Sample records for hanford dose reconstruction

  1. Hanford Environmental Dose Reconstruction Project

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Cannon, S.D.; Finch, S.M.

    1992-10-01

    The objective of the Hanford Environmental Dose Reconstruction (HEDR) Project is to estimate the radiation doses that individuals and populations could have received from nuclear operations at Hanford since 1944. The independent Technical Steering Panel (TSP) provides technical direction. The project is divided into the following technical tasks. These tasks correspond to the path radionuclides followed from release to impact on humans (dose estimates):Source Terms, Environmental Transport, Environmental Monitoring Data, Demography, Food Consumption, and Agriculture, and Environmental Pathways and Dose Estimates.

  2. Hanford Environmental Dose Reconstruction Project. Monthly report

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Cannon, S.D.; Finch, S.M.

    1992-10-01

    The objective of the Hanford Environmental Dose Reconstruction (HEDR) Project is to estimate the radiation doses that individuals and populations could have received from nuclear operations at Hanford since 1944. The independent Technical Steering Panel (TSP) provides technical direction. The project is divided into the following technical tasks. These tasks correspond to the path radionuclides followed from release to impact on humans (dose estimates):Source Terms, Environmental Transport, Environmental Monitoring Data, Demography, Food Consumption, and Agriculture, and Environmental Pathways and Dose Estimates.

  3. Hanford Environmental Dose Reconstruction Project

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    McMakin, A.H.; Cannon, S.D.; Finch, S.M.

    1992-07-01

    The objective of the Hanford Environmental Dose Reconstruction (HEDR) Project is to estimate the radiation doses that individuals and populations could have received from nuclear operations at Hanford since 1944. The TSP consists of experts in environmental pathways, epidemiology, surface-water transport, ground-water transport, statistics, demography, agriculture, meteorology, nuclear engineering, radiation dosimetry, and cultural anthropology. Included are appointed technical members representing the states of Oregon, Washington, and Idaho, a representative of Native American tribes, and an individual representing the public. The project is divided into the following technical tasks. These tasks correspond to the path radionuclides followed from release to impactmore » on humans (dose estimates): Source terms, environmental transport, environmental monitoring data, demography, food consumption, and agriculture, and environmental pathways and dose estimates. Progress is discussed.« less

  4. Hanford Environmental Dose Reconstruction Project

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Finch, S.M.; McMakin, A.H.

    1991-01-01

    The objective of the Hanford Environmental Dose Reconstruction Project is to estimate the radiation doses that individuals and populations could have received from nuclear operations at Hanford since 1944. The project is being managed and conducted by the Pacific Northwest Laboratory (PNL) under the direction of an independent Technical Steering Panel (TSP). The TSP consists of experts in environmental pathways, epidemiology, surface-water transport, ground-water transport, statistics, demography, agriculture, meteorology, nuclear engineering, radiation dosimetry, and cultural anthropology. Included are appointed technical members representing the states of Oregon and Washington, a representative of Native American tribes, and an individual representing the public.more » The project is divided into the following technical tasks. These tasks correspond to the path radionuclides followed, from release to impact on human (dose estimates): Source Terms; Environmental Transport; Environmental Monitoring Data; Demographics, Agriculture, Food Habits and; Environmental Pathways and Dose Estimates.« less

  5. Hanford Environmental Dose Reconstruction Project monthly report

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    McMakin, A.H., Cannon, S.D.; Finch, S.M.

    1992-09-01

    The objective of the Hanford Environmental Dose Reconstruction MDR) Project is to estimate the radiation doses that individuals and populations could have received from nuclear operations at Hanford since 1944. The TSP consists of experts in envirorunental pathways. epidemiology, surface-water transport, ground-water transport, statistics, demography, agriculture, meteorology, nuclear engineering. radiation dosimetry. and cultural anthropology. Included are appointed members representing the states of Oregon, Washington, and Idaho, a representative of Native American tribes, and an individual representing the public. The project is divided into the following technical tasks. These tasks correspond to the path radionuclides followed from release to impact onmore » humans (dose estimates): Source Terms; Environmental Transport; Environmental Monitoring Data Demography, Food Consumption, and Agriculture; and Environmental Pathways and Dose Estimates.« less

  6. Hanford Environmental Dose Reconstruction Project. Monthly report

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    McMakin, A.H.; Cannon, S.D.; Finch, S.M.

    1992-07-01

    The objective of the Hanford Environmental Dose Reconstruction (HEDR) Project is to estimate the radiation doses that individuals and populations could have received from nuclear operations at Hanford since 1944. The TSP consists of experts in environmental pathways, epidemiology, surface-water transport, ground-water transport, statistics, demography, agriculture, meteorology, nuclear engineering, radiation dosimetry, and cultural anthropology. Included are appointed technical members representing the states of Oregon, Washington, and Idaho, a representative of Native American tribes, and an individual representing the public. The project is divided into the following technical tasks. These tasks correspond to the path radionuclides followed from release to impactmore » on humans (dose estimates): Source terms, environmental transport, environmental monitoring data, demography, food consumption, and agriculture, and environmental pathways and dose estimates. Progress is discussed.« less

  7. Estimation of 1945 to 1957 food consumption. Hanford Environmental Dose Reconstruction Project

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Anderson, D.M.; Bates, D.J.; Marsh, T.L.

    This report details the methods used and the results of the study on the estimated historic levels of food consumption by individuals in the Hanford Environmental Dose Reconstruction (HEDR) study area from 1945--1957. This period includes the time of highest releases from Hanford and is the period for which data are being collected in the Hanford Thyroid Disease Study. These estimates provide the food-consumption inputs for the HEDR database of individual diets. This database will be an input file in the Hanford Environmental Dose Reconstruction Integrated Code (HEDRIC) computer model that will be used to calculate the radiation dose. Themore » report focuses on fresh milk, eggs, lettuce, and spinach. These foods were chosen because they have been found to be significant contributors to radiation dose based on the Technical Steering Panel dose decision level.« less

  8. Estimation of 1945 to 1957 food consumption. Hanford Environmental Dose Reconstruction Project: Draft

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Anderson, D.M.; Bates, D.J.; Marsh, T.L.

    This report details the methods used and the results of the study on the estimated historic levels of food consumption by individuals in the Hanford Environmental Dose Reconstruction (HEDR) study area from 1945--1957. This period includes the time of highest releases from Hanford and is the period for which data are being collected in the Hanford Thyroid Disease Study. These estimates provide the food-consumption inputs for the HEDR database of individual diets. This database will be an input file in the Hanford Environmental Dose Reconstruction Integrated Code (HEDRIC) computer model that will be used to calculate the radiation dose. Themore » report focuses on fresh milk, eggs, lettuce, and spinach. These foods were chosen because they have been found to be significant contributors to radiation dose based on the Technical Steering Panel dose decision level.« less

  9. Hanford Environmental Dose Reconstruction Project monthly report, November 1992

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Cannon, S.D.; Finch, S.M.

    1992-12-31

    The objective of the Hanford Environmental Dose Reconstruction (HEDR) Project is to estimate the radiation doses that individuals and populations could have received from nuclear operations at Hanford since 1944. The TSP consists of experts in environmental pathways, epidemiology, surface-water transport, ground-water transport, statistics, demography, agriculture, meteorology, nuclear engineering, radiation dosimetry, and cultural anthropology. Included are appointed members representing the states of Oregon, Washington. and Idaho, a representative of Native American tribes, and an individual representing the public. The project is divided into the following technical tasks: Source terms; environmental transport; environmental monitoring data; demography, food consumption and agriculture; environmentalmore » pathways and dose estimates.« less

  10. Hanford Environmental Dose Reconstruction Project monthly report, November 1992

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Cannon, S.D.; Finch, S.M.

    1992-01-01

    The objective of the Hanford Environmental Dose Reconstruction (HEDR) Project is to estimate the radiation doses that individuals and populations could have received from nuclear operations at Hanford since 1944. The TSP consists of experts in environmental pathways, epidemiology, surface-water transport, ground-water transport, statistics, demography, agriculture, meteorology, nuclear engineering, radiation dosimetry, and cultural anthropology. Included are appointed members representing the states of Oregon, Washington. and Idaho, a representative of Native American tribes, and an individual representing the public. The project is divided into the following technical tasks: Source terms; environmental transport; environmental monitoring data; demography, food consumption and agriculture; environmentalmore » pathways and dose estimates.« less

  11. Hanford Environmental Dose Reconstruction Project Monthly Report

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Finch, S.M.

    1991-02-01

    The objective of the Hanford Environmental Dose Reconstruction Project is to estimate the radiation doses that populations could have received from nuclear operations at Hanford since 1944. The project is being managed and conducted by the Pacific Northwest Laboratory (PNL) under the direction of an independent Technical Steering Panel (TSP). The TSP consists of experts in environmental pathways, epidemiology, surface-water transport, ground-water transport, statistics, demography, agriculture, meteorology, nuclear engineering, radiation dosimetry, and cultural anthropology. Included are appointed technical members representing the states of Oregon and Washington, cultural and technical experts nominated by the regional Native American tribes, and an individualmore » representing the public. The project is divided into the following technical tasks. These tasks correspond to the path radionuclides followed, from release to impact on humans (dose estimates): source terms; environmental transport; environmental monitoring data; demographics, agriculture, food habits; and environmental pathways and dose estimates. Project reports and references used in the reports are made available to the public in a public reading room. Project progress is documented in this monthly report, which is available to the public. 3 figs., 3 tabs.« less

  12. Conversion and correction factors for historical measurements of iodine-131 in Hanford-area vegetation, 1945--1947. Hanford Environmental Dose Reconstruction Project

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Mart, E.I.; Denham, D.H.; Thiede, M.E.

    1993-12-01

    This report is a result of the Hanford Environmental Dose Reconstruction (HEDR) Project whose goal is to estimate the radiation dose that individuals could have received from emissions since 1944 at the U.S. Department of Energy`s (DOE) Hanford Site near Richland, Washington. The HEDR Project is conducted by Battelle, Pacific Northwest Laboratories (BNW). One of the radionuclides emitted that would affect the radiation dose was iodine-131. This report describes in detail the reconstructed conversion and correction factors for historical measurements of iodine-131 in Hanford-area vegetation which was collected from the beginning of October 1945 through the end of December 1947.

  13. Hanford Environmental Dose Reconstruction Project. Monthly report, December 1991

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Finch, S.M.; McMakin, A.H.

    1991-12-31

    The objective of the Hanford Environmental Dose Reconstruction Project is to estimate the radiation doses that individuals and populations could have received from nuclear operations at Hanford since 1944. The project is being managed and conducted by the Pacific Northwest Laboratory (PNL) under the direction of an independent Technical Steering Panel (TSP). The TSP consists of experts in environmental pathways, epidemiology, surface-water transport, ground-water transport, statistics, demography, agriculture, meteorology, nuclear engineering, radiation dosimetry, and cultural anthropology. Included are appointed technical members representing the states of Oregon and Washington, a representative of Native American tribes, and an individual representing the public.more » The project is divided into the following technical tasks. These tasks correspond to the path radionuclides followed, from release to impact on human (dose estimates): Source Terms; Environmental Transport; Environmental Monitoring Data; Demographics, Agriculture, Food Habits and; Environmental Pathways and Dose Estimates.« less

  14. Commercial milk distribution profiles and production locations. Hanford Environmental Dose Reconstruction Project

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Deonigi, D.E.; Anderson, D.M.; Wilfert, G.L.

    1993-12-01

    The Hanford Environmental Dose Reconstruction (HEDR) Project was established to estimate radiation doses that people could have received from nuclear operations at the Hanford Site since 1944. For this period iodine-131 is the most important offsite contributor to radiation doses from Hanford operations. Consumption of milk from cows that ate vegetation contaminated by iodine-131 is the dominant radiation pathway for individuals who drank milk. Information has been developed on commercial milk cow locations and commercial milk distribution during 1945 and 1951. The year 1945 was selected because during 1945 the largest amount of iodine-131 was released from Hanford facilities inmore » a calendar year; therefore, 1945 was the year in which an individual was likely to have received the highest dose. The year 1951 was selected to provide data for comparing the changes that occurred in commercial milk flows (i.e., sources, processing locations, and market areas) between World War II and the post-war period. To estimate the doses people could have received from this milk flow, it is necessary to estimate the amount of milk people consumed, the source of the milk, the specific feeding regime used for milk cows, and the amount of iodine-131 contamination deposited on feed.« less

  15. Commercial milk distribution profiles and production locations. Hanford Environmental Dose Reconstruction Project

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Deonigi, D.E.; Anderson, D.M.; Wilfert, G.L.

    1994-04-01

    The Hanford Environmental Dose Reconstruction (HEDR) Project was established to estimate radiation doses that people could have received from nuclear operations at the Hanford Site since 1944. For this period iodine-131 is the most important offsite contributor to radiation doses from Hanford operations. Consumption of milk from cows that ate vegetation contaminated by iodine-131 is the dominant radiation pathway for individuals who drank milk (Napier 1992). Information has been developed on commercial milk cow locations and commercial milk distribution during 1945 and 1951. The year 1945 was selected because during 1945 the largest amount of iodine-131 was released from Hanfordmore » facilities in a calendar year (Heeb 1993); therefore, 1945 was the year in which an individual was likely to have received the highest dose. The year 1951 was selected to provide data for comparing the changes that occurred in commercial milk flows (i.e., sources, processing locations, and market areas) between World War II and the post-war period. To estimate the doses people could have received from this milk flow, it is necessary to estimate the amount of milk people consumed, the source of the milk, the specific feeding regime used for milk cows, and the amount of iodine-131 contamination deposited on feed.« less

  16. Regional Atmospheric Transport Code for Hanford Emission Tracking (RATCHET). Hanford Environmental Dose Reconstruction Project

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ramsdell, J.V. Jr.; Simonen, C.A.; Burk, K.W.

    1994-02-01

    The purpose of the Hanford Environmental Dose Reconstruction (HEDR) Project is to estimate radiation doses that individuals may have received from operations at the Hanford Site since 1944. This report deals specifically with the atmospheric transport model, Regional Atmospheric Transport Code for Hanford Emission Tracking (RATCHET). RATCHET is a major rework of the MESOILT2 model used in the first phase of the HEDR Project; only the bookkeeping framework escaped major changes. Changes to the code include (1) significant changes in the representation of atmospheric processes and (2) incorporation of Monte Carlo methods for representing uncertainty in input data, model parameters,more » and coefficients. To a large extent, the revisions to the model are based on recommendations of a peer working group that met in March 1991. Technical bases for other portions of the atmospheric transport model are addressed in two other documents. This report has three major sections: a description of the model, a user`s guide, and a programmer`s guide. These sections discuss RATCHET from three different perspectives. The first provides a technical description of the code with emphasis on details such as the representation of the model domain, the data required by the model, and the equations used to make the model calculations. The technical description is followed by a user`s guide to the model with emphasis on running the code. The user`s guide contains information about the model input and output. The third section is a programmer`s guide to the code. It discusses the hardware and software required to run the code. The programmer`s guide also discusses program structure and each of the program elements.« less

  17. Overview of vegetation monitoring data, 1952--1983. Hanford Environmental Dose Reconstruction Project

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Duncan, J.P.

    1994-03-01

    This report is a result of the Hanford Environmental Dose Reconstruction (HEDR) Project. The goal of the HEDR Project is to estimate the radiation dose that individuals could have received from emissions since 1944 at the Hanford Site near Richland, Washington. Members of the HEDR Project`s Environmental Monitoring Data Task have developed databases of historical environmental measurements of such emissions. The HEDR Project is conducted by Battelle, Pacific Northwest Laboratories. This report is the third in a series that documents the information available on measurements of iodine-131 concentrations in vegetation. The first two reports provide the data for 1945--1951. Thismore » report provides an overview of the historical documents, which contain vegetation data for 1952--1983. The overview is organized according to the documents available for any given year. Each section, covering one year, contains a discussion of the media sampled, the sampling locations, significant events if there were any, emission quantities, constituents measured, and a list of the documents with complete reference information. Because the emissions which affected vegetation were significantly less after 1951, the vegetation monitoring data after that date have not been used in the HEDR Project. However, access to these data may be of interest to the public. This overview is, therefore, being published.« less

  18. Determination of dose distributions and parameter sensitivity. Hanford Environmental Dose Reconstruction Project; dose code recovery activities; Calculation 005

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Napier, B.A.; Farris, W.T.; Simpson, J.C.

    1992-12-01

    A series of scoping calculations has been undertaken to evaluate the absolute and relative contribution of different radionuclides and exposure pathways to doses that may have been received by individuals living in the vicinity of the Hanford site. This scoping calculation (Calculation 005) examined the contributions of numerous parameters to the uncertainty distribution of doses calculated for environmental exposures and accumulation in foods. This study builds on the work initiated in the first scoping study of iodine in cow`s milk and the third scoping study, which added additional pathways. Addressed in this calculation were the contributions to thyroid dose ofmore » infants from (1) air submersion and groundshine external dose, (2) inhalation, (3) ingestion of soil by humans, (4) ingestion of leafy vegetables, (5) ingestion of other vegetables and fruits, (6) ingestion of meat, (7) ingestion of eggs, and (8) ingestion of cows` milk from Feeding Regime 1 as described in Calculation 001.« less

  19. Errors and Uncertainties in Dose Reconstruction for Radiation Effects Research

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Strom, Daniel J.

    Dose reconstruction for studies of the health effects of ionizing radiation have been carried out for many decades. Major studies have included Japanese bomb survivors, atomic veterans, downwinders of the Nevada Test Site and Hanford, underground uranium miners, and populations of nuclear workers. For such studies to be credible, significant effort must be put into applying the best science to reconstructing unbiased absorbed doses to tissues and organs as a function of time. In many cases, more and more sophisticated dose reconstruction methods have been developed as studies progressed. For the example of the Japanese bomb survivors, the dose surrogatemore » “distance from the hypocenter” was replaced by slant range, and then by TD65 doses, DS86 doses, and more recently DS02 doses. Over the years, it has become increasingly clear that an equal level of effort must be expended on the quantitative assessment of uncertainty in such doses, and to reducing and managing uncertainty. In this context, this paper reviews difficulties in terminology, explores the nature of Berkson and classical uncertainties in dose reconstruction through examples, and proposes a path forward for Joint Coordinating Committee for Radiation Effects Research (JCCRER) Project 2.4 that requires a reasonably small level of effort for DOSES-2008.« less

  20. Estimation of thyroid radiation doses for the hanford thyroid disease study: results and implications for statistical power of the epidemiological analyses.

    PubMed

    Kopecky, Kenneth J; Davis, Scott; Hamilton, Thomas E; Saporito, Mark S; Onstad, Lynn E

    2004-07-01

    Residents of eastern Washington, northeastern Oregon, and western Idaho were exposed to I released into the atmosphere from operations at the Hanford Nuclear Site from 1944 through 1972, especially in the late 1940's and early 1950's. This paper describes the estimated doses to the thyroid glands of the 3,440 evaluable participants in the Hanford Thyroid Disease Study, which investigated whether thyroid morbidity was increased in people exposed to radioactive iodine from Hanford during 1944-1957. The participants were born during 1940-1946 to mothers living in Benton, Franklin, Walla Walla, Adams, Okanogan, Ferry, or Stevens Counties in Washington State. Whenever possible someone with direct knowledge of the participant's early life (preferably the participant's mother) was interviewed about the participant's individual dose-determining characteristics (residence history, sources and quantities of food, milk, and milk products consumed, production and processing techniques for home-grown food and milk products). Default information was used if no interview respondent was available. Thyroid doses were estimated using the computer program Calculation of Individual Doses from Environmental Radionuclides (CIDER) developed by the Hanford Environmental Dose Reconstruction Project. CIDER provided 100 sets of doses to represent uncertainty of the estimates. These sets were not generated independently for each participant, but reflected the effects of uncertainties in characteristics shared by participants. Estimated doses (medians of each participant's 100 realizations) ranged from 0.0029 mGy to 2823 mGy, with mean and median of 174 and 97 mGy, respectively. The distribution of estimated doses provided the Hanford Thyroid Disease Study with sufficient statistical power to test for dose-response relationships between thyroid outcomes and exposure to Hanford's I.

  1. Determination of the spatial resolution required for the HEDR dose code. Hanford Environmental Dose Reconstruction Project: Dose code recovery activities, Calculation 007

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Napier, B.A.; Simpson, J.C.

    1992-12-01

    A series of scoping calculations has been undertaken to evaluate the doses that may have been received by individuals living in the vicinity of the Hanford site. This scoping calculation (Calculation 007) examined the spatial distribution of potential doses resulting from releases in the year 1945. This study builds on the work initiated in the first scoping calculation, of iodine in cow`s milk; the third scoping calculation, which added additional pathways; the fifth calculation, which addressed the uncertainty of the dose estimates at a point; and the sixth calculation, which extrapolated the doses throughout the atmospheric transport domain. A projectionmore » of dose to representative individuals throughout the proposed HEDR atmospheric transport domain was prepared on the basis of the HEDR source term. Addressed in this calculation were the contributions to iodine-131 thyroid dose of infants from (1) air submersion and groundshine external dose, (2) inhalation, (3) ingestion of soil by humans, (4) ingestion of leafy vegetables, (5) ingestion of other vegetables and fruits, (6) ingestion of meat, (7) ingestion of eggs, and (8) ingestion of cows` milk from-Feeding Regime 1 as described in scoping calculation 001.« less

  2. A bounding estimate of neutron dose based on measured photon dose around single pass reactors at the Hanford site.

    PubMed

    Taulbee, Timothy D; Glover, Samuel E; Macievic, Gregory V; Hunacek, Mickey; Smith, Cheryl; DeBord, Gary W; Morris, Donald; Fix, Jack

    2010-07-01

    Neutron and photon radiation survey records have been used to evaluate and develop a neutron to photon (NP) ratio to reconstruct neutron doses to workers around Hanford's single pass reactors that operated from 1945 to 1972. A total of 5,773 paired neutron and photon measurements extracted from 57 boxes of survey records were used in the development of the NP ratio. The development of the NP ratio enables the use of the recorded dose from an individual's photon dosimeter badge to be used to estimate the unmonitored neutron dose. The Pearson rank correlation between the neutron and photon measurements was 0.71. The NP ratio best fit a lognormal distribution with a geometric mean (GM) of 0.8, a geometric standard deviation (GSD) of 2.95, and the upper 95 th % of this distribution was 4.75. An estimate of the neutron dose based on this NP ratio is considered bounding due to evidence that up to 70% of the total photon exposure received by workers around the single pass reactors occurs during shutdown maintenance and refueling activities when there is no significant neutron exposure. Thus when this NP ratio is applied to the total measured photon dose from an individual film badge dosimeter, the resulting neutron dose is considered bounded.

  3. Hanford Technical Basis for Multiple Dosimetry Effective Dose Methodology

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hill, Robin L.; Rathbone, Bruce A.

    2010-08-01

    The current method at Hanford for dealing with the results from multiple dosimeters worn during non-uniform irradiation is to use a compartmentalization method to calculate the effective dose (E). The method, as documented in the current version of Section 6.9.3 in the 'Hanford External Dosimetry Technical Basis Manual, PNL-MA-842,' is based on the compartmentalization method presented in the 1997 ANSI/HPS N13.41 standard, 'Criteria for Performing Multiple Dosimetry.' With the adoption of the ICRP 60 methodology in the 2007 revision to 10 CFR 835 came changes that have a direct affect on the compartmentalization method described in the 1997 ANSI/HPS N13.41more » standard, and, thus, to the method used at Hanford. The ANSI/HPS N13.41 standard committee is in the process of updating the standard, but the changes to the standard have not yet been approved. And, the drafts of the revision of the standard tend to align more with ICRP 60 than with the changes specified in the 2007 revision to 10 CFR 835. Therefore, a revised method for calculating effective dose from non-uniform external irradiation using a compartmental method was developed using the tissue weighting factors and remainder organs specified in 10 CFR 835 (2007).« less

  4. Evaluation of thyroid radioactivity measurement data from Hanford workers, 1944--1946

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ikenberry, T.A.

    1991-05-01

    This report describes the preliminary results of an evaluation conducted in support of the Hanford Environmental Dose Reconstruction (HEDR) Project. The primary objective of the HEDR Project is to estimate the radiation doses that populations could have received from nuclear operations at the Hanford Site since 1944. A secondary objective is to make information that HEDR staff members used in estimate radiation doses available to the public. The objectives of this report to make available thyroid measurement data from Hanford workers for the year 1944 through 1946, and to investigate the suitability of those data for use in the HEDRmore » dose estimation process. An important part of this investigation was to provide a description of the uncertainty associated with the data. Lack of documentation on thyroid measurements from this period required that assumptions be made to perform data evaluations. These assumptions introduce uncertainty into the evaluations that could be significant. It is important to recognize the nature of these assumptions, the inherent uncertainty, and the propagation of this uncertainty, and the propagation of this uncertainty through data evaluations to any conclusions that can be made by using the data. 15 refs., 1 fig., 5 tabs.« less

  5. Feasibility study on inverse four-dimensional dose reconstruction using the continuous dose-image of EPID

    PubMed Central

    Yeo, Inhwan Jason; Jung, Jae Won; Yi, Byong Yong; Kim, Jong Oh

    2013-01-01

    Purpose: When an intensity-modulated radiation beam is delivered to a moving target, the interplay effect between dynamic beam delivery and the target motion due to miss-synchronization can cause unpredictable dose delivery. The portal dose image in electronic portal imaging device (EPID) represents radiation attenuated and scattered through target media. Thus, it may possess information about delivered radiation to the target. Using a continuous scan (cine) mode of EPID, which provides temporal dose images related to target and beam movements, the authors’ goal is to perform four-dimensional (4D) dose reconstruction. Methods: To evaluate this hypothesis, first, the authors have derived and subsequently validated a fast method of dose reconstruction based on virtual beamlet calculations of dose responses using a test intensity-modulated beam. This method was necessary for processing a large number of EPID images pertinent for four-dimensional reconstruction. Second, cine mode acquisition after summation over all images was validated through comparison with integration mode acquisition on EPID (IAS3 and aS1000) for the test beam. This was to confirm the agreement of the cine mode with the integrated mode, specifically for the test beam, which is an accepted mode of image acquisition for dosimetry with EPID. Third, in-phantom film and exit EPID dosimetry was performed on a moving platform using the same beam. Heterogeneous as well as homogeneous phantoms were used. The cine images were temporally sorted at 10% interval. The authors have performed dose reconstruction to the in-phantom plane from the sorted cine images using the above validated method of dose reconstruction. The reconstructed dose from each cine image was summed to compose a total reconstructed dose from the test beam delivery, and was compared with film measurements. Results: The new method of dose reconstruction was validated showing greater than 95.3% pass rates of the gamma test with the criteria

  6. The Hanford Thyroid Disease Study: an alternative view of the findings.

    PubMed

    Hoffman, F Owen; Ruttenber, A James; Apostoaei, A Iulian; Carroll, Raymond J; Greenland, Sander

    2007-02-01

    The Hanford Thyroid Disease Study (HTDS) is one of the largest and most complex epidemiologic studies of the relation between environmental exposures to I and thyroid disease. The study detected no dose-response relation using a 0.05 level for statistical significance. The results for thyroid cancer appear inconsistent with those from other studies of populations with similar exposures, and either reflect inadequate statistical power, bias, or unique relations between exposure and disease risk. In this paper, we explore these possibilities, and present evidence that the HTDS statistical power was inadequate due to complex uncertainties associated with the mathematical models and assumptions used to reconstruct individual doses. We conclude that, at the very least, the confidence intervals reported by the HTDS for thyroid cancer and other thyroid diseases are too narrow because they fail to reflect key uncertainties in the measurement-error structure. We recommend that the HTDS results be interpreted as inconclusive rather than as evidence for little or no disease risk from Hanford exposures.

  7. Hanford internal dosimetry program manual

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Carbaugh, E.H.; Sula, M.J.; Bihl, D.E.

    1989-10-01

    This document describes the Hanford Internal Dosimetry program. Program Services include administrating the bioassay monitoring program, evaluating and documenting assessments of internal exposure and dose, ensuring that analytical laboratories conform to requirements, selecting and applying appropriate models and procedures for evaluating internal radionuclide deposition and the resulting dose, and technically guiding and supporting Hanford contractors in matters regarding internal dosimetry. 13 refs., 16 figs., 42 tabs.

  8. Testing prediction capabilities of an 131I terrestrial transport model by using measurements collected at the Hanford nuclear facility.

    PubMed

    Apostoaei, A Iulian

    2005-05-01

    generated concentrations of 131I closer to observed concentrations, as compared to the predictions produced with other models. The inter-model comparison showed that variation of thyroid doses among all participating models (SENES model included) was a factor of 3 for the general population, but a factor of 10 for the two studied children. As opposed to other models, SENES model allows a complete analysis of uncertainties in every predicted quantity, including estimated thyroid doses and risk of thyroid cancer. The uncertainties in the risk-per-unit-dose and the dose-per-unit-intake coefficients are major contributors to the uncertainty in the estimated lifetime risk and thyroid dose, respectively. The largest contributors to the uncertainty in the estimated concentration in milk are the feed-to-milk transfer factor (F(m)), the dry deposition velocity (V(d)), and the mass interception factor (r/Y)dry for the elemental form of iodine (I2). Exposure to the 1963 PUREX/Hanford accident produced low doses and risks for people living at the studied locations. The upper 97.5th percentile of the excess lifetime risk of thyroid cancer for the most extreme situations is about 10(-4). Measurements in pasture grass and milk at all locations around Hanford indicate a very low transfer of 131I from pasture to cow's milk (e.g., a feed-to-milk transfer coefficient, F(m), for commercial cows of about 0.0022 d L(-1)). These values are towards the low end of F(m) values measured elsewhere and they are low compared to the F(m) values used in other dose reconstruction studies, including the Hanford Environmental Dose Reconstruction.

  9. Hanford Site Composite Analysis Technical Approach Description: Groundwater Pathway Dose Calculation.

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Morgans, D. L.; Lindberg, S. L.

    The purpose of this technical approach document (TAD) is to document the assumptions, equations, and methods used to perform the groundwater pathway radiological dose calculations for the revised Hanford Site Composite Analysis (CA). DOE M 435.1-1, states, “The composite analysis results shall be used for planning, radiation protection activities, and future use commitments to minimize the likelihood that current low-level waste disposal activities will result in the need for future corrective or remedial actions to adequately protect the public and the environment.”

  10. 77 FR 75417 - Renewal of the Veterans' Advisory Board on Dose Reconstruction

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-12-20

    ...-discretionary federal advisory committee that shall provide review and oversight of the Radiation Dose... administration of the Radiation Dose Reconstruction Program as it considers appropriate as a result of the audits.... Conduct periodic, random audits of dose reconstructions under the Radiation Dose Reconstruction Program...

  11. Intra-patient comparison of reduced-dose model-based iterative reconstruction with standard-dose adaptive statistical iterative reconstruction in the CT diagnosis and follow-up of urolithiasis.

    PubMed

    Tenant, Sean; Pang, Chun Lap; Dissanayake, Prageeth; Vardhanabhuti, Varut; Stuckey, Colin; Gutteridge, Catherine; Hyde, Christopher; Roobottom, Carl

    2017-10-01

    To evaluate the accuracy of reduced-dose CT scans reconstructed using a new generation of model-based iterative reconstruction (MBIR) in the imaging of urinary tract stone disease, compared with a standard-dose CT using 30% adaptive statistical iterative reconstruction. This single-institution prospective study recruited 125 patients presenting either with acute renal colic or for follow-up of known urinary tract stones. They underwent two immediately consecutive scans, one at standard dose settings and one at the lowest dose (highest noise index) the scanner would allow. The reduced-dose scans were reconstructed using both ASIR 30% and MBIR algorithms and reviewed independently by two radiologists. Objective and subjective image quality measures as well as diagnostic data were obtained. The reduced-dose MBIR scan was 100% concordant with the reference standard for the assessment of ureteric stones. It was extremely accurate at identifying calculi of 3 mm and above. The algorithm allowed a dose reduction of 58% without any loss of scan quality. A reduced-dose CT scan using MBIR is accurate in acute imaging for renal colic symptoms and for urolithiasis follow-up and allows a significant reduction in dose. • MBIR allows reduced CT dose with similar diagnostic accuracy • MBIR outperforms ASIR when used for the reconstruction of reduced-dose scans • MBIR can be used to accurately assess stones 3 mm and above.

  12. Investigation of iterative image reconstruction in low-dose breast CT

    NASA Astrophysics Data System (ADS)

    Bian, Junguo; Yang, Kai; Boone, John M.; Han, Xiao; Sidky, Emil Y.; Pan, Xiaochuan

    2014-06-01

    There is interest in developing computed tomography (CT) dedicated to breast-cancer imaging. Because breast tissues are radiation-sensitive, the total radiation exposure in a breast-CT scan is kept low, often comparable to a typical two-view mammography exam, thus resulting in a challenging low-dose-data-reconstruction problem. In recent years, evidence has been found that suggests that iterative reconstruction may yield images of improved quality from low-dose data. In this work, based upon the constrained image total-variation minimization program and its numerical solver, i.e., the adaptive steepest descent-projection onto the convex set (ASD-POCS), we investigate and evaluate iterative image reconstructions from low-dose breast-CT data of patients, with a focus on identifying and determining key reconstruction parameters, devising surrogate utility metrics for characterizing reconstruction quality, and tailoring the program and ASD-POCS to the specific reconstruction task under consideration. The ASD-POCS reconstructions appear to outperform the corresponding clinical FDK reconstructions, in terms of subjective visualization and surrogate utility metrics.

  13. An example of problems in dose reconstruction from doses formed by electromagnetic irradiation by different energy sources.

    PubMed

    Kirillov, Vladimir; Kuchuro, Joseph; Tolstik, Sergey; Leonova, Tatyana

    2010-02-01

    Dose reconstruction for citizens of Belarus affected by the Chernobyl accident showed an unexpectedly wide range of doses. Using the EPR tooth enamel dosimetry method, it has been demonstrated that when the tooth enamel dose was formed due to x-rays with effective energy of 34 keV and the additional irradiation of enamel samples was performed by gamma radiation with mean energy of 1,250 keV, it led to a considerable increase in the reconstructed absorbed dose as compared with the applied. In the case when the dose was formed due to gamma radiation and the additional irradiation was performed by x-rays, it led to a considerable decrease in the reconstructed dose as compared with the applied. When the dose formation and the additional irradiation were carried out from external sources of electromagnetic radiation of equal energy, the reconstructed dose value was close to that of the applied. The obtained data show that for adequate reconstruction of individual absorbed doses by the EPR tooth enamel spectra, it is necessary to take into account the contribution from diagnostic x-ray examination of the teeth, jaw, and skull of some individuals who were exposed to a combined effect of the external gamma radiation and x-rays.

  14. Low-dose CT image reconstruction using gain intervention-based dictionary learning

    NASA Astrophysics Data System (ADS)

    Pathak, Yadunath; Arya, K. V.; Tiwari, Shailendra

    2018-05-01

    Computed tomography (CT) approach is extensively utilized in clinical diagnoses. However, X-ray residue in human body may introduce somatic damage such as cancer. Owing to radiation risk, research has focused on the radiation exposure distributed to patients through CT investigations. Therefore, low-dose CT has become a significant research area. Many researchers have proposed different low-dose CT reconstruction techniques. But, these techniques suffer from various issues such as over smoothing, artifacts, noise, etc. Therefore, in this paper, we have proposed a novel integrated low-dose CT reconstruction technique. The proposed technique utilizes global dictionary-based statistical iterative reconstruction (GDSIR) and adaptive dictionary-based statistical iterative reconstruction (ADSIR)-based reconstruction techniques. In case the dictionary (D) is predetermined, then GDSIR can be used and if D is adaptively defined then ADSIR is appropriate choice. The gain intervention-based filter is also used as a post-processing technique for removing the artifacts from low-dose CT reconstructed images. Experiments have been done by considering the proposed and other low-dose CT reconstruction techniques on well-known benchmark CT images. Extensive experiments have shown that the proposed technique outperforms the available approaches.

  15. Model-based iterative reconstruction for reduction of radiation dose in abdominopelvic CT: comparison to adaptive statistical iterative reconstruction.

    PubMed

    Yasaka, Koichiro; Katsura, Masaki; Akahane, Masaaki; Sato, Jiro; Matsuda, Izuru; Ohtomo, Kuni

    2013-12-01

    To evaluate dose reduction and image quality of abdominopelvic computed tomography (CT) reconstructed with model-based iterative reconstruction (MBIR) compared to adaptive statistical iterative reconstruction (ASIR). In this prospective study, 85 patients underwent referential-, low-, and ultralow-dose unenhanced abdominopelvic CT. Images were reconstructed with ASIR for low-dose (L-ASIR) and ultralow-dose CT (UL-ASIR), and with MBIR for ultralow-dose CT (UL-MBIR). Image noise was measured in the abdominal aorta and iliopsoas muscle. Subjective image analyses and a lesion detection study (adrenal nodules) were conducted by two blinded radiologists. A reference standard was established by a consensus panel of two different radiologists using referential-dose CT reconstructed with filtered back projection. Compared to low-dose CT, there was a 63% decrease in dose-length product with ultralow-dose CT. UL-MBIR had significantly lower image noise than L-ASIR and UL-ASIR (all p<0.01). UL-MBIR was significantly better for subjective image noise and streak artifacts than L-ASIR and UL-ASIR (all p<0.01). There were no significant differences between UL-MBIR and L-ASIR in diagnostic acceptability (p>0.65), or diagnostic performance for adrenal nodules (p>0.87). MBIR significantly improves image noise and streak artifacts compared to ASIR, and can achieve radiation dose reduction without severely compromising image quality.

  16. 42 CFR 82.26 - How will NIOSH report dose reconstruction results?

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... OCCUPATIONAL SAFETY AND HEALTH RESEARCH AND RELATED ACTIVITIES METHODS FOR CONDUCTING DOSE RECONSTRUCTION UNDER... dose reconstruction, justification for the decision, and if possible, a quantitative estimate of the...

  17. 42 CFR 82.26 - How will NIOSH report dose reconstruction results?

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... OCCUPATIONAL SAFETY AND HEALTH RESEARCH AND RELATED ACTIVITIES METHODS FOR CONDUCTING DOSE RECONSTRUCTION UNDER... dose reconstruction, justification for the decision, and if possible, a quantitative estimate of the...

  18. 42 CFR 82.26 - How will NIOSH report dose reconstruction results?

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... OCCUPATIONAL SAFETY AND HEALTH RESEARCH AND RELATED ACTIVITIES METHODS FOR CONDUCTING DOSE RECONSTRUCTION UNDER... dose reconstruction, justification for the decision, and if possible, a quantitative estimate of the...

  19. 42 CFR 82.26 - How will NIOSH report dose reconstruction results?

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... OCCUPATIONAL SAFETY AND HEALTH RESEARCH AND RELATED ACTIVITIES METHODS FOR CONDUCTING DOSE RECONSTRUCTION UNDER... dose reconstruction, justification for the decision, and if possible, a quantitative estimate of the...

  20. 42 CFR 82.26 - How will NIOSH report dose reconstruction results?

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... OCCUPATIONAL SAFETY AND HEALTH RESEARCH AND RELATED ACTIVITIES METHODS FOR CONDUCTING DOSE RECONSTRUCTION UNDER... dose reconstruction, justification for the decision, and if possible, a quantitative estimate of the...

  1. Hanford Internal Dosimetry Project manual. Revision 1

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Carbaugh, E.H.; Bihl, D.E.; MacLellan, J.A.

    1994-07-01

    This document describes the Hanford Internal Dosimetry Project, as it is administered by Pacific Northwest Laboratory (PNL) in support of the US Department of Energy and its Hanford contractors. Project services include administrating the bioassay monitoring program, evaluating and documenting assessment of potential intakes and internal dose, ensuring that analytical laboratories conform to requirements, selecting and applying appropriate models and procedures for evaluating radionuclide deposition and the resulting dose, and technically guiding and supporting Hanford contractors in matters regarding internal dosimetry. Specific chapters deal with the following subjects: practices of the project, including interpretation of applicable DOE Orders, regulations, andmore » guidance into criteria for assessment, documentation, and reporting of doses; assessment of internal dose, including summary explanations of when and how assessments are performed; recording and reporting practices for internal dose; selection of workers for bioassay monitoring and establishment of type and frequency of bioassay measurements; capability and scheduling of bioassay monitoring services; recommended dosimetry response to potential internal exposure incidents; quality control and quality assurance provisions of the program.« less

  2. Ultra-low-dose computed tomographic angiography with model-based iterative reconstruction compared with standard-dose imaging after endovascular aneurysm repair: a prospective pilot study.

    PubMed

    Naidu, Sailen G; Kriegshauser, J Scott; Paden, Robert G; He, Miao; Wu, Qing; Hara, Amy K

    2014-12-01

    An ultra-low-dose radiation protocol reconstructed with model-based iterative reconstruction was compared with our standard-dose protocol. This prospective study evaluated 20 men undergoing surveillance-enhanced computed tomography after endovascular aneurysm repair. All patients underwent standard-dose and ultra-low-dose venous phase imaging; images were compared after reconstruction with filtered back projection, adaptive statistical iterative reconstruction, and model-based iterative reconstruction. Objective measures of aortic contrast attenuation and image noise were averaged. Images were subjectively assessed (1 = worst, 5 = best) for diagnostic confidence, image noise, and vessel sharpness. Aneurysm sac diameter and endoleak detection were compared. Quantitative image noise was 26% less with ultra-low-dose model-based iterative reconstruction than with standard-dose adaptive statistical iterative reconstruction and 58% less than with ultra-low-dose adaptive statistical iterative reconstruction. Average subjective noise scores were not different between ultra-low-dose model-based iterative reconstruction and standard-dose adaptive statistical iterative reconstruction (3.8 vs. 4.0, P = .25). Subjective scores for diagnostic confidence were better with standard-dose adaptive statistical iterative reconstruction than with ultra-low-dose model-based iterative reconstruction (4.4 vs. 4.0, P = .002). Vessel sharpness was decreased with ultra-low-dose model-based iterative reconstruction compared with standard-dose adaptive statistical iterative reconstruction (3.3 vs. 4.1, P < .0001). Ultra-low-dose model-based iterative reconstruction and standard-dose adaptive statistical iterative reconstruction aneurysm sac diameters were not significantly different (4.9 vs. 4.9 cm); concordance for the presence of endoleak was 100% (P < .001). Compared with a standard-dose technique, an ultra-low-dose model-based iterative reconstruction protocol provides

  3. Hanford Site Environmental Report for calendar year 1992

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Woodruff, R.K.; Hanf, R.W.; Lundgren, R.E.

    1993-06-01

    This report is prepared annually to summarize environmental data and information, describe environmental management performance, and demonstrate the status of compliance with environmental regulations at the Hanford Site. The following sections: describe the Hanford Site and its mission; summarize the status in 1992 of compliance with environmental regulations; describe the environmental programs at the Hanford Site; discuss public dose estimates from 1992 Hanford activities; present information on effluent monitoring and environmental surveillance, including ground-water protection and monitoring, and discuss activities to ensure quality.

  4. Low-dose X-ray CT reconstruction via dictionary learning.

    PubMed

    Xu, Qiong; Yu, Hengyong; Mou, Xuanqin; Zhang, Lei; Hsieh, Jiang; Wang, Ge

    2012-09-01

    Although diagnostic medical imaging provides enormous benefits in the early detection and accuracy diagnosis of various diseases, there are growing concerns on the potential side effect of radiation induced genetic, cancerous and other diseases. How to reduce radiation dose while maintaining the diagnostic performance is a major challenge in the computed tomography (CT) field. Inspired by the compressive sensing theory, the sparse constraint in terms of total variation (TV) minimization has already led to promising results for low-dose CT reconstruction. Compared to the discrete gradient transform used in the TV method, dictionary learning is proven to be an effective way for sparse representation. On the other hand, it is important to consider the statistical property of projection data in the low-dose CT case. Recently, we have developed a dictionary learning based approach for low-dose X-ray CT. In this paper, we present this method in detail and evaluate it in experiments. In our method, the sparse constraint in terms of a redundant dictionary is incorporated into an objective function in a statistical iterative reconstruction framework. The dictionary can be either predetermined before an image reconstruction task or adaptively defined during the reconstruction process. An alternating minimization scheme is developed to minimize the objective function. Our approach is evaluated with low-dose X-ray projections collected in animal and human CT studies, and the improvement associated with dictionary learning is quantified relative to filtered backprojection and TV-based reconstructions. The results show that the proposed approach might produce better images with lower noise and more detailed structural features in our selected cases. However, there is no proof that this is true for all kinds of structures.

  5. Low dose dynamic myocardial CT perfusion using advanced iterative reconstruction

    NASA Astrophysics Data System (ADS)

    Eck, Brendan L.; Fahmi, Rachid; Fuqua, Christopher; Vembar, Mani; Dhanantwari, Amar; Bezerra, Hiram G.; Wilson, David L.

    2015-03-01

    Dynamic myocardial CT perfusion (CTP) can provide quantitative functional information for the assessment of coronary artery disease. However, x-ray dose in dynamic CTP is high, typically from 10mSv to >20mSv. We compared the dose reduction potential of advanced iterative reconstruction, Iterative Model Reconstruction (IMR, Philips Healthcare, Cleveland, Ohio) to hybrid iterative reconstruction (iDose4) and filtered back projection (FBP). Dynamic CTP scans were obtained using a porcine model with balloon-induced ischemia in the left anterior descending coronary artery to prescribed fractional flow reserve values. High dose dynamic CTP scans were acquired at 100kVp/100mAs with effective dose of 23mSv. Low dose scans at 75mAs, 50mAs, and 25mAs were simulated by adding x-ray quantum noise and detector electronic noise to the projection space data. Images were reconstructed with FBP, iDose4, and IMR at each dose level. Image quality in static CTP images was assessed by SNR and CNR. Blood flow was obtained using a dynamic CTP analysis pipeline and blood flow image quality was assessed using flow-SNR and flow-CNR. IMR showed highest static image quality according to SNR and CNR. Blood flow in FBP was increasingly over-estimated at reduced dose. Flow was more consistent for iDose4 from 100mAs to 50mAs, but was over-estimated at 25mAs. IMR was most consistent from 100mAs to 25mAs. Static images and flow maps for 100mAs FBP, 50mAs iDose4, and 25mAs IMR showed comparable, clear ischemia, CNR, and flow-CNR values. These results suggest that IMR can enable dynamic CTP at significantly reduced dose, at 5.8mSv or 25% of the comparable 23mSv FBP protocol.

  6. Low-Dose X-ray CT Reconstruction via Dictionary Learning

    PubMed Central

    Xu, Qiong; Zhang, Lei; Hsieh, Jiang; Wang, Ge

    2013-01-01

    Although diagnostic medical imaging provides enormous benefits in the early detection and accuracy diagnosis of various diseases, there are growing concerns on the potential side effect of radiation induced genetic, cancerous and other diseases. How to reduce radiation dose while maintaining the diagnostic performance is a major challenge in the computed tomography (CT) field. Inspired by the compressive sensing theory, the sparse constraint in terms of total variation (TV) minimization has already led to promising results for low-dose CT reconstruction. Compared to the discrete gradient transform used in the TV method, dictionary learning is proven to be an effective way for sparse representation. On the other hand, it is important to consider the statistical property of projection data in the low-dose CT case. Recently, we have developed a dictionary learning based approach for low-dose X-ray CT. In this paper, we present this method in detail and evaluate it in experiments. In our method, the sparse constraint in terms of a redundant dictionary is incorporated into an objective function in a statistical iterative reconstruction framework. The dictionary can be either predetermined before an image reconstruction task or adaptively defined during the reconstruction process. An alternating minimization scheme is developed to minimize the objective function. Our approach is evaluated with low-dose X-ray projections collected in animal and human CT studies, and the improvement associated with dictionary learning is quantified relative to filtered backprojection and TV-based reconstructions. The results show that the proposed approach might produce better images with lower noise and more detailed structural features in our selected cases. However, there is no proof that this is true for all kinds of structures. PMID:22542666

  7. 42 CFR 82.2 - What are the basics of dose reconstruction?

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... SAFETY AND HEALTH RESEARCH AND RELATED ACTIVITIES METHODS FOR CONDUCTING DOSE RECONSTRUCTION UNDER THE... this exposure environment. Then methods are applied to translate exposure to radiation into quantified... workers. A hierarchy of methods is used in a dose reconstruction, depending on the nature of the exposure...

  8. 42 CFR 82.2 - What are the basics of dose reconstruction?

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... SAFETY AND HEALTH RESEARCH AND RELATED ACTIVITIES METHODS FOR CONDUCTING DOSE RECONSTRUCTION UNDER THE... this exposure environment. Then methods are applied to translate exposure to radiation into quantified... workers. A hierarchy of methods is used in a dose reconstruction, depending on the nature of the exposure...

  9. Standard and reduced radiation dose liver CT images: adaptive statistical iterative reconstruction versus model-based iterative reconstruction-comparison of findings and image quality.

    PubMed

    Shuman, William P; Chan, Keith T; Busey, Janet M; Mitsumori, Lee M; Choi, Eunice; Koprowicz, Kent M; Kanal, Kalpana M

    2014-12-01

    To investigate whether reduced radiation dose liver computed tomography (CT) images reconstructed with model-based iterative reconstruction ( MBIR model-based iterative reconstruction ) might compromise depiction of clinically relevant findings or might have decreased image quality when compared with clinical standard radiation dose CT images reconstructed with adaptive statistical iterative reconstruction ( ASIR adaptive statistical iterative reconstruction ). With institutional review board approval, informed consent, and HIPAA compliance, 50 patients (39 men, 11 women) were prospectively included who underwent liver CT. After a portal venous pass with ASIR adaptive statistical iterative reconstruction images, a 60% reduced radiation dose pass was added with MBIR model-based iterative reconstruction images. One reviewer scored ASIR adaptive statistical iterative reconstruction image quality and marked findings. Two additional independent reviewers noted whether marked findings were present on MBIR model-based iterative reconstruction images and assigned scores for relative conspicuity, spatial resolution, image noise, and image quality. Liver and aorta Hounsfield units and image noise were measured. Volume CT dose index and size-specific dose estimate ( SSDE size-specific dose estimate ) were recorded. Qualitative reviewer scores were summarized. Formal statistical inference for signal-to-noise ratio ( SNR signal-to-noise ratio ), contrast-to-noise ratio ( CNR contrast-to-noise ratio ), volume CT dose index, and SSDE size-specific dose estimate was made (paired t tests), with Bonferroni adjustment. Two independent reviewers identified all 136 ASIR adaptive statistical iterative reconstruction image findings (n = 272) on MBIR model-based iterative reconstruction images, scoring them as equal or better for conspicuity, spatial resolution, and image noise in 94.1% (256 of 272), 96.7% (263 of 272), and 99.3% (270 of 272), respectively. In 50 image sets, two reviewers

  10. Reduced Radiation Dose with Model-based Iterative Reconstruction versus Standard Dose with Adaptive Statistical Iterative Reconstruction in Abdominal CT for Diagnosis of Acute Renal Colic.

    PubMed

    Fontarensky, Mikael; Alfidja, Agaïcha; Perignon, Renan; Schoenig, Arnaud; Perrier, Christophe; Mulliez, Aurélien; Guy, Laurent; Boyer, Louis

    2015-07-01

    To evaluate the accuracy of reduced-dose abdominal computed tomographic (CT) imaging by using a new generation model-based iterative reconstruction (MBIR) to diagnose acute renal colic compared with a standard-dose abdominal CT with 50% adaptive statistical iterative reconstruction (ASIR). This institutional review board-approved prospective study included 118 patients with symptoms of acute renal colic who underwent the following two successive CT examinations: standard-dose ASIR 50% and reduced-dose MBIR. Two radiologists independently reviewed both CT examinations for presence or absence of renal calculi, differential diagnoses, and associated abnormalities. The imaging findings, radiation dose estimates, and image quality of the two CT reconstruction methods were compared. Concordance was evaluated by κ coefficient, and descriptive statistics and t test were used for statistical analysis. Intraobserver correlation was 100% for the diagnosis of renal calculi (κ = 1). Renal calculus (τ = 98.7%; κ = 0.97) and obstructive upper urinary tract disease (τ = 98.16%; κ = 0.95) were detected, and differential or alternative diagnosis was performed (τ = 98.87% κ = 0.95). MBIR allowed a dose reduction of 84% versus standard-dose ASIR 50% (mean volume CT dose index, 1.7 mGy ± 0.8 [standard deviation] vs 10.9 mGy ± 4.6; mean size-specific dose estimate, 2.2 mGy ± 0.7 vs 13.7 mGy ± 3.9; P < .001) without a conspicuous deterioration in image quality (reduced-dose MBIR vs ASIR 50% mean scores, 3.83 ± 0.49 vs 3.92 ± 0.27, respectively; P = .32) or increase in noise (reduced-dose MBIR vs ASIR 50% mean, respectively, 18.36 HU ± 2.53 vs 17.40 HU ± 3.42). Its main drawback remains the long time required for reconstruction (mean, 40 minutes). A reduced-dose protocol with MBIR allowed a dose reduction of 84% without increasing noise and without an conspicuous deterioration in image quality in patients suspected of having renal colic.

  11. Quantifying the impact of immediate reconstruction in postmastectomy radiation: a large, dose-volume histogram-based analysis.

    PubMed

    Ohri, Nisha; Cordeiro, Peter G; Keam, Jennifer; Ballangrud, Ase; Shi, Weiji; Zhang, Zhigang; Nerbun, Claire T; Woch, Katherine M; Stein, Nicholas F; Zhou, Ying; McCormick, Beryl; Powell, Simon N; Ho, Alice Y

    2012-10-01

    To assess the impact of immediate breast reconstruction on postmastectomy radiation (PMRT) using dose-volume histogram (DVH) data. Two hundred forty-seven women underwent PMRT at our center, 196 with implant reconstruction and 51 without reconstruction. Patients with reconstruction were treated with tangential photons, and patients without reconstruction were treated with en-face electron fields and customized bolus. Twenty percent of patients received internal mammary node (IMN) treatment. The DVH data were compared between groups. Ipsilateral lung parameters included V20 (% volume receiving 20 Gy), V40 (% volume receiving 40 Gy), mean dose, and maximum dose. Heart parameters included V25 (% volume receiving 25 Gy), mean dose, and maximum dose. IMN coverage was assessed when applicable. Chest wall coverage was assessed in patients with reconstruction. Propensity-matched analysis adjusted for potential confounders of laterality and IMN treatment. Reconstruction was associated with lower lung V20, mean dose, and maximum dose compared with no reconstruction (all P<.0001). These associations persisted on propensity-matched analysis (all P<.0001). Heart doses were similar between groups (P=NS). Ninety percent of patients with reconstruction had excellent chest wall coverage (D95 >98%). IMN coverage was superior in patients with reconstruction (D95 >92.0 vs 75.7%, P<.001). IMN treatment significantly increased lung and heart parameters in patients with reconstruction (all P<.05) but minimally affected those without reconstruction (all P>.05). Among IMN-treated patients, only lower lung V20 in those without reconstruction persisted (P=.022), and mean and maximum heart doses were higher than in patients without reconstruction (P=.006, P=.015, respectively). Implant reconstruction does not compromise the technical quality of PMRT when the IMNs are untreated. Treatment technique, not reconstruction, is the primary determinant of target coverage and normal tissue doses

  12. Radiation Doses to Hanford Workers from Natural Potassium-40

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Strom, Daniel J.; Lynch, Timothy P.; Weier, Dennis R.

    2009-02-01

    The chemical element potassium is an essential mineral in people and is subject to homeostatic regulation. Natural potassium comprises three isotopes, 39K, 40K, and 41K. Potassium-40 is radioactive, with a half life of 1.248 billion years. In most transitions, it emits a β particle with a maximum energy of 0.560 MeV, and sometimes a gamma photon of 1.461 MeV. Because it is ubiquitous, 40K produces radiation dose to all human beings. This report contains the results of new measurements of 40K in 248 adult females and 2,037 adult males performed at the Department of Energy Hanford Site in 2006 andmore » 2007. Potassium concentrations diminish with age, are generally lower in women than in men, and decrease with body mass index (BMI). The average annual effective dose from 40K in the body is 0.149 mSv y -1 for men and 0.123 mSv y -1 women respectively. Averaged over both men and women, the average effective dose per year is 0.136 mSv y -1. Calculated effective doses range from 0.069 to 0.243 mSv y -1 for adult males, and 0.067 to 0.203 mSv y -1 for adult females, a roughly three-fold variation for each gender. The need for dosimetric phantoms with a greater variety of BMI values should be investigated. From our data, it cannot be determined whether the potassium concentration in muscle in people with large BMI values differs from that in people with small BMI values. Similarly, it would be important to know the potassium concentration in other soft tissues, since much of the radiation dose is due to beta radiation, in which the source and target tissues are the same. These uncertainties should be evaluated to determine their consequences for dosimetry.« less

  13. Variability in CT lung-nodule volumetry: Effects of dose reduction and reconstruction methods.

    PubMed

    Young, Stefano; Kim, Hyun J Grace; Ko, Moe Moe; Ko, War War; Flores, Carlos; McNitt-Gray, Michael F

    2015-05-01

    Measuring the size of nodules on chest CT is important for lung cancer staging and measuring therapy response. 3D volumetry has been proposed as a more robust alternative to 1D and 2D sizing methods. There have also been substantial advances in methods to reduce radiation dose in CT. The purpose of this work was to investigate the effect of dose reduction and reconstruction methods on variability in 3D lung-nodule volumetry. Reduced-dose CT scans were simulated by applying a noise-addition tool to the raw (sinogram) data from clinically indicated patient scans acquired on a multidetector-row CT scanner (Definition Flash, Siemens Healthcare). Scans were simulated at 25%, 10%, and 3% of the dose of their clinical protocol (CTDIvol of 20.9 mGy), corresponding to CTDIvol values of 5.2, 2.1, and 0.6 mGy. Simulated reduced-dose data were reconstructed with both conventional filtered backprojection (B45 kernel) and iterative reconstruction methods (SAFIRE: I44 strength 3 and I50 strength 3). Three lab technologist readers contoured "measurable" nodules in 33 patients under each of the different acquisition/reconstruction conditions in a blinded study design. Of the 33 measurable nodules, 17 were used to estimate repeatability with their clinical reference protocol, as well as interdose and inter-reconstruction-method reproducibilities. The authors compared the resulting distributions of proportional differences across dose and reconstruction methods by analyzing their means, standard deviations (SDs), and t-test and F-test results. The clinical-dose repeatability experiment yielded a mean proportional difference of 1.1% and SD of 5.5%. The interdose reproducibility experiments gave mean differences ranging from -5.6% to -1.7% and SDs ranging from 6.3% to 9.9%. The inter-reconstruction-method reproducibility experiments gave mean differences of 2.0% (I44 strength 3) and -0.3% (I50 strength 3), and SDs were identical at 7.3%. For the subset of repeatability cases, inter-reconstruction

  14. Spectrotemporal CT data acquisition and reconstruction at low dose

    PubMed Central

    Clark, Darin P.; Lee, Chang-Lung; Kirsch, David G.; Badea, Cristian T.

    2015-01-01

    Purpose: X-ray computed tomography (CT) is widely used, both clinically and preclinically, for fast, high-resolution anatomic imaging; however, compelling opportunities exist to expand its use in functional imaging applications. For instance, spectral information combined with nanoparticle contrast agents enables quantification of tissue perfusion levels, while temporal information details cardiac and respiratory dynamics. The authors propose and demonstrate a projection acquisition and reconstruction strategy for 5D CT (3D + dual energy + time) which recovers spectral and temporal information without substantially increasing radiation dose or sampling time relative to anatomic imaging protocols. Methods: The authors approach the 5D reconstruction problem within the framework of low-rank and sparse matrix decomposition. Unlike previous work on rank-sparsity constrained CT reconstruction, the authors establish an explicit rank-sparse signal model to describe the spectral and temporal dimensions. The spectral dimension is represented as a well-sampled time and energy averaged image plus regularly undersampled principal components describing the spectral contrast. The temporal dimension is represented as the same time and energy averaged reconstruction plus contiguous, spatially sparse, and irregularly sampled temporal contrast images. Using a nonlinear, image domain filtration approach, the authors refer to as rank-sparse kernel regression, the authors transfer image structure from the well-sampled time and energy averaged reconstruction to the spectral and temporal contrast images. This regularization strategy strictly constrains the reconstruction problem while approximately separating the temporal and spectral dimensions. Separability results in a highly compressed representation for the 5D data in which projections are shared between the temporal and spectral reconstruction subproblems, enabling substantial undersampling. The authors solved the 5D reconstruction

  15. Model-based iterative reconstruction and adaptive statistical iterative reconstruction: dose-reduced CT for detecting pancreatic calcification

    PubMed Central

    Katsura, Masaki; Akahane, Masaaki; Sato, Jiro; Matsuda, Izuru; Ohtomo, Kuni

    2016-01-01

    Background Iterative reconstruction methods have attracted attention for reducing radiation doses in computed tomography (CT). Purpose To investigate the detectability of pancreatic calcification using dose-reduced CT reconstructed with model-based iterative construction (MBIR) and adaptive statistical iterative reconstruction (ASIR). Material and Methods This prospective study approved by Institutional Review Board included 85 patients (57 men, 28 women; mean age, 69.9 years; mean body weight, 61.2 kg). Unenhanced CT was performed three times with different radiation doses (reference-dose CT [RDCT], low-dose CT [LDCT], ultralow-dose CT [ULDCT]). From RDCT, LDCT, and ULDCT, images were reconstructed with filtered-back projection (R-FBP, used for establishing reference standard), ASIR (L-ASIR), and MBIR and ASIR (UL-MBIR and UL-ASIR), respectively. A lesion (pancreatic calcification) detection test was performed by two blinded radiologists with a five-point certainty level scale. Results Dose-length products of RDCT, LDCT, and ULDCT were 410, 97, and 36 mGy-cm, respectively. Nine patients had pancreatic calcification. The sensitivity for detecting pancreatic calcification with UL-MBIR was high (0.67–0.89) compared to L-ASIR or UL-ASIR (0.11–0.44), and a significant difference was seen between UL-MBIR and UL-ASIR for one reader (P = 0.014). The area under the receiver-operating characteristic curve for UL-MBIR (0.818–0.860) was comparable to that for L-ASIR (0.696–0.844). The specificity was lower with UL-MBIR (0.79–0.92) than with L-ASIR or UL-ASIR (0.96–0.99), and a significant difference was seen for one reader (P < 0.01). Conclusion In UL-MBIR, pancreatic calcification can be detected with high sensitivity, however, we should pay attention to the slightly lower specificity. PMID:27110389

  16. Model-based iterative reconstruction and adaptive statistical iterative reconstruction: dose-reduced CT for detecting pancreatic calcification.

    PubMed

    Yasaka, Koichiro; Katsura, Masaki; Akahane, Masaaki; Sato, Jiro; Matsuda, Izuru; Ohtomo, Kuni

    2016-01-01

    Iterative reconstruction methods have attracted attention for reducing radiation doses in computed tomography (CT). To investigate the detectability of pancreatic calcification using dose-reduced CT reconstructed with model-based iterative construction (MBIR) and adaptive statistical iterative reconstruction (ASIR). This prospective study approved by Institutional Review Board included 85 patients (57 men, 28 women; mean age, 69.9 years; mean body weight, 61.2 kg). Unenhanced CT was performed three times with different radiation doses (reference-dose CT [RDCT], low-dose CT [LDCT], ultralow-dose CT [ULDCT]). From RDCT, LDCT, and ULDCT, images were reconstructed with filtered-back projection (R-FBP, used for establishing reference standard), ASIR (L-ASIR), and MBIR and ASIR (UL-MBIR and UL-ASIR), respectively. A lesion (pancreatic calcification) detection test was performed by two blinded radiologists with a five-point certainty level scale. Dose-length products of RDCT, LDCT, and ULDCT were 410, 97, and 36 mGy-cm, respectively. Nine patients had pancreatic calcification. The sensitivity for detecting pancreatic calcification with UL-MBIR was high (0.67-0.89) compared to L-ASIR or UL-ASIR (0.11-0.44), and a significant difference was seen between UL-MBIR and UL-ASIR for one reader (P = 0.014). The area under the receiver-operating characteristic curve for UL-MBIR (0.818-0.860) was comparable to that for L-ASIR (0.696-0.844). The specificity was lower with UL-MBIR (0.79-0.92) than with L-ASIR or UL-ASIR (0.96-0.99), and a significant difference was seen for one reader (P < 0.01). In UL-MBIR, pancreatic calcification can be detected with high sensitivity, however, we should pay attention to the slightly lower specificity.

  17. 42 CFR 82.10 - Overview of the dose reconstruction process.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... doses using techniques discussed in § 82.16. Once the resulting data set is complete, NIOSH will.... Additionally, NIOSH may compile data, and information from NIOSH records that may contribute to the dose... which dose and exposure monitoring data is incomplete or insufficient for dose reconstruction. (h) NIOSH...

  18. 42 CFR 82.10 - Overview of the dose reconstruction process.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... doses using techniques discussed in § 82.16. Once the resulting data set is complete, NIOSH will.... Additionally, NIOSH may compile data, and information from NIOSH records that may contribute to the dose... which dose and exposure monitoring data is incomplete or insufficient for dose reconstruction. (h) NIOSH...

  19. 42 CFR 82.10 - Overview of the dose reconstruction process.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... doses using techniques discussed in § 82.16. Once the resulting data set is complete, NIOSH will.... Additionally, NIOSH may compile data, and information from NIOSH records that may contribute to the dose... which dose and exposure monitoring data is incomplete or insufficient for dose reconstruction. (h) NIOSH...

  20. 42 CFR 82.10 - Overview of the dose reconstruction process.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... doses using techniques discussed in § 82.16. Once the resulting data set is complete, NIOSH will.... Additionally, NIOSH may compile data, and information from NIOSH records that may contribute to the dose... which dose and exposure monitoring data is incomplete or insufficient for dose reconstruction. (h) NIOSH...

  1. 42 CFR 82.10 - Overview of the dose reconstruction process.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... doses using techniques discussed in § 82.16. Once the resulting data set is complete, NIOSH will.... Additionally, NIOSH may compile data, and information from NIOSH records that may contribute to the dose... which dose and exposure monitoring data is incomplete or insufficient for dose reconstruction. (h) NIOSH...

  2. Dose reduction potential of iterative reconstruction algorithms in neck CTA-a simulation study.

    PubMed

    Ellmann, Stephan; Kammerer, Ferdinand; Allmendinger, Thomas; Brand, Michael; Janka, Rolf; Hammon, Matthias; Lell, Michael M; Uder, Michael; Kramer, Manuel

    2016-10-01

    This study aimed to determine the degree of radiation dose reduction in neck CT angiography (CTA) achievable with Sinogram-affirmed iterative reconstruction (SAFIRE) algorithms. 10 consecutive patients scheduled for neck CTA were included in this study. CTA images of the external carotid arteries either were reconstructed with filtered back projection (FBP) at full radiation dose level or underwent simulated dose reduction by proprietary reconstruction software. The dose-reduced images were reconstructed using either SAFIRE 3 or SAFIRE 5 and compared with full-dose FBP images in terms of vessel definition. 5 observers performed a total of 3000 pairwise comparisons. SAFIRE allowed substantial radiation dose reductions in neck CTA while maintaining vessel definition. The possible levels of radiation dose reduction ranged from approximately 34 to approximately 90% and depended on the SAFIRE algorithm strength and the size of the vessel of interest. In general, larger vessels permitted higher degrees of radiation dose reduction, especially with higher SAFIRE strength levels. With small vessels, the superiority of SAFIRE 5 over SAFIRE 3 was lost. Neck CTA can be performed with substantially less radiation dose when SAFIRE is applied. The exact degree of radiation dose reduction should be adapted to the clinical question, in particular to the smallest vessel needing excellent definition.

  3. Low Dose CT Reconstruction via Edge-preserving Total Variation Regularization

    PubMed Central

    Tian, Zhen; Jia, Xun; Yuan, Kehong; Pan, Tinsu; Jiang, Steve B.

    2014-01-01

    High radiation dose in CT scans increases a lifetime risk of cancer and has become a major clinical concern. Recently, iterative reconstruction algorithms with Total Variation (TV) regularization have been developed to reconstruct CT images from highly undersampled data acquired at low mAs levels in order to reduce the imaging dose. Nonetheless, the low contrast structures tend to be smoothed out by the TV regularization, posing a great challenge for the TV method. To solve this problem, in this work we develop an iterative CT reconstruction algorithm with edge-preserving TV regularization to reconstruct CT images from highly undersampled data obtained at low mAs levels. The CT image is reconstructed by minimizing an energy consisting of an edge-preserving TV norm and a data fidelity term posed by the x-ray projections. The edge-preserving TV term is proposed to preferentially perform smoothing only on non-edge part of the image in order to better preserve the edges, which is realized by introducing a penalty weight to the original total variation norm. During the reconstruction process, the pixels at edges would be gradually identified and given small penalty weight. Our iterative algorithm is implemented on GPU to improve its speed. We test our reconstruction algorithm on a digital NCAT phantom, a physical chest phantom, and a Catphan phantom. Reconstruction results from a conventional FBP algorithm and a TV regularization method without edge preserving penalty are also presented for comparison purpose. The experimental results illustrate that both TV-based algorithm and our edge-preserving TV algorithm outperform the conventional FBP algorithm in suppressing the streaking artifacts and image noise under the low dose context. Our edge-preserving algorithm is superior to the TV-based algorithm in that it can preserve more information of low contrast structures and therefore maintain acceptable spatial resolution. PMID:21860076

  4. The adaptive statistical iterative reconstruction-V technique for radiation dose reduction in abdominal CT: comparison with the adaptive statistical iterative reconstruction technique.

    PubMed

    Kwon, Heejin; Cho, Jinhan; Oh, Jongyeong; Kim, Dongwon; Cho, Junghyun; Kim, Sanghyun; Lee, Sangyun; Lee, Jihyun

    2015-10-01

    To investigate whether reduced radiation dose abdominal CT images reconstructed with adaptive statistical iterative reconstruction V (ASIR-V) compromise the depiction of clinically competent features when compared with the currently used routine radiation dose CT images reconstructed with ASIR. 27 consecutive patients (mean body mass index: 23.55 kg m(-2) underwent CT of the abdomen at two time points. At the first time point, abdominal CT was scanned at 21.45 noise index levels of automatic current modulation at 120 kV. Images were reconstructed with 40% ASIR, the routine protocol of Dong-A University Hospital. At the second time point, follow-up scans were performed at 30 noise index levels. Images were reconstructed with filtered back projection (FBP), 40% ASIR, 30% ASIR-V, 50% ASIR-V and 70% ASIR-V for the reduced radiation dose. Both quantitative and qualitative analyses of image quality were conducted. The CT dose index was also recorded. At the follow-up study, the mean dose reduction relative to the currently used common radiation dose was 35.37% (range: 19-49%). The overall subjective image quality and diagnostic acceptability of the 50% ASIR-V scores at the reduced radiation dose were nearly identical to those recorded when using the initial routine-dose CT with 40% ASIR. Subjective ratings of the qualitative analysis revealed that of all reduced radiation dose CT series reconstructed, 30% ASIR-V and 50% ASIR-V were associated with higher image quality with lower noise and artefacts as well as good sharpness when compared with 40% ASIR and FBP. However, the sharpness score at 70% ASIR-V was considered to be worse than that at 40% ASIR. Objective image noise for 50% ASIR-V was 34.24% and 46.34% which was lower than 40% ASIR and FBP. Abdominal CT images reconstructed with ASIR-V facilitate radiation dose reductions of to 35% when compared with the ASIR. This study represents the first clinical research experiment to use ASIR-V, the newest version of

  5. Low dose reconstruction algorithm for differential phase contrast imaging.

    PubMed

    Wang, Zhentian; Huang, Zhifeng; Zhang, Li; Chen, Zhiqiang; Kang, Kejun; Yin, Hongxia; Wang, Zhenchang; Marco, Stampanoni

    2011-01-01

    Differential phase contrast imaging computed tomography (DPCI-CT) is a novel x-ray inspection method to reconstruct the distribution of refraction index rather than the attenuation coefficient in weakly absorbing samples. In this paper, we propose an iterative reconstruction algorithm for DPCI-CT which benefits from the new compressed sensing theory. We first realize a differential algebraic reconstruction technique (DART) by discretizing the projection process of the differential phase contrast imaging into a linear partial derivative matrix. In this way the compressed sensing reconstruction problem of DPCI reconstruction can be transformed to a resolved problem in the transmission imaging CT. Our algorithm has the potential to reconstruct the refraction index distribution of the sample from highly undersampled projection data. Thus it can significantly reduce the dose and inspection time. The proposed algorithm has been validated by numerical simulations and actual experiments.

  6. The adaptive statistical iterative reconstruction-V technique for radiation dose reduction in abdominal CT: comparison with the adaptive statistical iterative reconstruction technique

    PubMed Central

    Cho, Jinhan; Oh, Jongyeong; Kim, Dongwon; Cho, Junghyun; Kim, Sanghyun; Lee, Sangyun; Lee, Jihyun

    2015-01-01

    Objective: To investigate whether reduced radiation dose abdominal CT images reconstructed with adaptive statistical iterative reconstruction V (ASIR-V) compromise the depiction of clinically competent features when compared with the currently used routine radiation dose CT images reconstructed with ASIR. Methods: 27 consecutive patients (mean body mass index: 23.55 kg m−2 underwent CT of the abdomen at two time points. At the first time point, abdominal CT was scanned at 21.45 noise index levels of automatic current modulation at 120 kV. Images were reconstructed with 40% ASIR, the routine protocol of Dong-A University Hospital. At the second time point, follow-up scans were performed at 30 noise index levels. Images were reconstructed with filtered back projection (FBP), 40% ASIR, 30% ASIR-V, 50% ASIR-V and 70% ASIR-V for the reduced radiation dose. Both quantitative and qualitative analyses of image quality were conducted. The CT dose index was also recorded. Results: At the follow-up study, the mean dose reduction relative to the currently used common radiation dose was 35.37% (range: 19–49%). The overall subjective image quality and diagnostic acceptability of the 50% ASIR-V scores at the reduced radiation dose were nearly identical to those recorded when using the initial routine-dose CT with 40% ASIR. Subjective ratings of the qualitative analysis revealed that of all reduced radiation dose CT series reconstructed, 30% ASIR-V and 50% ASIR-V were associated with higher image quality with lower noise and artefacts as well as good sharpness when compared with 40% ASIR and FBP. However, the sharpness score at 70% ASIR-V was considered to be worse than that at 40% ASIR. Objective image noise for 50% ASIR-V was 34.24% and 46.34% which was lower than 40% ASIR and FBP. Conclusion: Abdominal CT images reconstructed with ASIR-V facilitate radiation dose reductions of to 35% when compared with the ASIR. Advances in knowledge: This study represents the first

  7. Technical basis for internal dosimetry at Hanford

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sula, M.J.; Carbaugh, E.H.; Bihl, D.E.

    1991-07-01

    The Hanford Internal Dosimetry Program, administered by Pacific Northwest Laboratory for the US Department of Energy, provides routine bioassay monitoring for employees who are potentially exposed to radionuclides in the workplace. This report presents the technical basis for routine bioassay monitoring and the assessment of internal dose at Hanford. The radionuclides of concern include tritium, corrosion products ({sup 58}Co, {sup 60}Co, {sup 54}Mn, and {sup 59}Fe), strontium, cesium, iodine, europium, uranium, plutonium, and americium,. Sections on each of these radionuclides discuss the sources and characteristics; dosimetry; bioassay measurements and monitoring; dose measurement, assessment, and mitigation and bioassay follow-up treatment. 78more » refs., 35 figs., 115 tabs.« less

  8. Technical basis for internal dosimetry at Hanford

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sula, M.J.; Carbaugh, E.H.; Bihl, D.E.

    1989-04-01

    The Hanford Internal Dosimetry Program, administered by Pacific Northwest Laboratory for the US Department of Energy, provides routine bioassay monitoring for employees who are potentially exposed to radionuclides in the workplace. This report presents the technical basis for routine bioassay monitoring and the assessment of internal dose at Hanford. The radionuclides of concern include tritium, corrosion products (/sup 58/Co, /sup 60/Co, /sup 54/Mn, and /sup 59/Fe), strontium, cesium, iodine, europium, uranium, plutonium, and americium. Sections on each of these radionuclides discuss the sources and characteristics; dosimetry; bioassay measurements and monitoring; dose measurement, assessment, and mitigation; and bioassay follow-up treatment. 64more » refs., 42 figs., 118 tabs.« less

  9. Spatial and contrast resolution of ultralow dose dentomaxillofacial CT imaging using iterative reconstruction technology

    PubMed Central

    Bischel, Alexander; Stratis, Andreas; Bosmans, Hilde; Jacobs, Reinhilde; Gassner, Eva-Maria; Puelacher, Wolfgang; Pauwels, Ruben

    2017-01-01

    Objectives: The objective of this study was to determine how iterative reconstruction technology (IRT) influences contrast and spatial resolution in ultralow-dose dentomaxillofacial CT imaging. Methods: A polymethyl methacrylate phantom with various inserts was scanned using a reference protocol (RP) at CT dose index volume 36.56 mGy, a sinus protocol at 18.28 mGy and ultralow-dose protocols (LD) at 4.17 mGy, 2.36 mGy, 0.99 mGy and 0.53 mGy. All data sets were reconstructed using filtered back projection (FBP) and the following IRTs: adaptive statistical iterative reconstructions (ASIRs) (ASIR-50, ASIR-100) and model-based iterative reconstruction (MBIR). Inserts containing line-pair patterns and contrast detail patterns for three different materials were scored by three observers. Observer agreement was analyzed using Cohen's kappa and difference in performance between the protocols and reconstruction was analyzed with Dunn's test at α = 0.05. Results: Interobserver agreement was acceptable with a mean kappa value of 0.59. Compared with the RP using FBP, similar scores were achieved at 2.36 mGy using MBIR. MIBR reconstructions showed the highest noise suppression as well as good contrast even at the lowest doses. Overall, ASIR reconstructions did not outperform FBP. Conclusions: LD and MBIR at a dose reduction of >90% may show no significant differences in spatial and contrast resolution compared with an RP and FBP. Ultralow-dose CT and IRT should be further explored in clinical studies. PMID:28059562

  10. Knowledge-based iterative model reconstruction: comparative image quality and radiation dose with a pediatric computed tomography phantom.

    PubMed

    Ryu, Young Jin; Choi, Young Hun; Cheon, Jung-Eun; Ha, Seongmin; Kim, Woo Sun; Kim, In-One

    2016-03-01

    CT of pediatric phantoms can provide useful guidance to the optimization of knowledge-based iterative reconstruction CT. To compare radiation dose and image quality of CT images obtained at different radiation doses reconstructed with knowledge-based iterative reconstruction, hybrid iterative reconstruction and filtered back-projection. We scanned a 5-year anthropomorphic phantom at seven levels of radiation. We then reconstructed CT data with knowledge-based iterative reconstruction (iterative model reconstruction [IMR] levels 1, 2 and 3; Philips Healthcare, Andover, MA), hybrid iterative reconstruction (iDose(4), levels 3 and 7; Philips Healthcare, Andover, MA) and filtered back-projection. The noise, signal-to-noise ratio and contrast-to-noise ratio were calculated. We evaluated low-contrast resolutions and detectability by low-contrast targets and subjective and objective spatial resolutions by the line pairs and wire. With radiation at 100 peak kVp and 100 mAs (3.64 mSv), the relative doses ranged from 5% (0.19 mSv) to 150% (5.46 mSv). Lower noise and higher signal-to-noise, contrast-to-noise and objective spatial resolution were generally achieved in ascending order of filtered back-projection, iDose(4) levels 3 and 7, and IMR levels 1, 2 and 3, at all radiation dose levels. Compared with filtered back-projection at 100% dose, similar noise levels were obtained on IMR level 2 images at 24% dose and iDose(4) level 3 images at 50% dose, respectively. Regarding low-contrast resolution, low-contrast detectability and objective spatial resolution, IMR level 2 images at 24% dose showed comparable image quality with filtered back-projection at 100% dose. Subjective spatial resolution was not greatly affected by reconstruction algorithm. Reduced-dose IMR obtained at 0.92 mSv (24%) showed similar image quality to routine-dose filtered back-projection obtained at 3.64 mSv (100%), and half-dose iDose(4) obtained at 1.81 mSv.

  11. Low dose dynamic CT myocardial perfusion imaging using a statistical iterative reconstruction method

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Tao, Yinghua; Chen, Guang-Hong; Hacker, Timothy A.

    Purpose: Dynamic CT myocardial perfusion imaging has the potential to provide both functional and anatomical information regarding coronary artery stenosis. However, radiation dose can be potentially high due to repeated scanning of the same region. The purpose of this study is to investigate the use of statistical iterative reconstruction to improve parametric maps of myocardial perfusion derived from a low tube current dynamic CT acquisition. Methods: Four pigs underwent high (500 mA) and low (25 mA) dose dynamic CT myocardial perfusion scans with and without coronary occlusion. To delineate the affected myocardial territory, an N-13 ammonia PET perfusion scan wasmore » performed for each animal in each occlusion state. Filtered backprojection (FBP) reconstruction was first applied to all CT data sets. Then, a statistical iterative reconstruction (SIR) method was applied to data sets acquired at low dose. Image voxel noise was matched between the low dose SIR and high dose FBP reconstructions. CT perfusion maps were compared among the low dose FBP, low dose SIR and high dose FBP reconstructions. Numerical simulations of a dynamic CT scan at high and low dose (20:1 ratio) were performed to quantitatively evaluate SIR and FBP performance in terms of flow map accuracy, precision, dose efficiency, and spatial resolution. Results: Forin vivo studies, the 500 mA FBP maps gave −88.4%, −96.0%, −76.7%, and −65.8% flow change in the occluded anterior region compared to the open-coronary scans (four animals). The percent changes in the 25 mA SIR maps were in good agreement, measuring −94.7%, −81.6%, −84.0%, and −72.2%. The 25 mA FBP maps gave unreliable flow measurements due to streaks caused by photon starvation (percent changes of +137.4%, +71.0%, −11.8%, and −3.5%). Agreement between 25 mA SIR and 500 mA FBP global flow was −9.7%, 8.8%, −3.1%, and 26.4%. The average variability of flow measurements in a nonoccluded region was 16.3%, 24.1%, and

  12. Effect of Low-Dose MDCT and Iterative Reconstruction on Trabecular Bone Microstructure Assessment.

    PubMed

    Kopp, Felix K; Holzapfel, Konstantin; Baum, Thomas; Nasirudin, Radin A; Mei, Kai; Garcia, Eduardo G; Burgkart, Rainer; Rummeny, Ernst J; Kirschke, Jan S; Noël, Peter B

    2016-01-01

    We investigated the effects of low-dose multi detector computed tomography (MDCT) in combination with statistical iterative reconstruction algorithms on trabecular bone microstructure parameters. Twelve donated vertebrae were scanned with the routine radiation exposure used in our department (standard-dose) and a low-dose protocol. Reconstructions were performed with filtered backprojection (FBP) and maximum-likelihood based statistical iterative reconstruction (SIR). Trabecular bone microstructure parameters were assessed and statistically compared for each reconstruction. Moreover, fracture loads of the vertebrae were biomechanically determined and correlated to the assessed microstructure parameters. Trabecular bone microstructure parameters based on low-dose MDCT and SIR significantly correlated with vertebral bone strength. There was no significant difference between microstructure parameters calculated on low-dose SIR and standard-dose FBP images. However, the results revealed a strong dependency on the regularization strength applied during SIR. It was observed that stronger regularization might corrupt the microstructure analysis, because the trabecular structure is a very small detail that might get lost during the regularization process. As a consequence, the introduction of SIR for trabecular bone microstructure analysis requires a specific optimization of the regularization parameters. Moreover, in comparison to other approaches, superior noise-resolution trade-offs can be found with the proposed methods.

  13. 42 CFR 82.2 - What are the basics of dose reconstruction?

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... reconstructions may use monitoring results for groups of workers with comparable activities and relationships to... SAFETY AND HEALTH RESEARCH AND RELATED ACTIVITIES METHODS FOR CONDUCTING DOSE RECONSTRUCTION UNDER THE... found to be complete and adequate, individual worker monitoring data, such as dosimeter readings and...

  14. 42 CFR 82.2 - What are the basics of dose reconstruction?

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... reconstructions may use monitoring results for groups of workers with comparable activities and relationships to... SAFETY AND HEALTH RESEARCH AND RELATED ACTIVITIES METHODS FOR CONDUCTING DOSE RECONSTRUCTION UNDER THE... found to be complete and adequate, individual worker monitoring data, such as dosimeter readings and...

  15. Hanford Site National Environmental Policy Act (NEPA) Characterization

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Cushing, C.E.

    1992-12-01

    This fifth revision of the Hanford Site National Environmental Policy (NEPA) Characterization presents current environmental data regarding the Hanford Site and its immediate environs. This information is intended for use in preparing Site-related NEPA documentation. Information is presented on climate and meteorology, geology and hydrology, ecology, history and archaeology, socioeconomics, land use, and noise levels, prepared by Pacific Northwest Laboratory (PNL) staff. Models are described that are to be used in simulating realized or potential impacts from nuclear materials at the Hanford Site. Included are models of radionuclide transport in groundwater and atmospheric pathways, and of radiation dose to populationsmore » via all known pathways from known initial conditions. Federal and state regulations, DOE orders and permits, and environmental standards directly applicable for the NEPA documents at the Hanford Site, are provided.« less

  16. 42 CFR 82.3 - What Are the Requirements for Dose Reconstruction Under EEOICPA?

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... SERVICES OCCUPATIONAL SAFETY AND HEALTH RESEARCH AND RELATED ACTIVITIES METHODS FOR CONDUCTING DOSE... unrecorded doses, which are estimated using commonly practiced dose reconstruction methods and would have to...

  17. SU-F-P-56: On a New Approach to Reconstruct the Patient Dose From Phantom Measurements

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bangtsson, E; Vries, W de

    Purpose: The development of complex radiation treatment schemes emphasizes the need for advanced QA analysis methods to ensure patient safety. One such tool is the Delta4 DVH Anatomy software, where the patient dose is reconstructed from phantom measurements. Deviations in the measured dose are transferred to the patient anatomy and their clinical impact is evaluated in situ. Results from the original algorithm revealed weaknesses that may introduce artefacts in the reconstructed dose. These can lead to false negatives or obscure the effects of minor dose deviations from delivery failures. Here, we will present results from a new patient dose reconstructionmore » algorithm. Methods: The main steps of the new algorithm are: (1) the dose delivered to a phantom is measured in a number of detector positions. (2) The measured dose is compared to an internally calculated dose distribution evaluated in said positions. The so-obtained dose difference is (3) used to calculate an energy fluence difference. This entity is (4) used as input to a patient dose correction calculation routine. Finally, the patient dose is reconstructed by adding said patient dose correction to the planned patient dose. The internal dose calculation in step (2) and (4) is based on the Pencil Beam algorithm. Results: The new patient dose reconstruction algorithm have been tested on a number of patients and the standard metrics dose deviation (DDev), distance-to-agreement (DTA) and Gamma index are improved when compared to the original algorithm. In a certain case the Gamma index (3%/3mm) increases from 72.9% to 96.6%. Conclusion: The patient dose reconstruction algorithm is improved. This leads to a reduction in non-physical artefacts in the reconstructed patient dose. As a consequence, the possibility to detect deviations in the dose that is delivered to the patient is improved. An increase in Gamma index for the PTV can be seen. The corresponding author is an employee of ScandiDos.« less

  18. Online dose reconstruction for tracked volumetric arc therapy: Real-time implementation and offline quality assurance for prostate SBRT.

    PubMed

    Kamerling, Cornelis Ph; Fast, Martin F; Ziegenhein, Peter; Menten, Martin J; Nill, Simeon; Oelfke, Uwe

    2017-11-01

    Firstly, this study provides a real-time implementation of online dose reconstruction for tracked volumetric arc therapy (VMAT). Secondly, this study describes a novel offline quality assurance tool, based on commercial dose calculation algorithms. Online dose reconstruction for VMAT is a computationally challenging task in terms of computer memory usage and calculation speed. To potentially reduce the amount of memory used, we analyzed the impact of beam angle sampling for dose calculation on the accuracy of the dose distribution. To establish the performance of the method, we planned two single-arc VMAT prostate stereotactic body radiation therapy cases for delivery with dynamic MLC tracking. For quality assurance of our online dose reconstruction method we have also developed a stand-alone offline dose reconstruction tool, which utilizes the RayStation treatment planning system to calculate dose. For the online reconstructed dose distributions of the tracked deliveries, we could establish strong resemblance for 72 and 36 beam co-planar equidistant beam samples with less than 1.2% deviation for the assessed dose-volume indicators (clinical target volume D98 and D2, and rectum D2). We could achieve average runtimes of 28-31 ms per reported MLC aperture for both dose computation and accumulation, meeting our real-time requirement. To cross-validate the offline tool, we have compared the planned dose to the offline reconstructed dose for static deliveries and found excellent agreement (3%/3 mm global gamma passing rates of 99.8%-100%). Being able to reconstruct dose during delivery enables online quality assurance and online replanning strategies for VMAT. The offline quality assurance tool provides the means to validate novel online dose reconstruction applications using a commercial dose calculation engine. © 2017 The Authors. Medical Physics published by Wiley Periodicals, Inc. on behalf of American Association of Physicists in Medicine.

  19. Accurate tissue characterization in low-dose CT imaging with pure iterative reconstruction.

    PubMed

    Murphy, Kevin P; McLaughlin, Patrick D; Twomey, Maria; Chan, Vincent E; Moloney, Fiachra; Fung, Adrian J; Chan, Faimee E; Kao, Tafline; O'Neill, Siobhan B; Watson, Benjamin; O'Connor, Owen J; Maher, Michael M

    2017-04-01

    We assess the ability of low-dose hybrid iterative reconstruction (IR) and 'pure' model-based IR (MBIR) images to maintain accurate Hounsfield unit (HU)-determined tissue characterization. Standard-protocol (SP) and low-dose modified-protocol (MP) CTs were contemporaneously acquired in 34 Crohn's disease patients referred for CT. SP image reconstruction was via the manufacturer's recommendations (60% FBP, filtered back projection; 40% ASiR, Adaptive Statistical iterative Reconstruction; SP-ASiR40). MP data sets underwent four reconstructions (100% FBP; 40% ASiR; 70% ASiR; MBIR). Three observers measured tissue volumes using HU thresholds for fat, soft tissue and bone/contrast on each data set. Analysis was via SPSS. Inter-observer agreement was strong for 1530 datapoints (rs > 0.9). MP-MBIR tissue volume measurement was superior to other MP reconstructions and closely correlated with the reference SP-ASiR40 images for all tissue types. MP-MBIR superiority was most marked for fat volume calculation - close SP-ASiR40 and MP-MBIR Bland-Altman plot correlation was seen with the lowest average difference (336 cm 3 ) when compared with other MP reconstructions. Hounsfield unit-determined tissue volume calculations from MP-MBIR images resulted in values comparable to SP-ASiR40 calculations and values that are superior to MP-ASiR images. Accuracy of estimation of volume of tissues (e.g. fat) using segmentation software on low-dose CT images appears optimal when reconstructed with pure IR. © 2016 The Royal Australian and New Zealand College of Radiologists.

  20. Abdominal CT with model-based iterative reconstruction (MBIR): initial results of a prospective trial comparing ultralow-dose with standard-dose imaging.

    PubMed

    Pickhardt, Perry J; Lubner, Meghan G; Kim, David H; Tang, Jie; Ruma, Julie A; del Rio, Alejandro Muñoz; Chen, Guang-Hong

    2012-12-01

    The purpose of this study was to report preliminary results of an ongoing prospective trial of ultralow-dose abdominal MDCT. Imaging with standard-dose contrast-enhanced (n = 21) and unenhanced (n = 24) clinical abdominal MDCT protocols was immediately followed by ultralow-dose imaging of a matched series of 45 consecutively registered adults (mean age, 57.9 years; mean body mass index, 28.5). The ultralow-dose images were reconstructed with filtered back projection (FBP), adaptive statistical iterative reconstruction (ASIR), and model-based iterative reconstruction (MBIR). Standard-dose series were reconstructed with FBP (reference standard). Image noise was measured at multiple predefined sites. Two blinded abdominal radiologists interpreted randomly presented ultralow-dose images for multilevel subjective image quality (5-point scale) and depiction of organ-based focal lesions. Mean dose reduction relative to the standard series was 74% (median, 78%; range, 57-88%; mean effective dose, 1.90 mSv). Mean multiorgan image noise for low-dose MBIR was 14.7 ± 2.6 HU, significantly lower than standard-dose FBP (28.9 ± 9.9 HU), low-dose FBP (59.2 ± 23.3 HU), and ASIR (45.6 ± 14.1 HU) (p < 0.001). The mean subjective image quality score for low-dose MBIR (3.0 ± 0.5) was significantly higher than for low-dose FBP (1.6 ± 0.7) and ASIR (1.8 ± 0.7) (p < 0.001). Readers identified 213 focal noncalcific lesions with standard-dose FBP. Pooled lesion detection was higher for low-dose MBIR (79.3% [169/213]) compared with low-dose FBP (66.2% [141/213]) and ASIR (62.0% [132/213]) (p < 0.05). MBIR shows great potential for substantially reducing radiation doses at routine abdominal CT. Both FBP and ASIR are limited in this regard owing to reduced image quality and diagnostic capability. Further investigation is needed to determine the optimal dose level for MBIR that maintains adequate diagnostic performance. In general, objective and subjective image quality measurements do

  1. Diagnostic Accuracy of CT Enterography for Active Inflammatory Terminal Ileal Crohn Disease: Comparison of Full-Dose and Half-Dose Images Reconstructed with FBP and Half-Dose Images with SAFIRE.

    PubMed

    Gandhi, Namita S; Baker, Mark E; Goenka, Ajit H; Bullen, Jennifer A; Obuchowski, Nancy A; Remer, Erick M; Coppa, Christopher P; Einstein, David; Feldman, Myra K; Kanmaniraja, Devaraju; Purysko, Andrei S; Vahdat, Noushin; Primak, Andrew N; Karim, Wadih; Herts, Brian R

    2016-08-01

    Purpose To compare the diagnostic accuracy and image quality of computed tomographic (CT) enterographic images obtained at half dose and reconstructed with filtered back projection (FBP) and sinogram-affirmed iterative reconstruction (SAFIRE) with those of full-dose CT enterographic images reconstructed with FBP for active inflammatory terminal or neoterminal ileal Crohn disease. Materials and Methods This retrospective study was compliant with HIPAA and approved by the institutional review board. The requirement to obtain informed consent was waived. Ninety subjects (45 with active terminal ileal Crohn disease and 45 without Crohn disease) underwent CT enterography with a dual-source CT unit. The reference standard for confirmation of active Crohn disease was active terminal ileal Crohn disease based on ileocolonoscopy or established Crohn disease and imaging features of active terminal ileal Crohn disease. Data from both tubes were reconstructed with FBP (100% exposure); data from the primary tube (50% exposure) were reconstructed with FBP and SAFIRE strengths 3 and 4, yielding four datasets per CT enterographic examination. The mean volume CT dose index (CTDIvol) and size-specific dose estimate (SSDE) at full dose were 13.1 mGy (median, 7.36 mGy) and 15.9 mGy (median, 13.06 mGy), respectively, and those at half dose were 6.55 mGy (median, 3.68 mGy) and 7.95 mGy (median, 6.5 mGy). Images were subjectively evaluated by eight radiologists for quality and diagnostic confidence for Crohn disease. Areas under the receiver operating characteristic curves (AUCs) were estimated, and the multireader, multicase analysis of variance method was used to compare reconstruction methods on the basis of a noninferiority margin of 0.05. Results The mean AUCs with half-dose scans (FBP, 0.908; SAFIRE 3, 0.935; SAFIRE 4, 0.924) were noninferior to the mean AUC with full-dose FBP scans (0.908; P < .003). The proportion of images with inferior quality was significantly higher with all

  2. Dose fractionation theorem in 3-D reconstruction (tomography)

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Glaeser, R.M.

    It is commonly assumed that the large number of projections for single-axis tomography precludes its application to most beam-labile specimens. However, Hegerl and Hoppe have pointed out that the total dose required to achieve statistical significance for each voxel of a computed 3-D reconstruction is the same as that required to obtain a single 2-D image of that isolated voxel, at the same level of statistical significance. Thus a statistically significant 3-D image can be computed from statistically insignificant projections, as along as the total dosage that is distributed among these projections is high enough that it would have resultedmore » in a statistically significant projection, if applied to only one image. We have tested this critical theorem by simulating the tomographic reconstruction of a realistic 3-D model created from an electron micrograph. The simulations verify the basic conclusions of high absorption, signal-dependent noise, varying specimen contrast and missing angular range. Furthermore, the simulations demonstrate that individual projections in the series of fractionated-dose images can be aligned by cross-correlation because they contain significant information derived from the summation of features from different depths in the structure. This latter information is generally not useful for structural interpretation prior to 3-D reconstruction, owing to the complexity of most specimens investigated by single-axis tomography. These results, in combination with dose estimates for imaging single voxels and measurements of radiation damage in the electron microscope, demonstrate that it is feasible to use single-axis tomography with soft X-ray microscopy of frozen-hydrated specimens.« less

  3. Ultralow dose computed tomography attenuation correction for pediatric PET CT using adaptive statistical iterative reconstruction

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Brady, Samuel L., E-mail: samuel.brady@stjude.org; Shulkin, Barry L.

    2015-02-15

    Purpose: To develop ultralow dose computed tomography (CT) attenuation correction (CTAC) acquisition protocols for pediatric positron emission tomography CT (PET CT). Methods: A GE Discovery 690 PET CT hybrid scanner was used to investigate the change to quantitative PET and CT measurements when operated at ultralow doses (10–35 mA s). CT quantitation: noise, low-contrast resolution, and CT numbers for 11 tissue substitutes were analyzed in-phantom. CT quantitation was analyzed to a reduction of 90% volume computed tomography dose index (0.39/3.64; mGy) from baseline. To minimize noise infiltration, 100% adaptive statistical iterative reconstruction (ASiR) was used for CT reconstruction. PET imagesmore » were reconstructed with the lower-dose CTAC iterations and analyzed for: maximum body weight standardized uptake value (SUV{sub bw}) of various diameter targets (range 8–37 mm), background uniformity, and spatial resolution. Radiation dose and CTAC noise magnitude were compared for 140 patient examinations (76 post-ASiR implementation) to determine relative dose reduction and noise control. Results: CT numbers were constant to within 10% from the nondose reduced CTAC image for 90% dose reduction. No change in SUV{sub bw}, background percent uniformity, or spatial resolution for PET images reconstructed with CTAC protocols was found down to 90% dose reduction. Patient population effective dose analysis demonstrated relative CTAC dose reductions between 62% and 86% (3.2/8.3–0.9/6.2). Noise magnitude in dose-reduced patient images increased but was not statistically different from predose-reduced patient images. Conclusions: Using ASiR allowed for aggressive reduction in CT dose with no change in PET reconstructed images while maintaining sufficient image quality for colocalization of hybrid CT anatomy and PET radioisotope uptake.« less

  4. X-ray dose reduction in abdominal computed tomography using advanced iterative reconstruction algorithms.

    PubMed

    Ning, Peigang; Zhu, Shaocheng; Shi, Dapeng; Guo, Ying; Sun, Minghua

    2014-01-01

    This work aims to explore the effects of adaptive statistical iterative reconstruction (ASiR) and model-based iterative reconstruction (MBIR) algorithms in reducing computed tomography (CT) radiation dosages in abdominal imaging. CT scans on a standard male phantom were performed at different tube currents. Images at the different tube currents were reconstructed with the filtered back-projection (FBP), 50% ASiR and MBIR algorithms and compared. The CT value, image noise and contrast-to-noise ratios (CNRs) of the reconstructed abdominal images were measured. Volumetric CT dose indexes (CTDIvol) were recorded. At different tube currents, 50% ASiR and MBIR significantly reduced image noise and increased the CNR when compared with FBP. The minimal tube current values required by FBP, 50% ASiR, and MBIR to achieve acceptable image quality using this phantom were 200, 140, and 80 mA, respectively. At the identical image quality, 50% ASiR and MBIR reduced the radiation dose by 35.9% and 59.9% respectively when compared with FBP. Advanced iterative reconstruction techniques are able to reduce image noise and increase image CNRs. Compared with FBP, 50% ASiR and MBIR reduced radiation doses by 35.9% and 59.9%, respectively.

  5. Estimation of 1945 to 1957 food consumption

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Anderson, D.M.; Bates, D.J.; Marsh, T.L.

    This report details the methods used and the results of the study on the estimated historic levels of food consumption by individuals in the Hanford Environmental Dose Reconstruction (HEDR) study area from 1945--1957. This period includes the time of highest releases from Hanford and is the period for which data are being collected in the Hanford Thyroid Disease Study. These estimates provide the food-consumption inputs for the HEDR database of individual diets. This database will be an input file in the Hanford Environmental Dose Reconstruction Integrated Code (HEDRIC) computer model that will be used to calculate the radiation dose. Themore » report focuses on fresh milk, eggs, lettuce, and spinach. These foods were chosen because they have been found to be significant contributors to radiation dose based on the Technical Steering Panel dose decision level.« less

  6. Validation of an improved helical diode array and dose reconstruction software using TG-244 datasets and stringent dose comparison criteria.

    PubMed

    Ahmed, Saeed; Nelms, Benjamin; Kozelka, Jakub; Zhang, Geoffrey; Moros, Eduardo; Feygelman, Vladimir

    2016-11-08

    The original helical ArcCHECK (AC) diode array and associated software for 3D measurement-guided dose reconstruction were characterized and validated; however, recent design changes to the AC required that the subject be revisited. The most important AC change starting in 2014 was a significant reduction in the overresponse of diodes to scattered radiation outside of the direct beam, accom-plished by reducing the amount of high-Z materials adjacent to the diodes. This change improved the diode measurement accuracy, but in the process invalidated the dose reconstruction models that were assembled based on measured data acquired with the older version of the AC. A correction mechanism was intro-duced in the reconstruction software (3DVH) to accommodate this and potential future design changes without requiring updating model parameters. For each permutation of AC serial number and beam model, the user can define in 3DVH a single correction factor which will be used to compensate for the difference in the out-of-field response between the new and original AC designs. The exact value can be determined by minimizing the dose-difference with an ionization chamber or another independent dosimeter. A single value of 1.17, corresponding to the maximum measured out-of-field response difference between the new and old AC, provided satisfactory results for all studied energies (6X, 15X, and flatten-ing filter-free 10XFFF). A library of standard cases recommended by the AAPM TG-244 Report was used for reconstructed dose verification. The overall difference between reconstructed dose and an ion chamber in a water-equivalent phantom in the targets was 0.0% ± 1.4% (1 SD). The reconstructed dose on a homogeneous phantom was also compared to a biplanar diode dosimeter (Delta4) using gamma analysis with 2% (local dose-error normalization) / 2 mm / 10% cutoff criteria. The mean agreement rate was 96.7% ± 3.7%. For the plans common with the previous comparison, the mean agreement

  7. Limiting CT radiation dose in children with craniosynostosis: phantom study using model-based iterative reconstruction.

    PubMed

    Kaasalainen, Touko; Palmu, Kirsi; Lampinen, Anniina; Reijonen, Vappu; Leikola, Junnu; Kivisaari, Riku; Kortesniemi, Mika

    2015-09-01

    Medical professionals need to exercise particular caution when developing CT scanning protocols for children who require multiple CT studies, such as those with craniosynostosis. To evaluate the utility of ultra-low-dose CT protocols with model-based iterative reconstruction techniques for craniosynostosis imaging. We scanned two pediatric anthropomorphic phantoms with a 64-slice CT scanner using different low-dose protocols for craniosynostosis. We measured organ doses in the head region with metal-oxide-semiconductor field-effect transistor (MOSFET) dosimeters. Numerical simulations served to estimate organ and effective doses. We objectively and subjectively evaluated the quality of images produced by adaptive statistical iterative reconstruction (ASiR) 30%, ASiR 50% and Veo (all by GE Healthcare, Waukesha, WI). Image noise and contrast were determined for different tissues. Mean organ dose with the newborn phantom was decreased up to 83% compared to the routine protocol when using ultra-low-dose scanning settings. Similarly, for the 5-year phantom the greatest radiation dose reduction was 88%. The numerical simulations supported the findings with MOSFET measurements. The image quality remained adequate with Veo reconstruction, even at the lowest dose level. Craniosynostosis CT with model-based iterative reconstruction could be performed with a 20-μSv effective dose, corresponding to the radiation exposure of plain skull radiography, without compromising required image quality.

  8. Low-dose CT reconstruction with patch based sparsity and similarity constraints

    NASA Astrophysics Data System (ADS)

    Xu, Qiong; Mou, Xuanqin

    2014-03-01

    As the rapid growth of CT based medical application, low-dose CT reconstruction becomes more and more important to human health. Compared with other methods, statistical iterative reconstruction (SIR) usually performs better in lowdose case. However, the reconstructed image quality of SIR highly depends on the prior based regularization due to the insufficient of low-dose data. The frequently-used regularization is developed from pixel based prior, such as the smoothness between adjacent pixels. This kind of pixel based constraint cannot distinguish noise and structures effectively. Recently, patch based methods, such as dictionary learning and non-local means filtering, have outperformed the conventional pixel based methods. Patch is a small area of image, which expresses structural information of image. In this paper, we propose to use patch based constraint to improve the image quality of low-dose CT reconstruction. In the SIR framework, both patch based sparsity and similarity are considered in the regularization term. On one hand, patch based sparsity is addressed by sparse representation and dictionary learning methods, on the other hand, patch based similarity is addressed by non-local means filtering method. We conducted a real data experiment to evaluate the proposed method. The experimental results validate this method can lead to better image with less noise and more detail than other methods in low-count and few-views cases.

  9. Can sinogram-affirmed iterative (SAFIRE) reconstruction improve imaging quality on low-dose lung CT screening compared with traditional filtered back projection (FBP) reconstruction?

    PubMed

    Yang, Wen Jie; Yan, Fu Hua; Liu, Bo; Pang, Li Fang; Hou, Liang; Zhang, Huan; Pan, Zi Lai; Chen, Ke Min

    2013-01-01

    To evaluate the performance of sinogram-affirmed iterative (SAFIRE) reconstruction on image quality of low-dose lung computed tomographic (CT) screening compared with filtered back projection (FBP). Three hundred four patients for annual low-dose lung CT screening were examined by a dual-source CT system at 120 kilovolt (peak) with reference tube current of 40 mA·s. Six image serials were reconstructed, including one data set of FBP and 5 data sets of SAFIRE with different reconstruction strengths from 1 to 5. Image noise was recorded; and subjective scores of image noise, images artifacts, and the overall image quality were also assessed by 2 radiologists. The mean ± SD weight for all patients was 66.3 ± 12.8 kg, and the body mass index was 23.4 ± 3.2. The mean ± SD dose-length product was 95.2 ± 30.6 mGy cm, and the mean ± SD effective dose was 1.6 ± 0.5 mSv. The observation agreements for image noise grade, artifact grade, and the overall image quality were 0.785, 0.595 and 0.512, respectively. Among the overall 6 data sets, both the measured mean objective image noise and the subjective image noise of FBP was the highest, and the image noise decreased with the increasing of SAFIRE reconstruction strength. The data sets of S3 obtained the best image quality scores. Sinogram-affirmed iterative reconstruction can significantly improve image quality of low-dose lung CT screening compared with FBP, and SAFIRE with reconstruction strength 3 was a pertinent choice for low-dose lung CT.

  10. Feasibility of using two-dimensional array dosimeter for in vivo dose reconstruction via transit dosimetry.

    PubMed

    Chung, Heeteak; Li, Jonathan; Samant, Sanjiv

    2011-04-08

    Two-dimensional array dosimeters are commonly used to perform pretreatment quality assurance procedures, which makes them highly desirable for measuring transit fluences for in vivo dose reconstruction. The purpose of this study was to determine if an in vivo dose reconstruction via transit dosimetry using a 2D array dosimeter was possible. To test the accuracy of measuring transit dose distribution using a 2D array dosimeter, we evaluated it against the measurements made using ionization chamber and radiochromic film (RCF) profiles for various air gap distances (distance from the exit side of the solid water slabs to the detector distance; 0 cm, 30 cm, 40 cm, 50 cm, and 60 cm) and solid water slab thicknesses (10 cm and 20 cm). The backprojection dose reconstruction algorithm was described and evaluated. The agreement between the ionization chamber and RCF profiles for the transit dose distribution measurements ranged from -0.2% ~ 4.0% (average 1.79%). Using the backprojection dose reconstruction algorithm, we found that, of the six conformal fields, four had a 100% gamma index passing rate (3%/3 mm gamma index criteria), and two had gamma index passing rates of 99.4% and 99.6%. Of the five IMRT fields, three had a 100% gamma index passing rate, and two had gamma index passing rates of 99.6% and 98.8%. It was found that a 2D array dosimeter could be used for backprojection dose reconstruction for in vivo dosimetry.

  11. 42 CFR 82.25 - When will NIOSH report dose reconstruction results, and to whom?

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... 42 Public Health 1 2014-10-01 2014-10-01 false When will NIOSH report dose reconstruction results, and to whom? 82.25 Section 82.25 Public Health PUBLIC HEALTH SERVICE, DEPARTMENT OF HEALTH AND HUMAN SERVICES OCCUPATIONAL SAFETY AND HEALTH RESEARCH AND RELATED ACTIVITIES METHODS FOR CONDUCTING DOSE RECONSTRUCTION UNDER THE ENERGY EMPLOYEES...

  12. 3D Dose reconstruction: Banding artefacts in cine mode EPID images during VMAT delivery

    NASA Astrophysics Data System (ADS)

    Woodruff, H. C.; Greer, P. B.

    2013-06-01

    Cine (continuous) mode images obtained during VMAT delivery are heavily degraded by banding artefacts. We have developed a method to reconstruct the pulse sequence (and hence dose deposited) from open field images. For clinical VMAT fields we have devised a frame averaging strategy that greatly improves image quality and dosimetric information for three-dimensional dose reconstruction.

  13. Toxicology profiles of chemical and radiological contaminants at Hanford

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Harper, B.L.; Strenge, D.L.; Stenner, R.D.

    1995-07-01

    This document summarizes toxicology information required under Section 3.3 (Toxicity Assessment) of HSRAM, and can also be used to develop the short toxicology profiles required in site assessments (described in HSRAM, Section 3.3.5). Toxicology information is used in the dose-response step of the risk assessment process. The dose-response assessment describes the quantitative relationship between the amount of exposure to a substance and the extent of toxic injury or disease. Data are derived from animal studies or, less frequently, from studies in exposed human populations. The risks of a substance cannot be ascertained with any degree of confidence unless dose-response relationsmore » are quantified. This document summarizes dose-response information available from the US Environmental Protection Agency (EPA). The contaminants selected for inclusion in this document represent most of the contaminants found at Hanford (both radiological and chemical), based on sampling and analysis performed during site investigations, and historical information on waste disposal practices at the Hanford Site.« less

  14. Reconstruction of organ dose for external radiotherapy patients in retrospective epidemiologic studies

    NASA Astrophysics Data System (ADS)

    Lee, Choonik; Jung, Jae Won; Pelletier, Christopher; Pyakuryal, Anil; Lamart, Stephanie; Kim, Jong Oh; Lee, Choonsik

    2015-03-01

    Organ dose estimation for retrospective epidemiological studies of late effects in radiotherapy patients involves two challenges: radiological images to represent patient anatomy are not usually available for patient cohorts who were treated years ago, and efficient dose reconstruction methods for large-scale patient cohorts are not well established. In the current study, we developed methods to reconstruct organ doses for radiotherapy patients by using a series of computational human phantoms coupled with a commercial treatment planning system (TPS) and a radiotherapy-dedicated Monte Carlo transport code, and performed illustrative dose calculations. First, we developed methods to convert the anatomy and organ contours of the pediatric and adult hybrid computational phantom series to Digital Imaging and Communications in Medicine (DICOM)-image and DICOM-structure files, respectively. The resulting DICOM files were imported to a commercial TPS for simulating radiotherapy and dose calculation for in-field organs. The conversion process was validated by comparing electron densities relative to water and organ volumes between the hybrid phantoms and the DICOM files imported in TPS, which showed agreements within 0.1 and 2%, respectively. Second, we developed a procedure to transfer DICOM-RT files generated from the TPS directly to a Monte Carlo transport code, x-ray Voxel Monte Carlo (XVMC) for more accurate dose calculations. Third, to illustrate the performance of the established methods, we simulated a whole brain treatment for the 10 year-old male phantom and a prostate treatment for the adult male phantom. Radiation doses to selected organs were calculated using the TPS and XVMC, and compared to each other. Organ average doses from the two methods matched within 7%, whereas maximum and minimum point doses differed up to 45%. The dosimetry methods and procedures established in this study will be useful for the reconstruction of organ dose to support

  15. 76 FR 16787 - Subcommittee for Dose Reconstruction Reviews (SDRR), Advisory Board on Radiation and Worker...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-03-25

    ... Evaluation Report: OCAS- PER-012--Evaluation of Highly Insoluble Plutonium Compounds; discussion of dose reconstruction cases under review (sets 7-9); OCAS dose reconstruction quality management and assurance... 30333, Telephone (513) 533-6800, Toll Free 1 (800) CDC-INFO, E-mail ocas@cdc.gov . The Director...

  16. Thyroid ultrasound abnormalities in persons exposed during childhood to 131I from the Hanford nuclear site.

    PubMed

    Kopecky, Kenneth J; Onstad, Lynn; Hamilton, Thomas E; Davis, Scott

    2005-06-01

    Approximately 740,000 Ci of 131I were released into the atmosphere from the Hanford Nuclear Site in Washington State during 1944-1957. The Hanford Thyroid Disease Study (HTDS), conducted to determine if thyroid disease is increased among persons exposed as children to that 131I, also investigated whether thyroid ultrasound (US) abnormalities might be increased. The HTDS cohort (n = 5199) was selected from 1940-1946 births to mothers with usual residence in seven Washington counties. Of these, 4350 were located alive, 3447 attended HTDS clinics (1992-1997), and 3440 (1747 females) had evaluable clinical results and sufficient data to characterize their Hanford 131I exposures. US abnormalities were observed in 55.5% of women and 37.4% of men. Thyroid radiation doses from Hanford 131I, which could be estimated for 3191 evaluable participants, ranged from 0.0029 to 2823 mGy (mean, 174 mGy). Estimated dose was not significantly associated with the prevalence of any US abnormality (p = 0.21), US nodules with maximum dimension 5 mm or more (p = 0.64), or average number of US nodules per person (p = 0.80 for nodules with maximum dimension 5 mm or more). These results remained unchanged after accounting for factors that might confound or modify dose-response relationships and for uncertainty of the dose estimates. This study does not support the hypothesis that 131I exposure at Hanford's dose levels and dose rates during infancy and childhood increases the prevalence of adult thyroid US abnormalities.

  17. Evaluating the effect of increased pitch, iterative reconstruction and dual source CT on dose reduction and image quality.

    PubMed

    Gariani, Joanna; Martin, Steve P; Botsikas, Diomidis; Becker, Christoph D; Montet, Xavier

    2018-06-14

    To compare radiation dose and image quality of thoracoabdominal scans obtained with a high-pitch protocol (pitch 3.2) and iterative reconstruction (Sinogram Affirmed Iterative Reconstruction) in comparison to standard pitch reconstructed with filtered back projection (FBP) using dual source CT. 114 CT scans (Somatom Definition Flash, Siemens Healthineers, Erlangen, Germany), 39 thoracic scans, 54 thoracoabdominal scans and 21 abdominal scans were performed. Analysis of three protocols was undertaken; pitch of 1 reconstructed with FBP, pitch of 3.2 reconstructed with SAFIRE, pitch of 3.2 with stellar detectors reconstructed with SAFIRE. Objective and subjective image analysis were performed. Dose differences of the protocols used were compared. Dose was reduced when comparing scans with a pitch of 1 reconstructed with FBP to high-pitch scans with a pitch of 3.2 reconstructed with SAFIRE with a reduction of volume CT dose index of 75% for thoracic scans, 64% for thoracoabdominal scans and 67% for abdominal scans. There was a further reduction after the implementation of stellar detectors reflected in a reduction of 36% of the dose-length product for thoracic scans. This was not at the detriment of image quality, contrast-to-noise ratio, signal-to-noise ratio and the qualitative image analysis revealed a superior image quality in the high-pitch protocols. The combination of a high pitch protocol with iterative reconstruction allows significant dose reduction in routine chest and abdominal scans whilst maintaining or improving diagnostic image quality, with a further reduction in thoracic scans with stellar detectors. Advances in knowledge: High pitch imaging with iterative reconstruction is a tool that can be used to reduce dose without sacrificing image quality.

  18. Increased occupational radiation doses: nuclear fuel cycle.

    PubMed

    Bouville, André; Kryuchkov, Victor

    2014-02-01

    The increased occupational doses resulting from the Chernobyl nuclear reactor accident that occurred in Ukraine in April 1986, the reactor accident of Fukushima that took place in Japan in March 2011, and the early operations of the Mayak Production Association in Russia in the 1940s and 1950s are presented and discussed. For comparison purposes, the occupational doses due to the other two major reactor accidents (Windscale in the United Kingdom in 1957 and Three Mile Island in the United States in 1979) and to the main plutonium-producing facility in the United States (Hanford Works) are also covered but in less detail. Both for the Chernobyl nuclear reactor accident and the routine operations at Mayak, the considerable efforts made to reconstruct individual doses from external irradiation to a large number of workers revealed that the recorded doses had been overestimated by a factor of about two.Introduction of Increased Occupational Exposures: Nuclear Industry Workers. (Video 1:32, http://links.lww.com/HP/A21).

  19. Evaluation of an iterative model-based reconstruction of pediatric abdominal CT with regard to image quality and radiation dose.

    PubMed

    Aurumskjöld, Marie-Louise; Söderberg, Marcus; Stålhammar, Fredrik; von Steyern, Kristina Vult; Tingberg, Anders; Ydström, Kristina

    2018-06-01

    Background In pediatric patients, computed tomography (CT) is important in the medical chain of diagnosing and monitoring various diseases. Because children are more radiosensitive than adults, they require minimal radiation exposure. One way to achieve this goal is to implement new technical solutions, like iterative reconstruction. Purpose To evaluate the potential of a new, iterative, model-based method for reconstructing (IMR) pediatric abdominal CT at a low radiation dose and determine whether it maintains or improves image quality, compared to the current reconstruction method. Material and Methods Forty pediatric patients underwent abdominal CT. Twenty patients were examined with the standard dose settings and 20 patients were examined with a 32% lower radiation dose. Images from the standard examination were reconstructed with a hybrid iterative reconstruction method (iDose 4 ), and images from the low-dose examinations were reconstructed with both iDose 4 and IMR. Image quality was evaluated subjectively by three observers, according to modified EU image quality criteria, and evaluated objectively based on the noise observed in liver images. Results Visual grading characteristics analyses showed no difference in image quality between the standard dose examination reconstructed with iDose 4 and the low dose examination reconstructed with IMR. IMR showed lower image noise in the liver compared to iDose 4 images. Inter- and intra-observer variance was low: the intraclass coefficient was 0.66 (95% confidence interval = 0.60-0.71) for the three observers. Conclusion IMR provided image quality equivalent or superior to the standard iDose 4 method for evaluating pediatric abdominal CT, even with a 32% dose reduction.

  20. 42 CFR 82.27 - How can claimants obtain reviews of their NIOSH dose reconstruction results by NIOSH?

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... METHODS FOR CONDUCTING DOSE RECONSTRUCTION UNDER THE ENERGY EMPLOYEES OCCUPATIONAL ILLNESS COMPENSATION... estimated in the completed dose reconstructions; or (2) NIOSH changes a scientific element underlying dose..., the methods employed in the review, and the review findings to the claimant, DOL, and DOE. ...

  1. 42 CFR 82.27 - How can claimants obtain reviews of their NIOSH dose reconstruction results by NIOSH?

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... METHODS FOR CONDUCTING DOSE RECONSTRUCTION UNDER THE ENERGY EMPLOYEES OCCUPATIONAL ILLNESS COMPENSATION... estimated in the completed dose reconstructions; or (2) NIOSH changes a scientific element underlying dose..., the methods employed in the review, and the review findings to the claimant, DOL, and DOE. ...

  2. 42 CFR 82.27 - How can claimants obtain reviews of their NIOSH dose reconstruction results by NIOSH?

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... METHODS FOR CONDUCTING DOSE RECONSTRUCTION UNDER THE ENERGY EMPLOYEES OCCUPATIONAL ILLNESS COMPENSATION... estimated in the completed dose reconstructions; or (2) NIOSH changes a scientific element underlying dose..., the methods employed in the review, and the review findings to the claimant, DOL, and DOE. ...

  3. 42 CFR 82.27 - How can claimants obtain reviews of their NIOSH dose reconstruction results by NIOSH?

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... METHODS FOR CONDUCTING DOSE RECONSTRUCTION UNDER THE ENERGY EMPLOYEES OCCUPATIONAL ILLNESS COMPENSATION... estimated in the completed dose reconstructions; or (2) NIOSH changes a scientific element underlying dose..., the methods employed in the review, and the review findings to the claimant, DOL, and DOE. ...

  4. Feasibility of using two‐dimensional array dosimeter for in vivo dose reconstruction via transit dosimetry

    PubMed Central

    Li, Jonathan; Samant, Sanjiv

    2011-01-01

    Two‐dimensional array dosimeters are commonly used to perform pretreatment quality assurance procedures, which makes them highly desirable for measuring transit fluences for in vivo dose reconstruction. The purpose of this study was to determine if an in vivo dose reconstruction via transit dosimetry using a 2D array dosimeter was possible. To test the accuracy of measuring transit dose distribution using a 2D array dosimeter, we evaluated it against the measurements made using ionization chamber and radiochromic film (RCF) profiles for various air gap distances (distance from the exit side of the solid water slabs to the detector distance; 0 cm, 30 cm, 40 cm, 50 cm, and 60 cm) and solid water slab thicknesses (10 cm and 20 cm). The backprojection dose reconstruction algorithm was described and evaluated. The agreement between the ionization chamber and RCF profiles for the transit dose distribution measurements ranged from ‐0.2%~ 4.0% (average 1.79%). Using the backprojection dose reconstruction algorithm, we found that, of the six conformal fields, four had a 100% gamma index passing rate (3%/3 mm gamma index criteria), and two had gamma index passing rates of 99.4% and 99.6%. Of the five IMRT fields, three had a 100% gamma index passing rate, and two had gamma index passing rates of 99.6% and 98.8%. It was found that a 2D array dosimeter could be used for backprojection dose reconstruction for in vivo dosimetry. PACS number: 87.55.N‐

  5. 77 FR 12576 - Veterans' Advisory Board on Dose Reconstruction; Meeting

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-03-01

    ... related to the Fukushima incident in Japan and the McMurdo Station in Antarctica. Meeting Agenda: The... Fairchild, USN; ``Review of the DoD Population of Interest Dose Reconstruction from the Fukushima incident...

  6. MO-FG-202-08: Real-Time Monte Carlo-Based Treatment Dose Reconstruction and Monitoring for Radiotherapy

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Tian, Z; Shi, F; Gu, X

    2016-06-15

    Purpose: This proof-of-concept study is to develop a real-time Monte Carlo (MC) based treatment-dose reconstruction and monitoring system for radiotherapy, especially for the treatments with complicated delivery, to catch treatment delivery errors at the earliest possible opportunity and interrupt the treatment only when an unacceptable dosimetric deviation from our expectation occurs. Methods: First an offline scheme is launched to pre-calculate the expected dose from the treatment plan, used as ground truth for real-time monitoring later. Then an online scheme with three concurrent threads is launched while treatment delivering, to reconstruct and monitor the patient dose in a temporally resolved fashionmore » in real-time. Thread T1 acquires machine status every 20 ms to calculate and accumulate fluence map (FM). Once our accumulation threshold is reached, T1 transfers the FM to T2 for dose reconstruction ad starts to accumulate a new FM. A GPU-based MC dose calculation is performed on T2 when MC dose engine is ready and a new FM is available. The reconstructed instantaneous dose is directed to T3 for dose accumulation and real-time visualization. Multiple dose metrics (e.g. maximum and mean dose for targets and organs) are calculated from the current accumulated dose and compared with the pre-calculated expected values. Once the discrepancies go beyond our tolerance, an error message will be send to interrupt the treatment delivery. Results: A VMAT Head-and-neck patient case was used to test the performance of our system. Real-time machine status acquisition was simulated here. The differences between the actual dose metrics and the expected ones were 0.06%–0.36%, indicating an accurate delivery. ∼10Hz frequency of dose reconstruction and monitoring was achieved, with 287.94s online computation time compared to 287.84s treatment delivery time. Conclusion: Our study has demonstrated the feasibility of computing a dose distribution in a temporally resolved

  7. Hanford Site National Environmental Policy Act (NEPA) Characterization. Revision 5

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Cushing, C.E.

    1992-12-01

    This fifth revision of the Hanford Site National Environmental Policy (NEPA) Characterization presents current environmental data regarding the Hanford Site and its immediate environs. This information is intended for use in preparing Site-related NEPA documentation. Information is presented on climate and meteorology, geology and hydrology, ecology, history and archaeology, socioeconomics, land use, and noise levels, prepared by Pacific Northwest Laboratory (PNL) staff. Models are described that are to be used in simulating realized or potential impacts from nuclear materials at the Hanford Site. Included are models of radionuclide transport in groundwater and atmospheric pathways, and of radiation dose to populationsmore » via all known pathways from known initial conditions. Federal and state regulations, DOE orders and permits, and environmental standards directly applicable for the NEPA documents at the Hanford Site, are provided.« less

  8. Radiation dose reduction in soft tissue neck CT using adaptive statistical iterative reconstruction (ASIR).

    PubMed

    Vachha, Behroze; Brodoefel, Harald; Wilcox, Carol; Hackney, David B; Moonis, Gul

    2013-12-01

    To compare objective and subjective image quality in neck CT images acquired at different tube current-time products (275 mAs and 340 mAs) and reconstructed with filtered-back-projection (FBP) and adaptive statistical iterative reconstruction (ASIR). HIPAA-compliant study with IRB approval and waiver of informed consent. 66 consecutive patients were randomly assigned to undergo contrast-enhanced neck CT at a standard tube-current-time-product (340 mAs; n = 33) or reduced tube-current-time-product (275 mAs, n = 33). Data sets were reconstructed with FBP and 2 levels (30%, 40%) of ASIR-FBP blending at 340 mAs and 275 mAs. Two neuroradiologists assessed subjective image quality in a blinded and randomized manner. Volume CT dose index (CTDIvol), dose-length-product (DLP), effective dose, and objective image noise were recorded. Signal-to-noise ratio (SNR) was computed as mean attenuation in a region of interest in the sternocleidomastoid muscle divided by image noise. Compared with FBP, ASIR resulted in a reduction of image noise at both 340 mAs and 275 mAs. Reduction of tube current from 340 mAs to 275 mAs resulted in an increase in mean objective image noise (p=0.02) and a decrease in SNR (p = 0.03) when images were reconstructed with FBP. However, when the 275 mAs images were reconstructed using ASIR, the mean objective image noise and SNR were similar to those of the standard 340 mAs CT images reconstructed with FBP (p>0.05). Subjective image noise was ranked by both raters as either average or less-than-average irrespective of the tube current and iterative reconstruction technique. Adapting ASIR into neck CT protocols reduced effective dose by 17% without compromising image quality. Copyright © 2013 Elsevier Ireland Ltd. All rights reserved.

  9. Priori mask guided image reconstruction (p-MGIR) for ultra-low dose cone-beam computed tomography

    NASA Astrophysics Data System (ADS)

    Park, Justin C.; Zhang, Hao; Chen, Yunmei; Fan, Qiyong; Kahler, Darren L.; Liu, Chihray; Lu, Bo

    2015-11-01

    Recently, the compressed sensing (CS) based iterative reconstruction method has received attention because of its ability to reconstruct cone beam computed tomography (CBCT) images with good quality using sparsely sampled or noisy projections, thus enabling dose reduction. However, some challenges remain. In particular, there is always a tradeoff between image resolution and noise/streak artifact reduction based on the amount of regularization weighting that is applied uniformly across the CBCT volume. The purpose of this study is to develop a novel low-dose CBCT reconstruction algorithm framework called priori mask guided image reconstruction (p-MGIR) that allows reconstruction of high-quality low-dose CBCT images while preserving the image resolution. In p-MGIR, the unknown CBCT volume was mathematically modeled as a combination of two regions: (1) where anatomical structures are complex, and (2) where intensities are relatively uniform. The priori mask, which is the key concept of the p-MGIR algorithm, was defined as the matrix that distinguishes between the two separate CBCT regions where the resolution needs to be preserved and where streak or noise needs to be suppressed. We then alternately updated each part of image by solving two sub-minimization problems iteratively, where one minimization was focused on preserving the edge information of the first part while the other concentrated on the removal of noise/artifacts from the latter part. To evaluate the performance of the p-MGIR algorithm, a numerical head-and-neck phantom, a Catphan 600 physical phantom, and a clinical head-and-neck cancer case were used for analysis. The results were compared with the standard Feldkamp-Davis-Kress as well as conventional CS-based algorithms. Examination of the p-MGIR algorithm showed that high-quality low-dose CBCT images can be reconstructed without compromising the image resolution. For both phantom and the patient cases, the p-MGIR is able to achieve a clinically

  10. SparseCT: interrupted-beam acquisition and sparse reconstruction for radiation dose reduction

    NASA Astrophysics Data System (ADS)

    Koesters, Thomas; Knoll, Florian; Sodickson, Aaron; Sodickson, Daniel K.; Otazo, Ricardo

    2017-03-01

    State-of-the-art low-dose CT methods reduce the x-ray tube current and use iterative reconstruction methods to denoise the resulting images. However, due to compromises between denoising and image quality, only moderate dose reductions up to 30-40% are accepted in clinical practice. An alternative approach is to reduce the number of x-ray projections and use compressed sensing to reconstruct the full-tube-current undersampled data. This idea was recognized in the early days of compressed sensing and proposals for CT dose reduction appeared soon afterwards. However, no practical means of undersampling has yet been demonstrated in the challenging environment of a rapidly rotating CT gantry. In this work, we propose a moving multislit collimator as a practical incoherent undersampling scheme for compressed sensing CT and evaluate its application for radiation dose reduction. The proposed collimator is composed of narrow slits and moves linearly along the slice dimension (z), to interrupt the incident beam in different slices for each x-ray tube angle (θ). The reduced projection dataset is then reconstructed using a sparse approach, where 3D image gradients are employed to enforce sparsity. The effects of the collimator slits on the beam profile were measured and represented as a continuous slice profile. SparseCT was tested using retrospective undersampling and compared against commercial current-reduction techniques on phantoms and in vivo studies. Initial results suggest that SparseCT may enable higher performance than current-reduction, particularly for high dose reduction factors.

  11. Does iterative reconstruction lower CT radiation dose: evaluation of 15,000 examinations.

    PubMed

    Noël, Peter B; Renger, Bernhard; Fiebich, Martin; Münzel, Daniela; Fingerle, Alexander A; Rummeny, Ernst J; Dobritz, Martin

    2013-01-01

    Evaluation of 15,000 computed tomography (CT) examinations to investigate if iterative reconstruction (IR) reduces sustainably radiation exposure. Information from 15,000 CT examinations was collected, including all aspects of the exams such as scan parameter, patient information, and reconstruction instructions. The examinations were acquired between January 2010 and December 2012, while after 15 months a first generation IR algorithm was installed. To collect the necessary information from PACS, RIS, MPPS and structured reports a Dose Monitoring System was developed. To harvest all possible information an optical character recognition system was integrated, for example to collect information from the screenshot CT-dose report. The tool transfers all data to a database for further processing such as the calculation of effective dose and organ doses. To evaluate if IR provides a sustainable dose reduction, the effective dose values were statistically analyzed with respect to protocol type, diagnostic indication, and patient population. IR has the potential to reduce radiation dose significantly. Before clinical introduction of IR the average effective dose was 10.1±7.8mSv and with IR 8.9±7.1mSv (p*=0.01). Especially in CTA, with the possibility to use kV reduction protocols, such as in aortic CTAs (before IR: average14.2±7.8mSv; median11.4mSv /with IR:average9.9±7.4mSv; median7.4mSv), or pulmonary CTAs (before IR: average9.7±6.2mSV; median7.7mSv /with IR: average6.4±4.7mSv; median4.8mSv) the dose reduction effect is significant(p*=0.01). On the contrary for unenhanced low-dose scans of the cranial (for example sinuses) the reduction is not significant (before IR:average6.6±5.8mSv; median3.9mSv/with IR:average6.0±3.1mSV; median3.2mSv). The dose aspect remains a priority in CT research. Iterative reconstruction algorithms reduce sustainably and significantly radiation dose in the clinical routine. Our results illustrate that not only in studies with a limited

  12. Characterization of adaptive statistical iterative reconstruction algorithm for dose reduction in CT: A pediatric oncology perspective

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Brady, S. L.; Yee, B. S.; Kaufman, R. A.

    Purpose: This study demonstrates a means of implementing an adaptive statistical iterative reconstruction (ASiR Trade-Mark-Sign ) technique for dose reduction in computed tomography (CT) while maintaining similar noise levels in the reconstructed image. The effects of image quality and noise texture were assessed at all implementation levels of ASiR Trade-Mark-Sign . Empirically derived dose reduction limits were established for ASiR Trade-Mark-Sign for imaging of the trunk for a pediatric oncology population ranging from 1 yr old through adolescence/adulthood. Methods: Image quality was assessed using metrics established by the American College of Radiology (ACR) CT accreditation program. Each image quality metricmore » was tested using the ACR CT phantom with 0%-100% ASiR Trade-Mark-Sign blended with filtered back projection (FBP) reconstructed images. Additionally, the noise power spectrum (NPS) was calculated for three common reconstruction filters of the trunk. The empirically derived limitations on ASiR Trade-Mark-Sign implementation for dose reduction were assessed using (1, 5, 10) yr old and adolescent/adult anthropomorphic phantoms. To assess dose reduction limits, the phantoms were scanned in increments of increased noise index (decrementing mA using automatic tube current modulation) balanced with ASiR Trade-Mark-Sign reconstruction to maintain noise equivalence of the 0% ASiR Trade-Mark-Sign image. Results: The ASiR Trade-Mark-Sign algorithm did not produce any unfavorable effects on image quality as assessed by ACR criteria. Conversely, low-contrast resolution was found to improve due to the reduction of noise in the reconstructed images. NPS calculations demonstrated that images with lower frequency noise had lower noise variance and coarser graininess at progressively higher percentages of ASiR Trade-Mark-Sign reconstruction; and in spite of the similar magnitudes of noise, the image reconstructed with 50% or more ASiR Trade-Mark-Sign presented a

  13. Effect of low-dose CT and iterative reconstruction on trabecular bone microstructure assessment

    NASA Astrophysics Data System (ADS)

    Kopp, Felix K.; Baum, Thomas; Nasirudin, Radin A.; Mei, Kai; Garcia, Eduardo G.; Burgkart, Rainer; Rummeny, Ernst J.; Bauer, Jan S.; Noël, Peter B.

    2016-03-01

    The trabecular bone microstructure is an important factor in the development of osteoporosis. It is well known that its deterioration is one effect when osteoporosis occurs. Previous research showed that the analysis of trabecular bone microstructure enables more precise diagnoses of osteoporosis compared to a sole measurement of the mineral density. Microstructure parameters are assessed on volumetric images of the bone acquired either with high-resolution magnetic resonance imaging, high-resolution peripheral quantitative computed tomography or high-resolution computed tomography (CT), with only CT being applicable to the spine, which is one of clinically most relevant fracture sites. However, due to the high radiation exposure for imaging the whole spine these measurements are not applicable in current clinical routine. In this work, twelve vertebrae from three different donors were scanned with standard and low radiation dose. Trabecular bone microstructure parameters were assessed for CT images reconstructed with statistical iterative reconstruction (SIR) and analytical filtered backprojection (FBP). The resulting structure parameters were correlated to the biomechanically determined fracture load of each vertebra. Microstructure parameters assessed for low-dose data reconstructed with SIR significantly correlated with fracture loads as well as parameters assessed for standard-dose data reconstructed with FBP. Ideal results were achieved with low to zero regularization strength yielding microstructure parameters not significantly different from those assessed for standard-dose FPB data. Moreover, in comparison to other approaches, superior noise-resolution trade-offs can be found with the proposed methods.

  14. Validation of an improved helical diode array and dose reconstruction software using TG‐244 datasets and stringent dose comparison criteria

    PubMed Central

    Ahmed, Saeed; Nelms, Benjamin; Kozelka, Jakub; Zhang, Geoffrey; Moros, Eduardo

    2016-01-01

    The original helical ArcCHECK (AC) diode array and associated software for 3D measurement‐guided dose reconstruction were characterized and validated; however, recent design changes to the AC required that the subject be revisited. The most important AC change starting in 2014 was a significant reduction in the overresponse of diodes to scattered radiation outside of the direct beam, accomplished by reducing the amount of high‐Z materials adjacent to the diodes. This change improved the diode measurement accuracy, but in the process invalidated the dose reconstruction models that were assembled based on measured data acquired with the older version of the AC. A correction mechanism was introduced in the reconstruction software (3DVH) to accommodate this and potential future design changes without requiring updating model parameters. For each permutation of AC serial number and beam model, the user can define in 3DVH a single correction factor which will be used to compensate for the difference in the out‐of‐field response between the new and original AC designs. The exact value can be determined by minimizing the dose‐difference with an ionization chamber or another independent dosimeter. A single value of 1.17, corresponding to the maximum measured out‐of‐field response difference between the new and old AC, provided satisfactory results for all studied energies (6X, 15X, and flattening filter‐free 10XFFF). A library of standard cases recommended by the AAPM TG‐244 Report was used for reconstructed dose verification. The overall difference between reconstructed dose and an ion chamber in a water‐equivalent phantom in the targets was 0.0% ± 1.4% (1 SD). The reconstructed dose on a homogeneous phantom was also compared to a biplanar diode dosimeter (Delta4) using gamma analysis with 2% (local dose‐error normalization)/2 mm/10% cutoff criteria. The mean agreement rate was 96.7% ± 3.7%. For the plans common with the previous

  15. Dose reconstruction for individuals exposed to ionizing radiation using chromosome painting

    NASA Technical Reports Server (NTRS)

    Lucas, J. N.; Cox, A. B. (Principal Investigator)

    1997-01-01

    To be most useful, a biomarker for dose reconstruction should employ an end point that is highly quantitative, stable with time and easily measured. Reciprocal translocations have been shown to be a promising biomarker that is linked to both prior exposure and risk, and they can be measured easily and quantitatively using fluorescence in situ hybridization. In contrast to other biomarkers that are available, the frequency of reciprocal translocations in individuals exposed to whole-body radiation is stable with time after exposure, has rather small interindividual variability and can be measured accurately at low levels of exposure. Results from recent studies demonstrate that measurements of reciprocal translocation frequencies, facilitated by chromosome painting, can be used to reconstruct radiation dose for individuals exposed in the distant past.

  16. Dose reconstruction for individuals exposed to ionizing radiation using chromosome painting.

    PubMed

    Lucas, J N

    1997-11-01

    To be most useful, a biomarker for dose reconstruction should employ an end point that is highly quantitative, stable with time and easily measured. Reciprocal translocations have been shown to be a promising biomarker that is linked to both prior exposure and risk, and they can be measured easily and quantitatively using fluorescence in situ hybridization. In contrast to other biomarkers that are available, the frequency of reciprocal translocations in individuals exposed to whole-body radiation is stable with time after exposure, has rather small interindividual variability and can be measured accurately at low levels of exposure. Results from recent studies demonstrate that measurements of reciprocal translocation frequencies, facilitated by chromosome painting, can be used to reconstruct radiation dose for individuals exposed in the distant past.

  17. Radiological risk from consuming fish and wildlife to Native Americans on the Hanford Site (USA).

    PubMed

    Delistraty, Damon; Van Verst, Scott; Rochette, Elizabeth A

    2010-02-01

    Historical operations at the Hanford Site (Washington State, USA) have released a wide array of non-radionuclide and radionuclide contaminants into the environment. As a result of stakeholder concerns, Native American exposure scenarios have been integrated into Hanford risk assessments. Because its contribution to radiological risk to Native Americans is culturally and geographically specific but quantitatively uncertain, a fish and wildlife ingestion pathway was examined in this study. Adult consumption rates were derived from 20 Native American scenarios (based on 12 studies) at Hanford, and tissue concentrations of key radionuclides in fish, game birds, and game mammals were compiled from the Hanford Environmental Information System (HEIS) database for a recent time interval (1995-2007) during the post-operational period. It was assumed that skeletal muscle comprised 90% of intake, while other tissues accounted for the remainder. Acknowledging data gaps, median concentrations of eight radionuclides (i.e., Co-60, Cs-137, Sr-90, Tc-99, U-234, U-238, Pu-238, and Pu-239/240) in skeletal muscle and other tissues were below 0.01 and 1 pCi/g wet wt, respectively. These radionuclide concentrations were not significantly different (Bonferroni P>0.05) on and off the Hanford Site. Despite no observed difference between onsite and offsite tissue concentrations, radiation dose and risk were calculated for the fish and wildlife ingestion pathway using onsite data. With median consumption rates and radionuclide tissue concentrations, skeletal muscle provided 42% of the dose, while other tissues (primarily bone and carcass) accounted for 58%. In terms of biota, fish ingestion was the largest contributor to dose (64%). Among radionuclides, Sr-90 was dominant, accounting for 47% of the dose. At median intake and radionuclide levels, estimated annual dose (0.36 mrem/yr) was below a dose limit of 15 mrem/yr recommended by the United States Environmental Protection Agency (USEPA

  18. Radiological risk from consuming fish and wildlife to Native Americans on the Hanford Site (USA)

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Delistraty, Damon, E-mail: DDEL461@ecy.wa.gov; Verst, Scott Van; Rochette, Elizabeth A.

    Historical operations at the Hanford Site (Washington State, USA) have released a wide array of non-radionuclide and radionuclide contaminants into the environment. As a result of stakeholder concerns, Native American exposure scenarios have been integrated into Hanford risk assessments. Because its contribution to radiological risk to Native Americans is culturally and geographically specific but quantitatively uncertain, a fish and wildlife ingestion pathway was examined in this study. Adult consumption rates were derived from 20 Native American scenarios (based on 12 studies) at Hanford, and tissue concentrations of key radionuclides in fish, game birds, and game mammals were compiled from themore » Hanford Environmental Information System (HEIS) database for a recent time interval (1995-2007) during the post-operational period. It was assumed that skeletal muscle comprised 90% of intake, while other tissues accounted for the remainder. Acknowledging data gaps, median concentrations of eight radionuclides (i.e., Co-60, Cs-137, Sr-90, Tc-99, U-234, U-238, Pu-238, and Pu-239/240) in skeletal muscle and other tissues were below 0.01 and 1 pCi/g wet wt, respectively. These radionuclide concentrations were not significantly different (Bonferroni P>0.05) on and off the Hanford Site. Despite no observed difference between onsite and offsite tissue concentrations, radiation dose and risk were calculated for the fish and wildlife ingestion pathway using onsite data. With median consumption rates and radionuclide tissue concentrations, skeletal muscle provided 42% of the dose, while other tissues (primarily bone and carcass) accounted for 58%. In terms of biota, fish ingestion was the largest contributor to dose (64%). Among radionuclides, Sr-90 was dominant, accounting for 47% of the dose. At median intake and radionuclide levels, estimated annual dose (0.36 mrem/yr) was below a dose limit of 15 mrem/yr recommended by the United States Environmental Protection Agency

  19. 42 CFR 82.31 - How can the public recommend changes to scientific elements underlying the dose reconstruction...

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... SERVICE, DEPARTMENT OF HEALTH AND HUMAN SERVICES OCCUPATIONAL SAFETY AND HEALTH RESEARCH AND RELATED ACTIVITIES METHODS FOR CONDUCTING DOSE RECONSTRUCTION UNDER THE ENERGY EMPLOYEES OCCUPATIONAL ILLNESS... elements underlying the dose reconstruction process, based on relevant new research findings and...

  20. Model-based Iterative Reconstruction: Effect on Patient Radiation Dose and Image Quality in Pediatric Body CT

    PubMed Central

    Dillman, Jonathan R.; Goodsitt, Mitchell M.; Christodoulou, Emmanuel G.; Keshavarzi, Nahid; Strouse, Peter J.

    2014-01-01

    Purpose To retrospectively compare image quality and radiation dose between a reduced-dose computed tomographic (CT) protocol that uses model-based iterative reconstruction (MBIR) and a standard-dose CT protocol that uses 30% adaptive statistical iterative reconstruction (ASIR) with filtered back projection. Materials and Methods Institutional review board approval was obtained. Clinical CT images of the chest, abdomen, and pelvis obtained with a reduced-dose protocol were identified. Images were reconstructed with two algorithms: MBIR and 100% ASIR. All subjects had undergone standard-dose CT within the prior year, and the images were reconstructed with 30% ASIR. Reduced- and standard-dose images were evaluated objectively and subjectively. Reduced-dose images were evaluated for lesion detectability. Spatial resolution was assessed in a phantom. Radiation dose was estimated by using volumetric CT dose index (CTDIvol) and calculated size-specific dose estimates (SSDE). A combination of descriptive statistics, analysis of variance, and t tests was used for statistical analysis. Results In the 25 patients who underwent the reduced-dose protocol, mean decrease in CTDIvol was 46% (range, 19%–65%) and mean decrease in SSDE was 44% (range, 19%–64%). Reduced-dose MBIR images had less noise (P > .004). Spatial resolution was superior for reduced-dose MBIR images. Reduced-dose MBIR images were equivalent to standard-dose images for lungs and soft tissues (P > .05) but were inferior for bones (P = .004). Reduced-dose 100% ASIR images were inferior for soft tissues (P < .002), lungs (P < .001), and bones (P < .001). By using the same reduced-dose acquisition, lesion detectability was better (38% [32 of 84 rated lesions]) or the same (62% [52 of 84 rated lesions]) with MBIR as compared with 100% ASIR. Conclusion CT performed with a reduced-dose protocol and MBIR is feasible in the pediatric population, and it maintains diagnostic quality. © RSNA, 2013 Online supplemental

  1. SU-F-T-563: Delivered Dose Reconstruction of Moving Targets for Gated Volumetric Modulated Arc Therapy (VMAT)

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Chung, H; Cho, S; Jeong, C

    2016-06-15

    Purpose: Actual delivered dose of moving tumors treated with gated volumetric arc therapy (VMAT) may significantly differ from the planned dose assuming static target. In this study, we developed a method which reconstructs actual delivered dose distribution of moving target by taking into account both tumor motion and dynamic beam delivery of gated VMAT, and applied to abdominal tumors. Methods: Fifteen dual-arc VMAT plans (Eclipse, Varian Medical Systems) for 5 lung, 5 pancreatic, and 5 liver cancer patients treated with gated VMAT stereotactic body radiotherapy (SBRT) were studied. For reconstruction of the delivered dose distribution, we divided each original arcmore » beam into control-point-wise sub-beams, and applied beam isocenter shifting to each sub-beam to reflect the tumor motion. The tumor positions as a function of beam delivery were estimated by synchronizing the beam delivery with the respiratory signal which acquired during treatment. For this purpose, an in-house program (MATLAB, Mathworks) was developed to convert the original DICOM plan data into motion-involved treatment plan. The motion-involved DICOM plan was imported into Eclipse for dose calculation. The reconstructed delivered dose was compared to the plan dose using the dose coverage of gross tumor volume (GTV) and dose distribution of organs at risk (OAR). Results: The mean GTV dose coverage difference between the reconstructed delivered dose and the plan dose was 0.2 % in lung and pancreas cases, and no difference in liver cases. Mean D1000cc of ipsilateral lungs was reduced (0.8 ± 1.4cGy). Conclusion: We successfully developed a method of delivered dose reconstruction taking into account both respiratory tumor motion and dynamic beam delivery, and applied it to abdominal tumors treated with gated VAMT. No significant deterioration of delivered dose distribution indicates that interplay effect would be minimal even in the case of gated SBRT. This work was supported by the National

  2. RECONSTRUCTION OF RADIATION DOSES IN A CASE-CONTROL STUDY OF THYROID CANCER FOLLOWING THE CHERNOBYL ACCIDENT

    PubMed Central

    Drozdovitch, Vladimir; Khrouch, Valeri; Maceika, Evaldas; Zvonova, Irina; Vlasov, Oleg; Bratilova, Angelica; Gavrilin, Yury; Goulko, Guennadi; Hoshi, Masaharu; Kesminiene, Ausrele; Shinkarev, Sergey; Tenet, Vanessa; Cardis, Elisabeth; Bouville, Andre

    2010-01-01

    A population-based case-control study of thyroid cancer was carried out in contaminated regions of Belarus and Russia among persons who were exposed during childhood and adolescence to fallout from the Chernobyl accident. For each study subject, individual thyroid doses were reconstructed for the following pathways of exposure: (1) intake of 131I via inhalation and ingestion; (2) intake of short-lived radioiodines (132I, 133I, and 135I) and radiotelluriums (131mTe, 132Te) via inhalation and ingestion; (3) external dose from radionuclides deposited on the ground; and (4) ingestion of 134Cs and 137Cs. A series of intercomparison exercises validated the models used for reconstruction of average doses to populations of specific age groups as well as of individual doses. Median thyroid doses from all factors for study subjects were estimated to be 0.37 and 0.034 Gy in Belarus and Russia, respectively. The highest individual thyroid doses among the subjects were 10.2 Gy in Belarus and 5.3 Gy in Russia. Iodine-131 intake was the main pathway for thyroid exposure. Estimated doses from short-lived radioiodines and radiotelluriums ranged up to 0.53 Gy. Reconstructed individual thyroid doses from external exposure ranged up to 0.1 Gy, while those from internal exposure due to ingested cesium did not exceed 0.05 Gy. The uncertainty of the reconstructed individual thyroid doses, characterized by the geometric standard deviation, varies from 1.7 to 4.0 with a median of 2.2. PMID:20539120

  3. Full dose reduction potential of statistical iterative reconstruction for head CT protocols in a predominantly pediatric population

    PubMed Central

    Mirro, Amy E.; Brady, Samuel L.; Kaufman, Robert. A.

    2016-01-01

    Purpose To implement the maximum level of statistical iterative reconstruction that can be used to establish dose-reduced head CT protocols in a primarily pediatric population. Methods Select head examinations (brain, orbits, sinus, maxilla and temporal bones) were investigated. Dose-reduced head protocols using an adaptive statistical iterative reconstruction (ASiR) were compared for image quality with the original filtered back projection (FBP) reconstructed protocols in phantom using the following metrics: image noise frequency (change in perceived appearance of noise texture), image noise magnitude, contrast-to-noise ratio (CNR), and spatial resolution. Dose reduction estimates were based on computed tomography dose index (CTDIvol) values. Patient CTDIvol and image noise magnitude were assessed in 737 pre and post dose reduced examinations. Results Image noise texture was acceptable up to 60% ASiR for Soft reconstruction kernel (at both 100 and 120 kVp), and up to 40% ASiR for Standard reconstruction kernel. Implementation of 40% and 60% ASiR led to an average reduction in CTDIvol of 43% for brain, 41% for orbits, 30% maxilla, 43% for sinus, and 42% for temporal bone protocols for patients between 1 month and 26 years, while maintaining an average noise magnitude difference of 0.1% (range: −3% to 5%), improving CNR of low contrast soft tissue targets, and improving spatial resolution of high contrast bony anatomy, as compared to FBP. Conclusion The methodology in this study demonstrates a methodology for maximizing patient dose reduction and maintaining image quality using statistical iterative reconstruction for a primarily pediatric population undergoing head CT examination. PMID:27056425

  4. ORGAN-SPECIFIC EXTERNAL DOSE COEFFICIENTS AND PROTECTIVE APRON TRANSMISSION FACTORS FOR HISTORICAL DOSE RECONSTRUCTION FOR MEDICAL PERSONNEL

    PubMed Central

    Simon, Steven L.

    2014-01-01

    While radiation absorbed dose (Gy) to the skin or other organs is sometimes estimated for patients from diagnostic radiologic examinations or therapeutic procedures, rarely is occupationally-received radiation absorbed dose to individual organs/tissues estimated for medical personnel, e.g., radiologic technologists or radiologists. Generally, for medical personnel, equivalent or effective radiation doses are estimated for compliance purposes. In the very few cases when organ doses to medical personnel are reconstructed, the data is usually for the purpose of epidemiologic studies, e.g., a study of historical doses and risks to a cohort of about 110,000 radiologic technologists presently underway at the U.S. National Cancer Institute. While ICRP and ICRU have published organ-specific external dose conversion coefficients (DCCs), i.e., absorbed dose to organs and tissues per unit air kerma and dose equivalent per unit air kerma, those factors have been primarily published for mono-energetic photons at selected energies. This presents two related problems for historical dose reconstruction, both of which are addressed here. It is necessary to derive conversion factors values for (i) continuous distributions of energy typical of diagnostic medical x rays (bremsstrahlung radiation), and (ii) for energies of particular radioisotopes used in medical procedures, neither of which are presented in published tables. For derivation of DCCs for bremsstrahlung radiation, combinations of x-ray tube potentials and filtrations were derived for different time periods based on a review of relevant literature. Three peak tube potentials (70 kV, 80 kV, and 90 kV) with four different amounts of beam filtration were determined to be applicable for historic dose reconstruction. The probability of these machine settings were assigned to each of the four time periods (earlier than 1949, 1949-1954, 1955-1968, and after 1968). Continuous functions were fit to each set of discrete values of

  5. Organ-specific external dose coefficients and protective apron transmission factors for historical dose reconstruction for medical personnel.

    PubMed

    Simon, Steven L

    2011-07-01

    While radiation absorbed dose (Gy) to the skin or other organs is sometimes estimated for patients from diagnostic radiologic examinations or therapeutic procedures, rarely is occupationally-received radiation absorbed dose to individual organs/tissues estimated for medical personnel; e.g., radiologic technologists or radiologists. Generally, for medical personnel, equivalent or effective radiation doses are estimated for compliance purposes. In the very few cases when organ doses to medical personnel are reconstructed, the data is usually for the purpose of epidemiologic studies; e.g., a study of historical doses and risks to a cohort of about 110,000 radiologic technologists presently underway at the U.S. National Cancer Institute. While ICRP and ICRU have published organ-specific external dose conversion coefficients (DCCs) (i.e., absorbed dose to organs and tissues per unit air kerma and dose equivalent per unit air kerma), those factors have been published primarily for mono-energetic photons at selected energies. This presents two related problems for historical dose reconstruction, both of which are addressed here. It is necessary to derive conversion factor values for (1) continuous distributions of energy typical of diagnostic medical x-rays (bremsstrahlung radiation), and (2) energies of particular radioisotopes used in medical procedures, neither of which are presented in published tables. For derivation of DCCs for bremsstrahlung radiation, combinations of x-ray tube potentials and filtrations were derived for different time periods based on a review of relevant literature. Three peak tube potentials (70 kV, 80 kV, and 90 kV) with four different amounts of beam filtration were determined to be applicable for historic dose reconstruction. The probabilities of these machine settings were assigned to each of the four time periods (earlier than 1949, 1949-1954, 1955-1968, and after 1968). Continuous functions were fit to each set of discrete values of the

  6. Adaptive Statistical Iterative Reconstruction-V Versus Adaptive Statistical Iterative Reconstruction: Impact on Dose Reduction and Image Quality in Body Computed Tomography.

    PubMed

    Gatti, Marco; Marchisio, Filippo; Fronda, Marco; Rampado, Osvaldo; Faletti, Riccardo; Bergamasco, Laura; Ropolo, Roberto; Fonio, Paolo

    The aim of this study was to evaluate the impact on dose reduction and image quality of the new iterative reconstruction technique: adaptive statistical iterative reconstruction (ASIR-V). Fifty consecutive oncologic patients acted as case controls undergoing during their follow-up a computed tomography scan both with ASIR and ASIR-V. Each study was analyzed in a double-blinded fashion by 2 radiologists. Both quantitative and qualitative analyses of image quality were conducted. Computed tomography scanner radiation output was 38% (29%-45%) lower (P < 0.0001) for the ASIR-V examinations than for the ASIR ones. The quantitative image noise was significantly lower (P < 0.0001) for ASIR-V. Adaptive statistical iterative reconstruction-V had a higher performance for the subjective image noise (P = 0.01 for 5 mm and P = 0.009 for 1.25 mm), the other parameters (image sharpness, diagnostic acceptability, and overall image quality) being similar (P > 0.05). Adaptive statistical iterative reconstruction-V is a new iterative reconstruction technique that has the potential to provide image quality equal to or greater than ASIR, with a dose reduction around 40%.

  7. Does Iterative Reconstruction Lower CT Radiation Dose: Evaluation of 15,000 Examinations

    PubMed Central

    Noël, Peter B.; Renger, Bernhard; Fiebich, Martin; Münzel, Daniela; Fingerle, Alexander A.; Rummeny, Ernst J.; Dobritz, Martin

    2013-01-01

    Purpose Evaluation of 15,000 computed tomography (CT) examinations to investigate if iterative reconstruction (IR) reduces sustainably radiation exposure. Method and Materials Information from 15,000 CT examinations was collected, including all aspects of the exams such as scan parameter, patient information, and reconstruction instructions. The examinations were acquired between January 2010 and December 2012, while after 15 months a first generation IR algorithm was installed. To collect the necessary information from PACS, RIS, MPPS and structured reports a Dose Monitoring System was developed. To harvest all possible information an optical character recognition system was integrated, for example to collect information from the screenshot CT-dose report. The tool transfers all data to a database for further processing such as the calculation of effective dose and organ doses. To evaluate if IR provides a sustainable dose reduction, the effective dose values were statistically analyzed with respect to protocol type, diagnostic indication, and patient population. Results IR has the potential to reduce radiation dose significantly. Before clinical introduction of IR the average effective dose was 10.1±7.8mSv and with IR 8.9±7.1mSv (p*=0.01). Especially in CTA, with the possibility to use kV reduction protocols, such as in aortic CTAs (before IR: average14.2±7.8mSv; median11.4mSv /with IR:average9.9±7.4mSv; median7.4mSv), or pulmonary CTAs (before IR: average9.7±6.2mSV; median7.7mSv /with IR: average6.4±4.7mSv; median4.8mSv) the dose reduction effect is significant(p*=0.01). On the contrary for unenhanced low-dose scans of the cranial (for example sinuses) the reduction is not significant (before IR:average6.6±5.8mSv; median3.9mSv/with IR:average6.0±3.1mSV; median3.2mSv). Conclusion The dose aspect remains a priority in CT research. Iterative reconstruction algorithms reduce sustainably and significantly radiation dose in the clinical routine. Our results

  8. Four-Dimensional Patient Dose Reconstruction for Scanned Ion Beam Therapy of Moving Liver Tumors

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Richter, Daniel; TU Darmstadt, Darmstadt; Saito, Nami

    2014-05-01

    Purpose: Estimation of the actual delivered 4-dimensional (4D) dose in treatments of patients with mobile hepatocellular cancer with scanned carbon ion beam therapy. Methods and Materials: Six patients were treated with 4 fractions to a total relative biological effectiveness (RBE)–weighted dose of 40 Gy (RBE) using a single field. Respiratory motion was addressed by dedicated margins and abdominal compression (5 patients) or gating (1 patient). 4D treatment dose reconstructions based on the treatment records and the measured motion monitoring data were performed for the single-fraction dose and a total of 17 fractions. To assess the impact of uncertainties in the temporalmore » correlation between motion trajectory and beam delivery sequence, 3 dose distributions for varying temporal correlation were calculated per fraction. For 3 patients, the total treatment dose was formed from the fractional distributions using all possible combinations. Clinical target volume (CTV) coverage was analyzed using the volumes receiving at least 95% (V{sub 95}) and 107% (V{sub 107}) of the planned doses. Results: 4D dose reconstruction based on daily measured data is possible in a clinical setting. V{sub 95} and V{sub 107} values for the single fractions ranged between 72% and 100%, and 0% and 32%, respectively. The estimated total treatment dose to the CTV exhibited improved and more robust dose coverage (mean V{sub 95} > 87%, SD < 3%) and overdose (mean V{sub 107} < 4%, SD < 3%) with respect to the single-fraction dose for all analyzed patients. Conclusions: A considerable impact of interplay effects on the single-fraction CTV dose was found for most of the analyzed patients. However, due to the fractionated treatment, dose heterogeneities were substantially reduced for the total treatment dose. 4D treatment dose reconstruction for scanned ion beam therapy is technically feasible and may evolve into a valuable tool for dose assessment.« less

  9. 42 CFR 82.32 - How will NIOSH make changes in scientific elements underlying the dose reconstruction process...

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... 42 Public Health 1 2014-10-01 2014-10-01 false How will NIOSH make changes in scientific elements underlying the dose reconstruction process, based on scientific progress? 82.32 Section 82.32 Public Health... AND RELATED ACTIVITIES METHODS FOR CONDUCTING DOSE RECONSTRUCTION UNDER THE ENERGY EMPLOYEES...

  10. 42 CFR 82.31 - How can the public recommend changes to scientific elements underlying the dose reconstruction...

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... 42 Public Health 1 2011-10-01 2011-10-01 false How can the public recommend changes to scientific... ACTIVITIES METHODS FOR CONDUCTING DOSE RECONSTRUCTION UNDER THE ENERGY EMPLOYEES OCCUPATIONAL ILLNESS COMPENSATION PROGRAM ACT OF 2000 Updating the Scientific Elements Underlying Dose Reconstructions § 82.31 How...

  11. 42 CFR 82.32 - How will NIOSH make changes in scientific elements underlying the dose reconstruction process...

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... 42 Public Health 1 2011-10-01 2011-10-01 false How will NIOSH make changes in scientific elements underlying the dose reconstruction process, based on scientific progress? 82.32 Section 82.32 Public Health... AND RELATED ACTIVITIES METHODS FOR CONDUCTING DOSE RECONSTRUCTION UNDER THE ENERGY EMPLOYEES...

  12. 42 CFR 82.31 - How can the public recommend changes to scientific elements underlying the dose reconstruction...

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... 42 Public Health 1 2012-10-01 2012-10-01 false How can the public recommend changes to scientific... ACTIVITIES METHODS FOR CONDUCTING DOSE RECONSTRUCTION UNDER THE ENERGY EMPLOYEES OCCUPATIONAL ILLNESS COMPENSATION PROGRAM ACT OF 2000 Updating the Scientific Elements Underlying Dose Reconstructions § 82.31 How...

  13. 42 CFR 82.31 - How can the public recommend changes to scientific elements underlying the dose reconstruction...

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... 42 Public Health 1 2013-10-01 2013-10-01 false How can the public recommend changes to scientific... ACTIVITIES METHODS FOR CONDUCTING DOSE RECONSTRUCTION UNDER THE ENERGY EMPLOYEES OCCUPATIONAL ILLNESS COMPENSATION PROGRAM ACT OF 2000 Updating the Scientific Elements Underlying Dose Reconstructions § 82.31 How...

  14. 42 CFR 82.32 - How will NIOSH make changes in scientific elements underlying the dose reconstruction process...

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... 42 Public Health 1 2012-10-01 2012-10-01 false How will NIOSH make changes in scientific elements underlying the dose reconstruction process, based on scientific progress? 82.32 Section 82.32 Public Health... AND RELATED ACTIVITIES METHODS FOR CONDUCTING DOSE RECONSTRUCTION UNDER THE ENERGY EMPLOYEES...

  15. 42 CFR 82.32 - How will NIOSH make changes in scientific elements underlying the dose reconstruction process...

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... 42 Public Health 1 2013-10-01 2013-10-01 false How will NIOSH make changes in scientific elements underlying the dose reconstruction process, based on scientific progress? 82.32 Section 82.32 Public Health... AND RELATED ACTIVITIES METHODS FOR CONDUCTING DOSE RECONSTRUCTION UNDER THE ENERGY EMPLOYEES...

  16. 42 CFR 82.31 - How can the public recommend changes to scientific elements underlying the dose reconstruction...

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... 42 Public Health 1 2014-10-01 2014-10-01 false How can the public recommend changes to scientific... ACTIVITIES METHODS FOR CONDUCTING DOSE RECONSTRUCTION UNDER THE ENERGY EMPLOYEES OCCUPATIONAL ILLNESS COMPENSATION PROGRAM ACT OF 2000 Updating the Scientific Elements Underlying Dose Reconstructions § 82.31 How...

  17. Radiation dose reduction in medical x-ray CT via Fourier-based iterative reconstruction

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Fahimian, Benjamin P.; Zhao Yunzhe; Huang Zhifeng

    Purpose: A Fourier-based iterative reconstruction technique, termed Equally Sloped Tomography (EST), is developed in conjunction with advanced mathematical regularization to investigate radiation dose reduction in x-ray CT. The method is experimentally implemented on fan-beam CT and evaluated as a function of imaging dose on a series of image quality phantoms and anonymous pediatric patient data sets. Numerical simulation experiments are also performed to explore the extension of EST to helical cone-beam geometry. Methods: EST is a Fourier based iterative algorithm, which iterates back and forth between real and Fourier space utilizing the algebraically exact pseudopolar fast Fourier transform (PPFFT). Inmore » each iteration, physical constraints and mathematical regularization are applied in real space, while the measured data are enforced in Fourier space. The algorithm is automatically terminated when a proposed termination criterion is met. Experimentally, fan-beam projections were acquired by the Siemens z-flying focal spot technology, and subsequently interleaved and rebinned to a pseudopolar grid. Image quality phantoms were scanned at systematically varied mAs settings, reconstructed by EST and conventional reconstruction methods such as filtered back projection (FBP), and quantified using metrics including resolution, signal-to-noise ratios (SNRs), and contrast-to-noise ratios (CNRs). Pediatric data sets were reconstructed at their original acquisition settings and additionally simulated to lower dose settings for comparison and evaluation of the potential for radiation dose reduction. Numerical experiments were conducted to quantify EST and other iterative methods in terms of image quality and computation time. The extension of EST to helical cone-beam CT was implemented by using the advanced single-slice rebinning (ASSR) method. Results: Based on the phantom and pediatric patient fan-beam CT data, it is demonstrated that EST reconstructions with the

  18. Radiation dose reduction in medical x-ray CT via Fourier-based iterative reconstruction.

    PubMed

    Fahimian, Benjamin P; Zhao, Yunzhe; Huang, Zhifeng; Fung, Russell; Mao, Yu; Zhu, Chun; Khatonabadi, Maryam; DeMarco, John J; Osher, Stanley J; McNitt-Gray, Michael F; Miao, Jianwei

    2013-03-01

    A Fourier-based iterative reconstruction technique, termed Equally Sloped Tomography (EST), is developed in conjunction with advanced mathematical regularization to investigate radiation dose reduction in x-ray CT. The method is experimentally implemented on fan-beam CT and evaluated as a function of imaging dose on a series of image quality phantoms and anonymous pediatric patient data sets. Numerical simulation experiments are also performed to explore the extension of EST to helical cone-beam geometry. EST is a Fourier based iterative algorithm, which iterates back and forth between real and Fourier space utilizing the algebraically exact pseudopolar fast Fourier transform (PPFFT). In each iteration, physical constraints and mathematical regularization are applied in real space, while the measured data are enforced in Fourier space. The algorithm is automatically terminated when a proposed termination criterion is met. Experimentally, fan-beam projections were acquired by the Siemens z-flying focal spot technology, and subsequently interleaved and rebinned to a pseudopolar grid. Image quality phantoms were scanned at systematically varied mAs settings, reconstructed by EST and conventional reconstruction methods such as filtered back projection (FBP), and quantified using metrics including resolution, signal-to-noise ratios (SNRs), and contrast-to-noise ratios (CNRs). Pediatric data sets were reconstructed at their original acquisition settings and additionally simulated to lower dose settings for comparison and evaluation of the potential for radiation dose reduction. Numerical experiments were conducted to quantify EST and other iterative methods in terms of image quality and computation time. The extension of EST to helical cone-beam CT was implemented by using the advanced single-slice rebinning (ASSR) method. Based on the phantom and pediatric patient fan-beam CT data, it is demonstrated that EST reconstructions with the lowest scanner flux setting of 39 m

  19. Radiation dose reduction in medical x-ray CT via Fourier-based iterative reconstruction

    PubMed Central

    Fahimian, Benjamin P.; Zhao, Yunzhe; Huang, Zhifeng; Fung, Russell; Mao, Yu; Zhu, Chun; Khatonabadi, Maryam; DeMarco, John J.; Osher, Stanley J.; McNitt-Gray, Michael F.; Miao, Jianwei

    2013-01-01

    Purpose: A Fourier-based iterative reconstruction technique, termed Equally Sloped Tomography (EST), is developed in conjunction with advanced mathematical regularization to investigate radiation dose reduction in x-ray CT. The method is experimentally implemented on fan-beam CT and evaluated as a function of imaging dose on a series of image quality phantoms and anonymous pediatric patient data sets. Numerical simulation experiments are also performed to explore the extension of EST to helical cone-beam geometry. Methods: EST is a Fourier based iterative algorithm, which iterates back and forth between real and Fourier space utilizing the algebraically exact pseudopolar fast Fourier transform (PPFFT). In each iteration, physical constraints and mathematical regularization are applied in real space, while the measured data are enforced in Fourier space. The algorithm is automatically terminated when a proposed termination criterion is met. Experimentally, fan-beam projections were acquired by the Siemens z-flying focal spot technology, and subsequently interleaved and rebinned to a pseudopolar grid. Image quality phantoms were scanned at systematically varied mAs settings, reconstructed by EST and conventional reconstruction methods such as filtered back projection (FBP), and quantified using metrics including resolution, signal-to-noise ratios (SNRs), and contrast-to-noise ratios (CNRs). Pediatric data sets were reconstructed at their original acquisition settings and additionally simulated to lower dose settings for comparison and evaluation of the potential for radiation dose reduction. Numerical experiments were conducted to quantify EST and other iterative methods in terms of image quality and computation time. The extension of EST to helical cone-beam CT was implemented by using the advanced single-slice rebinning (ASSR) method. Results: Based on the phantom and pediatric patient fan-beam CT data, it is demonstrated that EST reconstructions with the lowest

  20. Low Dose PET Image Reconstruction with Total Variation Using Alternating Direction Method.

    PubMed

    Yu, Xingjian; Wang, Chenye; Hu, Hongjie; Liu, Huafeng

    2016-01-01

    In this paper, a total variation (TV) minimization strategy is proposed to overcome the problem of sparse spatial resolution and large amounts of noise in low dose positron emission tomography (PET) imaging reconstruction. Two types of objective function were established based on two statistical models of measured PET data, least-square (LS) TV for the Gaussian distribution and Poisson-TV for the Poisson distribution. To efficiently obtain high quality reconstructed images, the alternating direction method (ADM) is used to solve these objective functions. As compared with the iterative shrinkage/thresholding (IST) based algorithms, the proposed ADM can make full use of the TV constraint and its convergence rate is faster. The performance of the proposed approach is validated through comparisons with the expectation-maximization (EM) method using synthetic and experimental biological data. In the comparisons, the results of both LS-TV and Poisson-TV are taken into consideration to find which models are more suitable for PET imaging, in particular low-dose PET. To evaluate the results quantitatively, we computed bias, variance, and the contrast recovery coefficient (CRC) and drew profiles of the reconstructed images produced by the different methods. The results show that both Poisson-TV and LS-TV can provide a high visual quality at a low dose level. The bias and variance of the proposed LS-TV and Poisson-TV methods are 20% to 74% less at all counting levels than those of the EM method. Poisson-TV gives the best performance in terms of high-accuracy reconstruction with the lowest bias and variance as compared to the ground truth (14.3% less bias and 21.9% less variance). In contrast, LS-TV gives the best performance in terms of the high contrast of the reconstruction with the highest CRC.

  1. Low Dose PET Image Reconstruction with Total Variation Using Alternating Direction Method

    PubMed Central

    Yu, Xingjian; Wang, Chenye; Hu, Hongjie; Liu, Huafeng

    2016-01-01

    In this paper, a total variation (TV) minimization strategy is proposed to overcome the problem of sparse spatial resolution and large amounts of noise in low dose positron emission tomography (PET) imaging reconstruction. Two types of objective function were established based on two statistical models of measured PET data, least-square (LS) TV for the Gaussian distribution and Poisson-TV for the Poisson distribution. To efficiently obtain high quality reconstructed images, the alternating direction method (ADM) is used to solve these objective functions. As compared with the iterative shrinkage/thresholding (IST) based algorithms, the proposed ADM can make full use of the TV constraint and its convergence rate is faster. The performance of the proposed approach is validated through comparisons with the expectation-maximization (EM) method using synthetic and experimental biological data. In the comparisons, the results of both LS-TV and Poisson-TV are taken into consideration to find which models are more suitable for PET imaging, in particular low-dose PET. To evaluate the results quantitatively, we computed bias, variance, and the contrast recovery coefficient (CRC) and drew profiles of the reconstructed images produced by the different methods. The results show that both Poisson-TV and LS-TV can provide a high visual quality at a low dose level. The bias and variance of the proposed LS-TV and Poisson-TV methods are 20% to 74% less at all counting levels than those of the EM method. Poisson-TV gives the best performance in terms of high-accuracy reconstruction with the lowest bias and variance as compared to the ground truth (14.3% less bias and 21.9% less variance). In contrast, LS-TV gives the best performance in terms of the high contrast of the reconstruction with the highest CRC. PMID:28005929

  2. Hanford`s innovations for science education

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Carter, D.

    1996-12-31

    In recognition of declining science literacy in the United States and a projected shortfall of scientists, engineers and technologists to address environmental problems nationally and internationally during the 21st century, Westinghouse Hanford Company has launched several innovative science education projects at the US Department of Energy Hanford Site. The Hanford Site is very rich in resources that can be brought to bear on the problem: world-class technical experts, state of the art facilities and equipment, and the largest environmental laboratory in the world. During the past two years, several innovative science education initiatives have been conceived and pursued at themore » secondary education level including the International Academy for the Environment (residential high school with an environmental theme), Environmental BATTmobile Program (mobile middle school science education program), and Multicultural Experiences in Math and Science (education program based on cultural contributions to math and science). Hanford scientists, engineers and administrators have worked with the education community (K-12 and college-university) to develop innovative approaches to science education.« less

  3. SU-F-T-441: Dose Calculation Accuracy in CT Images Reconstructed with Artifact Reduction Algorithm

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ng, C; Chan, S; Lee, F

    Purpose: Accuracy of radiotherapy dose calculation in patients with surgical implants is complicated by two factors. First is the accuracy of CT number, second is the dose calculation accuracy. We compared measured dose with dose calculated on CT images reconstructed with FBP and an artifact reduction algorithm (OMAR, Philips) for a phantom with high density inserts. Dose calculation were done with Varian AAA and AcurosXB. Methods: A phantom was constructed with solid water in which 2 titanium or stainless steel rods could be inserted. The phantom was scanned with the Philips Brillance Big Bore CT. Image reconstruction was done withmore » FBP and OMAR. Two 6 MV single field photon plans were constructed for each phantom. Radiochromic films were placed at different locations to measure the dose deposited. One plan has normal incidence on the titanium/steel rods. In the second plan, the beam is at almost glancing incidence on the metal rods. Measurements were then compared with dose calculated with AAA and AcurosXB. Results: The use of OMAR images slightly improved the dose calculation accuracy. The agreement between measured and calculated dose was best with AXB and image reconstructed with OMAR. Dose calculated on titanium phantom has better agreement with measurement. Large discrepancies were seen at points directly above and below the high density inserts. Both AAA and AXB underestimated the dose directly above the metal surface, while overestimated the dose below the metal surface. Doses measured downstream of metal were all within 3% of calculated values. Conclusion: When doing treatment planning for patients with metal implants, care must be taken to acquire correct CT images to improve dose calculation accuracy. Moreover, great discrepancies in measured and calculated dose were observed at metal/tissue interface. Care must be taken in estimating the dose in critical structures that come into contact with metals.« less

  4. Comparison of computational to human observer detection for evaluation of CT low dose iterative reconstruction

    NASA Astrophysics Data System (ADS)

    Eck, Brendan; Fahmi, Rachid; Brown, Kevin M.; Raihani, Nilgoun; Wilson, David L.

    2014-03-01

    Model observers were created and compared to human observers for the detection of low contrast targets in computed tomography (CT) images reconstructed with an advanced, knowledge-based, iterative image reconstruction method for low x-ray dose imaging. A 5-channel Laguerre-Gauss Hotelling Observer (CHO) was used with internal noise added to the decision variable (DV) and/or channel outputs (CO). Models were defined by parameters: (k1) DV-noise with standard deviation (std) proportional to DV std; (k2) DV-noise with constant std; (k3) CO-noise with constant std across channels; and (k4) CO-noise in each channel with std proportional to CO variance. Four-alternative forced choice (4AFC) human observer studies were performed on sub-images extracted from phantom images with and without a "pin" target. Model parameters were estimated using maximum likelihood comparison to human probability correct (PC) data. PC in human and all model observers increased with dose, contrast, and size, and was much higher for advanced iterative reconstruction (IMR) as compared to filtered back projection (FBP). Detection in IMR was better than FPB at 1/3 dose, suggesting significant dose savings. Model(k1,k2,k3,k4) gave the best overall fit to humans across independent variables (dose, size, contrast, and reconstruction) at fixed display window. However Model(k1) performed better when considering model complexity using the Akaike information criterion. Model(k1) fit the extraordinary detectability difference between IMR and FBP, despite the different noise quality. It is anticipated that the model observer will predict results from iterative reconstruction methods having similar noise characteristics, enabling rapid comparison of methods.

  5. Influence of Ultra-Low-Dose and Iterative Reconstructions on the Visualization of Orbital Soft Tissues on Maxillofacial CT.

    PubMed

    Widmann, G; Juranek, D; Waldenberger, F; Schullian, P; Dennhardt, A; Hoermann, R; Steurer, M; Gassner, E-M; Puelacher, W

    2017-08-01

    Dose reduction on CT scans for surgical planning and postoperative evaluation of midface and orbital fractures is an important concern. The purpose of this study was to evaluate the variability of various low-dose and iterative reconstruction techniques on the visualization of orbital soft tissues. Contrast-to-noise ratios of the optic nerve and inferior rectus muscle and subjective scores of a human cadaver were calculated from CT with a reference dose protocol (CT dose index volume = 36.69 mGy) and a subsequent series of low-dose protocols (LDPs I-4: CT dose index volume = 4.18, 2.64, 0.99, and 0.53 mGy) with filtered back-projection (FBP) and adaptive statistical iterative reconstruction (ASIR)-50, ASIR-100, and model-based iterative reconstruction. The Dunn Multiple Comparison Test was used to compare each combination of protocols (α = .05). Compared with the reference dose protocol with FBP, the following statistically significant differences in contrast-to-noise ratios were shown (all, P ≤ .012) for the following: 1) optic nerve: LDP-I with FBP; LDP-II with FBP and ASIR-50; LDP-III with FBP, ASIR-50, and ASIR-100; and LDP-IV with FBP, ASIR-50, and ASIR-100; and 2) inferior rectus muscle: LDP-II with FBP, LDP-III with FBP and ASIR-50, and LDP-IV with FBP, ASIR-50, and ASIR-100. Model-based iterative reconstruction showed the best contrast-to-noise ratio in all images and provided similar subjective scores for LDP-II. ASIR-50 had no remarkable effect, and ASIR-100, a small effect on subjective scores. Compared with a reference dose protocol with FBP, model-based iterative reconstruction may show similar diagnostic visibility of orbital soft tissues at a CT dose index volume of 2.64 mGy. Low-dose technology and iterative reconstruction technology may redefine current reference dose levels in maxillofacial CT. © 2017 by American Journal of Neuroradiology.

  6. Cranial CT with adaptive statistical iterative reconstruction: improved image quality with concomitant radiation dose reduction.

    PubMed

    Rapalino, O; Kamalian, Shervin; Kamalian, Shahmir; Payabvash, S; Souza, L C S; Zhang, D; Mukta, J; Sahani, D V; Lev, M H; Pomerantz, S R

    2012-04-01

    To safeguard patient health, there is great interest in CT radiation-dose reduction. The purpose of this study was to evaluate the impact of an iterative-reconstruction algorithm, ASIR, on image-quality measures in reduced-dose head CT scans for adult patients. Using a 64-section scanner, we analyzed 100 reduced-dose adult head CT scans at 6 predefined levels of ASIR blended with FBP reconstruction. These scans were compared with 50 CT scans previously obtained at a higher routine dose without ASIR reconstruction. SNR and CNR were computed from Hounsfield unit measurements of normal GM and WM of brain parenchyma. A blinded qualitative analysis was performed in 10 lower-dose CT datasets compared with higher-dose ones without ASIR. Phantom data analysis was also performed. Lower-dose scans without ASIR had significantly lower mean GM and WM SNR (P = .003) and similar GM-WM CNR values compared with higher routine-dose scans. However, at ASIR levels of 20%-40%, there was no statistically significant difference in SNR, and at ASIR levels of ≥60%, the SNR values of the reduced-dose scans were significantly higher (P < .01). CNR values were also significantly higher at ASIR levels of ≥40% (P < .01). Blinded qualitative review demonstrated significant improvements in perceived image noise, artifacts, and GM-WM differentiation at ASIR levels ≥60% (P < .01). These results demonstrate that the use of ASIR in adult head CT scans reduces image noise and increases low-contrast resolution, while allowing lower radiation doses without affecting spatial resolution.

  7. In vivo diode dosimetry vs. computerized tomography and digitally reconstructed radiographs for critical organ dose calculation in high-dose-rate brachytherapy of cervical cancer.

    PubMed

    Hassouna, Ashraf H; Bahadur, Yasir A; Constantinescu, Camelia; El Sayed, Mohamed E; Naseem, Hussain; Naga, Adly F

    2011-01-01

    To investigate the correlation between the dose predicted by the treatment planning system using digitally reconstructed radiographs or three-dimensional (3D)-reconstructed CT images and the dose measured by semiconductor detectors, under clinical conditions of high-dose-rate brachytherapy of the cervix uteri. Thirty-two intracavitary brachytherapy applications were performed for 12 patients with cancer of the cervix uteri. The prescribed dose to Point A was 7 Gy. Dose was calculated for both International Commissioning on Radiation Units and Measurements (ICRU) bladder and rectal points based on digitally reconstructed radiographs and for 3D CT images-based volumetric calculation of the bladder and rectum. In vivo diode dosimetry was performed for the bladder and rectum. The ICRU reference point and the volumes of 1, 2, and 5cm(3) received 3.6±0.9, 5.6±2.0, 5.1±1.7, 4.3±1.4 and 5.0±1.2, 5.3±1.3, 4.9±1.1, and 4.2±0.9 Gy for the bladder and rectum, respectively. The ratio of the 1cm(3) and the ICRU reference point dose to the diode dose was 1.8±0.7 and 1.2±0.5 for the bladder and 1.9±0.6 and 1.7±0.5 for the rectum, respectively. 3D image-based dose calculation is the most accurate and reliable method to evaluate the dose given to critical organs. In vivo diode dosimetry is an important method of quality assurance, but clinical decisions should be made based on 3D-reconstructed CT image calculations. Copyright © 2011 American Brachytherapy Society. Published by Elsevier Inc. All rights reserved.

  8. Ultra-Low-Dose Fetal CT With Model-Based Iterative Reconstruction: A Prospective Pilot Study.

    PubMed

    Imai, Rumi; Miyazaki, Osamu; Horiuchi, Tetsuya; Asano, Keisuke; Nishimura, Gen; Sago, Haruhiko; Nosaka, Shunsuke

    2017-06-01

    Prenatal diagnosis of skeletal dysplasia by means of 3D skeletal CT examination is highly accurate. However, it carries a risk of fetal exposure to radiation. Model-based iterative reconstruction (MBIR) technology can reduce radiation exposure; however, to our knowledge, the lower limit of an optimal dose is currently unknown. The objectives of this study are to establish ultra-low-dose fetal CT as a method for prenatal diagnosis of skeletal dysplasia and to evaluate the appropriate radiation dose for ultra-low-dose fetal CT. Relationships between tube current and image noise in adaptive statistical iterative reconstruction and MBIR were examined using a 32-cm CT dose index (CTDI) phantom. On the basis of the results of this examination and the recommended methods for the MBIR option and the known relationship between noise and tube current for filtered back projection, as represented by the expression SD = (milliamperes) -0.5 , the lower limit of the optimal dose in ultra-low-dose fetal CT with MBIR was set. The diagnostic power of the CT images obtained using the aforementioned scanning conditions was evaluated, and the radiation exposure associated with ultra-low-dose fetal CT was compared with that noted in previous reports. Noise increased in nearly inverse proportion to the square root of the dose in adaptive statistical iterative reconstruction and in inverse proportion to the fourth root of the dose in MBIR. Ultra-low-dose fetal CT was found to have a volume CTDI of 0.5 mGy. Prenatal diagnosis was accurately performed on the basis of ultra-low-dose fetal CT images that were obtained using this protocol. The level of fetal exposure to radiation was 0.7 mSv. The use of ultra-low-dose fetal CT with MBIR led to a substantial reduction in radiation exposure, compared with the CT imaging method currently used at our institution, but it still enabled diagnosis of skeletal dysplasia without reducing diagnostic power.

  9. Reduction of effective dose and organ dose to the eye lens in head MDCT using iterative image reconstruction and automatic tube current modulation.

    PubMed

    Ryska, Pavel; Kvasnicka, Tomas; Jandura, Jiri; Klzo, Ludovit; Grepl, Jakub; Zizka, Jan

    2014-06-01

    To compare the effective and eye lens radiation dose in helical MDCT brain examinations using automatic tube current modulation in conjunction with either standard filtered back projection (FBP) technique or iterative reconstruction in image space (IRIS). Of 400 adult brain MDCT examinations, 200 were performed using FBP and 200 using IRIS with the following parameters: tube voltage 120 kV, rotation period 1 second, pitch factor 0.55, automatic tube current modulation in both transverse and longitudinal planes with reference mAs 300 (FBP) and 200 (IRIS). Doses were calculated from CT dose index and dose length product values utilising ImPACT software; the organ dose to the lens was derived from the actual tube current-time product value applied to the lens. Image quality was assessed by two independent readers blinded to the type of image reconstruction technique. The average effective scan dose was 1.47±0.26 mSv (FBP) and 0.98±0.15 mSv (IRIS), respectively (33.3% decrease). The average organ dose to the eye lens decreased from 40.0±3.3 mGy (FBP) to 26.6±2.0 mGy (IRIS, 33.5% decrease). No significant change in diagnostic image quality was noted between IRIS and FBP scans (P=0.17). Iterative reconstruction of cerebral MDCT examinations enables reduction of both effective and organ eye lens dose by one third without signficant loss of image quality.

  10. Pediatric chest HRCT using the iDose4 Hybrid Iterative Reconstruction Algorithm: Which iDose level to choose?

    NASA Astrophysics Data System (ADS)

    Smarda, M.; Alexopoulou, E.; Mazioti, A.; Kordolaimi, S.; Ploussi, A.; Priftis, K.; Efstathopoulos, E.

    2015-09-01

    Purpose of the study is to determine the appropriate iterative reconstruction (IR) algorithm level that combines image quality and diagnostic confidence, for pediatric patients undergoing high-resolution computed tomography (HRCT). During the last 2 years, a total number of 20 children up to 10 years old with a clinical presentation of chronic bronchitis underwent HRCT in our department's 64-detector row CT scanner using the iDose IR algorithm, with almost similar image settings (80kVp, 40-50 mAs). CT images were reconstructed with all iDose levels (level 1 to 7) as well as with filtered-back projection (FBP) algorithm. Subjective image quality was evaluated by 2 experienced radiologists in terms of image noise, sharpness, contrast and diagnostic acceptability using a 5-point scale (1=excellent image, 5=non-acceptable image). Artifacts existance was also pointed out. All mean scores from both radiologists corresponded to satisfactory image quality (score ≤3), even with the FBP algorithm use. Almost excellent (score <2) overall image quality was achieved with iDose levels 5 to 7, but oversmoothing artifacts appearing with iDose levels 6 and 7 affected the diagnostic confidence. In conclusion, the use of iDose level 5 enables almost excellent image quality without considerable artifacts affecting the diagnosis. Further evaluation is needed in order to draw more precise conclusions.

  11. Detection of calcification clusters in digital breast tomosynthesis slices at different dose levels utilizing a SRSAR reconstruction and JAFROC

    NASA Astrophysics Data System (ADS)

    Timberg, P.; Dustler, M.; Petersson, H.; Tingberg, A.; Zackrisson, S.

    2015-03-01

    Purpose: To investigate detection performance for calcification clusters in reconstructed digital breast tomosynthesis (DBT) slices at different dose levels using a Super Resolution and Statistical Artifact Reduction (SRSAR) reconstruction method. Method: Simulated calcifications with irregular profile (0.2 mm diameter) where combined to form clusters that were added to projection images (1-3 per abnormal image) acquired on a DBT system (Mammomat Inspiration, Siemens). The projection images were dose reduced by software to form 35 abnormal cases and 25 normal cases as if acquired at 100%, 75% and 50% dose level (AGD of approximately 1.6 mGy for a 53 mm standard breast, measured according to EUREF v0.15). A standard FBP and a SRSAR reconstruction method (utilizing IRIS (iterative reconstruction filters), and outlier detection using Maximum-Intensity Projections and Average-Intensity Projections) were used to reconstruct single central slices to be used in a Free-response task (60 images per observer and dose level). Six observers participated and their task was to detect the clusters and assign confidence rating in randomly presented images from the whole image set (balanced by dose level). Each trial was separated by one weeks to reduce possible memory bias. The outcome was analyzed for statistical differences using Jackknifed Alternative Free-response Receiver Operating Characteristics. Results: The results indicate that it is possible reduce the dose by 50% with SRSAR without jeopardizing cluster detection. Conclusions: The detection performance for clusters can be maintained at a lower dose level by using SRSAR reconstruction.

  12. 76 FR 9786 - NIOSH Dose Reconstruction Program Ten-Year Review-Phase I Report on Customer Service; Request for...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-02-22

    ... DEPARTMENT OF HEALTH AND HUMAN SERVICES Centers for Disease Control and Prevention NIOSH Dose Reconstruction Program Ten-Year Review--Phase I Report on Customer Service; Request for Public Review and Comment... requests public review and comment on the draft publication, ``NIOSH Dose Reconstruction Program Ten-Year...

  13. Thyroid neoplasia, autoimmune thyroiditis, and hypothyroidism in persons exposed to iodine 131 from the hanford nuclear site.

    PubMed

    Davis, Scott; Kopecky, Kenneth J; Hamilton, Thomas E; Onstad, Lynn

    2004-12-01

    Approximately 740,000 Ci (2.73 x 10(16) Bq) of iodine 131 (131I) were released to the atmosphere from the Hanford Nuclear Site in Washington State from 1944 through 1957. The risk of thyroid disease resulting from prolonged environmental 131I exposure is poorly understood. The Hanford Thyroid Disease Study (HTDS) was conducted to determine if thyroid disease is increased among persons exposed as children to atmospheric releases of 131I from Hanford. Retrospective cohort study. Exposure could have occurred from December 1944 through 1957. Follow-up occurred until the time of the HTDS examination (December 1992-September 1997). Participants' thyroid radiation doses from Hanford's 131I releases were estimated from interview data regarding residence and dietary histories. The cohort included a sample of all births from 1940 through 1946 to mothers with usual residence in 1 of 7 counties in eastern Washington State. Of 5199 individuals identified, 4350 were located alive and 3440 were evaluable; ie, had sufficient data for dose estimation and received an HTDS evaluation for thyroid disease, including a thyroid ultrasound, physical examination, and fine needle biopsy if required to evaluate thyroid nodularity. Thyroid cancer, benign thyroid nodules, total neoplasia, any thyroid nodules, autoimmune thyroiditis, and hypothyroidism. There was no evidence of a relationship between Hanford radiation dose and the cumulative incidence of any of the outcomes. These results remained unchanged after taking into account several factors that might confound the relationship between radiation dose and the outcomes of interest. These results do not support the hypothesis that exposure during infancy and childhood to 131I at the dose levels (median, 97 mGy; mean, 174 mGy) and exposure circumstances experienced by our study participants increases the risk of the forms of thyroid disease evaluated in this study.

  14. Dose reduction in abdominal computed tomography: intraindividual comparison of image quality of full-dose standard and half-dose iterative reconstructions with dual-source computed tomography.

    PubMed

    May, Matthias S; Wüst, Wolfgang; Brand, Michael; Stahl, Christian; Allmendinger, Thomas; Schmidt, Bernhard; Uder, Michael; Lell, Michael M

    2011-07-01

    We sought to evaluate the image quality of iterative reconstruction in image space (IRIS) in half-dose (HD) datasets compared with full-dose (FD) and HD filtered back projection (FBP) reconstruction in abdominal computed tomography (CT). To acquire data with FD and HD simultaneously, contrast-enhanced abdominal CT was performed with a dual-source CT system, both tubes operating at 120 kV, 100 ref.mAs, and pitch 0.8. Three different image datasets were reconstructed from the raw data: Standard FD images applying FBP which served as reference, HD images applying FBP and HD images applying IRIS. For the HD data sets, only data from 1 tube detector-system was used. Quantitative image quality analysis was performed by measuring image noise in tissue and air. Qualitative image quality was evaluated according to the European Guidelines on Quality criteria for CT. Additional assessment of artifacts, lesion conspicuity, and edge sharpness was performed. : Image noise in soft tissue was substantially decreased in HD-IRIS (-3.4 HU, -22%) and increased in HD-FBP (+6.2 HU, +39%) images when compared with the reference (mean noise, 15.9 HU). No significant differences between the FD-FBP and HD-IRIS images were found for the visually sharp anatomic reproduction, overall diagnostic acceptability (P = 0.923), lesion conspicuity (P = 0.592), and edge sharpness (P = 0.589), while HD-FBP was rated inferior. Streak artifacts and beam hardening was significantly more prominent in HD-FBP while HD-IRIS images exhibited a slightly different noise pattern. Direct intrapatient comparison of standard FD body protocols and HD-IRIS reconstruction suggest that the latest iterative reconstruction algorithms allow for approximately 50% dose reduction without deterioration of the high image quality necessary for confident diagnosis.

  15. Retrospective Reconstruction of Radiation Doses of Chernobyl Liquidators by Electron Paramagnetic Resonance

    DTIC Science & Technology

    1997-12-01

    Armed Forces Rad I Research Institute Retrospective Reconstruction of Radiation Doses of Chernobyl Liquidators by Electron Paramagnetic Resonance A...of Radiation Doses of Chernobyl Liquidators by Electron Paramagnetic Resonance Authored by Scientific Center of Radiation Medicine Academy of Medical...libraries associated with the U.S. Government’s Depository Library System. Preface On April 26, 1986, Reactor #4 at the Chernobyl Nuclear Power Plant near

  16. Clinical implementation of an exit detector-based dose reconstruction tool for helical tomotherapy delivery quality assurance.

    PubMed

    Deshpande, Shrikant; Xing, Aitang; Metcalfe, Peter; Holloway, Lois; Vial, Philip; Geurts, Mark

    2017-10-01

    The aim of this study was to validate the accuracy of an exit detector-based dose reconstruction tool for helical tomotherapy (HT) delivery quality assurance (DQA). Exit detector-based DQA tool was developed for patient-specific HT treatment verification. The tool performs a dose reconstruction on the planning image using the sinogram measured by the HT exit detector with no objects in the beam (i.e., static couch), and compares the reconstructed dose to the planned dose. Vendor supplied (three "TomoPhant") plans with a cylindrical solid water ("cheese") phantom were used for validation. Each "TomoPhant" plan was modified with intentional multileaf collimator leaf open time (MLC LOT) errors to assess the sensitivity and robustness of this tool. Four scenarios were tested; leaf 32 was "stuck open," leaf 42 was "stuck open," random leaf LOT was closed first by mean values of 2% and then 4%. A static couch DQA procedure was then run five times (once with the unmodified sinogram and four times with modified sinograms) for each of the three "TomoPhant" treatment plans. First, the original optimized delivery plan was compared with the original machine agnostic delivery plan, then the original optimized plans with a known modification applied (intentional MLC LOT error) were compared to the corresponding error plan exit detector measurements. An absolute dose comparison between calculated and ion chamber (A1SL, Standard Imaging, Inc., WI, USA) measured dose was performed for the unmodified "TomoPhant" plans. A 3D gamma evaluation (2%/2 mm global) was performed by comparing the planned dose ("original planned dose" for unmodified plans and "adjusted planned dose" for each intentional error) to exit detector-reconstructed dose for all three "Tomophant" plans. Finally, DQA for 119 clinical (treatment length <25 cm) and three cranio-spinal irradiation (CSI) plans were measured with both the ArcCHECK phantom (Sun Nuclear Corp., Melbourne, FL, USA) and the exit detector DQA

  17. MO-DE-207A-09: Low-Dose CT Image Reconstruction Via Learning From Different Patient Normal-Dose Images

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Han, H; Xing, L; Liang, Z

    Purpose: To investigate a novel low-dose CT (LdCT) image reconstruction strategy for lung CT imaging in radiation therapy. Methods: The proposed approach consists of four steps: (1) use the traditional filtered back-projection (FBP) method to reconstruct the LdCT image; (2) calculate structure similarity (SSIM) index between the FBP-reconstructed LdCT image and a set of normal-dose CT (NdCT) images, and select the NdCT image with the highest SSIM as the learning source; (3) segment the NdCT source image into lung and outside tissue regions via simple thresholding, and adopt multiple linear regression to learn high-order Markov random field (MRF) pattern formore » each tissue region in the NdCT source image; (4) segment the FBP-reconstructed LdCT image into lung and outside regions as well, and apply the learnt MRF prior in each tissue region for statistical iterative reconstruction of the LdCT image following the penalized weighted least squares (PWLS) framework. Quantitative evaluation of the reconstructed images was based on the signal-to-noise ratio (SNR), local binary pattern (LBP) and histogram of oriented gradients (HOG) metrics. Results: It was observed that lung and outside tissue regions have different MRF patterns predicted from the NdCT. Visual inspection showed that our method obviously outperformed the traditional FBP method. Comparing with the region-smoothing PWLS method, our method has, in average, 13% increase in SNR, 15% decrease in LBP difference, and 12% decrease in HOG difference from reference standard for all regions of interest, which indicated the superior performance of the proposed method in terms of image resolution and texture preservation. Conclusion: We proposed a novel LdCT image reconstruction method by learning similar image characteristics from a set of NdCT images, and the to-be-learnt NdCT image does not need to be scans from the same subject. This approach is particularly important for enhancing image quality in radiation

  18. Influence of radiation dose and iterative reconstruction algorithms for measurement accuracy and reproducibility of pulmonary nodule volumetry: A phantom study.

    PubMed

    Kim, Hyungjin; Park, Chang Min; Song, Yong Sub; Lee, Sang Min; Goo, Jin Mo

    2014-05-01

    To evaluate the influence of radiation dose settings and reconstruction algorithms on the measurement accuracy and reproducibility of semi-automated pulmonary nodule volumetry. CT scans were performed on a chest phantom containing various nodules (10 and 12mm; +100, -630 and -800HU) at 120kVp with tube current-time settings of 10, 20, 50, and 100mAs. Each CT was reconstructed using filtered back projection (FBP), iDose(4) and iterative model reconstruction (IMR). Semi-automated volumetry was performed by two radiologists using commercial volumetry software for nodules at each CT dataset. Noise, contrast-to-noise ratio and signal-to-noise ratio of CT images were also obtained. The absolute percentage measurement errors and differences were then calculated for volume and mass. The influence of radiation dose and reconstruction algorithm on measurement accuracy, reproducibility and objective image quality metrics was analyzed using generalized estimating equations. Measurement accuracy and reproducibility of nodule volume and mass were not significantly associated with CT radiation dose settings or reconstruction algorithms (p>0.05). Objective image quality metrics of CT images were superior in IMR than in FBP or iDose(4) at all radiation dose settings (p<0.05). Semi-automated nodule volumetry can be applied to low- or ultralow-dose chest CT with usage of a novel iterative reconstruction algorithm without losing measurement accuracy and reproducibility. Copyright © 2014 Elsevier Ireland Ltd. All rights reserved.

  19. High-order noise analysis for low dose iterative image reconstruction methods: ASIR, IRIS, and MBAI

    NASA Astrophysics Data System (ADS)

    Do, Synho; Singh, Sarabjeet; Kalra, Mannudeep K.; Karl, W. Clem; Brady, Thomas J.; Pien, Homer

    2011-03-01

    Iterative reconstruction techniques (IRTs) has been shown to suppress noise significantly in low dose CT imaging. However, medical doctors hesitate to accept this new technology because visual impression of IRT images are different from full-dose filtered back-projection (FBP) images. Most common noise measurements such as the mean and standard deviation of homogeneous region in the image that do not provide sufficient characterization of noise statistics when probability density function becomes non-Gaussian. In this study, we measure L-moments of intensity values of images acquired at 10% of normal dose and reconstructed by IRT methods of two state-of-art clinical scanners (i.e., GE HDCT and Siemens DSCT flash) by keeping dosage level identical to each other. The high- and low-dose scans (i.e., 10% of high dose) were acquired from each scanner and L-moments of noise patches were calculated for the comparison.

  20. Task-based image quality evaluation of iterative reconstruction methods for low dose CT using computer simulations

    NASA Astrophysics Data System (ADS)

    Xu, Jingyan; Fuld, Matthew K.; Fung, George S. K.; Tsui, Benjamin M. W.

    2015-04-01

    Iterative reconstruction (IR) methods for x-ray CT is a promising approach to improve image quality or reduce radiation dose to patients. The goal of this work was to use task based image quality measures and the channelized Hotelling observer (CHO) to evaluate both analytic and IR methods for clinical x-ray CT applications. We performed realistic computer simulations at five radiation dose levels, from a clinical reference low dose D0 to 25% D0. A fixed size and contrast lesion was inserted at different locations into the liver of the XCAT phantom to simulate a weak signal. The simulated data were reconstructed on a commercial CT scanner (SOMATOM Definition Flash; Siemens, Forchheim, Germany) using the vendor-provided analytic (WFBP) and IR (SAFIRE) methods. The reconstructed images were analyzed by CHOs with both rotationally symmetric (RS) and rotationally oriented (RO) channels, and with different numbers of lesion locations (5, 10, and 20) in a signal known exactly (SKE), background known exactly but variable (BKEV) detection task. The area under the receiver operating characteristic curve (AUC) was used as a summary measure to compare the IR and analytic methods; the AUC was also used as the equal performance criterion to derive the potential dose reduction factor of IR. In general, there was a good agreement in the relative AUC values of different reconstruction methods using CHOs with RS and RO channels, although the CHO with RO channels achieved higher AUCs than RS channels. The improvement of IR over analytic methods depends on the dose level. The reference dose level D0 was based on a clinical low dose protocol, lower than the standard dose due to the use of IR methods. At 75% D0, the performance improvement was statistically significant (p < 0.05). The potential dose reduction factor also depended on the detection task. For the SKE/BKEV task involving 10 lesion locations, a dose reduction of at least 25% from D0 was achieved.

  1. Deformable Dose Reconstruction to Optimize the Planning and Delivery of Liver Cancer Radiotherapy

    NASA Astrophysics Data System (ADS)

    Velec, Michael

    The precise delivery of radiation to liver cancer patients results in improved control with higher tumor doses and minimized normal tissues doses. A margin of normal tissue around the tumor requires irradiation however to account for treatment delivery uncertainties. Daily image-guidance allows targeting of the liver, a surrogate for the tumor, to reduce geometric errors. However poor direct tumor visualization, anatomical deformation and breathing motion introduce uncertainties between the planned dose, calculated on a single pre-treatment computed tomography image, and the dose that is delivered. A novel deformable image registration algorithm based on tissue biomechanics was applied to previous liver cancer patients to track targets and surrounding organs during radiotherapy. Modeling these daily anatomic variations permitted dose accumulation, thereby improving calculations of the delivered doses. The accuracy of the algorithm to track dose was validated using imaging from a deformable, 3-dimensional dosimeter able to optically track absorbed dose. Reconstructing the delivered dose revealed that 70% of patients had substantial deviations from the initial planned dose. An alternative image-guidance technique using respiratory-correlated imaging was simulated, which reduced both the residual tumor targeting errors and the magnitude of the delivered dose deviations. A planning and delivery strategy for liver radiotherapy was then developed that minimizes the impact of breathing motion, and applied a margin to account for the impact of liver deformation during treatment. This margin is 38% smaller on average than the margin used clinically, and permitted an average dose-escalation to liver tumors of 9% for the same risk of toxicity. Simulating the delivered dose with deformable dose reconstruction demonstrated the plans with smaller margins were robust as 90% of patients' tumors received the intended dose. This strategy can be readily implemented with widely

  2. Hyperparathyroidism in persons exposed to iodine-131 from the Hanford Nuclear Site.

    PubMed

    Hamilton, Thomas E; Davis, Scott; Onstad, Lynn; Kopecky, Kenneth J

    2005-12-01

    The risk of primary hyperparathyroidism from exposure to external radiation has been well documented in the last 20 yr. However, it remains unclear whether hyperparathyroidism might also be caused by internal exposure to radioactive iodine. The objective of this study was to determine whether exposure to 131I from the Hanford Nuclear Site during 1944-1957 increased the risk of hyperparathyroidism among people living in the area. The Hanford Thyroid Disease Study was conducted as a retrospective cohort study. The study setting was the general community in Washington State. The participants were 5199 persons born to mothers with usual residence in one of seven counties in eastern Washington State, randomly selected from birth records for the years 1940-1946. Of the 5199 selected, 3440 underwent a Hanford Thyroid Disease Study clinical evaluation, including an evaluation for hyperparathyroidism. Individual thyroid radiation dose, which could be estimated for 3191 study participants, ranged from 0.0029-2823 mGy (mean, 174 mGy). Hyperparathyroidism was the main outcome measure. Of 3440 evaluable participants, we confirmed 12 cases of primary hyperparathyroidism (0.35%). We found no evidence that the cumulative incidence of hyperparathyroidism increased with increasing radiation dose. In summary, this study shows no evidence that 131I, received at young ages and at the doses and exposure conditions experienced by this cohort, increased the risk of primary hyperparathyroidism. However, the effects of different doses and conditions of exposure to 131I on the risk of hyperparathyroidism remain to be defined.

  3. Influence of radiation dose and reconstruction algorithm in MDCT assessment of airway wall thickness: A phantom study

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Gomez-Cardona, Daniel; Nagle, Scott K.; Department of Radiology, University of Wisconsin-Madison School of Medicine and Public Health, 600 Highland Avenue, Madison, Wisconsin 53792

    Purpose: Wall thickness (WT) is an airway feature of great interest for the assessment of morphological changes in the lung parenchyma. Multidetector computed tomography (MDCT) has recently been used to evaluate airway WT, but the potential risk of radiation-induced carcinogenesis—particularly in younger patients—might limit a wider use of this imaging method in clinical practice. The recent commercial implementation of the statistical model-based iterative reconstruction (MBIR) algorithm, instead of the conventional filtered back projection (FBP) algorithm, has enabled considerable radiation dose reduction in many other clinical applications of MDCT. The purpose of this work was to study the impact of radiationmore » dose and MBIR in the MDCT assessment of airway WT. Methods: An airway phantom was scanned using a clinical MDCT system (Discovery CT750 HD, GE Healthcare) at 4 kV levels and 5 mAs levels. Both FBP and a commercial implementation of MBIR (Veo{sup TM}, GE Healthcare) were used to reconstruct CT images of the airways. For each kV–mAs combination and each reconstruction algorithm, the contrast-to-noise ratio (CNR) of the airways was measured, and the WT of each airway was measured and compared with the nominal value; the relative bias and the angular standard deviation in the measured WT were calculated. For each airway and reconstruction algorithm, the overall performance of WT quantification across all of the 20 kV–mAs combinations was quantified by the sum of squares (SSQs) of the difference between the measured and nominal WT values. Finally, the particular kV–mAs combination and reconstruction algorithm that minimized radiation dose while still achieving a reference WT quantification accuracy level was chosen as the optimal acquisition and reconstruction settings. Results: The wall thicknesses of seven airways of different sizes were analyzed in the study. Compared with FBP, MBIR improved the CNR of the airways, particularly at low

  4. Improvement of dose calculation in radiation therapy due to metal artifact correction using the augmented likelihood image reconstruction.

    PubMed

    Ziemann, Christian; Stille, Maik; Cremers, Florian; Buzug, Thorsten M; Rades, Dirk

    2018-04-17

    Metal artifacts caused by high-density implants lead to incorrectly reconstructed Hounsfield units in computed tomography images. This can result in a loss of accuracy in dose calculation in radiation therapy. This study investigates the potential of the metal artifact reduction algorithms, Augmented Likelihood Image Reconstruction and linear interpolation, in improving dose calculation in the presence of metal artifacts. In order to simulate a pelvis with a double-sided total endoprosthesis, a polymethylmethacrylate phantom was equipped with two steel bars. Artifacts were reduced by applying the Augmented Likelihood Image Reconstruction, a linear interpolation, and a manual correction approach. Using the treatment planning system Eclipse™, identical planning target volumes for an idealized prostate as well as structures for bladder and rectum were defined in corrected and noncorrected images. Volumetric modulated arc therapy plans have been created with double arc rotations with and without avoidance sectors that mask out the prosthesis. The irradiation plans were analyzed for variations in the dose distribution and their homogeneity. Dosimetric measurements were performed using isocentric positioned ionization chambers. Irradiation plans based on images containing artifacts lead to a dose error in the isocenter of up to 8.4%. Corrections with the Augmented Likelihood Image Reconstruction reduce this dose error to 2.7%, corrections with linear interpolation to 3.2%, and manual artifact correction to 4.1%. When applying artifact correction, the dose homogeneity was slightly improved for all investigated methods. Furthermore, the calculated mean doses are higher for rectum and bladder if avoidance sectors are applied. Streaking artifacts cause an imprecise dose calculation within irradiation plans. Using a metal artifact correction algorithm, the planning accuracy can be significantly improved. Best results were accomplished using the Augmented Likelihood Image

  5. Validation of measurement‐guided 3D VMAT dose reconstruction on a heterogeneous anthropomorphic phantom

    PubMed Central

    Opp, Daniel; Nelms, Benjamin E.; Zhang, Geoffrey; Stevens, Craig

    2013-01-01

    3DVH software (Sun Nuclear Corp., Melbourne, FL) is capable of generating a volumetric patient VMAT dose by applying a volumetric perturbation algorithm based on comparing measurement‐guided dose reconstruction and TPS‐calculated dose to a cylindrical phantom. The primary purpose of this paper is to validate this dose reconstruction on an anthropomorphic heterogeneous thoracic phantom by direct comparison to independent measurements. The dosimetric insert to the phantom is novel, and thus the secondary goal is to demonstrate how it can be used for the hidden target end‐to‐end testing of VMAT treatments in lung. A dosimetric insert contains a 4 cm diameter unit‐density spherical target located inside the right lung (0.21g/cm3 density). It has 26 slots arranged in two orthogonal directions, milled to hold optically stimulated luminescent dosimeters (OSLDs). Dose profiles in three cardinal orthogonal directions were obtained for five VMAT plans with varying degrees of modulation. After appropriate OSLD corrections were applied, 3DVH measurement‐guided VMAT dose reconstruction agreed 100% with the measurements in the unit density target sphere at 3%/3 mm level (composite analysis) for all profile points for the four less‐modulated VMAT plans, and for 96% of the points in the highly modulated C‐shape plan (from TG‐119). For this latter plan, while 3DVH shows acceptable agreement with independent measurements in the unit density target, in the lung disagreement with experiment is relatively high for both the TPS calculation and 3DVH reconstruction. For the four plans excluding the C‐shape, 3%/3mm overall composite analysis passing rates for 3DVH against independent measurement ranged from 93% to 100%. The C‐shape plan was deliberately chosen as a stress test of the algorithm. The dosimetric spatial alignment hidden target test demonstrated the average distance to agreement between the measured and TPS profiles in the steep dose gradient area at the

  6. Computational and human observer image quality evaluation of low dose, knowledge-based CT iterative reconstruction

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Eck, Brendan L.; Fahmi, Rachid; Miao, Jun

    2015-10-15

    Purpose: Aims in this study are to (1) develop a computational model observer which reliably tracks the detectability of human observers in low dose computed tomography (CT) images reconstructed with knowledge-based iterative reconstruction (IMR™, Philips Healthcare) and filtered back projection (FBP) across a range of independent variables, (2) use the model to evaluate detectability trends across reconstructions and make predictions of human observer detectability, and (3) perform human observer studies based on model predictions to demonstrate applications of the model in CT imaging. Methods: Detectability (d′) was evaluated in phantom studies across a range of conditions. Images were generated usingmore » a numerical CT simulator. Trained observers performed 4-alternative forced choice (4-AFC) experiments across dose (1.3, 2.7, 4.0 mGy), pin size (4, 6, 8 mm), contrast (0.3%, 0.5%, 1.0%), and reconstruction (FBP, IMR), at fixed display window. A five-channel Laguerre–Gauss channelized Hotelling observer (CHO) was developed with internal noise added to the decision variable and/or to channel outputs, creating six different internal noise models. Semianalytic internal noise computation was tested against Monte Carlo and used to accelerate internal noise parameter optimization. Model parameters were estimated from all experiments at once using maximum likelihood on the probability correct, P{sub C}. Akaike information criterion (AIC) was used to compare models of different orders. The best model was selected according to AIC and used to predict detectability in blended FBP-IMR images, analyze trends in IMR detectability improvements, and predict dose savings with IMR. Predicted dose savings were compared against 4-AFC study results using physical CT phantom images. Results: Detection in IMR was greater than FBP in all tested conditions. The CHO with internal noise proportional to channel output standard deviations, Model-k4, showed the best trade

  7. 42 CFR 82.25 - When will NIOSH report dose reconstruction results, and to whom?

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... 42 Public Health 1 2010-10-01 2010-10-01 false When will NIOSH report dose reconstruction results, and to whom? 82.25 Section 82.25 Public Health PUBLIC HEALTH SERVICE, DEPARTMENT OF HEALTH AND HUMAN SERVICES OCCUPATIONAL SAFETY AND HEALTH RESEARCH AND RELATED ACTIVITIES METHODS FOR CONDUCTING DOSE...

  8. 75 FR 5767 - Veterans' Advisory Board on Dose Reconstruction; Meeting

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-02-04

    ... Nagasaki, Japan; and veterans who were prisoners of war in those regions at the conclusion of World War II...: The meeting will be held on Thursday, March 4, 2010, from 8:30 a.m. to 11:45 a.m. and from 1:15 p.m... INFORMATION CONTACT: The Veterans' Advisory Board on Dose Reconstruction Toll Free at 1-866-657-VBDR (8237...

  9. Submillisievert Radiation Dose Coronary CT Angiography: Clinical Impact of the Knowledge-Based Iterative Model Reconstruction.

    PubMed

    Iyama, Yuji; Nakaura, Takeshi; Kidoh, Masafumi; Oda, Seitaro; Utsunomiya, Daisuke; Sakaino, Naritsugu; Tokuyasu, Shinichi; Osakabe, Hirokazu; Harada, Kazunori; Yamashita, Yasuyuki

    2016-11-01

    The purpose of this study was to evaluate the noise and image quality of images reconstructed with a knowledge-based iterative model reconstruction (knowledge-based IMR) in ultra-low dose cardiac computed tomography (CT). We performed submillisievert radiation dose coronary CT angiography on 43 patients. We also performed a phantom study to evaluate the influence of object size with the automatic exposure control phantom. We reconstructed clinical and phantom studies with filtered back projection (FBP), hybrid iterative reconstruction (hybrid IR), and knowledge-based IMR. We measured effective dose of patients and compared CT number, image noise, and contrast noise ratio in ascending aorta of each reconstruction technique. We compared the relationship between image noise and body mass index for the clinical study, and object size for phantom study. The mean effective dose was 0.98 ± 0.25 mSv. The image noise of knowledge-based IMR images was significantly lower than those of FBP and hybrid IR images (knowledge-based IMR: 19.4 ± 2.8; FBP: 126.7 ± 35.0; hybrid IR: 48.8 ± 12.8, respectively) (P < .01). The contrast noise ratio of knowledge-based IMR images was significantly higher than those of FBP and hybrid IR images (knowledge-based IMR: 29.1 ± 5.4; FBP: 4.6 ± 1.3; hybrid IR: 13.1 ± 3.5, respectively) (P < .01). There were moderate correlations between image noise and body mass index in FBP (r = 0.57, P < .01) and hybrid IR techniques (r = 0.42, P < .01); however, these correlations were weak in knowledge-based IMR (r = 0.27, P < .01). Compared to FBP and hybrid IR, the knowledge-based IMR offers significant noise reduction and improvement in image quality in submillisievert radiation dose cardiac CT. Copyright © 2016 The Association of University Radiologists. Published by Elsevier Inc. All rights reserved.

  10. Evaluation of an iterative model-based CT reconstruction algorithm by intra-patient comparison of standard and ultra-low-dose examinations.

    PubMed

    Noël, Peter B; Engels, Stephan; Köhler, Thomas; Muenzel, Daniela; Franz, Daniela; Rasper, Michael; Rummeny, Ernst J; Dobritz, Martin; Fingerle, Alexander A

    2018-01-01

    Background The explosive growth of computer tomography (CT) has led to a growing public health concern about patient and population radiation dose. A recently introduced technique for dose reduction, which can be combined with tube-current modulation, over-beam reduction, and organ-specific dose reduction, is iterative reconstruction (IR). Purpose To evaluate the quality, at different radiation dose levels, of three reconstruction algorithms for diagnostics of patients with proven liver metastases under tumor follow-up. Material and Methods A total of 40 thorax-abdomen-pelvis CT examinations acquired from 20 patients in a tumor follow-up were included. All patients were imaged using the standard-dose and a specific low-dose CT protocol. Reconstructed slices were generated by using three different reconstruction algorithms: a classical filtered back projection (FBP); a first-generation iterative noise-reduction algorithm (iDose4); and a next generation model-based IR algorithm (IMR). Results The overall detection of liver lesions tended to be higher with the IMR algorithm than with FBP or iDose4. The IMR dataset at standard dose yielded the highest overall detectability, while the low-dose FBP dataset showed the lowest detectability. For the low-dose protocols, a significantly improved detectability of the liver lesion can be reported compared to FBP or iDose 4 ( P = 0.01). The radiation dose decreased by an approximate factor of 5 between the standard-dose and the low-dose protocol. Conclusion The latest generation of IR algorithms significantly improved the diagnostic image quality and provided virtually noise-free images for ultra-low-dose CT imaging.

  11. Towards quantitative imaging: stability of fully automated nodule segmentation across varied dose levels and reconstruction parameters in a low-dose CT screening patient cohort

    NASA Astrophysics Data System (ADS)

    Wahi-Anwar, M. Wasil; Emaminejad, Nastaran; Hoffman, John; Kim, Grace H.; Brown, Matthew S.; McNitt-Gray, Michael F.

    2018-02-01

    Quantitative imaging in lung cancer CT seeks to characterize nodules through quantitative features, usually from a region of interest delineating the nodule. The segmentation, however, can vary depending on segmentation approach and image quality, which can affect the extracted feature values. In this study, we utilize a fully-automated nodule segmentation method - to avoid reader-influenced inconsistencies - to explore the effects of varied dose levels and reconstruction parameters on segmentation. Raw projection CT images from a low-dose screening patient cohort (N=59) were reconstructed at multiple dose levels (100%, 50%, 25%, 10%), two slice thicknesses (1.0mm, 0.6mm), and a medium kernel. Fully-automated nodule detection and segmentation was then applied, from which 12 nodules were selected. Dice similarity coefficient (DSC) was used to assess the similarity of the segmentation ROIs of the same nodule across different reconstruction and dose conditions. Nodules at 1.0mm slice thickness and dose levels of 25% and 50% resulted in DSC values greater than 0.85 when compared to 100% dose, with lower dose leading to a lower average and wider spread of DSC values. At 0.6mm, the increased bias and wider spread of DSC values from lowering dose were more pronounced. The effects of dose reduction on DSC for CAD-segmented nodules were similar in magnitude to reducing the slice thickness from 1.0mm to 0.6mm. In conclusion, variation of dose and slice thickness can result in very different segmentations because of noise and image quality. However, there exists some stability in segmentation overlap, as even at 1mm, an image with 25% of the lowdose scan still results in segmentations similar to that seen in a full-dose scan.

  12. Median prior constrained TV algorithm for sparse view low-dose CT reconstruction.

    PubMed

    Liu, Yi; Shangguan, Hong; Zhang, Quan; Zhu, Hongqing; Shu, Huazhong; Gui, Zhiguo

    2015-05-01

    It is known that lowering the X-ray tube current (mAs) or tube voltage (kVp) and simultaneously reducing the total number of X-ray views (sparse view) is an effective means to achieve low-dose in computed tomography (CT) scan. However, the associated image quality by the conventional filtered back-projection (FBP) usually degrades due to the excessive quantum noise. Although sparse-view CT reconstruction algorithm via total variation (TV), in the scanning protocol of reducing X-ray tube current, has been demonstrated to be able to result in significant radiation dose reduction while maintain image quality, noticeable patchy artifacts still exist in reconstructed images. In this study, to address the problem of patchy artifacts, we proposed a median prior constrained TV regularization to retain the image quality by introducing an auxiliary vector m in register with the object. Specifically, the approximate action of m is to draw, in each iteration, an object voxel toward its own local median, aiming to improve low-dose image quality with sparse-view projection measurements. Subsequently, an alternating optimization algorithm is adopted to optimize the associative objective function. We refer to the median prior constrained TV regularization as "TV_MP" for simplicity. Experimental results on digital phantoms and clinical phantom demonstrated that the proposed TV_MP with appropriate control parameters can not only ensure a higher signal to noise ratio (SNR) of the reconstructed image, but also its resolution compared with the original TV method. Copyright © 2015 Elsevier Ltd. All rights reserved.

  13. Performance evaluation of iterative reconstruction algorithms for achieving CT radiation dose reduction — a phantom study

    PubMed Central

    Dodge, Cristina T.; Tamm, Eric P.; Cody, Dianna D.; Liu, Xinming; Jensen, Corey T.; Wei, Wei; Kundra, Vikas

    2016-01-01

    The purpose of this study was to characterize image quality and dose performance with GE CT iterative reconstruction techniques, adaptive statistical iterative reconstruction (ASiR), and model‐based iterative reconstruction (MBIR), over a range of typical to low‐dose intervals using the Catphan 600 and the anthropomorphic Kyoto Kagaku abdomen phantoms. The scope of the project was to quantitatively describe the advantages and limitations of these approaches. The Catphan 600 phantom, supplemented with a fat‐equivalent oval ring, was scanned using a GE Discovery HD750 scanner at 120 kVp, 0.8 s rotation time, and pitch factors of 0.516, 0.984, and 1.375. The mA was selected for each pitch factor to achieve CTDIvol values of 24, 18, 12, 6, 3, 2, and 1 mGy. Images were reconstructed at 2.5 mm thickness with filtered back‐projection (FBP); 20%, 40%, and 70% ASiR; and MBIR. The potential for dose reduction and low‐contrast detectability were evaluated from noise and contrast‐to‐noise ratio (CNR) measurements in the CTP 404 module of the Catphan. Hounsfield units (HUs) of several materials were evaluated from the cylinder inserts in the CTP 404 module, and the modulation transfer function (MTF) was calculated from the air insert. The results were confirmed in the anthropomorphic Kyoto Kagaku abdomen phantom at 6, 3, 2, and 1 mGy. MBIR reduced noise levels five‐fold and increased CNR by a factor of five compared to FBP below 6 mGy CTDIvol, resulting in a substantial improvement in image quality. Compared to ASiR and FBP, HU in images reconstructed with MBIR were consistently lower, and this discrepancy was reversed by higher pitch factors in some materials. MBIR improved the conspicuity of the high‐contrast spatial resolution bar pattern, and MTF quantification confirmed the superior spatial resolution performance of MBIR versus FBP and ASiR at higher dose levels. While ASiR and FBP were relatively insensitive to changes in dose and pitch, the spatial

  14. Explicit Filtering Based Low-Dose Differential Phase Reconstruction Algorithm with the Grating Interferometry.

    PubMed

    Jiang, Xiaolei; Zhang, Li; Zhang, Ran; Yin, Hongxia; Wang, Zhenchang

    2015-01-01

    X-ray grating interferometry offers a novel framework for the study of weakly absorbing samples. Three kinds of information, that is, the attenuation, differential phase contrast (DPC), and dark-field images, can be obtained after a single scanning, providing additional and complementary information to the conventional attenuation image. Phase shifts of X-rays are measured by the DPC method; hence, DPC-CT reconstructs refraction indexes rather than attenuation coefficients. In this work, we propose an explicit filtering based low-dose differential phase reconstruction algorithm, which enables reconstruction from reduced scanning without artifacts. The algorithm adopts a differential algebraic reconstruction technique (DART) with the explicit filtering based sparse regularization rather than the commonly used total variation (TV) method. Both the numerical simulation and the biological sample experiment demonstrate the feasibility of the proposed algorithm.

  15. Explicit Filtering Based Low-Dose Differential Phase Reconstruction Algorithm with the Grating Interferometry

    PubMed Central

    Zhang, Li; Zhang, Ran; Yin, Hongxia; Wang, Zhenchang

    2015-01-01

    X-ray grating interferometry offers a novel framework for the study of weakly absorbing samples. Three kinds of information, that is, the attenuation, differential phase contrast (DPC), and dark-field images, can be obtained after a single scanning, providing additional and complementary information to the conventional attenuation image. Phase shifts of X-rays are measured by the DPC method; hence, DPC-CT reconstructs refraction indexes rather than attenuation coefficients. In this work, we propose an explicit filtering based low-dose differential phase reconstruction algorithm, which enables reconstruction from reduced scanning without artifacts. The algorithm adopts a differential algebraic reconstruction technique (DART) with the explicit filtering based sparse regularization rather than the commonly used total variation (TV) method. Both the numerical simulation and the biological sample experiment demonstrate the feasibility of the proposed algorithm. PMID:26089971

  16. Dose reduction with adaptive statistical iterative reconstruction for paediatric CT: phantom study and clinical experience on chest and abdomen CT.

    PubMed

    Gay, F; Pavia, Y; Pierrat, N; Lasalle, S; Neuenschwander, S; Brisse, H J

    2014-01-01

    To assess the benefit and limits of iterative reconstruction of paediatric chest and abdominal computed tomography (CT). The study compared adaptive statistical iterative reconstruction (ASIR) with filtered back projection (FBP) on 64-channel MDCT. A phantom study was first performed using variable tube potential, tube current and ASIR settings. The assessed image quality indices were the signal-to-noise ratio (SNR), the noise power spectrum, low contrast detectability (LCD) and spatial resolution. A clinical retrospective study of 26 children (M:F = 14/12, mean age: 4 years, range: 1-9 years) was secondarily performed allowing comparison of 18 chest and 14 abdominal CT pairs, one with a routine CT dose and FBP reconstruction, and the other with 30 % lower dose and 40 % ASIR reconstruction. Two radiologists independently compared the images for overall image quality, noise, sharpness and artefacts, and measured image noise. The phantom study demonstrated a significant increase in SNR without impairment of the LCD or spatial resolution, except for tube current values below 30-50 mA. On clinical images, no significant difference was observed between FBP and reduced dose ASIR images. Iterative reconstruction allows at least 30 % dose reduction in paediatric chest and abdominal CT, without impairment of image quality. • Iterative reconstruction helps lower radiation exposure levels in children undergoing CT. • Adaptive statistical iterative reconstruction (ASIR) significantly increases SNR without impairing spatial resolution. • For abdomen and chest CT, ASIR allows at least a 30 % dose reduction.

  17. Model-based iterative reconstruction in low-dose CT colonography-feasibility study in 65 patients for symptomatic investigation.

    PubMed

    Vardhanabhuti, Varut; James, Julia; Nensey, Rehaan; Hyde, Christopher; Roobottom, Carl

    2015-05-01

    To compare image quality on computed tomographic colonography (CTC) acquired at standard dose (STD) and low dose (LD) using filtered-back projection, adaptive statistical iterative reconstruction, and model-based iterative reconstruction (MBIR) techniques. A total of 65 symptomatic patients were prospectively enrolled for the study and underwent STD and LD CTC with filtered-back projection, adaptive statistical iterative reconstruction, and MBIR to allow direct per-patient comparison. Objective image noise, subjective image analyses, and polyp detection were assessed. Objective image noise analysis demonstrates significant noise reduction using MBIR technique (P < .05) despite being acquired at lower doses. Subjective image analyses were superior for LD MBIR in all parameters except visibility of extracolonic lesions (two-dimensional) and visibility of colonic wall (three-dimensional) where there were no significant differences. There was no significant difference in polyp detection rates (P > .05). Doses: LD (dose-length product, 257.7), STD (dose-length product, 483.6). LD MBIR CTC objectively shows improved image noise using parameters in our study. Subjectively, image quality is maintained. Polyp detection shows no significant difference but because of small numbers needs further validation. Average dose reduction of 47% can be achieved. This study confirms feasibility of using MBIR in this context of CTC in symptomatic population. Copyright © 2015 AUR. Published by Elsevier Inc. All rights reserved.

  18. WE-D-BRA-03: Four-Dimensional Dose Reconstruction Through Retrospective Phase Determination Using Cine Images of Electronic Portal Imaging Device

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Yoon, J; Jung, J; Yi, B

    2015-06-15

    Purpose: To test a method to reconstruct a four-dimensional (4D) dose distribution using the correlation of pre-calculated 4D electronic portal imaging device (EPID) images and measured cine-EPID images. Methods: 1. A phantom designed to simulate a tumor in lung (a polystyrene block with 3.0 cm diameter embedded in cork) was placed on a sinusoidally moving platform with 2 cm amplitude and 4 sec/cycle. Ten-phase 4D CT images were acquired for treatment planning and dose reconstruction. A 6MV photon beam was irradiated on the phantom with static (field size=5×8.5 cm{sup 2}) and dynamic fields (sliding windows, 10×10 cm{sup 2}, X1 MLCmore » closing in parallel with the tumor movement). 2. 4D and 3D doses were calculated forwardly on PTV (1 cm margin). 3. Dose images on EPID under the fields were calculated for 10 phases. 4. Cine EPID images were acquired during irradiation. 5. Their acquisition times were correlated to the phases of the phantom at which irradiation occurred by inter-comparing calculated “reference” EPID images with measured images (2D gamma comparison). For the dynamic beam, the tumor was hidden under MLCs during a portion of irradiation time; the correlation performed when the tumor was visible was extrapolated. 6. Dose for each phase was reconstructed on the 4D CT images and summed over all phases. The summation was compared with forwardly calculated 4D and 3D dose distributions. Monte Carlo methods were used for all calculations. Results: For the open and dynamic beams, the 4D reconstructed doses showed the pass rates of 92.7 % and 100 %, respectively, at the isocenter plane given 3% / 3 mm criteria. The better agreement of the dynamic beam was from its dose gradient which blurred the otherwise sharp difference between forward and reconstructed doses. This also contributed slightly better agreement in DVH of PTV. Conclusion: The feasibility of 4D reconstruction was demonstrated.« less

  19. Ultralow dose dentomaxillofacial CT imaging and iterative reconstruction techniques: variability of Hounsfield units and contrast-to-noise ratio

    PubMed Central

    Bischel, Alexander; Stratis, Andreas; Kakar, Apoorv; Bosmans, Hilde; Jacobs, Reinhilde; Gassner, Eva-Maria; Puelacher, Wolfgang; Pauwels, Ruben

    2016-01-01

    Objective: The aim of this study was to evaluate whether application of ultralow dose protocols and iterative reconstruction technology (IRT) influence quantitative Hounsfield units (HUs) and contrast-to-noise ratio (CNR) in dentomaxillofacial CT imaging. Methods: A phantom with inserts of five types of materials was scanned using protocols for (a) a clinical reference for navigated surgery (CT dose index volume 36.58 mGy), (b) low-dose sinus imaging (18.28 mGy) and (c) four ultralow dose imaging (4.14, 2.63, 0.99 and 0.53 mGy). All images were reconstructed using: (i) filtered back projection (FBP); (ii) IRT: adaptive statistical iterative reconstruction-50 (ASIR-50), ASIR-100 and model-based iterative reconstruction (MBIR); and (iii) standard (std) and bone kernel. Mean HU, CNR and average HU error after recalibration were determined. Each combination of protocols was compared using Friedman analysis of variance, followed by Dunn's multiple comparison test. Results: Pearson's sample correlation coefficients were all >0.99. Ultralow dose protocols using FBP showed errors of up to 273 HU. Std kernels had less HU variability than bone kernels. MBIR reduced the error value for the lowest dose protocol to 138 HU and retained the highest relative CNR. ASIR could not demonstrate significant advantages over FBP. Conclusions: Considering a potential dose reduction as low as 1.5% of a std protocol, ultralow dose protocols and IRT should be further tested for clinical dentomaxillofacial CT imaging. Advances in knowledge: HU as a surrogate for bone density may vary significantly in CT ultralow dose imaging. However, use of std kernels and MBIR technology reduce HU error values and may retain the highest CNR. PMID:26859336

  20. Four-dimensional dose reconstruction through in vivo phase matching of cine images of electronic portal imaging device.

    PubMed

    Yoon, Jihyung; Jung, Jae Won; Kim, Jong Oh; Yi, Byong Yong; Yeo, Inhwan

    2016-07-01

    A method is proposed to reconstruct a four-dimensional (4D) dose distribution using phase matching of measured cine images to precalculated images of electronic portal imaging device (EPID). (1) A phantom, designed to simulate a tumor in lung (a polystyrene block with a 3 cm diameter embedded in cork), was placed on a sinusoidally moving platform with an amplitude of 1 cm and a period of 4 s. Ten-phase 4D computed tomography (CT) images of the phantom were acquired. A planning target volume (PTV) was created by adding a margin of 1 cm around the internal target volume of the tumor. (2) Three beams were designed, which included a static beam, a theoretical dynamic beam, and a planning-optimized dynamic beam (PODB). While the theoretical beam was made by manually programming a simplistic sliding leaf motion, the planning-optimized beam was obtained from treatment planning. From the three beams, three-dimensional (3D) doses on the phantom were calculated; 4D dose was calculated by means of the ten phase images (integrated over phases afterward); serving as "reference" images, phase-specific EPID dose images under the lung phantom were also calculated for each of the ten phases. (3) Cine EPID images were acquired while the beams were irradiated to the moving phantom. (4) Each cine image was phase-matched to a phase-specific CT image at which common irradiation occurred by intercomparing the cine image with the reference images. (5) Each cine image was used to reconstruct dose in the phase-matched CT image, and the reconstructed doses were summed over all phases. (6) The summation was compared with forwardly calculated 4D and 3D dose distributions. Accounting for realistic situations, intratreatment breathing irregularity was simulated by assuming an amplitude of 0.5 cm for the phantom during a portion of breathing trace in which the phase matching could not be performed. Intertreatment breathing irregularity between the time of treatment and the time of planning CT was

  1. 42 CFR 82.13 - What sources of information may be used for dose reconstructions?

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... OCCUPATIONAL SAFETY AND HEALTH RESEARCH AND RELATED ACTIVITIES METHODS FOR CONDUCTING DOSE RECONSTRUCTION UNDER... from health research on DOE worker populations; (c) Interviews and records provided by claimants; (d...

  2. Standardized input for Hanford environmental impact statements

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Napier, B.A.

    1981-05-01

    Models and computer programs for simulating the environmental behavior of radionuclides in the environment and the resulting radiation dose to humans have been developed over the years by the Environmental Analysis Section staff, Ecological Sciences Department at the Pacific Northwest Laboratory (PNL). Methodologies have evolved for calculating raidation doses from many exposure pathways for any type of release mechanism. Depending on the situation or process being simulated, different sets of computer programs, assumptions, and modeling techniques must be used. This report is a compilation of recommended computer programs and necessary input information for use in calculating doses to members ofmore » the general public for environmental impact statements prepared for DOE activities to be conducted on or near the Hanford Reservation.« less

  3. Adaptive Statistical Iterative Reconstruction-V: Impact on Image Quality in Ultralow-Dose Coronary Computed Tomography Angiography.

    PubMed

    Benz, Dominik C; Gräni, Christoph; Mikulicic, Fran; Vontobel, Jan; Fuchs, Tobias A; Possner, Mathias; Clerc, Olivier F; Stehli, Julia; Gaemperli, Oliver; Pazhenkottil, Aju P; Buechel, Ronny R; Kaufmann, Philipp A

    The clinical utility of a latest generation iterative reconstruction algorithm (adaptive statistical iterative reconstruction [ASiR-V]) has yet to be elucidated for coronary computed tomography angiography (CCTA). This study evaluates the impact of ASiR-V on signal, noise and image quality in CCTA. Sixty-five patients underwent clinically indicated CCTA on a 256-slice CT scanner using an ultralow-dose protocol. Data sets from each patient were reconstructed at 6 different levels of ASiR-V. Signal intensity was measured by placing a region of interest in the aortic root, LMA, and RCA. Similarly, noise was measured in the aortic root. Image quality was visually assessed by 2 readers. Median radiation dose was 0.49 mSv. Image noise decreased with increasing levels of ASiR-V resulting in a significant increase in signal-to-noise ratio in the RCA and LMA (P < 0.001). Correspondingly, image quality significantly increased with higher levels of ASiR-V (P < 0.001). ASiR-V yields substantial noise reduction and improved image quality enabling introduction of ultralow-dose CCTA.

  4. Goat Moths (Lepidoptera: Cossidae) of the Hanford Site and Hanford National Monument, Washington State

    USDA-ARS?s Scientific Manuscript database

    Three species of goat moths are recorded at the Hanford Nuclear Site and Hanford National Monument in south central Washington State. They are: Comadia bertholdi (Grote), 1880, Givira cornelia (Neumoegen & Dyar), 1893, and Prionoxystus robiniae (Peck), 1818. The general habitat of the Hanford area...

  5. Applications of nonlocal means algorithm in low-dose X-ray CT image processing and reconstruction: a review

    PubMed Central

    Zhang, Hao; Zeng, Dong; Zhang, Hua; Wang, Jing; Liang, Zhengrong

    2017-01-01

    Low-dose X-ray computed tomography (LDCT) imaging is highly recommended for use in the clinic because of growing concerns over excessive radiation exposure. However, the CT images reconstructed by the conventional filtered back-projection (FBP) method from low-dose acquisitions may be severely degraded with noise and streak artifacts due to excessive X-ray quantum noise, or with view-aliasing artifacts due to insufficient angular sampling. In 2005, the nonlocal means (NLM) algorithm was introduced as a non-iterative edge-preserving filter to denoise natural images corrupted by additive Gaussian noise, and showed superior performance. It has since been adapted and applied to many other image types and various inverse problems. This paper specifically reviews the applications of the NLM algorithm in LDCT image processing and reconstruction, and explicitly demonstrates its improving effects on the reconstructed CT image quality from low-dose acquisitions. The effectiveness of these applications on LDCT and their relative performance are described in detail. PMID:28303644

  6. Assessment of dedicated low-dose cardiac micro-CT reconstruction algorithms using the left ventricular volume of small rodents as a performance measure.

    PubMed

    Maier, Joscha; Sawall, Stefan; Kachelrieß, Marc

    2014-05-01

    Phase-correlated microcomputed tomography (micro-CT) imaging plays an important role in the assessment of mouse models of cardiovascular diseases and the determination of functional parameters as the left ventricular volume. As the current gold standard, the phase-correlated Feldkamp reconstruction (PCF), shows poor performance in case of low dose scans, more sophisticated reconstruction algorithms have been proposed to enable low-dose imaging. In this study, the authors focus on the McKinnon-Bates (MKB) algorithm, the low dose phase-correlated (LDPC) reconstruction, and the high-dimensional total variation minimization reconstruction (HDTV) and investigate their potential to accurately determine the left ventricular volume at different dose levels from 50 to 500 mGy. The results were verified in phantom studies of a five-dimensional (5D) mathematical mouse phantom. Micro-CT data of eight mice, each administered with an x-ray dose of 500 mGy, were acquired, retrospectively gated for cardiac and respiratory motion and reconstructed using PCF, MKB, LDPC, and HDTV. Dose levels down to 50 mGy were simulated by using only a fraction of the projections. Contrast-to-noise ratio (CNR) was evaluated as a measure of image quality. Left ventricular volume was determined using different segmentation algorithms (Otsu, level sets, region growing). Forward projections of the 5D mouse phantom were performed to simulate a micro-CT scan. The simulated data were processed the same way as the real mouse data sets. Compared to the conventional PCF reconstruction, the MKB, LDPC, and HDTV algorithm yield images of increased quality in terms of CNR. While the MKB reconstruction only provides small improvements, a significant increase of the CNR is observed in LDPC and HDTV reconstructions. The phantom studies demonstrate that left ventricular volumes can be determined accurately at 500 mGy. For lower dose levels which were simulated for real mouse data sets, the HDTV algorithm shows the

  7. Assessment of dedicated low-dose cardiac micro-CT reconstruction algorithms using the left ventricular volume of small rodents as a performance measure

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Maier, Joscha, E-mail: joscha.maier@dkfz.de; Sawall, Stefan; Kachelrieß, Marc

    2014-05-15

    Purpose: Phase-correlated microcomputed tomography (micro-CT) imaging plays an important role in the assessment of mouse models of cardiovascular diseases and the determination of functional parameters as the left ventricular volume. As the current gold standard, the phase-correlated Feldkamp reconstruction (PCF), shows poor performance in case of low dose scans, more sophisticated reconstruction algorithms have been proposed to enable low-dose imaging. In this study, the authors focus on the McKinnon-Bates (MKB) algorithm, the low dose phase-correlated (LDPC) reconstruction, and the high-dimensional total variation minimization reconstruction (HDTV) and investigate their potential to accurately determine the left ventricular volume at different dose levelsmore » from 50 to 500 mGy. The results were verified in phantom studies of a five-dimensional (5D) mathematical mouse phantom. Methods: Micro-CT data of eight mice, each administered with an x-ray dose of 500 mGy, were acquired, retrospectively gated for cardiac and respiratory motion and reconstructed using PCF, MKB, LDPC, and HDTV. Dose levels down to 50 mGy were simulated by using only a fraction of the projections. Contrast-to-noise ratio (CNR) was evaluated as a measure of image quality. Left ventricular volume was determined using different segmentation algorithms (Otsu, level sets, region growing). Forward projections of the 5D mouse phantom were performed to simulate a micro-CT scan. The simulated data were processed the same way as the real mouse data sets. Results: Compared to the conventional PCF reconstruction, the MKB, LDPC, and HDTV algorithm yield images of increased quality in terms of CNR. While the MKB reconstruction only provides small improvements, a significant increase of the CNR is observed in LDPC and HDTV reconstructions. The phantom studies demonstrate that left ventricular volumes can be determined accurately at 500 mGy. For lower dose levels which were simulated for real mouse data

  8. TH-CD-202-12: Online Inter-Beam Replanning Based On Real-Time Dose Reconstruction

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kamerling, CP; Fast, MF; Ziegenhein, P

    Purpose: This work provides a proof-of-concept study for online replanning during treatment delivery for step-and-shoot prostate SBRT, based on real-time dose reconstruction. Online replanning is expected to improve the trade-off between target coverage and organ-at-risk dose in the presence of intra-fractional motion. Methods: We have implemented an online replanning workflow on top of our previously reported real-time dose reconstruction software which connects to an Elekta research linac. The treatment planning system DynaPlan was extended to (1) re-optimize and sequence treatment plans (in clockwise beam order) before each beam, based on actual delivered dose, in a timeframe limited by the gantrymore » rotation between subsequent beams, and (2) send the respective segments to the delivery control software DynaTrack which starts/continues treatment immediately.To investigate the impact of a reduced safety margin, we have created and delivered (on a linac emulator) a conventional CTV+5/3mm (I) and a reduced CTV+1mm margin (II) treatment plan for a prostate patient. We have assessed CTV coverage with and without inter-beam replanning, all exposed to a gradual target shift of 0–5mm in posterior and inferior direction from start until the end of delivery. Results: For the reconstructed conventional plan (I), D98 for CTV was 100% of D98 of the planned dose. For the reconstructed margin-reduced plan (II), D98 for CTV was 95% of the planned D98 without replanning, but could be recovered to 99% by replanning for each beam. Plan (II) with replanning resulted in a decrease for bladder V90% by 88% and an increase to rectum V90% by 9% compared to the conventional plan (I). Dose calculation/accumulation was performed in <15ms per MLC aperture, replanning in <15s per beam. Conclusion: We have shown that online inter-beam replanning is technically feasible and potentially allows for a margin reduction. Future investigation considering motion-robust replanning optimization

  9. Four-dimensional dose reconstruction through in vivo phase matching of cine images of electronic portal imaging device

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Yoon, Jihyung; Jung, Jae Won, E-mail: jungj@ecu.ed

    Purpose: A method is proposed to reconstruct a four-dimensional (4D) dose distribution using phase matching of measured cine images to precalculated images of electronic portal imaging device (EPID). Methods: (1) A phantom, designed to simulate a tumor in lung (a polystyrene block with a 3 cm diameter embedded in cork), was placed on a sinusoidally moving platform with an amplitude of 1 cm and a period of 4 s. Ten-phase 4D computed tomography (CT) images of the phantom were acquired. A planning target volume (PTV) was created by adding a margin of 1 cm around the internal target volume ofmore » the tumor. (2) Three beams were designed, which included a static beam, a theoretical dynamic beam, and a planning-optimized dynamic beam (PODB). While the theoretical beam was made by manually programming a simplistic sliding leaf motion, the planning-optimized beam was obtained from treatment planning. From the three beams, three-dimensional (3D) doses on the phantom were calculated; 4D dose was calculated by means of the ten phase images (integrated over phases afterward); serving as “reference” images, phase-specific EPID dose images under the lung phantom were also calculated for each of the ten phases. (3) Cine EPID images were acquired while the beams were irradiated to the moving phantom. (4) Each cine image was phase-matched to a phase-specific CT image at which common irradiation occurred by intercomparing the cine image with the reference images. (5) Each cine image was used to reconstruct dose in the phase-matched CT image, and the reconstructed doses were summed over all phases. (6) The summation was compared with forwardly calculated 4D and 3D dose distributions. Accounting for realistic situations, intratreatment breathing irregularity was simulated by assuming an amplitude of 0.5 cm for the phantom during a portion of breathing trace in which the phase matching could not be performed. Intertreatment breathing irregularity between the time of treatment

  10. Radiation dose reduction with chest computed tomography using adaptive statistical iterative reconstruction technique: initial experience.

    PubMed

    Prakash, Priyanka; Kalra, Mannudeep K; Digumarthy, Subba R; Hsieh, Jiang; Pien, Homer; Singh, Sarabjeet; Gilman, Matthew D; Shepard, Jo-Anne O

    2010-01-01

    To assess radiation dose reduction and image quality for weight-based chest computed tomographic (CT) examination results reconstructed using adaptive statistical iterative reconstruction (ASIR) technique. With local ethical committee approval, weight-adjusted chest CT examinations were performed using ASIR in 98 patients and filtered backprojection (FBP) in 54 weight-matched patients on a 64-slice multidetector CT. Patients were categorized into 3 groups: 60 kg or less (n = 32), 61 to 90 kg (n = 77), and 91 kg or more (n = 43) for weight-based adjustment of noise indices for automatic exposure control (Auto mA; GE Healthcare, Waukesha, Wis). Remaining scan parameters were held constant at 0.984:1 pitch, 120 kilovolts (peak), 40-mm table feed per rotation, and 2.5-mm section thickness. Patients' weight, scanning parameters, and CT dose index volume were recorded. Effective doses (EDs) were estimated. Image noise was measured in the descending thoracic aorta at the level of the carina. Data were analyzed using analysis of variance. Compared with FBP, ASIR was associated with an overall mean (SD) decrease of 27.6% in ED (ASIR, 8.8 [2.3] mSv; FBP, 12.2 [2.1] mSv; P < 0.0001). With the use of ASIR, the ED values were 6.5 (1.8) mSv (28.8% decrease), 7.3 (1.6) mSv (27.3% decrease), and 12.8 (2.3) mSv (26.8% decrease) for the weight groups of 60 kg or less, 61 to 90 kg, and 91 kg or more, respectively, compared with 9.2 (2.3) mSv, 10.0 (2.0) mSv, and 17.4 (2.1) mSv with FBP (P < 0.0001). Despite dose reduction, there was less noise with ASIR (12.6 [2.9] mSv) than with FBP (16.6 [6.2] mSv; P < 0.0001). Adaptive statistical iterative reconstruction helps reduce chest CT radiation dose and improve image quality compared with the conventionally used FBP image reconstruction.

  11. Accurate low-dose iterative CT reconstruction from few projections by Generalized Anisotropic Total Variation minimization for industrial CT.

    PubMed

    Debatin, Maurice; Hesser, Jürgen

    2015-01-01

    Reducing the amount of time for data acquisition and reconstruction in industrial CT decreases the operation time of the X-ray machine and therefore increases the sales. This can be achieved by reducing both, the dose and the pulse length of the CT system and the number of projections for the reconstruction, respectively. In this paper, a novel generalized Anisotropic Total Variation regularization for under-sampled, low-dose iterative CT reconstruction is discussed and compared to the standard methods, Total Variation, Adaptive weighted Total Variation and Filtered Backprojection. The novel regularization function uses a priori information about the Gradient Magnitude Distribution of the scanned object for the reconstruction. We provide a general parameterization scheme and evaluate the efficiency of our new algorithm for different noise levels and different number of projection views. When noise is not present, error-free reconstructions are achievable for AwTV and GATV from 40 projections. In cases where noise is simulated, our strategy achieves a Relative Root Mean Square Error that is up to 11 times lower than Total Variation-based and up to 4 times lower than AwTV-based iterative statistical reconstruction (e.g. for a SNR of 223 and 40 projections). To obtain the same reconstruction quality as achieved by Total Variation, the projection number and the pulse length, and the acquisition time and the dose respectively can be reduced by a factor of approximately 3.5, when AwTV is used and a factor of approximately 6.7, when our proposed algorithm is used.

  12. SU-F-T-117: A Pilot Study of Organ Dose Reconstruction for Wilms Tumor Patients Treated with Radiation Therapy

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Makkia, R; Pelletier, C; Jung, J

    Purpose: To reconstruct major organ doses for the Wilms tumor pediatric patients treated with radiation therapy using pediatric computational phantoms, treatment planning system (TPS), and Monte Carlo (MC) dose calculation methods. Methods: A total of ten female and male pediatric patients (15–88 months old) were selected from the National Wilms Tumor Study cohort and ten pediatric computational phantoms corresponding to the patient’s height and weight were selected for the organ dose reconstruction. Treatment plans were reconstructed on the computational phantoms in a Pinnacle TPS (v9.10) referring to treatment records and exported into DICOM-RT files, which were then used to generatemore » the input files for XVMC MC code. The mean doses to major organs and the dose received by 50% of the heart were calculated and compared between TPS and MC calculations. The same calculations were conducted by replacing the computational human phantoms with a series of diagnostic patient CT images selected by matching the height and weight of the patients to validate the anatomical accuracy of the computational phantoms. Results: Dose to organs located within the treatment fields from the computational phantoms and the diagnostic patient CT images agreed within 2% for all cases for both TPS and MC calculations. The maximum difference of organ doses was 55.9 % (thyroid), but the absolute dose difference in this case was 0.33 Gy which was 0.96% of the prescription dose. The doses to ovaries and testes from MC in out-of-field provided more discrepancy (the maximum difference of 13.2% and 50.8%, respectively). The maximum difference of the 50% heart volume dose between the phantoms and the patient CT images was 40.0%. Conclusion: This study showed the pediatric computational phantoms are applicable to organ doses reconstruction for the radiotherapy patients whose three-dimensional radiological images are not available.« less

  13. Variability in CT lung-nodule quantification: Effects of dose reduction and reconstruction methods on density and texture based features.

    PubMed

    Lo, P; Young, S; Kim, H J; Brown, M S; McNitt-Gray, M F

    2016-08-01

    To investigate the effects of dose level and reconstruction method on density and texture based features computed from CT lung nodules. This study had two major components. In the first component, a uniform water phantom was scanned at three dose levels and images were reconstructed using four conventional filtered backprojection (FBP) and four iterative reconstruction (IR) methods for a total of 24 different combinations of acquisition and reconstruction conditions. In the second component, raw projection (sinogram) data were obtained for 33 lung nodules from patients scanned as a part of their clinical practice, where low dose acquisitions were simulated by adding noise to sinograms acquired at clinical dose levels (a total of four dose levels) and reconstructed using one FBP kernel and two IR kernels for a total of 12 conditions. For the water phantom, spherical regions of interest (ROIs) were created at multiple locations within the water phantom on one reference image obtained at a reference condition. For the lung nodule cases, the ROI of each nodule was contoured semiautomatically (with manual editing) from images obtained at a reference condition. All ROIs were applied to their corresponding images reconstructed at different conditions. For 17 of the nodule cases, repeat contours were performed to assess repeatability. Histogram (eight features) and gray level co-occurrence matrix (GLCM) based texture features (34 features) were computed for all ROIs. For the lung nodule cases, the reference condition was selected to be 100% of clinical dose with FBP reconstruction using the B45f kernel; feature values calculated from other conditions were compared to this reference condition. A measure was introduced, which the authors refer to as Q, to assess the stability of features across different conditions, which is defined as the ratio of reproducibility (across conditions) to repeatability (across repeat contours) of each feature. The water phantom results

  14. Low dose CT reconstruction via L1 norm dictionary learning using alternating minimization algorithm and balancing principle.

    PubMed

    Wu, Junfeng; Dai, Fang; Hu, Gang; Mou, Xuanqin

    2018-04-18

    Excessive radiation exposure in computed tomography (CT) scans increases the chance of developing cancer and has become a major clinical concern. Recently, statistical iterative reconstruction (SIR) with l0-norm dictionary learning regularization has been developed to reconstruct CT images from the low dose and few-view dataset in order to reduce radiation dose. Nonetheless, the sparse regularization term adopted in this approach is l0-norm, which cannot guarantee the global convergence of the proposed algorithm. To address this problem, in this study we introduced the l1-norm dictionary learning penalty into SIR framework for low dose CT image reconstruction, and developed an alternating minimization algorithm to minimize the associated objective function, which transforms CT image reconstruction problem into a sparse coding subproblem and an image updating subproblem. During the image updating process, an efficient model function approach based on balancing principle is applied to choose the regularization parameters. The proposed alternating minimization algorithm was evaluated first using real projection data of a sheep lung CT perfusion and then using numerical simulation based on sheep lung CT image and chest image. Both visual assessment and quantitative comparison using terms of root mean square error (RMSE) and structural similarity (SSIM) index demonstrated that the new image reconstruction algorithm yielded similar performance with l0-norm dictionary learning penalty and outperformed the conventional filtered backprojection (FBP) and total variation (TV) minimization algorithms.

  15. Final Hanford Comprehensive Land-Use Plan Environmental Impact Statement, Hanford Site, Richland, Washington

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    N /A

    This Final ''Hanford Comprehensive Land-Use Plan Environmental Impact Statement'' (HCP EIS) is being used by the Department of Energy (DOE) and its nine cooperating and consulting agencies to develop a comprehensive land-use plan (CLUP) for the Hanford Site. The DOE will use the Final HCP EIS as a basis for a Record of Decision (ROD) on a CLUP for the Hanford Site. While development of the CLUP will be complete with release of the HCP EIS ROD, full implementation of the CLUP is expected to take at least 50 years. Implementation of the CLUP would begin a more detailed planningmore » process for land-use and facility-use decisions at the Hanford Site. The DOE would use the CLUP to screen proposals. Eventually, management of Hanford Site areas would move toward the CLUP land-use goals. This CLUP process could take more than 50 years to fully achieve the land-use goals.« less

  16. Air pathway effects of nuclear materials production at the Hanford Site, 1983 to 1992

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Patton, G.W.; Cooper, A.T.

    1993-10-01

    This report describes the air pathway effects of Hanford Site operations from 1983 to 1992 on the local environment by summarizing the air concentrations of selected radionuclides at both onsite and offsite locations, comparing trends in environment concentrations to changing facility emissions, and briefly describing trends in the radiological dose to the hypothetical maximally exposed member of the public. The years 1983 to 1992 represent the last Hanford Site plutonium production campaign, and this report deals mainly with the air pathway effects from the 200 Areas, in which the major contributors to radiological emissions were located. An additional purpose formore » report was to review the environmental data for a long period of time to provide insight not available in an annual report format. The sampling and analytical systems used by the Surface Environmental Surveillance Project (SESP) to collect air samples during the period of this report were sufficiently sensitive to observe locally elevated concentrations of selected radionuclides near onsite source of emission as well as observing elevated levels, compared to distant locations, of some radionuclides at the down wind perimeter. The US DOE Derived Concentration Guides (DCGs) for airborne radionuclides were not exceeded for any air sample collected during 1983 to 1992, with annual average concentrations of all radionuclides at the downwind perimeter being considerably below the DCG values. Air emissions at the Hanford Site during the period of this report were dominated by releases from the PUREX Plant, with {sup 85}Kr being the major release on a curie basis and {sup 129}I being the major release on a radiological dose basis. The estimated potential radiological dose from Hanford Site point source emissions to the hypothetical maximally exposed individual (MEI) ranged from 0. 02 to 0.22 mrem/yr (effective dose equivalent), which is well below the DOE radiation limit to the public of 100 mrem/yr.« less

  17. Bioassay vs. Air Sampling: Practical Guidance and Experience at Hanford

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Carbaugh, Eugene H.; Carlson, Eric W.; Hill, Robin L.

    2004-02-08

    The Hanford Site has implemented a policy to guide in determining whether air sampling data or special fecal bioassay data are more appropriate for determining doses of record for low-level plutonium exposures. The basis for the policy and four years of experience in comparing DAC-hours exposure with bioassay-based dosimetry is discussed.

  18. A deep convolutional neural network using directional wavelets for low-dose X-ray CT reconstruction.

    PubMed

    Kang, Eunhee; Min, Junhong; Ye, Jong Chul

    2017-10-01

    Due to the potential risk of inducing cancer, radiation exposure by X-ray CT devices should be reduced for routine patient scanning. However, in low-dose X-ray CT, severe artifacts typically occur due to photon starvation, beam hardening, and other causes, all of which decrease the reliability of the diagnosis. Thus, a high-quality reconstruction method from low-dose X-ray CT data has become a major research topic in the CT community. Conventional model-based de-noising approaches are, however, computationally very expensive, and image-domain de-noising approaches cannot readily remove CT-specific noise patterns. To tackle these problems, we want to develop a new low-dose X-ray CT algorithm based on a deep-learning approach. We propose an algorithm which uses a deep convolutional neural network (CNN) which is applied to the wavelet transform coefficients of low-dose CT images. More specifically, using a directional wavelet transform to extract the directional component of artifacts and exploit the intra- and inter- band correlations, our deep network can effectively suppress CT-specific noise. In addition, our CNN is designed with a residual learning architecture for faster network training and better performance. Experimental results confirm that the proposed algorithm effectively removes complex noise patterns from CT images derived from a reduced X-ray dose. In addition, we show that the wavelet-domain CNN is efficient when used to remove noise from low-dose CT compared to existing approaches. Our results were rigorously evaluated by several radiologists at the Mayo Clinic and won second place at the 2016 "Low-Dose CT Grand Challenge." To the best of our knowledge, this work is the first deep-learning architecture for low-dose CT reconstruction which has been rigorously evaluated and proven to be effective. In addition, the proposed algorithm, in contrast to existing model-based iterative reconstruction (MBIR) methods, has considerable potential to benefit from

  19. Can use of adaptive statistical iterative reconstruction reduce radiation dose in unenhanced head CT? An analysis of qualitative and quantitative image quality.

    PubMed

    Østerås, Bjørn Helge; Heggen, Kristin Livelten; Pedersen, Hans Kristian; Andersen, Hilde Kjernlie; Martinsen, Anne Catrine T

    2016-08-01

    Iterative reconstruction can reduce image noise and thereby facilitate dose reduction. To evaluate qualitative and quantitative image quality for full dose and dose reduced head computed tomography (CT) protocols reconstructed using filtered back projection (FBP) and adaptive statistical iterative reconstruction (ASIR). Fourteen patients undergoing follow-up head CT were included. All patients underwent full dose (FD) exam and subsequent 15% dose reduced (DR) exam, reconstructed using FBP and 30% ASIR. Qualitative image quality was assessed using visual grading characteristics. Quantitative image quality was assessed using ROI measurements in cerebrospinal fluid (CSF), white matter, peripheral and central gray matter. Additionally, quantitative image quality was measured in Catphan and vendor's water phantom. There was no significant difference in qualitative image quality between FD FBP and DR ASIR. Comparing same scan FBP versus ASIR, a noise reduction of 28.6% in CSF and between -3.7 and 3.5% in brain parenchyma was observed. Comparing FD FBP versus DR ASIR, a noise reduction of 25.7% in CSF, and -7.5 and 6.3% in brain parenchyma was observed. Image contrast increased in ASIR reconstructions. Contrast-to-noise ratio was improved in DR ASIR compared to FD FBP. In phantoms, noise reduction was in the range of 3 to 28% with image content. There was no significant difference in qualitative image quality between full dose FBP and dose reduced ASIR. CNR improved in DR ASIR compared to FD FBP mostly due to increased contrast, not reduced noise. Therefore, we recommend using caution if reducing dose and applying ASIR to maintain image quality.

  20. Reduction in radiation dose with reconstruction technique in the brain perfusion CT

    NASA Astrophysics Data System (ADS)

    Kim, H. J.; Lee, H. K.; Song, H.; Ju, M. S.; Dong, K. R.; Chung, W. K.; Cho, M. S.; Cho, J. H.

    2011-12-01

    The principal objective of this study was to verify the utility of the reconstruction imaging technique in the brain perfusion computed tomography (PCT) scan by assessing reductions in the radiation dose and analyzing the generated images. The setting used for image acquisition had a detector coverage of 40 mm, a helical thickness of 0.625 mm, a helical shuttle mode scan type and a rotation time of 0.5 s as the image parameters used for the brain PCT scan. Additionally, a phantom experiment and an animal experiment were carried out. In the phantom and animal experiments, noise was measured in the scanning with the tube voltage fixed at 80 kVp (kilovolt peak) and the level of the adaptive statistical iterative reconstruction (ASIR) was changed from 0% to 100% at 10% intervals. The standard deviation of the CT coefficient was measured three times to calculate the mean value. In the phantom and animal experiments, the absorbed dose was measured 10 times under the same conditions as the ones for noise measurement before the mean value was calculated. In the animal experiment, pencil-type and CT-dedicated ionization chambers were inserted into the central portion of pig heads for measurement. In the phantom study, as the level of the ASIR changed from 0% to 100% under identical scanning conditions, the noise value and dose were proportionally reduced. In our animal experiment, the noise value was lowest when the ASIR level was 50%, unlike in the phantom study. The dose was reduced as in the phantom study.

  1. Worldwide isotope ratios of the Fukushima release and early-phase external dose reconstruction

    PubMed Central

    Chaisan, Kittisak; Smith, Jim T.; Bossew, Peter; Kirchner, Gerald; Laptev, Gennady V.

    2013-01-01

    Measurements of radionuclides (RNs) in air made worldwide following the Fukushima accident are quantitatively compared with air and soil measurements made in Japan. Isotopic ratios RN:137Cs of 131I, 132Te, 134,136Cs, are correlated with distance from release. It is shown, for the first time, that both within Japan and globally, ratios RN:137Cs in air were relatively constant for primarily particle associated radionuclides (134,136Cs; 132Te) but that 131I shows much lower local (<80 km) isotope ratios in soils relative to 137Cs. Derived isotope ratios are used to reconstruct external dose rate during the early phase post-accident. Model “blind” tests show more than 95% of predictions within a factor of two of measurements from 15 sites to the north, northwest and west of the power station. It is demonstrated that generic isotope ratios provide a sound basis for reconstruction of early-phase external dose rates in these most contaminated areas. PMID:24018776

  2. 2D mapping of the MV photon fluence and 3D dose reconstruction in real time for quality assurance during radiotherapy treatment

    NASA Astrophysics Data System (ADS)

    Alrowaili, Z. A.; Lerch, M. L. F.; Carolan, M.; Fuduli, I.; Porumb, C.; Petasecca, M.; Metcalfe, P.; Rosenfeld, A. B.

    2015-09-01

    Summary: the photon irradiation response of a 2D solid state transmission detector array mounted in a linac block tray is used to reconstruct the projected 2D dose map in a homogenous phantom along rays that diverge from the X-ray source and pass through each of the 121 detector elements. A unique diode response-to-dose scaling factor, applied to all detectors, is utilised in the reconstruction to demonstrate that real time QA during radiotherapy treatment is feasible. Purpose: to quantitatively demonstrate reconstruction of the real time radiation dose from the irradiation response of the 11×11 silicon Magic Plate (MP) detector array operated in Transmission Mode (MPTM). Methods and Materials: in transmission mode the MP is positioned in the block tray of a linac so that the central detector of the array lies on the central axis of the radiation beam. This central detector is used to determine the conversion factor from measured irradiation response to reconstructed dose at any point on the central axis within a homogenous solid water phantom. The same unique conversion factor is used for all MP detector elements lying within the irradiation field. Using the two sets of data, the 2D or 3D dose map is able to be reconstructed in the homogenous phantom. The technique we have developed is illustrated here for different depths and irradiation field sizes, (5 × 5 cm2 to 40 × 40 cm2) as well as a highly non uniform irradiation field. Results: we find that the MPTM response is proportional to the projected 2D dose map measured at a specific phantom depth, the "sweet depth". A single factor, for several irradiation field sizes and depths, is derived to reconstruct the dose in the phantom along rays projected from the photon source through each MPTM detector element. We demonstrate that for all field sizes using the above method, the 2D reconstructed and measured doses agree to within ± 2.48% (2 standard deviation) for all in-field MP detector elements. Conclusions: a

  3. TH-AB-207A-05: A Fully-Automated Pipeline for Generating CT Images Across a Range of Doses and Reconstruction Methods

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Young, S; Lo, P; Hoffman, J

    Purpose: To evaluate the robustness of CAD or Quantitative Imaging methods, they should be tested on a variety of cases and under a variety of image acquisition and reconstruction conditions that represent the heterogeneity encountered in clinical practice. The purpose of this work was to develop a fully-automated pipeline for generating CT images that represent a wide range of dose and reconstruction conditions. Methods: The pipeline consists of three main modules: reduced-dose simulation, image reconstruction, and quantitative analysis. The first two modules of the pipeline can be operated in a completely automated fashion, using configuration files and running the modulesmore » in a batch queue. The input to the pipeline is raw projection CT data; this data is used to simulate different levels of dose reduction using a previously-published algorithm. Filtered-backprojection reconstructions are then performed using FreeCT-wFBP, a freely-available reconstruction software for helical CT. We also added support for an in-house, model-based iterative reconstruction algorithm using iterative coordinate-descent optimization, which may be run in tandem with the more conventional recon methods. The reduced-dose simulations and image reconstructions are controlled automatically by a single script, and they can be run in parallel on our research cluster. The pipeline was tested on phantom and lung screening datasets from a clinical scanner (Definition AS, Siemens Healthcare). Results: The images generated from our test datasets appeared to represent a realistic range of acquisition and reconstruction conditions that we would expect to find clinically. The time to generate images was approximately 30 minutes per dose/reconstruction combination on a hybrid CPU/GPU architecture. Conclusion: The automated research pipeline promises to be a useful tool for either training or evaluating performance of quantitative imaging software such as classifiers and CAD algorithms across

  4. Hanford Site Air Operating Permit Application Supplemental Information [Sec 1 Thru 5] Vol 1 Thru 3 Appendices A Thru C

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    CURN, B.L.

    2000-05-01

    This report documents radionuclide air emissions from the Hanford Site in 1998 and the resulting effective dose equivalent to the maximally exposed individual (MEI) member of the public. The report has been prepared in accordance with the Code of Federal Regulations, Title 40, Protection of the Environment, Part 61, National Emission Standards for Hazardous Air Pollutants (40 CFR 61), Subpart H: ''National Emission Standards for Emissions of Radionuclides Other than Radon from Department of Energy Facilities,'' and with the Washington Administrative Code Chapter 246247, Radiation Protection - Air Emissions. The federal regulations in 40 CFR 61, Subpart H, require themore » measurement and reporting of radionuclides emitted from Department of Energy facilities and the resulting offsite dose from those emissions. A standard of 10 mrem/yr effective dose equivalent (EDE) is imposed on them. The EDE to the MEI due to routine emissions in 1998 from Hanford Site point sources was 1.3 E-02 mrem (1.3 E-04 mSv). which is 0.13 percent of the federal standard. Chapter 246-247 of the Washington Administrative Code (WAC) requires the reporting of radionuclide emissions from all Department of Energy Hanford Site sources. The state has adopted into these regulations the 40 CFR 61 standard of 10 mrem/yr EDE. The EDE to the MEI attributable to diffuse and fugitive radionuclide air emissions from the Hanford Site in 1998 was 2.5 E-02 mrem (2.S E-04 mSv). This dose added to the dose from point sources gives a total for all sources of 3.8 E-02 mrem/yr (3.8 E-04 mSv) EDE. which is 0.38 percent of the 10 mrem/yr standard. An unplanned release on August 26, 1998, in the 300 Area of the Hanford Site resulted in a potential dose of 4.1 E-02 mrem to a hypothetical individual at the nearest point of public access to that area. This hypothetical individual was not the MEI since the wind direction on the day of the release was away from the MEI residence. The potential dose from the unplanned

  5. Can use of adaptive statistical iterative reconstruction reduce radiation dose in unenhanced head CT? An analysis of qualitative and quantitative image quality

    PubMed Central

    Heggen, Kristin Livelten; Pedersen, Hans Kristian; Andersen, Hilde Kjernlie; Martinsen, Anne Catrine T

    2016-01-01

    Background Iterative reconstruction can reduce image noise and thereby facilitate dose reduction. Purpose To evaluate qualitative and quantitative image quality for full dose and dose reduced head computed tomography (CT) protocols reconstructed using filtered back projection (FBP) and adaptive statistical iterative reconstruction (ASIR). Material and Methods Fourteen patients undergoing follow-up head CT were included. All patients underwent full dose (FD) exam and subsequent 15% dose reduced (DR) exam, reconstructed using FBP and 30% ASIR. Qualitative image quality was assessed using visual grading characteristics. Quantitative image quality was assessed using ROI measurements in cerebrospinal fluid (CSF), white matter, peripheral and central gray matter. Additionally, quantitative image quality was measured in Catphan and vendor’s water phantom. Results There was no significant difference in qualitative image quality between FD FBP and DR ASIR. Comparing same scan FBP versus ASIR, a noise reduction of 28.6% in CSF and between −3.7 and 3.5% in brain parenchyma was observed. Comparing FD FBP versus DR ASIR, a noise reduction of 25.7% in CSF, and −7.5 and 6.3% in brain parenchyma was observed. Image contrast increased in ASIR reconstructions. Contrast-to-noise ratio was improved in DR ASIR compared to FD FBP. In phantoms, noise reduction was in the range of 3 to 28% with image content. Conclusion There was no significant difference in qualitative image quality between full dose FBP and dose reduced ASIR. CNR improved in DR ASIR compared to FD FBP mostly due to increased contrast, not reduced noise. Therefore, we recommend using caution if reducing dose and applying ASIR to maintain image quality. PMID:27583169

  6. Proxy-based reconstruction of erythemal UV doses over Estonia for 1955 2004

    NASA Astrophysics Data System (ADS)

    Eerme, K.; Veismann, U.; Lätt, S.

    2006-08-01

    A proxy-based reconstruction of the erythemally-weighted UV doses for 1955-2004 has been performed for the Tartu-Tõravere Meteorological Station (58°16' N, 26°28' E, 70 m a.s.l.) site. The pyrheliometer-measured daily sum of direct irradiance on partly cloudy and clear days, and the pyranometer-measured daily sum of global irradiance on overcast days were used as the cloudiness influence related proxies. The TOMS ozone data have been used for detecting the daily deviations from the climatic value (averaged annual cycle). In 1998-2004, the biases between the measured and reconstructed daily doses in 55.5% of the cases were within ±10% and in 83.5% of the cases within ±20%, on average. In the summer half-year these amounts were 62% and 88%, respectively. In most years the results for longer intervals did not differ significantly, if no correction was made for the daily deviations of total ozone from its climatic value. The annual and summer half-yearly erythemal doses (contributing, on average, 89% of the annual value) agreed within ±2%, except for the years after major volcanic eruptions and one extremely fine weather year (2002). Using the daily relative sunshine duration as a proxy without detailed correction for atmospheric turbidity results in biases of 2-4% in the summer half-yearly dose in the years after major volcanic eruptions and a few other years of high atmospheric turbidity. The year-to-year variations of the summer half-yearly erythemal dose in 1955-2004 were found to be within 92-111% relative to their average value. Exclusion of eight extreme years reduces this range for the remaining to 95-105.5%. Due to the quasi-periodic alternation of wet and dry periods, the interval of cloudy summers 1976-1993 regularly manifests summer half-yearly erythemal dose values lower than the 1955-2004 average. Since 1996/1997 midwinters have been darker than on average.

  7. Dose Reconstruction of Di(2-ethylhexyl) Phthalate Using a Simple Pharmacokinetic Model

    PubMed Central

    Calafat, Antonia M.

    2012-01-01

    Background: Di(2-ethylhexyl) phthalate (DEHP), used primarily as a plasticizer for polyvinyl chloride, is found in a variety of products. Previous studies have quantified human exposure by back calculating intakes based on DEHP metabolite concentrations in urine and by determining concentrations of DEHP in exposure media (e.g., air, food, dust). Objectives: To better understand the timing and extent of DEHP exposure, we used a simple pharmacokinetic model to “reconstruct” the DEHP dose responsible for the presence of DEHP metabolites in urine. Methods: We analyzed urine samples from eight adults for four DEHP metabolites [mono(2-ethylhexyl) phthalate, mono(2-ethyl-5-hydroxyhexyl) phthalate, mono(2-ethyl-5-oxohexyl) phthalate, and mono(2-ethyl-5-carboxypentyl) phthalate]. Participants provided full volumes of all voids over 1 week and recorded the time of each void and information on diet, driving, and outdoor activities. Using a model previously calibrated on a single person self-dosed with DEHP in conjunction with the eight participants’ data, we used a simple trial-and-error method to determine times and doses of DEHP that resulted in a best fit of predicted and observed urinary concentrations of the metabolites. Results: The average daily mean and median reconstructed DEHP doses were 10.9 and 5.0 µg/kg-day, respectively. The highest single modeled dose of 60 µg/kg occurred when one study participant reported consuming coffee and a bagel with egg and sausage that was purchased at a gas station. About two-thirds of all modeled intake events occurred near the time of reported food or beverage consumption. Twenty percent of the modeled DEHP exposure occurred between 2200 hours and 0500 hours. Conclusions: Dose reconstruction using pharmacokinetic models—in conjunction with biomonitoring data, diary information, and other related data—can provide a powerful means to define timing, magnitude, and possible sources of exposure to a given contaminant. PMID

  8. LBP-based penalized weighted least-squares approach to low-dose cone-beam computed tomography reconstruction

    NASA Astrophysics Data System (ADS)

    Ma, Ming; Wang, Huafeng; Liu, Yan; Zhang, Hao; Gu, Xianfeng; Liang, Zhengrong

    2014-03-01

    Cone-beam computed tomography (CBCT) has attracted growing interest of researchers in image reconstruction. The mAs level of the X-ray tube current, in practical application of CBCT, is mitigated in order to reduce the CBCT dose. The lowering of the X-ray tube current, however, results in the degradation of image quality. Thus, low-dose CBCT image reconstruction is in effect a noise problem. To acquire clinically acceptable quality of image, and keep the X-ray tube current as low as achievable in the meanwhile, some penalized weighted least-squares (PWLS)-based image reconstruction algorithms have been developed. One representative strategy in previous work is to model the prior information for solution regularization using an anisotropic penalty term. To enhance the edge preserving and noise suppressing in a finer scale, a novel algorithm combining the local binary pattern (LBP) with penalized weighted leastsquares (PWLS), called LBP-PWLS-based image reconstruction algorithm, is proposed in this work. The proposed LBP-PWLS-based algorithm adaptively encourages strong diffusion on the local spot/flat region around a voxel and less diffusion on edge/corner ones by adjusting the penalty for cost function, after the LBP is utilized to detect the region around the voxel as spot, flat and edge ones. The LBP-PWLS-based reconstruction algorithm was evaluated using the sinogram data acquired by a clinical CT scanner from the CatPhan® 600 phantom. Experimental results on the noiseresolution tradeoff measurement and other quantitative measurements demonstrated its feasibility and effectiveness in edge preserving and noise suppressing in comparison with a previous PWLS reconstruction algorithm.

  9. Fast local reconstruction by selective backprojection for low dose in dental computed tomography

    NASA Astrophysics Data System (ADS)

    Yan, Bin; Deng, Lin; Han, Yu; Zhang, Feng; Wang, Xian-Chao; Li, Lei

    2014-10-01

    The high radiation dose in computed tomography (CT) scans increases the lifetime risk of cancer, which becomes a major clinical concern. The backprojection-filtration (BPF) algorithm could reduce the radiation dose by reconstructing the images from truncated data in a short scan. In a dental CT, it could reduce the radiation dose for the teeth by using the projection acquired in a short scan, and could avoid irradiation to the other part by using truncated projection. However, the limit of integration for backprojection varies per PI-line, resulting in low calculation efficiency and poor parallel performance. Recently, a tent BPF has been proposed to improve the calculation efficiency by rearranging the projection. However, the memory-consuming data rebinning process is included. Accordingly, the selective BPF (S-BPF) algorithm is proposed in this paper. In this algorithm, the derivative of the projection is backprojected to the points whose x coordinate is less than that of the source focal spot to obtain the differentiated backprojection. The finite Hilbert inverse is then applied to each PI-line segment. S-BPF avoids the influence of the variable limit of integration by selective backprojection without additional time cost or memory cost. The simulation experiment and the real experiment demonstrated the higher reconstruction efficiency of S-BPF.

  10. 75 FR 64735 - Subcommittee for Dose Reconstruction Reviews (SDRR), Advisory Board on Radiation and Worker...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-10-20

    ... cases under review (sets 7-9); OCAS dose reconstruction quality management and assurance activities. The... 30333, Telephone (513) 533-6800, Toll Free 1 (800) CDC-INFO, E- mail ocas@cdc.gov . The Director...

  11. Ultralow-dose CT of the craniofacial bone for navigated surgery using adaptive statistical iterative reconstruction and model-based iterative reconstruction: 2D and 3D image quality.

    PubMed

    Widmann, Gerlig; Schullian, Peter; Gassner, Eva-Maria; Hoermann, Romed; Bale, Reto; Puelacher, Wolfgang

    2015-03-01

    OBJECTIVE. The purpose of this article is to evaluate 2D and 3D image quality of high-resolution ultralow-dose CT images of the craniofacial bone for navigated surgery using adaptive statistical iterative reconstruction (ASIR) and model-based iterative reconstruction (MBIR) in comparison with standard filtered backprojection (FBP). MATERIALS AND METHODS. A formalin-fixed human cadaver head was scanned using a clinical reference protocol at a CT dose index volume of 30.48 mGy and a series of five ultralow-dose protocols at 3.48, 2.19, 0.82, 0.44, and 0.22 mGy using FBP and ASIR at 50% (ASIR-50), ASIR at 100% (ASIR-100), and MBIR. Blinded 2D axial and 3D volume-rendered images were compared with each other by three readers using top-down scoring. Scores were analyzed per protocol or dose and reconstruction. All images were compared with the FBP reference at 30.48 mGy. A nonparametric Mann-Whitney U test was used. Statistical significance was set at p < 0.05. RESULTS. For 2D images, the FBP reference at 30.48 mGy did not statistically significantly differ from ASIR-100 at 3.48 mGy, ASIR-100 at 2.19 mGy, and MBIR at 0.82 mGy. MBIR at 2.19 and 3.48 mGy scored statistically significantly better than the FBP reference (p = 0.032 and 0.001, respectively). For 3D images, the FBP reference at 30.48 mGy did not statistically significantly differ from all reconstructions at 3.48 mGy; FBP and ASIR-100 at 2.19 mGy; FBP, ASIR-100, and MBIR at 0.82 mGy; MBIR at 0.44 mGy; and MBIR at 0.22 mGy. CONCLUSION. MBIR (2D and 3D) and ASIR-100 (2D) may significantly improve subjective image quality of ultralow-dose images and may allow more than 90% dose reductions.

  12. A Novel Pairwise Comparison-Based Method to Determine Radiation Dose Reduction Potentials of Iterative Reconstruction Algorithms, Exemplified Through Circle of Willis Computed Tomography Angiography.

    PubMed

    Ellmann, Stephan; Kammerer, Ferdinand; Brand, Michael; Allmendinger, Thomas; May, Matthias S; Uder, Michael; Lell, Michael M; Kramer, Manuel

    2016-05-01

    The aim of this study was to determine the dose reduction potential of iterative reconstruction (IR) algorithms in computed tomography angiography (CTA) of the circle of Willis using a novel method of evaluating the quality of radiation dose-reduced images. This study relied on ReconCT, a proprietary reconstruction software that allows simulating CT scans acquired with reduced radiation dose based on the raw data of true scans. To evaluate the performance of ReconCT in this regard, a phantom study was performed to compare the image noise of true and simulated scans within simulated vessels of a head phantom. That followed, 10 patients scheduled for CTA of the circle of Willis were scanned according to our institute's standard protocol (100 kV, 145 reference mAs). Subsequently, CTA images of these patients were reconstructed as either a full-dose weighted filtered back projection or with radiation dose reductions down to 10% of the full-dose level and Sinogram-Affirmed Iterative Reconstruction (SAFIRE) with either strength 3 or 5. Images were marked with arrows pointing on vessels of different sizes, and image pairs were presented to observers. Five readers assessed image quality with 2-alternative forced choice comparisons. In the phantom study, no significant differences were observed between the noise levels of simulated and true scans in filtered back projection, SAFIRE 3, and SAFIRE 5 reconstructions.The dose reduction potential for patient scans showed a strong dependence on IR strength as well as on the size of the vessel of interest. Thus, the potential radiation dose reductions ranged from 84.4% for the evaluation of great vessels reconstructed with SAFIRE 5 to 40.9% for the evaluation of small vessels reconstructed with SAFIRE 3. This study provides a novel image quality evaluation method based on 2-alternative forced choice comparisons. In CTA of the circle of Willis, higher IR strengths and greater vessel sizes allowed higher degrees of radiation dose

  13. A high-resolution photon-counting breast CT system with tensor-framelet based iterative image reconstruction for radiation dose reduction

    NASA Astrophysics Data System (ADS)

    Ding, Huanjun; Gao, Hao; Zhao, Bo; Cho, Hyo-Min; Molloi, Sabee

    2014-10-01

    Both computer simulations and experimental phantom studies were carried out to investigate the radiation dose reduction with tensor framelet based iterative image reconstruction (TFIR) for a dedicated high-resolution spectral breast computed tomography (CT) based on a silicon strip photon-counting detector. The simulation was performed with a 10 cm-diameter water phantom including three contrast materials (polyethylene, 8 mg ml-1 iodine and B-100 bone-equivalent plastic). In the experimental study, the data were acquired with a 1.3 cm-diameter polymethylmethacrylate (PMMA) phantom containing iodine in three concentrations (8, 16 and 32 mg ml-1) at various radiation doses (1.2, 2.4 and 3.6 mGy) and then CT images were reconstructed using the filtered-back-projection (FBP) technique and the TFIR technique, respectively. The image quality between these two techniques was evaluated by the quantitative analysis on contrast-to-noise ratio (CNR) and spatial resolution that was evaluated using the task-based modulation transfer function (MTF). Both the simulation and experimental results indicated that the task-based MTF obtained from TFIR reconstruction with one-third of the radiation dose was comparable to that from the FBP reconstruction for low contrast target. For high contrast target, the TFIR was substantially superior to the FBP reconstruction in terms of spatial resolution. In addition, TFIR was able to achieve a factor of 1.6-1.8 increase in CNR, depending on the target contrast level. This study demonstrates that the TFIR can reduce the required radiation dose by a factor of two-thirds for a CT image reconstruction compared to the FBP technique. It achieves much better CNR and spatial resolution for high contrast target in addition to retaining similar spatial resolution for low contrast target. This TFIR technique has been implemented with a graphic processing unit system and it takes approximately 10 s to reconstruct a single-slice CT image

  14. SU-C-BRD-07: Three-Dimensional Dose Reconstruction in the Presence of Inhomogeneities Using Fast EPID-Based Back-Projection Method

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ren, Q; Cao, R; Pei, X

    2015-06-15

    Purpose: Three-dimensional dose verification can detect errors introduced by the treatment planning system (TPS) or differences between planned and delivered dose distribution during the treatment. The aim of the study is to extend a previous in-house developed three-dimensional dose reconstructed model in homogeneous phantom to situtions in which tissue inhomogeneities are present. Methods: The method was based on the portal grey images from an electronic portal imaging device (EPID) and the relationship between beamlets and grey-scoring voxels at the position of the EPID. The relationship was expressed in the form of grey response matrix that was quantified using thickness-dependence scattermore » kernels determined by series of experiments. From the portal grey-value distribution information measured by the EPID the two-dimensional incident fluence distribution was reconstructed based on the grey response matrix using a fast iterative algorithm. The accuracy of this approach was verified using a four-field intensity-modulated radiotherapy (IMRT) plan for the treatment of lung cancer in anthopomorphic phantom. Each field had between twenty and twenty-eight segments and was evaluated by comparing the reconstructed dose distribution with the measured dose. Results: The gamma-evaluation method was used with various evaluation criteria of dose difference and distance-to-agreement: 3%/3mm and 2%/2 mm. The dose comparison for all irradiated fields showed a pass rate of 100% with the criterion of 3%/3mm, and a pass rate of higher than 92% with the criterion of 2%/2mm. Conclusion: Our experimental results demonstrate that our method is capable of accurately reconstructing three-dimensional dose distribution in the presence of inhomogeneities. Using the method, the combined planning and treatment delivery process is verified, offing an easy-to-use tool for the verification of complex treatments.« less

  15. Image quality improvement using model-based iterative reconstruction in low dose chest CT for children with necrotizing pneumonia.

    PubMed

    Sun, Jihang; Yu, Tong; Liu, Jinrong; Duan, Xiaomin; Hu, Di; Liu, Yong; Peng, Yun

    2017-03-16

    Model-based iterative reconstruction (MBIR) is a promising reconstruction method which could improve CT image quality with low radiation dose. The purpose of this study was to demonstrate the advantage of using MBIR for noise reduction and image quality improvement in low dose chest CT for children with necrotizing pneumonia, over the adaptive statistical iterative reconstruction (ASIR) and conventional filtered back-projection (FBP) technique. Twenty-six children with necrotizing pneumonia (aged 2 months to 11 years) who underwent standard of care low dose CT scans were included. Thinner-slice (0.625 mm) images were retrospectively reconstructed using MBIR, ASIR and conventional FBP techniques. Image noise and signal-to-noise ratio (SNR) for these thin-slice images were measured and statistically analyzed using ANOVA. Two radiologists independently analyzed the image quality for detecting necrotic lesions, and results were compared using a Friedman's test. Radiation dose for the overall patient population was 0.59 mSv. There was a significant improvement in the high-density and low-contrast resolution of the MBIR reconstruction resulting in more detection and better identification of necrotic lesions (38 lesions in 0.625 mm MBIR images vs. 29 lesions in 0.625 mm FBP images). The subjective display scores (mean ± standard deviation) for the detection of necrotic lesions were 5.0 ± 0.0, 2.8 ± 0.4 and 2.5 ± 0.5 with MBIR, ASIR and FBP reconstruction, respectively, and the respective objective image noise was 13.9 ± 4.0HU, 24.9 ± 6.6HU and 33.8 ± 8.7HU. The image noise decreased by 58.9 and 26.3% in MBIR images as compared to FBP and ASIR images. Additionally, the SNR of MBIR images was significantly higher than FBP images and ASIR images. The quality of chest CT images obtained by MBIR in children with necrotizing pneumonia was significantly improved by the MBIR technique as compared to the ASIR and FBP reconstruction, to

  16. Dose Reconstruction for the Million Worker Study: Status and Guidelines

    DOE PAGES

    Bouville, André; Toohey, Richard E.; Boice, John D.; ...

    2015-02-01

    The primary aim of the epidemiologic study of one million U.S. radiation workers and veterans (the Million-Worker study) is to provide scientifically valid information on the level of radiation risk when exposures are received gradually over time, and not acutely as was the case for Japanese atomic bomb survivors. The primary outcome of the epidemiological study is cancer mortality but other causes of death such as cardiovascular disease and cerebrovascular disease will be evaluated. The success of the study is tied to the validity of the dose reconstruction approaches to provide unbiased estimates of organ-specific radiation absorbed doses and theirmore » accompanying uncertainties. The dosimetry aspects for the Million-Worker study are challenging in that they address diverse exposure scenarios for diverse occupational groups being studied over a period of up to 70 years. The dosimetric issues differ among the varied exposed populations that are considered: atomic veterans, DOE workers exposed to both penetrating radiation and intakes of radionuclides, nuclear power plant workers, medical radiation workers, and industrial radiographers. While a major source of radiation exposure to the study population comes from external gamma-ray or x-ray sources, for certain of the study groups there is a meaningful component of radionuclide intakes that require internal radiation dosimetry measures. Scientific Committee 6-9 has been established by NCRP to produce a report on the comprehensive organ dose assessment (including uncertainty analysis) for the Million-Worker study. The Committee’s report will cover the specifics of practical dose reconstruction for the ongoing epidemiologic studies with uncertainty analysis discussions and will be a specific application of the guidance provided in NCRP Reports 158, 163, 164, and 171. The main role of the Committee is to provide guidelines to the various groups of dosimetrists involved in the various components of the Million

  17. Dose Reconstruction for the Million Worker Study: Status and Guidelines

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bouville, André; Toohey, Richard E.; Boice, John D.

    The primary aim of the epidemiologic study of one million U.S. radiation workers and veterans (the Million-Worker study) is to provide scientifically valid information on the level of radiation risk when exposures are received gradually over time, and not acutely as was the case for Japanese atomic bomb survivors. The primary outcome of the epidemiological study is cancer mortality but other causes of death such as cardiovascular disease and cerebrovascular disease will be evaluated. The success of the study is tied to the validity of the dose reconstruction approaches to provide unbiased estimates of organ-specific radiation absorbed doses and theirmore » accompanying uncertainties. The dosimetry aspects for the Million-Worker study are challenging in that they address diverse exposure scenarios for diverse occupational groups being studied over a period of up to 70 years. The dosimetric issues differ among the varied exposed populations that are considered: atomic veterans, DOE workers exposed to both penetrating radiation and intakes of radionuclides, nuclear power plant workers, medical radiation workers, and industrial radiographers. While a major source of radiation exposure to the study population comes from external gamma-ray or x-ray sources, for certain of the study groups there is a meaningful component of radionuclide intakes that require internal radiation dosimetry measures. Scientific Committee 6-9 has been established by NCRP to produce a report on the comprehensive organ dose assessment (including uncertainty analysis) for the Million-Worker study. The Committee’s report will cover the specifics of practical dose reconstruction for the ongoing epidemiologic studies with uncertainty analysis discussions and will be a specific application of the guidance provided in NCRP Reports 158, 163, 164, and 171. The main role of the Committee is to provide guidelines to the various groups of dosimetrists involved in the various components of the Million

  18. Supplemental report on population estimates for Hanford Defense waste draft environmental impact statement

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Yandon, K.E.; Burlison, J.S.; Rau, R.G.

    1980-10-01

    The research reported here supplies population data for ongoing environmental evaluations of the Hanford Site's waste management programs. The population figures in this report will be used to calculate dose to population from waste management operations for up to 10,000 years after 1990.

  19. HADOC: a computer code for calculation of external and inhalation doses from acute radionuclide releases

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Strenge, D.L.; Peloquin, R.A.

    The computer code HADOC (Hanford Acute Dose Calculations) is described and instructions for its use are presented. The code calculates external dose from air submersion and inhalation doses following acute radionuclide releases. Atmospheric dispersion is calculated using the Hanford model with options to determine maximum conditions. Building wake effects and terrain variation may also be considered. Doses are calculated using dose conversion factor supplied in a data library. Doses are reported for one and fifty year dose commitment periods for the maximum individual and the regional population (within 50 miles). The fractional contribution to dose by radionuclide and exposure modemore » are also printed if requested.« less

  20. Hanford meteorological station computer codes: Volume 9, The quality assurance computer codes

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Burk, K.W.; Andrews, G.L.

    1989-02-01

    The Hanford Meteorological Station (HMS) was established in 1944 on the Hanford Site to collect and archive meteorological data and provide weather forecasts and related services for Hanford Site approximately 1/2 mile east of the 200 West Area and is operated by PNL for the US Department of Energy. Meteorological data are collected from various sensors and equipment located on and off the Hanford Site. These data are stored in data bases on the Digital Equipment Corporation (DEC) VAX 11/750 at the HMS (hereafter referred to as the HMS computer). Files from those data bases are routinely transferred to themore » Emergency Management System (EMS) computer at the Unified Dose Assessment Center (UDAC). To ensure the quality and integrity of the HMS data, a set of Quality Assurance (QA) computer codes has been written. The codes will be routinely used by the HMS system manager or the data base custodian. The QA codes provide detailed output files that will be used in correcting erroneous data. The following sections in this volume describe the implementation and operation of QA computer codes. The appendices contain detailed descriptions, flow charts, and source code listings of each computer code. 2 refs.« less

  1. Dental cone-beam CT reconstruction from limited-angle view data based on compressed-sensing (CS) theory for fast, low-dose X-ray imaging

    NASA Astrophysics Data System (ADS)

    Je, Uikyu; Cho, Hyosung; Lee, Minsik; Oh, Jieun; Park, Yeonok; Hong, Daeki; Park, Cheulkyu; Cho, Heemoon; Choi, Sungil; Koo, Yangseo

    2014-06-01

    Recently, reducing radiation doses has become an issue of critical importance in the broader radiological community. As a possible technical approach, especially, in dental cone-beam computed tomography (CBCT), reconstruction from limited-angle view data (< 360°) would enable fast scanning with reduced doses to the patient. In this study, we investigated and implemented an efficient reconstruction algorithm based on compressed-sensing (CS) theory for the scan geometry and performed systematic simulation works to investigate the image characteristics. We also performed experimental works by applying the algorithm to a commercially-available dental CBCT system to demonstrate its effectiveness for image reconstruction in incomplete data problems. We successfully reconstructed CBCT images with incomplete projections acquired at selected scan angles of 120, 150, 180, and 200° with a fixed angle step of 1.2° and evaluated the reconstruction quality quantitatively. Both simulation and experimental demonstrations of the CS-based reconstruction from limited-angle view data show that the algorithm can be applied directly to current dental CBCT systems for reducing the imaging doses and further improving the image quality.

  2. Women and the Hanford Site

    NASA Astrophysics Data System (ADS)

    Gerber, Michele

    2014-03-01

    When we study the technical and scientific history of the Manhattan Project, women's history is sometimes left out. At Hanford, a Site whose past is rich with hard science and heavy construction, it is doubly easy to leave out women's history. After all, at the World War II Hanford Engineer Works - the earliest name for the Hanford Site - only nine percent of the employees were women. None of them were involved in construction, and only one woman was actually involved in the physics and operations of a major facility - Dr. Leona Woods Marshall. She was a physicist present at the startup of B-Reactor, the world's first full-scale nuclear reactor - now a National Historic Landmark. Because her presence was so unique, a special bathroom had to be built for her in B-Reactor. At World War II Hanford, only two women were listed among the nearly 200 members of the top supervisory staff of the prime contractor, and only one regularly attended the staff meetings of the Site commander, Colonel Franklin Matthias. Overall, women comprised less than one percent of the managerial and supervisory staff of the Hanford Engineer Works, most of them were in nursing or on the Recreation Office staff. Almost all of the professional women at Hanford were nurses, and most of the other women of the Hanford Engineer Works were secretaries, clerks, food-service workers, laboratory technicians, messengers, barracks workers, and other support service employees. The one World War II recruiting film made to attract women workers to the Site, that has survived in Site archives, is entitled ``A Day in the Life of a Typical Hanford Girl.'' These historical facts are not mentioned to criticize the past - for it is never wise to apply the standards of one era to another. The Hanford Engineer Works was a 1940s organization, and it functioned by the standards of the 1940s. Just as we cannot criticize the use of asbestos in constructing Hanford (although we may wish they hadn't used so much of it), we

  3. Combining Acceleration Techniques for Low-Dose X-Ray Cone Beam Computed Tomography Image Reconstruction.

    PubMed

    Huang, Hsuan-Ming; Hsiao, Ing-Tsung

    2017-01-01

    Over the past decade, image quality in low-dose computed tomography has been greatly improved by various compressive sensing- (CS-) based reconstruction methods. However, these methods have some disadvantages including high computational cost and slow convergence rate. Many different speed-up techniques for CS-based reconstruction algorithms have been developed. The purpose of this paper is to propose a fast reconstruction framework that combines a CS-based reconstruction algorithm with several speed-up techniques. First, total difference minimization (TDM) was implemented using the soft-threshold filtering (STF). Second, we combined TDM-STF with the ordered subsets transmission (OSTR) algorithm for accelerating the convergence. To further speed up the convergence of the proposed method, we applied the power factor and the fast iterative shrinkage thresholding algorithm to OSTR and TDM-STF, respectively. Results obtained from simulation and phantom studies showed that many speed-up techniques could be combined to greatly improve the convergence speed of a CS-based reconstruction algorithm. More importantly, the increased computation time (≤10%) was minor as compared to the acceleration provided by the proposed method. In this paper, we have presented a CS-based reconstruction framework that combines several acceleration techniques. Both simulation and phantom studies provide evidence that the proposed method has the potential to satisfy the requirement of fast image reconstruction in practical CT.

  4. Quantitative Features of Liver Lesions, Lung Nodules, and Renal Stones at Multi-Detector Row CT Examinations: Dependency on Radiation Dose and Reconstruction Algorithm.

    PubMed

    Solomon, Justin; Mileto, Achille; Nelson, Rendon C; Roy Choudhury, Kingshuk; Samei, Ehsan

    2016-04-01

    To determine if radiation dose and reconstruction algorithm affect the computer-based extraction and analysis of quantitative imaging features in lung nodules, liver lesions, and renal stones at multi-detector row computed tomography (CT). Retrospective analysis of data from a prospective, multicenter, HIPAA-compliant, institutional review board-approved clinical trial was performed by extracting 23 quantitative imaging features (size, shape, attenuation, edge sharpness, pixel value distribution, and texture) of lesions on multi-detector row CT images of 20 adult patients (14 men, six women; mean age, 63 years; range, 38-72 years) referred for known or suspected focal liver lesions, lung nodules, or kidney stones. Data were acquired between September 2011 and April 2012. All multi-detector row CT scans were performed at two different radiation dose levels; images were reconstructed with filtered back projection, adaptive statistical iterative reconstruction, and model-based iterative reconstruction (MBIR) algorithms. A linear mixed-effects model was used to assess the effect of radiation dose and reconstruction algorithm on extracted features. Among the 23 imaging features assessed, radiation dose had a significant effect on five, three, and four of the features for liver lesions, lung nodules, and renal stones, respectively (P < .002 for all comparisons). Adaptive statistical iterative reconstruction had a significant effect on three, one, and one of the features for liver lesions, lung nodules, and renal stones, respectively (P < .002 for all comparisons). MBIR reconstruction had a significant effect on nine, 11, and 15 of the features for liver lesions, lung nodules, and renal stones, respectively (P < .002 for all comparisons). Of note, the measured size of lung nodules and renal stones with MBIR was significantly different than those for the other two algorithms (P < .002 for all comparisons). Although lesion texture was significantly affected by the

  5. Methods and Models of the Hanford Internal Dosimetry Program, PNNL-MA-860

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Carbaugh, Eugene H.; Bihl, Donald E.; Maclellan, Jay A.

    2003-01-03

    This manual describes the technical basis for the design of the routine radiobioassay monitoring program and assessments of internal dose. Its purpose is to provide a historical record of the methods, models, and assumptions used for internal dosimetry at Hanford, and serve as a technical reference for radiation protection and dosimetry staff.

  6. A Model of Regularization Parameter Determination in Low-Dose X-Ray CT Reconstruction Based on Dictionary Learning

    PubMed Central

    Zhang, Cheng; Zhang, Tao; Li, Ming; Lu, Yanfei; You, Jiali; Guan, Yihui

    2015-01-01

    In recent years, X-ray computed tomography (CT) is becoming widely used to reveal patient's anatomical information. However, the side effect of radiation, relating to genetic or cancerous diseases, has caused great public concern. The problem is how to minimize radiation dose significantly while maintaining image quality. As a practical application of compressed sensing theory, one category of methods takes total variation (TV) minimization as the sparse constraint, which makes it possible and effective to get a reconstruction image of high quality in the undersampling situation. On the other hand, a preliminary attempt of low-dose CT reconstruction based on dictionary learning seems to be another effective choice. But some critical parameters, such as the regularization parameter, cannot be determined by detecting datasets. In this paper, we propose a reweighted objective function that contributes to a numerical calculation model of the regularization parameter. A number of experiments demonstrate that this strategy performs well with better reconstruction images and saving of a large amount of time. PMID:26550024

  7. A Model of Regularization Parameter Determination in Low-Dose X-Ray CT Reconstruction Based on Dictionary Learning.

    PubMed

    Zhang, Cheng; Zhang, Tao; Zheng, Jian; Li, Ming; Lu, Yanfei; You, Jiali; Guan, Yihui

    2015-01-01

    In recent years, X-ray computed tomography (CT) is becoming widely used to reveal patient's anatomical information. However, the side effect of radiation, relating to genetic or cancerous diseases, has caused great public concern. The problem is how to minimize radiation dose significantly while maintaining image quality. As a practical application of compressed sensing theory, one category of methods takes total variation (TV) minimization as the sparse constraint, which makes it possible and effective to get a reconstruction image of high quality in the undersampling situation. On the other hand, a preliminary attempt of low-dose CT reconstruction based on dictionary learning seems to be another effective choice. But some critical parameters, such as the regularization parameter, cannot be determined by detecting datasets. In this paper, we propose a reweighted objective function that contributes to a numerical calculation model of the regularization parameter. A number of experiments demonstrate that this strategy performs well with better reconstruction images and saving of a large amount of time.

  8. 42 CFR 82.32 - How will NIOSH make changes in scientific elements underlying the dose reconstruction process...

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... PUBLIC HEALTH SERVICE, DEPARTMENT OF HEALTH AND HUMAN SERVICES OCCUPATIONAL SAFETY AND HEALTH RESEARCH AND RELATED ACTIVITIES METHODS FOR CONDUCTING DOSE RECONSTRUCTION UNDER THE ENERGY EMPLOYEES...

  9. Radiation dose and image quality in pediatric chest CT: effects of iterative reconstruction in normal weight and overweight children.

    PubMed

    Yoon, Haesung; Kim, Myung-Joon; Yoon, Choon-Sik; Choi, Jiin; Shin, Hyun Joo; Kim, Hyun Gi; Lee, Mi-Jung

    2015-03-01

    New CT reconstruction techniques may help reduce the burden of ionizing radiation. To quantify radiation dose reduction when performing pediatric chest CT using a low-dose protocol and 50% adaptive statistical iterative reconstruction (ASIR) compared with age/gender-matched chest CT using a conventional dose protocol and reconstructed with filtered back projection (control group) and to determine its effect on image quality in normal weight and overweight children. We retrospectively reviewed 40 pediatric chest CT (M:F = 21:19; range: 0.1-17 years) in both groups. Radiation dose was compared between the two groups using paired Student's t-test. Image quality including noise, sharpness, artifacts and diagnostic acceptability was subjectively assessed by three pediatric radiologists using a four-point scale (superior, average, suboptimal, unacceptable). Eight children in the ASIR group and seven in the control group were overweight. All radiation dose parameters were significantly lower in the ASIR group (P < 0.01) with a greater than 57% dose reduction in overweight children. Image noise was higher in the ASIR group in both normal weight and overweight children. Only one scan in the ASIR group (1/40, 2.5%) was rated as diagnostically suboptimal and there was no unacceptable study. In both normal weight and overweight children, the ASIR technique is associated with a greater than 57% mean dose reduction, without significantly impacting diagnostic image quality in pediatric chest CT examinations. However, CT scans in overweight children may have a greater noise level, even when using the ASIR technique.

  10. Improved dose-volume histogram estimates for radiopharmaceutical therapy by optimizing quantitative SPECT reconstruction parameters

    NASA Astrophysics Data System (ADS)

    Cheng, Lishui; Hobbs, Robert F.; Segars, Paul W.; Sgouros, George; Frey, Eric C.

    2013-06-01

    In radiopharmaceutical therapy, an understanding of the dose distribution in normal and target tissues is important for optimizing treatment. Three-dimensional (3D) dosimetry takes into account patient anatomy and the nonuniform uptake of radiopharmaceuticals in tissues. Dose-volume histograms (DVHs) provide a useful summary representation of the 3D dose distribution and have been widely used for external beam treatment planning. Reliable 3D dosimetry requires an accurate 3D radioactivity distribution as the input. However, activity distribution estimates from SPECT are corrupted by noise and partial volume effects (PVEs). In this work, we systematically investigated OS-EM based quantitative SPECT (QSPECT) image reconstruction in terms of its effect on DVHs estimates. A modified 3D NURBS-based Cardiac-Torso (NCAT) phantom that incorporated a non-uniform kidney model and clinically realistic organ activities and biokinetics was used. Projections were generated using a Monte Carlo (MC) simulation; noise effects were studied using 50 noise realizations with clinical count levels. Activity images were reconstructed using QSPECT with compensation for attenuation, scatter and collimator-detector response (CDR). Dose rate distributions were estimated by convolution of the activity image with a voxel S kernel. Cumulative DVHs were calculated from the phantom and QSPECT images and compared both qualitatively and quantitatively. We found that noise, PVEs, and ringing artifacts due to CDR compensation all degraded histogram estimates. Low-pass filtering and early termination of the iterative process were needed to reduce the effects of noise and ringing artifacts on DVHs, but resulted in increased degradations due to PVEs. Large objects with few features, such as the liver, had more accurate histogram estimates and required fewer iterations and more smoothing for optimal results. Smaller objects with fine details, such as the kidneys, required more iterations and less

  11. CT dose reduction using Automatic Exposure Control and iterative reconstruction: A chest paediatric phantoms study.

    PubMed

    Greffier, Joël; Pereira, Fabricio; Macri, Francesco; Beregi, Jean-Paul; Larbi, Ahmed

    2016-04-01

    To evaluate the impact of Automatic Exposure Control (AEC) on radiation dose and image quality in paediatric chest scans (MDCT), with or without iterative reconstruction (IR). Three anthropomorphic phantoms representing children aged one, five and 10-year-old were explored using AEC system (CARE Dose 4D) with five modulation strength options. For each phantom, six acquisitions were carried out: one with fixed mAs (without AEC) and five each with different modulation strength. Raw data were reconstructed with Filtered Back Projection (FBP) and with two distinct levels of IR using soft and strong kernels. Dose reduction and image quality indices (Noise, SNR, CNR) were measured in lung and soft tissues. Noise Power Spectrum (NPS) was evaluated with a Catphan 600 phantom. The use of AEC produced a significant dose reduction (p<0.01) for all anthropomorphic sizes employed. According to the modulation strength applied, dose delivered was reduced from 43% to 91%. This pattern led to significantly increased noise (p<0.01) and reduced SNR and CNR (p<0.01). However, IR was able to improve these indices. The use of AEC/IR preserved image quality indices with a lower dose delivered. Doses were reduced from 39% to 58% for the one-year-old phantom, from 46% to 63% for the five-year-old phantom, and from 58% to 74% for the 10-year-old phantom. In addition, AEC/IR changed the patterns of NPS curves in amplitude and in spatial frequency. In chest paediatric MDCT, the use of AEC with IR allows one to obtain a significant dose reduction while maintaining constant image quality indices. Copyright © 2016 Associazione Italiana di Fisica Medica. Published by Elsevier Ltd. All rights reserved.

  12. Ultra-low dose CT attenuation correction for PET/CT: analysis of sparse view data acquisition and reconstruction algorithms

    NASA Astrophysics Data System (ADS)

    Rui, Xue; Cheng, Lishui; Long, Yong; Fu, Lin; Alessio, Adam M.; Asma, Evren; Kinahan, Paul E.; De Man, Bruno

    2015-09-01

    For PET/CT systems, PET image reconstruction requires corresponding CT images for anatomical localization and attenuation correction. In the case of PET respiratory gating, multiple gated CT scans can offer phase-matched attenuation and motion correction, at the expense of increased radiation dose. We aim to minimize the dose of the CT scan, while preserving adequate image quality for the purpose of PET attenuation correction by introducing sparse view CT data acquisition. We investigated sparse view CT acquisition protocols resulting in ultra-low dose CT scans designed for PET attenuation correction. We analyzed the tradeoffs between the number of views and the integrated tube current per view for a given dose using CT and PET simulations of a 3D NCAT phantom with lesions inserted into liver and lung. We simulated seven CT acquisition protocols with {984, 328, 123, 41, 24, 12, 8} views per rotation at a gantry speed of 0.35 s. One standard dose and four ultra-low dose levels, namely, 0.35 mAs, 0.175 mAs, 0.0875 mAs, and 0.043 75 mAs, were investigated. Both the analytical Feldkamp, Davis and Kress (FDK) algorithm and the Model Based Iterative Reconstruction (MBIR) algorithm were used for CT image reconstruction. We also evaluated the impact of sinogram interpolation to estimate the missing projection measurements due to sparse view data acquisition. For MBIR, we used a penalized weighted least squares (PWLS) cost function with an approximate total-variation (TV) regularizing penalty function. We compared a tube pulsing mode and a continuous exposure mode for sparse view data acquisition. Global PET ensemble root-mean-squares-error (RMSE) and local ensemble lesion activity error were used as quantitative evaluation metrics for PET image quality. With sparse view sampling, it is possible to greatly reduce the CT scan dose when it is primarily used for PET attenuation correction with little or no measureable effect on the PET image. For the four ultra-low dose

  13. Ultra-low dose CT attenuation correction for PET/CT: analysis of sparse view data acquisition and reconstruction algorithms

    PubMed Central

    Rui, Xue; Cheng, Lishui; Long, Yong; Fu, Lin; Alessio, Adam M.; Asma, Evren; Kinahan, Paul E.; De Man, Bruno

    2015-01-01

    For PET/CT systems, PET image reconstruction requires corresponding CT images for anatomical localization and attenuation correction. In the case of PET respiratory gating, multiple gated CT scans can offer phase-matched attenuation and motion correction, at the expense of increased radiation dose. We aim to minimize the dose of the CT scan, while preserving adequate image quality for the purpose of PET attenuation correction by introducing sparse view CT data acquisition. Methods We investigated sparse view CT acquisition protocols resulting in ultra-low dose CT scans designed for PET attenuation correction. We analyzed the tradeoffs between the number of views and the integrated tube current per view for a given dose using CT and PET simulations of a 3D NCAT phantom with lesions inserted into liver and lung. We simulated seven CT acquisition protocols with {984, 328, 123, 41, 24, 12, 8} views per rotation at a gantry speed of 0.35 seconds. One standard dose and four ultra-low dose levels, namely, 0.35 mAs, 0.175 mAs, 0.0875 mAs, and 0.04375 mAs, were investigated. Both the analytical FDK algorithm and the Model Based Iterative Reconstruction (MBIR) algorithm were used for CT image reconstruction. We also evaluated the impact of sinogram interpolation to estimate the missing projection measurements due to sparse view data acquisition. For MBIR, we used a penalized weighted least squares (PWLS) cost function with an approximate total-variation (TV) regularizing penalty function. We compared a tube pulsing mode and a continuous exposure mode for sparse view data acquisition. Global PET ensemble root-mean-squares-error (RMSE) and local ensemble lesion activity error were used as quantitative evaluation metrics for PET image quality. Results With sparse view sampling, it is possible to greatly reduce the CT scan dose when it is primarily used for PET attenuation correction with little or no measureable effect on the PET image. For the four ultra-low dose levels

  14. Adaptive Statistical Iterative Reconstruction-Applied Ultra-Low-Dose CT with Radiography-Comparable Radiation Dose: Usefulness for Lung Nodule Detection.

    PubMed

    Yoon, Hyun Jung; Chung, Myung Jin; Hwang, Hye Sun; Moon, Jung Won; Lee, Kyung Soo

    2015-01-01

    To assess the performance of adaptive statistical iterative reconstruction (ASIR)-applied ultra-low-dose CT (ULDCT) in detecting small lung nodules. Thirty patients underwent both ULDCT and standard dose CT (SCT). After determining the reference standard nodules, five observers, blinded to the reference standard reading results, independently evaluated SCT and both subsets of ASIR- and filtered back projection (FBP)-driven ULDCT images. Data assessed by observers were compared statistically. Converted effective doses in SCT and ULDCT were 2.81 ± 0.92 and 0.17 ± 0.02 mSv, respectively. A total of 114 lung nodules were detected on SCT as a standard reference. There was no statistically significant difference in sensitivity between ASIR-driven ULDCT and SCT for three out of the five observers (p = 0.678, 0.735, < 0.01, 0.038, and < 0.868 for observers 1, 2, 3, 4, and 5, respectively). The sensitivity of FBP-driven ULDCT was significantly lower than that of ASIR-driven ULDCT in three out of the five observers (p < 0.01 for three observers, and p = 0.064 and 0.146 for two observers). In jackknife alternative free-response receiver operating characteristic analysis, the mean values of figure-of-merit (FOM) for FBP, ASIR-driven ULDCT, and SCT were 0.682, 0.772, and 0.821, respectively, and there were no significant differences in FOM values between ASIR-driven ULDCT and SCT (p = 0.11), but the FOM value of FBP-driven ULDCT was significantly lower than that of ASIR-driven ULDCT and SCT (p = 0.01 and 0.00). Adaptive statistical iterative reconstruction-driven ULDCT delivering a radiation dose of only 0.17 mSv offers acceptable sensitivity in nodule detection compared with SCT and has better performance than FBP-driven ULDCT.

  15. Adaptive Statistical Iterative Reconstruction-Applied Ultra-Low-Dose CT with Radiography-Comparable Radiation Dose: Usefulness for Lung Nodule Detection

    PubMed Central

    Yoon, Hyun Jung; Hwang, Hye Sun; Moon, Jung Won; Lee, Kyung Soo

    2015-01-01

    Objective To assess the performance of adaptive statistical iterative reconstruction (ASIR)-applied ultra-low-dose CT (ULDCT) in detecting small lung nodules. Materials and Methods Thirty patients underwent both ULDCT and standard dose CT (SCT). After determining the reference standard nodules, five observers, blinded to the reference standard reading results, independently evaluated SCT and both subsets of ASIR- and filtered back projection (FBP)-driven ULDCT images. Data assessed by observers were compared statistically. Results Converted effective doses in SCT and ULDCT were 2.81 ± 0.92 and 0.17 ± 0.02 mSv, respectively. A total of 114 lung nodules were detected on SCT as a standard reference. There was no statistically significant difference in sensitivity between ASIR-driven ULDCT and SCT for three out of the five observers (p = 0.678, 0.735, < 0.01, 0.038, and < 0.868 for observers 1, 2, 3, 4, and 5, respectively). The sensitivity of FBP-driven ULDCT was significantly lower than that of ASIR-driven ULDCT in three out of the five observers (p < 0.01 for three observers, and p = 0.064 and 0.146 for two observers). In jackknife alternative free-response receiver operating characteristic analysis, the mean values of figure-of-merit (FOM) for FBP, ASIR-driven ULDCT, and SCT were 0.682, 0.772, and 0.821, respectively, and there were no significant differences in FOM values between ASIR-driven ULDCT and SCT (p = 0.11), but the FOM value of FBP-driven ULDCT was significantly lower than that of ASIR-driven ULDCT and SCT (p = 0.01 and 0.00). Conclusion Adaptive statistical iterative reconstruction-driven ULDCT delivering a radiation dose of only 0.17 mSv offers acceptable sensitivity in nodule detection compared with SCT and has better performance than FBP-driven ULDCT. PMID:26357505

  16. 75 FR 39029 - Subcommittee for Dose Reconstruction Reviews (SDRR), Advisory Board on Radiation and Worker...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-07-07

    ... for Dose Reconstruction Reviews (SDRR), Advisory Board on Radiation and Worker Health (ABRWH), National Institute for Occupational Safety and Health (NIOSH) In accordance with section 10(a)(2) of the.... Background: The Advisory Board was established under the Energy Employees Occupational Illness Compensation...

  17. 77 FR 14377 - Subcommittee for Dose Reconstruction Reviews (SDRR), Advisory Board on Radiation and Worker...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-03-09

    ... DEPARTMENT OF HEALTH AND HUMAN SERVICES Centers for Disease Control and Prevention Subcommittee for Dose Reconstruction Reviews (SDRR), Advisory Board on Radiation and Worker Health (ABRWH or the Advisory Board), National Institute for Occupational Safety and Health (NIOSH) In accordance with section...

  18. Issues in the reconstruction of environmental doses on the basis of thermoluminescence measurements in the Techa riverside

    NASA Technical Reports Server (NTRS)

    Bougrov, N. G.; Goksu, H. Y.; Haskell, E.; Degteva, M. O.; Meckbach, R.; Jacob, P.; Neta, P. I. (Principal Investigator)

    1998-01-01

    The potential of thermoluminescence measurements of bricks from the contaminated area of the Techa river valley, Southern Urals, Russia, for reconstructing external exposures of affected population groups has been studied. Thermoluminescence dating of background samples was used to evaluate the age of old buildings available on the river banks. The anthropogenic gamma dose accrued in exposed samples is determined by subtracting the natural radiation background dose for the corresponding age from the accumulated dose measured by thermoluminescence. For a site in the upper Techa river region, where the levels of external exposures were extremely high, the depth-dose distribution in bricks and the dependence of accidental dose on the height of the sampling position were determined. For the same site, Monte Carlo simulations of radiation transport were performed for different source configurations corresponding to the situation before and after the construction of a reservoir on the river and evacuation of the population in 1956. A comparison of the results provides an understanding of the features of the measured depth-dose distributions and height dependencies in terms of the source configurations and shows that bricks from the higher sampling positions are likely to have accrued a larger fraction of anthropogenic dose from the time before the construction of the reservoir. The applicability of the thermoluminescent dosimetry method to environmental dose reconstruction in the middle Techa region, where the external exposure was relatively low, was also investigated.

  19. Compressed sensing with gradient total variation for low-dose CBCT reconstruction

    NASA Astrophysics Data System (ADS)

    Seo, Chang-Woo; Cha, Bo Kyung; Jeon, Seongchae; Huh, Young; Park, Justin C.; Lee, Byeonghun; Baek, Junghee; Kim, Eunyoung

    2015-06-01

    This paper describes the improvement of convergence speed with gradient total variation (GTV) in compressed sensing (CS) for low-dose cone-beam computed tomography (CBCT) reconstruction. We derive a fast algorithm for the constrained total variation (TV)-based a minimum number of noisy projections. To achieve this task we combine the GTV with a TV-norm regularization term to promote an accelerated sparsity in the X-ray attenuation characteristics of the human body. The GTV is derived from a TV and enforces more efficient computationally and faster in convergence until a desired solution is achieved. The numerical algorithm is simple and derives relatively fast convergence. We apply a gradient projection algorithm that seeks a solution iteratively in the direction of the projected gradient while enforcing a non-negatively of the found solution. In comparison with the Feldkamp, Davis, and Kress (FDK) and conventional TV algorithms, the proposed GTV algorithm showed convergence in ≤18 iterations, whereas the original TV algorithm needs at least 34 iterations in reducing 50% of the projections compared with the FDK algorithm in order to reconstruct the chest phantom images. Future investigation includes improving imaging quality, particularly regarding X-ray cone-beam scatter, and motion artifacts of CBCT reconstruction.

  20. Hanford Site Solid Waste Acceptance Criteria

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Not Available

    1993-11-17

    This manual defines the Hanford Site radioactive, hazardous, and sanitary solid waste acceptance criteria. Criteria in the manual represent a guide for meeting state and federal regulations; DOE Orders; Hanford Site requirements; and other rules, regulations, guidelines, and standards as they apply to acceptance of radioactive and hazardous solid waste at the Hanford Site. It is not the intent of this manual to be all inclusive of the regulations; rather, it is intended that the manual provide the waste generator with only the requirements that waste must meet in order to be accepted at Hanford Site TSD facilities.

  1. One perspective on stakeholder involvement at Hanford.

    PubMed

    Martin, Todd

    2011-11-01

    The Hanford nuclear site in Washington State had a major role in the production of nuclear weapons materials during the Manhattan Project in World War II and during the Cold War that followed. The production of weapons-grade radionuclides produced a large amount of radioactive byproducts that have been stored since the mid-1900s at the Hanford Site. These by-product radionuclides have leaked from containment facilities into the groundwater, contaminated buildings used for radionuclide processing, and also contaminated the nuclear reactors used to produce weapons-grade uranium and plutonium. This issue has been a major concern to Hanford stakeholders for several decades, and the U.S. Department of Energy, the U.S. Environmental Protection Agency, and the Washington State Department of Ecology established a Tri-Party Agreement in 1989, at which time Hanford ceased production of nuclear weapons materials and began a major effort to clean up and remediate the Hanford Site's contaminated groundwater, soil, and facilities. This paper describes the concerns of stakeholders in the production of nuclear weapons, the secrecy of Hanford operations, and the potential impacts to public health and the environment from the unintended releases of weapons-grade materials and by-products associated with their production at the Hanford Site. It also describes the involvement of public stakeholders in the development and oversight by the Hanford Advisory Board of the steps that have been taken in cleanup activities at the Hanford Site that began as a major effort about two decades ago. The importance of involvement of the general public and public interest organizations in developing and implementing the Hanford cleanup strategy are described in detail.

  2. Organ Dose-Rate Calculations for Small Mammals at Maralinga, the Nevada Test Site, Hanford and Fukushima: A Comparison of Ellipsoidal and Voxelized Dosimetric Methodologies.

    PubMed

    Caffrey, Emily A; Johansen, Mathew P; Higley, Kathryn A

    2015-10-01

    Radiological dosimetry for nonhuman biota typically relies on calculations that utilize the Monte Carlo simulations of simple, ellipsoidal geometries with internal radioactivity distributed homogeneously throughout. In this manner it is quick and easy to estimate whole-body dose rates to biota. Voxel models are detailed anatomical phantoms that were first used for calculating radiation dose to humans, which are now being extended to nonhuman biota dose calculations. However, if simple ellipsoidal models provide conservative dose-rate estimates, then the additional labor involved in creating voxel models may be unnecessary for most scenarios. Here we show that the ellipsoidal method provides conservative estimates of organ dose rates to small mammals. Organ dose rates were calculated for environmental source terms from Maralinga, the Nevada Test Site, Hanford and Fukushima using both the ellipsoidal and voxel techniques, and in all cases the ellipsoidal method yielded more conservative dose rates by factors of 1.2-1.4 for photons and 5.3 for beta particles. Dose rates for alpha-emitting radionuclides are identical for each method as full energy absorption in source tissue is assumed. The voxel procedure includes contributions to dose from organ-to-organ irradiation (shown here to comprise 2-50% of total dose from photons and 0-93% of total dose from beta particles) that is not specifically quantified in the ellipsoidal approach. Overall, the voxel models provide robust dosimetry for the nonhuman mammals considered in this study, and though the level of detail is likely extraneous to demonstrating regulatory compliance today, voxel models may nevertheless be advantageous in resolving ongoing questions regarding the effects of ionizing radiation on wildlife.

  3. Commissioning and validation of fluence-based 3D VMAT dose reconstruction system using new transmission detector.

    PubMed

    Nakaguchi, Yuji; Oono, Takeshi; Maruyama, Masato; Shimohigashi, Yoshinobu; Kai, Yudai; Nakamura, Yuya

    2018-06-01

    In this study, we evaluated the basic performance of the three-dimensional dose verification system COMPASS (IBA Dosimetry). This system is capable of reconstructing 3D dose distributions on the patient anatomy based on the fluence measured using a new transmission detector (Dolphin, IBA Dosimetry) during treatment. The stability of the absolute dose and geometric calibrations of the COMPASS system with the Dolphin detector were investigated for fundamental validation. Furthermore, multileaf collimator (MLC) test patterns and a complicated volumetric modulated arc therapy (VMAT) plan were used to evaluate the accuracy of the reconstructed dose distributions determined by the COMPASS. The results from the COMPASS were compared with those of a Monte Carlo simulation (MC), EDR2 film measurement, and a treatment planning system (TPS). The maximum errors for the absolute dose and geometrical position were - 0.28% and 1.0 mm for 3 months, respectively. The Dolphin detector, which consists of ionization chamber detectors, was firmly mounted on the linear accelerator and was very stable. For the MLC test patterns, the TPS showed a > 5% difference at small fields, while the COMPASS showed good agreement with the MC simulation at small fields. However, the COMPASS produced a large error for complex small fields. For a clinical VMAT plan, COMPASS was more accurate than TPS. COMPASS showed real delivered-dose distributions because it uses the measured fluence, a high-resolution detector, and accurate beam modeling. We confirm here that the accuracy and detectability of the delivered dose of the COMPASS system are sufficient for clinical practice.

  4. Impact of the Adaptive Statistical Iterative Reconstruction Technique on Radiation Dose and Image Quality in Bone SPECT/CT.

    PubMed

    Sibille, Louis; Chambert, Benjamin; Alonso, Sandrine; Barrau, Corinne; D'Estanque, Emmanuel; Al Tabaa, Yassine; Collombier, Laurent; Demattei, Christophe; Kotzki, Pierre-Olivier; Boudousq, Vincent

    2016-07-01

    The purpose of this study was to compare a routine bone SPECT/CT protocol using CT reconstructed with filtered backprojection (FBP) with an optimized protocol using low-dose CT images reconstructed with adaptive statistical iterative reconstruction (ASiR). In this prospective study, enrolled patients underwent bone SPECT/CT, with 1 SPECT acquisition followed by 2 randomized CT acquisitions: FBP CT (FBP; noise index, 25) and ASiR CT (70% ASiR; noise index, 40). The image quality of both attenuation-corrected SPECT and CT images was visually (5-point Likert scale, 2 interpreters) and quantitatively (contrast ratio [CR] and signal-to-noise ratio [SNR]) estimated. The CT dose index volume, dose-length product, and effective dose were compared. Seventy-five patients were enrolled in the study. Quantitative attenuation-corrected SPECT evaluation showed no inferiority for contrast ratio and SNR issued from FBP CT or ASiR CT (respectively, 13.41 ± 7.83 vs. 13.45 ± 7.99 and 2.33 ± 0.83 vs. 2.32 ± 0.84). Qualitative image analysis showed no difference between attenuation-corrected SPECT images issued from FBP CT or ASiR CT for both interpreters (respectively, 3.5 ± 0.6 vs. 3.5 ± 0.6 and 3.6 ± 0.5 vs. 3.6 ± 0.5). Quantitative CT evaluation showed no inferiority for SNR between FBP and ASiR CT images (respectively, 0.93 ± 0.16 and 1.07 ± 0.17). Qualitative image analysis showed no quality difference between FBP and ASiR CT images for both interpreters (respectively, 3.8 ± 0.5 vs. 3.6 ± 0.5 and 4.0 ± 0.1 vs. 4.0 ± 0.2). Mean CT dose index volume, dose-length product, and effective dose for ASiR CT (3.0 ± 2.0 mGy, 148 ± 85 mGy⋅cm, and 2.2 ± 1.3 mSv) were significantly lower than for FBP CT (8.5 ± 3.7 mGy, 365 ± 160 mGy⋅cm, and 5.5 ± 2.4 mSv). The use of 70% ASiR blending in bone SPECT/CT can reduce the CT radiation dose by 60%, with no sacrifice in attenuation-corrected SPECT and CT image quality, compared with the conventional protocol using FBP CT

  5. 78 FR 24752 - Subcommittee for Dose Reconstruction Reviews (SDRR), Advisory Board on Radiation and Worker...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-04-26

    ... for Dose Reconstruction Reviews (SDRR), Advisory Board on Radiation and Worker Health (ABRWH or the Advisory Board), National Institute for Occupational Safety and Health (NIOSH) In accordance with section... Employees Occupational Illness Compensation Program Act of 2000 to advise the President on a variety of...

  6. 78 FR 42525 - Meeting; Subcommittee for Dose Reconstruction Reviews, Advisory Board on Radiation and Worker...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-07-16

    ...; Subcommittee for Dose Reconstruction Reviews, Advisory Board on Radiation and Worker Health (ABRWH or the Advisory Board), National Institute for Occupational Safety and Health (NIOSH) In accordance with section... the Energy Employees Occupational Illness Compensation Program Act of 2000, to advise the President on...

  7. Milk cow feed intake and milk production and distribution estimates for Phase 1

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Beck, D.M.; Darwin, R.F.; Erickson, A.R.

    1992-04-01

    This report provides initial information on milk production and distribution in the Hanford Environmental Dose Reconstruction (HEDR) Project Phase I study area. The Phase I study area consists of eight countries in central Washington and two countries in northern Oregon. The primary objective of the HEDR Project is to develop estimates of the radiation doses populations could have received from Hanford operations. The objective of Phase I of the project was to determine the feasibility of reconstructing data, models, and development of preliminary dose estimates received by people living in the ten countries surrounding Hanford from 1944 to 1947. Onemore » of the most important contributors to radiation doses from Hanford during the period of interest was radioactive iodine. Consumption of milk from cows that ate vegetation contaminated with iodine is likely the dominant pathway of human exposure. To estimate the doses people could have received from this pathway, it is necessary to estimate the amount of milk that the people living in the Phase I area consumed, the source of the milk, and the type of feed that the milk cows ate. The objective of the milk model subtask is to identify the sources of milk supplied to residents of each community in the study area as well as the sources of feeds that were fed to the milk cows. In this report, we focus on Grade A cow's milk (fresh milk used for human consumption).« less

  8. RADRUE METHOD FOR RECONSTRUCTION OF EXTERNAL PHOTON DOSES TO CHERNOBYL LIQUIDATORS IN EPIDEMIOLOGICAL STUDIES

    PubMed Central

    Kryuchkov, Victor; Chumak, Vadim; Maceika, Evaldas; Anspaugh, Lynn R.; Cardis, Elisabeth; Bakhanova, Elena; Golovanov, Ivan; Drozdovitch, Vladimir; Luckyanov, Nickolas; Kesminiene, Ausrele; Voillequé, Paul; Bouville, André

    2010-01-01

    Between 1986 and 1990, several hundred thousand workers, called “liquidators” or “clean-up workers”, took part in decontamination and recovery activities within the 30-km zone around the Chernobyl nuclear power plant in Ukraine, where a major accident occurred in April 1986. The Chernobyl liquidators were mainly exposed to external ionizing radiation levels that depended primarily on their work locations and the time after the accident when the work was performed. Because individual doses were often monitored inadequately or were not monitored at all for the majority of liquidators, a new method of photon (i.e. gamma and x-rays) dose assessment, called “RADRUE” (Realistic Analytical Dose Reconstruction with Uncertainty Estimation) was developed to obtain unbiased and reasonably accurate estimates for use in three epidemiologic studies of hematological malignancies and thyroid cancer among liquidators. The RADRUE program implements a time-and-motion dose reconstruction method that is flexible and conceptually easy to understand. It includes a large exposure rate database and interpolation and extrapolation techniques to calculate exposure rates at places where liquidators lived and worked within ~70 km of the destroyed reactor. The RADRUE technique relies on data collected from subjects’ interviews conducted by trained interviewers, and on expert dosimetrists to interpret the information and provide supplementary information, when necessary, based upon their own Chernobyl experience. The RADRUE technique was used to estimate doses from external irradiation, as well as uncertainties, to the bone-marrow for 929 subjects and to the thyroid gland for 530 subjects enrolled in epidemiologic studies. Individual bone-marrow dose estimates were found to range from less than one μGy to 3,300 mGy, with an arithmetic mean of 71 mGy. Individual thyroid dose estimates were lower and ranged from 20 μGy to 507 mGy, with an arithmetic mean of 29 mGy. The

  9. Hanford Site 1998 Environmental Report

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    RL Dirkes; RW Hanf; TM Poston

    This Hanford Site environmental report is prepared annually to summarize environmental data and information, to describe environmental management performance, to demonstrate the status of compliance with environmental regulations, and to highlight major environmental programs and efforts. The report is written to meet requirements and guidelines of the U.S. Department of Energy (DOE) and to meet the needs of the public. This summary has been written with a minimum of technical terminology. Individual sections of the report are designed to: describe the Hanford Site and its mission; summarize the status of compliance with environmental regulations; describe the environmental programs at themore » Hanford Site; discuss the estimated radionuclide exposure to the public from 1998 Hanford Site activities; present the effluent monitoring, environmental surveillance, and groundwater protection and monitoring information; and discuss the activities to ensure quality.« less

  10. Shared dosimetry error in epidemiological dose-response analyses

    DOE PAGES

    Stram, Daniel O.; Preston, Dale L.; Sokolnikov, Mikhail; ...

    2015-03-23

    Radiation dose reconstruction systems for large-scale epidemiological studies are sophisticated both in providing estimates of dose and in representing dosimetry uncertainty. For example, a computer program was used by the Hanford Thyroid Disease Study to provide 100 realizations of possible dose to study participants. The variation in realizations reflected the range of possible dose for each cohort member consistent with the data on dose determinates in the cohort. Another example is the Mayak Worker Dosimetry System 2013 which estimates both external and internal exposures and provides multiple realizations of "possible" dose history to workers given dose determinants. This paper takesmore » up the problem of dealing with complex dosimetry systems that provide multiple realizations of dose in an epidemiologic analysis. In this paper we derive expected scores and the information matrix for a model used widely in radiation epidemiology, namely the linear excess relative risk (ERR) model that allows for a linear dose response (risk in relation to radiation) and distinguishes between modifiers of background rates and of the excess risk due to exposure. We show that treating the mean dose for each individual (calculated by averaging over the realizations) as if it was true dose (ignoring both shared and unshared dosimetry errors) gives asymptotically unbiased estimates (i.e. the score has expectation zero) and valid tests of the null hypothesis that the ERR slope β is zero. Although the score is unbiased the information matrix (and hence the standard errors of the estimate of β) is biased for β≠0 when ignoring errors in dose estimates, and we show how to adjust the information matrix to remove this bias, using the multiple realizations of dose. The use of these methods in the context of several studies including, the Mayak Worker Cohort, and the U.S. Atomic Veterans Study, is discussed.« less

  11. Shared Dosimetry Error in Epidemiological Dose-Response Analyses

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Stram, Daniel O.; Preston, Dale L.; Sokolnikov, Mikhail

    2015-03-23

    Radiation dose reconstruction systems for large-scale epidemiological studies are sophisticated both in providing estimates of dose and in representing dosimetry uncertainty. For example, a computer program was used by the Hanford Thyroid Disease Study to provide 100 realizations of possible dose to study participants. The variation in realizations reflected the range of possible dose for each cohort member consistent with the data on dose determinates in the cohort. Another example is the Mayak Worker Dosimetry System 2013 which estimates both external and internal exposures and provides multiple realizations of "possible" dose history to workers given dose determinants. This paper takesmore » up the problem of dealing with complex dosimetry systems that provide multiple realizations of dose in an epidemiologic analysis. In this paper we derive expected scores and the information matrix for a model used widely in radiation epidemiology, namely the linear excess relative risk (ERR) model that allows for a linear dose response (risk in relation to radiation) and distinguishes between modifiers of background rates and of the excess risk due to exposure. We show that treating the mean dose for each individual (calculated by averaging over the realizations) as if it was true dose (ignoring both shared and unshared dosimetry errors) gives asymptotically unbiased estimates (i.e. the score has expectation zero) and valid tests of the null hypothesis that the ERR slope β is zero. Although the score is unbiased the information matrix (and hence the standard errors of the estimate of β) is biased for β≠0 when ignoring errors in dose estimates, and we show how to adjust the information matrix to remove this bias, using the multiple realizations of dose. Use of these methods for several studies, including the Mayak Worker Cohort and the U.S. Atomic Veterans Study, is discussed.« less

  12. 76 FR 38182 - Subcommittee for Dose Reconstruction Reviews (SDRR), Advisory Board on Radiation and Worker...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-06-29

    ... for Dose Reconstruction Reviews (SDRR), Advisory Board on Radiation and Worker Health (ABRWH or the Advisory Board), National Institute for Occupational Safety and Health (NIOSH) In accordance with section... Occupational Illness Compensation Program Act of 2000 to advise the President on a variety of policy and...

  13. 78 FR 733 - Subcommittee for Dose Reconstruction Reviews (SDRR), Advisory Board on Radiation and Worker...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-01-04

    ... for Dose Reconstruction Reviews (SDRR), Advisory Board on Radiation and Worker Health (ABRWH or the Advisory Board), National Institute for Occupational Safety and Health (NIOSH) In accordance with section... Occupational Illness Compensation Program Act of 2000 to advise the President on a variety of policy and...

  14. 76 FR 55678 - Subcommittee for Dose Reconstruction Reviews (SDRR), Advisory Board on Radiation and Worker...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-09-08

    ... for Dose Reconstruction Reviews (SDRR), Advisory Board on Radiation and Worker Health (ABRWH or the Advisory Board), National Institute for Occupational Safety and Health (NIOSH) In accordance with section... Occupational Illness Compensation Program Act of 2000 to advise the President on a variety of policy and...

  15. 76 FR 9786 - Subcommittee for Dose Reconstruction Reviews (SDRR), Advisory Board on Radiation and Worker...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-02-22

    ... for Dose Reconstruction Reviews (SDRR), Advisory Board on Radiation and Worker Health (ABRWH or the Advisory Board), National Institute for Occupational Safety and Health (NIOSH) In accordance with section... Occupational Illness Compensation Program Act of 2000 to advise the President on a variety of policy and...

  16. TU-A-12A-07: CT-Based Biomarkers to Characterize Lung Lesion: Effects of CT Dose, Slice Thickness and Reconstruction Algorithm Based Upon a Phantom Study

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zhao, B; Tan, Y; Tsai, W

    2014-06-15

    Purpose: Radiogenomics promises the ability to study cancer tumor genotype from the phenotype obtained through radiographic imaging. However, little attention has been paid to the sensitivity of image features, the image-based biomarkers, to imaging acquisition techniques. This study explores the impact of CT dose, slice thickness and reconstruction algorithm on measuring image features using a thorax phantom. Methods: Twentyfour phantom lesions of known volume (1 and 2mm), shape (spherical, elliptical, lobular and spicular) and density (-630, -10 and +100 HU) were scanned on a GE VCT at four doses (25, 50, 100, and 200 mAs). For each scan, six imagemore » series were reconstructed at three slice thicknesses of 5, 2.5 and 1.25mm with continuous intervals, using the lung and standard reconstruction algorithms. The lesions were segmented with an in-house 3D algorithm. Fifty (50) image features representing lesion size, shape, edge, and density distribution/texture were computed. Regression method was employed to analyze the effect of CT dose, slice of thickness and reconstruction algorithm on these features adjusting 3 confounding factors (size, density and shape of phantom lesions). Results: The coefficients of CT dose, slice thickness and reconstruction algorithm are presented in Table 1 in the supplementary material. No significant difference was found between the image features calculated on low dose CT scans (25mAs and 50mAs). About 50% texture features were found statistically different between low doses and high doses (100 and 200mAs). Significant differences were found for almost all features when calculated on 1.25mm, 2.5mm, and 5mm slice thickness images. Reconstruction algorithms significantly affected all density-based image features, but not morphological features. Conclusions: There is a great need to standardize the CT imaging protocols for radiogenomics study because CT dose, slice thickness and reconstruction algorithm impact quantitative image

  17. 42 CFR 82.12 - Will it be possible to conduct dose reconstructions for all claims?

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... 42 Public Health 1 2010-10-01 2010-10-01 false Will it be possible to conduct dose reconstructions for all claims? 82.12 Section 82.12 Public Health PUBLIC HEALTH SERVICE, DEPARTMENT OF HEALTH AND HUMAN SERVICES OCCUPATIONAL SAFETY AND HEALTH RESEARCH AND RELATED ACTIVITIES METHODS FOR CONDUCTING...

  18. Low-dose CT imaging of a total hip arthroplasty phantom using model-based iterative reconstruction and orthopedic metal artifact reduction.

    PubMed

    Wellenberg, R H H; Boomsma, M F; van Osch, J A C; Vlassenbroek, A; Milles, J; Edens, M A; Streekstra, G J; Slump, C H; Maas, M

    2017-05-01

    To compare quantitative measures of image quality, in terms of CT number accuracy, noise, signal-to-noise-ratios (SNRs), and contrast-to-noise ratios (CNRs), at different dose levels with filtered-back-projection (FBP), iterative reconstruction (IR), and model-based iterative reconstruction (MBIR) alone and in combination with orthopedic metal artifact reduction (O-MAR) in a total hip arthroplasty (THA) phantom. Scans were acquired from high- to low-dose (CTDI vol : 40.0, 32.0, 24.0, 16.0, 8.0, and 4.0 mGy) at 120- and 140- kVp. Images were reconstructed using FBP, IR (iDose 4 level 2, 4, and 6) and MBIR (IMR, level 1, 2, and 3) with and without O-MAR. CT number accuracy in Hounsfield Units (HU), noise or standard deviation, SNRs, and CNRs were analyzed. The IMR technique showed lower noise levels (p < 0.01), higher SNRs (p < 0.001) and CNRs (p < 0.001) compared with FBP and iDose 4 in all acquisitions from high- to low-dose with constant CT numbers. O-MAR reduced noise (p < 0.01) and improved SNRs (p < 0.01) and CNRs (p < 0.001) while improving CT number accuracy only at a low dose. At the low dose of 4.0 mGy, IMR level 1, 2, and 3 showed 83%, 89%, and 95% lower noise values, a factor 6.0, 9.2, and 17.9 higher SNRs, and 5.7, 8.8, and 18.2 higher CNRs compared with FBP respectively. Based on quantitative analysis of CT number accuracy, noise values, SNRs, and CNRs, we conclude that the combined use of IMR and O-MAR enables a reduction in radiation dose of 83% compared with FBP and iDose 4 in the CT imaging of a THA phantom.

  19. HANFORD SCIENCE & TECHNOLOGY NEEDS STATEMENTS 2002

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    WIBLE, R.A.

    This document: (a) provides a comprehensive listing of the Hanford sites science and technology needs for fiscal year (FY) 2002; and (b) identifies partnering and commercialization opportunities within industry, other federal and state agencies, and the academic community. These needs were prepared by the Hanford projects (within the Project Hanford Management Contract, the Environmental Restoration Contract and the River Protection Project) and subsequently reviewed and endorsed by the Hanford Site Technology Coordination Group (STCG). The STCG reviews included participation of DOE-RL and DOE-ORP Management, site stakeholders, state and federal regulators, and Tribal Nations. These needs are reviewed and updated onmore » an annual basis and given a broad distribution.« less

  20. Hanford Site Environmental Report 1999

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    TM Poston; RW Hanf; RL Dirkes

    This Hanford Site environmental report is prepared annually to summarize environmental data and information, to describe environmental management performance, to demonstrate the status of compliance with environmental regulations, and to highlight major environmental programs and efforts. The report is written to meet requirements and guidelines of the U.S. Department of Energy (DOE) and to meet the needs of the public. This summary has been written with a minimum of technical terminology. Individual sections of the report are designed to: (1) describe the Hanford Site and its mission; (2) summarize the status of compliance with environmental regulations; (3) describe the environmentalmore » programs at the Hanford Site; (4) discuss the estimated radionuclide exposure to the public from 1999 Hanford Site activities; (5) present the effluent monitoring, environmental surveillance, groundwater protection and monitoring information; and (6) discuss the activities to ensure quality.« less

  1. Texture-preserved penalized weighted least-squares reconstruction of low-dose CT image via image segmentation and high-order MRF modeling

    NASA Astrophysics Data System (ADS)

    Han, Hao; Zhang, Hao; Wei, Xinzhou; Moore, William; Liang, Zhengrong

    2016-03-01

    In this paper, we proposed a low-dose computed tomography (LdCT) image reconstruction method with the help of prior knowledge learning from previous high-quality or normal-dose CT (NdCT) scans. The well-established statistical penalized weighted least squares (PWLS) algorithm was adopted for image reconstruction, where the penalty term was formulated by a texture-based Gaussian Markov random field (gMRF) model. The NdCT scan was firstly segmented into different tissue types by a feature vector quantization (FVQ) approach. Then for each tissue type, a set of tissue-specific coefficients for the gMRF penalty was statistically learnt from the NdCT image via multiple-linear regression analysis. We also proposed a scheme to adaptively select the order of gMRF model for coefficients prediction. The tissue-specific gMRF patterns learnt from the NdCT image were finally used to form an adaptive MRF penalty for the PWLS reconstruction of LdCT image. The proposed texture-adaptive PWLS image reconstruction algorithm was shown to be more effective to preserve image textures than the conventional PWLS image reconstruction algorithm, and we further demonstrated the gain of high-order MRF modeling for texture-preserved LdCT PWLS image reconstruction.

  2. Characterization of MOSFET detectors for in vivo dosimetry in interventional radiology and for dose reconstruction in case of overexposure.

    PubMed

    Bassinet, Céline; Huet, Christelle; Baumann, Marion; Etard, Cécile; Réhel, Jean-Luc; Boisserie, Gilbert; Debroas, Jacques; Aubert, Bernard; Clairand, Isabelle

    2013-04-01

    As MOSFET (Metal Oxide Semiconductor Field Effect Transistor) detectors allow dose measurements in real time, the interest in these dosimeters is growing. The aim of this study was to investigate the dosimetric properties of commercially available TN-502RD-H MOSFET silicon detectors (Best Medical Canada, Ottawa, Canada) in order to use them for in vivo dosimetry in interventional radiology and for dose reconstruction in case of overexposure. Reproducibility of the measurements, dose rate dependence, and dose response of the MOSFET detectors have been studied with a Co source. Influence of the dose rate, frequency, and pulse duration on MOSFET responses has also been studied in pulsed x-ray fields. Finally, in order to validate the integrated dose given by MOSFET detectors, MOSFETs and TLDs (LiF:Mg,Cu,P) were fixed on an Alderson-Rando phantom in the conditions of an interventional neuroradiology procedure, and their responses have been compared. The results of this study show the suitability of MOSFET detectors for in vivo dosimetry in interventional radiology and for dose reconstruction in case of accident, provided a well-corrected energy dependence, a pulse duration equal to or higher than 10 ms, and an optimized contact between the detector and the skin of the patient are achieved.

  3. 78 FR 78964 - Subcommittee for Dose Reconstruction Reviews (SDRR), Advisory Board on Radiation and Worker...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-12-27

    ... DEPARTMENT OF HEALTH AND HUMAN SERVICES Centers for Disease Control and Prevention Subcommittee for Dose Reconstruction Reviews (SDRR), Advisory Board on Radiation and Worker Health (ABRWH or the Advisory Board), National Institute for Occupational Safety and Health (NIOSH) In accordance with section 10(a)(2) of the Federal Advisory Committee Ac...

  4. DOSE RECONSTRUCTION FOR THE MILLION WORKER STUDY: STATUS AND GUIDELINES

    PubMed Central

    Bouville, André; Toohey, Richard E.; Boice, John D.; Beck, Harold L.; Dauer, Larry T.; Eckerman, Keith F.; Hagemeyer, Derek; Leggett, Richard W.; Mumma, Michael T.; Napier, Bruce; Pryor, Kathy H.; Rosenstein, Marvin; Schauer, David A.; Sherbini, Sami; Stram, Daniel O.; Thompson, James L.; Till, John E.; Yoder, Craig; Zeitlin, Cary

    2016-01-01

    The primary aim of the epidemiologic study of one million U.S. radiation workers and veterans [the Million Worker Study (MWS)] is to provide scientifically valid information on the level of radiation risk when exposures are received gradually over time, and not within seconds as was the case for Japanese atomic-bomb survivors. The primary outcome of the epidemiologic study is cancer mortality but other causes of death such as cardiovascular disease and cerebrovascular disease will be evaluated. The success of the study is tied to the validity of the dose reconstruction approaches to provide realistic estimates of organ-specific radiation absorbed doses that are as accurate and precise as possible and to properly evaluate their accompanying uncertainties. The dosimetry aspects for the MWS are challenging in that they address diverse exposure scenarios for diverse occupational groups being studied over a period of up to 70 y. The dosimetric issues differ among the varied exposed populations that are considered: atomic veterans, U.S. Department of Energy workers exposed to both penetrating radiation and intakes of radionuclides, nuclear power plant workers, medical radiation workers, and industrial radiographers. While a major source of radiation exposure to the study population comes from external gamma- or x-ray sources, for some of the study groups there is a meaningful component of radionuclide intakes that require internal radiation dosimetry assessments. Scientific Committee 6–9 has been established by the National Council on Radiation Protection and Measurements (NCRP) to produce a report on the comprehensive organ dose assessment (including uncertainty analysis) for the MWS. The NCRP dosimetry report will cover the specifics of practical dose reconstruction for the ongoing epidemiologic studies with uncertainty analysis discussions and will be a specific application of the guidance provided in NCRP Report Nos. 158, 163, 164, and 171. The main role of the

  5. A phantom-based JAFROC observer study of two CT reconstruction methods: the search for optimisation of lesion detection and effective dose

    NASA Astrophysics Data System (ADS)

    Thompson, John D.; Chakraborty, Dev P.; Szczepura, Katy; Vamvakas, Ioannis; Tootell, Andrew; Manning, David J.; Hogg, Peter

    2015-03-01

    Purpose: To investigate the dose saving potential of iterative reconstruction (IR) in a computed tomography (CT) examination of the thorax. Materials and Methods: An anthropomorphic chest phantom containing various configurations of simulated lesions (5, 8, 10 and 12mm; +100, -630 and -800 Hounsfield Units, HU) was imaged on a modern CT system over a tube current range (20, 40, 60 and 80mA). Images were reconstructed with (IR) and filtered back projection (FBP). An ATOM 701D (CIRS, Norfolk, VA) dosimetry phantom was used to measure organ dose. Effective dose was calculated. Eleven observers (15.11+/-8.75 years of experience) completed a free response study, localizing lesions in 544 single CT image slices. A modified jackknife alternative free-response receiver operating characteristic (JAFROC) analysis was completed to look for a significant effect of two factors: reconstruction method and tube current. Alpha was set at 0.05 to control the Type I error in this study. Results: For modified JAFROC analysis of reconstruction method there was no statistically significant difference in lesion detection performance between FBP and IR when figures-of-merit were averaged over tube current (F(1,10)=0.08, p = 0.789). For tube current analysis, significant differences were revealed between multiple pairs of tube current settings (F(3,10) = 16.96, p<0.001) when averaged over image reconstruction method. Conclusion: The free-response study suggests that lesion detection can be optimized at 40mA in this phantom model, a measured effective dose of 0.97mSv. In high-contrast regions the diagnostic value of IR, compared to FBP, is less clear.

  6. Hanford Site Environmental Report 1993

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Dirkes, R.L.; Hanf, R.W.; Woodruff, R.K.

    The Hanford Site Environmental Report is prepared annually to summarize environmental data and information, describe environmental management performance, and demonstrate the status of compliance with environmental regulations. The report also highlights major environmental programs and efforts. The report is written to meet reporting requirements and Guidelines of the U.S. Department of Energy (DOE) an to meet the needs of the public. This summary has been written with a minimum of technical terminology. Individual sections of the report are designed to (a) describe the Hanford Site and its mission, (b) summarize the status in 1993 of compliance with environmental regulations, (c)more » describe the environmental programs at the Hanford Site, (d) discuss estimated radionuclide exposure to the public from 1993 Hanford activities, (e) present information on effluent monitoring and environmental surveillance, including ground-water protection and monitoring, (f) discuss activities to ensure quality. More detailed information can be found in the body of the report, the appendixes, and the cited references.« less

  7. SU-E-I-82: Improving CT Image Quality for Radiation Therapy Using Iterative Reconstruction Algorithms and Slightly Increasing Imaging Doses

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Noid, G; Chen, G; Tai, A

    2014-06-01

    Purpose: Iterative reconstruction (IR) algorithms are developed to improve CT image quality (IQ) by reducing noise without diminishing spatial resolution or contrast. For CT in radiation therapy (RT), slightly increasing imaging dose to improve IQ may be justified if it can substantially enhance structure delineation. The purpose of this study is to investigate and to quantify the IQ enhancement as a result of increasing imaging doses and using IR algorithms. Methods: CT images were acquired for phantoms, built to evaluate IQ metrics including spatial resolution, contrast and noise, with a variety of imaging protocols using a CT scanner (Definition ASmore » Open, Siemens) installed inside a Linac room. Representative patients were scanned once the protocols were optimized. Both phantom and patient scans were reconstructed using the Sinogram Affirmed Iterative Reconstruction (SAFIRE) and the Filtered Back Projection (FBP) methods. IQ metrics of the obtained CTs were compared. Results: IR techniques are demonstrated to preserve spatial resolution as measured by the point spread function and reduce noise in comparison to traditional FBP. Driven by the reduction in noise, the contrast to noise ratio is doubled by adopting the highest SAFIRE strength. As expected, increasing imaging dose reduces noise for both SAFIRE and FBP reconstructions. The contrast to noise increases from 3 to 5 by increasing the dose by a factor of 4. Similar IQ improvement was observed on the CTs for selected patients with pancreas and prostrate cancers. Conclusion: The IR techniques produce a measurable enhancement to CT IQ by reducing the noise. Increasing imaging dose further reduces noise independent of the IR techniques. The improved CT enables more accurate delineation of tumors and/or organs at risk during RT planning and delivery guidance.« less

  8. Radiation dose reduction in CT with adaptive statistical iterative reconstruction (ASIR) for patients with bronchial carcinoma and intrapulmonary metastases.

    PubMed

    Schäfer, M-L; Lüdemann, L; Böning, G; Kahn, J; Fuchs, S; Hamm, B; Streitparth, F

    2016-05-01

    To compare the radiation dose and image quality of 64-row chest computed tomography (CT) in patients with bronchial carcinoma or intrapulmonary metastases using full-dose CT reconstructed with filtered back projection (FBP) at baseline and reduced dose with 40% adaptive statistical iterative reconstruction (ASIR) at follow-up. The chest CT images of patients who underwent FBP and ASIR studies were reviewed. Dose-length products (DLP), effective dose, and size-specific dose estimates (SSDEs) were obtained. Image quality was analysed quantitatively by signal-to-noise ratio (SNR) and contrast-to-noise ratio (CNR) measurement. In addition, image quality was assessed by two blinded radiologists evaluating images for noise, contrast, artefacts, visibility of small structures, and diagnostic acceptability using a five-point scale. The ASIR studies showed 36% reduction in effective dose compared with the FBP studies. The qualitative and quantitative image quality was good to excellent in both protocols, without significant differences. There were also no significant differences for SNR except for the SNR of lung surrounding the tumour (FBP: 35±17, ASIR: 39±22). A protocol with 40% ASIR can provide approximately 36% dose reduction in chest CT of patients with bronchial carcinoma or intrapulmonary metastases while maintaining excellent image quality. Copyright © 2016 The Royal College of Radiologists. Published by Elsevier Ltd. All rights reserved.

  9. Accelerating an Ordered-Subset Low-Dose X-Ray Cone Beam Computed Tomography Image Reconstruction with a Power Factor and Total Variation Minimization.

    PubMed

    Huang, Hsuan-Ming; Hsiao, Ing-Tsung

    2016-01-01

    In recent years, there has been increased interest in low-dose X-ray cone beam computed tomography (CBCT) in many fields, including dentistry, guided radiotherapy and small animal imaging. Despite reducing the radiation dose, low-dose CBCT has not gained widespread acceptance in routine clinical practice. In addition to performing more evaluation studies, developing a fast and high-quality reconstruction algorithm is required. In this work, we propose an iterative reconstruction method that accelerates ordered-subsets (OS) reconstruction using a power factor. Furthermore, we combine it with the total-variation (TV) minimization method. Both simulation and phantom studies were conducted to evaluate the performance of the proposed method. Results show that the proposed method can accelerate conventional OS methods, greatly increase the convergence speed in early iterations. Moreover, applying the TV minimization to the power acceleration scheme can further improve the image quality while preserving the fast convergence rate.

  10. Accelerating an Ordered-Subset Low-Dose X-Ray Cone Beam Computed Tomography Image Reconstruction with a Power Factor and Total Variation Minimization

    PubMed Central

    Huang, Hsuan-Ming; Hsiao, Ing-Tsung

    2016-01-01

    In recent years, there has been increased interest in low-dose X-ray cone beam computed tomography (CBCT) in many fields, including dentistry, guided radiotherapy and small animal imaging. Despite reducing the radiation dose, low-dose CBCT has not gained widespread acceptance in routine clinical practice. In addition to performing more evaluation studies, developing a fast and high-quality reconstruction algorithm is required. In this work, we propose an iterative reconstruction method that accelerates ordered-subsets (OS) reconstruction using a power factor. Furthermore, we combine it with the total-variation (TV) minimization method. Both simulation and phantom studies were conducted to evaluate the performance of the proposed method. Results show that the proposed method can accelerate conventional OS methods, greatly increase the convergence speed in early iterations. Moreover, applying the TV minimization to the power acceleration scheme can further improve the image quality while preserving the fast convergence rate. PMID:27073853

  11. Low-dose CT reconstruction via L1 dictionary learning regularization using iteratively reweighted least-squares.

    PubMed

    Zhang, Cheng; Zhang, Tao; Li, Ming; Peng, Chengtao; Liu, Zhaobang; Zheng, Jian

    2016-06-18

    In order to reduce the radiation dose of CT (computed tomography), compressed sensing theory has been a hot topic since it provides the possibility of a high quality recovery from the sparse sampling data. Recently, the algorithm based on DL (dictionary learning) was developed to deal with the sparse CT reconstruction problem. However, the existing DL algorithm focuses on the minimization problem with the L2-norm regularization term, which leads to reconstruction quality deteriorating while the sampling rate declines further. Therefore, it is essential to improve the DL method to meet the demand of more dose reduction. In this paper, we replaced the L2-norm regularization term with the L1-norm one. It is expected that the proposed L1-DL method could alleviate the over-smoothing effect of the L2-minimization and reserve more image details. The proposed algorithm solves the L1-minimization problem by a weighting strategy, solving the new weighted L2-minimization problem based on IRLS (iteratively reweighted least squares). Through the numerical simulation, the proposed algorithm is compared with the existing DL method (adaptive dictionary based statistical iterative reconstruction, ADSIR) and other two typical compressed sensing algorithms. It is revealed that the proposed algorithm is more accurate than the other algorithms especially when further reducing the sampling rate or increasing the noise. The proposed L1-DL algorithm can utilize more prior information of image sparsity than ADSIR. By transforming the L2-norm regularization term of ADSIR with the L1-norm one and solving the L1-minimization problem by IRLS strategy, L1-DL could reconstruct the image more exactly.

  12. Acquisition, preprocessing, and reconstruction of ultralow dose volumetric CT scout for organ-based CT scan planning

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Yin, Zhye, E-mail: yin@ge.com; De Man, Bruno; Yao, Yangyang

    Purpose: Traditionally, 2D radiographic preparatory scan images (scout scans) are used to plan diagnostic CT scans. However, a 3D CT volume with a full 3D organ segmentation map could provide superior information for customized scan planning and other purposes. A practical challenge is to design the volumetric scout acquisition and processing steps to provide good image quality (at least good enough to enable 3D organ segmentation) while delivering a radiation dose similar to that of the conventional 2D scout. Methods: The authors explored various acquisition methods, scan parameters, postprocessing methods, and reconstruction methods through simulation and cadaver data studies tomore » achieve an ultralow dose 3D scout while simultaneously reducing the noise and maintaining the edge strength around the target organ. Results: In a simulation study, the 3D scout with the proposed acquisition, preprocessing, and reconstruction strategy provided a similar level of organ segmentation capability as a traditional 240 mAs diagnostic scan, based on noise and normalized edge strength metrics. At the same time, the proposed approach delivers only 1.25% of the dose of a traditional scan. In a cadaver study, the authors’ pictorial-structures based organ localization algorithm successfully located the major abdominal-thoracic organs from the ultralow dose 3D scout obtained with the proposed strategy. Conclusions: The authors demonstrated that images with a similar degree of segmentation capability (interpretability) as conventional dose CT scans can be achieved with an ultralow dose 3D scout acquisition and suitable postprocessing. Furthermore, the authors applied these techniques to real cadaver CT scans with a CTDI dose level of less than 0.1 mGy and successfully generated a 3D organ localization map.« less

  13. SU-F-18C-13: Low-Dose X-Ray CT Reconstruction Using a Hybrid First-Order Method

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Liu, L; Lin, W; Jin, M

    2014-06-15

    Purpose: To develop a novel reconstruction method for X-ray CT that can lead to accurate reconstruction at significantly reduced dose levels combining low X-ray incident intensity and few views of projection data. Methods: The noise nature of the projection data at low X-ray incident intensity was modeled and accounted by the weighted least-squares (WLS) criterion. The total variation (TV) penalty was used to mitigate artifacts caused by few views of data. The first order primal-dual (FOPD) algorithm was used to minimize TV in image domain, which avoided the difficulty of the non-smooth objective function. The TV penalized WLS reconstruction wasmore » achieved by alternated FOPD TV minimization and projection onto convex sets (POCS) for data fidelity constraints. The proposed FOPD-POCS method was evaluated using the FORBILD jaw phantom and the real cadaver head CT data. Results: The quantitative measures, root mean square error (RMSE) and contrast-to-noise ratio (CNR), demonstrate the superior denoising capability of WLS over LS-based TV iterative reconstruction. The improvement of RMSE (WLS vs. LS) is 15%∼21% and that of CNR is 17%∼72% when the incident counts per ray are ranged from 1×10{sup 5} to 1×10{sup 3}. In addition, the TV regularization can accurately reconstruct images from about 50 views of the jaw phantom. The FOPD-POCS reconstruction reveals more structural details and suffers fewer artifacts in both the phantom and real head images. The FOPD-POCS method also shows fast convergence at low X-ray incident intensity. Conclusion: The new hybrid FOPD-POCS method, based on TV penalized WLS, yields excellent image quality when the incident X-ray intensity is low and the projection views are limited. The reconstruction is computationally efficient since the FOPD minimization of TV is applied only in the image domain. The characteristics of FOPD-POCS can be exploited to significantly reduce radiation dose of X-ray CT without compromising accuracy for

  14. Pulmonary Nodule Volumetry at Different Low Computed Tomography Radiation Dose Levels With Hybrid and Model-Based Iterative Reconstruction: A Within Patient Analysis.

    PubMed

    den Harder, Annemarie M; Willemink, Martin J; van Hamersvelt, Robbert W; Vonken, Evertjan P A; Schilham, Arnold M R; Lammers, Jan-Willem J; Luijk, Bart; Budde, Ricardo P J; Leiner, Tim; de Jong, Pim A

    2016-01-01

    The aim of the study was to determine the effects of dose reduction and iterative reconstruction (IR) on pulmonary nodule volumetry. In this prospective study, 25 patients scheduled for follow-up of pulmonary nodules were included. Computed tomography acquisitions were acquired at 4 dose levels with a median of 2.1, 1.2, 0.8, and 0.6 mSv. Data were reconstructed with filtered back projection (FBP), hybrid IR, and model-based IR. Volumetry was performed using semiautomatic software. At the highest dose level, more than 91% (34/37) of the nodules could be segmented, and at the lowest dose level, this was more than 83%. Thirty-three nodules were included for further analysis. Filtered back projection and hybrid IR did not lead to significant differences, whereas model-based IR resulted in lower volume measurements with a maximum difference of -11% compared with FBP at routine dose. Pulmonary nodule volumetry can be accurately performed at a submillisievert dose with both FBP and hybrid IR.

  15. Effect of radiation dose reduction and iterative reconstruction on computer-aided detection of pulmonary nodules: Intra-individual comparison.

    PubMed

    Den Harder, Annemarie M; Willemink, Martin J; van Hamersvelt, Robbert W; Vonken, Evert-Jan P A; Milles, Julien; Schilham, Arnold M R; Lammers, Jan-Willem; de Jong, Pim A; Leiner, Tim; Budde, Ricardo P J

    2016-02-01

    To evaluate the effect of radiation dose reduction and iterative reconstruction (IR) on the performance of computer-aided detection (CAD) for pulmonary nodules. In this prospective study twenty-five patients were included who were scanned for pulmonary nodule follow-up. Image acquisition was performed at routine dose and three reduced dose levels in a single session by decreasing mAs-values with 45%, 60% and 75%. Tube voltage was fixed at 120 kVp for patients ≥ 80 kg and 100 kVp for patients < 80 kg. Data were reconstructed with filtered back projection (FBP), iDose(4) (levels 1,4,6) and IMR (levels 1-3). All noncalcified solid pulmonary nodules ≥ 4 mm identified by two radiologists in consensus served as the reference standard. Subsequently, nodule volume was measured with CAD software and compared to the reference consensus. The numbers of true-positives, false-positives and missed pulmonary nodules were evaluated as well as the sensitivity. Median effective radiation dose was 2.2 mSv at routine dose and 1.2, 0.9 and 0.6 mSv at respectively 45%, 60% and 75% reduced dose. A total of 28 pulmonary nodules were included. With FBP at routine dose, 89% (25/28) of the nodules were correctly identified by CAD. This was similar at reduced dose levels with FBP, iDose(4) and IMR. CAD resulted in a median number of false-positives findings of 11 per scan with FBP at routine dose (93% of the CAD marks) increasing to 15 per scan with iDose(4) (95% of the CAD marks) and 26 per scan (96% of the CAD marks) with IMR at the lowest dose level. CAD can identify pulmonary nodules at submillisievert dose levels with FBP, hybrid and model-based IR. However, the number of false-positive findings increased using hybrid and especially model-based IR at submillisievert dose while dose reduction did not affect the number of false-positives with FBP. Copyright © 2015 Elsevier Ireland Ltd. All rights reserved.

  16. A METHOD TO IMPROVE DOSE ASSESSMENT BY RECONSTRUCTION OF THE COMPLETE ISOTOPES INVENTORY.

    PubMed

    Bonin, Alice; Tsilanizara, Aimé

    2017-06-01

    Radiation shielding assessments may underestimate the expected dose if some isotopes at trace level are not considered in the isotopes inventory of the shielded radioactive materials. Indeed, information about traces is not often available. Nevertheless, the activation of some minor isotopic traces may significantly contribute to the dose build-up. This paper presents a new method (Isotopes Inventory Reconstruction-IIR) estimating the concentration of the minor isotopes in the irradiated material at the beginning of the cooling period. The method requires the solution of the inverse problem describing the irradiated material's decay. In a mixture of an irradiated uranium-plutonium oxide shielded by a set-up made of stainless-steel, porous polyethylene plaster and lead methyl methacrylate, the comparison between different methods proves that the IIR-method allows better assessment of the dose than other approximate methods. © The Author 2016. Published by Oxford University Press. All rights reserved. For Permissions, please email: journals.permissions@oup.com.

  17. Development of an iterative reconstruction method to overcome 2D detector low resolution limitations in MLC leaf position error detection for 3D dose verification in IMRT.

    PubMed

    Visser, R; Godart, J; Wauben, D J L; Langendijk, J A; Van't Veld, A A; Korevaar, E W

    2016-05-21

    The objective of this study was to introduce a new iterative method to reconstruct multi leaf collimator (MLC) positions based on low resolution ionization detector array measurements and to evaluate its error detection performance. The iterative reconstruction method consists of a fluence model, a detector model and an optimizer. Expected detector response was calculated using a radiotherapy treatment plan in combination with the fluence model and detector model. MLC leaf positions were reconstructed by minimizing differences between expected and measured detector response. The iterative reconstruction method was evaluated for an Elekta SLi with 10.0 mm MLC leafs in combination with the COMPASS system and the MatriXX Evolution (IBA Dosimetry) detector with a spacing of 7.62 mm. The detector was positioned in such a way that each leaf pair of the MLC was aligned with one row of ionization chambers. Known leaf displacements were introduced in various field geometries ranging from  -10.0 mm to 10.0 mm. Error detection performance was tested for MLC leaf position dependency relative to the detector position, gantry angle dependency, monitor unit dependency, and for ten clinical intensity modulated radiotherapy (IMRT) treatment beams. For one clinical head and neck IMRT treatment beam, influence of the iterative reconstruction method on existing 3D dose reconstruction artifacts was evaluated. The described iterative reconstruction method was capable of individual MLC leaf position reconstruction with millimeter accuracy, independent of the relative detector position within the range of clinically applied MU's for IMRT. Dose reconstruction artifacts in a clinical IMRT treatment beam were considerably reduced as compared to the current dose verification procedure. The iterative reconstruction method allows high accuracy 3D dose verification by including actual MLC leaf positions reconstructed from low resolution 2D measurements.

  18. Transient Inverse Calibration of Hanford Site-Wide Groundwater Model to Hanford Operational Impacts - 1943 to 1996

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Cole, Charles R.; Bergeron, Marcel P.; Wurstner, Signe K.

    2001-05-31

    This report describes a new initiative to strengthen the technical defensibility of predictions made with the Hanford site-wide groundwater flow and transport model. The focus is on characterizing major uncertainties in the current model. PNNL will develop and implement a calibration approach and methodology that can be used to evaluate alternative conceptual models of the Hanford aquifer system. The calibration process will involve a three-dimensional transient inverse calibration of each numerical model to historical observations of hydraulic and water quality impacts to the unconfined aquifer system from Hanford operations since the mid-1940s.

  19. Feasibility of a low-dose orbital CT protocol with a knowledge-based iterative model reconstruction algorithm for evaluating Graves' orbitopathy.

    PubMed

    Lee, Ho-Joon; Kim, Jinna; Kim, Ki Wook; Lee, Seung-Koo; Yoon, Jin Sook

    2018-06-23

    To evaluate the clinical feasibility of low-dose orbital CT with a knowledge-based iterative model reconstruction (IMR) algorithm for evaluating Graves' orbitopathy. Low-dose orbital CT was performed with a CTDI vol of 4.4 mGy. In 12 patients for whom prior or subsequent non-low-dose orbital CT data obtained within 12 months were available, background noise, SNR, and CNR were compared for images generated using filtered back projection (FBP), hybrid iterative reconstruction (iDose 4 ), and IMR and non-low-dose CT images. Comparison of clinically relevant measurements for Graves' orbitopathy, such as rectus muscle thickness and retrobulbar fat area, was performed in a subset of 6 patients who underwent CT for causes other than Graves' orbitopathy, by using the Wilcoxon signed-rank test. The lens dose estimated from skin dosimetry on a phantom was 4.13 mGy, which was on average 59.34% lower than that of the non-low-dose protocols. Image quality in terms of background noise, SNR, and CNR was the best for IMR, followed by non-low-dose CT, iDose 4 , and FBP, in descending order. A comparison of clinically relevant measurements revealed no significant difference in the retrobulbar fat area and the inferior and medial rectus muscle thicknesses between the low-dose and non-low-dose CT images. Low-dose CT with IMR may be performed without significantly affecting the measurement of prognostic parameters for Graves' orbitopathy while lowering the lens dose and image noise. Copyright © 2018 Elsevier Inc. All rights reserved.

  20. Assessment of the dose reduction potential of a model-based iterative reconstruction algorithm using a task-based performance metrology

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Samei, Ehsan, E-mail: samei@duke.edu; Richard, Samuel

    2015-01-15

    Purpose: Different computed tomography (CT) reconstruction techniques offer different image quality attributes of resolution and noise, challenging the ability to compare their dose reduction potential against each other. The purpose of this study was to evaluate and compare the task-based imaging performance of CT systems to enable the assessment of the dose performance of a model-based iterative reconstruction (MBIR) to that of an adaptive statistical iterative reconstruction (ASIR) and a filtered back projection (FBP) technique. Methods: The ACR CT phantom (model 464) was imaged across a wide range of mA setting on a 64-slice CT scanner (GE Discovery CT750 HD,more » Waukesha, WI). Based on previous work, the resolution was evaluated in terms of a task-based modulation transfer function (MTF) using a circular-edge technique and images from the contrast inserts located in the ACR phantom. Noise performance was assessed in terms of the noise-power spectrum (NPS) measured from the uniform section of the phantom. The task-based MTF and NPS were combined with a task function to yield a task-based estimate of imaging performance, the detectability index (d′). The detectability index was computed as a function of dose for two imaging tasks corresponding to the detection of a relatively small and a relatively large feature (1.5 and 25 mm, respectively). The performance of MBIR in terms of the d′ was compared with that of ASIR and FBP to assess its dose reduction potential. Results: Results indicated that MBIR exhibits a variability spatial resolution with respect to object contrast and noise while significantly reducing image noise. The NPS measurements for MBIR indicated a noise texture with a low-pass quality compared to the typical midpass noise found in FBP-based CT images. At comparable dose, the d′ for MBIR was higher than those of FBP and ASIR by at least 61% and 19% for the small feature and the large feature tasks, respectively. Compared to FBP and ASIR

  1. 42 CFR 82.27 - How can claimants obtain reviews of their NIOSH dose reconstruction results by NIOSH?

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ..., DEPARTMENT OF HEALTH AND HUMAN SERVICES OCCUPATIONAL SAFETY AND HEALTH RESEARCH AND RELATED ACTIVITIES METHODS FOR CONDUCTING DOSE RECONSTRUCTION UNDER THE ENERGY EMPLOYEES OCCUPATIONAL ILLNESS COMPENSATION..., the methods employed in the review, and the review findings to the claimant, DOL, and DOE. ...

  2. Chernobyl accident: reconstruction of thyroid dose for inhabitants of the Republic of Belarus.

    PubMed

    Gavrilin, Y I; Khrouch, V T; Shinkarev, S M; Krysenko, N A; Skryabin, A M; Bouville, A; Anspaugh, L R

    1999-02-01

    The Chernobyl accident in April 1986 resulted in widespread contamination of the environment with radioactive materials, including (131)I and other radioiodines. This environmental contamination led to substantial radiation doses in the thyroids of many inhabitants of the Republic of Belarus. The reconstruction of thyroid doses received by Belarussians is based primarily on exposure rates measured against the neck of more than 200,000 people in the more contaminated territories; these measurements were carried out within a few weeks after the accident and before the decay of (131)I to negligible levels. Preliminary estimates of thyroid dose have been divided into 3 classes: Class 1 ("measured" doses), Class 2 (doses "derived by affinity"), and Class 3 ("empirically-derived" doses). Class 1 doses are estimated directly from the measured thyroidal (131)I content of the person considered, plus information on lifestyle and dietary habits. Such estimates are available for about 130,000 individuals from the contaminated areas of the Gomel and Mogilev Oblasts and from the city of Minsk. Maximum individual doses are estimated to range up to about 60 Gy. For every village with a sufficient number of residents with Class 1 doses, individual thyroid dose distributions are determined for several age groups and levels of milk consumption. These data are used to derive Class 2 thyroid dose estimates for unmeasured inhabitants of these villages. For any village where the number of residents with Class 1 thyroid doses is small or equal to zero, individual thyroid doses of Class 3 are derived from the relationship obtained between the mean adult thyroid dose and the deposition density of (131)I or 137Cs in villages with Class 2 thyroid doses presenting characteristics similar to those of the village considered. In order to improve the reliability of the Class 3 thyroid doses, an extensive program of measurement of (129)I in soils is envisaged.

  3. Reducing Radiation Dose in Adult Head CT using Iterative Reconstruction - A Clinical Study in 177 Patients.

    PubMed

    Kaul, D; Kahn, J; Huizing, L; Wiener, E; Grupp, U; Böning, G; Ghadjar, P; Renz, D M; Streitparth, F

    2016-02-01

    To assess how ASIR (adaptive statistical iterative reconstruction) contributes to dose reduction and affects image quality of non-contrast cranial computed tomography (cCT). Non-contrast emergency CT scans of the head acquired in 177 patients were evaluated. The scans were acquired and processed using four different protocols: Group A (control): 120 kV, FBP (filtered back projection) n = 71; group B1: 120 kV, scan and reconstruction performed with 20 % ASIR (blending of 20 % ASIR and 80 % FBP), n = 86; group B2: raw data from group B1 reconstructed using a blending of 40 % ASIR and 60 % FBP, n = 74; group C1: 120 kV, scan and reconstruction performed with 30 % ASIR, n = 20; group C2: raw data from group C1 reconstructed using a blending of 50 % ASIR and 50 % FBP, n = 20. The effective dose was calculated. Image quality was assessed quantitatively and qualitatively. Compared to group A, groups B1/2 and C1/2 showed a significantly reduced effective dose of 40.4 % and 73.3 % (p < 0.0001), respectively. Group B1 and group C1/2 also showed significantly reduced quantitative and qualitative image quality parameters. In group B2, quantitative measures were comparable to group A, and qualitative scores were lower compared to group A but higher compared to group B1. Diagnostic confidence grading showed groups B1/2 to be adequate for everyday clinical practice. Group C2 was considered acceptable for follow-up imaging of severe acute events such as bleeding or subacute stroke. Use of ASIR makes it possible to reduce radiation significantly while maintaining adequate image quality in non-contrast head CT, which may be particularly useful for younger patients in an emergency setting and in follow-up. ASIR may reduce radiation significantly while maintaining adequate image quality. cCT protocol with 20 % ASIR and 40 %ASIR/60 %FBP blending is adequate for everyday clinical use. cCT protocol with 30 % ASIR and 50

  4. Hanford science and technology needs statements document

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Piper, L.L.

    This document is a compilation of the Hanford science and technology needs statements for FY 1998. The needs were developed by the Hanford Site Technology Coordination Group (STCG) with full participation and endorsement of site user organizations, stakeholders, and regulators. The purpose of this document is to: (a) provide a comprehensive listing of Hanford science and technology needs, and (b) identify partnering and commercialization opportunities with industry, other federal and state agencies, and the academic community. The Hanford STCG reviews and updates the needs annually. Once completed, the needs are communicated to DOE for use in the development and prioritizationmore » of their science and technology programs, including the Focus Areas, Cross-Cutting Programs, and the Environmental Management Science Program. The needs are also transmitted to DOE through the Accelerating Cleanup: 2006 Plan. The public may access the need statements on the Internet on: the Hanford Home Page (www.hanford.gov), the Pacific Rim Enterprise Center`s web site (www2.pacific-rim.org/pacific rim), or the STCG web site at DOE headquarters (em-52.em.doegov/ifd/stcg/stcg.htm). This page includes links to science and technology needs for many DOE sites. Private industry is encouraged to review the need statements and contact the Hanford STCG if they can provide technologies that meet these needs. On-site points of contact are included at the ends of each need statement. The Pacific Rim Enterprise Center (206-224-9934) can also provide assistance to businesses interested in marketing technologies to the DOE.« less

  5. Review of reconstruction of radiation incident air kerma by measurement of absorbed dose in tooth enamel with EPR.

    PubMed

    Wieser, A

    2012-03-01

    Electron paramagnetic resonance dosimetry with tooth enamel has been proved to be a reliable method to determine retrospectively exposures from photon fields with minimal detectable doses of 100 mGy or lower, which is lower than achievable with cytogenetic dose reconstruction methods. For risk assessment or validating dosimetry systems for specific radiation incidents, the relevant dose from the incident has to be calculated from the total absorbed dose in enamel by subtracting additional dose contributions from the radionuclide content in teeth, natural external background radiation and medical exposures. For calculating organ doses or evaluating dosimetry systems the absorbed dose in enamel from a radiation incident has to be converted to air kerma using dose conversion factors depending on the photon energy spectrum and geometry of the exposure scenario. This paper outlines the approach to assess individual dose contributions to absorbed dose in enamel and calculate individual air kerma of a radiation incident from the absorbed dose in tooth enamel.

  6. Adaptive statistical iterative reconstruction use for radiation dose reduction in pediatric lower-extremity CT: impact on diagnostic image quality.

    PubMed

    Shah, Amisha; Rees, Mitchell; Kar, Erica; Bolton, Kimberly; Lee, Vincent; Panigrahy, Ashok

    2018-06-01

    For the past several years, increased levels of imaging radiation and cumulative radiation to children has been a significant concern. Although several measures have been taken to reduce radiation dose during computed tomography (CT) scan, the newer dose reduction software adaptive statistical iterative reconstruction (ASIR) has been an effective technique in reducing radiation dose. To our knowledge, no studies are published that assess the effect of ASIR on extremity CT scans in children. To compare radiation dose, image noise, and subjective image quality in pediatric lower extremity CT scans acquired with and without ASIR. The study group consisted of 53 patients imaged on a CT scanner equipped with ASIR software. The control group consisted of 37 patients whose CT images were acquired without ASIR. Image noise, Computed Tomography Dose Index (CTDI) and dose length product (DLP) were measured. Two pediatric radiologists rated the studies in subjective categories: image sharpness, noise, diagnostic acceptability, and artifacts. The CTDI (p value = 0.0184) and DLP (p value <0.0002) were significantly decreased with the use of ASIR compared with non-ASIR studies. However, the subjective ratings for sharpness (p < 0.0001) and diagnostic acceptability of the ASIR images (p < 0.0128) were decreased compared with standard, non-ASIR CT studies. Adaptive statistical iterative reconstruction reduces radiation dose for lower extremity CTs in children, but at the expense of diagnostic imaging quality. Further studies are warranted to determine the specific utility of ASIR for pediatric musculoskeletal CT imaging.

  7. Usefulness of model-based iterative reconstruction in semi-automatic volumetry for ground-glass nodules at ultra-low-dose CT: a phantom study.

    PubMed

    Maruyama, Shuki; Fukushima, Yasuhiro; Miyamae, Yuta; Koizumi, Koji

    2018-06-01

    This study aimed to investigate the effects of parameter presets of the forward projected model-based iterative reconstruction solution (FIRST) on the accuracy of pulmonary nodule volume measurement. A torso phantom with simulated nodules [diameter: 5, 8, 10, and 12 mm; computed tomography (CT) density: - 630 HU] was scanned with a multi-detector CT at tube currents of 10 mA (ultra-low-dose: UL-dose) and 270 mA (standard-dose: Std-dose). Images were reconstructed with filtered back projection [FBP; standard (Std-FBP), ultra-low-dose (UL-FBP)], FIRST Lung (UL-Lung), and FIRST Body (UL-Body), and analyzed with a semi-automatic software. The error in the volume measurement was determined. The errors with UL-Lung and UL-Body were smaller than that with UL-FBP. The smallest error was 5.8% ± 0.3 for the 12-mm nodule with UL-Body (middle lung). Our results indicated that FIRST Body would be superior to FIRST Lung in terms of accuracy of nodule measurement with UL-dose CT.

  8. Low-dose X-ray computed tomography image reconstruction with a combined low-mAs and sparse-view protocol.

    PubMed

    Gao, Yang; Bian, Zhaoying; Huang, Jing; Zhang, Yunwan; Niu, Shanzhou; Feng, Qianjin; Chen, Wufan; Liang, Zhengrong; Ma, Jianhua

    2014-06-16

    To realize low-dose imaging in X-ray computed tomography (CT) examination, lowering milliampere-seconds (low-mAs) or reducing the required number of projection views (sparse-view) per rotation around the body has been widely studied as an easy and effective approach. In this study, we are focusing on low-dose CT image reconstruction from the sinograms acquired with a combined low-mAs and sparse-view protocol and propose a two-step image reconstruction strategy. Specifically, to suppress significant statistical noise in the noisy and insufficient sinograms, an adaptive sinogram restoration (ASR) method is first proposed with consideration of the statistical property of sinogram data, and then to further acquire a high-quality image, a total variation based projection onto convex sets (TV-POCS) method is adopted with a slight modification. For simplicity, the present reconstruction strategy was termed as "ASR-TV-POCS." To evaluate the present ASR-TV-POCS method, both qualitative and quantitative studies were performed on a physical phantom. Experimental results have demonstrated that the present ASR-TV-POCS method can achieve promising gains over other existing methods in terms of the noise reduction, contrast-to-noise ratio, and edge detail preservation.

  9. Assessment of single-shell tank residual-liquid issues at Hanford Site, Washington

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Murthy, K.S.; Stout, L.A.; Napier, B.A.

    1983-06-01

    This report provides an assessment of the overall effectiveness and implications of jet pumping the interstitial liquids (IL) from single-shell tanks at Hanford. The jet-pumping program, currently in progress at Hanford, involves the planned removal of IL contained in 89 of the 149 single-shell tanks and its transfer to double-shell tanks after volume reduction by evaporation. The purpose of this report is to estimate the public and worker doses associated with (1) terminating pumping immediately, (2) pumping to a 100,000-gal limit per tank, (3) pumping to a 50,000-gal limit per tank, and (4) pumping to the maximum practical liquid removalmore » level of 30,000 gal. Assessment of the cost-effectiveness of these various levels of pumping in minimizing any undue health and safety risks to the public or worker is also presented.« less

  10. HANFORD SITE RIVER CORRIDOR CLEANUP

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    BAZZELL, K.D.

    2006-02-01

    In 2005, the US Department of Energy (DOE) launched the third generation of closure contracts, including the River Corridor Closure (RCC) Contract at Hanford. Over the past decade, significant progress has been made on cleaning up the river shore that bordes Hanford. However, the most important cleanup challenges lie ahead. In March 2005, DOE awarded the Hanford River Corridor Closure Contract to Washington Closure Hanford (WCH), a limited liability company owned by Washington Group International, Bechtel National and CH2M HILL. It is a single-purpose company whose goal is to safely and efficiently accelerate cleanup in the 544 km{sup 2} Hanfordmore » river corridor and reduce or eliminate future obligations to DOE for maintaining long-term stewardship over the site. The RCC Contract is a cost-plus-incentive-fee closure contract, which incentivizes the contractor to reduce cost and accelerate the schedule. At $1.9 billion and seven years, WCH has accelerated cleaning up Hanford's river corridor significantly compared to the $3.2 billion and 10 years originally estimated by the US Army Corps of Engineers. Predictable funding is one of the key features of the new contract, with funding set by contract at $183 million in fiscal year (FY) 2006 and peaking at $387 million in FY2012. Another feature of the contract allows for Washington Closure to perform up to 40% of the value of the contract and subcontract the balance. One of the major challenges in the next few years will be to identify and qualify sufficient subcontractors to meet the goal.« less

  11. A simple method for low-contrast detectability, image quality and dose optimisation with CT iterative reconstruction algorithms and model observers.

    PubMed

    Bellesi, Luca; Wyttenbach, Rolf; Gaudino, Diego; Colleoni, Paolo; Pupillo, Francesco; Carrara, Mauro; Braghetti, Antonio; Puligheddu, Carla; Presilla, Stefano

    2017-01-01

    The aim of this work was to evaluate detection of low-contrast objects and image quality in computed tomography (CT) phantom images acquired at different tube loadings (i.e. mAs) and reconstructed with different algorithms, in order to find appropriate settings to reduce the dose to the patient without any image detriment. Images of supraslice low-contrast objects of a CT phantom were acquired using different mAs values. Images were reconstructed using filtered back projection (FBP), hybrid and iterative model-based methods. Image quality parameters were evaluated in terms of modulation transfer function; noise, and uniformity using two software resources. For the definition of low-contrast detectability, studies based on both human (i.e. four-alternative forced-choice test) and model observers were performed across the various images. Compared to FBP, image quality parameters were improved by using iterative reconstruction (IR) algorithms. In particular, IR model-based methods provided a 60% noise reduction and a 70% dose reduction, preserving image quality and low-contrast detectability for human radiological evaluation. According to the model observer, the diameters of the minimum detectable detail were around 2 mm (up to 100 mAs). Below 100 mAs, the model observer was unable to provide a result. IR methods improve CT protocol quality, providing a potential dose reduction while maintaining a good image detectability. Model observer can in principle be useful to assist human performance in CT low-contrast detection tasks and in dose optimisation.

  12. SU-D-12A-06: A Comprehensive Parameter Analysis for Low Dose Cone-Beam CT Reconstruction

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lu, W; Southern Medical University, Guangzhou; Yan, H

    Purpose: There is always a parameter in compressive sensing based iterative reconstruction (IR) methods low dose cone-beam CT (CBCT), which controls the weight of regularization relative to data fidelity. A clear understanding of the relationship between image quality and parameter values is important. The purpose of this study is to investigate this subject based on experimental data and a representative advanced IR algorithm using Tight-frame (TF) regularization. Methods: Three data sets of a Catphan phantom acquired at low, regular and high dose levels are used. For each tests, 90 projections covering a 200-degree scan range are used for reconstruction. Threemore » different regions-of-interest (ROIs) of different contrasts are used to calculate contrast-to-noise ratios (CNR) for contrast evaluation. A single point structure is used to measure modulation transfer function (MTF) for spatial-resolution evaluation. Finally, we analyze CNRs and MTFs to study the relationship between image quality and parameter selections. Results: It was found that: 1) there is no universal optimal parameter. The optimal parameter value depends on specific task and dose level. 2) There is a clear trade-off between CNR and resolution. The parameter for the best CNR is always smaller than that for the best resolution. 3) Optimal parameters are also dose-specific. Data acquired under a high dose protocol require less regularization, yielding smaller optimal parameter values. 4) Comparing with conventional FDK images, TF-based CBCT images are better under a certain optimally selected parameters. The advantages are more obvious for low dose data. Conclusion: We have investigated the relationship between image quality and parameter values in the TF-based IR algorithm. Preliminary results indicate optimal parameters are specific to both the task types and dose levels, providing guidance for selecting parameters in advanced IR algorithms. This work is supported in part by NIH (1R01CA

  13. Ultra-low dose quantitative CT myocardial perfusion imaging with sparse-view dynamic acquisition and image reconstruction: A feasibility study.

    PubMed

    Enjilela, Esmaeil; Lee, Ting-Yim; Hsieh, Jiang; Wisenberg, Gerald; Teefy, Patrick; Yadegari, Andrew; Bagur, Rodrigo; Islam, Ali; Branch, Kelley; So, Aaron

    2018-03-01

    We implemented and validated a compressed sensing (CS) based algorithm for reconstructing dynamic contrast-enhanced (DCE) CT images of the heart from sparsely sampled X-ray projections. DCE CT imaging of the heart was performed on five normal and ischemic pigs after contrast injection. DCE images were reconstructed with filtered backprojection (FBP) and CS from all projections (984-view) and 1/3 of all projections (328-view), and with CS from 1/4 of all projections (246-view). Myocardial perfusion (MP) measurements with each protocol were compared to those with the reference 984-view FBP protocol. Both the 984-view CS and 328-view CS protocols were in good agreements with the reference protocol. The Pearson correlation coefficients of 984-view CS and 328-view CS determined from linear regression analyses were 0.98 and 0.99 respectively. The corresponding mean biases of MP measurement determined from Bland-Altman analyses were 2.7 and 1.2ml/min/100g. When only 328 projections were used for image reconstruction, CS was more accurate than FBP for MP measurement with respect to 984-view FBP. However, CS failed to generate MP maps comparable to those with 984-view FBP when only 246 projections were used for image reconstruction. DCE heart images reconstructed from one-third of a full projection set with CS were minimally affected by aliasing artifacts, leading to accurate MP measurements with the effective dose reduced to just 33% of conventional full-view FBP method. The proposed CS sparse-view image reconstruction method could facilitate the implementation of sparse-view dynamic acquisition for ultra-low dose CT MP imaging. Copyright © 2017 Elsevier B.V. All rights reserved.

  14. HANFORD FACILITY ANNUAL DANGEROUS WASTE REPORT CY2005

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    SKOLRUD, J.O.

    2006-02-15

    The Hanford Facility Annual Dangerous Waste Report (ADWR) is prepared to meet the requirements of Washington Administrative Code Sections 173-303-220, Generator Reporting, and 173-303-390, Facility Reporting. In addition, the ADWR is required to meet Hanford Facility RCR4 Permit Condition I.E.22, Annual Reporting. The ADWR provides summary information on dangerous waste generation and management activities for the Calendar Year for the Hanford Facility EPA ID number assigned to the Department of Energy for RCRA regulated waste, as well as Washington State only designated waste and radioactive mixed waste. An electronic database is utilized to collect and compile the large array ofmore » data needed for preparation of this report. Information includes details of waste generated on the Hanford Facility, waste generated offsite and sent to Hanford for management, and other waste management activities conducted at Hanford, including treatment, storage, and disposal. Report details consist of waste descriptions and weights, waste codes and designations, and waste handling codes, In addition, for waste shipped to Hanford for treatment and/or disposal, information on manifest numbers, the waste transporter, the waste receiving facility, and the original waste generators are included. In addition to paper copies, the report is also transmitted electronically to a web site maintained by the Washington State Department of Ecology.« less

  15. Evaluation of Hanford Tank Supernatant Availability for Technetium Management Project Studies in FY16

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Rapko, Brian M.

    2015-09-30

    This report examines the need for actual Hanford tank waste solutions to support tasks in the Technetium Management Program in fiscal year (FY) 2016. One key need is to identify both samples where a majority of the soluble technetium is present as pertechnetate and samples where it is not. The total amount of tank supernatant needed from any given tank waste supernatant was determined by polling the tasks leaders for their technology testing needs in FY16 and then arbitrarily ascribing a 10% process loss associated with consolidation and the Cs-137 removal needed to reduce the dose to a level suitablemore » for testing in radiological fumehoods. These polling results identified a need for approximately 2.1 to 3.6 kg of any particular targeted Hanford tank waste supernatant.« less

  16. Vascular Plants of the Hanford Site

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sackschewsky, Michael R.; Downs, Janelle L.

    This report provides an updated listing of the vascular plants present on and near the U.S. Department of Energy Hanford Site. This document is an update of a listing of plants prepared by Sackschewdky et al. in 1992. Since that time there has been a significant increase in the botanical knowledge of the Hanford Site. The present listing is based on an examination of herbarium collections held at PNNL, at WSU-Tri Cities, WSU-Pullman, Bringham Young University, and The University of Washington, and on examination of ecological literature derived from the Hanford and Benton county areas over the last 100 years.more » Based on the most recent analysis, there are approximately 725 different plant species that have been documented on or around the Hanford Site. This represents an approximate 20% increase in the number of species reported within Sackschewsky et al. (1992). This listing directly supports DOE and contractor efforts to assess the potential impacts of Hanford Site operations on the biological environment, including impacts to rare habitats and to species listed as endangered or\\ threatened. This document includes a listing of plants currently listed as endangered, threatened, or otherwise of concern to the Washington Natural Heritage Program or the U.S. Fish and Wildlife Service, as well as those that are currently listed as noxious weeds by the State of Washington. Also provided is an overview of how plants on the Hanford Site can be used by people. This information may be useful in developing risk assessment models, and as supporting information for clean-up level and remediation decisions.« less

  17. Low dose CBCT reconstruction via prior contour based total variation (PCTV) regularization: a feasibility study

    NASA Astrophysics Data System (ADS)

    Chen, Yingxuan; Yin, Fang-Fang; Zhang, Yawei; Zhang, You; Ren, Lei

    2018-04-01

    Purpose: compressed sensing reconstruction using total variation (TV) tends to over-smooth the edge information by uniformly penalizing the image gradient. The goal of this study is to develop a novel prior contour based TV (PCTV) method to enhance the edge information in compressed sensing reconstruction for CBCT. Methods: the edge information is extracted from prior planning-CT via edge detection. Prior CT is first registered with on-board CBCT reconstructed with TV method through rigid or deformable registration. The edge contours in prior-CT is then mapped to CBCT and used as the weight map for TV regularization to enhance edge information in CBCT reconstruction. The PCTV method was evaluated using extended-cardiac-torso (XCAT) phantom, physical CatPhan phantom and brain patient data. Results were compared with both TV and edge preserving TV (EPTV) methods which are commonly used for limited projection CBCT reconstruction. Relative error was used to calculate pixel value difference and edge cross correlation was defined as the similarity of edge information between reconstructed images and ground truth in the quantitative evaluation. Results: compared to TV and EPTV, PCTV enhanced the edge information of bone, lung vessels and tumor in XCAT reconstruction and complex bony structures in brain patient CBCT. In XCAT study using 45 half-fan CBCT projections, compared with ground truth, relative errors were 1.5%, 0.7% and 0.3% and edge cross correlations were 0.66, 0.72 and 0.78 for TV, EPTV and PCTV, respectively. PCTV is more robust to the projection number reduction. Edge enhancement was reduced slightly with noisy projections but PCTV was still superior to other methods. PCTV can maintain resolution while reducing the noise in the low mAs CatPhan reconstruction. Low contrast edges were preserved better with PCTV compared with TV and EPTV. Conclusion: PCTV preserved edge information as well as reduced streak artifacts and noise in low dose CBCT reconstruction

  18. Hanford Site Raptor Nest Monitoring Report for Calendar Year 2013

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Nugent, John J.; Lindsey, Cole T.; Wilde, Justin W.

    2014-02-13

    The U.S. Department of Energy, Richland Operations Office (DOE-RL) conducts ecological monitoring on the Hanford Site to collect and track data needed to ensure compliance with an array of environmental laws, regulations, and policies governing DOE activities. Ecological monitoring data provide baseline information about the plants, animals, and habitat under DOE-RL stewardship at Hanford required for decision-making under the National Environmental Policy Act (NEPA) and Comprehensive Environmental Response, Compensation, and Liability Act (CERCLA). The Hanford Site Comprehensive Land Use Plan (CLUP, DOE/EIS-0222-F) which is the Environmental Impact Statement for Hanford Site activities, helps ensure that DOE-RL, its contractors, and othermore » entities conducting activities on the Hanford Site are in compliance with NEPA. The Hanford Site supports a large and diverse community of raptorial birds (Fitzner et al. 1981), with 26 species of raptors observed on the Hanford Site.« less

  19. Hanford Facility Annual Dangerous Waste Report Calendar Year 2002

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    FREEMAN, D.A.

    2003-02-01

    Hanford CY 2002 dangerous waste generation and management forms. The Hanford Facility Annual Dangerous Waste Report (ADWR) is prepared to meet the requirements of Washington Administrative Code Sections 173-303-220, Generator Reporting, and 173-303-390, Facility Reporting. In addition, the ADWR is required to meet Hanford Facility RCRA Permit Condition I.E.22, Annual Reporting. The ADWR provides summary information on dangerous waste generation and management activities for the Calendar Year for the Hanford Facility EPA ID number assigned to the Department of Energy for RCRA regulated waste, as well as Washington State only designated waste and radioactive mixed waste. The Solid Waste Informationmore » and Tracking System (SWITS) database is utilized to collect and compile the large array of data needed for preparation of this report. Information includes details of waste generated on the Hanford Facility, waste generated offsite and sent to Hanford for management, and other waste management activities conducted at Hanford, including treatment, storage, and disposal. Report details consist of waste descriptions and weights, waste codes and designations, and waste handling codes. In addition, for waste shipped to Hanford for treatment and/or disposal, information on manifest numbers, the waste transporter, the waste receiving facility, and the original waste generators are included. In addition to paper copies, electronic copies of the report are also transmitted to the regulatory agency.« less

  20. PNNL Supports Hanford Waste Treatment

    ScienceCinema

    None

    2018-04-16

    For more than 40 years, technical assistance from PNNL has supported the operations and processing of Hanford tank waste. Our expertise in tank waste chemistry, fluid dynamics and scaling, waste forms, and safety bases has helped to shape the site’s waste treatment baseline and solve operational challenges. The historical knowledge and unique scientific and technical expertise at PNNL are essential to the success of the Hanford mission.

  1. A qualitative and quantitative analysis of radiation dose and image quality of computed tomography images using adaptive statistical iterative reconstruction.

    PubMed

    Hussain, Fahad Ahmed; Mail, Noor; Shamy, Abdulrahman M; Suliman, Alghamdi; Saoudi, Abdelhamid

    2016-05-08

    Image quality is a key issue in radiology, particularly in a clinical setting where it is important to achieve accurate diagnoses while minimizing radiation dose. Some computed tomography (CT) manufacturers have introduced algorithms that claim significant dose reduction. In this study, we assessed CT image quality produced by two reconstruction algorithms provided with GE Healthcare's Discovery 690 Elite positron emission tomography (PET) CT scanner. Image quality was measured for images obtained at various doses with both conventional filtered back-projection (FBP) and adaptive statistical iterative reconstruction (ASIR) algorithms. A stan-dard CT dose index (CTDI) phantom and a pencil ionization chamber were used to measure the CT dose at 120 kVp and an exposure of 260 mAs. Image quality was assessed using two phantoms. CT images of both phantoms were acquired at tube voltage (kV) of 120 with exposures ranging from 25 mAs to 400 mAs. Images were reconstructed using FBP and ASIR ranging from 10% to 100%, then analyzed for noise, low-contrast detectability, contrast-to-noise ratio (CNR), and modulation transfer function (MTF). Noise was 4.6 HU in water phantom images acquired at 260 mAs/FBP 120 kV and 130 mAs/50% ASIR 120 kV. The large objects (fre-quency < 7 lp/cm) retained fairly acceptable image quality at 130 mAs/50% ASIR, compared to 260 mAs/FBP. The application of ASIR for small objects (frequency >7 lp/cm) showed poor visibility compared to FBP at 260 mAs and even worse for images acquired at less than 130 mAs. ASIR blending more than 50% at low dose tends to reduce contrast of small objects (frequency >7 lp/cm). We concluded that dose reduction and ASIR should be applied with close attention if the objects to be detected or diagnosed are small (frequency > 7 lp/cm). Further investigations are required to correlate the small objects (frequency > 7 lp/cm) to patient anatomy and clinical diagnosis.

  2. SU-G-206-16: Investigation of Dosimetric Consequence Via Cone-Beam CT Based Dose Reconstruction in Hepatocellular Carcinoma Radiotherapy

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Huang, P; Gang, Y; Qin, S

    2016-06-15

    Purpose: Many patients with technically unresectable or medically inoperable hepatocellular carcinoma (HCC) had hepatic dosimetric variations as a result of inter-fraction anatomical deformation. This study was conducted to assess the hepatic dosimetric consequences via reconstructing weekly dose in HCC patients receiving three dimensional conformal radiation therapy. Methods: Twenty-one HCC patients with 21 planning CT (pCT) scans and 63 weekly Cone-beam CT (CBCT) scans were enrolled in this investigation. Among them, six patients had been diagnosed of radiation induced liver disease (RILD) and the other fifteen patients had good prognosis after treatment. And each patient had three weekly CBCT before re-planning.more » In reconstructing CBCT-based weekly dose, we registered pCT to CBCT to provide the correct Hounsfield units for the CBCT using gradient-based deformable image registration (DIR), and this modified CBCT (mCBCT) were introduced to enable dose calculation.To obtain the weekly dosimetric consequences, the initial plan beam configurations and dose constraints were re-applied to mCBCT for performing dose calculation, and the mCBCT were extrapolated to 25 fractions. Besides, the manually delineated contour was propagated automatically onto the mCBCT of the new patient by exploiting the deformation vectors field, and the reconstructed weekly dose was mapped back to pCT to understand the dose distribution difference. Also, weekly dosimetric variations were compared with the hepatic radiation tolerance in terms of D50 and Dmean. Results: Among the twenty-one patients, the three weekly D50 increased by 0.7Gy, 5.1Gy and 6.1Gy, respectively, and Dmean increased by 0.9%, 4.7% and 5.5%, respectively. For patients with RILD, the average values of the third weekly D50 and Dmean were both high than hepatic radiation tolerance, while the values of patients without RILD were below. Conclusion: The planned dose on pCT was not a real dose to the liver, and the liver

  3. SU-E-T-790: Validation of 4D Measurement-Guided Dose Reconstruction (MGDR) with OCTAVIUS 4D System

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lee, V; Leung, R; Wong, M

    2015-06-15

    Purpose: To validate the MGDR of OCTAVIUS 4D system (PTW, Freiburg, Germany) for quality assurance (QA) of volumetric-modulated arc radiotherapy (VMAT). Methods: 4D-MGDR measurements were divided into two parts: 1) square fields from 2×2 to 25×25 cm{sup 2} at 0°, 10° and 45° gantry, and 2) 8 VMAT plans (5 nasopharyngeal and 3 prostate) collapsed to gantry 40° in QA mode in Monaco v5.0 (Elekta, CMS, Maryland Heights, MO) were delivered on the OCTAVIUS 4D phantom with the OCTAVIUS 1500 detector plane perpendicular to either the incident beam to obtain the reconstructed dose (OCTA4D) or the 0° gantry axis tomore » obtain the raw doses (OCTA3D) in Verisoft 6.1 (PTW, Freiburg, Germany). Raw measurements of OCTA3D were limited to < 45° gantry to avoid >0.5% variation of detector angular response with respect to 0° gantry as determined previously. Reconstructed OCTA4D and raw OCTA3D doses for all plans were compared at the same detector plane using γ criteria of 2% (local dose)/2mm and 3%/3mm criteria. Results: At gantry 0° and 10°, the γ results for all OCTA4D on detector plane coinciding with OCTA3D were over 90% at 2%/2mm except for the largest field (25×25 cm{sup 2} ) showing >88%. For square field at 45° gantry, γ passing rate is > 90% for fields smaller than 15x 15cm2 but < 80% for field size of 20 x20 cm{sup 2} upward. For VMAT, γ results showed 94% and 99% passing rate at 2%/2mm and 3%/3mm, respectively. Conclusion: OCTAVIUS 4D system has compromised accuracy in reconstructing dose away from the central beam axis, possibly due to the off-axis softening correction and errors of the percent depth dose data necessary as input for MGDR. Good results in VMAT delivery suggested that the system is relatively reliable for VMAT with small segments.« less

  4. RECONSTRUCTION OF INDIVIDUAL DOSES DUE TO MEDICAL EXPOSURES FOR MEMBERS OF THE TECHA RIVER COHORT

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Shagina, N. B.; Golikov, V.; Degteva, M. O.

    Purpose: To describe a methodology for reconstruction of doses due to medical exposures for members of the Techa River Cohort (TRC) who received diagnostic radiation at the clinic of the Urals Research Center for Radiation Medicine (URCRM) in 1952–2005. To calculate doses of medical exposure for the TRC members and compare with the doses that resulted from radioactive contamination of the Techa River. Material and Methods: Reconstruction of individual medical doses is based on data on x-ray diagnostic procedures available for each person examined at the URCRM clinics and values of absorbed dose in 12 organs per typical x-ray proceduremore » calculated with the use of a mathematical phantom. Personal data on x-ray diagnostic examinations have been complied in the computerized “Registry of x-ray diagnostic procedures.” Sources of information are archival registry books from the URCRM x-ray room (available since 1956) and records on x-ray diagnostic procedures in patient-case histories (since 1952). The absorbed doses for 12 organs of interest have been evaluated per unit typical x-ray procedure with account taken of the x-ray examination parameters characteristic for the diagnostic machines used at the URCRM clinics. These parameters have been evaluated from published data on technical characteristics of the x-ray diagnostic machines used at the URCRM clinics in 1952–1988 and taken from the x-ray room for machines used at the URCRM in 1989–2005. Absorbed doses in the 12 organs per unit typical x-ray procedure have been calculated with use of a special computer code, EDEREX, developed at the Saint-Petersburg Research Institute of Radiation Hygiene after Professor P.V. Ramzaev. Individual accumulated doses of medical exposure have been calculated with a computer code, MEDS (Medical Exposure Dosimetry System), specifically developed at the URCRM. Results: At present, the “Registry of x-ray diagnostic procedures” contains information on individual x

  5. Hanford Site Anuran Monitoring Report for Calendar Year 2013

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wilde, Justin W.; Johnson, Scott J.; Lindsey, Cole T.

    2014-02-13

    The U.S. Department of Energy, Richland Operations Office (DOE-RL) conducts ecological monitoring on the Hanford Site to collect and track data needed to ensure compliance with an array of environmental laws, regulations, and policies governing DOE activities. Ecological monitoring data provide baseline information about the plants, animals, and habitat under DOE-RL stewardship at Hanford required for decision-making under the National Environmental Policy Act (NEPA) and Comprehensive Environmental Response, Compensation, and Liability Act (CERCLA). The Hanford Site Comprehensive Land Use Plan (CLUP, DOE/EIS-0222-F) which is the Environmental Impact Statement for Hanford Site activities, helps ensure that DOE-RL, its contractors, and othermore » entities conducting activities on the Hanford Site are in compliance with NEPA.« less

  6. Methods and Models of the Hanford Internal Dosimetry Program, PNNL-MA-860

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Carbaugh, Eugene H.; Bihl, Donald E.; Maclellan, Jay A.

    2009-09-30

    The Hanford Internal Dosimetry Program (HIDP) provides internal dosimetry support services for operations at the Hanford Site. The HIDP is staffed and managed by the Radiation and Health Technology group, within the Pacific Northwest National Laboratory (PNNL). Operations supported by the HIDP include research and development, the decontamination and decommissioning of facilities formerly used to produce and purify plutonium, and waste management activities. Radioelements of particular interest are plutonium, uranium, americium, tritium, and the fission and activation product radionuclides 137Cs, 90Sr, and 60Co. This manual describes the technical basis for the design of the routine bioassay monitoring program and formore » assessment of internal dose. The purposes of the manual are as follows: • Provide assurance that the HIDP derives from a sound technical base. • Promote the consistency and continuity of routine program activities. • Provide a historical record. • Serve as a technical reference for radiation protection personnel. • Aid in identifying and planning for future needs.« less

  7. SU-G-BRA-12: Development of An Intra-Fractional Motion Tracking and Dose Reconstruction System for Adaptive Stereotactic Body Radiation Therapy in High-Risk Prostate Cancer

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Rezaeian, N Hassan; Chi, Y; Tian, Z

    Purpose: A clinical trial on stereotactic body radiation therapy (SBRT) for high-risk prostate cancer is undergoing at our institution. In addition to escalating dose to the prostate, we have increased dose to intra-prostatic lesions. Intra-fractional prostate motion deteriorates well planned radiation dose, especially for the small intra-prostatic lesions. To solve this problem, we have developed a motion tracking and 4D dose-reconstruction system to facilitate adaptive re-planning. Methods: Patients in the clinical trial were treated with VMAT using four arcs and 10 FFF beam. KV triggered x-ray projections were taken every 3 sec during delivery to acquire 2D projections of 3Dmore » anatomy at the direction orthogonal to the therapeutic beam. Each patient had three implanted prostate markers. Our developed system first determined 2D projection locations of these markers and then 3D prostate translation and rotation via 2D/3D registration of the markers. Using delivery log files, our GPU-based Monte Carlo tool (goMC) reconstructed dose corresponding to each triggered image. The calculated 4D dose distributions were further aggregated to yield the delivered dose. Results: We first tested each module in our system. MC dose engine were commissioned to our treatment planning system with dose difference of <0.5%. For motion tracking, 1789 kV projections from 7 patients were acquired. The 2D marker location error was <1 mm. For 3D motion tracking, root mean square (RMS) errors along LR, AP, and CC directions were 0.26mm, 0.36mm, and 0.01mm respectively in simulation studies and 1.99mm, 1.37mm, and 0.22mm in phantom studies. We also tested the entire system workflow. Our system was able to reconstruct delivered dose. Conclusion: We have developed a functional intra-fractional motion tracking and 4D dose re-construction system to support our clinical trial on adaptive high-risk prostate cancer SBRT. Comprehensive evaluations have shown the capability and accuracy of our

  8. Hanford Site National Environmental Policy Act (NEPA) Characterization

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Neitzel, Duane A.; Antonio, Ernest J.; Eschbach, Tara O.

    2001-09-01

    This document describes the U.S. Department of Energy's (DOE) Hanford Site environment. It is updated each year and is intended to provide a consistent description of the Hanford Site environment for the many National Environmental Policy Act (NEPA) documents being prepared by DOE contractors. No statements of significance or environmental consequences are provided. This year's report is the thirteenth revision of the original document published in 1988 and is (until replaced by the fourteenth revision) the only version that is relevant for use in the preparation of Hanford NEPA, State Environmental Policy Act (SEPA), and Comprehensive Environmental Response, Compensation, andmore » Liability Act (CERCLA) documents. The two chapters included in this document (Chapters 4 and 6) are numbered to correspond to the chapters where such information is typically presented in environmental impact statements (Weiss) and other Hanford Site NEPA or CERCLA documentation. Chapter 4.0 (Affected Environment) describes Hanford Site climate and meteorology, geology, hydrology, ecology, cultural, archaeological, and historical resources, socioeconomics, occupational safety, and noise. Chapter 6.0 (Statutory and Regulatory Requirements) describes federal and state laws and regulations, DOE directives and permits, and presidential executive orders that are applicable to the NEPA documents prepared for Hanford Site activities.« less

  9. Hanford Site National Environmental Policy Act (NEPA) Characterization

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Neitzel, Duane A.; Bunn, Amoret L.; Duncan, Joanne P.

    2002-09-01

    This document describes the U.S. Department of Energy's (DOE) Hanford Site environment. It is updated each year and is intended to provide a consistent description of the Hanford Site environment for the many National Environmental Policy Act (NEPA) documents being prepared by DOE contractors. No statements of significance or environmental consequences are provided. This year's report is the thirteenth revision of the original document published in 1988 and is (until replaced by the fourteenth revision) the only version that is relevant for use in the preparation of Hanford NEPA, State Environmental Policy Act (SEPA), and Comprehensive Environmental Response, Compensation, andmore » Liability Act (CERCLA) documents. The two chapters included in this document (Chapters 4 and 6) are numbered to correspond to the chapters where such information is typically presented in environmental impact statements (Weiss) and other Hanford Site NEPA or CERCLA documentation. Chapter 4.0 (Affected Environment) describes Hanford Site climate and meteorology, geology, hydrology, ecology, cultural, archaeological, and historical resources, socioeconomics, occupational safety, and noise. Chapter 6.0 (Statutory and Regulatory Requirements) describes federal and state laws and regulations, DOE directives and permits, and presidential executive orders that are applicable to the NEPA documents prepared for Hanford Site activities.« less

  10. Low-dose X-ray computed tomography image reconstruction with a combined low-mAs and sparse-view protocol

    PubMed Central

    Gao, Yang; Bian, Zhaoying; Huang, Jing; Zhang, Yunwan; Niu, Shanzhou; Feng, Qianjin; Chen, Wufan; Liang, Zhengrong; Ma, Jianhua

    2014-01-01

    To realize low-dose imaging in X-ray computed tomography (CT) examination, lowering milliampere-seconds (low-mAs) or reducing the required number of projection views (sparse-view) per rotation around the body has been widely studied as an easy and effective approach. In this study, we are focusing on low-dose CT image reconstruction from the sinograms acquired with a combined low-mAs and sparse-view protocol and propose a two-step image reconstruction strategy. Specifically, to suppress significant statistical noise in the noisy and insufficient sinograms, an adaptive sinogram restoration (ASR) method is first proposed with consideration of the statistical property of sinogram data, and then to further acquire a high-quality image, a total variation based projection onto convex sets (TV-POCS) method is adopted with a slight modification. For simplicity, the present reconstruction strategy was termed as “ASR-TV-POCS.” To evaluate the present ASR-TV-POCS method, both qualitative and quantitative studies were performed on a physical phantom. Experimental results have demonstrated that the present ASR-TV-POCS method can achieve promising gains over other existing methods in terms of the noise reduction, contrast-to-noise ratio, and edge detail preservation. PMID:24977611

  11. Hanford Site Environmental Report for Calender Year 2006

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Poston, Ted M.; Hanf, Robert W.; Duncan, Joanne P.

    This report is prepared annually for DOE and provides an overview of activities at the Hanford Site. The report summarizes environmental data that characterize Hanford Site environmental management performance. The report also highlights significant environmental and public protection programs and efforts. Although this report is primarily written to meet DOE reporting requirements and guidelines, it also provides useful summary information for the public, Indian tribes, public officials, regulatory agencies, Hanford contractors, and public officials.

  12. Validation of a method for in vivo 3D dose reconstruction for IMRT and VMAT treatments using on-treatment EPID images and a model-based forward-calculation algorithm

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Van Uytven, Eric, E-mail: eric.vanuytven@cancercare.mb.ca; Van Beek, Timothy; McCowan, Peter M.

    2015-12-15

    Purpose: Radiation treatments are trending toward delivering higher doses per fraction under stereotactic radiosurgery and hypofractionated treatment regimens. There is a need for accurate 3D in vivo patient dose verification using electronic portal imaging device (EPID) measurements. This work presents a model-based technique to compute full three-dimensional patient dose reconstructed from on-treatment EPID portal images (i.e., transmission images). Methods: EPID dose is converted to incident fluence entering the patient using a series of steps which include converting measured EPID dose to fluence at the detector plane and then back-projecting the primary source component of the EPID fluence upstream of themore » patient. Incident fluence is then recombined with predicted extra-focal fluence and used to calculate 3D patient dose via a collapsed-cone convolution method. This method is implemented in an iterative manner, although in practice it provides accurate results in a single iteration. The robustness of the dose reconstruction technique is demonstrated with several simple slab phantom and nine anthropomorphic phantom cases. Prostate, head and neck, and lung treatments are all included as well as a range of delivery techniques including VMAT and dynamic intensity modulated radiation therapy (IMRT). Results: Results indicate that the patient dose reconstruction algorithm compares well with treatment planning system computed doses for controlled test situations. For simple phantom and square field tests, agreement was excellent with a 2%/2 mm 3D chi pass rate ≥98.9%. On anthropomorphic phantoms, the 2%/2 mm 3D chi pass rates ranged from 79.9% to 99.9% in the planning target volume (PTV) region and 96.5% to 100% in the low dose region (>20% of prescription, excluding PTV and skin build-up region). Conclusions: An algorithm to reconstruct delivered patient 3D doses from EPID exit dosimetry measurements was presented. The method was applied to phantom and

  13. HANFORD WASTE MINERALOGY REFERENCE REPORT

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    DISSELKAMP RS

    2010-06-29

    This report lists the observed mineral phases present in the Hanford tanks. This task was accomplished by performing a review of numerous reports that used experimental techniques including, but not limited to: x-ray diffraction, polarized light microscopy, scanning electron microscopy, transmission electron microscopy, energy dispersive spectroscopy, electron energy loss spectroscopy, and particle size distribution analyses. This report contains tables that can be used as a quick reference to identify the crystal phases observed in Hanford waste.

  14. HANFORD WASTE MINEROLOGY REFERENCE REPORT

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    DISSELKAMP RS

    2010-06-18

    This report lists the observed mineral phase phases present in the Hanford tanks. This task was accomplished by performing a review of numerous reports using experimental techniques including, but not limited to: x-ray diffraction, polarized light microscopy, scanning electron microscopy, transmission electron microscopy, energy dispersive spectroscopy, electron energy loss spectroscopy, and particle size distribution analyses. This report contains tables that can be used as a quick reference to identify the crystal phases present observed in Hanford waste.

  15. SU-F-T-119: Development of Heart Prediction Model to Increase Accuracy of Dose Reconstruction for Radiotherapy Patients

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Mosher, E; Choi, M; Lee, C

    Purpose: To assess individual variation in heart volume and location in order to develop a prediction model of the heart. This heart prediction model will be used to calculate individualized heart doses for radiotherapy patients in epidemiological studies. Methods: Chest CT images for 30 adult male and 30 adult female patients were obtained from NIH Clinical Center. Image-analysis computer programs were used to segment the whole heart and 8 sub-regions and to measure the volume of each sub- region and the dimension of the whole heart. An analytical dosimetry method was used for the 30 adult female patients to estimatemore » mean heart dose during conventional left breast radiotherapy. Results: The average volumes of the whole heart were 803.37 cm{sup 3} (COV 18.8%) and 570.19 cm{sup 3} (COV 18.8%) for adult male and female patients, respectively, which are comparable with the international reference volumes of 807.69 cm{sup 3} for males and 596.15 cm{sup 3} for females. Some patient characteristics were strongly correlated (R{sup 2}>0.5) with heart volume and heart dimensions (e.g., Body Mass Index vs. heart depth in males: R{sup 2}=0.54; weight vs. heart width in the adult females: R{sup 2}=0.63). We found that the mean heart dose 3.805 Gy (assuming prescribed dose of 50 Gy) in the breast radiotherapy simulations of the 30 adult females could be an underestimate (up to 1.6-fold) or overestimate (up to 1.8-fold) of the patient-specific heart dose. Conclusion: The study showed the significant variation in patient heart volumes and dimensions, resulting in substantial dose errors when a single average heart model is used for retrospective dose reconstruction. We are completing a multivariate analysis to develop a prediction model of the heart. This model will increase accuracy in dose reconstruction for radiotherapy patients and allow us to individualize heart dose calculations for patients whose CT images are not available.« less

  16. 75 FR 64718 - Environmental Management Site-Specific Advisory Board, Hanford

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-10-20

    ... DEPARTMENT OF ENERGY Environmental Management Site-Specific Advisory Board, Hanford AGENCY... Environmental Management Site-Specific Advisory Board (EM SSAB), Hanford. The Federal Advisory Committee Act.... ADDRESSES: Red Lion Hanford House, 802 George Washington Way, Richland, Washington. FOR FURTHER INFORMATION...

  17. 75 FR 8051 - Environmental Management Site-Specific Advisory Board, Hanford

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-02-23

    ... DEPARTMENT OF ENERGY Environmental Management Site-Specific Advisory Board, Hanford AGENCY... the Environmental Management Site-Specific Advisory Board (EM SSAB), Hanford (known locally as the Hanford Advisory Board [HAB]), River and Plateau, Tank Waste, Public Involvement, Health Safety and...

  18. 76 FR 4645 - Environmental Management Site-Specific Advisory Board, Hanford

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-01-26

    ... DEPARTMENT OF ENERGY Environmental Management Site-Specific Advisory Board, Hanford AGENCY... Environmental Management Site-Specific Advisory Board (EM SSAB), Hanford. The Federal Advisory Committee Act.... ADDRESSES: Red Lion Hanford House, 802 George Washington Way, Richland, Washington 99352. FOR FURTHER...

  19. Age at exposure to ionising radiation and cancer mortality among Hanford workers: follow up through 1994

    PubMed Central

    Wing, S; Richardson, D

    2005-01-01

    Background: Studies of workers at the plutonium production factory in Hanford, WA have led to conflicting conclusions about the role of age at exposure as a modifier of associations between ionising radiation and cancer. Aims: To evaluate the influence of age at exposure on radiation risk estimates in an updated follow up of Hanford workers. Methods: A cohort of 26 389 workers hired between 1944 and 1978 was followed through 1994 to ascertain vital status and causes of death. External radiation dose estimates were derived from personal dosimeters. Poisson regression was used to estimate associations between mortality and cumulative external radiation dose at all ages, and in specific age ranges. Results: A total of 8153 deaths were identified, 2265 of which included cancer as an underlying or contributory cause. Estimates of the excess relative risk per Sievert (ERR/Sv) for cumulative radiation doses at all ages combined were negative for all cause and leukaemia and positive for all cancer and lung cancer. Cumulative doses accrued at ages below 35, 35–44, and 45–54 showed little association with mortality. For cumulative dose accrued at ages 55 and above (10 year lag), the estimated ERR/Sv for all cancers was 3.24 (90% CI: 0.80 to 6.17), primarily due to an association with lung cancer (ERR/Sv: 9.05, 90% CI: 2.96 to 17.92). Conclusions: Associations between radiation and cancer mortality in this cohort are primarily a function of doses at older ages and deaths from lung cancer. The association of older age radiation exposures and cancer mortality is similar to observations from several other occupational studies. PMID:15961623

  20. CERT tribal internship program. Final intern report: D`Lisa Penney, 1994

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    NONE

    1998-09-01

    The purpose of this intern`s project was to: education the Nez Perce people of the Hanford situation; begin researching into past and present health effects from the Hanford site; and inform and educate the Nez Perce people of the Hanford site and past exposures. The specific objectives were to begin researching the history of Nez Perce people and Hanford; create an understanding for the importance of this research; define the radiation and risks and how they occur; inform the Nez Perce people of the issue; and write the paper so it is easy to understand. This intern report contains amore » copy of the final paper written for the Nez Perce people. Because the dose reconstruction for Hanford is not complete, the health effects section is informative, but not definitive.« less

  1. Radiation dose reduction with the adaptive statistical iterative reconstruction (ASIR) technique for chest CT in children: an intra-individual comparison.

    PubMed

    Lee, Seung Hyun; Kim, Myung-Joon; Yoon, Choon-Sik; Lee, Mi-Jung

    2012-09-01

    To retrospectively compare radiation dose and image quality of pediatric chest CT using a routine dose protocol reconstructed with filtered back projection (FBP) (the Routine study) and a low-dose protocol with 50% adaptive statistical iterative reconstruction (ASIR) (the ASIR study). We retrospectively reviewed chest CT performed in pediatric patients who underwent both the Routine study and the ASIR study on different days between January 2010 and August 2011. Volume CT dose indices (CTDIvol), dose length products (DLP), and effective doses were obtained to estimate radiation dose. The image quality was evaluated objectively as noise measured in the descending aorta and paraspinal muscle, and subjectively by three radiologists for noise, sharpness, artifacts, and diagnostic acceptability using a four-point scale. The paired Student's t-test and the Wilcoxon signed-rank test were used for statistical analysis. Twenty-six patients (M:F=13:13, mean age 11.7) were enrolled. The ASIR studies showed 60.3%, 56.2%, and 55.2% reductions in CTDIvol (from 18.73 to 7.43 mGy, P<0.001), DLP (from 307.42 to 134.51 mGy×cm, P<0.001), and effective dose (from 4.12 to 1.84 mSv, P<0.001), respectively, compared with the Routine studies. The objective noise was higher in the paraspinal muscle of the ASIR studies (20.81 vs. 16.67, P=0.004), but was not different in the aorta (18.23 vs. 18.72, P=0.726). The subjective image quality demonstrated no difference between the two studies. A low-dose protocol with 50% ASIR allows radiation dose reduction in pediatric chest CT by more than 55% while maintaining image quality. Copyright © 2012 Elsevier Ireland Ltd. All rights reserved.

  2. 75 FR 8050 - Environmental Management Site-Specific Advisory Board, Hanford

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-02-23

    ... DEPARTMENT OF ENERGY Environmental Management Site-Specific Advisory Board, Hanford AGENCY... Environmental Management Site-Specific Advisory Board (EM SSAB), Hanford. The Federal Advisory Committee Act...: The meeting is open to the public. The EM SSAB, Hanford, welcomes the attendance of the public at its...

  3. Hanford Site Environmental Report for Calendar Year 2002

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Poston, Ted M.; Hanf, Robert W.; Dirkes, Roger L.

    This report is prepared annually to satisfy the requirements of DOE Orders. The report provides an overview of activities at the Hanford Site during 2002 and demonstrates the site's compliance with applicable federal, state, and local environmental laws, regulations, executive orders, and DOE policies; and to summarize environmental data that characterize Hanford Site environmental management performance. The purpose of the report is to provide useful summary information to members of the public, public officials, regulators, Hanford contractors, and elected representatives.

  4. Accuracy of lung nodule volumetry in low-dose CT with iterative reconstruction: an anthropomorphic thoracic phantom study.

    PubMed

    Doo, K W; Kang, E-Y; Yong, H S; Woo, O H; Lee, K Y; Oh, Y-W

    2014-09-01

    The purpose of this study was to assess accuracy of lung nodule volumetry in low-dose CT with application of iterative reconstruction (IR) according to nodule size, nodule density and CT tube currents, using artificial lung nodules within an anthropomorphic thoracic phantom. Eight artificial nodules (four diameters: 5, 8, 10 and 12 mm; two CT densities: -630 HU that represents ground-glass nodule and +100 HU that represents solid nodule) were randomly placed inside a thoracic phantom. Scans were performed with tube current-time product to 10, 20, 30 and 50 mAs. Images were reconstructed with IR and filtered back projection (FBP). We compared volume estimates to a reference standard and calculated the absolute percentage error (APE). The APE of all nodules was significantly lower when IR was used than with FBP (7.5 ± 4.7% compared with 9.0 ±6.9%; p < 0.001). The effect of IR was more pronounced for smaller nodules (p < 0.001). IR showed a significantly lower APE than FBP in ground-glass nodules (p < 0.0001), and the difference was more pronounced at the lowest tube current (11.8 ± 5.9% compared with 21.3 ± 6.1%; p < 0.0001). The effect of IR was most pronounced for ground-glass nodules in the lowest CT tube current. Lung nodule volumetry in low-dose CT by application of IR showed reliable accuracy in a phantom study. Lung nodule volumetry can be reliably applicable to all lung nodules including small, ground-glass nodules even in ultra-low-dose CT with application of IR. IR significantly improved the accuracy of lung nodule volumetry compared with FBP particularly for ground-glass (-630 HU) nodules. Volumetry in low-dose CT can be utilized in patient with lung nodule work-up, and IR has benefit for small, ground-glass lung nodules in low-dose CT.

  5. Annual Hanford Seismic Report for Fiscal Year 2009

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Rohay, Alan C.; Sweeney, Mark D.; Hartshorn, Donald C.

    2009-12-31

    The Hanford Seismic Assessment Program (HSAP) provides an uninterrupted collection of high-quality raw and processed seismic data from the Hanford Seismic Network for the U.S. Department of Energy and its contractors. The HSAP is responsible for locating and identifying sources of seismic activity and monitoring changes in the historical pattern of seismic activity at the Hanford Site. The data are compiled, archived, and published for use by the Hanford Site for waste management, natural phenomena hazards assessments, and engineering design and construction. In addition, the HSAP works with the Hanford Site Emergency Services Organization to provide assistance in the eventmore » of a significant earthquake on the Hanford Site. The Hanford Seismic Network and the Eastern Washington Regional Network consist of 44 individual sensor sites and 15 radio relay sites maintained by the Hanford Seismic Assessment Team. During FY 2009, the Hanford Seismic Network recorded nearly 3000 triggers on the seismometer system, which included over 1700 seismic events in the southeast Washington area and an additional 370 regional and teleseismic events. There were 1648 events determined to be local earthquakes relevant to the Hanford Site. Nearly all of these earthquakes were detected in the vicinity of Wooded Island, located about eight miles north of Richland just west of the Columbia River. Recording of the Wooded Island events began in January with over 250 events per month through June 2009. The frequency of events decreased starting in July 2009 to approximately 10-15 events per month through September 2009. Most of the events were considered minor (coda-length magnitude [Mc] less than 1.0) with 47 events in the 2.0-3.0 range. The estimated depths of the Wooded Island events are shallow (averaging less than 1.0 km deep) with a maximum depth estimated at 2.3 km. This places the Wooded Island events within the Columbia River Basalt Group (CRBG). The highest-magnitude event (3

  6. 76 FR 9787 - NIOSH Dose Reconstruction Program Ten Year Review-Phase I Report on Quality of Science; Request...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-02-22

    ... DEPARTMENT OF HEALTH AND HUMAN SERVICES Centers for Disease Control and Prevention NIOSH Dose Reconstruction Program Ten Year Review--Phase I Report on Quality of Science; Request for Public Review and... Ten Year Review--Phase I Report on Quality of Science.'' This publication is part of a review by NIOSH...

  7. WE-G-18A-01: JUNIOR INVESTIGATOR WINNER - Low-Dose C-Arm Cone-Beam CT with Model-Based Image Reconstruction for High-Quality Guidance of Neurosurgical Intervention

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wang, A; Stayman, J; Otake, Y

    Purpose: To address the challenges of image quality, radiation dose, and reconstruction speed in intraoperative cone-beam CT (CBCT) for neurosurgery by combining model-based image reconstruction (MBIR) with accelerated algorithmic and computational methods. Methods: Preclinical studies involved a mobile C-arm for CBCT imaging of two anthropomorphic head phantoms that included simulated imaging targets (ventricles, soft-tissue structures/bleeds) and neurosurgical procedures (deep brain stimulation (DBS) electrode insertion) for assessment of image quality. The penalized likelihood (PL) framework was used for MBIR, incorporating a statistical model with image regularization via an edgepreserving penalty. To accelerate PL reconstruction, the ordered-subset, separable quadratic surrogates (OS-SQS) algorithmmore » was modified to incorporate Nesterov's method and implemented on a multi-GPU system. A fair comparison of image quality between PL and conventional filtered backprojection (FBP) was performed by selecting reconstruction parameters that provided matched low-contrast spatial resolution. Results: CBCT images of the head phantoms demonstrated that PL reconstruction improved image quality (∼28% higher CNR) even at half the radiation dose (3.3 mGy) compared to FBP. A combination of Nesterov's method and fast projectors yielded a PL reconstruction run-time of 251 sec (cf., 5729 sec for OS-SQS, 13 sec for FBP). Insertion of a DBS electrode resulted in severe metal artifact streaks in FBP reconstructions, whereas PL was intrinsically robust against metal artifact. The combination of noise and artifact was reduced from 32.2 HU in FBP to 9.5 HU in PL, thereby providing better assessment of device placement and potential complications. Conclusion: The methods can be applied to intraoperative CBCT for guidance and verification of neurosurgical procedures (DBS electrode insertion, biopsy, tumor resection) and detection of complications (intracranial hemorrhage

  8. Hanford Internal Dosimetry Program Manual, PNL-MA-552

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Carbaugh, Eugene H.; Bihl, Donald E.; Maclellan, Jay A.

    2009-09-24

    This manual is a guide to the services provided by the Hanford Internal Dosimetry Program (IDP), which is operated by the Pacific Northwest National Laboratory.( ) for the U.S. Department of Energy Richland Operations Office, Office of River Protection and their Hanford Site contractors. The manual describes the roles of and relationships between the IDP and the radiation protection programs of the Hanford Site contractors. Recommendations and guidance are also provided for consideration in implementing bioassay monitoring and internal dosimetry elements of radiation protection programs.

  9. Reducing the Radiation Dose for CT Colonography: Effect of Low Tube Voltage and Iterative Reconstruction.

    PubMed

    Yamamura, Sadahiro; Oda, Seitaro; Imuta, Masanori; Utsunomiya, Daisuke; Yoshida, Morikatsu; Namimoto, Tomohiro; Yuki, Hideaki; Kidoh, Masafumi; Funama, Yoshinori; Baba, Hideo; Yamashita, Yasuyuki

    2016-02-01

    The purpose of this study was to assess the effect of a low-tube-voltage technique and iterative reconstruction (IR) on the radiation dose and image quality of computed tomography colonography (CTC). We studied 30 patients (14 women and 16 men; mean age, 64.5 ± 13.1 years; range, 39-90 years) with colorectal cancer referred for surgical treatment. All underwent CTC with fecal tagging under a standard 120-kVp protocol in the supine position and a 100-kVp protocol in the prone position. The 120-kVp images were reconstructed with filtered back projection (FBP). The 100-kVp images were postprocessed using FBP and a hybrid type of IR (adaptive iterative dose reduction 3D). The effective radiation dose (ED), image noise, and contrast-to-noise ratio (CNR) were compared among the three protocols. The visual image quality was scored on a four-point scale. The mean ED was significantly lower under the 100-kVp protocol than the 120-kVp protocol, resulting in a 27% radiation dose decrease (3.5 ± 2.0 vs 2.5 ± 1.5 mSv; P < .01). Image noise decreased by 48%, and the mean attenuation of tagged fluid increased from 452 to 558 HU on images acquired at 100 kVp with IR compared to that in the 120-kVp protocol; these differences were significant. The mean CNR was significantly higher under the 100 kVp with IR than the other two protocols. We found no significant differences in the visual scores for diagnostic utility between the 100 kVp with IR and the 120 kVp with FBP protocol (P = .10). Low-tube-voltage CTC reduced the radiation dose by approximately 27% while maintaining the image quality. Copyright © 2016 AUR. Published by Elsevier Inc. All rights reserved.

  10. Radiation Dose Reduction via Sinogram Affirmed Iterative Reconstruction and Automatic Tube Voltage Modulation (CARE kV) in Abdominal CT

    PubMed Central

    Shin, Hyun Joo; Lee, Young Han; Choi, Jin-Young; Park, Mi-Suk; Kim, Myeong-Jin; Kim, Ki Whang

    2013-01-01

    Objective To evaluate the feasibility of sinogram-affirmed iterative reconstruction (SAFIRE) and automated kV modulation (CARE kV) in reducing radiation dose without increasing image noise for abdominal CT examination. Materials and Methods This retrospective study included 77 patients who received CT imaging with an application of CARE kV with or without SAFIRE and who had comparable previous CT images obtained without CARE kV or SAFIRE, using the standard dose (i.e., reference mAs of 240) on an identical CT scanner and reconstructed with filtered back projection (FBP) within 1 year. Patients were divided into two groups: group A (33 patients, CT scanned with CARE kV); and group B (44 patients, scanned after reducing the reference mAs from 240 to 170 and applying both CARE kV and SAFIRE). CT number, image noise for four organs and radiation dose were compared among the two groups. Results Image noise increased after CARE kV application (p < 0.001) and significantly decreased as SAFIRE strength increased (p < 0.001). Image noise with reduced-mAs scan (170 mAs) in group B became similar to that of standard-dose FBP images after applying CARE kV and SAFIRE strengths of 3 or 4 when measured in the aorta, liver or muscle (p ≥ 0.108). Effective doses decreased by 19.4% and 41.3% for groups A and B, respectively (all, p < 0.001) after application of CARE kV with or without SAFIRE. Conclusion Combining CARE kV, reduction of mAs from 240 to 170 mAs and noise reduction by applying SAFIRE strength 3 or 4 reduced the radiation dose by 41.3% without increasing image noise compared with the standard-dose FBP images. PMID:24265563

  11. Ultra-low-dose lung screening CT with model-based iterative reconstruction: an assessment of image quality and lesion conspicuity.

    PubMed

    Ju, Yun Hye; Lee, Geewon; Lee, Ji Won; Hong, Seung Baek; Suh, Young Ju; Jeong, Yeon Joo

    2018-05-01

    Background Reducing radiation dose inevitably increases image noise, and thus, it is important in low-dose computed tomography (CT) to maintain image quality and lesion detection performance. Purpose To assess image quality and lesion conspicuity of ultra-low-dose CT with model-based iterative reconstruction (MBIR) and to determine a suitable protocol for lung screening CT. Material and Methods A total of 120 heavy smokers underwent lung screening CT and were randomly and equally assigned to one of five groups: group 1 = 120 kVp, 25 mAs, with FBP reconstruction; group 2 = 120 kVp, 10 mAs, with MBIR; group 3 = 100 kVp, 15 mAs, with MBIR; group 4 = 100 kVp, 10 mAs, with MBIR; and group 5 = 100 kVp, 5 mAs, with MBIR. Two radiologists evaluated intergroup differences with respect to radiation dose, image noise, image quality, and lesion conspicuity using the Kruskal-Wallis test and the Chi-square test. Results Effective doses were 61-87% lower in groups 2-5 than in group 1. Image noises in groups 1 and 5 were significantly higher than in the other groups ( P < 0.001). Overall image quality was best in group 1, but diagnostic acceptability of overall image qualities in groups 1-3 was not significantly different (all P values > 0.05). Lesion conspicuities were similar in groups 1-4, but were significantly poorer in group 5. Conclusion Lung screening CT with MBIR obtained at 100 kVp and 15 mAs enables a ∼60% reduction in radiation dose versus low-dose CT, while maintaining image quality and lesion conspicuity.

  12. Hanford Quarter Seismic Report - 98C Seismicity On and Near the Hanford Site, Pasco Basin, Washington: April 1, 1998 Through June 30, 1998

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    DC Hartshorn, SP Reidel, AC Rohay

    1998-10-23

    Hanford Seismic Monitoring provides an uninterrupted collection of high-quality raw and processed seismic data from the Hanford Seismic Network (HSN) for the U.S. Department of Energy and its contractors. The staff also locates aud identifies sources of seismic activity and monitors changes in the hi~orical pattern of seismic activity at the Hanford Site. The data are. compiled archived, and published for use by the Hanford Site for waste management Natural Phenomena Hazards assessments, and engineering design and construction. In addition, the seismic monitoring organization works with the Hanford Site Emergency Services Organization to provide assistance in the event of zinmore » earthquake on the Hanford Site. The HSN and Ihe Eastern Washington Regional Network (EN/RN) consist-of 42 individual sensor sites and 15 radio relay sites maintained by the Hanford Seismic Monitoring staff. The operational rate for the third quarter of FY 1998 for stations in the HSN was 99.99%. The operational rate for the third quarter of FY 1998 for stations of the EWRN was 99.95%. For the third quarter of FY 1998, the acquisition computer triggered 133 times. Of these triggers 11 were local earthquakes: 5 (45Yo) in the Columbia River Basalt Group, 2(1 8%) in the pre-basalt sediments, and 4 (36%) in the crystalline basement. The geologic and tectonic environments where these earthquakes occurred are discussed in this report.« less

  13. Hanford Quarter Seismic Report - 98C Seismicity On and Near the Hanford Site, Pasco Basin, Washington: April 1, 1998 Through June 30, 1998

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    DC Hartshorn, SP Reidel, AC Rohay.

    1998-10-23

    Hanford Seismic Monitoring provides an uninterrupted collection of high-quality raw and processed seismic data from the Hanford Seismic Network (HSN) for the U.S. Department of Energy and its contractors. The staff also locates aud identifies sources of seismic activity and monitors changes in the hi orical pattern of seismic activity at the Hanford Site. The data are. compiled archived, and published for use by the Hanford Site for waste management Natural Phenomena Hazards assessments, and engineering design and construction. In addition, the seismic monitoring organization works with the Hanford Site Emergency Services Organization to provide assistance in the event ofmore » zin earthquake on the Hanford Site. The HSN and Ihe Eastern Washington Regional Network (EN/RN) consist-of 42 individual sensor sites and 15 radio relay sites maintained by the Hanford Seismic Monitoring staff. The operational rate for the third quarter of FY 1998 for stations in the HSN was 99.99%. The operational rate for the third quarter of FY 1998 for stations of the EWRN was 99.95%. For the third quarter of FY 1998, the acquisition computer triggered 133 times. Of these triggers 11 were local earthquakes: 5 (45Yo) in the Columbia River Basalt Group, 2(1 8%) in the pre-basalt sediments, and 4 (36%) in the crystalline basement. The geologic and tectonic environments where these earthquakes occurred are discussed in this report.« less

  14. Hanford Site Environmental Report for Calendar Year 2008

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Poston, Ted M.; Duncan, Joanne P.; Dirkes, Roger L.

    The Hanford Site environmental report is prepared annually for the U.S. Department of Energy (DOE) in accordance with regulatory requirements. The report provides an overview of activities at the Hanford Site; demonstrates the status of the site’s compliance with applicable federal, state, and local environmental laws and regulations, executive orders, and DOE policies and directives; and summarizes environmental data that characterize Hanford Site environmental management performance. The report also highlights significant environmental and public protection programs and efforts. Some historical and early 2009 information is included where appropriate.

  15. Hanford Site Environmental Report for Calendar Year 2009

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Poston, Ted M.; Duncan, Joanne P.; Dirkes, Roger L.

    The Hanford Site environmental report is prepared annually for the U.S. Department of Energy (DOE) in accordance with regulatory requirements. The report provides an overview of activities at the Hanford Site; demonstrates the status of the site’s compliance with applicable federal, state, and local environmental laws and regulations, executive orders, and DOE policies and directives; and summarizes environmental data that characterize Hanford Site environmental management performance. The report also highlights significant environmental and public protection programs and efforts. Some historical and early 2010 information is included where appropriate.

  16. Hanford Site Environmental Report for Calendar Year 2010

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Poston, Ted M.; Duncan, Joanne P.; Dirkes, Roger L.

    The Hanford Site environmental report is prepared annually for the U.S. Department of Energy (DOE) in accordance with regulatory requirements. The report provides an overview of activities at the Hanford Site; demonstrates the status of the site's compliance with applicable federal, state, and local environmental laws and regulations, executive orders, and DOE policies and directives; and summarizes environmental data that characterize Hanford Site environmental management performance. The report also highlights significant environmental and public protection programs and efforts. Some historical and early 2011 information is included where appropriate.

  17. SU-E-T-280: Reconstructed Rectal Wall Dose Map-Based Verification of Rectal Dose Sparing Effect According to Rectum Definition Methods and Dose Perturbation by Air Cavity in Endo-Rectal Balloon

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Park, J; Research Institute of Biomedical Engineering, The Catholic University of Korea, Seoul; Park, H

    Purpose: Dosimetric effect and discrepancy according to the rectum definition methods and dose perturbation by air cavity in an endo-rectal balloon (ERB) were verified using rectal-wall (Rwall) dose maps considering systematic errors in dose optimization and calculation accuracy in intensity-modulated radiation treatment (IMRT) for prostate cancer patients. Methods: When the inflated ERB having average diameter of 4.5 cm and air volume of 100 cc is used for patient, Rwall doses were predicted by pencil-beam convolution (PBC), anisotropic analytic algorithm (AAA), and AcurosXB (AXB) with material assignment function. The errors of dose optimization and calculation by separating air cavity from themore » whole rectum (Rwhole) were verified with measured rectal doses. The Rwall doses affected by the dose perturbation of air cavity were evaluated using a featured rectal phantom allowing insert of rolled-up gafchromic films and glass rod detectors placed along the rectum perimeter. Inner and outer Rwall doses were verified with reconstructed predicted rectal wall dose maps. Dose errors and extent at dose levels were evaluated with estimated rectal toxicity. Results: While AXB showed insignificant difference of target dose coverage, Rwall doses underestimated by up to 20% in dose optimization for the Rwhole than Rwall at all dose range except for the maximum dose. As dose optimization for Rwall was applied, the Rwall doses presented dose error less than 3% between dose calculation algorithm except for overestimation of maximum rectal dose up to 5% in PBC. Dose optimization for Rwhole caused dose difference of Rwall especially at intermediate doses. Conclusion: Dose optimization for Rwall could be suggested for more accurate prediction of rectal wall dose prediction and dose perturbation effect by air cavity in IMRT for prostate cancer. This research was supported by the Leading Foreign Research Institute Recruitment Program through the National Research Foundation of

  18. 42 CFR 83.14 - How will NIOSH evaluate a petition by a claimant whose dose reconstruction NIOSH could not...

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... RESEARCH AND RELATED ACTIVITIES PROCEDURES FOR DESIGNATING CLASSES OF EMPLOYEES AS MEMBERS OF THE SPECIAL... classes for evaluation, to permit the timely adjudication of the existing cancer claim: (1) A class of employees defined using the research and analyses already completed in attempting the dose reconstruction...

  19. 42 CFR 83.14 - How will NIOSH evaluate a petition by a claimant whose dose reconstruction NIOSH could not...

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... RESEARCH AND RELATED ACTIVITIES PROCEDURES FOR DESIGNATING CLASSES OF EMPLOYEES AS MEMBERS OF THE SPECIAL... classes for evaluation, to permit the timely adjudication of the existing cancer claim: (1) A class of employees defined using the research and analyses already completed in attempting the dose reconstruction...

  20. 42 CFR 83.14 - How will NIOSH evaluate a petition by a claimant whose dose reconstruction NIOSH could not...

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... RESEARCH AND RELATED ACTIVITIES PROCEDURES FOR DESIGNATING CLASSES OF EMPLOYEES AS MEMBERS OF THE SPECIAL... classes for evaluation, to permit the timely adjudication of the existing cancer claim: (1) A class of employees defined using the research and analyses already completed in attempting the dose reconstruction...

  1. 42 CFR 83.14 - How will NIOSH evaluate a petition by a claimant whose dose reconstruction NIOSH could not...

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... RESEARCH AND RELATED ACTIVITIES PROCEDURES FOR DESIGNATING CLASSES OF EMPLOYEES AS MEMBERS OF THE SPECIAL... classes for evaluation, to permit the timely adjudication of the existing cancer claim: (1) A class of employees defined using the research and analyses already completed in attempting the dose reconstruction...

  2. 42 CFR 83.14 - How will NIOSH evaluate a petition by a claimant whose dose reconstruction NIOSH could not...

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... RESEARCH AND RELATED ACTIVITIES PROCEDURES FOR DESIGNATING CLASSES OF EMPLOYEES AS MEMBERS OF THE SPECIAL... classes for evaluation, to permit the timely adjudication of the existing cancer claim: (1) A class of employees defined using the research and analyses already completed in attempting the dose reconstruction...

  3. Hanford Site National Environmental Policy Act (NEPA) Characterization Report

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Neitzel, Duane A.; Bunn, Amoret L.; Cannon, Sandra D.

    2004-09-22

    This document describes the U.S. Department of Energy's (DOE) Hanford Site environment. It is updated each year and is intended to provide a consistent description of the Hanford Site environment for the many National Environmental Policy Act (NEPA) documents being prepared by DOE contractors. No statements of significance or environmental consequences are provided. This year's report is the sixteenth revision of the original document published in 1988 and is (until replaced by the seventeenth revision) the only version that is relevant for use in the preparation of Hanford NEPA, State Environmental Policy Act (SEPA), and Comprehensive Environmental Response, Compensation, andmore » Liability Act (CERCLA) documents. The two chapters included in this document (Chapters 4 and 6) are numbered to correspond to the chapters where such information is typically presented in environmental impact statements (Weiss) and other Hanford Site NEPA or CERCLA documentation. Chapter 4.0 (Affected Environment) describes Hanford Site climate and meteorology, geology, hydrology, ecology, cultural, archaeological, and historical resources, socioeconomics, occupational safety and health, and noise. Chapter 6.0 (Statutory and Regulatory Requirements) describes federal and state laws and regulations, DOE directives and permits, and presidential executive orders that are applicable to the NEPA documents prepared for Hanford Site activities.« less

  4. Second Quarter Hanford Seismic Report for Fiscal Year 2009

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Rohay, Alan C.; Sweeney, Mark D.; Hartshorn, Donald C.

    2009-07-31

    The Hanford Seismic Assessment Program (HSAP) provides an uninterrupted collection of high-quality raw and processed seismic data from the Hanford Seismic Network for the U.S. Department of Energy and its contractors. The HSAP is responsible for locating and identifying sources of seismic activity and monitoring changes in the historical pattern of seismic activity at the Hanford Site. The data are compiled, archived, and published for use by the Hanford Site for waste management, natural phenomena hazards assessments, and engineering design and construction. In addition, the HSAP works with the Hanford Site Emergency Services Organization to provide assistance in the eventmore » of a significant earthquake on the Hanford Site. The Hanford Seismic Network and the Eastern Washington Regional Network consist of 44 individual sensor sites and 15 radio relay sites maintained by the Hanford Seismic Assessment Team. The Hanford Seismic Network recorded over 800 local earthquakes during the second quarter of FY 2009. Nearly all of these earthquakes were detected in the vicinity of Wooded Island, located about eight miles north of Richland just west of the Columbia River. Most of the events were considered minor (magnitude (Mc) less than 1.0) with 19 events in the 2.0-2.9 range. The estimated depths of the Wooded Island events are shallow (averaging less than 1.0 km deep) with a maximum depth estimated at 1.9 km. This places the Wooded Island events within the Columbia River Basalt Group (CRBG). The low magnitude and the shallowness of the Wooded Island events have made them undetectable to most area residents. However, some Hanford employees working within a few miles of the area of highest activity, and individuals living in homes directly across the Columbia River from the swarm center, have reported feeling some movement. The Hanford SMA network was triggered numerous times by the Wooded Island swarm events. The maximum acceleration values recorded by the SMA network

  5. Third Quarter Hanford Seismic Report for Fiscal Year 2009

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Rohay, Alan C.; Sweeney, Mark D.; Hartshorn, Donald C.

    2009-09-30

    The Hanford Seismic Assessment Program (HSAP) provides an uninterrupted collection of high-quality raw and processed seismic data from the Hanford Seismic Network for the U.S. Department of Energy and its contractors. The HSAP is responsible for locating and identifying sources of seismic activity and monitoring changes in the historical pattern of seismic activity at the Hanford Site. The data are compiled, archived, and published for use by the Hanford Site for waste management, natural phenomena hazards assessments, and engineering design and construction. In addition, the HSAP works with the Hanford Site Emergency Services Organization to provide assistance in the eventmore » of a significant earthquake on the Hanford Site. The Hanford Seismic Network and the Eastern Washington Regional Network consist of 44 individual sensor sites and 15 radio relay sites maintained by the Hanford Seismic Assessment Team. The Hanford Seismic Network recorded 771 local earthquakes during the third quarter of FY 2009. Nearly all of these earthquakes were detected in the vicinity of Wooded Island, located about eight miles north of Richland just west of the Columbia River. The Wooded Island events recorded this quarter is a continuation of the swarm events observed during the January – March 2009 time period and reported in the previous quarterly report (Rohay et al, 2009). The frequency of Wooded Island events has subsided with 16 events recorded during June 2009. Most of the events were considered minor (magnitude (Mc) less than 1.0) with 25 events in the 2.0-3.0 range. The estimated depths of the Wooded Island events are shallow (averaging less than 1.0 km deep) with a maximum depth estimated at 2.2 km. This places the Wooded Island events within the Columbia River Basalt Group (CRBG). The low magnitude of the Wooded Island events has made them undetectable to all but local area residents. However, some Hanford employees working within a few miles of the area of highest

  6. Near Two-Decade Instrument Performance for Hydrological Monitoring at the Prototype Hanford Barrier

    NASA Astrophysics Data System (ADS)

    Zhang, Z. F.; Strickland, C. E.; Clayton, R. E.

    2012-12-01

    Surface barriers have been proposed for use at the Department of Energy's Hanford Site as a means to isolate certain radioactive waste sites that, for reasons of cost or worker safety, may not be exhumed. The Hanford Prototype Barrier was constructed in 1994 using mostly natural materials to demonstrate its long-term performance. The barrier is expected to perform for at least 1000 years by limiting water, plant, animal, and human intrusion and minimizing erosion. Extensive instrumentation is used to monitor the hydrological regime above, within, below, and around the barrier. Specifically, natural precipitation and irrigation are measured with rain gauges, runoff water with a runoff flume, soil water content within the barrier at 12 stations with a neutron probe, a capacitance probe, and time-domain-reflectometry probes, and soil water pressure with gypsum blocks and heat-dissipation-units. Drainage through the barrier and the side slopes is measured with 12 water collection vaults, respectively, for 12 zones. Each drainage vault is equipped with a dosing siphon, a dose counter, a pressure transducer to measure the water level, and a tipping bucket to measure the inflow. During the near two-decade monitoring period, some of the instruments stopped functioning, while others still function normally till present. This presentation will summarize the performance of these instruments. Recommendations for future barrier monitoring will be given.

  7. CT of the chest with model-based, fully iterative reconstruction: comparison with adaptive statistical iterative reconstruction.

    PubMed

    Ichikawa, Yasutaka; Kitagawa, Kakuya; Nagasawa, Naoki; Murashima, Shuichi; Sakuma, Hajime

    2013-08-09

    The recently developed model-based iterative reconstruction (MBIR) enables significant reduction of image noise and artifacts, compared with adaptive statistical iterative reconstruction (ASIR) and filtered back projection (FBP). The purpose of this study was to evaluate lesion detectability of low-dose chest computed tomography (CT) with MBIR in comparison with ASIR and FBP. Chest CT was acquired with 64-slice CT (Discovery CT750HD) with standard-dose (5.7 ± 2.3 mSv) and low-dose (1.6 ± 0.8 mSv) conditions in 55 patients (aged 72 ± 7 years) who were suspected of lung disease on chest radiograms. Low-dose CT images were reconstructed with MBIR, ASIR 50% and FBP, and standard-dose CT images were reconstructed with FBP, using a reconstructed slice thickness of 0.625 mm. Two observers evaluated the image quality of abnormal lung and mediastinal structures on a 5-point scale (Score 5 = excellent and score 1 = non-diagnostic). The objective image noise was also measured as the standard deviation of CT intensity in the descending aorta. The image quality score of enlarged mediastinal lymph nodes on low-dose MBIR CT (4.7 ± 0.5) was significantly improved in comparison with low-dose FBP and ASIR CT (3.0 ± 0.5, p = 0.004; 4.0 ± 0.5, p = 0.02, respectively), and was nearly identical to the score of standard-dose FBP image (4.8 ± 0.4, p = 0.66). Concerning decreased lung attenuation (bulla, emphysema, or cyst), the image quality score on low-dose MBIR CT (4.9 ± 0.2) was slightly better compared to low-dose FBP and ASIR CT (4.5 ± 0.6, p = 0.01; 4.6 ± 0.5, p = 0.01, respectively). There were no significant differences in image quality scores of visualization of consolidation or mass, ground-glass attenuation, or reticular opacity among low- and standard-dose CT series. Image noise with low-dose MBIR CT (11.6 ± 1.0 Hounsfield units (HU)) were significantly lower than with low-dose ASIR (21.1 ± 2.6 HU, p < 0.0005), low-dose FBP CT (30.9 ± 3.9 HU, p < 0.0005), and

  8. LONG-TERM STEWARDSHIP AT DOE HANFORD SITE - 12575

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    MOREN RJ; GRINDSTAFF KD

    2012-01-11

    The U.S. Department of Energy's (DOE) Hanford Site is located in southeast Washington and consists of 1,518 square kilometers (586 square miles) of land. Established in 1943 as part of the Manhattan Project, Hanford workers produced plutonium for our nation's nuclear defense program until the mid 1980's. Since then, the site has been in cleanup mode that is being accomplished in phases. As we achieve remedial objectives and complete active cleanup, DOE will manage Hanford land under the Long-Term Stewardship (LTS) Program until completion of cleanup and the site becomes ready for transfer to the post cleanup landlord - currentlymore » planned for DOE's Office of Legacy Management (LM). We define Hanford's LTS Program in the ''Hanford Long-Term Stewardship Program Plan,'' (DOE/RL-201 0-35)[1], which describes the scope including the relationship between the cleanup projects and the LTS Program. DOE designed the LTS Program to manage and provide surveillance and maintenance (S&M) of institutional controls and associated monitoring of closed waste sites to ensure the protection of human health and the environment. DOE's Richland Operations Office (DOE-RL) and Hanford cleanup and operations contractors collaboratively developed this program over several years. The program's scope also includes 15 key activities that are identified in the DOE Program Plan (DOE/RL-2010-35). The LTS Program will transition 14 land segments through 2016. The combined land mass is approximately 570 square kilometers (220 square miles), with over 1,300 active and inactive waste sites and 3,363 wells. Land segments vary from buffer zone property with no known contamination to cocooned reactor buildings, demolished support facilities, and remediated cribs and trenches. DOE-RL will transition land management responsibilities from cleanup contractors to the Mission Support Contract (MSC), who will then administer the LTS Program for DOE-RL. This process requires an environment of cooperation

  9. Pulmonary nodules: effect of adaptive statistical iterative reconstruction (ASIR) technique on performance of a computer-aided detection (CAD) system-comparison of performance between different-dose CT scans.

    PubMed

    Yanagawa, Masahiro; Honda, Osamu; Kikuyama, Ayano; Gyobu, Tomoko; Sumikawa, Hiromitsu; Koyama, Mitsuhiro; Tomiyama, Noriyuki

    2012-10-01

    To evaluate the effects of ASIR on CAD system of pulmonary nodules using clinical routine-dose CT and lower-dose CT. Thirty-five patients (body mass index, 22.17 ± 4.37 kg/m(2)) were scanned by multidetector-row CT with tube currents (clinical routine-dose CT, automatically adjusted mA; lower-dose CT, 10 mA) and X-ray voltage (120 kVp). Each 0.625-mm-thick image was reconstructed at 0%-, 50%-, and 100%-ASIR: 0%-ASIR is reconstructed using only the filtered back-projection algorithm (FBP), while 100%-ASIR is reconstructed using the maximum ASIR and 50%-ASIR implies a blending of 50% FBP and ASIR. CAD output was compared retrospectively with the results of the reference standard which was established using a consensus panel of three radiologists. Data were analyzed using Bonferroni/Dunn's method. Radiation dose was calculated by multiplying dose-length product by conversion coefficient of 0.021. The consensus panel found 265 non-calcified nodules ≤ 30 mm (ground-glass opacity [GGO], 103; part-solid, 34; and solid, 128). CAD sensitivity was significantly higher at 100%-ASIR [clinical routine-dose CT, 71% (overall), 49% (GGO); lower-dose CT, 52% (overall), 67% (solid)] than at 0%-ASIR [clinical routine-dose CT, 54% (overall), 25% (GGO); lower-dose CT, 36% (overall), 50% (solid)] (p<0.001). Mean number of false-positive findings per examination was significantly higher at 100%-ASIR (clinical routine-dose CT, 8.5; lower-dose CT, 6.2) than at 0%-ASIR (clinical routine-dose CT, 4.6; lower-dose CT, 3.5; p<0.001). Effective doses were 10.77 ± 3.41 mSv in clinical routine-dose CT and 2.67 ± 0.17 mSv in lower-dose CT. CAD sensitivity at 100%-ASIR on lower-dose CT is almost equal to that at 0%-ASIR on clinical routine-dose CT. ASIR can increase CAD sensitivity despite increased false-positive findings. Copyright © 2011 Elsevier Ireland Ltd. All rights reserved.

  10. Central Plateau Cleanup at DOE's Hanford Site - 12504

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Dowell, Jonathan

    The discussion of Hanford's Central Plateau includes significant work in and around the center of the Hanford Site - located about 7 miles from the Columbia River. The Central Plateau is the area to which operations will be shrunk in 2015 when River Corridor cleanup is complete. This work includes retrieval and disposal of buried waste from miles of trenches; the cleanup and closure of massive processing canyons; the clean-out and demolition to 'slab on grade' of the high-hazard Plutonium Finishing Plant; installation of key groundwater treatment facilities to contain and shrink plumes of contaminated groundwater; demolition of all othermore » unneeded facilities; and the completion of decisions about remaining Central Plateau waste sites. A stated goal of EM has been to shrink the footprint of active cleanup to less than 10 square miles by 2020. By the end of FY2011, Hanford will have reduced the active footprint of cleanup by 64 percent exceeding the goal of 49 percent. By 2015, Hanford will reduce the active footprint of cleanup by more than 90 percent. The remaining footprint reduction will occur between 2015 and 2020. The Central Plateau is a 75-square-mile region near the center of the Hanford Site including the area designated in the Hanford Comprehensive Land Use Plan Environmental Impact Statement (DOE 1999) and Record of Decision (64 FR 61615) as the Industrial-Exclusive Area, a rectangular area of about 20 square miles in the center of the Central Plateau. The Industrial-Exclusive Area contains the 200 East and 200 West Areas that have been used primarily for Hanford's nuclear fuel processing and waste management and disposal activities. The Central Plateau also encompasses the 200 Area CERCLA National Priorities List site. The Central Plateau has a large physical inventory of chemical processing and support facilities, tank systems, liquid and solid waste disposal and storage facilities, utility systems, administrative facilities, and groundwater

  11. Hanford analytical sample projections FY 1998--FY 2002

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Joyce, S.M.

    1998-02-12

    Analytical Services projections are compiled for the Hanford site based on inputs from the major programs for the years 1998 through 2002. Projections are categorized by radiation level, protocol, sample matrix and program. Analyses requirements are also presented. This document summarizes the Hanford sample projections for fiscal years 1998 to 2002. Sample projections are based on inputs submitted to Analytical Services covering Environmental Restoration, Tank Waste Remediation Systems (TWRS), Solid Waste, Liquid Effluents, Spent Nuclear Fuels, Transition Projects, Site Monitoring, Industrial Hygiene, Analytical Services and miscellaneous Hanford support activities. In addition, details on laboratory scale technology (development) work, Sample Management,more » and Data Management activities are included. This information will be used by Hanford Analytical Services (HAS) and the Sample Management Working Group (SMWG) to assure that laboratories and resources are available and effectively utilized to meet these documented needs.« less

  12. MO-DE-207A-05: Dictionary Learning Based Reconstruction with Low-Rank Constraint for Low-Dose Spectral CT

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Xu, Q; Stanford University School of Medicine, Stanford, CA; Liu, H

    Purpose: Spectral CT enabled by an energy-resolved photon-counting detector outperforms conventional CT in terms of material discrimination, contrast resolution, etc. One reconstruction method for spectral CT is to generate a color image from a reconstructed component in each energy channel. However, given the radiation dose, the number of photons in each channel is limited, which will result in strong noise in each channel and affect the final color reconstruction. Here we propose a novel dictionary learning method for spectral CT that combines dictionary-based sparse representation method and the patch based low-rank constraint to simultaneously improve the reconstruction in each channelmore » and to address the inter-channel correlations to further improve the reconstruction. Methods: The proposed method has two important features: (1) guarantee of the patch based sparsity in each energy channel, which is the result of the dictionary based sparse representation constraint; (2) the explicit consideration of the correlations among different energy channels, which is realized by patch-by-patch nuclear norm-based low-rank constraint. For each channel, the dictionary consists of two sub-dictionaries. One is learned from the average of the images in all energy channels, and the other is learned from the average of the images in all energy channels except the current channel. With average operation to reduce noise, these two dictionaries can effectively preserve the structural details and get rid of artifacts caused by noise. Combining them together can express all structural information in current channel. Results: Dictionary learning based methods can obtain better results than FBP and the TV-based method. With low-rank constraint, the image quality can be further improved in the channel with more noise. The final color result by the proposed method has the best visual quality. Conclusion: The proposed method can effectively improve the image quality of low-dose

  13. Trends in erythemal doses at the Polish Polar Station, Hornsund, Svalbard based on the homogenized measurements (1996-2016) and reconstructed data (1983-1995)

    NASA Astrophysics Data System (ADS)

    Krzyścin, Janusz W.; Sobolewski, Piotr S.

    2018-01-01

    Erythemal daily doses measured at the Polish Polar Station, Hornsund (77°00' N, 15°33' E), for the periods 1996-2001 and 2005-2016 are homogenized using yearly calibration constants derived from the comparison of observed doses for cloudless conditions with the corresponding doses calculated by radiative transfer (RT) simulations. Modeled all-sky doses are calculated by the multiplication of cloudless RT doses by the empirical cloud modification factor dependent on the daily sunshine duration. An all-sky model is built using daily erythemal doses measured in the period 2005-2006-2007. The model is verified by comparisons with the 1996-1997-1998 and 2009-2010-2011 measured data. The daily doses since 1983 (beginning of the proxy data) are reconstructed using the all-sky model with the historical data of the column ozone from satellite measurements (SBUV merged ozone data set), the snow depth (for ground albedo estimation), and the observed daily sunshine duration at the site. Trend analyses of the monthly and yearly time series comprised of the reconstructed and observed doses do not reveal a statistically significant trend in the period 1983-2016. The trends based on the observed data only (1996-2001 and 2005-2016) show declining tendency (about -1 % per year) in the monthly mean of daily erythemal doses in May and June, and in the yearly sum of daily erythemal doses. An analysis of sources of the yearly dose variability since 1983 shows that cloud cover changes are a basic driver of the long-term UV changes at the site.

  14. Exposure Dose Reconstruction from EPR Spectra of Tooth Enamel Exposed to the Combined Effect of X-rays and Gamma Radiation

    NASA Astrophysics Data System (ADS)

    Kirillov, V. A.; Kuchuro, J. I.

    2014-09-01

    We have used EPR dosimetry on tooth enamel to show that the combined effect of x-rays with effective energy 34 keV and gamma radiation with average energy 1250 keV leads to a significant increase in the reconstructed absorbed dose compared with the applied dose from a gamma source or from an x-ray source or from both sources of electromagnetic radiation. In simulation experiments, we develop an approach to estimating the contribution of diagnostic x-rays to the exposure dose formed in the tooth enamel by the combined effect of x-rays and gamma radiation.

  15. Interim Safe Storage of Plutonium Production Reactors at the US DOE Hanford Site - 13438

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Schilperoort, Daryl L.; Faulk, Darrin

    2013-07-01

    Nine plutonium production reactors located on DOE's Hanford Site are being placed into an Interim Safe Storage (ISS) period that extends to 2068. The Environmental Impact Statement (EIS) for ISS [1] was completed in 1993 and proposed a 75-year storage period that began when the EIS was finalized. Remote electronic monitoring of the temperature and water level alarms inside the safe storage enclosure (SSE) with visual inspection inside the SSE every 5 years are the only planned operational activities during this ISS period. At the end of the ISS period, the reactor cores will be removed intact and buried inmore » a landfill on the Hanford Site. The ISS period allows for radioactive decay of isotopes, primarily Co-60 and Cs-137, to reduce the dose exposure during disposal of the reactor cores. Six of the nine reactors have been placed into ISS by having an SSE constructed around the reactor core. (authors)« less

  16. Disposal of Radioactive Waste at Hanford Creates Problems

    ERIC Educational Resources Information Center

    Chemical and Engineering News, 1978

    1978-01-01

    Radioactive storage tanks at the Hanford facility have developed leaks. The situation is presently considered safe, but serious. A report from the National Academy of Science has recommended that the wastes be converted to stable solids and stored at another site on the Hanford Reservation. (Author/MA)

  17. A qualitative and quantitative analysis of radiation dose and image quality of computed tomography images using adaptive statistical iterative reconstruction

    PubMed Central

    Mail, Noor; Shamy, Abdulrahman M.; Alghamdi, Suliman; Saoudi, Abdelhamid

    2016-01-01

    Image quality is a key issue in radiology, particularly in a clinical setting where it is important to achieve accurate diagnoses while minimizing radiation dose. Some computed tomography (CT) manufacturers have introduced algorithms that claim significant dose reduction. In this study, we assessed CT image quality produced by two reconstruction algorithms provided with GE Healthcare's Discovery 690 Elite positron emission tomography (PET) CT scanner. Image quality was measured for images obtained at various doses with both conventional filtered back‐projection (FBP) and adaptive statistical iterative reconstruction (ASIR) algorithms. A standard CT dose index (CTDI) phantom and a pencil ionization chamber were used to measure the CT dose at 120 kVp and an exposure of 260 mAs. Image quality was assessed using two phantoms. CT images of both phantoms were acquired at tube voltage (kV) of 120 with exposures ranging from 25 mAs to 400 mAs. Images were reconstructed using FBP and ASIR ranging from 10% to 100%, then analyzed for noise, low‐contrast detectability, contrast‐to‐noise ratio (CNR), and modulation transfer function (MTF). Noise was 4.6 HU in water phantom images acquired at 260 mAs/FBP 120 kV and 130 mAs/50% ASIR 120 kV. The large objects (frequency<7 lp/cm) retained fairly acceptable image quality at 130 mAs/50% ASIR, compared to 260 mAs/FBP. The application of ASIR for small objects (frequency>7 lp/cm) showed poor visibility compared to FBP at 260 mAs and even worse for images acquired at less than 130 mAs. ASIR blending more than 50% at low dose tends to reduce contrast of small objects (frequency>7 lp/cm). We concluded that dose reduction and ASIR should be applied with close attention if the objects to be detected or diagnosed are small (frequency>7 lp/cm). Further investigations are required to correlate the small objects (frequency>7 lp/cm) to patient anatomy and clinical diagnosis. PACS number(s): 87.57.‐s, 87.57.C, 87.57.cf, 87

  18. Leaching Characteristics of Hanford Ferrocyanide Wastes

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Edwards, Matthew K.; Fiskum, Sandra K.; Peterson, Reid A.

    2009-12-21

    A series of leach tests were performed on actual Hanford Site tank wastes in support of the Hanford Tank Waste Treatment and Immobilization Plant (WTP). The samples were targeted composite slurries of high-level tank waste materials representing major complex, radioactive, tank waste mixtures at the Hanford Site. Using a filtration/leaching apparatus, sample solids were concentrated, caustic leached, and washed under conditions representative of those planned for the Pretreatment Facility in the WTP. Caustic leaching was performed to assess the mobilization of aluminum (as gibbsite, Al[OH]3, and boehmite AlO[OH]), phosphates [PO43-], chromium [Cr3+] and, to a lesser extent, oxalates [C2O42-]). Ferrocyanidemore » waste released the solid phase 137Cs during caustic leaching; this was antithetical to the other Hanford waste types studied. Previous testing on ferrocyanide tank waste focused on the aging of the ferrocyanide salt complex and its thermal compatibilities with nitrites and nitrates. Few studies, however, examined cesium mobilization in the waste. Careful consideration should be given to the pretreatment of ferrocyanide wastes in light of this new observed behavior, given the fact that previous testing on simulants indicates a vastly different cesium mobility in this waste form. The discourse of this work will address the overall ferrocyanide leaching characteristics as well as the behavior of the 137Cs during leaching.« less

  19. Hanford Site National Environmental Policy Act (NEPA) Characterization

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Duncan, Joanne P.; Burk, Kenneth W.; Chamness, Mickie A.

    2007-09-27

    This document describes the U.S. Department of Energy’s (DOE) Hanford Site environment. It is intended to provide a consistent description of the Hanford Site for the many environmental documents being prepared by DOE contractors concerning the National Environmental Policy Act (NEPA). No statements regarding significance or environmental consequences are provided. This year’s report is the eighteen revision of the original document published in 1988 and is (until replaced by the nineteenth revision) the only version that is relevant for use in the preparation of Hanford NEPA, State Environmental Policy Act (SEPA), and Comprehensive Environmental Response, Compensation, and Liability Act (CERCLA)more » documents. Two chapters are included in this document (Chapters 4 and 6), numbered to correspond to chapters typically presented in environmental impact statements (EISs) and other Hanford Site NEPA or CERCLA documentation. Chapter 4.0 (Affected Environment) describes Hanford Site climate and meteorology; air quality; geology; hydrology; ecology; cultural, archaeological, and historical resources; socioeconomics; noise; and occupational health and safety. Sources for extensive tabular data related to these topics are provided in the chapter. When possible, subjects are divided into a general description of the characteristics of the Hanford Site, followed by site-specific information, where available, for the 100, 200, 300 and other areas. This division allows the reader to go directly to those sections of particular interest. When specific information on each of these separate areas is not complete or available, the general Hanford Site description should be used. Chapter 6.0 (Statutory and Regulatory Requirements) describes federal and state laws and regulations, DOE directives and permits, and presidential executive orders that are applicable to NEPA documents prepared for Hanford Site activities. Information in Chapter 6 can be adapted and supplemented with

  20. Overview of Hanford Single Shell Tank (SST) Structural Integrity

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Rast, Richard S.; Washenfelder, Dennis J.; Johnson, Jeremy M.

    2013-11-14

    To improve the understanding of the single-shell tanks (SSTs) integrity, Washington River Protection Solutions, LLC (WRPS), the USDOE Hanford Site tank contractor, developed an enhanced Single-Shell Tank Integrity Project (SSTIP) in 2009. An expert panel on SST integrity, consisting of various subject matters experts in industry and academia, was created to provide recommendations supporting the development of the project. This panel developed 33 recommendations in four main areas of interest: structural integrity, liner degradation, leak integrity and prevention, and mitigation of contamination migration, Seventeen of these recommendations were used to develop the basis for the M-45-10-1 Change Package for themore » Hanford Federal Agreement and Compliance Order, which is also known as the Tri-Party Agreement. The structural integrity of the tanks is a key element in completing the cleanup mission at the Hanford Site. There are eight primary recommendations related to the structural integrity of Hanford Single-Shell Tanks. Six recommendations are being implemented through current and planned activities. The structural integrity of the Hanford is being evaluated through analysis, monitoring, inspection, materials testing, and construction document review. Structural evaluation in the form of analysis is performed using modern finite element models generated in ANSYS. The analyses consider in-situ, thermal, operating loads and natural phenomena such as earthquakes. Structural analysis of 108 of 149 Hanford Single-Shell Tanks has concluded that the tanks are structurally sound and meet current industry standards. Analysis of the remaining Hanford Single-Shell Tanks is scheduled for FY2014. Hanford Single-Shell Tanks are monitored through a dome deflection program. The program looks for deflections of the tank dome greater than 1/4 inch. No such deflections have been recorded. The tanks are also subjected to visual inspection. Digital cameras record the interior

  1. Hanford Reach Fall Chinook Redd Monitoring Report for Calendar Year 2013

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lindsey, Cole T.; Nugent, John J.

    2014-02-10

    The U.S. Department of Energy, Richland Operations Office (DOE-RL) conducts ecological monitoring on the Hanford Site to collect and track data needed to ensure compliance with an array of environmental laws, regulations, and policies governing DOE activities. Ecological monitoring data provide baseline information about the plants, animals, and habitat under DOE-RL stewardship at Hanford required for decision-making under the National Environmental Policy Act (NEPA) and Comprehensive Environmental Response, Compensation, and Liability Act (CERCLA). The Hanford Site Comprehensive Land Use Plan (CLUP, DOE/EIS-0222-F) which is the Environmental Impact Statement for Hanford Site activities, helps ensure that DOE-RL, its contractors, and othermore » entities conducting activities on the Hanford Site are in compliance with NEPA.« less

  2. Hanford Site Black-Tailed Jackrabbit Monitoring Report for Fiscal Year 2013

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lindsey, Cole T.; Nugent, John J.; Wilde, Justin W.

    2014-02-13

    The U.S. Department of Energy, Richland Operations Office (DOE-RL) conducts ecological monitoring on the Hanford Site to collect and track data needed to ensure compliance with an array of environmental laws, regulations, and policies governing DOE activities. Ecological monitoring data provide baseline information about the plants, animals, and habitat under DOE-RL stewardship at Hanford required for decision-making under the National Environmental Policy Act (NEPA) and Comprehensive Environmental Response, Compensation, and Liability Act (CERCLA). The Hanford Site Comprehensive Land Use Plan (CLUP, DOE/EIS-0222-F) which is the Environmental Impact Statement for Hanford Site activities, helps ensure that DOE-RL, its contractors, and othermore » entities conducting activities on the Hanford Site are in compliance with NEPA.« less

  3. Impact of adaptive statistical iterative reconstruction on radiation dose in evaluation of trauma patients.

    PubMed

    Maxfield, Mark W; Schuster, Kevin M; McGillicuddy, Edward A; Young, Calvin J; Ghita, Monica; Bokhari, S A Jamal; Oliva, Isabel B; Brink, James A; Davis, Kimberly A

    2012-12-01

    A recent study showed that computed tomographic (CT) scans contributed 93% of radiation exposure of 177 patients admitted to our Level I trauma center. Adaptive statistical iterative reconstruction (ASIR) is an algorithm that reduces the noise level in reconstructed images and therefore allows the use of less ionizing radiation during CT scans without significantly affecting image quality. ASIR was instituted on all CT scans performed on trauma patients in June 2009. Our objective was to determine if implementation of ASIR reduced radiation dose without compromising patient outcomes. We identified 300 patients activating the trauma system before and after the implementation of ASIR imaging. After applying inclusion criteria, 245 charts were reviewed. Baseline demographics, presenting characteristics, number of delayed diagnoses, and missed injuries were recorded. The postexamination volume CT dose index (CTDIvol) and dose-length product (DLP) reported by the scanner for CT scans of the chest, abdomen, and pelvis and CT scans of the brain and cervical spine were recorded. Subjective image quality was compared between the two groups. For CT scans of the chest, abdomen, and pelvis, the mean CTDIvol (17.1 mGy vs. 14.2 mGy; p < 0.001) and DLP (1,165 mGy·cm vs. 1,004 mGy·cm; p < 0.001) was lower for studies performed with ASIR. For CT scans of the brain and cervical spine, the mean CTDIvol (61.7 mGy vs. 49.6 mGy; p < 0.001) and DLP (1,327 mGy·cm vs. 1,067 mGy·cm; p < 0.001) was lower for studies performed with ASIR. There was no subjective difference in image quality between ASIR and non-ASIR scans. All CT scans were deemed of good or excellent image quality. There were no delayed diagnoses or missed injuries related to CT scanning identified in either group. Implementation of ASIR imaging for CT scans performed on trauma patients led to a nearly 20% reduction in ionizing radiation without compromising outcomes or image quality. Therapeutic study, level IV.

  4. Impact of adaptive statistical iterative reconstruction on radiation dose in evaluation of trauma patients

    PubMed Central

    Maxfield, Mark W.; Schuster, Kevin M.; McGillicuddy, Edward A.; Young, Calvin J.; Ghita, Monica; Bokhari, S.A. Jamal; Oliva, Isabel B.; Brink, James A.; Davis, Kimberly A.

    2013-01-01

    BACKGROUND A recent study showed that computed tomographic (CT) scans contributed 93% of radiation exposure of 177 patients admitted to our Level I trauma center. Adaptive statistical iterative reconstruction (ASIR) is an algorithm that reduces the noise level in reconstructed images and therefore allows the use of less ionizing radiation during CT scans without significantly affecting image quality. ASIR was instituted on all CT scans performed on trauma patients in June 2009. Our objective was to determine if implementation of ASIR reduced radiation dose without compromising patient outcomes. METHODS We identified 300 patients activating the trauma system before and after the implementation of ASIR imaging. After applying inclusion criteria, 245 charts were reviewed. Baseline demographics, presenting characteristics, number of delayed diagnoses, and missed injuries were recorded. The postexamination volume CT dose index (CTDIvol) and dose-length product (DLP)reported by the scanner for CT scans of the chest, abdomen, and pelvis and CT scans of the brain and cervical spine were recorded. Subjective image quality was compared between the two groups. RESULTS For CT scans of the chest, abdomen, and pelvis, the mean CTDIvol(17.1 mGy vs. 14.2 mGy; p < 0.001) and DLP (1,165 mGy·cm vs. 1,004 mGy·cm; p < 0.001) was lower for studies performed with ASIR. For CT scans of the brain and cervical spine, the mean CTDIvol(61.7 mGy vs. 49.6 mGy; p < 0.001) and DLP (1,327 mGy·cm vs. 1,067 mGy·cm; p < 0.001) was lower for studies performed with ASIR. There was no subjective difference in image quality between ASIR and non-ASIR scans. All CT scans were deemed of good or excellent image quality. There were no delayed diagnoses or missed injuries related to CT scanning identified in either group. CONCLUSION Implementation of ASIR imaging for CT scans performed on trauma patients led to a nearly 20% reduction in ionizing radiation without compromising outcomes or image quality

  5. Potential of combining iterative reconstruction with noise efficient detector design: aggressive dose reduction in head CT

    PubMed Central

    Bender, B; Schabel, C; Fenchel, M; Ernemann, U; Korn, A

    2015-01-01

    Objective: With further increase of CT numbers and their dominant contribution to medical exposure, there is a recent quest for more effective dose control. While reintroduction of iterative reconstruction (IR) has proved its potential in many applications, a novel focus is placed on more noise efficient detectors. Our purpose was to assess the potential of IR in combination with an integrated circuit detector (ICD) for aggressive dose reduction in head CT. Methods: Non-contrast low-dose head CT [190 mAs; weighted volume CT dose index (CTDIvol), 33.2 mGy] was performed in 50 consecutive patients, using a new noise efficient detector and IR. Images were assessed in terms of quantitative and qualitative image quality and compared with standard dose acquisitions (320 mAs; CTDIvol, 59.7 mGy) using a conventional detector and filtered back projection. Results: By combining ICD and IR in low-dose examinations, the signal to noise was improved by about 13% above the baseline level in the standard-dose control group. Both, contrast-to-noise ratio (2.02 ± 0.6 vs 1.88 ± 0.4; p = 0.18) and objective measurements of image sharpness (695 ± 84 vs 705 ± 151 change in Hounsfield units per pixel; p = 0.79) were fully preserved in the low-dose group. Likewise, there was no significant difference in the grading of several subjective image quality parameters when both noise-reducing strategies were used in low-dose examinations. Conclusion: Combination of noise efficient detector with IR allows for meaningful dose reduction in head CT without compromise of standard image quality. Advances in knowledge: Our study demonstrates the feasibility of almost 50% dose reduction in head CT dose (1.1 mSv per scan) through combination of novel dose-reducing strategies. PMID:25827204

  6. Raptors of the Hanford Site and nearby areas of southcentral Washington

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Fitzner, R.E.; Rickard, W.H.; Cadwell, L.L.

    1981-05-01

    This report is concerned with the birds of prey which use the Hanford Site not only during the nesting season but throughout the year. An ecological treatment of five nesting owls (great horned, long-eared, short-eared, barn and burrowing) and five nesting hawks (marsh hawk, red-tailed hawk, Swainson's hawk, prairie falcon and American kestrel) is provided and supportive information on non-nesting species is presented. Factors which control raptor densities and population dynamics throughout all seasons of the year are discussed. Information is also provided for raptors from other areas of southcentral Washington in order to yield a comprehensive picture of howmore » the Hanford Site fits in with regional bird of prey populations. The following were the objectives of this study: (1) to determine the numbers of birds of prey nesting on the Hanford Site, (2) to document the reproductive chronology of each nesting raptor species, (3) to provide analyses of food habits of birds of prey on the Hanford Site coupled with prey abundance data, (4) to determine the productivity of the dominant large birds of prey on the Hanford Site, (5) to determine the distribution and land use patterns of all raptors on the Hanford Site, (6) to determine the kinds and relative abundance of non-nesting raptors on the Hanford Site and adjacent areas of southcentral Washington (7) to document present land use practices on the Hanford Site and their effects on raptors, (8) to document radionuclide levels in birds of prey on the Hanford Site, and (9) to determine the role of birds of prey in radioecological monitoring.« less

  7. Building Nuclear Communities: The Hanford Education Action League.

    ERIC Educational Resources Information Center

    Ratliff, Jeanne; Salvador, Michael

    Many scholars have examined the jeremiad in American rhetoric and political discourse. The Hanford Education Action League (HEAL), which influenced policy changes in the operations of the Hanford Nuclear Reservation in Washington, is a social movement organization whose founding members used the jeremiad to create a symbolic community which…

  8. Adaptive statistical iterative reconstruction and Veo: assessment of image quality and diagnostic performance in CT colonography at various radiation doses.

    PubMed

    Yoon, Min A; Kim, Se Hyung; Lee, Jeong Min; Woo, Hyoun Sik; Lee, Eun Sun; Ahn, Se Jin; Han, Joon Koo

    2012-01-01

    To evaluate the diagnostic performance of computed tomography (CT) colonography (CTC) reconstructed with different levels of adaptive statistical iterative reconstruction (ASiR, GE Healthcare) and Veo (model-based iterative reconstruction, GE Healthcare) at various tube currents in detection of polyps in porcine colon phantoms. Five porcine colon phantoms with 46 simulated polyps were scanned at different radiation doses (10, 30, and 50 mA s) and were reconstructed using filtered back projection (FBP), ASiR (20%, 40%, and 60%) and Veo. Eleven data sets for each phantom (10-mA s FBP, 10-mA s 20% ASiR, 10-mA s 40% ASiR, 10-mA s 60% ASiR, 10-mA s Veo, 30-mA s FBP, 30-mA s 20% ASiR, 30-mA s 40% ASiR, 30-mA s 60% ASiR, 30-mA s Veo, and 50-mA s FBP) yielded a total of 55 data sets. Polyp detection sensitivity and confidence level of 2 independent observers were evaluated with the McNemar test, the Fisher exact test, and receiver operating characteristic curve analysis. Comparative analyses of overall image quality score, measured image noise, and interpretation time were also performed. Per-polyp detection sensitivities and specificities were highest in 10-mA s Veo, 30-mA s FBP, 30-mA s 60% ASiR, and 50-mA s FBP (sensitivity, 100%; specificity, 100%). The area-under-the-curve values for the overall performance of each data set was also highest (1.000) at 50-mA s FBP, 30-mA s FBP, 30-mA s 60% ASiR, and 10-mA s Veo. Images reconstructed with ASiR showed statistically significant improvement in per-polyp detection sensitivity as the percent level of per-polyp sensitivity increased (10-mA s FBP vs 10-mA s 20% ASiR, P = 0.011; 10-mA s FBP vs 10-mA s 40% ASiR, P = 0.000; 10-mA s FBP vs 10-mA s 60% ASiR, P = 0.000; 10-mA s 20% ASiR vs 40% ASiR, P = 0.034). Overall image quality score was highest at 30-mA s Veo and 50-mA s FBP. The quantitative measurement of the image noise was lowest at 30-mA s Veo and second lowest at 10-mA s Veo. There was a trend of decrease in time

  9. Combining automatic tube current modulation with adaptive statistical iterative reconstruction for low-dose chest CT screening.

    PubMed

    Chen, Jiang-Hong; Jin, Er-Hu; He, Wen; Zhao, Li-Qin

    2014-01-01

    To reduce radiation dose while maintaining image quality in low-dose chest computed tomography (CT) by combining adaptive statistical iterative reconstruction (ASIR) and automatic tube current modulation (ATCM). Patients undergoing cancer screening (n = 200) were subjected to 64-slice multidetector chest CT scanning with ASIR and ATCM. Patients were divided into groups 1, 2, 3, and 4 (n = 50 each), with a noise index (NI) of 15, 20, 30, and 40, respectively. Each image set was reconstructed with 4 ASIR levels (0% ASIR, 30% ASIR, 50% ASIR, and 80% ASIR) in each group. Two radiologists assessed subjective image noise, image artifacts, and visibility of the anatomical structures. Objective image noise and signal-to-noise ratio (SNR) were measured, and effective dose (ED) was recorded. Increased NI was associated with increased subjective and objective image noise results (P<0.001), and SNR decreased with increasing NI (P<0.001). These values improved with increased ASIR levels (P<0.001). Images from all 4 groups were clinically diagnosable. Images with NI = 30 and 50% ASIR had average subjective image noise scores and nearly average anatomical structure visibility scores, with a mean objective image noise of 23.42 HU. The EDs for groups 1, 2, 3 and 4 were 2.79 ± 1.17, 1.69 ± 0.59, 0.74 ± 0.29, and 0.37 ± 0.22 mSv, respectively. Compared to group 1 (NI = 15), the ED reductions were 39.43%, 73.48%, and 86.74% for groups 2, 3, and 4, respectively. Using NI = 30 with 50% ASIR in the chest CT protocol, we obtained average or above-average image quality but a reduced ED.

  10. Low-Contrast and Low-Radiation Dose Protocol in Cardiac Computed Tomography: Usefulness of Low Tube Voltage and Knowledge-Based Iterative Model Reconstruction Algorithm.

    PubMed

    Iyama, Yuji; Nakaura, Takeshi; Yokoyama, Koichi; Kidoh, Masafumi; Harada, Kazunori; Oda, Seitaro; Tokuyasu, Shinichi; Yamashita, Yasuyuki

    This study aimed to evaluate the feasibility of a low contrast, low-radiation dose protocol of 80-peak kilovoltage (kVp) with prospective electrocardiography-gated cardiac computed tomography (CT) using knowledge-based iterative model reconstruction (IMR). Thirty patients underwent an 80-kVp prospective electrocardiography-gated cardiac CT with low-contrast agent (222-mg iodine per kilogram of body weight) dose. We also enrolled 30 consecutive patients who were scanned with a 120-kVp cardiac CT with filtered back projection using the standard contrast agent dose (370-mg iodine per kilogram of body weight) as a historical control group. We evaluated the radiation dose for the 2 groups. The 80-kVp images were reconstructed with filtered back projection (protocol A), hybrid iterative reconstruction (HIR, protocol B), and IMR (protocol C). We compared CT numbers, image noise, and contrast-to-noise ratio among 120-kVp protocol, protocol A, protocol B, and protocol C. In addition, we compared the noise reduction rate between HIR and IMR. Two independent readers compared image contrast, image noise, image sharpness, unfamiliar image texture, and overall image quality among the 4 protocols. The estimated effective dose (ED) of the 80-kVp protocol was 74% lower than that of the 120-kVp protocol (1.4 vs 5.4 mSv). The contrast-to-noise ratio of protocol C was significantly higher than that of protocol A. The noise reduction rate of IMR was significantly higher than that of HIR (P < 0.01). There was no significant difference in almost all qualitative image quality between 120-kVp protocol and protocol C except for image contrast. A 80-kVp protocol with IMR yields higher image quality with 74% decreased radiation dose and 40% decreased contrast agent dose as compared with a 120-kVp protocol, while decreasing more image noise compared with the 80-kVp protocol with HIR.

  11. HANFORD SITE CENTRAL PLATEAU CLEANUP COMPLETION STRATEGY

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    BERGMAN TB

    2011-01-14

    Cleanup of the Hanford Site is a complex and challenging undertaking. The U.S. Department of Energy (DOE) has developed a comprehensive vision for completing Hanford's cleanup mission including transition to post-cleanup activities. This vision includes 3 principle components of cleanup: the {approx}200 square miles ofland adjacent to the Columbia River, known as the River Corridor; the 75 square miles of land in the center of the Hanford Site, where the majority of the reprocessing and waste management activities have occurred, known as the Central Plateau; and the stored reprocessing wastes in the Central Plateau, the Tank Wastes. Cleanup of themore » River Corridor is well underway and is progressing towards completion of most cleanup actions by 2015. Tank waste cleanup is progressing on a longer schedule due to the complexity of the mission, with construction of the largest nuclear construction project in the United States, the Waste Treatment Plant, over 50% complete. With the progress on the River Corridor and Tank Waste, it is time to place increased emphasis on moving forward with cleanup of the Central Plateau. Cleanup of the Hanford Site has been proceeding under a framework defmed in the Hanford Federal Facility Agreement and Consent Order (Tri-Party Agreement). In early 2009, the DOE, the State of Washington Department of Ecology, and the U.S. Environmental Protection Agency signed an Agreement in Principle in which the parties recognized the need to develop a more comprehensive strategy for cleanup of the Central Plateau. DOE agreed to develop a Central Plateau Cleanup Completion Strategy as a starting point for discussions. This DOE Strategy was the basis for negotiations between the Parties, discussions with the State of Oregon, the Hanford Advisory Board, and other Stakeholder groups (including open public meetings), and consultation with the Tribal Nations. The change packages to incorporate the Central Plateau Cleanup Completion Strategy were

  12. New scanning technique using Adaptive Statistical Iterative Reconstruction (ASIR) significantly reduced the radiation dose of cardiac CT.

    PubMed

    Tumur, Odgerel; Soon, Kean; Brown, Fraser; Mykytowycz, Marcus

    2013-06-01

    The aims of our study were to evaluate the effect of application of Adaptive Statistical Iterative Reconstruction (ASIR) algorithm on the radiation dose of coronary computed tomography angiography (CCTA) and its effects on image quality of CCTA and to evaluate the effects of various patient and CT scanning factors on the radiation dose of CCTA. This was a retrospective study that included 347 consecutive patients who underwent CCTA at a tertiary university teaching hospital between 1 July 2009 and 20 September 2011. Analysis was performed comparing patient demographics, scan characteristics, radiation dose and image quality in two groups of patients in whom conventional Filtered Back Projection (FBP) or ASIR was used for image reconstruction. There were 238 patients in the FBP group and 109 patients in the ASIR group. There was no difference between the groups in the use of prospective gating, scan length or tube voltage. In ASIR group, significantly lower tube current was used compared with FBP group, 550 mA (450-600) vs. 650 mA (500-711.25) (median (interquartile range)), respectively, P < 0.001. There was 27% effective radiation dose reduction in the ASIR group compared with FBP group, 4.29 mSv (2.84-6.02) vs. 5.84 mSv (3.88-8.39) (median (interquartile range)), respectively, P < 0.001. Although ASIR was associated with increased image noise compared with FBP (39.93 ± 10.22 vs. 37.63 ± 18.79 (mean ± standard deviation), respectively, P < 0.001), it did not affect the signal intensity, signal-to-noise ratio, contrast-to-noise ratio or the diagnostic quality of CCTA. Application of ASIR reduces the radiation dose of CCTA without affecting the image quality. © 2013 The Authors. Journal of Medical Imaging and Radiation Oncology © 2013 The Royal Australian and New Zealand College of Radiologists.

  13. Accuracy of lung nodule volumetry in low-dose CT with iterative reconstruction: an anthropomorphic thoracic phantom study

    PubMed Central

    Doo, K W; Yong, H S; Woo, O H; Lee, K Y; Oh, Y-W

    2014-01-01

    Objective: The purpose of this study was to assess accuracy of lung nodule volumetry in low-dose CT with application of iterative reconstruction (IR) according to nodule size, nodule density and CT tube currents, using artificial lung nodules within an anthropomorphic thoracic phantom. Methods: Eight artificial nodules (four diameters: 5, 8, 10 and 12 mm; two CT densities: −630 HU that represents ground-glass nodule and +100 HU that represents solid nodule) were randomly placed inside a thoracic phantom. Scans were performed with tube current–time product to 10, 20, 30 and 50 mAs. Images were reconstructed with IR and filtered back projection (FBP). We compared volume estimates to a reference standard and calculated the absolute percentage error (APE). Results: The APE of all nodules was significantly lower when IR was used than with FBP (7.5 ± 4.7% compared with 9.0 ±6.9%; p < 0.001). The effect of IR was more pronounced for smaller nodules (p < 0.001). IR showed a significantly lower APE than FBP in ground-glass nodules (p < 0.0001), and the difference was more pronounced at the lowest tube current (11.8 ± 5.9% compared with 21.3 ± 6.1%; p < 0.0001). The effect of IR was most pronounced for ground-glass nodules in the lowest CT tube current. Conclusion: Lung nodule volumetry in low-dose CT by application of IR showed reliable accuracy in a phantom study. Lung nodule volumetry can be reliably applicable to all lung nodules including small, ground-glass nodules even in ultra-low-dose CT with application of IR. Advances in knowledge: IR significantly improved the accuracy of lung nodule volumetry compared with FBP particularly for ground-glass (−630 HU) nodules. Volumetry in low-dose CT can be utilized in patient with lung nodule work-up, and IR has benefit for small, ground-glass lung nodules in low-dose CT. PMID:25026866

  14. Reconstruction of Internal Doses for the Alpha-Risk Case-Control Study of Lung Cancer and Leukaemia Among European Nuclear Workers.

    PubMed

    Bingham, Derek; Bérard, Philippe; Birchall, Alan; Bull, Richard; Cardis, Elisabeth; Challeton-de Vathaire, Cécile; Grellier, James; Hurtgen, Christian; Puncher, Matthew; Riddell, Anthony; Thierry-Chef, Isabelle

    2017-05-01

    The Alpha-Risk study required the reconstruction of doses to lung and red bone marrow for lung cancer and leukaemia cases and their matched controls from cohorts of nuclear workers in the UK, France and Belgium. The dosimetrists and epidemiologists agreed requirements regarding the bioassay data, biokinetic and dosimetric models and dose assessment software to be used and doses to be reported. The best values to use for uncertainties on the monitoring data, setting of exposure regimes and characteristics of the exposure material, including lung solubility, were the responsibility of the dosimetrist responsible for each cohort. Among 1721 subjects, the median absorbed dose to the lung from alpha radiations was 2.1 mGy, with a maximum dose of 316 mGy. The lung doses calculated reflect the higher levels of exposure seen among workers in the early years of the nuclear industry compared to today. © Crown copyright 2016.

  15. Tissue radionuclide concentrations in water birds and upland birds on the Hanford Site (USA) from 1971-2009.

    PubMed

    Delistraty, Damon; Van Verst, Scott

    2011-08-01

    Historical operations at the Hanford Site (Washington State, USA) have released a wide array of non-radionuclide and radionuclide contaminants into the environment. As a result, there is a need to characterize contaminant effects on site biota. Within this framework, the main purpose of our study was to evaluate radionuclide concentrations in bird tissue, obtained from the Hanford Environmental Information System (HEIS). The database was sorted by avian group (water bird vs. upland bird), radionuclide (over 20 analytes), tissue (muscle, bone, liver), location (onsite vs. offsite), and time period (1971-1990 vs. 1991-2009). Onsite median concentrations in water birds were significantly higher (Bonferroni P < 0.05) than those in onsite upland birds for Cs-137 in muscle (1971-1990) and Sr-90 in bone (1991-2009), perhaps due to behavioral, habitat, or trophic species differences. Onsite median concentrations in water birds were higher (borderline significance with Bonferroni P = 0.05) than those in offsite birds for Cs-137 in muscle (1971-1990). Onsite median concentrations in the earlier time period were significantly higher (Bonferroni P < 0.05) than those in the later time period for Co-60, Cs-137, Eu-152, and Sr-90 in water bird muscle and for Cs-137 in upland bird muscle tissue. Median concentrations of Sr-90 in bone were significantly higher (Bonferroni P < 0.05) than those in muscle for both avian groups and both locations. Over the time period, 1971-2009, onsite median internal dose was estimated for each radionuclide in water bird and upland bird tissues. However, a meaningful dose comparison between bird groups was not possible, due to a dissimilar radionuclide inventory, mismatch of time periods for input radionuclides, and lack of an external dose estimate. Despite these limitations, our results contribute toward ongoing efforts to characterize ecological risk at the Hanford Site. Copyright © 2011 Elsevier Ltd. All rights reserved.

  16. Hanford Site National Environmental Policy Act (NEPA) Characterization, Revision 15

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Neitzel, Duane A.; Bunn, Amoret L.; Burk, Kenneth W.

    2003-09-01

    This document describes the U.S. Department of Energy's (DOE) Hanford Site environment. It is updated each year and is intended to provide a consistent description of the Hanford Site environment for the many National Environmental Policy Act (NEPA) documents being prepared by DOE contractors. No statements of significance or environmental consequences are provided. This year's report is the thirteenth revision of the original document published in 1988 and is (until replaced by the fourteenth revision) the only version that is relevant for use in the preparation of Hanford NEPA, State Environmental Policy Act (SEPA), and Comprehensive Environmental Response, Compensation, andmore » Liability Act (CERCLA) documents. The two chapters included in this document (Chapters 4 and 6) are numbered to correspond to the chapters where such information is typically presented in environmental impact statements (Weiss) and other Hanford Site NEPA or CERCLA documentation. Chapter 4.0 (Affected Environment) describes Hanford Site climate and meteorology, geology, hydrology, ecology, cultural, archaeological, and historical resources, socioeconomics, occupational safety, and noise. Chapter 6.0 (Statutory and Regulatory Requirements) describes federal and state laws and regulations, DOE directives and permits, and presidential executive orders that are applicable to the NEPA documents prepared for Hanford Site activities.« less

  17. Hanford Soil Inventory Model (SIM-v2) Calculated Radionuclide Inventory of Direct Liquid Discharges to Soil in the Hanford Site's 200 Areas.

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Nichols, William E.; Zaher, U.; Agnew, S.

    The Hanford soil inventory model (SIM) provides the basic radionuclide and chemical soil inventories from historical liquid discharges to about 400 sites at the Hanford Site. Although liquid discharge inventory for chemicals is part of the SIM implementation, only radionuclide inventory is discussed here since the focus of this ECF is on providing radionuclides inputs for the composite analysis (CA) per DOE Order 435.1, Radioactive Waste Management, requirements. Furthermore, discharged inventories are only estimated for the soluble portions of the liquid discharges to waste sites/waste management areas located on the 200 Area of the Hanford Site (Central Plateau).

  18. Field-size dependence of doses of therapeutic carbon beams.

    PubMed

    Kusano, Yohsuke; Kanai, Tatsuaki; Yonai, Shunsuke; Komori, Masataka; Ikeda, Noritoshi; Tachikawa, Yuji; Ito, Atsushi; Uchida, Hirohisa

    2007-10-01

    To estimate the physical dose at the center of spread-out Bragg peaks (SOBP) for various conditions of the irradiation system, a semiempirical approach was applied. The dose at the center of the SOBP depends on the field size because of large-angle scattering particles in the water phantom. For a small field of 5 x 5 cm2, the dose was reduced to 99.2%, 97.5%, and 96.5% of the dose used for the open field in the case of 290, 350, and 400 MeV/n carbon beams, respectively. Based on the three-Gaussian form of the lateral dose distributions of the carbon pencil beam, which has previously been shown to be effective for describing scattered carbon beams, we reconstructed the dose distributions of the SOBP beam. The reconstructed lateral dose distribution reproduced the measured lateral dose distributions very well. The field-size dependencies calculated using the reconstructed lateral dose distribution of the therapeutic carbon beam agreed with the measured dose dependency very well. The reconstructed beam was also used for irregularly shaped fields. The resultant dose distribution agreed with the measured dose distribution. The reconstructed beams were found to be applicable to the treatment-planning system.

  19. Second Quarter Hanford Seismic Report for Fiscal Year 2010

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Rohay, Alan C.; Sweeney, Mark D.; Hartshorn, Donald C.

    2010-06-30

    The Hanford Seismic Assessment Program (HSAP) provides an uninterrupted collection of high-quality raw and processed seismic data from the Hanford Seismic Network for the U.S. Department of Energy and its contractors. The HSAP is responsible for locating and identifying sources of seismic activity and monitoring changes in the historical pattern of seismic activity at the Hanford Site. The data are compiled, archived, and published for use by the Hanford Site for waste management, natural phenomena hazards assessments, and engineering design and construction. In addition, the HSAP works with the Hanford Site Emergency Services Organization to provide assistance in the eventmore » of a significant earthquake on the Hanford Site. The Hanford Seismic Network and the Eastern Washington Regional Network consist of 44 individual sensor sites and 15 radio relay sites maintained by the Hanford Seismic Assessment Team. The Hanford Seismic Network recorded 90 local earthquakes during the second quarter of FY 2010. Eighty-one of these earthquakes were detected in the vicinity of Wooded Island, located about eight miles north of Richland just west of the Columbia River. The Wooded Island events recorded this quarter were a continuation of the swarm events observed during the 2009 and 2010 fiscal years and reported in previous quarterly and annual reports (Rohay et al; 2009a, 2009b, 2009c, and 2010). Most of the events were considered minor (coda-length magnitude [Mc] less than 1.0) with only 1 event in the 2.0-3.0 range; the maximum magnitude event (3.0 Mc) occurred February 4, 2010 at depth 2.4 km. The average depth of the Wooded Island events during the quarter was 1.6 km with a maximum depth estimated at 3.5 km. This placed the Wooded Island events within the Columbia River Basalt Group (CRBG). The low magnitude of the Wooded Island events has made them undetectable to all but local area residents. The Hanford Strong Motion Accelerometer (SMA) network was triggered

  20. Effects of Iterative Reconstruction Algorithms on Computer-assisted Detection (CAD) Software for Lung Nodules in Ultra-low-dose CT for Lung Cancer Screening.

    PubMed

    Nomura, Yukihiro; Higaki, Toru; Fujita, Masayo; Miki, Soichiro; Awaya, Yoshikazu; Nakanishi, Toshio; Yoshikawa, Takeharu; Hayashi, Naoto; Awai, Kazuo

    2017-02-01

    This study aimed to evaluate the effects of iterative reconstruction (IR) algorithms on computer-assisted detection (CAD) software for lung nodules in ultra-low-dose computed tomography (ULD-CT) for lung cancer screening. We selected 85 subjects who underwent both a low-dose CT (LD-CT) scan and an additional ULD-CT scan in our lung cancer screening program for high-risk populations. The LD-CT scans were reconstructed with filtered back projection (FBP; LD-FBP). The ULD-CT scans were reconstructed with FBP (ULD-FBP), adaptive iterative dose reduction 3D (AIDR 3D; ULD-AIDR 3D), and forward projected model-based IR solution (FIRST; ULD-FIRST). CAD software for lung nodules was applied to each image dataset, and the performance of the CAD software was compared among the different IR algorithms. The mean volume CT dose indexes were 3.02 mGy (LD-CT) and 0.30 mGy (ULD-CT). For overall nodules, the sensitivities of CAD software at 3.0 false positives per case were 78.7% (LD-FBP), 9.3% (ULD-FBP), 69.4% (ULD-AIDR 3D), and 77.8% (ULD-FIRST). Statistical analysis showed that the sensitivities of ULD-AIDR 3D and ULD-FIRST were significantly higher than that of ULD-FBP (P < .001). The performance of CAD software in ULD-CT was improved by using IR algorithms. In particular, the performance of CAD in ULD-FIRST was almost equivalent to that in LD-FBP. Copyright © 2017 The Association of University Radiologists. Published by Elsevier Inc. All rights reserved.

  1. Use of a channelized Hotelling observer to assess CT image quality and optimize dose reduction for iteratively reconstructed images.

    PubMed

    Favazza, Christopher P; Ferrero, Andrea; Yu, Lifeng; Leng, Shuai; McMillan, Kyle L; McCollough, Cynthia H

    2017-07-01

    The use of iterative reconstruction (IR) algorithms in CT generally decreases image noise and enables dose reduction. However, the amount of dose reduction possible using IR without sacrificing diagnostic performance is difficult to assess with conventional image quality metrics. Through this investigation, achievable dose reduction using a commercially available IR algorithm without loss of low contrast spatial resolution was determined with a channelized Hotelling observer (CHO) model and used to optimize a clinical abdomen/pelvis exam protocol. A phantom containing 21 low contrast disks-three different contrast levels and seven different diameters-was imaged at different dose levels. Images were created with filtered backprojection (FBP) and IR. The CHO was tasked with detecting the low contrast disks. CHO performance indicated dose could be reduced by 22% to 25% without compromising low contrast detectability (as compared to full-dose FBP images) whereas 50% or more dose reduction significantly reduced detection performance. Importantly, default settings for the scanner and protocol investigated reduced dose by upward of 75%. Subsequently, CHO-based protocol changes to the default protocol yielded images of higher quality and doses more consistent with values from a larger, dose-optimized scanner fleet. CHO assessment provided objective data to successfully optimize a clinical CT acquisition protocol.

  2. HANFORD FACILITY ANNUAL DANGEROUS WASTE REPORT CY2003 [SEC 1 & 2

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    FREEMAN, D.A.

    2004-02-17

    The Hanford Facility Annual Dangerous Waste Report (ADWR) is prepared to meet the requirements of Washington Administrative Code Sections 173-303-220, Generator Reporting, and 173-303-390, Facility Reporting. In addition, the ADWR is required to meet Hanford Facility RCRA Permit Condition I.E.22, Annual Reporting. The ADWR provides summary information on dangerous waste generation and management activities for the Calendar Year for the Hanford Facility EPA ID number assigned to the Department of Energy for RCRA regulated waste, as well as Washington State only designated waste and radioactive mixed waste. The Solid Waste Information and Tracking System (SWITS) database is utilized to collectmore » and compile the large array of data needed for preparation of this report. Information includes details of waste generated on the Hanford Facility, waste generated offsite and sent to Hanford for management, and other waste management activities conducted at Hanford, including treatment, storage, and disposal. Report details consist of waste descriptions and weights, waste codes and designations, and waste handling codes. In addition, for waste shipped to Hanford for treatment and or disposal, information on manifest numbers, the waste transporter, the waste receiving facility, and the original waste generators are included. In addition to paper copies, the report is also transmitted electronically to a web site maintained by the Washington State Department of Ecology.« less

  3. Hanford Site National Environmental Policy Act (NEPA) Characterization

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Rohay, A.C.; Fosmire, C.J.; Neitzel, D.A.

    1999-09-28

    This document describes the US Department of Energy's (DOE) Hanford Site environment. It is updated each year and is intended to provide a consistent description of the Hanford Site environment for the many NEPA documents being prepared by DOE contractors. No conclusions or recommendations are provided. This year's report is the eleventh revision of the original document published in 1988 and is (until replaced by the 12th revision) the only version that is relevant for use in the preparation of Hanford NEPA; SEPA and CERCLA documents. The two chapters included in this document (Chapters 4 and 6) are numbered tomore » correspond to the chapters where such information is presented in environmental impact statements (EISs) and other Site-related NEPA or CERCLA documentation. Chapter 4.0 (Affected Environment) describes Hanford Site climate and meteorology, geology, hydrology, ecology, cultural, archaeological and historical resources, socioeconomic; occupational safety, and noise. Sources for extensive tabular data related to these topics are provided in the chapter. Most subjects are divided into a general description of the characteristics of the Hanford Site, followed by site-specific information, where available, of the 100,200,300, and other Areas. This division allows the reader to go directly to those sections of particular interest. When specific information on each of these separate areas is not complete or available, the general Hanford Site description should be used. Chapter 6.0 (Statutory and Regulatory Requirements) is essentially a definitive NEPA Chapter 6.0, which describes applicable federal and state laws and regulations, DOE directives and permits, and environmental standards directly applicable to the NEPA documents on the Hanford Site. People preparing environmental assessments and EISs should also be cognizant of the document entitled ''Recommendations for the Preparation of Environmental Assessments and Environmental Impact Statements

  4. Combining Automatic Tube Current Modulation with Adaptive Statistical Iterative Reconstruction for Low-Dose Chest CT Screening

    PubMed Central

    Chen, Jiang-Hong; Jin, Er-Hu; He, Wen; Zhao, Li-Qin

    2014-01-01

    Objective To reduce radiation dose while maintaining image quality in low-dose chest computed tomography (CT) by combining adaptive statistical iterative reconstruction (ASIR) and automatic tube current modulation (ATCM). Methods Patients undergoing cancer screening (n = 200) were subjected to 64-slice multidetector chest CT scanning with ASIR and ATCM. Patients were divided into groups 1, 2, 3, and 4 (n = 50 each), with a noise index (NI) of 15, 20, 30, and 40, respectively. Each image set was reconstructed with 4 ASIR levels (0% ASIR, 30% ASIR, 50% ASIR, and 80% ASIR) in each group. Two radiologists assessed subjective image noise, image artifacts, and visibility of the anatomical structures. Objective image noise and signal-to-noise ratio (SNR) were measured, and effective dose (ED) was recorded. Results Increased NI was associated with increased subjective and objective image noise results (P<0.001), and SNR decreased with increasing NI (P<0.001). These values improved with increased ASIR levels (P<0.001). Images from all 4 groups were clinically diagnosable. Images with NI = 30 and 50% ASIR had average subjective image noise scores and nearly average anatomical structure visibility scores, with a mean objective image noise of 23.42 HU. The EDs for groups 1, 2, 3 and 4 were 2.79±1.17, 1.69±0.59, 0.74±0.29, and 0.37±0.22 mSv, respectively. Compared to group 1 (NI = 15), the ED reductions were 39.43%, 73.48%, and 86.74% for groups 2, 3, and 4, respectively. Conclusions Using NI = 30 with 50% ASIR in the chest CT protocol, we obtained average or above-average image quality but a reduced ED. PMID:24691208

  5. Optimization of SPECT-CT Hybrid Imaging Using Iterative Image Reconstruction for Low-Dose CT: A Phantom Study

    PubMed Central

    Grosser, Oliver S.; Kupitz, Dennis; Ruf, Juri; Czuczwara, Damian; Steffen, Ingo G.; Furth, Christian; Thormann, Markus; Loewenthal, David; Ricke, Jens; Amthauer, Holger

    2015-01-01

    Background Hybrid imaging combines nuclear medicine imaging such as single photon emission computed tomography (SPECT) or positron emission tomography (PET) with computed tomography (CT). Through this hybrid design, scanned patients accumulate radiation exposure from both applications. Imaging modalities have been the subject of long-term optimization efforts, focusing on diagnostic applications. It was the aim of this study to investigate the influence of an iterative CT image reconstruction algorithm (ASIR) on the image quality of the low-dose CT images. Methodology/Principal Findings Examinations were performed with a SPECT-CT scanner with standardized CT and SPECT-phantom geometries and CT protocols with systematically reduced X-ray tube currents. Analyses included image quality with respect to photon flux. Results were compared to the standard FBP reconstructed images. The general impact of the CT-based attenuation maps used during SPECT reconstruction was examined for two SPECT phantoms. Using ASIR for image reconstructions, image noise was reduced compared to FBP reconstructions for the same X-ray tube current. The Hounsfield unit (HU) values reconstructed by ASIR were correlated to the FBP HU values(R2 ≥ 0.88) and the contrast-to-noise ratio (CNR) was improved by ASIR. However, for a phantom with increased attenuation, the HU values shifted for low X-ray tube currents I ≤ 60 mA (p ≤ 0.04). In addition, the shift of the HU values was observed within the attenuation corrected SPECT images for very low X-ray tube currents (I ≤ 20 mA, p ≤ 0.001). Conclusion/Significance In general, the decrease in X-ray tube current up to 30 mA in combination with ASIR led to a reduction of CT-related radiation exposure without a significant decrease in image quality. PMID:26390216

  6. Quantitative Image Quality and Histogram-Based Evaluations of an Iterative Reconstruction Algorithm at Low-to-Ultralow Radiation Dose Levels: A Phantom Study in Chest CT

    PubMed Central

    Lee, Ki Baek

    2018-01-01

    Objective To describe the quantitative image quality and histogram-based evaluation of an iterative reconstruction (IR) algorithm in chest computed tomography (CT) scans at low-to-ultralow CT radiation dose levels. Materials and Methods In an adult anthropomorphic phantom, chest CT scans were performed with 128-section dual-source CT at 70, 80, 100, 120, and 140 kVp, and the reference (3.4 mGy in volume CT Dose Index [CTDIvol]), 30%-, 60%-, and 90%-reduced radiation dose levels (2.4, 1.4, and 0.3 mGy). The CT images were reconstructed by using filtered back projection (FBP) algorithms and IR algorithm with strengths 1, 3, and 5. Image noise, signal-to-noise ratio (SNR), and contrast-to-noise ratio (CNR) were statistically compared between different dose levels, tube voltages, and reconstruction algorithms. Moreover, histograms of subtraction images before and after standardization in x- and y-axes were visually compared. Results Compared with FBP images, IR images with strengths 1, 3, and 5 demonstrated image noise reduction up to 49.1%, SNR increase up to 100.7%, and CNR increase up to 67.3%. Noteworthy image quality degradations on IR images including a 184.9% increase in image noise, 63.0% decrease in SNR, and 51.3% decrease in CNR, and were shown between 60% and 90% reduced levels of radiation dose (p < 0.0001). Subtraction histograms between FBP and IR images showed progressively increased dispersion with increased IR strength and increased dose reduction. After standardization, the histograms appeared deviated and ragged between FBP images and IR images with strength 3 or 5, but almost normally-distributed between FBP images and IR images with strength 1. Conclusion The IR algorithm may be used to save radiation doses without substantial image quality degradation in chest CT scanning of the adult anthropomorphic phantom, down to approximately 1.4 mGy in CTDIvol (60% reduced dose). PMID:29354008

  7. 1988 Hanford riverbank springs characterization report

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Dirkes, R.L.

    1990-12-01

    This reports presents the results of a special study undertaken to characterize the riverbank springs (i.e., ground-water seepage) entering the Columbia River along the Hanford Site. Radiological and nonradiological analyses were performed. River water samples were also analyzed from upstream and downstream of the Site as well as from the immediate vicinity of the springs. In addition, irrigation return water and spring water entering the river along the shoreline opposite Hanford were analyzed. Hanford-origin contaminants were detected in spring water entering the Columbia River along the Hanford Site. The type and concentrations of contaminants in the spring water were similarmore » to those known to exist in the ground water near the river. The location and extent of the contaminated discharges compared favorably with recent ground-water reports and predictions. Spring discharge volumes remain very small relative to the flow of the Columbia. Downstream river sampling demonstrates the impact of ground-water discharges to be minimal, and negligible in most cases. Radionuclide concentrations were below US Department of Energy Derived Concentration Guides (DCGs) with the exception {sup 90}Sr near the 100-N Area. Tritium, while below the DCG, was detected at concentrations above the US Environmental Protection Agency drinking water standards in several springs. All other radionuclide concentrations were below drinking water standards. Nonradiological contaminants were generally undetectable in the spring water. River water contaminant concentrations, outside of the immediate discharge zones, were below drinking water standards in all cases. 19 refs., 5 figs., 12 tabs.« less

  8. Proceedings of the First Hanford Separation Science Workshop

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Not Available

    1993-05-01

    The First Hanford Separation Science Workshop, sponsored by PNL had two main objectives: (1) assess the applicability of available separation methods for environmental restoration and for minimization, recovery, and recycle of mixed and radioactive mutes; and (2) identify research needs that must be addressed to create new or improved technologies. The information gathered at this workshop not only applies to Hanford but could be adapted to DOE facilities throughout the nation as well. These proceedings have been divided into three components: Background and Introduction to the Problem gives an overview of the history of the Site and the cleanup mission,more » including waste management operations, past disposal practices, current operations, and plans for the future. Also included in this section is a discussion of specific problems concerning the chemistry of the Hanford wastes. Separation Methodologies contains the papers given at the workshop by national experts in the field of separation science regarding the state-of-the-art of various methods and their applicability/adaptability to Hanford. Research Needs identifies further research areas developed in working group sessions. Individual papers are indexed separately.« less

  9. [Combined use of wide-detector and adaptive statistical iterative reconstruction-V technique in abdominal CT with low radiation dose].

    PubMed

    Wang, H X; Lü, P J; Yue, S W; Chang, L Y; Li, Y; Zhao, H P; Li, W R; Gao, J B

    2017-12-05

    Objective: To investigate the image quality and radiation dose with wide-detector(80 mm) and adaptive statistical iterative reconstruction-V (ASIR-V) technique at abdominal contrast enhanced CT scan. Methods: In the first phantom experiment part, the percentage of ASIR-V for half dose of combined wide detector with ASIR-V technique as compared with standard-detector (40 mm) technique was determined. The human experiment was performed based on the phantom study, 160 patients underwent contrast-enhanced abdominal CT scan were prospectively collected and divided into the control group ( n =40) with image reconstruction using 40% ASIR (group A) and the study group ( n =120) with random number table. According to pre-ASIR-V percentage, the study group was assigned into three groups[40 cases in each group, group B: 0 pre-ASIR-V scan with image reconstruction of 0-100% post-ASIR-V (interval 10%, subgroups B0-B10); group C: 20% pre-ASIR-V with 20%, 40% and 60% post-ASIR-V (subgroups C1-C3); group D: 40%pre-ASIR-V with 40% and 60% post-ASIR-V (subgroups D1-D2)]. Image noise, CT attenuation values and CNR of the liver, pancreas, aorta and portal vein were compared by using two sample t test and One-way ANOVA. Qualitative visual parameters (overall image quality as graded on a 5-point scale) was compared by Mann-Whitney U test and Kruskal-Wallis H test. Results: The phantom experiment showed that the percentage of pre-ASIR-V for half dose was 40%. With the 40% pre-ASIR-V, radiation dose in the study group was reduced by 35.5% as compared with the control group. Image noise in the subgroups of B2-B10, C2-C3 and D1-D2 were lower ( t =-14.681--3.046, all P <0.05) while CNR in the subgroups of B4-B10, C2-3 and D1-D2 were higher( t =2.048-9.248, all P <0.05)than those in group A, except the CNR of liver in the arterial phase (AP) in C2, D1 and D2 and the CNR of pancreas in AP in D1 ( t =0.574-1.327, all P >0.05). The subjective image quality scores increased gradually in the range

  10. Intra-individual diagnostic image quality and organ-specific-radiation dose comparison between spiral cCT with iterative image reconstruction and z-axis automated tube current modulation and sequential cCT.

    PubMed

    Wenz, Holger; Maros, Máté E; Meyer, Mathias; Gawlitza, Joshua; Förster, Alex; Haubenreisser, Holger; Kurth, Stefan; Schoenberg, Stefan O; Groden, Christoph; Henzler, Thomas

    2016-01-01

    To prospectively evaluate image quality and organ-specific-radiation dose of spiral cranial CT (cCT) combined with automated tube current modulation (ATCM) and iterative image reconstruction (IR) in comparison to sequential tilted cCT reconstructed with filtered back projection (FBP) without ATCM. 31 patients with a previous performed tilted non-contrast enhanced sequential cCT aquisition on a 4-slice CT system with only FBP reconstruction and no ATCM were prospectively enrolled in this study for a clinical indicated cCT scan. All spiral cCT examinations were performed on a 3rd generation dual-source CT system using ATCM in z-axis direction. Images were reconstructed using both, FBP and IR (level 1-5). A Monte-Carlo-simulation-based analysis was used to compare organ-specific-radiation dose. Subjective image quality for various anatomic structures was evaluated using a 4-point Likert-scale and objective image quality was evaluated by comparing signal-to-noise ratios (SNR). Spiral cCT led to a significantly lower (p < 0.05) organ-specific-radiation dose in all targets including eye lense. Subjective image quality of spiral cCT datasets with an IR reconstruction level 5 was rated significantly higher compared to the sequential cCT acquisitions (p < 0.0001). Consecutive mean SNR was significantly higher in all spiral datasets (FBP, IR 1-5) when compared to sequential cCT with a mean SNR improvement of 44.77% (p < 0.0001). Spiral cCT combined with ATCM and IR allows for significant-radiation dose reduction including a reduce eye lens organ-dose when compared to a tilted sequential cCT while improving subjective and objective image quality.

  11. 32 CFR 218.3 - Dose reconstruction methodology.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... effects of shot-specific parameters such as weapon type and yield, neutron and gamma output, source and... specific personnel activities. Due to the range of activities, times, geometries, shielding, and weapon... that could have led to atypical doses. Radiation dose from neutrons and dose commitments due to inhaled...

  12. 32 CFR 218.3 - Dose reconstruction methodology.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... effects of shot-specific parameters such as weapon type and yield, neutron and gamma output, source and... specific personnel activities. Due to the range of activities, times, geometries, shielding, and weapon... that could have led to atypical doses. Radiation dose from neutrons and dose commitments due to inhaled...

  13. 32 CFR 218.3 - Dose reconstruction methodology.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... effects of shot-specific parameters such as weapon type and yield, neutron and gamma output, source and... specific personnel activities. Due to the range of activities, times, geometries, shielding, and weapon... that could have led to atypical doses. Radiation dose from neutrons and dose commitments due to inhaled...

  14. OVERVIEW OF HANFORD SINGLE SHELL TANK (SST) STRUCTURAL INTEGRITY - 12123

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    RAST RS; RINKER MW; WASHENFELDER DJ

    2012-01-25

    To improve the understanding of the single-shell tanks (SSTs) integrity, Washington River Protection Solutions, LLC (WRPS), the USDOE Hanford Site tank contractor, developed an enhanced Single-Shell Tank Integrity Project in 2009. An expert panel on SST integrity, consisting of various subject matters experts in industry and academia, was created to provide recommendations supporting the development of the project. This panel developed 33 recommendations in four main areas of interest: structural integrity, liner degradation, leak integrity and prevention, and mitigation of contamination migration. Seventeen of these recommendations were used to develop the basis for the M-45-10-1 Change Package for the Hanfordmore » Federal Agreement and Compliance Order, which is also known as the Tri-Party Agreement. The structural integrity of the tanks is a key element in completing the cleanup mission at the Hanford Site. There are eight primary recommendations related to the structural integrity of Hanford SSTs. Six recommendations are being implemented through current and planned activities. The structural integrity of the Hanford SSTs is being evaluated through analysis, monitoring, inspection, materials testing, and construction document review. Structural evaluation in the form of analysis is performed using modern finite element models generated in ANSYS{reg_sign} The analyses consider in-situ, thermal, operating loads and natural phenomena such as earthquakes. Structural analysis of 108 of 149 Hanford SSTs has concluded that the tanks are structurally sound and meet current industry standards. Analyses of the remaining Hanford SSTs are scheduled for FY2013. Hanford SSTs are monitored through a dome deflection program. The program looks for deflections of the tank dome greater than 1/4 inch. No such deflections have been recorded. The tanks are also subjected to visual inspection. Digital cameras record the interior surface of the concrete tank domes, looking for

  15. Hanford Site Environmental Report for Calendar Year 2005

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Poston, Ted M.; Hanf, Robert W.; Dirkes, Roger L.

    This report, published annually since 1958, includes information and summary analytical data that (1) provide an overview of activities at the Hanford Site during calendar year 2005; (2) demonstrate the site's compliance with applicable federal, state, and local environmental laws and regulations, executive orders, and U.S. Department of Energy (DOE) policies and directives; (3) characterize Hanford Site environmental management performance; and (4) highlight significant environmental programs.

  16. Hanford Site Environmental Report for Calendar Year 2004

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Poston, Ted M.; Hanf, Robert W.; Dirkes, Roger L.

    This report, published annually since 1958, includes information and summary analytical data that (1) provide an overview of activities at the Hanford Site during calendar year 2003; (2) demonstrate the site's compliance with applicable federal, state, and local environmental laws and regulations, executive orders, and U.S. Department of Energy (DOE) policies and directives; (3) characterize Hanford Site environmental management performance; and (4) highlight significant environmental programs.

  17. In vitro evaluation of a new iterative reconstruction algorithm for dose reduction in coronary artery calcium scoring

    PubMed Central

    Allmendinger, Thomas; Kunz, Andreas S; Veyhl-Wichmann, Maike; Ergün, Süleyman; Bley, Thorsten A; Petritsch, Bernhard

    2017-01-01

    Background Coronary artery calcium (CAC) scoring is a widespread tool for cardiac risk assessment in asymptomatic patients and accompanying possible adverse effects, i.e. radiation exposure, should be as low as reasonably achievable. Purpose To evaluate a new iterative reconstruction (IR) algorithm for dose reduction of in vitro coronary artery calcium scoring at different tube currents. Material and Methods An anthropomorphic calcium scoring phantom was scanned in different configurations simulating slim, average-sized, and large patients. A standard calcium scoring protocol was performed on a third-generation dual-source CT at 120 kVp tube voltage. Reference tube current was 80 mAs as standard and stepwise reduced to 60, 40, 20, and 10 mAs. Images were reconstructed with weighted filtered back projection (wFBP) and a new version of an established IR kernel at different strength levels. Calcifications were quantified calculating Agatston and volume scores. Subjective image quality was visualized with scans of an ex vivo human heart. Results In general, Agatston and volume scores remained relatively stable between 80 and 40 mAs and increased at lower tube currents, particularly in the medium and large phantom. IR reduced this effect, as both Agatston and volume scores decreased with increasing levels of IR compared to wFBP (P < 0.001). Depending on selected parameters, radiation dose could be lowered by up to 86% in the large size phantom when selecting a reference tube current of 10 mAs with resulting Agatston levels close to the reference settings. Conclusion New iterative reconstruction kernels may allow for reduction in tube current for established Agatston scoring protocols and consequently for substantial reduction in radiation exposure. PMID:28607763

  18. 20 CFR 30.318 - Can the FAB consider objections to HHS's reconstruction of a radiation dose or to the guidelines...

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... reconstruction of a radiation dose or to the guidelines OWCP uses to determine if a claimed cancer was at least... if a claimed cancer was at least as likely as not related to employment? (a) If the claimant objects... if a claimed cancer was at least as likely as not related to employment at a DOE facility, an atomic...

  19. 20 CFR 30.318 - Can the FAB consider objections to HHS's reconstruction of a radiation dose or to the guidelines...

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... reconstruction of a radiation dose or to the guidelines OWCP uses to determine if a claimed cancer was at least... if a claimed cancer was at least as likely as not related to employment? (a) If the claimant objects... if a claimed cancer was at least as likely as not related to employment at a DOE facility, an atomic...

  20. 20 CFR 30.318 - Can the FAB consider objections to HHS's reconstruction of a radiation dose or to the guidelines...

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ... reconstruction of a radiation dose or to the guidelines OWCP uses to determine if a claimed cancer was at least... if a claimed cancer was at least as likely as not related to employment? (a) If the claimant objects... if a claimed cancer was at least as likely as not related to employment at a DOE facility, an atomic...

  1. 20 CFR 30.318 - Can the FAB consider objections to HHS's reconstruction of a radiation dose or to the guidelines...

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ... reconstruction of a radiation dose or to the guidelines OWCP uses to determine if a claimed cancer was at least... if a claimed cancer was at least as likely as not related to employment? (a) If the claimant objects... if a claimed cancer was at least as likely as not related to employment at a DOE facility, an atomic...

  2. 20 CFR 30.318 - Can the FAB consider objections to HHS's reconstruction of a radiation dose or to the guidelines...

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ... reconstruction of a radiation dose or to the guidelines OWCP uses to determine if a claimed cancer was at least... if a claimed cancer was at least as likely as not related to employment? (a) If the claimant objects... if a claimed cancer was at least as likely as not related to employment at a DOE facility, an atomic...

  3. Evidence of dose saving in routine CT practice using iterative reconstruction derived from a national diagnostic reference level survey.

    PubMed

    Thomas, P; Hayton, A; Beveridge, T; Marks, P; Wallace, A

    2015-09-01

    To assess the influence and significance of the use of iterative reconstruction (IR) algorithms on patient dose in CT in Australia. We examined survey data submitted to the Australian Radiation Protection and Nuclear Safety Agency (ARPANSA) National Diagnostic Reference Level Service (NDRLS) during 2013 and 2014. We compared median survey dose metrics with categorization by scan region and use of IR. The use of IR results in a reduction in volume CT dose index of between 17% and 44% and a reduction in dose-length product of between 14% and 34% depending on the specific scan region. The reduction was highly significant (p < 0.001, Wilcoxon rank-sum test) for all six scan regions included in the NDRLS. Overall, 69% (806/1167) of surveys included in the analysis used IR. The use of IR in CT is achieving dose savings of 20-30% in routine practice in Australia. IR appears to be widely used by participants in the ARPANSA NDRLS with approximately 70% of surveys submitted employing this technique. This study examines the impact of the use of IR on patient dose in CT on a national scale.

  4. The two-dimensional Monte Carlo: a new methodologic paradigm for dose reconstruction for epidemiological studies.

    PubMed

    Simon, Steven L; Hoffman, F Owen; Hofer, Eduard

    2015-01-01

    Retrospective dose estimation, particularly dose reconstruction that supports epidemiological investigations of health risk, relies on various strategies that include models of physical processes and exposure conditions with detail ranging from simple to complex. Quantification of dose uncertainty is an essential component of assessments for health risk studies since, as is well understood, it is impossible to retrospectively determine the true dose for each person. To address uncertainty in dose estimation, numerical simulation tools have become commonplace and there is now an increased understanding about the needs and what is required for models used to estimate cohort doses (in the absence of direct measurement) to evaluate dose response. It now appears that for dose-response algorithms to derive the best, unbiased estimate of health risk, we need to understand the type, magnitude and interrelationships of the uncertainties of model assumptions, parameters and input data used in the associated dose estimation models. Heretofore, uncertainty analysis of dose estimates did not always properly distinguish between categories of errors, e.g., uncertainty that is specific to each subject (i.e., unshared error), and uncertainty of doses from a lack of understanding and knowledge about parameter values that are shared to varying degrees by numbers of subsets of the cohort. While mathematical propagation of errors by Monte Carlo simulation methods has been used for years to estimate the uncertainty of an individual subject's dose, it was almost always conducted without consideration of dependencies between subjects. In retrospect, these types of simple analyses are not suitable for studies with complex dose models, particularly when important input data are missing or otherwise not available. The dose estimation strategy presented here is a simulation method that corrects the previous deficiencies of analytical or simple Monte Carlo error propagation methods and is

  5. Toward a dose reduction strategy using model-based reconstruction with limited-angle tomosynthesis

    NASA Astrophysics Data System (ADS)

    Haneda, Eri; Tkaczyk, J. E.; Palma, Giovanni; Iordache, Rǎzvan; Zelakiewicz, Scott; Muller, Serge; De Man, Bruno

    2014-03-01

    Model-based iterative reconstruction (MBIR) is an emerging technique for several imaging modalities and appli- cations including medical CT, security CT, PET, and microscopy. Its success derives from an ability to preserve image resolution and perceived diagnostic quality under impressively reduced signal level. MBIR typically uses a cost optimization framework that models system geometry, photon statistics, and prior knowledge of the recon- structed volume. The challenge of tomosynthetic geometries is that the inverse problem becomes more ill-posed due to the limited angles, meaning the volumetric image solution is not uniquely determined by the incom- pletely sampled projection data. Furthermore, low signal level conditions introduce additional challenges due to noise. A fundamental strength of MBIR for limited-views and limited-angle is that it provides a framework for constraining the solution consistent with prior knowledge of expected image characteristics. In this study, we analyze through simulation the capability of MBIR with respect to prior modeling components for limited-views, limited-angle digital breast tomosynthesis (DBT) under low dose conditions. A comparison to ground truth phantoms shows that MBIR with regularization achieves a higher level of fidelity and lower level of blurring and streaking artifacts compared to other state of the art iterative reconstructions, especially for high contrast objects. The benefit of contrast preservation along with less artifacts may lead to detectability improvement of microcalcification for more accurate cancer diagnosis.

  6. SAFETY AT FLUOR HANFORD (A) CASE STUDY - PREPARED BY THUNDERBIRD SCHOOL OF GLOBAL MANAGEMENT

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    ARNOLD LD

    2009-09-25

    By November of 1997, Fluor Hanford (Fluor) had been the site manager of the Hanford nuclear reservation for a year. The Hanford site had been established as part of the Manhattan Project in the 1940s that gave birth to the atomic bomb. Hanford produced two thirds of U.S. plutonium during the Cold War period. The Hanford site was half the size of Rhode Island and occupied 586 square miles in southeastern Washington State. The production of plutonium for more than 40 years left a huge legacy of chemical and radiological contamination: 80 square miles of contaminated groundwater; 2,300 tons ofmore » spent nuclear fuel stored in underwater basins; 20 tons of plutonium-laced contaminated materials; and 500 contaminated facilities. The cleanup involved a challenging combination of radioactive material handling within an infrastructure constructed in the 1940s and 1950s. The cleanup that began in 1988 was expected to take 30 years or more. Improving safety at Hanford had already proven to be a significant challenge. As the new site manager at Hanford, Fluor Hanford inherited lower- and mid-level managers and thousands of unionized employees, many of whom were second or third generation Hanford employees. These employees had seen many contractors come and go over the years. Some of the managers who had worked with the previous contractor saw Fluor's emphasis on safety as getting in the way of operations. Union-management relations were fractious. Hanford's culture was described as 'production driven-management told everyone what to do, and, if you didn't do it, there were consequences'. Worker involvement in designing and implementing safety programs was negligible. Fluor Hanford also was having trouble satisfying its client, the Department of Energy (DOE). The DOE did not see a clear path forward for performance improvements at Hanford. Clearly, major change was necessary, but how and where should it be implemented?« less

  7. Remedial Investigation of Hanford Site Releases to the Columbia River - 13603

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lerch, J.A.; Hulstrom, L.C.; Sands, J.P.

    2013-07-01

    In south-central Washington State, the Columbia River flows through the U.S. Department of Energy Hanford Site. A primary objective of the Hanford Site cleanup mission is protection of the Columbia River, through remediation of contaminated soil and groundwater that resulted from its weapons production mission. Within the Columbia River system, surface water, sediment, and biota samples related to potential Hanford Site hazardous substance releases have been collected since the start of Hanford operations. The impacts from release of Hanford Site radioactive substances to the Columbia River in areas upstream, within, and downstream of the Hanford Site boundary have been previouslymore » investigated as mandated by the U.S. Department of Energy requirements under the Atomic Energy Act. The Remedial Investigation Work Plan for Hanford Site Releases to the Columbia River [1] was issued in 2008 to initiate assessment of the impacts under the Comprehensive Environmental Response, Compensation, and Liability Act of 1980 [2]. The work plan established a phased approach to characterize contaminants, assess current risks, and determine whether or not there is a need for any cleanup actions. Field investigation activities over a 120-mile stretch of the Columbia River began in October 2008 and were completed in 2010. Sampled media included surface water, pore water, surface and core sediment, island soil, and fish (carp, walleye, whitefish, sucker, small-mouth bass, and sturgeon). Information and sample results from the field investigation were used to characterize current conditions within the Columbia River and assess whether current conditions posed a risk to ecological or human receptors that would merit additional study or response actions under CERCLA. The human health and ecological risk assessments are documented in reports that were published in 2012 [3, 4]. Conclusions from the risk assessment reports are being summarized and integrated with remedial investigation

  8. Groundwater Data Package for Hanford Assessments

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Thorne, Paul D.; Bergeron, Marcel P.; Williams, Mark D.

    2006-01-31

    This report presents data and interpreted information that supports the groundwater module of the System Assessment Capability (SAC) used in Hanford Assessments. The objective of the groundwater module is to predict movement of radioactive and chemical contaminants through the aquifer to the Columbia River or other potential discharge locations. This data package is being revised as part of the deliverables under the Characterization of Systems Project (#49139) aimed at providing documentation for assessments being conducted under the Hanford Assessments Project (#47042). Both of these projects are components of the Groundwater Remediation and Closure Assessments Projects, managed by the Management andmore » Integration Project (#47043).« less

  9. A biomechanical modeling guided simultaneous motion estimation and image reconstruction technique (SMEIR-Bio) for 4D-CBCT reconstruction

    NASA Astrophysics Data System (ADS)

    Huang, Xiaokun; Zhang, You; Wang, Jing

    2017-03-01

    Four-dimensional (4D) cone-beam computed tomography (CBCT) enables motion tracking of anatomical structures and removes artifacts introduced by motion. However, the imaging time/dose of 4D-CBCT is substantially longer/higher than traditional 3D-CBCT. We previously developed a simultaneous motion estimation and image reconstruction (SMEIR) algorithm, to reconstruct high-quality 4D-CBCT from limited number of projections to reduce the imaging time/dose. However, the accuracy of SMEIR is limited in reconstructing low-contrast regions with fine structure details. In this study, we incorporate biomechanical modeling into the SMEIR algorithm (SMEIR-Bio), to improve the reconstruction accuracy at low-contrast regions with fine details. The efficacy of SMEIR-Bio is evaluated using 11 lung patient cases and compared to that of the original SMEIR algorithm. Qualitative and quantitative comparisons showed that SMEIR-Bio greatly enhances the accuracy of reconstructed 4D-CBCT volume in low-contrast regions, which can potentially benefit multiple clinical applications including the treatment outcome analysis.

  10. SU-F-T-549: Validation of a Method for in Vivo 3D Dose Reconstruction for SBRT Using a New Transmission Detector

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Nakaguchi, Y; Shimohigashi, Y; Onizuka, R

    Purpose: Recently, there has been increased clinical use of stereotactic body radiation therapy (SBRT). SBRT treatments will strongly benefit from in vivo patient dose verification, as any errors in delivery can be more detrimental to the radiobiology of the patient as compared to conventional therapy. In vivo dose measurements, a commercially available quality assurance platform which is able to correlate the delivered dose to the patient’s anatomy and take into account tissue inhomogeneity, is the COMPASS system (IBA Dosimetry, Germany) using a new transmission detector (Dolphin, IBA Dosimetry). In this work, we evaluate a method for in vivo 3D dosemore » reconstruction for SBRT using a new transmission detector, which was developed for in vivo dose verification for intensity-modulated radiation therapy (IMRT). Methods: We evaluated the accuracy of measurement for SBRT using simple small fields (2×2−10×10 cm2), a multileaf collimator (MLC) test pattern, and clinical cases. The dose distributions from the COMPASS were compared with those of EDR2 films (Kodak, USA) and the Monte Carlo simulations (MC). For clinical cases, we compared MC using dose-volume-histograms (DVHs) and dose profiles. Results: The dose profiles from the COMPASS for small fields and the complicated MLC test pattern agreed with those of EDR2 films, and MC within 3%. This showed the COMPASS with Dolphin system showed good spatial resolution and can measure small fields which are required for SBRT. Those results also suggest that COMPASS with Dolphin is able to detect MLC leaf position errors for SBRT. In clinical cases, the COMPASS with Dolphin agreed well with MC. The Dolphin detector, which consists of ionization chambers, provided stable measurement. Conclusion: COMPASS with Dolphin detector showed a useful in vivo 3D dose reconstruction for SBRT. The accuracy of the results indicates that this approach is suitable for clinical implementation.« less

  11. The Japanese aerial attack on Hanford Engineer Works

    NASA Astrophysics Data System (ADS)

    Clark, Charles W.

    The day before the Pearl Harbor attack, December 6, 1941, the University of Chicago Metallurgical Laboratory was given four goals: design a plutonium (Pu) bomb; produce Pu by irradiation of uranium (U); extract Pu from the irradiated U; complete this in time to be militarily significant. A year later the first controlled nuclear chain reaction was attained in Chicago Pile 1 (CP-1). In January 1943, Hanford, WA was chosen as the site of the Pu factory. Neutron irradiation of 238U was to be used to make 239Pu. This was done by a larger version of CP-1, Hanford Reactor B, which went critical in September 1944. By July 1945 it had made enough Pu for two bombs: one used at the Trinity test in July; the other at Nagasaki, Japan in August. I focus on an ironic sidelight to this story: disruption of hydroelectric power to Reactor B by a Japanese fire balloon attack on March 10, 1945. This activated the costly coal-fired emergency backup plant to keep the reactor coolant water flowing, thwarting disaster and vindicating the conservative design of Hanford Engineer Works. Management of the Hanford Engineer Works in World War II, H. Thayer (ASCE Press 1996).

  12. Expert Panel Recommendations for Hanford Double-Shell Tank Life Extension

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Stewart, Charles W; Bush, Spencer H; Berman, Herbert Stanton

    2001-06-29

    Expert workshops were held in Richland in May 2001 to review the Hanford Double-Shell Tank Integrity Project and make recommendations to extend the life of Hanford's double-shell waste tanks. The workshop scope was limited to corrosion of the primary tank liner, and the main areas for review were waste chemistry control, tank inspection, and corrosion monitoring. Participants were corrosion experts from Hanford, Savannah River Site, Brookhaven National Lab., Pacific Northwest National Lab., and several consultants. This report describes the current state of the three areas of the program, the final recommendations of the workshop, and the rationale for their selection.

  13. Tagging studies of mule deer fawns on the Hanford Site, 1969 to 1977

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Eberhardt, L.E.; Hedlund, J.D.; Rickard, W.H.

    1979-10-01

    From 1969 to 1977, 346 mule deer (Odocoileus hemionus) fawns were tagged and released on islands and shoreline habitat associated with the Columbia River on the Hanford Site in south-central Washington. The purpose was to determine the movement of mule deer along the Columbia River shoreline from the Hanford Site through tag recovery. Twenty-one tagged deer have been killed primarily by hunters near the Hanford Site or on areas of the Hanford Site open to public access. Movements of up to 113 km from Hanford have been documented. Although the Columbia River at Hanford is one of the largest andmore » most swift-flowing rivers in North America it is not an impassable barrier to mule deer. River islands are important and perhaps critical fawining habitat for the local deer herd. The selection of these islands by pregnant female deer is apparently influenced by predation, human access, and recreational use of islands. The number of fawns captured decreased during the latter years of the study (1974 to 1977). This is probably a reflection of an actual decrease in deer productivity, particularly along the upper stretch of the Columbia flowing through the Hanford Site. The reasons for this apparent decrease are unkown.« less

  14. Iterative Reconstruction Techniques in Abdominopelvic CT: Technical Concepts and Clinical Implementation.

    PubMed

    Patino, Manuel; Fuentes, Jorge M; Singh, Sarabjeet; Hahn, Peter F; Sahani, Dushyant V

    2015-07-01

    This article discusses the clinical challenge of low-radiation-dose examinations, the commonly used approaches for dose optimization, and their effect on image quality. We emphasize practical aspects of the different iterative reconstruction techniques, along with their benefits, pitfalls, and clinical implementation. The widespread use of CT has raised concerns about potential radiation risks, motivating diverse strategies to reduce the radiation dose associated with CT. CT manufacturers have developed alternative reconstruction algorithms intended to improve image quality on dose-optimized CT studies, mainly through noise and artifact reduction. Iterative reconstruction techniques take unique approaches to noise reduction and provide distinct strength levels or settings.

  15. Submerged RadBall® deployments in Hanford Site hot cells containing 137CsCl capsules.

    PubMed

    Farfán, Eduardo B; Coleman, J Rusty; Stanley, Steven; Adamovics, John; Oldham, Mark; Thomas, Andrew

    2012-07-01

    The overall objective of this study was to demonstrate that a new technology, known as RadBall®, could locate submerged radiological hazards. RadBall® is a novel, passive, radiation detection device that provides a 3-D visualization of radiation from areas where measurements have not been previously possible due to lack of access or extremely high radiation doses. This technology has been under development during recent years, and all of its previous tests have included dry deployments. This study involved, for the first time, underwater RadBall® deployments in hot cells containing 137CsCl capsules at the U.S. Department of Energy's Hanford Site. RadBall® can be used to characterize a contaminated room, hot cell, or glovebox by providing the locations of the radiation sources and hazards, identifying the radionuclides present within the cell, and determining the radiation sources' strength (e.g., intensities or dose rates). These parameters have been previously determined for dry deployments; however, only the location of radiation sources and hazards can be determined for an underwater RadBall® deployment. The results from this study include 3-D images representing the location of the radiation sources within the Hanford Site cells. Due to RadBall®'s unique deployability and non-electrical nature, this technology shows significant promise for future characterization of radiation hazards prior to and during the decommissioning of contaminated nuclear facilities.

  16. Hanford Site Asbestos Abatement Plan. Revision 1

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Mewes, B.S.

    The Hanford Site Asbestos Abatement Plan (Plan) lists priorities for asbestos abatement activities to be conducted in Hanford Site facilities. The Plan is based on asbestos assessment information gathered in fiscal year 1989 that evaluated all Hanford Site facilities for the presence and condition of asbestos. Of those facilities evaluated, 414 contain asbestos-containing materials and are classified according to the potential risk of asbestos exposure to building personnel. The Plan requires that asbestos condition update reports be prepared for all affected facilities. The reporting is completed by the asbestos coordinator for each of the 414 affected facilities and transmitted tomore » the Plan manager annually. The Plan manager uses this information to reprioritize future project lists. Currently, five facilities are determined to be Class Al, indicating a high potential for asbestos exposure. Class Al and B1 facilities are the highest priority for asbestos abatement. Abatement of the Class A1 and Bl facilities is scheduled through fiscal year 1997. Removal of asbestos in B1 facilities will reduce the risk for further Class ``A`` conditions to arise.« less

  17. External dose reconstruction for the former village of Metlino (Techa River, Russia) based on environmental surveys, luminescence measurements, and radiation transport modelling.

    PubMed

    Hiller, M M; Woda, C; Bougrov, N G; Degteva, M O; Ivanov, O; Ulanovsky, A; Romanov, S

    2017-05-01

    In the first years of its operation, the Mayak Production Association, a facility part of the Soviet nuclear weapons program in the Southern Urals, Russia, discharged large amounts of radioactively contaminated effluent into the nearby Techa River, thus exposing the people living at this river to external and internal radiations. The Techa River Cohort is a cohort intensely studied in epidemiology to investigate the correlation between low-dose radiation and health effects on humans. For the individuals in the cohort, the Techa River Dosimetry System describes the accumulated dose in human organs and tissues. In particular, organ doses from external exposure are derived from estimates of dose rate in air on the Techa River banks which were estimated from measurements and Monte Carlo modelling. Individual doses are calculated in accordance with historical records of individuals' residence histories, observational data of typical lifestyles for different age groups, and age-dependent conversion factors from air kerma to organ dose. The work here describes an experimentally independent assessment of the key input parameter of the dosimetry system, the integral air kerma, for the former village of Metlino, upper Techa River region. The aim of this work was thus to validate the Techa River Dosimetry System for the location of Metlino in an independent approach. Dose reconstruction based on dose measurements in bricks from a church tower and Monte Carlo calculations was used to model the historic air kerma accumulated in the time from 1949 to 1956 at the shoreline of the Techa River in Metlino. Main issues are caused by a change in the landscape after the evacuation of the village in 1956. Based on measurements and published information and data, two separate models for the historic pre-evacuation geometry and for the current geometry of Metlino were created. Using both models, a value for the air kerma was reconstructed, which agrees with that obtained in the Techa

  18. Pilot Study of Low-Dose Nonenhanced Computed Tomography With Iterative Reconstruction for Diagnosis of Urinary Stones

    PubMed Central

    Park, Sang Ho; Moon, Young Tae; Myung, Soon Chul; Kim, Tae Hyoung; Chang, In Ho; Kwon, Jong Kyou

    2014-01-01

    Purpose To evaluate the efficacy of low-dose computed tomography (LDCT) for detecting urinary stones with the use of an iterative reconstruction technique for reducing radiation dose and image noise. Materials and Methods A total of 101 stones from 69 patients who underwent both conventional nonenhanced computed tomography (CCT) and LDCT were analyzed. Interpretations were made of the two scans according to stone characteristics (size, volume, location, Hounsfield unit [HU], and skin-to-stone distance [SSD]) and radiation dose by dose-length product (DLP), effective dose (ED), and image noise. Diagnostic performance for detecting urinary stones was assessed by statistical evaluation. Results No statistical differences were found in stone characteristics between the two scans. The average DLP and ED were 384.60±132.15 mGy and 5.77±1.98 mSv in CCT and 90.08±31.80 mGy and 1.34±0.48 mSv in LDCT, respectively. The dose reduction rate of LDCT was nearly 77% for both DLP and ED (p<0.01). The mean objective noise (standard deviation) from three different areas was 23.0±2.5 in CCT and 29.2±3.1 in LDCT with a significant difference (p<0.05); the slight increase was 21.2%. For stones located throughout the kidney and ureter, the sensitivity and specificity of LDCT remained 96.0% and 100%, with positive and negative predictive values of 100% and 96.2%, respectively. Conclusions LDCT showed significant radiation reduction while maintaining high image quality. It is an attractive option in the diagnosis of urinary stones. PMID:25237459

  19. Feasibility Study of Using Gemstone Spectral Imaging (GSI) and Adaptive Statistical Iterative Reconstruction (ASIR) for Reducing Radiation and Iodine Contrast Dose in Abdominal CT Patients with High BMI Values.

    PubMed

    Zhu, Zheng; Zhao, Xin-ming; Zhao, Yan-feng; Wang, Xiao-yi; Zhou, Chun-wu

    2015-01-01

    To prospectively investigate the effect of using Gemstone Spectral Imaging (GSI) and adaptive statistical iterative reconstruction (ASIR) for reducing radiation and iodine contrast dose in abdominal CT patients with high BMI values. 26 patients (weight > 65kg and BMI ≥ 22) underwent abdominal CT using GSI mode with 300mgI/kg contrast material as study group (group A). Another 21 patients (weight ≤ 65kg and BMI ≥ 22) were scanned with a conventional 120 kVp tube voltage for noise index (NI) of 11 with 450mgI/kg contrast material as control group (group B). GSI images were reconstructed at 60keV with 50%ASIR and the conventional 120kVp images were reconstructed with FBP reconstruction. The CT values, standard deviation (SD), signal-noise-ratio (SNR), contrast-noise-ratio (CNR) of 26 landmarks were quantitatively measured and image quality qualitatively assessed using statistical analysis. As for the quantitative analysis, the difference of CNR between groups A and B was all significant except for the mesenteric vein. The SNR in group A was higher than B except the mesenteric artery and splenic artery. As for the qualitative analysis, all images had diagnostic quality and the agreement for image quality assessment between the reviewers was substantial (kappa = 0.684). CT dose index (CTDI) values for non-enhanced, arterial phase and portal phase in group A were decreased by 49.04%, 40.51% and 40.54% compared with group B (P = 0.000), respectively. The total dose and the injection rate for the contrast material were reduced by 14.40% and 14.95% in A compared with B. The use of GSI and ASIR provides similar enhancement in vessels and image quality with reduced radiation dose and contrast dose, compared with the use of conventional scan protocol.

  20. Improvements to image quality using hybrid and model-based iterative reconstructions: a phantom study.

    PubMed

    Aurumskjöld, Marie-Louise; Ydström, Kristina; Tingberg, Anders; Söderberg, Marcus

    2017-01-01

    The number of computed tomography (CT) examinations is increasing and leading to an increase in total patient exposure. It is therefore important to optimize CT scan imaging conditions in order to reduce the radiation dose. The introduction of iterative reconstruction methods has enabled an improvement in image quality and a reduction in radiation dose. To investigate how image quality depends on reconstruction method and to discuss patient dose reduction resulting from the use of hybrid and model-based iterative reconstruction. An image quality phantom (Catphan® 600) and an anthropomorphic torso phantom were examined on a Philips Brilliance iCT. The image quality was evaluated in terms of CT numbers, noise, noise power spectra (NPS), contrast-to-noise ratio (CNR), low-contrast resolution, and spatial resolution for different scan parameters and dose levels. The images were reconstructed using filtered back projection (FBP) and different settings of hybrid (iDose 4 ) and model-based (IMR) iterative reconstruction methods. iDose 4 decreased the noise by 15-45% compared with FBP depending on the level of iDose 4 . The IMR reduced the noise even further, by 60-75% compared to FBP. The results are independent of dose. The NPS showed changes in the noise distribution for different reconstruction methods. The low-contrast resolution and CNR were improved with iDose 4 , and the improvement was even greater with IMR. There is great potential to reduce noise and thereby improve image quality by using hybrid or, in particular, model-based iterative reconstruction methods, or to lower radiation dose and maintain image quality. © The Foundation Acta Radiologica 2016.

  1. Wildlife studies on the Hanford site: 1994 Highlights report

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Cadwell, L.L.

    The purposes of the project are to monitor and report trends in wildlife populations; conduct surveys to identify, record, and map populations of threatened, endangered, and sensitive plant and animal species; and cooperate with Washington State and federal and private agencies to help ensure the protection afforded by law to native species and their habitats. Census data and results of surveys and special study topics are shared freely among cooperating agencies. Special studies are also conducted as needed to provide additional information that may be required to assess, protect, or manage wildlife resources at Hanford. This report describes highlights ofmore » wildlife studies on the Site in 1994. Redd counts of fall chinook salmon in the Hanford Reach suggest that harvest restrictions directed at protecting Snake River salmon may have helped Columbia River stocks as well. The 1994 count (5619) was nearly double that of 1993 and about 63% of the 1989 high of approximately 9000. A habitat map showing major vegetation and land use cover types for the Hanford Site was completed in 1993. During 1994, stochastic simulation was used to estimate shrub characteristics (height, density, and canopy cover) across the previously mapped Hanford landscape. The information provided will be available for use in determining habitat quality for sensitive wildlife species. Mapping Site locations of plant species of concern continued during 1994. Additional sensitive plant species data from surveys conducted by TNC were archived. The 10 nesting pairs of ferruginous hawks that used the Hanford Site in 1993 represented approximately 25% of the Washington State population.« less

  2. Environmental assessment: Reference repository location, Hanford site, Washington

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    none,

    1986-05-01

    In February 1983, the US Department of Energy (DOE) identified a reference repository location at the Hanford Site in Washington as one of the nine potentially acceptable sites for a mined geologic repository for spent nuclear fuel and high-level radioactive waste. The site is in the Columbia Plateau, which is one of five distinct geohydrologic settings considered for the first repository. To determine their suitability, the Hanford Site and the eight other potentially acceptable sites have been evaluated in accordance with the DOE's General Guidelines for the Recommendation of Sites for the Nuclear Waste Repositories. These evaluations were reported inmore » draft environmental assessments (EAs), which were issued for public review and comment. After considering the comments received on the draft EAs, the DOE prepared the final EAs. On the basis of the evaluations reported in this EA, the DOE has found that the Hanford site is not disqualified under the guidelines. The DOE has also found that it is suitable for site characterization because the evidence does not support a conclusion that the site will not be able to meet each of the qualifying conditions specified in the guidelines. On the basis of these findings, the DOE is nominating the Hanford site as one of five sites suitable for characterization.« less

  3. Comparison of Knowledge-based Iterative Model Reconstruction and Hybrid Reconstruction Techniques for Liver CT Evaluation of Hypervascular Hepatocellular Carcinoma.

    PubMed

    Park, Hyun Jeong; Lee, Jeong Min; Park, Sung Bin; Lee, Jong Beum; Jeong, Yoong Ki; Yoon, Jeong Hee

    The purpose of this work was to evaluate the image quality, lesion conspicuity, and dose reduction provided by knowledge-based iterative model reconstruction (IMR) in computed tomography (CT) of the liver compared with hybrid iterative reconstruction (IR) and filtered back projection (FBP) in patients with hepatocellular carcinoma (HCC). Fifty-six patients with 61 HCCs who underwent multiphasic reduced-dose CT (RDCT; n = 33) or standard-dose CT (SDCT; n = 28) were retrospectively evaluated. Reconstructed images with FBP, hybrid IR (iDose), IMR were evaluated for image quality using CT attenuation and image noise. Objective and subjective image quality of RDCT and SDCT sets were independently assessed by 2 observers in a blinded manner. Image quality and lesion conspicuity were better with IMR for both RDCT and SDCT than either FBP or IR (P < 0.001). Contrast-to-noise ratio of HCCs in IMR-RDCT was significantly higher on delayed phase (DP) (P < 0.001), and comparable on arterial phase, than with IR-SDCT (P = 0.501). Iterative model reconstruction RDCT was significantly superior to FBP-SDCT (P < 0.001). Compared with IR-SDCT, IMR-RDCT was comparable in image sharpness and tumor conspicuity on arterial phase, and superior in image quality, noise, and lesion conspicuity on DP. With the use of IMR, a 27% reduction of effective dose was achieved with RDCT (12.7 ± 0.6 mSv) compared with SDCT (17.4 ± 1.1 mSv) without loss of image quality (P < 0.001). Iterative model reconstruction provides better image quality and tumor conspicuity than FBP and IR with considerable noise reduction. In addition, more than comparable results were achieved with IMR-RDCT to IR-SDCT for the evaluation of HCCs.

  4. A Third-Generation Adaptive Statistical Iterative Reconstruction Technique: Phantom Study of Image Noise, Spatial Resolution, Lesion Detectability, and Dose Reduction Potential.

    PubMed

    Euler, André; Solomon, Justin; Marin, Daniele; Nelson, Rendon C; Samei, Ehsan

    2018-06-01

    The purpose of this study was to assess image noise, spatial resolution, lesion detectability, and the dose reduction potential of a proprietary third-generation adaptive statistical iterative reconstruction (ASIR-V) technique. A phantom representing five different body sizes (12-37 cm) and a contrast-detail phantom containing lesions of five low-contrast levels (5-20 HU) and three sizes (2-6 mm) were deployed. Both phantoms were scanned on a 256-MDCT scanner at six different radiation doses (1.25-10 mGy). Images were reconstructed with filtered back projection (FBP), ASIR-V with 50% blending with FBP (ASIR-V 50%), and ASIR-V without blending (ASIR-V 100%). In the first phantom, noise properties were assessed by noise power spectrum analysis. Spatial resolution properties were measured by use of task transfer functions for objects of different contrasts. Noise magnitude, noise texture, and resolution were compared between the three groups. In the second phantom, low-contrast detectability was assessed by nine human readers independently for each condition. The dose reduction potential of ASIR-V was estimated on the basis of a generalized linear statistical regression model. On average, image noise was reduced 37.3% with ASIR-V 50% and 71.5% with ASIR-V 100% compared with FBP. ASIR-V shifted the noise power spectrum toward lower frequencies compared with FBP. The spatial resolution of ASIR-V was equivalent or slightly superior to that of FBP, except for the low-contrast object, which had lower resolution. Lesion detection significantly increased with both ASIR-V levels (p = 0.001), with an estimated radiation dose reduction potential of 15% ± 5% (SD) for ASIR-V 50% and 31% ± 9% for ASIR-V 100%. ASIR-V reduced image noise and improved lesion detection compared with FBP and had potential for radiation dose reduction while preserving low-contrast detectability.

  5. Feasibility Study of Radiation Dose Reduction in Adult Female Pelvic CT Scan with Low Tube-Voltage and Adaptive Statistical Iterative Reconstruction

    PubMed Central

    Wang, Xinlian; Chen, Jianghong; Hu, Zhihai; Zhao, Liqin

    2015-01-01

    Objective To evaluate image quality of female pelvic computed tomography (CT) scans reconstructed with the adaptive statistical iterative reconstruction (ASIR) technique combined with low tube-voltage and to explore the feasibility of its clinical application. Materials and Methods Ninety-four patients were divided into two groups. The study group used 100 kVp, and images were reconstructed with 30%, 50%, 70%, and 90% ASIR. The control group used 120 kVp, and images were reconstructed with 30% ASIR. The noise index was 15 for the study group and 11 for the control group. The CT values and noise levels of different tissues were measured. The contrast to noise ratio (CNR) was calculated. A subjective evaluation was carried out by two experienced radiologists. The CT dose index volume (CTDIvol) was recorded. Results A 44.7% reduction in CTDIvol was observed in the study group (8.18 ± 3.58 mGy) compared with that in the control group (14.78 ± 6.15 mGy). No significant differences were observed in the tissue noise levels and CNR values between the 70% ASIR group and the control group (p = 0.068-1.000). The subjective scores indicated that visibility of small structures, diagnostic confidence, and the overall image quality score in the 70% ASIR group was the best, and were similar to those in the control group (1.87 vs. 1.79, 1.26 vs. 1.28, and 4.53 vs. 4.57; p = 0.122-0.585). No significant difference in diagnostic accuracy was detected between the study group and the control group (42/47 vs. 43/47, p = 1.000). Conclusion Low tube-voltage combined with automatic tube current modulation and 70% ASIR allowed the low CT radiation dose to be reduced by 44.7% without losing image quality on female pelvic scan. PMID:26357499

  6. A single pre-operative antibiotic dose is as effective as continued antibiotic prophylaxis in implant-based breast reconstruction: A matched cohort study.

    PubMed

    Townley, William A; Baluch, Narges; Bagher, Shaghayegh; Maass, Saskia W M C; O'Neill, Anne; Zhong, Toni; Hofer, Stefan O P

    2015-05-01

    Infections following implant-based breast reconstruction can lead to devastating consequences. There is currently no consensus on the need for post-operative antibiotics in preventing immediate infection. This study compared two different methods of infection prevention in this group of patients. A retrospective matched cohort study was performed on consecutive women undergoing implant-based breast reconstruction at University Health Network, Toronto (November 2008-December 2012). All patients received a single pre-operative intravenous antibiotic dose. Group A received minimal interventions and Group B underwent maximal prophylactic measures. Patient (age, smoking, diabetes, co-morbidities), oncologic and procedural variables (timing and laterality) were collected. Univariate and multivariate logistic regression were performed to compare outcomes between the two groups. Two hundred and eight patients underwent 647 implant procedures. After matching the two treatment groups by BMI, 94 patients in each treatment group yielding a total of 605 implant procedures were selected for analysis. The two groups were comparable in terms of patient and disease variables. Post-operative wound infection was similar in Group A (n = 11, 12%) compared with Group B (n = 9, 10%; p = 0.8). Univariate analysis revealed only pre-operative radiotherapy to be associated with the development of infection (0.004). Controlling for the effect of radiotherapy, multivariate analysis demonstrated that there was no statistically significant difference between the two methods for infection prevention. Our findings suggest that a single pre-operative dose of intravenous antibiotics is equally as effective as continued antibiotic prophylaxis in preventing immediate infection in patients undergoing implant-based breast reconstructions. Copyright © 2015 British Association of Plastic, Reconstructive and Aesthetic Surgeons. Published by Elsevier Ltd. All rights reserved.

  7. DOSE RECONSTRUCTION FROM URINARY BIOMARKERS

    EPA Science Inventory

    The use of biomarkers for human health risk assessment is attractive because they are an indicator of the dose that actually entered the body by all mechanisms. This is an important consideration given the need to include aggregate exposures from diet and other pathways for pes...

  8. Colloid formation in Hanford sediments reacted with simulated tank waste.

    PubMed

    Mashal, Kholoud; Harsh, James B; Flury, Markus; Felmy, Andrew R; Zhao, Hongting

    2004-11-01

    Solutions of high pH, ionic strength, and aluminum concentration have leaked into the subsurface from underground waste storage tanks atthe Hanford Reservation in Washington State. Here, we test the hypothesis that these waste solutions alter and dissolve the native minerals present in the sediments and that colloidal (diameter < 2 microm) feldspathoids form. We reacted Hanford sediments with simulated solutions representative of Hanford waste tanks. The solutions consisted of 1.4 or 2.8 mol/kg NaOH, 0.125 or 0.25 mol/kg NaAlO4, and 3.7 mol/kg NaNO3 and were contacted with the sediments for a period of 25 or 40 days at 50 degrees C. The colloidal size fraction was separated from the sediments and characterized in terms of mineralogy, morphology, chemical composition, and electrophoretic mobility. Upon reaction with tank waste solutions, native minerals released Si and other elements into the solution phase. This Si precipitated with the Al present in the waste solutions to form secondary minerals, identified as the feldspathoids cancrinite and sodalite. The solution phase was modeled with the chemical equilibrium model GMIN for solution speciation and saturation indices with respect to sodalite and cancrinite. The amount of colloidal material in the sediments increased upon reaction with waste solutions. At the natural pH found in Hanford sediments (pH 8) the newly formed minerals are negatively charged, similar to the unreacted colloidal material present in the sediments. The formation of colloidal material in Hanford sediments upon reaction with tank waste solutions is an important aspect to consider in the characterization of Hanford tank leaks and may affect the fate of hazardous radionuclides present in the tank waste.

  9. Assessment of phase based dose modulation for improved dose efficiency in cardiac CT on an anthropomorphic motion phantom

    NASA Astrophysics Data System (ADS)

    Budde, Adam; Nilsen, Roy; Nett, Brian

    2014-03-01

    State of the art automatic exposure control modulates the tube current across view angle and Z based on patient anatomy for use in axial full scan reconstructions. Cardiac CT, however, uses a fundamentally different image reconstruction that applies a temporal weighting to reduce motion artifacts. This paper describes a phase based mA modulation that goes beyond axial and ECG modulation; it uses knowledge of the temporal view weighting applied within the reconstruction algorithm to improve dose efficiency in cardiac CT scanning. Using physical phantoms and synthetic noise emulation, we measure how knowledge of sinogram temporal weighting and the prescribed cardiac phase can be used to improve dose efficiency. First, we validated that a synthetic CT noise emulation method produced realistic image noise. Next, we used the CT noise emulation method to simulate mA modulation on scans of a physical anthropomorphic phantom where a motion profile corresponding to a heart rate of 60 beats per minute was used. The CT noise emulation method matched noise to lower dose scans across the image within 1.5% relative error. Using this noise emulation method to simulate modulating the mA while keeping the total dose constant, the image variance was reduced by an average of 11.9% on a scan with 50 msec padding, demonstrating improved dose efficiency. Radiation dose reduction in cardiac CT can be achieved while maintaining the same level of image noise through phase based dose modulation that incorporates knowledge of the cardiac reconstruction algorithm.

  10. SU-E-T-202: Comparison of 4D-Measurement-Guided Dose Reconstructions (MGDR) with COMPASS and OCTAVIUS 4D System

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Leung, R; Wong, M; Lee, V

    2015-06-15

    Purpose: To cross-validate the MGDR of COMPASS (IBA dosimetry, GmbH, Germany) and OCTAVIUS 4D system (PTW, Freiburg, Germany). Methods: Volumetric-modulated arc plans (5 head-and-neck and 3 prostate) collapsed to 40° gantry on the OCTAVIUS 4D phantom in QA mode on Monaco v5.0 (Elekta, CMS, Maryland Heights, MO) were delivered on a Elekta Agility linac. This study was divided into two parts: (1) error-free measurements by gantry-mounted EvolutionXX 2D array were reconstructed in COMPASS (IBA dosimetry, GmbH, Germany), and by OCTAVIUS 1500 array in Versoft v6.1 (PTW, Freiburg, Germany) to obtain the 3D doses (COM4D and OCTA4D). COM4D and OCTA4D weremore » compared to the raw measurement (OCTA3D) at the same detector plane for which OCTAVIUS 1500 was perpendicular to 0° gantry axis while the plans were delivered at gantry 40°; (2) beam steering errors of energy (Hump=-2%) and symmetry (2T=+2%) were introduced during the delivery of 5 plans to compare the MGDR doses COM4D-Hump (COM4D-2T), OCTA4D-Hump (OCTA4D-2T), with raw doses OCTA3D-Hump (OCTA3D-2T) and with OCTA3D to assess the error reconstruction and detection ability of MGDR tools. All comparisons used Υ-criteria of 2%(local dose)/2mm and 3%/3mm. Results: Averaged Υ passing rates were 85% and 96% for COM4D,and 94% and 99% for OCTA4D at 2%/2mm and 3%/3mm criteria respectively. For error reconstruction, COM4D-Hump (COM4D-2T) showed 81% (93%) at 2%/2mm and 94% (98%) at 3%/3mm, while OCTA4D-Hump (OCTA4D-2T) showed 96% (96%) at 2%/2mm and 99% (99%) at 3%/3mm. For error detection, OCTA3D doses were compared to COM4D-Hump (COM4D-2T) showing Υ passing rates of 93% (93%) at 2%/2mm and 98% (98%), and to OCTA4D-Hump (OCTA4D -2T) showing 94% (99%) at 2%/2mm and 81% (96%) at 3%/3mm, respectively. Conclusion: OCTAVIUS MGDR showed better agreement to raw measurements in both error- and error-free comparisons. COMPASS MGDR deviated from the raw measurements possibly owing to beam modeling uncertainty.« less

  11. Non-contrast CT at comparable dose to an abdominal radiograph in patients with acute renal colic; impact of iterative reconstruction on image quality and diagnostic performance.

    PubMed

    McLaughlin, P D; Murphy, K P; Hayes, S A; Carey, K; Sammon, J; Crush, L; O'Neill, F; Normoyle, B; McGarrigle, A M; Barry, J E; Maher, M M

    2014-04-01

    The aim was to assess the performance of low-dose non-contrast CT of the urinary tract (LD-CT) acquired at radiation exposures close to that of abdominal radiography using adaptive statistical iterative reconstruction (ASiR). Thirty-three patients with clinically suspected renal colic were prospectively included. Conventional dose (CD-CT) and LD-CT data sets were contemporaneously acquired. LD-CT images were reconstructed with 40 %, 70 % and 90 % ASiR. Image quality was subjectively and objectively measured. Images were also clinically interpreted. Mean ED was 0.48 ± 0.07 mSv for LD-CT compared with 4.43 ± 3.14 mSv for CD-CT. Increasing the percentage ASiR resulted in a step-wise reduction in mean objective noise (p < 0.001 for all comparisons). Seventy % ASiR LD-CT images had higher diagnostic acceptability and spatial resolution than 90 % ASiR LD-CT images (p < 0.001). Twenty-seven calculi (diameter = 5.5 ± 1.7 mm), including all ureteric stones, were correctly identified using 70 % ASiR LD-CT with two false positives and 16 false negatives (diameter = 2.3 ± 0.7 mm) equating to a sensitivity and specificity of 72 % and 94 %. Seventy % ASiR LD-CT had a sensitivity and specificity of 87 % and 100 % for detection of calculi >3 mm. Reconstruction of LD-CT images with 70 % ASiR resulted in superior image quality than FBP, 40 % ASIR and 90 % ASIR. LD-CT with ASIR demonstrates high sensitivity and specificity for detection of calculi >3 mm. • Low-dose CT studies for urinary calculus detection were performed with a mean dose of 0.48 ± 0.07 mSv • Low-dose CT with 70 % ASiR detected calculi >3 mm with a sensitivity and specificity of 87 % and 100 % • Reconstruction with 70 % ASiR was superior to filtered back projection, 40 % ASiR and 90 % ASiR images.

  12. Items Supporting the Hanford Internal Dosimetry Program Implementation of the IMBA Computer Code

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Carbaugh, Eugene H.; Bihl, Donald E.

    2008-01-07

    The Hanford Internal Dosimetry Program has adopted the computer code IMBA (Integrated Modules for Bioassay Analysis) as its primary code for bioassay data evaluation and dose assessment using methodologies of ICRP Publications 60, 66, 67, 68, and 78. The adoption of this code was part of the implementation plan for the June 8, 2007 amendments to 10 CFR 835. This information release includes action items unique to IMBA that were required by PNNL quality assurance standards for implementation of safety software. Copie of the IMBA software verification test plan and the outline of the briefing given to new users aremore » also included.« less

  13. Residual herbicide study on selected Hanford Site roadsides

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Smith, J.L.; Kemp, C.J.; Sackschewsky, M.R.

    Westinghouse Hanford Company routinely treats roadsides with herbicides to control undesirable plant growth. An experiment was conducted to test perennial grass germination in soils adjacent to roadways of the Hanford Site. The primary variable was the distance from the roadside. A simple germination test was executed in a controlled-environment chamber to determine the residual effects of these applications. As expected, the greatest herbicide activity was found directly adjacent to the roadway, approximately 0 to 20 ft (0 to 6.3 m) from the roadway.

  14. WE-G-18A-04: 3D Dictionary Learning Based Statistical Iterative Reconstruction for Low-Dose Cone Beam CT Imaging

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bai, T; UT Southwestern Medical Center, Dallas, TX; Yan, H

    2014-06-15

    Purpose: To develop a 3D dictionary learning based statistical reconstruction algorithm on graphic processing units (GPU), to improve the quality of low-dose cone beam CT (CBCT) imaging with high efficiency. Methods: A 3D dictionary containing 256 small volumes (atoms) of 3x3x3 voxels was trained from a high quality volume image. During reconstruction, we utilized a Cholesky decomposition based orthogonal matching pursuit algorithm to find a sparse representation on this dictionary basis of each patch in the reconstructed image, in order to regularize the image quality. To accelerate the time-consuming sparse coding in the 3D case, we implemented our algorithm inmore » a parallel fashion by taking advantage of the tremendous computational power of GPU. Evaluations are performed based on a head-neck patient case. FDK reconstruction with full dataset of 364 projections is used as the reference. We compared the proposed 3D dictionary learning based method with a tight frame (TF) based one using a subset data of 121 projections. The image qualities under different resolutions in z-direction, with or without statistical weighting are also studied. Results: Compared to the TF-based CBCT reconstruction, our experiments indicated that 3D dictionary learning based CBCT reconstruction is able to recover finer structures, to remove more streaking artifacts, and is less susceptible to blocky artifacts. It is also observed that statistical reconstruction approach is sensitive to inconsistency between the forward and backward projection operations in parallel computing. Using high a spatial resolution along z direction helps improving the algorithm robustness. Conclusion: 3D dictionary learning based CBCT reconstruction algorithm is able to sense the structural information while suppressing noise, and hence to achieve high quality reconstruction. The GPU realization of the whole algorithm offers a significant efficiency enhancement, making this algorithm more feasible for

  15. Dangerous Waste Characteristics of Waste from Hanford Tank 241-S-109

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Tingey, Joel M.; Bryan, Garry H.; Deschane, Jaquetta R.

    2004-11-05

    Existing analytical data from samples taken from Hanford Tank 241-S-109, along with process knowledge of the wastes transferred to this tank, are reviewed to determine whether dangerous waste characteristics currently assigned to all waste in Hanford underground storage tanks are applicable to this tank waste. Supplemental technologies are examined to accelerate the Hanford tank waste cleanup mission and to accomplish the waste treatment in a safer and more efficient manner. The goals of supplemental technologies are to reduce costs, conserve double-shell tank space, and meet the scheduled tank waste processing completion date of 2028.

  16. MO-C-18A-01: Advances in Model-Based 3D Image Reconstruction

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Chen, G; Pan, X; Stayman, J

    2014-06-15

    Recent years have seen the emergence of CT image reconstruction techniques that exploit physical models of the imaging system, photon statistics, and even the patient to achieve improved 3D image quality and/or reduction of radiation dose. With numerous advantages in comparison to conventional 3D filtered backprojection, such techniques bring a variety of challenges as well, including: a demanding computational load associated with sophisticated forward models and iterative optimization methods; nonlinearity and nonstationarity in image quality characteristics; a complex dependency on multiple free parameters; and the need to understand how best to incorporate prior information (including patient-specific prior images) within themore » reconstruction process. The advantages, however, are even greater – for example: improved image quality; reduced dose; robustness to noise and artifacts; task-specific reconstruction protocols; suitability to novel CT imaging platforms and noncircular orbits; and incorporation of known characteristics of the imager and patient that are conventionally discarded. This symposium features experts in 3D image reconstruction, image quality assessment, and the translation of such methods to emerging clinical applications. Dr. Chen will address novel methods for the incorporation of prior information in 3D and 4D CT reconstruction techniques. Dr. Pan will show recent advances in optimization-based reconstruction that enable potential reduction of dose and sampling requirements. Dr. Stayman will describe a “task-based imaging” approach that leverages models of the imaging system and patient in combination with a specification of the imaging task to optimize both the acquisition and reconstruction process. Dr. Samei will describe the development of methods for image quality assessment in such nonlinear reconstruction techniques and the use of these methods to characterize and optimize image quality and dose in a spectrum of clinical

  17. An Experimental Study of Diffusivity of Technetium-99 in Hanford Vadose Zone Sediments

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Mattigod, Shas V.; Bovaird, Chase C.; Wellman, Dawn M.

    2012-11-01

    One of the methods being considered at the Hanford site in Washington for safely disposing of low-level radioactive wastes (LLW) is to encase the waste in concrete and entomb the packages in the Hanford vadose zone sediments. The current plan for waste isolation consists of stacking low-level waste packages on a trench floor, surrounding the stacks with reinforced steel, and encasing these packages with concrete. Any failure of the concrete encasement may result in water intrusion and consequent mobilization of radionuclides from the waste packages. The mobilized radionuclides may escape from the encased concrete by mass flow and/or diffusion andmore » move into the surrounding subsurface sediments. It is therefore necessary to conduct an assessment of the performance of the concrete encasement structure and the surrounding soil’s ability to retard radionuclide migration. The retardation factors for radionuclides contained in the waste packages can be determined from measurements of diffusion coefficients for these contaminants through concrete and fill material. Because of their anionic nature in aqueous solutions, the radionuclides, 99Tc and 129I were identified as long-term dose contributors in LLW. The leachability and/or diffusion of these radionuclide species must be measured in order to assess the long-term performance of waste grouts when contacted with vadose-zone porewater or groundwater. To measure the diffusivity, a set of experiments were conducted using 99Tc-spiked concrete (with 0 and 4% metallic iron additions) in contact with unsaturated soil half-cells that reflected the typical moisture contents of Hanford vadose zone sediments. The 99Tc diffusion profiles in the soil half cells were measured after a time lapse of ~1.9 yr. Using the concentration profiles, the 99Tc diffusivity coefficients were calculated based on Fick’s Second Law.« less

  18. Shading correction assisted iterative cone-beam CT reconstruction

    NASA Astrophysics Data System (ADS)

    Yang, Chunlin; Wu, Pengwei; Gong, Shutao; Wang, Jing; Lyu, Qihui; Tang, Xiangyang; Niu, Tianye

    2017-11-01

    Recent advances in total variation (TV) technology enable accurate CT image reconstruction from highly under-sampled and noisy projection data. The standard iterative reconstruction algorithms, which work well in conventional CT imaging, fail to perform as expected in cone beam CT (CBCT) applications, wherein the non-ideal physics issues, including scatter and beam hardening, are more severe. These physics issues result in large areas of shading artifacts and cause deterioration to the piecewise constant property assumed in reconstructed images. To overcome this obstacle, we incorporate a shading correction scheme into low-dose CBCT reconstruction and propose a clinically acceptable and stable three-dimensional iterative reconstruction method that is referred to as the shading correction assisted iterative reconstruction. In the proposed method, we modify the TV regularization term by adding a shading compensation image to the reconstructed image to compensate for the shading artifacts while leaving the data fidelity term intact. This compensation image is generated empirically, using image segmentation and low-pass filtering, and updated in the iterative process whenever necessary. When the compensation image is determined, the objective function is minimized using the fast iterative shrinkage-thresholding algorithm accelerated on a graphic processing unit. The proposed method is evaluated using CBCT projection data of the Catphan© 600 phantom and two pelvis patients. Compared with the iterative reconstruction without shading correction, the proposed method reduces the overall CT number error from around 200 HU to be around 25 HU and increases the spatial uniformity by a factor of 20 percent, given the same number of sparsely sampled projections. A clinically acceptable and stable iterative reconstruction algorithm for CBCT is proposed in this paper. Differing from the existing algorithms, this algorithm incorporates a shading correction scheme into the low-dose

  19. SU-F-T-191: 4D Dose Reconstruction of Intensity Modulated Proton Therapy (IMPT) Based On Breathing Probability Density Function (PDF) From 4D Cone Beam Projection Images: A Study for Lung Treatment

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zhou, J; Ding, X; Liang, J

    2016-06-15

    Purpose: With energy repainting in lung IMPT, the dose delivered is approximate to the convolution of dose in each phase with corresponding breathing PDF. This study is to compute breathing PDF weighted 4D dose in lung IMPT treatment and compare to its initial robust plan. Methods: Six lung patients were evaluated in this study. Amsterdam shroud image were generated from pre-treatment 4D cone-beam projections. Diaphragm motion curve was extract from the shroud image and the breathing PDF was generated. Each patient was planned to 60 Gy (12GyX5). In initial plans, ITV density on average CT was overridden with its maximummore » value for planning, using two IMPT beams with robust optimization (5mm uncertainty in patient position and 3.5% range uncertainty). The plan was applied to all 4D CT phases. The dose in each phase was deformed to a reference phase. 4D dose is reconstructed by summing all these doses based on corresponding weighting from the PDF. Plan parameters, including maximum dose (Dmax), ITV V100, homogeneity index (HI=D2/D98), R50 (50%IDL/ITV), and the lung-GTV’s V12.5 and V5 were compared between the reconstructed 4D dose to initial plans. Results: The Dmax is significantly less dose in the reconstructed 4D dose, 68.12±3.5Gy, vs. 70.1±4.3Gy in the initial plans (p=0.015). No significant difference is found for the ITV V100, HI, and R50, 92.2%±15.4% vs. 96.3%±2.5% (p=0.565), 1.033±0.016 vs. 1.038±0.017 (p=0.548), 19.2±12.1 vs. 18.1±11.6 (p=0.265), for the 4D dose and initial plans, respectively. The lung-GTV V12.5 and V5 are significantly high in the 4D dose, 13.9%±4.8% vs. 13.0%±4.6% (p=0.021) and 17.6%±5.4% vs. 16.9%±5.2% (p=0.011), respectively. Conclusion: 4D dose reconstruction based on phase PDF can be used to evaluate the dose received by the patient. A robust optimization based on the phase PDF may even further improve patient care.« less

  20. Sampling limits for electron tomography with sparsity-exploiting reconstructions.

    PubMed

    Jiang, Yi; Padgett, Elliot; Hovden, Robert; Muller, David A

    2018-03-01

    Electron tomography (ET) has become a standard technique for 3D characterization of materials at the nano-scale. Traditional reconstruction algorithms such as weighted back projection suffer from disruptive artifacts with insufficient projections. Popularized by compressed sensing, sparsity-exploiting algorithms have been applied to experimental ET data and show promise for improving reconstruction quality or reducing the total beam dose applied to a specimen. Nevertheless, theoretical bounds for these methods have been less explored in the context of ET applications. Here, we perform numerical simulations to investigate performance of ℓ 1 -norm and total-variation (TV) minimization under various imaging conditions. From 36,100 different simulated structures, our results show specimens with more complex structures generally require more projections for exact reconstruction. However, once sufficient data is acquired, dividing the beam dose over more projections provides no improvements-analogous to the traditional dose-fraction theorem. Moreover, a limited tilt range of ±75° or less can result in distorting artifacts in sparsity-exploiting reconstructions. The influence of optimization parameters on reconstructions is also discussed. Copyright © 2017 Elsevier B.V. All rights reserved.

  1. Hanford Site Environmental Report for Calendar Year 2007

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Poston, Ted M.; Duncan, Joanne P.; Dirkes, Roger L.

    The Hanford Site environmental report is prepared annually for the U.S. Department of Energy (DOE) in accordance with regulatory requirements. The report provides an overview of activities at the site; demonstrates the status of the site’s compliance with applicable federal, state, and local environmental laws and regulations, executive orders, and DOE policies and directives; and summarizes environmental data that characterize Hanford Site environmental management performance. The report also highlights signifi cant environmental and public protection programs and efforts. Some historical and early 2008 information is included where appropriate.

  2. A Geophysical Characterization & Monitoring Strategy for Determining Hydrologic Processes in the Hyporheic Corridor at the Hanford 300-Area

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Slater, Lee; Day-Lewis, Frederick; Lane, John

    2011-08-31

    The primary objective of this research was to advance the prediction of solute transport between the Uranium contaminated Hanford aquifer and the Columbia River at the Hanford 300 Area by improving understanding of how fluctuations in river stage, combined with subsurface heterogeneity, impart spatiotemporal complexity to solute exchange along the Columbia River corridor. Our work explored the use of continuous waterborne electrical imaging (CWEI), in conjunction with fiber-optic distributed temperature sensor (FO-DTS) and time-lapse resistivity monitoring, to improve the conceptual model for how groundwater/surface water exchange regulates uranium transport. We also investigated how resistivity and induced polarization can be usedmore » to generate spatially rich estimates of the variation in depth to the Hanford-Ringold (H-R) contact between the river and the 300 Area Integrated Field Research Challenge (IFRC) site. Inversion of the CWEI datasets (a data rich survey containing {approx}60,000 measurements) provided predictions of the distributions of electrical resistivity and polarizability, from which the spatial complexity of the primary hydrogeologic units along the river corridor was reconstructed. Variation in the depth to the interface between the overlying coarse-grained, high permeability Hanford Formation and the underlying finer-grained, less permeable Ringold Formation, an important contact that limits vertical migration of contaminants, has been resolved along {approx}3 km of the river corridor centered on the IFRC site in the Hanford 300 Area. Spatial variability in the thickness of the Hanford Formation captured in the CWEI datasets indicates that previous studies based on borehole projections and drive-point and multi-level sampling likely overestimate the contributing area for uranium exchange within the Columbia River at the Hanford 300 Area. Resistivity and induced polarization imaging between the river and the 300 Area IFRC further imaged

  3. Hanford Waste Vitrification Plant technical manual

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Larson, D.E.; Watrous, R.A.; Kruger, O.L.

    1996-03-01

    A key element of the Hanford waste management strategy is the construction of a new facility, the Hanford Waste Vitrification Plant (HWVP), to vitrify existing and future liquid high-level waste produced by defense activities at the Hanford Site. The HWVP mission is to vitrify pretreated waste in borosilicate glass, cast the glass into stainless steel canisters, and store the canisters at the Hanford Site until they are shipped to a federal geological repository. The HWVP Technical Manual (Manual) documents the technical bases of the current HWVP process and provides a physical description of the related equipment and the plant. Themore » immediate purpose of the document is to provide the technical bases for preparation of project baseline documents that will be used to direct the Title 1 and Title 2 design by the A/E, Fluor. The content of the Manual is organized in the following manner. Chapter 1.0 contains the background and context within which the HWVP was designed. Chapter 2.0 describes the site, plant, equipment and supporting services and provides the context for application of the process information in the Manual. Chapter 3.0 provides plant feed and product requirements, which are primary process bases for plant operation. Chapter 4.0 summarizes the technology for each plant process. Chapter 5.0 describes the engineering principles for designing major types of HWVP equipment. Chapter 6.0 describes the general safety aspects of the plant and process to assist in safe and prudent facility operation. Chapter 7.0 includes a description of the waste form qualification program and data. Chapter 8.0 indicates the current status of quality assurance requirements for the Manual. The Appendices provide data that are too extensive to be placed in the main text, such as extensive tables and sets of figures. The Manual is a revision of the 1987 version.« less

  4. Hanford Environmental Information System (HEIS) Operator`s Manual. Volume 1

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Schreck, R.I.

    1991-10-01

    The Hanford Environmental Information System (HEIS) is a consolidated set of automated resources that effectively manage the data gathered during environmental monitoring and restoration of the Hanford Site. The HEIS includes an integrated database that provides consistent and current data to all users and promotes sharing of data by the entire user community. This manual describes the facilities available to the operational user who is responsible for data entry, processing, scheduling, reporting, and quality assurance. A companion manual, the HEIS User`s Manual, describes the facilities available-to the scientist, engineer, or manager who uses the system for environmental monitoring, assessment, andmore » restoration planning; and to the regulator who is responsible for reviewing Hanford Site operations against regulatory requirements and guidelines.« less

  5. Dosimetric quality assurance of highly conformal external beam treatments: from 2D phantom comparisons to 4D patient dose reconstruction

    NASA Astrophysics Data System (ADS)

    Feygelman, V.; Nelms, B.

    2013-06-01

    As IMRT technology continues to evolve, so do the dosimetric QA methods. A historical review of those is presented, starting with longstanding techniques such as film and ion chamber in a phantom and progressing towards 3D and 4D dose reconstruction in the patient. Regarding patient-specific QA, we envision that the currently prevalent limited comparison of dose distributions in the phantom by γ-analysis will be eventually replaced by clinically meaningful patient dose analyses with improved sensitivity and specificity. In a larger sense, we envision a future of QA built upon lessons from the rich history of "quality" as a science and philosophy. This future will aim to improve quality (and ultimately reduce cost) via advanced commissioning processes that succeed in detecting and rooting out systematic errors upstream of patient treatment, thus reducing our reliance on, and the resource burden associated with, per-beam/per-plan inspection.

  6. Radiation dose reduction in abdominal computed tomography during the late hepatic arterial phase using a model-based iterative reconstruction algorithm: how low can we go?

    PubMed

    Husarik, Daniela B; Marin, Daniele; Samei, Ehsan; Richard, Samuel; Chen, Baiyu; Jaffe, Tracy A; Bashir, Mustafa R; Nelson, Rendon C

    2012-08-01

    The aim of this study was to compare the image quality of abdominal computed tomography scans in an anthropomorphic phantom acquired at different radiation dose levels where each raw data set is reconstructed with both a standard convolution filtered back projection (FBP) and a full model-based iterative reconstruction (MBIR) algorithm. An anthropomorphic phantom in 3 sizes was used with a custom-built liver insert simulating late hepatic arterial enhancement and containing hypervascular liver lesions of various sizes. Imaging was performed on a 64-section multidetector-row computed tomography scanner (Discovery CT750 HD; GE Healthcare, Waukesha, WI) at 3 different tube voltages for each patient size and 5 incrementally decreasing tube current-time products for each tube voltage. Quantitative analysis consisted of contrast-to-noise ratio calculations and image noise assessment. Qualitative image analysis was performed by 3 independent radiologists rating subjective image quality and lesion conspicuity. Contrast-to-noise ratio was significantly higher and mean image noise was significantly lower on MBIR images than on FBP images in all patient sizes, at all tube voltage settings, and all radiation dose levels (P < 0.05). Overall image quality and lesion conspicuity were rated higher for MBIR images compared with FBP images at all radiation dose levels. Image quality and lesion conspicuity on 25% to 50% dose MBIR images were rated equal to full-dose FBP images. This phantom study suggests that depending on patient size, clinically acceptable image quality of the liver in the late hepatic arterial phase can be achieved with MBIR at approximately 50% lower radiation dose compared with FBP.

  7. Contribution of Hanford liquid effluents to strontium-90 levels in offsite soils

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Jaquish, R.E.

    1993-08-01

    Strontium-90 is a major constituent of liquid effluents entering the Columbia River at the 100-N Area. The Columbia River also contains {sup 90}Sr from world-wide fallout that enters the Columbia River upstream of Hanford. Irrigation water pumped from the Columbia River can deposit {sup 90}Sr on soil where it can be taken up by farm crops. Fallout has also deposited {sup 90}Sr directly on soil by atmospheric deposition. A review of the sources of {sup 90}Sr in soil in the vicinity of Hanford indicates that about 2% can be attributed to Hanford liquid effluents. PNL measurements of {sup 90}Sr inmore » soil at a background location agree with predicted levels of fallout made by the Federal Radiation Council in 1964. Alfalfa is routinely monitored for {sup 90}Sr and is of special interest since it has concentrations higher than other farm crops. The concentrations of {sup 90}Sr in alfalfa measured in the Hanford vicinity are in the range one would expect, based on measured soil concentrations and using uptake factors from an earlier {sup 90}Sr uptake study at Hanford.« less

  8. SU-F-P-45: Clinical Experience with Radiation Dose Reduction of CT Examinations Using Iterative Reconstruction Algorithms

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Weir, V; Zhang, J

    2016-06-15

    Purpose: Iterative reconstruction (IR) algorithms have been adopted by medical centers in the past several years. IR has a potential to substantially reduce patient dose while maintaining or improving image quality. This study characterizes dose reductions in clinical settings for CT examinations using IR. Methods: We retrospectively analyzed dose information from patients who underwent abdomen/pelvis CT examinations with and without contrast media in multiple locations of our Healthcare system. A total of 743 patients scanned with ASIR on 64 slice GE lightspeed VCTs at three sites, and 30 patients scanned with SAFIRE on a Siemens 128 slice Definition Flash inmore » one site was retrieved. For comparison, patient data (n=291) from a GE scanner and patient data (n=61) from two Siemens scanners where filtered back-projection (FBP) was used was collected retrospectively. 30% and 10% ASIR, and SAFIRE Level 2 was used. CTDIvol, Dose-length-product (DLP), weight and height from all patients was recorded. Body mass index (BMI) was calculated accordingly. To convert CTDIvol to SSDE, AP and lateral dimensions at the mid-liver level was measured for each patient. Results: Compared with FBP, 30% ASIR reduces dose by 44.1% (SSDE: 12.19mGy vs. 21.83mGy), while 10% ASIR reduced dose by 20.6% (SSDE 17.32mGy vs. 21.83). Use of SAFIRE reduced dose by 61.4% (SSDE: 8.77mGy vs. 22.7mGy). The geometric mean for patients scanned with ASIR was larger than for patients scanned with FBP (geometric mean is 297.48 mmm vs. 284.76 mm). The same trend was observed for the Siemens scanner where SAFIRE was used (geometric mean: 316 mm with SAFIRE vs. 239 mm with FBP). Patient size differences suggest that further dose reduction is possible. Conclusion: Our data confirmed that in clinical practice IR can significantly reduce dose to patients who undergo CT examinations, while meeting diagnostic requirements for image quality.« less

  9. Four-Dimensional Dose Reconstruction for Scanned Proton Therapy Using Liver 4DCT-MRI

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bernatowicz, Kinga, E-mail: kinga.bernatowicz@psi.ch; Proton Therapy Center, Paul Scherrer Institute, PSI Villigen; Peroni, Marta

    Purpose: Four-dimensional computed tomography-magnetic resonance imaging (4DCT-MRI) is an image-processing technique for simulating many 4DCT data sets from a static reference CT and motions extracted from 4DMRI studies performed using either volunteers or patients. In this work, different motion extraction approaches were tested using 6 liver cases, and a detailed comparison between 4DCT-MRI and 4DCT was performed. Methods and Materials: 4DCT-MRI has been generated using 2 approaches. The first approach used motion extracted from 4DMRI as being “most similar” to that of 4DCT from the same patient (subject-specific), and the second approach used the most similar motion obtained from amore » motion library derived from 4DMRI liver studies of 13 healthy volunteers (population-based). The resulting 4DCT-MRI and 4DCTs were compared using scanned proton 4D dose calculations (4DDC). Results: Dosimetric analysis showed that 93% ± 8% of points inside the clinical target volume (CTV) agreed between 4DCT and subject-specific 4DCT-MRI (gamma analysis: 3%/3 mm). The population-based approach however showed lower dosimetric agreement with only 79% ± 14% points in the CTV reaching the 3%/3 mm criteria. Conclusions: 4D CT-MRI extends the capabilities of motion modeling for dose calculations by accounting for realistic and variable motion patterns, which can be directly employed in clinical research studies. We have found that the subject-specific liver modeling appears more accurate than the population-based approach. The former is particularly interesting for clinical applications, such as improved target delineation and 4D dose reconstruction for patient-specific QA to allow for inter- and/or intra-fractional plan corrections.« less

  10. Evaluating the Potential of Q-Band ESR Spectroscopy for Dose Reconstruction of Fossil Tooth Enamel

    PubMed Central

    Guilarte, Verónica; Trompier, François; Duval, Mathieu

    2016-01-01

    The potential of Q-band Electron Spin Resonance (ESR) for quantitative measurements has been scarcely evaluated in the literature and its application for dose reconstruction of fossil tooth enamel with dating purposes remains still quite unknown. Hence, we have performed a comparative study based on several Early to Middle Pleistocene fossil tooth samples using both X- and Q-band spectroscopies. Our results show that Q-band offers a significant improvement in terms of sensitivity and signal resolution: it allows not only to work with reduced amounts of valuable samples (< 4 mg), but also to identify different components of the main composite ESR signal. However, inherent precision of the ESR intensity measurements at Q-band is clearly lower than that achieved at X-band, highlighting the necessity to carry out repeated measurements. All dose values derived from X- and Q-band are nevertheless systematically consistent at either 1 or 2 sigma. In summary, our results indicate that Q-band could now be considered as a reliable tool for ESR dosimetry/dating of fossil teeth although further work is required to improve the repeatability of the measurements. PMID:26930398

  11. QUEST Hanford Site Computer Users - What do they do?

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    WITHERSPOON, T.T.

    2000-03-02

    The Fluor Hanford Chief Information Office requested that a computer-user survey be conducted to determine the user's dependence on the computer and its importance to their ability to accomplish their work. Daily use trends and future needs of Hanford Site personal computer (PC) users was also to be defined. A primary objective was to use the data to determine how budgets should be focused toward providing those services that are truly needed by the users.

  12. Screening the Hanford tanks for trapped gas

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Whitney, P.

    1995-10-01

    The Hanford Site is home to 177 large, underground nuclear waste storage tanks. Hydrogen gas is generated within the waste in these tanks. This document presents the results of a screening of Hanford`s nuclear waste storage tanks for the presence of gas trapped in the waste. The method used for the screening is to look for an inverse correlation between waste level measurements and ambient atmospheric pressure. If the waste level in a tank decreases with an increase in ambient atmospheric pressure, then the compressibility may be attributed to gas trapped within the waste. In this report, this methodology ismore » not used to estimate the volume of gas trapped in the waste. The waste level measurements used in this study were made primarily to monitor the tanks for leaks and intrusions. Four measurement devices are widely used in these tanks. Three of these measure the level of the waste surface. The remaining device measures from within a well embedded in the waste, thereby monitoring the liquid level even if the liquid level is below a dry waste crust. In the past, a steady rise in waste level has been taken as an indicator of trapped gas. This indicator is not part of the screening calculation described in this report; however, a possible explanation for the rise is given by the mathematical relation between atmospheric pressure and waste level used to support the screening calculation. The screening was applied to data from each measurement device in each tank. If any of these data for a single tank indicated trapped gas, that tank was flagged by this screening process. A total of 58 of the 177 Hanford tanks were flagged as containing trapped gas, including 21 of the 25 tanks currently on the flammable gas watch list.« less

  13. Office of Inspector General audit report on Project Hanford management contract costs and performance

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    NONE

    1998-11-01

    On August 6, 1996, the Richland Operations Office (Richland) awarded the Project Hanford Management Contract (Management Contract) to Fluor Daniel Hanford, Inc. (Fluor Daniel). This performance-based, 5-year contract to support cleanup of the Department of Energy`s (DOE) Hanford Site (Hanford) contained performance goals or expectations related to the stabilization, transition, and diversification of the Tri-Cities` economy near Hanford in southeastern Washington. One of these economic goals was that Fluor Daniel and its major subcontractors would help generate 3,000 new, non-Hanford, private sector jobs that would help stabilize and diversify the Tri-Cities` economy. The contract specifically called for Fluor Daniel tomore » help generate 200 jobs, establish an investment fund, and bring 6 new growth-oriented enterprise companies to the Tri-Cities by the end of Fiscal Year (FY) 1997. The objective of the audit was to determine whether Richland was making adequate progress in stabilizing and diversifying the economy of the Tri-Cities by creating 3,000 new, non-Hanford jobs within 5 years. Accordingly, the author examined the progress made in FY 1997, which was the first year of the Management Contract. Richland and Fluor Daniel are at risk of not meeting the Management Contract`s goals of stabilizing and diversifying the economy of the Tri-Cities because most of the new jobs created during FY 1997 were not comparable to Hanford jobs and, thus, may not sustain long-term economic goals. Therefore, Fluor Daniel has not met its expectations in the first year and is not making adequate progress toward meeting the Management Contract`s overall economic goals.« less

  14. Hanford Site National Environmental Policy Act (NEPA) Characterization Report, Revision 17

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Neitzel, Duane A.; Bunn, Amoret L.; Cannon, Sandra D.

    2005-09-30

    This document describes the U.S. Department of Energy’s (DOE) Hanford Site environment. It is updated each year and is intended to provide a consistent description of the Hanford Site environment for the many environmental documents being prepared by DOE contractors concerning the National Environmental Policy Act (NEPA). No statements about significance or environmental consequences are provided. This year’s report is the seventeenth revision of the original document published in 1988 and is (until replaced by the eighteenth revision) the only version that is relevant for use in the preparation of Hanford NEPA, State Environmental Policy Act (SEPA), and Comprehensive Environmentalmore » Response, Compensation, and Liability Act (CERCLA) documents. The two chapters included in this document (Chapters 4 and 6) are numbered to correspond to the chapters where such information is typically presented in environmental impact statements (EISs) and other Hanford Site NEPA or CERCLA documentation. Chapter 4.0 (Affected Environment) describes Hanford Site climate and meteorology; air quality; geology; hydrology; ecology; cultural, archaeological, and historical resources; socioeconomics; noise; and occupational health and safety. Sources for extensive tabular data related to these topics are provided in the chapter. Most subjects are divided into a general description of the characteristics of the Hanford Site, followed by site-specific information, where available, of the 100, 200, 300, and other areas. This division allows the reader to go directly to those sections of particular interest. When specific information on each of these separate areas is not complete or available, the general Hanford Site description should be used. Chapter 6.0 (Statutory and Regulatory Requirements) describes federal and state laws and regulations, DOE directives and permits, and presidential executive orders that are applicable to the NEPA documents prepared for Hanford Site activities

  15. 1999 Report on Hanford Site land disposal restriction for mixed waste

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    BLACK, D.G.

    This report was submitted to meet the requirements of Hanford Federal Facility Agreement and Consent Order (Tri-Party Agreement) Milestone M-26-011. This milestone requires the preparation of an annual report that covers characterization, treatment, storage, minimization, and other aspects of managing land-disposal-restricted mixed waste at the Hanford Facility.

  16. Non-Thermal Treatment of Hanford Site Low-Level Mixed Waste

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    NONE

    1998-09-01

    DOE proposes to transport contact-handled LLMW from the Hanford Site to the Allied Technology Group (ATG) Mixed Waste Facility (MWF) in Richland, Washington, for non-thermal treatment and to return the treated waste to the Hanford Site for eventual land disposal. Over a 3-year period the waste would be staged to the ATG MWF, and treated waste would be returned to the Hanford Site. The ATG MWF would be located on an 18 hectare (ha) (45 acre [at]) ATG Site adjacent to ATG's licensed low-level waste processing facility at 2025 Battelle Boulevard. The ATG MWF is located approximately 0.8 kilometers (km)more » (0.5 miles [mi]) south of Horn Rapids Road and 1.6 km (1 mi) west of Stevens Drive. The property is located within the Horn Rapids triangle in northern Richland (Figure 2.1). The ATG MWF is to be located on the existing ATG Site, near the DOE Hanford Site, in an industrial area in the City of Richland. The effects of siting, construction, and overall operation of the MWF have been evaluated in a separate State Environmental Policy Act (SEPA) EIS (City of Richland 1998). The proposed action includes transporting the LLMW from the Hanford Site to the ATG Facility, non-thermal treatment of the LLMW at the ATG MWF, and transporting the waste from ATG back to the Hanford Site. Impacts fi-om waste treatment operations would be bounded by the ATG SEPA EIS, which included an evaluation of the impacts associated with operating the non-thermal portion of the MWF at maximum design capacity (8,500 metric tons per year) (City of Richland 1998). Up to 50 employees would be required for non-thermal treatment portion of the MWF. This includes 40 employees that would perform waste treatment operations and 10 support staff. Similar numbers were projected for the thermal treatment portion of the MWF (City of Richland 1998).« less

  17. Strontium-90 at the Hanford Site and its ecological implications

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    RE Peterson; TM Poston

    2000-05-22

    Strontium-90, a radioactive contaminant from historical operations at the U.S. Department of Energy (DOE) Hanford Site, enters the Columbia River at several locations associated with former plutonium production reactors at the Site. Strontium-90 is of concern to humans and the environment because of its moderately long half-life (29.1 years), its potential for concentrating in bone tissue, and its relatively high energy of beta decay. Although strontium-90 in the environment is not a new issue for the Hanford Site, recent studies of near-river vegetation along the shoreline near the 100 Areas raised public concern about the possibility of strontium-90-contaminated groundwater reachingmore » the riverbed and fall chinook salmon redds. To address these concerns, DOE asked Pacific Northwest National Laboratory (PNNL) to prepare this report on strontium-90, its distribution in groundwater, how and where it enters the river, and its potential ecological impacts, particularly with respect to fall chinook salmon. The purpose of the report is to characterize groundwater contaminants in the near-shore environment and to assess the potential for ecological impact using salmon embryos, one of the most sensitive ecological indicators for aquatic organisms. Section 2.0 of the report provides background information on strontium-90 at the Hanford Site related to historical operations. Public access to information on strontium-90 also is described. Section 3.0 focuses on key issues associated with strontium-90 contamination in groundwater that discharges in the Hanford Reach. The occurrence and distribution of fall chinook salmon redds in the Hanford Reach and characteristics of salmon spawning are described in Section 4.0. Section 5.0 describes the regulatory standards and criteria used to set action levels for strontium-90. Recommendations for initiating additional monitoring and remedial action associated with strontium-90 contamination at the Hanford Site are presented in

  18. Accelerated Compressed Sensing Based CT Image Reconstruction.

    PubMed

    Hashemi, SayedMasoud; Beheshti, Soosan; Gill, Patrick R; Paul, Narinder S; Cobbold, Richard S C

    2015-01-01

    In X-ray computed tomography (CT) an important objective is to reduce the radiation dose without significantly degrading the image quality. Compressed sensing (CS) enables the radiation dose to be reduced by producing diagnostic images from a limited number of projections. However, conventional CS-based algorithms are computationally intensive and time-consuming. We propose a new algorithm that accelerates the CS-based reconstruction by using a fast pseudopolar Fourier based Radon transform and rebinning the diverging fan beams to parallel beams. The reconstruction process is analyzed using a maximum-a-posterior approach, which is transformed into a weighted CS problem. The weights involved in the proposed model are calculated based on the statistical characteristics of the reconstruction process, which is formulated in terms of the measurement noise and rebinning interpolation error. Therefore, the proposed method not only accelerates the reconstruction, but also removes the rebinning and interpolation errors. Simulation results are shown for phantoms and a patient. For example, a 512 × 512 Shepp-Logan phantom when reconstructed from 128 rebinned projections using a conventional CS method had 10% error, whereas with the proposed method the reconstruction error was less than 1%. Moreover, computation times of less than 30 sec were obtained using a standard desktop computer without numerical optimization.

  19. Accelerated Compressed Sensing Based CT Image Reconstruction

    PubMed Central

    Hashemi, SayedMasoud; Beheshti, Soosan; Gill, Patrick R.; Paul, Narinder S.; Cobbold, Richard S. C.

    2015-01-01

    In X-ray computed tomography (CT) an important objective is to reduce the radiation dose without significantly degrading the image quality. Compressed sensing (CS) enables the radiation dose to be reduced by producing diagnostic images from a limited number of projections. However, conventional CS-based algorithms are computationally intensive and time-consuming. We propose a new algorithm that accelerates the CS-based reconstruction by using a fast pseudopolar Fourier based Radon transform and rebinning the diverging fan beams to parallel beams. The reconstruction process is analyzed using a maximum-a-posterior approach, which is transformed into a weighted CS problem. The weights involved in the proposed model are calculated based on the statistical characteristics of the reconstruction process, which is formulated in terms of the measurement noise and rebinning interpolation error. Therefore, the proposed method not only accelerates the reconstruction, but also removes the rebinning and interpolation errors. Simulation results are shown for phantoms and a patient. For example, a 512 × 512 Shepp-Logan phantom when reconstructed from 128 rebinned projections using a conventional CS method had 10% error, whereas with the proposed method the reconstruction error was less than 1%. Moreover, computation times of less than 30 sec were obtained using a standard desktop computer without numerical optimization. PMID:26167200

  20. Reconstructive dosimetry for cutaneous radiation syndrome

    PubMed Central

    Lima, C.M.A.; Lima, A.R.; Degenhardt, Ä.L.; Valverde, N.J.; Da Silva, F.C.A.

    2015-01-01

    According to the International Atomic Energy Agency (IAEA), a relatively significant number of radiological accidents have occurred in recent years mainly because of the practices referred to as potentially high-risk activities, such as radiotherapy, large irradiators and industrial radiography, especially in gammagraphy assays. In some instances, severe injuries have occurred in exposed persons due to high radiation doses. In industrial radiography, 80 cases involving a total of 120 radiation workers, 110 members of the public including 12 deaths have been recorded up to 2014. Radiological accidents in industrial practices in Brazil have mainly resulted in development of cutaneous radiation syndrome (CRS) in hands and fingers. Brazilian data include 5 serious cases related to industrial gammagraphy, affecting 7 radiation workers and 19 members of the public; however, none of them were fatal. Some methods of reconstructive dosimetry have been used to estimate the radiation dose to assist in prescribing medical treatment. The type and development of cutaneous manifestations in the exposed areas of a person is the first achievable gross dose estimation. This review article presents the state-of-the-art reconstructive dosimetry methods enabling estimation of local radiation doses and provides guidelines for medical handling of the exposed individuals. The review also presents the Chilean and Brazilian radiological accident cases to highlight the importance of reconstructive dosimetry. PMID:26445332

  1. Automatic spectral imaging protocol selection and iterative reconstruction in abdominal CT with reduced contrast agent dose: initial experience.

    PubMed

    Lv, Peijie; Liu, Jie; Chai, Yaru; Yan, Xiaopeng; Gao, Jianbo; Dong, Junqiang

    2017-01-01

    To evaluate the feasibility, image quality, and radiation dose of automatic spectral imaging protocol selection (ASIS) and adaptive statistical iterative reconstruction (ASIR) with reduced contrast agent dose in abdominal multiphase CT. One hundred and sixty patients were randomly divided into two scan protocols (n = 80 each; protocol A, 120 kVp/450 mgI/kg, filtered back projection algorithm (FBP); protocol B, spectral CT imaging with ASIS and 40 to 70 keV monochromatic images generated per 300 mgI/kg, ASIR algorithm. Quantitative parameters (image noise and contrast-to-noise ratios [CNRs]) and qualitative visual parameters (image noise, small structures, organ enhancement, and overall image quality) were compared. Monochromatic images at 50 keV and 60 keV provided similar or lower image noise, but higher contrast and overall image quality as compared with 120-kVp images. Despite the higher image noise, 40-keV images showed similar overall image quality compared to 120-kVp images. Radiation dose did not differ between the two protocols, while contrast agent dose in protocol B was reduced by 33 %. Application of ASIR and ASIS to monochromatic imaging from 40 to 60 keV allowed contrast agent dose reduction with adequate image quality and without increasing radiation dose compared to 120 kVp with FBP. • Automatic spectral imaging protocol selection provides appropriate scan protocols. • Abdominal CT is feasible using spectral imaging and 300 mgI/kg contrast agent. • 50-keV monochromatic images with 50 % ASIR provide optimal image quality.

  2. Description of the process used to create 1992 Hanford Morality Study database

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Gilbert, E.S.; Buchanan, J.A.; Holter, N.A.

    1992-12-01

    An updated and expanded database for the Hanford Mortality Study has been developed by PNL`s Epidemiology and Biometry Department. The purpose of this report is to document this process. The primary sources of data were the Occupational Health History (OHH) files maintained by the Hanford Environmental Health Foundation (HEHF) and including demographic data and job histories; the Hanford Mortality (HMO) files also maintained by HEHF and including information of deaths of Hanford workers; the Occupational Radiation Exposure (ORE) files maintained by PNL`s Health Physics Department and containing data on external dosimetry; and a file of workers with confirmed internal depositionsmore » of radionuclides also maintained by PNL`s Health Physics Department. This report describes each of these files in detail, and also describes the many edits that were performed to address the consistency and accuracy of data within and between these files.« less

  3. Description of the process used to create 1992 Hanford Morality Study database

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Gilbert, E. S.; Buchanan, J. A.; Holter, N. A.

    1992-12-01

    An updated and expanded database for the Hanford Mortality Study has been developed by PNL's Epidemiology and Biometry Department. The purpose of this report is to document this process. The primary sources of data were the Occupational Health History (OHH) files maintained by the Hanford Environmental Health Foundation (HEHF) and including demographic data and job histories; the Hanford Mortality (HMO) files also maintained by HEHF and including information of deaths of Hanford workers; the Occupational Radiation Exposure (ORE) files maintained by PNL's Health Physics Department and containing data on external dosimetry; and a file of workers with confirmed internal depositionsmore » of radionuclides also maintained by PNL's Health Physics Department. This report describes each of these files in detail, and also describes the many edits that were performed to address the consistency and accuracy of data within and between these files.« less

  4. Determination of an Environmental Background Level of Sr-90 in Urine for the Hanford Bioassay Program Determination of an Environmental Background Level of Sr-90 in Urine for the Hanford Bioassay Program

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Antonio, Cheryl L.; Rivard, James W.

    2009-11-01

    During the decommissioning and maintenance of some of the facilities at the U.S. Department of Energy Hanford Site in Washington State, workers have potential for a 90Sr intake. However, because of worldwide radioactive fallout, 90Sr is present in our environment, and can be detectable in routine urine bioassay samples. It is important for the Hanford Site bioassay program to discern an occupational intake from a non-occupational environmental one. A detailed study of the background 90Sr in the urine of unexposed Hanford workers was performed. A survey of the Hanford Site bioassay database found 128 Hanford workers who were hired betweenmore » 1997 and 2002 and who had a very low potential for an occupational exposure prior to the baseline strontium urinalysis. Each urinalysis sample represented excretion during an approximate 24-hr period. The arithmetic mean value for the 128 pre-exposure baselines was 3.6 ± 5.1 mBq d-1. The 90Sr activities in urine varied from -12 to 20 mBq. The 99th percentile result was 16.4 mBqd-1, which was interpreted to mean that 1% of Hanford workers not occupationally exposed to strontium might exceed 16.4 mBq d-1.« less

  5. Determination of dose distributions and parameter sensitivity

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Napier, B.A.; Farris, W.T.; Simpson, J.C.

    1992-12-01

    A series of scoping calculations has been undertaken to evaluate the absolute and relative contribution of different radionuclides and exposure pathways to doses that may have been received by individuals living in the vicinity of the Hanford site. This scoping calculation (Calculation 005) examined the contributions of numerous parameters to the uncertainty distribution of doses calculated for environmental exposures and accumulation in foods. This study builds on the work initiated in the first scoping study of iodine in cow's milk and the third scoping study, which added additional pathways. Addressed in this calculation were the contributions to thyroid dose ofmore » infants from (1) air submersion and groundshine external dose, (2) inhalation, (3) ingestion of soil by humans, (4) ingestion of leafy vegetables, (5) ingestion of other vegetables and fruits, (6) ingestion of meat, (7) ingestion of eggs, and (8) ingestion of cows' milk from Feeding Regime 1 as described in Calculation 001.« less

  6. Irradiation autogenous mandibular grafts in primary reconstructions

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hamaker, R.C.

    1981-07-01

    The procedure, irradiated mandibular autografts, for primary reconstruction, is presented with an immediate success rate of 88%. Eight cases have undergone primary mandibular reconstruction with the tumorous mandible irradiated to 10,000 rads in a single dose. The longest follow-up is 2 3/4 years. The autograft has proven to be an ideal implant. Major resections of the mandible in conjunction with large myocutaneous flaps have been reconstructed utilizing this implant.

  7. Effect of Antifoam Agent on Oxidative Leaching of Hanford Tank Sludge Simulants

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Rapko, Brian M.; Jones, Susan A.; Lumetta, Gregg J.

    2010-02-26

    Oxidative leaching of simulant tank waste containing an antifoam agent (AFA) to reduce the chromium content of the sludge was tested using permanganate as the oxidant in 0.25 M NaOH solutions. AFA is added to the waste treatment process to prevent foaming. The AFA, Dow Corning Q2-3183A, is a surface-active polymer that consists of polypropylene glycol, polydimethylsiloxane, octylphenoxy polyethoxy ethanol, treated silica, and polyether polyol. Some of the Hanford Tank Waste Treatment and Immobilization Plant (WTP) waste slurries contain high concentrations of undissolved solids that would exhibit undesirable behavior without AFA addition. These tests were conducted to determine the effectmore » of the AFA on oxidative leaching of Cr(III) in waste by permanganate. It has not previously been determined what effect AFA has on the permanganate reaction. This study was conducted to determine the effect AFA has on the oxidation of the chromium, plus plutonium and other criticality-related elements, specifically Fe, Ni and Mn. During the oxidative leaching process, Mn is added as liquid permanganate solution and is converted to an insoluble solid that precipitates as MnO2 and becomes part of the solid waste. Caustic leaching was performed followed by an oxidative leach at either 25°C or 45°C. Samples of the leachate and solids were collected at each step of the process. Initially, Battelle-Pacific Northwest Division (PNWD) was contracted by Bechtel National, Inc. to perform these further scoping studies on oxidative alkaline leaching. The data obtained from the testing will be used by the WTP operations to develop procedures for permanganate dosing of Hanford tank sludge solids during oxidative leaching. Work was initially conducted under contract number 24590-101-TSA-W000-00004. In February 2007, the contract mechanism was switched to Pacific Northwest National Laboratory (PNNL) operating Contract DE-AC05-76RL01830. In summary, this report describes work focused on

  8. Inventory Data Package for Hanford Assessments

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kincaid, Charles T.; Eslinger, Paul W.; Aaberg, Rosanne L.

    2006-06-01

    This document presents the basis for a compilation of inventory for radioactive contaminants of interest by year for all potentially impactive waste sites on the Hanford Site for which inventory data exist in records or could be reasonably estimated. This document also includes discussions of the historical, current, and reasonably foreseeable (1944 to 2070) future radioactive waste and waste sites; the inventories of radionuclides that may have a potential for environmental impacts; a description of the method(s) for estimating inventories where records are inadequate; a description of the screening method(s) used to select those sites and contaminants that might makemore » a substantial contribution to impacts; a listing of the remedial actions and their completion dates for waste sites; and tables showing the best estimate inventories available for Hanford assessments.« less

  9. Hanford solid-waste handling facility strategy

    NASA Astrophysics Data System (ADS)

    Albaugh, J. F.

    1982-05-01

    Prior to 1970, transuranic (TRU) solid waste was disposed of at Hanford by shallow land burial. Since 1970, TRU solid waste has been stored in near surface trenches designed to facilitate retrieval after twenty year storage period. Current strategy calls for final disposal in a geologic repository. Funding permitting, in 1983, certification of newly generated TRU waste to the Waste Isolation Pilot Plant (WIPP) criteria for geologic disposal will be initiated. Certified and uncertified waste will continue to be stored at Hanford in retrievable storage until a firm schedule for shipment to WIPP is developed. Previously stored wastes retrieved for geologic disposal and newly generated uncertified waste requires processing to assure compliance with disposal criteria. A facility to perform this function is being developed. A study to determine the requirements of this Waste Receiving and Processing (WRAP) Facility is currently being conducted.

  10. CO{sub 2} pellet decontamination technology at Westinghouse Hanford

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Aldridge, T.L.; Aldrich, L.K. II; Bowman, E.V.

    1995-03-01

    Experimentation and testing with CO{sub 2} pellet decontamination technology is being conducted at Westinghosue Hanford Company (WHC), Richland, Washington. There are 1,100 known existing waste sites at Hanford. The sites specified by federal and state agencies are currently being studied to determine the appropriate cleanup methods best for each site. These sites are contaminated and work on them is in compliance with the Comprehensive Environmental Response, Compensation, and Liability Act (CERCLA). There are also 63 treatment, storage, and disposal units, for example: groups of waste tanks or drums. In 1992, there were 100 planned activities scheduled to bring these unitsmore » into the Resource Conservation and Recovery Act (RCRA) compliance or close them after waste removal. Ninety-six of these were completed. The remaining four were delayed or are being negotiated with regulatory agencies. As a result of past defense program activities at Hanford a tremendous volume of materials and equipment have accumulated and require remediation.« less

  11. Wildlife studies on the Hanford Site: 1993 Highlights report

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Cadwell, L.L.

    The Pacific Northwest Laboratory (PNL) Wildlife Resources Monitoring Project was initiated by DOE to track the status of wildlife populations to determine whether Hanford operations affected them. The project continues to conduct a census of wildlife populations that are highly visible, economically or aesthetically important, and rare or otherwise considered sensitive. Examples of long-term data collected and maintained through the Wildlife Resources Monitoring Project include annual goose nesting surveys conducted on islands in the Hanford Reach, wintering bald eagle surveys, and fall Chinook salmon redd (nest) surveys. The report highlights activities related to salmon and mollusks on the Hanford Reachmore » of the Columbia River; describes efforts to map vegetation on the Site and efforts to survey species of concern; provides descriptions of shrub-steppe bird surveys, including bald eagles, Canada geese, and hawks; outlines efforts to monitor mule deer and elk populations on the Site; and describes development of a biological database management system.« less

  12. Isotopic tracking of Hanford 300 area derived uranium in the Columbia River.

    PubMed

    Christensen, John N; Dresel, P Evan; Conrad, Mark E; Patton, Gregory W; DePaolo, Donald J

    2010-12-01

    Our objectives in this study are to quantify the discharge rate of uranium (U) to the Columbia River from the Hanford Site's 300 Area and to follow that U downriver to constrain its fate. Uranium from the Hanford Site has variable isotopic composition due to nuclear industrial processes carried out at the site. This characteristic makes it possible to use high-precision isotopic measurements of U in environmental samples to identify even trace levels of contaminant U, determine its sources, and estimate discharge rates. Our data on river water samples indicate that as much as 3.2 kg/day can enter the Columbia River from the 300 Area, which is only a small fraction of the total load of dissolved natural background U carried by the Columbia River. This very low level of Hanford-derived U can be discerned, despite dilution to <1% of natural background U, 400 km downstream from the Hanford Site. These results indicate that isotopic methods can allow the amounts of U from the 300 Area of the Hanford Site entering the Columbia River to be measured accurately to ascertain whether they are an environmental concern or insignificant relative to natural uranium background in the Columbia River.

  13. Radiation Dose Reconstruction Program of the National Institute for Occupational Safety and Health: overview.

    PubMed

    Neton, James W; Howard, John; Elliott, Larry J

    2008-07-01

    Over the past 65 years, hundreds of thousands of workers have been engaged in nuclear weapons-related activities for the U.S. Department of Energy or its predecessor agencies. To date, almost 27,000 such employees (or their survivors) have filed claims under Part B of the Energy Employees Occupational Illness Compensation Program Act of 2000, which provides monetary compensation and medical benefits to energy employees who have developed certain types of cancer that have been determined, under the guidelines of the program, to have resulted from occupational radiation exposure covered under the Act. Although it is difficult to predict the number of cancer claims that will be evaluated under this program, the number could double or triple. In each case, the processing of a claim requires that the National Institute for Occupational Safety and Health reconstruct the radiation dose received by the employee followed by a determination by the U.S. Department of Labor as to whether the employee was "at least as likely as not" to have sustained the cancer as a result of his or her occupational exposure to ionizing radiation. Although some of the dose assessments are straightforward, many are extremely complex due to (1) missing, non-interpretable, or undocumented records; (2) a wide variety of external and internal exposure conditions; and/or (3) highly variable work assignments and work loads. The program objectives are to process claims in an effective, efficient, and timely manner. One of the initial challenges was to develop the necessary infrastructure to meet these objectives. Subsequent challenges included documenting that assessments are fair and scientifically consistent. Ensuring that each claimant receives the "benefit of the doubt" in any cases where the required background information and data are ambiguous or not available is also an important objective. Fortunately, there are some aspects of the processing requirements that have tended to reduce the

  14. Image quality of low-dose CCTA in obese patients: impact of high-definition computed tomography and adaptive statistical iterative reconstruction.

    PubMed

    Gebhard, Cathérine; Fuchs, Tobias A; Fiechter, Michael; Stehli, Julia; Stähli, Barbara E; Gaemperli, Oliver; Kaufmann, Philipp A

    2013-10-01

    The accuracy of coronary computed tomography angiography (CCTA) in obese persons is compromised by increased image noise. We investigated CCTA image quality acquired on a high-definition 64-slice CT scanner using modern adaptive statistical iterative reconstruction (ASIR). Seventy overweight and obese patients (24 males; mean age 57 years, mean body mass index 33 kg/m(2)) were studied with clinically-indicated contrast enhanced CCTA. Thirty-five patients underwent a standard definition protocol with filtered backprojection reconstruction (SD-FBP) while 35 patients matched for gender, age, body mass index and coronary artery calcifications underwent a novel high definition protocol with ASIR (HD-ASIR). Segment by segment image quality was assessed using a four-point scale (1 = excellent, 2 = good, 3 = moderate, 4 = non-diagnostic) and revealed better scores for HD-ASIR compared to SD-FBP (1.5 ± 0.43 vs. 1.8 ± 0.48; p < 0.05). The smallest detectable vessel diameter was also improved, 1.0 ± 0.5 mm for HD-ASIR as compared to 1.4 ± 0.4 mm for SD-FBP (p < 0.001). Average vessel attenuation was higher for HD-ASIR (388.3 ± 109.6 versus 350.6 ± 90.3 Hounsfield Units, HU; p < 0.05), while image noise, signal-to-noise ratio and contrast-to noise ratio did not differ significantly between reconstruction protocols (p = NS). The estimated effective radiation doses were similar, 2.3 ± 0.1 and 2.5 ± 0.1 mSv (HD-ASIR vs. SD-ASIR respectively). Compared to a standard definition backprojection protocol (SD-FBP), a newer high definition scan protocol in combination with ASIR (HD-ASIR) incrementally improved image quality and visualization of distal coronary artery segments in overweight and obese individuals, without increasing image noise and radiation dose.

  15. Monitoring iodine-129 in air and milk samples collected near the Hanford Site: an investigation of historical iodine monitoring data.

    PubMed

    Fritz, Brad G; Patton, Gregory W

    2006-01-01

    While other research has reported on the concentrations of (129)I in the environment surrounding active nuclear fuel reprocessing facilities, there is a shortage of information regarding how the concentrations change once facilities close. At the Hanford Site, the Plutonium-Uranium Extraction (PUREX) chemical separation plant was operating between 1983 and 1990, during which time (129)I concentrations in air and milk were measured. After the cessation of chemical processing, plant emissions decreased 2.5 orders of magnitude over an 8-year period. An evaluation of (129)I and (127)I concentration data in air and milk spanning the PUREX operation and post-closure period was conducted to compare the changes in environmental levels. Measured concentrations over the monitoring period were below the levels that could result in a potential annual human dose greater than 1 mSv. There was a measurable difference in the measured air concentrations of (129)I at different distances from the source, indicating a distinct Hanford fingerprint. Correlations between stack emissions of (129)I and concentrations in air and milk indicate that atmospheric emissions were the major source of (129)I measured in environmental samples. The measured concentrations during PUREX operations were similar to observations made around a fuel reprocessing plant in Germany. After the PUREX Plant stopped operating, (129)I concentration measurements made upwind of Hanford were similar to the results from Seville, Spain.

  16. SU-E-I-01: Iterative CBCT Reconstruction with a Feature-Preserving Penalty

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lyu, Q; Li, B; Southern Medical University, Guangzhou

    2015-06-15

    Purpose: Low-dose CBCT is desired in various clinical applications. Iterative image reconstruction algorithms have shown advantages in suppressing noise in low-dose CBCT. However, due to the smoothness constraint enforced during the reconstruction process, edges may be blurred and image features may lose in the reconstructed image. In this work, we proposed a new penalty design to preserve image features in the image reconstructed by iterative algorithms. Methods: Low-dose CBCT is reconstructed by minimizing the penalized weighted least-squares (PWLS) objective function. Binary Robust Independent Elementary Features (BRIEF) of the image were integrated into the penalty of PWLS. BRIEF is a generalmore » purpose point descriptor that can be used to identify important features of an image. In this work, BRIEF distance of two neighboring pixels was used to weigh the smoothing parameter in PWLS. For pixels of large BRIEF distance, weaker smooth constraint will be enforced. Image features will be better preserved through such a design. The performance of the PWLS algorithm with BRIEF penalty was evaluated by a CatPhan 600 phantom. Results: The image quality reconstructed by the proposed PWLS-BRIEF algorithm is superior to that by the conventional PWLS method and the standard FDK method. At matched noise level, edges in PWLS-BRIEF reconstructed image are better preserved. Conclusion: This study demonstrated that the proposed PWLS-BRIEF algorithm has great potential on preserving image features in low-dose CBCT.« less

  17. Colloid-facilitated transport of cesium in variably saturated Hanford sediments.

    PubMed

    Chen, Gang; Flury, Markus; Harsh, James B; Lichtner, Peter C

    2005-05-15

    Radioactive 137Cs has leaked from underground waste tanks into the vadose zone at the Hanford Reservation in south-central Washington State. There is concern that 137Cs, currently located in the vadose zone, can reach the groundwater. In this study, we investigated whether, and to what extent, colloidal particles can facilitate the transport of 137Cs at Hanford. We used colloidal materials isolated from Hanford sediments. Transport experiments were conducted under variably saturated, steady-state flow conditions in repacked, 20 cm long Hanford sediment columns, with effective water saturations ranging from 0.2 to 1.0. Cesium, pre-associated with colloids, was stripped off during transport through the sediments. The higher the flow rates, the less Cs was stripped off, indicating in part that Cs desorption from carrying colloids was a residence-time-dependent process. Depending on the flow rate, up to 70% of the initially sorbed Cs desorbed from colloidal carriers and was captured in the stationary sediments. Less Cs was stripped off colloids under unsaturated than under saturated flow conditions at similar flow rates. This phenomenon was likely due to the reduced availability of sorption sites for Cs on the sediments as the water content decreased and water flow was divided between mobile and immobile regions.

  18. The combination of a reduction in contrast agent dose with low tube voltage and an adaptive statistical iterative reconstruction algorithm in CT enterography: Effects on image quality and radiation dose.

    PubMed

    Feng, Cui; Zhu, Di; Zou, Xianlun; Li, Anqin; Hu, Xuemei; Li, Zhen; Hu, Daoyu

    2018-03-01

    To investigate the subjective and quantitative image quality and radiation exposure of CT enterography (CTE) examination performed at low tube voltage and low concentration of contrast agent with adaptive statistical iterative reconstruction (ASIR) algorithm, compared with conventional CTE.One hundred thirty-seven patients with suspected or proved gastrointestinal diseases underwent contrast enhanced CTE in a multidetector computed tomography (MDCT) scanner. All cases were assigned to 2 groups. Group A (n = 79) underwent CT with low tube voltage based on patient body mass index (BMI) (BMI < 23 kg/m, 80 kVp; BMI ≥ 23 kg/m, 100 kVp) and low concentration of contrast agent (270 mg I/mL), the images were reconstructed with standard filtered back projection (FBP) algorithm and 50% ASIR algorithm. Group B (n = 58) underwent conventional CTE with 120 kVp and 350 mg I/mL contrast agent, the images were reconstructed with FBP algorithm. The computed tomography dose index volume (CTDIvol), dose length product (DLP), effective dose (ED), and total iodine dosage were calculated and compared. The CT values, contrast-to-noise ratio (CNR), and signal-to-noise ratio (SNR) of the normal bowel wall, gastrointestinal lesions, and mesenteric vessels were assessed and compared. The subjective image quality was assessed independently and blindly by 2 radiologists using a 5-point Likert scale.The differences of values for CTDIvol (8.64 ± 2.72 vs 11.55 ± 3.95, P < .001), ED (6.34 ± 2.24 vs 8.52 ± 3.02, P < .001), and DLP (422.6 ± 149.40 vs 568.30 ± 213.90, P < .001) were significant between group A and group B, with a reduction of 25.2%, 25.7%, and 25.7% in group A, respectively. The total iodine dosage in group A was reduced by 26.1%. The subjective image quality did not differ between the 2 groups (P > .05) and all image quality scores were greater than or equal to 3 (moderate). Fifty percent ASIR-A group

  19. Optimizing CT technique to reduce radiation dose: effect of changes in kVp, iterative reconstruction, and noise index on dose and noise in a human cadaver.

    PubMed

    Chang, Kevin J; Collins, Scott; Li, Baojun; Mayo-Smith, William W

    2017-06-01

    For assessment of the effect of varying the peak kilovoltage (kVp), the adaptive statistical iterative reconstruction technique (ASiR), and automatic dose modulation on radiation dose and image noise in a human cadaver, a cadaver torso underwent CT scanning at 80, 100, 120 and 140 kVp, each at ASiR settings of 0, 30 and 50 %, and noise indices (NIs) of 5.5, 11 and 22. The volume CT dose index (CTDI vol ), image noise, and attenuation values of liver and fat were analyzed for 20 data sets. Size-specific dose estimates (SSDEs) and liver-to-fat contrast-to-noise ratios (CNRs) were calculated. Values for different combinations of kVp, ASiR, and NI were compared. The CTDI vol varied by a power of 2 with kVp values between 80 and 140 without ASiR. Increasing ASiR levels allowed a larger decrease in CTDI vol and SSDE at higher kVp than at lower kVp while image noise was held constant. In addition, CTDI vol and SSDE decreased with increasing NI at each kVp, but the decrease was greater at higher kVp than at lower kVp. Image noise increased with decreasing kVp despite a fixed NI; however, this noise could be offset with the use of ASiR. The CT number of the liver remained unchanged whereas that of fat decreased as the kVp decreased. Image noise and dose vary in a complicated manner when the kVp, ASiR, and NI are varied in a human cadaver. Optimization of CT protocols will require balancing of the effects of each of these parameters to maximize image quality while minimizing dose.

  20. MO-FG-CAMPUS-TeP1-01: An Efficient Method of 3D Patient Dose Reconstruction Based On EPID Measurements for Pre-Treatment Patient Specific QA

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    David, R; Lee, C; Calvary Mater Newcastle, Newcastle

    Purpose: To demonstrate an efficient and clinically relevant patient specific QA method by reconstructing 3D patient dose from 2D EPID images for IMRT plans. Also to determine the usefulness of 2D QA metrics when assessing 3D patient dose deviations. Methods: Using the method developed by King et al (Med Phys 39(5),2839–2847), EPID images of IMRT fields were acquired in air and converted to dose at 10 cm depth (SAD setup) in a flat virtual water phantom. Each EPID measured dose map was then divided by the corresponding treatment planning system (TPS) dose map calculated with an identical setup, to derivemore » a 2D “error matrix”. For each field, the error matrix was used to adjust the doses along the respective ray lines in the original patient 3D dose. All field doses were combined to derive a reconstructed 3D patient dose for quantitative analysis. A software tool was developed to efficiently implement the entire process and was tested with a variety of IMRT plans for 2D (virtual flat phantom) and 3D (in-patient) QA analysis. Results: The method was tested on 60 IMRT plans. The mean (± standard deviation) 2D gamma (2%,2mm) pass rate (2D-GPR) was 97.4±3.0% and the mean 2D gamma index (2D-GI) was 0.35±0.06. The 3D PTV mean dose deviation was 1.8±0.8%. The analysis showed very weak correlations between both the 2D-GPR and 2D-GI when compared with PTV mean dose deviations (R2=0.3561 and 0.3632 respectively). Conclusion: Our method efficiently calculates 3D patient dose from 2D EPID images, utilising all of the advantages of an EPID-based dosimetry system. In this study, the 2D QA metrics did not predict the 3D patient dose deviation. This tool allows reporting of the 3D volumetric dose parameters thus providing more clinically relevant patient specific QA.« less

  1. Penalized Weighted Least-Squares Approach to Sinogram Noise Reduction and Image Reconstruction for Low-Dose X-Ray Computed Tomography

    PubMed Central

    Wang, Jing; Li, Tianfang; Lu, Hongbing; Liang, Zhengrong

    2006-01-01

    Reconstructing low-dose X-ray CT (computed tomography) images is a noise problem. This work investigated a penalized weighted least-squares (PWLS) approach to address this problem in two dimensions, where the WLS considers first- and second-order noise moments and the penalty models signal spatial correlations. Three different implementations were studied for the PWLS minimization. One utilizes a MRF (Markov random field) Gibbs functional to consider spatial correlations among nearby detector bins and projection views in sinogram space and minimizes the PWLS cost function by iterative Gauss-Seidel algorithm. Another employs Karhunen-Loève (KL) transform to de-correlate data signals among nearby views and minimizes the PWLS adaptively to each KL component by analytical calculation, where the spatial correlation among nearby bins is modeled by the same Gibbs functional. The third one models the spatial correlations among image pixels in image domain also by a MRF Gibbs functional and minimizes the PWLS by iterative successive over-relaxation algorithm. In these three implementations, a quadratic functional regularization was chosen for the MRF model. Phantom experiments showed a comparable performance of these three PWLS-based methods in terms of suppressing noise-induced streak artifacts and preserving resolution in the reconstructed images. Computer simulations concurred with the phantom experiments in terms of noise-resolution tradeoff and detectability in low contrast environment. The KL-PWLS implementation may have the advantage in terms of computation for high-resolution dynamic low-dose CT imaging. PMID:17024831

  2. Estimation of non-solid lung nodule volume with low-dose CT protocols: effect of reconstruction algorithm and measurement method

    NASA Astrophysics Data System (ADS)

    Gavrielides, Marios A.; DeFilippo, Gino; Berman, Benjamin P.; Li, Qin; Petrick, Nicholas; Schultz, Kurt; Siegelman, Jenifer

    2017-03-01

    Computed tomography is primarily the modality of choice to assess stability of nonsolid pulmonary nodules (sometimes referred to as ground-glass opacity) for three or more years, with change in size being the primary factor to monitor. Since volume extracted from CT is being examined as a quantitative biomarker of lung nodule size, it is important to examine factors affecting the performance of volumetric CT for this task. More specifically, the effect of reconstruction algorithms and measurement method in the context of low-dose CT protocols has been an under-examined area of research. In this phantom study we assessed volumetric CT with two different measurement methods (model-based and segmentation-based) for nodules with radiodensities of both nonsolid (-800HU and -630HU) and solid (-10HU) nodules, sizes of 5mm and 10mm, and two different shapes (spherical and spiculated). Imaging protocols included CTDIvol typical of screening (1.7mGy) and sub-screening (0.6mGy) scans and different types of reconstruction algorithms across three scanners. Results showed that radio-density was the factor contributing most to overall error based on ANOVA. The choice of reconstruction algorithm or measurement method did not affect substantially the accuracy of measurements; however, measurement method affected repeatability with repeatability coefficients ranging from around 3-5% for the model-based estimator to around 20-30% across reconstruction algorithms for the segmentation-based method. The findings of the study can be valuable toward developing standardized protocols and performance claims for nonsolid nodules.

  3. Local ROI Reconstruction via Generalized FBP and BPF Algorithms along More Flexible Curves.

    PubMed

    Yu, Hengyong; Ye, Yangbo; Zhao, Shiying; Wang, Ge

    2006-01-01

    We study the local region-of-interest (ROI) reconstruction problem, also referred to as the local CT problem. Our scheme includes two steps: (a) the local truncated normal-dose projections are extended to global dataset by combining a few global low-dose projections; (b) the ROI are reconstructed by either the generalized filtered backprojection (FBP) or backprojection-filtration (BPF) algorithms. The simulation results show that both the FBP and BPF algorithms can reconstruct satisfactory results with image quality in the ROI comparable to that of the corresponding global CT reconstruction.

  4. Local ROI Reconstruction via Generalized FBP and BPF Algorithms along More Flexible Curves

    PubMed Central

    Ye, Yangbo; Zhao, Shiying; Wang, Ge

    2006-01-01

    We study the local region-of-interest (ROI) reconstruction problem, also referred to as the local CT problem. Our scheme includes two steps: (a) the local truncated normal-dose projections are extended to global dataset by combining a few global low-dose projections; (b) the ROI are reconstructed by either the generalized filtered backprojection (FBP) or backprojection-filtration (BPF) algorithms. The simulation results show that both the FBP and BPF algorithms can reconstruct satisfactory results with image quality in the ROI comparable to that of the corresponding global CT reconstruction. PMID:23165018

  5. Site support program plan for ICF Kaiser Hanford Company, Revision 1

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    NONE

    1995-10-01

    This document is the general administrative plan implemented by the Hanford Site contractor, ICF Kaiser Hanford Company. It describes the mission, administrative structure, projected staffing, to be provided by the contractor. The report breaks out the work responsibilities within the different units of the company, a baseline schedule for the different groups, and a cost summary for the different operating units.

  6. Precipitation of nitrate-cancrinite in Hanford Tank Sludge.

    PubMed

    Buck, E C; McNamara, B K

    2004-08-15

    The chemistry of underground storage tanks containing high-level waste at the Hanford Site in Washington State is an area of continued research interest. Thermodynamic models have predicted the formation of analcime and clinoptilolite in Hanford tanks, rather than cancrinite; however, these predictions were based on carbonate-cancrinite. We report the first observation of a nitrate-cancrinite [possibly Na8(K,Cs)(AlSiO4)6(NO3)2 x nH2O] extracted from a Hanford tank 241-AP-101 sample that was evaporated to 6, 8, and 10 M NaOH concentrations. The nitrate-cancrinite phase formed spherical aggregates (4 microm in diameter) that consisted of platy hexagonal crystals (approximately 0.2 microm thick). Cesium-137 was concentrated in these aluminosilicate structures. These phases possessed a morphology identical to that of nitrate-cancrinite synthesized using simulant tests of nonradioactive tank waste, supporting the contention that it is possible to develop nonradioactive artificial sludges. This investigation points to the continued importance of understanding the solubility of NO3-cancrinite and related phases. Knowledge of the detailed structure of actual phases in the tank waste helps with thermodynamic modeling of tank conditions and waste processing.

  7. Performance comparison between total variation (TV)-based compressed sensing and statistical iterative reconstruction algorithms.

    PubMed

    Tang, Jie; Nett, Brian E; Chen, Guang-Hong

    2009-10-07

    Of all available reconstruction methods, statistical iterative reconstruction algorithms appear particularly promising since they enable accurate physical noise modeling. The newly developed compressive sampling/compressed sensing (CS) algorithm has shown the potential to accurately reconstruct images from highly undersampled data. The CS algorithm can be implemented in the statistical reconstruction framework as well. In this study, we compared the performance of two standard statistical reconstruction algorithms (penalized weighted least squares and q-GGMRF) to the CS algorithm. In assessing the image quality using these iterative reconstructions, it is critical to utilize realistic background anatomy as the reconstruction results are object dependent. A cadaver head was scanned on a Varian Trilogy system at different dose levels. Several figures of merit including the relative root mean square error and a quality factor which accounts for the noise performance and the spatial resolution were introduced to objectively evaluate reconstruction performance. A comparison is presented between the three algorithms for a constant undersampling factor comparing different algorithms at several dose levels. To facilitate this comparison, the original CS method was formulated in the framework of the statistical image reconstruction algorithms. Important conclusions of the measurements from our studies are that (1) for realistic neuro-anatomy, over 100 projections are required to avoid streak artifacts in the reconstructed images even with CS reconstruction, (2) regardless of the algorithm employed, it is beneficial to distribute the total dose to more views as long as each view remains quantum noise limited and (3) the total variation-based CS method is not appropriate for very low dose levels because while it can mitigate streaking artifacts, the images exhibit patchy behavior, which is potentially harmful for medical diagnosis.

  8. Fluor Hanford, Inc. Groundwater and Technical Integration Support (Master Project) Quality Assurance Management Plan

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Fix, N. J.

    The scope of the Fluor Hanford, Inc. Groundwater and Technical Integration Support (Master Project) is to provide technical and integration support to Fluor Hanford, Inc., including operable unit investigations at 300-FF-5 and other groundwater operable units, strategic integration, technical integration and assessments, remediation decision support, and science and technology. This Quality Assurance Management Plan provides the quality assurance requirements and processes that will be followed by the Fluor Hanford, Inc. Groundwater and Technical Integration Support (Master Project).

  9. Web-Based Geographic Information System Tool for Accessing Hanford Site Environmental Data

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Triplett, Mark B.; Seiple, Timothy E.; Watson, David J.

    Data volume, complexity, and access issues pose severe challenges for analysts, regulators and stakeholders attempting to efficiently use legacy data to support decision making at the U.S. Department of Energy’s (DOE) Hanford Site. DOE has partnered with the Pacific Northwest National Laboratory (PNNL) on the PHOENIX (PNNL-Hanford Online Environmental Information System) project, which seeks to address data access, transparency, and integration challenges at Hanford to provide effective decision support. PHOENIX is a family of spatially-enabled web applications providing quick access to decades of valuable scientific data and insight through intuitive query, visualization, and analysis tools. PHOENIX realizes broad, public accessibilitymore » by relying only on ubiquitous web-browsers, eliminating the need for specialized software. It accommodates a wide range of users with intuitive user interfaces that require little or no training to quickly obtain and visualize data. Currently, PHOENIX is actively hosting three applications focused on groundwater monitoring, groundwater clean-up performance reporting, and in-tank monitoring. PHOENIX-based applications are being used to streamline investigative and analytical processes at Hanford, saving time and money. But more importantly, by integrating previously isolated datasets and developing relevant visualization and analysis tools, PHOENIX applications are enabling DOE to discover new correlations hidden in legacy data, allowing them to more effectively address complex issues at Hanford.« less

  10. Immediate breast reconstruction with anatomical implants following mastectomy: The radiation perspective

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ben-David, Merav, E-mail: Merav.ben-david@sheba.health.gov.il; Sackler School of Medicine, Tel Aviv University, Tel Aviv; Granot, Hila

    2016-07-01

    Immediate implant-based breast reconstruction followed by postmastectomy radiation therapy (PMRT) is controversial because of the risk of compromised treatment plans and concerns regarding cosmetic outcomes. We evaluated the effects of immediate direct-to-implant breast reconstruction with anatomical implants on the quality of PMRT delivered by 3-dimensional conformal radiotherapy (3D-CRT). In this retrospective, single-institution study, patients who had undergone reconstruction with direct anatomic implant, performed by a single surgeon, received 3D-CRT between 2008 and 2013. For each patient, 2 plans (including or excluding internal mammary nodes [IMN]) were created and calculated. The primary end point was the dose distribution among reconstructed breasts,more » heart, lungs, and IMNs, and between right and left breasts. Of 29 consecutive patients, 11 received right-sided and 18 received left-sided PMRT to a total dose of 50 Gy. For plans excluding IMN coverage, mean D{sub mean} for right and left reconstructed breasts was 49.09 Gy (98.2% of the prescribed dose) and 48.51 Gy (97.0%), respectively. For plans including IMNs, mean D{sub mean} was 49.15 Gy (98.3%) for right and 48.46 Gy (96.9%) for left reconstructed breasts; the mean IMN D{sub mean} was 47.27 Gy (right) and 47.89 Gy (left). Heart D{sub mean} was below 1.56 Gy for all plans. Mean total lung volume receiving a dose of ≥ 20 Gy was 13.80% to 19.47%. PMRT can be delivered effectively and safely by 3D-CRT after direct-to-implant breast reconstruction with anatomical implants, even if patients require IMN treatment.« less

  11. Risk management study for the retired Hanford Site facilities: Qualitative risk evaluation for the retired Hanford Site facilities. Volume 3

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Coles, G.A.; Shultz, M.V.; Taylor, W.E.

    1993-09-01

    This document provides a risk evaluation of the 100 and 200 Area retired, surplus facilities on the Hanford Site. Also included are the related data that were compiled by the risk evaluation team during investigations performed on the facilities. Results are the product of a major effort performed in fiscal year 1993 to produce qualitative information that characterizes certain risks associated with these facilities. The retired facilities investigated for this evaluation are located in the 100 and 200 Areas of the 1,450-km{sup 2} (570-mi{sup 2}) Hanford Site. The Hanford Site is a semiarid tract of land in southeastern Washington State.more » The nearest population center is Richland, Washington, (population 32,000) 30-km (20 mi) southeast of the 200 Area. During walkdown investigations of these facilities, data on real and potential hazards that threatened human health or safety or created potential environmental release issues were identified by the risk evaluation team. Using these findings, the team categorized the identified hazards by facility and evaluated the risk associated with each hazard. The factors contributing to each risk, and the consequence and likelihood of harm associated with each hazard also are included in this evaluation.« less

  12. 1995 Report on Hanford site land disposal restrictions for mixed waste

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Black, D.G.

    This report was submitted to meet the requirements of Hanford Federal Facility Agreement and Consent Order Milestone M-26-01E. This milestone requires the preparation of an annual report that covers characterization, treatment, storage, minimization, and other aspects of land disposal restricted mixed waste at the Hanford Site. The U.S. Department of Energy, its predecessors, and contractors at the Hanford Site were involved in the production and purification of nuclear defense materials from the early 1940s to the late 1980s. These production activities have generated large quantities of liquid and solid radioactive mixed waste. This waste is subject to regulation under authoritymore » of both the Resource Conservation and Recovery Act of 1976 and Atomic Energy Act of 1954. This report covers mixed waste only. The Washington State Department of Ecology, U.S. Environmental Protection Agency, and U.S. Department of Energy have entered into an agreement, the Hanford Federal Facility Agreement and Consent Order (commonly referred to as the Tri-Party Agreement) to bring the Hanford Site operations into compliance with dangerous waste regulations. The Tri-Party Agreement required development of the original land disposal restrictions (LDRs) plan and its annual updates to comply with LDR requirements for radioactive mixed waste. This report is the fifth update of the plan first issued in 1990. Tri-Party Agreement negotiations completed in 1993 and approved in January 1994 changed and added many new milestones. Most of the changes were related to the Tank Waste Remediation System and these changes are incorporated into this report.« less

  13. Hanford Single Shell Tank Leak Causes and Locations - 241-TX Farm

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Girardot, C. L.; Harlow, D> G.

    This document identifies 241-TX Tank Farm (TX Farm) leak causes and locations for the 100 series leaking tanks (241-TX-107 and 241-TX-114) identified in RPP-RPT-50870, Rev. 0, Hanford 241-TX Farm Leak Inventory Assessment Report. This document satisfies the TX Farm portion of the target (T04) in the Hanford Federal Facility Agreement and Consent Order milestone M-045-91F.

  14. Determination of an environmental background level of 90Sr in urine for the Hanford bioassay program.

    PubMed

    Antonio, C L; Rivard, J W

    2009-11-01

    During the decommissioning and maintenance of some of the facilities at the U.S. Department of Energy Hanford Site in Washington State, workers have potential for a Sr intake. However, because of worldwide radioactive fallout, Sr is present in our environment and can be detectable in routine urine bioassay samples. It is important for the Hanford Site bioassay program to discriminate an occupational intake from a non-occupational environmental one. A detailed study of the background Sr in the urine of unexposed Hanford workers was performed. A survey of the Hanford Site bioassay database found 128 Hanford workers who were hired between 1997 and 2002 and who had a very low potential for an occupational exposure prior to the baseline strontium urinalysis. Each urinalysis sample represented excretion during an approximate 24-h period. The arithmetic mean value for the 128 pre-exposure baselines was 3.6 +/- 5.1 mBq d. The 99 percentile result was 17 mBq d, which was interpreted to mean that 1% of Hanford workers not occupationally exposed to strontium might exceed 17 mBq d.

  15. Mortality of workers at the Hanford site: 1945-1981

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Gilbert, E.S.; Petersen, G.R.; Buchanan, J.A.

    1989-01-01

    Analyses of mortality of workers at the Hanford Site were updated to include an additional three years of data (1979-81). Deaths occurring in the state of Washington in the years 1982-85 were also evaluated. Hanford workers continued to exhibit a strong healthy worker effect with death rates substantially below those of the general U.S. population. Comparisons by level of radiation exposure within the Hanford worker population provided no evidence of a positive correlation of radiation exposure and mortality from all cancers combined or of mortality from leukemia. Estimates of cancer risk due to radiation were negative, but confidence intervals weremore » wide, indicating that the data were consistent with no risk and with risks several times larger than estimates provided by major groups concerned with risk assessment. Of 18 categories of cancer analyzed, a correlation of borderline statistical significance was identified for female genital cancers (p = 0.05), but was interpreted as probably spurious. The previously identified correlation for multiple myeloma persisted (p = 0.002).« less

  16. Very low-dose (0.15 mGy) chest CT protocols using the COPDGene 2 test object and a third-generation dual-source CT scanner with corresponding third-generation iterative reconstruction software.

    PubMed

    Newell, John D; Fuld, Matthew K; Allmendinger, Thomas; Sieren, Jered P; Chan, Kung-Sik; Guo, Junfeng; Hoffman, Eric A

    2015-01-01

    The purpose of this study was to evaluate the impact of ultralow radiation dose single-energy computed tomographic (CT) acquisitions with Sn prefiltration and third-generation iterative reconstruction on density-based quantitative measures of growing interest in phenotyping pulmonary disease. The effects of both decreasing dose and different body habitus on the accuracy of the mean CT attenuation measurements and the level of image noise (SD) were evaluated using the COPDGene 2 test object, containing 8 different materials of interest ranging from air to acrylic and including various density foams. A third-generation dual-source multidetector CT scanner (Siemens SOMATOM FORCE; Siemens Healthcare AG, Erlangen, Germany) running advanced modeled iterative reconstruction (ADMIRE) software (Siemens Healthcare AG) was used.We used normal and very large body habitus rings at dose levels varying from 1.5 to 0.15 mGy using a spectral-shaped (0.6-mm Sn) tube output of 100 kV(p). Three CT scans were obtained at each dose level using both rings. Regions of interest for each material in the test object scans were automatically extracted. The Hounsfield unit values of each material using weighted filtered back projection (WFBP) at 1.5 mGy was used as the reference value to evaluate shifts in CT attenuation at lower dose levels using either WFBP or ADMIRE. Statistical analysis included basic statistics, Welch t tests, multivariable covariant model using the F test to assess the significance of the explanatory (independent) variables on the response (dependent) variable, and CT mean attenuation, in the multivariable covariant model including reconstruction method. Multivariable regression analysis of the mean CT attenuation values showed a significant difference with decreasing dose between ADMIRE and WFBP. The ADMIRE has reduced noise and more stable CT attenuation compared with WFBP. There was a strong effect on the mean CT attenuation values of the scanned materials for ring

  17. Emerging Techniques for Dose Optimization in Abdominal CT

    PubMed Central

    Platt, Joel F.; Goodsitt, Mitchell M.; Al-Hawary, Mahmoud M.; Maturen, Katherine E.; Wasnik, Ashish P.; Pandya, Amit

    2014-01-01

    Recent advances in computed tomographic (CT) scanning technique such as automated tube current modulation (ATCM), optimized x-ray tube voltage, and better use of iterative image reconstruction have allowed maintenance of good CT image quality with reduced radiation dose. ATCM varies the tube current during scanning to account for differences in patient attenuation, ensuring a more homogeneous image quality, although selection of the appropriate image quality parameter is essential for achieving optimal dose reduction. Reducing the x-ray tube voltage is best suited for evaluating iodinated structures, since the effective energy of the x-ray beam will be closer to the k-edge of iodine, resulting in a higher attenuation for the iodine. The optimal kilovoltage for a CT study should be chosen on the basis of imaging task and patient habitus. The aim of iterative image reconstruction is to identify factors that contribute to noise on CT images with use of statistical models of noise (statistical iterative reconstruction) and selective removal of noise to improve image quality. The degree of noise suppression achieved with statistical iterative reconstruction can be customized to minimize the effect of altered image quality on CT images. Unlike with statistical iterative reconstruction, model-based iterative reconstruction algorithms model both the statistical noise and the physical acquisition process, allowing CT to be performed with further reduction in radiation dose without an increase in image noise or loss of spatial resolution. Understanding these recently developed scanning techniques is essential for optimization of imaging protocols designed to achieve the desired image quality with a reduced dose. © RSNA, 2014 PMID:24428277

  18. High-Pitch, Low-Voltage and Low-Iodine-Concentration CT Angiography of Aorta: Assessment of Image Quality and Radiation Dose with Iterative Reconstruction

    PubMed Central

    Shen, Yanguang; Sun, Zhonghua; Xu, Lei; Li, Yu; Zhang, Nan; Yan, Zixu; Fan, Zhanming

    2015-01-01

    Objective To assess the image quality of aorta obtained by dual-source computed tomography angiography (DSCTA), performed with high pitch, low tube voltage, and low iodine concentration contrast medium (CM) with images reconstructed using iterative reconstruction (IR). Methods One hundred patients randomly allocated to receive one of two types of CM underwent DSCTA with the electrocardiogram-triggered Flash protocol. In the low-iodine group, 50 patients received CM containing 270 mg I/mL and were scanned at low tube voltage (100 kVp). In the high-iodine CM group, 50 patients received CM containing 370 mg I/mL and were scanned at the tube voltage (120 kVp). The filtered back projection (FBP) algorithm was used for reconstruction in both groups. In addition, the IR algorithm was used in the low-iodine group. Image quality of the aorta was analyzed subjectively by a 3-point grading scale and objectively by measuring the CT attenuation in terms of the signal- and contrast-to-noise ratios (SNR and CNR, respectively). Radiation and CM doses were compared. Results The CT attenuation, subjective image quality assessment, SNR, and CNR of various aortic regions of interest did not differ significantly between two groups. In the low-iodine group, images reconstructed by FBP and IR demonstrated significant differences in image noise, SNR, and CNR (p<0.05). The low-iodine group resulted in 34.3% less radiation (4.4 ± 0.5 mSv) than the high-iodine group (6.7 ± 0.6 mSv), and 27.3% less iodine weight (20.36 ± 2.65 g) than the high-iodine group (28 ± 1.98 g). Observers exhibited excellent agreement on the aortic image quality scores (κ = 0.904). Conclusions CT images of aorta could be obtained within 2 s by using a DSCT Flash protocol with low tube voltage, IR, and low-iodine-concentration CM. Appropriate contrast enhancement was achieved while maintaining good image quality and decreasing the radiation and iodine doses. PMID:25643353

  19. Hanford Laboratories monthly activities report, August 1963

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Not Available

    1963-09-16

    This is the monthly report for the Hanford Laboratories Operation, August 1963. Metallurgy, reactor fuels, chemistry, dosimetry, separation processes, reactor technology, financial activities, visits, biology operation, physics and instrumentation research, and employee relations are discussed.

  20. Hanford Site Groundwater Protection Management Program: Revision 1

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    NONE

    Groundwater protection is a national priority that is promulgated in a variety of environmental regulations at local, state, and federal levels. To effectively coordinate and ensure compliance with applicable regulations, the US Department of Energy has issued DOE Order 5400.1 (now under revision) that requires all US Department of Energy facilities to prepare separate groundwater protection program descriptions and plans. This document describes the Groundwater Protection Management Program for the Hanford Site located in the state of Washington. DOE Order 5400.1 specifies that the Groundwater Protection Management Program cover the following general topical areas: (1) documentation of the groundwater regime,more » (2) design and implementation of a groundwater monitoring program to support resource management and comply with applicable laws and regulations, (3) a management program for groundwater protection and remediation, (4) a summary and identification of areas that may be contaminated with hazardous waste, (5) strategies for controlling these sources, (6) a remedial action program, and (7) decontamination and decommissioning and related remedial action requirements. Many of the above elements are covered by existing programs at the Hanford Site; thus, one of the primary purposes of this document is to provide a framework for coordination of existing groundwater protection activities. Additionally, it describes how information needs are identified and can be incorporated into existing or proposed new programs. The Groundwater Protection Management Program provides the general scope, philosophy, and strategies for groundwater protection/management at the Hanford Site. Subtier documents provide the detailed plans for implementing groundwater-related activities and programs. Related schedule and budget information are provided in the 5-year plan for environmental restoration and waste management at the Hanford Site.« less