1986). This Year in School Science 1986.

    ERIC Educational Resources Information Center

    Champagne, Audrey B., Ed.; Hornig, Leslie E., Ed.

    The outgrowth of a conference on how science education can best meet the needs and expectations of society, this volume is designed to provide a source of information and ideas about the future of the school science curriculum. It contains 15 papers, including: "Critical Questions and Tentative Answers for the School Science Curriculum" (Audrey B.…

  14. Hands-On Science Mysteries for Grades 3-6: Standards-Based Inquiry Investigations

    ERIC Educational Resources Information Center

    Taris, James Robert; Taris, Louis James

    2006-01-01

    In "Hands-On Science Mysteries for Grades 3-6," the authors connect science to real-world situations by investigating actual mysteries and phenomena, such as the strange heads on Easter Island, the ghost ship "Mary Celeste," and the "Dancing Stones" of Death Valley. The labs are designed to encourage the development…

  15. Curriculum Design for Inquiry: Preservice Elementary Teachers' Mobilization and Adaptation of Science Curriculum Materials

    ERIC Educational Resources Information Center

    Forbes, Cory T.; Davis, Elizabeth A.

    2010-01-01

    Curriculum materials are crucial tools with which teachers engage students in science as inquiry. In order to use curriculum materials effectively, however, teachers must develop a robust capacity for pedagogical design, or the ability to mobilize a variety of personal and curricular resources to promote student learning. The purpose of this study…

  16. Food Science. Content Modules for Food Science Featuring Problem-Solving Activities in Family and Consumer Sciences.

    ERIC Educational Resources Information Center

    Roff, Lori; Stringer, Lola

    The food science course developed in Missouri combines basic scientific and mathematics principles in a hands-on instructional format as a part of the family and consumer sciences education curriculum. Throughout the course, students conduct controlled experiments and use scientific laboratory techniques and information to explore the biological…

  17. Infusing Culturally Responsive Science Curriculum into Early Childhood Teacher Preparation

    NASA Astrophysics Data System (ADS)

    Yoon, Jiyoon; Martin, Leisa A.

    2017-08-01

    Previous research studies in early childhood teacher education have indicated that teacher candidates are not adequately prepared to demonstrate the knowledge and skills needed to teach science to all children including culturally and linguistically diverse students. To address this issue, the researchers provided 31 early childhood teacher candidates with instructions through a culturally responsive science education curriculum that integrates American and Korean science curriculum corresponding to the American and Korean standards for teacher education. The results showed a statistically significant increase in their Personal Science Teaching Efficacy (PSTE). In addition, the teacher candidates were able to create a multicultural/diverse lesson in the developing and proficiency levels based on Ambrosio's lesson matrix. This study provides teacher candidates' knowledge as well as an additional resource for developing their self-efficacy and understanding the role of multicultural/diverse lesson planning for science instruction. Also, teacher candidates could be better prepared by understanding how other countries approach science education and integrating this knowledge to enrich their own science instruction.

  18. ELEMENTARY SCIENCE OUTLINE, A GUIDE TO SUGGESTED CURRICULUM PRACTICES IN ELEMENTARY SCHOOL SCIENCE.

    ERIC Educational Resources Information Center

    KARTSOTIS, A. THOMAS; MESSERSCHMIDT, RALPH M.

    THE COMMITTEE ON ELEMENTARY SCHOOL SCIENCE OF THE LEHIGH VALLEY SCHOOL STUDY COUNCIL REPORTS THEIR WORK ON SUGGESTED CURRICULUM FOR GRADES 1-6. THE BELIEF IS THAT SCIENCE IS A MAJOR STUDY AREA IN ELEMENTARY SCHOOL, AND SHOULD BE TAUGHT TO ALL PUPILS IN A PLANNED LEARNING SEQUENCE, WITH DUE CONSIDERATION BEING GIVEN TO THE MATURITY OF THE CHILD.…

  19. The Study of the Atmosphere in the Science Curriculum.

    ERIC Educational Resources Information Center

    Fisher, Brian

    1998-01-01

    Seeks to justify the inclusion of meteorology within the science curriculum. Reflects upon the nature of science and some current issues in science education, and examines the reality of including meteorology within worldwide science curricula. Contains 37 references. (Author/DDR)

  20. A Comprehensive Climate Science and Solutions Education Curriculum

    NASA Astrophysics Data System (ADS)

    Byrne, J. M.; Cook, J.; Little, L. J.; Peacock, K.; Sinclair, P.; Zeller, C.

    2016-12-01

    We are creating a broadly based curriculum for a multidisciplinary University/College course on climate change science and solutions. Climate change is a critical topic for all members of society and certainly for all students in postsecondary education. The curriculum will feature a wide range of topic presentations on the (i) science of climate change; and (ii) multidisciplinary solutions to climate change challenges. The end result will be an online textbook featuring short contributions from session participants and other invited specialists. First authors in this AGU Education Session will provide a 20-minute comprehensive lecture that will be recorded and shared as part of the online textbook. The recorded talks will be merged with author provided PowerPoint slides and appropriate high definition video footage to support the discussion, where possible. Authors will be asked to sign a waiver allowing the video recording to be part of the online textbook. Access to the videos and textbook chapters will be provided online to students registered in recognized university classes on climate change science and solutions for a modest fee.

  1. The Pursuit of Humanity: Curriculum Change in English School Science

    ERIC Educational Resources Information Center

    Donnelly, Jim; Ryder, Jim

    2011-01-01

    This paper is concerned with the recent history of science curriculum reform in England, though it traces these developments back to the mid-nineteenth century. It first reviews approaches to science in the curriculum until the mid-1960s, identifying the curricular settlement of the postwar years and the beginning of the so-called "swing from…

  2. BIOLOGICAL SCIENCES CURRICULUM STUDY NEWSLETTER.

    ERIC Educational Resources Information Center

    MAYER, WILLIAM V.; AND OTHERS

    RESEARCH STUDIES CONCERNED WITH THE APPROPRIATENESS AND EFFECTIVE UTILIZATION OF BIOLOGICAL SCIENCE CURRICULUM STUDY (BSCS) MATERIALS ARE DESCRIBED IN THIS NEWSLETTER. BSCS TESTS WERE ANALYZED AND RELATED TO OTHER TESTING INSTRUMENTS USED IN CONNECTION WITH THE BSCS PROGRAMS. DATA COLLECTED FOR THE ESTABLISHMENT OF TEST NORMS WERE ALSO USED IN A…

  3. Health Is Life in Balance: Students and Communities Explore Healthy Lifestyles in a Culturally Based Curriculum1

    PubMed Central

    Aho, Lynn; Ackerman, Joni; Bointy, Shelley; Cuch, Marilyn; Hindelang, Mary; Pinnow, Stephanie; Turnbull, Suzanne

    2012-01-01

    From exploring knowledge from wise members of the community to investigating the science of homeostasis, students learn healthy ways of living through a new hands-on curriculum, Diabetes Education in Tribal Schools: Health Is Life in Balance. The curriculum integrates science and Native American traditions to educate students about science, diabetes and its risk factors, and the importance of nutrition and physical activity in maintaining health and balance in life. Applying an inquiry-based approach to learning, the curriculum builds skills in observation, measurement, prediction, experimentation, and communication, and provides healthy lifestyle messages and innovative science activities for all students. The curriculum is now available to teachers and health educators at no cost through a federal grant. Health Is life in Balance incorporates interdisciplinary standards as well as storytelling to help children understand important messages. Implementation evaluation of the curriculum indicated improved knowledge and attitudes about science and health, positive teacher and student comments, and culturally relevant content. The lessons highlighted in this article give a glimpse into this hands-on curriculum which integrates science and Native American traditions, looking to our past and listening to the wisdom of our Elders, to gain powerful information for healthy, holistic living. The circle of balance is a theme in many indigenous belief systems and is woven into the lessons, providing enduring understandings of health behaviours that can prevent type 2 diabetes in the context of Native American cultural themes. PMID:22279450

  4. Mentoring BUGS: An Integrated Science and Technology Curriculum

    ERIC Educational Resources Information Center

    Harrell, Pamela Esprivalo; Walker, Michelle; Hildreth, Bertina; Tyler-Wood, Tandra

    2004-01-01

    The current study describes an authentic learning experience designed to develop technology and science process skills through a carefully scaffolded curriculum using mealworms as a content focus. An individual mentor assigned to each 4th and 5th grade girl participating in the program delivered the curriculum. Results indicate mastery of science…

  5. The Study of Literacy Reinforcement of Science Teachers in Implementing 2013 Curriculum

    NASA Astrophysics Data System (ADS)

    Dewi, W. S.; Festiyed, F.; Hamdi, H.; Sari, S. Y.

    2018-04-01

    This research aims to study and collect data comprehensively, new and actual about science literacy to improve the ability of educators in implementing the 2013 Curriculum at Junior High School Padang Pariaman District. The specific benefit of this research is to give description and to know the problem of science literacy problem in interaction among teacher, curriculum, facilities and infrastructure, evaluation, learning technology and students. This study uses explorative in deep study approach, studying and collecting data comprehensively from the interaction of education process components (curriculum, educator, learner, facilities and infrastructure, learning media technology, and evaluation) that influence the science literacy. This research was conducted in the districts of Padang Pariaman consisting of 17 subdistricts and 84 junior high schools managed by the government and private. The sample of this research is science teachers of Padang Pariaman District with sampling technique is stratified random sampling. The instrument used in this study is a questionnaire to the respondents. Research questionnaire data are processed by percentage techniques (quantitative). The results of this study explain that the understanding of science teachers in Padang Pariaman District towards the implementation of 2013 Curriculum is still lacking. The science teachers of Padang Pariaman District have not understood the scientific approach and the effectiveness of 2013 Curriculum in shaping the character of the students. To improve the understanding of the implementation of Curriculum 2013, it is necessary to strengthen the literacy toward science teachers at the Junior High School level in Padang Pariaman District.

  6. Investigating Purposeful Science Curriculum Adaptation as a Strategy to Improve Teaching and Learning

    ERIC Educational Resources Information Center

    Debarger, Angela Haydel; Penuel, William R.; Moorthy, Savitha; Beauvineau, Yves; Kennedy, Cathleen A.; Boscardin, Christy Kim

    2017-01-01

    In this paper, we investigate the potential and conditions for using curriculum adaptation to support reform of science teaching and learning. With each wave of reform in science education, curriculum has played a central role and the contemporary wave focused on implementation of the principles and vision of the "Framework for K-12 Science…

  7. Electromagnetic Spectrum. 7th and 8th Grade Agriculture Science Curriculum. Teacher Materials.

    ERIC Educational Resources Information Center

    Southern Illinois Univ., Carbondale. Dept. of Agricultural Education and Mechanization.

    This curriculum guide, the second in a set of six, contains teacher and student materials for a unit on the electromagnetic spectrum prepared as part of a seventh- and eighth-grade agricultural science curriculum that is integrated with science instruction. The guide contains the state goals and sample learning objectives for each goal for…

  8. Evaluation of an Environmental Science Laboratory Curriculum.

    ERIC Educational Resources Information Center

    Berger, Toby Esther

    The curriculum evaluated in this study is a series of innovative exercises offered as part of an introductory science course at Barnard College. It was hypothesized that students receiving the experimental treatment in the laboratory would show significant changes in cognitive achievement in environmental science and in their attitudes towards…

  9. Curriculum for Excellence Science: Vision or Confusion?

    ERIC Educational Resources Information Center

    Day, Stephen; Bryce, Tom

    2013-01-01

    Policy studies in science education do not have a particularly high profile. For science teachers, policy lurks in the background, somewhat disconnected from their normal classroom practice; for many, it is simply taken-for-granted. This paper analyses policy documents which have emerged from Curriculum for Excellence ("CfE") that impact…

  10. Grade 3 Science Curriculum Specifications.

    ERIC Educational Resources Information Center

    Alberta Dept. of Education, Edmonton. Curriculum Branch.

    The specific content areas and objectives from which the Alberta, Canada, Grade 3 Science Achievement Test questions were derived are outlined in this bulletin. The document contains: (1) curriculum summary (providing a general listing of the process skills, psychomotor skills, attitudes, and subject matter covered at the grade 3 level); (2) a…

  11. Surviving the Implementation of a New Science Curriculum

    ERIC Educational Resources Information Center

    Lowe, Beverly; Appleton, Ken

    2015-01-01

    Queensland schools are currently teaching with the first National Curriculum for Australia. This new curriculum was one of a number of political responses to address the recurring low scores in literacy, mathematics, and science that continue to hold Australia in poor international rankings. Teachers have spent 2 years getting to know the new…

  12. Plate Tectonic Cycle. K-6 Science Curriculum.

    ERIC Educational Resources Information Center

    Blueford, J. R.; And Others

    Plate Tectonics Cycle is one of the units of a K-6 unified science curriculum program. The unit consists of four organizing sub-themes: (1) volcanoes (covering formation, distribution, and major volcanic groups); (2) earthquakes (with investigations on wave movements, seismograms and sub-suface earth currents); (3) plate tectonics (providing maps…

  13. Food-Based Science Curriculum Increases 4th Graders Multidisciplinary Science Knowledge

    ERIC Educational Resources Information Center

    Hovland, Jana A.; Carraway-Stage, Virginia G.; Cela, Artenida; Collins, Caitlin; Díaz, Sebastián R.; Collins, Angelo; Duffrin, Melani W.

    2013-01-01

    Health professionals and policymakers are asking educators to place more emphasis on food and nutrition education. Integrating these topics into science curricula using hand-on, food-based activities may strengthen students' understanding of science concepts. The Food, Math, and Science Teaching Enhancement Resource (FoodMASTER) Initiative is a…

  14. Hands-on-Science: Using Education Research to Construct Learner-Centered Classes

    NASA Astrophysics Data System (ADS)

    Ludwig, R. R.; Chimonidou, A.; Kopp, S.

    2014-07-01

    Research into the process of learning, and learning astronomy, can be informative for the development of a course. Students are better able to incorporate and make sense of new ideas when they are aware of their own prior knowledge (Resnick et al. 1989; Confrey 1990), have the opportunity to develop explanations from their own experience in their own words (McDermott 1991; Prather et al. 2004), and benefit from peer instruction (Mazur 1997; Green 2003). Students in astronomy courses often have difficulty understanding many different concepts as a result of difficulties with spatial reasoning and a sense of scale. The Hands-on-Science program at UT Austin incorporates these research-based results into four guided-inquiry, integrated science courses (50 students each). They are aimed at pre-service K-5 teachers but are open to other majors as well. We find that Hands-on-Science students not only attain more favorable changes in attitude towards science, but they also outperform students in traditional lecture courses in content gains. Workshop Outcomes: Participants experienced a research-based, guided-inquiry lesson about the motion of objects in the sky and discussed the research methodology for assessing students in such a course.

  15. Science and Health Education Perspectives on the Handicapped. A Curriculum to Foster Understanding of People with Disabilities.

    ERIC Educational Resources Information Center

    City Univ. of New York, NY. Hunter Coll.

    Intended to extend the existing science and health education curriculum at junior and senior high school levels, the curriculum presents four mini-units on specific disabilities. The first section provides lesson plans about hearing impairments, and includes four lesson plans listing themes, objectives, and discussion guidelines for such topics as…

  16. Electrical Energy. 7th and 8th Grade Agriculture Science Curriculum. Teacher Materials.

    ERIC Educational Resources Information Center

    Southern Illinois Univ., Carbondale. Dept. of Agricultural Education and Mechanization.

    This curriculum guide, the fifth in a set of six, contains teacher and student materials for a unit on electrical energy prepared as part of a seventh- and eighth-grade agricultural science curriculum that is integrated with science instruction. The guide contains the state goals and sample learning objectives for each goal for students in grades…

  17. Solar Energy. 7th and 8th Grade Agriculture Science Curriculum. Teacher Materials.

    ERIC Educational Resources Information Center

    Southern Illinois Univ., Carbondale. Dept. of Agricultural Education and Mechanization.

    This curriculum guide, the third in a set of six, contains teacher and student materials for a unit on solar energy prepared as part of a seventh- and eighth-grade agricultural science curriculum that is integrated with science instruction. The guide contains the state goals and sample learning objectives for each goal for students in grades 8-10…

  18. The Effects of Gender and Type of Inquiry Curriculum on Sixth Grade Students' Science Process Skills and Epistemological Beliefs in Science

    NASA Astrophysics Data System (ADS)

    Zaleta, Kristy L.

    The purpose of this study was to investigate the impact of gender and type of inquiry curriculum (open or structured) on science process skills and epistemological beliefs in science of sixth grade students. The current study took place in an urban northeastern middle school. The researcher utilized a sample of convenience comprised of 303 sixth grade students taught by four science teachers on separate teams. The study employed mixed methods with a quasi-experimental design, pretest-posttest comparison group with 17 intact classrooms of students. Students' science process skills and epistemological beliefs in science (source, certainty, development, and justification) were measured before and after the intervention, which exposed different groups of students to different types of inquiry (structured or open). Differences between comparison and treatment groups and between male and female students were analyzed after the intervention, on science process skills, using a two-way analysis of covariance (ANCOVA), and, on epistemological beliefs in science, using a two-way multivariate analysis of covariance (MANCOVA). Responses from two focus groups of open inquiry students were cycle coded and examined for themes and patterns. Quantitative measurements indicated that girls scored significantly higher on science process skills than boys, regardless of type of inquiry instruction. Neither gender nor type of inquiry instruction predicted students' epistemological beliefs in science after accounting for students' pretest scores. The dimension Development accounted for 10.6% of the variance in students' science process skills. Qualitative results indicated that students with sophisticated epistemological beliefs expressed engagement with the open-inquiry curriculum. Students in both the sophisticated and naive beliefs groups identified challenges with the curriculum and improvement in learning as major themes. The types of challenges identified differed between the groups

  19. Engaging a middle school teacher and students in formal-informal science education: Contexts of science standards-based curriculum and an urban science center

    NASA Astrophysics Data System (ADS)

    Grace, Shamarion Gladys

    This is a three-article five chapter doctoral dissertation. The overall purpose of this three-pronged study is to engage a middle school science teacher and students in formal-informal science education within the context of a science standards-based curriculum and Urban Science Center. The goals of the study were: (1) to characterize the conversations of formal and informal science educators as they attempted to implement a standards-based curriculum augmented with science center exhibits; (2) to study the classroom discourse between the teacher and students that foster the development of common knowledge in science and student understanding of the concept of energy before observing science center exhibits on energy; (3) to investigate whether or not a standards-driven, project-based Investigating and Questioning our World through Science and Technology (IQWST) curriculum unit on forms and transformation of energy augmented with science center exhibits had a significant effect on urban African-American seventh grade students' achievement and learning. Overall, the study consisted of a mixed-method approach. Article one consists of a case study featuring semi-structured interviews and field notes. Article two consists of documenting and interpreting teacher-students' classroom discourse. Article three consists of qualitative methods (classroom discussion, focus group interviews, student video creation) and quantitative methods (multiple choice and open-ended questions). Oral discourses in all three studies were audio-recorded and transcribed verbatim. In article one, the community of educators' conversations were critically analyzed to discern the challenges educators encountered when they attempted to connect school curriculum to energy exhibits at the Urban Science Center. The five challenges that characterize the emergence of a third space were as follows: (a) science terminology for lesson focus, (b) "dumb-down" of science exhibits, (c) exploration distracts

  20. Indoor-Outdoor Science

    ERIC Educational Resources Information Center

    Gopal, Jyoti; Pastor, Ella

    2013-01-01

    This article describes a hands-on science curriculum used to teach kindergarten students about decomposition at the Riverdale Country School in the Bronx, New York. The goal was to get students to spend more time in the natural world and to have the opportunity to literally "get their hands dirty." This was premised on the idea that the…

  1. Pairing New Science Curriculum with Professional Learning Increases Student Achievement. Lessons from Research

    ERIC Educational Resources Information Center

    Killion, Joellen

    2016-01-01

    A randomized trial study, conducted over two school years in 18 high schools in Washington, finds that "An Inquiry Approach," a three-year, educative curriculum for high school science, has a positive impact on student achievement, teacher practice, and fidelity of implementation of the curriculum when the curriculum is paired with…

  2. Curriculum coherence: A comparative analysis of elementary science content standards in People's Republic of China and the USA

    NASA Astrophysics Data System (ADS)

    Huang, Fang

    This study examines elementary science content standards curriculum coherence between the People's Republic of China and the United States of America. Three aspects of curriculum coherence are examined in this study: topic inclusion, topic duration, and curriculum structure. Specifically this study centers on the following research questions: (1) What science knowledge is intended for elementary students in each country? (2) How long each topic stays in the curriculum? (3) How these topics sequence and connect with each other? (4) And finally, what is the implication for elementary science curriculum development? Four intended science curriculum frameworks were selected respectively for each country. A technique of General Topic Trace Mapping (GTTM) was applied to generate the composite science content standards out of the selected curriculum for each country. In comparison, the composite USA and Chinese elementary science content standards form a stark contrast: a bunch of broad topics vs. a focus on a set of key topics at each grade; an average of 3.4 year topic duration vs. an average of 1.68 year topic duration; a stress on connections among related ideas vs. a discrete disposition of related ideas; laundry list topic organization vs. hierarchical organization of science topics. In analyzing the interrelationships among these characteristics, this study reached implications for developing coherent science content standards: First, for the overall curriculum, the topic inclusion should reflect the logical and sequential nature of knowledge in science. Second, for each grade level, less, rather than more science topics should be focused. Third, however, it should be clarified that a balance should be made between curriculum breadth and depth by considering student needs, subject matter, and child development. Fourth, the topic duration should not be too long. The lengthy topic duration tends to undermine links among ideas as well as lead to superficial treatment

  3. Story - Science - Solutions: A new middle school science curriculum that promotes climate-stewardship

    NASA Astrophysics Data System (ADS)

    Cordero, E.; Centeno Delgado, D. C.

    2017-12-01

    Over the last five years, Green Ninja has been developing educational media to help motivate student interest and engagement around climate science and solutions. The adoption of the Next Generation Science Standards (NGSS) offers a unique opportunity where schools are changing both what they teach in a science class and how they teach. Inspired by the new emphasis in NGSS on climate change, human impact and engineering design, Green Ninja developed a technology focused, integrative, and yearlong science curriculum (6th, 7th and 8th grade) focused broadly around solutions to environmental problems. The use of technology supports the development of skills valuable for students, while also offering real-time metrics to help measure both student learning and environmental impact of student actions. During the presentation, we will describe the design philosophy around our middle school curriculum and share data from a series of classes that have created environmental benefits that transcend the traditional classroom. The notion that formal education, if done correctly, can be leveraged as a viable climate mitigation strategy will be discussed.

  4. Introducing Hands-on, Experiential Learning Experiences in an Urban Environmental Science Program at a Minority Serving Institution

    NASA Astrophysics Data System (ADS)

    Duzgoren-Aydin, N. S.; Freile, D.

    2013-12-01

    STEM education at New Jersey City University increasingly focuses on experiential, student-centered learning. The Department of Geoscience/Geography plays a significant role in developing and implementing a new Urban Environmental Science Program. The program aims at graduating highly skilled, demographically diverse students (14 % African-American and 18% Hispanic) to be employed in high-growth Earth and Environmental Science career paths, both at a technical (e.g. B.S.) as well as an educational (K-12 grade) (e.g. B.A) level. The core program, including the Earth and Environmental Science curricula is guided by partners (e.g. USDA-NRCS). The program is highly interdisciplinary and 'hands-on', focusing upon the high-tech practical skills and knowledge demanded of science professionals in the 21st century. The focus of the curriculum is on improving environmental quality in northern NJ, centering upon our urban community in Jersey City and Hudson County. Our Department is moving towards a more earth system science approach to learning. Most of our courses (e.g., Earth Surface Processes, Sedimentology/Stratigraphy, Earth Materials, Essential Methods, Historical Geology) have hands-on laboratory and/or field components. Although some of our other courses do not have formal laboratory components, research modules of many such courses (Geochemistry, Urban Environmental Issues and Policy and Environmental Geology) involve strong field or laboratory studies. The department has a wide range of analytical and laboratory capacities including a portable XRF, bench-top XRD and ICP-MS. In spring 2013, Dr. Duzgoren-Aydin was awarded $277K in Higher Education Equipment Leasing Fund monies from the University in order to establish an Environmental Teaching and Research Laboratory. The addition of these funds will make it possible for the department to increase its instrumentation capacity by adding a mercury analyzer, Ion Chromatography and C-N-S analyzer, as well as updating

  5. Greenhouse Effect in the Classroom: A Project- and Laboratory-Based Curriculum.

    ERIC Educational Resources Information Center

    Lueddecke, Susann B.; Pinter, Nicholas; McManus, Scott A.

    2001-01-01

    Tests a multifaceted curriculum for use in introductory earth science classes from the secondary school to the introductory undergraduate level. Simulates the greenhouse effect with two fish tanks, heat lamps, and thermometers. Uses a hands-on science approach to develop a deeper understanding of the climate system among students. (Contains 28…

  6. Integrating writing into an introductory environmental science curriculum: Perspectives from biology and physics

    NASA Astrophysics Data System (ADS)

    Selkin, P. A.; Cline, E. T.; Beaufort, A.

    2008-12-01

    In the University of Washington, Tacoma's Environmental Science program, we are implementing a curriculum-wide, scaffolded strategy to teach scientific writing. Writing in an introductory science course is a powerful means to make students feel part of the scientific community, an important goal in our environmental science curriculum. Writing is already an important component of the UW Tacoma environmental science program at the upper levels: our approach is designed to prepare students for the writing-intensive junior- and senior-level seminars. The approach is currently being tested in introductory biology and physics before it is incorporated in the rest of the introductory environmental science curriculum. The centerpiece of our approach is a set of research and writing assignments woven throughout the biology and physics course sequences. The assignments progress in their degree of complexity and freedom through the sequence of introductory science courses. Each assignment is supported by a number of worksheets and short written exercises designed to teach writing and critical thought skills. The worksheets are focused on skills identified both by research in science writing and the instructors' experience with student writing. Students see the assignments as a way to personalize their understanding of basic science concepts, and to think critically about ideas that interest them. We find that these assignments provide a good way to assess student comprehension of some of the more difficult ideas in the basic sciences, as well as a means to engage students with the challenging concepts of introductory science courses. Our experience designing these courses can inform efforts to integrate writing throughout a geoscience or environmental science curriculum, as opposed to on a course-by-course basis.

  7. Motivational Qualities of Hands-on Science Activities for Turkish Preservice Kindergarten Teachers

    ERIC Educational Resources Information Center

    Bulunuz, Mizrap

    2012-01-01

    The purpose of this research, conducted in a science methods course in Turkey, was to explore the qualities of hands-on science activities which might motivate preservice kindergarten teachers to use these activities in their own classrooms. Two similar classes totaling 47 students and taught by the same instructor were used in this study. On…

  8. Life Science Standards and Curriculum Development for 9-12.

    ERIC Educational Resources Information Center

    Speece, Susan P.; Andersen, Hans O.

    1996-01-01

    Proposes a design for a life science curriculum following the National Research Council National Science Education Standards. The overarching theme is that science as inquiry should be recognized as a basic and controlling principle in the ultimate organization and experiences in students' science education. Six-week units include Matter, Energy,…

  9. Science/Technology/Society: A Framework for Curriculum Reform in Secondary School Science and Social Studies.

    ERIC Educational Resources Information Center

    Hickman, Faith M.; And Others

    The Science/Technology/Society (STS) theme describes a contemporary trend in education which focuses on the teaching of issues such as air quality, nuclear power, land use, and water resources but justification for including STS in the high school core curriculum has a precedence based on historical connections among science, technology, and…

  10. Integrating Hands-On Undergraduate Research in an Applied Spatial Science Senior Level Capstone Course

    ERIC Educational Resources Information Center

    Kulhavy, David L.; Unger, Daniel R.; Hung, I-Kuai; Douglass, David

    2015-01-01

    A senior within a spatial science Ecological Planning capstone course designed an undergraduate research project to increase his spatial science expertise and to assess the hands-on instruction methodology employed within the Bachelor of Science in Spatial Science program at Stephen F Austin State University. The height of 30 building features…

  11. Communicate science: an example of food related hands-on laboratory approach

    NASA Astrophysics Data System (ADS)

    D'Addezio, Giuliana; Marsili, Antonella; Vallocchia, Massimiliano

    2014-05-01

    The Laboratorio Didattica e Divulgazione Scientifica of the Istituto Nazionale di Geofisica e Vulcanologia (INGV's Educational and Outreach Laboratory) organized activity with kids to convey scientific knowledge and to promote research on Earth Science, focusing on volcanic and seismic hazard. The combination of games and learning in educational activity can be a valuable tool for study of complex phenomena. Hands-on activity may help in engage kids in a learning process through direct participation that significantly improves the learning performance of children. Making learning fun motivate audience to pay attention on and stay focused on the subject. We present the experience of the hand-on laboratory "Laboratorio goloso per bambini curiosi di scienza (a delicious hands-on laboratory for kids curious about science)", performed in Frascati during the 2013 European Researchers' Night, promoted by the European Commission, as part of the program organized by the Laboratorio Didattica e Divulgazione Scientifica in the framework of Associazione Frascati Scienza (http://www.frascatiscienza.it/). The hand-on activity were designed for primary schools to create enjoyable and unusual tools for learning Earth Science. During this activity kids are involved with something related to everyday life, such as food, through manipulation, construction and implementation of simple experiments related to Earth dynamics. Children become familiar with scientific concepts such as composition of the Earth, plates tectonic, earthquakes and seismic waves propagation and experience the effect of earthquakes on buildings, exploring their important implications for seismic hazard. During the activity, composed of several steps, participants were able to learn about Earth inner structure, fragile lithosphere, waves propagations, impact of waves on building ecc.., dealing with eggs, cookies, honey, sugar, polenta, flour, chocolate, candies, liquorice sticks, bread, pudding and sweets. The

  12. Complementary Social Sciences Courses in the Alberta High School Curriculum: A Conceptual Review

    ERIC Educational Resources Information Center

    Staszenski, Donna; Smits, Hans

    2008-01-01

    In keeping with Alberta Education's goals and responsibilities to develop and evaluate curriculum and to set standards and assess outcomes, the Ministry is reviewing the status and purpose of social sciences courses as part of the high school curriculum. The present social sciences curriculum was revised in 1985. As part of the social sciences…

  13. Inquiring into Three Approaches to Hands-On Learning in Elementary and Secondary Science Methods Courses.

    ERIC Educational Resources Information Center

    Barnes, Marianne B.; Foley, Kathleen R.

    1999-01-01

    Investigates three approaches to hands-on science learning in two contexts, an elementary science methods class and a secondary science methods class. Focused on an activity on foam. Concludes that when developing models for teaching science methods courses, methods instructors need to share power with prospective teachers. (Author/MM)

  14. International Space Station: K-5 Hands-on Science and Math Lesson Plans.

    ERIC Educational Resources Information Center

    Boeing Co., Huntsville, AL.

    The Space Station is already capturing the imaginations of American students, encouraging them to pursue careers in the sciences. The idea of living and working in space continues to spark this renewed interest. The material in this guide was developed to provide hands-on experiences in science and math in the context of an International Space…

  15. Supporting Kindergartners' Science Talk in the Context of an Integrated Science and Disciplinary Literacy Curriculum

    ERIC Educational Resources Information Center

    Wright, Tanya S.; Gotwals, Amelia Wenk

    2017-01-01

    Given the growing evidence of limited attention to science, disciplinary literacy, and oral language in elementary classrooms serving low-income children, this study focused on designing and testing an integrated science and disciplinary language and literacy curriculum aligned with NGSS and CCSS ELA standards for kindergarten. We used…

  16. The Impact of a Geospatial Technology-Supported Energy Curriculum on Middle School Students' Science Achievement

    ERIC Educational Resources Information Center

    Kulo, Violet; Bodzin, Alec

    2013-01-01

    Geospatial technologies are increasingly being integrated in science classrooms to foster learning. This study examined whether a Web-enhanced science inquiry curriculum supported by geospatial technologies promoted urban middle school students' understanding of energy concepts. The participants included one science teacher and 108 eighth-grade…

  17. Teachers' Perspectives on Online Virtual Labs vs. Hands-On Labs in High School Science

    NASA Astrophysics Data System (ADS)

    Bohr, Teresa M.

    This study of online science teachers' opinions addressed the use of virtual labs in online courses. A growing number of schools use virtual labs that must meet mandated laboratory standards to ensure they provide learning experiences comparable to hands-on labs, which are an integral part of science curricula. The purpose of this qualitative case study was to examine teachers' perceptions of the quality and effectiveness of high school virtual labs. The theoretical foundation was constructivism, as labs provide student-centered activities for problem solving, inquiry, and exploration of phenomena. The research questions focused on experienced teachers' perceptions of the quality of virtual vs. hands-on labs. Data were collected through survey questions derived from the lab objectives of The Next Generation Science Standards . Eighteen teachers rated the degree of importance of each objective and also rated how they felt virtual labs met these objectives; these ratings were reported using descriptive statistics. Responses to open-ended questions were few and served to illustrate the numerical results. Many teachers stated that virtual labs are valuable supplements but could not completely replace hands-on experiences. Studies on the quality and effectiveness of high school virtual labs are limited despite widespread use. Comprehensive studies will ensure that online students have equal access to quality labs. School districts need to define lab requirements, and colleges need to specify the lab experience they require. This study has potential to inspire positive social change by assisting science educators, including those in the local school district, in evaluating and selecting courseware designed to promote higher order thinking skills, real-world problem solving, and development of strong inquiry skills, thereby improving science instruction for all high school students.

  18. Does Curriculum Practical Training Affect Engineers' Workplace Outcomes? Evidence from an Engineer Survey in China

    ERIC Educational Resources Information Center

    Li, Jing; Zhang, Yu; Tsang, Mun; Li, Manli

    2015-01-01

    With the increasing attention to STEM (Science, Technology, Engineering, and Math), hands-on Curriculum Practical Training (CPT) has been expanding rapidly worldwide as a requirement of the undergraduate engineering education. In China, a typical CPT for undergraduate engineering students requires several weeks of hands-on training in the…

  19. The effect of inquiry-based, hands-on labs on achievement in middle school science

    NASA Astrophysics Data System (ADS)

    Miller, Donna Kaye Green

    The purpose of this quasi-experimental study was to measure the difference in science achievement between students who had been taught with an inquiry-based, hands-on pedagogical approach and those who had not. Improving student academic achievement and standardized test scores is the major objective of teachers, parents, school administrators, government entities, and students themselves. One major barrier to this academic success in Georgia, and the entire United States, has been the paucity of success in middle level science classes. Many studies have been conducted to determine the learning approaches that will best enable students to not only acquire a deeper understanding of science concepts, but to equip them to apply that new knowledge in their daily activities. Inquiry-based, hands-on learning involves students participating in activities that reflect methods of scientific investigation. The effective utilization of the inquiry-based learning approach demands inclusion of learners in a self-directed learning environment, the ability to think critically, and an understanding of how to reflect and reason scientifically. The treatment group using an inquiry-based, hands-on program did score slightly higher on the CRCT. However, the results revealed that there was not a significant difference in student achievement. This study showed that the traditionally instructed control group had slightly higher interest in science than the inquiry-based treatment group. The findings of this research study indicated that the NCLB mandates might need to be altered if there are no significant academic gains that result from the use of inquiry-based strategies.

  20. Developing the learning physical science curriculum: Adapting a small enrollment, laboratory and discussion based physical science course for large enrollments

    NASA Astrophysics Data System (ADS)

    Goldberg, Fred; Price, Edward; Robinson, Stephen; Boyd-Harlow, Danielle; McKean, Michael

    2012-06-01

    We report on the adaptation of the small enrollment, lab and discussion based physical science course, Physical Science and Everyday Thinking (PSET), for a large-enrollment, lecture-style setting. Like PSET, the new Learning Physical Science (LEPS) curriculum was designed around specific principles based on research on learning to meet the needs of nonscience students, especially prospective and practicing elementary and middle school teachers. We describe the structure of the two curricula and the adaptation process, including a detailed comparison of similar activities from the two curricula and a case study of a LEPS classroom implementation. In LEPS, short instructor-guided lessons replace lengthier small group activities, and movies, rather than hands-on investigations, provide the evidence used to support and test ideas. LEPS promotes student peer interaction as an important part of sense making via “clicker” questions, rather than small group and whole class discussions typical of PSET. Examples of student dialog indicate that this format is capable of generating substantive student discussion and successfully enacting the design principles. Field-test data show similar student content learning gains with the two curricula. Nevertheless, because of classroom constraints, some important practices of science that were an integral part of PSET were not included in LEPS.

  1. Toward a Lived Science Curriculum in Intersecting Figured Worlds: An Exploration of Individual Meanings in Science Education

    ERIC Educational Resources Information Center

    Price, Jeremy F.; McNeill, Katherine L.

    2013-01-01

    As knowledge of and familiarity with science becomes an increasingly important aspect of contemporary life and citizenship, efforts have been made to make the science curriculum a “lived” curriculum (Hurd, 2000), one that reaches out to the lives, communities, and experiences of students. In this research around a high school urban ecology…

  2. Teacher Self-Efficacy during the Implementation of a Problem-Based Science Curriculum

    ERIC Educational Resources Information Center

    Hodges, Charles B.; Gale, Jessica; Meng, Alicia

    2016-01-01

    This study was conducted to investigate eighth-grade science teachers' self-efficacy during the implementation of a new, problem-based science curriculum. The curriculum included applications of LEGO® robotics, a new technology for these teachers. Teachers' responded to structured journaling activities designed to collect information about their…

  3. Impact of the Science and Technology for Children Curriculum in the Oshkosh Area School District.

    ERIC Educational Resources Information Center

    Lattery, Mark Joseph; Lemberger, John; Herzog, Barbara

    2002-01-01

    Examines the instructional impact of National Science Resources Center's Science and Technology for Children curriculum in the Oshkosh Area School District. Results suggest that the adoption of this curriculum among experienced teachers in the district will provide little or no immediate gains on student achievement and potentially a slight…

  4. Foundational Approaches in Science Teaching (FAST)--A Structured "Inquiry" Oriented Junior Science Curriculum

    ERIC Educational Resources Information Center

    Dekkers, John; Rouse, Fae

    1977-01-01

    Provides a detailed description of the three-year Foundational Approaches in Science Education curriculum developed at the University of Hawaii. The program utilizes a spiral approach with topics in ecology, physical science and relational study. Sample units and implementation suggestions are provided. (CP)

  5. Specifying a curriculum for biopolitical critical literacy in science teacher education: exploring roles for science fiction

    NASA Astrophysics Data System (ADS)

    Gough, Noel

    2017-12-01

    In this essay I suggest some ways in which science teacher educators in Western neoliberal economies might facilitate learners' development of a critical literacy concerning the social and cultural changes signified by the concept of biopolitics. I consider how such a biopolitically inflected critical literacy might find expression in a science teacher education curriculum and suggest a number of ways of materializing such a curriculum in specific literatures, media, procedures, and assessment tasks, with particular reference to the contributions of science fiction in popular media.

  6. Hands-On Astrophysics: Variable Stars in Math, Science, and Computer Education

    NASA Astrophysics Data System (ADS)

    Mattei, J. A.; Percy, J. R.

    1999-12-01

    Hands-On Astrophysics (HOA): Variable Stars in Math, Science, and Computer Education, is a project recently developed by the American Association of Variable Star Observers (AAVSO) with funds from the National Science Foundation. HOA uses the unique methods and the international database of the AAVSO to develop and integrate students' math and science skills through variable star observation and analysis. It can provide an understanding of basic astronomy concepts, as well as interdisciplinary connections. Most of all, it motivates the user by exposing them to the excitement of doing real science with real data. Project materials include: a database of 600,000 variable star observations; VSTAR (a data plotting and analysis program), and other user friendly software; 31 slides and 14 prints of five constellations; 45 variable star finder charts; an instructional videotape in three 15-minute segments; and a 560-page student's and teacher's manual. These materials support the National Standards for Science and Math education by directly involving the students in the scientific process. Hands-On Astrophysics is designed to be flexible. It is organized so that it can be used at many levels, in many contexts: for classroom use from high school to college level, or for individual projects. In addition, communication and support can be found through the AAVSO home page on the World Wide Web: http://www.aavso.org. The HOA materials can be ordered through this web site or from the AAVSO, 25 Birch Street Cambridge, MA 02138, USA. We gratefully acknowledge the education grant ESI-9154091 from the National Science Foundation which funded the development of this project.

  7. A behavioral science/behavioral medicine core curriculum proposal for Japanese undergraduate medical education.

    PubMed

    Tsutsumi, Akizumi

    2015-01-01

    Behavioral science and behavioral medicine have not been systematically taught to Japanese undergraduate medical students. A working group under the auspices of Japanese Society of Behavioral Medicine developed an outcome-oriented curriculum of behavioral science/behavioral medicine through three processes: identifying the curriculum contents, holding a joint symposium with related societies, and defining outcomes and proposing a learning module. The behavioral science/behavioral medicine core curriculum consists of 11 units of lectures and four units of practical study. The working group plans to improve the current core curriculum by devising formative assessment methods so that students can learn and acquire attitude as well as the skills and knowledge necessary for student-centered clinical practice.

  8. Aerospace Science Education, A Curriculum Guide.

    ERIC Educational Resources Information Center

    Hilburn, Paul

    This curriculum guide was developed by the Alaska State Department of Education for the purpose of aiding elementary and secondary school teachers in incorporating elements of aerospace science in the classroom. The section of the guide designed for elementary school teachers includes chapters under the headings: Aircraft, Airports, Weather,…

  9. The Effects of Gender and Type of Inquiry Curriculum on Sixth Grade Students' Science Process Skills and Epistemological Beliefs in Science

    ERIC Educational Resources Information Center

    Zaleta, Kristy L.

    2014-01-01

    The purpose of this study was to investigate the impact of gender and type of inquiry curriculum (open or structured) on science process skills and epistemological beliefs in science of sixth grade students. The current study took place in an urban northeastern middle school. The researcher utilized a sample of convenience comprised of 303 sixth…

  10. The effects of integrated mathematics/science curriculum and instruction on mathematics achievement and student attitudes in grade six

    NASA Astrophysics Data System (ADS)

    Hill, Mary Denise

    The purpose of this study was to determine whether integrating mathematics and science curriculum and teaching practices significantly improves achievement in mathematics and attitudes towards mathematics among sixth grade students in South Texas. The study was conducted during the 2001--2002 school year. A causal-comparative ex post facto research design was used to explore the effects of integrated mathematics and science classrooms compared to classrooms of traditional, isolated mathematics and science teaching practices on student achievement and student attitudes. Achievement was based on the Spring 2002 Mathematics portion of the standardized Texas Assessment of Academic Skills (TAAS) Texas Learning Index (TLI) scores and individual student's mathematics Grade Point Average (GPA). Measurement of student attitudes was based on the results of the Integrated Mathematics Attitudinal Survey (IMAS), created by the researcher for this study. The sample population included 349 Grade 6 mathematics students attending one middle school involved in a pilot program utilizing integrated mathematics/science curriculum and teaching practices in a South Texas urban school district. The research involved 337 of the 349 sixth grade students to study the effects of mathematics/science curriculum and teaching practices on achievement and 207 of the 349 sixth grade students to study the effects of mathematics/science curriculum on attitudes concerning mathematics. The data were analyzed using chi square analyses, independent samples t-tests, and the analysis of variance (ANOVA). Statistical significance was determined at the .05 level of significance. Significant relationships were found when analyzing the proficiency of mathematics skills and individual growth of mathematics achievement. Chi square analyses indicated that the students in the integrated mathematics/science classrooms were more likely to exhibit individual growth and proficiency of mathematics skills based on the

  11. Hands-On Life Science Activities for Middle Schools. Teacher's Edition. First Edition.

    ERIC Educational Resources Information Center

    Newman, Barbara; Kramer, Stephanie

    This book provides 50 enrichment activities for the science curriculum that provide concrete connections with important world events. Each activity is self-contained and provides everything the student needs to gain a basic understanding of a concept or to work through a project. The activities include innovative and traditional projects for both…

  12. Fifth graders' science inquiry abilities: A comparative study of students in hands-on and textbook curricula

    NASA Astrophysics Data System (ADS)

    Pine, Jerome; Aschbacher, Pamela; Roth, Ellen; Jones, Melanie; McPhee, Cameron; Martin, Catherine; Phelps, Scott; Kyle, Tara; Foley, Brian

    2006-05-01

    A large number of American elementary school students are now studying science using the hands-on inquiry curricula developed in the 1990s: Insights; Full Option Science System (FOSS); and Science and Technology for Children (STC). A goal of these programs, echoed in the National Science Education Standards, is that children should gain abilities to do scientific inquiry and understanding about scientific inquiry. We have studied the degree to which students can do inquiries by using four hands-on performance assessments, which required one or three class periods. To be fair, the assessments avoided content that is studied in depth in the hands-on programs. For a sample of about 1000 fifth grade students, we compared the performance of students in hands-on curricula with an equal number of students with textbook curricula. The students were from 41 classrooms in nine school districts. The results show little or no curricular effect. There was a strong dependence on students' cognitive ability, as measured with a standard multiple-choice instrument. There was no significant difference between boys and girls. Also, there was no difference on a multiple-choice test, which used items released from the Trends in International Mathematics and Science Study (TIMSS). It is not completely clear whether the lack of difference on the performance assessments was a consequence of the assessments, the curricula, and/or the teaching.

  13. Mentoring and Argumentation in a Game-Infused Science Curriculum

    NASA Astrophysics Data System (ADS)

    Gould, Deena L.; Parekh, Priyanka

    2018-04-01

    Engaging in argumentation from evidence is challenging for most middle school students. We report the design of a media-based mentoring system to support middle school students in engaging in argumentation in the context of a game-infused science curriculum. Our design emphasizes learners apprenticing with college student mentors around the socio-scientific inquiry of a designed video game. We report the results of a mixed-methods study examining the use of this media-based mentoring system with students ages 11 through 14. We observed that the discourse of groups of students that engaged with the game-infused science curriculum while interacting with college student mentors via a social media platform demonstrated statistically significant higher ratings of cognitive, epistemic, and social aspects of argumentation than groups of students that engaged with the social media platform and game-infused science curriculum without mentors. We further explored the differences between the Discourses of the mentored and non-mentored groups. This analysis showed that students in the mentored groups were invited, guided, and socialized into roles of greater agency than students in the non-mentored groups. This increased agency might explain why mentored groups demonstrated higher levels of scientific argumentation than non-mentored groups. Based on our analyses, we argue that media-based mentoring may be designed around a video game to support middle school students in engaging in argumentation from evidence.

  14. Water Cycle. K-6 Science Curriculum.

    ERIC Educational Resources Information Center

    Blueford, J. R.; And Others

    Water Cycle is one of the units of a K-6 unified science curriculum program. The unit consists of four organizing sub-themes: (1) atmosphere (highlighting the processes of evaporation, condensation, convection, wind movement and air pollution); (2) water (examining the properties of liquids, water distribution, use, and quality, and the water…

  15. Consumer Education in the Science Curriculum.

    ERIC Educational Resources Information Center

    Kowalski, Stephen W.

    In this monograph, the implementation of consumer education topics into the science curriculum of secondary schools is advocated. Not only is the need for such activities explained, but several suggested instructional topics are provided. One area of recommended study is that of product comparison. A model outline of operation is provided, along…

  16. Teaching Children Science: Hands-On Nature Study in North America, 1890-1930

    ERIC Educational Resources Information Center

    Kohlstedt, Sally Gregory

    2010-01-01

    In the early twentieth century, a curriculum known as nature study flourished in major city school systems, streetcar suburbs, small towns, and even rural one-room schools. This object-based approach to learning about the natural world marked the first systematic attempt to introduce science into elementary education, and it came at a time when…

  17. SU-F-E-08: Medical Physics as a Teaching Tool for High School Science Curriculum

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Buckley, L

    Purpose: Delivering high school science curriculum in a timely manner and in way that is accessible to all students is a challenge for teachers. Although many high schools offer career workshops, these are typically directed at senior students and do not relate directly to details of the curriculum. The objective of this initiative was to create a series of lectures that use medical physics to relate many aspects of the high school science curriculum to tangible clinical applications and to introduce students to alternate pathways into a career in health sciences. Methods: A series of lectures has been developed basedmore » on the Ontario High School Science Curriculum. Each lecture uses a career in radiotherapy medical physics as the framework for discussion of topics specific to the high school course being addressed. Results: At present, these lectures have been delivered in five area high schools to students ranging from sophomores to seniors. Survey documents are given to the students before and after the lecture to assess their awareness of careers in health care, applications of physics and their general interest in the subject areas. As expected, students have limited up front awareness of the wide variety of health related career paths. The idea of combining a career lecture with topics specific to the classroom curriculum has been well-received by teachers and students alike. Conclusion: Career talks for high school students are useful for students contemplating their post- secondary career path. Relating career discussion with direct course curriculum makes their studies more relevant and engaging. Students aspiring to a career in health sciences often focus their studies on life sciences due to limited knowledge of potential careers. An early introduction to medical physics presents them with an alternate path through the physical sciences into health care.« less

  18. Snow snakes and science agency: Empowering American Indian students through a culturally-based science, technology, engineering, and mathematics (STEM) curriculum

    NASA Astrophysics Data System (ADS)

    Miller, Brant Gregory

    Mainstream curricula have struggled to provide American Indian students with meaningful learning experiences. This research project studied a novel approach to engaging students with science, technology, engineering, and mathematics (STEM) content through a culturally-based context. The traditional American Indian game of Snow Snakes (shushumeg in Ojibwe) presented a highly engaging context for delivering STEM content. Through the engaging context of snow snakes, the designed STEM curriculum explicitly applied mathematics (scaling and data), and science (force and motion) to an engineering prototype iteration that used available materials and tools (technology) for success. It was hypothesized that by engaging students through the carefully integrated STEM curriculum, driven by the culturally based context of snow snakes, students would exhibit an increase in science agency and achievement. The overarching research question explored for this study was: How does a culturally-based and integrated STEM curriculum impact student's science agency? Associated sub-questions were: (1) What does science agency look like for 6th grade students? (2) What key experiences are involved in the development of science agency through a culturally-based STEM curriculum context? And (3) What are the impacts on the community associated with the implementation of a culturally-based STEM curriculum? A case study research design was implemented for this research. Yin (2003) defines a case study as investigating a phenomenon (e.g. science agency) which occurs within authentic contexts (e.g. snow snakes, Adventure Learning, and Eagle Soaring School) especially when the boundaries between phenomenon and context are unclear. For this case study Eagle Soaring School acted as the bounded case with students from the 6th grade class representing the embedded units. Science agency was the theoretical framework for data analysis. Major findings were categorized as science and STEM learning, agency

  19. Arguing for Computer Science in the School Curriculum

    ERIC Educational Resources Information Center

    Fluck, Andrew; Webb, Mary; Cox, Margaret; Angeli, Charoula; Malyn-Smith, Joyce; Voogt, Joke; Zagami, Jason

    2016-01-01

    Computer science has been a discipline for some years, and its position in the school curriculum has been contested differently in several countries. This paper looks at its role in three countries to illustrate these differences. A reconsideration of computer science as a separate subject both in primary and secondary education is suggested. At…

  20. Chemical Science and Technology I. A Study Guide of the Science and Engineering Technician Curriculum.

    ERIC Educational Resources Information Center

    Ballinger, Jack T.; Wolf, Lawrence J.

    This study guide is part of an interdisciplinary program of studies entitled the Science and Engineering Technician (SET) Curriculum. This curriculum integrates elements from the disciplines of chemistry, physics, mathematics, mechanical technology, and electronic technology with the objective of training technicians in the use of electronic…

  1. Science. A Guide to Curriculum Development.

    ERIC Educational Resources Information Center

    Connecticut State Dept. of Education, Hartford.

    The purpose of this guide is to aid K-12 curriculum planners in the development and implementation of well-defined programs of study in science suitable for their local school districts. Among the national trends reflected in this guide are the interdisciplinary approach; the use of performance-based student assessments; the utilization of diverse…

  2. Incorporating Writing into the Science Curriculum: A Sample Activity.

    ERIC Educational Resources Information Center

    Totten, Samuel; Tinnin, Claire

    1988-01-01

    Presents a lesson on introducing writing into the science curriculum by using an experiment to illustrate the detrimental effect of tobacco smoke on human lungs. Outlines the materials, procedures, a summary of the project, extension activities, and additional information about the writing process. Two handout sheets are included. (RT)

  3. The Notions of Science as human capital: An empirical analysis of economic growth and science curriculum

    NASA Astrophysics Data System (ADS)

    Pritchard, Russell D.

    This study was designed to determine the strength of the relationship between a nation's human capital in the form of the "Notions of Science" (NOS) and the growth rate of gross domestic product per capita for 43 countries during the years 1988 through 1998. This relationship was studied from two perspectives: first, the study sought to determine if there was a significant relationship between a country's NOS and its growth rate in gross domestic per capita; second, the study sought to determine if the NOS had a greater relationship with the growth rate of gross domestic product per capita than a more commonly used measure of human capital, amount of schooling. The NOS for the participating countries were proxied by the percentage of a country's science curriculum devoted to teaching the NOS. The science curricula used in this study were obtained from the International Association for the Evaluation of Educational Achievement's (IEA) Curriculum Frameworks for Mathematics and Science. These curricular frameworks were written as one part of the Third International Math and Science Study (TIMSS). The NOS were extracted from the science curriculum frameworks through the construction of a content-by-cognitive-behavior-grid. The categories, or codes, for the NOS used in this grid were based on the work of Clarence Irving Lewis in Mind and the World Order. Holding several other explanatory variables constant, the NOS percentage for each country were regressed against each country's average growth rate of gross domestic product per capita for the period of 1988 through 1998. The results indicate that there was not a significant relationship between human capital, as proxied by the percentage of the curriculum devoted to the notions of science, and a country's economic growth rate. Because the regression coefficient for the NOS was not statistically significant, this study was not able to determine if the NOS had a stronger relationship with growth in GDP per capita than

  4. A comparative study on student perceptions of their learning outcomes in undergraduate science degree programmes with differing curriculum models

    NASA Astrophysics Data System (ADS)

    Matthews, Kelly E.; Firn, Jennifer; Schmidt, Susanne; Whelan, Karen

    2017-04-01

    This study investigated students' perceptions of their graduate learning outcomes including content knowledge, communication, writing, teamwork, quantitative skills, and ethical thinking in two Australian universities. One university has a traditional discipline-orientated curriculum and the other, an interdisciplinary curriculum in the entry semester of first year. The Science Students Skills Inventory asked students (n = 613) in first and final years to rate their perceptions of the importance of developing graduate learning outcomes within the programme; how much they improved their graduate learning outcomes throughout their undergraduate science programme; how much they saw learning outcomes included in the programme; and how confident they were about their learning outcomes. A framework of progressive curriculum development was adopted to interpret results. Students in the discipline-oriented degree programme reported higher perceptions of scientific content knowledge and ethical thinking while students from the interdisciplinary curriculum indicated higher perceptions of oral communication and teamwork. Implications for curriculum development include ensuring progressive development from first to third years, a need for enhanced focus on scientific ethics, and career opportunities from first year onwards.

  5. Leading change: curriculum reform in graduate education in the biomedical sciences.

    PubMed

    Dasgupta, Shoumita; Symes, Karen; Hyman, Linda

    2015-01-01

    The Division of Graduate Medical Sciences at the Boston University School of Medicine houses numerous dynamic graduate programs. Doctoral students began their studies with laboratory rotations and classroom training in a variety of fundamental disciplines. Importantly, with 15 unique pathways of admission to these doctoral programs, there were also 15 unique curricula. Departments and programs offered courses independently, and students participated in curricula that were overlapping combinations of these courses. This system created curricula that were not coordinated and that had redundant course content as well as content gaps. A partnership of key stakeholders began a curriculum reform process to completely restructure doctoral education at the Boston University School of Medicine. The key pedagogical goals, objectives, and elements designed into the new curriculum through this reform process created a curriculum designed to foster the interdisciplinary thinking that students are ultimately asked to utilize in their research endeavors. We implemented comprehensive student and peer evaluation of the new Foundations in Biomedical Sciences integrated curriculum to assess the new curriculum. Furthermore, we detail how this process served as a gateway toward creating a more fully integrated graduate experience, under the umbrella of the Program in Biomedical Sciences. © 2015 The International Union of Biochemistry and Molecular Biology.

  6. Eighth Grade Earth Science Curriculum Guide. Part 1.

    ERIC Educational Resources Information Center

    New York City Board of Education, Brooklyn, NY. Div. of Curriculum and Instruction.

    This is a curriculum guide composed of lessons which can serve as models for the beginning teacher as well as for the teacher who needs activities to broaden the earth science perspective in the classroom. It was designed to supplement the New york State Earth Science Syllabus and encourages students to develop inquiry and problem solving skills.…

  7. Biomedical Engineering and Cognitive Science Secondary Science Curriculum Development: A Three Year Study

    ERIC Educational Resources Information Center

    Klein, Stacy S.; Sherwood, Robert D.

    2005-01-01

    This study reports on a multi-year effort to create and evaluate cognitive-based curricular materials for secondary school science classrooms. A team of secondary teachers, educational researchers, and academic biomedical engineers developed a series of curriculum units that are based in biomedical engineering for secondary level students in…

  8. Education for Survival; A Social Studies and Science Curriculum Guide for Grades 1, 2, 3.

    ERIC Educational Resources Information Center

    Grubman, Ruth W.; And Others

    This book is one of a series on Education For Survival and integrates a conservation curriculum into a social studies and science program for grades 1, 2, and 3. It was developed to help lead young people to an awareness of environmental problems which confront our society. The first chapter presents a resume of all social science curriculum units…

  9. Chemistry Science Investigation: Dognapping Workshop, an Outreach Program Designed to Introduce Students to Science through a Hands-On Mystery

    ERIC Educational Resources Information Center

    Boyle, Timothy J.; Sears, Jeremiah M.; Hernandez-Sanchez, Bernadette A.; Casillas, Maddison R.; Nguyen, Thao H.

    2017-01-01

    The Chemistry Science Investigation: Dognapping Workshop was designed to (i) target and inspire fourth grade students to view themselves as "Junior Scientists" before their career decisions are solidified; (ii) enable hands-on experience in fundamental scientific concepts; (iii) increase public interaction with science, technology,…

  10. Speaking of Science: Invite Speakers from Your Community to Bring the Science Curriculum to Life

    ERIC Educational Resources Information Center

    Stephens, Karol

    2012-01-01

    Establishing relevant applications for the science curriculum can be a challenge. However, the key that opens science for students is within a teacher's grasp: It is as simple as bringing science connections into his or her classroom through community resources and taking the students to the science that is available. The author encourages…

  11. Curriculum Assessment in Social Sciences at Universiti Pendidikan Sultan Idris

    ERIC Educational Resources Information Center

    Saleh, Hanifah Mahat Yazid; Hashim, Mohmadisa; Yaacob, Norazlan Hadi; Kasim, Adnan Jusoh Ahmad Yunus

    2015-01-01

    The purpose of this paper is to discuss the effectiveness of the curriculum implementation for undergraduate programme in the Faculty of Human Sciences, UPSI producing quality and competitive educators. Curriculum implementation has to go through an assessment process that aims to determine the problem, select relevant information and collect and…

  12. Science beyond the Classroom: Hands-On Optics and the Boys and Girls Club

    NASA Astrophysics Data System (ADS)

    Dokter, Erin F.; Walker, C.; Peruta, C.; Ubach, C.; Sparks, R.; Pompea, S.

    2006-12-01

    In Summer and Fall 2006, the Hands-On Optics program of the National Optical Astronomy Observatory (NOAO) teamed up with two local Boys and Girls Clubs in the Tucson area to conduct informal education programs for elementary and middle school aged children. Hands-On Optics (HOO) is a collaborative program funded by NSF to create and sustain a unique, national, informal science education program to excite students about science by actively engaging them in optics activities. The program was designed especially to reach underserved students. In this talk, the successes and challenges of implementing these programs will be discussed, as well as the lessons learned in the process, which may be applied to other partnerships between EPO providers and informal learning venues.

  13. Science and Engineering Graphics I. A Study Guide of the Science and Engineering Technician Curriculum.

    ERIC Educational Resources Information Center

    Craig, Jerry; Stapleton, Jerry

    This study guide is part of a program of studies entitled Science and Engineering Technician (SET) Curriculum. The SET Curriculum was developed for the purpose of training technicians in the use of electronic instruments and their applications. It integrates elements from the disciplines of chemistry, physics, mathematics, mechanical technology,…

  14. Seeking the Trace of Argumentation in Turkish Science Curriculum

    ERIC Educational Resources Information Center

    Cetin, Pinar Seda; Metin, Duygu; Capkinoglu, Esra; Leblebicioglu, Gulsen

    2016-01-01

    Providing students with inquiry-oriented learning environments is a major concern in science education. Argumentation discourse can enhance the effectiveness of inquiry-oriented learning environments. This study seeks the trace of argumentation in Turkish Elementary and Secondary Science Curriculum developed by the Turkish Ministry of Education…

  15. The impact of a professional development model for a mobilized science curriculum: a case study of teacher changes

    NASA Astrophysics Data System (ADS)

    Looi, Chee-Kit; Sun, Daner; Kim, Mi Song; Wen, Yun

    2018-01-01

    Background and purpose: To date, there has been little research on the Teacher Professional Development (TPD) for delivering a mobile technology-supported science curriculum. To address this, a TPD model for a science curriculum supported by mobile technology was developed and evaluated in this paper. The study reported focuses on the establishment of the TPD model and exploration of its impact on teacher behaviors in the curriculum implementation.

  16. Understanding change and curriculum implementation

    NASA Astrophysics Data System (ADS)

    de Jong, Gayle Marie

    2000-10-01

    This dissertation is a qualitative case study that examined perceptions of teachers in 2 schools about the process of change used in the implementation of a hands-on science program. Many change initiatives have failed in their implementation, and it may not necessarily be attributed to their quality. A countless number of promising programs have been derailed by a poor understanding of the process of change. This study looks first at the history of science reform to illustrate first the importance of hands-on inquiry as an effective instructional strategy. Then the process of change and its relationship to the implementation of a hands-on science curriculum was examined. The Hands on Science Program (HASP) is modular based and relies heavily on inquiry teaching. The project had been underway in these schools for about 5 years, and the districts are ready to evaluate its success. An interview with the original Project Director and information obtained from a summative evaluation helped explain the HASP. The Project Director shared the thinking that was involved in the program's inception, and the evaluation report served as a summary of the project's progress. Two schools were selected to examine the status of the program. The Organizational Climate Description Questionnaire and the Organizational Health Inventory developed by Hoy and Tarter (1997) were used to enrich the description of the school. Five teachers from each school, who have had leading roles in the implementation, were interviewed in an attempt to understand the insider's view of the change process used in the implementation of the HASP in their schools. Achievement data from the Stanford Achievement Test-9 was also used to provide some additional information. Interviews were used to understand teacher perceptions in each school and then compared in a cross-ease analysis. The results of this study could be used as planning suggestions for educational leaders designing change initiatives, although it

  17. Rethinking Argumentation-Teaching Strategies and Indigenous Knowledge in South African Science Classrooms

    ERIC Educational Resources Information Center

    Otulaja, Femi S.; Cameron, Ann; Msimanga, Audrey

    2011-01-01

    Our response to Hewson and Ogunniyi's paper focuses, on the one hand, on some of the underlying tensions associated with aligning indigenous knowledge systems with westernized science in South African science classrooms, as suggested by the new, post-apartheid, curriculum. On the other hand, the use of argumentation as a vehicle to accomplish the…

  18. Multiple Aims in the Development of a Major Reform of the National Curriculum for Science in England

    NASA Astrophysics Data System (ADS)

    Ryder, Jim; Banner, Indira

    2011-03-01

    In the context of a major reform of the school science curriculum for 14-16-year-olds in England, we examine the aims ascribed to the reform, the stakeholders involved, and the roles of differing values and authority in its development. This reform includes an emphasis on socioscientific issues and the nature of science; curriculum trends of international relevance. Our analysis identifies largely 'instrumental' aims, with little emphasis on 'intrinsic' aims and associated values. We identify five broad categories of stakeholders focusing on different aims with, for example, a social, individual, political, or economic emphasis. We suggest that curriculum development projects reflecting largely social and individual aims were appropriated by other stakeholders to serve political and economic aims. We argue that a curriculum reform body representing all stakeholder interests is needed to ensure that multiple aims are considered throughout the curriculum reform process. Within such a body, the differentiated character of the science teaching community would need to be represented.

  19. The effect of an integrated high school science curriculum on student achievement, knowledge retention, and science attitudes

    NASA Astrophysics Data System (ADS)

    Smith, Kimberly A.

    The research study investigates the effectiveness of an integrated high school science curriculum on student achievement, knowledge retention and science attitudes using quantitative and qualitative research. Data was collected from tenth grade students, in a small urban high school in Kansas City, Missouri, who were enrolled in a traditional Biology course or an integrated Environmental Science course. Quantitative data was collected in Phase 1 of the study. Data collected for academic achievement included pretest and posttest scores on the CTBS MATN exam. Data collected for knowledge retention included post-posttest scores on the CTBS MATN exam. Data collected for science attitudes were scores on a pretest and posttest using the TOSRA. SPSS was used to analyze the data using independent samples t-tests, one-way ANCOVA's and paired samples statistics. Qualitative data was collected in Phase 2 of the study. Data included responses to open-ended interview questions using three focus groups. Data was analyzed for common themes. Data analysis revealed the integrated Environmental Science course had a statistically significant impact on academic achievement, knowledge retention and positive science attitudes. Gender and socioeconomic status did not influence results. The study also determined that the CTBS MATN exam was not an accurate predictor of scores on state testing as was previously thought.

  20. Space Science Curricula

    NASA Technical Reports Server (NTRS)

    1990-01-01

    Johnson High School, Huntsville, Alabama started an international magnet program in 1987. One of the courses in the curriculum was in space science. They appealed to Marshall Space Flight Center (MSFC) when they couldn't find a suitable textbook, nor locate other classes in space science to provide a guideline. MSFC agreed to help and placed the school under an official 'Adopt-A-School' program. MSFC's chief scientist and others at the space center helped prepare a very comprehensive space science program. Examples of the subjects covered include problems of space travel, materials processing in space, technology utilization, robotics, space colonization, etc. MSFC followed up by working with Johnson High to determine if the curriculum is generally usable and workable. If it is, MSFC may make it available to other schools. MSFC not only developed the space science curriculum; they continue to support the program by sponsoring hands- on activities and tours of space research facilities.

  1. The science achievement of various subgroups on alternative assessment formats

    NASA Astrophysics Data System (ADS)

    Lawrenz, Frances; Huffman, Douglas; Welch, Wayne

    2001-05-01

    The purpose of this study was to examine the science achievement outcomes for different subgroups of students using different assessment formats. A nationally representative sample of approximately 3,500 ninth grade science students from 13 high schools throughout the United States completed a series of science assessments designed to measure their level of achievement on the national science education standards. All of the schools were using a curriculum designed to meet the standards. The assessments included a multiple-choice test, a written open-ended test, a hands-on lab skills test, and a hands-on full investigation. The results show that the student outcomes on the different assessment formats are more highly correlated for higher achieving students than for lower achieving students. Patterns for different cultural groups also vary by assessment format. There were no differences found for sex. The results support the notion that different assessment formats assess different competencies and that the achievement of students from different subgroups varies by assessment format.

  2. The Impact of Curriculum Change on Health Sciences First Year Students' Approaches to Learning

    ERIC Educational Resources Information Center

    Walker, Rebecca; Spronken-Smith, Rachel; Bond, Carol; McDonald, Fiona; Reynolds, John; McMartin, Anna

    2010-01-01

    This study aimed to use a learning inventory (the Approaches and Study Skills Inventory for Students, ASSIST) to measure the impact of a curriculum change on students' approaches to learning in two large courses in a health sciences first year programme. The two new Human Body Systems (HUBS) courses were designed to encourage students to take a…

  3. Environmental Science for All? Considering Environmental Science for Inclusion in the High School Core Curriculum

    ERIC Educational Resources Information Center

    Edelson, Daniel C.

    2007-01-01

    With the dramatic growth of environmental science as an elective in high schools over the last decade, educators have the opportunity to realistically consider the possibility of incorporating environmental science into the core high school curriculum. Environmental science has several characteristics that make it a candidate for the core…

  4. An Academic/Vocational Curriculum Partnership: Home Economics and Science.

    ERIC Educational Resources Information Center

    Smith, Frances M.; Hausafus, Cheryl O.

    1993-01-01

    Proposes middle-school curriculum integrating two diverse disciplines (home economics and science), incorporates social issues, and deals with fundamental concerns of young adolescents. Three major areas are included in framework: food additives for appeal, science of textile fibers, and chemistry of household cleaning. All should be taught by…

  5. Integration of the primary health care approach into a community nursing science curriculum.

    PubMed

    Vilakazi, S S; Chabeli, M M; Roos, S D

    2000-12-01

    The purpose of this article is to explore and describe guidelines for integration of the primary health care approach into a Community Nursing Science Curriculum in a Nursing College in Gauteng. A qualitative, exploratory, descriptive and contextual research design was utilized. The focus group interviews were conducted with community nurses and nurse educators as respondents. Data were analysed by a qualitative descriptive method of analysis as described in Creswell (1994: 155). Respondents in both groups held similar perceptions regarding integration of primary health care approach into a Community Nursing Science Curriculum. Five categories, which are in line with the curriculum cycle, were identified as follows: situation analysis, selection and organisation of objectives/goals, content, teaching methods and evaluation. Guidelines and recommendations for the integration of the primary health care approach into a Community Nursing Science Curriculum were described.

  6. Some Trends in the Evolution of Science Curriculum Centres in Asia. Occasional Papers No. 12.

    ERIC Educational Resources Information Center

    Maddock, M. N.

    Recent trends in science education associated with the evolution of science curriculum development centers in the Asian region are reviewed. These trends, and factors influencing them, are discussed under the following headings: science education and curriculum development centers; adaptation phase; shifts toward indigenous programs; science…

  7. A Curriculum for a Master of Science in Information Quality

    ERIC Educational Resources Information Center

    Lee, Yang W.; Pierce, Elizabeth; Talburt, John; Wang, Richard Y.; Zhu, Hongwei

    2007-01-01

    The first Master of Science in Information Quality (IQ) degree is designed and being offered to prepare students for careers in industry and government as well as advanced graduate studies. The curriculum is guided by the Model Curriculum and Guidelines for Graduate Degree Programs in Information Systems, which are endorsed by the Association for…

  8. Symposium: The Role of Biological Sciences in the Optometric Curriculum.

    ERIC Educational Resources Information Center

    And Others; Rapp, Jerry

    1980-01-01

    Papers from a symposium probing some of the curricular elements of the program in biological sciences at a school or college of optometry are provided. The overall program sequence in the biological sciences, microbiology, pharmacology, and the curriculum in the biological sciences from a clinical perspective are discussed. (Author/MLW)

  9. Bridging the Gap: Embedding Communication Courses in the Science Undergraduate Curriculum

    ERIC Educational Resources Information Center

    Jandciu, Eric; Stewart, Jaclyn J.; Stoodley, Robin; Birol, Gülnur; Han, Andrea; Fox, Joanne A.

    2015-01-01

    The authors describe a model for embedding science communication into the science curriculum without displacing science content. They describe the rationale, development, design, and implementation of two courses taught by science faculty addressing these criteria. They also outline the evaluation plan for these courses, which emphasize broad…

  10. The Astonishing Curriculum: Integrating Science and Humanities through Language.

    ERIC Educational Resources Information Center

    Tchudi, Stephen, Ed.

    This book probes the possibilities of interdisciplinary learning and integrated curriculum through the structuring and expressive powers of language. The 15 essays in the book explore the issues of bridging the gap between the two cultures of science and humanities, demystifying science for learners, teaching students to construct and explain…

  11. Developing the Learning Physical Science Curriculum: Adapting a Small Enrollment, Laboratory and Discussion Based Physical Science Course for Large Enrollments

    ERIC Educational Resources Information Center

    Goldberg, Fred; Price, Edward; Robinson, Stephen; Boyd-Harlow, Danielle; McKean, Michael

    2012-01-01

    We report on the adaptation of the small enrollment, lab and discussion based physical science course, "Physical Science and Everyday Thinking" (PSET), for a large-enrollment, lecture-style setting. Like PSET, the new "Learning Physical Science" (LEPS) curriculum was designed around specific principles based on research on learning to meet the…

  12. Action Research Using Entomological Research to Promote Hands-On Science Inquiry in a High-Poverty, Midwest Urban High School

    NASA Astrophysics Data System (ADS)

    Stockmann, Dustin

    The purpose of this mixed-methods action research study was to examine to what extent entomological research can promote students' hands-on learning in a high-poverty, urban, secondary setting. In reviewing the literature, the researcher was not able to find a specific study that investigated how entomological research could promote the hands-on learning of students. The researcher did find evidence that research on learning in a secondary setting was important to student growth. It should also be noted that support was established for the implementation of hands-on science inquiry in the classroom setting. The study's purpose was to aid educators in their instruction by combining research-based strategies and hands-on science inquiry. The surveys asked 30 students to rate their understanding of three basic ideas. These core ideas were entomological research, hands-on science inquiry, and urban studies. These core ideas provided the foundation for the study. The questionnaires were based on follow-up ideas from the surveys. Two interview sessions were used to facilitate this one-on-one focus. Because the study included only 30 student participants, its findings may not be totally replicable. Further study investigating the links between entomological research and hands-on science learning in an urban environment is needed.

  13. Theme: The Role of Science in the Agricultural Education Curriculum.

    ERIC Educational Resources Information Center

    Agricultural Education Magazine, 2002

    2002-01-01

    Thirteen theme articles discuss integration of science and agriculture, the role of science in agricultural education, biotechnology, agriscience in Tennessee and West Virginia, agriscience and program survival, modernization of agricultural education curriculum, agriscience and service learning, and biotechnology websites. (SK)

  14. A Practical Application of Ocean Color Methodology to an Undergraduate Curriculum

    ERIC Educational Resources Information Center

    Moisan, Tiffany A.; Swift, Robert N.; Campbell, Brian A.; Yungel, James K.; Linkswiler, Matthew A.; Nolan, Jessica

    2008-01-01

    Recently there have been newly launched ocean color satellites which target the coastlines at unprecedented scales. Science education curricula can benefit from the provision of small low-cost spectroradiometers and curriculum supplemental materials that can be incorporated in a "hands on" teaching approach to explain and demonstrate remote…

  15. Science and Engineering Technician Curriculum Development Project. Final Report.

    ERIC Educational Resources Information Center

    Mowery, Donald R.; Wolf, Lawrence J.

    Project SET (Science and Engineering for Technicians) developed a series of study guides designed to teach generic science and engineering skills to students interested in becoming technicians. An entire 2-year curriculum is encompassed by these guides, geared for 2-year college students. Described in this final report are the project's rationale,…

  16. Do Facilitate, Don’t Demonstrate: Meaningful Engagement for Science Outreach

    NASA Astrophysics Data System (ADS)

    Gelderman, Richard

    2017-01-01

    We are encouraged to hand over the learning experience to the students who must do the learning. After the 1957 launch of Sputnik it seemed that learning by discovery would replace lectures and other forms of learning by rote. The innovative Physical Science Study Committee (PSSC), Chemical Education Materials Study (ChEMS), and Biological Sciences Curriculum Study (BSCS) provided teachers with hands-on, activity-based curriculum materials emphasizing problem solving, process skills, and creativity. Our current reforms, based on the Next Generation Science Standards, stress that learner-centered strategies need to become commonplace throughout the classrooms of our formal education system. In this presentation, we share tips on how to double check your style of interactions for science outreach, to ensure the audience is working with a facilitator rather than simply enjoying an expert’s entertaining demonstration.

  17. Teaching an Integrated Science Curriculum: Linking Teacher Knowledge and Teaching Assignments

    ERIC Educational Resources Information Center

    Harrell, Pamela Esprivalo

    2010-01-01

    A number of factors affect successful implementation of an integrated science curriculum, including various outputs and inputs related to teacher quality such as professional development experiences, adequate planning periods, and adequate content preparation of teachers with regard to content knowledge associated with the curriculum taught. This…

  18. Exploring the Solar System Activities Outline: Hands-On Planetary Science for Formal Education K-14 and Informal Settings

    NASA Technical Reports Server (NTRS)

    Allen, J. S.; Tobola, K. W.; Lindstrom, M. L.

    2003-01-01

    Activities by NASA scientists and teachers focus on integrating Planetary Science activities with existing Earth science, math, and language arts curriculum. The wealth of activities that highlight missions and research pertaining to the exploring the solar system allows educators to choose activities that fit a particular concept or theme within their curriculum. Most of the activities use simple, inexpensive techniques that help students understand the how and why of what scientists are learning about comets, asteroids, meteorites, moons and planets. With these NASA developed activities students experience recent mission information about our solar system such as Mars geology and the search for life using Mars meteorites and robotic data. The Johnson Space Center ARES Education team has compiled a variety of NASA solar system activities to produce an annotated thematic outline useful to classroom educators and informal educators as they teach space science. An important aspect of the outline annotation is that it highlights appropriate science content information and key science and math concepts so educators can easily identify activities that will enhance curriculum development. The outline contains URLs for the activities and NASA educator guides as well as links to NASA mission science and technology. In the informal setting educators can use solar system exploration activities to reinforce learning in association with thematic displays, planetarium programs, youth group gatherings, or community events. Within formal education at the primary level some of the activities are appropriately designed to excite interest and arouse curiosity. Middle school educators will find activities that enhance thematic science and encourage students to think about the scientific process of investigation. Some of the activities offered are appropriate for the upper levels of high school and early college in that they require students to use and analyze data.

  19. A Comparison of Biologic Content in Three Elementary-School Science Curriculum Projects: ESS, S-APA, SCIS

    ERIC Educational Resources Information Center

    Simpson, Ronald D.

    1974-01-01

    Three elementary school science curriculum projects, Elementary Science Study (ESS), Science - A Process Approach (S-APA), and Science Curriculum Improvement Study (SCIS), are compared concerning the biologic content each project contains. The reviewer found a lack of activities designed to represent functions at the cellular level. Two projects…

  20. "Keeping it Real -High School Science Curriculum"- Hurricane Katrina and BP Oil Spill inspire creative curriculum by Dave Jungblut, Oakcrest High School Science Teacher, Mays Landing, NJ

    NASA Astrophysics Data System (ADS)

    Jungblut, D.

    2011-12-01

    After Hurricane Katrina devastated Gulf Coast homes in 2005, Oakcrest High School science teacher and geologist, Dave Jungblut, traveled from Gulfport to Ocean Springs, Mississippi and conducted research to determine whether property damage was caused by wind or water. Jungblut wrote several studies, " Katrina Straight- Line Wind Field Study", "Applying Research to Practical Use for Hurricane Katrina Homeowners", and "Hurricane Katrina Wind Study" proving wind damage. Jungblut's research, done pro bono, helped thousands of homeowner's in the Mississippi area be reimbursed by insurance companies for wind damage caused by Hurricane Katrina http://www.hurricanekatrinastudy.com/ Jungblut incorporated his extensive data, in a high school curriculum that is now part of the science program he teaches each year. In January 2010, Jungblut presented "Hurricane Forensics" curriculum at the Rutgers Center for Mathematics, Science and Computer January 2009 Workshop http://www.dimacs.rutgers.edu/wst/. Through labs and creative hands-on activities, Jungblut challenged his students to analyze the photographic evidence, and data he collected, for themselves. Jungblut taught his students how to use geologic and forensic inquiry techniques to discover the difference between straight-line winds from microburst activity. The students applied the concept of the Geological Principle of Relative Dating, to determine the sequence of events that happened during Hurricane Katrina. They built model structures, which were subjected to wind and water forces to better understand the effects of these phenomena, Finally, the students evaluated local and worldwide environmental issues, such as land use risks and benefits, in the face of global warming, In the spring of 2010 when the BP Oil Spill occurred, Jungblut realized, another opportunity to bring real world issues into the classroom. After exploring scientific concepts relating to this environmental crisis, Jungblut challenged his students to

  1. Designing virtual science labs for the Islamic Academy of Delaware

    NASA Astrophysics Data System (ADS)

    AlZahrani, Nada Saeed

    Science education is a basic part of the curriculum in modern day classrooms. Instructional approaches to science education can take many forms but hands-on application of theory via science laboratory activities for the learner is common. Not all schools have the resources to provide the laboratory environment necessary for hands-on application of science theory. Some settings rely on technology to provide a virtual laboratory experience instead. The Islamic Academy of Delaware (IAD), a typical community-based organization, was formed to support and meet the essential needs of the Muslim community of Delaware. IAD provides science education as part of the overall curriculum, but cannot provide laboratory activities as part of the science program. Virtual science labs may be a successful model for students at IAD. This study was conducted to investigate the potential of implementing virtual science labs at IAD and to develop an implementation plan for integrating the virtual labs. The literature has shown us that the lab experience is a valuable part of the science curriculum (NBPTS, 2013, Wolf, 2010, National Research Council, 1997 & 2012). The National Research Council (2012) stressed the inclusion of laboratory investigations in the science curriculum. The literature also supports the use of virtual labs as an effective substitute for classroom labs (Babateen, 2011; National Science Teachers Association, 2008). Pyatt and Simms (2011) found evidence that virtual labs were as good, if not better than physical lab experiences in some respects. Although not identical in experience to a live lab, the virtual lab has been shown to provide the student with an effective laboratory experience in situations where the live lab is not possible. The results of the IAD teacher interviews indicate that the teachers are well-prepared for, and supportive of, the implementation of virtual labs to improve the science education curriculum. The investigator believes that with the

  2. From FRA to RFN, or How the Family Resemblance Approach Can Be Transformed for Science Curriculum Analysis on Nature of Science

    ERIC Educational Resources Information Center

    Kaya, Ebru; Erduran, Sibel

    2016-01-01

    The inclusion of Nature of Science (NOS) in the science curriculum has been advocated around the world for several decades. One way of defining NOS is related to the family resemblance approach (FRA). The family resemblance idea was originally described by Wittgenstein. Subsequently, philosophers and educators have applied Wittgenstein's idea to…

  3. Secretarial Science. Curriculum Guides for Two-Year Postsecondary Programs. Volume II.

    ERIC Educational Resources Information Center

    North Carolina State Dept. of Community Colleges, Raleigh.

    The second of three volumes in a postsecondary secretarial science curriculum, this manual contains course syllabi and abstracts of twenty-three courses included in the curriculum. Business and related courses abstracted include Introduction to Business, Business Mathematics, Business Law 1, Economics 1, and Survey of Data Processing Systems.…

  4. Taiwanese Science and Life Technology Curriculum Standards and Earth Systems Education

    ERIC Educational Resources Information Center

    Chang, Chun-Yen

    2005-01-01

    In the past several years, curriculum reform has received increasing attention from educators in many countries around the world. Recently, Taiwan has developed new Science and Life Technology Curriculum Standards (SaLTS) for grades 1-9. SaLTS features a systematic way for developing students' understanding and appreciation of…

  5. The Impact of a Professional Development Model for a Mobilized Science Curriculum: A Case Study of Teacher Changes

    ERIC Educational Resources Information Center

    Looi, Chee-Kit; Sun, Daner; Kim, Mi Song; Wen, Yun

    2018-01-01

    Background and purpose: To date, there has been little research on the Teacher Professional Development (TPD) for delivering a mobile technology-supported science curriculum. To address this, a TPD model for a science curriculum supported by mobile technology was developed and evaluated in this paper. The study reported focuses on the…

  6. International Space Station: 6-8 Hands-on Science and Math Lesson Plans.

    ERIC Educational Resources Information Center

    Armstrong, Pat

    These lesson plans, designed for grades 6-8, have been developed to provide a guide to hands-on experience in science and math. They focus on an International Space Station and are designed for use with students working in groups. The three lesson plans highlighting the importance of the scientific method are: (1) International Space Station…

  7. Implementing an Affordable High-Performance Computing for Teaching-Oriented Computer Science Curriculum

    ERIC Educational Resources Information Center

    Abuzaghleh, Omar; Goldschmidt, Kathleen; Elleithy, Yasser; Lee, Jeongkyu

    2013-01-01

    With the advances in computing power, high-performance computing (HPC) platforms have had an impact on not only scientific research in advanced organizations but also computer science curriculum in the educational community. For example, multicore programming and parallel systems are highly desired courses in the computer science major. However,…

  8. Alcohol and Drug Prevention Curriculum Resource Guide Grades 10-12: Science--Biology.

    ERIC Educational Resources Information Center

    North Carolina State Dept. of Public Instruction, Raleigh. Alcohol and Drug Defense Program.

    This curriculum resource guide on alcohol and drug prevention provides suggested activities for teachers of grades 10 through 12. Three integrated learning activities for science/biology and healthful living are presented. The science/biology goal is understanding the biology of humans. Healthful living goals include analyzing drug and alcohol use…

  9. Application of the Reggio Emilia Approach to Early Childhood Science Curriculum.

    ERIC Educational Resources Information Center

    Stegelin, Dolores A.

    2003-01-01

    This article focuses on the relevance of the Reggio Emilia approach to early childhood education for science knowledge and content standards for the preK-12 student population. The article includes: (1) a summary of key concepts; (2) a description of the science curriculum standards for K-3 in the United States; and (3) an example of an in-depth…

  10. Indigenous Knowledge in the Science Curriculum: Avoiding Neo-Colonialism

    ERIC Educational Resources Information Center

    Ryan, Ann

    2008-01-01

    Science education in Papua New Guinea has been influenced by neo-colonial practices that have significantly contributed to the silencing of the Papua New Guinea voice. This silencing has led to the production of science curriculum documents that are irrelevant to the students for whom they are written. To avoid being caught up in neo-colonial…

  11. Noise Pollution--An Overlooked Issue in the Science Curriculum.

    ERIC Educational Resources Information Center

    Treagust, David F.; Kam, Goh Ah

    1985-01-01

    Discusses the need for including noise pollution in the science curriculum and describes 10 activities for improving students' awareness and understanding of and concern for noise and its effects. (Author/JN)

  12. Which values regarding nature and other species are we promoting in the Australian science curriculum?

    NASA Astrophysics Data System (ADS)

    Castano Rodriguez, Carolina

    2016-12-01

    Through a critical textual analysis of the content and structure of the new Australian science curriculum, in this paper I identify the values it encourages and those that are absent. I investigate whether the Australian science curriculum is likely to promote the attitudes needed to educate generations of children who act more responsibly with other species and the environment. Over the past decades, there has been an increasing awareness of the human impact on the environment and other species. Consistently, there is a growing awareness of the role of education in encouraging children to act in a more ethical, responsible, and caring way. However, it is still unclear as to whether national curricula can (or will aspire to) accomplish this. In Australia, a national science curriculum has been implemented. In this paper I argue that the Australian science curriculum is likely to miss the opportunity to cultivate values of care for nature and other species. Instead, it is likely to reinforce anthropocentric attitudes toward our natural environment. The importance of explicitly promoting values that encourage care and respect for all species and challenges anthropocentric views of other animals and nature are discussed.

  13. Health in the Family and Consumer Sciences Curriculum: Full Circle?

    ERIC Educational Resources Information Center

    Richards, Virginia; Kettler, Mary C.; Brown, Elfrieda F.

    1999-01-01

    Analysis of documents from 19 college home economics/family and consumer sciences programs demonstrated the evolution of health core curriculum from emphasis on sanitation, nutrition, and food preparation to hospital-related health care. Today's emphasis on health care costs and wellness has shifted emphasis to home health care and prevention. (SK)

  14. Shoring Up Math and Science in the Elementary Grades: Schools Enlist Specialists to Teach Science Lessons

    ERIC Educational Resources Information Center

    Jacobson, Linda

    2004-01-01

    As science gets squeezed in the elementary curriculum, at least two Florida districts are trying a new approach to keeping hands-on lessons a part of pupils' experiences. This article reports how Broward and Palm Beach county districts have increased the number of science specialists working in their elementary schools--teachers who, like physical…

  15. The Basic Science Curriculum in the 21st Century: What Needs to Be Changed?

    ERIC Educational Resources Information Center

    Garant, Philias R.

    1986-01-01

    The basic science curriculum in dental education could be improved by adopting a curriculum containing only two integrated required science courses about (1) the structure and function of the human body and (2) disease and reaction to disease in the human body. Elective graduate-level predoctoral courses would allow specialization. (MSE)

  16. History of Science in the Physics Curriculum: A Directed Content Analysis of Historical Sources

    ERIC Educational Resources Information Center

    Seker, Hayati; Guney, Burcu G.

    2012-01-01

    Although history of science is a potential resource for instructional materials, teachers do not have a tendency to use historical materials in their lessons. Studies showed that instructional materials should be adaptable and consistent with curriculum. This study purports to examine the alignment between history of science and the curriculum in…

  17. The Implementation of the New Lower Secondary Science Curriculum in Three Schools in Rwanda

    ERIC Educational Resources Information Center

    Nsengimana, Théophile; Ozawa, Hiroaki; Chikamori, Kensuke

    2014-01-01

    In 2006, Rwanda began implementing an Outcomes Based Education (OBE) lower secondary science curriculum that emphasises a student-centred approach. The new curriculum was designed to transform Rwandan society from an agricultural to a knowledge-based economy, with special attention to science and technology education. Up until this point in time…

  18. Elementary School Teachers as "Targets and Agents of Change": Teachers' Learning in Interaction with Reform Science Curriculum

    ERIC Educational Resources Information Center

    Metz, Kathleen E.

    2009-01-01

    This article examines teachers' perspectives on the challenges of using a science reform curriculum, as well as their learning in interaction with the curriculum and parallel professional development program. As case studies, I selected 4 veteran teachers of 2nd or 3rd grade, with varying science backgrounds (including 2 with essentially none).…

  19. An Analysis of Teaching Competence in Science Teachers Involved in the Design of Context-Based Curriculum Materials

    ERIC Educational Resources Information Center

    De Putter-Smits, Lesley G. A.; Taconis, Ruurd; Jochems, Wim; Van Driel, Jan

    2012-01-01

    The committees for the current Dutch context-based innovation in secondary science education employed teachers to design context-based curriculum materials. A study on the learning of science teachers in design teams for context-based curriculum materials is presented in this paper. In a correlation study, teachers with (n = 5 and 840 students)…

  20. Animal Science Technology. An Experimental Developmental Program. Volume II, Curriculum Course Outlines.

    ERIC Educational Resources Information Center

    Brant, Herman G.

    This volume, the second of a two part evaluation report, is devoted exclusively to the presentation of detailed course outlines representing an Animal Science Technology curriculum. Arranged in 6 terms of study (2 academic years), outlines are included on such topics as: (1) Introductory Animal Science, (2) General Microbiology, (3) Zoonoses, (4)…

  1. Exploring ecology through science terms: A computer-supported vocabulary supplement to the science curriculum in a two-way immersion program

    NASA Astrophysics Data System (ADS)

    Herrera, Francisco Javier, Jr.

    This study set out to examine how a web-based tool embedded with vocabulary strategies, as part of the science curriculum in a third grade two-way immersion classroom, would aid students' academic vocabulary development. Fourteen students (seven boys, seven girls; ten of which were English learners) participated in this study. Students utilized web pages as part of their science curriculum on the topic of ecology. The study documented students' use of the web pages as a data-gathering tool on the topic of ecology during science instruction. Students were video and audio taped as they explored the web pages. Results indicated that through the use of the intervention web pages students significantly improved their knowledge of academic English target words.

  2. Preservice elementary teachers learning to use curriculum materials to plan and teach science

    NASA Astrophysics Data System (ADS)

    Gunckel, Kristin Lee

    New elementary teachers rely heavily on curriculum materials, but available science curriculum materials do not often support teachers in meeting specified learning goals, engaging students in the inquiry and application practices of science, or leveraging students' intellectual and cultural resources for learning. One approach to supporting new elementary teachers in using available science curriculum materials is to provide frameworks to scaffold preservice teachers' developing lesson planning and teaching practices. The Inquiry-Application Instructional Model (I-AIM) and the Critical Analysis and Planning (CA&P) tool were designed to scaffold preservice teachers' developing practice to use curriculum materials effectively to plan and teach science. The I-AIM identifies functions for each activity in an instructional sequence. The CA&P provides guides preservice teachers in modifying curriculum materials to better fit I-AIM and leverage students' resources for learning. This study followed three elementary preservice teachers in an intern-level science method course as they learned to use the I-AIM and CA&P to plan and teach a science unit in their field placement classrooms. Using a sociocultural perspective, this study focused on the ways that the interns used the tools and the mediators that influenced how they used the tools. A color-coding analysis procedure was developed to identify the teaching patterns in the interns' planned instructional approaches and enacted activity sequences and compare those to the patterns implied by the I-AIM and CA&P tools. Interviews with the interns were also conducted and analyzed, along with the assignments they completed for their science methods course, to gain insight into the meanings the interns made of the tools and their experiences planning and teaching science. The results show that all three interns had some successes using the I-AIM and CA&P to analyze their curriculum materials and to plan and teach science

  3. REORGANIZED SCIENCE CURRICULUM, 8, GRADE EIGHT SUPPLEMENT.

    ERIC Educational Resources Information Center

    Minneapolis Special School District 1, Minn.

    THE FOURTEENTH IN A SERIES OF 17 VOLUMES, THIS VOLUME PROVIDES THE EIGHTH GRADE TEACHER WITH A GUIDE TO THE REORGANIZED SCIENCE CURRICULUM OF THE MINNEAPOLIS PUBLIC SCHOOLS. THE MATERIALS ARE AUGMENTED AND REVISED AS THE NEED ARISES. A CHART INDICATES CONCEPT BRIEF SUMMARY OF SUBJECT MATTER CONTENT FOR GRADE 8, AND A CHART OF THE GRADE CONTENT FOR…

  4. Catalyzing curriculum evolution in graduate science education.

    PubMed

    Gutlerner, Johanna L; Van Vactor, David

    2013-05-09

    Strategies in life science graduate education must evolve in order to train a modern workforce capable of integrative solutions to challenging problems. Our institution has catalyzed such evolution through building a postdoctoral Curriculum Fellows Program that provides a collaborative and scholarly education laboratory for innovation in graduate training. Copyright © 2013 Elsevier Inc. All rights reserved.

  5. A 2200-Year Old Inquiry-Based, Hands-On Experiment in Today's Science Classrooms

    ERIC Educational Resources Information Center

    Sotiriou, S.; Bogner, F. X.

    2015-01-01

    The ancient Eratosthenes experiment concerning the earth's circumference offers the opportunity of an inquiry-based revival in today's science classrooms: A multinational European science education initiative (acronym: OSR) introduced this experiment as a hands-on basis to extract the required variables and to exchange results with classroom peers…

  6. The Growing Classroom: A Garden-Based Science and Nutrition Curriculum for 2nd through 6th Grades. Book 2: Science.

    ERIC Educational Resources Information Center

    Appel, Gary; And Others

    This guide for teaching science is Book Two in Project Life Lab's (Santa Cruz, California) three-part curriculum for a garden-based science and nutrition program for grades 2-6. The curriculum is designed for use as an integrated program, but the books can be used independently. It is suggested that the use of student journals can greatly enhance…

  7. Development of a flexible higher education curriculum framework for geographic information science

    NASA Astrophysics Data System (ADS)

    Veenendaal, B.

    2014-04-01

    A wide range of geographic information science (GIScience) educational programs currently exist, the oldest now over 25 years. Offerings vary from those specifically focussed on geographic information science, to those that utilise geographic information systems in various applications and disciplines. Over the past two decades, there have been a number of initiatives to design curricula for GIScience, including the NCGIA Core Curriculum, GIS&T Body of Knowledge and the Geospatial Technology Competency Model developments. The rapid developments in geospatial technology, applications and organisations means that curricula need to constantly be updated and developed to maintain currency and relevance. This paper reviews the curriculum initiatives and outlines a new and flexible GIScience higher education curriculum framework which complements and utilises existing curricula. This new framework was applied to the GIScience programs at Curtin University in Perth, Australia which has surpassed 25 years of GIScience education. Some of the results of applying this framework are outlined and discussed.

  8. Probing the Natural World, Level III, Teacher's Edition: Environmental Science. Intermediate Science Curriculum Study.

    ERIC Educational Resources Information Center

    Bonar, John R., Ed.; Hathway, James A., Ed.

    This is the teacher's edition of one of the eight units of the Intermediate Science Curriculum Study (ISCS) for level III students (grade 9). This unit and its activities focuses on environmental pollution and hazards. Optional excursions are suggested for students who wish to study an area in greater depth. An introduction describes the problem…

  9. Multiple Aims in the Development of a Major Reform of the National Curriculum for Science in England

    ERIC Educational Resources Information Center

    Ryder, Jim; Banner, Indira

    2011-01-01

    In the context of a major reform of the school science curriculum for 14-16-year-olds in England, we examine the aims ascribed to the reform, the stakeholders involved, and the roles of differing values and authority in its development. This reform includes an emphasis on socioscientific issues and the nature of science; curriculum trends of…

  10. Inquiry in early years science teaching and learning: Curriculum design and the scientific story

    NASA Astrophysics Data System (ADS)

    McMillan, Barbara Alexander

    2001-07-01

    Inquiry in school science, as conceived by the authors of the Common Framework of Science Learning Outcomes K--12, is dependent upon four areas of skills. These are the skills of initiating and planning, performing and recording, analysing and interpreting, and communication and teamwork that map onto what Hodson calls the five phases of scientific inquiry in school science: initiation, design and planning, performance, interpretation, and reporting and communicating. This study looked at initiation in a multiage (Grades 1--3) classroom, and the curriculum, design tools, and inquiry acts believed to be necessary precursors of design and planning phases whether the inquiry in which young children engage is archival or laboratory investigation. The curriculum was designed to build upon children's everyday biological knowledge and through a series of carefully organized lessons to help them to begin to build scientifically valid conceptual models in the area of animal life cycles. The lessons began with what is called benchmark-invention after the historical work of Robert Karplus and the contemporary work of Earl Hunt and Jim Minstrell. The introduction of a biological concept was followed by a series of exploration activities in which children were encouraged to apply the concept invented in the benchmark lesson. Enlargement followed. This was the instructional phase in which children were helped to establish scientifically valid relationships between the invented concept and other biological concepts. The pre-instruction and post-instruction interview data suggest that the enacted curriculum and sequence in which the biological knowledge was presented helped the nineteen children in the study to recognize the connections and regularities within the life cycles of the major groupings of animals, and to begin to build scientific biological conceptual models. It is, however, argued that everyday biology, in the form of the person analogy, acts as an obstacle to

  11. Into the Curriculum. Art: Whistler's Mother; Reading/Language Arts: Finding My Voice; Science: Where on My Tongue? Taste; Social Studies/Science: Volcanoes; Social Studies: Pompeii.

    ERIC Educational Resources Information Center

    Reed-Mundell, Charlie

    2001-01-01

    Provides five fully developed library media activities that are designed for use with specific curriculum units in art, reading, language arts, science, and social studies. Describes library media skills, curriculum objectives, grade levels, resources, instructional roles, procedures, evaluation, and follow-up for each activity. (LRW)

  12. AIAA Educator Academy - Mars Rover Curriculum: A 6 week multidisciplinary space science based curriculum

    NASA Astrophysics Data System (ADS)

    Henriquez, E.; Bering, E. A.; Slagle, E.; Nieser, K.; Carlson, C.; Kapral, A.

    2013-12-01

    The Curiosity mission has captured the imagination of children, as NASA missions have done for decades. The AIAA and the University of Houston have developed a flexible curriculum program that offers children in-depth science and language arts learning culminating in the design and construction of their own model rover. The program is called the Mars Rover Model Celebration. It focuses on students, teachers and parents in grades 3-8. Students learn to research Mars in order to pick a science question about Mars that is of interest to them. They learn principles of spacecraft design in order to build a model of a Mars rover to carry out their mission on the surface of Mars. The model is a mock-up, constructed at a minimal cost from art supplies. This project may be used either informally as an after school club or youth group activity or formally as part of a class studying general science, earth science, solar system astronomy or robotics, or as a multi-disciplinary unit for a gifted and talented program. The project's unique strength lies in engaging students in the process of spacecraft design and interesting them in aerospace engineering careers. The project is aimed at elementary and secondary education. Not only will these students learn about scientific fields relevant to the mission (space science, physics, geology, robotics, and more), they will gain an appreciation for how this knowledge is used to tackle complex problems. The low cost of the event makes it an ideal enrichment vehicle for low income schools. It provides activities that provide professional development to educators, curricular support resources using NASA Science Mission Directorate (SMD) content, and provides family opportunities for involvement in K-12 student learning. This paper will describe the structure and organization of the 6 week curriculum. A set of 30 new 5E lesson plans have been written to support this project as a classroom activity. The challenge of developing interactive

  13. Revising and Updating the Plant Science Components of the Connecticut Vocational Agriculture Curriculum.

    ERIC Educational Resources Information Center

    Connecticut Univ., Storrs. Dept. of Educational Leadership.

    This curriculum guide provides the plant science components of the vocational agriculture curriculum for Regional Vocational Agriculture Centers. The curriculum is divided into exploratory units for students in the 9th and 10th grades and specialized units for students in grades 11 and 12. The five exploratory units are: agricultural pest control;…

  14. Fostering Student Sense Making in Elementary Science Learning Environments: Elementary Teachers' Use of Science Curriculum Materials to Promote Explanation Construction

    ERIC Educational Resources Information Center

    Zangori, Laura; Forbes, Cory T.; Biggers, Mandy

    2013-01-01

    While research has shown that elementary (K-5) students are capable of engaging in the scientific practice of explanation construction, commonly-used elementary science curriculum materials may not always afford them opportunities to do so. As a result, elementary teachers must often adapt their science curriculum materials to better support…

  15. Providing open-access online materials and hands-on sessions for GIS exercises

    NASA Astrophysics Data System (ADS)

    Oguchi, T.; Yamauchi, H.; Hayakawa, Y. S.

    2017-12-01

    Researchers of GIS (Geographical Information Systems/Sciences) in Japan have collaborated to provide materials for GIS lecture classes in universities for the last 20 years. The major outcomes include 1) a GIS core curriculum, 2) a GIS "body of knowledge" explaining the details of the curriculum, 3) a series of PowerPoint presentations, and 4) a comprehensive GIS textbook. However, materials for GIS exercises at university classes using GIS software have been limited in Japan. Therefore, we launched a project to provide such materials which will be available online and accessible by anybody. The materials cover broad basic aspects of GIS including geoscientific applications such as terrain analysis using digital elevation models. The materials utilize public-domain and open-source software packages such as QGIS and GRASS. The data used are also freely available ones such as those from the Geospatial Information Authority of Japan. The use of the GitHub platform to distribute the materials allow easier online interactions by both material producers and users. Selected sets of the materials have been utilized for hands-on activities including both official university classes and public instructions. We have been updating the materials based on the opinions of people who took the hands-on courses for better GIS education. The current materials are in Japanese, but we plan to translate some of them into English.

  16. LIB LAB the Library Laboratory: hands-on multimedia science communication

    NASA Astrophysics Data System (ADS)

    Fillo, Aaron; Niemeyer, Kyle

    2017-11-01

    Teaching scientific research topics to K-12 audiences in an engaging and meaningful way does not need to be hard; with the right insight and techniques it can be fun to encourage self-guided STEAM (science, technology, engineering, arts, and mathematics) exploration. LIB LAB, short for Library Laboratory, is an educational video series produced by Aaron J. Fillo at Oregon State University in partnership with the Corvallis-Benton County Public Library targeted at K-12 students. Each episode explores a variety of scientific fundamentals with playful experiments and demonstrations. The video lessons are developed using evidence-based practices such as dispelling misconceptions, and language immersion. Each video includes directions for a related experiment that young viewers can conduct at home. In addition, science kits for these at-home experiments are distributed for free to students through the public library network in Benton County, Oregon. This talk will focus on the development of multimedia science education tools and several techniques that scientists can use to engage with a broad audience more effectively. Using examples from the LIB LAB YouTube Channel and collection of hands-on science demonstrations and take-home kits, this talk will present STEAM education in action. Corvallis-Benton County Public Library.

  17. The inventory as a core element in the further development of the science curriculum in the Mannheim Reformed Curriculum of Medicine.

    PubMed

    Eckel, Julia; Schüttpelz-Brauns, Katrin; Miethke, Thomas; Rolletschek, Alexandra; Fritz, Harald M

    2017-01-01

    Introduction: The German Council of Science and Humanities as well as a number of medical professional associations support the strengthening of scientific competences by developing longitudinal curricula for teaching scientific competences in the undergraduate medical education. The National Competence Based Catalogue of Learning Objectives for Undergraduate Medical Education (NKLM) has also defined medical scientific skills as learning objectives in addition to the role of the scholar. The development of the Mannheim science curriculum started with a systematic inventory of the teaching of scientific competences in the Mannheim Reformed Curriculum of Medicine (MaReCuM). Methods: The inventory is based on the analysis of module profiles, teaching materials, surveys among experts, and verbatims from memory. Furthermore, science learning objectives were defined and prioritized, thus enabling the contents of the various courses to be assigned to the top three learning objectives. Results: The learning objectives systematic collection of information regarding the current state of research, critical assessment of scientific information and data sources, as well as presentation and discussion of the results of scientific studies are facilitated by various teaching courses from the first to the fifth year of undergraduate training. The review reveals a longitudinal science curriculum that has emerged implicitly. Future efforts must aim at eliminating redundancies and closing gaps; in addition, courses must be more closely aligned with each other, regarding both their contents and their timing, by means of a central coordination unit. Conclusion: The teaching of scientific thinking and working is a central component in the MaReCuM. The inventory and prioritization of science learning objectives form the basis for a structured ongoing development of the curriculum. An essential aspect here is the establishment of a central project team responsible for the planning

  18. Tanzania post-colonial educational system and perspectives on secondary science education, pedagogy, and curriculum: A qualitative study

    NASA Astrophysics Data System (ADS)

    Wandela, Eugenia L.

    The development of technology and innovation in any country depends on a strong investment in science education from the lower to the upper levels of education. In most of the Sub-Saharan African nations, science education curriculum and teaching still faces many issues and problems that are inhibiting the growth of technology and innovation in these nations. In order to address these issues, an interpretive qualitative study that aims to examine how Tanzanian secondary science educators perceive secondary science education was conducted in the summer of 2013. The purpose of this study is to investigate problems and educational issues that might be limiting the growth of science, technology, and innovation in the Tanzanian society. Additionally, this research investigates the impacts of the colonial legacy that relates to language, politics, and economics, as they affect science education in Tanzania secondary schools. This study focuses on the governmental four-year ordinary level secondary science education; it took place in Dar-es-Salaam, Tanzania. The researcher interviewed nine secondary science educators: three secondary science teachers and six secondary science education administrators. The researcher also conducted classroom observations. The data results from both interview and classroom observations were contextualized with data from existing documentation on Tanzanian secondary science education and data from previous research. The emergent themes from the study indicate that most of the problems and issues that are currently facing secondary science education are historically connected to the impact of the colonization period in 19th and 20th centuries. This study suggests that in order to improve science education in Tanzanian society, the people, especially the elites, need to break away from an "Orientalist" mindset and start integrating the Tanzanian culture and science into the still existing Eurocentric science curriculum. In addition, the

  19. On the "Exchangeability" of Hands-On and Computer-Simulated Science Performance Assessments. CSE Technical Report.

    ERIC Educational Resources Information Center

    Rosenquist, Anders; Shavelson, Richard J.; Ruiz-Primo, Maria Araceli

    Inconsistencies in scores from computer-simulated and "hands-on" science performance assessments have led to questions about the exchangeability of these two methods in spite of the highly touted potential of computer-simulated performance assessment. This investigation considered possible explanations for students' inconsistent performances: (1)…

  20. The Effects of the Science Curriculum Improvement Study on a Child's Self-Concept

    ERIC Educational Resources Information Center

    Krockover, Gerald H.; Malcolm, Marshall D.

    1977-01-01

    Describes research undertaken to determine if Science Curriculum Improvement Study (SCIS) can be instrumental in helping children either maintain or develop a positive self-concept. A total of 189 students in grades 3-6 were assigned to treatment and control groups for a period of four and one-half months. Findings did not reveal overall…

  1. A Hands-On, Interdisciplinary Laboratory Program and Educational Model to Strengthen a Radar Curriculum for Broad Distribution

    ERIC Educational Resources Information Center

    Yeary, Mark; Yu, Tian-You; Palmer, Robert; Biggerstaff, Michael; Fink, L. Dee; Ahem, Carolyn; Tarp, Keli Pirtle

    2007-01-01

    This paper describes the details of a National Science Foundation multi-year educational project at the University of Oklahoma (OU). The goal of this comprehensive active-learning and hands-on laboratory program is to develop an interdisciplinary program, in which engineering, geoscience, and meteorology students participate, which forms a…

  2. Dissemination of an innovative mastery learning curriculum grounded in implementation science principles: a case study.

    PubMed

    McGaghie, William C; Barsuk, Jeffrey H; Cohen, Elaine R; Kristopaitis, Theresa; Wayne, Diane B

    2015-11-01

    Dissemination of a medical education innovation, such as mastery learning, from a setting where it has been used successfully to a new and different medical education environment is not easy. This article describes the uneven yet successful dissemination of a simulation-based mastery learning (SBML) curriculum on central venous catheter (CVC) insertion for internal medicine and emergency medicine residents across medical education settings. The dissemination program was grounded in implementation science principles. The article begins by describing implementation science which addresses the mechanisms of medical education and health care delivery. The authors then present a mastery learning case study in two phases: (1) the development, implementation, and evaluation of the SBML CVC curriculum at a tertiary care academic medical center; and (2) the dissemination of the SBML CVC curriculum to an academic community hospital setting. Contextual information about the drivers and barriers that affected the SBML CVC curriculum dissemination is presented. This work demonstrates that dissemination of mastery learning curricula, like all other medical education innovations, will fail without active educational leadership, personal contacts, dedication, hard work, rigorous measurement, and attention to implementation science principles. The article concludes by presenting a set of lessons learned about disseminating an SBML CVC curriculum across different medical education settings.

  3. An Exploratory Analysis of a Middle School Science Curriculum: Implications for Students with Learning Disabilities

    ERIC Educational Resources Information Center

    Taylor, Gregory S.; Hord, Casey

    2016-01-01

    An exploratory study of a middle school curriculum directly aligned with the Next Generation Science Standards was conducted with a focus on how the curriculum addresses the instructional needs of students with learning disabilities. A descriptive analysis of a lesson on speed and velocity was conducted and implications discussed for students with…

  4. Evaluation of the Effect of Laboratory-Oriented Science Curriculum Materials on the Attitudes of Students with Reading Difficulties.

    ERIC Educational Resources Information Center

    Milson, James L.

    1979-01-01

    Investigated how the use of laboratory-oriented science curriculum materials affected the attitudes of students with reading difficulties. Both the ninth grade experimental and control classes used a six-week instructional unit on heat and temperature. (HM)

  5. The Impact of High School Science Teachers' Beliefs, Curricular Enactments and Experience on Student Learning during an Inquiry-Based Urban Ecology Curriculum

    ERIC Educational Resources Information Center

    McNeill, Katherine L.; Pimentel, Diane Silva; Strauss, Eric G.

    2013-01-01

    Inquiry-based curricula are an essential tool for reforming science education yet the role of the teacher is often overlooked in terms of the impact of the curriculum on student achievement. Our research focuses on 22 teachers' use of a year-long high school urban ecology curriculum and how teachers' self-efficacy, instructional practices,…

  6. Hands-on optics: an informal science education initiative

    NASA Astrophysics Data System (ADS)

    Johnson, Anthony M.; Pompea, Stephen M.; Arthurs, Eugene G.; Walker, Constance E.; Sparks, Robert T.

    2007-09-01

    The project is collaboration between two scientific societies, the Optical Society of America (OSA) and SPIE - The International Society for Optical Engineering and the National Optical Astronomy Observatory (NOAO). The program is designed to bring science education enrichment to thousands of underrepresented middle school students in more than ten states, including female and minority students, who typically have not been the beneficiaries of science and engineering resources and investments. HOO provides each teacher with up to six activity modules, each containing enough materials for up to 30 students to participate in 6-8 hours of hands-on optics-related activities. Sample activities, developed by education specialists at NOAO, include building kaleidoscopes and telescopes, communicating with a beam of light, and a hit-the-target laser beam challenge. Teachers engage in two days of training and, where possible, are partnered with a local optics professional (drawn from the local rosters of SPIE and OSA members) who volunteers to spend time with the teacher and students as they explore the module activities. Through these activities, students gain experience and understanding of optics principles, as well as learning the basics of inquiry, critical thinking, and problem solving skills involving optics, and how optics interfaces with other disciplines. While the modules were designed for use in informal after- school or weekend sessions, the number of venues has expanded to large and small science centers, Boys and Girls Clubs, Girl Scouts, summer camps, family workshops, and use in the classroom.

  7. Two-Stage Hands-On Technology Activity to Develop Preservice Teachers' Competency in Applying Science and Mathematics Concepts

    ERIC Educational Resources Information Center

    Lin, Kuen-Yi; Williams, P. John

    2017-01-01

    This paper discusses the implementation of a two-stage hands-on technology learning activity, based on Dewey's learning experience theory that is designed to enhance preservice teachers' primary and secondary experiences in developing their competency to solve hands-on problems that apply science and mathematics concepts. The major conclusions…

  8. Customization of Curriculum Materials in Science: Motives, Challenges, and Opportunities

    ERIC Educational Resources Information Center

    Romine, William L.; Banerjee, Tanvi

    2012-01-01

    Exemplary science instructors use inquiry to tailor content to student's learning needs; traditional textbooks treat science as a set of facts and a rigid curriculum. Publishers now allow instructors to compile pieces of published and/or self-authored text to make custom textbooks. This brings numerous advantages, including the ability to produce…

  9. What Are Critical Features of Science Curriculum Materials That Impact Student and Teacher Outcomes?

    ERIC Educational Resources Information Center

    Roblin, Natalie Pareja; Schunn, Christian; McKenney, Susan

    2018-01-01

    Large investments are made in curriculum materials with the goal of supporting science education reform. However, relatively little evidence is available about what features of curriculum materials really matter to impact student and teacher learning. To address this need, the current study examined curriculum features associated with student and…

  10. An analysis of the New York State Earth Science Curriculum with respect to standards, classroom practices, and the Regents Examination

    NASA Astrophysics Data System (ADS)

    Contino, Julie Anna

    In a standards-based system, it is important for all components of the system to align in order to achieve the intended goals. In New York State, standards are provided to the teachers who then create individual curricula that will lead to student success on the state assessment. This mixed methods study presents an analysis of the alignment between the National Science Education Standards (NSES), New York State Physical Setting/Earth Science Core Curriculum (Core Curriculum), and New York State Earth Science Regents Examination (Regents)---the sources teachers use for creating Earth Science curricula in New York State. The NSES were found to have a 49% overlap with the Core Curriculum and a 27% overlap with the Regents. The Core Curriculum and Regents, represented by matrices consisting of performance indicators and cognitive demands, were compared using the Porter alignment index. The alignment was 0.35, categorized as slightly aligned, due to the different emphases on cognitive levels (the Core Curriculum focused on Understand and Apply while the Regents focused on Apply followed by Understand and Remember). Additionally, a purposeful sample of experienced and innovative teachers were surveyed and interviewed to gain insight on how NYS Earth Science teachers organize their scope and sequences, align their lessons with the Core Curriculum, establish internal lesson coherence, and prepare their students for the Regents Exam. Teachers' scope and sequences were well-aligned with the Core Curriculum and Regents but misalignment was found between their lessons and the Core Curriculum as well as between the stated objectives for their students and evaluation of those objectives. Based on the findings, it is suggested that the NSES be revised and the Core Curriculum updated to include quantifiable emphasis on the major understandings such as percentage of time, as well as an emphasis on alignment principles. Teacher professional development focused on alignment issues

  11. Student Teachers' Views: What Is an Interesting Life Sciences Curriculum?

    ERIC Educational Resources Information Center

    de Villiers, Rian

    2011-01-01

    In South Africa, the Grade 12 "classes of 2008 and 2009" were the first to write examinations under the revised Life Sciences (Biology) curriculum which focuses on outcomes-based education (OBE). This paper presents an exploration of what students (as learners) considered to be difficult and interesting in Grades 10-12 Life Sciences…

  12. BIBLIOGRAPHY ON CURRICULUM DEVELOPMENT.

    ERIC Educational Resources Information Center

    Harvard Univ., Cambridge, MA. Graduate School of Education.

    THIS BIBLIOGRAPHY LISTS MATERIALS ON VARIOUS ASPECTS OF CURRICULUM DEVELOPMENT. FORTY UNANNOTATED REFERENCES ARE PROVIDED FOR DOCUMENTS DATING FROM 1960 TO 1966. BOOKS, JOURNALS, REPORT MATERIALS, AND SOME UNPUBLISHED MANUSCRIPTS ARE LISTED IN SUCH AREAS AS COGNITIVE STUDIES, VOCATIONAL REHABILITATION, INSTRUCTIONAL MATERIALS, SCIENCE STUDIES, AND…

  13. Curriculum-Based Measurement in Science Learning: Vocabulary-Matching as an Indicator of Performance and Progress

    ERIC Educational Resources Information Center

    Espin, Christine A.; Busch, Todd W.; Lembke, Erica S.; Hampton, David D.; Seo, Kyounghee; Zukowski, Beth A.

    2013-01-01

    The technical adequacy of curriculum-based measures in the form of short and simple vocabulary-matching probes to predict students' performance and progress in science at the secondary level was investigated. Participants were 198 seventh-grade students from 10 science classrooms. Curriculum-based measurements (CBM) were 5-min vocabulary-matching…

  14. Improving Science Education in Rural Elementary Schools: A New Approach.

    ERIC Educational Resources Information Center

    Dacus, Judy M.; Hutto, Nora

    Rural elementary school teachers interested in improving science instruction are frequently hampered by inadequate training in science, lack of information on local natural history resources, and time and curriculum constraints. On the other hand, rural schools are usually located near meadows, forests, or undeveloped land, and rural students…

  15. Microelectronics in the Curriculum--The Science Teacher's Contribution.

    ERIC Educational Resources Information Center

    Association for Science Education, Cambridge (England).

    Rapid advances in microelectronics over the past few years have generally been beneficial, but they have also created some problems, and questions must be asked about the philosophy for including aspects of the new technology in the school curriculum. This statement, prepared by the Microelectronics and Science Education Subcommittee of the…

  16. Problems of Meaning in Science Curriculum. Ways of Knowing in Science Series.

    ERIC Educational Resources Information Center

    Roberts, Douglas A., Ed.; Ostman, Leif, Ed.

    As a component of the school curriculum, science has features that are both unique and representative. This book explores the idea that the socialization of students is not only a matter of their deportment, attitudes, and conduct, but is also very significantly associated with the meanings provided by their educational experiences. The chapters…

  17. The "Curriculum for Excellence": A Major Change for Scottish Science Education

    ERIC Educational Resources Information Center

    Brown, Sally

    2014-01-01

    The Curriculum for Excellence and new National Qualifications offer innovative reform, based on widely supported ideas and aims, for Scottish preschool, primary and secondary education levels. "Objectives and syllabuses" for science are replaced by "experiences and outcomes". Most strikingly, central prescription makes way for…

  18. Special series on "The meaning of behavioral medicine in the psychosomatic field" establishment of a core curriculum for behavioral science in Japan: The importance of such a curriculum from the perspective of psychology.

    PubMed

    Shimazu, Akihito; Nakao, Mutsuhiro

    2016-01-01

    This article discusses the core curriculum for behavioral science, from the perspective of psychology, recommended by the Japanese Society of Behavioral Medicine and seeks to explain how the curriculum can be effectively implemented in medical and health-related departments. First, the content of the core curriculum is reviewed from the perspective of psychology. We show that the curriculum features both basic and applied components and that the basic components are closely related to various aspects of psychology. Next, we emphasize two points to aid the effective delivery of the curriculum: 1) It is necessary to explain the purpose and significance of basic components of behavioral science to improve student motivation; and 2) it is important to encourage student self-efficacy to facilitate application of the acquired knowledge and skills in clinical practice.

  19. Factors Affecting Student Success with a Google Earth-Based Earth Science Curriculum

    ERIC Educational Resources Information Center

    Blank, Lisa M.; Almquist, Heather; Estrada, Jen; Crews, Jeff

    2016-01-01

    This study investigated to what extent the implementation of a Google Earth (GE)-based earth science curriculum increased students' understanding of volcanoes, earthquakes, plate tectonics, scientific reasoning abilities, and science identity. Nine science classrooms participated in the study. In eight of the classrooms, pre- and post-assessments…

  20. Founders' Weekend. North Country Workshop on Science, Technology and the Undergraduate Curriculum. Proceedings (Potsdam, New York, November 9-10, 1984).

    ERIC Educational Resources Information Center

    State Univ. of New York, Potsdam. Coll. at Potsdam.

    Proceedings of the North Country Workshop on Science, Technology, and the Undergraduate Curriculum are presented. The Sloan Foundation's call for reform of the liberal arts and coverage of mathematics, science, and technology is noted in welcoming remarks by State University of New York, Potsdam, President Humphrey Tonkin. Stephen H. Cutcliffe…

  1. Science, Levels 7-12. Secondary Core Curriculum Standards.

    ERIC Educational Resources Information Center

    Utah State Board of Education, Salt Lake City. Div. of Curriculum and Instruction.

    This document presents the core science curriculum standards which must be completed by all students as a requisite for graduation from Utah's secondary schools. Contained within are the elementary and secondary school program of studies and high school graduation requirements. Each course entry for grades 7-12 contains: course title, unit of…

  2. Writing To Learn in Science: A Curriculum Guide.

    ERIC Educational Resources Information Center

    Chatel, Regina G.

    This curriculum guide supports and gives structure to engaging students in writing-to-learn activities in science classes by delineating writing outcomes and assessment. The guide is structured according to the beliefs that students need models, revision is the key to successful writing, writing is a tool for demonstrating learning, and writing is…

  3. Incorporating Laptop Technologies into an Animal Sciences Curriculum

    ERIC Educational Resources Information Center

    Birrenkott, Glenn; Bertrand, Jean A.; Bolt, Brian

    2005-01-01

    Teaching animal sciences, like most agricultural disciplines, requires giving students hands-on learning opportunities in remote and often computer-unfriendly sites such as animal farms. How do faculty integrate laptop use into such an environment?

  4. Which Values Regarding Nature and Other Species Are We Promoting in the Australian Science Curriculum?

    ERIC Educational Resources Information Center

    Castano Rodriguez, Carolina

    2016-01-01

    Through a critical textual analysis of the content and structure of the new Australian science curriculum, in this paper I identify the values it encourages and those that are absent. I investigate whether the Australian science curriculum is likely to promote the attitudes needed to educate generations of children who act more responsibly with…

  5. Global Systems Science and Hands-On Universe Course Materials for High School

    NASA Astrophysics Data System (ADS)

    Gould, A.

    2011-09-01

    The University of California Berkeley's Lawrence Hall of Science has a project called Global Systems Science (GSS). GSS produced a set of course materials for high school science education that includes reading materials, investigations, and software for analyzing satellite images of Earth focusing on Earth systems as well as societal issues that require interdisciplinary science for full understanding. The software has general application in analysis of any digital images for a variety of purposes. NSF and NASA funding have contributed to the development of GSS. The current NASA-funded project of GSS is Lifelines for High School Climate Change Education (LHSCCE), which aims to establish professional learning communities (PLCs) to share curriculum resources and best practices for teaching about climate change in grades 9-12. The project explores ideal ways for teachers to meet either in-person or using simple yet effective distance-communication techniques (tele-meetings), depending on local preferences. Skills promoted include: how to set up a website to share resources; initiating tele-meetings with any available mechanism (webinars, Skype, telecons, moodles, social network tools, etc.); and easy ways of documenting and archiving presentations made at meetings. Twenty teacher leaders are forming the PLCs in their regions or districts. This is a national effort in which teachers share ideas, strategies, and resources aimed at making science education relevant to societal issues, improve students' understanding of climate change issues, and contribute to possible solutions. Although the binding theme is climate change, the application is to a wide variety of courses: Earth science, environmental science, biology, physics, and chemistry. Moreover, the PLCs formed can last as long as the members find it useful and can deal with any topics of interest, even if they are only distantly related to climate change.

  6. The Rise and Fall of the Social Science Curriculum Project in Iceland, 1974-84: Reflections on Reason and Power in Educational Progress.

    ERIC Educational Resources Information Center

    Edelstein, Wolfgang

    This description of the content and structure of a 10-year Icelandic Social Science Curriculum Project serves as a commentary on the role of the project in the context of Icelandic curriculum reform. A discussion of the place of structural developmental curricula in the reform dynamics of educational progressivism precede the specifics of the…

  7. Exploring the Effects of Specific, Hands-On Interventions, on Environmental Science Topics in Teacher Education Programs

    NASA Astrophysics Data System (ADS)

    Bullock, S. M.; Hayhoe, D.

    2012-12-01

    With increased concern over the environment, all Ontario students now study soils, energy conservation, water systems, and climate change & the greenhouse effect in Grades 3, 5, 7, 8 and 10. Unfortunately, many prospective teachers at the elementary and intermediate levels come to teacher education programs with little or no formal science education beyond their own experiences as students in the K-12 system. We devised a series of concept tests (some binary choice, some multiple choice) designed to assess teacher candidates' conceptual understandings of soils, energy, water systems, and climate change and the greenhouse effect - the very content they are expected to teach their future students in the school system. We administered a pre-test to our students at two institutions to establish a baseline of their understanding. Then, we specifically devoted class time to exploring each of these themes in our science curriculum methods courses in order using research-based principles of teaching devoted to promoting conceptual change through the use of hands-on, inquiry approaches in science. After a few months had passed, we again administered the same tests to teacher candidates to measure candidates' conceptual gain. Some teacher candidates also participated in follow-up focus group interviews so that they could have the opportunity to articulate their understandings of concepts in environmental science using their own words. In this poster we will report on data collected for this project over the past two academic years. We have reached two broad conclusions. First, teacher candidates know a considerable amount about the four environmental topics that were selected, despite the fact that most participants in the research did not have post-secondary training in science. For example, participants tended to know that planting different crops on the soil in different years helps to maintain fertile soils and that warmer oceans will cause an increase in the severity of

  8. Principles versus Artifacts in Computer Science Curriculum Design

    ERIC Educational Resources Information Center

    Machanick, Philip

    2003-01-01

    Computer Science is a subject which has difficulty in marketing itself. Further, pinning down a standard curriculum is difficult--there are many preferences which are hard to accommodate. This paper argues the case that part of the problem is the fact that, unlike more established disciplines, the subject does not clearly distinguish the study of…

  9. Science through Engineering in Elementary School: Comparing Three Enactments of an Engineering-Design-Based Curriculum on the Science of Sound

    ERIC Educational Resources Information Center

    Wendell, Kristen Bethke

    2011-01-01

    This research illustrates how varying enactments of an engineering-design-based science curriculum shaped the development of students' domain-specific scientific ideas and practices. In this comparative case study rooted in the analytical perspectives of activity theory and learning environments, student and teacher participants in three…

  10. The Astrobiology in Secondary Classrooms (ASC) curriculum: focusing upon diverse students and teachers.

    PubMed

    Arino de la Rubia, Leigh S

    2012-09-01

    The Minority Institution Astrobiology Collaborative (MIAC) began working with the NASA Goddard Center for Astrobiology in 2003 to develop curriculum materials for high school chemistry and Earth science classes based on astrobiology concepts. The Astrobiology in Secondary Classrooms (ASC) modules emphasize interdisciplinary connections in astronomy, biology, chemistry, geoscience, physics, mathematics, and ethics through hands-on activities that address national educational standards. Field-testing of the Astrobiology in Secondary Classrooms materials occurred over three years in eight U.S. locations, each with populations that are underrepresented in the career fields of science, technology, engineering, and mathematics. Analysis of the educational research upon the high school students participating in the ASC project showed statistically significant increases in students' perceived knowledge and science reasoning. The curriculum is in its final stages, preparing for review to become a NASA educational product.

  11. Exploring Ivorian Perspectives on the Effectiveness of the Current Ivorian Science Curriculum in Addressing Issues Related to HIV/AIDS

    ERIC Educational Resources Information Center

    Ado, Gustave Firmin

    2014-01-01

    School-based HIV/AIDS science education has the potential to impact students when integrated into the science curriculum. However, this mixed method study shows that school-based HIV/AIDS science education is often not infused into career subjects such as science education but integrated into civics education and taught by teachers who lack the…

  12. Hydromania II: Journey of the Oncorhynchus. Summer Science Camp Curriculum 1994.

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Moura, Joan; Swerin, Rod

    The Hydromania II curriculum was written for the third in a series of summer science camp experiences targeting students in grades 4--6 who generally have difficulty accessing supplementary academic programs. The summer science camp in Portland is a collaborative effort between Bonneville Power Administration (BPA), the US Department of Energy (DOE), and the Portland Parks and Recreation Community Schools Program along with various other cooperating businesses and organizations. The curriculum has also been incorporated into other summer programs and has been used by teachers to supplement classroom activities. Camps are designed to make available, affordable learning experiences that are funmore » and motivating to students for the study of science and math. Inner-city, under-represented minorities, rural, and low-income families are particularly encouraged to enroll their children in the program.« less

  13. Life Sciences Teachers Negotiating Professional Development Agency in Changing Curriculum Times

    ERIC Educational Resources Information Center

    Singh-Pillay, Asheena; Samuel, Michael Anthony

    2017-01-01

    This article probes teacher responses to three curricular reform initiatives from a South African situated contextual perspective. It focuses on Life Sciences teachers who have initially reported feeling overwhelmed by this rapidly changing curriculum environment: adopting and re-adapting to the many expected shifts. The research question posed…

  14. Early Science Instruction and Academic Language Development Can Go Hand in Hand. The Promising Effects of a Low-Intensity Teacher-Focused Intervention

    ERIC Educational Resources Information Center

    Henrichs, Lotte F.; Leseman, Paul P. M.

    2014-01-01

    Early science instruction is important in order to lay a firm basis for learning scientific concepts and scientific thinking. In addition, young children enjoy science. However, science plays only a minor role in the kindergarten curriculum. It has been reported that teachers feel they need to prioritize language and literacy practices over…

  15. From Prescribed Curriculum to Classroom Practice: An Examination of the Implementation of the New York State Earth Science Standards

    ERIC Educational Resources Information Center

    Contino, Julie; Anderson, O. Roger

    2013-01-01

    In New York State (NYS), Earth science teachers use the "National Science Education Standards" (NSES), the NYS "Learning Standards for Mathematics, Science and Technology" (NYS Standards), and the "Physical Setting/Earth Science Core Curriculum" (Core Curriculum) to create local curricula and daily lessons. In this…

  16. Science: Model Curriculum Guide, Kindergarten through Grade Eight.

    ERIC Educational Resources Information Center

    California State Dept. of Education, Sacramento.

    This guide was developed with the intention of helping teachers and school site administrators in California review the elementary science curriculum and compare it to an idealized model that is presented in the document. Part I of the guide provides a summary of a number of characteristics considered to be important to a strong elementary science…

  17. Meta-analysis of the effectiveness of computer-based laboratory versus traditional hands-on laboratory in college and pre-college science instructions

    NASA Astrophysics Data System (ADS)

    Onuoha, Cajetan O.

    The purpose of this research study was to determine the overall effectiveness of computer-based laboratory compared with the traditional hands-on laboratory for improving students' science academic achievement and attitudes towards science subjects at the college and pre-college levels of education in the United States. Meta-analysis was used to synthesis the findings from 38 primary research studies conducted and/or reported in the United States between 1996 and 2006 that compared the effectiveness of computer-based laboratory with the traditional hands-on laboratory on measures related to science academic achievements and attitudes towards science subjects. The 38 primary research studies, with total subjects of 3,824 generated a total of 67 weighted individual effect sizes that were used in this meta-analysis. The study found that computer-based laboratory had small positive effect sizes over the traditional hands-on laboratory (ES = +0.26) on measures related to students' science academic achievements and attitudes towards science subjects (ES = +0.22). It was also found that computer-based laboratory produced more significant effects on physical science subjects compared to biological sciences (ES = +0.34, +0.17).

  18. Interdisciplinary Climate Change Curriculum Materials based on the Next Generation Science Standards and The Earth Charter

    NASA Astrophysics Data System (ADS)

    Barbosa, A.; Robertson, W. H.

    2013-12-01

    In the 2012, the National Research Council (NRC) of the National Academies' reported that one of the major issues associated with the development of climate change curriculum was the lack of interdisciplinary materials that also promoted a correlation between science standards and content. Therefore, in order to respond to this need, our group has developed an interdisciplinary climate change curriculum that has had as its fundamental basis the alignment with the guidelines presented by the Next Generation Science Standards (NGSS) and the ones presented by the international document entitled The Earth Charter. In this regards, while the alignment with NGSS disciplinary core ideas, cross-concepts and students' expectations intended to fulfill the need for the development of climate change curriculum activities that were directly associated with the appropriate set of NGSS guidelines, the alignment with The Earth Charter document intended to reinforce the need the for the integration of sociological, philosophical and intercultural analysis of the theme 'climate change'. Additionally, our curriculum was also developed as part of a collaborative project between climate scientists and engineers, who are responsible for the development of a Regional Arctic Simulation Model (RASM). Hence, another important curriculum constituent was the feedback, suggestions and reviews provided by these professionals, who have also contributed to these pedagogical materials' scientific accuracy by facilitating the integration of datasets and visualizations developed by RASM. Furthermore, our group has developed a climate change curriculum for two types of audience: high school and early undergraduate students. Each curriculum unit is divided into modules and each module contains a set of lesson plans. The topics selected to compose each unit and module were designated according to the surveys conducted with scientists and engineers involved with the development of the climate change

  19. Impact of the Knowledge and Beliefs of Egyptian Science Teachers in Integrating a STS based Curriculum: A Sociocultural Perspective

    NASA Astrophysics Data System (ADS)

    Mansour, Nasser

    2010-08-01

    The failure of much curriculum innovation has been attributed to the neglect by innovators of teachers’ perceptions. The purpose of this study was to investigate inservice science teachers views of integrating Science, Technology and Society (STS) issues into the science curriculum and identify the factors that influence their decisions concerning integrating STS issues (or not). The study used mixed methods (questionnaire and interviews) with Egyptian science teachers who teach science courses for 12- to 14-year-old students. The findings indicate that unless curriculum developers take account of teachers’ beliefs and knowledge and the sociocultural factors that shape or influence those beliefs in designing and planning new STS curriculum materials, these materials are unlikely to be implemented according to their intended plan.

  20. Materials and Fabrication Methods I. A Study Guide of the Science and Engineering Technician Curriculum.

    ERIC Educational Resources Information Center

    Lindberg, Andrew; And Others

    This study guide is part of a curriculum entitled Science and Engineering Technician (SET) Curriculum, a program of studies which integrates elements from the disciplines of chemistry, physics, mathematics, mechanical technology, and electronic technology. The purpose of this national curriculum development project was to provide a framework for…

  1. Oak Ridge National Laboratory`s (ORNL) ecological and physical science study center: A hands-on science program for K-12 students

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bradshaw, S.P.

    1994-12-31

    In our tenth year of educational service and outreach, Oak Ridge National Laboratory`s Ecological and Physical Science Study Center (EPSSC) provides hands-on, inquiry-based science activities for area students and teachers. Established in 1984, the EPSSC now hosts over 20,000 student visits. Designed to foster a positive attitude towards science, each unit includes activities which reinforce the science concept being explored. Outdoor science units provide field experience at the Department of Energy`s Oak Ridge National Environmental Research Park and outreach programs are offered on-site in area schools. Other programs are offered as extensions of the EPSSC core programs, including on-site studentmore » science camps, all-girl programs, outreach science camps, student competitions, teacher in-service presentations and teacher workshops.« less

  2. A Reexamination of Ontario's Science Curriculum: Toward a More Inclusive Multicultural Science Education?

    ERIC Educational Resources Information Center

    Mujawamariya, Donatille; Hujaleh, Filsan; Lima-Kerckhoff, Ashley

    2014-01-01

    The rapid diversification of communities in Ontario has necessitated the provincial government to reevaluate public school curriculums and policies to make schools more inclusive and reflective of its diverse population. This article critically analyzes the content of the latest revised science curricula for Grades 1 to 10 and assesses the degree…

  3. Perspective of Lecturers in Implementing PISMP Science Curriculum in Malaysia's IPG

    ERIC Educational Resources Information Center

    Yahya, Fauziah Hj; Bin Hamdan, Abdul Rahim; Jantan, Hafsah Binti; Saleh, Halimatussadiah Binti

    2015-01-01

    The article aims to identify lecturers' perspectives in implementing PISMP science curriculum in IPG Malaysia based on teaching experience with KIPP model. The respondents consisted of 105 lecturers from 20 IPG Malaysia. The study used a questionnaire consisting of 74 items covering the four dimensions (Context, Input, Process and Product). Data…

  4. Increasing ocean sciences in K and 1st grade classrooms through ocean sciences curriculum aligned to A Framework for K-12 Science Education, and implementation support.

    NASA Astrophysics Data System (ADS)

    Pedemonte, S.; Weiss, E. L.

    2016-02-01

    Ocean and climate sciences are rarely introduced at the early elementary levels. Reasons for this vary, but include little direct attention at the national and state levels; lack of quality instructional materials; and, lack of teacher content knowledge. Recent recommendations by the National Research Council, "revise the Earth and Space sciences core ideas and grade band endpoints to include more attention to the ocean whenever possible" (NRC, 2012, p. 336) adopted in the Next Generation Science Standards (NGSS), may increase the call for ocean and climate sciences to be addressed. In response to these recommendations' and the recognition that an understanding of some of the Disciplinary Core Ideas (DCIs) would be incomplete without an understanding of processes or phenomena unique to the ocean and ocean organisms; the ocean Literacy community have created documents that show the alignment of NGSS with the Ocean Literacy Principles and Fundamental Concepts (Ocean Literacy, 2013) as well as the Ocean Literacy Scope and Sequence for Grades K-12 (Ocean Literacy, 2010), providing a solid argument for how and to what degree ocean sciences should be part of the curriculum. However, the percentage of science education curricula focused on the ocean remains very low. This session will describe a new project, that draws on the expertise of curriculum developers, ocean literacy advocates, and researchers to meet the challenges of aligning ocean sciences curriculum to NGSS, and supporting its implementation. The desired outcomes of the proposed project are to provide a rigorous standards aligned curricula that addresses all of the Life Sciences, and some Earth and Space Sciences and Engineering Design Core Ideas for Grades K and 1; and provides teachers with the support they need to understand the content and begin implementation. The process and lessons learned will be shared.

  5. Making Sense of Curriculum--The Transition into Science and Engineering University Programmes

    ERIC Educational Resources Information Center

    Ulriksen, Lars; Holmegaard, Henriette T.; Madsen, Lene Møller

    2017-01-01

    Research on students' transition, retention and experiences in science, technology, engineering and mathematics (STEM) has increasingly focused on identity formation and on students' integration in the study programmes. However, studies focusing on the role of the curriculum in this process at the level of higher education are scarce. The present…

  6. The entomologist as a science partner and curriculum advisor: The Earth School model for grades 6--8

    NASA Astrophysics Data System (ADS)

    Marshall, Bethany Johnston

    simple mechanism for adapting the work of leading researchers into activities suitable for all age levels and all learning abilities. As public schools rally to change the course of science education, they are met with a seemingly never-ending supply of materials promoted as hands-on learning. To the extent that the manipulation of tangible objects and materials supports identified outcome objectives, these materials fulfill their promise. Although there is merit in offering these types of kinesthetic experiences to reinforce theories and principles of science, this approach does not address the same goal as activities that promote 'doing science' through investigation and discovery using a process that includes observation, inquiry, design and collaboration. The active recruiting of and collaboration with science partners from universities offers public school teachers and their students an alternative for curriculum enrichment as the nation strives to reach literacy goals in the sciences.

  7. New Mexico State Secondary School Science-Based Nutrition Curriculum.

    ERIC Educational Resources Information Center

    Ecklund, Susan, Ed.; Smalley, Katherine, Ed.

    This curriculum guide provides instructional materials for a 10-unit secondary-level science-based nutrition course. Each unit contains some or all of the following components: a summary sheet for each function, including generalizations with corresponding objectives, additional learning activities, and additional resources; unit outline; pretest;…

  8. A Study on Using Hands-On Science Inquiries to Promote the Geology Learning of Preservice Teachers

    ERIC Educational Resources Information Center

    Lai, Ching-San

    2015-01-01

    This study aims to investigate the geology learning performance of preservice teachers. A total of 31 sophomores (including 11 preservice teachers) from an educational university in Taiwan participated in this study. The course arrangements include class teaching and hands-on science inquiry activities. The study searches both quantitative and…

  9. Integrating technology, curriculum, and online resources: A multilevel model study of impacts on science teachers and students

    NASA Astrophysics Data System (ADS)

    Ye, Lei

    This scale-up study investigated the impact of a teacher technology tool (Curriculum Customization Service, CCS), curriculum, and online resources on earth science teachers' attitudes, beliefs, and practices and on students' achievement and engagement with science learning. Participants included 73 teachers and over 2,000 ninth-grade students within five public school districts in the western U.S. To assess the impact on teachers, changes between pre- and postsurveys were examined. Results suggest that the CCS tool appeared to significantly increase both teachers' awareness of other earth science teachers' practices and teachers' frequency of using interactive resources in their lesson planning and classroom teaching. A standard multiple regression model was developed. In addition to "District," "Training condition" (whether or not teachers received CCS training) appeared to predict teachers' attitudes, beliefs, and practices. Teachers who received CCS training tended to have lower postsurvey scores than their peers who had no CCS training. Overall, usage of the CCS tool tended to be low, and there were differences among school districts. To assess the impact on students, changes were examined between pre- and postsurveys of (1) knowledge assessment and (2) students' engagement with science learning. Students showed pre- to postsurvey improvements in knowledge assessment, with small to medium effect sizes. A nesting effect (students clustered within teachers) in the Earth's Dynamic Geosphere (EDG) knowledge assessment was identified and addressed by fitting a two-level hierarchical linear model (HLM). In addition, significant school district differences existed for student post-knowledge assessment scores. On the student engagement questionnaire, students tended to be neutral or to slightly disagree that science learning was important in terms of using science in daily life, stimulating their thinking, discovering science concepts, and satisfying their own

  10. The technology-science relationship: Some curriculum implications

    NASA Astrophysics Data System (ADS)

    Gardner, Paul L.

    1990-01-01

    Technology encompasses the goods and services which people make and provide to meet human needs, and the processes and systems used for their development and delivery. Although technology and science are related, a distinction can be made between their purposes and outcomes. This paper considers four possible approaches to teaching students about the relationship between technology and science. A technology-as-illustration approach treats technology as if it were applied science; artefacts are presented to illustrate scientific principles. A cognitive-motivational approach also treats technology as applied science, but presents technology early in the instructional sequence in order to promote student interest and understanding. In an artefact approach, learners study artefacts as systems in order to understand the scientific principles which explain their workings. Finally, a technology-as-process approach emphasises the role of technological capability; in this approach, scientific concepts do not have privileged status as a basis for selecting curriculum content.

  11. The Digestive System and Alcohol Use. Science of Alcohol Curriculum for American Indians. Training Unit [and] Participant Booklet.

    ERIC Educational Resources Information Center

    Jacobs, Cecelia; And Others

    The Science of Alcohol Curriculum for American Indians uses the Medicine Circle and the "new science paradigm" to study the science of alcohol through a culturally relevant holistic approach. Intended for teachers and other educational personnel involved with American Indians, this curriculum presents a framework for alcohol education…

  12. Models and Materials: Bridging Art and Science in the Secondary Curriculum

    NASA Astrophysics Data System (ADS)

    Pak, D.; Cavazos, L.

    2006-12-01

    Creating and sustaining student engagement in science is one challenge facing secondary teachers. The visual arts provide an alternative means of communicating scientific concepts to students who may not respond to traditional formats or identify themselves as interested in science. We have initiated a three-year teacher professional development program at U C Santa Barbara focused on bridging art and science in secondary curricula, to engage students underrepresented in science majors, including girls, English language learners and non-traditional learners. The three-year format provides the teams of teachers with the time and resources necessary to create innovative learning experiences for students that will enhance their understanding of both art and science content. Models and Materials brings together ten secondary art and science teachers from six Santa Barbara County schools. Of the five participating science teachers, three teach Earth Science and two teach Life Science. Art and science teachers from each school are teamed and challenged with the task of creating integrated curriculum projects that bring visual art concepts to the science classroom and science concepts to the art classroom. Models and Materials were selected as unifying themes; understanding the concept of models, their development and limitations, is a prominent goal in the California State Science and Art Standards. Similarly, the relationship between composition, structure and properties of materials is important to both art and science learning. The program began with a 2-week institute designed to highlight the natural links between art and science through presentations and activities by both artists and scientists, to inspire teachers to develop new ways to present models in their classrooms, and for the teacher teams to brainstorm ideas for curriculum projects. During the current school year, teachers will begin to integrate science and art and the themes of modeling and materials

  13. Implementing Curriculum Evaluation: Case Study of a Generic Undergraduate Degree in Health Sciences

    ERIC Educational Resources Information Center

    Harris, Lynne; Driscoll, Peter; Lewis, Melinda; Matthews, Lynda; Russell, Cherry; Cumming, Steven

    2010-01-01

    This case study presents a longitudinal, evidence-based approach to health science curriculum reform and evaluation. Curriculum in higher education must meet the needs of diverse stakeholders and must respond to dynamic local, national and international contexts, and this creates challenges for evaluation. The long lead time prior to the…

  14. REORGANIZED SCIENCE CURRICULUM, 5A, FIFTH GRADE SUPPLEMENT.

    ERIC Educational Resources Information Center

    Minneapolis Special School District 1, Minn.

    THE SEVENTH IN A SERIES OF 17 VOLUMES, THIS VOLUME PROVIDES THE FIFTH GRADE TEACHER WITH A GUIDE TO THE REORGANIZED SCIENCE CURRICULUM OF THE MINNEAPOLIS PUBLIC SCHOOLS. THE MATERIALS ARE INTENDED TO BE AUGMENTED AND REVISED AS THE NEED ARISES. THERE IS A DETAILED OUTLINE OF SUBJECT MATTER FOR GRADE 5 FOR EACH OF THE FOLLOWING MAJOR AREAS AROUND…

  15. Teaching Primary Science with Almost Nothing

    ERIC Educational Resources Information Center

    Kelly, Lois; Schofield, Kathy

    2012-01-01

    In the summer of 2010 the authors spent two weeks helping teachers in a primary school near Kampala to develop their science curriculum. In common with many primary schools in Uganda science was taught as "facts to be learnt." This was partly because the teachers had had little or no first-hand experience of practical science or science…

  16. An evaluative study of the impact of the "Curriculum Alignment Toolbox" on middle school science achievement

    NASA Astrophysics Data System (ADS)

    Jones, Carol L.

    The number of computer-assisted education programs on the market is overwhelming science teachers all over the Michigan. Though the need is great, many teachers are reluctant to procure computer-assisted science education programs because they are unsure of the effectiveness of such programs. The Curriculum Alignment Toolbox (CAT) is a computer-based program, aligned to the Michigan Curriculum Framework's Benchmarks for Science Education and designed to supplement science instruction in Michigan middle schools. The purpose of this study was to evaluate the effectiveness of CAT in raising the standardized test scores of Michigan students. This study involved 419 students from one urban, one suburban and one rural middle school. Data on these students was collected from 4 sources: (1) the 8th grade Michigan Education Assessment Program (MEAP) test, (2) a 9 question, 5-point Likert-type scale student survey, (3) 4 open-response student survey questions and (4) classroom observations. Results of this study showed that the experimental group of 226 students who utilized the CAT program in addition to traditional instruction did significantly better on the Science MEAP test than the control group of 193 students who received only traditional instruction. The study also showed that the urban students from a "high needs" school seemed to benefit most from the program. Additionally, though both genders and all identified ethnic groups benefited from the program, males benefited more than females and whites, blacks and Asian/Pacific Islander students benefited more than Hispanic and multi-racial students. The CAT program's success helping raise the middle school MEAP scores may well be due to some of its components. CAT provided students with game-like experiences all based on the benchmarks required for science education and upon which the MEAP test is based. The program also provided visual and auditory stimulation as well as numerous references which students indicated

  17. Science in the liberal arts curriculum - A personal view

    NASA Astrophysics Data System (ADS)

    Young, A.

    1983-12-01

    A discussion concerning the character and importance of the epistemological structure of science notes that contemporary textbooks and traditional courses used in the scientific component of the liberal arts curriculum do not communicate that structure. A course, designated 'The Structure of Scientific Thought', is suggested as a vehicle for communicating to nonscientists the fundamental aspects of scientific inquiry, and the shortcommings of traditional textbooks and courses are illustrated by contrast to its contents. Attention is given to such aspects of the structure of science as empiricism, conceptualization, the relationships among science, truth and reality, theoretical hierarchies, the distinction between explanation and understanding, and the centrality of abstraction and mathematical formalism in science.

  18. The Impact of High School Science Teachers' Beliefs, Curricular Enactments and Experience on Student Learning During an Inquiry-based Urban Ecology Curriculum

    NASA Astrophysics Data System (ADS)

    McNeill, Katherine L.; Silva Pimentel, Diane; Strauss, Eric G.

    2013-10-01

    Inquiry-based curricula are an essential tool for reforming science education yet the role of the teacher is often overlooked in terms of the impact of the curriculum on student achievement. Our research focuses on 22 teachers' use of a year-long high school urban ecology curriculum and how teachers' self-efficacy, instructional practices, curricular enactments and previous experience impacted student learning. Data sources included teacher belief surveys, teacher enactment surveys, a student multiple-choice assessment focused on defining and identifying science concepts and a student open-ended assessment focused on scientific inquiry. Results from the two hierarchical linear models indicate that there was significant variation between teachers in terms of student achievement. For the multiple-choice assessment, teachers who spent a larger percentage of time on group work and a smaller percentage of time lecturing had greater student learning. For the open-ended assessment, teachers who reported a higher frequency of students engaging in argument and sharing ideas had greater student learning while teachers who adapted the curriculum more had lower student learning. These results suggest the importance of supporting the active role of students in instruction, emphasising argumentation, and considering the types of adaptations teachers make to curriculum.

  19. An Ecological System Curriculum: An Integrated MST Approach to Environmental Science Education.

    ERIC Educational Resources Information Center

    Leonhardt, Nina A.

    This paper describes an inquiry-based, student-centered mathematics, science, and technology curriculum guide. It features activities addressing such environmental science topics as groundwater modeling, water filtration, soil permeability and porosity, water temperature and salinity, and quadrant studies. Activities are organized so that the…

  20. Access Nature[TM]: 45 Fun, Hands-On Activities for Everyone!

    ERIC Educational Resources Information Center

    Almeras, Bethe Gilbert; Heath, David

    "Access Nature" is an outdoor science curriculum that focuses on habitats. This curriculum targets students ages 6-14 and aims to develop environmental awareness, environmental leadership skills, and outdoor knowledge and skills. Specific adaptations for disabled students are also considered. Contents include: (1) "Introduction to…

  1. Teacher change and professional development: A case study of teachers engaged in an innovative constructivist science curriculum

    NASA Astrophysics Data System (ADS)

    Akura, Okong'o. Gabriel

    This study examined both the changes that elementary school teachers experienced when they implemented a reform-based science curriculum and the impact of professional development on this transformation. The research involved a case study of three purposefully selected teachers implementing the Linking Food and the Environment (LIFE) program during the 2002--2003 school year. The LIFE program is a curriculum designed to enhance science literacy among learners from high poverty urban environments. While the study was grounded in the tradition of critical theory (Carspecken, 1996), the theoretical perspective of hermeneutic phenomenology (van Manen, 1990) guided data collection and analysis. Extensive observations of the teachers were made in order to capture and record the teacher change phenomenon. Data were recorded by means of field notes, audio and videotapes, semi-structured interviews, classroom observations, and video Stimulated Recall (SR) interviews. Emerging themes relating to teacher change, knowledge interests, constructivist pedagogy, and professional development illustrated how teachers grapple with various aspects of implementing a reform-based science curriculum. The teachers in this study were similar to those in earlier investigations, which found that sustained professional development programs involving mentoring and constant reflection enable elementary science teachers to change their instructional strategies from the technical-realist orientation towards the practical-hermeneutic and emancipatory-liberatory orientations. The study has implications for science curriculum developers and designers of professional development programs.

  2. Fostering pre-service teachers' views about nature of science: evaluation of a new STEM curriculum

    NASA Astrophysics Data System (ADS)

    Krell, Moritz; Koska, Johannes; Penning, Fenna; Krüger, Dirk

    2015-09-01

    Background: An elaborated understanding of Nature of Science (NOS) is seen as an important part of scientific literacy. In order to enable teachers to adequately discuss NOS in their lessons, various approaches have recently been employed to improve teachers' understanding of NOS. Purpose: This study investigated the effect of participating in a newly developed Science, Technology, Engineering and Mathematics (STEM) curriculum at the Freie Universität Berlin (Germany) on pre-service teachers' NOS views. Program description: In the new STEM curriculum, two versions of explicitly teaching NOS, which are discussed in the literature, have been adopted: the pre-service teachers explicitly reflect upon nature and history of science (version one) as well as conduct own scientific investigations (version two). Sample: N = 76 pre-service teachers from different semester levels (cross-sectional study) who participated in the new STEM curriculum took part in this study (intervention group). As control groups, students who did not partake in the new curriculum participated (pre-service primary (N = 134), science (N = 198), and no-science (N = 161) teachers). Design and methods: In order to allow an economic assessment, a testing instrument with closed-item formats was developed to assess the respondents' views about six NOS aspects. Results: The intervention group shows significantly more elaborated NOS views than a relevant control group (p < .01, g = .48). Additionally, a one-way ANOVA reveals a positive effect of semester level on NOS views for the intervention group (p < .01; η² = .16) but not for the control groups. Conclusion: The findings support evidence suggesting that explicit approaches are effective when fostering an informed understanding of NOS. More specifically, a sequence of both versions of explicitly teaching NOS discussed in the literature seems to be a way to successfully promote pre-service teachers' NOS understanding.

  3. UnCommon Knowledge: Projects That Help Middle-School-Age Youth Discover the Science and Mathematics in Everyday Life. Volume One: Hands-On Science Projects.

    ERIC Educational Resources Information Center

    Carter, Carolyn S.; Keyes, Marian; Kusimo, Patricia S.; Lunsford, Crystal

    This guide contains hands-on science activities to connect middle-school students to the traditional knowledge of their grandparents and elders. Because girls often lose interest in science at the middle-school level, and because women in some communities (especially in rural areas) are seldom involved in work with an obvious science basis, the…

  4. A Longitudinal Assessment of Gifted Students' Learning Using the Integrated Curriculum Model (Icm): Impacts and Perceptions of the William and Mary Language Arts and Science Curriculum

    ERIC Educational Resources Information Center

    Feng, Annie Xuemei; Van Tassel-Baska, Joyce; Quek, Chwee; Bai, Wenyu; O'Neill, Barbara

    2005-01-01

    This study examines the effects over time of implementing the William and Mary language arts and science curriculum for gifted learners designed around the Integrated Curriculum Model (ICM) in one suburban school district. It also analyzes stakeholders' perceptions of the effectiveness of the curriculum. Findings suggest that gifted student…

  5. NASA Astrophysics EPO Resources For Engaging Girls in Science

    NASA Astrophysics Data System (ADS)

    Sharma, M.; Mendoza, D.; Smith, D.; Hasan, H.

    2011-09-01

    A new collaboration among the NASA Science Mission Directorate (SMD) Astrophysics EPO community is to engage girls in science who do not self-select as being interested in science, through the library setting. The collaboration seeks to (i) improve how girls view themselves as someone who knows about, uses, and sometimes contributes to science, and (ii) increase the capacity of EPO practitioners and librarians (both school and public) to engage girls in science. As part of this collaboration, we are collating the research on audience needs and best practices, and SMD EPO resources, activities and projects that focus on or can be recast toward engaging girls in science. This ASP article highlights several available resources and individual projects, such as: (i) Afterschool Universe, an out-of-school hands-on astronomy curriculum targeted at middle school students and an approved Great Science for Girls curriculum; (ii) Big Explosions and Strong Gravity, a Girl Scout patch-earning event for middle school aged girls to learn astronomy through hands-on activities and interaction with actual astronomers; and (iii) the JWST-NIRCAM Train the Trainer workshops and activities for Girl Scouts of USA leaders; etc. The NASA Astrophysics EPO community welcomes the broader EPO community to discuss with us how best to engage non-science-attentive girls in science, technology, engineering, and mathematics (STEM), and to explore further collaborations on this theme.

  6. Mentoring and Argumentation in a Game-Infused Science Curriculum

    ERIC Educational Resources Information Center

    Gould, Deena L.; Parekh, Priyanka

    2018-01-01

    Engaging in argumentation from evidence is challenging for most middle school students. We report the design of a media-based mentoring system to support middle school students in engaging in argumentation in the context of a game-infused science curriculum. Our design emphasizes learners apprenticing with college student mentors around the…

  7. A Curriculum for Preparing Science Teachers to Use Microcomputers.

    ERIC Educational Resources Information Center

    Ellis, James D.; Kuerbis, Paul J.

    1991-01-01

    ENLIST Micros, a project designed to improve quality and quantity of microcomputer use in science teaching, is described. Rationale and procedures behind its development; description of the pilot test model; results of the initial field test and an implementation study; description of the revised ENLIST Micros curriculum; and recommendations for…

  8. Computational Experiments for Science and Engineering Education

    NASA Technical Reports Server (NTRS)

    Xie, Charles

    2011-01-01

    How to integrate simulation-based engineering and science (SBES) into the science curriculum smoothly is a challenging question. For the importance of SBES to be appreciated, the core value of simulations-that they help people understand natural phenomena and solve engineering problems-must be taught. A strategy to achieve this goal is to introduce computational experiments to the science curriculum to replace or supplement textbook illustrations and exercises and to complement or frame hands-on or wet lab experiments. In this way, students will have an opportunity to learn about SBES without compromising other learning goals required by the standards and teachers will welcome these tools as they strengthen what they are already teaching. This paper demonstrates this idea using a number of examples in physics, chemistry, and engineering. These exemplary computational experiments show that it is possible to create a curriculum that is both deeper and wider.

  9. Implementing Curriculum-Embedded Formative Assessment in Primary School Science Classrooms

    ERIC Educational Resources Information Center

    Hondrich, Annika Lena; Hertel, Silke; Adl-Amini, Katja; Klieme, Eckhard

    2016-01-01

    The implementation of formative assessment strategies is challenging for teachers. We evaluated teachers' implementation fidelity of a curriculum-embedded formative assessment programme for primary school science education, investigating both material-supported, direct application and subsequent transfer. Furthermore, the relationship between…

  10. The MORPG-Based Learning System for Multiple Courses: A Case Study on Computer Science Curriculum

    ERIC Educational Resources Information Center

    Liu, Kuo-Yu

    2015-01-01

    This study aimed at developing a Multiplayer Online Role Playing Game-based (MORPG) Learning system which enabled instructors to construct a game scenario and manage sharable and reusable learning content for multiple courses. It used the curriculum of "Introduction to Computer Science" as a study case to assess students' learning…

  11. Earth Science, Grade 8. Part 2. Curriculum Bulletin Number 81CBM63.

    ERIC Educational Resources Information Center

    Stafford, Alva R.

    This curriculum guide is designed for use with the Charles E. Merrill textbook "Focus on Earth Science" and with the laboratory manual, teaching guide, and student review and reinforcement guide which accompany the textbook. Suggested time allotment, major concepts, instructional objectives, assessment items, available materials (such as…

  12. Earth Science, Grade 8. Part 1. Curriculum Bulletin Number 81CBM58.

    ERIC Educational Resources Information Center

    Stafford, Alva R.

    This curriculum guide is designed for use with the Charles E. Merrill textbook "Focus on Earth Science" and with the laboratory manual, teaching guide, and student review and reinforcement guide which accompany the textbook. Suggested time allotment, major concepts, instructional objectives, assessment items, available materials (such as…

  13. Astronomy Resources for Intercurricular Elementary Science (ARIES): Exploring Motion and Forces. What Works Clearinghouse Intervention Report

    ERIC Educational Resources Information Center

    What Works Clearinghouse, 2012

    2012-01-01

    "ARIES: Exploring Motion and Forces" is a physical science curriculum for students in grades 5-8 that employs 18 inquiry-centered, hands-on lessons called "explorations." The curriculum draws upon students' curiosity to explore phenomena, allowing for a discovery-based learning process. Group-centered lab work is designed to…

  14. Marginalization of Socioscientific Material in Science-Technology-Society Science Curricula: Some Implications for Gender Inclusivity and Curriculum Reform

    NASA Astrophysics Data System (ADS)

    Hughes, Gwyneth

    2000-05-01

    Science education reformers have argued that presenting science in the abstract is neither motivating nor inclusive of the majority of students. Science-technology-society (STS) curricula that give science an accessible social context have developed in response, but controversy surrounds the extent to which students should be introduced to socioscientific debate. Using material from a case study of Salters' Advanced Chemistry in the United Kingdom, this article demonstrates how socioscientific material is marginalized through the structures and language of syllabus texts and through classroom practices. This means students are unlikely to engage with socioscientific aspects in their course. Socioscientific content is gendered through association with social concerns and epistemological uncertainty, and because gender is asymmetric, socioscience is devalued with respect to the masculinity of abstract science. Teachers fear that extensive coverage of socioscience devalues the curriculum, alienates traditional science students and jeopardizes their own status as gatekeepers of scientific knowledge. Thus, although STS curricula such as Salters' offer potential for making science more accessible, the article concludes that greater awareness of, and challenges to, gender binaries could result in more effective STS curriculum reform.

  15. Go Ask Alice: Uncovering the Role of a University Partner in an Informal Science Curriculum Support Network

    ERIC Educational Resources Information Center

    Baker-Doyle, Kira J.

    2013-01-01

    This article describes a study from the Linking Instructors Networks of Knowledge in Science Education project, which aims to examine the informal science curriculum support networks of teachers in a school-university curriculum reform partnership. We used social network analysis and qualitative methods to reveal characteristics of the informal…

  16. UWHS Climate Science: Uniting University Scientists and High School Teachers in the Development and Implementation of a Dual-Credit STEM-Focused Curriculum

    NASA Astrophysics Data System (ADS)

    Bertram, M. A.; Thompson, L.; Ackerman, T. P.

    2012-12-01

    course used the UW Atmospheric Sciences curriculum, exams, and textbook (The Earth System, 3rd edition, Kump, Kasting and Crane, 2010), and one of the hands-on modules. Communication with these instructors during the year helped us define assessment strategies and to identify challenges of bringing the material into the high school classroom. This knowledge will be shared with teachers during our summer 2012 workshop and will inform approaches to teaching the course in 2012/2013. Proposed formats for implementation include year-long courses, using the APES/Climate format of 2011/2012, a union of Oceanography and Climate content, or in the context of an engineering course. Our initial vision was for a stand-alone semester or year-long course in climate science, incorporating excel and data handling as a learning tool and a suite of hands-on learning opportunities. Yet, the creative approaches to implementation of a new course in the schools, together with the breadth and depth of the UW curriculum and the Kump et al. 2010 textbook, have resulted in diverse educational approaches for bringing climate science into the high school.

  17. Experiences of Computer Science Curriculum Design: A Phenomenological Study

    ERIC Educational Resources Information Center

    Sloan, Arthur; Bowe, Brian

    2015-01-01

    This paper presents a qualitative study of 12 computer science lecturers' experiences of curriculum design of several degree programmes during a time of transition from year-long to semesterised courses, due to institutional policy change. The background to the study is outlined, as are the reasons for choosing the research methodology. The main…

  18. Fruit and Vegetable Production Unit for Plant Science Core Curriculum. Instructor's Guide. Volume 16, Number 3.

    ERIC Educational Resources Information Center

    Stewart, Bob R.; Mullinix, Mark K.

    This curriculum guide, part of a plant science core curriculum, consists of materials for use in teaching a unit on fruit and vegetable production. Provided in the first part of the guide are a list of objectives, a bibliography, and a competency profile. The remainder of the guide consists of 11 lessons dealing with the following topics: planning…

  19. Ka Hana `Imi Na`auao: A Science Curriculum Project

    NASA Astrophysics Data System (ADS)

    Napeahi, K.; Roberts, K. D.; Galloway, L. M.; Stodden, R. A.; Akuna, J.; Bruno, B.

    2005-12-01

    In antiquity, the first people to step foot on what are now known as the Hawaiian islands skillfully traversed the Pacific Ocean using celestial navigation and learned observations of scientific phenomena. Long before the Western world ventured beyond the horizon, Hawaiians had invented the chronometer, built aqueduct systems (awai) that continue to amaze modern engineers, and had preventive health systems as well as a comprehensive knowledge of medicinal plants (including antivirals) which only now are working their way through trials for use in modern pharmacopia. Yet, today, Native Hawaiians are severely underrepresented in science-related fields, reflecting (in part) a failure of the Western educational system to nurture the potential of these resourceful students, particularly the many "at-risk" students who are presently over-represented in special education. A curriculum which draws from and incorporates traditional Hawaiian values and knowledge is needed to reinforce links to the inquiry process which nurtured creative thinking during the renaissance of Polynesian history. The primary goal of the Ka Hana `Imi Na`auao Project (translation: `science` or `work in which you seek enlightenment, knowledge or wisdom`) is to increase the number of Native Hawaiian adults in science-related postsecondary education and employment fields. Working closely with Native Hawaiian cultural experts and our high school partners, we will develop and implement a culturally responsive 11th and 12th grade high school science curriculum, infused with math, literacy and technology readiness skills. Software and assistive technology will be used to adapt instruction to individual learners` reading levels, specific disabilities and learning styles. To ease the transition from secondary to post-secondary education, selected grade 12 students will participate in planned project activities that link high school experiences with college science-related programs of study. Ka Hana `Imi Na

  20. Basic science curriculums in nuclear cardiology and cardiovascular imaging: evolving and emerging concepts.

    PubMed

    Van Decker, William A; Villafana, Theodore

    2008-01-01

    The teaching of basic science with regard to physics, instrumentation, and radiation safety has been part of nuclear cardiology training since its inception. Although there are clear educational and quality rationale for such, regulations associated with the Nuclear Regulatory Commission Subpart J of old 10 CFR section 35 (Title 10, Code of Federal Regulations, Part 35) from the 1960s mandated such prescriptive instruction. Cardiovascular fellowship training programs now have a new opportunity to rethink their basic science imaging curriculums with the era of "revised 10 CFR section 35" and the growing implementation of multimodality imaging training and expertise. This review focuses on the history and the why, what, and how of such a curriculum arising in one city and suggests examples of future implementation in other locations.

  1. Teachers' Use of Educative Curriculum Materials to Engage Students in Science Practices

    ERIC Educational Resources Information Center

    Arias, Anna Maria; Davis, Elizabeth A.; Marino, John-Carlos; Kademian, Sylvie M.; Palincsar, Annemarie Sullivan

    2016-01-01

    New reform documents underscore the importance of integrating science practices into the learning of science. This integration requires sophisticated teaching that does not often happen. Educative curriculum materials--materials explicitly designed to support teacher and student learning--have been posited as a way to support teachers to achieve…

  2. Science Adventures with Children's Literature: A Thematic Approach.

    ERIC Educational Resources Information Center

    Fredericks, Anthony D.

    This guide provides background information on the development and implementation of thematic units that focus on a hands-on approach, process orientation, integrated curriculum, cooperative learning, and critical thinking. Topics of the thematic units and mini-units include wild animals, dinosaurs, rainforests, the human body, earth science,…

  3. The Invisible Hand: Designing Curriculum in the Afterward

    ERIC Educational Resources Information Center

    McKnight, Lucinda; Rousell, David; Charteris, Jennifer; Thomas, Kat; Burke, Geraldine

    2017-01-01

    This paper diffracts a curriculum design workshop via online collaboration of a collective emerging from that event. Through the workshop, involving theory, conceptual art, writing, photography and curriculum planning, and the subsequent sharing of words and images, we move beyond interrogating designs for future subjects to asking how the…

  4. Knowledge Retention for Computer Simulations: A study comparing virtual and hands-on laboratories

    NASA Astrophysics Data System (ADS)

    Croom, John R., III

    The use of virtual laboratories has the potential to change physics education. These low-cost, interactive computer activities interest students, allow for easy setup, and give educators a way to teach laboratory based online classes. This study investigated whether virtual laboratories could replace traditional hands-on laboratories and whether students could retain the same long-term knowledge in virtual laboratories as compared to hands-on laboratories. This study is a quantitative quasi-experiment that used a multiple posttest design to determine if students using virtual laboratories would retain the same knowledge as students who performed hands-on laboratories after 9 weeks. The study was composed of 336 students from 14 school districts. Students had their performances on the laboratories and their retention of the laboratories compared to a series of factors that might have affected their retention using a pretest and two posttests, which were compared using a t test. The results showed no significant difference in short-term learning between the hands-on laboratory groups and virtual laboratory groups. There was, however, a significant difference (p = .005) between the groups in long-term retention; students in the hands-on laboratory groups retained more information than those in the virtual laboratory groups. These results suggest that long-term learning is enhanced when a laboratory contains a hands-on component. Finally, the results showed that both groups of students felt their particular laboratory style was superior to the alternative method. The findings of this study can be used to improve the integration of virtual laboratories into science curriculum.

  5. Art, Chaos, Ethics, and Science (ACES): a doctoring curriculum for emergency medicine.

    PubMed

    Van Groenou, Aneema A; Bakes, Katherine Mary

    2006-11-01

    ACES (Art, Chaos, Ethics, and Science) is a curriculum developed by 2 residents and a faculty mentor at the Denver Health Medical Center Emergency Medicine Residency Program. The goal of the ACES curriculum is 2-fold: (1) to discuss areas of clinical consequence typically outside the scope of the regular academic curriculum, such as ethical dilemmas and the challenges of professionalism; and (2) to encourage reflection on our roles as caregivers on a personal, public health, and political level. Each bimonthly "doctoring roundtable" session focuses on one of these goals, bringing local and national leaders in the field to the forum to enrich discussion. Attending physicians from academic and private settings within the residency, residents at all levels, rotating medical students, and, for the past year, emergency department nurses participate in the meetings. Thus far, regular voluntary participation has been the only measure of the ongoing program's success. In this descriptive article, we discuss the aim of the program, the curriculum, and how the ACES program enriches the residency's educational goals. Recent accreditation requirements for residency training programs mandate educational experiences that allow residents to demonstrate competency in professionalism and ethical principles. The ACES curriculum developed a unique niche in our residency, creating an open forum for passionate discussion of challenging clinical encounters, unpressured reflection on ethics and decisionmaking, and constructive personal and professional development.

  6. Debates on the Basic Education Curriculum Reform and Teachers' Challenges in China: The Case of Mathematics

    ERIC Educational Resources Information Center

    Li, Qiong; Ni, Yu-jing

    2012-01-01

    Focusing on the case of mathematics, this paper reviews debates on China's new Basic Education Curriculum Reform program, including the status of knowledge within the reformed curriculum, the arrangement of the curriculum system, and the push toward real-life applicability and hands-on participation. It discusses the related challenges that…

  7. Seafloor Science and Remotely Operated Vehicle (SSROV) Day Camp: A Week-Long, Hands-On STEM Summer Camp

    NASA Astrophysics Data System (ADS)

    Wheat, C. G.; Fournier, T.; Monahan, K.; Paul, C.

    2015-12-01

    RETINA (Robotic Exploration Technologies IN Astrobiology) has developed a program geared towards stimulating our youth with innovative and relevant hands-on learning modules under a STEM umbrella. Given the breadth of potential science and engineering topics that excite children, the RETINA Program focuses on interactive participation in the design and development of simple robotic and sensor systems, providing a range of challenges to engage students through project-based learning (PBL). Thus, young students experience scientific discovery through the use and understanding of technology. This groundwork serves as the foundation for SSROV Camp, a week-long, summer day camp for 6th-8th grade students. The camp is centered on the sensors and platforms that guide seafloor exploration and discovery and builds upon the notion that transformative discoveries in the deep sea result from either sampling new environments or making new measurements with sensors adapted to this extreme environment. These technical and scientific needs are folded into the curriculum. Each of the first four days of the camp includes four team-based, hands-on technical challenges, communication among peer groups, and competition. The fifth day includes additional activities, culminating in camper-led presentations to describe a planned mission based on a given geologic setting. Presentations include hypotheses, operational requirements and expected data products. SSROV Camp was initiated last summer for three sessions, two in Monterey, CA and one in Oxford, MS. Campers from both regions grasped key elements of the program, based on written responses to questions before and after the camp. On average, 32% of the pre-test questions were answered correctly compared with 80% of the post-test questions. Additional confirmation of gains in campers' knowledge, skills, and critical thinking on environmental issues and engineering problems were apparent during the "jeopardy" competition, nightly homework

  8. The Central Nervous System and Alcohol Use. Science of Alcohol Curriculum for American Indians. Training Unit [and] Participant Booklet.

    ERIC Educational Resources Information Center

    Jacobs, Cecelia; And Others

    The Science of Alcohol Curriculum for American Indians uses the Medicine Circle and the "new science paradigm" to study the science of alcohol through a culturally relevant holistic approach. Intended for teachers and other educational personnel involved with American Indians, this curriculum aims to present a framework for alcohol…

  9. Designing a primary science curriculum in a globalizing world: How do social constructivism and Vietnamese culture meet?

    NASA Astrophysics Data System (ADS)

    Hằng, Ngô Vũ Thu; Meijer, Marijn Roland; Bulte, Astrid M. W.; Pilot, Albert

    2017-09-01

    The implementation of social constructivist approaches to learning science in primary education in Vietnamese culture as an example of Confucian heritage culture remains challenging and problematic. This theoretical paper focuses on the initial phase of a design-based research approach; that is, the description of the design of a formal, written curriculum for primary science education in which features of social constructivist approaches to learning are synthesized with essential aspects of Vietnamese culture. The written design comprises learning aims, a framework that is the synthesis of learning functions, learning settings and educational expectations for learning phases, and exemplary curriculum units. Learning aims are formulated to comprehensively develop scientific knowledge, skills, and attitudes toward science for primary students. Derived from these learning aims, the designed framework consists of four learning phases respectively labeled as Engagement, Experience, Exchange, and Follow-up. The designed framework refers to knowledge of the "nature of science" education and characteristics of Vietnamese culture as an example of Confucian heritage culture. The curriculum design aims to serve as an educational product that addresses previously analyzed problems of primary science education in the Vietnamese culture in a globalizing world.

  10. The Delphi Technique in Identifying Learning Objectives for the Development of Science, Technology and Society Modules for Palestinian Ninth Grade Science Curriculum

    NASA Astrophysics Data System (ADS)

    Abualrob, Marwan M. A.; Gnanamalar Sarojini Daniel, Esther

    2013-10-01

    This article outlines how learning objectives based upon science, technology and society (STS) elements for Palestinian ninth grade science textbooks were identified, which was part of a bigger study to establish an STS foundation in the ninth grade science curriculum in Palestine. First, an initial list of STS elements was determined. Second, using this list, ninth grade science textbooks and curriculum document contents were analyzed. Third, based on this content analysis, a possible list of 71 learning objectives for the integration of STS elements was prepared. This list of learning objectives was refined by using a two-round Delphi technique. The Delphi study was used to rate and to determine the consensus regarding which items (i.e. learning objectives for STS in the ninth grade science textbooks in Palestine) are to be accepted for inclusion. The results revealed that of the initial 71 objectives in round one, 59 objectives within round two had a mean score of 5.683 or higher, which indicated that the learning objectives could be included in the development of STS modules for ninth grade science in Palestine.

  11. Impact of the Knowledge and Beliefs of Egyptian Science Teachers in Integrating a STS Based Curriculum: A Sociocultural Perspective

    ERIC Educational Resources Information Center

    Mansour, Nasser

    2010-01-01

    The failure of much curriculum innovation has been attributed to the neglect by innovators of teachers' perceptions. The purpose of this study was to investigate inservice science teachers views of integrating Science, Technology and Society (STS) issues into the science curriculum and identify the factors that influence their decisions concerning…

  12. Analog and Digital Electronics. A Study Guide of the Science and Engineering Technician Curriculum.

    ERIC Educational Resources Information Center

    Cavanaugh, Vince; Greer, Marlin

    This study guide is part of an interdisciplinary curriculum entitled the Science and Engineering Technician (SET) Curriculum devised to provide basic information to train technicians in the use of electronic instruments and their application. The program of study integrates elements from the disciplines of chemistry, physics, mathematics,…

  13. Evaluating the Effects of Medical Explorers a Case Study Curriculum on Critical Thinking, Attitude Toward Life Science, and Motivational Learning Strategies in Rural High School Students

    NASA Astrophysics Data System (ADS)

    Brand, Lance G.

    2011-12-01

    The purpose of this study was three-fold: to measure the ability of the Medical Explorers case-based curriculum to improve higher order thinking skills; to evaluate the impact of the Medical Explorers case-based curriculum to help students be self directed learners; and to investigate the impact of the Medical Explorers case-based curriculum to improve student attitudes of the life sciences. The target population for this study was secondary students enrolled in advanced life science programs. The resulting sample (n = 71) consisted of 36 students in the case-based experimental group and 35 students in the control group. Furthermore, this study employed an experimental, pretest-posttest control group research design. The treatment consisted of two instructional strategies: case-based learning and teacher-guided learning. Analysis of covariance indicated no treatment effect on critical thinking ability or Motivation and Self-regulation of Learning. However, the Medical Explorers case-based curriculum did show a treatment effect on student attitudes toward the life sciences. These results seem to indicate that case-based curriculum has a positive impact on students' perspectives and attitudes about the study of life science as well as their interest in life science based careers. Such outcomes are also a good indicator that students enjoy and perceive the value to use of case studies in science, and because they see value in the work that they do they open up their minds to true learning and integration. Of additional interest was the observationthat on average eleventh graders showed consistently stronger gains in critical thinking, motivation and self-regulation of learning strategies, and attitudes toward the life sciences as compared to twelfth grade students. In fact, twelfth grade students showed a pre to post loss on the Watson-Glaser and the MSLQ scores while eleventh grade students showed positive gains on each of these instruments. This decline in twelfth

  14. An Efficacy Trial of Research-Based Curriculum Materials with Curriculum-Based Professional Development

    ERIC Educational Resources Information Center

    Taylor, Joseph A.; Getty, Stephen R.; Kowalski, Susan M.; Wilson, Christopher D.; Carlson, Janet; Van Scotter, Pamela

    2015-01-01

    This study examined the efficacy of a curriculum-based intervention for high school science students. Specifically, the intervention was two years of research-based, multidisciplinary curriculum materials for science supported by comprehensive professional development for teachers that focused on those materials. A modest positive effect was…

  15. Space science curriculum design and research at NC A&T state university

    NASA Astrophysics Data System (ADS)

    Kebede, Abebe; Nair, Jyoti; Smith, Galen

    2007-12-01

    Recently, North Carolina Agricultural and Technical State University (NCAT) won one of the largest awards from NASA to develop curriculum and research capability in space science in partnership with NASA centres, National Institute of Aerospace, the North Carolina Space Grant, the American Astronomical Society and a number of institutions affiliated with NASA. The plan is to develop curricula and research platforms that prepare science, technology, engineering and mathematics (STEM) students to be employed by NASA. The research programme initially focuses on the study of space and atmospheric physics, and the development of a general capability in atmospheric/space science.

  16. The Innovative Immersion of Mobile Learning into a Science Curriculum in Singapore: An Exploratory Study

    ERIC Educational Resources Information Center

    Sun, Daner; Looi, Chee-Kit; Wu, Longkai; Xie, Wenting

    2016-01-01

    With advancements made in mobile technology, increasing emphasis has been paid to how to leverage the affordances of mobile technology to improve science learning and instruction. This paper reports on a science curriculum supported by an inquiry-based framework and mobile technologies. It was developed by teachers and researchers in a multiyear…

  17. Science for Survival: The Modern Synthesis of Evolution and The Biological Sciences Curriculum Study

    NASA Astrophysics Data System (ADS)

    Green, Lisa Anne

    In this historical dissertation, I examined the process of curriculum development in the Biological Sciences Curriculum Study (BSCS) in the United States during the period 1959-1963. The presentation of evolution in the high school texts was based on a more robust form of Darwinian evolution which developed during the 1930s and 1940s called "the modern synthesis of evolution." Building primarily on the work of historians Vassiliki Smocovitis and John L. Rudolph, I used the archival papers and published writings of the four architects of the modern synthesis and the four most influential leaders of the BSCS in regards to evolution to investigate how the modern synthetic theory of evolution shaped the BSCS curriculum. The central question was "Why was evolution so important to the BSCS to make it the central theme of the texts?" Important answers to this question had already been offered in the historiography, but it was still not clear why every citizen in the world needed to understand evolution. I found that the emphasis on natural selection in the modern synthesis shifted the focus away from humans as passive participants to the recognition that humans are active agents in their own cultural and biological evolution. This required re-education of the world citizenry, which was accomplished in part by the BSCS textbooks. I also found that BSCS leaders Grobman, Glass, and Muller had serious concerns regarding the effects of nuclear radiation on the human gene pool, and were actively involved in informing th public. Lastly, I found that concerns of 1950s reform eugenicists were addressed in the BSCS textbooks, without mentioning eugenics by name. I suggest that the leaders of the BSCS, especially Bentley Glass and Hermann J. Muller, thought that students needed to understand genetics and evolution to be able to make some of the tough choices they might be called on to make as the dominant species on earth and the next reproductive generation in the nuclear age. This

  18. Hands-on Science: Wildcatters.

    ERIC Educational Resources Information Center

    Markle, Sandra

    1988-01-01

    A science unit illustrates the concept of scientific predictions by using how geologists predict where to drill for oil as an example. In a related exercise, everyday items such as bricks, sand, and marbles introduce permeability. Other activities demonstrate how to base predictions on established patterns. A reproducible page is provided. (JL)

  19. The Future Curriculum for School Science: What Can Be Learnt from the Past?

    ERIC Educational Resources Information Center

    Fensham, Peter J.

    2016-01-01

    In the 1960s, major reforms of the curriculum for school science education occurred that set a future for school science education that has been astonishingly robust at seeing off alternatives. This is not to say that there are not a number of good reasons for such alternative futures. The sciences, their relation to the socio-scientific context,…

  20. Attitudes among students and teachers on vertical integration between clinical medicine and basic science within a problem-based undergraduate medical curriculum.

    PubMed

    Brynhildsen, J; Dahle, L O; Behrbohm Fallsberg, M; Rundquist, I; Hammar, M

    2002-05-01

    Important elements in the curriculum at the Faculty of Health Sciences in Linköping are vertical integration, i.e. integration between the clinical and basic science sections of the curriculum, and horizontal integration between different subject areas. Integration throughout the whole curriculum is time-consuming for both teachers and students and hard work is required for planning, organization and execution. The aim was to assess the importance of vertical and horizontal integration in an undergraduate medical curriculum, according to opinions among students and teachers. In a questionnaire 102 faculty teachers and 106 students were asked about the importance of 14 different components of the undergraduate medical curriculum including vertical and horizontal integration. They were asked to assign between one and six points to each component (6 points = extremely important for the quality of the curriculum; 1 point = unimportant). Students as well as teachers appreciated highly both forms of integration. Students scored horizontal integration slightly but significantly higher than the teachers (median 6 vs 5 points; p=0.009, Mann-Whitney U-test), whereas teachers scored vertical integration higher than students (6 vs 5; p=0.019, Mann-Whitney U-test). Both students and teachers considered horizontal and vertical integration to be highly important components of the undergraduate medical programme. We believe both kinds of integration support problem-based learning and stimulate deep and lifelong learning and suggest that integration should always be considered deeply when a new curriculum is planned for undergraduate medical education.

  1. The Proof of the Pudding?: A Case Study of an "At-Risk" Design-Based Inquiry Science Curriculum

    ERIC Educational Resources Information Center

    Chue, Shien; Lee, Yew-Jin

    2013-01-01

    When students collaboratively design and build artifacts that require relevant understanding and application of science, many aspects of scientific literacy are developed. Design-based inquiry (DBI) is one such pedagogy that can serve these desired goals of science education well. Focusing on a Projectile Science curriculum previously found to be…

  2. A Strategy for Incorporating Learning Analytics into the Design and Evaluation of a K-12 Science Curriculum

    ERIC Educational Resources Information Center

    Monroy, Carlos; Rangel, Virginia Snodgrass; Whitaker, Reid

    2014-01-01

    In this paper, we discuss a scalable approach for integrating learning analytics into an online K-12 science curriculum. A description of the curriculum and the underlying pedagogical framework is followed by a discussion of the challenges to be tackled as part of this integration. We include examples of data visualization based on teacher usage…

  3. National Science Resources Center Project to Improve Science Teaching in Elementary Schools with Special Emphasis on Department of Defense Dependents Schools and Other Schools Serving Children of Military Personnel

    DTIC Science & Technology

    1992-10-01

    science and mathematics education: • DOD Apprenticeship Programs * DOD Teacher Internship Programs * DOD Partnership Programs * DOD Dependents Schools ...corporate sponsors. curriculum and instruction in school mathematics For further information about the project or for were developed in a comprehensive... students develop critical thinking skills and to enhance their ability to solve problems through hands-on activities. The staff and participants were most

  4. The Efficacy of Educative Curriculum Materials to Support Geospatial Science Pedagogical Content Knowledge

    ERIC Educational Resources Information Center

    Bodzin, Alec; Peffer, Tamara; Kulo, Violet

    2012-01-01

    Teaching and learning about geospatial aspects of energy resource issues requires that science teachers apply effective science pedagogical approaches to implement geospatial technologies into classroom instruction. To address this need, we designed educative curriculum materials as an integral part of a comprehensive middle school energy…

  5. Graduates from a reformed undergraduate medical curriculum based on Tomorrow's Doctors evaluate the effectiveness of their curriculum 6 years after graduation through interviews.

    PubMed

    Watmough, Simon D; O'Sullivan, Helen; Taylor, David C M

    2010-09-29

    In 1996 Liverpool reformed its medical curriculum from a traditional lecture based course to a curriculum based on the recommendations in Tomorrow's Doctors. A project has been underway since 2000 to evaluate this change. This paper focuses on the views of graduates from that reformed curriculum 6 years after they had graduated. Between 2007 and 2009 45 interviews took place with doctors from the first two cohorts to graduate from the reformed curriculum. The interviewees felt like they had been clinically well prepared to work as doctors and in particular had graduated with good clinical and communication skills and had a good knowledge of what the role of doctor entailed. They also felt they had good self directed learning and research skills. They did feel their basic science knowledge level was weaker than traditional graduates and perceived they had to work harder to pass postgraduate exams. Whilst many had enjoyed the curriculum and in particular the clinical skills resource centre and the clinical exposure of the final year including the "shadowing" and A & E attachment they would have liked more "structure" alongside the PBL when learning the basic sciences. According to the graduates themselves many of the aims of curriculum reform have been met by the reformed curriculum and they were well prepared clinically to work as doctors. However, further reforms may be needed to give confidence to science knowledge acquisition.

  6. The National Curriculum: A Study to Compare Levels of Attainment with Data from APU Science Surveys (1980-4).

    ERIC Educational Resources Information Center

    Taylor, R. M.

    1990-01-01

    Compared are the levels of attainment for the Science in the National Curriculum assessment in Great Britain in 1989 and the performance of students on the application of science concepts part of the Assessment of Performance Unit-Science carried out in 1980-84. (KR)

  7. Diversity among Scientists-Inclusive Curriculum-Improved Science: An Upward Spiral.

    ERIC Educational Resources Information Center

    Rosser, Sue V.

    1992-01-01

    Explores how changing curriculum and teaching techniques may lead to different composition of pool of scientists who hold slightly modified theoretical perspective. Presents seven-stage spiral model for transforming mathematics and science teaching, in which each stage fuels change in next stage, moving toward more accessible, varied, and humane…

  8. Consumer Citizenship Curriculum Guides for Social Studies, English, Science, Mathematics.

    ERIC Educational Resources Information Center

    MacKenzie, Louise; Smith, Alice

    These four consumer citizenship curriculum guides for social studies, English, science, and mathematics incorporate consumer education into these subject matter areas in grades 8-12. Each guide is organized around 10 main component/goals. They are basic economics in the marketplace, credit, consumer law/protection, banking skills, comparison…

  9. Teachers' Sensemaking about Implementation of an Innovative Science Curriculum Across the Settings of Professional Development and Classroom Enactment

    NASA Astrophysics Data System (ADS)

    de los Santos, Xeng

    Designing professional development that effectively supports teachers in learning new and often challenging practices remains a dilemma for teacher educators. Within the context of current reform efforts in science education, such as the Next Generation Science Standards, teacher educators are faced with managing the dilemma of how to support a large number of teachers in learning new practices while also considering factors such as time, cost, and effectiveness. Implementation of educative, reform-aligned curricula is one way to reach many teachers at once. However, one question is whether large-scale curriculum implementation can effectively support teachers in learning and sustaining new teaching practices. To address this dilemma, this study used a comparative, multiple case study design to investigate how secondary science teachers engaged in sensemaking about implementation of an innovative science curriculum across the settings of professional development and classroom enactment. In using the concept of sensemaking from organizational theory, I focused specifically on how teachers' roles in social organizations influenced their decisions to implement the curriculum in particular ways, with differing outcomes for their own learning and students' engagement in three-dimensional learning. My research questions explored: (1) patterns in teachers' occasions of sensemaking, including critical noticing of interactions among themselves, the curriculum, and their students; (2) how teachers' social commitments to different communities influenced their sensemaking; and, (3) how sustained sensemaking over time could facilitate teacher learning of rigorous and responsive science teaching practices. In privileging teachers' experiences in the classroom using the curriculum with their students, I used data generated primarily from teacher interviews with their case study coaches about implementation over the course of one school year. Secondary sources of data included

  10. The Need for a Core, Interdisciplinary, Life-Sciences Curriculum in the Middle Grades.

    ERIC Educational Resources Information Center

    Heller, H. Craig

    1993-01-01

    Campaigns to improve adolescent health must involve schools, focusing on middle grades. Currently, school organization is poor, with too little good curricular material for such students. The article describes Stanford University's interdisciplinary, core, middle grades curriculum in human biology that combats alienation from science by making it…

  11. Physics of Mechanical, Gaseous, and Fluid Systems. A Study Guide of the Science and Engineering Technician Curriculum.

    ERIC Educational Resources Information Center

    Dixon, Peggy; And Others

    This study guide is part of a program of studies entitled Science and Engineering Technician (SET) Curriculum. The SET Curriculum integrates elements from the disciplines of chemistry, physics, mathematics, mechanical technology, and electronic technology. The objective of this curriculum development project is to train technicians in the use of…

  12. Boundary Interaction: Towards Developing a Mobile Technology-Enabled Science Curriculum to Integrate Learning in the Informal Spaces

    ERIC Educational Resources Information Center

    Sun, Daner; Looi, Chee-Kit

    2018-01-01

    This paper explores the crossover between formal learning and learning in informal spaces supported by mobile technology, and proposes design principles for educators to carry out a science curriculum, namely Boundary Activity-based Science Curriculum (BAbSC). The conceptualization of the boundary object, and the principles of boundary activity as…

  13. A Curriculum Guide to Applications of Science to Technology for Able Learners.

    ERIC Educational Resources Information Center

    VanTassel-Baska, Joyce, Ed.; And Others

    This curriculum guide was developed with the intention of providing an enrichment option for gifted and talented learners who are interested in pursuing current issues and topics in the fields of mathematics and science. The scope of the guide is meant to encompass a year's study of a set of topics which apply mathematics to science and…

  14. Challenging traditional assumptions of high school science through the physics and Everyday Thinking Curriculum(TM)

    NASA Astrophysics Data System (ADS)

    Ross, Michael J.

    Science education in the U.S. has failed for over a century to bring the experience of scientific induction to classrooms, from elementary science to undergraduate courses. The achievement of American students on international comparisons of science proficiency is unacceptable, and the disparities between groups underrepresented in STEM and others are large and resistant to reform efforts. This study investigated the enactment of a physics curriculum designed upon the inductive method in a high school serving mostly students from groups underrepresented in science. The Physics and Everyday Thinking curriculum was designed to model the central practices of science and to provide opportunities for students to both extract general principles of physics and to develop scientific models from laboratory evidence. The findings of this study suggest that scientific induction is not only a process that is well within the capacity of high school students, but they enjoy it as well. Students that engaged in the central practices of science through the inductive method reported a new sense of agency and control in their learning. These findings suggest that modeling the pedagogy of the science classroom upon the epistemology of science can result in a mode of learning that can lead to positive identification with physics and the development of scientific literacy.

  15. Beef Production for Agricultural Science I Core Curriculum. Student Reference. AGDEX 420/10.

    ERIC Educational Resources Information Center

    Missouri Univ., Columbia. Instructional Materials Lab.

    This student reference booklet is designed to accompany lessons outlined in the companion instructor's guide on beef production. Together, the student reference and instructor's guide form part of the Animal Science I core curriculum. This unit on beef production is divided into five lessons in these areas: selection of breeding stock, breeding…

  16. Triple Science GCSEs: Curriculum Planning and Design. GCSEs in Biology, Chemistry and Physics

    ERIC Educational Resources Information Center

    Morris, Pam; Quill, John

    2007-01-01

    This publication will provide managers and others with practical advice on how to plan, develop and model the Triple Science requirement, taking into account all the critical factors that need to be considered. This guidance concentrates on curriculum planning and design, including the use of the new (2006) specifications to provide Triple Science…

  17. Microsoft Excel Software Usage for Teaching Science and Engineering Curriculum

    ERIC Educational Resources Information Center

    Singh, Gurmukh; Siddiqui, Khalid

    2009-01-01

    In this article, our main objective is to present the use of Microsoft Software Excel 2007/2003 for teaching college and university level curriculum in science and engineering. In particular, we discuss two interesting and fascinating examples of interactive applications of Microsoft Excel targeted for undergraduate students in: 1) computational…

  18. Student memories: Insights for science reform

    NASA Astrophysics Data System (ADS)

    Chaillie, Jane Hall

    The purpose of this study was to examine the recollections pre-service teachers majoring in elementary education have of their science experiences during their elementary years and to explore the recollections in the context of science education reform efforts. At the beginning of science methods course work, pre-service elementary teachers reflected on their memories of their own elementary education experiences. Themes from 102 reflective essays collected in two settings and time periods were identified and compared. The themes remained consistent over both settings and time frames studied and fall into three general categories: curriculum and instruction, teacher traits, and student traits. The pre-service teachers expressed difficulty in recalling elementary science experiences and attributed their limited memories to what they perceived as a low priority of science content in the elementary curriculum. Teaching strategies played a prominent role in the memories reported. Hands-on and active learning strategies produced positive memories, while lectures, reading textbooks, and completing worksheets resulted in more negative memories. Furthermore, pre-service teacher essays often failed to connect the learning activities with concept development or understanding. Pre-service teachers were split nearly equally between those who liked and those who disliked elementary science. The attributes of elementary teachers received the least attention in the categories and focused primarily on passion for teaching science. Implications for science reform leaders, teacher education preparation programs, and school administrators and curriculum directors are identified.

  19. The Maps in Medicine program: An evaluation of the development and implementation of life sciences curriculum

    NASA Astrophysics Data System (ADS)

    O'Malley, Jennifer

    There has been a downward trend in both science proficiency and interest in science in the United States, especially among minority students and students of a disadvantaged background. This has led to a downturn in the number of individuals within these groups considering a career in the sciences or a related field. Studies have identified many potential causes for this problem including the current structure of science curriculum, lack of teacher preparedness, and the lack of quality education and support for those students currently underrepresented in the sciences. Among the solutions to this problem include redesigning the science curriculum, offering high-quality professional development opportunities to teachers, and creating programs to give support to individuals currently underrepresented in the sciences, so that they may have a better chance of pursuing and obtaining a science career. The Maps in Medicine program (MiM) has been designed to incorporate all of the aforementioned solutions and apply them to the current science education problem. The Maps in Medicine (MiM) program was established at the University of Missouri -- Columbia, and is funded by the Howard Hughes Medical Institute. Newly developed MiM curricula and student activities are intended to promote positive attitude changes in those students who are currently underrepresented in Science, Technology, Engineering and Mathematics (STEM) fields, with the program also providing professional development to high school science teachers. It was important to determine if the MiM program's solution to the science education problem has been successful, and so the program evaluation piece was integral. A mixed-methods approach was used to evaluate the MiM program. Formative evaluation results indicated a positive response from teachers and students regarding curriculum and professional development, and student activities. These results have also lead to the identification of appropriate improvements

  20. Chemical Science and Technology II. A Study Guide of the Science and Engineering Technician Curriculum.

    ERIC Educational Resources Information Center

    Ballinger, Jack T.; Wolf, Lawrence J.

    This study guide is part of a program of studies entitled the Science and Engineering Technician (SET) Curriculum developed to provide a framework for training technicians in the use of electronic instruments and their applications. This interdisciplinary course of study integrates elements from the disciplines of chemistry, physics, mathematics,…

  1. Hands-On Science: Is It an Acid or a Base? These Colorful Tests Tell All!

    ERIC Educational Resources Information Center

    VanCleave, Janice

    1998-01-01

    Two hands-on science activities for K-6 students teach them how to determine if something is an acid or a base. The activities require acid/base indicator juice, testing strips, and a base solution. A recipe for making them in the classroom using red cabbage and baking soda is provided. (SM)

  2. Evolution, Chaos, or Perpetual Motion? A Retrospective Trend Analysis of Secondary Science Curriculum Advocacy, 1955-94.

    ERIC Educational Resources Information Center

    Ponder, Gerald; Kelly, Janet

    1997-01-01

    Analyzed 1,595 articles pertaining to secondary science-education curriculum and instruction published in "The Science Teacher" and "Science Education" between 1955 and 1994. For over four decades, science education has been in continual crisis. Instruction methods have changed little. Calls for reforming secondary science education, improving…

  3. Earth Science Curriculum Enrichment Through Matlab!

    NASA Astrophysics Data System (ADS)

    Salmun, H.; Buonaiuto, F. S.

    2016-12-01

    The use of Matlab in Earth Science undergraduate courses in the Department of Geography at Hunter College began as a pilot project in Fall 2008 and has evolved and advanced to being a significant component of an Advanced Oceanography course, the selected tool for data analysis in other courses and the main focus of a graduate course for doctoral students at The city University of New York (CUNY) working on research related to geophysical, oceanic and atmospheric dynamics. The primary objectives of these efforts were to enhance the Earth Science curriculum through course specific applications, to increase undergraduate programming and data analysis skills, and to develop a Matlab users network within the Department and the broader Hunter College and CUNY community. Students have had the opportunity to learn Matlab as a stand-alone course, within an independent study group, or as a laboratory component within related STEM classes. All of these instructional efforts incorporated the use of prepackaged Matlab exercises and a research project. Initial exercises were designed to cover basic scripting and data visualization techniques. Students were provided data and a skeleton script to modify and improve upon based on the laboratory instructions. As student's programming skills increased throughout the semester more advanced scripting, data mining and data analysis were assigned. In order to illustrate the range of applications within the Earth Sciences, laboratory exercises were constructed around topics selected from the disciplines of Geology, Physics, Oceanography, Meteorology and Climatology. In addition the structure of the research component of the courses included both individual and team projects.

  4. Science Engagement Through Hands-On Activities that Promote Scientific Thinking and Generate Excitement and Awareness of NASA Assets, Missions, and Science

    NASA Technical Reports Server (NTRS)

    Graff, P. V.; Foxworth, S.; Miller, R.; Runco, S.; Luckey, M. K.; Maudlin, E.

    2018-01-01

    The public with hands-on activities that infuse content related to NASA assets, missions, and science and reflect authentic scientific practices promotes understanding and generates excitement about NASA science, research, and exploration. These types of activities expose our next generation of explorers to science they may be inspired to pursue as a future STEM career and expose people of all ages to unique, exciting, and authentic aspects of NASA exploration. The activities discussed here (Blue Marble Matches, Lunar Geologist Practice, Let's Discover New Frontiers, Target Asteroid, and Meteorite Bingo) have been developed by Astromaterials Research and Exploration Science (ARES) Science Engagement Specialists in conjunction with ARES Scientists at the NASA Johnson Space Center. Activities are designed to be usable across a variety of educational environments (formal and informal) and reflect authentic scientific content and practices.

  5. Materials and Fabrication Methods II. A Study Guide of the Science and Engineering Technician Curriculum.

    ERIC Educational Resources Information Center

    Lindberg, Andrew; Bay, Robert

    This study guide is part of a program of studies entitled Science and Engineering Technician (SET) Curriculum. The SET Curriculum integrates elements from the disciplines of chemistry, physics, mathematics, mechanical technology, and electronic technology with the objective of training technicians in the use of electronic instruments and their…

  6. A Case Study of the Alignment between Curriculum and Assessment in the New York State Earth Science Standards-Based System

    NASA Astrophysics Data System (ADS)

    Contino, Julie

    2013-02-01

    In a standards-based system, it is important for all components of the system to align in order to achieve the intended goals. No Child Left Behind law mandates that assessments be fully aligned with state standards, be valid, reliable and fair, be reported to all stakeholders, and provide evidence that all students in the state are meeting the standards. This study reports an analysis of the alignment between the National Science Education Standards (NSES), New York State Physical Setting/Earth Science Core Curriculum (Core Curriculum) and New York State Physical Setting/Earth Science Regents Examination (Regents Exam)—the sources teachers use for creating Earth Science curricula in New York State. The NSES were found to have a 49 % overlap with the Core Curriculum and a 27 % overlap with the Regents Exam. The Core Curriculum and Regents Exam, represented by matrices consisting of performance indicators and cognitive demands, were compared using the Porter Alignment Index. The alignment was 0.35, categorized as slightly aligned, due to the different emphases on cognitive levels. The Core focused on cognitive skills of Understand and Apply while the Regents concentrated more on Apply followed by Understand and Remember. It is suggested that the NSES be revised and the Core updated to include quantifiable emphasis on the major understandings such as percentage of time.

  7. Revision of Primary I-III Science Curriculum in Somalia. African Studies in Curriculum Development & Evaluation No. 83.

    ERIC Educational Resources Information Center

    Abdi, Ahmed Ali

    This study was designed to evaluate: (1) the content of the primary I-III science curriculum in Somalia; (2) the instructional materials that back up the content and methodologies; and (3) the professional competence of the teachers in charge of teaching this subject. Data were collected by means of a questionnaire, observations, and unstructured…

  8. Towards a Philosophically and a Pedagogically Reasonable Nature of Science Curriculum

    NASA Astrophysics Data System (ADS)

    Yacoubian, Hagop Azad

    This study, primarily theoretical in nature, explores a philosophically and pedagogically reasonable way of addressing nature of science (NOS) in school science. NOS encompasses what science is and how scientific knowledge develops. I critically evaluate consensus frameworks of NOS in school science, which converge contentious philosophical viewpoints into general NOS-related ideas. I argue that they (1) lack clarity in terms of how NOS-related ideas could be applied for various ends, (2) portray a distorted image of the substantive content of NOS and the process of its development, and (3) lack a developmental trajectory for how to address NOS at different grade levels. As a remedy to these problems, I envision a NOS curriculum that (1) explicates and targets both NOS as an educational end and NOS as a means for socioscientific decision making, (2) has critical thinking as its foundational pillar, and (3) provides a developmental pathway for NOS learning using critical thinking as a progression unit. Next, I illustrate a framework for addressing NOS in school science referred to as the critical thinking—nature of science (CT-NOS) framework. This framework brings together the first two of the three elements envisioned in the NOS curriculum. I address the third element by situating the CT-NOS framework in a developmental context, borrowing from the literature on learning progressions in science and using critical thinking as a progression unit. Finally, I present an empirical study of experienced secondary science teachers’ views of a NOS lesson prepared using the CT-NOS framework. The teachers attended a professional development workshop at which the lesson, and the characteristics of the CT-NOS framework, were presented. The analysis of the qualitative data revealed that most teachers found the lesson to be somewhat feasible for a secondary science classroom, useful or somewhat useful to their students, and interesting. The teachers focused on 14 features of

  9. Innovative curriculum: Integrating the bio-behavioral and social science principles across the LifeStages in basic science years.

    PubMed

    Lele Mookerjee, Anuradha; Fischer, Bradford D; Cavanaugh, Susan; Rajput, Vijay

    2018-05-20

    Behavioral and social science integration in clinical practice improves health outcomes across the life stages. The medical school curriculum requires an integration of the behavioral and social science principles in early medical education. We developed and delivered a four-week course entitled "LifeStages" to the first year medical students. The learning objectives of the bio-behavioral and social science principles along with the cultural, economic, political, and ethical parameters were integrated across the lifespan in the curriculum matrix. We focused on the following major domains: Growth and Brain Development; Sexuality, Hormones and Gender; Sleep; Cognitive and Emotional Development; Mobility, Exercise, Injury and Safety; Nutrition, Diet and Lifestyle; Stress and coping skills, Domestic Violence; Substance Use Disorders; Pain, Illness and Suffering; End of Life, Ethics and Death along with Intergenerational issues and Family Dynamics. Collaboration from the clinical and biomedical science departments led to the dynamic delivery of the course learning objectives and content. The faculty developed and led a scholarly discussion, using the case of a multi-racial, multi-generational family during Active Learning Group (ALG) sessions. The assessment in the LifeStages course involved multiple assessment tools: including the holistic assessment by the faculty facilitator inside ALGs, a Team-Based Learning (TBL) exercise, multiple choice questions and Team Work Assessment during which the students had to create a clinical case on a LifeStages domain along with the facilitators guide and learning objectives.

  10. Integrated Curriculum and Subject-based Curriculum: Achievement and Attitudes

    NASA Astrophysics Data System (ADS)

    Casady, Victoria

    The research conducted for this mixed-method study, qualitative and quantitative, analyzed the results of an academic year-long study to determine whether the use of an integrated fourth grade curriculum would benefit student achievement in the areas of English language arts, social studies, and science more than a subject-based traditional curriculum. The research was conducted based on the international, national, and state test scores, which show a slowing or lack of growth. Through pre- and post-assessments, student questionnaires, and administrative interviews, the researcher analyzed the phenomenological experiences of the students to determine if the integrated curriculum was a beneficial restructuring of the curriculum. The research questions for this study focused on the achievement and attitudes of the students in the study and whether the curriculum they were taught impacted their achievement and attitudes over the course of one school year. The curricula for the study were organized to cover the current standards, where the integrated curriculum focused on connections between subject areas to help students make connections to what they are learning and the world beyond the classroom. The findings of this study indicated that utilizing the integrated curriculum could increase achievement as well as students' attitudes toward specific content areas. The ANOVA analysis for English language arts was not determined to be significant; although, greater growth in the students from the integrated curriculum setting was recorded. The ANOVA for social studies (0.05) and the paired t-tests (0.001) for science both determined significant positive differences. The qualitative analysis led to the discovery that the experiences of the students from the integrated curriculum setting were more positive. The evaluation of the data from this study led the researcher to determine that the integrated curriculum was a worthwhile endeavor to increase achievement and attitudes

  11. The Body Game: Developed by Undergraduates for Key Stage 2 National Curriculum Science.

    ERIC Educational Resources Information Center

    Verran, J.; Brintnell, B.; Brownrigg, N.; Garcia, R.; Green, A.

    1997-01-01

    Describes a game developed for school children which addresses part of the Science National Curriculum. The board is a human body with organs on view. Questions relate to different organ systems, body parts, and processes. Topics include breathing, digestion and metabolism, blood and circulation, and the sensory organs and teeth. (AIM)

  12. Mapping Physical Sciences Teachers' Concerns Regarding the New Curriculum in South Africa

    ERIC Educational Resources Information Center

    Gudyanga, Remeredzayi; Jita, Loyiso C.

    2018-01-01

    This article reports on a study investigating physical sciences teachers' stages of concern (SoC) profiles during the implementation of the curriculum and assessment policy statement (CAPS) in South Africa. Throughout reform implementation, it is conceivable that teachers go through different SoC, ranging from giving low priority to the reform…

  13. The Effect of Hands-On Activities on Children's Knowledge and Disgust for Animals

    ERIC Educational Resources Information Center

    Prokop, Pavol; Fancovicová, Jana

    2017-01-01

    Research has shown that hands-on activities in biology/science education tend to improve children's attitudes towards science. These hands-on activities can influence children's interest in various ways, perhaps because they invoke varying emotions. We used a sample of 10-12-year-old children (n = 142) to examine the effect of hands-on activities…

  14. Towards a More Authentic Science Curriculum: The Contribution of Out-of-School Learning

    ERIC Educational Resources Information Center

    Braund, Martin; Reiss, Michael

    2006-01-01

    In many developed countries of the world, pupil attitudes to school science decline progressively across the age range of secondary schooling while fewer students are choosing to study science at higher levels and as a career. Responses to these developments have included proposals to reform the curriculum, pedagogy, and the nature of pupil…

  15. General Education Engagement in Earth and Planetary Science through an Earth-Mars Analog Curriculum

    NASA Astrophysics Data System (ADS)

    Chan, M. A.; Kahmann-Robinson, J. A.

    2012-12-01

    The successes of NASA rovers on Mars and new remote sensing imagery at unprecedented resolution can awaken students to the valuable application of Earth analogs to understand Mars processes and the possibilities of extraterrestrial life. Mars For Earthlings (MFE) modules and curriculum are designed as general science content introducing a pedagogical approach of integrating Earth science principles and Mars imagery. The content can be easily imported into existing or new general education courses. MFE learning modules introduce students to Google Mars and JMARS software packages and encourage Mars imagery analysis to predict habitable environments on Mars drawing on our knowledge of extreme environments on Earth. "Mars Mission" projects help students develop teamwork and presentation skills. Topic-oriented module examples include: Remote Sensing Mars, Olympus Mons and Igneous Rocks, Surface Sculpting Forces, and Extremophiles. The learning modules package imagery, video, lab, and in-class activities for each topic and are available online for faculty to adapt or adopt in courses either individually or collectively. A piloted MFE course attracted a wide range of non-majors to non-degree seeking senior citizens. Measurable outcomes of the piloted MFE curriculum were: heightened enthusiasm for science, awareness of NASA programs, application of Earth science principles, and increased science literacy to help students develop opinions of current issues (e.g., astrobiology or related government-funded research). Earth and Mars analog examples can attract and engage future STEM students as the next generation of earth, planetary, and astrobiology scientists.

  16. A Radiation Laboratory Curriculum Development at Western Kentucky University

    NASA Astrophysics Data System (ADS)

    Barzilov, Alexander P.; Novikov, Ivan S.; Womble, Phil C.

    2009-03-01

    We present the latest developments for the radiation laboratory curriculum at the Department of Physics and Astronomy of Western Kentucky University. During the last decade, the Applied Physics Institute (API) at WKU accumulated various equipment for radiation experimentation. This includes various neutron sources (computer controlled d-t and d-d neutron generators, and isotopic 252 Cf and PuBe sources), the set of gamma sources with various intensities, gamma detectors with various energy resolutions (NaI, BGO, GSO, LaBr and HPGe) and the 2.5-MeV Van de Graaff particle accelerator. XRF and XRD apparatuses are also available for students and members at the API. This equipment is currently used in numerous scientific and teaching activities. Members of the API also developed a set of laboratory activities for undergraduate students taking classes from the physics curriculum (Nuclear Physics, Atomic Physics, and Radiation Biophysics). Our goal is to develop a set of radiation laboratories, which will strengthen the curriculum of physics, chemistry, geology, biology, and environmental science at WKU. The teaching and research activities are integrated into real-world projects and hands-on activities to engage students. The proposed experiments and their relevance to the modern status of physical science are discussed.

  17. Small Schools Science Curriculum, K-3: Reading, Language Arts, Mathematics, Science, Social Studies. Scope, Objectives, Activities, Resources, Monitoring Procedures.

    ERIC Educational Resources Information Center

    Hartl, David, Ed.; And Others

    Learning objectives and suggested activities, monitoring procedures and resources for the Washington K-3 Small Schools Science Curriculum are based on the rationale that "young children need the opportunity to observe, classify, predict, test ideas again and again in a variety of contexts, ask questions, explain, discuss ideas, fail, and succeed.…

  18. Fueling the Car of Tomorrow: An Alternative Fuels Curriculum for High School Science Classes

    ERIC Educational Resources Information Center

    Schumack, Mark; Baker, Stokes; Benvenuto, Mark; Graves, James; Haman, Arthur; Maggio, Daniel

    2010-01-01

    It is no secret that many high school students are fascinated with automobiles. The activities in "Fueling the Car of Tomorrow"--a free high school science curriculum, available online--(see "On the web")--capitalize on this heightened awareness and provide relevant learning opportunities designed to reinforce basic physics, chemistry, biology,…

  19. Florence Bascom and the Exclusion of Women From Earth Science Curriculum Materials

    ERIC Educational Resources Information Center

    Arnold, Lois

    1975-01-01

    Numerous excerpts from present day earth science curriculum materials reveal sexual discrimination. In addition, studies of photographs included in the materials reveal a high male dominance. The significant contributions of one earth scientist, Florence Bascom, are remembered. (CP)

  20. Predominant Teaching Strategies in Schools: Implications for Curriculum Implementation in Mathematics, Science and Technology

    ERIC Educational Resources Information Center

    Achuonye, Keziah Akuoma

    2015-01-01

    This descriptive survey is hinged on predominant teaching strategies in schools, implications for curriculum implementation in Mathematics, Science and Technology. Target population consisted of teachers in primary, secondary and tertiary schools. However, purposive sample of 900 respondents was drawn from the six BRACED states namely Bayelsa,…

  1. Moral Values and Science Teaching: A Malaysian School Curriculum Initiative

    NASA Astrophysics Data System (ADS)

    Tan, Sok Khim

    Implicit in teaching science has been the teaching of a set of values. However, its presence has remained unacknowledged because of assumptions made that its products are value-free and that work of science involves positive values. Malaysian schools have introduced a set of noble values to be taught as a subject called moral education while at the same time expecting all subjects, including the sciences to actively inculcate these noble values in their lessons. A search for values related to science included studies from science education curriculums, studies by scientists and philosophers of science, feminist and Indian critics of science. These values could be categorized into four categories representing epistemological values, supporting values, societal and moral values and power-oriented values. While some categories compliment each other, others are in contention. This paper argues for the inclusion of societal and moral values in the science classrooms. A compassionate scientist should be a reality. The task for Malaysian science educators is to find a way to raise awareness of these values.

  2. A Narration of a Physical Science Teacher's Experience of Implementing a New Curriculum

    ERIC Educational Resources Information Center

    Koopman, Oscar; Le Grange, Lesley; de Mink, Karen Joy

    2016-01-01

    This article narrates the lived experiences of a Physical Science teacher named Thobani (pseudonym) in implementing a new curriculum in South Africa. Drawing on the work of Husserl and Heidegger, the article describes the objects of direct experience in Thobani's consciousness about his life as a learner and teacher as revealed during an in-depth…

  3. Middle School Students' Conceptual Learning from the Implementation of a New NSF Supported Curriculum: Interactions in Physical Science[TM

    ERIC Educational Resources Information Center

    Eick, Charles J.; Dias, Michael; Smith, Nancy R. Cook

    2009-01-01

    A new National Science Foundation supported curriculum, Interactions in Physical Science[TM], was evaluated on students' conceptual change in the twelve concept areas of the national physical science content standard (B) for grades 5-8. Eighth grade students (N = 66) were evaluated pre and post on a 31-item multiple-choice test of conceptual…

  4. [Nebraska 4-H Wheat Science School Enrichment Project, Teacher/Leader Guides 213-222 and 227.

    ERIC Educational Resources Information Center

    Nebraska Univ., Lincoln. Inst. of Agriculture and Natural Resources.

    Through the 4-H Wheat Science project, students learn the importance of wheat from the complete process of growing wheat to the final product of bread. The curriculum is designed to include hands-on experiences in science, consumer education, nutrition, production economics, vocabulary, and applied mathematics. Teachers can select those units out…

  5. Establishing Enabling Conditions to Develop Critical Thinking Skills: A Case of Innovative Curriculum Design in Environmental Science

    ERIC Educational Resources Information Center

    Belluigi, Dina Zoe; Cundill, Georgina

    2017-01-01

    This paper considers a curriculum design motivated by a desire to explore more valid pedagogical approaches that foster critical thinking skills among students engaged in an Environmental Science course in South Africa, focussing specifically on the topic of Citizen Science. Fifty-three under graduate students were involved in the course, which…

  6. An Analysis of the Learning Activities Covered in the 5th Grade Science Textbooks Based on 2005 and 2013 Turkish Science Curricula

    ERIC Educational Resources Information Center

    Aydogdu, Cemil; Idin, Sahin

    2015-01-01

    The aim of this study is to analyze the learning activities covered in 5th grade elementary science textbooks which depend on 2005 and 2013 elementary science curricula. Two elementary science textbooks depends on 2005 science curriculum and two elementary science textbooks depend on 2013 science curriculum were researched. The study is a…

  7. An Analysis of the Learning Activities Covered in the 5th Grade Science Textbooks Based on 2005 and 2013 Turkish Science Curricula

    ERIC Educational Resources Information Center

    Aydogdu, Cemil; Idin, Sahin

    2015-01-01

    The aim of this study is to analyze the learning activities covered in 5th grade elementary science textbooks which depend on 2005 and 2013 elementary science curricula. Two elementary science textbooks [which] depend on 2005 science curriculum and two elementary science textbooks [which] depend on 2013 science curriculum were researched. The…

  8. Teaching chemistry and other sciences to blind and low-vision students through hands-on learning experiences in high school science laboratories

    NASA Astrophysics Data System (ADS)

    Supalo, Cary Alan

    2010-11-01

    Students with blindness and low vision (BLV) have traditionally been underrepresented in the sciences as a result of technological and attitudinal barriers to equal access in science laboratory classrooms. The Independent Laboratory Access for the Blind (ILAB) project developed and evaluated a suite of talking and audible hardware/software tools to empower students with BLV to have multisensory, hands-on laboratory learning experiences. This dissertation focuses on the first year of ILAB tool testing in mainstream science laboratory classrooms, and comprises a detailed multi-case study of four students with BLV who were enrolled in high school science classes during 2007--08 alongside sighted students. Participants attended different schools; curricula included chemistry, AP chemistry, and AP physics. The ILAB tools were designed to provide multisensory means for students with BLV to make observations and collect data during standard laboratory lessons on an equivalent basis with their sighted peers. Various qualitative and quantitative data collection instruments were used to determine whether the hands-on experiences facilitated by the ILAB tools had led to increased involvement in laboratory-goal-directed actions, greater peer acceptance in the students' lab groups, improved attitudes toward science, and increased interest in science. Premier among the ILAB tools was the JAWS/Logger Pro software interface, which made audible all information gathered through standard Vernier laboratory probes and visually displayed through Logger Pro. ILAB tools also included a talking balance, a submersible audible light sensor, a scientific talking stopwatch, and a variety of other high-tech and low-tech devices and techniques. While results were mixed, all four participating BLV students seemed to have experienced at least some benefit, with the effect being stronger for some than for others. Not all of the data collection instruments were found to reveal improvements for all

  9. Preschoolers' Acquisition of Scientific Vocabulary through Repeated Read-Aloud Events, Retellings, and Hands-on Science Activities

    ERIC Educational Resources Information Center

    Leung, Cynthia B.

    2008-01-01

    This study explored 3- and 4-year-old children's development of scientific vocabulary from participation in repeated interactive read-aloud events and retellings of three informational picture books about light and color, followed by hands-on science activities. Thirty-two children attending a YWCA preschool were matched by age and general…

  10. Science K-12, Living Things in Continuous Change. Utica City School District Articulated Curriculum: Project SEARCH, 1975.

    ERIC Educational Resources Information Center

    Utica City School District, NY.

    Two-column objectives are listed for an integrated science curriculum (grades K-12), often subheaded according to science area (biology, general science, physical science, earth science) and grade level. In grades K-6, objectives for topics of science study include conditions for plants and animals to live, adaptation, conservation,…

  11. Connecting the Hands-On to the Minds-On: A Video Case Analysis of South African Physical Sciences Lessons for Student Thinking

    ERIC Educational Resources Information Center

    Ramnarain, Umesh

    2015-01-01

    In South Africa, there is a strong curriculum imperative for South African school science teachers to not only involve learners in practical inquiry activities but also to support students in making a connection between the construction of substantive scientific knowledge to these activities. The research reported in this article investigated the…

  12. Developing Oral and Written Communication Skills in Undergraduate Computer Science and Information Systems Curriculum

    ERIC Educational Resources Information Center

    Kortsarts, Yana; Fischbach, Adam; Rufinus, Jeff; Utell, Janine M.; Yoon, Suk-Chung

    2010-01-01

    Developing and applying oral and written communication skills in the undergraduate computer science and computer information systems curriculum--one of the ABET accreditation requirements - is a very challenging and, at the same time, a rewarding task that provides various opportunities to enrich the undergraduate computer science and computer…

  13. Supplement for Curriculum Guide for Science: Vietnamese-Speaking Students, Kindergarten-Upper Two. Field Test.

    ERIC Educational Resources Information Center

    Chicago Board of Education, IL.

    This supplement to the Chicago public schools' science curriculum guide is for use with Vietnamese-speaking students and is designed to help students make the transition to science learning in English. English-Vietnamese vocabulary lists, independent learning activities (in Vietnamese), and teaching aids (cultural activities such as songs,…

  14. Supporting Science Teachers in Alignment with State Curriculum Standards through Professional Development: Teachers' Preparedness, Expectations and Their Fulfillment

    NASA Astrophysics Data System (ADS)

    Paik, Sunhee; Zhang, Meilan; Lundeberg, Mary A.; Eberhardt, Jan; Shin, Tae Seob; Zhang, Tianyi

    2011-08-01

    Since A Nation at Risk was released in the 1980s, standards-based reform has been the most dominant trend in American educational policy, and the No Child Left Behind Act pushed the trend further by requiring states to develop rigorous curriculum standards. Though much has been said about these new standards, less has been said about whether or how well professional development helps teachers link their instruction to these standards. This study examined the impact of a professional development program for K-12 science teachers in helping teachers meet state curriculum standards. Seventy-five science teachers in Michigan participated in a 2-week summer workshop that used Problem-Based Learning for improving teachers' content knowledge and pedagogical content knowledge. Researchers surveyed participating teachers about the change of teachers' preparedness for standards-based teaching, their expectations to meet state curriculum standards, and whether their expectations were met. In addition, the usefulness of workshop activities was examined. Data analysis showed that to align teaching with state curriculum standards, participating teachers expected to learn instructional strategies and enhance science content knowledge through professional development, and by and large their expectations were well met. Collaboration with colleagues and facilitators helped teachers achieve their goals in terms of teaching within state curriculum standards. These findings have important implications for designing professional development to help teachers align instruction with curriculum standards.

  15. How a science methods course may influence the curriculum decisions of preservice teachers in the Bahamas

    NASA Astrophysics Data System (ADS)

    Wisdom, Sonya L.

    The purpose of this study was to examine how a science methods course in primary education might influence the curriculum decisions of preservice teachers in The Bahamas related to unit plan development on environmental science topics. Grounded in a social constructivist theoretical framework for teaching and learning science, this study explored the development of the confidence and competence of six preservice teachers to teach environmental science topics at the primary school level. A qualitative case study using action research methodologies was conducted. The perspectives of preservice teachers about the relevancy of methods used in a science methods course were examined as I became more reflective about my practice. Using constant comparative analysis, data from student-written documents and interviews as well as my field notes from class observations and reflective journaling were analyzed for emerging patterns and themes. Findings of the study indicated that while preservice teachers showed a slight increase in interest regarding learning and teaching environmental science, their primary focus during the course was learning effective teaching strategies in science on topics with which they already had familiarity. Simultaneously, I gained a deeper understanding of the usefulness of reflection in my practice. As a contribution to the complexity of learning to teach science at the primary school level, this study suggests some issues for consideration as preservice teachers are supported to utilize more of the national primary science curriculum in The Bahamas.

  16. Research on Curriculum for Students with Moderate and Severe Intellectual Disability: A Systematic Review

    ERIC Educational Resources Information Center

    Shurr, Jordan; Bouck, Emily C.

    2013-01-01

    Curriculum content is an essential component of the field of special education for students with moderate and severe disabilities. This study updates the twenty-year curriculum content review by Nietupski, Hamre-Nietupski, Curtin, and Shrikanth (1997) and provides an overview of the last 15 years of research on this topic. A hand search of ten…

  17. The Delphi Technique in Identifying Learning Objectives for the Development of Science, Technology and Society Modules for Palestinian Ninth Grade Science Curriculum

    ERIC Educational Resources Information Center

    Abualrob, Marwan M. A.; Daniel, Esther Gnanamalar Sarojini

    2013-01-01

    This article outlines how learning objectives based upon science, technology and society (STS) elements for Palestinian ninth grade science textbooks were identified, which was part of a bigger study to establish an STS foundation in the ninth grade science curriculum in Palestine. First, an initial list of STS elements was determined. Second,…

  18. Air traffic control specialists in the Airway Science Curriculum Demonstration Project 1984-1990 : third summative report.

    DOT National Transportation Integrated Search

    1991-12-01

    The objective of this summative evaluation of the Airway Science Curriculum Demonstration Project (ASCDP) was to compare the performance, job attitudes, retention rates, and perceived supervisory potential of graduates from recognized Airway Science ...

  19. Science Education: A (Pending) Chapter in the Curriculum Transformation in Argentina

    ERIC Educational Resources Information Center

    Labate, Hugo

    2007-01-01

    The article documents the complex process of changing Argentina's science curriculum and implementing those changes over the last 15 years. It recounts how reformers tackled the challenges of balancing national (federal) unity in education with local (provincial) autonomy from the political, social and pedagogical points of view. It also analyzes…

  20. How Science Texts and Hands-on Explorations Facilitate Meaning Making: Learning from Latina/o Third Graders

    ERIC Educational Resources Information Center

    Varelas, Maria; Pieper, Lynne; Arsenault, Amy; Pappas, Christine C.; Keblawe-Shamah, Neveen

    2014-01-01

    In this study, we examined opportunities for reasoning and meaning making that read-alouds of children's literature science information books and related hands-on explorations offered to young Latina/o students in an urban public school. Using a qualitative, interpretative framework, we analyzed classroom discourse and children's writing…

  1. Exploring the value and role of integrated supportive science courses in the reformed medical curriculum iMED: a mixed methods study.

    PubMed

    Eisenbarth, Sophie; Tilling, Thomas; Lueerss, Eva; Meyer, Jelka; Sehner, Susanne; Guse, Andreas H; Guse Nee Kurré, Jennifer

    2016-04-29

    Heterogeneous basic science knowledge of medical students is an important challenge for medical education. In this study, the authors aimed at exploring the value and role of integrated supportive science (ISS) courses as a novel approach to address this challenge and to promote learning basic science concepts in medical education. ISS courses were embedded in a reformed medical curriculum. The authors used a mixed methods approach including four focus groups involving ISS course lecturers and students (two each), and five surveys of one student cohort covering the results of regular student evaluations including the ISS courses across one study year. They conducted their study at the University Medical Center Hamburg-Eppendorf between December 2013 and July 2014. Fourteen first-year medical students and thirteen ISS course lecturers participated in the focus groups. The authors identified several themes focused on the temporal integration of ISS courses into the medical curriculum, the integration of ISS course contents into core curriculum contents, the value and role of ISS courses, and the courses' setting and atmosphere. The integrated course concept was positively accepted by both groups, with participants suggesting that it promotes retention of basic science knowledge. Values and roles identified by focus group participants included promotion of basic understanding of science concepts, integration of foundational and applied learning, and maximization of students' engagement and motivation. Building close links between ISS course contents and the core curriculum appeared to be crucial. Survey results confirmed qualitative findings regarding students' satisfaction, with some courses still requiring optimization. Integration of supportive basic science courses, traditionally rather part of premedical education, into the medical curriculum appears to be a feasible strategy to improve medical students' understanding of basic science concepts and to increase

  2. An Exploration of the Science Teaching Orientations of Indian Science Teachers in the Context of Curriculum Reform

    ERIC Educational Resources Information Center

    Nargund-Joshi, Vanashri

    2012-01-01

    This study explores the concepts and behaviors, otherwise referred to as "orientations", of six Indian science teachers and the alignment of these orientations to the 2005 India National Curriculum Framework (NCF-2005). Differences in teachers' orientations across grade bands (elementary, middle, and secondary) and school types (public…

  3. Influence of Science, Technology, and Engineering Curriculum on Rural Midwestern High School Student Career Decisions

    NASA Astrophysics Data System (ADS)

    Killingsworth, John

    Low degree completion in technical and engineering degrees is a growing concern for policymakers and educators in the United States. This study was an examination of the behaviors of adolescents specific to career decisions related to technology and engineering. The central research question for this study was: do rural, Midwestern high school technical and engineering curricula serve to engage students sufficiently to encourage them to persist through high school while sustaining their interests in technology and engineering careers? Engaging students in technology and engineering fields is the challenge for educators throughout the country and the Midwest. Rural schools have the additional challenge of meeting those issues because of resource limitations. Students in three Midwestern schools were surveyed to determine the level of interest in technology and engineering. The generalized likelihood ratio test was used to overcome concerns for small sample sizes. Accounting for dependent variables, multiple independent variables are examined using descriptive statistics to determine which have greater influence on career decisions, specifically those related to technology and engineering. A typical science curriculum is defined for rural Midwestern high schools. This study concludes that such curriculum achieves the goal of maintaining or increasing student interest and engagement in STEM careers. Furthermore, those schools that incorporate contextual and experiential learning activities into the curriculum demonstrate increased results in influencing student career choices toward technology and engineering careers. Implications for parents, educators, and industry professionals are discussed.

  4. A New Curriculum For a Lab-Based Course in Introductory Earth Science: the Combined Effort of a Regional University and Local Community Colleges in the North Cascades Olympic Science Partnership.

    NASA Astrophysics Data System (ADS)

    Debari, S. M.; Bachmann, J.; Dougan, B.; Fackler-Adams, B.; Grupp, S.; Linneman, S.; Plake, T.; Smith, B.

    2005-12-01

    The North Cascades Olympic Science Partnership (NCOSP) is a partnership between Western Washington University, three local community colleges, the Northwest Indian College, and 29 K-12 school districts in western Washington State. One of the partnership goals is to improve the teaching and learning of science at the post-secondary level with specific emphasis on the training of future teachers. To this end, Western Washington University (WWU) joined with grass-roots efforts by local 2-year colleges to develop a yearlong science sequence that would directly impact pre-service elementary school teachers and other non-science majors. Students from these 2-year colleges who identify themselves as pre-service teachers go on to a teacher preparation program at WWU. The multi-year process of collaborative work among ~20 faculty from these institutions has produced three quarters of new curriculum in the sciences (including one quarter of Earth Science) that uses the pedagogical approach of Physics for Elementary Teachers (PET) (cpucips.sdsu/web/pet). Each of the science quarters utilizes the theme of the transfer of matter and energy. The Earth Science curriculum (transfer of matter and energy in Earth systems) is a quarter-long, lab-based course that emphasizes a metacognitive approach. The curriculum utilizes questioning, small group work, and small and large class discussions. Whiteboarding, or the process of sharing small-group ideas to a larger group, occupies a central theme in the curriculum. Students learn concepts by doing the lab activities, but the group discussions that promote discourse and questioning among students is a crucial tool in the sense-making and solidification of those concepts. The curriculum stands alone and does not require lectures by the instructors. The instructor's role is as a facilitator and questioner. The Earth Science curriculum is focused on only a few "Big Ideas" that the faculty developers identified in the planning stages. These

  5. Mi-STAR Unit Challenges serve as a model for integrating earth science and systems thinking in a Next Generation Science Standards (NGSS) aligned curriculum.

    NASA Astrophysics Data System (ADS)

    Gochis, E. E.; Tubman, S.; Matthys, T.; Bluth, G.; Oppliger, D.; Danhoff, B.; Huntoon, J. E.

    2017-12-01

    Michigan Science Teaching and Assessment Reform (Mi-STAR) is developing an NGSS-aligned middle school curriculum and associated teacher professional learning program in which science is taught and learned as an integrated body of knowledge that can be applied to address societal issues. With the generous support of the Herbert H. and Grace A. Dow Foundation, Mi-STAR has released several pilot-tested units through the Mi-STAR curriculum portal at mi-star.mtu.edu. Each of these units focuses on an ongoing `Unit Challenge' investigation that integrates STEM content across disciplinary boundaries, stimulates interest, and engages students in using scientific practices to address 21st century challenges. Each Mi-STAR unit is connected to a Unifying NGSS Crosscutting Concept (CCC) that allows students to recognize the concepts that are related to the phenomena or problems under investigation. In the 6th grade, students begin with an exploration of the CCC Systems and System Models. Through repeated applications across units, students refine their understanding of what a system is and how to model a complex Earth system. An example 6th grade unit entitled "Water on the Move: The Water Cycle," provides an example of how Mi-STAR approaches the use of Unifying CCCs and Unit Challenges to enhance middle school students' understanding of the interconnections of Earth system processes and human activities. Throughout the unit, students use a series of hands-on explorations and simulations to explore the hydrologic cycle and how human activity can alter Earth systems. Students develop new knowledge through repeated interactions with the Unit Challenge, which requires development of system models and construction of evidence-based arguments related to flooding problems in a local community. Students have the opportunity to make predictions about how proposed land-use management practices (e.g. development of a skate-park, rain garden, soccer field, etc.) can alter the earth

  6. Teachers' Involvement in Implementing the Basic Science and Technology Curriculum of the Nine-Year Basic Education

    ERIC Educational Resources Information Center

    Odili, John Nwanibeze; Ebisine, Sele Sylvester; Ajuar, Helen Nwakaife

    2011-01-01

    The study investigated teachers' involvement in implementing the basic science and technology curriculum in primary schools in WSLGA (Warri South Local Government Area) of Delta State. It sought to identify the availability of the document in primary schools and teachers' knowledge of the objectives and activities specified in the curriculum.…

  7. Effect of Personal Response Systems on Student Perception and Academic Performance in Courses in a Health Sciences Curriculum

    ERIC Educational Resources Information Center

    FitzPatrick, Kathleen A.; Finn, Kevin E.; Campisi, Jay

    2011-01-01

    To increase student engagement, active participation, and performance, personal response systems (clickers) were incorporated into six lecture-based sections of four required courses within the Health Sciences Department major curriculum: freshman-level Anatomy and Physiology I and II, junior-level Exercise Physiology, and senior-level Human…

  8. Using Web 2.0 Technology to Enhance the Science Curriculum in Your School

    ERIC Educational Resources Information Center

    Hainsworth, Mark

    2017-01-01

    The author shares his vision of what 21st century science education might look like in the future and discusses how to develop an e-learning capability to shape the science curriculum in your school. Good teaching and learning should always be a teacher's first priority but there is little doubt in the author's mind that the implementation of an…

  9. An Analysis of the Alignment of the Grade 12 Physical Sciences Examination and the Core Curriculum in South Africa

    ERIC Educational Resources Information Center

    Edwards, Nazeem

    2010-01-01

    I report on an analysis of the alignment between the South African Grade 12 Physical Sciences core curriculum content and the exemplar papers of 2008, and the final examination papers of 2008 and 2009. A two-dimensional table was used for both the curriculum and the examination in order to calculate the Porter alignment index, which indicates the…

  10. Illinois Manufacturing Technology Curriculum.

    ERIC Educational Resources Information Center

    Cliffe, Roger; And Others

    This manufacturing technology curriculum involves students in learning problem-solving, communication, team building, quality control, safety, math, science, and technical skills. The document begins with a section on implementation, which gives background information on the purposes and development of the curriculum, explains its rationale,…

  11. Paths through interpretive territory: Two teachers' enactment of a technology-rich, inquiry-fostering science curriculum

    NASA Astrophysics Data System (ADS)

    McDonald, Scott Powell

    New understandings about how people learn and constructivist pedagogy pose challenges for teachers. Science teachers face an additional challenge of developing inquiry-based pedagogy to foster complex reasoning skills. Theory provides only fuzzy guidance as to how constructivist or inquiry pedagogy can be accomplished in a wide variety of contexts and local constraints. This study contributes to the understanding of the development of constructivist, inquiry-based pedagogy by addressing the question: How do teachers interpret and enact a technology-rich, inquiry fostering science curricula for fifth grade students' biodiversity learning? This research is a case study of two teachers chosen as critical contrasting cases and represent differences across multiple criteria including: urban I suburban, teaching philosophy, and content preparation. The two fifth grade teachers each enacted BioKIDS: Kids' Inquiry in Diverse Species, an eight week curriculum focused on biodiversity. BioKIDS incorporates multiple learning technologies to support student learning including handheld computer software designed to help students collect field data, and a web-based resource for data on local animal species. The results of this study indicate there are tensions teachers must struggle with when setting goals during enactment of inquiry science curricula. They must find a balance between an emphasis on authentic learning and authentic science, and between natural history and natural science. Authentic learning focuses on students' interests and lives; Authentic science focuses on students working with the tools and processes of science. Natural history focuses on the foundational skills in science of observation and classification. Natural science focuses on analytical science drawing on data to develop claims about the world. These two key tensions in teachers' goal setting were critical in defining and understanding differences in how teachers interpreted a curriculum to meet

  12. Is GCSE science a waste of time?

    NASA Astrophysics Data System (ADS)

    Ellse, Mark

    2008-04-01

    I have long been outspoken about the dumbing down of science education, saying in particular that the latest GCSE exams - which are taken by 16-year-old pupils in England, Wales and Northern Ireland - are designed for intellectual pygmies. Indeed, I have witnessed at first hand my own children going through a science curriculum that is inappropriate for them. My 14-year-old daughter, of good but not outstanding ability, hopes to study classics or English at university. She is looking forward to A-levels in those subjects, but has been bored by the national-curriculum science she has been forced to study. Although planning to leave science behind, she knows that science qualifications are important. Being head of my daughter's school, I am in a unique position to help her, and we talked about skipping GCSEs and instead creating a four-year A-level course consisting of science A-levels for two years, followed by two years of classics and English. So last September my daughter embarked on maths, physics, chemistry and French A-levels.

  13. Curriculum Reviews.

    ERIC Educational Resources Information Center

    Science and Children, 1981

    1981-01-01

    Reviews four science curriculum materials. "Human Issues in Science" presents social consequences of science and technological developments. "Experiences in Science" contains duplicating masters to supplement basic science programs. "Outdoor Areas as Learning Laboratories" includes activities for local environments. "The Science Cookbook" uses…

  14. Atmosphere Kits: Hands-On Learning Activities with a Foundation in NASA Earth Science Missions.

    NASA Astrophysics Data System (ADS)

    Teige, V.; McCrea, S.; Damadeo, K.; Taylor, J.; Lewis, P. M., Jr.; Chambers, L. H.

    2016-12-01

    The Science Directorate (SD) at NASA Langley Research Center provides many opportunities to involve students, faculty, researchers, and the citizen science community in real world science. The SD Education Team collaborates with the education community to bring authentic Earth science practices and real-world data into the classroom, provide the public with unique NASA experiences, engaging activities, and advanced technology, and provide products developed and reviewed by science and education experts. Our goals include inspiring the next generation of Science, Technology, Engineering and Mathematics (STEM) professionals and improving STEM literacy by providing innovative participation pathways for educators, students, and the public. The SD Education Team has developed Atmosphere activity kits featuring cloud and aerosol learning activities with a foundation in NASA Earth Science Missions, the Next Generation Science Standards, and The GLOBE Program's Elementary Storybooks. Through cloud kit activities, students will learn how to make estimates from observations and how to categorize and classify specific cloud properties, including cloud height, cloud cover, and basic cloud types. The purpose of the aerosol kit is to introduce students to aerosols and how they can affect the colors we see in the sky. Students will engage in active observation and reporting, explore properties of light, and model the effects of changing amounts/sizes or aerosols on sky color and visibility. Learning activity extensions include participation in ground data collection of environmental conditions and comparison and analysis to related NASA data sets, including but not limited to CERES, CALIPSO, CloudSat, and SAGE III on ISS. This presentation will provide an overview of multiple K-6 NASA Earth Science hands-on activities and free resources will be available.

  15. Exploring preservice elementary teachers' critique and adaptation of science curriculum materials in respect to socioscientific issues

    NASA Astrophysics Data System (ADS)

    Forbes, Cory T.; Davis, Elizabeth A.

    2008-09-01

    The work presented here represents a preliminary effort undertaken to address the role of teachers in supporting students’ learning and decision-making about socioscientific issues (SSI) by characterizing preservice elementary teachers’ critique and adaptation of SSI-based science curriculum materials and identifying factors that serve to mediate this process. Four undergraduate preservice elementary teachers were studied over the course of one semester. Results indicate that the teachers navigated multiple learning goals, as well as their own subject-matter knowledge, informal reasoning about SSI, and role identity, in their critique and adaptation of SSI-oriented science instructional materials. Implications for science teacher education and the design of curriculum materials in respect to SSI are discussed.

  16. The Next Generation Science Standards: A Focus on Physical Science

    ERIC Educational Resources Information Center

    Krajcik, Joe

    2013-01-01

    This article describes ways to adapt U.S. science curriculum to the U.S. National Research Council (NRC) "Framework for K-12 Science Education" and "Next Generation of Science Standards" (NGSS), noting their focus on teaching the physical sciences. The overall goal of the Framework and NGSS is to help all learners develop the…

  17. Living in Water: An Aquatic Science Curriculum for Grades 5-7.

    ERIC Educational Resources Information Center

    National Aquarium in Baltimore, MD. Dept. of Education.

    "Living in Water" is a classroom-based, scientific study of water, aquatic environments, and the plants and animals that live in water. The lessons in this curriculum integrate basic physical, biological, and earth sciences, and mathematics. The integration of language arts is also considered essential to its success. These lessons do not require…

  18. Science Achievement of Students in Co-Taught, Inquiry-Based Classrooms

    ERIC Educational Resources Information Center

    Brusca-Vega, Rita; Brown, Kathleen; Yasutake, David

    2011-01-01

    This case investigation followed the progress of middle students with disabilities, their peers, and teachers in co-taught science classrooms where a hands-on, inquiry-based curriculum was used. Students with disabilities (n=21), including learning disabilities, mild intellectual impairment, and mild autism were placed in co-taught classes with…

  19. The design of a medical school social justice curriculum.

    PubMed

    Coria, Alexandra; McKelvey, T Greg; Charlton, Paul; Woodworth, Michael; Lahey, Timothy

    2013-10-01

    The acquisition of skills to recognize and redress adverse social determinants of disease is an important component of undergraduate medical education. In this article, the authors justify and define "social justice curriculum" and then describe the medical school social justice curriculum designed by the multidisciplinary Social Justice Vertical Integration Group (SJVIG) at the Geisel School of Medicine at Dartmouth. The SJVIG addressed five goals: (1) to define core competencies in social justice education, (2) to identify key topics that a social justice curriculum should cover, (3) to assess social justice curricula at other institutions, (4) to catalog institutionally affiliated community outreach sites at which teaching could be paired with hands-on service work, and (5) to provide examples of the integration of social justice teaching into the core (i.e., basic science) curriculum. The SJVIG felt a social justice curriculum should cover the scope of health disparities, reasons to address health disparities, and means of addressing these disparities. The group recommended competency-based student evaluations and advocated assessing the impact of medical students' social justice work on communities. The group identified the use of class discussion of physicians' obligation to participate in social justice work as an educational tool, and they emphasized the importance of a mandatory, longitudinal, immersive, mentored community outreach practicum. Faculty and administrators are implementing these changes as part of an overall curriculum redesign (2012-2015). A well-designed medical school social justice curriculum should improve student recognition and rectification of adverse social determinants of disease.

  20. A Year of Hands-on Science: Exciting Theme Units with More Than 100 Activities, Projects, and Experiments To Make Science Come Alive.

    ERIC Educational Resources Information Center

    Kepler, Lynne; Novelli, Joan, Ed.

    This book contains 18 themed teaching units with 2 themes per chapter, organized seasonally around the traditional school year. Each theme includes natural connections and hands-on science activities that correspond to what children are already observing in their world. Each chapter begins with highlights of the month and a reproducible "Science…