Science.gov

Sample records for hanford groundwater remediation

  1. Hanford Groundwater Remediation

    SciTech Connect

    Charboneau, B.; Thompson, K. M.; Wilde, R.; Ford, B.; Gerber, M.

    2006-07-01

    united in its desire to protect the Columbia River and have a voice in Hanford's future. This paper presents the challenges, and then discusses the progress and efforts underway to reduce the risk posed by contaminated groundwater at Hanford. While Hanford groundwater is not a source of drinking water on or off the Site, there are possible near-shore impacts where it flows into the Columbia River. Therefore, this remediation is critical to the overall efforts to clean up the Site, as well as protect a natural resource. (authors)

  2. HANFORD GROUNDWATER REMEDIATION

    SciTech Connect

    CHARBONEAU, B; THOMPSON, M; WILDE, R.; FORD, B.; GERBER, M.S.

    2006-02-01

    united in its desire to protect the Columbia River and have a voice in Hanford's future. This paper presents the challenges, and then discusses the progress and efforts underway to reduce the risk posed by contaminated groundwater at Hanford. While Hanford groundwater is not a source of drinking water on or off the Site, there are possible near-shore impacts where it flows into the Columbia River. Therefore, this remediation is critical to the overall efforts to clean up the Site, as well as protect a natural resource.

  3. GROUNDWATER REMEDIATION SOLUTIONS AT HANFORD

    SciTech Connect

    Gilmore, Tyler J.; Truex, Michael J.; Williams, Mark D.

    2007-02-26

    In 2006, Congress provided funding to the U. S. Department of Energy (DOE) to study new technologies that could be used to treat contamination from the Hanford Site that might impact the Columbia River. The contaminants of concern are primarily metals and radionuclides, which are byproducts of Hanford’s cold war mission to produce plutonium for atomic weapons. The DOE asked Pacific Northwest National Laboratory (PNNL) to consider this problem and develop approaches to address the contamination that threatens the river. DOE identified three high priority sites that had groundwater contamination migrating towards the Columbia river for remediation. The contaminants included strontium-90, uranium and chromium. Remediation techniques for metals and radionuclides focus primarily on altering the oxidation state of the contaminant chemically or biologically, isolating the contaminants from the environment through adsorption or encapsulation or concentrating the contaminants for removal. A natural systems approach was taken that uses a mass balance concept to frame the problem and determine the most appropriate remedial approach. This approach provides for a scientifically based remedial decision. The technologies selected to address these contaminants included an apatite adsorption barrier coupled with a phytoremediation to address the strontium-90 contamination, injection of polyphosphate into the subsurface to sequester uranium, and a bioremediation approach to reduce chromium contamination in the groundwater. The ability to provide scientifically based approaches is in large part due to work developed under previous DOE Office of Science and Office of Environmental Management projects. For example, the polyphosphate and the bioremediation techniques, were developed by PNNL under the EMSP and NABIR programs. Contaminated groundwater under the Hanford Site poses a potential risk to humans and the Columbia River. These new technologies holds great promise for

  4. Development of a biological treatment system for Hanford groundwater remediation

    SciTech Connect

    Brouns, T.M.; Koegler, S.S.; Heath, W.O.; Fredrickson, J.K. ); Stensel, H.D. ); Johnstone, D.L. ); Donaldson, T.L. )

    1990-04-01

    The primary objective of the biological treatment program is to develop and demonstrate a biological process for Hanford groundwater remediation that is capable of nitrate (NO {sub 3}{sup {minus}}) and organic contaminant destruction. Biodenitrification using facultative anaerobic microorganisms is a promising technology for the simultaneous removal of NO{sub 3}{sup {minus}} and organics from contaminated aqueous streams. During FY 1989, microbial consortium from the Hanford groundwater was shown to degrade both NO{sub 3}{sup {minus}} and carbon tetrachloride (CC1{sub 4}). A pilot-scale treatment system was subsequently designed and constructed based on the results of laboratory- and bench-scale testing. The pilot-scale system demonstrated continuous degradation of NO{sub 3}{sup {minus}} and CC1{sub 4} in a simulated groundwater. This report summarizes the results of biological groundwater treatment studies performed during FY 1989 at the pilot-, laboratory-, and bench-scales. Pilot-scale test were conducted using a simulate Hanford groundwater with a continuous stirred-tank bioreactor (CSTR) and a fluidized-bed bioreactor that was added to the pilot-scale treatment system in FY 1989. Laboratory test focused on the degradation of CC1{sub 4} and on the microbial toxicity from CC1{sub 4}, hexavalent chromium (Cr{plus} {sup 6}), and cyanide (CN){sup {minus}} 15 refs., 18 figs., 1 tab.

  5. ALTERNATIVE REMEDIATION TECHNOLOGY STUDY FOR GROUNDWATER TREATMENT AT 200-PO-1 OPERABLE UNIT AT HANFORD SITE

    SciTech Connect

    DADO MA

    2008-07-31

    This study focuses on the remediation methods and technologies applicable for use at 200-PO-I Groundwater Operable Unit (OU) at the Hanford Site. The 200-PO-I Groundwater au requires groundwater remediation because of the existence of contaminants of potential concern (COPC). A screening was conducted on alternative technologies and methods of remediation to determine which show the most potential for remediation of groundwater contaminants. The possible technologies were screened to determine which would be suggested for further study and which were not applicable for groundwater remediation. COPCs determined by the Hanford Site groundwater monitoring were grouped into categories based on properties linking them by remediation methods applicable to each COPC group. The screening considered the following criteria. (1) Determine if the suggested method or technology can be used for the specific contaminants found in groundwater and if the technology can be applied at the 200-PO-I Groundwater au, based on physical characteristics such as geology and depth to groundwater. (2) Evaluate screened technologies based on testing and development stages, effectiveness, implementability, cost, and time. This report documents the results of an intern research project conducted by Mathew Dado for Central Plateau Remediation in the Soil and Groundwater Remediation Project. The study was conducted under the technical supervision of Gloria Cummins and management supervision of Theresa Bergman and Becky Austin.

  6. SAFETY IMPROVES DRAMATICALLY IN FLUOR HANFORD SOIL AND GROUNDWATER REMEDIATION PROJECT

    SciTech Connect

    GERBER MS

    2007-12-05

    This paper describes dramatic improvements in the safety record of the Soil and Groundwater Remediation Project (SGRP) at the Hanford Site in southeast Washington state over the past four years. During a period of enormous growth in project work and scope, contractor Fluor Hanford reduced injuries, accidents, and other safety-related incidents and enhanced a safety culture that earned the SGRP Star Status in the Department of Energy's (DOE's) Voluntary Protection Program (VPP) in 2007. This paper outlines the complex and multi-faceted work of Fluor Hanford's SGRP and details the steps taken by the project's Field Operations and Safety organizations to improve safety. Holding field safety meetings and walkdowns, broadening safety inspections, organizing employee safety councils, intensively flowing down safety requirements to subcontractors, and adopting other methods to achieve remarkable improvement in safety are discussed. The roles of management, labor and subcontractors are detailed. Finally, SGRP's safety improvements are discussed within the context of overall safety enhancements made by Fluor Hanford in the company's 11 years of managing nuclear waste cleanup at the Hanford Site.

  7. Remedial Investigation/Feasibility Study Work Plan for the 200-UP-1 Groundwater Operable Unit, Hanford Site, Richland, Washington. Revision

    SciTech Connect

    Not Available

    1994-01-01

    This work plan identifies the objectives, tasks, and schedule for conducting a Remedial Investigation/Feasibility Study for the 200-UP-1 Groundwater Operable Unit in the southern portion of the 200 West Groundwater Aggregate Area of the Hanford Site. The 200-UP-1 Groundwater Operable Unit addresses contamination identified in the aquifer soils and groundwater within its boundary, as determined in the 200 West Groundwater Aggregate Area Management Study Report (AAMSR) (DOE/RL 1992b). The objectives of this work plan are to develop a program to investigate groundwater contaminants in the southern portion of the 200 West Groundwater Aggregate Area that were designated for Limited Field Investigations (LFIs) and to implement Interim Remedial Measures (IRMs) recommended in the 200 West Groundwater AAMSR. The purpose of an LFI is to evaluate high priority groundwater contaminants where existing data are insufficient to determine whether an IRM is warranted and collect sufficient data to justify and implement an IRM, if needed. A Qualitative Risk Assessment (QRA) will be performed as part of the LFI. The purpose of an IRM is to develop and implement activities, such as contaminant source removal and groundwater treatment, that will ameliorate some of the more severe potential risks of groundwater contaminants prior to the RI and baseline Risk Assessment (RA) to be conducted under the Final Remedy Selection (FRS) at a later date. This work plan addresses needs of a Treatability Study to support the design and implementation of an interim remedial action for the Uranium-{sup 99}{Tc}-Nitrate multi-contaminant IRM plume identified beneath U Plant.

  8. Supplemental Groundwater Remediation Technologies to Protect the Columbia River at Hanford, WA

    SciTech Connect

    Thompson, K. M.; Petersen, Scott W.; Fruchter, Jonathan S.; Ainsworth, Calvin C.; Vermeul, Vince R.; Wellman, Dawn M.; Szecsody, Jim E.; Truex, Michael J.; Amonette, James E.; Long, Philip E.

    2007-12-15

    Nine projects have been recently selected by the US Department of Energy (EM-22) to address groundwater contaminant migration at the Hanford Site. This paper summarizes the background and objectives of these projects. Five of the selected projects are targeted at hexavalent chromium contamination in Hanford 100 Area groundwater. These projects represent an integrated approach towards identifying the source of hexavalent chromium contamination in the Hanford 100-D Area and treating the groundwater contamination. Currently, there is no effective method to stop strontium-90 associated with the riparian zone sediments from leaching into the river. Phytoremediation may be a possible way to treat this contamination. Its use at the 100-N Area will be investigated. Another technology currently being tested for strontium-90 contamination at the 100-N Area involves injection (through wells) of a calcium-citrate-phosphate solution, which will precipitate apatite, a natural calcium-phosphate mineral. Apatite will adsorb the strontium-90, and then incorporate it as part of the apatite structure, isolating the strontium-90 contamination from entering the river. This EM-22 funded apatite project will develop a strategy for infiltrating the apatite solution from ground surface or a shallow trench to provide treatment over the upper portion of the contaminated zone, which is unsaturated during low river stage.

  9. Systematic Application of Flow-and-Transport Modeling for Wellfield Design: the Hanford 200-ZP-1 Groundwater Pump-and-Treat Remedy - 10320

    SciTech Connect

    Tonkin, Matthew J.; Karanovic, Marinko; Byrnes, Mark E.; Morse, John G.; Murray, Christopher J.; Clement, Paul

    2010-03-08

    During 2007 a Feasibility Study and Proposed Plan were completed that describe the selection of a combined groundwater pump-and-treat, monitored natural attenuation, and flow-path-control remedy for contaminants present in the Hanford 200-ZP-1 groundwater operable unit. In anticipation of the September 2008 signing of the final record of decision, work began on the development of a groundwater flow and contaminant transport model encompassing the 200-ZP-1 OU. The model was developed to support the preparation of the remedial design/remedial action work plan and subsequent design documents; to provide estimates of influent concentrations and mass removal rates for several contaminants of concern, including carbon tetrachloride, technetium-99, and hexavalent chromium; and to assist in the integration of remedial decision making across the Hanford Central Plateau. This paper describes the initial development and application of the flow and transport model, through Spring 2009.

  10. Groundwater Data Package for Hanford Assessments

    SciTech Connect

    Thorne, Paul D.; Bergeron, Marcel P.; Williams, Mark D.; Freedman, Vicky L.

    2006-01-31

    This report presents data and interpreted information that supports the groundwater module of the System Assessment Capability (SAC) used in Hanford Assessments. The objective of the groundwater module is to predict movement of radioactive and chemical contaminants through the aquifer to the Columbia River or other potential discharge locations. This data package is being revised as part of the deliverables under the Characterization of Systems Project (#49139) aimed at providing documentation for assessments being conducted under the Hanford Assessments Project (#47042). Both of these projects are components of the Groundwater Remediation and Closure Assessments Projects, managed by the Management and Integration Project (#47043).

  11. AUTOMATING GROUNDWATER SAMPLING AT HANFORD

    SciTech Connect

    CONNELL CW; HILDEBRAND RD; CONLEY SF; CUNNINGHAM DE

    2009-01-16

    Until this past October, Fluor Hanford managed Hanford's integrated groundwater program for the U.S. Department of Energy (DOE). With the new contract awards at the Site, however, the CH2M HILL Plateau Remediation Company (CHPRC) has assumed responsibility for the groundwater-monitoring programs at the 586-square-mile reservation in southeastern Washington State. These programs are regulated by the Resource Conservation and Recovery Act (RCRA) and the Comprehensive Environmental Response Compensation and Liability Act (CERCLA). The purpose of monitoring is to track existing groundwater contamination from past practices, as well as other potential contamination that might originate from RCRA treatment, storage, and disposal (TSD) facilities. An integral part of the groundwater-monitoring program involves taking samples of the groundwater and measuring the water levels in wells scattered across the site. More than 1,200 wells are sampled each year. Historically, field personnel or 'samplers' have been issued pre-printed forms that have information about the well(s) for a particular sampling evolution. This information is taken from the Hanford Well Information System (HWIS) and the Hanford Environmental Information System (HEIS)--official electronic databases. The samplers used these hardcopy forms to document the groundwater samples and well water-levels. After recording the entries in the field, the samplers turned the forms in at the end of the day and the collected information was posted onto a spreadsheet that was then printed and included in a log book. The log book was then used to make manual entries of the new information into the software application(s) for the HEIS and HWIS databases. This is a pilot project for automating this tedious process by providing an electronic tool for automating water-level measurements and groundwater field-sampling activities. The automation will eliminate the manual forms and associated data entry, improve the accuracy of the

  12. In situ bioremediation of Hanford groundwater

    SciTech Connect

    Skeen, R.S.; Roberson, K.R.; Workman, D.J. ); Petersen, J.N.; Shouche, M. . Dept. of Chemical Engineering)

    1992-04-01

    Liquid wastes containing radioactive, hazardous, and regulated chemicals have been generated throughout the 40+ years of operations at the US Department of Energy's (DOE) Hanford Site. Some of these wastes were discharged to the soil column and many of the waste components, including nitrate, carbon tetrachloride (CCl{sub 4}), and several radionuclides, have been detected in the Hanford groundwater. Current DOE policy prohibits the disposal of contaminated liquids directly to the environment, and remediation of existing contaminated groundwaters may be required. In situ bioremediation is one technology currently being developed at Hanford to meet the need for cost effective technologies to clean groundwater contaminated with CCl{sub 4}, nitrate, and other organic and inorganic contaminants. This paper focuses on the latest results of an on going effort to develop effective in situ remediation strategies through the use of predictive simulations.

  13. In situ bioremediation of Hanford groundwater

    SciTech Connect

    Skeen, R.S.; Roberson, K.R.; Workman, D.J.; Petersen, J.N.; Shouche, M.

    1992-04-01

    Liquid wastes containing radioactive, hazardous, and regulated chemicals have been generated throughout the 40+ years of operations at the US Department of Energy`s (DOE) Hanford Site. Some of these wastes were discharged to the soil column and many of the waste components, including nitrate, carbon tetrachloride (CCl{sub 4}), and several radionuclides, have been detected in the Hanford groundwater. Current DOE policy prohibits the disposal of contaminated liquids directly to the environment, and remediation of existing contaminated groundwaters may be required. In situ bioremediation is one technology currently being developed at Hanford to meet the need for cost effective technologies to clean groundwater contaminated with CCl{sub 4}, nitrate, and other organic and inorganic contaminants. This paper focuses on the latest results of an on going effort to develop effective in situ remediation strategies through the use of predictive simulations.

  14. Hanford well remediation and decommissioning plan

    SciTech Connect

    Ledgerwood, R.K.

    1993-02-12

    Protection of Hanford Site groundwater resources and assessment of the effects of their use or contamination upon public safety are required by federal and state regulations and U.S. Department of Energy (DOE) policy, (DOE, 1989). Compliance with constraints applicable to the use of existing wells requires assessment as to the suitability for use and needs for rehabilitation, remediation or decommissioning of existing groundwater wells and other boreholes potentially affecting aquifers beneath the Hanford Site. Approximately 3,500 groundwater wells and vadose zone boreholes had been drilled on the Hanford Site prior to 1989, over 2,900 still exist. Most of these boreholes were drilled prior to 1987 and do not conform to presently accepted construction standards intended to protect groundwater resources. Approximately 260 wells have been installed since 1987. These wells were constructed to current standards for well construction which mandate seals between the permanent casing and the formation to prevent potential migration of contaminated liquid. Several programs presently construct and/or utilize existing and newly drilled wells to provide characterization and groundwater monitoring data. The programs are summarized.

  15. Hanford Site Groundwater Monitoring for Fiscal Year 2006

    SciTech Connect

    Hartman, Mary J.; Morasch, Launa F.; Webber, William D.

    2007-03-01

    This report presents the results of groundwater monitoring for FY 2006 on DOE's Hanford Site. Results of groundwater remediation, vadose zone monitoring, and characterization are summarized. DOE monitors groundwater at the Hanford Site to fulfill a variety of state and federal regulations, including the Atomic Energy Act (AEA), the Resource Conservation and Recovery Act (RCRA), the Comprehensive Environmental Response, Compensation, and Liability Act (CERCLA), and Washington Administrative Code (WAC).

  16. Integrated monitoring plan for the Hanford groundwater monitoring project

    SciTech Connect

    Hartman, M.J.; Dresel, P.E.; McDonald, J.P.; Mercer, R.B.; Newcomer, D.R.; Thornton, E.C.

    1998-09-01

    Groundwater is monitored in hundreds of wells at the Hanford Site to fulfill a variety of requirements. Separate monitoring plans are prepared for various requirements, but sampling is coordinated and data are shared among users to avoid duplication of effort. The US Department of Energy (DOE) manages these activities through the Hanford Groundwater Monitoring Project (groundwater project), which is the responsibility of Pacific Northwest National Laboratory. The groundwater project does not include all of the monitoring to assess performance of groundwater remediation or all monitoring associated with active facilities. This document is the first integrated monitoring plan for the groundwater project and contains: well and constituent lists for monitoring required by the Atomic Energy Act of 1954 and its implementing orders; other, established monitoring plans by reference; and a master well/constituent/frequency matrix for the entire Hanford Site.

  17. Field Summary Report for Remedial Investigation of Hanford Site Releases to the Columbia River, Hanford Site, Washington

    SciTech Connect

    L.C. Hulstrom

    2010-08-11

    This report summarizes field sampling activities conducted in support of WCH’s Remedial Investigation of Hanford Site Releases to the Columbia River. This work was conducted form 2008 through 2010. The work included preliminary mapping and measurement of Hanford Site contaminants in sediment, pore water, and surface water located in areas where groundwater upwelling were found.

  18. Field Summary Report for Remedial Investigation of Hanford Site Releases to the Coumbia River, Hanford Site, Washington

    SciTech Connect

    L.C. Hulstrom

    2010-11-10

    This report summarizes field sampling activities conducted in support of WCH’s Remedial Investigation of Hanford Site Releases to the Columbia River. This work was conducted form 2008 through 2010. The work included preliminary mapping and measurement of Hanford Site contaminants in sediment, pore water, and surface water located in areas where groundwater upwelling were found.

  19. Fluor Hanford, Inc. Groundwater and Technical Integration Support (Master Project) Quality Assurance Management Plan

    SciTech Connect

    Fix, N. J.

    2008-02-20

    The scope of the Fluor Hanford, Inc. Groundwater and Technical Integration Support (Master Project) is to provide technical and integration support to Fluor Hanford, Inc., including operable unit investigations at 300-FF-5 and other groundwater operable units, strategic integration, technical integration and assessments, remediation decision support, and science and technology. This Quality Assurance Management Plan provides the quality assurance requirements and processes that will be followed by the Fluor Hanford, Inc. Groundwater and Technical Integration Support (Master Project).

  20. Hanford Site Groundwater Monitoring for Fiscal Year 2002

    SciTech Connect

    Hartman, Mary J.; Morasch, Launa F.; Webber, William D.

    2003-02-28

    This report presents the results of groundwater and vadose zone monitoring and remediation for fiscal year 2002 on the U.S. Department of Energy's Hanford Site in Washington State. This report is written to meet the requirements in CERCLA, RCRA, the Atomic Energy Act of 1954, and Washington State Administrative Code.

  1. Hanford Site Groundwater Protection Management Program: Revision 1

    SciTech Connect

    1993-11-01

    Groundwater protection is a national priority that is promulgated in a variety of environmental regulations at local, state, and federal levels. To effectively coordinate and ensure compliance with applicable regulations, the US Department of Energy has issued DOE Order 5400.1 (now under revision) that requires all US Department of Energy facilities to prepare separate groundwater protection program descriptions and plans. This document describes the Groundwater Protection Management Program for the Hanford Site located in the state of Washington. DOE Order 5400.1 specifies that the Groundwater Protection Management Program cover the following general topical areas: (1) documentation of the groundwater regime, (2) design and implementation of a groundwater monitoring program to support resource management and comply with applicable laws and regulations, (3) a management program for groundwater protection and remediation, (4) a summary and identification of areas that may be contaminated with hazardous waste, (5) strategies for controlling these sources, (6) a remedial action program, and (7) decontamination and decommissioning and related remedial action requirements. Many of the above elements are covered by existing programs at the Hanford Site; thus, one of the primary purposes of this document is to provide a framework for coordination of existing groundwater protection activities. Additionally, it describes how information needs are identified and can be incorporated into existing or proposed new programs. The Groundwater Protection Management Program provides the general scope, philosophy, and strategies for groundwater protection/management at the Hanford Site. Subtier documents provide the detailed plans for implementing groundwater-related activities and programs. Related schedule and budget information are provided in the 5-year plan for environmental restoration and waste management at the Hanford Site.

  2. Kinetics of in situ bioremediation of Hanford groundwater

    SciTech Connect

    Skeen, R.S.; Cote, S.M.; Truex, M.J.; Petersen, J.N.

    1992-04-01

    Liquid wastes containing radioactive, hazardous, and regulated chemicals have been generated throughout the 40+ years of operations at the US Department of Energy`s (DOE) Hanford Site. Some of these wastes were discharged to the soil column and many of the waste components, including nitrate, carbon tetrachloride (CCl{sub 4}), and several radionuclides, have been detected in the Hanford groundwater. Current DOE policy prohibits the disposal of contaminated liquids directly to the environment, and may require the remediation of existing contaminated groundwaters. In situ bioremediation is one technology currently being developed at Hanford to meet the need for cost effective technologies to clean groundwater contaminated with CCl{sub 4}, nitrate, and other organic and inorganic contaminants. This paper focuses on the latest results of an on-going effort to quantify the biological and chemical reactions that would occur during in situ bioremediation.

  3. Kinetics of in situ bioremediation of Hanford groundwater

    SciTech Connect

    Skeen, R.S.; Cote, S.M.; Truex, M.J. ); Petersen, J.N. . Dept. of Chemical Engineering)

    1992-04-01

    Liquid wastes containing radioactive, hazardous, and regulated chemicals have been generated throughout the 40+ years of operations at the US Department of Energy's (DOE) Hanford Site. Some of these wastes were discharged to the soil column and many of the waste components, including nitrate, carbon tetrachloride (CCl[sub 4]), and several radionuclides, have been detected in the Hanford groundwater. Current DOE policy prohibits the disposal of contaminated liquids directly to the environment, and may require the remediation of existing contaminated groundwaters. In situ bioremediation is one technology currently being developed at Hanford to meet the need for cost effective technologies to clean groundwater contaminated with CCl[sub 4], nitrate, and other organic and inorganic contaminants. This paper focuses on the latest results of an on-going effort to quantify the biological and chemical reactions that would occur during in situ bioremediation.

  4. Solutions Remediate Contaminated Groundwater

    NASA Technical Reports Server (NTRS)

    2010-01-01

    During the Apollo Program, NASA workers used chlorinated solvents to clean rocket engine components at launch sites. These solvents, known as dense non-aqueous phase liquids, had contaminated launch facilities to the point of near-irreparability. Dr. Jacqueline Quinn and Dr. Kathleen Brooks Loftin of Kennedy Space Center partnered with researchers from the University of Central Florida's chemistry and engineering programs to develop technology capable of remediating the area without great cost or further environmental damage. They called the new invention Emulsified Zero-Valent Iron (EZVI). The groundwater remediation compound is cleaning up polluted areas all around the world and is, to date, NASA's most licensed technology.

  5. Monitoring and remediating groundwater

    SciTech Connect

    Vedder, M.

    1995-03-01

    Choosing the optimum groundwater remediation process is a site-specific task. A variety of factors--including soil type, water type, water flow, water table levels and contaminant type--influence sampling and treatment techniques. Because underground contaminant plumes must first be characterized and mapped, initial sampling often is a hit or miss proposition. Historical geophysical data can be obtained from many local water boards to supplement the process. Equipment used in sampling includes drilling rigs, depth probes, bailers, sample tubing and well pumps. Once samples are collected, they are preserved with ice and transported to an environmental laboratory for analysis. Common groundwater contaminants include hydrocarbons, solvents, metals and volatile organic compounds. Typical lab analysis methods include gas chromatography and spectrometry. Remediation options include air stripping, carbon adsorption, the use of bacterial cultures, chemical precipitation, ion exchange, reverse osmosis and ultrafiltration.

  6. Hanford Site Groundwater Monitoring for Fiscal Year 2000

    SciTech Connect

    Hartman, Mary J.; Morasch, Launa F.; Webber, William D.

    2001-03-01

    This report presents the results of groundwater and vadose zone monitoring and remediation for fiscal year 2000 on the U.S. Department of Energy's Hanford Site, Washington. The most extensive contaminant plumes are tritium, iodine-129, and nitrate, which all had multiple sources and are very mobile in groundwater. Carbon tetrachloride and associated organic constituents form a relatively large plume beneath the central part of the Site. Hexavalent chromium is present in smaller plumes beneath the reactor areas along the river and beneath the central part of the site. Strontium-90 exceeds standards beneath each of the reactor areas, and technetium-99 and uranium are present in the 200 Areas. RCRA groundwater monitoring continued during fiscal year 2000. Vadose zone monitoring, characterization, remediation, and several technical demonstrations were conducted in fiscal year 2000. Soil gas monitoring at the 618-11 burial ground provided a preliminary indication of the location of tritium in the vadose zone and in groundwater. Groundwater modeling efforts focused on 1) identifying and characterizing major uncertainties in the current conceptual model and 2) performing a transient inverse calibration of the existing site-wide model. Specific model applications were conducted in support of the Hanford Site carbon tetrachloride Innovative Treatment Remediation Technology; to support the performance assessment of the Immobilized Low-Activity Waste Disposal Facility; and in development of the System Assessment Capability, which is intended to predict cumulative site-wide effects from all significant Hanford Site contaminants.

  7. Hanford Site Groundwater Monitoring for Fiscal Year 2005

    SciTech Connect

    Hartman, Mary J.; Morasch, Launa F.; Webber, William D.

    2006-02-28

    This report is one of the major products and deliverables of the Groundwater Remediation and Closure Assessment Projects detailed work plan for FY 2006, and reflects the requirements of The Groundwater Performance Assessment Project Quality Assurance Plan (PNNL-15014). This report presents the results of groundwater and vadose zone monitoring and remediation for fiscal year 2005 on the U.S. Department of Energy's Hanford Site, Washington. The most extensive contaminant plumes in groundwater are tritium, iodine-129, and nitrate, which all had multiple sources and are very mobile in groundwater. The largest portions of these plumes are migrating from the central Hanford Site to the southeast, toward the Columbia River. Carbon tetrachloride and associated organic constituents form a relatively large plume beneath the west-central part of the Hanford Site. Hexavalent chromium is present in plumes beneath the reactor areas along the river and beneath the central part of the site. Strontium-90 exceeds standards beneath all but one of the reactor areas. Technetium-99 and uranium plumes exceeding standards are present in the 200 Areas. A uranium plume underlies the 300 Area. Minor contaminant plumes with concentrations greater than standards include carbon-14, cesium-137, cis-1,2-dichloroethene, cyanide, fluoride, plutonium, and trichloroethene. Monitoring for the Comprehensive Environmental Response, Compensation, and Liability Act of 1980 is conducted in 11 groundwater operable units. The purpose of this monitoring is to define and track plumes and to monitor the effectiveness of interim remedial actions. Interim groundwater remediation in the 100 Areas continued with the goal of reducing the amount of chromium (100-K, 100-D, and 100-H) and strontium-90 (100-N) reaching the Columbia River. The objective of two interim remediation systems in the 200 West Area is to prevent the spread of carbon tetrachloride and technetium-99/uranium plumes. Resource Conservation and

  8. Hanford Site ground-water monitoring for 1994

    SciTech Connect

    Dresel, P.E.; Thorne, P.D.; Luttrell, S.P.

    1995-08-01

    This report presents the results of the Ground-Water Surveillance Project monitoring for calendar year 1994 on the Hanford Site, Washington. Hanford Site operations from 1943 onward produced large quantities of radiologic and chemical waste that have impacted ground-water quality on the Site. Monitoring of water levels and ground-water chemistry is performed to track the extent of contamination and trends in contaminant concentrations. The 1994 monitoring was also designed to identify emerging ground-water quality problems. The information obtained is used to verify compliance with applicable environmental regulations and to evaluate remedial actions. Data from other monitoring and characterization programs were incorporated to provide an integrated assessment of Site ground-water quality. Additional characterization of the Site`s geologic setting and hydrology was performed to support the interpretation of contaminant distributions. Numerical modeling of sitewide ground-water flow also supported the overall project goals. Water-level monitoring was performed to evaluate ground-water flow directions, to track changes in water levels, and to relate such changes to changes in site disposal practices. Water levels over most of the Hanford Site continued to decline between June 1993 and June 1994. These declines are part of the continued response to the cessation of discharge to U Pond and other disposal facilities. The low permeability in this area which enhanced mounding of waste-water discharge has also slowed the response to the reduction of disposal.

  9. Hanford Site Groundwater Monitoring for Fiscal Year 2003

    SciTech Connect

    Hartman, Mary J.; Morasch, Launa F.; Webber, William D.

    2004-04-12

    This report presents the results of groundwater and vadose zone monitoring and remediation for fiscal year 2003 (October 2002 through September 2003) on the U.S. Department of Energy's Hanford Site, Washington. The most extensive contaminant plumes in groundwater are tritium, iodine-129, and nitrate, which all had multiple sources and are very mobile in groundwater. The largest portions of these plumes are migrating from the central Hanford Site to the southeast, toward the Columbia River. Concentrations of tritium, nitrate, and some other contaminants continued to exceed drinking water standards in groundwater discharging to the river in some locations. However, contaminant concentrations in river water remained low and were far below standards. Carbon tetrachloride and associated organic constituents form a relatively large plume beneath the central part of the Hanford Site. Hexavalent chromium is present in smaller plumes beneath the reactor areas along the river and beneath the central part of the site. Strontium-90 exceeds standards beneath all but one of the reactor areas, and technetium-99 and uranium are present in the 200 Areas. Uranium exceeds standards in the 300 Area in the south part of the Hanford Site. Minor contaminant plumes with concentrations greater than standards include carbon-14, cesium-137, cis-1,2-dichloroethene, cyanide, fluoride, plutonium, and trichloroethene. Monitoring for the ''Comprehensive Environmental Response, Compensation, and Liability Act'' is conducted in 11 groundwater operable units. The purpose of this monitoring is to define and track plumes and to monitor the effectiveness of interim remedial actions. Interim groundwater remediation in the 100 Areas continued with the goal of reducing the amount of chromium (100-K, 100-D, and 100-H) and strontium-90 (100-N) reaching the Columbia River. The objective of two interim remediation systems in the 200 West Area is to prevent the spread of carbon tetrachloride and technetium-99

  10. Hanford Site ground-water monitoring for 1993

    SciTech Connect

    Dresel, P.E.; Luttrell, S.P.; Evans, J.C.

    1994-09-01

    This report presents the results of the Ground-Water Surveillance Project monitoring for calendar year 1993 on the Hanford Site, Washington. Hanford Site operations from 1943 onward produced large quantities of radiological and chemical waste that have impacted ground-water quality on the Site. Monitoring of water levels and ground-water chemistry is performed to track the extent of contamination and trends in contaminant concentrations. The 1993 monitoring was also designed to identify emerging ground-water quality problems. The information obtained is used to verify compliance with applicable environmental regulations and to evaluate remedial actions. Data from other monitoring and characterization programs were incorporated to provide an integrated assessment of Site ground-water quality. Additional characterization of the Site`s geologic setting and hydrology was performed to support the interpretation of contaminant distributions. Numerical modeling of sitewide ground-water flow also supported the overall project goals. Water-level monitoring was performed to evaluate ground-water flow directions, to track changes in water levels, and to relate such changes to changes in site disposal practices. Water levels over most of the Hanford Site continued to decline between June 1992 and June 1993. The greatest declines occurred in the 200-West Area. These declines are part of the continued response to the cessation of discharge to U Pond and other disposal facilities. The low permeability in this area which enhanced mounding of waste-water discharge has also slowed the response to the reduction of disposal. Water levels remained nearly constant in the vicinity of B Pond, as a result of continued disposal to the pond. Water levels measured from wells in the unconfined aquifer north and east of the Columbia River indicate that the primary source of recharge is irrigation practices.

  11. Expediting Groundwater Sampling at Hanford and Making It Safer

    SciTech Connect

    Connell, Carl W. Jr.; Carr, Jennifer S.; Hildebrand, R. Douglas; Schatz, Aaron L.; Conley, S. F.; Brown, W. L.

    2013-01-22

    The CH2M HILL Plateau Remediation Company (CHPRC) manages the groundwatermonitoring programs at the Department of Energy's 586-square-mile Hanford site in southeastern Washington state. These programs are regulated by the Resource Conservation and Recovery Act (RCRA), the Comprehensive Environmental Response Compensation and Liability Act (CERCLA), and the Atomic Energy Act (AEA). The purpose of monitoring is to track existing groundwater contamination from past practices, as well as other potential contamination that might originate from RCRA treatment, storage, and disposal (TSD) facilities. An integral part of the groundwater-monitoring program involves taking samples of the groundwater and measuring the water levels in wells scattered across the site. Each year, more than 1,500 wells are accessed for a variety of reasons.

  12. Groundwater Remedies Selected at Superfund Sites

    EPA Pesticide Factsheets

    Groundwater remediation continues to be a priority for the U.S. Environmental Protection Agency (EPA), and remedies that have been specified in RODs for groundwater remediation include treatment (including groundwater pump and treat [P&T] and in situ treat

  13. Overview of Chromium Remediation Technology Evaluations At The Hanford Site, Richland Washington

    NASA Astrophysics Data System (ADS)

    Morse, J. G.; Hanson, J. P.

    2009-12-01

    This paper will present an overview of the different technologies and the results to date for optimizing and improving the remediation of Cr+6 in the soil and groundwater at the Hanford Site. The Hanford Site, par of the U.S. Department of Energy's (DOE)nuclear weapons complex, encompasses approximately 586 square miles in southeast Washington State. The Columbia River flows through the site (Hanford Reach.) Reactors were located along the Hanford Reach as part of the production process. Sodium dichromate was used as a corrosion inhibitor in the cooling water for the reactors. As a result chromium (Cr+6) is present in the soil and groundwater. Since the mid 90's interim groundwater pump and treat systems have been in place to try and contain or mitigate the migration of contaminated groundwater into the Columbia River. The primary concern being the protection of aquatic spawning habitat for salmon and other species. In order to improve the effectiveness of the remedial actions a number of different technologies have been evaluated and/or deployed. These include, permeable reactive barriers, in-situ bio-stimulation, in-situ chemical reduction, zero-valent iron injection and evaluation of improved above ground treatment technologies. An overview of the technologies and results to date are presented.

  14. Hanford Site Groundwater Monitoring for Fiscal Year 1999

    SciTech Connect

    MJ Hartman; LF Morasch; WD Webber

    2000-05-10

    This report presents the results of groundwater and vadose zone monitoring and remediation for fiscal year 1999 on the US. Department of Energy's Hanford Site, Washington. Water-level monitoring was performed to evaluate groundwater flow directions, to track changes in water levels, and to relate such changes to evolving disposal practices. Measurements for site-wide maps were conducted in June in past years and are now measured in March to reflect conditions that are closer to average. Water levels over most of the Hanford Site continued to decline between June 1998 and March 1999. The most widespread radiological contaminant plumes in groundwater were tritium and iodine-129. Concentrations of carbon-14, strontium-90, technetium-99, and uranium also exceeded drinking water standards in smaller plumes. Cesium-137 and plutonium exceeded standards only near the 216-B-5 injection well. Derived concentration guide levels specified in US Department of Energy Order 5400.5 were exceeded for plutonium, strontium-90, tritium, and uranium in small plumes or single wells. Nitrate and carbon tetrachloride are the most extensive chemical contaminants. Chloroform, chromium, cis-1,2dichloroethylene, cyanide, fluoride, and trichloroethylene also were present in smaller areas at levels above their maximum contaminant levels. Metals such as aluminum, cadmium, iron, manganese, and nickel exceeded their maximum contaminant levels in filtered samples from numerous wells; however, in most cases, they are believed to represent natural components of groundwater. ''Resource Conservation and Recovery Act of 1976'' groundwater monitoring continued at 25 waste management areas during fiscal year 1999: 16 under detection programs and data indicate that they are not adversely affecting groundwater; 6 under interim status groundwater quality assessment programs to assess contamination; and 2 under final status corrective-action programs. Another site, the 120-D-1 ponds, was clean closed in

  15. Remedial Investigation of Hanford Site Releases to the Columbia River - 13603

    SciTech Connect

    Lerch, J.A.; Hulstrom, L.C.; Sands, J.P.

    2013-07-01

    In south-central Washington State, the Columbia River flows through the U.S. Department of Energy Hanford Site. A primary objective of the Hanford Site cleanup mission is protection of the Columbia River, through remediation of contaminated soil and groundwater that resulted from its weapons production mission. Within the Columbia River system, surface water, sediment, and biota samples related to potential Hanford Site hazardous substance releases have been collected since the start of Hanford operations. The impacts from release of Hanford Site radioactive substances to the Columbia River in areas upstream, within, and downstream of the Hanford Site boundary have been previously investigated as mandated by the U.S. Department of Energy requirements under the Atomic Energy Act. The Remedial Investigation Work Plan for Hanford Site Releases to the Columbia River [1] was issued in 2008 to initiate assessment of the impacts under the Comprehensive Environmental Response, Compensation, and Liability Act of 1980 [2]. The work plan established a phased approach to characterize contaminants, assess current risks, and determine whether or not there is a need for any cleanup actions. Field investigation activities over a 120-mile stretch of the Columbia River began in October 2008 and were completed in 2010. Sampled media included surface water, pore water, surface and core sediment, island soil, and fish (carp, walleye, whitefish, sucker, small-mouth bass, and sturgeon). Information and sample results from the field investigation were used to characterize current conditions within the Columbia River and assess whether current conditions posed a risk to ecological or human receptors that would merit additional study or response actions under CERCLA. The human health and ecological risk assessments are documented in reports that were published in 2012 [3, 4]. Conclusions from the risk assessment reports are being summarized and integrated with remedial investigation

  16. PERMEABLE REACTIVE BARRIERS FOR GROUNDWATER REMEDIATION

    EPA Science Inventory

    Permeable reactive barriers (PRB's) are an emerging, alternative in-situ approach for remediating groundwater contamination that combine subsurface fluid flow management with a passive chemical treatment zone. Removal of contaminants from the groundwater plume is achieved by alt...

  17. Integrated Monitoring Plan for the Hanford Groundwater Monitoring Project

    SciTech Connect

    Hartman, Mary J.; Dresel, P Evan; Lindberg, Jonathan W.; Newcomer, Darrell R.; Thornton, Edward C.

    2000-10-18

    Groundwater is monitored at the Hanford Site to fulfill a variety of state and federal regulations, including the Atomic Energy Act of 1954; the Resource Conservation and Recovery Act of 1976; the Comprehensive Environmental Response, Compensation, and Liability Act of 1980; and Washington Administrative Code. Separate monitoring plans are prepared for various requirements, but sampling is coordinated and data are shared among users to avoid duplication of effort. The U.S. Department of Energy manages these activities through the Hanford Groundwater Monitoring Project. This document is an integrated monitoring plan for the groundwater project. It documents well and constituent lists for monitoring required by the Atomic Energy Act of 1954 and its implementing orders; includes other, established monitoring plans by reference; and appends a master well/constituent/ frequency matrix for the entire site. The objectives of monitoring fall into three general categories: plume and trend tracking, treatment/ storage/disposal unit monitoring, and remediation performance monitoring. Criteria for selecting Atomic Energy Act of 1954 monitoring networks include locations of wells in relation to known plumes or contaminant sources, well depth and construction, historical data, proximity to the Columbia River, water supplies, or other areas of special interest, and well use for other programs. Constituent lists were chosen based on known plumes and waste histories, historical groundwater data, and, in some cases, statistical modeling. Sampling frequencies were based on regulatory requirements, variability of historical data, and proximity to key areas. For sitewide plumes, most wells are sampled every 3 years. Wells monitoring specific waste sites or in areas of high variability will be sampled more frequently.

  18. Integrated Monitoring Plan for the Hanford Groundwater Monitoring Project

    SciTech Connect

    Newcomer, D.R.; Thornton, E.C.; Hartman, M.J.; Dresel, P.E.

    1999-10-06

    Groundwater is monitored at the Hanford Site to fulfill a variety of state and federal regulations, including the Atomic Energy Act of 1954 the Resource Conservation and Recovery Act of 1976 the Comprehensive Environmental Response, Compensation, and Liability Act of 1980; and Washington Administrative Code. Separate monitoring plans are prepared for various requirements, but sampling is coordinated and data are shared among users to avoid duplication of effort. The US Department of Energy manages these activities through the Hanford Groundwater Monitoring Project. This document is an integrated monitoring plan for the groundwater project. It documents well and constituent lists for monitoring required by the Atomic Energy Act of 1954 and its implementing orders; includes other, established monitoring plans by reference; and appends a master well/constituent/frequency matrix for the entire site. The objectives of monitoring fall into three general categories plume and trend tracking, treatment/storage/disposal unit monitoring, and remediation performance monitoring. Criteria for selecting Atomic Energy Act of 1954 monitoring networks include locations of wells in relation to known plumes or contaminant sources, well depth and construction, historical data, proximity to the Columbia River, water supplies, or other areas of special interest, and well use for other programs. Constituent lists were chosen based on known plumes and waste histories, historical groundwater data, and, in some cases, statistical modeling. Sampling frequencies were based on regulatory requirements, variability of historical data, and proximity to key areas. For sitewide plumes, most wells are sampled every 3 years. Wells monitoring specific waste sites or in areas of high variability will be sampled more frequently.

  19. Groundwater remediation: the next 30 years.

    PubMed

    Hadley, Paul W; Newell, Charles J

    2012-01-01

    Groundwater remediation technologies are designed, installed, and operated based on the conceptual models of contaminant hydrogeology that are accepted at that time. However, conceptual models of remediation can change as new research, new technologies, and new performance data become available. Over the past few years, results from multiple-site remediation performance studies have shown that achieving drinking water standards (i.e., Maximum Contaminant Levels, MCLs) at contaminated groundwater sites is very difficult. Recent groundwater research has shown that the process of matrix diffusion is one key constraint. New developments, such as mass discharge, orders of magnitude (OoMs), and SMART objectives are now being discussed more frequently by the groundwater remediation community. In this paper, the authors provide their perspectives on the existing "reach MCLs" approach that has historically guided groundwater remediation projects, and advocate a new approach built around the concepts of OoMs and mass discharge.

  20. Hanford Site Groundwater Monitoring for Fiscal Year 2004

    SciTech Connect

    Hartman, Mary J.; Morasch, Launa F.; Webber, William D.

    2005-03-01

    This document presents the results of groundwater and vadose zone monitoring for fiscal year 2004 (October 2003 through September 2004)on the U.S. Department of Energy's Hanford Site in southeast Washington State.

  1. Screening of Potential Remediation Methods for the 200-BP-5 Operable Unit at the Hanford Site

    SciTech Connect

    Truex, Michael J.; Dresel, P. EVAN; Nimmons, Michael J.; Johnson, Christian D.

    2006-09-21

    A screening-level evaluation of potential remediation methods for application to the contaminants of concern (COC) in the 200-BP-5 Operable Unit at the Hanford Site was conducted based on the methods outlined in the Guidance for Conducting Remedial Investigations and Feasibility Studies under CERCLA Interim Final (EPA 1988). The scope of this screening was to identify the most promising remediation methods for use in the more detailed analysis of remediation alternatives that will be conducted as part of the full feasibility study. The screening evaluation was conducted for the primary COC (potential major risk drivers) identified in the groundwater sampling and analysis plan for the operable unit (DOE/RL-2001-49, Rev. 1) with additions.

  2. Hanford Site Groundwater Monitoring for Fiscal Year 1998

    SciTech Connect

    Hartman, M.J.

    1999-03-24

    This report presents the results of groundwater and vadose-zone monitoring and remediation for fiscal year (FY) 1998 on the Word Site, Washington. Soil-vapor extraction in the 200-West Area removed 777 kg of carbon tetrachloride in FY 1998, for a total of 75,490 kg removed since remediation began in 1992. Spectral gamma logging and evaluation of historical gross gamma logs near tank farms and liquid-disposal sites in the 200 Areas provided information on movement of contaminants in the vadose zone. Water-level monitoring was performed to evaluate groundwater-flow directions, to track changes in water levels, and to relate such changes to evolving disposal practices. Water levels over most of the Hanford Site continued to decline between June 1997 and June 1998. The most widespread radiological contaminant plumes in groundwater were tritium and iodine-129. Concentrations of technetium-99, uranium, strontium-90, and carbon-14 also exceeded drinking water standards in smaller plumes. Plutonium and cesium-137 exceeded standards only near the 216-B-5 injection well. Derived concentration guide levels specified in U.S. Department of Energy Order 5400.5 were exceeded for tritium, uranium, strontium-90, and plutonium in small plumes or single wells. One well completed in the basalt-confined aquifer beneath the 200-East Area exceeded the drinking water standard for technetium-99. Nitrate is the most extensive chemical contaminant. Carbon tetrachloride, chloroform, chromium, cis-l, Z-dichloroethylene, fluoride, and trichloroethylene also were present in smaller areas at levels above their maximum contaminant levels. Cyanide concentrations were elevated in one area but were below the maximum contaminant level. Tetrachloroethylene exceeded its maximum contaminant level in several wells in the 300 Area for the first time since the 1980s. Metals such as aluminum, cadmium, iron, manganese, and nickel exceeded their maximum contaminant levels in filtered samples from numerous

  3. Monitoring groundwater and river interaction along the Hanford reach of the Columbia River

    SciTech Connect

    Campbell, M.D.

    1994-04-01

    As an adjunct to efficient Hanford Site characterization and remediation of groundwater contamination, an automatic monitor network has been used to measure Columbia River and adjacent groundwater levels in several areas of the Hanford Site since 1991. Water levels, temperatures, and electrical conductivity measured by the automatic monitor network provided an initial database with which to calibrate models and from which to infer ground and river water interactions for site characterization and remediation activities. Measurements of the dynamic river/aquifer system have been simultaneous at 1-hr intervals, with a quality suitable for hydrologic modeling and for computer model calibration and testing. This report describes the equipment, procedures, and results from measurements done in 1993.

  4. GROUDWATER REMEDIATION AT THE 100-HR-3 OPERABLE UNIT HANFORD SITE WASHINGTON USA - 11507

    SciTech Connect

    SMOOT JL; BIEBESHEIMER FH; ELUSKIE JA; SPILIOTOPOULOS A; TONKIN MJ; SIMPKIN T

    2011-01-12

    The 100-HR-3 Groundwater Operable Unit (OU) at the Hanford Site underlies three former plutonium production reactors and the associated infrastructure at the 100-D and 100-H Areas. The primary contaminant of concern at the site is hexavalent chromium; the secondary contaminants are strontium-90, technetium-99, tritium, uranium, and nitrate. The hexavalent chromium plume is the largest plume of its type in the state of Washington, covering an area of approximately 7 km{sup 2} (2.7 mi{sup 2}) with concentrations greater than 20 {micro}g/L. Concentrations range from 60,000 {micro}g/L near the former dichromate transfer station in the 100-D Area to large areas of 20 to 100 {micro}g/L across much of the plume area. Pump-and-treat operations began in 1997 and continued into 2010 at a limited scale of approximately 200 gal/min. Remediation of groundwater has been fairly successful in reaching remedial action objectives (RAOs) of 20 {micro}g/L over a limited region at the 100-H, but less effective at 100-D. In 2000, an in situ, permeable reactive barrier was installed downgradient of the hotspot in 100-D as a second remedy. The RAOs are still being exceeded over a large portion of the area. The CH2M HILL Plateau Remediation Company was awarded the remediation contract for groundwater in 2008 and initiated a remedial process optimization study consisting of modeling and technical studies intended to enhance the remediation. As a result of the study, 1,400 gal/min of expanded treatment capacity are being implemented. These new systems are designed to meet 2012 and 2020 target milestones for protection of the Columbia River and cleanup of the groundwater plumes.

  5. TREATABILITY TEST PLAN FOR DEEP VADOSE ZONE REMEDIATION AT THE HANFORD SITE CENTRAL PLATEAU

    SciTech Connect

    PETERSEN SW; MORSE JG; TRUEX MJ; LAST GV

    2007-11-29

    A treatability test plan has been prepared to address options for remediating portions of the deep vadose zone beneath a portion of the U.S. Department of Energy's (DOE's) Hanford Site. The vadose zone is the region of the subsurface that extends from the ground surface to the water table. The overriding objective of the treatability test plan is to recommend specific remediation technologies and laboratory and field tests to support the Comprehensive Environmental Response, Compensation, and Liability Act of 1980 and Resource Conservation and Recovery Act of 1976 remedial decision-making process in the Central Plateau of the Hanford Site. Most of the technologies considered involve removing water from the vadose zone or immobilizing the contaminants to reduce the risk of contaminating groundwater. A multi-element approach to initial treatability testing is recommended, with the goal of providing the information needed to evaluate candidate technologies. The proposed tests focus on mitigating two contaminants--uranium and technetium. Specific technologies are recommended for testing at areas that may affect groundwater in the future, but a strategy to test other technologies is also presented.

  6. EVALUATION OF GROUNDWATER EXTRACTION REMEDIES - VOLUME II

    EPA Science Inventory

    This volume was prepared as part of an evaluation of groundwater extraction remedies completed under EPA Contract No. 68-W8-0098. It presents 19 case studies of individual sites where ground-water extraction systems have been implemented. These case studies present site characte...

  7. Microbial Community Dynamics of Lactate Enriched Hanford Groundwaters

    SciTech Connect

    Mosher, Jennifer J.; Drake, Meghan M.; Carroll, Susan L.; Yang, Zamin K.; Schadt, Christopher W.; Brown, Stephen D.; Podar, Mircea; Hazen, Terry C.; Arkin, Adam P.; Phelps, Tommy J.; Palumbo, Anthony V.; Faybishenko, Boris A.; Elias, Dwayne A.

    2010-05-01

    The Department of Energy site at Hanford, WA, has been historically impacted by U and Cr from the nuclear weapons industry. In an attempt to stimulate microbial remediation of these metals, in-situ lactate enrichment experiments are ongoing. In order to bridge the gap from the laboratory to the field, we inoculated triplicate anaerobic, continuous-flow glass reactors with groundwater collected from well Hanford 100-H in order to obtain a stable, enriched community while selecting for metal-reducing bacteria. Each reactor was fed from a single carboy containing defined media with 30 mM lactate at a rate of 0.223 ml/min under continuous nitrogen flow at 9 ml/min. Cell counts, organic acids, gDNA (for qPCR and pyrosequencing) and gases were sampled during the experiment. Cell counts remained low (less than 1x107 cells/ml) during the first two weeks of the experiment, but by day 20, had reached a density greater than 1x108 cells/ml. Metabolite analysis showed a decrease in the lactate concentrations over time. Pyruvate concentrations ranged from 20-40 uM the first week of the experiment then was undetectable after day 10. Likewise, formate appeared in the reactors during the first week with concentrations of 1.48-1.65 mM at day 7 then the concentrations decreased to 0.69-0.95 on day 10 and were undetectable on day 15. Acetate was present in low amounts on day 3 (0.15-0.33 mM) and steadily increased to 3.35-5.22 mM over time. Similarly, carbon dioxide was present in low concentrations early on and increased to 0.28-0.35 mM as the experiment progressed. We also were able to detect low amounts of methane (10-20 uM) during the first week of the experiment, but by day 10 the methane was undetectable. From these results and pyrosequencing analysis, we conclude that a shift in the microbial community dynamics occurred over time to eventually form a stable and enriched microbial community. Comprehensive investigations such as these allow for the examination of not only which

  8. Technical and Economic Assessment of Solar Photovoltaic for Groundwater Extraction on the Hanford Site

    SciTech Connect

    Mackley, Rob D.; Anderson, David M.; Thomle, Jonathan N.; Strickland, Christopher E.

    2015-09-01

    The overall goal of environmental remediation is to protect human health and the environment. Implementing renewable energy sources such as solar photovoltaic (PV) in groundwater extraction and pump-and-treat (P&T) systems may help minimize the environmental footprint of remediation efforts. The first step in considering solar PV for powering Hanford groundwater extraction is assessing the technical and economic feasibility and identifying potential target locations where implementation would be most successful. Accordingly, a techno-economic assessment of solar PV for Hanford groundwater extraction was completed in FY15. Multiple solar PV alternatives ranging in size from 1.2 to 22.4 kWp DC were evaluated and compared against traditional grid-powered systems. Results indicate that the degree to which solar PV alternatives are feasible is primarily a function of the distance of avoided power cable costs and the inclusion of an energy storage component. Standalone solar PV systems provide an energy source at the well and avoid the costs and logistics associated with running long lengths of expensive power cable to the well-head. When solar PV systems include a battery storage component, groundwater can be pumped continuously day and night in a year-round schedule. However, due to the high cost premium of the energy storage component, a fully solar-powered solution could not provide an economic direct replacement for line-powered pumping systems. As a result, the most ideal target locations for successful implementation of solar PV on the Hanford Site are remote or distant extraction wells where the primary remedial objective is contaminant mass removal (as opposed to hydraulic containment) and three-season (March through October) intermittent pumping is acceptable (e.g. remediation of hexavalent chromium in 200-UP-1).

  9. Environmental and ground-water surveillance at Hanford

    SciTech Connect

    Dirkes, R.L.; Luttrell, S.P.

    1995-06-01

    Environmental and ground-water surveillance of the Hanford Site and surrounding region is conducted to demonstrate compliance with environmental regulations, confirm adherence to DOE environmental protection policies, support DOE environmental management decisions, and provide information to the public. Environmental surveillance encompasses sampling and analyzing for potential radiological and nonradiological chemical contaminants on and off the Hanford Site. Emphasis is placed on surveillance of exposure pathways and chemical constituents that pose the greatest risk to human health and the environment.

  10. Ground-water contribution to dose from past Hanford Operations

    SciTech Connect

    Freshley, M.D.; Thorne, P.D.

    1992-08-01

    The Hanford Environmental Dose Reconstruction (HEDR) Project is being conducted to estimate radiation doses that populations and individuals could have received from Hanford Site operations from 1944 to the present. Four possible pathways by which radionuclides migrating in ground water on the Hanford Site could have reached the public have been identified: (1) through contaminated ground water migrating to the Columbia River; (2) through wells on or adjacent to the Hanford Site; (3) through wells next to the Columbia River downstream of Hanford that draw some or all of their water from the river (riparian wells); and (4) through atmospheric deposition resulting in contamination of a small watershed that, in turn, results in contamination of a shallow well or spring by transport in the ground water. These four pathways make up the ground-water pathway,'' which is the subject of this study. Assessment of the ground-water pathway was performed by (1) reviewing the existing extensive literature on ground water and ground-water monitoring at Hanford and (2) performing calculations to estimate radionuclide concentrations where no monitoring data were collected. Radiation doses that would result from exposure to these radionuclides were calculated.

  11. Ground-water contribution to dose from past Hanford Operations. Hanford Environmental Dose Reconstruction Project

    SciTech Connect

    Freshley, M.D.; Thorne, P.D.

    1992-08-01

    The Hanford Environmental Dose Reconstruction (HEDR) Project is being conducted to estimate radiation doses that populations and individuals could have received from Hanford Site operations from 1944 to the present. Four possible pathways by which radionuclides migrating in ground water on the Hanford Site could have reached the public have been identified: (1) through contaminated ground water migrating to the Columbia River; (2) through wells on or adjacent to the Hanford Site; (3) through wells next to the Columbia River downstream of Hanford that draw some or all of their water from the river (riparian wells); and (4) through atmospheric deposition resulting in contamination of a small watershed that, in turn, results in contamination of a shallow well or spring by transport in the ground water. These four pathways make up the ``ground-water pathway,`` which is the subject of this study. Assessment of the ground-water pathway was performed by (1) reviewing the existing extensive literature on ground water and ground-water monitoring at Hanford and (2) performing calculations to estimate radionuclide concentrations where no monitoring data were collected. Radiation doses that would result from exposure to these radionuclides were calculated.

  12. Expediting Groundwater Sampling at Hanford and Making It Safer - 13158

    SciTech Connect

    Connell, Carl W. Jr.; Conley, S.F.; Carr, Jennifer S.; Schatz, Aaron L.; Brown, W.L.; Hildebrand, R. Douglas

    2013-07-01

    The CH2M HILL Plateau Remediation Company (CHPRC) manages the groundwater monitoring programs at the Department of Energy's 586-square-mile Hanford site in southeastern Washington state. These programs are regulated by the Resource Conservation and Recovery Act (RCRA), the Comprehensive Environmental Response Compensation and Liability Act (CERCLA), and the Atomic Energy Act (AEA). The purpose of monitoring is to track existing groundwater contamination from past practices, as well as other potential contamination that might originate from RCRA treatment, storage, and disposal (TSD) facilities. An integral part of the groundwater-monitoring program involves taking samples of the groundwater and measuring the water levels in wells scattered across the site. Each year, more than 1,500 wells are accessed for a variety of reasons. Historically, the monitoring activities have been very 'people intensive'. Field personnel or 'samplers' have been issued pre-printed forms showing information about the well(s) for a particular sampling evolution. This information is taken from two official electronic databases: the Hanford Well Information System (HWIS) and the Hanford Environmental Information System (HEIS). The samplers traditionally used these hardcopy forms to document the groundwater samples and well water-levels. After recording the entries in the field, the samplers turned the forms in at the end of the day and other personnel posted the collected information. In Automating Groundwater Sampling at Hanford (HNF-38542-FP Revision 0, Presented at Waste Management 2009 Conference, March 1 - March 5, 2009, Phoenix, AZ), we described the methods, tools, and techniques that would be used in automating the activities associated with measuring water levels. The Field Logging and Electronic Data Gathering (FLEDG) application/database that automates collecting the water-level measurement data has now been implemented at Hanford. In addition to eliminating the need to print out

  13. Groundwater remediation at a wood preservatives site

    SciTech Connect

    Mital, H.K.; Damera, R.

    1994-12-31

    A wood treatment facility in Pennsylvania allegedly discharged about a million gallons of spent wood preservatives containing pentachlorophenol into a well from 1947 to 1963. Contaminated water was noticed in a creek adjacent to the site and was reported by the residents in 1972. Subsequently this site was placed on the National Priorities List (NPL) by the EPA in 1982. Tetra Tech, Inc. has performed Remedial Investigations (RI), Feasibility Studies (FS), Remedial Designs (RD) and Remedial Action (RA) at this Superfund site, for five years. This paper presents an overview of RI, FS, RD and treatability studies related to groundwater remediation.

  14. Remedies proposed for China's groundwater problems

    NASA Astrophysics Data System (ADS)

    Loaiciga, Hugo A.

    Groundwater experts and hydrologists from China and 10 other nations recently gathered in Beijing to exchange state-of-the-art scientific and technological knowledge on groundwater hydrology, modeling, remediation, and management. The participants also reviewed groundwater environmental conditions in China, identified key problems, and made recommendations to help guide the nation's groundwater policy.The Regional Workshop on Ground Water Contamination, held from July 31 to August 4, 1995, was the fifth of a series of regional workshops sponsored by the Scientific Committee on Problems of the Environment of the United Nations Environmental Program. Earlier workshops were held in Thailand (1991), Costa Rica (1993), the Czech Republic (1994), and Australia (1994).

  15. Ground-water contribution to dose from past Hanford operations

    SciTech Connect

    Freshley, M. D.; Thorne, P. D.

    1992-01-01

    The Hanford Environmental Dose Reconstruction (HEOR) Project is being conducted to estimate radiation doses that populations and individuals could have received from Hanford Site operations from 1944 to the present. Four possible pathways by which radionuclides originating in ground water on the Hanford Site could have reached the public have been identified: 1) through contaminated ground water migrating to the Columbia River; 2) through wells on or adjacent to the Hanford Site; 3) through wells that draw some or all of their water from the Columbia River (riparian wells); and 4) through atmospheric deposition resulting in the contamination of a small watershed that, in turn, results in contamination of a shallow well or spring. These four pathways make up the "ground-water pathway ," which is the subject of this study. The objective of the study was to assess the extent to which the groundwater pathway contributed to radiation doses that populations or individuals may have received from past operations at Hanford. The assessment presented in this report was performed by 1) reviewing the extensive literature on ground water and ground-water monitoring at Hanford and 2) performing simple calculations to estimate radionuclide concentrations in ground water and the Columbia River resulting from ground-water discharge. Radiation doses that would result from exposure to this ground water and surface water were calculated. The study conclusion is that the ground-water pathways did not contribute significantly to dose. Compared with background radiation in the TriCities {300 mrem/yr), estimated doses are small: 0.02 mrem/yr effective dose equivalent from discharge of contaminated ground water to the Columbia River; 1 mrem/yr effective dose equivalent from Hanford Site wells; 11 mrem/yr effective dose equivalent from riparian wells; and 1 mrem/yr effective dose equivalent from the watershed. Because the estimated doses are so small, the recommendation is that further work

  16. Groundwater maps of the Hanford Site Separations Area, January 1989

    SciTech Connect

    Kasza, G.L.; Schatz, A.L.

    1989-03-01

    The groundwater maps of the Hanford Site Separations Area, dated January 1989, are prepared by the Environmental Engineering and Technology Function, Environmental Division, Westinghouse Hanford Company. The groundwater maps are updated on a semiannual basis and are complementary to the Hanford Site water table map prepared by Pacific Northwest Laboratory. The Separations Area consists of the 200 East and 200 West areas and the surrounding vicinity on the Hanford Site. Chemical processing operations are carried out in the Separations Area by Westinghouse Hanford for the US Department of Energy - Richland Operations Office. This set of groundwater maps consists of: (1) Separations Area depth-to-water map, (2) Separations Area water table map, and (3) a map comparing the potentiometric surface of the Rattlesnake Ridge confined aquifer with the water table of the unconfined aquifer. The field measurements for these maps were collected during the period January 19 to February 8, 1989, and are listed in Table 1. For clarity, the locating prefixes have been omitted from all well numbers shown on the maps. Wells in the 200 Areas have the prefix 299, and the wells outside of these areas have the prefix 699.

  17. Hanford Site groundwater monitoring for fiscal year 1996

    SciTech Connect

    Hartman, M.J.; Dresel, P.E.; Borghese, J.V.

    1997-02-01

    This report presents the results of groundwater and vadose-zone monitoring for fiscal year (FY) 1996 on the Hanford Site, Washington. Hanford Site operations from 1943 onward produced large quantities of radiological and chemical waste that affected groundwater quality on the site. Characterization and monitoring of the vadose zone during FY 1996 comprised primarily spectral gamma logging, soil-gas monitoring, and electrical resistivity tomography. Water-level monitoring was performed to evaluate groundwater-flow directions, to track changes in water levels, and to relate such changes to evolving disposal practices. Water levels over most of the Hanford Site continued to decline between June 1995 and June 1996. Groundwater chemistry was monitored to track the extent of contamination, to note trends, and to identify emerging groundwater-quality problems. The most widespread radiological contaminant plumes were tritium and iodine-129. Smaller plumes of strontium-90, technetium-99, and plutonium also were present at levels above the U.S. Environmental Protection Agency or State of Washington interim drinking water standards. Uranium concentrations greater than the proposed drinking water standard were also observed. Nitrate, fluoride, chromium, carbon tetrachloride, chloroform, trichloroethylene, and cis-1,2-dichlomethylene were present in groundwater samples at levels above their U.S. Environmental Protection Agency or State of Washington maximum contaminant levels. The nitrate plume is the most extensive. Three-dimensional, numerical, groundwater models were applied to the Hanford Site to predict contaminant-flow paths and the impact of operational changes on site groundwater conditions. Other models were applied to assess the performance of three separate pump-and-treat systems.

  18. Overview of Phosphate-Based Remediation Technologies At The Hanford Site, Richland Washington

    NASA Astrophysics Data System (ADS)

    Thompson, K. M.; Fruchter, J. S.

    2009-12-01

    Phosphate-based technologies have been tested to sequester strontium-90 and uranium at the Hanford Site, part of the U.S. Department of Energy's (DOE)nuclear weapons complex that encompasses approximately 586 square miles in southeast Washington State. The Columbia River flows through the site (Hanford Reach) where localized groundwater plumes upwell into the river. Efforts to reduce the flux of Sr-90 to the Columbia River from Hanford Site 100-N Area past practice liquid waste disposal sites have been underway since the early 1990s. Termination of all liquid discharges to the ground in 1993 was a major step toward meeting this goal. However, Sr 90 adsorbed onto sediment beneath liquid waste disposal sites, and onto sediment that extends beneath the near-shore riverbed, remains a continuing contaminant source for impacting groundwater and the Columbia River. Initial remediation efforts using a pump-and treat system proved to be ineffective as a long-term solution because of the geochemical characteristics of Sr-90. Following an evaluation of potential Sr-90 treatment technologies and their applicability under 100-N Area hydrogeologic conditions, the U.S. Department of Energy and the Washington State Department of Ecology agreed to evaluate apatite sequestration as the primary remedial technology, combined with a secondary polishing step utilizing phytoextraction if necessary. DOE is also evaluating the efficacy of using polyphosphate to reduce uranium concentrations in the groundwater with the goal of meeting drinking water standards (30 μg/L). This technology works by forming phosphate minerals (autunite and apatite) in the aquifer that directly sequester the existing aqueous uranium in autunite minerals and precipitates apatite minerals for sorption and long-term treatment of uranium migrating into the treatment zone, thus reducing current and future aqueous uranium concentrations. These remedial technologies are being developed by Pacific Northwest National

  19. Evaluating Contaminant Flux from the Vadose Zone to the Groundwater in the Hanford Central Plateau. SX Tank Farms Case Study

    SciTech Connect

    Truex, Michael J.; Oostrom, Martinus; Last, George V.; Strickland, Christopher E.; Tartakovsky, Guzel D.

    2015-09-01

    At the DOE Hanford Site, contaminants were discharged to the subsurface through engineered waste sites in the Hanford Central Plateau. Additional waste was released through waste storage tank leaks. Much of the contaminant inventory is still present within the unsaturated vadose zone sediments. The nature and extent of future groundwater contaminant plumes and the growth or decline of current groundwater plumes beneath the Hanford Central Plateau are a function of the contaminant flux from the vadose zone to the groundwater. In general, contaminant transport is slow through the vadose zone and it is difficult to directly measure contaminant flux in the vadose zone. Predictive analysis, supported by site characterization and monitoring data, was applied using a structured, systems-based approach to estimate the future contaminant flux to groundwater in support of remediation decisions for the vadose zone and groundwater (Truex and Carroll 2013). The SX Tank Farm was used as a case study because of the existing contaminant inventory in the vadose zone, observations of elevated moisture content in portions of the vadose zone, presence of a limited-extent groundwater plume, and the relatively large amount and wide variety of data available for the site. Although the SX Tank Farm case study is most representative of conditions at tank farm sites, the study has elements that are also relevant to other types of disposal sites in the Hanford Central Plateau.

  20. Clean option: An alternative strategy for Hanford Tank Waste Remediation

    SciTech Connect

    Straalsund, J.L.; Swanson, J.L.; Baker, E.G.; Jones, E.O.; Kuhn, W.L. ); Holmes, J.J. )

    1992-12-01

    Plans for remediation of the Hanford underground storage tanks are currently undergoing reevaluation. As part of this process, many options are being considered for the Tank Waste Remediation System (MRS). The clean option'' described here proposes an aggressive waste processing strategy to achieve the three ma or objectives: Greatly reduce the volume of high-level waste (HLW) to lessen demands on geologic repository space; decrease by several orders of magnitude the amount of radioactivity and toxicity now in the waste tanks that will be left permanently onsite as low-level solid waste (LLW); and accomplish the first two objectives without significantly increasing the total amount of waste for disposal. The study discussed here focuses on process chemistry, as it provides the foundation for achieving the clean option objectives. Because demonstrated separation steps have been identified and connected in a way that meets these objectives, the study concludes that the process chemistry rests on a firm technical basis.

  1. Remedial action selection using groundwater modeling

    SciTech Connect

    Haddad, B.I.; Parish, G.B.; Hauge, L.

    1996-12-31

    An environmental investigation uncovered petroleum contamination at a gasoline station in southern Wisconsin. The site was located in part of the ancestral Rock River valley in Rock County, Wisconsin where the valley is filled with sands and gravels. Groundwater pump tests were conducted for determination of aquifer properties needed to plan a remediation system; the results were indicative of a very high hydraulic conductivity. The site hydrogeology was modeled using the U.S. Geological Survey`s groundwater model, Modflow. The calibrated model was used to determine the number, pumping rate, and configuration of recovery wells to remediate the site. The most effective configuration was three wells pumping at 303 liters per minute (1/m) (80 gallons per minute (gpm)), producing a total pumping rate of 908 l/m (240 gpm). Treating 908 l/min (240 gpm) or 1,308,240 liters per day (345,600 gallons per day) constituted a significant volume to be treated and discharged. It was estimated that pumping for the two year remediation would cost $375,000 while the air sparging would cost $200,000. The recommended remedial system consisted of eight air sparging wells and four vapor recovery laterals. The Wisconsin Department of Natural Resources (WDNR) approved the remedial action plan in March, 1993. After 11 months of effective operation the concentrations of removed VOCs had decreased by 94 percent and groundwater sampling indicated no detectable concentrations of gasoline contaminants. Groundwater modeling was an effective technique to determine the economic feasibility of a groundwater remedial alternative.

  2. Tackling the Challenge of Deep Vadose Zone Remediation at the Hanford Site

    NASA Astrophysics Data System (ADS)

    Morse, J. G.; Wellman, D. M.; Gephart, R.

    2010-12-01

    The Central Plateau of the Hanford Site in Washington State contains some 800 waste disposal sites where 1.7 trillion liters of contaminated water was once discharged into the subsurface. Most of these sites received liquids from the chemical reprocessing of spent uranium fuel to recover plutonium. In addition, 67 single shell tanks have leaked or are suspected to have leaked 3.8 million liters of high alkali and aluminate rich cesium-contaminated liquids into the sediment. Today, this inventory of subsurface contamination contains an estimated 550,000 curies of radioactivity and 150 million kg (165,000 tons) of metals and hazardous chemicals. Radionuclides range from mobile 99Tc to more immobilized 137Cs, 241Am, uranium, and plutonium. A significant fraction of these contaminants likely remain within the deep vadose zone. Plumes of groundwater containing tritium, nitrate, 129I and other contaminants have migrated through the vadose zone and now extend outward from the Central Plateau to the Columbia River. During most of Hanford Site history, subsurface studies focused on groundwater monitoring and characterization to support waste management decisions. Deep vadose zone studies were not a priority because waste practices relied upon that zone to buffer contaminant releases into the underlying aquifer. Remediation of the deep vadose zone is now central to Hanford Site cleanup because these sediments can provide an ongoing source of contamination to the aquifer and therefore to the Columbia River. However, characterization and remediation of the deep vadose zone pose some unique challenges. These include sediment thickness; contaminant depth; coupled geohydrologic, geochemical, and microbial processes controlling contaminant spread; limited availability and effectiveness of traditional characterization tools and cleanup remedies; and predicting contaminant behavior and remediation performance over long time periods and across molecular to field scales. The U

  3. Evaluation of unit risk factors in support of the Hanford Remedial Action Environmental Impact Statement

    SciTech Connect

    Strenge, D.L.; Chamberlain, P.J. II

    1994-11-01

    This report describes the generation of unit risk factors for use with the Graphical Information System (GIS) being developed by Advanced Sciences, Inc. for the Hanford Remedial Action Environmental Impact Statement. The GIS couples information on source inventory and environmental transport with unit risk factors to estimate the potential risk from contamination at all locations on the Hanford Site. The major components of the effort to generate the unit risk factors were: determination of pollutants to include in the study, definition of media of concern, and definition of exposure assessment scenarios, methods, and parameters. The selection of pollutants was based on inventory lists which indicated the pollutants likely to be encountered at the known waste sites. The final pollutants selected included 47 chemical pollutants and 101 radionuclides. Unit risk factors have been generated for all 148 pollutants per unit initial concentration in five media: soil (per unit mass), soil (per unit area), air, groundwater, and surface water. The exposure scenarios were selected as the basis for the unit risk factor generation. The endpoint in the exposure assessment analysis is expressed as risk of developing cancer for radionuclides and carcinogenic chemicals. For noncarcinogenic chemicals, the risk endpoint is the hazard quotient. The cancer incidence and hazard quotient values are evaluated for all exposure pathways, pollutants, and scenarios. The hazard index values and unit risk values are used by the GIS to produce maps of risk for the Hanford Site.

  4. Hanford Site ground-water monitoring for 1992

    SciTech Connect

    Dresel, P.E.; Newcomer, D.R.; Evans, J.C.; Webber, W.D.; Spane, F.A. Jr.; Raymond, R.G.; Opitz, B.E.

    1993-06-01

    Monitoring activities were conducted to determine the distribution of radionuclides and hazardous chemicals present in ground water as a result of Hanford Site operations and, whenever possible, relate the distribution of these constituents to Site operations. A total of 720 wells were sampled during 1992 by all Hanford ground-water monitoring activities. The Ground-Water Surveillance Project prepared water-table maps of DOE`s Hanford Site for June 1992 from water-level elevations measured in 287 wells across the Hanford Site and outlying areas. These maps are used to infer ground-water flow directions and gradients for the interpretation of contaminant transport. Water levels beneath the 200 Areas decreased as much as 0.75 m (2.5 ft) between December 1991 and December 1992. Water levels in the Cold Creek Valley decreased approximately 0.5 m in that same period. The water table adjacent to the Columbia River along the Hanford Reach continues to respond significantly to fluctuations in river stage. These responses were observed in the 100 and 300 areas. The elevation of the ground-water mound beneath B Pond did not change significantly between December 1991 and December 1992. However, water levels from one well located at the center of the mound indicate a water-level rise of approximately 0.3 m (1 ft) during the last quarter of 1992. Water levels measured from unconfined aquifer wells north and east of the Columbia River in 1992 indicate that the primary source of recharge is from irrigation practices.

  5. Remediation Technology for Contaminated Groundwater

    EPA Science Inventory

    Bioremediation is the most commonly selected technology for remediation of ground water at Superfund sites in the USA. The next most common technology is Chemical treatment, followed by Air Sparging, and followed by Permeable Reactive Barriers. This presentation reviews the the...

  6. Remediation Technology for Contaminated Groundwater

    EPA Science Inventory

    Bioremediation is the most commonly selected technology for remediation of ground water at Superfund sites in the USA. The next most common technology is Chemical treatment, followed by Air Sparging, and followed by Permeable Reactive Barriers. This presentation reviews the the...

  7. Remediation of Hanford's N-reactor liquid waste disposal sites.

    PubMed

    Sitsler, Robert B; DeMers, Steven K

    2003-02-01

    Hanford's N-Reactor operated from 1963 to 1987 generating approximately 9 x 10(7) m3 of radioactive and hazardous liquid effluent as a result of reactor operations. Two liquid waste disposal sites, essentially large trenches designed to filter contaminants from the water as it percolates through the soil column, were established to dispose of the effluent. The discharges to the sites included cooling water from the reactor primary, spent fuel storage, and periphery systems, along with miscellaneous drainage from reactor support facilities. Today, both sites are classified as Treatment Storage and Disposal Facilities under the Resource Conservation and Recovery Act of 1976, which makes them priority sites for remediation. The two sites cover approximately 4,100 m2 and 9,300 m2, respectively. Remediation of the sites requires removing a combined total of approximately 2.6 x 10(8) kg of contaminated soil and debris. Principal radionuclides contained in the soil/debris are 60Co, 137Cs, 239Pu, and 90Sr. Remediation of these waste sites requires demolishing concrete structures and excavating, hauling, and disposing of contaminated soils in work areas containing high levels of contamination and whole body dose rates in excess of 1 mSv h-1. The work presents unique radiological control challenges, such as minimizing external dose to workers in a constantly changing outdoor work environment, maintaining contamination control during removal of a water distribution trough filled with highly contaminated sludge, and minimizing outdoor airborne contamination during size reduction of highly contaminated pipelines. Through innovative approaches to dose reduction and contamination control, Hanford's Environmental Restoration Contractor has met the challenge, completing the first phase on schedule and with a total project exposure below the goal of 0.1 person-Sv.

  8. Hanford Site groundwater monitoring: Setting, sources and methods

    SciTech Connect

    M.J. Hartman

    2000-04-11

    Groundwater monitoring is conducted on the Hanford Site to meet the requirements of the Resource Conservation and Recovery Act of 1976 (RCRA); Comprehensive Environmental Response, Compensation, and Liability Act of 1980 (CERCLA); U.S. Department of Energy (DOE) orders; and the Washington Administrative Code. Results of monitoring are published annually (e.g., PNNL-11989). To reduce the redundancy of these annual reports, background information that does not change significantly from year to year has been extracted from the annual report and published in this companion volume. This report includes a description of groundwater monitoring requirements, site hydrogeology, and waste sites that have affected groundwater quality or that require groundwater monitoring. Monitoring networks and methods for sampling, analysis, and interpretation are summarized. Vadose zone monitoring methods and statistical methods also are described. Whenever necessary, updates to information contained in this document will be published in future groundwater annual reports.

  9. Remediation technologies for heavy metal contaminated groundwater.

    PubMed

    Hashim, M A; Mukhopadhyay, Soumyadeep; Sahu, Jaya Narayan; Sengupta, Bhaskar

    2011-10-01

    The contamination of groundwater by heavy metal, originating either from natural soil sources or from anthropogenic sources is a matter of utmost concern to the public health. Remediation of contaminated groundwater is of highest priority since billions of people all over the world use it for drinking purpose. In this paper, thirty five approaches for groundwater treatment have been reviewed and classified under three large categories viz chemical, biochemical/biological/biosorption and physico-chemical treatment processes. Comparison tables have been provided at the end of each process for a better understanding of each category. Selection of a suitable technology for contamination remediation at a particular site is one of the most challenging job due to extremely complex soil chemistry and aquifer characteristics and no thumb-rule can be suggested regarding this issue. In the past decade, iron based technologies, microbial remediation, biological sulphate reduction and various adsorbents played versatile and efficient remediation roles. Keeping the sustainability issues and environmental ethics in mind, the technologies encompassing natural chemistry, bioremediation and biosorption are recommended to be adopted in appropriate cases. In many places, two or more techniques can work synergistically for better results. Processes such as chelate extraction and chemical soil washings are advisable only for recovery of valuable metals in highly contaminated industrial sites depending on economical feasibility.

  10. PROTECTING GROUNDWATER & THE COLUMBIA RIVER AT THE HANFORD SITE

    SciTech Connect

    GERBER, M.S.

    2006-06-29

    Along the remote shores of the Columbia River in southeast Washington state, a race is on. Fluor Hanford, a prime cleanup contractor to the U.S. Department of Energy (DOE) at the Hanford Site, is managing a massive, multi-faceted project to remove contaminants from the groundwater before they can reach the Columbia. Despite the daunting nature and size of the problem--about 80 square miles of aquifer under the site contains long-lived radionuclides and hazardous chemicals--significant progress is being made. Many groups are watching, speaking out, and helping. A large. passionate, diverse, and geographically dispersed community is united in its desire to protect the Columbia River--the eighth largest in the world--and have a voice in Hanford's future. Fluor Hanford and the DOE, along with the US. Environmental Protection Agency (EPA) and the Washington Department of Ecology (Ecology) interact with all the stakeholders to make the best decisions. Together, they have made some remarkable strides in the battle against groundwater contamination under the site.

  11. Remediation of Groundwater Contaminated by Nuclear Waste

    NASA Astrophysics Data System (ADS)

    Parker, Jack; Palumbo, Anthony

    2008-07-01

    A Workshop on Accelerating Development of Practical Field-Scale Bioremediation Models; An Online Meeting, 23 January to 20 February 2008; A Web-based workshop sponsored by the U.S. Department of Energy Environmental Remediation Sciences Program (DOE/ERSP) was organized in early 2008 to assess the state of the science and knowledge gaps associated with the use of computer models to facilitate remediation of groundwater contaminated by wastes from Cold War era nuclear weapons development and production. Microbially mediated biological reactions offer a potentially efficient means to treat these sites, but considerable uncertainty exists in the coupled biological, chemical, and physical processes and their mathematical representation.

  12. In Situ Uranium Stabilization through Polyphosphate Remediation: Development and Demonstration at the Hanford Site 300 Area, Washington State

    SciTech Connect

    Wellman, Dawn M.; Pierce, Eric M.; Vermeul, Vincent R.; Mattigod, Shas V.; Richards, Emily L.; Williams, Mark D.; Fruchter, Jonathan S.; Icenhower, Jonathan P.

    2008-06-27

    A site specific treatability test was conducted to optimize polyphosphate remediation technology for implementation through a field-scale technology demonstration to accelerate monitored natural attenuation of the uranium plume within the Hanford 300 Area aquifer. A focused application of polyphosphate was conducted in a source or “hot spot” area to reduce the inventory of available uranium that contributes to the groundwater plume through direct precipitation of uranyl-phosphate solids and secondary containment via precipitation of apatite acting as a long-term sorbent for uranium. The general treatability testing approach consisted of initial site characterization and setup, a polyphosphate injection test, and post-treatment performance assessment. Fundamental science studies were conducted with site specific sediment and groundwater to develop an effective remediation scheme for deployment of polyphosphate technology. In addition to remediating a portion of the plume, the data from this test provides valuable information for designing a full-scale remediation of uranium in the aquifer at the 300 Area of the Hanford Site. It will also provide a detailed understanding of the fundamental underpinnings necessary to evaluate the efficacy and potential utilization of polyphosphate technology at other sites with varying geochemical and hydrodynamic conditions.

  13. Audit of groundwater monitoring at Hanford

    SciTech Connect

    1996-11-15

    The Department of Energy (DOE), Richland Operations is responsible for ensuring that its contractors` tasks are mission oriented and are completed at the least cost to the DOE. The objective of this audit was to determine whether Richland was effectively managing its groundwater monitoring activities so that unnecessary duplication would not occur. The audit`s objective was accomplished by: reviewing laws and regulations; interviewing DOE and contractor personnel; examining procurement and accounting procedures; reviewing plans, budgets, and actual expenditures; reviewing utilization of the DOE drilling equipment; observing well drilling activities; comparing drilling cost to other DOE sites; analyzing groundwater monitoring activities; and, reviewing and comparing groundwater reports.

  14. Technical Basis for Gas-Phase Vadose Zone Remediation Technologies at Hanford: A Review - 12186

    SciTech Connect

    Truex, M.J.; Oostrom, M.; Szecsody, J.E.; Strickland, C.E.; Chronister, G.B.; Benecke, M.W.

    2012-07-01

    In situ vadose zone remediation approaches are being evaluated as potential options to mitigate the transport of inorganic and radionuclide contaminants from the vadose zone to the groundwater. Some of the candidate approaches are based on changing the contaminant or subsurface conditions in a way that slows downward migration of the contaminants through the vadose zone using amendments delivered in the gas-phase. Two promising approaches that have undergone testing at Hanford include soil desiccation to address technetium-99 contamination and ammonia-induced sequestration of uranium. For soil desiccation, a dry gas is injected to desiccate a targeted portion of the subsurface and thereby decrease contaminant movement by removing moisture and decreasing the hydraulic conductivity of the desiccated zone. Ammonia-induced sequestration of uranium relies on changing the pore water chemistry, primarily through pH changes, to induce dissolution and precipitation processes that decrease the amount of mobile uranium in the vadose zone. (authors)

  15. Probabilistic risk analysis of groundwater remediation strategies

    NASA Astrophysics Data System (ADS)

    Bolster, D.; Barahona, M.; Dentz, M.; Fernandez-Garcia, D.; Sanchez-Vila, X.; Trinchero, P.; Valhondo, C.; Tartakovsky, D. M.

    2009-06-01

    Heterogeneity of subsurface environments and insufficient site characterization are some of the reasons why decisions about groundwater exploitation and remediation have to be made under uncertainty. A typical decision maker chooses between several alternative remediation strategies by balancing their respective costs with the probability of their success or failure. We conduct a probabilistic risk assessment (PRA) to determine the likelihood of the success of a permeable reactive barrier, one of the leading approaches to groundwater remediation. While PRA is used extensively in many engineering fields, its applications in hydrogeology are scarce. This is because rigorous PRA requires one to quantify structural and parametric uncertainties inherent in predictions of subsurface flow and transport. We demonstrate how PRA can facilitate a comprehensive uncertainty quantification for complex subsurface phenomena by identifying key transport processes contributing to a barrier's failure, each of which is amenable to uncertainty analysis. Probability of failure of a remediation strategy is computed by combining independent and conditional probabilities of failure of each process. Individual probabilities can be evaluated either analytically or numerically or, barring both, can be inferred from expert opinion.

  16. Three-Dimensional Groundwater Models of the 300 Area at the Hanford Site, Washington State

    SciTech Connect

    Williams, Mark D.; Rockhold, Mark L.; Thorne, Paul D.; Chen, Yousu

    2008-09-01

    Researchers at Pacific Northwest National Laboratory developed field-scale groundwater flow and transport simulations of the 300 Area to support the 300-FF-5 Operable Unit Phase III Feasibility Study. The 300 Area is located in the southeast portion of the U.S. Department of Energy’s Hanford Site in Washington State. Historical operations involving uranium fuel fabrication and research activities at the 300 Area have contaminated engineered liquid-waste disposal facilities, the underlying vadose zone, and the uppermost aquifer with uranium. The main objectives of this research were to develop numerical groundwater flow and transport models to help refine the site conceptual model, and to assist assessment of proposed alternative remediation technologies focused on the 300 Area uranium plume.

  17. Development of a Groundwater Transport Simulation Tool for Remedial Process Optimization

    SciTech Connect

    Ivarson, Kristine A.; Hanson, James P.; Tonkin, M.; Miller, Charles W.; Baker, S.

    2015-01-14

    The groundwater remedy for hexavalent chromium at the Hanford Site includes operation of five large pump-and-treat systems along the Columbia River. The systems at the 100-HR-3 and 100-KR-4 groundwater operable units treat a total of about 9,840 liters per minute (2,600 gallons per minute) of groundwater to remove hexavalent chromium, and cover an area of nearly 26 square kilometers (10 square miles). The pump-and-treat systems result in large scale manipulation of groundwater flow direction, velocities, and most importantly, the contaminant plumes. Tracking of the plumes and predicting needed system modifications is part of the remedial process optimization, and is a continual process with the goal of reducing costs and shortening the timeframe to achieve the cleanup goals. While most of the initial system evaluations are conducted by assessing performance (e.g., reduction in contaminant concentration in groundwater and changes in inferred plume size), changes to the well field are often recommended. To determine the placement for new wells, well realignments, and modifications to pumping rates, it is important to be able to predict resultant plume changes. In smaller systems, it may be effective to make small scale changes periodically and adjust modifications based on groundwater monitoring results. Due to the expansive nature of the remediation systems at Hanford, however, additional tools were needed to predict the plume reactions to system changes. A computer simulation tool was developed to support pumping rate recommendations for optimization of large pump-and-treat groundwater remedy systems. This tool, called the Pumping Optimization Model, or POM, is based on a 1-layer derivation of a multi-layer contaminant transport model using MODFLOW and MT3D.

  18. GROUNDWATER RADIOIODINE: PREVALENCE, BIOGEOCHEMISTRY, AND POTENTIAL REMEDIAL APPROACHES

    SciTech Connect

    Denham, M.; Kaplan, D.; Yeager, C.

    2009-09-23

    Iodine-129 ({sup 129}I) has not received as much attention in basic and applied research as other contaminants associated with DOE plumes. These other contaminants, such as uranium, plutonium, strontium, and technetium are more widespread and exist at more DOE facilities. Yet, at the Hanford Site and the Savannah River Site {sup 129}I occurs in groundwater at concentrations significantly above the primary drinking water standard and there is no accepted method for treating it, other than pump-and-treat systems. With the potential arrival of a 'Nuclear Renaissance', new nuclear power facilities will be creating additional {sup 129}I waste at a rate of 1 Ci/gigawatts energy produced. If all 22 proposed nuclear power facilities in the U.S. get approved, they will produce more {sup 129}I waste in seven years than presently exists at the two facilities containing the largest {sup 129}I inventories, ({approx}146 Ci {sup 129}I at the Hanford Site and the Savannah River Site). Hence, there is an important need to fully understand {sup 129}I behavior in the environment to clean up existing plumes and to support the expected future expansion of nuclear power production. {sup 129}I is among the key risk drivers at all DOE nuclear disposal facilities where {sup 129}I is buried, because of its long half-life (16 million years), high toxicity (90% of the body's iodine accumulates in the thyroid), high inventory, and perceived high mobility in the subsurface environment. Another important reason that {sup 129}I is a key risk driver is that there is the uncertainty regarding its biogeochemical fate and transport in the environment. We typically can define {sup 129}I mass balance and flux at sites, but can not accurately predict its response to changes in the environment. This uncertainty is in part responsible for the low drinking water standard, 1 pCi/L {sup 129}I, and the low permissible inventory limits (Ci) at the Savannah River Site, Hanford Site, and the former Yucca

  19. Groundwater remediation optimization using artificial neural networks

    SciTech Connect

    Rogers, L. L., LLNL

    1998-05-01

    One continuing point of research in optimizing groundwater quality management is reduction of computational burden which is particularly limiting in field-scale applications. Often evaluation of a single pumping strategy, i.e. one call to the groundwater flow and transport model (GFTM) may take several hours on a reasonably fast workstation. For computational flexibility and efficiency, optimal groundwater remediation design at Lawrence Livermore National Laboratory (LLNL) has relied on artificial neural networks (ANNS) trained to approximate the outcome of 2-D field-scale, finite difference/finite element GFTMs. The search itself has been directed primarily by the genetic algorithm (GA) or the simulated annealing (SA) algorithm. This approach has advantages of (1) up to a million fold increase in speed of remediation pattern assessment during the searches and sensitivity analyses for the 2-D LLNL work, (2) freedom from sequential runs of the GFTM (enables workstation farming), and (3) recycling of the knowledge base (i.e. runs of the GFTM necessary to train the ANNS). Reviewed here are the background and motivation for such work, recent applications, and continuing issues of research.

  20. Hanford Site ground-water monitoring for 1991

    SciTech Connect

    Evans, J.C.; Bryce, R.W.; Bates, D.J.

    1992-10-01

    The Pacific Northwest Laboratory (PNL) monitors the distribution of radionuclides and other hazardous materials in ground water at the Hanford Site for the US Department of Energy (DOE). This work is performed through the Ground-Water Surveillance Project and is designed to meet the requirements of DOE Order 5400.1 that apply to environmental surveillance and ground-water monitoring (DOE 1988). This annual report discusses results of ground-water monitoring at the Hanford Site during 1991. In addition to the general discussion, the following topics are discussed in detail: (1) carbon tetrachloride in the 200-West Area; (2) cyanide in and north of the 200-East and the 200-West areas; (3) hexavalent chromium contamination in the 100, 200, and 600 areas; (4) trichloroethylene in the vicinity of the Solid Waste Landfill, 100-F Area, and 300 Area; (5) nitrate across the Site; (6) tritium across the Site; and (7) other radionuclide contamination throughout the Site, including gross alpha, gross beta, cobalt-60, strontium-90, technetium-99, iodine-129, cesium-137, uranium, and plutonium.

  1. Hanford Site ground-water monitoring for 1991

    SciTech Connect

    Evans, J.C.; Bryce, R.W.; Bates, D.J.

    1992-10-01

    The Pacific Northwest Laboratory (PNL) monitors the distribution of radionuclides and other hazardous materials in ground water at the Hanford Site for the US Department of Energy (DOE). This work is performed through the Ground-Water Surveillance Project and is designed to meet the requirements of DOE Order 5400.1 that apply to environmental surveillance and ground-water monitoring (DOE 1988). This annual report discusses results of ground-water monitoring at the Hanford Site during 1991. In addition to the general discussion, the following topics are discussed in detail: (1) carbon tetrachloride in the 200-West Area; (2) cyanide in and north of the 200-East and the 200-West areas; (3) hexavalent chromium contamination in the 100, 200, and 600 areas; (4) trichloroethylene in the vicinity of the Solid Waste Landfill, 100-F Area, and 300 Area; (5) nitrate across the Site; (6) tritium across the Site; and (7) other radionuclide contamination throughout the Site, including gross alpha, gross beta, cobalt-60, strontium-90, technetium-99, iodine-129, cesium-137, uranium, and plutonium.

  2. AUTOMATING GROUNDWATER SAMPLING AT HANFORD THE NEXT STEP

    SciTech Connect

    CONNELL CW; CONLEY SF; HILDEBRAND RD; CUNNINGHAM DE; R_D_Doug_Hildebrand@rl.gov; DeVon_E_Cunningham@rl.gov

    2010-01-21

    Historically, the groundwater monitoring activities at the Department of Energy's Hanford Site in southeastern Washington State have been very "people intensive." Approximately 1500 wells are sampled each year by field personnel or "samplers." These individuals have been issued pre-printed forms showing information about the well(s) for a particular sampling evolution. This information is taken from 2 official electronic databases: the Hanford Well information System (HWIS) and the Hanford Environmental Information System (HEIS). The samplers used these hardcopy forms to document the groundwater samples and well water-levels. After recording the entries in the field, the samplers turned the forms in at the end of the day and other personnel posted the collected information onto a spreadsheet that was then printed and included in a log book. The log book was then used to make manual entries of the new information into the software application(s) for the HEIS and HWIS databases. A pilot project for automating this extremely tedious process was lauched in 2008. Initially, the automation was focused on water-level measurements. Now, the effort is being extended to automate the meta-data associated with collecting groundwater samples. The project allowed electronic forms produced in the field by samplers to be used in a work flow process where the data is transferred to the database and electronic form is filed in managed records - thus eliminating manually completed forms. Elimating the manual forms and streamlining the data entry not only improved the accuracy of the information recorded, but also enhanced the efficiency and sampling capacity of field office personnel.

  3. MANAGING ENGINEERING ACTIVITIES FOR THE PLATEAU REMEDIATION CONTRACT - HANFORD

    SciTech Connect

    KRONVALL CM

    2011-01-14

    In 2008, the primary Hanford clean-up contract transitioned to the CH2MHill Plateau Remediation Company (CHPRC). Prior to transition, Engineering resources assigned to remediation/Decontamination and Decommissioning (D&D) activities were a part of a centralized engineering organization and matrixed to the performing projects. Following transition, these resources were reassigned directly to the performing project, with a loose matrix through a smaller Central Engineering (CE) organization. The smaller (10 FTE) central organization has retained responsibility for the overall technical quality of engineering for the CHPRC, but no longer performs staffing and personnel functions. As the organization has matured, there are lessons learned that can be shared with other organizations going through or contemplating performing a similar change. Benefits that have been seen from the CHPRC CE organization structure include the following: (1) Staff are closely aligned with the 'Project/facility' that they are assigned to support; (2) Engineering priorities are managed to be consistent with the 'Project/facility' priorities; (3) Individual Engineering managers are accountable for identifying staffing needs and the filling of staffing positions; (4) Budget priorities are managed within the local organization structure; (5) Rather than being considered a 'functional' organization, engineering is considered a part of a line, direct funded organization; (6) The central engineering organization is able to provide 'overview' activities and maintain independence from the engineering organizations in the field; and (7) The central engineering organization is able to maintain a stable of specialized experts that are able to provide independent reviews of field projects and day-to-day activities.

  4. Efficiencies and Optimization of Weak Base Anion Ion-Exchange Resin for Groundwater Hexavalent Chromium Removal at Hanford

    SciTech Connect

    Nesham, Dean O.; Ivarson, Kristine A.; Hanson, James P.; Miller, Charles W.; Meyers, P.; Jaschke, Naomi M.

    2014-02-03

    The U.S. Department of Energy’s (DOE’s) contractor, CH2M HILL Plateau Remediation Company, has successfully converted a series of groundwater treatment facilities to use a new treatment resin that is delivering more than $3 million in annual cost savings and efficiency in treating groundwater contamination at the DOE Hanford Site in southeastern Washington State. During the production era, the nuclear reactors at the Hanford Site required a continuous supply of high-quality cooling water during operations. Cooling water consumption ranged from about 151,417 to 378,541 L/min (40,000 to 100,000 gal/min) per reactor, depending on specific operating conditions. Water from the Columbia River was filtered and treated chemically prior to use as cooling water, including the addition of sodium dichromate as a corrosion inhibitor. Hexavalent chromium was the primary component of the sodium dichromate and was introduced into the groundwater at the Hanford Site as a result of planned and unplanned discharges from the reactors starting in 1944. Groundwater contamination by hexavalent chromium and other contaminants related to nuclear reactor operations resulted in the need for groundwater remedial actions within the Hanford Site reactor areas. Beginning in 1995, groundwater treatment methods were evaluated, leading to the use of pump-and-treat facilities with ion exchange using Dowex™ 21K, a regenerable, strong-base anion exchange resin. This required regeneration of the resin, which was performed offsite. In 2008, DOE recognized that regulatory agreements would require significant expansion for the groundwater chromium treatment capacity. As a result, CH2M HILL performed testing at the Hanford Site in 2009 and 2010 to demonstrate resin performance in the specific groundwater chemistry at different waste sites. The testing demonstrated that a weak-base anion, single-use resin, specifically ResinTech SIR-700 ®, was effective at removing chromium, had a significantly

  5. Hanford Site groundwater monitoring for Fiscal Year 1997

    SciTech Connect

    Hartman, M.J.; Dresel, P.E.

    1998-02-01

    This report presents the results of groundwater and vadose-zone monitoring for fiscal year (FY) 1997 on the Hanford Site, Washington. Soil-vapor extraction continued in the 200-West Area to remove carbon tetrachloride from the vadose zone. Characterization and monitoring of the vadose zone comprised primarily spectral gamma logging, soil-vapor monitoring, and analysis and characterization of sediments sampled below a vadose-zone monitoring well. Source-term analyses for strontium-90 in 100-N Area vadose-zone sediments were performed using recent groundwater-monitoring data and knowledge of strontium`s ion-exchange properties. Water-level monitoring was performed to evaluate groundwater-flow directions, to track changes in water levels, and to relate such changes to evolving disposal practices. Water levels over most of the Hanford Site continued to decline between June 1996 and June 1997. Water levels near the Columbia River increased during this period because the river stage was unusually high. Groundwater chemistry was monitored to track the extent of contamination, to note trends, and to identify emerging groundwater-quality problems. The most widespread radiological contaminant plumes were tritium and iodine-129. Concentrations of technetium-99, uranium, strontium-90, and carbon-14 also exceeded drinking water standards in smaller plumes. Plutonium and cesium-137 exceeded standards only near the 216-B-5 injection well. Derived concentration guide levels specified in U.S. Department of Energy Order 5400.5 were exceeded for tritium, uranium, strontium-90, and plutonium in small plumes or single wells. Nitrate is the most extensive chemical contaminant. Carbon tetrachloride, chloroform, chromium, cis-1,2-dichloroethylene, fluoride, and trichloroethylene also were present in smaller areas at levels above their maximum contaminant levels. Cyanide concentrations were elevated in one area but were below the maximum contaminant level.

  6. The Hanford Site Tank Waste Remediation System: An update

    SciTech Connect

    Alumkal, W.T.; Babad, H.; Harmon, H.D.; Wodrich, D.D.

    1994-01-27

    The U.S. Department of Energy`s Hanford Site, located in southeastern Washington State, has the most diverse and largest amount of highly radioactive waste in the United States. High-level radioactive waste has been stored in large underground tanks since 1944. Approximately 230,000 m{sup 3} (61 Mgal) of caustic liquids, slurries, saltcakes, and sludges have {sup 137}Cs accumulated in 177 tanks. In addition, significant amounts of {sup 90}Sr and were removed from the tank waste, converted to salts, doubly encapsulated in metal containers., and stored in water basins. A Tank Waste Remediation System Program was established by the U.S. Department of Energy in 1991 to safely manage and immobilize these wastes in anticipation of permanent disposal of the high-level waste fraction in a geologic repository. Since 1991, progress has been made resolving waste tank safety issues, upgrading Tank Farm facilities and operations, and developing a new strategy for retrieving, treating, and immobilizing the waste for disposal.

  7. Fiscal Year 2005 Integrated Monitoring Plan for the Hanford Groundwater Performance Assessment Project

    SciTech Connect

    Rieger, JoAnne T.; Hartman, Mary J.

    2005-06-16

    Groundwater is monitored in hundreds of wells at the Hanford Site to fulfill a variety of requirements. Separate monitoring plans are prepared for various purposes, but sampling is coordinated and data are shared among users. DOE manages these activities through the Hanford Groundwater Performance Assessment Project, which is the responsibility of Pacific Northwest National Laboratory. The groundwater project integrates monitoring for various objectives into a single sampling schedule to avoid redundancy of effort and to improve efficiency of sample collection.This report documents the purposes and objectives of groundwater monitoring at the DOE Hanford Site in southeastern Washington State.

  8. Hanford Site Tank Waste Remediation System. Waste management 1993 symposium papers and viewgraphs

    SciTech Connect

    Not Available

    1993-05-01

    The US Department of Energy`s (DOE) Hanford Site in southeastern Washington State has the most diverse and largest amount of highly radioactive waste of any site in the US. High-level radioactive waste has been stored in large underground tanks since 1944. A Tank Waste Remediation System Program has been established within the DOE to safely manage and immobilize these wastes in anticipation of permanent disposal in a geologic repository. The Hanford Site Tank Waste Remediation System Waste Management 1993 Symposium Papers and Viewgraphs covered the following topics: Hanford Site Tank Waste Remediation System Overview; Tank Waste Retrieval Issues and Options for their Resolution; Tank Waste Pretreatment - Issues, Alternatives and Strategies for Resolution; Low-Level Waste Disposal - Grout Issue and Alternative Waste Form Technology; A Strategy for Resolving High-Priority Hanford Site Radioactive Waste Storage Tank Safety Issues; Tank Waste Chemistry - A New Understanding of Waste Aging; Recent Results from Characterization of Ferrocyanide Wastes at the Hanford Site; Resolving the Safety Issue for Radioactive Waste Tanks with High Organic Content; Technology to Support Hanford Site Tank Waste Remediation System Objectives.

  9. Optimized remedial groundwater extraction using linear programming

    SciTech Connect

    Quinn, J.J.

    1995-12-31

    Groundwater extraction systems are typically installed to remediate contaminant plumes or prevent further spread of contamination. These systems are expensive to install and maintain. A traditional approach to designing such a wellfield uses a series of trial-and-error simulations to test the effects of various well locations and pump rates. However, the optimal locations and pump rates of extraction wells are difficult to determine when objectives related to the site hydrogeology and potential pumping scheme are considered. This paper describes a case study of an application of linear programming theory to determine optimal well placement and pump rates. The objectives of the pumping scheme were to contain contaminant migration and reduce contaminant concentrations while minimizing the total amount of water pumped and treated. Past site activities at the area under study included disposal of contaminants in pits. Several groundwater plumes have been identified, and others may be present. The area of concern is bordered on three sides by a wetland, which receives a portion of its input budget as groundwater discharge from the pits. Optimization of the containment pumping scheme was intended to meet three goals: (1) prevent discharge of contaminated groundwater to the wetland, (2) minimize the total water pumped and treated (cost benefit), and (3) avoid dewatering of the wetland (cost and ecological benefits). Possible well locations were placed at known source areas. To constrain the problem, the optimization program was instructed to prevent any flow toward the wetland along a user-specified border. In this manner, the optimization routine selects well locations and pump rates so that a groundwater divide is produced along this boundary.

  10. Fluoride in groundwater: toxicological exposure and remedies.

    PubMed

    Jha, S K; Singh, R K; Damodaran, T; Mishra, V K; Sharma, D K; Rai, Deepak

    2013-01-01

    Fluoride is a chemical element that is found most frequently in groundwater and has become one of the most important toxicological environmental hazards globally. The occurrence of fluoride in groundwater is due to weathering and leaching of fluoride-bearing minerals from rocks and sediments. Fluoride when ingested in small quantities (<0.5 mg/L) is beneficial in promoting dental health by reducing dental caries, whereas higher concentrations (>1.5 mg/L) may cause fluorosis. It is estimated that about 200 million people, from among 25 nations the world over, may suffer from fluorosis and the causes have been ascribed to fluoride contamination in groundwater including India. High fluoride occurrence in groundwaters is expected from sodium bicarbonate-type water, which is calcium deficient. The alkalinity of water also helps in mobilizing fluoride from fluorite (CaF2). Fluoride exposure in humans is related to (1) fluoride concentration in drinking water, (2) duration of consumption, and (3) climate of the area. In hotter climates where water consumption is greater, exposure doses of fluoride need to be modified based on mean fluoride intake. Various cost-effective and simple procedures for water defluoridation techniques are already known, but the benefits of such techniques have not reached the rural affected population due to limitations. Therefore, there is a need to develop workable strategies to provide fluoride-safe drinking water to rural communities. The study investigated the geochemistry and occurrence of fluoride and its contamination in groundwater, human exposure, various adverse health effects, and possible remedial measures from fluoride toxicity effects.

  11. Transient Inverse Calibration of Hanford Site-Wide Groundwater Model to Hanford Operational Impacts - 1943 to 1996

    SciTech Connect

    Cole, Charles R.; Bergeron, Marcel P.; Wurstner, Signe K.; Thorne, Paul D.; Orr, Samuel; Mckinley, Mathew I.

    2001-05-31

    This report describes a new initiative to strengthen the technical defensibility of predictions made with the Hanford site-wide groundwater flow and transport model. The focus is on characterizing major uncertainties in the current model. PNNL will develop and implement a calibration approach and methodology that can be used to evaluate alternative conceptual models of the Hanford aquifer system. The calibration process will involve a three-dimensional transient inverse calibration of each numerical model to historical observations of hydraulic and water quality impacts to the unconfined aquifer system from Hanford operations since the mid-1940s.

  12. Iodine-129 and Iodine-127 speciation in groundwater at the Hanford Site, U.S.: iodate incorporation into calcite

    SciTech Connect

    Zhang, Saijin; Xu, Chen; Creeley, Danielle; Ho, Yi-Fang; Li, Hsiu-Ping; Grandbois, Russell; Schwehr, Kathy; Kaplan, Daniel I.; Yeager, Chris; Wellman, Dawn M.; Santschi, Peter H.

    2013-09-03

    The Hanford Site, the most contaminated nuclear site in the United States, has large radioactive waste plumes containing high 129I levels. The geochemical transport and fate of radioiodine depends largely on its chemical speciation that is greatly affected by environmental factors. This study reports, for the first time, the speciation of stable and radioactive iodine in the groundwater from the Hanford Site. Iodate was the dominant species and accounts for up to 84%, followed by organo-iodine and minimal levels of iodide. The relatively high pH and oxidizing environment may have prevented iodate reduction. Our results identified that calcite precipitation caused by degassing of CO2 during deep groundwater sampling incorporated between 7 to 40% of dissolved iodine (including 127I and 129I) that was originally in the groundwater, transforming dissolved to particulate iodate during sampling. In order to understand the mechanisms underlying iodine incorporation by calcite, laboratory experiments were carried out to replicate this iodine sequestering processes. Two methods were utilized in this study, 1) addition of sodium carbonate; 2) addition of calcium chloride followed by sodium carbonate where the pH was well controlled at ~8.2, which is close to the average pH of Hanford Site groundwater. It was demonstrated that iodate was the main species incorporated into calcite and this incorporation process could be impeded by elevated pH and decreasing ionic strength in groundwater. This study provides critical information for predicting the long-term fate and transport of 129I at the Hanford Site and reveals a potential means for improved remediation strategies of 129I.

  13. Feasibility of supercritical CO{sub 2} extraction as a remediation technology for Hanford contaminated soils

    SciTech Connect

    Moody, T.E.; Krukonis, V.J.

    1994-12-31

    A technology used by the petroleum industry for separation and purification and the coffee industry for caffeine removal is being used by a Hanford scientist with the prospect of remediating organic contaminated Hanford soil. The process is known as Supercritical Fluid Extraction or SFE. Dr. Timothy Moody of the Westinghouse Hanford Company and the Phasex Corporation of Lawrence, Mass., have conducted successful bench-scale experiments at the 50g, 500g, and 5kg levels showing that SFE can remove various chemicals from large volumes of contaminated soil. The results indicate that organic contaminant removal from soil is much more efficient than the current industrial uses of SFE.

  14. Cost benefit of caustic recycle for tank waste remediation at the Hanford and Savannah River Sites

    SciTech Connect

    DeMuth, S.; Kurath, D.

    1998-07-30

    The potential cost savings due to the use of caustic recycle used in conjunction with remediation of radioactive underground storage tank waste, is shown in a figure for the Hanford and Savannah River sites. Two cost savings estimates for each case have been made for Hanford, and one cost savings estimate for each case have been made for Hanford, and one cost savings estimate for each case has been made for the Savannah River site. This is due to the Hanford site remediation effort being less mature than that of Savannah River; and consequently, a range of cost savings being more appropriate for Hanford. This range of cost savings (rather than a ingle value) for each case at Hanford is due to cost uncertainties related to the LAW immobilization operation. Caustic recycle Case-1 has been defined as the sodium required to meet al identified caustic needs for the entire Site. Case-2 has been defined as the maximum sodium which can be separated from the low activity waste without precipitation of Al(OH){sub 3}. It has been determined that the potential cost savings at Hanford ranges from $194 M to $215 M for Case-1, and $293 M to $324 M for Case-2. The potential cost savings at Savannah River are $186 M for Case-1 and $281 M for Case-2. A discussion of the uncertainty associated with these cost savings estimates can be found in the Discussion and Conclusions section.

  15. Assessment of Carbon Tetrachloride Groundwater Transport in Support of the Hanford Carbon Tetrachloride Innovative Technology Demonstration Program

    SciTech Connect

    Truex, Michael J.; Murray, Christopher J.; Cole, Charles R.; Cameron, Richard J.; Johnson, Michael D.; Skeen, Rodney S.; Johnson, Christian D.

    2001-07-13

    Groundwater modeling was performed in support of the Hanford Carbon Tetrachloride Innovative Treatment Remediation Demonstration (ITRD) Program. The ITRD program is facilitated by Sandia National Laboratory for the Department of Energy Office of Science and Technology. This report was prepared to document the results of the modeling effort and facilitate discussion of characterization and remediation options for the carbon tetrachloride plume among the ITRD participants. As a first step toward implementation of innovative technologies for remediation of the carbon tetrachloride (CT) plume underlying the 200-West Area, this modeling was performed to provide an indication of the potential impact of the CT source on the compliance boundary approximately 5000 m distant. The primary results of the modeling bracket the amount of CT source that will most likely result in compliance/non-compliance at the boundary and the relative influence of the various modeling parameters.

  16. Data Summary Report for teh Remedial Investigation of Hanford Site Releases to the Columbia River, Hanford Site, Washington

    SciTech Connect

    Hulstrom, L.

    2011-02-07

    This data summary report summarizes the investigation results to evaluate the nature and distribution of Hanford Site-related contaminants present in the Columbia River. As detailed in DOE/RL-2008-11, more than 2,000 environmental samples were collected from the Columbia River between 2008 and 2010. These samples consisted of island soil, sediment, surface water, groundwater upwelling (pore water, surface water, and sediment), and fish tissue.

  17. Sulfate Reduction in Groundwater: Characterization and Applications for Remediation

    SciTech Connect

    Miao, Z.; Brusseau, M. L.; Carroll, Kenneth C.; Carreon-Diazconti, C.; Johnson, B.

    2012-06-01

    Sulfate is ubiquitous in groundwater, with both natural and anthropogenic sources. Sulfate reduction reactions play a significant role in mediating redox conditions and biogeochemical processes for subsurface systems. They also serve as the basis for innovative in-situ methods for groundwater remediation. An overview of sulfate reduction in subsurface environments is provided, with a specific focus on implications for groundwater remediation. A case study presenting the results of a pilot-scale ethanol injection test illustrates the advantages and difficulties associated with the use of electron-donor amendments for sulfate remediation.

  18. Field Summary Report for Remedial Investigation of Hanford Site Releases to the Columbia River, Hanford Site, Washington, Collection of Surface Water, River Sediments, and Island Soils

    SciTech Connect

    L. C. Hulstrom

    2009-09-28

    This report has been prepared in support of the remedial investigation of Hanford Site Releases to the Columbia River and describes the 2008/2009 data collection efforts. This report documents field activities associated with collection of sediment, river water, and soil in and adjacent to the Columbia River near the Hanford Site and in nearby tributaries.

  19. Potential for Ureolytically Driven Calcite Precipitation to Remediate Strontium-90 at the Hanford 100-N Area

    NASA Astrophysics Data System (ADS)

    Fujita, Y.; Taylor, J. L.; Wendt, L.; Reed, D.; Smith, R. W.

    2009-12-01

    A groundwater plume of Strontium-90 at the 100-N Springs Area of the U. S. Department of Energy’s Hanford Reservation in Washington is discharging into the Columbia River. Previous pump and treat activities to remove the 90Sr were ineffective and consequently discontinued; immobilization of the contaminant in situ is preferable, but no proven methods to accomplish this objective currently exist. This study was a preliminary assessment of the feasibility at the 100-N Area of a novel in situ remediation approach for 90Sr, where microbial urea hydrolysis is used to drive the precipitation of calcite and the co-precipitation of strontium in the calcite. Water quality data from the 100-N site indicated that geochemical conditions at the site were conducive to stable calcite precipitation, and groundwater and sediment samples from the site were examined to assess the urea hydrolyzing capabilities of the native microbial populations. Estimated average numbers of ureolytic organisms in the groundwater, determined using cultivation-based tests (Most Probable Number) for urease activity, ranged from 72 to 1,100 cells mL-1. Estimated numbers of ureC gene targets in the water samples, as determined by quantitative polymerase chain reaction (qPCR) assays, ranged from 850 to 17,600 copies mL-1; the ureC gene codes for the catalytic subunit of urease. In the sediment samples, ureC gene targets ranged from non-detectable to 925,000 copies g-1 of sediment. For both water and sediment, the number of ureolytic cells (estimated by qPCR) generally amounted to < 5% of the total microbial cell numbers. Nevertheless, estimates of in situ ureolysis rates using trace levels of 14C-labeled urea added to the groundwater and sediment samples in the laboratory indicate that significant urea hydrolyzing activity exists in the 100-N subsurface. Normalizing the measured urea hydrolysis rates to 1 L of in situ pore space resulted in hydrolysis rates on the order of 9.5 nmol L-1 hr-1 and 170 to 2

  20. EFFECT OF GROUND-WATER REMEDIATION ACTIVITIES ON INDIGENOUS MICROFLORA

    EPA Science Inventory

    The United States Environmental Protection Agency (EPA), working with the Interagency DNAPL Consortium, completed an independent evaluation of microbial responses to ground-water remediation technology demonstrations at Launch Pad 34 at Cape Canaveral Air Station in Brevard Count...

  1. EFFECT OF GROUND-WATER REMEDIATION ACTIVITIES ON INDIGENOUS MICROFLORA

    EPA Science Inventory

    The United States Environmental Protection Agency (EPA), working with the Interagency DNAPL Consortium, completed an independent evaluation of microbial responses to ground-water remediation technology demonstrations at Launch Pad 34 at Cape Canaveral Air Station in Brevard Count...

  2. Research and development support of the Hanford site tank waste remediation system

    SciTech Connect

    Johnson, B.M.; Wodrich, D.D.

    1992-08-01

    The research and development of new technology in support of the tank waste remediation system (TWRS) program at Hanford is largely driven by the unique situation with the Hanford radioactive tank wastes. The operational history at Hanford has involved three different major processes and several major campaigns to recover fission products from the wastes, and has not maintained a segregation of the high-level wastes. The result is a very diverse inventory with very high content of solids of many different chemical constituents and great complexity. The R & D program must not only assure that an acceptable strategy for remediation of these wastes can be put in place, it must also define ways of improving the cost effectiveness of the strategy to make the mammoth task more tractable.

  3. Least-Cost Groundwater Remediation Design Using Uncertain Hydrogeological Information

    SciTech Connect

    Pinder, George F.

    1999-06-01

    The research conducted by at the Research Center for Groundwater Remediation Design at the University of Vermont funded by the Department of Energy continues to focus on the implementation of a new method of including uncertainty into the optimal design of groundwater remediation systems. The uncertain parameter is the hydraulic conductivity of an aquifer. The optimization method utilized for this project is called robust optimization. The uncertainty of the hydraulic conductivity is described by a probability density function, PDF.

  4. Integrated technologies for expedited soil and groundwater remediation

    SciTech Connect

    Lewis, R.; Wellman, D.

    1996-12-01

    A fast-track and economic approach was necessary to meet the needs of a property transfer agreement and to minimize impact to future usage of a site in the Los Angeles Basin. Woodward-Clyde responded by implementing site investigation, remedial action plan preparation for soil and groundwater, and selection and installation of remedial alternatives in an aggressive schedule of overlapped tasks. Assessment of soil and groundwater was conducted at the site, followed by design and construction of remediation systems. This phase of activity was completed within 2 years. Soil and groundwater were found to be impacted by chlorinated solvents and petroleum hydrocarbons. A vapor extraction system (2,000 scfm capacity) was installed for soil remediation, and an innovative air sparging system was installed for cost effective groundwater cleanup. A bioventing system was also applied in selected areas. The vapor extraction wellfield consists of 26 extraction and monitoring well points, with multiple screened casings. The air sparging wellfield consists of 32 sparging wells with a designed maximum flow of 400 scfm. The systems began operation in 1993, and have resulted in the estimated removal of approximately 30,000 pounds of contaminants, or about 90% of the estimated mass in place. The combined vapor extraction/air sparging system is expected to reduce the time for on-site groundwater remediation from 1/3 to 1/6 the time when compared to the conventional pump and treat method for groundwater remediation.

  5. Characterization Modeling and Remediation Method Selection to Support Remedial Design Solution Development for the Hanford 618-10 and 618-11 Burial Grounds

    SciTech Connect

    Nolan, L.M.; Winters, J.N.; Little, N.C.; Parnell, S.E.

    2007-07-01

    Washington Closure Hanford, LLC, under contract to the U.S. Department of Energy (DOE), Richland Operations Office, is currently conducting deactivation, decontamination, decommissioning, and demolition of excess facilities; placing former production reactors in an interim, safe, and stable condition; and remediating waste sites and burial grounds in support of the closure of the Hanford Site River Corridor. The Hanford Site River Corridor consists of approximately 565 square kilometers (218 square miles) of the Hanford Site along the Columbia River, in the State of Washington. The regulatory framework to achieve the Hanford Site remediation is established in the Hanford Federal Facility Agreement and Consent Order, commonly known as the Tri-Party Agreement, entered into by the DOE, U.S. Environmental Protection Agency Region 10 (EPA), and the Washington State Department of Ecology. This paper describes the significant challenges associated with the planned remediation of the Hanford 618-10 and 618-11 Burial Grounds. It discusses the process used to identify remediation options, and the process and analysis used to determine the preferred remediation methods that will be included in the Project's design solution document. Additionally, this paper discusses the preferred retrieval methods and how they allow flexibility for change in remediation approach and disposal based on conditions encountered in the field and as waste characterization understanding increases during field characterization, pre-retrieval, and retrieval activities. Finally, this paper discusses the challenges in development of a characterization model, given that little or no records were available to start the project. (authors)

  6. ABIOTIC IN SITU TECHNOLOGIES FOR GROUNDWATER REMEDIATION CONFERENCE: PROCEEDINGS

    EPA Science Inventory

    The USEPA conference on Abiotic In Situ Technologies for Groundwater Remediation was held in Dallas, TX, 8/31-9/2/99. The goal of the meeting was to disseminate current information on abiotic in situ groundwater treatment echnologies. Although much information is being provided a...

  7. In-situ remediation system for groundwater and soils

    DOEpatents

    Corey, J.C.; Kaback, D.S.; Looney, B.B.

    1991-01-01

    The present invention relates to a system for in-situ remediation of contaminated groundwater and soil. In particular the present invention relates to stabilizing toxic metals in groundwater and soil. The United States Government has rights in this invention pursuant to Contract No. DE-AC09-89SR18035 between the US Department of Energy and Westinghouse Savannah River Company.

  8. ABIOTIC IN SITU TECHNOLOGIES FOR GROUNDWATER REMEDIATION CONFERENCE: PROCEEDINGS

    EPA Science Inventory

    The USEPA conference on Abiotic In Situ Technologies for Groundwater Remediation was held in Dallas, TX, 8/31-9/2/99. The goal of the meeting was to disseminate current information on abiotic in situ groundwater treatment echnologies. Although much information is being provided a...

  9. EVALUATION OF GROUNDWATER EXTRACTION REMEDIES - VOLUME I. Summary Report

    EPA Science Inventory

    Ground-water extraction is the most commonly used remedial technology for contaminated aquifers. In this investigation, information is assembled from hazardous waste sites throughout the United States showing how ground-water extraction systems are being used, how their performa...

  10. Sulfate reduction in groundwater: characterization and applications for remediation.

    PubMed

    Miao, Z; Brusseau, M L; Carroll, K C; Carreón-Diazconti, C; Johnson, B

    2012-08-01

    Sulfate is ubiquitous in groundwater, with both natural and anthropogenic sources. Sulfate reduction reactions play a significant role in mediating redox conditions and biogeochemical processes for subsurface systems. They also serve as the basis for innovative in situ methods for groundwater remediation. An overview of sulfate reduction in subsurface environments is provided, along with a brief discussion of characterization methods and applications for addressing acid mine drainage. We then focus on two innovative, in situ methods for remediating sulfate-contaminated groundwater, the use of zero-valent iron and the addition of electron-donor substrates. The advantages and limitations associated with the methods are discussed, with examples of prior applications.

  11. Remedial investigation/feasibility study work plan for the 100-KR-4 operable unit, Hanford Site, Richland, Washington

    SciTech Connect

    Not Available

    1992-09-01

    Four areas of the Hanford Site (the 100, 200, 300, and 1100 Areas) have been included on the US Environmental Protection Agency`s (EPA`s) National Priorities List (NPL) under the Comprehensive Environmental Response, Compensation, and Liability Act of 1980 (CERCLA). This work plan and the attached supporting project plans establish the operable unit setting and the objectives, procedures, tasks, and schedule for conducting the CERCLA remedial investigation/feasibility study (RI/FS) for the 100-KR-4 operable unit. The 100-K Area consists of the 100-KR-4 groundwater operable unit and three source operable units. The 100-KR-4 operable unit includes all contamination found in the aquifer soils and water beneath the 100-K Area. Source operable units include facilities and unplanned release sites that are potential sources of contamination.

  12. Zone of Interaction Between Hanford Site Groundwater and Adjacent Columbia River

    SciTech Connect

    Peterson, Robert E.; Connelly, Michael P.

    2001-10-23

    This report describes the FY 2000 results of a Science and Technology investigation of the groundwater/river interface at the Hanford Site. The investigation focused on (1) a 2-D simulation of water flowpaths beneath the shoreline region under the influence of a transient river stage, and (2) mixing between groundwater and river water.

  13. SOURCE TERM REMEDIATION & DEMOLITION STRATEGY FOR THE HANFORD K-AREA SPENT FUEL BASINS

    SciTech Connect

    CHRONISTER, G.B.

    2006-03-23

    This paper discusses the technologies applied at Hanford's K-Basins to mitigate risk and reduce the source term in preparing the basins for deactivation and demolition. These project technologies/strategies (in various stages of implementation) are sequential in nature and are the basis for preparing to dispose of the K Basins--two highly contaminated concrete basins at the Hanford Site in southeastern Washington State. A large collection of spent nuclear fuel stored for many years underwater at the K Basins has been removed to stable, dry, safe storage. Remediation activities are underway to prepare the basin structures for de-inventory, decontamination, and disposal.

  14. Nodal failure index approach to groundwater remediation design

    USGS Publications Warehouse

    Lee, J.; Reeves, H.W.; Dowding, C.H.

    2008-01-01

    Computer simulations often are used to design and to optimize groundwater remediation systems. We present a new computationally efficient approach that calculates the reliability of remedial design at every location in a model domain with a single simulation. The estimated reliability and other model information are used to select a best remedial option for given site conditions, conceptual model, and available data. To evaluate design performance, we introduce the nodal failure index (NFI) to determine the number of nodal locations at which the probability of success is below the design requirement. The strength of the NFI approach is that selected areas of interest can be specified for analysis and the best remedial design determined for this target region. An example application of the NFI approach using a hypothetical model shows how the spatial distribution of reliability can be used for a decision support system in groundwater remediation design. ?? 2008 ASCE.

  15. Application of ozone micro-nano-bubbles to groundwater remediation.

    PubMed

    Hu, Liming; Xia, Zhiran

    2017-08-18

    Ozone is widely used for water treatment because of its strong oxidation ability. However, the efficiency of ozone in groundwater remediation is limited because of its relatively low solubility and rapid decomposition in the aqueous phase. Methods for increasing the stability of ozone within the subsurface are drawing increasing attention. Micro-nano-bubbles (MNBs), with diameters ranging from tens of nanometres to tens of micrometres, present rapid mass transfer rates, persist for a relatively long time in water, and transport with groundwater flow, which significantly improve gas concentration and provide a continuous gas supply. Therefore, MNBs show a considerable potential for application in groundwater remediation. In this study, the characteristics of ozone MNBs were examined, including their size distribution, bubble quantity, and zeta potential. The mass transfer rate of ozone MNBs was experimentally investigated. Ozone MNBs were then used to treat organics-contaminated water, and they showed remarkable cleanup efficiency. Column tests were also conducted to study the efficiency of ozone MNBs for organics-contaminated groundwater remediation. Based on the laboratory tests, field monitoring was conducted on a trichloroethylene (TCE)-contaminated site. The results showed that ozone MNBs can greatly improve remediation efficiency and represent an innovative technology for in situ remediation of organics-contaminated groundwater. Copyright © 2017 The Author(s). Published by Elsevier B.V. All rights reserved.

  16. Using trees to remediate groundwaters contaminated with chlorinated hydrocarbons. 1998 annual progress report

    SciTech Connect

    Strand, S.E.; Gordon, M.P.

    1998-06-01

    'Industrial practices in the past have resulted in contamination of groundwater with chlorinated hydrocarbons (CHCs) at many DOE sites, such as Hanford and Savannah River. Such contamination is a major problem because existing groundwater remediation technologies are expensive and difficult. An inexpensive method for groundwater remediation is greatly needed. Trees could be used to remediate CHC polluted groundwater at minimal cost (phytoremediation). Before phytoremediation can be extensively applied, the authors must determine the range of compounds that are attacked, the effects of metabolic products on the plants and the environment, and the effect of transpiration and concentration of CHC on uptake and metabolism. They will test the ability of hybrid poplar to take up and transform the chlorinated methanes, ethanes and ethylenes. The rate of uptake and transformation by poplar of TCE as a function of concentration in the soil, transpiration rate and illumination level will be determined. Methods will be developed to permit rapid testing of plants from contaminated sites for species able to oxidize and sequester chlorinated compounds. They will identify the nature of the bound residues of TCE metabolism in poplar. They will identify the mechanisms involved in CHC oxidation in poplar and use genetic manipulations to enhance that activity. They will introduce the genes for mammalian cytochrome P-450-IIE1, known to oxidize light CHCs such as TCE to attempt to increase the CHC metabolism capacity of poplar. The results of this research will place phytoremediation of CHCs on a firm scientific footing, allowing a rational assessment of its application to groundwater contamination. This report summarizes the results of the first 1.5 years of work on a three-year project.'

  17. Phyto remediation groundwater trends at the DOE portsmouth gaseous

    SciTech Connect

    Lewis, A.C.; Baird, D.R.

    2007-07-01

    This paper describes the progress of a phyto-remediation action being performed at the Department of Energy (DOE) Portsmouth Gaseous Diffusion Plant (PORTS) X-740 Waste Oil Handling Facility to remediate contaminated groundwater under a Resource Conservation and Recovery Act (RCRA) closure action. This action was effected by an Ohio Environmental Protection Agency (OEPA) decision to use phyto-remediation as the preferred remedy for the X-740 groundwater contamination. This remedy was recognized as a cost-effective, low-maintenance, and promising method to remediate groundwater contaminated with volatile organic compounds (VOCs), primarily trichloroethylene (TCE). During 1999, prior to the tree installation at the X-740 Phyto-remediation Area, water level measurements in the area were collected from 10 monitoring wells completed in the Gallia Formation. The Gallia is the uppermost water-bearing zone and contains most of the groundwater contamination at PORTS. During the tree installation which took place during the summer of 1999, four new Gallia monitoring wells were installed at the X-740 Area in addition to the 10 Gallia wells which had been installed in the same area during the early 1990's. Manual water level measurements were collected quarterly from these 14 Gallia monitoring wells between 1998 and 2001. These manual water level measurements were collected to monitor the combined impact of the trees on the groundwater prior to root development. Beginning in 2001, water level measurements were collected monthly during the growing season (April-September) and quarterly during the dormant season (October-March). A total of eight water level measurements were collected annually to monitor the phyto-remediation system's effect on the groundwater in the X- 740 Area. The primary function of the X-740 Phyto-remediation Area is to hydraulically prevent further spreading of the TCE plume. This process utilizes deep-rooted plants, such as poplar trees, to extract large

  18. Reactivity of Peroxynitrite: Implications for Hanford Waste Management and Remediation

    SciTech Connect

    James K. Hurst

    2003-11-06

    The purpose of this grant has been to provide basic chemical research in support of a major project undertaken at Brookhaven National Laboratory (BNL) whose purpose was to provide better understanding of the complex chemical processes occurring an nuclear storage tanks on the Hanford reservation. More specifically, the BNL grant was directed at evaluating the extend of radiation-induced formation of peroxynitrite anion (ONOO) in the tanks and its possible use in was incorporated as a subcontract EMSP 73824, but was later changed to an independent grant to avoid unnecessary duplication of administrative support at both WSU and BNL.

  19. Groundwater Chemistry and Hydrogeology of the Upper Saddle Mountains Basalt-Confined Aquifer South and Southeast of the Hanford Site

    SciTech Connect

    Newcomer, Darrell R. ); Thornton, Edward C. ); Liikala, Terry L. )

    2002-11-20

    This report describes groundwater monitoring within the upper basalt-confined aquifer in areas bordering the Hanford Site to the south and southeast. The purpose of the sample was to demonstrate that constituents analyzed were within the range of background concentrations and to evaluate any potential connection between groundwater on and off the Hanford Site.

  20. Iodine-129 and iodine-127 speciation in groundwater at the Hanford site, US: iodate incorporation into calcite.

    PubMed

    Zhang, Saijin; Xu, Chen; Creeley, Danielle; Ho, Yi-Fang; Li, Hsiu-Ping; Grandbois, Russell; Schwehr, Kathleen A; Kaplan, Daniel I; Yeager, Chris M; Wellman, Dawn; Santschi, Peter H

    2013-09-03

    The geochemical transport and fate of radioiodine depends largely on its chemical speciation that is greatly affected by environmental factors. This study reports, for the first time, the speciation of stable and radioactive iodine in the groundwater from the Hanford Site. Iodate was the dominant species and accounted for up to 84% of the total iodine present. The alkaline pH (pH ∼ 8) and predominantly oxidizing environment may have prevented reduction of the iodate. In addition, groundwater samples were found to have large amounts of calcite precipitate which were likely formed as a result of CO2 degassing during removal from the deep subsurface (>70m depth). Further analyses indicated that between 7 and 40% of the dissolved (127)I and (129)I that was originally in the groundwater had coprecipitated in the calcite. Iodate was the main species incorporated into calcite and this incorporation process could be impeded by elevating the pH and decreasing ionic strength in groundwater. This study provides critical information for predicting the long-term fate and transport of (129)I. Furthermore, the common sampling artifact resulting in the precipitation of calcite by degassing CO2, had the unintended consequence of providing insight into a potential solution for the in situ remediation of groundwater (129)I.

  1. Operable Unit 3-14, Tank Farm Soil and INTEC Groundwater Remedial Design/Remedial Action Scope of Work

    SciTech Connect

    D. E. Shanklin

    2007-07-25

    This Remedial Design/Remedial Action (RD/RA) Scope of Work pertains to OU 3-14 Idaho Nuclear Technology and Engineering Center and the Idaho National Laboratory and identifies the remediation strategy, project scope, schedule, and budget that implement the tank farm soil and groundwater remediation, in accordance with the May 2007 Record of Decision. Specifically, this RD/RA Scope of Work identifies and defines the remedial action approach and the plan for preparing the remedial design documents.

  2. Control of Groundwater Remediation Process as Distributed Parameter System

    NASA Astrophysics Data System (ADS)

    Mendel, M.; Kovács, T.; Hulkó, G.

    2014-12-01

    Pollution of groundwater requires the implementation of appropriate solutions which can be deployed for several years. The case of local groundwater contamination and its subsequent spread may result in contamination of drinking water sources or other disasters. This publication aims to design and demonstrate control of pumping wells for a model task of groundwater remediation. The task consists of appropriately spaced soil with input parameters, pumping wells and control system. Model of controlled system is made in the program MODFLOW using the finitedifference method as distributed parameter system. Control problem is solved by DPS Blockset for MATLAB & Simulink.

  3. An initial inverse calibration of the ground-water flow model for the Hanford unconfined aquifer

    SciTech Connect

    Jacobson, E.A. . Desert Research Inst.); Freshly, M.D. )

    1990-03-01

    Large volumes of process cooling water are discharged to the ground form U.S. Department of Energy (DOE) nuclear fuel processing operations in the central portion of the Hanford Site in southeastern Washington. Over the years, these large volumes of waste water have recharged the unconfined aquifer at the Site. This artificial recharge has affected ground-water levels and contaminant movement in the unconfined aquifer. Ground-water flow and contaminant transport models have been applied to assess the impacts of site operations on the rate and direction of ground-water flow and contaminant transport in unconfined aquifer at the Hanford Site. The inverse calibration method developed by Neuman and modified by Jacobson was applied to improve calibration of a ground-water flow model of the unconfined aquifer at the Hanford Site. All information about estimates of hydraulic properties of the aquifer, hydraulic heads, boundary conditions, and discharges to and withdrawals form the aquifer is included in the inverse method to obtain an initial calibration of the ground-water flow model. The purpose of this report is to provide a description of the inverse method, its initial application to the unconfined aquifer at Hanford, and to present results of the initial inverse calibration. 28 refs., 19 figs., 1 tab.

  4. TECHNICAL EVALUATION OF THE INTERACTION OF GROUNDWATER WITH THE COLUMBIA RIVER AT THE DEPARTMENT OF ENERGY HANFORD SITE 100-D AREA

    SciTech Connect

    PETERSEN SW

    2008-11-05

    Groundwater beneath much of Hanford's 100 Areas is contaminated with hexavalent chromium (Cr{sup +6}) as a consequence of treating reactor cooling water to prevent corrosion. Several treatment systems are in place to remove Cr{sup +6} from the groundwater; however, these systems currently do not reduce Cr{sup +6} to concentrations below aquatic standards. Of concern is the transport of Cr{sup +6} to areas within the channel of the river, as sensitive species inhabit the river and its associated transition zone. The aquatic standard for Cr{sup +6} is currently 11 ug/l under the Record of Decision (ROD) for Interim Action and Department of Energy (DOE) currently plans to pursue remediation of the groundwater to achieve the 11 ug/l standard. Because the compliance wells used to monitor the current remediation systems are located some distance from the river, they may not provide an accurate indication of Cr{sup +6} concentrations in the water that reaches the riverbed. In addition, because salmon spawning areas are considered a high priority for protection from Hanford contaminants, it would be advantageous to understand (1) to what extent Cr{sup +6} discharged to the near-shore or river ecosystems is diluted or attenuated and (2) mechanisms that could mitigate the exposure of the river ecosystems to the discharging Cr{sup +6}. The current concentration target for Cr{sup +6} at near-river groundwater monitoring locations is 20 {micro}g/L; it is assumed that this groundwater mixes with river water that contains virtually no chromium to meet Washington Department of Ecology's (Ecology) water quality standard of 10 {micro}g/L in the river environment. This dynamic mixing process is believed to be driven by daily and seasonal changes in river stage and groundwater remediation system operations, and has been validated using analytical data from numerous groundwater samples obtained adjacent to and within the banks of the river. Although the mean mixing factor of river

  5. Basewide Groundwater Operable Unit. Groundwater Operable Unit Remedial Investigation/Feasibility Study Report. Volume 1

    DTIC Science & Technology

    1994-06-01

    groundwater contamination at McClellan AFB is character- ized by small areas (* hot spots") with elevated concentrations or non- aqueous phase liquids (NAPL... hot spots, will achieve the remedial response objectives. The volume of contaminated groundwater would be reduced over time when hot spots are isolated...Innovative technologies, such as in situ bioremediation processes, could be applied once hot spots are isolated. Since groundwater would already be

  6. Hanford site tank waste remediation system programmatic environmental review report

    SciTech Connect

    Haass, C.C.

    1998-09-03

    The US Department of Energy (DOE) committed in the Tank Waste Remediation System (TWRS) Environmental Impact Statement (EIS) Record of Decision (ROD) to perform future National Environmental Policy Act (NEPA) analysis at key points in the Program. Each review will address the potential impacts that new information may have on the environmental impacts presented in the TWRS EIS and support an assessment of whether DOE`s plans for remediating the tank waste are still pursuing the appropriate plan for remediation or whether adjustments to the program are needed. In response to this commitment, DOE prepared a Supplement Analysis (SA) to support the first of these reevaluations. Subsequent to the completion of the SA, the Phase IB negotiations process with private contractors resulted in several changes to the planned approach. These changes along with other new information regarding the TWRS Program have potential implications for Phase 1 and Phase 2 of tank waste retrieval and waste storage and/or disposal that may influence the environmental impacts of the Phased Implementation alternative. This report focuses on identifying those potential environmental impacts that may require NEPA analysis prior to authorization to begin facility construction and operations.

  7. Soil and groundwater remediation: Asia, Oceania, and Africa

    SciTech Connect

    Huang, P.M.; Islandar, I.K.

    1999-11-01

    This book covers information on metals, radionuclides, other inorganics, pesticides, and other anthropogenic organic compounds in soil environments in Asia, Oceania, and Africa. It addresses the current status and future prospects on soil and groundwater pollution and the remediation strategies for years to come.

  8. Remediation alternatives for low-level herbicide contaminated groundwater

    SciTech Connect

    Conger, R.M.

    1995-10-01

    In early 1995, an evaluation of alternatives for remediation of a shallow groundwater plume containing low-levels of an organic herbicide was conducted at BASF Corporation, a petrochemical facility located in Ascension Parish, Louisiana. The contaminated site is located on an undeveloped portion of property within 1/4 mile of the east bank of the Mississippi River near the community of Geismar. Environmental assessment data indicated that about two acres of the thirty acre site had been contaminated from past waste management practices with the herbicide bentazon. Shallow soils and groundwater between 5 to 15 feet in depth were affected. Maximum concentrations of bentazon in groundwater were less than seven parts per million. To identify potentially feasible remediation alternatives, the environmental assessment data, available research, and cost effectiveness were reviewed. After consideration of a preliminary list of alternatives, only two potentially feasible alternatives could be identified. Groundwater pumping, the most commonly used remediation alternative, followed by carbon adsorption treatment was identified as was a new innovative alternative known as vegetative transpiration. This alternative relies on the natural transpiration processes of vegetation to bioremediate organic contaminants. Advantages identified during screening suggest that the transpiration method could be the best remediation alternative to address both economic and environmental factors. An experiment to test critical factors of the vegetatived transpiration alternative with bentazon was recommended before a final decision on feasibility can be made.

  9. Construction of the Largest Radionuclide Commingled Plume Groundwater Treatment Facility for the Department of Energy at the Hanford Site - 12411

    SciTech Connect

    Pargmann, Delise

    2012-07-01

    CH2M Hill Plateau Remediation Company (CHPRC) has constructed the largest groundwater treatment systems of its kind throughout the DOE Complex at the Hanford Site in an accelerated manner with American Recovery and Reinvestment Act (ARRA) funds. This complex, one of a kind groundwater treatment facility in Washington State has also attained Leadership in Energy and Environmental Design (LEED) Gold certification. The original concept for the 200 West Area groundwater treatment facility was a 6100 liter per minute (1,600 gallon per minute) facility. With additional ARRA funding, the plant design was improved to construct a 9500 liter per minute (2,500 gallon per minute) facility with expansion areas up to 14,000 liter per minute (3,750 gallon per minute). The current design will remove 53 percent more mass per year for faster clean-up. It is also expected to treat extracted groundwater to 25 percent or less than the Record of Decision-specified limit which improves Monitored Natural Attenuation (MNA) effectiveness. (author)

  10. SULFATE REDUCTION IN GROUNDWATER: CHARACTERIZATION AND APPLICATIONS FOR REMEDIATION

    PubMed Central

    Miao, Z.; Brusseau, M. L.; Carroll, K. C.; Carreón-Diazconti, C.; Johnson, B.

    2013-01-01

    Sulfate is ubiquitous in groundwater, with both natural and anthropogenic sources. Sulfate reduction reactions play a significant role in mediating redox conditions and biogeochemical processes for subsurface systems. They also serve as the basis for innovative in-situ methods for groundwater remediation. An overview of sulfate reduction in subsurface environments is provided, along with a brief discussion of characterization methods and applications for addressing acid mine drainage. We then focus on two innovative, in-situ methods for remediating sulfate-contaminated groundwater, the use of zero-valent iron (ZVI) and the addition of electron-donor substrates. The advantages and limitations associated with the methods are discussed, with examples of prior applications. PMID:21947714

  11. Progress in remediation of groundwater at petroleum sites in California.

    PubMed

    McHugh, Thomas E; Kulkarni, Poonam R; Newell, Charles J; Connor, John A; Garg, Sanjay

    2014-01-01

    Quantifying the overall progress in remediation of contaminated groundwater has been a significant challenge. We utilized the GeoTracker database to evaluate the progress in groundwater remediation from 2001 to 2011 at over 12,000 sites in California with contaminated groundwater. This paper presents an analysis of analytical results from over 2.1 million groundwater samples representing at least $100 million in laboratory analytical costs. Overall, the evaluation of monitoring data shows a large decrease in groundwater concentrations of gasoline constituents. For benzene, half of the sites showed a decrease in concentration of 85% or more. For methyl tert-butyl ether (MTBE), this decrease was 96% and for TBE, 87%. At remediation sites in California, the median source attenuation rate was 0.18/year for benzene and 0.36/year for MTBE, corresponding to half-lives of 3.9 and 1.9 years, respectively. Attenuation rates were positive (i.e., decreasing concentration) for benzene at 76% of sites and for MTBE at 85% of sites. An evaluation of sites with active remediation technologies suggests differences in technology effectiveness. The median attenuation rates for benzene and MTBE are higher at sites with soil vapor extraction or air sparging compared with sites without these technologies. In contrast, there was little difference in attenuation rates at sites with or without soil excavation, dual phase extraction, or in situ enhanced biodegradation. The evaluation of remediation technologies, however, did not evaluate whether specific systems were well designed or implemented and did not control for potential differences in other site factors, such as soil type.

  12. Response of winter birds to soil remediation along the Columbia River at the Hanford Site

    SciTech Connect

    Becker, James M.; McKinstry, Craig A.

    2004-04-01

    The Columbia River at the Hanford Site, located in south-central Washington State, USA, is a regionally important refugium for overwintering birds. Some of the river shoreline has been designated by the U.S. Department of Energy for environmental clean-up following past production of materials for nuclear weapons. We evaluated the effects of soil remediation on winter birds at six inactive nuclear reactor areas. Remediation activities consisted of daily excavation and removal of approximately 1,035 t of contaminated soil from previously herbicided and denuded areas located between 30 m and 400 m and mostly in line-of-sight of the river shoreline. Remediation activities had no apparent effect on numbers of riverine or terrestrial birds using adjacent undisturbed shoreline and riparian habitat.

  13. Response of winter birds to soil remediation along the Columbia River at the Hanford Site.

    PubMed

    Becker, J M; McKinstry, C A

    2004-01-01

    The Columbia River at the Hanford Site, located in south-central Washington State, U.S.A., is a regionally important refugium for overwintering birds. Some of the river shoreline has been designated by the U.S. Department of Energy for environmental clean-up following past production of materials for nuclear weapons. We evaluated the effects of soil remediation on winter birds at six inactive nuclear reactor areas. Remediation activities consisted of daily excavation and removal of approximately 1035 t of contaminated soil from previously herbicided and denuded areas located between 30 and 400 m and mostly in line-of-sight of the river shoreline. Remediation activities had no apparent effect on numbers of riverine or terrestrial birds using adjacent undisturbed shoreline and riparian habitat.

  14. Bench-scale electrokinetic remediation for cesium-contaminated sediment at the Hanford Site, USA

    SciTech Connect

    Jung, Hun Bok; Yang, Jungseok; Um, Wooyong

    2015-05-01

    Electrokinetic (EK) remediation has been applied to extract various contaminants such as radionuclides, heavy metals, and organic compounds from contaminated sediment and soil using electric currents. We conducted a laboratory experiment to investigate the efficiency of EK remediation method for Hanford sediment (76% sand and 24% silt-clay) after artificial contamination with nonradioactive 133Cs (0.01 M CsNO3) as a surrogate for radioactive 137Cs. The initial 133Cs concentration in the bulk sediment was 668 mg kg-1, with a higher 133Cs concentration for the silt-clay fraction (867 mg kg-1) than for the sand fraction (83 mg kg-1). A significant removal of cationic 133Cs from the sediment occurred from the cathode side (-), whereas the removal was negligible from the anode side (+) during the EK remediation process for 68 days. Based on microwave-assisted total digestion, 312 mg kg-1 of 133Cs was removed from the bulk sediment, which corresponds to the removal efficiency of 47%. The EK method was significantly more efficient for the silt-clay fraction than for the sand fraction. X-ray diffraction (XRD) and scanning electron microscopy-electron dispersive spectroscopy (SEM-EDS) analyses indicate that change in major crystalline mineral phases was insignificant during the EK remediation and the removal of 133Cs from the Hanford sediment by the EK method is attributed mainly to cation exchange with K in clay minerals. The experimental results suggest that the EK method can effectively remove radioactive Cs from the surface or subsurface sediment contaminated by radioactive materials in the Hanford Site, Washington, USA.

  15. Groundwater Monitoring Plan for the 216-B-63 Trench on the Hanford Site

    SciTech Connect

    Sweeney, Mark D. )

    2002-11-14

    This document presents a groundwater monitoring plan for the 216-B-63 trench in the 200 East Area of the Hanford Site. The monitoring will be conducted in accordance with regulatory requirements specified in the Resource Conservation and Recovery Act (RCRA) of 1976. The objective of the monitoring is to determine whether any hazardous constituents are detectable in the groundwater beneath the trench. This monitoring plan will serve as the basis for demonstrating monitoring compliance at the B-63 trench under the RCRA.

  16. Ground-water monitoring compliance plan for the Hanford Site Solid Waste Landfill

    SciTech Connect

    Fruland, R.M.

    1986-10-01

    Washington state regulations required that solid waste landfill facilities have ground-water monitoring programs in place by May 27, 1987. This document describes the well locations, installation, characterization studies and sampling and analysis plan to be followed in implementing the ground-water monitoring program at the Hanford Site Solid Waste Landfill (SWL). It is based on Washington Administrative Code WAC 173-304-490. 11 refs., 19 figs., 4 tabs.

  17. FY 2002 Integrated Monitoring Plan for the Hanford Groundwater Monitoring Project

    SciTech Connect

    Hartman, Mary J.; Dresel, P Evan; Lindberg, Jonathan W.; Newcomer, Darrell R.; Thornton, Edward C.

    2001-10-31

    This document is an integrated monitoring plan for the groundwater project and contains: well and constituent lists for monitoring required by the Atomic Energy Act of 1954 and its implementing orders ("surveillance monitoring"); other, established monitoring plans by reference; and a master well/ constituent/frequency matrix for the entire Hanford Site.

  18. Screening of Potential Remediation Methods for the 200-ZP-1 Operable Unit at the Hanford Site

    SciTech Connect

    Truex, Michael J.; Nimmons, Michael J.; Johnson, Christian D.; Dresel, P EVAN.; Murray, Christopher J.

    2006-08-07

    A screening-level evaluation of potential remediation methods for application to the contaminants of concern (COC) in the 200-ZP-1 Operable Unit at the Hanford Site was conducted based on the methods outlined in the Guidance for Conducting Remedial Investigations and Feasibility Studies under CERCLA Interim Final. The scope of this screening was to identify the most promising remediation methods for use in the more detailed analysis of remediation alternatives that will be conducted as part of the full feasibility study. The screening evaluation was conducted for the primary COC (potential major risk drivers). COC with similar properties were grouped for the screening evaluation. The screening evaluation was conducted in two primary steps. The initial screening step evaluated potential remediation methods based on whether they can be effectively applied within the environmental setting of the 200-ZP-1 Operable Unit for the specified contaminants. In the second step, potential remediation methods were screened using scoping calculations to estimate the scale of infrastructure, overall quantities of reagents, and conceptual approach for applying the method for each defined grouping of COC. Based on these estimates, each method was screened with respect to effectiveness, implementability, and relative cost categories of the CERCLA feasibility study screening process defined in EPA guidance.

  19. Carbon Nanotube Based Groundwater Remediation: The Case of Trichloroethylene.

    PubMed

    Jha, Kshitij C; Liu, Zhuonan; Vijwani, Hema; Nadagouda, Mallikarjuna; Mukhopadhyay, Sharmila M; Tsige, Mesfin

    2016-07-21

    Adsorption of chlorinated organic contaminants (COCs) on carbon nanotubes (CNTs) has been gaining ground as a remedial platform for groundwater treatment. Applications depend on our mechanistic understanding of COC adsorption on CNTs. This paper lays out the nature of competing interactions at play in hybrid, membrane, and pure CNT based systems and presents results with the perspective of existing gaps in design strategies. First, current remediation approaches to trichloroethylene (TCE), the most ubiquitous of the COCs, is presented along with examination of forces contributing to adsorption of analogous contaminants at the molecular level. Second, we present results on TCE adsorption and remediation on pure and hybrid CNT systems with a stress on the specific nature of substrate and molecular architecture that would contribute to competitive adsorption. The delineation of intermolecular interactions that contribute to efficient remediation is needed for custom, scalable field design of purification systems for a wide range of contaminants.

  20. Technology needs for remediation: Hanford and other DOE sites

    SciTech Connect

    Stapp, D.C.

    1993-01-01

    Technologies are being developed under the Buried Waste Integrated Demonstration (BWID) program to facilitate remediation of the US Department of Energy's (DOE) buried and stored low-level radioactive, transuranic (TRU), and mixed radioactive and hazardous buried wastes. The BWID program is being coordinated by the Idaho National Engineering Laboratory (INEL) in southeastern Idaho, a DOE site that has large volumes of buried radioactive wastes. The program is currently focusing its efforts on the problems at INEL's Subsurface Disposal Area (SDA) of the Radioactive Waste Management Complex (RWMC). As specific technologies are successfully demonstrated, they will be available for transfer to applications at other DOE buried waste sites. The purpose of this study is to present buried waste technology needs that have been identified for DOE sites other than INEL.

  1. Treatment of Bottled Liquid Waste During Remediation of the Hanford 618-10 Burial Ground - 13001

    SciTech Connect

    Faulk, Darrin E.; Pearson, Chris M.; Vedder, Barry L.; Martin, David W.

    2013-07-01

    A problematic waste form encountered during remediation of the Hanford Site 618-10 burial ground consists of bottled aqueous waste potentially contaminated with regulated metals. The liquid waste requires stabilization prior to landfill disposal. Prior remediation activities at other Hanford burial grounds resulted in a standard process for sampling and analyzing liquid waste using manual methods. Due to the highly dispersible characteristics of alpha contamination, and the potential for shock sensitive chemicals, a different method for bottle processing was needed for the 618-10 burial ground. Discussions with the United States Department of Energy (DOE) and United States Environmental Protection Agency (EPA) led to development of a modified approach. The modified approach involves treatment of liquid waste in bottles, up to one gallon per bottle, in a tray or box within the excavation of the remediation site. Bottles are placed in the box, covered with soil and fixative, crushed, and mixed with a Portland cement grout. The potential hazards of the liquid waste preclude sampling prior to treatment. Post treatment verification sampling is performed to demonstrate compliance with land disposal restrictions and disposal facility acceptance criteria. (authors)

  2. Groundwater Remediation in a Floodplain Aquifer at Shiprock, New Mexico

    SciTech Connect

    Peterson, Dave; Miller, David; Kautsky, Mark; Dander, David; Nofchissey, Joni

    2016-03-06

    A uranium- and vanadium-ore-processing mill operated from 1954 to 1968 within the Navajo Nation near Shiprock, New Mexico. By September 1986, all tailings and structures on the former mill property were encapsulated in a disposal cell built on top of two existing tailings piles on the Shiprock site (the site) [1]. Local groundwater was contaminated by multiple inorganic constituents as a result of the milling operations. The U.S. Department of Energy (DOE) took over management of the site in 1978 as part of the Uranium Mill Tailings Remedial Action (UMTRA) Project. The DOE Office of Legacy Management currently manages ongoing activities at the former mill facility, including groundwater remediation. Remediation activities are designed primarily to reduce the concentrations and total plume mass of the mill-related contaminants sulfate, uranium, and nitrate. In addition to contaminating groundwater in alluvial and bedrock sediments directly below the mill site, ore processing led to contamination of a nearby floodplain bordering the San Juan River. Groundwater in a shallow alluvial aquifer beneath the floodplain is strongly influenced by the morphology of the river channel as well as changing flows in the river, which provides drainage for regional runoff from the San Juan Mountains of Colorado. As part of a recent study of the floodplain hydrology, a revised conceptual model was developed for the alluvial aquifer along with an updated status of contaminant plumes that have been impacted by more than 10 years of groundwater pumping for site remediation purposes. Several findings from the recent study will be discussed here.

  3. STRATEGIES FOR IMMOBILIZATION OF DEEP VADOSE ZONE CONTAMINANTS AT THE HANFORD CENTRAL PLATEAU

    SciTech Connect

    CHRONISTER GB

    2011-01-14

    Deep vadose zone contamination poses some of the most difficult remediation challenges for the protection of groundwater at the Hanford Site in Richland, Washington. This paper describes processes and technologies being developed to use in the ongoing effort to remediate the contamination in the deep vadose zone at the Hanford Site.

  4. Arsenic in the groundwater: Occurrence, toxicological activities, and remedies.

    PubMed

    Jha, S K; Mishra, V K; Damodaran, T; Sharma, D K; Kumar, Parveen

    2017-04-03

    Arsenic (As) contamination in groundwater has become a geo-environmental as well as a toxicological problem across the globe affecting more than 100-million people in nearly 21 countries with its associated disease "arsenicosis." Arsenic poisoning may lead to fatal skin and internal cancers. In present review, an attempt has been made to generate awareness among the readers about various sources of occurrence of arsenic, its geochemistry and speciation, mobilization, metabolism, genotoxicity, and toxicological exposure on humans. The article also emphasizes the possible remedies for combating the problem. The knowledge of these facts may help to work on some workable remedial measure.

  5. Automated Groundwater Monitoring of Uranium at the Hanford Site, Washington - 13116

    SciTech Connect

    Burge, Scott R.; O'Hara, Matthew J.

    2013-07-01

    An automated groundwater monitoring system for the detection of uranyl ion in groundwater was deployed at the 300 Area Industrial Complex, Hanford Site, Washington. The research was conducted to determine if at-site, automated monitoring of contaminant movement in the subsurface is a viable alternative to the baseline manual sampling and analytical laboratory assay methods currently employed. The monitoring system used Arsenazo III, a colorimetric chelating compound, for the detection of the uranyl ion. The analytical system had a limit of quantification of approximately 10 parts per billion (ppb, μg/L). The EPA's drinking water maximum contaminant level (MCL) is 30 ppb [1]. In addition to the uranyl ion assay, the system was capable of acquiring temperature, conductivity, and river level data. The system was fully automated and could be operated remotely. The system was capable of collecting water samples from four sampling sources, quantifying the uranyl ion, and periodically performing a calibration of the analytical cell. The system communications were accomplished by way of cellular data link with the information transmitted through the internet. Four water sample sources were selected for the investigation: one location provided samples of Columbia River water, and the remaining three sources provided groundwater from aquifer sampling tubes positioned in a vertical array at the Columbia River shoreline. The typical sampling schedule was to sample the four locations twice per day with one calibration check per day. This paper outlines the instrumentation employed, the operation of the instrumentation, and analytical results for a period of time between July and August, 2012. The presentation includes the uranyl ion concentration and conductivity results from the automated sampling/analysis system, along with a comparison between the automated monitor's analytical performance and an independent laboratory analysis. Benefits of using the automated system as an

  6. Annual report for RCRA groundwater monitoring projects at Hanford Site facilities for 1993

    SciTech Connect

    Not Available

    1994-02-01

    This report presents the annual hydrogeologic evaluation of 20 Resource Conservation and Recovery Act of 1976 groundwater monitoring projects and 1 nonhazardous waste facility at the US Department of Energy`s Hanford Site. Most of the projects no longer receive dangerous waste; a few projects continue to receive dangerous waste constituents for treatment, storage, or disposal. The 20 RCRA projects comprise 30 waste management units. Ten of the units are monitored under groundwater quality assessment status because of elevated levels of indicator parameters. The impact of those units on groundwater quality, if any, is being investigated. If dangerous waste or waste constituents have entered groundwater, their concentration, distribution, and rate of migration are evaluated. Groundwater is monitored at the other 20 units to detect contamination, should it occur. This report provides an interpretation of groundwater data collected at the waste management units between October 1992 and September 1993. Recent groundwater quality is also described for the 100, 200, 300, and 600 Areas and for the entire Hanford Site. Widespread contaminants include nitrate, chromium, carbon tetrachloride, tritium, and other radionuclides.

  7. Assessing Alternative Endpoints for Groundwater Remediation at Contaminated Sites

    DTIC Science & Technology

    2011-05-01

    containment area (a fenced area contained by a temporary cap and a 30 to 70 feet deep slurry wall filled with bentonite clay ). In addition, the ROD...remediation professionals are high concentrations of contaminants that have diffused into rock matrix, clay lenses, or other low-permeability zones...contaminated with arsenic and aniline present in clays and rock fractures), Highway 71/72 Refinery (215 acres contaminated with LNAPL where groundwater

  8. Groundwater contaminant plume maps and volumes, 100-K and 100-N Areas, Hanford Site, Washington

    USGS Publications Warehouse

    Johnson, Kenneth H.

    2016-09-27

    This study provides an independent estimate of the areal and volumetric extent of groundwater contaminant plumes which are affected by waste disposal in the 100-K and 100-N Areas (study area) along the Columbia River Corridor of the Hanford Site. The Hanford Natural Resource Trustee Council requested that the U.S. Geological Survey perform this interpolation to assess the accuracy of delineations previously conducted by the U.S. Department of Energy and its contractors, in order to assure that the Natural Resource Damage Assessment could rely on these analyses. This study is based on previously existing chemical (or radionuclide) sampling and analysis data downloaded from publicly available Hanford Site Internet sources, geostatistically selected and interpreted as representative of current (from 2009 through part of 2012) but average conditions for groundwater contamination in the study area. The study is limited in scope to five contaminants—hexavalent chromium, tritium, nitrate, strontium-90, and carbon-14, all detected at concentrations greater than regulatory limits in the past.All recent analytical concentrations (or activities) for each contaminant, adjusted for radioactive decay, non-detections, and co-located wells, were converted to log-normal distributions and these transformed values were averaged for each well location. The log-normally linearized well averages were spatially interpolated on a 50 × 50-meter (m) grid extending across the combined 100-N and 100-K Areas study area but limited to avoid unrepresentative extrapolation, using the minimum curvature geostatistical interpolation method provided by SURFER®data analysis software. Plume extents were interpreted by interpolating the log-normally transformed data, again using SURFER®, along lines of equal contaminant concentration at an appropriate established regulatory concentration . Total areas for each plume were calculated as an indicator of relative environmental damage. These plume

  9. Clean option: An alternative strategy for Hanford Tank Waste Remediation. Volume 1, Overview

    SciTech Connect

    Straalsund, J.L.; Swanson, J.L.; Baker, E.G.; Jones, E.O.; Kuhn, W.L.; Holmes, J.J.

    1992-12-01

    Plans for remediation of the Hanford underground storage tanks are currently undergoing reevaluation. As part of this process, many options are being considered for the Tank Waste Remediation System (MRS). The ``clean option`` described here proposes an aggressive waste processing strategy to achieve the three ma or objectives: Greatly reduce the volume of high-level waste (HLW) to lessen demands on geologic repository space; decrease by several orders of magnitude the amount of radioactivity and toxicity now in the waste tanks that will be left permanently onsite as low-level solid waste (LLW); and accomplish the first two objectives without significantly increasing the total amount of waste for disposal. The study discussed here focuses on process chemistry, as it provides the foundation for achieving the clean option objectives. Because demonstrated separation steps have been identified and connected in a way that meets these objectives, the study concludes that the process chemistry rests on a firm technical basis.

  10. [Simulation on remediation of benzene contaminated groundwater by air sparging].

    PubMed

    Fan, Yan-Ling; Jiang, Lin; Zhang, Dan; Zhong, Mao-Sheng; Jia, Xiao-Yang

    2012-11-01

    Air sparging (AS) is one of the in situ remedial technologies which are used in groundwater remediation for pollutions with volatile organic compounds (VOCs). At present, the field design of air sparging system was mainly based on experience due to the lack of field data. In order to obtain rational design parameters, the TMVOC module in the Petrasim software package, combined with field test results on a coking plant in Beijing, is used to optimize the design parameters and simulate the remediation process. The pilot test showed that the optimal injection rate was 23.2 m3 x h(-1), while the optimal radius of influence (ROI) was 5 m. The simulation results revealed that the pressure response simulated by the model matched well with the field test results, which indicated a good representation of the simulation. The optimization results indicated that the optimal injection location was at the bottom of the aquifer. Furthermore, simulated at the optimized injection location, the optimal injection rate was 20 m3 x h(-1), which was in accordance with the field test result. Besides, 3 m was the optimal ROI, less than the field test results, and the main reason was that field test reflected the flow behavior at the upper space of groundwater and unsaturated area, in which the width of flow increased rapidly, and became bigger than the actual one. With the above optimized operation parameters, in addition to the hydro-geological parameters measured on site, the model simulation result revealed that 90 days were needed to remediate the benzene from 371 000 microg x L(-1) to 1 microg x L(-1) for the site, and that the opeation model in which the injection wells were progressively turned off once the groundwater around them was "clean" was better than the one in which all the wells were kept operating throughout the remediation process.

  11. RCRA Groundwater Monitoring Plan for Single-Shell Tank Waste Management Area C at the Hanford Site

    SciTech Connect

    Horton, Duane G.; Narbutovskih, Susan M.

    2001-01-01

    This document describes the groundwater monitoring plan for Waste Management Area C located in the 200 East Area of the DOE Hanford Site. This plan is required under Resource Conservation and Recovery Act of 1976 (RCRA).

  12. Overview of Green and Sustainable Remediation for Soil and Groundwater Remediation - 12545

    SciTech Connect

    Simpkin, Thomas J.; Favara, Paul

    2012-07-01

    Making remediation efforts more 'sustainable' or 'green' is a topic of great interest in the remediation community. It has been spurred on by Executive Orders from the White House, as well as Department of Energy (DOE) sustainability plans. In private industry, it is motivated by corporate sustainability goals and corporate social responsibility. It has spawned new organizations, areas of discussion, tools and practices, and guidance documents around sustainable remediation or green remediation. Green remediation can be thought of as a subset of sustainable remediation and is mostly focused on reducing the environmental footprint of cleanup efforts. Sustainable remediation includes both social and economic considerations, in addition to environmental. Application of both green and sustainable remediation (GSR) may involve two primary activities. The first is to develop technologies and alternatives that are greener or more sustainable. This can also include making existing remediation approaches greener or more sustainable. The second is to include GSR criteria in the evaluation of remediation alternatives and strategies. In other words, to include these GSR criteria in the evaluation of alternatives in a feasibility study. In some cases, regulatory frameworks allow the flexibility to include GSR criteria into the evaluation process (e.g., state cleanup programs). In other cases, regulations allow less flexibility to include the evaluation of GSR criteria (e.g., Comprehensive Environmental Response Compensation, and Liability Act (CERCLA)). New regulatory guidance and tools will be required to include these criteria in typical feasibility studies. GSR provides a number of challenges for remediation professionals performing soil and groundwater remediation projects. Probably the most significant is just trying to stay on top of the ever changing landscape of products, tools, and guidance documents coming out of various groups, the US EPA, and states. However, this

  13. Sustainable Remediation for Enhanced NAPL Recovery from Groundwater

    NASA Astrophysics Data System (ADS)

    Javaher, M.

    2012-12-01

    Sustainable remediation relates to the achievement of balance between environmental, social, and economic elements throughout the remedial lifecycle. A significant contributor to this balance is the use of green and sustainable technologies which minimize environmental impacts, while maximizing social and economic benefits of remedial implementation. To this end, a patented mobile vapor energy generation (VEG) technology has been developed targeting variable applications, including onsite soil remediation for unrestricted reuse and enhanced non-aqueous phase liquid (NAPL) recover at the water table. At the core of the mobile VEG technology is a compact, high efficiency vapor generator, which utilizes recycled water and propane within an entirely enclosed system to generate steam as high as 1100°F. Operating within a fully enclosed system and capturing all heat that is generated within this portable system, the VEG technology eliminates all emissions to the atmosphere and yields an undetected carbon footprint with resulting carbon dioxide concentrations that are below ambient levels. Introduction of the steam to the subsurface via existing wells results in a desired change in the NAPL viscosity and the interfacial tension at the soil, water, NAPL interface; in turn, this results in mobilization and capture of the otherwise trapped, weathered NAPL. Approved by the California Air Resources Control Board (and underlying Air Quality Management Districts) and applied in California's San Joaquin Valley, in-well heating of NAPLs trapped at the water table using the VEG technology has proven as effective as electrical resistivity heating (ERH) in changing the viscosity of and mobilizing NAPLs in groundwater in support of recovery, but has achieved these results while minimizing the remedial carbon footprint by 90%, reducing energy use by 99%, and reducing remedial costs by more than 95%. NAPL recovery using VEG has also allowed for completion of source removal historically

  14. Hanford ground-water data base management guide and user's manual. [CIRMIS

    SciTech Connect

    Mitchell, P.J.; Argo, R.S.; Bradymire, S.L.; Newbill, C.A.

    1985-05-01

    This management guide and user's manual is a working document for the computerized Hanford Ground-water Data Base maintained by the Geosciences Research and Engineering Department at Pacific Northwest Laboratory for the Hanford Ground-Water Surveillance Program. The program is managed by the Occupational and Environmental Protection Department for the US Department of Energy. The data base is maintained to provide rapid access to data that are rountinely collected from ground-water monitoring wells at the Hanford site. The data include water levels, sample analyses, geologic descriptions and well construction information of over 3000 existing or destroyed wells. These data are used to monitor water quality and for the evaluation of ground-water flow and pollutant transport problems. The management guide gives instructions for maintenance of the data base on the Digital Equipment Corporation PDP 11/70 Computer using the CIRMIS (Comprehensive Information Retrieval and Model Input Sequence) data base management software developed at Pacific Northwest Laboratory. Maintenance activities include inserting, modifying and deleting data, making back-up copies of the data base, and generating tables for annual monitoring reports. The user's guide includes instructions for running programs to retrieve the data in the form of listings of graphical plots. 3 refs.

  15. Hanford Site ground-water monitoring for April through June 1987

    SciTech Connect

    Evans, J.C.; Mitchell, P.J.; Dennison, D.I.

    1988-01-01

    Pacific Northwest Laboratory (PNL) is conducting ground-water monitoring at the Hanford Site. Results for monitoring by PNL and Westinghouse Hanford Company (WHC) during April-June 1987 show that certain regulated hazardous materials and radionuclides exist in Hanford Site ground waters. The presence of regulated constituents in the ground water derives both from site operations and from natural sources. The major contamination problems defined by recent monitoring activities are carbon tetrachloride in the 200 West Area; cyanide in and north of the 200 East Area; hexavalent chromium contamination in the 100B, 100D, 100K, and 100H areas; chlorinated hydrocarbons in the vicinity of the Central Landfill; uranium at the 216-U-1 and 216-U-2 cribs in the 200 West Area; tritium across the site; and nitrate across the site. The distribution of hazardous materials related to site operations is more limited than the distribution of tritium and nitrate. 8 refs., 22 figs., 5 tabs.

  16. Evaluation of groundwater monitoring results at the Hanford Site 200 Area Treated Effluent Disposal Facility

    SciTech Connect

    Barnett, D.B.

    1998-09-01

    The Hanford Site 200 Area Treated Effluent Disposal Facility (TEDF) has operated since June 1995. Groundwater monitoring has been conducted quarterly in the three wells surrounding the facility since 1992, with contributing data from nearby B Pond System wells. Cumulative hydrologic and geochemical information from the TEDF well network and other surrounding wells indicate no discernable effects of TEDF operations on the uppermost aquifer in the vicinity of the TEDF. The lateral consistency and impermeable nature of the Ringold Formation lower mud unit, and the contrasts in hydraulic conductivity between this unit and the vadose zone sediments of the Hanford formation suggest that TEDF effluent is spreading laterally with negligible mounding or downward movement into the uppermost aquifer. Hydrographs of TEDF wells show that TEDF operations have had no detectable effects on hydraulic heads in the uppermost aquifer, but show a continuing decay of the hydraulic mound generated by past operations at the B Pond System. Comparison of groundwater geochemistry from TEDF wells and other, nearby RCRA wells suggests that groundwater beneath TEDF is unique; different from both effluent entering TEDF and groundwater in the B Pond area. Tritium concentrations, major ionic proportions, and lower-than-background concentrations of other species suggest that groundwater in the uppermost aquifer beneath the TEDF bears characteristics of water in the upper basalt confined aquifer system. This report recommends retaining the current groundwater well network at the TEDF, but with a reduction of sampling/analysis frequency and some modifications to the list of constituents sought.

  17. Annual report for RCRA groundwater monitoring projects at Hanford Site facilities for 1990

    SciTech Connect

    Not Available

    1991-02-01

    This report documents the annual evaluation of eighteen Resource Conservation and Recovery Act of 1976 (RCRA) groundwater monitoring projects and one nonhazardous waste facility at the Hanford Site. The RCRA projects are monitored under three programs: (1) a background monitoring program; (2) an indicator evaluation program; and (3) a groundwater quality assessment program. The background monitoring program and the indicator evaluation program are described as two phases of the detection level monitoring program. Briefly stated, when a groundwater monitoring system has been installed, a background monitoring program begins. Samples and water levels from upgradient monitoring well(s) must be obtained and analyzed quarterly for one year to obtain background data on the quality of the groundwater. After one year, the indicator evaluation program commences, and groundwater samples and water levels must be taken semiannually. Data obtained through the indicator evaluation program are compared with background data; if a significant change over background has occurred, a groundwater quality assessment plan must be implemented. The Solid Waste Landfill (SWL) is included in this report because of uncertainty in the final regulatory authority for the site and because of the interest of the Washington State Department of Ecology (Ecology) in all aspects of Hanford Site operations. 193 refs., 114 figs., 44 tabs.

  18. Annual report for RCRA groundwater monitoring projects at Hanford Site facilities for 1995

    SciTech Connect

    Hartman, M.J.

    1996-02-01

    This report presents the annual hydrogeologic evaluation of 19 Resource Conservation and Recovery Act of 1976 facilities and 1 nonhazardous waste facility at the US Department of Energy`s Hanford Site. Although most of the facilities no longer receive dangerous waste, a few facilities continue to receive dangerous waste constituents for treatment, storage, or disposal. The 19 Resource Conservation and Recovery Act facilities comprise 29 waste management units. Nine of the units are monitored under groundwater quality assessment status because of elevated levels of contamination indicator parameters. The impact of those units on groundwater quality, if any, is being investigated. If dangerous waste or waste constituents have entered groundwater, their concentration profiles, rate, and extent of migration are evaluated. Groundwater is monitored at the other 20 units to detect leakage, should it occur. This report provides an interpretation of groundwater data collected at the waste management units between October 1994 and September 1995. Groundwater quality is described for the entire Hanford Site. Widespread contaminants include nitrate, chromium, carbon tetrachloride, tritium, and other radionuclides.

  19. Reducing groundwater impacts on the Columbia River from the Hanford Site

    SciTech Connect

    Bennett, L.J.; Pedersen, K.S.; Johnston, G.A.; Shoulders, A.

    1996-12-31

    The Hanford Works Nuclear Reservation (Hanford Site) is located in eastern Washington and managed under the authority of the U.S. Department of Energy (DOE). Formerly used for nuclear weapons research and production, the Hanford Site is currently used for energy, defense, and environmental research. The Hanford Site encompasses 1,450 square kilometer (560 square miles) of high desert and is located adjacent to the Columbia River just north of Richland, Washington. Nine inactive plutonium production reactors and one active electricity production reactor are located on the site. The active reactor was constructed and is owned and operated by Washington Public Power Supply System. The inactive reactors are located near the Columbia River. In the interior of the site are the 200 East and 200 West Areas where most of the chemical processing and waste management occurred between the early 1940s and the mid 1980s. Over a 46 year period, the groundwater under the Hanford Site has become contaminated from leaks and intentional discharges to leach fields. This contaminated groundwater is slowly migrating toward the Columbia River. During the past ten years, all intentional discharges of radioactive and hazardous wastes to the leach fields have ceased. The only remaining discharges are relatively clean, once-through, non-contact cooling water and water treatment plant sludges. Currently a systematic approach is being implemented through four related projects to eliminate as many of the remaining discharges as possible. The volumes of all remaining discharges are being reduced and then routed to a new treatment and disposal site. Three of the projects will be operational by June 1995 with the fourth project operational by October 1997. This paper discusses the four projects and the anticipated impacts on the groundwater.

  20. Groundwater Remediation using Bayesian Information-Gap Decision Theory

    NASA Astrophysics Data System (ADS)

    O'Malley, D.; Vesselinov, V. V.

    2016-12-01

    Probabilistic analyses of groundwater remediation scenarios frequently fail because the probability of an adverse, unanticipated event occurring is often high. In general, models of flow and transport in contaminated aquifers are always simpler than reality. Further, when a probabilistic analysis is performed, probability distributions are usually chosen more for convenience than correctness. The Bayesian Information-Gap Decision Theory (BIGDT) was designed to mitigate the shortcomings of the models and probabilistic decision analyses by leveraging a non-probabilistic decision theory - information-gap decision theory. BIGDT considers possible models that have not been explicitly enumerated and does not require us to commit to a particular probability distribution for model and remediation-design parameters. Both the set of possible models and the set of possible probability distributions grow as the degree of uncertainty increases. The fundamental question that BIGDT asks is "How large can these sets be before a particular decision results in an undesirable outcome?". The decision that allows these sets to be the largest is considered to be the best option. In this way, BIGDT enables robust decision-support for groundwater remediation problems. Here we apply BIGDT to in a representative groundwater remediation scenario where different options for hydraulic containment and pump & treat are being considered. BIGDT requires many model runs and for complex models high-performance computing resources are needed. These analyses are carried out on synthetic problems, but are applicable to real-world problems such as LANL site contaminations. BIGDT is implemented in Julia (a high-level, high-performance dynamic programming language for technical computing) and is part of the MADS framework (http://mads.lanl.gov/ and https://github.com/madsjulia/Mads.jl).

  1. Evaluation of chemical sensors for in situ ground-water monitoring at the Hanford Site

    SciTech Connect

    Murphy, E.M.; Hostetler, D.D.

    1989-03-01

    This report documents a preliminary review and evaluation of instrument systems and sensors that may be used to detect ground-water contaminants in situ at the Hanford Site. Three topics are covered in this report: (1) identification of a group of priority contaminants at Hanford that could be monitored in situ, (2) a review of current instrument systems and sensors for environmental monitoring, and (3) an evaluation of instrument systems that could be used to monitor Hanford contaminants. Thirteen priority contaminants were identified in Hanford ground water, including carbon tetrachloride and six related chlorinated hydrocarbons, cyanide, methyl ethyl ketone, chromium (VI), fluoride, nitrate, and uranium. Based on transduction principles, chemical sensors were divided into four classes, ten specific types of instrument systems were considered: fluorescence spectroscopy, surface-enhanced Raman spectroscopy (SERS), spark excitation-fiber optic spectrochemical emission sensor (FOSES), chemical optrodes, stripping voltammetry, catalytic surface-modified ion electrode immunoassay sensors, resistance/capacitance, quartz piezobalance and surface acoustic wave devices. Because the flow of heat is difficult to control, there are currently no environmental chemical sensors based on thermal transduction. The ability of these ten instrument systems to detect the thirteen priority contaminants at the Hanford Site at the required sensitivity was evaluated. In addition, all ten instrument systems were qualitatively evaluated for general selectivity, response time, reliability, and field operability. 45 refs., 23 figs., 7 tabs.

  2. Evaluation of In Situ Grouting as a Potential Remediation Method for the Hanford Central Plateau Deep Vadose Zone

    SciTech Connect

    Truex, Michael J.; Pierce, Eric M.; Nimmons, Michael J.; Mattigod, Shas V.

    2011-01-11

    The Deep Vadose Zone Treatability Test Plan for the Hanford Central Plateau report identifies in situ grouting as a potential remediation technology for the deep vadose zone and includes a planned effort to evaluate in situ grouting to provide information for future feasibility studies. This report represents the first step in this evaluation effort.

  3. Audit of groundwater remediation plans at the Savannah River Site

    SciTech Connect

    1996-06-11

    The Department of Energy was required to reduce groundwater contamination that represented a risk to human health or the environment. To achieve this goal, the Savannah River Operations Office (Savannah River) entered into several formal agreements with Federal and State regulators. The agreements described how Savannah River would reduce the level of contamination until the risks to human health and the environment were lowered to an acceptable level. The agreements called for decreasing groundwater contamination to levels that would comply with South Carolina groundwater regulations, which would allow a hypothetical future resident to someday live above the F and H Areas and drink the groundwater. We believe basing the agreements on drinking water standards was unreasonable because no one will likely live above these areas or drink the groundwater. The more stringent drinking water standards were included in the planning process because Savannah River had not developed a Land Use Plan that would permit rational decision making for the entire site. Lacking a Land Use Plan, the environmental regulators assumed, and Savannah River acceded to, the most stringent usage scenario, that the groundwater under the F and H Areas might one day be used as a source of drinking water. It will take more than one hundred years for the subterranean groundwater to become safe enough for drinking water purposes. Consequently, Savannah River may continue to pursue expensive remediation projects for longer than would be necessary to protect human health and the environment. However, the cost impact of unnecessary clean-up activities is indeterminable because acceptable contamination limits would still have to be negotiated with the South Carolina Department of Health and Environmental Control.

  4. Modeling in Support of Groundwater-Remediation Cost Allocation

    NASA Astrophysics Data System (ADS)

    Pinder, G. F.

    2003-12-01

    The allocation of costs for remediation among multiple potentially responsible parties (PRPs) can be addressed using a `stand alone' method developed and applied initially to water supply problems. The variant of the stand alone approach used in an allocation case in the San Fernando Valley of California involves 1) the development of groundwater flow and transport models that reflect 1) the contributions of each of the PRPs individually and, 2) the combined effect of all parties. The allocation is then based upon the proportional impact of each PRP. The proportional cost is therefore established by taking the ratio of the plume size of each PRP divided by the overall plume size multiplied by the overall remediation costs.

  5. In-situ groundwater remediation by selective colloid mobilization

    DOEpatents

    Seaman, John C.; Bertch, Paul M.

    1998-01-01

    An in-situ groundwater remediation pump and treat technique effective for reclamation of aquifers that have been contaminated with a mixed, metal-containing waste, which promotes selective mobilization of metal oxide colloids with a cationic surfactant, preferably a quaternary alkylammonium surfactant, without significantly reducing formation permeability that often accompanies large-scale colloid dispersion, thus increasing the efficiency of the remediation effort by enhancing the capture of strongly sorbing contaminants associated with the oxide phases. The resulting suspension can be separated from the bulk solution with controlled pH adjustments to destabilize the oxide colloids, and a clear supernatant which results that can be recycled through the injection well without further waste treatment.

  6. In-situ groundwater remediation by selective colloid mobilization

    DOEpatents

    Seaman, J.C.; Bertch, P.M.

    1998-12-08

    An in-situ groundwater remediation pump and treat technique is described which is effective for reclamation of aquifers that have been contaminated with a mixed, metal-containing waste, and which promotes selective mobilization of metal oxide colloids with a cationic surfactant, preferably a quaternary alkylammonium surfactant, without significantly reducing formation permeability that often accompanies large-scale colloid dispersion, thus increasing the efficiency of the remediation effort by enhancing the capture of strongly sorbing contaminants associated with the oxide phases. The resulting suspension can be separated from the bulk solution with controlled pH adjustments to destabilize the oxide colloids, and a clear supernatant which results that can be recycled through the injection well without further waste treatment. 3 figs.

  7. Groundwater monitoring plan for the Hanford Site 200 Area Treated Effluent Disposal Facility

    SciTech Connect

    DB Barnett

    2000-05-17

    Seven years of groundwater monitoring at the 200 Area Treated Effluent Disposal Facility (TEDF) have shown that the uppermost aquifer beneath the facility is unaffected by TEDF effluent. Effluent discharges have been well below permitted and expected volumes. Groundwater mounding from TEDF operations predicted by various models has not been observed, and waterlevels in TEDF wells have continued declining with the dissipation of the nearby B Pond System groundwater mound. Analytical results for constituents with enforcement limits indicate that concentrations of all these are below Practical Quantitation Limits, and some have produced no detections. Likewise, other constituents on the permit-required list have produced results that are mostly below sitewide background. Comprehensive geochemical analyses of groundwater from TEDF wells has shown that most constituents are below background levels as calculated by two Hanford Site-wide studies. Additionally, major ion proportions and anomalously low tritium activities suggest that groundwater in the aquifer beneath the TEDF has been sequestered from influences of adjoining portions of the aquifer and any discharge activities. This inference is supported by recent hydrogeologic investigations which indicate an extremely slow rate of groundwater movement beneath the TEDF. Detailed evaluation of TEDF-area hydrogeology and groundwater geochemistry indicate that additional points of compliance for groundwater monitoring would be ineffective for this facility, and would produce ambiguous results. Therefore, the current groundwater monitoring well network is retained for continued monitoring. A quarterly frequency of sampling and analysis is continued for all three TEDF wells. The constituents list is refined to include only those parameters key to discerning subtle changes in groundwater chemistry, those useful in detecting general groundwater quality changes from upgradient sources, or those retained for comparison with end

  8. Dynamic Kinetics of Nitrogen Cycle in Groundwater-Surface Water Interaction Zone at Hanford Site

    NASA Astrophysics Data System (ADS)

    Liu, Y.; Liu, C.; Liu, Y.; Xu, F.; Yan, A.; Shi, L.; Zachara, J. M.; Gao, Y.; Qian, W.; Nelson, W.; Fredrickson, J.; Zhong, L.; Thompson, C.

    2015-12-01

    Nitrogen cycle carried out by microbes is an important geobiological process that has global implications for carbon and nitrogen cycling and climate change. This presentation describes a study of nitrogen cycle in groundwater-surface water interaction zone (GSIZ) at the US Department of Energy's Hanford Site. Groundwater at Hanford sites has long been documented with nitrate contamination. Nearby Columbia River stage changes of up to 3 m every day because of daily discharge fluctuation from upstream Priest Rapids Dam; resulting an exchange of groundwater and surface water in a short time period. Yet, nitrogen cycle in the GSIZ at Hanford Site remains unclear. Column studies have been used to identify nitrogen metabolism pathways and investigate kinetics of nitrogen cycle in groundwater saturated zone, surface water saturated zone, and GSIZ. Functional gene and protein abundances were determined by qPCR and PRISM-SRM (high-pressure, high-resolution separations coupled with intelligent selection and multiplexing for sensitive selected reaction monitoring) to identify key enzymatic reactions and metabolic pathways of nitrogen cycle. The results showed that dissimilatory nitrate reduction to ammonium (DNRA) competed with denitrification under anaerobic conditions, reducing 30% of NO3- to NH4+, a cation strongly retained on the sediments. As dissolved oxygen intruded the anaerobic zone with river water, NH4+ was oxidized to NO3-, increasing the mobility of NO3-. Multiplicative Monod models were established to describe nitrogen cycle in columns fed with O2 depleted synthetic groundwater and O2 saturated synthetic river water, respectively. The two models were then coupled to predict the dynamic kinetics of nitrogen cycle in GSIZ.

  9. Hanford Tank Waste Remediation Systems (TWRS) Waste Pretreatment Program strategy and issues

    SciTech Connect

    Gasper, K.A.

    1994-02-01

    The US Department of Energy (DOE) has established the Tank Waste Remediation System (TWRS) to safely manage an dispose of the Hanford Site tank waste. Pretreatment is one of the major program elements of the TWRS. The scope of the TWRS Tank Waste Pretreatment Program is to treat tank waste to separate it into high- and low-level waste fractions and to provide additional treatment as required to feed low-level waste fractions and to provide additional treatment as required to feed low-level and high-level waste immobilization processes. The Pretreatment Program activities include technology development, design, fabrication, construction, and operation of facilities to support the pretreatment of radioactive mixed waste retrieved from 28 large underground double-shell tanks and 149 single-shell tanks.

  10. Hydrogeologic controls on ground-water and contaminant discharge to the Columbia River near the Hanford Townsite

    SciTech Connect

    Luttrell, S.P.; Newcomer, D.R.; Teel, S.S.; Vermeul, V.R.

    1992-11-01

    The purpose of this study is to quantify ground-water and contaminant discharge to the Columbia River in the Hanford Townsite vicinity. The primary objectives of the work are to: describe the hydrogeologic setting and controls on ground-water movement and contaminant discharge to the Columbia River; understand the river/aquifer relationship and its effects on contaminant discharge to the Columbia River; quantify the ground-water and contaminant mass discharge to the Columbia River; and provide data that may be useful for a three-dimensional model of ground-water flow and contaminant transport in the Hanford Townsite study area. The majority of ground-water contamination occurs within the unconfined aquifer; therefore, ground-water and contaminant discharge from the unconfined aquifer is the emphasis of this study. The period of study is primarily from June 1990 through March 1992.

  11. Hydrogeologic controls on ground-water and contaminant discharge to the Columbia River near the Hanford Townsite

    SciTech Connect

    Luttrell, S.P.; Newcomer, D.R.; Teel, S.S.; Vermeul, V.R.

    1992-11-01

    The purpose of this study is to quantify ground-water and contaminant discharge to the Columbia River in the Hanford Townsite vicinity. The primary objectives of the work are to: describe the hydrogeologic setting and controls on ground-water movement and contaminant discharge to the Columbia River; understand the river/aquifer relationship and its effects on contaminant discharge to the Columbia River; quantify the ground-water and contaminant mass discharge to the Columbia River; and provide data that may be useful for a three-dimensional model of ground-water flow and contaminant transport in the Hanford Townsite study area. The majority of ground-water contamination occurs within the unconfined aquifer; therefore, ground-water and contaminant discharge from the unconfined aquifer is the emphasis of this study. The period of study is primarily from June 1990 through March 1992.

  12. An Adaptive Hybrid Genetic Algorithm for Improved Groundwater Remediation Design

    NASA Astrophysics Data System (ADS)

    Espinoza, F. P.; Minsker, B. S.; Goldberg, D. E.

    2001-12-01

    Identifying optimal designs for a groundwater remediation system is computationally intensive, especially for complex, nonlinear problems such as enhanced in situ bioremediation technology. To improve performance, we apply a hybrid genetic algorithm (HGA), which is a two-step solution method: a genetic algorithm (GA) for global search using the entire population and then a local search (LS) to improve search speed for only a few individuals in the population. We implement two types of HGAs: a non-adaptive HGA (NAHGA), whose operations are invariant throughout the run, and a self-adaptive HGA (SAHGA), whose operations adapt to the performance of the algorithm. The best settings of the two HGAs for optimal performance are then investigated for a groundwater remediation problem. The settings include the frequency of LS with respect to the normal GA evaluation, probability of individual selection for LS, evolution criterion for LS (Lamarckian or Baldwinian), and number of local search iterations. A comparison of the algorithms' performance under different settings will be presented.

  13. Groundwater monitoring plan for the Hanford Site 216-B-3 pond RCRA facility

    SciTech Connect

    Barnett, D.B.; Chou, C.J.

    1998-06-01

    The 216-B-3 pond system was a series of ponds for disposal of liquid effluent from past Hanford production facilities. In operation since 1945, the B Pond system has been a RCRA facility since 1986, with Resource Conservation and Recovery Act (RCRA) interim-status groundwater monitoring in place since 1988. In 1994, discharges were diverted from the main pond, where the greatest potential for contamination was thought to reside, to the 3C expansion pond. In 1997, all discharges to the pond system were discontinued. In 1990, the B Pond system was elevated from detection groundwater monitoring to an assessment-level status because total organic halogens and total organic carbon were found to exceed critical means in two wells. Subsequent groundwater quality assessment failed to find any specific hazardous waste contaminant that could have accounted for the exceedances, which were largely isolated in occurrence. Thus, it was recommended that the facility be returned to detection-level monitoring.

  14. Fiscal Year 2010 Program of the U.S. DOE Office of Groundwater and Soil Remediation

    SciTech Connect

    Chamberlain, G. M.; Skubal, Karen L.; Wellman, Dawn M.

    2011-03-07

    The mission of the Office of Groundwater and Soil Remediation (EM-32) is to perform assessments, establish technical criteria and promote cross-site integration. The Office provides guidance for the development and implementation of plans for remediation of groundwater and is responsible for development of technologies needed to reduce risk from groundwater contamination. It is also responsible for providing technical direction and/or assistance to sites in resolving difficult technical groundwater and soil remediation problems. This paper discusses the activities funded by EM-32 for FY-2010.

  15. INTERIM BARRIER AT HANFORDS TY FARM TO PROTECT GROUNDWATER AT THE HANFORD SITE WASHINGTON USA

    SciTech Connect

    PARKER DL; HOLM MJ; HENDERSON JC; LOBER RW

    2011-01-13

    An innovative interim surface barrier was constructed as a demonstration project at the Hanford Site's TY Tank Farm. The purpose of the demonstration barrier is to stop rainwater and snowmelt from entering the soils within the tank farm and driving contamination from past leaks and spills toward the ground water. The interim barrier was constructed using a modified asphalt material with very low permeability developed by MatCon{reg_sign}. Approximately 2,400 cubic yards of fill material were added to the tank farm to create a sloped surface that will gravity drain precipitation to collection points where it will be routed through buried drain lines to an evapotranspiration basin adjacent to the farm. The evapotranspiration basin is a lined basin with a network of perforated drain lines covered with soil and planted with native grasses. The evapotranspiration concept was selected because it prevents the runoff from percolating into the soil column and also avoids potential monitoring and maintenance issues associated with standing water in a traditional evaporation pond. Because of issues associated with using standard excavation and earth moving equipment in the farm a number of alternate construction approaches were utilized to perform excavations and prepare the site for the modified asphalt.

  16. Deep Aquifer Remediation Tools (DARTs): A new technology for ground-water remediation

    USGS Publications Warehouse

    Naftz, David L.; Davis, James A.

    1999-01-01

    Potable ground-water supplies throughout the world are contaminated or threatened by advancing plumes containing radionuclides, metals, and organic compounds. Currently (1999), the most widely used method of ground-water remediation is a combination of extraction, ex-situ treatment, and discharge of the treated water, commonly known as pump and treat. Pump-and-treat methods are costly and often ineffective in meeting long-term protection standards (Travis and Doty, 1990; Gillham and Burris, 1992; National Research Council, 1994). This fact sheet describes a new and potentially cost-effective technology for removal of organic and inorganic contaminants from ground water. The U.S. Geological Survey (USGS) is currently exploring the possibilities of obtaining a U.S. Patent for this technology.

  17. A co-metabolic approach to groundwater remediation

    SciTech Connect

    Palumbo, A.V.; Boerman, P.A.; Strandberg, G.W.; Donaldson, T.L.; Jennings, H.L.; Lucero, A.J.; Herbes, S.E. ); Phelps, T.J.; White, D.C. . Inst. for Applied Microbiology)

    1991-01-01

    In support of the US Department of Energy's (DOE) Integrated Demonstration (Cleanup of Organics in Soils and Groundwater at Non-arid Sites) at the Savannah River Site (SRS), Oak Ridge National Laboratory (ORNL) and the University of Tennessee (UT) are involved in demonstrations of the use of methanotrophs in bioreactors for remediation of contaminated groundwater. In preparation for a field demonstration at ORNL's K-25 Site in Oak Ridge, Tennessee, ORNL is conducting batch experiments, is operating a number of bench-scale bioreactors, has designed pretreatment systems, and has modified a field-scale bioreactor provided by the Air Force Engineering and Services Center for use at the site. UT is operating bench-scale bioreactors with the goal of determining the stability of a trichloroethylene-degrading methanotrophic consortia during shifts in operating conditions (e.g. pH, nutrient inputs, and contaminant mixtures). These activities are all aimed at providing the knowledge base necessary for successful treatment of contaminated groundwater at the SRS and K-25 sites as well as other DOE sites. 18 refs., 1 fig. , 1 tab.

  18. Harnessing federal environmental expertise and focusing it on streamlining characterization and remediation at DOE`s Hanford Site

    SciTech Connect

    Erickson, J.K.; Kane, D.A.; McGarry, T.A.

    1993-03-01

    At the US Department of Energy, Richland Field Office (DOE-RL) Hanford Site, environmental restoration is conducted under a Tri-Party Federal Facility Agreement between DOE-RL, the Environmental Protection Agency (EPA) and the Washington State Department of Ecology (Ecology). One result of a dispute resolution was the requirement to conduct an independent review of the policies, procedures, processes, and work practices associated with remedial investigation/feasibility study (RI/FS) activity at Hanford with a goal of reducing it to 30 months. Sixteen experienced and respected federal Environmental Restoration Program/Project Managers were brought to Hanford for a two-week intensive review of the program. This paper outlines the reasons for this tactic, the mechanics of funding the process, and the benefits of this unique approach.

  19. Hanford Site ground-water monitoring for July through December 1987

    SciTech Connect

    Evans, J.C.; Dennison, D.I.; Bryce, R.W.; Mitchell, P.J.; Sherwood, D.R.; Krupka, K.M.; Hinman, N.W.; Jacobson, E.A.; Freshley, M.D.

    1988-12-01

    The Pacific Northwest Laboratory monitors ground-water quality at the Hanford Site for the US Department of Energy to assess the impact of Site operations on the environment. Work undertaken between July and December 1987 included monitoring ground-water elevations across the Site, monitoring hazardous chemicals and radionuclides in ground water, geochemical evaluations of unconfined ground-water data, and calibration of ground-water flow and transport models. Water levels continued to rise in areas receiving increased recharge (e.g., beneath B Pond) and decline in areas where the release of water to disposal facilities has been terminated (e.g., U Pond). The major areas of ground-water contamination defined by monitoring activities are (1) carbon tetrachloride in the 200-West Area; (2) cyanide in and north of the 200-East and 200-West Areas; (3) hexavalent chromium contamination in the 100-B, 100-D, 100-F, 100-H, 100-K, and 200-West Areas; (4) chlorinated hydrocarbons in the vicinity of the Central Landfill and 300 Area; (5) uranium in the 100-F, 100-H, 200-West, and 300 Areas; and (6) tritium and nitrate across the Site. The MINTEQ geochemical code was used to identify chemical reactions that may be affecting the concentrations of dissolved hazardous chemicals in the unconfined ground water. Results indicate that many cations are present mainly as dissolved carbonate complexes and that a majority of the ground-water samples are in near equilibrium with carbonate minerals (e.g., calcite, dolomite, otavite).

  20. Selection of Sampling Pumps Used for Groundwater Monitoring at the Hanford Site

    SciTech Connect

    Schalla, Ronald; Webber, William D.; Smith, Ronald M.

    2001-11-05

    The variable frequency drive centrifugal submersible pump, Redi-Flo2a made by Grundfosa, was selected for universal application for Hanford Site groundwater monitoring. Specifications for the selected pump and five other pumps were evaluated against current and future Hanford groundwater monitoring performance requirements, and the Redi-Flo2 was selected as the most versatile and applicable for the range of monitoring conditions. The Redi-Flo2 pump distinguished itself from the other pumps considered because of its wide range in output flow rate and its comparatively moderate maintenance and low capital costs. The Redi-Flo2 pump is able to purge a well at a high flow rate and then supply water for sampling at a low flow rate. Groundwater sampling using a low-volume-purging technique (e.g., low flow, minimal purge, no purge, or micropurgea) is planned in the future, eliminating the need for the pump to supply a high-output flow rate. Under those conditions, the Well Wizard bladder pump, manufactured by QED Environmental Systems, Inc., may be the preferred pump because of the lower capital cost.

  1. Selection of Sampling Pumps Used for Groundwater Monitoring at the Hanford Site

    SciTech Connect

    Schalla, Ronald; Webber, William D; Smith, Ronald M

    2001-11-05

    The variable frequency drive centrifugal submersible pump, Redi-Flo2a made by Grundfosa, was selected for universal application for Hanford Site groundwater monitoring. Specifications for the selected pump and five other pumps were evaluated against current and future Hanford groundwater monitoring performance requirements, and the Redi-Flo2 was selected as the most versatile and applicable for the range of monitoring conditions. The Redi-Flo2 pump distinguished itself from the other pumps considered because of its wide range in output flow rate and its comparatively moderate maintenance and low capital costs. The Redi-Flo2 pump is able to purge a well at a high flow rate and then supply water for sampling at a low flow rate. Groundwater sampling using a low-volume-purging technique (e.g., low flow, minimal purge, no purge, or micropurges) is planned in the future, eliminating the need for the pump to supply a high-output flow rate. Under those conditions, the Well Wizard bladder pump, manufactured by QED Environmental Systems, Inc., may be the preferred pump because of the lower capital cost.

  2. Water-Level Monitoring Plan for the Hanford Groundwater Monitoring Project

    SciTech Connect

    McDonald, John P.; Chamness, Michele A.; Newcomer, Darrell R.

    1999-09-07

    This document presents the water-level monitoring plan for the Hanford Groundwater Monitoring Project, conducted by the Pacific Northwest National Laboratory (PNNL). Water-level monitoring of the groundwater system beneath the Hanford Site is performed to fulfill the requirements of various state and federal regulations, orders, and agreements. The primary objective of this monitoring is to determine groundwater flow rates and directions. To meet this and other objectives, water-levels are measured annually in monitoring wells completed within the unconfined aquifer system, the upper basalt-confined aquifer system, and in the lower basalt-confined aquifers for surveillance monitoring. At regulated waste units, water levels are taken monthly, quarterly, semi-annually, or annually, depending on the hydrogeologic conditions and regulatory status of a given site. The techniques used to collect water-level data are described in this document, along with the factors that affect the quality of the data and the strategies employed by the project to minimize error in the measurement and interpretation of water levels.

  3. REMEDIATION OF NITRATE-CONTAMINATED GROUNDWATER USING A BIOBARRIER

    SciTech Connect

    B. STRIETELMEIR; ET AL

    2000-12-01

    A biobarrier system has been developed for use in remediating shallow alluvial groundwater. This barrier is made from highly porous materials that are relatively long-lasting, carbon-based (to supply a limiting nutrient in nitrate destruction, in most cases), and extremely inexpensive and easy to emplace. In a series of laboratory studies, we have determined the effectiveness of this barrier at destroying nitrate and perchlorate in groundwater from Mortandad Canyon at Los Alamos National Laboratory (LANL). This groundwater was obtained from a monitoring well, MCO-5, which is located in the flowpath of the discharge waters from the LANL Radioactive Liquid Waste Treatment Facility (RLWTF). Water with elevated nitrate levels has been discharged from this plant for many years, until recently when the nitrate levels have been brought under the discharge limits. However, the historical discharge has resulted in a nitrate plume in the alluvial groundwater in this canyon. The LANL Multi-Barrier project was initiated this past year to develop a system of barriers that would prevent the transport of radionuclides, metals, colloids and other contaminants, including nitrate and perchlorate, further down the canyon in order to protect populations down-gradient. The biobarrier. will be part of this Multi-Barrier system. We have demonstrated the destruction of nitrate at levels up to 6.5-9.7 mhl nitrate (400-600 mg/L), and that of perchlorate at levels of about 4.3 {micro}M perchlorate (350 ppb). We have quantified the populations of microorganisms present in the biofilm that develops on the biobarrier. The results of this research will be discussed along with other potential applications of this system.

  4. REMEDIATION OF NITRATE-CONTAMINATED GROUNDWATER USING A BIOBARRIER

    SciTech Connect

    B. STRIETELMEIER; M. ESPINOSA

    2001-01-01

    A biobarrier system has been developed for use in remediating shallow alluvial groundwater. This barrier is made from highly porous materials that are relatively long-lasting, carbon-based (to supply a limiting nutrient in nitrate destruction, in most cases), extremely inexpensive, and easy to replace. In a series of laboratory studies, we have determined the effectiveness of this barrier at destroying nitrate and perchlorate in groundwater from Mortandad Canyon at Los Alamos National Laboratory (LANL). This groundwater was obtained from a monitoring well, MCO-5, which is located in the flowpath of the discharge waters from the LANL Radioactive Liquid Waste Treatment Facility (RLWTF). Water with elevated nitrate levels was discharged from this plant for many years. Recently, the nitrate levels have been brought under the discharge limits. However, the historical discharge has resulted in a nitrate plume in the alluvial groundwater in this canyon. The LANL Multi-Barrier project was initiated in 1999 to develop a system of barriers that would prevent the transport of radionuclides, metals, colloids and other contaminants, including nitrate and perchlorate, further down the canyon in order to protect populations down-gradient. The biobarrier will be part of this Multi-Barrier system. We have demonstrated the destruction of nitrate at levels up to 6.5-9.7 mM nitrate (400-600 mg/L), and that of perchlorate at levels of about 4.3 {micro}M perchlorate (350 ppb). We have quantified the populations of microorganisms present in the biofilm that develops on the biobarrier. The results of this research will be discussed along with other potential applications of this system.

  5. Assessment of potential impacts of major groundwater contaminants to fall chinook salmon (Oncorhynchus tshawytscha) in the Hanford Reach, Columbia River

    SciTech Connect

    Geist, D.R.; Poston, T.M.; Dauble, D.D.

    1994-10-01

    Past operations of Hanford Site facilities have contaminated the groundwater adjacent to the Hanford Reach of the Columbia River, Washington, with various chemical and radiological constituents. The groundwater is hydraulically connected to the river and contains concentrations of contaminants that sometimes exceed federal and/or state drinking water standards or standards for the protection of aquatic life. For example, concentrations of chromium in shoreline seeps and springs at most 100 Area operable units exceed concentrations found to be toxic to fish. Nitrate and tritium concentrations in shoreline seeps are generally below drinking water standards and concentrations potentially toxic to aquatic life, but nitrate concentrations may be high enough to synergistically interact with and exacerbate chromium toxicity. The Hanford Reach also supports the largest run of fall chinook salmon (Oncorhynchus tshawytscha) in the Columbia River Basin. Numbers of fall chinook salmon returning to the Hanford Reach have increased relative to other mainstem populations during the last 30 years. Groundwater discharge appears to occur near some salmon spawning areas, but contaminants are generally not detectable in surface water samples. The concentration and potential toxicity of contaminants in the interstitial waters of the substrate where fall chinook salmon embryogenesis occurs are presently unknown. New tools are required to characterize the extent of groundwater contaminant discharge to the Hanford Reach and to resolve uncertainties associated with assessment of potential impacts to fall chinook salmon.

  6. Groundwater Monitoring Plan for the Hanford Site 216-B-3 Pond RCRA Facility

    SciTech Connect

    Barnett, D. Brent; Smith, Ronald M.; Chou, Charissa J.

    2000-11-28

    The 216-B-3 Pond was a series of ponds for disposal of liquid effluent from past Hanford production facilities. In 1990, groundwater monitoring at B Pond was elevated from "detection" to assessment status because total organic halides and total organic carbon were found to exceed critical means in two wells. Groundwater quality assessment, which ended in 1996, failed to find any specific hazardous waste contaminant that could have accounted for the isolated occurrences of elevated total organic halides and total organic carbon. Hence, the facility was subsequently returned to detection-level monitoring in 1998. Exhaustive groundwater analyses during the assessment period indicated that only two contaminants, tritium and nitrate, could be positively attributed to the B Pond System, with two others (arsenic and I-129) possibly originating from B Pond. Chemical and radiological analyses of soil at the main pond and 216-B-3-3 ditch has not revealed significant contamination. Based on the observed, minor contamination in groundwater and in the soil column, three parameters were selected for site-specific, semiannual monitoring; gross alpha, gross beta, and specific conductance. Total organic halides and total organic carbon are included as constituents because of regulatory requirements. Nitrate, tritium, arsenic, and iodine-129 will be monitored under the aegis of Hanford site-wide monitoring. Although the B Pond System is not scheduled to advance from RCRA interim status to final status until the year 2003, a contingency plan for an improved monitoring strategy, which will partially emulate final status requirements, will be contemplated before the official change to final status. This modification will allow a more sensible and effective screening of groundwater for the facility.

  7. Uncertainty Analysis Framework - Hanford Site-Wide Groundwater Flow and Transport Model

    SciTech Connect

    Cole, Charles R.; Bergeron, Marcel P.; Murray, Christopher J.; Thorne, Paul D.; Wurstner, Signe K.; Rogers, Phillip M.

    2001-11-09

    Pacific Northwest National Laboratory (PNNL) embarked on a new initiative to strengthen the technical defensibility of the predictions being made with a site-wide groundwater flow and transport model at the U.S. Department of Energy Hanford Site in southeastern Washington State. In FY 2000, the focus of the initiative was on the characterization of major uncertainties in the current conceptual model that would affect model predictions. The long-term goals of the initiative are the development and implementation of an uncertainty estimation methodology in future assessments and analyses using the site-wide model. This report focuses on the development and implementation of an uncertainty analysis framework.

  8. Value tradeoffs for the Hanford Tank Waste Remediation System (TWRS) program

    SciTech Connect

    Keeney, R.L.; Winterfeldt, D. von

    1997-09-01

    The Tank Waste Remediation System (TWRS) program at the Hanford Site of the Department of Energy has adopted a logical approach to making decisions that uses decision analysis to structure and analyze decision alternatives and public values to evaluate them. This report is the third in a series to support this effort. The first identified a set of objectives (called {open_quotes}ends objectives{close_quotes}) that characterize the ultimate goals and desires of Hanford decision makers and stakeholders. The second report developed operational measures for these ends objectives (called {open_quotes}ends measures{close_quotes}) and it also developed a set of performance objectives and associated performance measures that are more directly related to how well decision alternatives in the TWRS program perform to achieve the ends objectives. The present report describes the development of quantitative value tradeoffs for both the ends measures and the performance measures. First, five national value experts were interviewed to obtain value tradeoffs for units of the ends measures identified in Keeney and von Winterfeldt (1996). The results of this assessment are shown in Table S1. Second, the implied value tradeoffs for the units of the performance measures were calculated from the value tradeoffs for units of the ends measures provided by the national experts. When calculating the value tradeoffs for the units of the performance measures, very simple quantitative relationships between ends and performance measures were assumed. The results of this calculation are shown in Table S2. The results of this report shown in Tables S1 and S2 should be considered preliminary and largely illustrative of the principles for developing value tradeoffs. The report lists several important caveats and recommendations for how future work can improve on the assessment of value tradeoffs.

  9. Chromium Toxicity Test for Fall Chinook Salmon (Oncorhynchus tshawytscha) Using Hanford Site Groundwater: Onsite Early Life-Stage Toxicity Evaluation

    SciTech Connect

    Patton, Gregory W.; Dauble, Dennis D.; Chamness, Michele A.; Abernethy, Cary S.; McKinstry, Craig A.

    2001-07-10

    The objective of this study was to evaluate site-specific effects for early life-stage (eyed eggs to free swimming juveniles) fall chinook salmon that might be exposed to hexavalent chromium from Hanford groundwater sources. Our exposure conditions included hexavalent chromium obtained from Hanford groundwater wells near the Columbia River, Columbia River water as the diluent, and locally adapted populations of fall chinook salmon. This report describes both a 96-hr pretest using rainbow trout eggs and an early life-stage test beginning with chinook salmon eggs.

  10. Chromium Toxicity Test for Fall Chinook Salmon (Oncorhynchus tshawytscha) Using Hanford Site Groundwater: Onsite Early Life-Stage Toxicity Evaluation

    SciTech Connect

    Patton, Gregory W; Dauble, Dennis D; Chamness, Mickie A; Abernethy, Cary S; McKinstry, Craig A

    2001-07-10

    The objective of this study was to evaluate site-specific effects for early life-stage (eyed eggs to free swimming juveniles) fall chinook salmon that might be exposed to hexavalent chromium from Hanford groundwater sources. Our exposure conditions included hexavalent chromium obtained from Hanford groundwater wells near the Columbia River, Columbia River water as the diluent, and locally adapted populations of fall chinook salmon. This report describes both a 96-hr pretest using rainbow trout eggs and an early life-stage test beginning with chinook salmon eggs.

  11. Resource conservation and recovery act ground-water monitoring projects for Hanford facilities: Progress report, January 1--March 31, 1989

    SciTech Connect

    Smith, R.M.; Bates, D.J.; Lundgren, R.E.

    1989-06-01

    This document describes the progress of 13 Hanford Site ground-water monitoring projects for the period January 1 to March 31, 1989. The work described in this document is conducted by the Pacific Northwest Laboratory under the management of Westinghouse Hanford Company for the US Department of Energy. Concentrations of ground-water constituents are compared to federal drinking water standards throughout this document for reference purposes. All drinking water supplied from the sampled aquifer meets regulatory standards for drinking water quality. 32 refs., 30 figs., 103 tabs.

  12. Technetium-99 in Groundwater at Hanford Well 299-W23-19 Option Analysis & Recommended Action Report

    SciTech Connect

    MYERS, D.A.

    2002-04-01

    Feasibilities options report for remediation of contamination of groundwater Well 299-W23-19 CHG-0102661R1. Document results of aquifer testing & groundwater sampling 12/2001 & 01/2002. Path fwd. Corrective actions Technetium-99 in groundwater Well 299-W23-19.

  13. Design Optimization for Multiple Management Period Groundwater Remediation

    NASA Astrophysics Data System (ADS)

    Rizzo, Donna M.; Dougherty, David E.

    1996-08-01

    A technique for obtaining a (nearly) optimal scheme using multiple management periods has been developed. The method has been developed for very large scale combinatorial optimization problems. Simulated annealing has been extended to this problem. An importance function is developed to accelerate the search for good solutions. These tools have been applied to groundwater remediation problems at Lawrence Livermore National Laboratory (LLNL). A deterministic site-specific engineering-type flow and transport model (based on the public domain code SUTRA) is combined with the heuristic optimization technique. The objective is to obtain the time-varying optimal locations of the remediation wells that will reduce concentration levels of volatile organic chemicals in groundwater below a given threshold at specified areas on the LLNL site within a certain time frame and subject to a variety of realistic complicating factors. The cost function incorporates construction costs, operation and maintenance costs for injection and extraction wells, costs associated with piping and treatment facilities, and a performance penalty for well configurations that generate flow and transport simulations that exceed maximum concentration levels at specified locations. The resulting application reported here comprises a huge optimization problem. The importance function detailed in this paper has led to rapid convergence to solutions. The performance penalty allows different goals to be imposed on different geographical regions of the site; in this example, short-term off-site plume containment and long-term on-site cleanup are imposed. The performance of the optimization scheme and the effects of various trade-offs in management objectives are explored through examples using the LLNL site.

  14. Scientific Opportunity to Reduce Risk in Groundwater and Soil Remediation

    SciTech Connect

    Pierce, Eric M.; Freshley, Mark D.; Hubbard, Susan S.; Looney, Brian B.; Zachara, John M.; Liang, Liyuan; Lesmes, D.; Chamberlain, G. M.; Skubal, Karen L.; Adams, V.; Denham, Miles E.; Wellman, Dawn M.

    2009-08-25

    In this report, we start by examining previous efforts at linking science and DOE EM research with cleanup activities. Many of these efforts were initiated by creating science and technology roadmaps. A recurring feature of successfully implementing these roadmaps into EM applied research efforts and successful cleanup is the focus on integration. Such integration takes many forms, ranging from combining information generated by various scientific disciplines, to providing technical expertise to facilitate successful application of novel technology, to bringing the resources and creativity of many to address the common goal of moving EM cleanup forward. Successful projects identify and focus research efforts on addressing the problems and challenges that are causing “failure” in actual cleanup activities. In this way, basic and applied science resources are used strategically to address the particular unknowns that are barriers to cleanup. The brief descriptions of the Office of Science basic (Environmental Remediation Science Program [ERSP]) and EM’s applied (Groundwater and Soil Remediation Program) research programs in subsurface science provide context to the five “crosscutting” themes that have been developed in this strategic planning effort. To address these challenges and opportunities, a tiered systematic approach is proposed that leverages basic science investments with new applied research investments from the DOE Office of Engineering and Technology within the framework of the identified basic science and applied research crosscutting themes. These themes are evident in the initial portfolio of initiatives in the EM groundwater and soil cleanup multi-year program plan. As stated in a companion document for tank waste processing (Bredt et al. 2008), in addition to achieving its mission, DOE EM is experiencing a fundamental shift in philosophy from driving to closure to enabling the long-term needs of DOE and the nation.

  15. U.S. Department of Energy/Environmental Management's Office of Groundwater and Soil Remediation Strategy

    SciTech Connect

    Magnuson, C.

    2007-07-01

    The vision for the Office of Groundwater and Soil Remediation is to focus and place high visibility on program achievements and broad-based remediation challenges and uncertainties facing the Office of Environmental Management. These include, but are not limited to, the development of contract performance measures; monitoring and controlling the cleanup investments for remediating groundwater and soil; finding and implementing interim and permanent cleanup remedies for technetium-99, strontium-90, chromium, uranium, and trichloroethylene; the development and use of sophisticated groundwater and fate and transport models; presenting the best science and engineering principles and practices for remediating groundwater and soil to environmental regulators and other key stakeholders; and ensuring that all source terms of contamination are fully identified and all sites are appropriately characterized. (authors)

  16. Stochastic goal programming based groundwater remediation management under human-health-risk uncertainty.

    PubMed

    Li, Jing; He, Li; Lu, Hongwei; Fan, Xing

    2014-08-30

    An optimal design approach for groundwater remediation is developed through incorporating numerical simulation, health risk assessment, uncertainty analysis and nonlinear optimization within a general framework. Stochastic analysis and goal programming are introduced into the framework to handle uncertainties in real-world groundwater remediation systems. Carcinogenic risks associated with remediation actions are further evaluated at four confidence levels. The differences between ideal and predicted constraints are minimized by goal programming. The approach is then applied to a contaminated site in western Canada for creating a set of optimal remediation strategies. Results from the case study indicate that factors including environmental standards, health risks and technical requirements mutually affected and restricted themselves. Stochastic uncertainty existed in the entire process of remediation optimization, which should to be taken into consideration in groundwater remediation design.

  17. Transuranic Contamination in Sediment and Groundwater at the U.S. DOE Hanford Site

    SciTech Connect

    Cantrell, Kirk J.

    2009-08-20

    A review of transuranic radionuclide contamination in sediments and groundwater at the DOE’s Hanford Site was conducted. The review focused primarily on plutonium-239/240 and americium-241; however, other transuranic nuclides were discussed as well, including neptunium-237, plutonium-238, and plutonium-241. The scope of the review included liquid process wastes intentionally disposed to constructed waste disposal facilities such as trenches and cribs, burial grounds, and unplanned releases to the ground surface. The review did not include liquid wastes disposed to tanks or solid wastes disposed to burial grounds. It is estimated that over 11,800 Ci of plutonium-239, 28,700 Ci of americium-241, and 55 Ci of neptunium-237 have been disposed as liquid waste to the near surface environment at the Hanford Site. Despite the very large quantities of transuranic contaminants disposed to the vadose zone at Hanford, only minuscule amounts have entered the groundwater. Currently, no wells onsite exceed the DOE derived concentration guide for plutonium-239/240 (30 pCi/L) or any other transuranic contaminant in filtered samples. The DOE derived concentration guide was exceeded by a small fraction in unfiltered samples from one well (299-E28-23) in recent years (35.4 and 40.4 pCi/L in FY 2006). The primary reason that disposal of these large quantities of transuranic radionuclides directly to the vadose zone at the Hanford Site has not resulted in widespread groundwater contamination is that under the typical oxidizing and neutral to slightly alkaline pH conditions of the Hanford vadose zone, transuranic radionuclides (plutonium and americium in particular) have a very low solubility and high affinity for surface adsorption to mineral surfaces common within the Hanford vadose zone. Other important factors are the fact that the vadose zone is typically very thick (hundreds of feet) and the net infiltration rate is very low due to the desert climate. In some cases where

  18. Biogeochemical Considerations Related To The Remediation Of I-129 Plumes

    SciTech Connect

    Kaplan, D. I.; Yeager, C.; Denham, M. E.; Zhang, S.; Xu, C.; Schwehr, K. A.; Li, H. P.; Brinkmeyer, R.; Santschi, P. H.

    2012-09-24

    The objectives of this report were to: provide a current state of the science of radioiodine biogeochemistry relevant to its fate and transport at the Hanford Site; conduct a review of Hanford Site data dealing with groundwater {sup 129}I; and identify critical knowledge gaps necessary for successful selection, implementation, and technical defensibility in support of remediation decisions.

  19. Reclamation and groundwater remediation at a hydrocarbon site in Alaska

    SciTech Connect

    Ririe, G.T.; Drake, L.D.; Olson, S.S.

    1997-12-31

    As part of a joint hydrocarbon cleanup project between Unocal and Marathon, we have initiated the use of constructed wetlands for restoration of the 40-acre Poppy Lane gravel pit located near Kenai, Alaska. Gravel excavated from this site was used to construct roads and drilling pads in the 1960`-70`s. During this period it was also used as a refuse dump for waste from the Kenai gas field and from local residents. The bulk wastes were removed and pockets of oily sand were removed, treated and returned to a stockpile on the site. This left the site with residual pockets of hydrocarbon-impacted sand (<1000 TPH) plus traces of hydrocarbon contamination in the uppermost shallow groundwater flowing through the outwash gravels. The final part of the cleanup will be land restoration and bioremediation of the final traces of hydrocarbons, which are predominantly diesel-range. High resolution gas chromatography analysis indicated that common plants already growing on the site (willow, cottonwood, and alder) did not concentrate diesel-range petroleum hydrocarbons in their foliage when growing in soils containing these contaminants. As part of the planned restoration and shallow groundwater remediation, two 1/3 acre test plots were constructed to promote in-situ biodegradation processes. In spring 1995, the first test, a tree root-barrier plot, was planted with dormant cuttings of four native wetland tree and shrub species, which were planted to depths up to five feet. Alder and elderberry did not succeed under any conditions, nor did any species planted in standing water. For cottonwood and willow species, approximately one half of each rooted and survived. When the water table dropped the second year, the willow cuttings rooted deeper in the vadose zone, while cottonwood did not. As a result of these findings, a tree root-barrier wetland is not considered to be a viable option for groundwater treatment at Poppy Lane.

  20. Remedial investigation Phase 2 supplemental work plan for the Hanford Site 1100-EM-1 Operable Unit

    SciTech Connect

    Not Available

    1991-09-01

    The 1100 Area, the central warehousing, vehicle maintenance, and transportation operations center for the Hanford Site, was designated an (NPL) National Priorities List site in July 1989. This NPL site was divided into four operable units, and the first equipment maintenance operable unit, 1100-EM-1, was assigned the highest priority. The following summary focuses on the major issues related to contaminant sources, meteorology, surface hydrology, geology, pedology, hydrogeology, and ecology. The 110-EM-1 Phase 1 R1 report recommended further investigation at six waste management units assigned to or within the operable unit. 1100-1 (Battery Acid Pit)--an unlined dry sump, or french drain, used for the disposal of waste acid from vehicle batteries; 1100-2 (Paint and solvent Pit)--a former sand and gravel pit subsequently used for the disposal of construction debris and, reportedly, waste paints, thinner, and solvents; 1100-4 (Antifreeze Tank Site)--The site of a former underground storage tank used for the disposal of waste vehicle antifreeze; UN-1100-6 (Discolored Soil Site)--the location of an apparent disposal event onto the ground surface involving a container of organic waste liquids; Horn Rapids Landfill--a solid waste facility used primarily for the disposal of office and construction waste and the burning of classified documents; asbestos, sewage sludge, fly ash, and, potentially, drums of unidentified organic liquids alleged to be disposed at this location; and Ephemeral Pool--the location of 1100 Area parking lot runoff accumulation during infrequent, high-intensity precipitation events. This remedial investigation supplemental work plan details the efforts for final characterization of the 1100-EM-1 Operable Unit that will provide data to be used for the evaluation of remedial operations in the Phase 3 1100-EM-1 feasibility study. 19 refs., 28 figs., 2 tabs.

  1. Locating Ground-Water Discharge in the Hanford Reach of the Columbia River

    SciTech Connect

    Lee, D.R.; Geist, D.R.; Saldi, K.; Hartwig, D.; Cooper, T.

    1997-03-01

    A bottom-contacting probe for measuring electrical conductivity at the sediment-water interface was used to scan the bed of the Columbia River adjacent to the Hanford Site in southeast Washington State during a 10-day investigation. Four river-sections, each about a kilometer in length, were scanned for variations in electrical conductivity. The probe was towed along the riverbed at a speed of 1 m/s and is position was recorded using a Global Positioning System. The bottom tows revealed several areas of elevated electrical conductivity. Where these anomalies were relatively easy to access, piezometers were driven into the riverbed and porewater electrical conductivity ranged from 111 to 150 uS/cm. The piezometers, placed in electrical conductivity “hotspots,” yielded chemical or isotopic data consistent with previous analyses of water taken from monitoring wells and visible shoreline seeps. Tritium, nitrate, and chromium exceeded water quality standards in some porewaters. The highest tritium and nitrate levels were found near the Old Hanford Townsite at 120,000 pCi/L (+ 5,880 pCi/L total propagated analytical uncertainty) and ug/L (+ 5,880 ug/L), respectively. The maximum chromium (total and hexavalent) levels were found near 100-H reactor area where unfiltered porewater total chromium was 1,900 ug/L (+ 798 ug/L) and hexavalent chromium was 20 ug/L. The electrical conductivity probe provided rapid, cost-effective reconnaissance for ground-water discharge areas when used in combination with conventional piezometers. It may be possible to obtain quantitative estimates of both natural and contaminated ground-water discharge in the Hanford Reach with more extensive surveys of river bottom.

  2. Initial Implementation of the Hanford Site-Wide Groundwater Flow and Uncertainty Analysis Framework

    NASA Astrophysics Data System (ADS)

    Cole, C. R.; Vermeul, V. R.; Freedman, V. L.; Bergeron, M. P.

    2002-05-01

    Since Hanford operations began in 1943, large volumes of wastewater have been discharged into the subsurface, creating groundwater mounds (> 20m) and regional-scale contaminant plumes that will require monitoring at least through site closure. Since the cessation of wastewater disposal activities in 1988, many of the ~700 monitoring wells that previously documented mounding and contaminant movement are currently going dry. An initial implementation of the Hanford Site uncertainty methodology presented in this paper and a companion poster, investigates which of the ~700 monitoring wells are likely to go dry between now and 2050. The long-term goals of the Pacific Northwest National Laboratory effort at Hanford include the development and implementation of an uncertainty methodology with the site-wide groundwater flow and transport model. Results are presented for two different conceptual models of the base of the unconfined aquifer. Model parameter uncertainty was determined through transient inverse modeling (1943-1996) using UCODE and ~76,000 historical observations of head. Since an analysis of model linearity using Beale's measure indicated that the model was sufficiently linear, the uncertainty in predicted future water levels was determined using linear confidence and prediction intervals. Both a steady-state and a transient case (1996-2050) were investigated in order to determine which of the current monitoring wells are likely to go dry. Results demonstrated that the uncertainty methodology can be used to evaluate the potential loss of existing monitoring wells in strategic locations, and to assist in the development of a long-term strategy for their replacement. Pacific Northwest National Laboratory is operated for the U.S. Department of Energy under Contract DE-AC06-76RL01830.

  3. Groundwater remediation from the past to the future: A bibliometric analysis.

    PubMed

    Zhang, Shu; Mao, Guozhu; Crittenden, John; Liu, Xi; Du, Huibin

    2017-08-01

    Groundwater is an important component of terrestrial ecosystems and plays a role in geochemical cycling. Groundwater is also used for agricultural irrigation and for the domestic supply of drinking water in most nations. However, groundwater contamination has led to many research efforts on groundwater remediation technologies and strategies. This study evaluated a total of 5486 groundwater remediation-related publications from 1995 to 2015 using bibliometric technology and social network analysis, to provide a quantitative analysis and a global view on the current research trend and future research directions. Our results underline a strong research interest and an urgent need to remediate groundwater pollution due to the increasing number of both groundwater contamination and remediation publications. In the past two decades, the United States (U.S.) published 41.1% of the papers and it was the core country of the international collaboration network, cooperating with the other 19 most productive countries. Besides the active international collaboration, the funding agencies also played positive roles to foster the science and technology publications. With respect to the analysis of the distribution of funding agencies, the National Science Foundation of China sponsored most of the groundwater remediation research. We also identified the most productive journals, Environmental Science and Technology and Journal of Contaminant Hydrology, which published 334 and 259 scientific articles (including research articles and reviews) over the past 20 years, respectively. In addition to journal publications, a patent analysis was performed to show the impact of intellectual property protection on journal publications. Three major remediation technologies, including chemical oxidation, biodegradation and adsorption, have received increasing interest in both journal publication and patent development. Our results provide a valuable reference and global overview to identify

  4. Alternative Endpoints and Approaches Selected for the Remediation of Contaminated Groundwater at Complex Sites

    NASA Astrophysics Data System (ADS)

    Deeb, R. A.; Hawley, E.

    2011-12-01

    This presentation will focus on findings, statistics, and case studies from a recently-completed report for the Department of Defense's Environmental Security Technology Certification Program (ESTCP) (Project ER-0832) on alternative endpoints and alternative remedial strategies for groundwater remediation under a variety of Federal and state cleanup programs, including technical impracticability (TI) and other Applicable or Relevant and Appropriate Requirement (ARAR) waivers, state and local designations such as groundwater management zones, Alternate Concentration Limits (ACLs), use of monitored natural attenuation (MNA) over long timeframes, and more. The primary objective of the project was to provide environmental managers and regulators with tools, metrics, and information needed to evaluate alternative endpoints for groundwater remediation at complex sites. A statistical analysis of Comprehensive Environmental Response, Compensation and Liability Act (CERCLA) sites receiving TI waivers will be presented as well as case studies of other types of alternative endpoints and alternative remedial strategies to illustrate the variety of approaches used at complex sites and the technical analyses used to predict and document cost, timeframe, and potential remedial effectiveness. Case studies provide examples of the flexible, site-specific, application of alternative endpoints and alternative remedial strategies that have been used in the past to manage and remediate groundwater contamination at complex sites. For example, at least 13 states consider some designation for groundwater containment in their corrective action policies, such as groundwater management zones, containment zones, and groundwater classification exemption areas. These designations typically indicate that groundwater contamination is present above permissible levels. Soil and groundwater within these zones are managed to protect human health and the environment. Lesson learned for the analyses

  5. Water-Level Monitoring Plan for the Hanford Groundwater Monitoring Project

    SciTech Connect

    D.R. Newcomer; J.P. McDonald; M.A. Chamness

    1999-09-30

    This document presents the water-level monitoring plan for the Hanford Groundwater Monitoring Project, conducted by the Pacific Northwest National Laboratory (PNNL). Water-level monitoring of the groundwater system beneath the Hanford Site is performed to fulfill the requirements of various state and federal regulations, orders, and agreements. The primary objective of this monitoring is to determine groundwater flow rates and directions. To meet this and other objectives, water-levels are measured annually in monitoring wells completed within the unconfined aquifer system, the upper basalt-confined aquifer system, and in the lower basalt-confined aquifers for surveillance monitoring. At regulated waste units, water levels are taken monthly, quarterly, semi-annually, or annually, depending on the hydrogeologic conditions and regulatory status of a given site. The techniques used to collect water-level data are described in this document along with the factors that affect the quality of the data and the strategies employed by the project to minimize error in the measurement and interpretation of water levels. Well networks are presented for monitoring the unconfined aquifer system, the upper basalt-confined aquifer system, and the lower basalt-confined aquifers, all at a regional scale (surveillance monitoring), as well as the local-scale well networks for each of the regulated waste units studied by this project (regulated-unit monitoring). The criteria used to select wells for water-table monitoring are discussed. It is observed that poor well coverage for surveillance water-table monitoring exists south and west of the 200-West Area, south of the 100-F Area, and east of B Pond and the Treated Effluent Disposal Facility (TEDF). This poor coverage results from a lack of wells suitable for water-table monitoring, and causes uncertainty in representation of the regional water-table in these areas. These deficiencies are regional in scale and apply to regions outside

  6. Compilation of data to estimate groundwater migration potential for constituents in active liquid discharges at the Hanford Site

    SciTech Connect

    Ames, L.L.; Serne, R.J.

    1991-03-01

    A preliminary characterization of the constituents present in the 33 liquid waste streams at the US Department of Energy's Hanford Site has been completed by Westinghouse Hanford Company. In addition, Westinghouse Hanford has summarized the soil characteristics based on drill logs collected at each site that receives these liquid wastes. Literature searches were conducted and available Hanford-specific data were tabulated and reviewed. General literature on organic chemicals present in the liquid waste streams was also reviewed. Using all of this information, Pacific Northwest Laboratory has developed a best estimate of the transport characteristics (water solubility and soil adsorption properties) for those radionuclides and inorganic and organic chemicals identified in the various waste streams. We assume that the potential for transport is qualified through the four geochemical parameters: solubility, distribution coefficient, persistence (radiogenic or biochemical half-life), and volatility. Summary tables of these parameters are presented for more than 50 inorganic and radioactive species and more than 50 organic compounds identified in the liquid waste streams. Brief descriptions of the chemical characteristics of Hanford sediments, solubility, and adsorption processes, and of how geochemical parameters are used to estimate migration in groundwater-sediment environments are also presented. Groundwater monitoring data are tabulated for wells neighboring the facilities that receive the liquid wastes. 91 refs., 16 figs., 23 tabs.

  7. Evaluation of the Effectiveness of Cr(VI) Biostimulation in Groundwater at Hanford 100H Site

    NASA Astrophysics Data System (ADS)

    Faybishenko, B.; Hazen, T. C.; Brodie, E.; Joyner, D.; Borglin, S.; Hanlon, J.; Conrad, M.; Tokunaga, T.; Wan, J.; Hubbard, S.; Williams, K. H.; Peterson, J. E.; Firestone, M.; Andersen, G.; Desantis, T.; Long, P. E.; Newcomer, D. R.; Resch, C. T.; Willett, A.; Koenigsberg, S.

    2006-05-01

    To demonstrate the feasibility of a cost-effective field-scale bioimmobilization of Cr(VI) in contaminated groundwater, using a slow release polylactate, Hydrogen Release Compound (HRCTM), we have conducted a pilot study at the Hanford 100H field site. To assess the pre- and post-injection test groundwater conditions, we used an integrated monitoring approach, involving hydraulic, geochemical, microbial, and geophysical techniques and analytical methods, as well as conducted five Br-tracer injection tests and four pumping tests (concurrently with the Br-tracer tests). Although the total microbial population in sediments is <105 cells g-1 under background conditions (which is likely insufficient for direct enzymatic Cr(VI) reduction), several types of bacteria, e.g., Bacillus/Arthrobacter and Geobacter, are present in the Hanford sediments, which are known to reduce or sorb hexavalent chromium. Groundwater biostimulation was conducted by injection of 18.2 kg of 13C-labeled HRC into the injection well (over the depth interval from 13.4-15.2 m) on 8/3/2004. Pumping from the downgradient monitoring well (located 5 m from the injection well) started immediately after the injection, and continued for 27 days. We determined that the HRC injection stimulated microbial cell counts to reach the maximum of 2×107cells g-1 13-17 days after the injection, and generated highly reducing conditions: DO dropped from 8.2 mg/l to non-detect, redox potential - from 240 to -130 mV, and pH - from 8.9 to 6.5. Monitoring of δ13C ratios in dissolved inorganic carbon confirmed microbial metabolism of HRC. The total Cr concentration in the monitoring well decreased by a factor of 4 compared to that under background conditions. The Cr(VI) concentration in the monitoring and pumping wells decreased below the drinking water maximum contaminant limit and remained below background concentrations even after 1.5 years, when redox conditions and microbial densities had returned to background levels

  8. PUMP-AND-TREAT GROUND-WATER REMEDIATION: A GUIDE FOR DECISION MAKERS AND PRACTITIONERS

    EPA Science Inventory

    This guide presents decision makers with a foundation for evaluating the appropriateness of conventional or innovative approaches. An introduction to pump-and-treat ground-water remediation, the guide addresses the following questions: When is pump-and-treat an appropriate remedi...

  9. PUMP-AND-TREAT GROUND-WATER REMEDIATION: A GUIDE FOR DECISION MAKERS AND PRACTITIONERS

    EPA Science Inventory

    This guide presents decision makers with a foundation for evaluating the appropriateness of conventional or innovative approaches. An introduction to pump-and-treat ground-water remediation, the guide addresses the following questions: When is pump-and-treat an appropriate remedi...

  10. In-situ remediation system for groundwater and soils

    DOEpatents

    Corey, John C.; Kaback, Dawn S.; Looney, Brian B.

    1993-01-01

    A method and system for in-situ remediation of contaminated groundwater and soil where the contaminants, such as toxic metals, are carried in a subsurface plume. The method comprises selection and injection into the soil of a fluid that will cause the contaminants to form stable, non-toxic compounds either directly by combining with the contaminants or indirectly by creating conditions in the soil or changing the conditions of the soil so that the formation of stable, non-toxic compounds between the contaminants and existing substances in the soil are more favorable. In the case of non-toxic metal contaminants, sulfides or sulfates are injected so that metal sulfides or sulfates are formed. Alternatively, an inert gas may be injected to stimulate microorganisms in the soil to produce sulfides which, in turn, react with the metal contaminants. Preferably, two wells are used, one to inject the fluid and one to extract the unused portion of the fluid. The two wells work in combination to create a flow of the fluid across the plume to achieve better, more rapid mixing of the fluid and the contaminants.

  11. In-situ remediation system for groundwater and soils

    DOEpatents

    Corey, J.C.; Kaback, D.S.; Looney, B.B.

    1993-11-23

    A method and system are presented for in-situ remediation of contaminated groundwater and soil where the contaminants, such as toxic metals, are carried in a subsurface plume. The method comprises selection and injection into the soil of a fluid that will cause the contaminants to form stable, non-toxic compounds either directly by combining with the contaminants or indirectly by creating conditions in the soil or changing the conditions of the soil so that the formation of stable, non-toxic compounds between the contaminants and existing substances in the soil are more favorable. In the case of non-toxic metal contaminants, sulfides or sulfates are injected so that metal sulfides or sulfates are formed. Alternatively, an inert gas may be injected to stimulate microorganisms in the soil to produce sulfides which, in turn, react with the metal contaminants. Preferably, two wells are used, one to inject the fluid and one to extract the unused portion of the fluid. The two wells work in combination to create a flow of the fluid across the plume to achieve better, more rapid mixing of the fluid and the contaminants. 4 figures.

  12. Structural analysis of Hanford`s single-shell 241-C-106 tank: A first step toward waste-tank remediation

    SciTech Connect

    Harris, J.P.; Julyk, L.J.; Marlow, R.S.; Moore, C.J.; Day, J.P.; Dyrness, A.D.; Jagadish, P.; Shulman, J.S.

    1993-10-01

    The buried single-shell waste tank 241-C-106, located at the US Department of Energy`s Hanford Site, has been a repository for various liquid radioactive waste materials since its construction in 1943. A first step toward waste tank remediation is demonstrating that remediation activities can be performed safely. Determination of the current structural capacity of this high-heat tank is an important element in this assessment. A structural finite-element model of tank 241-C-106 has been developed to assess the tank`s structural integrity with respect to in situ conditions and additional remediation surface loads. To predict structural integrity realistically, the model appropriately addresses two complex issues: (1) surrounding soil-tank interaction associated with thermal expansion cycling and surcharge load distribution and (2) concrete-property degradation and creep resulting from exposure to high temperatures generated by the waste. This paper describes the development of the 241-C-106 structural model, analysis methodology, and tank-specific structural acceptance criteria.

  13. Hanford Site ground-water monitoring for January through June 1988

    SciTech Connect

    Evans, J.C.; Bryce, R.W.; Sherwood, D.R.

    1989-05-01

    The Pacific Northwest Laboratory monitors ground-water quality at the Hanford Site for the US Department of Energy to assess the impact of Site operations on the environment. Work undertaken between January and June 1988 included monitoring ground-water elevations across the Site, and monitoring hazardous chemicals and radionuclides in ground water. Water levels continued to rise in areas receiving increased recharge (e.g., beneath B Pond) and decline in areas where the release of water to disposal facilities has been terminated (e.g., U Pond). The major areas of ground-water contamination defined by monitoring activities are (1) carbon tetrachloride in the 200-West Area; (2) cyanide in and north of the 200-East and 200-West Areas; (3) hexavalent chromium contamination in the 100-B, 100-D, 100-F, 100-H, 100-K, and 200-West Areas; (4) chlorinated hydrocarbons in the vicinity of the Solid Waste Landfill and 300 Area; (5) uranium in the 100-F, 100-H, 200-West, and 300 Areas; and (6) tritium and nitrate across the Site. In addition, several new analytical initiatives were undertaken during this period. These include cyanide speciation in the BY Cribs plume, inductively coupled argon plasma/mass spectrometry (ICP/MS) measurements on a broad selection of samples from the 100, 200, 300, and 600 Areas, and high sensitivity gas chromatography measurements performed at the Solid Waste Landfill-Nonradioactive Dangerous Waste Landfill. 23 figs., 25 tabs.

  14. BASICS OF PUMP-AND-TREAT GROUND-WATER REMEDIATION TECHNOLOGY

    EPA Science Inventory

    The pump-and-treat process, whereby contaminated groundwater is pumped to the surface for treatment, is one of the most common groundwater remediation technologies used at hazardous waste sites. owever, recent research has identified complex chemical and physical interactions bet...

  15. [Laboratory evaluation of remediation of nitrobenzene contaminated aquifer by using groundwater circulation well].

    PubMed

    Bai, Jing; Zhao, Yong-Sheng; Sun, Chao; Qin, Chuan-Yu; Yu, Ling

    2014-10-01

    A two-dimension simulated sand box was set up to investigate the influencing factors, such as the initial groundwater level, aeration rate and the initial groundwater rate, that affect groundwater circulation well (GCW) by determining the intensity of groundwater circulation which was characterized by the variation of groundwater level before and after aeration. The optimal operating parameters were used to remediate nitrobenzene contaminated aquifer. The results demonstrated that: GCW could be well operated under the conditions of 45 cm groundwater level, 0.7 m3 · h(-1) aeration rate. The effects of groundwater velocity less than 1.0 m · d(-1) could be ignored. The lateral mobility rate of nitrobenzene was faster than that of longitudinal. The average concentration of nitrobenzene was 246.97 mg · L(-1) on day 50 of leakage. During the remediation of circulation well, an efficient organics remediation region was gradually formed around the circulation well. The organics in this region was removed preferentially, and the concentration decreased continuously. Besides the efficient remediation region, there was a transient region, where the concentration of organics was influenced by the combined effects of adsorption/desorption and migration potential of organics. During the whole remediation process, the concentration of nitrobenzene went through three stages described as rapid removal, slow removal. After 14h aeration, the nitrobenzene average concentration was reduced to 71.19 mg L(-1). The residual nitrobenzene was distributed in regions far away from GCW. Therefore, nitrobenzene contaminated aquifer could be well remediated by GCW, and there were optimal operation conditions and appropriate remediation time which guaranteed the best remediation effect.

  16. Ground-water surveillance at the Hanford Site for CY 1983

    SciTech Connect

    Prater, L.S.; Rieger, J.T.; Cline, C.S.; Jensen, E.J.; Liikala, T.L.; Oster, K.R.

    1984-07-01

    Operations at the Hanford Site have resulted in the discharge of large volumes of process cooling water and other waste waters to the ground. These effluents contain low level of radioactive and chemical substances. During 1983, 328 monitoring wells were sampled at various times for radioactive and chemical constituents. Three of these constituents, specifically tritium, nitrate, and gross beta activity, were selected for detailed discussion in this report because they are more readily transported in the ground water than some of the other constituents. Transport of these constituents in the ground water has resulted in the formation of plumes that can be mapped by contouring the analytical data obtained from the monitoring wells. This report describes recent changes in the configuration of the tritium, nitrate and gross beta plumes. Changes or trends in contaminant levels in wells located within both the main plumes (originating from the 200 Areas) and the smaller plumes are discussed in this report. Two potential pathways for radionuclide transport from the ground water to the environmental are discussed in this report, and the radiological impacts are examined. In addition to describing the present status of the ground water beneath the Hanford Site, this report contains the results of studies conducted in support of the ground-water surveillance effort during CY 1983. 21 references, 26 figures, 5 tables.

  17. Development and applications of groundwater remediation technologies in the USA

    NASA Astrophysics Data System (ADS)

    Barcelona, Michael J.

    2005-03-01

    The future of the development and application of groundwater remediation technologies will unfold in an atmosphere of heightened public concern and attention. Cleanup policy will undergo incremental change towards more comprehensive efforts which account for the impact of remediation on nearby resources. Newly discovered contaminants will cause the re-examination of "mature" technologies since they may be persistent, mobile and difficult to treat in-situ. Evaluations of the effectiveness of remedial technologies will eventually include by-product formation, geochemical consequences and sustainability. Long-term field trials of remedial technologies alone can provide the data necessary to support claims of effectiveness. Dans le futur, le développement et les applications des technologies de traitement des eaux souterraines seront déroulés en tenant compte de l'inquiétude et l'attention croissante de l'opinion publique. La politique de nettoyage va subir un changement vers des efforts plus compréhensifs qui prendront en compte l'impact du traitement sur les ressources voisines. Les nouveaux contaminants seront persistants, mobiles et difficile de traiter in situ; par conséquence ils vont provoquer la reexamination des technologies consacrées. L'évaluation de l'efficacité des technologies de traitement doit considérer l'apparition des produits secondaires ainsi que les conséquences géochimiques et le développement durable. Seulement les essais in situ, pendant des longues périodes sur les technologies peuvent fournir les éléments nécessaires pour démontrer leur efficacité. El futuro del desarrollo y de la aplicación de las tecnologías para la recuperación del agua subterránea, se revelará en una atmósfera de gran atención e interés público elevado. La política de limpieza sufrirá un cambio adicional hacia esfuerzos más tangibles, los cuales incluyan el impacto de la recuperación en los recursos circundantes. Los contaminantes

  18. Remediation of Groundwater Contaminated with Organics and Radionuclides - An Innovative Approach Eases Traditional Hurdles

    SciTech Connect

    Scott, J.; Case, N.; Coltman, K.

    2003-02-25

    Traditional approaches to the remediation of contaminated groundwater, such as pump-and-treat, have been used for many years for the treatment of groundwater contaminated with various organics. However the treatment of groundwater contaminated with organics and radionuclides has been considerably more challenging. Safety and Ecology Corporation (SEC) was recently faced with these challenges while designing a remediation system for the remediation of TCE-contaminated groundwater and soil at the RMI Extrusion Plant in Ashtabula, OH. Under contract with RMI Environmental Services (RMIES), SEC teamed with Regenesis, Inc. to design, implement, and execute a bioremediation system to remove TCE and associated organics from groundwater and soil that was also contaminated with uranium and technetium. The SEC-Regenesis system involved the injection of Hydrogen Release Compound (HRC), a natural attenuation accelerant that has been patented, designed, and produced by Regenesis, to stimulate the reductive dechlorination and remediation of chlorinated organics in subsurface environments. The compound was injected using direct-push Geoprobe rods over a specially designed grid system through the zone of contaminated groundwater. The innovative approach eliminated the need to extract contaminated groundwater and bypassed the restrictive limitations listed above. The system has been in operation for roughly six months and has begun to show considerable success at dechlorinating and remediating the TCE plume and in reducing the radionuclides into insoluble precipitants. The paper will provide an overview of the design, installation, and initial operation phase of the project, focusing on how traditional design challenges of remediating radiologically contaminated groundwater were overcome. The following topics will be specifically covered: a description of the mechanics of the HRC technology; an assessment of the applicability of the HRC technology to contaminated groundwater plumes

  19. Release Data Package for Hanford Site Assessments

    SciTech Connect

    Riley, Robert G.; Lopresti, Charles A.; Engel, David W.

    2006-07-01

    Beginning in fiscal year (FY) 2003, the U.S. Department of Energy (DOE) Richland Operations Office initiated activities, including the development of data packages, to support a Hanford assessment. This report describes the data compiled in FY 2003 through 2005 to support the Release Module of the System Assessment Capability (SAC) for the updated composite analysis. This work was completed as part of the Characterization of Systems Project, part of the Remediation and Closure Science Project, the Hanford Assessments Project, and the Characterization of Systems Project managed by Pacific Northwest National Laboratory. Related characterization activities and data packages for the vadose zone and groundwater are being developed under the remediation Decision Support Task of the Groundwater Remediation Project managed by Fluor Hanford, Inc. The Release Module applies release models to waste inventory data from the Inventory Module and accounts for site remediation activities as a function of time. The resulting releases to the vadose zone, expressed as time profiles of annual rates, become source terms for the Vadose Zone Module. Radioactive decay is accounted for in all inputs and outputs of the Release Module. The Release Module is implemented as the VADER (Vadose zone Environmental Release) computer code. Key components of the Release Module are numerical models (i.e., liquid, soil-debris, cement, saltcake, and reactor block) that simulate contaminant release from the different waste source types found at the Hanford Site. The Release Module also handles remediation transfers to onsite and offsite repositories.

  20. Biogeochemical dynamics of pollutants in Insitu groundwater remediation systems

    NASA Astrophysics Data System (ADS)

    Kumar, N.; Millot, R.; Rose, J.; Négrel, P.; Battaglia-Brunnet, F.; Diels, L.

    2010-12-01

    Insitu (bio) remediation of groundwater contaminants has been area of potential research interest in last few decades as the nature of contaminant encountered has also changed drastically. This gives tough challenge to researchers in finding a common solution for all contaminants together in one plume. Redox processes play significant role in pollutant dynamics and mobility in such systems. Arsenic particularly in reduced environments can get transformed into its reduced form (As3+), which is apparently more mobile and highly toxic. Also parallel sulfate reduction can lead to sulfide production and formation of thioarsenic species. On the other hand heavy metals (Zn, Fe, and Cd) in similar conditions will favour more stable metal sulfide precipitation. In the present work, we tested Zero Valent Iron (ZVI) in handling such issues and found promising results. Although it has been well known for contaminants like arsenic and chlorinated compounds but not much explored for heavy metals. Its high available surface area supports precipitation and co -precipitation of contaminants and its highly oxidizing nature and water born hydrogen production helps in stimulation of microbial activities in sediment and groundwater. These sulfate and Iron reducing bacteria can further fix heavy metals as stable metal sulfides by using hydrogen as potential electron donor. In the present study flow through columns (biotic and control) were set up in laboratory to understand the behaviour of contaminants in subsurface environments, also the impact of microbiology on performance of ZVI was studied. These glass columns (30 x 4cm) with intermediate sampling points were monitored over constant temperature (20°C) and continuous groundwater (up)flow at ~1ml/hr throughout the experiment. Simulated groundwater was prepared in laboratory containing sulfate, metals (Zn,Cd) and arsenic (AsV). While chemical and microbial parameters were followed regularly over time, solid phase has been

  1. Groundwater Monitoring Plan for the Hanford Site 216-B-3 Pond RCRA Facility

    SciTech Connect

    Barnett, D BRENT.; Smith, Ronald M.; Chou, Charissa J.; McDonald, John P.

    2005-11-01

    The 216-B-3 Pond system was a series of ponds used for disposal of liquid effluent from past Hanford production facilities. In operation from 1945 to 1997, the B Pond System has been a Resource Conservation and Recovery Act (RCRA) facility since 1986, with RCRA interim-status groundwater monitoring in place since 1988. In 1994 the expansion ponds of the facility were clean closed, leaving only the main pond and a portion of the 216-B-3-3 ditch as the currently regulated facility. In 2001, the Washington State Department of Ecology (Ecology) issued a letter providing guidance for a two-year, trial evaluation of an alternate, intrawell statistical approach to contaminant detection monitoring at the B Pond system. This temporary variance was allowed because the standard indicator-parameters evaluation (pH, specific conductance, total organic carbon, and total organic halides) and accompanying interim status statistical approach is ineffective for detecting potential B-Pond-derived contaminants in groundwater, primarily because this method fails to account for variability in the background data and because B Pond leachate is not expected to affect the indicator parameters. In July 2003, the final samples were collected for the two-year variance period. An evaluation of the results of the alternate statistical approach is currently in progress. While Ecology evaluates the efficacy of the alternate approach (and/or until B Pond is incorporated into the Hanford Facility RCRA Permit), the B Pond system will return to contamination-indicator detection monitoring. Total organic carbon and total organic halides were added to the constituent list beginning with the January 2004 samples. Under this plan, the following wells will be monitored for B Pond: 699-42-42B, 699-43-44, 699-43-45, and 699-44-39B. The wells will be sampled semi-annually for the contamination indicator parameters (pH, specific conductance, total organic carbon, and total organic halides) and annually for

  2. Application of natural resource valuation concepts for development of sustainable remediation plans for groundwater.

    PubMed

    Connor, John A; Paquette, Shawn; McHugh, Thomas; Gie, Elaine; Hemingway, Mark; Bianchi, Gino

    2017-04-07

    This paper explores the application of natural resource assessment and valuation procedures as a tool for developing groundwater remediation strategies that achieve the objectives for health and environmental protection, in balance with considerations of economic viability and conservation of natural resources. The natural resource assessment process, as applied under U.S. and international guidelines, entails characterization of groundwater contamination in terms of the pre-existing beneficial services of the impacted resource, the loss of these services caused by the contamination, and the measures and associated costs necessary to restore or replace the lost services. Under many regulatory programs, groundwater remediation objectives assume that the impacted groundwater may be used as a primary source of drinking water in the future, even if not presently in use. In combination with a regulatory preference for removal or treatment technologies, this assumed exposure, while protective of human health, can drive the remedy selection process toward remedies that may not be protective of the groundwater resource itself or of the other natural resources (energy, materials, chemicals, etc.) that may be consumed in the remediation effort. To achieve the same health and environmental protection goals under a sustainable remediation framework, natural resource assessment methods can be applied to restore the lost services and preserve the intact services of the groundwater so as to protect both current and future users of that resource. In this paper, we provide practical guidelines for use of natural resource assessment procedures in the remedy selection process and present a case study demonstrating the use of these protocols for development of sustainable remediation strategies. Copyright © 2017 The Authors. Published by Elsevier Ltd.. All rights reserved.

  3. Mechanisms of uranium interactions with hydroxyapatite: Implications for groundwater remediation

    USGS Publications Warehouse

    Fuller, C.C.; Bargar, J.R.; Davis, J.A.; Piana, M.J.

    2002-01-01

    The speciation of U(VI) sorbed to synthetic hydroxyapatite was investigated using a combination of U LIII-edge XAS, synchrotron XRD, batch uptake measurements, and SEM-EDS. The mechanisms of U(VI) removal by apatite were determined in order to evaluate the feasibility of apatitebased in-situ permeable reactive barriers (PRBs). In batch U(VI) uptake experiments with synthetic hydroxyapatite (HA), near complete removal of dissolved uranium (>99.5%) to <0.05 ??M was observed over a range of total U(VI) concentrations up to equimolar of the total P in the suspension. XRD and XAS analyses of U(VI)-reacted HA at sorbed concentrations ???4700 ppm U(VI) suggested that uranium(VI) phosphate, hydroxide, and carbonate solids were not present at these concentrations. Fits to EXAFS spectra indicate the presence of Ca neighbors at 3.81 A??. U-Ca separation, suggesting that U(VI) adsorbs to the HA surfaces as an inner-sphere complex. Uranium(VI) phosphate solid phases were not detected in HA with 4700 ppm sorbed U(VI) by backscatter SEM or EDS, in agreement with the surface complexation process. In contrast, U(VI) speciation in samples that exceeded 7000 ppm sorbed U(VI) included a crystalline uranium(VI) phosphate solid phase, identified as chernikovite by XRD. At these higher concentrations, a secondary, uranium(VI) phosphate solid was detected by SEM-EDS, consistent with chernikovite precipitation. Autunite formation occurred at total U:P molar ratios ???0.2. Our findings provide a basis for evaluating U(VI) sorption mechanisms by commercially available natural apatites for use in development of PRBs for groundwater U(VI) remediation.

  4. The Office of Groundwater & Soil Remediation Fiscal Year 2011 Research & Development Program

    SciTech Connect

    Gerdes, Kurt D.; Chamberlain, Grover S.; Aylward, R. S.; Cercy, Mike; Seitz, Roger; Ramirez, Rosa; Skubal, Karen L.; Marble, Justin; Wellman, Dawn M.; Bunn, Amoret L.; Liang, Liyuan; Pierce, Eric M.

    2011-12-02

    The U.S. Department of Energy’s (DOE) Office of Groundwater and Soil Remediation supports applied research and technology development (AR&TD) for remediation of environments contaminated by legacy nuclear waste. The program centers on delivering advanced scientific approaches and technologies from highly-leveraged, strategic investments that maximize impact to reduce risk and life-cycle cleanup costs. The current groundwater and soil remediation program consists of four applied programmatic areas: • Deep Vadose Zone – Applied Field Research Initiative • Attenuation Based Remedies – Applied Field Research Initiative • Remediation of Mercury and Industrial Contaminants – Applied Field Research Initiative • Advanced Simulation Capability for Environmental Management. This paper provides an overview of the applied programmatic areas, fiscal year 11 accomplishments, and their near-term technical direction.

  5. Evaluation and Screening of Remedial Technologies for Uranium at the 300-FF-5 Operable Unit, Hanford Site, Washington

    SciTech Connect

    Nimmons, Michael J.

    2007-08-01

    Pacific Northwest National Laboratory (PNNL) is presently conducting a re-evaluation of remedies addressing persistent dissolved uranium concentrations in the upper aquifer under the 300 Area of the Hanford Site in southeastern Washington State. This work is being conducted as a Phase III feasibility study for the 300-FF-5 Operable Unit on behalf of the U.S. Department of Energy. As part of the feasibility study process, a comprehensive inventory of candidate remedial technologies was conducted by PNNL. This report documents the identification and screening of candidate technologies. The screening evaluation was conducted in accordance with guidance and processes specified by U.S. Environmental Protection Agency regulations associated with implementation of the Comprehensive Environmental Response, Compensation, and Liability Act process.

  6. Data Quality Assessment Report for the Remedial Investigation of Hanford Site Releases to the Columbia River, Hanford Site, Washington

    SciTech Connect

    L.C. Hulstrom

    2010-08-10

    This report summarizes the results of the data quality assessment that was performed on the analytical data generated in connection with the 2008/2009 surface water, sediment, and soil data collection; groundwater upwelling investigation sample collection; and fish tissue sample collection.

  7. Data Quality Assessment Report for the Remedial Investigation of Hanford Site Releases to the Columbia River, Hanford Site, Washington

    SciTech Connect

    L.C. Hulstrom

    2010-09-21

    This report summarizes the results of the data quality assessment that was performed on the analytical data generated in connection with the 2008/2009 surface water, sediment, and soil data collection; groundwater upwelling investigation sample collection; and fish tissue sample collection.

  8. Ground-water maps of the Hanford Site Separations Area, December 1987

    SciTech Connect

    Schatz, A.L.; Ammerman, J.J.

    1988-03-01

    The ground-water maps of the Separations Area are prepared by the Environmental Technology Section of the Defense Waste Management Division of Westinghouse Hanford Company. The Separations Area consists of the 200 East and 200 West Areas, where chemical processing activities are carried out. This set of ground-water maps consists of a water-table map of the unconfined aquifer, a depth-to-water map of the unconfined aquifer, and a potentiometric map of the uppermost confined aquifer (the Rattlesnake Ridge sedimentary interbed) in the area where West Lake, the deactivated Gable Mountain Pond, and the B Pond system are located. The Separations Area water-table map is prepared from water-level measurements made in June and December. For the December 1987 map approximately 200 wells were used for contouring the water table. The water-table mound beneath the deactivated U Pond has decreased in size since the June 1987 measurements were taken, reflecting the impact of shutting off flow to the pond in the fall of 1984. This mound has declined approximately 8 ft. since 1984. The water-table map also shows the locations of wells where the December 1987 measurements were made, and the data for these measurements are listed.

  9. A niched Pareto tabu search for multi-objective optimal design of groundwater remediation systems

    NASA Astrophysics Data System (ADS)

    Yang, Yun; Wu, Jianfeng; Sun, Xiaomin; Wu, Jichun; Zheng, Chunmiao

    2013-05-01

    This study presents a new multi-objective optimization method, the niched Pareto tabu search (NPTS), for optimal design of groundwater remediation systems. The proposed NPTS is then coupled with the commonly used flow and transport code, MODFLOW and MT3DMS, to search for the near Pareto-optimal tradeoffs of groundwater remediation strategies. The difference between the proposed NPTS and the existing multiple objective tabu search (MOTS) lies in the use of the niche selection strategy and fitness archiving to maintain the diversity of the optimal solutions along the Pareto front and avoid repetitive calculations of the objective functions associated with the flow and transport model. Sensitivity analysis of the NPTS parameters is evaluated through a synthetic pump-and-treat remediation application involving two conflicting objectives, minimizations of both remediation cost and contaminant mass remaining in the aquifer. Moreover, the proposed NPTS is applied to a large-scale pump-and-treat groundwater remediation system of the field site at the Massachusetts Military Reservation (MMR) in Cape Cod, Massachusetts, involving minimizations of both total pumping rates and contaminant mass remaining in the aquifer. Additional comparison of the results based on the NPTS with those obtained from other two methods, namely the single objective tabu search (SOTS) and the nondominated sorting genetic algorithm II (NSGA-II), further indicates that the proposed NPTS has desirable computation efficiency, stability, and robustness and is a promising tool for optimizing the multi-objective design of groundwater remediation systems.

  10. Engineered Injection and Extraction for Enhanced In-situ Remediation of Sorbing Solutes in Groundwater

    NASA Astrophysics Data System (ADS)

    Webber, B. D.; Neupauer, R. M.; Piscopo, A. N.; Mays, D. C.

    2012-12-01

    Groundwater remediation is becoming increasingly more important as the world's population grows and the necessity of access to clean drinking water persists. The majority of current groundwater treatment methods involve pumping the contaminated groundwater out of the soil and treating it above ground. Sorbed contaminants are difficult to remediate using this conventional pump-and-treat method, and often produce poor treatment results because sorbed contaminants are difficult to extract from the aquifer; therefore in-situ remediation research is of particular importance. One type of in-situ groundwater remediation involves a treatment solution of varying composition being injected into the polluted aquifer to react with the contaminant and degrade it to an acceptable byproduct. Increasing the amount of spreading between the contaminant and the treatment solution promotes an increase in contact area and more desired reactions. It has been previously determined that sequential injection and extraction using four wells for in-situ remediation can enhance the spreading of an aqueous contaminant and treatment solution and increase degradation through more reactions. In this work, we focus on sorbing contaminants and investigate the effectiveness of the injection and extraction methods on varying degrees of contaminant sorption. Tests were conducted in homogeneous and heterogeneous soil media, and with instantaneous and kinetic reaction. It was determined that engineered injection and extraction methods previously developed for aqueous contaminants also enhance in-situ remediation of sorbing solutes.

  11. Treatment tests for ex situ removal of chromate, nitrate, and uranium (VI) from Hanford (100-HR-3) groundwater. Final report

    SciTech Connect

    Beck, M.A.; Duncan, J.B.

    1993-11-15

    This report describes batch and anion exchange column laboratory-scale studies investigating ex situ methods to remove chromate (chromium [VI]), nitrate (NO{sub 3}), and uranium (present as uranyl (uranium [VI]) carbonato anionic species) from contaminated Hanford Site groundwaters. The technologies investigated include chemical precipitation or coprecipitation to remove chromate and uranium, and anion exchange to remove chromate, uranium, and nitrate. The technologies investigated were specified in the 100-HR-3 Groundwater Treatability Test Plan (DOE-RL 1993). The goal of these tests was to determine the best method to remove selected contaminants to below the concentration of the project performance goals. The raw data and observations made during these tests can be found in the Westinghouse Hanford Company (WHC) laboratory notebooks (Beck 1992, Herting 1993). The method recommended for future study is anion exchange with Dowex 21K resin.

  12. Interim Status Groundwater Monitoring Plan for Low-Level Waste Management Areas 1 to 4, RCRA Facilities, Hanford,Washington

    SciTech Connect

    Dresel, P Evan

    2004-10-25

    This document describes the monitoring plan to meet the requirements for interim status groundwater monitoring at Hanford Site low-level waste burial grounds as specified by 40 CFR 265, incorporated by reference in WAC 173-303-400. The monitoring will take place at four separate low-level waste management areas in the 200-West and 200-East Areas, in the central part of the site. This plan replaces the previous monitoring plan.

  13. Using Nitrogen and Oxygen Isotope Compositions of Nitrate to Distinguish Contaminant Sources in Hanford Soil and Groundwater

    SciTech Connect

    Conrad, Mark; Bill, Markus

    2008-08-01

    The nitrogen ({delta}{sup 15}N) and oxygen ({delta}{sup 18}O) isotopic compositions of nitrate in the environment are primarily a function of the source of the nitrate. The ranges of isotopic compositions for nitrate resulting from common sources are outlined in Figure 1 from Kendall (1998). As noted on Figure 1, processes such as microbial metabolism can modify the isotopic compositions of the nitrate, but the effects of these processes are generally predictable. At Hanford, nitrate and other nitrogenous compounds were significant components of most of the chemical processes used at the site. Most of the oxygen in nitrate chemicals (e.g., nitric acid) is derived from atmospheric oxygen, giving it a significantly higher {delta}{sup 18}O value (+23.5{per_thousand}) than naturally occurring nitrate that obtains most of its oxygen from water (the {delta}{sup 18}O of Hanford groundwater ranges from -14{per_thousand} to -18{per_thousand}). This makes it possible to differentiate nitrate from Hanford site activities from background nitrate at the site (including most fertilizers that might have been used prior to the Department of Energy plutonium production activities at the site). In addition, the extreme thermal and chemical conditions that occurred during some of the waste processing procedures and subsequent waste storage in select single-shell tanks resulted in unique nitrate isotopic compositions that can be used to identify those waste streams in soil and groundwater at the site (Singleton et al., 2005; Christensen et al., 2007). This report presents nitrate isotope data for soil and groundwater samples from the Hanford 200 Areas and discusses the implications of that data for potential sources of groundwater contamination.

  14. RCRA (Resource Conservation and Recovery Act) ground-water monitoring projects for Hanford facilities: Annual progress report for 1988

    SciTech Connect

    Fruland, R.M.; Lundgren, R.E.

    1989-04-01

    This report describes the progress during 1988 of 14 Hanford Site ground-water monitoring projects covering 16 hazardous waste facilities and 1 nonhazardous waste facility (the Solid Waste Landfill). Each of the projects is being conducted according to federal regulations based on the Resource Conservation and Recovery Act (RCRA) of 1976 and the State of Washington Administrative Code. 21 refs., 23 figs., 8 tabs.

  15. Ground-water monitoring at the Hanford Site, January-December 1984

    SciTech Connect

    Cline, C.S.; Rieger, J.T.; Raymond, J.R.

    1985-09-01

    This program is designed to evaluate existing and potential pathways of exposure to radioactivity and hazardous chemicals from site operations. This document contains an evaluation of data collected during CY 1984. During 1984, 339 monitoring wells were sampled at various times for radioactive and nonradioactive constituents. Two of these constituents, specifically, tritium and nitrate, have been selected for detailed discussion in this report. Tritium and nitrate in the primary plumes originating from the 200 Areas continue to move generally eastward toward the Columbia River in the direction of ground-water flow. The movement within these plumes is indicated by changes in trends within the analytical data from the monitoring wells. No discernible impact on ground water has yet been observed from the start-up of the PUREX plant in December 1983. The shape of the present tritium plume is similar to those described in previous ground-water monitoring reports, although slight changes on the outer edges have been noted. Radiological impacts from two potential pathways for radionuclide transport in ground water to the environment are discussed in this report. The pathways are: (1) human consumption of ground water from onsite wells, and (2) seepage of ground water into the Columbia River. Concentrations of tritium in spring samples that were collected and analyzed in 1983, and in wells sampled adjacent to the Columbia River in 1984 confirmed that constituents in the ground water are entering the river via springs and subsurface flow. The primary areas where radionuclides enter the Columbia River via ground-water flow are the 100-N and 300 Areas and the shoreline adjacent to the Hanford Townsite. 44 refs., 25 figs., 11 tabs.

  16. Interim site characterization report and ground-water monitoring program for the Hanford site solid waste landfill

    SciTech Connect

    Fruland, R.M.; Hagan, R.A.; Cline, C.S.; Bates, D.J.; Evans, J.C.; Aaberg, R.L.

    1989-07-01

    Federal and state regulations governing the operation of landfills require utilization of ground-water monitoring systems to determine whether or not landfill operations impact ground water at the point of compliance (ground water beneath the perimeter of the facility). A detection-level ground-water monitoring system was designed, installed, and initiated at the Hanford Site Solid Waste Landfill (SWL). Chlorinated hydrocarbons were detected at the beginning of the ground-water monitoring program and continue to be detected more than 1 year later. The most probable source of the chlorinated hydrocarbons is washwater discharged to the SWL between 1985 and 1987. This is an interim report and includes data from the characterization work that was performed during well installation in 1987, such as field observations, sediment studies, and geophysical logging results, and data from analyses of ground-water samples collected in 1987 and 1988, such as field parameter measurements and chemical analyses. 38 refs., 27 figs., 8 tabs.

  17. Groundwater quality assessment plan for single-shell waste management area B-BX-BY at the Hanford Site

    SciTech Connect

    SM Narbutovskih

    2000-03-31

    Pacific Northwest National Laboratory conducted a first determination groundwater quality assessment at the Hanford Site. This work was performed for the US Department of Energy, Richland Operations Office, in accordance with the Federal Facility Compliance Agreement during the time period 1996--1998. The purpose of the assessment was to determine if waste from the Single-Shell Tank (SST) Waste Management Area (WMA) B-BX-BY had entered the groundwater at levels above the drinking water standards (DWS). The resulting assessment report documented evidence demonstrating that waste from the WMA has, most likely, impacted groundwater quality. Based on 40 CFR 265.93 [d] paragraph (7), the owner-operator must continue to make the minimum required determinations of contaminant level and of rate/extent of migrations on a quarterly basis until final facility closure. These continued determinations are required because the groundwater quality assessment was implemented prior to final closure of the facility.

  18. Groundwater Contamination: DOD Uses and Develops a Range of Remediation Technologies to Clean Up Military Sites

    DTIC Science & Technology

    2005-06-01

    Enhanced recovery X X X Chemical treatments X X X X X Monitored natural attenuation X X X X X Multiphase extraction X X X X X Permeable reactive...site, alone or in conjunction with other types of remediation. However, compared with active techniques, natural attenuation often requires longer...existing technologies. DOD actively researches and tests new approaches to groundwater remediation largely by developing and promoting the acceptance of

  19. Groundwater re-injection at Fernald: Its role in accelerating the aquifer remedy

    SciTech Connect

    Kenneth A. Broberg; Robert Janke

    2000-09-29

    A successful field-scale demonstration of the use of groundwater re-injection at the Fernald Environmental Management Project (FEMP) was recently completed, bringing the U.S. Department of Energy one step closer to achieving an accelerated site remediation. The demonstration marks the end of a several-year effort to evaluate (a) whether re-injection could be conducted efficiently at Fernald and (b) whether the approved aquifer remedy at Fernald would benefit from incorporating re-injection.

  20. The Resilience of Groundwater Remediation System in Response to Changing Conditions

    NASA Astrophysics Data System (ADS)

    Hou, D.

    2016-12-01

    Anthropogenic activities have caused the contamination of groundwater resources at many locations. In an effort to protect human health and prevent further spreading of groundwater contamination, remediation systems have been or will be built at hundreds of thousands of sites. While the short term effectiveness has been the focus of past research and practice, the long-term effectiveness is increasingly scrutinized. When assessing the long-term effectiveness of groundwater remediation systems, it is important to examine how existing remediation systems respond to changing geophysical (e.g. climate change) and social (e.g. improved living standard and changing development needs) conditions. The resilience of remediation strategies, or their potential to adapt to future changes, is a critical sustainability consideration. We intend to examine the resilience of groundwater remediation systems in response to changing conditions. Among others, we explore the effects of sea level rise and changing hydroclimatic conditions on the life cycle impact of phytoremediation and bioremediation systems. The study was conducted in the San Francisco Bay area, where thousands of contaminated sites are located in an area that may be affected by sea level rise and changing hydroclimatic conditions.

  1. Development of a three-dimensional ground-water model of the Hanford Site unconfined aquifer system: FY 1995 status report

    SciTech Connect

    Wurstner, S.K.; Thorne, P.D.; Chamness, M.A.; Freshley, M.D.; Williams, M.D.

    1995-12-01

    A three-dimensional numerical model of ground-water flow was developed for the uppermost unconfined aquifer at the Hanford Site in south-central Washington. Development of the model is supported by the Hanford Site Ground-Water Surveillance Project, managed by the Pacific Northwest National Laboratory, which is responsible for monitoring the sitewide movement of contaminants in ground water beneath the Hanford Site. Two objectives of the Ground-Water Surveillance Project are to (1) identify and quantify existing, emerging, or potential ground-water quality problems, and (2) assess the potential for contaminants to migrate from the Hanford Site through the ground-water pathway. Numerical models of the ground-water flow system are important tools for estimating future aquifer conditions and predicting the movement of contaminants through ground water. The Ground-Water Surveillance Project has supported development and maintenance of a two-dimensional model of the unconfined aquifer. This report describes upgrade of the two-dimensional model to a three-dimensional model. The numerical model is based on a three-dimensional conceptual model that will be continually refined and updated as additional information becomes available. This report presents a description of the three-dimensional conceptual model of ground-water flow in the unconfined aquifer system and then discusses the cur-rent state of the three-dimensional numerical model.

  2. Comparison of Field Groundwater Biostimulation Experiments Using Polylactate and Lactate Solutions at the Chromium-Contaminated Hanford 100-H Site

    NASA Astrophysics Data System (ADS)

    Hazen, T. C.; Faybishenko, B.; Beller, H. R.; Brodie, E. L.; Sonnenthal, E. L.; Steefel, C.; Larsen, J.; Conrad, M. E.; Bill, M.; Christensen, J. N.; Brown, S. T.; Joyner, D.; Borglin, S. E.; Geller, J. T.; Chakraborty, R.; Nico, P. S.; Long, P. E.; Newcomer, D. R.; Arntzen, E.

    2011-12-01

    The primary contaminant of concern in groundwater at the DOE Hanford 100 Area (Washington State) is hexavalent chromium [Cr(VI)] in Hanford coarse-grained sediments. Three lactate injections were conducted in March, August, and October 2010 at the Hanford 100-H field site to assess the efficacy of in situ Cr(VI) bioreductive immobilization. Each time, 55 gal of lactate solution was injected into the Hanford aquifer. To characterize the biogeochemical regimes before and after electron donor injection, we implemented a comprehensive plan of groundwater sampling for microbial, geochemical, and isotopic analyses. These tests were performed to provide evidence of transformation of toxic and soluble Cr(VI) into less toxic and poorly soluble Cr(III) by bioimmobilization, and to quantify critical and interrelated microbial metabolic and geochemical mechanisms affecting chromium in situ reductive immobilization and the long-term sustainability of chromium bioremediation. The results of lactate injections were compared with data from two groundwater biostimulation tests that were conducted in 2004 and 2008 by injecting Hydrogen Release Compound (HRC°), a slow-release glycerol polylactate, into the Hanford aquifer. In all HRC and lactate injection tests, 13C-labeled lactate was added to the injected solutions to track post-injection carbon pathways. Monitoring showed that despite a very low initial total microbial density (from <104 to 105 cells/mL), both HRC and lactate injections stimulated anaerobic microbial activity, which led to an increase in biomass to >107 cells/mL (including sulfate- and nitrate-reducing bacteria), resulting in a significant decrease in soluble Cr(VI) concentrations to below the MCL. In all tests, lactate was consumed nearly completely within the first week, much faster than HRC. Modeling of biogeochemical and isotope fractionation processes with the reaction-transport code TOUGHREACT captured the biodegradation of lactate, fermentative production

  3. Groundwater flow in the Venice lagoon and remediation of the Porto Marghera industrial area (Italy)

    NASA Astrophysics Data System (ADS)

    Beretta, Giovanni Pietro; Terrenghi, Jacopo

    2017-05-01

    This study aims to determine the groundwater flow in a large area of the Venice (northeast Italy) lagoon that is under great anthropogenic pressure, which is influencing the regional flow in the surficial aquifer (about 30 m depth). The area presents several elements that condition the groundwater flow: extraction by means of drainage pumps and wells; tidal fluctuation; impermeable barriers that define part of the coastline, rivers and artificial channels; precipitation; recharge, etc. All the elements were studied separately, and then they were brought together in a numerical groundwater flow model to estimate the impact of each one. Identification of the impact of each element will help to optimise the characteristics of the Porto Marghera remediation systems. Longstanding industrial activity has had a strong impact on the soil and groundwater quality, and expensive and complex emergency remediation measures in problematic locations have been undertaken to ensure the continuity of industrial and maritime activities. The land reclamation and remediation works withdraw 56-74% of the water budget, while recharge from the river accounts for about 21-48% of the input. Only 21-42% of groundwater in the modelled area is derived from natural recharge sources, untouched by human activity. The drop of the piezometric level due to the realization of the upgradient impermeable barrier can be counteracted with the reduction of the pumping rate of the remediation systems.

  4. Groundwater flow in the Venice lagoon and remediation of the Porto Marghera industrial area (Italy)

    NASA Astrophysics Data System (ADS)

    Beretta, Giovanni Pietro; Terrenghi, Jacopo

    2016-12-01

    This study aims to determine the groundwater flow in a large area of the Venice (northeast Italy) lagoon that is under great anthropogenic pressure, which is influencing the regional flow in the surficial aquifer (about 30 m depth). The area presents several elements that condition the groundwater flow: extraction by means of drainage pumps and wells; tidal fluctuation; impermeable barriers that define part of the coastline, rivers and artificial channels; precipitation; recharge, etc. All the elements were studied separately, and then they were brought together in a numerical groundwater flow model to estimate the impact of each one. Identification of the impact of each element will help to optimise the characteristics of the Porto Marghera remediation systems. Longstanding industrial activity has had a strong impact on the soil and groundwater quality, and expensive and complex emergency remediation measures in problematic locations have been undertaken to ensure the continuity of industrial and maritime activities. The land reclamation and remediation works withdraw 56-74% of the water budget, while recharge from the river accounts for about 21-48% of the input. Only 21-42% of groundwater in the modelled area is derived from natural recharge sources, untouched by human activity. The drop of the piezometric level due to the realization of the upgradient impermeable barrier can be counteracted with the reduction of the pumping rate of the remediation systems.

  5. In situ groundwater remediation using air sparging, vapor extraction and bioventing

    SciTech Connect

    Stumpf, P.; Cotton, D.W.; Bayliss, R.

    1994-12-31

    Over 60 years of refining operations have resulted in petroleum hydrocarbon contamination of soil and groundwater at the 74-acre former Golden Eagle Refinery in Carson, California. Successful negotiations with the California Regional Water Quality Control Board (RWQCB)-Los Angeles Region, and the California Department of Toxic Substances Control (DTSC) resulted in the use of a phased approach, separating the soil and groundwater remediation activities. Based on the findings of site assessments conducted to define and characterize the soil and groundwater contamination at the site, remediation of the soil was initiated first. By obtaining agency approval on the soil cleanup, the site could proceed with development during the groundwater remediation activities. Prior to groundwater remediation, an air sparging pilot test was performed at the site on a highly heterogeneous site consisting of mostly low permeability soils in southern California. This paper how the pilot test was performed, the test results and the accuracy of the results when scaled up to the full operating system.

  6. In Situ Sequestration of Arsenic in Groundwater: Manipulating Geochemical Conditions to Remediate Sites (Invited)

    NASA Astrophysics Data System (ADS)

    Deflaun, M. F.

    2010-12-01

    Dealing with arsenic in groundwater can be a challenge because of its geochemical nature as a metalloid and the fact that arsenic can be present in groundwater from natural sources (e.g., rocks and minerals) or from past or current uses of arsenic-containing compounds (e.g., pesticides, wood-treating compounds). Both recent publicity regarding naturally occurring arsenic in Asian groundwater and regulatory pressure have stimulated the development of cost-effective methods to mitigate arsenic in groundwater. Because of potentially lower capital and operating costs, in situ methods can be attractive alternatives to costly pump-and-treat systems for smaller-scale operations. Design of appropriate in situ remediation methods should consider the source of the arsenic. Releases of arsenic from arsenic minerals can result from changes in oxidation-reduction potential (ORP) or pH changes. Displacement of arsenic sorbed onto iron oxides can occur through either reductive dissolution of the oxide or through competitive sorption of another ionic species, such as phosphate or carbonate. In situ methods for remediation of arsenic in groundwater include natural attenuation, ORP adjustment, and pH adjustment. The appropriate in situ approach for a site can depend on the source of the arsenic, background groundwater chemistry, site mineralogy, and other factors. The behavior of arsenic in groundwater is described in terms of ORP, pH, and sorption to iron oxides. Data from several sites are used to illustrate the conditions discussed, and case studies showing the use of ORP adjustment, pH adjustment, and natural attenuation to remediate arsenic in groundwater are presented. These case studies include projects ranging from bench-scale testing, to pilot scale demonstrations and full-scale remedial operations.

  7. New Pump and Treat Facility Remedial Action Work Plan for Test Area North (TAN) Final Groundwater Remediation, Operable Unit 1-07B

    SciTech Connect

    D. Vandel

    2003-09-01

    This remedial action work plan identifies the approach and requirements for implementing the medical zone remedial action for Test Area North, Operable Unit 1-07B, at the Idaho National Engineering and Environmental Laboratory (INEEL). This plan details management approach for the construction and operation of the New Pump and Treat Facility. As identified in the remedial design/remedial action scope of work, a separate remedial design/remedial action work plan will be prepared for each remedial component of the Operable Unit 1-07B remedial action. This work plan was originally prepared as an early implementation of the final Phase C remediation. At that time, The Phase C implementation strategy was to use this document as the overall Phase C Work Plan and was to be revised to include the remedial actions for the other remedial zones (hotspot and distal zones). After the completion of Record of Decision Amendment: Technical Support Facility Injection Well (TSF-05) and Surrounding Groundwater Contamination (TSF-23) and Miscellaneous No Action Sites, Final Remedial Action, it was determined that each remedial zone would have it own stand-alone remedial action work plan. Revision 1 of this document converts this document to a stand-alone remedial action plan specific to the implementation of the New Pump and Treat Facility used for plume remediation within the medical zone of the OU 1-07B contaminated plume.

  8. One perspective on stakeholder involvement at Hanford.

    PubMed

    Martin, Todd

    2011-11-01

    The Hanford nuclear site in Washington State had a major role in the production of nuclear weapons materials during the Manhattan Project in World War II and during the Cold War that followed. The production of weapons-grade radionuclides produced a large amount of radioactive byproducts that have been stored since the mid-1900s at the Hanford Site. These by-product radionuclides have leaked from containment facilities into the groundwater, contaminated buildings used for radionuclide processing, and also contaminated the nuclear reactors used to produce weapons-grade uranium and plutonium. This issue has been a major concern to Hanford stakeholders for several decades, and the U.S. Department of Energy, the U.S. Environmental Protection Agency, and the Washington State Department of Ecology established a Tri-Party Agreement in 1989, at which time Hanford ceased production of nuclear weapons materials and began a major effort to clean up and remediate the Hanford Site's contaminated groundwater, soil, and facilities. This paper describes the concerns of stakeholders in the production of nuclear weapons, the secrecy of Hanford operations, and the potential impacts to public health and the environment from the unintended releases of weapons-grade materials and by-products associated with their production at the Hanford Site. It also describes the involvement of public stakeholders in the development and oversight by the Hanford Advisory Board of the steps that have been taken in cleanup activities at the Hanford Site that began as a major effort about two decades ago. The importance of involvement of the general public and public interest organizations in developing and implementing the Hanford cleanup strategy are described in detail.

  9. The Use of Bacteria for Remediation of Mercury Contaminated Groundwater

    EPA Science Inventory

    Many processes of mercury transformation in the environment are bacteria mediated. Mercury properties cause some difficulties of remediation of mercury contaminated environment. Despite the significance of the problem of mercury pollution, methods of large scale bioremediation ...

  10. The Use of Bacteria for Remediation of Mercury Contaminated Groundwater

    EPA Science Inventory

    Many processes of mercury transformation in the environment are bacteria mediated. Mercury properties cause some difficulties of remediation of mercury contaminated environment. Despite the significance of the problem of mercury pollution, methods of large scale bioremediation ...

  11. Ground-Water Protection and Monitoring Program

    SciTech Connect

    Dresel, P.E.

    1995-06-01

    This section of the 1994 Hanford Site Environmental Report summarizes the ground-water protection and monitoring program strategy for the Hanford Site in 1994. Two of the key elements of this strategy are to (1) protect the unconfined aquifer from further contamination, and (2) conduct a monitoring program to provide early warning when contamination of ground water does occur. The monitoring program at Hanford is designed to document the distribution and movement of existing ground-water contamination and provides a historical baseline for evaluating current and future risk from exposure to the contamination and for deciding on remedial action options.

  12. Biodenitrification of Hanford groundwater and process effluents: FY 1988 Status Report

    SciTech Connect

    Koegler, S.S.; Brouns, T.M.; Heath, W.O.; Hicks, R.J.

    1989-09-01

    Laboratory screening tests were performed to select microorganisms for their ability to destroy nitrates and carbon tetrachloride in Hanford groundwaters. The microorganisms were subsequently tested in bench-scale experiments to determine the fundamental kinetic constants for denitrification with acetate. The microorganisms were also used as the inoculum for the pilot-scale bioreactor system, which was designed, constructed, and operated in FY 1988. The bench-scale denitrification kinetic data were analyzed using two rate models. The best fit was obtained using a first-order expression. The kinetic constants determined in the bench-scale experiments were later used to set operating parameters for the pilot-scale bioreactor test. The pilot-scale bioreactor system consisted of a 50-L continuous-stirred tank bioreactor, a 280-L clarifier, associated feed components, and a data acquisition and control system. The pilot plant was designed as a module for ease of installation and to facilitate relocation for on-site demonstration testing. The pilot-scale bioreactor was installed and operated in FY 1988, but steady-state operating data are not yet available. Preliminary denitrification data show destruction of nitrate to concentrations less than drinking water standards. A preliminary engineering evaluation was also completed in FY 1988 that examined the engineering feasibility of biodenitrification for the UO{sub 3} Plant process condensate through microorganism laboratory testing, development of flowsheets, and equipment size and cost estimates. 15 refs., 16 figs., 8 tabs.

  13. Ground-water surveillance at the Hanford Site for CY 1982

    SciTech Connect

    Eddy, P.A.; Prater, L.S.; Rieger, J.T.

    1983-06-01

    Operations at the Hanford Site since 1944 have resulted in the discharge of large volumes of process cooling water and other waste waters to the ground. These effluents, which have reached the unconfined ground water, contain low levels of radioactive and chemical substances. The movement of these constituents in the unconfined ground water is monitored as part of the Ground-Water Surveillance Program. During 1982, 324 monitoring wells were sampled at various times for radioactive and chemical constituents. Tritium are the primary ones used to monitor the movement of the ground water. This report describes recent changes in the configuration of the tritium and nitrate plumes. The tritium plume continues to show increasing concentrations near the Columbia River. While it is mapped as having reached the Columbia River, its contribution to the river has not been distinguished from other sources at this time. The general plume configuration is much the same as in 1978, 1979, 1980, and 1981. The size of the nitrate plume appears stable. Concentrations of nitrate in the vicinity of the 100-H Area continue to be high as a result of past leaks from an evaporation facility.

  14. Clean option: An alternative strategy for Hanford Tank Waste Remediation. Volume 2, Detailed description of first example flowsheet

    SciTech Connect

    Swanson, J.L.

    1993-09-01

    Disposal of high-level tank wastes at the Hanford Site is currently envisioned to divide the waste between two principal waste forms: glass for the high-level waste (HLW) and grout for the low-level waste (LLW). The draft flow diagram shown in Figure 1.1 was developed as part of the current planning process for the Tank Waste Remediation System (TWRS), which is evaluating options for tank cleanup. The TWRS has been established by the US Department of Energy (DOE) to safely manage the Hanford tank wastes. It includes tank safety and waste disposal issues, as well as the waste pretreatment and waste minimization issues that are involved in the ``clean option`` discussed in this report. This report describes the results of a study led by Pacific Northwest Laboratory to determine if a more aggressive separations scheme could be devised which could mitigate concerns over the quantity of the HLW and the toxicity of the LLW produced by the reference system. This aggressive scheme, which would meet NRC Class A restrictions (10 CFR 61), would fit within the overall concept depicted in Figure 1.1; it would perform additional and/or modified operations in the areas identified as interim storage, pretreatment, and LLW concentration. Additional benefits of this scheme might result from using HLW and LLW disposal forms other than glass and grout, but such departures from the reference case are not included at this time. The evaluation of this aggressive separations scheme addressed institutional issues such as: radioactivity remaining in the Hanford Site LLW grout, volume of HLW glass that must be shipped offsite, and disposition of appropriate waste constituents to nonwaste forms.

  15. Uranium Contamination in the Subsurface Beneath the 300 Area, Hanford Site, Washington

    SciTech Connect

    Peterson, Robert E.; Rockhold, Mark L.; Serne, R. Jeffrey; Thorne, Paul D.; Williams, Mark D.

    2008-02-29

    This report provides a description of uranium contamination in the subsurface at the Hanford Site's 300 Area. The principal focus is a persistence plume in groundwater, which has not attenuated as predicted by earlier remedial investigations. Included in the report are chapters on current conditions, hydrogeologic framework, groundwater flow modeling, and geochemical considerations. The report is intended to describe what is known or inferred about the uranium contamination for the purpose of making remedial action decisions.

  16. Consensus implementation of a groundwater remediation project at the Idaho National Engineering Laboratory

    SciTech Connect

    Hastings, K.R.; Carlson, D.S.

    1996-12-31

    Because of significant characterization uncertainties existing when the Record of Decision was signed and the unfavorable national reputation of groundwater pump and treat remediation projects, the Test Area North (TAN) groundwater ROD includes the evaluation of five emerging technologies that show potential for treating the organic contamination in situ or reducing the toxicity of contaminants above ground. Treatability studies will be conducted to ascertain whether any may be suitable for implementation at TAN to yield more timely or cost effective restoration of the aquifer. The implementation approach established for the TAN groundwater project is a consensus approach, maximizing a partnership relation with stakeholders in constant, iterative implementation decision making.

  17. Groundwater arsenic remediation using zerovalent iron: Batch and column tests

    EPA Science Inventory

    Recently, increasing efforts have been made to explore the applicability and limitations of zerovalent iron (Fe0) for the treatment of arsenicbearing groundwater and wastewater. The experimental batch and column tests have demonstrated that arsenate and arsenite are removed effec...

  18. Groundwater arsenic remediation using zerovalent iron: Batch and column tests

    EPA Science Inventory

    Recently, increasing efforts have been made to explore the applicability and limitations of zerovalent iron (Fe0) for the treatment of arsenicbearing groundwater and wastewater. The experimental batch and column tests have demonstrated that arsenate and arsenite are removed effec...

  19. Effect of heterogeneity on enhanced reductive dechlorination: Analysis of remediation efficiency and groundwater acidification

    NASA Astrophysics Data System (ADS)

    Brovelli, A.; Lacroix, E.; Robinson, C. E.; Gerhard, J.; Holliger, C.; Barry, D. A.

    2011-12-01

    Enhanced reductive dehalogenation is an attractive in situ treatment technology for chlorinated contaminants. The process includes two acid-forming microbial reactions: fermentation of an organic substrate resulting in short-chain fatty acids, and dehalogenation resulting in hydrochloric acid. The accumulation of acids and the resulting drop of groundwater pH are controlled by the mass and distribution of chlorinated solvents in the source zone, type of electron donor, alternative terminal electron acceptors available and presence of soil mineral phases able to buffer the pH (such as carbonates). Groundwater acidification may reduce or halt microbial activity, and thus dehalogenation, significantly increasing the time and costs required to remediate the aquifer. In previous work a detailed geochemical and groundwater flow simulator able to model the fermentation-dechlorination reactions and associated pH change was developed. The model accounts for the main processes influencing microbial activity and groundwater pH, including the groundwater composition, the electron donor used and soil mineral phase interactions. In this study, the model was applied to investigate how spatial variability occurring at the field scale affects dechlorination rates, groundwater pH and ultimately the remediation efficiency. Numerical simulations were conducted to examine the influence of heterogeneous hydraulic conductivity on the distribution of the injected, fermentable substrate and on the accumulation/dilution of the acidic products of reductive dehalogenation. The influence of the geometry of the DNAPL source zone was studied, as well as the spatial distribution of soil minerals. The results of this study showed that the heterogeneous distribution of the soil properties have a potentially large effect on the remediation efficiency. For examples, zones of high hydraulic conductivity can prevent the accumulation of acids and alleviate the problem of groundwater acidification. The

  20. LITERATURE SURVEY FOR GROUNDWATER TREATMENT OPTIONS FOR NITRATE IODINE-129 AND URANIUM 200-ZP-1 OPERABLE UNIT HANFORD SITE

    SciTech Connect

    BYRNES ME

    2008-06-05

    This literature review presents treatment options for nitrate, iodine-129, and uranium, which are present in groundwater at the 200-ZP-I Groundwater Operable Unit (OU) within the 200 West Area of the Hanford Site. The objective of this review is to determine available methods to treat or sequester these contaminants in place (i.e., in situ) or to pump-and-treat the groundwater aboveground (i.e., ex situ). This review has been conducted with emphasis on commercially available or field-tested technologies, but theoretical studies have, in some cases, been considered when no published field data exist. The initial scope of this literature review included only nitrate and iodine-I 29, but it was later expanded to include uranium. The focus of the literature review was weighted toward researching methods for treatment of nitrate and iodine-129 over uranium because of the relatively greater impact of those compounds identified at the 200-ZP-I OU.

  1. Guidelines for active spreading during in situ chemical oxidation to remediate contaminated groundwater

    EPA Science Inventory

    The effectiveness of in situ chemical oxidation to remediate contaminated aquifers depends on the extent and duration of contact between the injected treatment chemical and the groundwater contaminant (the reactants). Techniques that inject and extract in the aquifer to ‘ac...

  2. Grand challenge problems in environmental modeling and remediation: groundwater contaminant transport

    SciTech Connect

    Todd Arbogast; Steve Bryant; Clint N. Dawson; Mary F. Wheeler

    1998-08-31

    This report describes briefly the work of the Center for Subsurface Modeling (CSM) of the University of Texas at Austin (and Rice University prior to September 1995) on the Partnership in Computational Sciences Consortium (PICS) project entitled Grand Challenge Problems in Environmental Modeling and Remediation: Groundwater Contaminant Transport.

  3. Guidelines for active spreading during in situ chemical oxidation to remediate contaminated groundwater

    EPA Science Inventory

    The effectiveness of in situ chemical oxidation to remediate contaminated aquifers depends on the extent and duration of contact between the injected treatment chemical and the groundwater contaminant (the reactants). Techniques that inject and extract in the aquifer to ‘ac...

  4. Abiotic remediation of nitro-aromatic groundwater contaminants by zero-valent iron

    SciTech Connect

    Agrawal, A.; Tratnyek, P.G.

    1994-03-18

    Recent laboratory and field experiments have shown that some halogenated hydrocarbons undergo rapid reductive dehalogenation with zero-valent iron and the application of this process is being developed for in-situ remediation of contaminated groundwater. However, from can also reduce other organic substances and is commonly used to synthesize reduction products nitro compounds.

  5. RELIABILITY-BASED UNCERTAINTY ANALYSIS OF GROUNDWATER CONTAMINANT TRANSPORT AND REMEDIATION

    EPA Science Inventory

    This report presents a discussion of the application of the first- and second-order reliability methods (FORM and SORM, respectively) to ground-water transport and remediation, and to public health risk assessment. Using FORM and SORM allows the formal incorporation of parameter...

  6. New Pump and Treat Facility Remedial Action Work Plan for Test Area North (TAN) Final Groundwater Remediation, Operable Unit 1-07B

    SciTech Connect

    L. O. Nelson

    2003-09-01

    This operations and maintenance plan supports the New Pump and Treat Facility (NPTF) remedial action work plan and identifies the approach and requirements for the operations and maintenance activities specific to the final medical zone treatment remedy. The NPTF provides the treatment system necessary to remediate the medical zone portion of the OU 1-07B contaminated groundwater plume. Design and construction of the New Pump and Treat Facility is addressed in the NPTF remedial action work plan. The scope of this operation and maintenance plan includes facility operations and maintenance, remedy five-year reviews, and the final operations and maintenance report for the NPTF.

  7. Hanford wells

    SciTech Connect

    Chamness, M.A.; Merz, J.K.

    1993-08-01

    Records describing wells located on or near the Hanford Site have been maintained by Pacific Northwest Laboratory and the operating contractor, Westinghouse Hanford Company. In support of the Ground-Water Surveillance Project, portions of the data contained in these records have been compiled into the following report, which is intended to be used by those needing a condensed, tabular summary of well location and basic construction information. The wells listed in this report were constructed over a period of time spanning almost 70 years. Data included in this report were retrieved from the Hanford Envirorunental Information System (HEIS) database and supplemented with information not yet entered into HEIS. While considerable effort has been made to obtain the most accurate and complete tabulations possible of the Hanford Site wells, omissions and errors may exist. This document does not include data on lithologic logs, ground-water analyses, or specific well completion details.

  8. Ultrasonic process for remediation of organics-contaminated groundwater/wastewater

    SciTech Connect

    Wu, J.M.; Peters, R.W.

    1995-07-01

    A technology is being developed that employs ultrasonic-wave energy for remediation of groundwater/wastewater contaminated with volatile organic compounds such as carbon tetrachloride (CCl{sub 4}) and trichloroethylene (TCE). This paper presents the updated results of a laboratory investigation of ultrasonic groundwater remediation using synthetic groundwaters prepared with laboratory deionized water. Key process parameters investigated included steady-state temperature, contaminant concentration, solution pH, sonication time, and intensity of the applied ultrasonics-wave energy. High destruction efficiencies of the target contaminants were achieved, and the sonication time required for a given degree of destruction decreased with increasing intensity of the applied ultrasonic energy. The sonication time can be further reduced by adding a chemical oxidant such as hydrogen peroxide.

  9. Superfund record of decision (EPA Region 10): Hanford 100 area (USDOE), operable units 100-hr-3 and 100-kr-4, Hanford Site, Benton County, WA, March 26, 1996

    SciTech Connect

    1996-05-01

    This decision document presents the selected interim remedial actions for portions of the USDOE Hanford 100 Area, Hanford Site, Benton County, Washington. The selected remedy is an interim action that involves removing hexavalent chromium from groundwater that discharges into the Columbia River. To intercept the chromium plumes, groundwater will be pumped from approximately 30 wells located along and inland from the river shoreline. The water will then be treated using an ion exchange treatment technology to remove chromium. The treated effluent will then be returned to the aquifer using injection wells located upgradient of the existing chromium plumes. The interim action includes monitoring of the groundwater near the river and the effluent from the treatment system to determine system performance in meeting the remedial action objectives for protection of the Columbia River. The interim action also involves institutional controls to protect human health from groundwater contaminants.

  10. MONITORED NATURAL ATTENUATION FOR INORGANIC CONTAMINANT REMEDIATION IN GROUNDWATER

    EPA Science Inventory

    Monitored natural attenuation (MNA) has been applied as a knowledge-based remediation technology for organic contaminants in ground water. Development of a site-specific assessment of biotic and abiotic processes that lead to organic contaminant degradation provides the technica...

  11. Remediation of arsenic-contaminated soils and groundwaters

    DOEpatents

    Peters, Robert W.; Frank, James R.; Feng, Xiandong

    1998-01-01

    An in situ method for extraction of arsenic contaminants from a soil medium and remediation of the medium including contacting the medium with an extractant solution, directing the solution within and through the medium, and collecting the solution and contaminants. The method can also be used for arsenate and/or arsenite removal.

  12. Remediation of arsenic-contaminated soils and groundwaters

    DOEpatents

    Peters, R.W.; Frank, J.R.; Feng, X.

    1998-06-23

    An in situ method is described for extraction of arsenic contaminants from a soil medium and remediation of the medium including contacting the medium with an extractant solution, directing the solution within and through the medium, and collecting the solution and contaminants. The method can also be used for arsenate and/or arsenite removal. 8 figs.

  13. MONITORED NATURAL ATTENUATION FOR INORGANIC CONTAMINANT REMEDIATION IN GROUNDWATER

    EPA Science Inventory

    Monitored natural attenuation (MNA) has been applied as a knowledge-based remediation technology for organic contaminants in ground water. Development of a site-specific assessment of biotic and abiotic processes that lead to organic contaminant degradation provides the technica...

  14. Alternative Endpoints and Approaches for the Remediation of Contaminated Groundwater at Complex Sites - 13426

    SciTech Connect

    Deeb, Rula A.; Hawley, Elisabeth L.

    2013-07-01

    The goal of United States (U.S.) Department of Energy's (DOE)'s environmental remediation programs is to restore groundwater to beneficial use, similar to many other Federal and state environmental cleanup programs. Based on past experience, groundwater remediation to pre-contamination conditions (i.e., drinking water standards or non-detectable concentrations) can be successfully achieved at many sites. At a subset of the most complex sites, however, complete restoration is not likely achievable within the next 50 to 100 years using today's technology. This presentation describes several approaches used at complex sites in the face of these technical challenges. Many complex sites adopted a long-term management approach, whereby contamination was contained within a specified area using active or passive remediation techniques. Consistent with the requirements of their respective environmental cleanup programs, several complex sites selected land use restrictions and used risk management approaches to accordingly adopt alternative cleanup goals (alternative endpoints). Several sites used long-term management designations and approaches in conjunction with the alternative endpoints. Examples include various state designations for groundwater management zones, technical impracticability (TI) waivers or greater risk waivers at Superfund sites, and the use of Monitored Natural Attenuation (MNA) or other passive long-term management approaches over long time frames. This presentation will focus on findings, statistics, and case studies from a recently-completed report for the Department of Defense's Environmental Security Technology Certification Program (ESTCP) (Project ER-0832) on alternative endpoints and approaches for groundwater remediation at complex sites under a variety of Federal and state cleanup programs. The primary objective of the project was to provide environmental managers and regulators with tools, metrics, and information needed to evaluate

  15. Surface radiation survey for the Phase 1 remedial investigation of the 300-FF-1 operable unit on the Hanford Site

    SciTech Connect

    Teel, S.S.; Olsen, K.B.

    1990-10-01

    This report summarizes Task 3a-1 of the Phase I Remedial Investigation for the 300-FF-1 Operable Unit on the Hanford Site, near Richland, Washington. The purpose of the Remedial Investigation is to determine the nature and extent of the risk presented by releases of hazardous substances from the operable unit. The purpose of Task 3a-1 was to locate any areas of contaminated soil outside of operable unit waste facility boundaries. Surface radiation survey and sampling activities in the 300-FF-1 Operable Unit were conducted from September 1989 to December 1989 and April 1990 to June 1990. Surveys were conducted primarily using portable Geiger-Muller beta/gamma detectors. As a result, 77 locations were found where radiation occurred above a statistically calculated background estimate. The Ultra Sonic Ranging and Data System (USRADS) was also used to survey a limited area. Analysis of the USRADS data revealed several elevated measurements that were not detected at the same locations with the Geiger-Muller detector. 6 refs., 14 figs., 4 tabs.

  16. Remediation Progress of the High-Risk 618-10 Burial Ground at Hanford 12427

    SciTech Connect

    Haass, M.J.; Walton, Z.P.

    2012-07-01

    The 618-10 Burial Ground was in operation from 1954 to 1963 and consists of 94 vertical pipe disposal units (VPUs) and 12 solid waste disposal trenches. Remediation of the trenches began in March of 2011 under the River Corridor Closure Contract (RCCC)a. This work was considered to be high risk because the trenches are known to contain a large radiological inventory and have the potential to release airborne contaminants. Remediation is being performed without a containment structure by using a combination of engineering controls and monitoring equipment. The engineering controls include storing material below grade using a surge trench, the application of soil fixatives, and applying material storage limits. The use of radiological and chemical monitoring equipment is also used to provide near real-time information to guide remediation activities and limit contact of waste until risks can be evaluated. Remediation of the trenches is progressing without any significant personnel or environmental issues. (authors)

  17. Influence of hexavalent chromium on lactate-enriched Hanford groundwater microbial communities.

    SciTech Connect

    Somenahally, Anil C; Mosher, Jennifer J; Yuan, Tong; Podar, Mircea; Phelps, Tommy Joe; Brown, Steven D; Yang, Zamin Koo; Hazen, Terry C; Arkin, Adam; Palumbo, Anthony Vito; Zhou, Jizhong; Elias, Dwayne A

    2013-01-01

    Microbial reduction and immobilization of chromate (Cr(VI)) is a plausible bioremediation strategy. However, higher Cr(VI) concentrations may impose stress on native Cr-reducing communities. We sought to determine if Cr(VI) would influence the lactate enriched native microbial community structure and function in groundwater from the Cr contaminated site at Hanford, WA. Steady state continuous flow bioreactors were amended with lactate and Cr(VI) (0.0, 0.1 and 3.0 mg/L). Microbial growth, metabolites, Cr(VI) concentrations, 16S rRNA gene sequences and GeoChip based functional gene composition in bioreactors were monitored for 15 weeks. Temporal trends and some differences in growth, metabolite profiles, and community composition were observed, largely between Low-Cr and High-Cr bioreactors. In both High-Cr and Low-Cr bioreactors, Cr(VI) was reduced in the bioreactors. With lactate enrichment, the native communities did not significantly differ between Cr concentrations. Native bacterial communities were diverse, whereas after lactate enrichment, Pelosinus spp., and Sporotalea spp., were the most predominant groups in all bioreactors. Similarly, the Archaea diversity significantly decreased from Methanosaeta (35%), Methanosarcina (17%), Halobacteriales (12%), Methanoregula (8%) and others, to mostly Methanosarcina spp. (95%) after lactate enrichment. Composition of several key functional genes was distinct in Low-Cr bioreactors compared to High-Cr. Among the Cr resistant probes (chrA), Burkholderia vietnamiensis, Comamonas testosterone and Ralstonia pickettii proliferated in Cr amended bioreactors. In-situ fermentative conditions facilitated Cr(VI) reduction, and as a result the 3.0 mg/L Cr(VI) did not appear to give chromate reducing strains a competitive advantage for proliferation or for increasing Cr-reduction.

  18. Plutonium in groundwater at the 100K-Area of the U.S. DOE Hanford Site

    NASA Astrophysics Data System (ADS)

    Dai, Minhan; Buesseler, Ken O.; Pike, Steven M.

    2005-02-01

    We examined the concentration, size distribution, redox state and isotopic composition of plutonium (Pu) in groundwater at the 100K-Area at the U.S. Department of Energy's (DOE) Hanford Site. Total concentrations of Pu isotopes were extremely low (10 -4 to 10 -6 pCi/kg, ≈10 4 to 10 6 atoms/kg) but measurable for the first time in the 100K-Area wells using mass spectrometric analyses that are much more sensitive than alpha spectroscopy methods used previously. Size fractionation data from two wells suggest that 7-29% of the Pu is associated with colloids, operationally defined here as particles between 1 kDa-0.2 μm in size. These colloids were collected using a 1 kDa cross-flow ultrafiltration (CFF) system developed specifically for groundwater actinide studies to include careful controls both in the field and during processing to ensure in situ geochemical conditions are maintained and size separations can be well characterized. Pu in this colloidal fraction was exclusively in the more reduced Pu(III/IV) form, consistent with the higher affinity of Pu in the lower oxidation states for particle surfaces. While the overall concentrations of Pu were low, the Pu isotopic composition suggests at least two local sources of groundwater Pu, namely, local Hanford reactor operations at the 100K-Area and spent nuclear fuel from the N-reactor, which was stored in concrete pools at this site. Differences between this site and the Savannah River Site (SRS) are noted, since groundwater Pu at the F-Area seepage basin at SRS has been found using these same methods, to be characterized by lower colloidal abundances and higher oxidation states. This difference is not directly attributable to groundwater redox potential or geochemical conditions, but rather the physical-chemical difference in Pu sources, which at SRS appear to be dominated downstream from the seepage basins by decay of 244Cm, resulting in more oxidized forms of 240Pu. There is no clear evidence for colloid

  19. Plutonium in groundwater at the 100K-Area of the U.S. DOE Hanford Site.

    PubMed

    Dai, Minhan; Buesseler, Ken O; Pike, Steven M

    2005-02-01

    We examined the concentration, size distribution, redox state and isotopic composition of plutonium (Pu) in groundwater at the 100K-Area at the U.S. Department of Energy's (DOE) Hanford Site. Total concentrations of Pu isotopes were extremely low (10(-4) to 10(-6) pCi/kg, approximately 10(4) to 10(6) atoms/kg) but measurable for the first time in the 100K-Area wells using mass spectrometric analyses that are much more sensitive than alpha spectroscopy methods used previously. Size fractionation data from two wells suggest that 7-29% of the Pu is associated with colloids, operationally defined here as particles between 1 kDa-0.2 microm in size. These colloids were collected using a 1 kDa cross-flow ultrafiltration (CFF) system developed specifically for groundwater actinide studies to include careful controls both in the field and during processing to ensure in situ geochemical conditions are maintained and size separations can be well characterized. Pu in this colloidal fraction was exclusively in the more reduced Pu(III/IV) form, consistent with the higher affinity of Pu in the lower oxidation states for particle surfaces. While the overall concentrations of Pu were low, the Pu isotopic composition suggests at least two local sources of groundwater Pu, namely, local Hanford reactor operations at the 100K-Area and spent nuclear fuel from the N-reactor, which was stored in concrete pools at this site. Differences between this site and the Savannah River Site (SRS) are noted, since groundwater Pu at the F-Area seepage basin at SRS has been found using these same methods, to be characterized by lower colloidal abundances and higher oxidation states. This difference is not directly attributable to groundwater redox potential or geochemical conditions, but rather the physical-chemical difference in Pu sources, which at SRS appear to be dominated downstream from the seepage basins by decay of 244Cm, resulting in more oxidized forms of 240Pu. There is no clear evidence

  20. Immobilization of U(VI) from oxic groundwater by Hanford 300 Area sediments and effects of Columbia River water.

    PubMed

    Ahmed, Bulbul; Cao, Bin; Mishra, Bhoopesh; Boyanov, Maxim I; Kemner, Kenneth M; Fredrickson, Jim K; Beyenal, Haluk

    2012-09-01

    Regions within the U.S. Department of Energy Hanford 300 Area (300 A) site experience periodic hydrologic influences from the nearby Columbia River as a result of changing river stage, which causes changes in groundwater elevation, flow direction and water chemistry. An important question is the extent to which the mixing of Columbia River water and groundwater impacts the speciation and mobility of uranium (U). In this study, we designed experiments to mimic interactions among U, oxic groundwater or Columbia River water, and 300 A sediments in the subsurface environment of Hanford 300 A. The goals were to investigate mechanisms of: 1) U immobilization in 300 A sediments under bulk oxic conditions and 2) U remobilization from U-immobilized 300 A sediments exposed to oxic Columbia River water. Initially, 300 A sediments in column reactors were fed with U(VI)-containing oxic 1) synthetic groundwater (SGW), 2) organic-amended SGW (OA-SGW), and 3) de-ionized (DI) water to investigate U immobilization processes. After that, the sediments were exposed to oxic Columbia River water for U remobilization studies. The results reveal that U was immobilized by 300 A sediments predominantly through reduction (80-85%) when the column reactor was fed with oxic OA-SGW. However, U was immobilized by 300 A sediments through adsorption (100%) when the column reactors were fed with oxic SGW or DI water. The reduced U in the 300 A sediments fed with OA-SGW was relatively resistant to remobilization by oxic Columbia River water. Oxic Columbia River water resulted in U remobilization (∼7%) through desorption, and most of the U that remained in the 300 A sediments fed with OA-SGW (∼93%) was in the form of uraninite nanoparticles. These results reveal that: 1) the reductive immobilization of U through OA-SGW stimulation of indigenous 300 A sediment microorganisms may be viable in the relatively oxic Hanford 300 A subsurface environments and 2) with the intrusion of Columbia River water

  1. Immobilization of U(VI) from Oxic Groundwater by Hanford 300 Area Sediments and Effects of Columbia River Water

    SciTech Connect

    Ahmed, B.; Cao, Bin; Mishra, Bhoopesh; Boyanov, Maxim I.; Kemner, Kenneth M.; Fredrickson, Jim K.; Beyenal, Haluk

    2012-09-23

    Regions within the U.S. Department of Energy Hanford 300 Area (300 A) site experience periodic hydrologic influences from the nearby Columbia River as a result of changing river stage, which causes changes in groundwater elevation, flow direction and water chemistry. An important question is the extent to which the mixing of Columbia River water and groundwater impacts the speciation and mobility of uranium (U). In this study, we designed experiments to mimic interactions among U, oxic groundwater or Columbia River water, and 300 A sediments in the subsurface environment of Hanford 300 A. The goals were to investigate mechanisms of: 1) U immobilization in 300 A sediments under bulk oxic conditions and 2) U remobilization from U-immobilized 300 A sediments exposed to oxic Columbia River water. Initially, 300 A sediments in column reactors were fed with U(VI)-containing oxic 1) synthetic groundwater (SGW), 2) organic-amended SGW (OA-SGW), and 3) de-ionized (DI) water to investigate U immobilization processes. After that, the sediments were exposed to oxic Columbia River water for U remobilization studies. The results reveal that U was immobilized by 300 A sediments predominantly through reduction (80-85%) when the column reactor was fed with oxic OA-SGW. However, U was immobilized by 300 A sediments through adsorption (100%) when the column reactors were fed with oxic SGW or DI water. The reduced U in the 300 A sediments fed with OA-SGW was relatively resistant to remobilization by oxic Columbia River water. Oxic Columbia River water resulted in U remobilization (~7%) through desorption, and most of the U that remained in the 300 A sediments fed with OA-SGW (~93%) was in the form of uraninite nanoparticles. These results reveal that: 1) the reductive immobilization of U through OA-SGW stimulation of indigenous 300 A sediment microorganisms may be viable in the relatively oxic Hanford 300 A subsurface environments and 2) with the intrusion of Columbia River water

  2. Resource Conservation and Recovery Act ground-water monitoring projects for Hanford facilities: Progress report for the period October 1 to December 31, 1989

    SciTech Connect

    Smith, R.M.; Bates, D.J.; Lundgren, R.E.

    1990-03-01

    This is Volume 1 of a two-volume document that describes the progress of 15 Hanford Site ground-water monitoring projects for the period October 1 to December 31, 1989. This volume discusses the projects. The work described in this document is conducted by the Pacific Northwest Laboratory under the management of Westinghouse Hanford Company for the US Department of Energy. Concentrations of ground-water constituents are compared to federal drinking water standards throughout this document for reference purposes. All drinking water supplied from the samples aquifer meets regulatory standards for drinking water quality. 51 refs., 35 figs., 86 tabs.

  3. Optimal groundwater remediation using artificial neural networks and the genetic algorithm

    SciTech Connect

    Rogers, Leah L.

    1992-08-01

    An innovative computational approach for the optimization of groundwater remediation is presented which uses artificial neural networks (ANNs) and the genetic algorithm (GA). In this approach, the ANN is trained to predict an aspect of the outcome of a flow and transport simulation. Then the GA searches through realizations or patterns of pumping and uses the trained network to predict the outcome of the realizations. This approach has advantages of parallel processing of the groundwater simulations and the ability to ``recycle`` or reuse the base of knowledge formed by these simulations. These advantages offer reduction of computational burden of the groundwater simulations relative to a more conventional approach which uses nonlinear programming (NLP) with a quasi-newtonian search. Also the modular nature of this approach facilitates substitution of different groundwater simulation models.

  4. Optimal design of active spreading systems to remediate sorbing groundwater contaminants in situ.

    PubMed

    Piscopo, Amy N; Neupauer, Roseanna M; Kasprzyk, Joseph R

    2016-07-01

    The effectiveness of in situ remediation to treat contaminated aquifers is limited by the degree of contact between the injected treatment chemical and the groundwater contaminant. In this study, candidate designs that actively spread the treatment chemical into the contaminant are generated using a multi-objective evolutionary algorithm. Design parameters pertaining to the amount of treatment chemical and the duration and rate of its injection are optimized according to objectives established for the remediation - maximizing contaminant degradation while minimizing energy and material requirements. Because groundwater contaminants have different reaction and sorption properties that influence their ability to be degraded with in situ remediation, optimization was conducted for six different combinations of reaction rate coefficients and sorption rates constants to represent remediation of the common groundwater contaminants, trichloroethene, tetrachloroethene, and toluene, using the treatment chemical, permanganate. Results indicate that active spreading for contaminants with low reaction rate coefficients should be conducted by using greater amounts of treatment chemical mass and longer injection durations relative to contaminants with high reaction rate coefficients. For contaminants with slow sorption or contaminants in heterogeneous aquifers, two different design strategies are acceptable - one that injects high concentrations of treatment chemical mass over a short duration or one that injects lower concentrations of treatment chemical mass over a long duration. Thus, decision-makers can select a strategy according to their preference for material or energy use. Finally, for scenarios with high ambient groundwater velocities, the injection rate used for active spreading should be high enough for the groundwater divide to encompass the entire contaminant plume. Copyright © 2016 Elsevier B.V. All rights reserved.

  5. Optimal design of active spreading systems to remediate sorbing groundwater contaminants in situ

    NASA Astrophysics Data System (ADS)

    Piscopo, Amy N.; Neupauer, Roseanna M.; Kasprzyk, Joseph R.

    2016-07-01

    The effectiveness of in situ remediation to treat contaminated aquifers is limited by the degree of contact between the injected treatment chemical and the groundwater contaminant. In this study, candidate designs that actively spread the treatment chemical into the contaminant are generated using a multi-objective evolutionary algorithm. Design parameters pertaining to the amount of treatment chemical and the duration and rate of its injection are optimized according to objectives established for the remediation - maximizing contaminant degradation while minimizing energy and material requirements. Because groundwater contaminants have different reaction and sorption properties that influence their ability to be degraded with in situ remediation, optimization was conducted for six different combinations of reaction rate coefficients and sorption rates constants to represent remediation of the common groundwater contaminants, trichloroethene, tetrachloroethene, and toluene, using the treatment chemical, permanganate. Results indicate that active spreading for contaminants with low reaction rate coefficients should be conducted by using greater amounts of treatment chemical mass and longer injection durations relative to contaminants with high reaction rate coefficients. For contaminants with slow sorption or contaminants in heterogeneous aquifers, two different design strategies are acceptable - one that injects high concentrations of treatment chemical mass over a short duration or one that injects lower concentrations of treatment chemical mass over a long duration. Thus, decision-makers can select a strategy according to their preference for material or energy use. Finally, for scenarios with high ambient groundwater velocities, the injection rate used for active spreading should be high enough for the groundwater divide to encompass the entire contaminant plume.

  6. Remedial investigation/feasibility study work plan for the 100-BC-2 operable unit, Hanford Site, Richland, Washington

    SciTech Connect

    Not Available

    1993-05-01

    This work plan and attached supporting project plans establish the operable unit setting and the objectives, procedures, tasks, and schedule for conducting the Comprehensive Environmental Response, Compensation, and Liability Act of 1980 (CERCLA) remedial investigation/feasibility study (RI/FS) for the 100-BC-2 operable unit in the 100 Area of the Hanford Site. The 100 Area is one of four areas at the Hanford Site that are on the US Environmental Protection Agency`s (EPA) National Priorities List under CERCLA. The 100-BC-2 operable unit is one of two source operable units in the 100-B/C Area (Figure ES-1). Source operable units are those that contain facilities and unplanned release sites that are potential sources of hazardous substance contamination. The 100-BC-2 source operable unit contains waste sites that were formerly in the 100-BC-2, 100-BC-3, and 100-BC-4 operable units. Because of their size and geographic location, the waste sites from these two operable units were added to 100-BC-2. This allows for a more efficient and effective investigation of the remaining 100-B/C Reactor area waste sites. The investigative approach to waste sites associated with the 100-BC-2 operable unit are listed in Table ES-1. The waste sites fall into three general categories: high priority liquid waste disposal sites, low priority liquid waste disposal sites, and solid waste burial grounds. Several sites have been identified as candidates for conducting an IRM. Two sites have been identified as warranting additional limited field sampling. The two sites are the 116-C-2A pluto crib, and the 116-C-2C sand filter.

  7. Characterization and Potential Remediation Approaches for Vadose Zone Contamination at Hanford 241-SX Tank Farm

    SciTech Connect

    Eberlein, Susan J.; Sydnor, Harold A.; Parker, Danny L.; Glaser, Danney R.

    2013-01-10

    Unplanned releases of radioactive and hazardous wastes have occurred at the 241-SX Tank Farm on the U.S. Department of Energy Hanford Site in southeast Washington State. Interim and long-term mitigation efforts are currently under evaluation for 241-SX Tank Farm. Two contiguous interim surface barriers have been designed for deployment at 241-SX Tank Farm to reduce future moisture infiltration; however, construction of the surface barriers has been deferred to allow testing of alternative technologies for soil moisture reduction and possibly contaminant source term reduction. Previous tests performed by other organizations at the Hanford Site have demonstrated that: vadose zone desiccation using large diameter (greater than 4 inch) boreholes is feasible; under certain circumstances, mobile contaminants may be removed in addition to water vapor; and small diameter (approximately 2 inch) boreholes (such as those placed by the direct push hydraulic hammer) can be used to perform vapor extractions. Evaluation of the previous work combined with laboratory test results have led to the design of a field proof-of-principle test to remove water and possibly mobile contaminants at greater depths, using small boreholes placed with the direct push unit.

  8. Transfer of Physical and Hydraulic Properties Databases to the Hanford Environmental Information System - PNNL Remediation Decision Support Project, Task 1, Activity 6

    SciTech Connect

    Rockhold, Mark L.; Middleton, Lisa A.

    2009-03-31

    This report documents the requirements for transferring physical and hydraulic property data compiled by PNNL into the Hanford Environmental Information System (HEIS). The Remediation Decision Support (RDS) Project is managed by Pacific Northwest National Laboratory (PNNL) to support Hanford Site waste management and remedial action decisions by the U.S. Department of Energy and one of their current site contractors - CH2M-Hill Plateau Remediation Company (CHPRC). The objective of Task 1, Activity 6 of the RDS project is to compile all available physical and hydraulic property data for sediments from the Hanford Site, to port these data into the Hanford Environmental Information System (HEIS), and to make the data web-accessible to anyone on the Hanford Local Area Network via the so-called Virtual Library.1 These physical and hydraulic property data are used to estimate parameters for analytical and numerical flow and transport models that are used for site risk assessments and evaluation of remedial action alternatives. In past years efforts were made by RDS project staff to compile all available physical and hydraulic property data for Hanford sediments and to transfer these data into SoilVision{reg_sign}, a commercial geotechnical software package designed for storing, analyzing, and manipulating soils data. Although SoilVision{reg_sign} has proven to be useful, its access and use restrictions have been recognized as a limitation to the effective use of the physical and hydraulic property databases by the broader group of potential users involved in Hanford waste site issues. In order to make these data more widely available and useable, a decision was made to port them to HEIS and to make them web-accessible via a Virtual Library module. In FY08 the original objectives of this activity on the RDS project were to: (1) ensure traceability and defensibility of all physical and hydraulic property data currently residing in the SoilVision{reg_sign} database

  9. THE POSITIVE IMPACTS OF AMERICAN REINVESTMENT AND RECOVERY ACT (ARRA) FUNDING TO THE WASTE MANAGEMENT PROGRAM ON HANFORD'S PLATEAU REMEDIATION PROJECT

    SciTech Connect

    BLACKFORD LT

    2010-01-19

    In April 2009, the Department of Energy (DOE) Richland Operations Office (RL) was allocated $1.6 billion (B) in ARRA funding to be applied to cleanup projects at the Hanford Site. DOE-RL selected projects to receive ARRA funding based on 3-criteria: creating/saving jobs, reducing the footprint of the Hanford Site, and reducing life-cycle costs for cleanup. They further selected projects that were currently covered under regulatory documents and existing prime contracts, which allowed work to proceed quickly. CH2M HILL Plateau Remediation Company (CHPRC) is a prime contractor to the DOE focused on the environmental cleanup of the DOE Hanford Site Central Plateau. CHPRC was slated to receive $1.36B in ARRA funding. As of January, 2010, CHPRC has awarded over $200 million (M) in subcontracts (64% to small businesses), created more that 1,100 jobs, and touched more than 2,300 lives - all in support of long-term objectives for remediation of the Central Plateau, on or ahead of schedule. ARRA funding is being used to accelerate and augment cleanup activities already underway under the baseline Plateau Remediation Contract (PRC). This paper details challenges and accomplishments using ARRA funding to meet DOE-RL objectives of creating/saving jobs, expediting cleanup, and reducing lifecycle costs for cleanup during the first months of implementation.

  10. Groundwater remediation and the cost effectiveness of phytoremediation.

    PubMed

    Compernolle, T; Van Passel, S; Weyens, N; Vangronsveld, J; Lebbe, L; Thewys, T

    2012-10-01

    In 1999, phytoremediation was applied at the site of a Belgian car factory to contain two BTEX plumes. This case study evaluates the cost effectiveness of phytoremediation compared to other remediation options, applying a tailored approach for economic evaluation. Generally, when phytoremediation is addressed as being cost effective, the cost effectiveness is only determined on an average basis. This study however, demonstrates that an incremental analysis may provide a more nuanced conclusion. When the cost effectiveness is calculated on an average basis, in this particular case, the no containment strategy (natural attenuation) has the lowest cost per unit mass removed and hence, should be preferred. However, when the cost effectiveness is determined incrementally, no containment should only be preferred if the value of removing an extra gram of contaminant mass is lower than 320 euros. Otherwise, a permeable reactive barrier should be adopted. A similar analysis is provided for the effect determined on the basis of remediation time. Phytoremediation is preferred compared to 'no containment' if reaching the objective one year earlier is worth 7 000 euros.

  11. Defining the air sparging radius of influence for groundwater remediation

    NASA Astrophysics Data System (ADS)

    McCray, John E.; Falta, Ronald W.

    1996-10-01

    A theoretical study of air sparging for the removal of volatile organic compounds (VOCs) from groundwater is presented. A simple relationship is developed between the observed subsurface pressure increase due to sparging and the gas saturation at that location, thus providing a quantitative measure of the sparging radius of influence. Multiphase numerical simulations using a radially symmetric cylindrical geometry are used to confirm this relation, and to relate the injected gas radius of influence to the zone of VOC cleanup during sparging. These simulations also illustrate the transient and steady-state behavior of air sparging systems in both homogeneous and heterogeneous systems.

  12. MULTI-OBJECTIVE OPTIMAL DESIGN OF GROUNDWATER REMEDIATION SYSTEMS: APPLICATION OF THE NICHED PARETO GENETIC ALGORITHM (NPGA). (R826614)

    EPA Science Inventory

    A multiobjective optimization algorithm is applied to a groundwater quality management problem involving remediation by pump-and-treat (PAT). The multiobjective optimization framework uses the niched Pareto genetic algorithm (NPGA) and is applied to simultaneously minimize the...

  13. Long-Term Groundwater Monitoring Optimization, Clare Water Supply Superfund Site, Permeable Reactive Barrier and Soil Remedy Areas, Clare, Michigan

    EPA Pesticide Factsheets

    This report contains a review of the long-term groundwater monitoring network for the Permeable Reactive Barrier (PRB) and Soil Remedy Areas at the Clare Water Supply Superfund Site in Clare, Michigan.

  14. MULTI-OBJECTIVE OPTIMAL DESIGN OF GROUNDWATER REMEDIATION SYSTEMS: APPLICATION OF THE NICHED PARETO GENETIC ALGORITHM (NPGA). (R826614)

    EPA Science Inventory

    A multiobjective optimization algorithm is applied to a groundwater quality management problem involving remediation by pump-and-treat (PAT). The multiobjective optimization framework uses the niched Pareto genetic algorithm (NPGA) and is applied to simultaneously minimize the...

  15. A Demonstration of the System Assessment Capability (SAC) Rev. 1 Software for the Hanford Remediation Assessment Project

    SciTech Connect

    Eslinger, Paul W.; Kincaid, Charles T.; Nichols, William E.; Wurstner, Signe K.

    2006-11-06

    The System Assessment Capability (SAC) is a suite of interrelated computer codes that provides the capability to conduct large-scale environmental assessments on the Hanford Site. Developed by Pacific Northwest National Laboratory for the Department of Energy, SAC models the fate and transport of radioactive and chemical contaminants, starting with the inventory of those contaminants in waste sites, simulating transport through the environment, and continuing on through impacts to the environment and humans. Separate modules in the SAC address inventory, release from waste forms, water flow and mass transport in the vadose zone, water flow and mass transport in the groundwater, water flow and mass transport in the Columbia River, air transport, and human and ecological impacts. The SAC supports deterministic analyses as well as stochastic analyses using a Monte Carlo approach, enabling SAC users to examine the effect of uncertainties in a number of key parameters. The initial assessment performed with the SAC software identified a number of areas where both the software and the analysis approach could be improved. Since that time the following six major software upgrades have been made: (1) An air pathway model was added to support all-pathway analyses. (2) Models for releases from glass waste forms, buried graphite reactor cores, and buried naval reactor compartments were added. (3) An air-water dual-phase model was added to more accurately track the movement of volatile contaminants in the vadose zone. (4) The ability to run analyses was extended from 1,000 years to 10,000 years or longer after site closure. (5) The vadose zone flow and transport model was upgraded to support two-dimensional or three-dimensional analyses. (6) The ecological model and human risk models were upgraded so the concentrations of contaminants in food products consumed by humans are produced by the ecological model. This report documents the functions in the SAC software and provides a

  16. Behavior of solid carbon sources for biological denitrification in groundwater remediation.

    PubMed

    Zhang, Jianmei; Feng, Chuanping; Hong, Siqi; Hao, Huiling; Yang, Yingnan

    2012-01-01

    The present study was conducted to compare the behavior of wheat straw, sawdust and biodegradable plastic (BP) as potential carbon sources for denitrification in groundwater remediation. The results showed that a greater amount of nitrogen compounds were released from wheat straw and sawdust than from BP in leaching experiments. In batch experiments, BP showed higher nitrate removal efficiency and longer service life than wheat straw and sawdust, which illustrated that BP is the most appropriate carbon source for stimulation of denitrification activity. In column experiments, BP was able to support complete denitrification at influent nitrate concentrations of 50, 60, 70, 80, and 90 mg NO(3)(-)-N/L, showing corresponding denitrification rates of 0.12, 0.14, 0.17, 0.19, and 0.22 mg NO(3)(-)-N.L(-1).d(-1).g(-1), respectively. These findings indicate that BP is applicable for use as a carbon source for nitrate-polluted groundwater remediation.

  17. Advanced fuel hydrocarbon remediation national test location - groundwater circulation well environmental cleanup systems

    SciTech Connect

    Heath, J.; Lory, E.

    1997-03-01

    When a contaminant is treated in place on the original site it is termed in situ remediation. Bioremediation refers to cleanup effected by living organisms such as bacteria and fungi. Certain species of bacteria are able to consume pollutants as a food source, thus detoxifying these compounds. In situ bioremediation is being considered as a viable and practical solution for reducing petroleum contamination levels in groundwater.

  18. Interim action record of decision remedial alternative selection: TNX area groundwater operable unit

    SciTech Connect

    Palmer, E.R.

    1994-10-01

    This document presents the selected interim remedial action for the TNX Area Groundwater Operable Unit at the Savannah River Site (SRS), which was developed in accordance with CERCLA of 1980, as amended by the Superfund Amendments and Reauthorization Act (SARA) of 1986, and to the extent practicable, the National Oil and Hazardous Substances Pollution contingency Plan (NCP). This decision is based on the Administrative Record File for this specific CERCLA unit.

  19. Remediation of polycyclic aromatic hydrocarbon compounds in groundwater using poplar trees.

    PubMed

    Widdowson, Mark A; Shearer, Sandra; Andersen, Rikke G; Novak, John T

    2005-03-15

    A seven-year study was conducted to assess the effectiveness of hybrid poplar trees to remediate polycyclic aromatic hydrocarbon (PAH) compounds in soil and groundwater at a creosote-contaminated site. A reduction in the areal extent of the PAH plume was observed in the upper half of the 2-m-thick saturated zone, and PAH concentration levels in the groundwater declined throughout the plume. PAH concentrations began to decline during the period between the third and fourth growing seasons, which coincided with the propagation of the tree roots to the water table region. Remediation was limited to naphthalene and several three-ring PAHs (acenaphthylene and acenaphthene). PAH concentrations in soil and aquifer sediment samples also declined over time; however, levels of four-ring PAHs persisted at the lower depths during the study period. The naphthalene to total PAH concentration ratio in the most contaminated groundwater decreased from >0.90 at the beginning of the second growing season to approximately 0.70 at the end the study. Remediation in the lower region of the saturated zone was limited bythe presence of a 0.3-m-thick layer of creosote present as a dense nonaqueous phase liquid (DNAPL). The nearly steady-state condition of the PAH concentrations observed during the last three years of the study suggests that the effectiveness of the phytoremediation system is limited by the rate of PAH dissolution from the DNAPL source.

  20. Uncertainty-Based Multi-Objective Optimization of Groundwater Remediation Design

    NASA Astrophysics Data System (ADS)

    Singh, A.; Minsker, B.

    2003-12-01

    Management of groundwater contamination is a cost-intensive undertaking filled with conflicting objectives and substantial uncertainty. A critical source of this uncertainty in groundwater remediation design problems comes from the hydraulic conductivity values for the aquifer, upon which the prediction of flow and transport of contaminants are dependent. For a remediation solution to be reliable in practice it is important that it is robust over the potential error in the model predictions. This work focuses on incorporating such uncertainty within a multi-objective optimization framework, to get reliable as well as Pareto optimal solutions. Previous research has shown that small amounts of sampling within a single-objective genetic algorithm can produce highly reliable solutions. However with multiple objectives the noise can interfere with the basic operations of a multi-objective solver, such as determining non-domination of individuals, diversity preservation, and elitism. This work proposes several approaches to improve the performance of noisy multi-objective solvers. These include a simple averaging approach, taking samples across the population (which we call extended averaging), and a stochastic optimization approach. All the approaches are tested on standard multi-objective benchmark problems and a hypothetical groundwater remediation case-study; the best-performing approach is then tested on a field-scale case at Umatilla Army Depot.

  1. Groundwater Remediation and Alternate Energy at White Sands Test Facility

    NASA Technical Reports Server (NTRS)

    Fischer, Holger

    2008-01-01

    White Sands Test Facility Core Capabilities: a) Remote Hazardous Testing of Reactive, Explosive, and Toxic Materials and Fluids; b) Hypergolic Fluids Materials and Systems Testing; c) Oxygen Materials and System Testing; d) Hypervelocity Impact Testing; e)Flight Hardware Processing; and e) Propulsion Testing. There is no impact to any drinking water well. Includes public wells and the NASA supply well. There is no public exposure. Groundwater is several hundred feet below ground. No air or surface water exposure. Plume is moving very slowly to the west. Plume Front Treatment system will stop this westward movement. NASA performs on-going monitoring. More than 200 wells and zones are routinely sampled. Approx. 850 samples are obtained monthly and analyzed for over 300 different hazardous chemicals.

  2. The Office of Groundwater & Soil Remediation Fiscal Year 2011 Research & Development Program

    SciTech Connect

    Gerdes, Kurt D.; Chamberlain, Skip; Aylward, R. S.; Cercy, Mike; Seitz, Roger; Ramirez, Rosa; Skubal, Karen L.; Marble, Justin; Wellman, Dawn M.; Bunn, Amoret L.; Liang, Liyuan; Pierce, Eric M.

    2011-03-02

    The U.S. Department of Energy's (DOE) Office of Groundwater and Soil Remediation supports technology development and technical assistance for the remediation of environments contaminated by legacy nuclear waste. The core of the program is centered on delivering proactive, responsive expertise and technologies with highly-leveraged, carefully selected investments that maximum impact on life-cycle cleanup costs and risks across the DOE complex. The program currently focuses on four main priorities: improved sampling and characterization strategies, advanced predictive capabilities, enhanced remediation methods, and improved long-term performance evaluation and monitoring. In FY 2010, the program developed a detailed research and development (R and D) plan in support of a larger initiative to integrate R and D efforts across EM. This paper provides an overview of the priority action areas and the program's near-term technical direction.

  3. Program plan for evaluation and remediation of the generation and release of flammable gases in Hanford Site waste tanks

    SciTech Connect

    Johnson, G.D.

    1991-08-01

    This program plan describes the activities being conducted for the resolution of the flammable gas problem that is associated with 23 high-level waste tanks at the Hanford Site. The classification of the wastes in all of these tanks is not final and some wastes may not be high-level wastes. However, until the characterization and classification is complete, all the tanks are treated as if they contain high-level waste. Of the 23 tanks, Tank 241-SY-101 (referred to as Tank 101-SY) has exhibited significant episodic releases of flammable gases (hydrogen and nitrous oxide) for the past 10 years. The major near-term focus of this program is for the understanding and stabilization of this tank. An understanding of the mechanism for gas generation and the processes for the episodic release will be obtained through sampling of the tank contents, laboratory studies, and modeling of the tank behavior. Additional information will be obtained through new and upgraded instrumentation for the tank. A number of remediation, or stabilization, concepts will be evaluated for near-term (2 to 3 years) applications to Tank 101-SY. Detailed safety assessments are required for all activities that will occur in the tank (sampling, removal of equipment, and addition of new instruments). This program plan presents a discussion of each task, provides schedules for near-term activities, and gives a summary of the expected work for fiscal years 1991, 1992, and 1993. 16 refs., 7 figs., 8 tabs.

  4. Examination of groundwater-surface water interaction at the Hanford 300 Area using time-lapse resistivity imaging and distributed temperature sensing (Invited)

    NASA Astrophysics Data System (ADS)

    Slater, L. D.; Day-Lewis, F. D.; Ntarlagiannis, D.; Mwakanyamale, K. E.; Johnson, T. C.; Alwasif, M. H.; Ward, A. L.; Versteeg, R.; Binley, A.; Lane, J.

    2010-12-01

    Groundwater-surface water interaction strongly influences transport of uranium-contaminated groundwater to the Columbia River at the U.S. Department of Energy (DOE) Hanford 300 Area, Hanford, WA. Continuous resistivity (using static cables on land) and fiber-optic distributed temperature sensing (DTS) have been performed along ~1 km of the Columbia River corridor centered on the Hanford 300 Area Integrated Field Challenge (IFC) site. Strong natural contrasts in temperature and specific conductance of river water compared to groundwater at this site have been exploited to yield new insights into the dynamics of groundwater-surface water interaction. Whereas DTS datasets have provided meter-scale measurements of focused groundwater discharge at the riverbed along the corridor, continuous resistivity monitoring has non-invasively imaged spatiotemporal variation in the extent of groundwater-surface water mixing within the aquifer. Time-frequency analysis of the DTS datasets and cross correlation with time series of river stage and groundwater levels has provided insights into the role of forcing variables, such as daily dam operations on the river, in regulating the occurrence of focused exchange at the riverbed. In contrast, time-lapse inversion of continuous resistivity imaging datasets has provided insights into the lateral and vertical extent of groundwater-surface water mixing in the aquifer, as well as the connectivity of this mixing to the points of focused discharge identified with DTS on the riverbed. Our findings suggest that the simultaneous acquisition of time-lapse resistivity and DTS datasets is a promising approach for improving the understanding of groundwater-surface water interaction along river corridors, offering unique opportunities to connect groundwater discharge observed with DTS on the riverbed to the extent of mixing within the aquifer due to both recharge and discharge events.

  5. Determination of ecologically vital groundwaters at selected sites in the Formerly Utilized Sites Remedial Action Program

    SciTech Connect

    Vinikour, W.S.; Yin, S.C.L.

    1989-08-01

    The US Department of Energy is classifying groundwaters at sites in its Formerly Utilized Sites Remedial Action Program (FUSRAP). Of particular concern is the potential presence of groundwaters that are highly vulnerable to contamination and that are either (1) irreplaceable sources of drinking water or (2) ecologically vital. Conditions at nine FUSRAP sites were evaluated to determine if ecologically vital groundwaters are present. The sites evaluated were Wayne Interim Storage Site, Maywood Interim Storage Site, and Middlesex Sampling Plant in New Jersey; Ashland 2 Site, Seaway Industrial Park, Colonie Interim storage Site, and Niagara Falls Storage Site in New York; and the St. Louis Airport Site and Hazelwood Interim Storage Site in Missouri. The analyses indicated that groundwaters are vulnerable to contamination at all but two of the sites -- the Ashland 2 and Seaway Industrial Park sites in New York. Groundwater discharge points were identified within a 2-mile radius (i.e., the classification review area) of all of the sites. No ecologically vital groundwater areas exist in the vicinities of any of the nine FUSRAP sites evaluated. 35 refs., 17 figs.

  6. Sustainable in-well vapor stripping: A design, analytical model, and pilot study for groundwater remediation.

    PubMed

    Sutton, Patrick T; Ginn, Timothy R

    2014-12-15

    A sustainable in-well vapor stripping system is designed as a cost-effective alternative for remediation of shallow chlorinated solvent groundwater plumes. A solar-powered air compressor is used to inject air bubbles into a monitoring well to strip volatile organic compounds from a liquid to vapor phase while simultaneously inducing groundwater circulation around the well screen. An analytical model of the remediation process is developed to estimate contaminant mass flow and removal rates. The model was calibrated based on a one-day pilot study conducted in an existing monitoring well at a former dry cleaning site. According to the model, induced groundwater circulation at the study site increased the contaminant mass flow rate into the well by approximately two orders of magnitude relative to ambient conditions. Modeled estimates for 5h of pulsed air injection per day at the pilot study site indicated that the average effluent concentrations of dissolved tetrachloroethylene and trichloroethylene can be reduced by over 90% relative to the ambient concentrations. The results indicate that the system could be used cost-effectively as either a single- or multi-well point technology to substantially reduce the mass of dissolved chlorinated solvents in groundwater.

  7. Sustainable in-well vapor stripping: A design, analytical model, and pilot study for groundwater remediation

    NASA Astrophysics Data System (ADS)

    Sutton, Patrick T.; Ginn, Timothy R.

    2014-12-01

    A sustainable in-well vapor stripping system is designed as a cost-effective alternative for remediation of shallow chlorinated solvent groundwater plumes. A solar-powered air compressor is used to inject air bubbles into a monitoring well to strip volatile organic compounds from a liquid to vapor phase while simultaneously inducing groundwater circulation around the well screen. An analytical model of the remediation process is developed to estimate contaminant mass flow and removal rates. The model was calibrated based on a one-day pilot study conducted in an existing monitoring well at a former dry cleaning site. According to the model, induced groundwater circulation at the study site increased the contaminant mass flow rate into the well by approximately two orders of magnitude relative to ambient conditions. Modeled estimates for 5 h of pulsed air injection per day at the pilot study site indicated that the average effluent concentrations of dissolved tetrachloroethylene and trichloroethylene can be reduced by over 90% relative to the ambient concentrations. The results indicate that the system could be used cost-effectively as either a single- or multi-well point technology to substantially reduce the mass of dissolved chlorinated solvents in groundwater.

  8. Optimal field-scale groundwater remediation using neural networks and the genetic algorithm

    SciTech Connect

    Rogers, L.L.; Dowla, F.U.; Johnson, V.M.

    1993-05-01

    We present a new approach for field-scale nonlinear management of groundwater remediation. First, an artificial neural network (ANN) is trained to predict the outcome of a groundwater transport simulation. Then a genetic algorithm (GA) searches through possible pumping realizations, evaluating the fitness of each with a prediction from the trained ANN. Traditional approaches rely on optimization algorithms requiring sequential calls of the groundwater transport simulation. Our approach processes the transport simulations in parallel and ``recycles`` the knowledge base of these simulations, greatly reducing the computational and real-time burden, often the primary impediment to developing field-scale management models. We present results from a Superfund site suggesting that such management techniques can reduce cleanup costs by over a hundred million dollars.

  9. Case Study of Anomalies Encountered During Remediation of Mixed Low-Level Waste Burial Grounds in the 100 and 300 Areas of the Hanford Site

    SciTech Connect

    Haass, M.J.; Zacharias, P.E.; Zacharias, A.E.

    2007-07-01

    Under the U.S. Department of Energy's River Corridor Closure Project, Washington Closure Hanford has completed remediation of more than 10 mixed low-level waste burial grounds in the 100 and 300 Areas of the Hanford Site. The records of decision for the burial grounds required excavation, characterization, and transport of contaminated material to a Resource Conservation and Recovery Act of 1976-compliant hazardous waste landfill. This paper discusses a sample of the anomalous waste found during remediation and provides an overview of the waste excavation activities. The 100 Area burial grounds received plutonium production reactor waste and waste associated with various test programs. Examples of 100 Area anomalies include spent nuclear fuel, elemental mercury, reactor hardware, and the remains of animals used in testing the effects of radionuclides on living organisms. The 300 Area burial grounds received waste from research and development laboratories and fuel manufacturing operations. Of the seven 300 Area burial grounds remediated to date, the most challenging has been the 618-2 Burial Ground. It presented significant challenges because of the potential for airborne alpha contamination and the discovery of plutonium in an isotopically pure form. Anomalies encountered in the 618-2 Burial Ground included a combination safe that contained gram quantities of plutonium, miscellaneous containers of unknown liquids, and numerous types of shielded shipping casks. Information presented in this paper will be an aid to those involved in remediation activities throughout the U.S. Department of Energy complex and at other nuclear waste disposal sites. (authors)

  10. Passive Neutron Non-Destructive Assay for Remediation of Radiological Waste at Hanford Burial Grounds- 13189

    SciTech Connect

    Simpson, A.; Pitts, M.; Ludowise, J.D.; Valentinelli, P.; Grando, C.J.; Haggard, D.L.

    2013-07-01

    The Hanford burial grounds contains a broad spectrum of low activity radioactive wastes, transuranic (TRU) wastes, and hazardous wastes including fission products, byproduct material (thorium and uranium), plutonium and laboratory chemicals. A passive neutron non-destructive assay technique has been developed for characterization of shielded concreted drums exhumed from the burial grounds. This method facilitates the separation of low activity radiological waste containers from TRU waste containers exhumed from the burial grounds. Two identical total neutron counting systems have been deployed, each consisting of He-3 detectors surrounded by a polyethylene moderator. The counts are processed through a statistical filter that removes outliers in order to suppress cosmic spallation events and electronic noise. Upon completion of processing, a 'GO / NO GO' signal is provided to the operator based on a threshold level equivalent to 0.5 grams of weapons grade plutonium in the container being evaluated. This approach allows instantaneous decisions to be made on how to proceed with the waste. The counting systems have been set up using initial on-site measurements (neutron emitting standards loaded into surrogate waste containers) combined with Monte Carlo modeling techniques. The benefit of this approach is to allow the systems to extend their measurement ranges, in terms of applicable matrix types and container sizes, with minimal interruption to the operations at the burial grounds. (authors)

  11. Maximizing Operational Efficiencies in Waste Management on the Hanford Plateau Remediation Contract in a Down-turned Market - 13484

    SciTech Connect

    Simiele, Connie J.; Blackford, L. Ty; West, Lori D.

    2013-07-01

    Recent changes in DOE priorities and funding have pressed DOE and its contractors to look for innovative methods to sustain critical operations at sites across the Complex. At the Hanford Site, DOE Richland Operations and its prime contractor, CH2M Hill Plateau Remediation Company (CHPRC), have completed in-depth assessments of the Plateau Remediation Contract (PRC) operations that compared available funding to mission and operational objectives in an effort to maintain requisite safety and compliance margins while realizing cost savings that meet funding profiles. These assessments included confirmation of current baseline activities, identification of potential efficiencies, barriers to implementation, and potential increased risks associated with implementation. Six operating PRC waste management facilities were evaluated against three possible end-states: complete facility closure, maintaining base operations, and performing minimum safe surveillance and maintenance activities. The costs to completely close evaluated facilities were determined to be prohibitively high and this end-state was quickly dropped from consideration. A summary of the analysis of remaining options by facility, efficiencies identified, impact to risk profiles, and expected cost savings is provided in Table I. The expected cost savings are a result of: - right-sizing and cross-training work crews to address maintenance activities across facilities; - combining and sequencing 'like-moded' operational processes; - cross-cutting emergency planning and preparedness staffing; - resource redistribution and optimization; - reducing areas requiring routine surveillance and inspection. For the efficiencies identified, there are corresponding increases in risk, including a loss of breadth and depth of available resources; lengthened response time to emergent issues; inability to invest in opportunities for improvement (OFIs); potential single-point failures or non-compliancies due to resource

  12. Broom fibre PRB for heavy metals groundwater remediation

    NASA Astrophysics Data System (ADS)

    Molinari, A.; Troisi, S.; Fallico, C.; Paparella, A.; Straface, S.

    2009-04-01

    Soil contamination by heavy metal and, though it, of groundwater represent a serious alteration of original geochemical levels owing to various human activities as: particular industrial processes and their non-correct treatment emission, urban traffic, use of phytosanitary product and mineral fertilizer. Heavy metals are genotoxic contaminants who can be found by environmental matrix analysis or by examination of the genetic damage inducted, after exposition, to sentry organism. In this last case we use a relative quantitation of the gene expression monitoring the mitochondrial oxidative metabolism hepatopancreas's gene of the organism used by bioindicator. This test is based on consideration that the hepatopancreas is the first internal organ affected by heavy metals or any other pollutant that the organism is exposed. In this work, the organism used by bioindicator to evalutate the pollutant contamination of waste water is Danio rerio (Zebrafish) that is a little tropical fish of 2-3 cm, native on asiatic south-east rivers. This organism has a large use in scientific field because its genoma is almost completely mapped and, above all, because the congenital gene cause in human, if it was mutated in zebrafish, similar damage or almost similar mutation that happens in human being so you can develop a dose - response curve. To do this, after prepared a cadmium solution with a concentration 10 times the Italian normative limit, the organisms have been put in the aquarium to recreate the optimal condition to survival of zebrafish observed by continuous monitoring by web-cam. After one month exposition, that we took little by little sample fish to analyzing, for different exposition time, the hepatopancreas's fish. First results shows considerable variation of the gene expression by interested gene in mitochondrial oxidative metabolism compared to control, highlighting the mutagenity caused by heavy metals on Danio rerio's hepatopancreas and, mutatis mutandis, also in

  13. Factors Governing the Performance of Bauxite for Fluoride Remediation of Groundwater.

    PubMed

    Cherukumilli, Katya; Delaire, Caroline; Amrose, Susan; Gadgil, Ashok J

    2017-02-21

    Globally, 200 million people drink groundwater contaminated with fluoride concentrations exceeding the World Health Organization's recommended level (WHO-MCL = 1.5 mg F(-)/L). This study investigates the use of minimally processed (dried/milled) bauxite ore as an inexpensive adsorbent for remediating fluoride-contaminated groundwater in resource-constrained areas. Adsorption experiments in synthetic groundwater using bauxites from Guinea, Ghana, U.S., and India as single-use batch dispersive media demonstrated that doses of ∼10-23 g/L could effectively remediate 10 mg F(-)/L. To elucidate factors governing fluoride removal, bauxites were characterized using X-ray fluorescence, X-ray diffraction, gas-sorption analysis, and adsorption isotherms/envelopes. All ores contained gibbsite, had comparable surface areas (∼14-17 m(2)/g), had similar intrinsic affinities and capacities for fluoride, and did not leach harmful ions into product water. Fluoride uptake on bauxite -primarily through ion-exchange- was strongly pH-dependent, with highest removal occurring at pH 5.0-6.0. Dissolution of CaCO3, present in trace amounts in India bauxite, significantly hindered fluoride removal by increasing solution pH. We also showed that fluoride remediation with the best-performing Guinea bauxite was ∼23-33 times less expensive than with activated alumina. Overall, our results suggest that bauxite could be an affordable fluoride-remediation adsorbent with the potential to improve access to drinking water for millions living in developing countries.

  14. [Application of tiered approach to assess the impact of backfilling remediated soil on groundwater].

    PubMed

    Zhong, Mao-Sheng; Jiang, Lin; Yao, Jue-Jun; Fan, Yan-Ling; Xia, Tian-Xiang; Li, Ting-Ting; Tian, Mei-Ying

    2013-03-01

    The tiered approach for assessing the impact of backfilling treated contaminated soil on groundwater was presented in details with a case study. The soil was contaminated by 1,2-dicholorenthane and 9 other organic pollutants and had been remediated before backfilling to meet the pre-set remediation goals based on health risk assessment. The results from tiered I assessment indicate that the concentrations of 8 contaminants in the leachate of the backfilling soil layer would exceed the assessment standards probably leading to groundwater contamination. However, the results from tiered II assessment, in which the adsorption and retardation of vadose zone soil was taken into account and the concentrations of pollutants reaching the groundwater table were predicated, reveal that only the concentrations of 6 contaminants would exceed the assessment standards. Further, taking the dilution and mixing of the groundwater into consideration, tiered III assessment was adopted and the results reveal that only 4 contaminants were beyond the standards. Finally, tiered IV assessment, aiming at predicting the concentration at the target well downstream, was carried out by considering the retardation of contaminants in saturated layer, and the results indicate only 1 pollutant was above the assessment standard. Therefore, it can be seen that the predicted concentrations of the target pollutants at advanced assessment levels will be closer to those at the target drinking water well and the amount of contaminants whose initially-set remediation goals need to be modified will decrease correspondingly, indicating the reduction in pollution prevention cost, although more efforts should be made and more field data should be collected to implement the advance assessment level.

  15. Mitigation/remediation concepts for Hanford Site flammable gas generating waste tanks

    SciTech Connect

    Babad, H.; Deichman, J.L. ); Johnson, B.M.; Lemon, D.K.; Strachan, D.M. )

    1992-04-01

    This report presents a preliminary assessment of concepts for the mitigation and/or remediation of the hydrogen gas generation, storage, and periodic release in Tank 241-SY-101 (101-SY) and 22 other tanks. The 22 other tanks exhibit much less hydrogen generation (volume and concentration of released flammable gases) than Tank 101-SY and have not had the focus nor attention that has been given to Tank 101-SY. These tanks have been listed as potential hydrogen gas-generating tanks from analysis of tank performance and data from flowsheets and Track Radioactive Constituents Reports (TRAC). These lesser hydrogen-generating tanks will also need to be revisited and revalidated. Of the 23 hydrogen class tanks, 5 are double-shell tanks (DST) and 18 are single-shell tanks (SST). Options for mitigation or remediation are different for the two types of tanks because of age, configuration, and waste form. While this document principally focuses on Tank 101-SY, the information presented has been useful to address other tanks containing hydrogen-generating waste.

  16. Hydrogeologic properties and ground-water chemistry of the Rattlesnake Ridge interbed at well 699-25-80 (DB-14) Hanford Site

    SciTech Connect

    Spane, F.A. Jr.; Howland, M.D.; Strait, S.R.

    1980-11-01

    Offsite migration studies were conducted to characterize the hydraulic properties and groundwater chemistry of confined aquifer systems within the Hanford Site. These studies support the recommendations in ERDA-1538 to provide input for hydrologic modeling of groundwater flow within the Hanford Site, to afford information concerning possible contamination of underlying confined aquifer systems and to make the results available to the public. This report presents analytical results and aquifer test procedures used in characterizing the Rattlesnake Ridge interbed at well 699-25-80. The overall close association in groundwater chemistries and presence of elevated nitrate levels suggest that the Rattlesnake Ridge interbed may be locally in communication with the overlying unconfined aquifer system. Other physical evidence which indicates a potential local communication with the unconfined aquifer system includes: favorable stratigraphic position; absence of the confining Elephant Mountain basalt in surrounding areas; and intersection of a recharge boundary during aquifer tests of well 699-25-80.

  17. Hanford 100-N Area In Situ Apatite and Phosphate Emplacement by Groundwater and Jet Injection: Geochemical and Physical Core Analysis

    SciTech Connect

    Szecsody, James E.; Vermeul, Vincent R.; Fruchter, Jonathan S.; Williams, Mark D.; Rockhold, Mark L.; Qafoku, Nikolla; Phillips, Jerry L.

    2010-07-01

    The purpose of this study is to evaluate emplacement of phosphate into subsurface sediments in the Hanford Site 100-N Area by two different technologies: groundwater injection of a Ca-citrate-PO4 solution and water-jet injection of sodium phosphate and/or fish-bone apatite. In situ emplacement of phosphate and apatite adsorbs, then incorporates Sr-90 into the apatite structure by substitution for calcium. Overall, both technologies (groundwater injection of Ca-citrate-PO4) and water-jet injection of sodium phosphate/fish-bone apatite) delivered sufficient phosphate to subsur¬face sediments in the 100-N Area. Over years to decades, additional Sr-90 will incorporate into the apatite precipitate. Therefore, high pressure water jetting is a viable technology to emplace phosphate or apatite in shallow subsurface sediments difficult to emplace by Ca-citrate-PO4 groundwater injections, but further analysis is needed to quantify the relevant areal extent of phosphate deposition (in the 5- to 15-ft distance from injection points) and cause of the high deposition in finer grained sediments.

  18. Technology needs for remediation: Hanford and other DOE sites. Buried Waste Integrated Demonstration Program

    SciTech Connect

    Stapp, D.C.

    1993-01-01

    Technologies are being developed under the Buried Waste Integrated Demonstration (BWID) program to facilitate remediation of the US Department of Energy`s (DOE) buried and stored low-level radioactive, transuranic (TRU), and mixed radioactive and hazardous buried wastes. The BWID program is being coordinated by the Idaho National Engineering Laboratory (INEL) in southeastern Idaho, a DOE site that has large volumes of buried radioactive wastes. The program is currently focusing its efforts on the problems at INEL`s Subsurface Disposal Area (SDA) of the Radioactive Waste Management Complex (RWMC). As specific technologies are successfully demonstrated, they will be available for transfer to applications at other DOE buried waste sites. The purpose of this study is to present buried waste technology needs that have been identified for DOE sites other than INEL.

  19. Evaluation of the effectiveness of using alfalfa and buffalo grass for remediation of trichloroethylene from groundwater

    SciTech Connect

    Caravello, V.

    1998-06-03

    Phytoremediation is receiving increasing attention due to the potential for vegetation to play a significant role in bioremediation of contaminated soils and groundwater. The purpose of this research was to conduct a pilot study to determine if buffalo grass would enhance the remediation of groundwater contaminated with trichloroethylene (TCE). A mass-balance experiment was designed and executed to determine the extent of TCE remediation/degradation occurring through buffalo grass. Measurements for TCE in air, water, and soil were completed for three treatments: (1) buffalo grass, (2) alfalfa, and (3) soil following challenge with a water-TCE mixture. In total, 267 air samples, 43 water samples, 85 soil samples, and 40 vegetative samples were collected and analyzed. The analysis identified two important facts. First, there were no significant differences detected between TCE concentrations in soil, water, and air between groups. Second, there is a significant difference in the amount of the TCE-water mixture consumed in chambers with plants versus chambers without plants. The mass balance of the experiment was not achieved due to unaccountable losses of TCE from the chambers. The major loss mechanism for TCE appears to be from the breakthrough of air sampling media during the experiment. Thus, the data are insufficient to determine if remediation occurred via plants or by preferential pathways through the soil. Future experiments should be designed to include daily monitoring of the aquifer, humidity tolerant air sampling protocol, and relief from the build-up of humidity and transpiration inside the chambers.

  20. A calcite permeable reactive barrier for the remediation of Fluoride from spent potliner (SPL) contaminated groundwater.

    PubMed

    Turner, Brett D; Binning, Philip J; Sloan, Scott W

    2008-01-28

    The use of calcite (CaCO3) as a substrate for a permeable reactive barrier (PRB) for removing fluoride from contaminated groundwater is proposed and is illustrated by application to groundwater contaminated by spent potliner leachate (SPL), a waste derived from the aluminium smelting process. The paper focuses on two issues in the implementation of calcite permeable reactive barriers for remediating fluoride contaminated water: the impact of the groundwater chemical matrix and CO2 addition on fluoride removal. Column tests comparing pure NaF solutions, synthetic SPL solutions, and actual SPL leachate indicate that the complex chemical matrix of the SPL leachate can impact fluoride removal significantly. For SPL contaminant mixtures, fluoride removal is initially less than expected from idealized, pure, solutions. However, with time, the effect of other contaminants on fluoride removal diminishes. Column tests also show that pH control is important for optimizing fluoride removal with the mass removed increasing with decreasing pH. Barrier pH can be regulated by CO2 addition with the point of injection being critical for optimising the remediation performance. Experimental and model results show that approximately 99% of 2300 mg/L fluoride can be removed when CO2 is injected directly into the barrier. This can be compared to approximately 30-50% removal when the influent solution is equilibrated with atmospheric CO2 before contact with calcite.

  1. Groundwater pollution and remediation options for multi-source contaminated aquifers (Bitterfeld/Wolfen, Germany).

    PubMed

    Wycisk, P; Weiss, H; Kaschl, A; Heidrich, S; Sommerwerk, K

    2003-04-11

    Large-scale contaminated megasites like Bitterfeld/Wolfen in the eastern part of Germany are characterized by a regional pollution of soil, surface water and groundwater due to the long and varied history of the chemical industry on location. The pollutants in groundwater may spread to uncontaminated areas and endanger receptors like surface water and drinking water wells according to the site-specific hydrologic regime. In addition, the sheer extension of the contamination at megasites as well as the existence of large densely populated areas and land of high-reuse value prevent a simple risk management strategy of use restriction for the whole area. Since a complete clean-up of the groundwater on a megasite is neither economically feasible nor technically possible within a reasonable time-frame, a multi-approach remediation strategy is needed, taking into account the immediate risks for human health, ecosystem and so-called "protectable goods". Moreover, the contaminants at megasites typically represent a dangerous cocktail of multiple harmful substances stemming from a variety of sources, which may interact with each other and complicate the search for an appropriate remediation strategy. At the SAFIRA-project site in Bitterfeld approaches for in situ remediation of multiple contaminants in groundwater are being tested. Alternatives in local implementation strategies as well as consequences of long-term restrictions for megasites like Bitterfeld need an independent evaluation of the situation using a risk-based approach. For this reason, a GIS-based 3D model of the area including geology, contaminants, hydrogeology, land-use and protected areas has been built. The regional groundwater pollution is characterized by contamination profiles of all monitored substances. In the area of investigation, e.g. threefold and fourfold threshold levels of chlorinated methane, ethane and ethene as well as HCH-isomers, mono-, di- and tetrachlorobenzene, DDT-isomers and benzene

  2. Electrical imaging of subsurface nanoparticle propagation for in-situ groundwater remediation

    NASA Astrophysics Data System (ADS)

    Flores Orozco, Adrián; Gallistl, Jakob; Schmid, Doris; Micic Batka, Vesna; Bücker, Matthias; Hofmann, Thilo

    2017-04-01

    Application of nanoparticles has emerged as a promising in situ remediation technology for the remediation of contaminated groundwater, particularly for areas difficult to access by other remediation techniques. The performance of nanoparticle injections, as a foremost step within this technology, is usually assessed through the geochemical analysis of soil and groundwater samples. This approach is not well suited for a real-time monitoring, and often suffers from a poor spatio-temporal resolution and only provides information from areas close to the sampling points. To overcome these limitations we propose the application of non-invasive Induced Polarization (IP) imaging, a geophysical method that provides information on the electrical properties of the subsurface. The analysis of temporal changes in the electrical images allows tracking the propagation of the injected nanoparticle suspension and detection of the induced bio-geochemical changes in the subsurface. Here, we present IP monitoring results for data collected during the injection of Nano-Goethite particles (NGP) used for simulation of biodegradation of a BTEX plume (i.e., benzene, toluene, ethylbenzene, and xylene) at the Spolchemie II site, CZ. Frequency-domain IP measurements were collected parallel to the groundwater flow direction and centred on the NGP injection point. Pre-injection imaging results revealed high electrical conductivities (> 10 S/m) and negligible polarization effects in the BTEX-contaminated part of the saturated zone (below 5 m depth). The apparently contradictory observation - BTEX compounds are poor electrical conductors - can be explained by the release of carbonic acids (a metabolic by-product of the biodegradation of hydrocarbons), which leads to an increase of the electrical conductivity. Post-injection images revealed a significant decrease (> 50%) of the electrical conductivity, with even larger changes in the proximity of the injection points, most likely due to the

  3. Acceleration of groundwater remediation by deep sweeps and vortex ejections induced by rapidly pulsed pumping

    NASA Astrophysics Data System (ADS)

    Kahler, David M.; Kabala, Zbigniew J.

    2016-05-01

    One key limiting factor to groundwater remediation is contaminant sequestered in pores whose contents do not mix well with the bulk flow. Mixing between well-connected (pores whose volume is flushed as water flows through the aquifer) and poorly connected pores (pores whose volume does not exchange readily when water flows through the aquifer) is of primary concern. Under steady flow, contaminants are effectively trapped in the poorly connected pores and are transferred only by molecular diffusion. This slow mixing process between pore types is a bottleneck to remediation. We present a novel rapidly pulsed pumping method that increases the mixing between these pore types. We do it in the context of pump-and-treat remediation because it is the most common remediation practice. In rapidly pulsed pumping, the increase in flow causes a deep sweep, which pushes the flow into poorly connected pores and sweeps out sequestered contaminants. The decrease in flow causes a vortex ejection, which causes the vortex within the poorly connected pore to emerge with contaminant. These actions are modeled with computational fluid mechanics to elucidate the individual mechanisms and determine how they function and interact. Cleanup of single and multiple poorly connected pore systems were simulated and show the acceleration possible. This technique can decrease the time and cost needed to remediate contaminated aquifers, which in the United States has been estimated to exceed $1 trillion. Since our rapidly pulsed pumping method enhances mixing between well-connected and poorly connected pores, it can be applied to other remediation schemes such as in situ methods.

  4. Independent Technical Review of the X-740 Groundwater Remedy, Portsmouth, Ohio: Technical Evaluation and Recommendations

    SciTech Connect

    Looney, B.; Rhia, B.; Jackson, D.; Eddy-Dilek, C.

    2010-04-30

    Two major remedial campaigns have been applied to a plume of trichloroethene (TCE) contaminated groundwater near the former X-740 facility at the Portsmouth Gaseous Diffusion Plant in Piketon Ohio. The two selected technologies, phytoremediation using a stand of hybrid poplar trees from 1999-2007 and in situ chemical oxidation using modified Fenton's Reagent from 2008-2009, have proven ineffective in achieving remedial action objectives (RAOs). The 'poor' performance of these technologies is a direct result of site specific conditions and the local contaminant hydrogeology. Key among these challenges is the highly heterogeneous subsurface geology with a thin contaminated aquifer zone (the Gallia) - the behavior of the contamination in the Gallia is currently dominated by slow release of TCE from the clay of the overlying Minford formation, from the sandstone of the underlying Berea formation, and from clayey layers within the Gallia itself. In response to the remediation challenges for the X-740 plume, the Portsmouth team (including the US Department of Energy (DOE), the site contractor (CDM), and the Ohio Environmental Protection Agency (OEPA)) is evaluating the feasibility of remediation at this site and identifying specific alternatives that are well matched to site conditions and that would maximize the potential for achieving RAOs. To support this evaluation, the DOE Office of Groundwater and Soil Remediation (EM-32) assembled a team of experts to serve as a resource and provide input and recommendations to Portsmouth. Despite the challenging site conditions and the failure of the previous two remediation campaigns to adequately move the site toward RAOs, the review team was unanimous in the conclusion that an effective combination of cost effective technologies can be identified. Further, the team expressed optimism that RAOs can be achieved if realistic timeframes are accepted by all parties. The initial efforts of the review team focused on reviewing the

  5. Modelling the remediation of contaminated groundwater using zero-valent iron barrier

    SciTech Connect

    Kwong, S.; Small, J.; Tahar, B.

    2007-07-01

    This paper presents results of modelling studies on remediation of groundwater contaminated with uranium using a zero-valent iron permeable reactive barrier (ZVI PRB) at the U.S. Oak Ridge Y-12 site that are used to establish modelling techniques that are of value to other sites such as in the UK. A systematic modelling methodology has been developed to study the problem by using a suite of modelling tools. Firstly a conceptual basis of the main chemical processes representing the remediation of uranium by the ZVI PRB is developed. Two main effects involving reduction and corrosion have been identified as being relevant for the remediation processes. These are then formulated and implemented using the reactive chemical model PHREEQC to provide underpinning chemical input parameters for subsequent reactive solute transport modelling using the TRAFFIC and PHAST codes. Initial results shows that modelling can be a very cost-effective means to study the hydrogeological and geochemical processes involved and to aid understanding of the remediation concept. The modelling approaches presented and lessons learnt are thought to be relevant to other cases of contaminated land study and are likely to be of value to site management concepts which consider on-site disposal of contaminated soils and materials. (authors)

  6. Comparison of surrogate models with different methods in groundwater remediation process

    NASA Astrophysics Data System (ADS)

    Luo, Jiannan; Lu, Wenxi

    2014-10-01

    Surrogate modelling is an effective tool for reducing computational burden of simulation optimization. In this article, polynomial regression (PR), radial basis function artificial neural network (RBFANN), and kriging methods were compared for building surrogate models of a multiphase flow simulation model in a simplified nitrobenzene contaminated aquifer remediation problem. In the model accuracy analysis process, a 10-fold cross validation method was adopted to evaluate the approximation accuracy of the three surrogate models. The results demonstrated that: RBFANN surrogate model and kriging surrogate model had acceptable approximation accuracy, and further that kriging model's approximation accuracy was slightly higher than RBFANN model. However, the PR model demonstrated unacceptably poor approximation accuracy. Therefore, the RBFANN and kriging surrogates were selected and used in the optimization process to identify the most cost-effective remediation strategy at a nitrobenzene-contaminated site. The optimal remediation costs obtained with the two surrogate-based optimization models were similar, and had similar computational burden. These two surrogate-based optimization models are efficient tools for optimal groundwater remediation strategy identification.

  7. Natural Attenuation Software (NAS): A computer program for estimating remediation times of contaminated groundwater

    USGS Publications Warehouse

    Mendez, E.; Widdowson, M.; Brauner, S.; Chapelle, F.; Casey, C.; ,

    2004-01-01

    This paper describes the development and application of a modeling system called Natural Attenuation Software (NAS). NAS was designed as a screening tool to estimate times of remediation (TORs), associated with monitored natural attenuation (MNA), to lower groundwater contaminant concentrations to regulatory limits. Natural attenuation processes that NAS models include advection, dispersion, sorption, biodegradation, and non-aqueous phase liquid (NAPL) dissolution. This paper discusses the three main interactive components of NAS: 1) estimation of the target source concentration required for a plume extent to contract to regulatory limits, 2) estimation of the time required for NAFL contaminants in the source area to attenuate to a predetermined target source concentration, and 3) estimation of the time required for a plume extent to contract to regulatory limits after source reduction. The model's capability is illustrated by results from a case study at a MNA site, where NAS time of remediation estimates compared well with observed monitoring data over multiple years.

  8. Quantifying reduction in ecological risk in Penrhyn Estuary, Sydney, Australia, following groundwater remediation.

    PubMed

    Hunt, James; Birch, Gavin; Warne, Michael

    2012-01-01

    The environmental risk associated with discharge of contaminated groundwater containing a complex mixture of at least 14 volatile chlorinated hydrocarbons (VCHs) to Penrhyn Estuary, Sydney, Australia has previously been assessed. That probabilistic ecological risk assessment (ERA) was undertaken using surface water monitoring data from 2004 to 2005. Subsequently, in 2006, a groundwater remediation system was installed and commissioned to prevent further discharge of VCHs into the estuary. The present study assessed the ecological risk posed to the estuary after 2006 to evaluate the success of the remediation system. The ERA was undertaken using toxicity data derived from direct toxicity assessment (DTA) of preremediation contaminated groundwater using indigenous species, exposure data from surface water monitoring between 2007 and 2008 and the joint probability curve (JPC) methodology. The risk posed was measured in 4 zones of the entire site: source area (2), tributary (2), the inner estuary and outer estuary at high, low, and a combination of high and low tides. In the 2 source areas, risk decreased by over 2 and over 1 orders of magnitude to maximum values of less than 0.5%. In 1 estuary, risk decreased by over 1 order of magnitude, from a maximum of 36% to a maximum of 2.3%. At the other tributary and both the inner and outer estuaries, the risk decreased to less than 1%, regardless of the tide. This analysis revealed that the remediation system was very effective and that the standard level of protection required for slightly to moderately affected ecosystems (95% of species) by the Australian and New Zealand Guidelines for Fresh and Marine Water Quality was met postremediation.

  9. Integration of Socio-Economic Measures in Benefit-Cost Analysis for Groundwater Remediation

    NASA Astrophysics Data System (ADS)

    Shaqadan, A. A.; Kaluarachchi, J. J.; Khalil, Y. H.

    2006-12-01

    Groundwater quality is a major concern since sources of contamination are common and degraded water quality has severe economic and health impacts to the society. Management of contaminated groundwater resources has been a challenge due to limited resources committed to monitor and remediate a large number of contaminated sites. Therefore, there is a prominent question on the optimal allocation of resources for additional data collection and actual remedial measures. In this work, we extended the risk assessment methodology under subsurface heterogeneity and population variability proposed by others to estimate individuals' willingness-to-pay(WTP) for a proposed risk reduction by adding socio-economic measures. We introduced one of the early applications of welfare measures namely, health state, utility, and WTP concepts to study the benefits and costs of collecting additional data to reduce uncertainty for groundwater remediation. The proposed framework considered uncertainty due to subsurface heterogeneity and public health risk through a utility theory based approach that can be used in decision-making. Our framework replaced costly contingent valuation approaches and used a meta analysis which considered a theoretical structure on population age, income, and health state and used empirical estimates from previous contingent valuation methods. We also performed sensitivity analysis on important variables such as WTP and utility levels. Our findings showed that health state and age have vital impacts on WTP. The predictions of WTP trends are consistent with patterns expected in economic theory. We illustrated the proposed framework by evaluating two scenarios of gathering additional information to better describe subsurface heterogeneity. In this example we considered a small addition of data at a correlation scale of 112 m versus a large addition of data at a correlation scale of 22 m. The results showed the two scenarios have annual individuals' WTP of 258 and

  10. U1/U2 crib groundwater biological treatment demonstration project

    SciTech Connect

    Koegler, S.S.; Brouns, T.M.; Heath, W.O.

    1989-11-01

    The primary objective of the biological treatment project is to develop and demonstrate a process for Hanford groundwater remediation. Biodenitrification using facultative anaerobic microorganisms is a promising technology for the simultaneous removal of nitrates and organics from contaminated aqueous streams. During FY 1988, a consortium of Hanford groundwater microorganisms was shown to degrade both nitrates and carbon tetrachloride (CC1{sub 4}). A pilot-scale treatment system was designed and constructed based on the results of laboratory-and-bench-scale testing. This report summarizes the results of biological groundwater treatment studies performed during FY 1989 at the pilot-scale. These tests were conducted using a simulated Hanford groundwater with a continuous stirred-tank bioreactor, and a fluidized-bed bioreactor that was added to the pilot-scale treatment system in FY 1989. The pilot-scale system demonstrated continuous degradation of nitrates and CC1{sub 4} in a simulated groundwater. 4 refs., 7 figs., 1 tab.

  11. Data and Model Uncertainties associated with Biogeochemical Groundwater Remediation and their impact on Decision Analysis

    NASA Astrophysics Data System (ADS)

    Pandey, S.; Vesselinov, V. V.; O'Malley, D.; Karra, S.; Hansen, S. K.

    2016-12-01

    Models and data are used to characterize the extent of contamination and remediation, both of which are dependent upon the complex interplay of processes ranging from geochemical reactions, microbial metabolism, and pore-scale mixing to heterogeneous flow and external forcings. Characterization is wrought with important uncertainties related to the model itself (e.g. conceptualization, model implementation, parameter values) and the data used for model calibration (e.g. sparsity, measurement errors). This research consists of two primary components: (1) Developing numerical models that incorporate the complex hydrogeology and biogeochemistry that drive groundwater contamination and remediation; (2) Utilizing novel techniques for data/model-based analyses (such as parameter calibration and uncertainty quantification) to aid in decision support for optimal uncertainty reduction related to characterization and remediation of contaminated sites. The reactive transport models are developed using PFLOTRAN and are capable of simulating a wide range of biogeochemical and hydrologic conditions that affect the migration and remediation of groundwater contaminants under diverse field conditions. Data/model-based analyses are achieved using MADS, which utilizes Bayesian methods and Information Gap theory to address the data/model uncertainties discussed above. We also use these tools to evaluate different models, which vary in complexity, in order to weigh and rank models based on model accuracy (in representation of existing observations), model parsimony (everything else being equal, models with smaller number of model parameters are preferred), and model robustness (related to model predictions of unknown future states). These analyses are carried out on synthetic problems, but are directly related to real-world problems; for example, the modeled processes and data inputs are consistent with the conditions at the Los Alamos National Laboratory contamination sites (RDX and

  12. Analytical solutions for bacterial energy taxis (chemotaxis): traveling bacterial bands and their role in groundwater remediation

    NASA Astrophysics Data System (ADS)

    Hilpert, M.; Long, W.

    2007-12-01

    Motile bacteria may form bands that travel with a constant speed of propagation through a medium containing a dissolved substrate, to which they respond energy tactically. We generalize the analytical solution by Keller and Segel for such bands by accounting for (1) the presence of a porous medium, (2) substrate consumption described by a Monod kinetics model, and (3) an energy tactic response model derived by Rivero et al. We also comment on the potential role of traveling bacterial bands in the remediation of groundwater contamination.

  13. Analysis for remedial alternatives of unregulated municipal solid waste landfills leachate-contaminated groundwater

    NASA Astrophysics Data System (ADS)

    An, Da; Jiang, Yonghai; Xi, Beidou; Ma, Zhifei; Yang, Yu; Yang, Queping; Li, Mingxiao; Zhang, Jinbao; Bai, Shunguo; Jiang, Lei

    2013-09-01

    A groundwater flow and solute transport model was developed using Visual Modflow for forecasting contaminant transport and assessing effects of remedial alternatives based on a case study of an unregulated landfill leachate-contaminated groundwater in eastern China. The results showed that arsenic plume was to reach the pumping well in the downstream farmland after eight years, and the longest lateral and longitudinal distance of arsenic plume was to reach 200 m and 260 m, respectively. But the area of high concentration region of arsenic plume was not to obviously increase from eight years to ten years and the plume was to spread to the downstream river and the farmland region after 20 years; while the landfill's ground was hardened, the plume was not to reach the downstream farmland region after eight years; when the pumping well was installed in the plume downstream and discharge rate was 200m3/d, the plume was to be effectively restrained; for leakage-proof barriers, it might effectively protect the groundwater of sensitive objects within an extent time range. But for the continuous point source, the plume was still to circle the leakage-proof barrier; when discharge rate of drainage ditches was 170.26 m3/d, the plume was effectively controlled; the comprehensive method combining ground-harden with drainage ditches could get the best effect in controlling contaminant diffusion, and the discharge rate was to be reduced to 111.43 m3/d. Therefore, the comprehensive remedial alternative combining ground-harden with drainage ditch will be recommended for preventing groundwater contamination when leachate leakage has happened in unregulated landfills.

  14. Superfund record of decision (EPA Region 10): Hanford 200 Area (USDOE), operable unit 200-zp-1, Benton County, WA, May 24, 1995

    SciTech Connect

    1995-07-01

    The decision document presents the selected interim remedial measure (IRM) for the USDOE Hanford 200-ZP-1 operable unit, 200 Area, Hanford Site, Benton County, Washington. The selected remedy uses groundwater pump and treat and is intended to minimize further migration of carbon tetrachloride, chloroform, and trichloroethylene (TCE) in the groundwater of the 200 West Area. To do this, the IRM is designed to stabilize and reduce contaminant mass in the high concentration portion of the plume. The high concentration portion of the plume corresponds to the area within the 2000 - 3000 parts per billion (ppb) contour of carbon tetrachloride.

  15. Superfund record of decision (EPA Region 10): Hanford 300 Area (USDOE), 300-FF-1 and 300-FF-5 operable units, Benton County, WA, July 17, 1996

    SciTech Connect

    1996-08-01

    The decision document presents the selected final remedial and interim remedial actions for portions of the USDOE Hanford 300 Area, Hanford Site, Benton County, Washington. The ROD addresses actual or threatened releases from the wastes sites in the 300-FF-1 Operable Unit and the groundwater in the 300-FF-5 Operable Unit. The third operable unit (300-FF-2) consists of the remaining waste sites in the 300 Area NPL site and any associated groundwater that is not part of 300-FF-5.

  16. Hanford wells

    SciTech Connect

    McGhan, V.L.

    1989-06-01

    The Site Characterization and Assessment Section of the Geosciences Department at Pacific Northwest Laboratory (PNL) has compiled a list of wells located on or near the Hanford Site. Information has been updated on wells existing from the days before construction of the Hanford Works to the present. This work was funded by the US Department of Energy (DOE). The list of wells will be used by DOE contractors who need condensed, tabular information on well location, construction, and completion dates. This report does not include data on lithologic logs and ground-water contamination. Moreover, the completeness of this list is limited because of new well construction and existing well modifications, which are continually under way. Despite these limitations, this list represents the most complete description possible of data pertaining to wells on or adjacent to the Hanford Site. 7 refs., 1 fig., 2 tabs.

  17. Evaluation of Geochemical Processes Affecting Uranium Sequestration and Longevity of Permeable Reactive Barriers for Groundwater Remediation

    NASA Astrophysics Data System (ADS)

    Fuller, C. C.; Webb, S.; Bargar, J.; Naftz, D. L.

    2009-12-01

    Development of effective remediation techniques for protecting existing drinking water supplies and for mitigating existing contamination problems requires evaluating both the contaminant sequestration processes and the secondary reactions affecting the long term stability of contaminant attenuation. Permeable reactive barriers (PRB) provide a means for passive remediation of dissolved groundwater contaminants and may be an effective strategy for remediation of uranium (U) groundwater contamination provided that long term stability of the sequestered U can be achieved for the geochemical conditions of the aquifer expected subsequent to remediation. Understanding the chemical reaction mechanisms resulting in U uptake and PRB performance are critical to evaluating the potential for release of sequestered U and for improved design of remediation devices. We are using synchrotron X-ray techniques to investigate U sequestration reaction mechanisms and biogeochemical processes in PRB materials recovered from a 9-year field demonstration of zero-valent iron (ZVI) and bone char apatite PRBs in a U contaminated aquifer near Fry Canyon, Utah. X-ray microprobe mapping of iron phases shows that extensive secondary precipitation of mackinawite, siderite and aragonite in the ZVI PRB has resulted from ZVI corrosion coupled with microbial sulfate reduction. Bulk U-EXAFS measurements and micron-scale U-oxidation state mapping indicates that U removal occurs largely by reduction and precipitation of a UO2-like U(IV) phase on the ZVI surfaces, and that the sequestered U is often buried by the secondary Fe precipitates. These findings are significant to the efficacy of ZVI PRBs for remediation of U and other contaminants in that the ongoing secondary phase precipitation cements grains and fills internal porosity resulting in the observed decreased PRB permeability and limits subsequent U removal, but likely limits oxidative remobilization of U. In the bone char apatite PRB, elevated

  18. INDEPENDENT REVIEW OF THE X-701B GROUNDWATER REMEDY, PORTSMOUTH, OHIO: TECHNICAL EVALUATION AND RECOMMENDATIONS

    SciTech Connect

    Looney, B.; Eddy-Dilek, C.; Costanza, J.; Rossabi, J.; Early, T.; Skubal, K.; Magnuson, C.

    2008-12-15

    The Department of Energy Portsmouth Paducah Project Office requested assistance from Department of Energy Office of Environmental Management (EM-22) to provide independent technical experts to evaluate past and ongoing remedial activities at the Portsmouth facility that were completed to address TCE contamination associated with the X-701B groundwater plume and to make recommendations for future efforts. The Independent Technical Review team was provided with a detailed and specific charter. The charter requested that the technical team first review the past and current activities completed for the X-701B groundwater remedy for trichloroethene (TCE) in accordance with a Decision Document that was issued by Ohio EPA on December 8, 2003 and a Work Plan that was approved by Ohio EPA on September 22, 2006. The remedy for X-701B divides the activities into four phases: Phase I - Initial Source Area Treatment, Phase II - Expanded Source Area Treatment, Phase III - Evaluation and Reporting, and Phase IV - Downgradient Remediation and Confirmation of Source Area Treatment. Phase I of the remedy was completed during FY2006, and DOE has now completed six oxidant injection events within Phase II. The Independent Technical Review team was asked to evaluate Phase II activities, including soil and groundwater results, and to determine whether or not the criteria that were defined in the Work Plan for the Phase II end point had been met. The following criteria are defined in the Work Plan as an acceptable Phase II end point: (1) Groundwater samples from the identified source area monitoring wells have concentrations below the Preliminary Remediation Goal (PRG) for TCE in groundwater, or (2) The remedy is no longer effective in removing TCE mass from the source area. In addition, the charter specifies that if the Review Team determines that the Phase II endpoint has not been reached, then the team should address the following issues: (1) If additional injection events are

  19. A stochastic optimization model under modeling uncertainty and parameter certainty for groundwater remediation design--part I. Model development.

    PubMed

    He, L; Huang, G H; Lu, H W

    2010-04-15

    Solving groundwater remediation optimization problems based on proxy simulators can usually yield optimal solutions differing from the "true" ones of the problem. This study presents a new stochastic optimization model under modeling uncertainty and parameter certainty (SOMUM) and the associated solution method for simultaneously addressing modeling uncertainty associated with simulator residuals and optimizing groundwater remediation processes. This is a new attempt different from the previous modeling efforts. The previous ones focused on addressing uncertainty in physical parameters (i.e. soil porosity) while this one aims to deal with uncertainty in mathematical simulator (arising from model residuals). Compared to the existing modeling approaches (i.e. only parameter uncertainty is considered), the model has the advantages of providing mean-variance analysis for contaminant concentrations, mitigating the effects of modeling uncertainties on optimal remediation strategies, offering confidence level of optimal remediation strategies to system designers, and reducing computational cost in optimization processes.

  20. Resource Conservation and Recovery Act ground-water monitoring projects for Hanford Facilities: Progress report for the period July 1 to September 30, 1989 - Volume 1 - Text

    SciTech Connect

    Smith, R.M.; Bates, D.J.; Lundgren, R.E.

    1989-12-01

    This is Volume 1 of a two-volume document that describes the progress of 14 Hanford Site ground-water monitoring projects for the period July 1 to September 30, 1989. This volume discusses the projects; Volume 2 provides as-built diagrams, completion/inspection reports, drilling logs, and geophysical logs for wells drilled, completed, or logged during this period. Volume 2 can be found on microfiche in the back pocket of Volume 1. The work described in this document is conducted by the Pacific Northwest Laboratory under the management of Westinghouse Hanford Company for the US Department of Energy. Concentrations of ground-water constituents are compared to federal drinking water standards throughout this document for reference purposes. All drinking water supplied from the sampled aquifer meets regulatory standards for drinking water quality.

  1. A simulation-based fuzzy chance-constrained programming model for optimal groundwater remediation under uncertainty

    NASA Astrophysics Data System (ADS)

    He, L.; Huang, G. H.; Lu, H. W.

    2008-12-01

    In this study a simulation-based fuzzy chance-constrained programming (SFCCP) model is developed based on possibility theory. The model is solved through an indirect search approach which integrates fuzzy simulation, artificial neural network and simulated annealing techniques. This approach has the advantages of: (1) handling simulation and optimization problems under uncertainty associated with fuzzy parameters, (2) providing additional information (i.e. possibility of constraint satisfaction) indicating that how likely one can believe the decision results, (3) alleviating computational burdens in the optimization process, and (4) reducing the chances of being trapped in local optima. The model is applied to a petroleum-contaminated aquifer located in western Canada for supporting the optimal design of groundwater remediation systems. The model solutions provide optimal groundwater pumping rates for the 3, 5 and 10 years of pumping schemes. It is observed that the uncertainty significantly affects the remediation strategies. To mitigate such impacts, additional cost is required either for increased pumping rate or for reinforced site characterization.

  2. The option to abandon: stimulating innovative groundwater remediation technologies characterized by technological uncertainty.

    PubMed

    Compernolle, T; Van Passel, S; Huisman, K; Kort, P

    2014-10-15

    Many studies on technology adoption demonstrate that uncertainty leads to a postponement of investments by integrating a wait option in the economic analysis. The aim of this study however is to demonstrate how the investment in new technologies can be stimulated by integrating an option to abandon. Furthermore, this real option analysis not only considers the ex ante decision analysis of the investment in a new technology under uncertainty, but also allows for an ex post evaluation of the investment. Based on a case study regarding the adoption of an innovative groundwater remediation strategy, it is demonstrated that when the option to abandon the innovative technology is taken into account, the decision maker decides to invest in this technology, while at the same time it determines an optimal timing to abandon the technology if its operation proves to be inefficient. To reduce uncertainty about the effectiveness of groundwater remediation technologies, samples are taken. Our analysis shows that when the initial belief in an effective innovative technology is low, it is important that these samples provide correct information in order to justify the adoption of the innovative technology. Copyright © 2014 Elsevier B.V. All rights reserved.

  3. Vadose zone characterization of highly radioactive contaminated soil at the Hanford Site

    SciTech Connect

    Buckmaster, M.A.

    1993-05-01

    The Hanford Site in south-central Washington State contains over 1500 identified waste sites and numerous groundwater plumes that will be characterized and remediated over the next 30 years. As a result of the Hanford Federal Facility Agreement and Consent Order, the US Department of Energy has initiated a remedial investigation/feasibility study at the 200-BP-1 operable unit. The 200-BP-1 remedial investigation is the first Comprehensive Environmental Response, Compensation, and Liability Act of 1980 investigation on the Hanford Site that involves drilling into highly radioactive and chemically contaminated soils. The initial phase of site characterization was designed to assess the nature and extent of contamination associated with the source waste site within the 200-BP-1 operable unit. Characterization activities consisted of drilling and sampling the waste site, chemical and physical analysis of samples, and development of a conceptual vadose zone model. Predicted modeling concentrations compared favorably to analytical data collected during the initial characterization activities.

  4. Ground-water monitoring compliance projects for Hanford Site Facilities: Progress report for the period April 1--June 30, 1988: Volume 1, Text

    SciTech Connect

    Not Available

    1988-09-01

    This is Volume 1 of a two-volume set of documents that describes the progress of 10 Hanford Site ground-water monitoring projects for the period April 1 to June 30, 1988. This volume discusses the projects; Volume 2 provides as-built diagrams, drilling logs, and geophysical logs for wells drilled during this period in the 100-N Area and near the 216-A-36B Crib.

  5. Chromium-Removal Processes during Groundwater Remediation by a Zerovalent Iron Permeable Reactive Barrier

    SciTech Connect

    Wilkin, Richard T.; Su, Chunming; Ford, Robert G.; Paul, Cynthia J.

    2008-06-09

    Solid-phase associations of chromium were examined in core materials collected from a full-scale, zerovalent iron permeable reactive barrier (PRB) at the U.S. Coast Guard Support Center located near Elizabeth City, NC. The PRB was installed in 1996 to treat groundwater contaminated with hexavalent chromium. After eight years of operation, the PRB remains effective at reducing concentrations of Cr from average values >1500 {micro}g L{sup -1} in groundwater hydraulically upgradient of the PRB to values <1 {micro}g L{sup -1} in groundwater within and hydraulically downgradient of the PRB. Chromium removal from groundwater occurs at the leading edge of the PRB and also within the aquifer immediately upgradient of the PRB. These regions also witness the greatest amount of secondary mineral formation due to steep geochemical gradients that result from the corrosion of zerovalent iron. X-ray absorption near-edge structure (XANES) spectroscopy indicated that chromium is predominantly in the trivalent oxidation state, confirming that reductive processes are responsible for Cr sequestration. XANES spectra and microscopy results suggest that Cr is, in part, associated with iron sulfide grains formed as a consequence of microbially mediated sulfate reduction in and around the PRB. Results of this study provide evidence that secondary iron-bearing mineral products may enhance the capacity of zerovalent iron systems to remediate Cr in groundwater, either through redox reactions at the mineral-water interface or by the release of Fe(II) to solution via mineral dissolution and/or metal corrosion.

  6. Selecting remediation goals by assessing the natural attenuation capacity of groundwater systems

    USGS Publications Warehouse

    Chapelle, Francis H.; Bradley, Paul M.

    1998-01-01

    Remediation goals for the source areas of a chlorinated ethene‐contaminated groundwater plume were identified by assessing the natural attenuation capacity of the aquifer system. The redox chemistry of the site indicates that sulfate‐reducing (H2 ∼ 2 nanomoles [nM]) per liter conditions near the contaminant source grade to Fe(III)‐reducing conditions (H2 ∼ 0.5 nM) downgradient of the source. Sulfate‐reducing conditions facilitate the initial reduction of perchloroethene (PCE) to trichloroethene (TCE), cis‐dichloroethene (cis‐DCE), and vinyl chloride (VC). Subsequently, the Fe(III)‐reducing conditions drive the oxidation of cis‐DCE and VC to carbon dioxide and chloride. This sequence gives the aquifer a substantial capacity for biodegrading chlorinated ethenes. Natural attenuation capacity (the slope of the steady‐state contaminant concentration profile along a groundwater flowpath) is a function of biodegradation rates, aquifer dispersive characteristics, and groundwater flow velocity. The natural attenuation capacity at the Kings Bay, Georgia site was assessed by estimating groundwater flowrates (∼0.23 ± 0.12 m/d) and aquifer dispersivity (∼1 m) from hydrologic and scale considerations. Apparent biodegradation rate constants (PCE and TCE ∼ 0.01 d−1; cis‐DCE and VC ∼ 0.025 d−1) were estimated from observed contaminant concentration changes along aquifer flowpaths. A boundary‐value problem approach was used to estimate levels to which contaminant concentrations in the source areas must be lowered (by engineered removal), or groundwater flow velocities lowered (by pumping) for the natural attenuation capacity to achieve maximum concentration limits (MCLs) prior to reaching a predetermined regulatory point of compliance.

  7. In situ stimulation of groundwater denitrification with formate to remediate nitrate contamination

    USGS Publications Warehouse

    Smith, R.L.; Miller, D.N.; Brooks, M.H.; Widdowson, M.A.; Killingstad, M.W.

    2001-01-01

    In situ stimulation of denitrification has been proposed as a mechanism to remediate groundwater nitrate contamination. In this study, sodium formate was added to a sand and gravel aquifer on Cape Cod, MA, to test whether formate could serve as a potential electron donor for subsurface denitrification. During 16- and 10-day trials, groundwater from an anoxic nitrate-containing zone (0.5-1.5 mM) was continuously withdrawn, amended with formate and bromide, and pumped back into the aquifer. Concentrations of groundwater constituents were monitored in multilevel samplers after up to 15 m of transport by natural gradient flow. Nitrate and formate concentrations were decreased 80-100% and 60-70%, respectively, with time and subsequent travel distance, while nitrite concentrations inversely increased. The field experiment breakthrough curves were simulated with a two-dimensional site-specific model that included transport, denitrification, and microbial growth. Initial values for model parameters were obtained from laboratory incubations with aquifer core material and then refined to fit field breakthrough curves. The model and the lab results indicated that formate-enhanced nitrite reduction was nearly 4-fold slower than nitrate reduction, but in the lab, nitrite was completely consumed with sufficient exposure time. Results of this study suggest that a long-term injection of formate is necessary to test the remediation potential of this approach for nitrate contamination and that adaptation to nitrite accumulation will be a key determinative factor.In situ stimulation of denitrification has been proposed as a mechanism to remediate groundwater nitrate contamination. In this study, sodium formate was added to a sand and gravel aquifer on Cape Cod, MA, to test whether formate could serve as a potential electron donor for subsurface denitrification. During 16- and 10-day trials, groundwater from an anoxic nitrate-containing zone (0.5-1.5 mM) was continuously withdrawn

  8. Optimal groundwater remediation design: Methodologies and software for contaminated aquifers. Final report

    SciTech Connect

    Dougherty, D.E.

    1994-10-31

    This document comprises the final report of work performed under sub-contract B-239648 between the Lawrence Livermore National Laboratory (LLNL) and the University of Vermont (UVM). This contract was subsidiary to one between LLNL and the U.S. Department of Energy (DOE). This project had the goal of developing tools and strategies regarding how and where and when to apply the environmental restoration (ER) technologies that are under development. The development of decision support software for advanced environmental remediation technologies is tentative; many of the ER technologies are poorly understood, the applicability of methods to new untested sites is questionable, the ability to predict the effects of alternative remediation designs is very limited, and there are a large number of uncertainties associated with processes and parameters (physical, chemical, and biological), contaminants (distribution and type), and sociopolitical environment. Nevertheless, the potential for significant savings by using optimal design methods and the need to make decisions regardless of uncertainties has made this project worthy. A stop-work order was received in September 1994. An additional upper limit of $15,000 was provided for project termination activities, including report preparation. One of four deliverables was completed and provided to LLNL. MODLP is a computational tool for use in groundwater remediation design. It is a FORTRAN program that incorporates the well known and widely used MODFLOW simulator to represent flow of water in a saturated natural porous medium. MODLP is designed to allow the user to create and solve optimization problems for hydraulic control in groundwater systems. Inasmuch as environmental restoration costs are very large, savings of on the order of ten percent represent significant amounts, and optimal design has been demonstrated to help produce savings larger than ten percent, these activities have an important role to play within DOE.

  9. Characterization modeling to support the hanford 618-10 and 618-11 burial grounds remediation design solution: two differing approaches with similar results

    SciTech Connect

    Landon, S.C.; Nolan, L.M.

    2007-07-01

    Two different approaches were applied to characterization modeling of the waste in the 618-10 and 618-11 burial grounds. The results were compared and it was found that the independent approaches validate each other. The 618-10 and 618-11 burial grounds, located on the Hanford site in Washington state, received primarily radioactive laboratory waste in the 1950's and 60's; however, disposal records from burial activities have since been destroyed. North Wind Inc. (NWI) is completing a technology demonstration project, funded by DOE Headquarters to develop methodology for remediation of the vertical pipe units and develop supporting documentation. Washington Closure Hanford (WCH) is developing a design solution for remediation of the 618-10 and 618-11 burial grounds, including the development of a characterization model and estimates of radioactivity and waste volumes present. Each company independently developed their characterization models and radionuclide inventories, using a different methodology; however, the results of each model revealed only a two to five percent difference, which is significant given the complexity of the waste matrices, the high dose rates of the waste when disposed, and relatively high levels of transuranic radionuclides projected. (authors)

  10. Ground-water monitoring compliance projects for Hanford Site facilities: Volume 1, The report and Appendix A, Progress report for the period October 1 to December 31, 1986

    SciTech Connect

    Not Available

    1987-02-01

    This report documents recent progress on ground-water monitoring projects for four Hanford Site facilities: the 300 Area Process Trenches, the 183-H Solar Evaporation Basins, the 200 Area Low-Level Burial Grounds, and the Nonradioactive Dangerous Waste (NRDW) Landfill. The existing ground-water monitoring projects for the first two facilities named in the paragraph above are currently being expanded by adding new wells to the networks. During the reporting period, sampling of the existing wells continued on a monthly basis, and the analytical results for samples collected from September through November 1986 are included and discussed in this document. 8 refs., 41 figs., 7 tabs.

  11. Estimation of the release and migration of lead through soils and groundwater at the Hanford Site 218-E-12B Burial Ground. Volume 2, Appendices

    SciTech Connect

    Rhoads, K.; Bjornstad, B.N.; Lewis, R.E.; Teel, S.S.; Cantrell, K.J.; Serne, R.J.; Smoot, J.L.; Kincaid, C.T.; Wurstner, S.K.

    1992-10-01

    This report describes the technical basis for a groundwater transport analysis that was conducted to evaluate migration of potentially hazardous materials from the Hanford Site 218-E-12B burial ground. The analysis characterized the geologic, chemical, and hydrologic properties of the disposal site, and used that information to perform a screening analysis for transport of materials from the burial ground to downgradient groundwater locations and to the Columbia River. Subsequent sections of the appendix describe the geologic setting, geochemistry, and hydrology of the disposal site and their relationship to the transport analysis.

  12. Estimation of the release and migration of lead through soils and groundwater at the Hanford Site 218-E-12B Burial Ground

    SciTech Connect

    Rhoads, K.; Bjornstad, B.N.; Lewis, R.E.; Teel, S.S.; Cantrell, K.J.; Serne, R.J.; Smoot, J.L.; Kincaid, C.T.; Wurstner, S.K.

    1992-10-01

    This report describes the technical basis for a groundwater transport analysis that was conducted to evaluate migration of potentially hazardous materials from the Hanford Site 218-E-12B burial ground. The analysis characterized the geologic, chemical, and hydrologic properties of the disposal site, and used that information to perform a screening analysis for transport of materials from the burial ground to downgradient groundwater locations and to the Columbia River. Subsequent sections of the appendix describe the geologic setting, geochemistry, and hydrology of the disposal site and their relationship to the transport analysis.

  13. Dynamic optimal control of groundwater remediation with management periods: Linearized and quasi-Newton approaches

    SciTech Connect

    Culver, T.B.

    1991-01-01

    Several modifications of the linear-quadratic regulator (LQR) optimization algorithm are developed, and the computational efficiency of each algorithm with respect to groundwater remediation is evaluated. In each case, the optimization model is combined with a finite element groundwater flow and transport simulation model to determine the optimal time-varying pump-and-treat policy. The first modification of the LQR algorithm incorporated management periods, which are groups of simulation time steps during which the pumping policy remains constant. Management periods reduced the total computational demand, as measured by the CPU time, by as much as 85% compared to the time needed for the LQR solution without management periods. Complexity analysis revealed that computational savings of equal or greater magnitude can be expected in general for groundwater remediation applications and for many other applications of dynamic control. The LQR algorithm with management periods was further modified by assuming steady-state hydraulics within a management period (SSLQR), which simplifies the derivatives of the transition equation. A quasi-Newton differential dynamic programming (QNDDP) was formulated by approximating the complicated second derivatives of the transition equation using a Broyden rank-one approximation. QNDDP converged to the optimal policy for the test problem significantly faster than the LQR algorithm, requiring approximately half the computational time. With the test problem expanded to include the capacity of the treatment facility as a state variable, QNDDP with management periods can determine the optimal treatment facility capacity. With many management periods, the addition of the capital costs of the treatment facility changed the optimal policy so that the required treatment facility capacity was reduced.

  14. Subsurface transport behavior of micro-nano bubbles and potential applications for groundwater remediation.

    PubMed

    Li, Hengzhen; Hu, Liming; Song, Dejun; Al-Tabbaa, Abir

    2013-12-30

    Micro-nano bubbles (MNBs) are tiny bubbles with diameters on the order of micrometers and nanometers, showing great potential in environmental remediation. However, the application is only in the beginning stages and remains to be intensively studied. In order to explore the possible use of MNBs in groundwater contaminant removal, this study focuses on the transport of MNBs in porous media and dissolution processes. The bubble diameter distribution was obtained under different conditions by a laser particle analyzer. The permeability of MNB water through sand was compared with that of air-free water. Moreover, the mass transfer features of dissolved oxygen in water with MNBs were studied. The results show that the bubble diameter distribution is influenced by the surfactant concentration in the water. The existence of MNBs in pore water has no impact on the hydraulic conductivity of sand. Furthermore, the dissolved oxygen (DO) in water is greatly increased by the MNBs, which will predictably improve the aerobic bioremediation of groundwater. The results are meaningful and instructive in the further study of MNB research and applications in groundwater bioremediation.

  15. Subsurface Transport Behavior of Micro-Nano Bubbles and Potential Applications for Groundwater Remediation

    PubMed Central

    Li, Hengzhen; Hu, Liming; Song, Dejun; Al-Tabbaa, Abir

    2013-01-01

    Micro-nano bubbles (MNBs) are tiny bubbles with diameters on the order of micrometers and nanometers, showing great potential in environmental remediation. However, the application is only in the beginning stages and remains to be intensively studied. In order to explore the possible use of MNBs in groundwater contaminant removal, this study focuses on the transport of MNBs in porous media and dissolution processes. The bubble diameter distribution was obtained under different conditions by a laser particle analyzer. The permeability of MNB water through sand was compared with that of air-free water. Moreover, the mass transfer features of dissolved oxygen in water with MNBs were studied. The results show that the bubble diameter distribution is influenced by the surfactant concentration in the water. The existence of MNBs in pore water has no impact on the hydraulic conductivity of sand. Furthermore, the dissolved oxygen (DO) in water is greatly increased by the MNBs, which will predictably improve the aerobic bioremediation of groundwater. The results are meaningful and instructive in the further study of MNB research and applications in groundwater bioremediation. PMID:24380978

  16. Supplemental Assessment of the Y-12 Groundwater Protection Program Using Monitoring and Remediation Optimization System Software

    SciTech Connect

    Elvado Environmental LLC; GSI Environmental LLC

    2009-01-01

    A supplemental quantitative assessment of the Groundwater Protection Program (GWPP) at the Y-12 National Security Complex (Y-12) in Oak Ridge, TN was performed using the Monitoring and Remediation Optimization System (MAROS) software. This application was previously used as part of a similar quantitative assessment of the GWPP completed in December 2005, hereafter referenced as the 'baseline' MAROS assessment (BWXT Y-12 L.L.C. [BWXT] 2005). The MAROS software contains modules that apply statistical analysis techniques to an existing GWPP analytical database in conjunction with hydrogeologic factors, regulatory framework, and the location of potential receptors, to recommend an improved groundwater monitoring network and optimum sampling frequency for individual monitoring locations. The goal of this supplemental MAROS assessment of the Y-12 GWPP is to review and update monitoring network optimization recommendations resulting from the 2005 baseline report using data collected through December 2007. The supplemental MAROS assessment is based on the findings of the baseline MAROS assessment and includes only the groundwater sampling locations (wells and natural springs) currently granted 'Active' status in accordance with the Y-12 GWPP Monitoring Optimization Plan (MOP). The results of the baseline MAROS assessment provided technical rationale regarding the 'Active' status designations defined in the MOP (BWXT 2006). One objective of the current report is to provide a quantitative review of data collected from Active but infrequently sampled wells to confirm concentrations at these locations. This supplemental MAROS assessment does not include the extensive qualitative evaluations similar to those presented in the baseline report.

  17. Implementing heterogeneous catalytic dechlorination technology for remediating TCE-contaminated groundwater.

    PubMed

    Davie, Matthew G; Cheng, Hefa; Hopkins, Gary D; Lebron, Carmen A; Reinhard, Martin

    2008-12-01

    To transition catalytic reductive dechlorination (CRD) into practice, it is necessary to demonstrate the effectiveness, robustness, and economic competitiveness of CRD-based treatment systems. A CRD system scaled up from previous laboratory studies was tested for remediating groundwater contaminated with 500-1200 microg L(-1) trichloroethylene (TCE) at Edwards Air Force Base (AFB), California. Groundwater was pumped from a treatment well at 2 gal min(-1), amended with hydrogen to 0.35 mg L(-1) and contacted for 2.3 min with 20 kg eggshell-coated Pd on alumina beads (2% Pd by wt) packed in a fixed-bed reactor, and then returned to the aquifer. Operation was continuous for 23 h followed a 1 h regeneration cycle. After regeneration, TCE removal was 99.8% for 4 to 9 h and then declined to 98.3% due to catalyst deactivation. The observed catalyst deactivation was tentatively attributed to formation of sulfidic compounds; modeling of catalyst deactivation kinetics suggests the presence of sulfidic species equivalent to 2-4 mg L(-1) hydrogen sulfide in the reactor water. Over the more than 100 day demonstration period, TCE concentrations in the treated groundwater were reduced by >99% to an average concentration of 4.1 microg L(-1). The results demonstrate CRD as a viable treatment alternative technically and economically competitive with activated carbon adsorption and other conventional physicochemical treatmenttechnologies.

  18. The use of zero-valent iron for groundwater remediation and wastewater treatment: a review.

    PubMed

    Fu, Fenglian; Dionysiou, Dionysios D; Liu, Hong

    2014-02-28

    Recent industrial and urban activities have led to elevated concentrations of a wide range of contaminants in groundwater and wastewater, which affect the health of millions of people worldwide. In recent years, the use of zero-valent iron (ZVI) for the treatment of toxic contaminants in groundwater and wastewater has received wide attention and encouraging treatment efficiencies have been documented. This paper gives an overview of the recent advances of ZVI and progress obtained during the groundwater remediation and wastewater treatment utilizing ZVI (including nanoscale zero-valent iron (nZVI)) for the removal of: (a) chlorinated organic compounds, (b) nitroaromatic compounds, (c) arsenic, (d) heavy metals, (e) nitrate, (f) dyes, and (g) phenol. Reaction mechanisms and removal efficiencies were studied and evaluated. It was found that ZVI materials with wide availability have appreciable removal efficiency for several types of contaminants. Concerning ZVI for future research, some suggestions are proposed and conclusions have been drawn. Copyright © 2014 Elsevier B.V. All rights reserved.

  19. Limitations in determining redox chemistry in basalt groundwaters at the Hanford site

    SciTech Connect

    Dill, J.A.; Jones, T.E.; Marcy, A.D.; West, M.H.

    1986-03-01

    The oxidation-reduction (redox) chemistry of the basalt groundwater system will be an important factor governing both the design and performance of a high-level nuclear waste repository in basalt. Although the redox state of the basalt groundwater system is inherently difficult to measure, there are a number of types of measurements that provide valuable information on this subject. These measurements include concentrations of dissolved sulfide, ferrous iron, electrode redox potential, and groundwater reducing capacity. These measurements have been made on a limited basis in a number of different repository test horizons. Taken collectively, the results of these measurements suggest that both sulfide and ferrous iron play an important role in the establishment of the basalt groundwater redox condition. Thermodynamic calculations of redox potential (E/sub h/) based on these measurements are indicative of an E/sub h/ of -0.4 V. Additional measurements are proposed that will provide a more complete understanding of basalt groundwater redox conditions. The proposed measurements include a more in-depth analysis of redox active species as well as quantification of dissolved gas species such as oxygen and methane.

  20. Remediation of Nitrate-contaminated Groundwater by a Mixture of Iron and Activated Carbon

    NASA Astrophysics Data System (ADS)

    Huang, Guoxin; Liu, Fei; Jin, Aifang; Qin, Xiaopeng

    2010-11-01

    Nitrate contamination in groundwater has become a major environmental and health problem worldwide. The aim of the present study is to remediate groundwater contaminated by nitrate and develop potential reactive materials to be used in PRBs (Permeable Reactive Barriers). A new approach was proposed for abiotic groundwater remediation by reactive materials of iron chips and granular activated carbon particles. Batch tests were conducted and remediation mechanisms were discussed. The results show that nitrate decreases from 86.31 to 33.79 mgṡL-1 under the conditions of near neutral pH and reaction time of 1h. The combination of iron chips and activated carbon particles is cost-effective and suitable for further use as denitrification media in PRBs. Nitrogen species don't change significantly with the further increase in reaction time (>1 h). The iron-activated carbon-water-nitrate system tends to be steady-state. Small amounts of ammonium and nitrite (0.033-0.039 and 0.14-3.54 mgṡL-1, respectively) appear at reaction time from 0 h to 5 h. There is no substantial accumulation of nitrogen products in the system. The removal rate of nitrate only reaches 16.11% by sole iron chips at reaction time of 5 h, while 63.57% by the mixture of iron chips and activated carbon particles. There is significantly synergistic and promotive effect of mixing the two different types of materials on nitrate treatment. Fe/C ratio (1/1.5-1/2.5) doesn't cause dramatically different residual nitrate concentrations (24.09-26.70 mgṡL-1). Nitrate can't be limitlessly decreased with decreasing Fe/C ratio. The concomitant occurrences of chemical reduction, galvanic cell reaction, electrophoretic accumulation, chemical coagulation, and physical adsorption are all responsible for the overall nitrate removal by iron allied with activated carbon. To accurately quantify various nitrogen species, further studies on adsorption mechanisms of nitrite and nitrate are needed.

  1. USEPA'S RESEARCH PROGRAM ON REMEDIATION AND CONTAINMENT OF ARSENIC AND MERCURY IN SOILS, INDUSTRIAL WASTES, AND GROUNDWATER

    EPA Science Inventory

    In the U.S. and around the world, mercury and arsenic contaminated soils, industrial wastes, and groundwater are difficult to effectively and cheaply remediate and contain. Mercury is a serious health concern and has been identified as a contaminant in the air, soil, sediment, su...

  2. REMOVAL OF ADDED NITRATE IN COTTON BURR COMPOST, MULCH COMPOST, AND PEAT: MECHANISMS AND POTENTIAL USE FOR GROUNDWATER NITRATE REMEDIATION

    EPA Science Inventory

    We conducted batch tests on the nature and kinetics of removal of added nitrate in cotton burr compost, mulch compost, and sphagnum peat that may be potentially used in a permeable reactive barrier (PRB) for groundwater nitrate remediation. A rigorous steam autoclaving protocol (...

  3. REMOVAL OF ADDED NITRATE IN COTTON BURR COMPOST, MULCH COMPOST, AND PEAT: MECHANISMS AND POTENTIAL USE FOR GROUNDWATER NITRATE REMEDIATION

    EPA Science Inventory

    We conducted batch tests on the nature and kinetics of removal of added nitrate in cotton burr compost, mulch compost, and sphagnum peat that may be potentially used in a permeable reactive barrier (PRB) for groundwater nitrate remediation. A rigorous steam autoclaving protocol (...

  4. Phase 1 remediation of jet fuel contaminated soil and groundwater at JFK International Airport using dual phase extraction and bioventing

    SciTech Connect

    Roth, R.; Bianco, P. Rizzo, M.; Pressly, N.; Frumer, B.

    1995-12-31

    Soil and groundwater contaminated with jet fuel at Terminal One of the JFK International Airport in New York have been remediated using dual phase extraction (DPE) and bioventing. Two areas were remediated using 51 DPE wells and 20 air sparging/air injection wells. The total area remediated by the DPE wells is estimated to be 4.8 acres. Groundwater was extracted to recover nonaqueous phase and aqueous phase jet fuel from the shallow aquifer and treated above ground by the following processes; oil/water separation, iron-oxidation, flocculation, sedimentation, filtration, air stripping and liquid-phase granular activated carbon (LPGAC) adsorption. The extracted vapors were treated by vapor-phase granular activated carbon (VPGAC) adsorption in one area, and catalytic oxidation and VPGAC adsorption in another area. After 6 months of remediation, approximately 5,490 lbs. of volatile organic compounds (VOCs) were removed by soil vapor extraction (SVE), 109,650 lbs. of petroleum hydrocarbons were removed from the extracted groundwater, and 60,550 lbs. of petroleum hydrocarbons were biologically oxidized by subsurface microorganisms. Of these three mechanisms, the rate of petroleum hydrocarbon removal was the highest for biological oxidation in one area and by groundwater extraction in another area.

  5. Ground-water monitoring compliance projects for Hanford Site facilities: Annual progress report for 1987

    SciTech Connect

    Hall, S.H.

    1988-09-01

    This report describes progress during 1987 of five Hanford Site ground water monitoring projects. Four of these projects are being conducted according to regulations based on the federal Resource Conservation and Recovery Act of 1976 and the state Hazardous Waste Management Act. The fifth project is being conducted according to regulations based on the state Solid Waste Management Act. The five projects discussed herein are: 300 Area Process Trenches; 183-H Solar Evaporation Basins; 200 Areas Low-Level Burial Grounds; Nonradioactive Dangerous Waste Landfill; Solid Waste Landfill. For each of the projects, there are included, as applicable, discussions of monitoring well installations, water-table measurements, background and/or downgradient water quality and results of chemical analysis, and extent and rate of movement of contaminant plumes. 14 refs., 30 figs., 13 tabs.

  6. Analysis of natural ground-water level variations for hydrogeologic conceptualization, Hanford Site, Washington

    NASA Astrophysics Data System (ADS)

    Nevulis, Richard H.; Davis, Donald R.; Sorooshian, Soroosh

    1989-07-01

    This study involves the analysis of groundwater level time series for the purpose of obtaining details for a conceptual hydrogeologic model at a time when conventional hydraulic stress testing was not feasible due to regulatory considerations. The study area is located in south central Washington in the Pasco Basin which was a candidate site for underground disposal of high-level radioactive nuclear wastes. Advantages of such passive methods of analysis may include relative simplicity, low cost, and avoidance of disturbances typically associated with stress testing of aquifers. Through this approach, natural and incidental man-made groundwater level variations, most of which are quite small, are examined by statistical and analytical methods in conjunction with hydrogeologic models to draw inferences on the hydrogeology. Vertical connectivity of the hydrostratigraphic units is also examined by analyzing groundwater level time series of five units at three piezometer nests. It is concluded that a combination of statistical/analytical approaches used in a complementary fashion can provide useful information about the hydrogeology of a given area. A meaningful analysis requires that there is (1) a source of influence on the groundwater levels, (2) a response to that influence, (3) a sufficiently long data record, and (4) measurement and analytical techniques which allow the detection and identification of the influence and response.

  7. Remediation of subsurface and groundwater contamination with uranium from fuel fabrication facilities at Hanau (Germany)

    SciTech Connect

    Nitzsche, Olaf; Thierfeldt, Stefan; Hummel, Lothar

    2013-07-01

    This paper presents aspects of site decommissioning and clearance of a former fuel fabrication facility (development and production of fuel assemblies for research reactors and HTR) at Hanau (Germany). The main pathways for environmental contamination were deposition on soil surface and topsoil and pollution of deep soil and the aquifer by waste water channel leakage. Soil excavation could be done by classical excavator techniques. An effective removal of material from the saturated zone was possible by using advanced drilling techniques. A large amount of demolished building structure and excavated soil had to be classified. Therefore the use of conveyor detector was necessary. Nearly 100000 Mg of material (excavated soil and demolished building material) were disposed of at an underground mine. A remaining volume of 700 m{sup 3} was classified as radioactive waste. Site clearance started in 2006. Groundwater remediation and monitoring is still ongoing, but has already provided excellent results by reducing the remaining Uranium considerably. (authors)

  8. Sealable joint steel sheet piling for groundwater control and remediation: Case histories

    SciTech Connect

    Smyth, D.; Jowett, R.; Gamble, M.

    1997-12-31

    The Waterloo Barrier{trademark} steel sheet piling (patents pending) incorporates a cavity at each interlocking joint that is flushed clean and injected with sealant after the piles have been driven into the ground to form a vertical cutoff wall. The installation and sealing procedures allow for a high degree of quality assurance and control. Bulk wall hydraulic conductivities of 10{sup -8} to 10{sup -10} cm/sec have been demonstrated at field installations. Recent case histories are presented in which Waterloo Barrier{trademark} cutoff walls are used to prevent off-site migration of contaminated groundwater or soil gases to adjacent property and waterways. Full enclosures to isolate DNAPL source zones or portions of contaminated aquifers for pilot-scale remediation testing will also be described. Monitoring data will be used to demonstrate the effectiveness of the Waterloo Barrier{trademark} in these applications.

  9. Development of Enhanced Remedial Techniques for Petroleum Fuel and Related Contaminants in Soil and Groundwater

    SciTech Connect

    Paul Fallgren

    2009-02-10

    Western Research Institute (WRI) in conjunction with Earth Tech and the U.S. Department of Energy (DOE) was to identify proper sites with soils and/or groundwater contaminated by petroleum constituents and MTBE. Biodegradation rates would have been quantitatively assessed in both laboratory and field tests to achieve the optimal destruction of contaminants of concern. WRI and Earth Tech identified a site contaminated with high concentrations of methanol associated with petroleum hydrocarbons. The site was assessed and a remediation project plan was prepared; however, the site was soon acquired by a new company. An agreement between Earth Tech, WRI, and the new site owners could not be reached; therefore, a work was performed to identify a new project site. Task 33 was terminated and the available funding was redeployed to other Tasks after receiving approval from the U.S. DOE task manager.

  10. Application of Maximum Likelihood Bayesian Model Averaging to Groundwater Flow and Transport at the Hanford Site 300 Area

    SciTech Connect

    Meyer, Philip D.; Ye, Ming; Neuman, Shlomo P.; Rockhold, Mark L.

    2008-06-01

    A methodology to systematically and quantitatively assess model predictive uncertainty was applied to saturated zone uranium transport at the 300 Area of the U.S. Department of Energy Hanford Site in Washington State, USA. The methodology extends Maximum Likelihood Bayesian Model Averaging (MLBMA) to account jointly for uncertainties due to the conceptual-mathematical basis of models, model parameters, and the scenarios to which the models are applied. Conceptual uncertainty was represented by postulating four alternative models of hydrogeology and uranium adsorption. Parameter uncertainties were represented by estimation covariances resulting from the joint calibration of each model to observed heads and uranium concentration. Posterior model probability was dominated by one model. Results demonstrated the role of model complexity and fidelity to observed system behavior in determining model probabilities, as well as the impact of prior information. Two scenarios representing alternative future behavior of the Columbia River adjacent to the site were considered. Predictive simulations carried out with the calibrated models illustrated the computation of model- and scenario-averaged predictions and how results can be displayed to clearly indicate the individual contributions to predictive uncertainty of the model, parameter, and scenario uncertainties. The application demonstrated the practicability of applying a comprehensive uncertainty assessment to large-scale, detailed groundwater flow and transport modelling.

  11. Laboratory Validation of Passive Flow Focusing of Horizontal Wells for in Situ Groundwater Remediation

    NASA Astrophysics Data System (ADS)

    DiMarco, A.; Crimi, M.; Holsen, T.; Bellona, C.; Kumarage, P.; Divine, C.; O'Fallon, T.

    2014-12-01

    A new concept for in situgroundwater remediation was recently developed where drilled horizontal wells filled with granular treatment media are installed in the direction of groundwater flow. Due to the differences in hydraulic conductivity (K) of the media in the well and the surrounding aquifer, groundwater is "focused" into the well and treated (Figure 1). Initial computer simulations demonstrate that the horizontal well will have a substantial capture zone making this a viable and appealing remediation strategy. In this work, a laboratory scale model was constructed to validate the computer simulations and determine the expected capture zone of a horizontal well under a range of hydraulic conductivity differentials. We have built a physical model to replicate a horizontal well in a confined aquifer. The model is constructed inside a 55-gallon drum packed with sand and water is pumped into the bottom of the drum and flows upward through the system. Within the aquifer, we installed a 1" screened well packed with lime-soda beads. To define the capture zone, we placed manometers in the aquifer. Finally, a constant head is applied to the system (Figure 2 and 3). Initial tests have shown that the 1" well with a hydraulic conductivity 65 times greater than the surrounding aquifer (kwell= 1.3 cm/sec vs. kaquifer= 0.02cm/sec) will capture a significant percentage (over 80% in some configurations) of the water applied to the system. A tracer test has shown that the water velocity in the well is substantially higher than the aquifer. Manometer readings confirm the flowfield effects of the well and these data are being used to calibrate numerical models. The presentation will focus on the observed behavior of the physical model under varying applied head and hydraulic conductivities and discuss the potential design implications for full-scale application.

  12. FLUOR HANFORD (FH) MAKES CLEANUP A REALITY IN NEARLY 11 YEARS AT HANFORD

    SciTech Connect

    GERBER, M.S.

    2007-05-24

    For nearly 11 years, Fluor Hanford has been busy cleaning up the legacy of nuclear weapons production at one of the Department of Energy's (DOE'S) major sites in the United States. As prime nuclear waste cleanup contractor at the vast Hanford Site in southeastern Washington state, Fluor Hanford has changed the face of cleanup. Fluor beginning on October 1, 1996, Hanford Site cleanup was primarily a ''paper exercise.'' The Tri-Party Agreement, officially called the Hanford Federal Facility Agreement and Consent Order - the edict governing cleanup among the DOE, U.S. Environmental Protection Agency (EPA) and Washington state - was just seven years old. Milestones mandated in the agreement up until then had required mainly waste characterization, reporting, and planning, with actual waste remediation activities off in the future. Real work, accessing waste ''in the field'' - or more literally in huge underground tanks, decaying spent fuel POO{approx}{approx}S, groundwater, hundreds of contaminated facilities, solid waste burial grounds, and liquid waste disposal sites -began in earnest under Fluor Hanford. The fruits of labors initiated, completed and/or underway by Fluor Hanford can today be seen across the site. Spent nuclear fuel is buttoned up in secure, dry containers stored away from regional water resources, reactive plutonium scraps are packaged in approved containers, transuranic (TRU) solid waste is being retrieved from burial trenches and shipped offsite for permanent disposal, contaminated facilities are being demolished, contaminated groundwater is being pumped out of aquifers at record rates, and many other inventive solutions are being applied to Hanford's most intransigent nuclear wastes. (TRU) waste contains more than 100 nanocuries per gram, and contains isotopes higher than uranium on the Periodic Table of the Elements. (A nanocurie is one-billionth of a curie.) At the same time, Fluor Hanford has dramatically improved safety records, and cost

  13. Improved slant drilling well for in situ remediation of groundwater and soil at contaminated sites.

    PubMed

    Furukawa, Yasuhide; Mukai, Kazuhiro; Ohmura, Keisuke; Kobayashi, Takeshi

    2017-03-01

    Soil contamination has become a crucial issue in urban redevelopment. Japan has many contaminated sites on which manufacturing has been conducted over several decades. Site holders are now under pressure to manage chemical contamination; however, the use of heavy machinery is difficult in remedial operations on restricted sites, especially where there are still working factories. The slant well is a potentially useful technique in such settings, but its use is technically challenging because of the need for high drilling accuracy and the difficulty in sealing the slanted bores. In this study, we investigated an improved technique for slant drilling that can be used around existing structures to treat contaminated soil and groundwater. A key to this novel approach was the use of water-swelling materials as sealants. Research at a test site investigated the accuracy of drilling. Tracer tests were also conducted using sodium chloride and urea. The improved slant borings showed a deviation of less than 2% from the target bore. The spread of the two tracers at different depths was demonstrated. The proposed technique provides a useful approach to the treatment of brownfield sites in countries where in situ remediation has not yet been undertaken.

  14. Characteristics and applications of controlled-release KMnO4 for groundwater remediation.

    PubMed

    Lee, Eung Seok; Schwartz, Franklin W

    2007-02-01

    In situ chemical oxidation (ISCO) using potassium permanganate (KMnO4) has been widely used as a practical approach for remediation of groundwater contaminated by chlorinated solvents like trichloroethylene. The most common applications are active flushing schemes, which target the destruction of some contaminant source by injecting concentrated permanganate (MnO4(-)) solution into the subsurface over a short period of time. Despite many promising results, KMnO4 flushing is often frustrated by inefficiency associated with pore plugging by MnO2 and bypassing. Opportunities exist for the development of new ISCO systems based on KMnO4. The new scheme described in this paper uses controlled-release KMnO4 (CRP) as an active component in the well-based reactive barrier system. This scheme operates to control spreading of a dissolved contaminant plume. Prototype CRP was manufactured by dispersing fine KMnO4 granules in liquid crystal polymer resin matrix. Scanning electron microscope data verified the formation of micro-scale (ID=20-200 microm) secondary capillary permeability through which MnO4(-) is released by a reaction-diffusion process. Column and numerical simulation data indicated that the CRP could deliver MnO4(-) in a controlled manner for several years without replenishment. A proof-of-concept flow-tank experiment and model simulations suggested that the CRP scheme could potentially be developed as a practical approach for in situ remediation of contaminated aquifers. This scheme may be suitable for remediation of sites where accessibility is limited or some low-concentration contaminant plume is extensive. Development of delivery systems that can facilitate lateral spreading and mixing of MnO4(-) with the contaminant plume is warranted.

  15. Remediating explosive-contaminated groundwater by in situ redox manipulation (ISRM) of aquifer sediments

    SciTech Connect

    Boparai, Hardiljeet K.; Comfort, Steve; Shea, Phyllis J.; Szecsody, James E.

    2008-03-01

    In situ chemical reduction of clays and iron oxides in subsurface environments is an emerging technology for treatment of contaminated groundwater. Our objective was to determine the efficacy of dithionite-reduced sediments from the perched Pantex Aquifer (Amarillo, TX) to abiotically degrade the explosives RDX (hexahydro-1,3,5-trinitro-1,3,5-triazine), HMX (octahydro-1,3,5,7-tetranitro- 1,3,5,7-tetrazocine), and TNT (2,4,6-trinitrotoluene). The effects of dithionite/buffer concentrations, sediments-solution ratios, and the contribution of Fe(II) were evaluated in batch experiments. Results showed that reduced Pantex sediments were highly effective in degrading all three high explosives. Degradation rates increased with increasing dithionite/buffer concentrations and soil to solution ratios (1:80–1:10 w/v). When Fe(II) was partially removed from the reduced sediments by washing (citrate-bicarbonate buffer), RDX degradation slowed, but degradation efficiency could be restored by adding Fe(II) back to the treated sediments and maintaining an alkaline pH. These data support in situ redox manipulation as a remedial option for treating explosive-contaminated groundwater at the Pantex site.

  16. Evaluation of ultraviolet oxidation methods for the remediation of explosives-contaminated groundwater

    SciTech Connect

    Wujcik, W.J.; Young, C.T.; Hammell, J.O.

    1995-12-31

    An evaluation of commercially available ultraviolet oxidation (UV/Ox) processes for remediation of explosives-contaminated groundwater was performed by conducting a pilot-scale demonstration at Savanna Army Depot Activity (SADA) of four vendo processes. This demonstration was performed to assess whether UV/Ox methods offer a technically feasible and cost-effective alternative to granular activated carbon (GAC) for the treatment of explosives compounds including trinitrotoluene (2,4,6-TNT), trinitrobenzene (1,3,5-TNB), and other nitroaromatics found in groundwaters at Army installations nationwide. The adequacy of bench-scale testing data for predicting full-scale equipment requirements was also evaluated. Daily average effluent concentrations of nitroaromatic compounds were calculated and compared with daily average treatment criteria. There was considerable variation in the consistency with which the processes met the criteria; only the Ultrox process achieved the criteria for all 14 days of the demonstration. Initial and revised cost estimates were prepared by each vendor. The full-scale system configurations and cost estimated made after bench-scale testing and after pilot-scale testing were significantly different, indicating that pilot-scale testing provides data necessary for the accurate sizing of full-scale systems. Based on this demonstration, routine bench-scale testing is inadequate for providing sufficient data for full-scale UV/Ox systems.

  17. Fungal permeable reactive barrier to remediate groundwater in an artificial aquifer.

    PubMed

    Folch, Albert; Vilaplana, Marcel; Amado, Leila; Vicent, Teresa; Caminal, Glòria

    2013-11-15

    Biobarriers, as permeable reactive barriers (PRBs), are a common technology that mainly uses bacteria to remediate groundwater in polluted aquifers. In this study, we propose to use Trametes versicolor, a white-rot fungus, as the reactive element because of its capacity to degrade a wide variety of highly recalcitrant and xenobiotic compounds. A laboratory-scale artificial aquifer was constructed to simulate groundwater flow under real conditions in shallow aquifers. Orange G dye was chosen as a contaminant to visually monitor the hydrodynamic behaviour of the system and any degradation of the dye by the fungus. Batch experiments at different pH values (6 and 7) and several temperatures (15 °C, 18 °C, 20 °C and 25 °C) were performed to select the appropriate residence time and glucose consumption rate required for continuous treatment. The maximum Orange G degradation was 97%. Continuous degradation over 85% was achieved for more than 8 days. Experimental results indicate for the first time that this fungus can potentially be used as a permeable reactive barrier in real aquifers.

  18. Sustainable remediation: electrochemically assisted microbial dechlorination of tetrachloroethene-contaminated groundwater.

    PubMed

    Patil, Sayali S; Adetutu, Eric M; Rochow, Jacqueline; Mitchell, James G; Ball, Andrew S

    2014-01-01

    Microbial electric systems (MESs) hold significant promise for the sustainable remediation of chlorinated solvents such as tetrachlorethene (perchloroethylene, PCE). Although the bio-electrochemical potential of some specific bacterial species such as Dehalcoccoides and Geobacteraceae have been exploited, this ability in other undefined microorganisms has not been extensively assessed. Hence, the focus of this study was to investigate indigenous and potentially bio-electrochemically active microorganisms in PCE-contaminated groundwater. Lab-scale MESs were fed with acetate and carbon electrode/PCE as electron donors and acceptors, respectively, under biostimulation (BS) and BS-bioaugmentation (BS-BA) regimes. Molecular analysis of the indigenous groundwater community identified mainly Spirochaetes, Firmicutes, Bacteroidetes, and γ and δ-Proteobacteria. Environmental scanning electron photomicrographs of the anode surfaces showed extensive indigenous microbial colonization under both regimes. This colonization and BS resulted in 100% dechlorination in both treatments with complete dechlorination occurring 4 weeks earlier in BS-BA samples and up to 11.5 μA of current being generated. The indigenous non-Dehalococcoides community was found to contribute significantly to electron transfer with ∼61% of the current generated due to their activities. This study therefore shows the potential of the indigenous non-Dehalococcoides bacterial community in bio-electrochemically reducing PCE that could prove to be a cost-effective and sustainable bioremediation practice.

  19. An overview of permeable reactive barriers for in situ sustainable groundwater remediation.

    PubMed

    Obiri-Nyarko, Franklin; Grajales-Mesa, S Johana; Malina, Grzegorz

    2014-09-01

    Permeable reactive barriers (PRBs) are one of the innovative technologies widely accepted as an alternative to the 'pump and treat' (P&T) for sustainable in situ remediation of contaminated groundwater. The concept of the technology involves the emplacement of a permeable barrier containing reactive materials across the flow path of the contaminated groundwater to intercept and treat the contaminants as the plume flows through it under the influence of the natural hydraulic gradient. Since the invention of PRBs in the early 1990s, a variety of materials has been employed to remove contaminants including heavy metals, chlorinated solvents, aromatic hydrocarbons, and pesticides. Contaminant removal is usually accomplished via processes such as adsorption, precipitation, denitrification and biodegradation. Despite wide acknowledgment, there are still unresolved issues about long term-performance of PRBs, which have somewhat affected their acceptability and full-scale implementation. The current paper presents an overview of the PRB technology, which includes the state of art, the merits and limitations, the reactive media used so far, and the mechanisms employed to transform or immobilize contaminants. The paper also looks at the design, construction and the long-term performance of PRBs. Copyright © 2014 Elsevier Ltd. All rights reserved.

  20. Application of iron sulfide particles for groundwater and soil remediation: A review.

    PubMed

    Gong, Yanyan; Tang, Jingchun; Zhao, Dongye

    2016-02-01

    Rapid industrialization and urbanization have resulted in elevated concentrations of hazardous inorganic and organic contaminants in groundwater and soil, which has become a paramount concern to the environment and the public health. In recent years, iron sulfide (FeS), a major constituent of acid-volatile sulfides, has elicited extensive interests in environmental remediation due to its ubiquitous presence and high treatment efficiency in anoxic environment. This paper provides a comprehensive review on recent advances in: (1) synthesis of FeS particles (including nanoscale FeS); and (2) reactivity of FeS towards a variety of common environmental contaminants in groundwater and soil over extended periods of time, namely, heavy metals (Hg(II), Cu(II), Pb(II), and Cr(VI)), oxyanions (arsenite, arsenate, selenite, and selenate), radionuclides (e.g., uranium (U) and neptunium (Np)), chlorinated organic compounds (e.g., trichloroethane, trichloroethylene, and p-chloroaniline), nitroaromatic compounds, and polychlorinated biphenyls. Different physiochemical and biological methods for preparing FeS with desired particle size, structure, and surface properties are discussed. Reaction principles and removal effectiveness/constraints are discussed in details. Special attention is placed to the application of nanoscale FeS particles because of their unique properties, such as small particle size, large specific surface area, high surface reactivity, and soil deliverability in the subsurface. Moreover, current knowledge gaps and further research needs are identified. Copyright © 2015 Elsevier Ltd. All rights reserved.

  1. Particulate Pyrite Autotrophic Denitrification (PPAD) for Remediation of Nitrate-contaminated Groundwater

    NASA Astrophysics Data System (ADS)

    Tong, S.; Rodriguez-Gonzalez, L. C.; Henderson, M.; Feng, C.; Ergas, S. J.

    2015-12-01

    The rapid movement of human civilization towards urbanization, industrialization, and increased agricultural activities has introduced a large amount of nitrate into groundwater. Nitrate is a toxic substance discharged from groundwater to rivers and leads to decreased dissolved oxygen and eutrophication. For this experiment, an electron donor is needed to convert nitrate into non-toxic nitrogen gas. Pyrite is one of the most abundant minerals in the earth's crust making it an ideal candidate as an electron donor. The overall goal of this research was to investigate the potential for pyrite to be utilized as an electron donor for autotrophic denitrification of nitrate-contaminated groundwater. Batch studies of particulate pyrite autotrophic denitrification (PPAD) of synthetic groundwater (100 mg NO3--N L-1) were set up with varying biomass concentration, pyrite dose, and pyrite particle size. Reactors were seeded with mixed liquor volatile suspended solids (VSS) from a biological nitrogen removal wastewater treatment facility. PPAD using small pyrite particles (<0.45mm) resulted in a favorable nitrate removal. The nitrate removal rate increased from 0.26 to 0.34 mg L-1h-1 and then to 0.86 mg L-1h-1, approaching that of the sulfur oxidizing denitrification (SOD) rate of 1.19 mg L-1h-1. Based on Box-Behnken design (BBD) and response surface methodology (RSM), the optimal amount of biomass concentration, pyrite dose, and pyrite particle size were 1,250 mg VSS L-1, 125 g L-1, and 0.815-1.015 mm, respectively. PPAD exhibited substantial nitrate removal rate, lower sulfate accumulation (5.46 mg SO42-/mg NO3--N) and lower alkalinity consumption (1.70 mg CaCO3/mg NO3--N) when compared to SOD (7.54 mg SO42-/mg NO3--N, 4.57 mg CaCO3/mg NO3--N based on stoichiometric calculation). This research revealed that the PPAD process is a promising technique for nitrate-contaminated groundwater treatment and promoted the utilization of pyrite in the field of environmental remediation.

  2. A Case Study of Using Zero-Valent Iron Nanoparticles for Groundwater Remediation

    NASA Astrophysics Data System (ADS)

    Xiong, Z.; Kaback, D.; Bennett, P. J.

    2011-12-01

    Zero-valent iron nanoparticle (nZVI) is a promising technology for rapid in situ remediation of numerous contaminants, including chlorinated solvents, in groundwater and soil. Because of the high specific surface area of nZVI particles, this technology achieves treatment rates that are significantly faster than micron-scale and granular ZVI. However, a key technical challenge facing this technology involves agglomeration of nZVI particles. To improve nZVI mobility/deliverability and reactivity, an innovative method was recently developed using a low-cost and bio-degradable organic polymer as a stabilizer. This nZVI stabilization strategy offers unique advantages including: (1) the organic polymer is cost-effective and "green" (completely bio-compatible), (2) the organic polymer is highly effective in stabilizing nZVI particles; and (3) the stabilizer is applied during particle preparation, making nZVI particles more stable. Through a funding from the U.S. Air Force Center for Engineering and the Environment (AFCEE), AMEC performed a field study to test the effectiveness of this innovative technology for degradation of chlorinated solvents in groundwater at a military site. Laboratory treatability tests were conducted using groundwater samples collected from the test site and results indicated that trichloroethene (main groundwater contaminant at the site) was completely degraded within four hours by nZVI particles. In March and May 2011, two rounds of nZVI injection were performed at the test site. Approximately 700 gallons of nZVI suspension with palladium as a catalyst were successfully prepared in the field and injected into the subsurface. Before injection, membrane filters with a pore size of 450 nm were used to check the nZVI particle size and it was observed that >85% of nZVI particles were passed through the filter based on total iron measurement, indicating particle size of <450 nm. During field injections, nZVI particles were observed in a monitoring well

  3. Depth of the biologically active zone in upland habitats at the Hanford Site, Washington: Implications for remediation and ecological risk management.

    PubMed

    Sample, Bradley E; Lowe, John; Seeley, Paul; Markin, Melanie; McCarthy, Chris; Hansen, Jim; Aly, Alaa H

    2015-01-01

    Soil invertebrates, mammals, and plants penetrate and exploit the surface soil layer (i.e., the biologically active zone) to varying depths. As the US Department of Energy remediates radioactive and hazardous wastes in soil at the Hanford Site, a site-specific definition of the biologically active zone is needed to identify the depth to which remedial actions should be taken to protect the environment and avoid excessive cleanup expenditures. This definition may then be considered in developing a point of compliance for remediation in accordance with existing regulations. Under the State of Washington Model Toxic Control Act (MTCA), the standard point of compliance for soil cleanup levels with unrestricted land use is 457 cm (15 ft) below ground surface. When institutional controls are required to control excavations to protect people, MTCA allows a conditional point of compliance to protect biological resources based on the depth of the biologically active zone. This study was undertaken to identify and bound the biologically active zone based on ecological resources present at the Hanford Site. Primary data were identified describing the depths to which ants, mammals, and plants may exploit the surface soil column at the Hanford Site and other comparable locations. The maximum depth observed for harvester ants (Pogonomyrmex spp.) was 270 cm (8.9 ft), with only trivial excavation below 244 cm (8 ft). Badgers (Taxidea taxus) are the deepest burrowing mammal at the Hanford Site, with maximum burrow depths of 230 cm (7.6 ft); all other mammals did not burrow below 122 cm (4 ft). Shrubs are the deepest rooting plants with rooting depths to 300 cm (9.8 ft) for antelope bitterbrush (Purshia tridentata). The 2 most abundant shrub species did not have roots deeper than 250 cm (8.2 ft). The deepest rooted forb had a maximum root depth of 240 cm (7.9 ft). All other forbs and grasses had rooting depths of 200 cm (6.6 ft) or less. These data indicate that the biologically

  4. Potential remediation approach for uranium-contaminated groundwaters through potassium uranyl vanadate precipitation

    SciTech Connect

    Tokunaga, T.K.; Kim, Y.; Wan, J.

    2009-06-01

    Methods for remediating groundwaters contaminated with uranium (U) through precipitation under oxidizing conditions are needed because bioreduction-based approaches require indefinite supply of electron donor. Although strategies based on precipitation of some phosphate minerals within the (meta)autunite group have been considered for this purpose, thermodynamic calculations for K- and Ca-uranyl phopsphates, meta-ankoleite and autunite, predict that U concentrations will exceed the Maximum Contaminant Level (MCL = 0.13 {micro}M for U) at any pH and pCO{sub 2}, unless phosphate is maintained at much higher concentrations than the sub-{micro}M levels typically found in groundwaters. We hypothesized that potassium uranyl vanadate will control U(VI) concentrations below regulatory levels in slightly acidic to neutral solutions based on thermodynamic data available for carnotite, K{sub 2}(UO{sub 2}){sub 2}V{sub 2}O8. The calculations indicate that maintaining U concentrations below the MCL through precipitation of carnotite will be sustainable in some oxidizing waters having pH in the range of 5.5 to 7, even when dissolution of this solid phase becomes the sole supply of sub-{micro}M levels of V. Batch experiments were conducted in solutions at pH 6.0 and 7.8, chosen because of their very different predicted extents of U(VI) removal. Conditions were identified where U concentrations dropped below its MCL within 1 to 5 days of contact with oxidizing solutions containing 0.2 to 10 mM K, and 0.1 to 20 {micro}M V(V). This method may also have application in extracting (mining) U and V from groundwaters where they both occur at elevated concentrations.

  5. Potential of Iron Nanoparticles for Remediation of Organic Contaminants in Groundwater

    NASA Astrophysics Data System (ADS)

    Raychoudhury, Trishikhi; Scheytt, Traugott

    2013-04-01

    The potential of nanoscale zerovalent iron (NZVI) particles for remediation of chlorinated hydrocarbons has been investigated for the last two decades. Due to their small size and large specific surface area, NZVI particles can reduce the contaminants more rapidly compared to granular zerovalent iron (ZVI) particles. However, the main concern of NZVI application is its rapid aggregation and deposition. Our previous study shows that straining is a significant retention mechanism during transport of NZVI particles, even though its surface is modified with carboxymethyl cellulose (CMC-NZVI). Moreover, deposition of CMC-NZVI increases significantly with decrease in flow rate (relevant for groundwater flow). Considering these factors, application of NZVI as a stationary barrier in front of the contaminated plume was proposed here. The main objective of this study is to evaluate the potential of NZVI for remediation of different organic contaminants in the aquifer as a stationary barrier. In order to achieve this objective, first all the contaminants that can be degraded by NZVI and their functional groups are identified. The amount of ZVI and reaction times, that are required for transforming 1 L of 100 mg/L contaminated water were calculated based on literature data. A typical groundwater flow of 0.05 cm/min is considered for further analysis. Approximate length of NZVI barrier was calculated based on the reaction time and groundwater flow rate, to ensure adequate interaction time between NZVI and the contaminants to complete the reaction. A hypothetical homogeneous aquifer conditions were considered where CMC-NZVI is injected through the injection well in front of a contaminated plume. Fate and transport of CMC-NZVI was calculated through the porous media, where the parameters for CMC-NZVI transport was adopted from our previous study. Fate and transport of few specific contaminants such as nitro-explosive (i.e., 1,3,5-trinitro-1,3,5-triazine (RDX)) or chlorinated

  6. Sustainability appraisal tools for soil and groundwater remediation: how is the choice of remediation alternative influenced by different sets of sustainability indicators and tool structures?

    PubMed

    Beames, Alistair; Broekx, Steven; Lookman, Richard; Touchant, Kaat; Seuntjens, Piet

    2014-02-01

    The state-of-the-science in sustainability assessment of soil and groundwater remediation is evaluated with the application of four decision support systems (DSSs) to a large-scale brownfield revitalization case study. The DSSs were used to perform sustainability appraisals of four technically feasible remediation alternatives proposed for the site. The first stage of the review compares the scope of each tool's sustainability indicators, how these indicators are measured and how the tools differ in terms of standardization and weighting procedures. The second stage of the review compares the outputs from the tools and determines the key factors that result in differing results between tools. The evaluation of indicator sets and tool structures explains why the tools generate differing results. Not all crucial impact areas, as identified by sustainable remediation forums, are thoroughly considered by the tools, particularly with regard to the social and economic aspects of sustainability. Variations in boundary conditions defined between technologies, produce distorted environmental impact results, especially when in-situ and ex-situ technologies are compared. The review draws attention to the need for end users to be aware of which aspects of sustainability are considered, how the aspects are measured and how all aspects are ultimately balanced in the evaluation of potential remediation strategies. Existing tools can be improved by considering different technologies within the same boundary conditions and by expanding indicator sets to include indicators deemed to be relevant by remediation forums.

  7. Progress Toward Cleanup of Operable Unit 1 Groundwater at the US DOE Mound, Ohio, Site: Success of a Phase-Combined Remedy – 15310

    SciTech Connect

    Hooten, Gwendolyn; Cato, Rebecca; Looney, Brian; Huntsman, Brent

    2015-03-01

    Operable Unit 1 (OU-1) soil and groundwater have been affected by volatile organic compounds (VOC) Present groundwater remedy is collection, treatment, and disposal (pump and treat [P&T]) Several combinations of technologies were used to address soil and groundwater contamination Monitored natural attenuation (MNA) is a viable alternative Majority of source term has been excavated VOC concentrations in groundwater have decreased Attenuation mechanisms have been observed in the subsurface at OU-1

  8. SCOPE safety-controls optimization by performance evaluation: A systematic approach for safety-related decisions at the Hanford Tank Remediation System. Phase 1, final report

    SciTech Connect

    Bergeron, K.D.; Williams, D.C.; Slezak, S.E.; Young, M.L.

    1996-12-01

    The Department of Energy`s Hanford Tank Waste Remediation system poses a significant challenge for hazard management because of the uncertainty that surrounds many of the variables that must be considered in decisions on safety and control strategies. As a result, site managers must often operate under excessively conservative and expensive assumptions. This report describes a systematic approach to quantifying the uncertainties surrounding the critical parameters in control decisions (e.g., condition of the tanks, kinds of wastes, types of possible accidents) through the use of expert elicitation methods. The results of the elicitations would then be used to build a decision support system and accident analysis model that would allow managers to see how different control strategies would affect the cost and safety of a facility configuration.

  9. A master-slave parallel hybrid multi-objective evolutionary algorithm for groundwater remediation design under general hydrogeological conditions

    NASA Astrophysics Data System (ADS)

    Wu, J.; Yang, Y.; Luo, Q.; Wu, J.

    2012-12-01

    This study presents a new hybrid multi-objective evolutionary algorithm, the niched Pareto tabu search combined with a genetic algorithm (NPTSGA), whereby the global search ability of niched Pareto tabu search (NPTS) is improved by the diversification of candidate solutions arose from the evolving nondominated sorting genetic algorithm II (NSGA-II) population. Also, the NPTSGA coupled with the commonly used groundwater flow and transport codes, MODFLOW and MT3DMS, is developed for multi-objective optimal design of groundwater remediation systems. The proposed methodology is then applied to a large-scale field groundwater remediation system for cleanup of large trichloroethylene (TCE) plume at the Massachusetts Military Reservation (MMR) in Cape Cod, Massachusetts. Furthermore, a master-slave (MS) parallelization scheme based on the Message Passing Interface (MPI) is incorporated into the NPTSGA to implement objective function evaluations in distributed processor environment, which can greatly improve the efficiency of the NPTSGA in finding Pareto-optimal solutions to the real-world application. This study shows that the MS parallel NPTSGA in comparison with the original NPTS and NSGA-II can balance the tradeoff between diversity and optimality of solutions during the search process and is an efficient and effective tool for optimizing the multi-objective design of groundwater remediation systems under complicated hydrogeologic conditions.

  10. USE OF A UNIQUE BIOBARRIER TO REMEDIATE NITRATE AND PERCHLORATE IN GROUNDWATER

    SciTech Connect

    Strietelmeier, E. A.; Espinosa, Melissa L.; Adams, J. D.; Leonard, P. A.; Hodge, E. M.

    2001-01-01

    Research was conducted to evaluate a multiple-layer system of volcanic rock, limestone, Apatite mineral and a 'biobarrier' to impede migration of radionuclides, metals and colloids through shallow alluvial groundwater, while simultaneously destroying contaminants such as nitrate and perchlorate. The 'bio' portion of this Multi-Barrier system uses highly porous, slowly degradable, carbon-based material (pecan shells) that serves as an energy source and supports the growth of indigenous microbial populations capable of destroying biodegradable compounds. The studies, using elevated nitrate concentrations in groundwater, have demonstrated reduction from levels of 6.5-9.7 mM nitrate (400-600 mg/L) to below discharge limits (0.16 mM nitrate). Perchlorate levels of 4.3 {micro}M (350 {micro}g/L) were also greatly reduced. Elevated levels of nitrate in drinking water are a public health concern, particularly for infants and adults susceptible to gastric cancer. Primary sources of contamination include feedlots, agriculture (fertilization), septic systems, mining and nuclear operations. A major source of perchlorate contamination in water is ammonium perchlorate from manufacture/use of rocket propellants. Perchlorate, recently identified as an EPA contaminant of concern, may affect thyroid function and cause tumor formation. A biobarrier used to support the growth of microbial populations (i.e. a biofilm) is a viable and inexpensive tool for cleaning contaminated groundwater. Aquatic ecosystems and human populations worldwide are affected by contaminated water supplies. One of the most frequent contaminants is nitrate. Remediation of nitrate in groundwater and drinking water by biodegradation is a natural solution to this problem. Microbial processes play an extremely important role in in situ groundwater treatment technologies. The assumption of carbon limitation is the basis for addition of carbon-based substrates to a system in the development of bioremediation schemes

  11. Transient Inverse Calibration of Site-Wide Groundwater Model to Hanford Operational Impacts from 1943 to 1996--Alternative Conceptual Model Considering Interaction with Uppermost Basalt Confined Aquifer

    SciTech Connect

    Vermeul, Vincent R.; Cole, Charles R.; Bergeron, Marcel P.; Thorne, Paul D.; Wurstner, Signe K.

    2001-08-29

    The baseline three-dimensional transient inverse model for the estimation of site-wide scale flow parameters, including their uncertainties, using data on the transient behavior of the unconfined aquifer system over the entire historical period of Hanford operations, has been modified to account for the effects of basalt intercommunication between the Hanford unconfined aquifer and the underlying upper basalt confined aquifer. Both the baseline and alternative conceptual models (ACM-1) considered only the groundwater flow component and corresponding observational data in the 3-Dl transient inverse calibration efforts. Subsequent efforts will examine both groundwater flow and transport. Comparisons of goodness of fit measures and parameter estimation results for the ACM-1 transient inverse calibrated model with those from previous site-wide groundwater modeling efforts illustrate that the new 3-D transient inverse model approach will strengthen the technical defensibility of the final model(s) and provide the ability to incorporate uncertainty in predictions related to both conceptual model and parameter uncertainty. These results, however, indicate that additional improvements are required to the conceptual model framework. An investigation was initiated at the end of this basalt inverse modeling effort to determine whether facies-based zonation would improve specific yield parameter estimation results (ACM-2). A description of the justification and methodology to develop this zonation is discussed.

  12. Ground-water monitoring compliance projects for Hanford Site facilities: Progress Report for the Period July 1 to September 30, 1987

    SciTech Connect

    Not Available

    1987-11-01

    This report documents the progress of four Hanford Site ground-water monitoring projects for the period from July 1 to September 310, 1987. The four disposal facilities are the 300 Area Process Trenches, 183-H Solar Evaporation Basins, 200 Area Low-Level Burial Grounds, and Nonradioactive Dangerous Waste (NRDW) Landfill. This report is the fifth in a series of periodic status reports. During this reporting period, field activities consisted of completing repairs on five monitoring wells originally present around the 183-H Basins and completing construction of 25 monitoring wells around the 200 Area Burial Grounds. The 14 wells in the 200 East Area were completed by Kaiser Engineers Hanford (KEH) and the 11 wells in the 200 West Area were compelted by ONWEGO Well Drilling. The NRDW Landfill interim characterization report was submitted to the WDOE and the USEPA in August 1987. Analytical results for the 300 Area, 183-H, and the NRDW Landfill indicate no deviations from previously established trends. Results from the NRDW Land-fill indiate that the facility has no effect on the ground-water quality beneath the facility, except for the detection of coliform bacteria. A possible source of this contamination is the solid-waste lanfill (SWL) adjacent to the NRDW Landfill. Ground-water monitoring data for the NRDW and SWL will be evaluated together in the future. Aquifer testing was completed in the 25 new wells surrounding the 200 Area buiral grounds. 13 refs., 19 refs., 13 tabs.

  13. Transient Inverse Calibration of Site-Wide Groundwater Model to Hanford Operational Impacts from 1943 to 1996--Alternative Conceptual Model Considering Interaction with Uppermost Basalt Confined Aquifer

    SciTech Connect

    Vermeul, Vince R; Cole, Charles R; Bergeron, Marcel P; Thorne, Paul D; Wurstner, Signe K

    2001-08-29

    The baseline three-dimensional transient inverse model for the estimation of site-wide scale flow parameters, including their uncertainties, using data on the transient behavior of the unconfined aquifer system over the entire historical period of Hanford operations, has been modified to account for the effects of basalt intercommunication between the Hanford unconfined aquifer and the underlying upper basalt confined aquifer. Both the baseline and alternative conceptual models (ACM-1) considered only the groundwater flow component and corresponding observational data in the 3-Dl transient inverse calibration efforts. Subsequent efforts will examine both groundwater flow and transport. Comparisons of goodness of fit measures and parameter estimation results for the ACM-1 transient inverse calibrated model with those from previous site-wide groundwater modeling efforts illustrate that the new 3-D transient inverse model approach will strengthen the technical defensibility of the final model(s) and provide the ability to incorporate uncertainty in predictions related to both conceptual model and parameter uncertainty.

  14. Central Plateau Cleanup at DOE's Hanford Site - 12504

    SciTech Connect

    Dowell, Jonathan

    2012-07-01

    wells. As a companion to the Hanford Site Cleanup Completion Framework document, DOE issued its draft Central Plateau Cleanup Completion Strategy in September 2009 to provide an outline of DOE's vision for completion of cleanup activities across the Central Plateau. As major elements of the Hanford cleanup along the Columbia River Corridor near completion, DOE believed it appropriate to articulate the agency vision for the remainder of the cleanup mission. The Central Plateau Cleanup Completion Strategy and the Hanford Site Cleanup Completion Framework were provided to the regulatory community, the Tribal Nations, political leaders, the public, and Hanford stakeholders to promote dialogue on Hanford's future. The Central Plateau Cleanup Completion Strategy describes DOE's vision for completion of Central Plateau cleanup and outlines the decisions needed to achieve the vision. The Central Plateau strategy involves steps to: (1) contain and remediate contaminated groundwater, (2) implement a geographic cleanup approach that guides remedy selection from a plateau-wide perspective, (3) evaluate and deploy viable treatment methods for deep vadose contamination to provide long-term protection of the groundwater, and (4) conduct essential waste management operations in coordination with cleanup actions. The strategy will also help optimize Central Plateau readiness to use funding when it is available upon completion of River Corridor cleanup projects. One aspect of the Central Plateau strategy is to put in place the process to identify the final footprint for permanent waste management and containment of residual contamination within the 20-square-mile Industrial-Exclusive Area. The final footprint identified for permanent waste management and containment of residual contamination should be as small as practical and remain under federal ownership and control for as long as a potential hazard exists. Outside the final footprint, the remainder of the Central Plateau will be

  15. POSTCLOSURE GROUNDWATER REMEDIATION AND MONITORING AT THE SANITARY LANDFILL, SAVANNAH RIVER SITE TRANSITIONING TO MONITORED NATURAL ATTENUATION

    SciTech Connect

    Ross, J; Walt Kubilius, W; Thomas Kmetz, T; D Noffsinger, D; Karen M Adams, K

    2006-11-17

    Resource Conservation and Recovery Act (RCRA) requirements for hazardous waste facilities include 30 years of post-closure monitoring. The use of an objective-based monitoring strategy allows for a significant reduction in the amount of groundwater monitoring required, as the groundwater remediation transitions from an active biosparging system to monitored natural attenuation. The lifecycle of groundwater activities at the landfill has progressed from detection monitoring and plume characterization, to active groundwater remediation, and now to monitored natural attenuation and postclosure monitoring. Thus, the objectives of the groundwater monitoring have changed accordingly. Characterization monitoring evaluated what biogeochemical natural attenuation processes were occurring and determined that elevated levels of radium were naturally occurring. Process monitoring of the biosparging system required comprehensive sampling network up- and down-gradient of the horizontal wells to verify its effectiveness. Currently, the scope of monitoring and reporting can be significantly reduced as the objective is to demonstrate that the alternate concentration limits (ACL) are being met at the point of compliance wells and the maximum contaminant level (MCL) is being met at the surface water point of exposure. The proposed reduction is estimated to save about $2M over the course of the remaining 25 years of postclosure monitoring.

  16. Superfund Record of Decision (EPA Region 10): Hanford 200 Area (USDOE), (200-UP-1 Operable Unit), Benton County, WA, February 11, 1997

    SciTech Connect

    1997-11-01

    This decision document presents the selected Interim Remedial Action (IRA) for the US Department of Energy (US DOE) Hanford 200-UP-1 Operable Unit (OU), 200 Area, Hanford Site, Benton County, Washington. The selected remedy consists of pumping the highest concentration zone of the contaminated groundwater plume at 200-UP-1 and treatment using the existing Effluent Treatment Facility (ETF) located in the 200 East Area. The selected remedy is intended to reduce contaminant mass within the plume and minimize migration of uranium and technetium-99 from the 200 West Area. The selected remedy will remove and treat these two contaminants of concern, in addition to the specific co-contaminants of nitrate and carbon tetrachloride which exist within the groundwater.

  17. Ground-water monitoring compliance projects for Hanford Site facilities: Progress report for the period April 1 to June 30, 1988: Volume 2, Appendices

    SciTech Connect

    Not Available

    1988-09-01

    This is Volume 2 of a two-volume set of documents that describes the progress of 10 Hanford Site ground-water monitoring projects for the period April 1 to June 30, 1988. This volume discusses as-built diagrams, drilling logs, and geophysical logs for wells drilled during this period in the 100-N Area (Appendix A) and near the 216-A-36B Crib (Appendix B). Volume 1 discusses the 10 projects. This work was supported by the US Department of Energy under Contract AC06-76RL01830.

  18. Resource conservation and recovery act ground-water monitoring projects for Hanford facilities: Progress report for the period July 1 to September 30, 1988: Volume 2, Appendices

    SciTech Connect

    Fruland, R.M.; Bates, D.J.; Lundgren, R.E.

    1989-02-01

    This is Volume 2 of a two-volume set of documents that describes the progress of 12 Hanford Site ground-water monitoring projects for the period July 1 to September 30, 1988. This volume provides those drilling logs and well inspection/completion reports inadvertently left out of last quarter's report for the 216-A-36B Crib (Appendix A) and as-built diagrams, drilling logs, and geophysical logs for wells drilled this quarter near the 2101-M Pond. Volume 1 discusses the 12 projects.

  19. Implications of Fe/Pd Bimetallic Nanoparticles Immobilized on Adsorptive Activated Carbon for the Remediation of Groundwater and Sediment Contaminated with PCBs

    EPA Science Inventory

    In order to respond to the current limitations and challenges in remediating groundwater and sediment contaminated with polychlorinated biphenyls (PCBs), we have recently developed a new strategy, integration of the physical adsorption of PCBs with their electrochemical dechlori...

  20. Implications of Fe/Pd Bimetallic Nanoparticles Immobilized on Adsorptive Activated Carbon for the Remediation of Groundwater and Sediment Contaminated with PCBs

    EPA Science Inventory

    In order to respond to the current limitations and challenges in remediating groundwater and sediment contaminated with polychlorinated biphenyls (PCBs), we have recently developed a new strategy, integration of the physical adsorption of PCBs with their electrochemical dechlori...

  1. Application of nanoscale zero valent iron (NZVI) for groundwater remediation in Europe.

    PubMed

    Mueller, Nicole C; Braun, Jürgen; Bruns, Johannes; Černík, Miroslav; Rissing, Peter; Rickerby, David; Nowack, Bernd

    2012-02-01

    Nanoscale zero valent iron (NZVI) is emerging as a new option for the treatment of contaminated soil and groundwater targeting mainly chlorinated organic contaminants (e.g., solvents, pesticides) and inorganic anions or metals. The purpose of this article is to give a short overview of the practical experience with NZVI applications in Europe and to present a comparison to the situation in the USA. Furthermore, the reasons for the difference in technology use are discussed. The results in this article are based on an extensive literature review and structured discussions in an expert workshop with experts from Europe and the USA. The evaluation of the experiences was based on a SWOT (strength, weakness, opportunity, threat) analysis. There are significant differences in the extent and type of technology used between NZVI applications in Europe and the USA. In Europe, only three full-scale remediations with NZVI have been carried out so far, while NZVI is an established treatment method in the USA. Bimetallic particles and emulsified NZVI, which are extensively used in the USA, have not yet been applied in Europe. Economic constraints and the precautionary attitude in Europe raise questions regarding whether NZVI is a cost-effective method for aquifer remediation. Challenges to the commercialization of NZVI include mainly non-technical aspects such as the possibility of a public backlash, the fact that the technology is largely unknown to consultants, governments and site owners as well as the lack of long-term experiences. Despite these concerns, the results of the current field applications with respect to contaminant reduction are promising, and no major adverse impacts on the environment have been reported so far. It is thus expected that these trials will contribute to promoting the technology in Europe.

  2. ELECTROCHEMICAL REMEDIATION OF ARSENIC-CONTAMINATED GROUNDWATER — RESULTS OF PROTOTYPE FIELD TESTS IN BANGLADESH

    SciTech Connect

    Kowolik, K; Addy, S.E.A.; Gadgil, A.

    2009-01-01

    According to the World Health Organization (WHO), more than 50 million people in Bangladesh drink arsenic-laden water, making it the largest case of mass poisoning in human history. Many methods of arsenic removal (mostly using chemical adsorbents) have been studied, but most of these are too expensive and impractical to be implemented in poor countries such as Bangladesh. This project investigates ElectroChemical Arsenic Remediation (ECAR) as an affordable means of removing arsenic. Experiments were performed on site in Bangladesh using a prototype termed “sushi”. This device consists of carbon steel sheets that serve as electrodes wrapped into a cylinder, separated by plastic mesh and surrounded by a tube-like container that serves as a holding cell in which the water is treated electrochemically. During the electrochemical process, current is applied to both electrodes causing iron to oxidize to various forms of iron (hydr)oxides. These species bind to arsenic(V) with very high affi nity. ECAR also has the advantage that As(III), the more toxic form of arsenic, oxidizes to As(V) in situ. Only As(V) is known to complex with iron (hydr)oxides. One of the main objectives of this research is to demonstrate the ability of the new prototype to reduce arsenic concentrations in Bangladesh groundwater from >200 ppb to below the WHO limit of 10 ppb. In addition, varying fl ow rate and dosage and the effect on arsenic removal was investigated. Experiments showed that ECAR reduced Bangladeshi water with an initial arsenic concentration as high as 250 ppb to below 10 ppb. ECAR proved to be effective at dosages as high as 810 Coulombs/Liter (C/L) and as low as 386 C/L (current 1 A, voltage 12 V). These results are encouraging and provide great promise that ECAR is an effi cient method in the remediation of arsenic from contaminated groundwater. A preliminary investigation of arsenic removal trends with varying Coulombic dosage, complexation time and fi ltration methods is

  3. Direct Push Groundwater Circulation Wells for Remediation of BTEX and Volatile Organics

    SciTech Connect

    Borden, R.C.; Cherry, R.S.

    2000-09-30

    Direct push groundwater circulation wells (DP-GCW) are a promising technology for remediation of groundwater contaminated with dissolved hydrocarbons and chlorinated solvents. In these wells, groundwater is withdrawn from the formation at the bottom of the well, aerated and vapor stripped and injected back into the formation at or above the water table. Previous field studies have shown that: (a) GCWs can circulate significant volumes of groundwater; and (b) GCWs can effectively remove volatile compounds and add oxygen. In this work, we describe the development and field-testing of a system of DP-GCWs for remediation of volatile organics such as benzene, toluene, ethylbenzene, and toluene (BTEX). The GCWs were constructed with No. 20 slotted well screen (2.4 cm ID) and natural sand pack extending from 1.5 to 8.2 m below grade. Air is introduced {approximately}7.5 m below grade via 0.6 cm tubing. Approximately 15% of the vertical length of the air supply tubing is wrapped in tangled mesh polypropylene geonet drainage fabric to provide surface area for biological growth and precipitation of oxidized iron. These materials were selected to allow rapid installation of the GCWs using 3.8 cm direct push Geoprobe{reg_sign} rods, greatly reducing well installation costs. Laboratory testing of these sparged wells and computational fluid dynamics (CFD) modeling showed that these wells, although they used only about 1 L/min of air, could circulate about 1 L/min of water through the surrounding aquifer. This flow was sufficient to capture all of a flowing contaminant if the wells are sufficiently closely together, about 1 meter on center depending on the air flow rate supplied, in a line across the plume. The CFD work showed the details of this ability to capture, and also showed that unforeseen heterogeneities in the aquifer such as a gradient of permeability or a thin impermeable layer (such as a clay layer) did not prevent the system from working largely as intended. The

  4. Direct Push Groundwater Circulation Wells for Remediation of BTEX and Volatile Organics

    SciTech Connect

    Borden, R. E.; Cherry, Robert Stephen

    2000-09-01

    Direct push groundwater circulation wells (DP-GCW) are a promising technology for remediation of groundwater contaminated with dissolved hydrocarbons and chlorinated solvents. In these wells, groundwater is withdrawn from the formation at the bottom of the well, aerated and vapor stripped and injected back into the formation at or above the water table. Previous field studies have shown that: (a) GCWs can circulate significant volumes of groundwater; and (b) GCWs can effectively remove volatile compounds and add oxygen. In this work, we describe the development and field-testing of a system of DP-GCWs for remediation of volatile organics such as benzene, toluene, ethylbenzene, and toluene (BTEX). The GCWs were constructed with No. 20 slotted well screen (2.4 cm ID) and natural sand pack extending from 1.5 to 8.2 m below grade. Air is introduced ~7.5 m below grade via 0.6 cm tubing. Approximately 15% of the vertical length of the air supply tubing is wrapped in tangled mesh polypropylene geonet drainage fabric to provide surface area for biological growth and precipitation of oxidized iron. These materials were selected to allow rapid installation of the GCWs using 3.8 cm direct push Geoprobe® rods, greatly reducing well installation costs. Laboratory testing of these sparged wells and computational fluid dynamics (CFD) modeling showed that these wells, although they used only about 1 L/min of air, could circulate about 1 L/min of water through the surrounding aquifer. This flow was sufficient to capture all of a flowing contaminant if the wells are sufficiently closely together, about 1 meter on center depending on the air flow rate supplied, in a line across the plume. The CFD work showed the details of this ability to capture, and also showed that unforeseen heterogeneities in the aquifer such as a gradient of permeability or a thin impermeable layer (such as a clay layer) did not prevent the system from working largely as intended. The system was tested in a

  5. A study of chemical remediation on 1,2,4-Trichlorobenzene in groundwater

    NASA Astrophysics Data System (ADS)

    Ye, S.

    2015-12-01

    Shujun Ye, Guanqun Wang, and Jichun WuKey Laboratory of Surficial Geochemistry, Ministry of Education; School of Earth Sciences and Engineering, Nanjing University, Nanjing 210093, China, Nanjing, 210093, China; sjye@nju.edu.cn The ground water is contaminated by 1,2,4 Trichlorobenzene (TCB) in a former chemical plant in Nanjing, China. So 1,2,4-TCB is the contaminant of concern in this study. As chemical oxidation technology is a common in-site remediation technique, hydrogen peroxide, sodium sulfate and the two-mixed oxidants under the catalytic condition are used to remove 1,2,4-TCB from groundwater. By changing the values of temperature and pH in the experiments, the best conditions for chemical oxidation with oxidants mentioned above were determined. The fluorescent brightener of PF, manufactured by the former chemical plant, was added to groundwater to evaluate whether its existence made an impact on the chemical oxidation. 1-D sand column tests were conducted to study the degradation effect by using the chemical oxidation technology. The experiment results showed that single oxidant and mixed both oxidants can remove 1,2,4-TCB completely. The oxidation efficiency of both oxidants is influenced by temperature and pH. For hydrogen peroxide, the oxidation efficiency decreases with the increase of pH, while, for sodium sulfate, the efficiency is high under the mild acidic condition. The fluorescent brightener PF has an impact on the oxidation efficiency, with negative effect on the oxidation with hydrogen peroxide but positive effect with sodium sulfate. 1-D sand column tests testified the degradation of 1,2,4-TCB by the chemical oxidation with hydrogen peroxide and sodium sulfate. KEY WORDS: 1,2,4-trichlorobenzene hydrogen peroxide sodium persulfate optical brightener PF chemical oxidation AcknowledgementsFunding for this research from DuPont Company and NSFC Project No. 41472212.

  6. Two- and Three-Dimensional Depiction of Subsurface Geology Using Commercial Software for Support of Groundwater Contaminant Fate and Transport Analysis - 13345

    SciTech Connect

    Ivarson, Kristine A.; Miller, Charles W.; Arola, Craig C.

    2013-07-01

    Groundwater contamination by hexavalent chromium and other nuclear reactor operation-related contaminants has resulted in the need for groundwater remedial actions within the Hanford Site reactor areas (the Hanford Site 100 Area). The large geographic extent of the resultant contaminant plumes requires an extensive level of understanding of the aquifer structure, characteristics, and configuration to support assessment and design of remedial alternatives within the former 100-D, 100-H, and 100-K reactor areas. The authors have prepared two- and three-dimensional depictions of the key subsurface geologic structures at two Hanford Site reactor operable units (100-K and 100-D/H). These depictions, prepared using commercial-off-the-shelf (COTS) visualization software, provide a basis for expanding the understanding of groundwater contaminant migration pathways, including identification of geologically-defined preferential groundwater flow pathways. These identified preferential flow pathways support the conceptual site model and help explain both historical and current contaminant distribution and transport. (authors)

  7. POTENTIAL USE OF ACTIVATED CARBON TO RECOVER TC-99 FROM 200 WEST AREA GROUNDWATER AS AN ALTERNATIVE TO MORE EXPENSIVE RESINS HANFORD SITE RICHLAND WASNINGTON

    SciTech Connect

    BYRNES ME; ROSSI AJ; TORTOSO AC

    2009-12-03

    Recent treatability testing performed on groundwater at the 200-ZP-1 Operable Unit at the Hanford Site in Richland, Washington, has shown that Purolite{reg_sign} A530E resin very effectively removes Tc-99 from groundwater. However, this resin is expensive and cannot be regenerated. In an effort to find a less expensive method for removing Tc-99 from the groundwater, a literature search was performed. The results indicated that activated carbon may be used to recover technetium (as pertechnetate, TCO{sub 4}{sup -}) from groundwater. Oak Ridge National Laboratory used activated carbon in both batch adsorption and column leaching studies. The adsorption study concluded that activated carbon absorbs TCO{sub 4}{sup -} selectively and effectively over a wide range of pH values and from various dilute electrolyte solutions (< 0.01 molarity). The column leaching studies confirmed a high adsorption capacity and selectivity of activated carbon for TCO{sub 4}{sup -}. Since activated carbon is much less expensive than Purolite A530E resin, it has been determined that a more extensive literature search is warranted to determine if recent studies have reached similar conclusions, and, if so, pilot testing of 200-ZP-1 groundwater wi11 likely be implemented. It is possible that less expensive, activated carbon canisters could be used as pre-filters to remove Tc-99, followed by the use of the more expensive Purolite A530E resin as a polishing step.

  8. Considerations of a nonhomogeneous fluid in the deep groundwater flow system at Hanford

    SciTech Connect

    Nelson, R.W.

    1988-11-01

    This report presents such a general theory capable of describing the flow on nonhomogeneous fluids in porous media, theory that is a composite from several disciplines including groundwater hydrology, soil physics, civil engineering, petroleum reservoir engineering, mechanics, and mathematical physics. The report discussed the conceptual basis for considering the flow of nonhomogeneous fluids. From this conceptual basis emphasis shifts to providing complete definitions and then appropriately describing those definitions in mathematical terms. Throughout the report, the necessary assumptions are stated in detail because the limitations of any theory are best assessed through careful scrutiny of the assumptions. From the mathematical definitions with appropriate functional dependence the results and constraints needed are derived to provide the general theory necessary to describe the flow of nonhomogeneous fluids in porous media. Particular attention is given to comparing the general theory with the classical theory of flow for a homogeneous fluid. Such comparison provides significant insight to the effects of variable fluid properties on subsurface flow systems. The comparisons also indicate the importance of carefully formulating subsurface flow models within the more general theoretical framework describing the flow of nonhomogeneous fluids in porous media. 29 refs.; 6 figs.; 1 tab.

  9. Network environmental analysis based ecological risk assessment of a naphthalene-contaminated groundwater ecosystem under varying remedial schemes

    NASA Astrophysics Data System (ADS)

    Wang, Zheng; He, Li; Lu, Hongwei; Ren, Lixia; Xu, Zongda

    2016-12-01

    Many of the existing ecological risk studies for groundwater ecosystems paid little attention to either small-scale regions (e.g., an industrial contamination site) or ignored anthropogenic activities (e.g., site remediation). This study presented a network environmental analysis based ecological risk assessment (ERA) framework to a naphthalene-contaminated groundwater remediation site. In the ERA, four components (vegetation, herbivore, soil micro-organism and carnivore) were selected, which are directly or indirectly exposed to the contaminated groundwater ecosystem. By incorporating both direct and indirect ecosystem interactions, the risk conditions of the whole ecosystem and its components were quantified and illustrated in the case study. Results indicate that despite there being no input risks for herbivores and carnivores, the respective integral risks increase to 0.0492 and 0.0410. For soil micro-organisms, 58.8% of the integral risk comes from the input risk, while the other 41.2% of the integral risk comes from the direct risk. Therefore, the risk flow within the components is a non-negligible risk origination for soil micro-organisms. However, the integral risk for vegetation was similar to the input risk, indicating no direct risk. The integral risk at the 5-year point after remediation was the highest for the four components. This risk then decreased at the 10-year point, and then again increased. Results from the sensitivity analysis also suggest that the proposed framework is robust enough to avoid disturbance by parameter uncertainty.

  10. Numerical modeling analysis of VOC removal processes in different aerobic vertical flow systems for groundwater remediation.

    PubMed

    De Biase, Cecilia; Carminati, Andrea; Oswald, Sascha E; Thullner, Martin

    2013-11-01

    Vertical flow systems filled with porous medium have been shown to efficiently remove volatile organic contaminants (VOCs) from contaminated groundwater. To apply this semi-natural remediation strategy it is however necessary to distinguish between removal due to biodegradation and due to volatile losses to the atmosphere. Especially for (potentially) toxic VOCs, the latter needs to be minimized to limit atmospheric emissions. In this study, numerical simulation was used to investigate quantitatively the removal of volatile organic compounds in two pilot-scale water treatment systems: an unplanted vertical flow filter and a planted one, which could also be called a vertical flow constructed wetland, both used for the treatment of contaminated groundwater. These systems were intermittently loaded with contaminated water containing benzene and MTBE as main VOCs. The highly dynamic but permanently unsaturated conditions in the porous medium facilitated aerobic biodegradation but could lead to volatile emissions of the contaminants. Experimental data from porous material analyses, flow rate measurements, solute tracer and gas tracer test, as well as contaminant concentration measurements at the boundaries of the systems were used to constrain a numerical reactive transport modeling approach. Numerical simulations considered unsaturated water flow, transport of species in the aqueous and the gas phase as well as aerobic degradation processes, which made it possible to quantify the rates of biodegradation and volatile emissions and calculating their contribution to total contaminant removal. A range of degradation rates was determined using experimental results of both systems under two operation modes and validated by field data obtained at different operation modes applied to the filters. For both filters, simulations and experimental data point to high biodegradation rates, if the flow filters have had time to build up their removal capacity. For this case volatile

  11. Estimating Groundwater Concentrations from Mass Releases to the Aquifer at Integrated Disposal Facility and Tank Farm Locations Within the Central Plateau of the Hanford Site

    SciTech Connect

    Bergeron, Marcel P.; Freeman, Eugene J.

    2005-06-09

    This report summarizes groundwater-related numerical calculations that will support groundwater flow and transport analyses associated with the scheduled 2005 performance assessment of the Integrated Disposal Facility (IDF) at the Hanford Site. The report also provides potential supporting information to other ongoing Hanford Site risk analyses associated with the closure of single-shell tank farms and related actions. The IDF 2005 performance assessment analysis is using well intercept factors (WIFs), as outlined in the 2001 performance assessment of the IDF. The flow and transport analyses applied to these calculations use both a site-wide regional-scale model and a local-scale model of the area near the IDF. The regional-scale model is used to evaluate flow conditions, groundwater transport, and impacts from the IDF in the central part of the Hanford Site, at the core zone boundary around the 200 East and 200 West Areas, and along the Columbia River. The local-scale model is used to evaluate impacts from transport of contaminants to a hypothetical well 100 m downgradient from the IDF boundaries. Analyses similar to the regional-scale analysis of IDF releases are also provided at individual tank farm areas as additional information. To gain insight on how the WIF approach compares with other approaches for estimating groundwater concentrations from mass releases to the unconfined aquifer, groundwater concentrations were estimated with the WIF approach for two hypothetical release scenarios and compared with similar results using a calculational approach (the convolution approach). One release scenario evaluated with both approaches (WIF and convolution) involved a long-term source release from immobilized low-activity waste glass containing 25,550 Ci of technetium-99 near the IDF; another involved a hypothetical shorter-term release of {approx}0.7 Ci of technetium over 600 years from the S-SX tank farm area. In addition, direct simulation results for both release

  12. Necessary and Sufficient Standards Closure Process pilot: F- and H-Area groundwater remediation

    SciTech Connect

    Bullington, M.

    1995-09-25

    The DOE Standards Committee`s Necessary and Sufficient (N and S) Standards Closure Process was piloted at SRS on the F- and H- Area Seepage Basins Groundwater Remediation Project. For this existing Environmental Restoration project, the set of N and S standards for design and safety documentation were identified, independently confirmed and approved. Implementation of these standards on the project can lead to a $2.8 Million cost savings on the design, construction/installation, and safety documentation scope of $18 Million. These savings were primarily from site design of power distribution and piping for the water treatment units. Also contributing to the savings were a more appropriate level of safety documentation and the alternate ``commercial`` bids made by vendors in response to a request for proposals for water treatment units. The use of the N and S Process on an ER activity, details on the cost savings, lessons learned and recommendations for broader implementation of the N and S Process are described herein.

  13. Pyrite-based autotrophic denitrification for remediation of nitrate contaminated groundwater.

    PubMed

    Pu, Jiaoyang; Feng, Chuanping; Liu, Ying; Li, Rui; Kong, Zhe; Chen, Nan; Tong, Shuang; Hao, Chunbo; Liu, Ye

    2014-12-01

    In this study, pyrite-based denitrification using untreated pyrite (UP) and acid-pretreated pyrite (AP) was evaluated as an alternative to elemental sulfur based denitrification. Pyrite-based denitrification resulted in a favorable nitrate removal rate constant (0.95 d(-1)), sulfate production of 388.00 mg/L, and a stable pH. The pretreatment of pyrite with acid led to a further increase in the nitrate removal rate constant (1.03 d(-1)) and reduction in initial sulfate concentration (224.25±7.50 mg/L). By analyzing the microbial community structure using Denaturing Gradient Gel Electrophoresis, it was confirmed that Sulfurimonas denitrificans (S. denitrificans) could utilize pyrite as an electron donor. A stable pH was observed over the entire experimental period, indicating that the use of a pH buffer reagent would not be necessary for pyrite-based denitrification. Therefore, pyrite could effectively replace elemental sulfur as an electron donor in autotrophic denitrification for nitrate-contaminated groundwater remediation.

  14. REACTIVE BARRIER TREATMENT WALL TECHNOLOGY FOR REMEDIATION OF INORGANIC CONTAMINATED GROUNDWATER

    SciTech Connect

    T. TAYLOR; ET AL

    2001-03-01

    The potential for subsurface reactive barrier wall technology to aid in remediation of contaminated groundwater in situ has prompted testing of novel porous media. Treatability testing of contaminants contacted with various media has been conducted using equilibrium batch techniques, one-dimensional (1-D) columns and 2-D boxes. Continuous mode column and box experiments are useful for assessing critical design parameters under dynamic flow conditions. Experiments have been conducted using a multi-layer barrier treatment approach to immobilize a suite of contaminants. For example, basalt coated with a cationic polymer (poly diallyl dimethyl ammonium chloride [Catfloc{reg_sign}]) was used to agglomerate colloids, Apatite II{reg_sign} sorbed aqueous phase metals and radionuclides including {sup 85,87}Sr and {sup 235}U and facilitated reduction of nitrate and perchlorate, crushed pecan shells sorbed aqueous phase metals and served as a secondary medium for reduction of nitrate and perchlorate concentrations, and finally limestone raised the pH of exiting pore waters close to natural levels.

  15. A microcosm study on remediation of explosives-contaminated groundwater using constructed wetlands.

    PubMed

    Sikora, F J; Behrends, L L; Phillips, W D; Coonrod, H S; Bailey, E; Bader, D F

    1997-11-21

    Anaerobic degradation of TNT and TNB in gravel systems was rapid and similar to removal rates in parrot feather lagoons. Planted and unplanted anaerobic gravel systems were the only treatments that provided significant reduction of RDX and HMX. Planted systems with parrot feather had no effect on removal rates of explosives in anaerobic gravel systems. Reciprocating wetlands were not effective in biodegrading RDX or HMX, but were very efficient at removing COD. A scaled-up concept for bioremediating contaminated groundwater can be envisioned with the data obtained in the current study. The effectiveness of anaerobic gravel systems indicate an anaerobic subsurface-flow constructed wetland can be established as the primary treatment for remediation with C added to the influent or step fed down the length of the wetland. Another option would be to add compost as a more permanent source of C to the gravel substrate. With time, the need for C supplementation may be reduced with the C exudates and redox lowering potential of certain plants like canarygrass (Phalaris arundinacea). As a secondary treatment, a reciprocating wetland would appear to be a logical choice to quickly remove C released in effluent waters of the anaerobic wetland.

  16. Design, Development, Pre-Testing and Preparation for Full Scale Cold Testing of a System for Field Remediation of Vertical Pipe Units at the Hanford Site 618-10 Burial Grounds -12495

    SciTech Connect

    Halliwell, Stephen

    2012-07-01

    At the Hanford site, in the 1950's and 60's, radioactive waste materials, including Transuranic (TRU) wastes from a number of laboratories were stored in vertical pipe units (VPUs) in what are now the 618-10 and 618-11 burial grounds. Although the current physical condition of the VPUs is unknown, initial R and D studies had shown that in-ground size reduction and stabilization of VPU contents was feasible. This paper describes the R and D work and testing activities to validate the concept of in-ground size reduction and stabilization of VPU contents, and the design and pre-testing of major plant items and augering systems on full size simulated VPUs. The paper also describes the full size prototype equipment which will be used in full size cold testing of simulated VPUs off the Hanford site, to prove the equipment, develop operating procedures, and train operators prior to deployment on site. Safe and effective field remediation, removal and disposal of the VPUs in the 600 area are critical to the success of the River Corridor Closure Contract at the U.S. Department of Energy's Hanford Site. Safe and effective field remediation, removal and disposal of the VPUs in the 600 area are critical to the success of the River Corridor Closure Contract at the U.S. Department of Energy's Hanford Site. (authors)

  17. Assessment of Hexavalent Chromium Natural Attenuation for the Hanford Site 100 Area

    SciTech Connect

    Truex, Michael J.; Szecsody, James E.; Qafoku, Nikolla P.; Sahajpal, Rahul; Zhong, Lirong; Lawter, Amanda R.; Lee, Brady D.

    2015-09-01

    Hexavalent chromium (Cr(VI)) plumes are present in the 100 Area at the Hanford Site. Remediation efforts are under way with objectives of restoring the groundwater to meet the drinking-water standard (48 µg/L) and protecting the Columbia River by ensuring that discharge of groundwater to the river is below the surface-water quality standard (10 µg/L). Current remedies include application of Pump-and-Treat (P&T) at the 100-D, 100-H, and 100-K Areas and Monitored Natural Attenuation (MNA) at the 100-F/IU Area. Remedy selection is still under way at the other 100 Areas. Additional information about the natural attenuation processes for Cr(VI) is important in all of these cases. In this study, laboratory experiments were conducted to demonstrate and quantify natural attenuation mechanisms using 100 Area sediments and groundwater conditions.

  18. Demonstration and Validation of a Regenerated Cellulose Dialysis Membrane Diffusion Sampler for Monitoring Groundwater Quality and Remediation Progress at DoD Sites

    DTIC Science & Technology

    2007-02-01

    trace elements that did not equilibrate within 28 days. Equilibration times for selected explosive compounds through dialysis membranes were...PROTOCOL Demonstration and Validation of a Regenerated Cellulose Dialysis Membrane Diffusion Sampler for Monitoring Groundwater Quality and...Demonstration and Validation of a Regenerated Cellulose Dialysis Membrane Diffusion Sampler for Monitoring Groundwater Quality and Remediation Progress at DoD

  19. Three-dimensional analysis of future groundwater flow conditions and contaminant plume transport in the Hanford Site unconfined aquifer system: FY 1996 and 1997 status report

    SciTech Connect

    Cole, C.R.; Wurstner, S.K.; Williams, M.D.; Thorne, P.D.; Bergeron, M.P.

    1997-12-01

    A three-dimensional numerical model of groundwater flow and transport, based on the Coupled Fluid Energy, and Solute Transport (CFEST) code, was developed for the Hanford Site to support the Hanford Groundwater Project (HGWP), managed by Pacific Northwest National Laboratory. The model was developed to increase the understanding and better forecast the migration of several contaminant plumes being monitored by the HGWP, and to support the Hanford Site Composite Analysis for low-level waste disposal in the 200-Area Plateau. Recent modeling efforts have focused on continued refinement of an initial version of the three-dimensional model developed in 1995 and its application to simulate future transport of selected contaminant plumes in the aquifer system. This version of the model was updated using a more current version of the CFEST code called CFEST96. Prior to conducting simulations of contaminant transport with the three-dimensional model, a previous steady-state, two-dimensional model of the unconfined aquifer system was recalibrated to 1979 water-table conditions with a statistical inverse method implemented in the CFEST-INV computer code. The results of the recalibration were used to refine the three-dimensional conceptual model and to calibrate it with a conceptualization that preserves the two-dimensional hydraulic properties and knowledge of the aquifer`s three-dimensional properties for the same 1979 water-table conditions. The transient behavior of the three-dimensional flow model was also calibrated by adjusting model storage properties (specific yield) until transient water-table predictions approximated observed water-table elevations between 1979 and 1996.

  20. Use of electrical imaging and distributed temperature sensing methods to characterize surface water-groundwater exchange regulating uranium transport at the Hanford 300 Area, Washington

    USGS Publications Warehouse

    Slater, Lee D.; Ntarlagiannis, Dimitrios; Day-Lewis, Frederick D.; Mwakanyamale, Kisa; Versteeg, Roelof J.; Ward, Andy; Strickland, Christopher; Johnson, Carole D.; Lane, Jr., John W.

    2010-01-01

    We explored the use of continuous waterborne electrical imaging (CWEI), in conjunction with fiber-optic distributed temperature sensor (FO-DTS) monitoring, to improve the conceptual model for uranium transport within the Columbia River corridor at the Hanford 300 Area, Washington. We first inverted resistivity and induced polarization CWEI data sets for distributions of electrical resistivity and polarizability, from which the spatial complexity of the primary hydrogeologic units was reconstructed. Variations in the depth to the interface between the overlying coarse-grained, high-permeability Hanford Formation and the underlying finer-grained, less permeable Ringold Formation, an important contact that limits vertical migration of contaminants, were resolved along ∼3 km of the river corridor centered on the 300 Area. Polarizability images were translated into lithologic images using established relationships between polarizability and surface area normalized to pore volume (Spor). The FO-DTS data recorded along 1.5 km of cable with a 1 m spatial resolution and 5 min sampling interval revealed subreaches showing (1) temperature anomalies (relatively warm in winter and cool in summer) and (2) a strong correlation between temperature and river stage (negative in winter and positive in summer), both indicative of reaches of enhanced surface water–groundwater exchange. The FO-DTS data sets confirm the hydrologic significance of the variability identified in the CWEI and reveal a pattern of highly focused exchange, concentrated at springs where the Hanford Formation is thickest. Our findings illustrate how the combination of CWEI and FO-DTS technologies can characterize surface water–groundwater exchange in a complex, coupled river-aquifer system.

  1. Use of polymer mats in series for sequential reactive barrier remediation of ammonium-contaminated groundwater: field evaluation.

    PubMed

    Patterson, B M; Grassi, M E; Robertson, B S; Davis, G B; Smith, A J; McKinley, A J

    2004-12-15

    A pilot-scale field trial was undertaken to evaluate the potential of in situ polymer mats (installed in series) as permeable reactive barriers within a treatment wall remediation system to induce sequential bioremediation of ammonium-contaminated groundwater. The treatment wall consisted of 10 m wide impermeable wings on either side of a 0.75 m wide permeable reactive zone flow-through box. Two polymer mats were positioned in the flow-through box. The upgradient polymer mat within the flow-through box was used to deliver oxygen to induce bacterial nitrification of the ammonium to nitrite/nitrate as the groundwater moved past. The downgradient polymer mat delivered ethanol to induce bacterial denitrification of the nitrite/nitrate to produce nitrogen gas. The field trial was carried out at a near-shore location. Initially the flow-through box was left open; however, this resulted in substantial groundwater mixing, which inhibited sequential remediation. Once the flow-through box was in-filled with gravel, groundwater mixing was reduced, achieving a greater than 90% reduction in total N. Estimated first-order half-lives for nitrification and denitrification rates were 1.2 and 0.4 d, respectively. Field nitrification half-lives were approximately an order of magnitude greater than rates determined in large-scale columns using soil and groundwater from the site, while denitrification half-lives were similar. The results of this pilot-scale field trial indicate that sequential bioremediation of ammonium-contaminated groundwater at field scale is feasible using in situ polymer mats as permeable reactive barriers, although hydraulic conditions can be complex in such barrier systems.

  2. Nitrate Remediation of Soil and Groundwater Using Phytoremediation: Transfer of Nitrogen Containing Compounds from the Subsurface to Surface Vegetation

    NASA Astrophysics Data System (ADS)

    Nelson, Sheldon

    2013-04-01

    Nitrate Remediation of Soil and Groundwater Using Phytoremediation: Transfer of Nitrogen Containing Compounds from the Subsurface to Surface Vegetation Sheldon Nelson Chevron Energy Technology Company 6001 Bollinger Canyon Road San Ramon, California 94583 snne@chevron.com The basic concept of using a plant-based remedial approach (phytoremediation) for nitrogen containing compounds is the incorporation and transformation of the inorganic nitrogen from the soil and/or groundwater (nitrate, ammonium) into plant biomass, thereby removing the constituent from the subsurface. There is a general preference in many plants for the ammonium nitrogen form during the early growth stage, with the uptake and accumulation of nitrate often increasing as the plant matures. The synthesis process refers to the variety of biochemical mechanisms that use ammonium or nitrate compounds to primarily form plant proteins, and to a lesser extent other nitrogen containing organic compounds. The shallow soil at the former warehouse facility test site is impacted primarily by elevated concentrations of nitrate, with a minimal presence of ammonium. Dissolved nitrate (NO3-) is the primary dissolved nitrogen compound in on-site groundwater, historically reaching concentrations of 1000 mg/L. The initial phases of the project consisted of the installation of approximately 1750 trees, planted in 10-foot centers in the areas impacted by nitrate and ammonia in the shallow soil and groundwater. As of the most recent groundwater analytical data, dissolved nitrate reductions of 40% to 96% have been observed in monitor wells located both within, and immediately downgradient of the planted area. In summary, an evaluation of time series groundwater analytical data from the initial planted groves suggests that the trees are an effective means of transfering nitrogen compounds from the subsurface to overlying vegetation. The mechanism of concentration reduction may be the uptake of residual nitrate from the

  3. ANNUAL REPORT FOR THE FINAL GROUNDWATER REMEDIATION, TEST AREA NORTH, OPERABLE UNIT 1-07B, FISCAL YEAR 2009

    SciTech Connect

    FORSYTHE, HOWARD S

    2010-04-14

    This Annual Report presents the data and evaluates the progress of the three-component remedy implemented for remediation of groundwater contamination at Test Area North, Operable Unit 1-07B, at the Idaho National Laboratory Site. Overall, each component is achieving progress toward the goal of total plume remediation. In situ bioremediation operations in the hot spot continue to operate as planned. Progress toward the remedy objectives is being made, as evidenced by continued reduction in the amount of accessible residual source and decreases in downgradient contaminant flux, with the exception of TAN-28. The injection strategy is maintaining effective anaerobic reductive dechlorination conditions, as evidenced by complete degradation of trichloroethene and ethene production in the biologically active wells. In the medial zone, the New Pump and Treat Facility operated in standby mode. Trichloroethene concentrations in the medial zone wells are significantly lower than the historically defined concentration range of 1,000 to 20,000 μg/L. The trichloroethene concentrations in TAN-33, TAN-36, and TAN-44 continue to be below 200 μg/L. Monitoring in the distal zone wells outside and downgradient of the plume boundary demonstrate that some plume expansion has occurred, but less than the amount allowed in the Record of Decision Amendment. Additional data need to be collected for wells in the monitored natural attenuation part of the plume to confirm that the monitored natural attenuation part of the remedy is proceeding as predicted in the modeling.

  4. Proposed plan for remedial action for the Groundwater Operable Unit at the Chemical Plant Area of the Weldon Spring Site, Weldon Spring, Missouri

    SciTech Connect

    1999-08-10

    This Proposed Plan addresses the remediation of groundwater contamination at the chemical plant area of the Weldon Spring site in Weldon Spring, Missouri. The site is located approximately 48 km (30 mi) west of St. Louis in St. Charles County . Remedial activities at the site will be conducted in accordance with the Comprehensive Environmental Response, Compensation, and Liability Act (CERCLA). The U.S. Department of Energy (DOE), in conjunction with the U.S. Department of the Army (DA), conducted a joint remedial investigation/feasibility study (RI/FS) to allow for a comprehensive evaluation of groundwater conditions at the Weldon Spring chemical plant area and the Weldon Spring ordnance works area, which is an Army site adjacent to the chemical plant area. Consistent with DOE policy, National Environmental Policy Act (NEPA) values have been incorporated into the CERCLA process. That is, the analysis conducted and presented in the RVFS reports included an evaluation of environmental impacts that is comparable to that performed under NEPA. This Proposed Plan summarizes information about chemical plant area groundwater that is presented in the following documents: (1) The Remedial Investigation (RI), which presents information on the nature and extent of contamination; (2) The Baseline Risk Assessment (BRA), which evaluates impacts to human health and the environment that could occur if no cleanup action of the groundwater were taken (DOE and DA 1997a); and (3) The Feasibility Study (FS) and the Supplemental FS, which develop and evaluate remedial action alternatives for groundwater remediation.

  5. RCRA (Resource Conservation and Recovery Act of 1976) ground-water monitoring projects for Hanford facilities: Progress report, October 1--December 31, 1988: Volume 1, Text

    SciTech Connect

    Fruland, R.M.; Bates, D.J.; Lundgren, R.E.

    1989-04-01

    This report describes the progress of 13 Hanford ground-water monitoring projects for the period October 1 to December 31, 1988. There are 16 individual hazardous waste facilities covered by the 13 ground-water monitoring projects. The Grout Treatment Facility is included in this series of quarterly reports for the first time. The 13 projects discussed in this report were designed according to applicable interim-status ground-water monitoring requirements specified in the Resource Conservation and Recovery Act of 1976 (RCRA). During this quarter, field activities primarily consisted of sampling and analyses, and water-level monitoring. The 200 Areas Low-Level Burial Grounds section includes sediment analyses in addition to ground-water monitoring results. Twelve new wells were installed during the previous quarter: two at the 216-A-29 Ditch, six at the 216-A-10 Crib, and four at the 216-B-3 Pond. Preliminary characterization data for these new wells include drillers' logs and other drilling and site characterization data, and are provided in Volume 2 or on microfiche in the back of Volume 1. 26 refs., 28 figs., 74 tabs.

  6. Resource Conservation and Recovery Act ground-water monitoring projects for Hanford facilities: Progress report for the period July 1 to September 30, 1988: Volume 1, Text

    SciTech Connect

    Fruland, R.M.; Bates, D.J.; Lundgren, R.E.

    1989-02-01

    This report describes the progress of 12 Hanford ground-water monitoring projects for the period July 1 to September 30, 1988. During this quarter, field activities at the 300 Area process trenches, the Nonradioactive Dangerous Waste Landfill, the 183-H Solar Evaporation Basins, the 1324-N/NA Surface Impoundment and Percolation Ponds, the 1301-N and 1325-N Liquid Waste Disposal Facilities, and the 216-A-36B Crib consisted of ground-water sampling and analyses, and water-level monitoring. The 200 Area Low-Level Burial Grounds section includes well development data, sediment analysis, and water-level measurements. Ground-water sampling was begun at this site, and results will be included in next quarter's report. Twelve new wells were installed during the quarter, two at the 216-A-29 Ditch, size at the 216-A-10 Crib, and four at the 216-B-3 Pond. Preliminary characterization data for these new wells are included in this report. Driller's logs and other drilling and site characterization data will be provided in the next quarterly report. At the 2101-M Pond, construction was completed on four wells, and initial ground-water samples were taken. The drilling logs, geophysical logging data, and as-built diagrams are included in this report in Volume 2. 19 refs., 24 figs., 39 tabs.

  7. A Conceptual Model of Coupled Biogeochemical and Hydrogeological Processes Affected by In Situ Cr(VI) Bioreduction in Groundwater at Hanford 100H Site

    NASA Astrophysics Data System (ADS)

    Faybishenko, B.; Long, P. E.; Hazen, T. C.; Hubbard, S. S.; Williams, K. H.; Peterson, J. E.; Chen, J.; Volkova, E. V.; Newcomer, D. R.; Resch, C. T.; Cantrell, K.; Conrad, M. S.; Brodie, E. L.; Joyner, D. C.; Borglin, S. E.; Chakraborty, R. C.

    2007-05-01

    The overall objective of this presentation is to demonstrate a conceptual multiscale, multidomain model of coupling of biogeochemical and hydrogeological processes during bioremediation of Cr(VI) contaminated groundwater at Hanford 100H site. A slow release polylactate, Hydrogen Release Compound (HRCTM), was injected in Hanford sediments to stimulate immobilization of Cr(VI). The HRC injection induced a 2-order-of- magnitude increase in biomass and the onset of reducing biogeochemical conditions [e.g., redox potential decreased from +240 to -130 mV and dissolved oxygen (DO) was completely removed]. A three-well system, comprised of an injection well and upgradient and downgradient monitoring wells, was used for conducting the in situ biostimulation, one regional flow (no-pumping) tracer test, and five pumping tests along with the Br-tracer injection. Field measurements were conducted using a Br ion-selective electrode and a multiparameter flow cell to collect hourly data on temperature, pH, redox potential, electrical conductivity, and DO. Groundwater sampling was conducted by pumping through specially designed borehole water samplers. Cross-borehole radar tomography and seismic measurements were carried out to assess the site background lithological heterogeneity and the migration pathways of HRC byproducts through groundwater after the HRC injection. Several alternative approaches, including conventional and fractional advective dispersion equations and geostatistical analysis, were used to characterize hydraulic and biogeochemical transport parameters. The results of a joint inversion of cross-borehole geophysical tomography and flow-rate measurements in boreholes indicate the presence of a bimodal distribution of hydraulic conductivity for Hanford sediments. The Br- concentration double-peak BTCs curves indicate that HRC injection caused an increase in the tracer travel time (mainly in the low-permeability zone) over the period of observations of about 2 years

  8. THERMAL REMEDIATION

    EPA Science Inventory

    Thermal remediation is being proposed by Region I for remediation of the overburden soil and groundwater at the Solvent Recovery Services New England Superfund site. This presentation at the public meeting will acquaint area residents with thermal remediation. The two types of ...

  9. THERMAL REMEDIATION

    EPA Science Inventory

    Thermal remediation is being proposed by Region I for remediation of the overburden soil and groundwater at the Solvent Recovery Services New England Superfund site. This presentation at the public meeting will acquaint area residents with thermal remediation. The two types of ...

  10. SOIL DESICCATION TECHNIQUES STRATEGIES FOR IMMOBILIZATION OF DEEP VADOSE CONTAMINANTS AT THE HANFORD CENTRAL PLATEAU

    SciTech Connect

    BENECKE MW; CHRONISTER GB; TRUEX MJ

    2012-01-30

    Deep vadose zone contamination poses some of the most difficult remediation challenges for the protection of groundwater at the Hanford Site where processes and technologies are being developed and tested for use in the on-going effort to remediate mobile contamination in the deep vadose zone, the area deep beneath the surface. Historically, contaminants were discharged to the soil along with significant amounts of water, which continues to drive contaminants deeper in the vadose zone toward groundwater. Soil desiccation is a potential in situ remedial technology well suited for the arid conditions and the thick vadose zone at the Hanford Site. Desiccation techniques could reduce the advance of contaminants by removing the pore water to slow the rate of contaminants movement toward groundwater. Desiccation technologies have the potential to halt or slow the advance of contaminants in unsaturated systems, as well as aid in reduction of contaminants from these same areas. Besides reducing the water flux, desiccation also establishes capillary breaks that would require extensive rewetting to resume pore water transport. More importantly, these techniques have widespread application, whether the need is to isolate radio nuclides or address chemical contaminant issues. Three different desiccation techniques are currently being studied at Hanford.

  11. Viscosity-Modification to Improve Remediation Efficiencies within Heterogeneous Contaminated Groundwater Aquifers: Laboratory and Field-Scale Evaluation

    NASA Astrophysics Data System (ADS)

    Silva, J. A.; Crimi, M.

    2013-12-01

    A key challenge in in situ groundwater remediation practice is achieving efficient contact between the injected remedial fluid and the target contamination in the presence of subsurface permeability heterogeneities. Even apparently small permeability contrasts can affect the delivery and subsurface distribution of injected remedial fluids, as a result of preferential flows, and reduce treatment effectiveness as a result of bypassing of contaminated media of lower permeability. Viscosity-modification is a technique that can be used to mitigate the effects of permeability heterogeneity and improve the delivery and distribution of remediation fluids during subsurface injection. Viscosity-modification involves increasing the viscosity of the injected fluid, and modifying the fluids rheological character in some cases. The increased viscosity provides a reduced fluid mobility condition within higher permeability media that, in turn, enhances the penetration of fluids into adjacent lower permeability media, improving the overall sweep efficiency within heterogeneous geomedia. Herein, we present the results of laboratory (two-dimensional flow tank) and numerical experiments that were designed to critically evaluate the utility of viscosity-modification for groundwater remediation application. Specifically, we will address the benefits and limitations of the approach and highlight the effect of system variables on the degree sweep efficiency improvement achievable. We also present the results of a recently completed Environmental Security Technology Certification Program (ESTCP) technology validation project in which viscosity-modification was applied to permanganate in situ chemical oxidation. Site selection criteria, implementation design considerations, and the long-term effects of viscosity-modified fluid treatments will be discussed.

  12. River Corridor Closure at DOE's Hanford Site - 12503

    SciTech Connect

    Dowell, Jonathan; Franco, Joe

    2012-07-01

    The discussion of Hanford's River Corridor will cover work that has already been completed plus the work remaining to be done. This includes the buildings, waste sites, and groundwater plumes in the 300 Area; large-scale burial ground remediation in the 600 Area; plutonium production reactor dismantling and 'cocooning' along the river; preservation of the world's first full-scale plutonium production reactor; removal of more than 14 million tons of contaminated soil and debris along the Columbia River shoreline and throughout the River Corridor; and the excavation of buried waste sites in the river shore area. It also includes operating an EPA-permitted low-level waste disposal facility in the central portion of the site. At the completions of cleanup in 2015, Hanford's River Corridor will be the largest closure project ever completed by the Department of Energy. Cleanup of the River Corridor has been one of Hanford's top priorities since the early 1990's. This urgency has been due to the proximity of hundreds of waste sites to the Columbia River. In addition, removal of the sludge from K West Basin, near the river, remains a high priority. This 220-square-mile area of the Hanford Site sits on the edge of the last free-flowing stretch of the Columbia River. The River Corridor portion of the Hanford Site includes the 100 and 300 Areas along the south shore of the Columbia River. The 100 Areas contain nine retired plutonium production reactors. These areas are also the location of numerous support facilities and solid and liquid waste disposal sites that have contaminated groundwater and soil. The 300 Area, located just north of the city of Richland, contains fuel fabrication facilities, nuclear research and development facilities, and their associated solid and liquid waste disposal sites that have contaminated groundwater and soil. In order to ensure that cleanup actions address all threats to human health and the environment, the River Corridor includes the

  13. Radionuclide Activities in Contaminated Soils: Effects of Sampling Bias on Remediation of Coarse-Grained Soils in Hanford Formation

    SciTech Connect

    Mattigod, Shas V.; Martin, Wayne J.

    2001-08-28

    Only a limited set of particle size-contaminant concentration data is available for soils from the Hanford Site. These data are based on bench-scale tests on single soil samples from one waste site each in operable units 100-BC-1, 100-DR-1, and 100-FR-1, and three samples from the North Pond 300-FF-1 operable unit. The objective of this study was to 1) examine available particle size-contaminant of concern activity and concentration data for 100 and 300 Area soils, 2) assess the effects of sampling bias, 3) suggest sampling protocols, and 4) formulate a method to determine the contaminant of concern activities and concentrations of the whole soil based on the measurements conducted on a finer size fraction of the whole soil.

  14. Using trees to remediate tritium contaminated groundwater: a modeling and tracer study.

    SciTech Connect

    Rebel, Karin, Theodora

    2004-01-01

    Rebel, Karin, T. 2004. Using trees to remediate tritium contaminated groundwater: a modeling and tracer study. Ph.D Dissertation. Cotnell University. Ithaca, New York. 174 pp. Abstract: We have developed a spatially explicit model of water and tritium fluxes in the vadose zone in order to simulate water uptake and subsurface lateral movement in coniferous and mixed hardwood - coniferous forests on Coastal Plain soils of the southern United States. These Coastal Plain soils are characteristically sand overlying slowly permeable clays found at depths of 30 to 200 cm, and can form temporarily saturated, unconfined aquifers. Ten hectares of the modeled watershed was periodically irrigated with tritium enriched water. We used the tritium enriched water as a tracer to validate the model. The model was used to optimize irrigation, to evaluate the amount of tritium entering the atmosphere due to evapotranspiration and to quantify water and tritium fluxes in texture contrast soils. Using tritium as a tracer, we have studied how tree species and canopy position effect water and solutes uptake from different parts of the soil profile. We clipped branches to obtain leaf water from over-and understory laurel oak (Quercus Laurifolia) and over- and understory pine (Pinus elliottii and Pinus taeda), which was then analyzed for tritium. We found that for early successional trees (Pinus spp.) and trees in the overstory proportionally more water was taken up from deeper in the soil compared to the hardwoods or trees in the understory, which took up proportionally more water from the soil surface. These differences are important for understanding competition for resources within a forest and in predicting the hydrologic response to forest management practices such as thinning.

  15. Natural Oxidant Demand Variability, Potential Controls, and Implications for in Situ, Oxidation-Based Remediation of Contaminated Groundwater

    NASA Astrophysics Data System (ADS)

    Dettmer, A.; Cruz, S.; Dungan, B.; Holguin, F. O.; Ulery, A. L.; Hunter, B.; Carroll, K. C.

    2014-12-01

    Naturally occurring reduced species associated with subsurface materials can impose a significant natural oxidant demand (NOD), which is the bulk consumption of oxidants by soil water, minerals, and organic matter. Although injection of oxidants has been used for chemical transformation of organic contaminants, NOD represents a challenge for the in-situ delivery of oxidants as a remediation alternative. Co-injection of complexation agents with oxidants has been proposed to facilitate the delivery of oxidants for in situ chemical oxidation remediation of contaminated groundwater. This study investigates variability of NOD for different oxidants and sediments. The effect of the addition of various complexation agents, including EDTA, tween 80, hydroxypropyl-beta-cyclodextrin (HPCD), humic acid, and four generations of poly(amidoamine) (PAMAM) dendrimers, on the NOD was also examined. NOD was measured for a clay loam (collected from Air Force Plant 44 in Tucson, AZ). Varying amounts of biosolids were mixed with subsamples of the clay loam to create three additional reference soils in order to study the effect of organic matter and other soil characteristics on the NOD. Bench-scale laboratory experiments were conducted to determine the NOD for various oxidants, using the four soils, and replicated with and without various delivery agents. Measured NOD showed variability for each soil and oxidant composition. Additionally, significant differences were observed in NOD with the addition of delivery agents. The results support the elucidation of potential controls over NOD and have implications for in situ, oxidation-based remediation of contaminated groundwater.

  16. Development of a Conceptual Model for Vadose Zone Transport of Tc-99 at Hanford's BC Cribs and the Screening of Remedial Alternatives

    SciTech Connect

    Ward, Anderson L.; Serne, R. Jeffrey; Benecke, Mark W.

    2009-03-05

    A number of waste trenches at cribs at Hanford's BC Cribs and Trenches site, which received about 10 Mgal of scavenged tank waste with elevated concentrations of technetium-99 and nitrate, are currently being evaluated for remediation. The objective of this study was to investigate the influence of fine-scale heterogeneity (i.e. horizontal laminations, cross-bedding) on the large-scale transport behavior of mobile contaminants through the vadose zone with the purpose of developing a remedial strategy. The vertical heterogeneity structure, conditioned on grain size distributions and geophysical logs (water content and natural isotopes), was developed from a single borehole at the site. Geostatistical methods were used to impose the 3-D spatial correlation structure from the nearby well-characterized experimental site to merge the heterogeneities at various scales. Flow and transport properties were derived using physically-based property transfer models. The STOMP simulator was then used to predict contaminant transport through the vadose zone and into a 5-m thick confined aquifer during the period of trench operations (1956-1958) and to present time. Simulation results show that the fine-scale heterogeneity inside the large-scale lithologic units has considerable impact on the large-scale transport behavior of contaminants. The fine-scale heterogeneity enhanced the lateral flow and mixing and limited vertical penetration in the vadose zone. Model results are in excellent agreement with the vertical contaminant profile obtained from a borehole installed in the 216-B-26 trench. The simulated 2-D distribution of nitrate and electrical resistivity sounding curves also agreed well with results of field-scale resistivity surveys. These results suggest that installation of an engineered surface barrier would reduce the threat to ground water by reducing the mass flux of contaminants to the water table and increasing the residence time in the vadose zone.

  17. Using radon-222 as indicator for the evaluation of the efficiency of groundwater remediation by in situ air sparging.

    PubMed

    Schubert, Michael; Schmidt, Axel; Müller, Kai; Weiss, Holger

    2011-02-01

    A common approach for remediation of groundwater contamination with volatile organic compounds (VOCs) is contaminant stripping by means of in situ air sparging (IAS). For VOC stripping, pressurized air is injected into the contaminated groundwater volume, followed by the extraction of the contaminant-loaded exhaust gas from the vadose soil zone and its immediate on-site treatment. Progress assessment of such remediation measure necessitates information (i) on the spatial range of the IAS influence and (ii) on temporal variations of the IAS efficiency. In the present study it was shown that the naturally occurring noble gas radon can be used as suitable environmental tracer for achieving the related spatial and temporal information. Due to the distinct water/air partitioning behaviour of radon and due to its straightforward on-site detectability, the radon distribution pattern in the groundwater can be used as appropriate measure for assessing the progression of an IAS measure as a function of space and time. The presented paper discusses both the theoretical background of the approach and the results of an IAS treatment accomplished at a VOC contaminated site lasting six months, during which radon was applied as efficiency indicator.

  18. Remedial investigation work plan for the Groundwater Operable Unit at Oak Ridge National Laboratory, Oak Ridge, Tennessee

    SciTech Connect

    Not Available

    1994-03-01

    This Remedial Investigation (RI) Work Plan has been developed as part of the US Department of Energy`s (DOE`s) investigation of the Groundwater Operable Unit (GWOU) at Oak Ridge National Laboratory (ORNL) located near Oak Ridge, Tennessee. The first iteration of the GWOU RI Work Plan is intended to serve as a strategy document to guide the ORNL GWOU RI. The Work Plan provides a rationale and organization for groundwater data acquisition, monitoring, and remedial actions to be performed during implementation of environmental restoration activities associated with the ORNL GWOU. It Is important to note that the RI Work Plan for the ORNL GWOU is not a prototypical work plan. The RI will be conducted using annual work plans to manage the work activities, and task reports will be used to document the results of the investigations. Sampling and analysis results will be compiled and reported annually with a review of data relative to risk (screening level risk assessment review) for groundwater. This Work Plan outlines the overall strategy for the RI and defines tasks which are to be conducted during the initial phase of investigation. This plan is presented with the understanding that more specific addenda to the plan will follow.

  19. Column study of Cr(VI) removal by cationic hydrogel for in-situ remediation of contaminated groundwater and soil.

    PubMed

    Tang, Samuel C N; Yin, Ke; Lo, Irene M C

    2011-07-01

    Column experiments were conducted for examining the effectiveness of the cationic hydrogel on Cr(VI) removal from groundwater and soil. For in-situ groundwater remediation, the effects of background anions, humic acid (HA) and pH were studied. Cr(VI) has a higher preference for being adsorbed onto the cationic hydrogel than sulphate, bicarbonate ions and HA. However, the adsorbed HA reduced the Cr(VI) removal capacity of the cationic hydrogel, especially after regeneration of the adsorbents, probably due to the blockage of adsorption sites. The Cr(VI) removal was slightly influenced by the groundwater pH that could be attributed to Cr(VI) speciation. The 6-cycle regeneration and reusability study shows that the effectiveness of the cationic hydrogel remained almost unchanged. On average, 93% of the adsorbed Cr(VI) was recovered in each cycle and concentrated Cr(VI) solution was obtained after regeneration. For in-situ soil remediation, the flushing water pH had an insignificant effect on the release of Cr(VI) from the soils. Multiple-pulse flushing increased the removal of Cr(VI) from the soils. In contrast, more flushing water and longer operation may be required to achieve the same removal level by continuous flushing.

  20. Remediation of Explosives in Groundwater Using Zero-Valent Iron In Situ Treatment Wells

    DTIC Science & Technology

    2008-03-01

    Phase 1) ................................................................. 14 3.6.1 Groundwater Chemical Analysis ...27 5.2 Performance Confirmation Methods ...5.3 Data Analysis , Interpretation, and Evaluation ........................................................................ 29 5.3.1 Groundwater Pumping

  1. Feasibility of the Shallow High Resolution Seismic Reflection Technique for Use at the Hanford Site

    SciTech Connect

    Narbutovskih, S.M.

    1993-07-30

    Data obtained during site characterization should be useful to assess the need for remediation, to evaluate and design effective remedial plans, and to allow long-term monitoring to discern remediation effectiveness. A valuable environmental tool that incorporates this data is a model that describes groundwater and vadose zone flow and transport characteristics. Data on geology and hydrology combined with information on contaminant sources are incorporated into these conceptual models that delineate the relative significance of the various fluid migration pathways. Downstream these same models also support risk assessment, remediation design, and long-term assessment of remediation effectiveness. Consequently, the building of coherent, accurate vadose zone and groundwater models is fundamental to a successful remediation. Among the important requirements for these models is accurate knowledge of flow domain boundaries and soil characteristics. At the Hanford Site, this knowledge is obtained primarily from borehole data, which provides information only at a point. In the high energy flood and fluvial deposits found at the Hanford Site, it can, at times, be difficult to correlate lithologic horizons between boreholes. Where there is no borehole control, our understanding of the geometry of hydrogeologic boundaries and thus of fluid migration paths is limited. Surface geophysical techniques are generally used to provide a measure of geologic control between boreholes. In particular, the seismic reflection method has the potential to provide the greatest resolution of the subsurface hydrogeology between and beyond boreholes.

  2. Remedial Process Optimization and Green In-Situ Ozone Sparging for Treatment of Groundwater Impacted with Petroleum Hydrocarbons

    NASA Astrophysics Data System (ADS)

    Leu, J.

    2012-12-01

    A former natural gas processing station is impacted with TPH and BTEX in groundwater. Air sparging and soil vapor extraction (AS/AVE) remediation systems had previously been operated at the site. Currently, a groundwater extraction and treatment system is operated to remove the chemicals of concern (COC) and contain the groundwater plume from migrating offsite. A remedial process optimization (RPO) was conducted to evaluate the effectiveness of historic and current remedial activities and recommend an approach to optimize the remedial activities. The RPO concluded that both the AS/SVE system and the groundwater extraction system have reached the practical limits of COC mass removal and COC concentration reduction. The RPO recommended an in-situ chemical oxidation (ISCO) study to evaluate the best ISCO oxidant and approach. An ISCO bench test was conducted to evaluate COC removal efficiency and secondary impacts to recommend an application dosage. Ozone was selected among four oxidants based on implementability, effectiveness, safety, and media impacts. The bench test concluded that ozone demand was 8 to 12 mg ozone/mg TPH and secondary groundwater by-products of ISCO include hexavalent chromium and bromate. The pH also increased moderately during ozone sparging and the TDS increased by approximately 20% after 48 hours of ozone treatment. Prior to the ISCO pilot study, a capture zone analysis (CZA) was conducted to ensure containment of the injected oxidant within the existing groundwater extraction system. The CZA was conducted through a groundwater flow modeling using MODFLOW. The model indicated that 85%, 90%, and 95% of an injected oxidant could be captured when a well pair is injecting and extracting at 2, 5, and 10 gallons per minute, respectively. An ISCO pilot test using ozone was conducted to evaluate operation parameters for ozone delivery. The ozone sparging system consisted of an ozone generator capable of delivering 6 lbs/day ozone through two ozone

  3. DESCRIPTION OF MODELING ANALYSES IN SUPPORT OF THE 200-ZP-1 REMEDIAL DESIGN/REMEDIAL ACTION

    SciTech Connect

    VONGARGEN BH

    2009-11-03

    The Feasibility Study/or the 200-ZP-1 Groundwater Operable Unit (DOE/RL-2007-28) and the Proposed Plan/or Remediation of the 200-ZP-1 Groundwater Operable Unit (DOE/RL-2007-33) describe the use of groundwater pump-and-treat technology for the 200-ZP-1 Groundwater Operable Unit (OU) as part of an expanded groundwater remedy. During fiscal year 2008 (FY08), a groundwater flow and contaminant transport (flow and transport) model was developed to support remedy design decisions at the 200-ZP-1 OU. This model was developed because the size and influence of the proposed 200-ZP-1 groundwater pump-and-treat remedy will have a larger areal extent than the current interim remedy, and modeling is required to provide estimates of influent concentrations and contaminant mass removal rates to support the design of the aboveground treatment train. The 200 West Area Pre-Conceptual Design/or Final Extraction/Injection Well Network: Modeling Analyses (DOE/RL-2008-56) documents the development of the first version of the MODFLOW/MT3DMS model of the Hanford Site's Central Plateau, as well as the initial application of that model to simulate a potential well field for the 200-ZP-1 remedy (considering only the contaminants carbon tetrachloride and technetium-99). This document focuses on the use of the flow and transport model to identify suitable extraction and injection well locations as part of the 200 West Area 200-ZP-1 Pump-and-Treat Remedial Design/Remedial Action Work Plan (DOEIRL-2008-78). Currently, the model has been developed to the extent necessary to provide approximate results and to lay a foundation for the design basis concentrations that are required in support of the remedial design/remediation action (RD/RA) work plan. The discussion in this document includes the following: (1) Assignment of flow and transport parameters for the model; (2) Definition of initial conditions for the transport model for each simulated contaminant of concern (COC) (i.e., carbon

  4. Hanford past-practice strategy

    SciTech Connect

    Thompson, K.M.

    1991-11-01

    In May 1989, the US Environmental Protection Agency (EPA), the State of Washington Department of Ecology (Ecology) and the US Department of Energy (DOE) entered into an Interagency Agreement to provide a legal and procedural framework for cleanup and regulatory compliance at numerous hazardous waste sites at the Hanford Site. Four subareas of the Hanford Site (the 100, 200, 300, and 1100 Areas) have been included on the EPA`s National Priorities List (NPL). Under the Hanford Federal Facility Agreement and Consent Order (Tri-Party Agreement), the more than 1,000 inactive waste disposal and unplanned release sites were originally grouped into 78 operable units (74 source operable units and 4 groundwater operable units, which underlie the source units). The contamination is in the form of solely hazardous waste, radioactive mixed waste, and other Comprehensive Environmental Response, Compensation and Liability Act (CERCLA) hazardous substances. Included within the Tri-Party Agreement are 55 Resource Conservation and Recovery Act (RCRA) treatment, storage, or disposal (TSD) facilities, which will be closed or permitted to operate in accordance with Washington Administrative Code (WAC) 173-303 (RCRA) regulations. The parties have undertaken an ongoing dialogue over the past year to develop a new strategy for streamlining the past-practice corrective action process. This strategy provides new concepts for (1) accelerating decision making by maximizing the use of existing data consistent with data quality objectives and (2) undertaking expedited response actions and/or interim remedial measures as appropriate to either remove threats to human health and welfare and the environment or to reduce risk by reducing toxicity, mobility, or volume of contaminants.

  5. Evaluation of an Alternative Statistical Method for Analysis of RCRA Groundwater Monitoring Data at the Hanford Site

    SciTech Connect

    Chou, Charissa J.

    2004-06-24

    Statistical methods are required in groundwater monitoring programs to determine if a RCRA-regulated unit affects groundwater quality beneath a site. This report presents the results of the statistical analysis of groundwater monitoring data acquired at B Pond and the 300 Area process trenches during a 2-year trial test period.

  6. Results of Phase I groundwater quality assessment for single-shell tank waste management areas T and TX-TY at the Hanford Site

    SciTech Connect

    Hodges, F.N.

    1998-01-01

    Pacific Northwest National Laboratory (PNNL) conducted a Phase I, Resource Conservation and Recovery Act of 1976 (RCRA) groundwater quality assessment for the Richland Field Office of the U.S. Department of Energy (DOE-RL) under the requirements of the Federal Facility Compliance Agreement. The purpose of the investigation was to determine if the Single-Shell Tank Waste Management Areas (WMAs) T and TX-TY have impacted groundwater quality. Waste Management Areas T and TX-TY, located in the northern part of the 200 West Area of the Hanford Site, contain the 241-T, 241-TX, and 241-TY tank farms and ancillary waste systems. These two units are regulated under RCRA interim-status regulations (under 40 CFR 265.93) and were placed in assessment groundwater monitoring because of elevated specific conductance in downgradient wells. Anomalous concentrations of technetium-99, chromium, nitrate, iodine-129, and cobalt-60 also were observed in some downgradient wells. Phase I assessment, allowed under 40 CFR 265, provides the owner-operator of a facility with the opportunity to show that the observed contamination has a source other than the regulated unit. For this Phase I assessment, PNNL evaluated available information on groundwater chemistry and past waste management practices in the vicinity of WMAs T and TX-TY. Background contaminant concentrations in the vicinity of WMAs T and TX-TY are the result of several overlapping contaminant plumes resulting from past-practice waste disposal operations. This background has been used as baseline for determining potential WMA impacts on groundwater.

  7. Hanford well custodians. Revision 1

    SciTech Connect

    Schatz, A.L.; Underwood, D.J.

    1995-02-02

    The Hanford Site Groundwater Protection Management Program recognized the need to integrate monitoring well activities in a centralized manner. A key factor to Hanford Site well integration was the need to clearly identify a responsible party for each of the wells. WHC was asked to identify all wells on site, the program(s) using each well, and the program ultimately responsible for the well. This report lists the custodian and user(s) for each Hanford well and supplies a comprehensive list of all decommissioned and orphaned wells on the Hanford Site. This is the first update to the original report released in December 1993.

  8. In-situ wastewater treatment and groundwater remediation at a sugar beet processing facility

    SciTech Connect

    Olson, J.L.; Fuller-Pratt, P.R.; Mielke, R.A.

    1996-06-01

    Groundwater monitoring data collected at the Western Sugar Company sugar beet processing plant, in Billings, Montana identified groundwater mounding and groundwater nitrogen concentration increases associated with lime slurry discharge to an on-site storage pile. The nitrogen impacts (primarily ammonia) likely originated through decomposition of organic matter in the slurry. Initially, Western Sugar considered constructing an expensive anaerobic and nitrification-denitrification wastewater treatment system. However, further investigation of the lime pile revealed that it was already serving as an efficient filter and anaerobic reactor. Comparisons of slurry application with other land application systems suggested that groundwater nitrogen impacts could be minimized through groundwater capture, re-application, and improved slurry management. The resultant system required little capitol and maintenance cost. The immediate effect was to substantially decrease the groundwater mound. Subsequent monitoring has demonstrated a gradual decline in nitrogen concentrations under the lime pile and a considerable concentration decrease downgradient of the groundwater recovery system.

  9. A Conceptual model of coupled biogeochemical and hydrogeologicalprocesses affected by in situ Cr(VI) bioreduction in groundwater atHanford 100H Site

    SciTech Connect

    Faybishenko, B.; Long, P.E.; Hazen, T.C.; Hubbard, S.S.; Williams, K.H.; Peterson, J.E.; Chen, J.; Volkova, E.V.; Newcomer, D.R.; Resch, C.T.; Cantrell, K.; Conrad, M.S.; Brodie, E.L.; Joyner, D.C.; Borglin, S.E.; Chakraborty, R.C.

    2006-09-06

    The overall objective of this presentation is to demonstratea conceptual multiscale, multidomain model of coupling of biogeochemicaland hydrogeological processes during bioremediation of Cr(VI)contaminated groundwater at Hanford 100H site. A slow releasepolylactate, Hydrogen Release Compound (HRCTM), was injected in Hanfordsediments to stimulate immobilization of Cr(VI). The HRC injectioninduced a 2-order-of-magnitude increase in biomass and the onset ofreducing biogeochemical conditions [e.g., redox potential decreased from+240 to -130 mV and dissolved oxygen (DO) was completely removed]. Athree-well system, comprised of an injection well and upgradient anddowngradient monitoring wells, was used for conducting the in situbiostimulation, one regional flow (no-pumping) tracer test, and fivepumping tests along with the Br-tracer injection. Field measurements wereconducted using a Br ion-selective electrode and a multiparameter flowcell to collect hourly data on temperature, pH, redox potential,electrical conductivity, and DO. Groundwater sampling was conducted bypumping through specially designed borehole water samplers.Cross-borehole radar tomography and seismic measurements were carried outto assess the site background lithological heterogeneity and themigration pathways of HRC byproducts through groundwater after the HRCinjection.

  10. Optimal design of groundwater remediation systems using a probabilistic multi-objective fast harmony search algorithm under uncertainty

    NASA Astrophysics Data System (ADS)

    Luo, Q.; Wu, J.; Qian, J.

    2013-12-01

    This study develops a new probabilistic multi-objective fast harmony search algorithm (PMOFHS) for optimal design of groundwater remediation system under uncertainty associated with the hydraulic conductivity of aquifers. The PMOFHS integrates the previously developed deterministic multi-objective optimization method, namely multi-objective fast harmony search algorithm (MOFHS) with a probabilistic Pareto domination ranking and probabilistic niche technique to search for Pareto-optimal solutions to multi-objective optimization problems in a noisy hydrogeological environment arising from insufficient hydraulic conductivity data. The PMOFHS is then coupled with the commonly used flow and transport codes, MODFLOW and MT3DMS, to identify the optimal groundwater remediation system of a two-dimensional hypothetical test problem involving two objectives: (i) minimization of the total remediation cost through the engineering planning horizon, and (ii) minimization of the percentage of mass remaining in the aquifer at the end of the operational period, which uses the Pump-and-Treat (PAT) technology to clean up contaminated groundwater. Also, Monte Carlo (MC) analysis is used to demonstrate the effectiveness of the proposed methodology. The MC analysis is taken to each Pareto solutions for every K realization. Then the statistical mean and the upper and lower bounds of uncertainty intervals of 95% confidence level are calculated. The MC analysis results show that all of the Pareto-optimal solutions are located between the upper and lower bounds of the MC analysis. Moreover, the root mean square errors (RMSEs) between the Pareto-optimal solutions by the PMOFHS and the average values of optimal solutions by the MC analysis are 0.0204 for the first objective and 0.0318 for the second objective, quite smaller than those RMSEs between the results by the existing probabilistic multi-objective genetic algorithm (PMOGA) and the MC analysis, 0.0384 and 0.0397, respectively. In

  11. Mobility of Nanoscale and Microscale iron for groundwater remediation: experiments and modelling

    NASA Astrophysics Data System (ADS)

    Tosco, T.; Gastone, F.; Sethi, R.

    2012-12-01

    Colloidal suspensions of zerovalent iron micro- and nanoparticles (MZVI and NZVI) have been studied in recent years for in-situ groundwater remediation. Thanks to their small size, MZVI and NZVI can be dispersed in aqueous suspensions and directly injected into the subsurface, for a targeted treatment of contamination plumes and even sources. However, colloidal dispersions of such particles are not stable in pure water, due to fast aggregation (for NZVI) and gravitational sedimentation (for MZVI). Viscous, environmentally friendly fluids (guar gum and xanthan gum solutions), which exhibit shear thinning rheological properties, were found to be effective in improving colloidal stability, thus greatly improving handling and injectability (1-3). The present work reports laboratory tests and numerical modelling concerning the mobility of MZVI and NZVI viscous suspensions in porous media. The efficacy of xanthan and guar gum was investigated in column transport tests, performed injecting highly concentrated iron suspensions (20 g/L), dispersed in xanthan gum (3g/L) and guar gum (3-6 g/l) solutions. Particle breakthrough curves and concentration profiles were monitored by magnetic susceptibility measurements. Pressure drop at column ends was also continuously monitored. The tests proved that green polymers can greatly improve both colloidal stability and mobility of the particles. Their use is fundamental in particular for MZVI, which cannot be transported nor even dispersed in pure water. A numerical model for NZVI and NZVI transport in porous media was then developed (E-MNM1D, Enhanced Micro-and Nanoparticle transport Model in porous media in 1D geometry) (4). Due to the high concentration of the particles and to the non-Newtonian rheology of the carrier fluid, hydrodynamic parameters, fluid properties and concentration of deposed and suspended particles are mutually influenced. The rheological properties of the suspensions are accounted for through a variable

  12. Response to Comment on “Iodine-129 and Iodine-127 Speciation in Groundwater at Hanford Site, U.S. Iodate Incorporation into Calcite”

    SciTech Connect

    Zhang, Saijin; Xu, Chen; Creeley, Danielle; Ho, Yi-Fang; Li, Hsiu-Ping; Grandbois, Russell; Schwehr, Kathy; Kaplan, D. I.; Yeager, Chris; Wellman, Dawn M.; Santschi, Peter H.

    2013-11-04

    In his comment on our paper “Iodine-129 and Iodine-127 Speciation in Groundwater at Hanford Site, U.S.: Iodate Incorporation into Calcite”, Lu specified three concerns for Zhang et al’s study,1 including (1) precipitation mechanism (degassing vs freezing), (2) analytical methods, and (3) mass balance control. In response, comparative and comprehensive discussions on the precipitation mechanisms and iodine incorporation can be found in the paper, as well as below. This includes additional experiments of iodine distribution and speciation in calcite precipitates. In addition, the measurements of total iodine in soils/sediment were clarified below as well. The calculations on mass balance in this comment were clarified by using correct data sets. Lu proposed that freezing samples

  13. Resource Conservation and Recovery Act ground-water monitoring projects for Hanford facilities: Progress Report for the Period April 1 to June 30, 1989

    SciTech Connect

    Smith, R.M.; Bates, D.J.; Lundgren, R.E.

    1989-09-01

    This report describes the progress of 13 Hanford ground-water monitoring projects for the period April 1 to June 30, 1989. These projects are for the 300 area process trenches (300 area), 183-H solar evaporation basins (100-H area), 200 areas low-level burial grounds, nonradioactive dangerous waste landfill (southeast of the 200 areas), 1301-N liquid waste disposal facility (100-N area), 1324-N surface impoundment and 1324-NA percolation pond (100-N area), 1325-N liquid waste disposal facility (100-N area), 216-A-10 crib (200-east area), 216-A-29 ditch (200-east area), 216-A-36B crib (200-east area), 216-B-36B crib (200-east area), 216-B-3 pond (east of the 200-east area), 2101-M pond (200-east area), grout treatment facility (200-east area).

  14. Unintentional contaminant transfer from groundwater to the vadose zone during source zone remediation of volatile organic compounds.

    PubMed

    Chong, Andrea D; Mayer, K Ulrich

    2017-09-01

    Historical heavy use of chlorinated solvents in conjunction with improper disposal practices and accidental releases has resulted in widespread contamination of soils and groundwater in North America and worldwide. As a result, remediation of chlorinated solvents is required at many sites. For source zone treatment, common remediation strategies include in-situ chemical oxidation (ISCO) using potassium or sodium permanganate, and the enhancement of biodegradation by primary substrate addition. It is well known that these remediation methods tend to generate gas (carbon dioxide (CO2) in the case of ISCO using permanganate, CO2 and methane (CH4) in the case of bioremediation). Vigorous gas generation in the presence of chlorinated solvents, which are categorized as volatile organic contaminants (VOCs), may cause gas exsolution, ebullition and stripping of the contaminants from the treatment zone. This process may lead to unintentional 'compartment transfer', whereby VOCs are transported away from the contaminated zone into overlying clean sediments and into the vadose zone. To this extent, benchtop column experiments were conducted to quantify the effect of gas generation during remediation of the common chlorinated solvent trichloroethylene (TCE/C2Cl3H). Both ISCO and enhanced bioremediation were considered as treatment methods. Results show that gas exsolution and ebullition occurs for both remediation technologies. Facilitated by ebullition, TCE was transported from the source zone into overlying clean groundwater and was subsequently released into the column headspace. For the case of enhanced bioremediation, the intermediate degradation product vinyl chloride (VC) was also stripped from the treatment zone. The concentrations measured in the headspace of the columns (TCE ∼300ppm in the ISCO column, TCE ∼500ppm and VC ∼1380ppm in the bioremediation column) indicate that substantial transfer of VOCs to the vadose zone is possible. These findings provide

  15. Overview and History of DOE's Hanford Site - 12502

    SciTech Connect

    Flynn, Karen; McCormick, Matt

    2012-07-01

    Hanford's DOE offices are responsible for one of the largest nuclear cleanup efforts in the world, cleaning up the legacy of nearly five decades of nuclear weapons production. Nowhere in the DOE Complex is cleanup more challenging than at the Hanford Site in southeastern Washington. Hanford cleanup entails remediation of hundreds of large complex hazardous waste sites; disposition of nine production reactors and the preservation of one as a National Historic Landmark; demolition of hundreds of contaminated facilities including five enormous process canyons; remediation of billions of gallons of contaminated groundwater; disposition of millions of tons of low-level, mixed low-level, and transuranic waste; disposition of significant quantities of special nuclear material; storage and ultimate disposition of irradiated nuclear fuel; remediation of contamination deep in the soil that could impact groundwater; decontamination and decommissioning of hundreds of buildings and structures; and treatment of 56 million gallons of radioactive waste in 177 large underground tanks through the construction of a first-of-its-kind Waste Treatment Plant. Cleanup of the Hanford Site is a complex and challenging undertaking. The DOE Richland Operations Office has a vision and a strategy for completing Hanford's cleanup including the transition to post-cleanup activities. Information on the strategy is outlined in the Hanford Site Completion Framework. The framework describes three major components of cleanup - River Corridor, Central Plateau, and Tank Waste. It provides the context for individual cleanup actions by describing the key challenges and approaches for the decisions needed to complete cleanup. The U.S. Department of Energy (DOE), as regulated by the U.S. Environmental Protection Agency (EPA) and Washington State Department of Ecology (Ecology), is implementing a strategy to achieve final cleanup decisions for the River Corridor portion of the Hanford Site. The DOE Richland

  16. In Situ Redox Manipulation Field Injection Test Report - Hanford 100-H Area

    SciTech Connect

    Fruchter, J.S.; Amonette, J.E.; Cole, C.R.

    1996-11-01

    This report presents results of an In Situ Redox Manipulation (ISRM) Field Injection Withdrawal Test performed at the 100-H Area of the US. Department of Energy`s (DOE`s) Hanford Site in Washington State in Fiscal Year 1996 by researchers at Pacific Northwest National Laboratory (PNNL). The test is part of the overall ISRM project, the purpose of which is to determine the potential for remediating contaminated groundwater with a technology based on in situ manipulation of subsurface reduction-oxidation (redox) conditions. The ISRM technology would be used to treat subsurface contaminants in groundwater zones at DOE sites.

  17. Grand challenge problems in environmental modeling and remediation: Groundwater contaminant transport. Final project report 1998

    SciTech Connect

    1998-04-01

    The over-reaching goal of the Groundwater Grand Challenge component of the Partnership in Computational Science (PICS) was to develop and establish the massively parallel approach for the description of groundwater flow and transport and to address the problem of uncertainties in the data and its interpretation. This necessitated the development of innovative algorithms and the implementation of massively parallel computational tools to provide a suite of simulators for groundwater flow and transport in heterogeneous media. This report summarizes the activities and deliverables of the Groundwater Grand Challenge project funded through the High Performance Computing grand challenge program of the Department of Energy from 1995 through 1997.

  18. Use of Electrical Imaging and Distributed Temperature Sensing Methods to Characterize Surface Water-Groundwater Exchange Regulating Uranium Transport at the Hanford 300 Area, Washington

    SciTech Connect

    Slater, Lee; Ntarlagiannis, Dimitrios; Day-Lewis, Frederick D.; Mwakanyamale, Kisa; Versteeg, Roelof J.; Ward, Anderson L.; Strickland, Christopher E.; Johnson, Carole D.; Lane, John W.

    2010-10-31

    A critical challenge in advancing prediction of solute transport between contaminated aquifers and rivers is improving understanding of how fluctuations in river stage, combined with subsurface heterogeneity, impart spatiotemporal complexity to solute exchange along river corridors. Here, we explored the use of waterborne geoelectrical imaging, in conjunction with fiber-optic distributed temperature sensor (DTS) monitoring, to improve the conceptual model for uranium transport within the hyporheic corridor at the Hanford 300 Area. We first inverted waterborne geoelectrical (resistivity and induced polarization) datasets for distributions of electrical resistivity and polarizability, from which the spatial complexity of the primary hydrogeologic units was reconstructed. Variations in the depth to the interface between the overlying coarse-grained, high permeability Hanford formation and the underlying finer-grained, less permeable Ringold formation, an important contact that limits vertical migration of contaminants, were resolved along ~3 km of the river corridor centered on the 300 Area. Polarizability images were translated into lithologic images using established relationships between polarizability and surface area normalized to pore volume (Spor). The spatial variability captured in the geoelectrical datasets indicates that previous studies based on borehole projections and point probing overestimate the contributing area for uranium exchange within the Columbia River at the Hanford 300 Area. The DTS data recorded on 1. 5 km of cable with a 1 m spatial resolution and 5 minute sampling interval revealed sub-reaches showing (1) high temperature anomalies and, (2) a strong negative correlation between temperature and river stage, both indicative of groundwater influxes during winter months. The DTS datasets confirm the hydrologic significance of the variability identified in the geoelectrical imaging and reveal a pattern of highly focused hyporheic exchange, with

  19. Observational Approach to Chromium Site Remediation - 13266

    SciTech Connect

    Scott Myers, R.

    2013-07-01

    Production reactors at the U.S. Department of Energy's (DOE) Hanford Site in Richland, Washington, required massive quantities of water for reactor cooling and material processing. To reduce corrosion and the build-up of scale in pipelines and cooling systems, sodium dichromate was added to the water feedstock. Spills and other releases at the makeup facilities, as well as leaks from miles of pipelines, have led to numerous areas with chromium-contaminated soil and groundwater, threatening fish populations in the nearby Columbia River. Pump-and-treat systems have been installed to remove chromium from the groundwater, but significant contamination remain in the soil column and poses a continuing threat to groundwater and the Columbia River. Washington Closure Hanford, DOE, and regulators are working on a team approach that implements the observational approach, a strategy for effectively dealing with the uncertainties inherent in subsurface conditions. Remediation of large, complex waste sites at a federal facility is a daunting effort. It is particularly difficult to perform the work in an environment of rapid response to changing field and contamination conditions. The observational approach, developed by geotechnical engineers to accommodate the inherent uncertainties in subsurface conditions, is a powerful and appropriate method for site remediation. It offers a structured means of quickly moving into full remediation and responding to the variations and changing conditions inherent in waste site cleanups. A number of significant factors, however, complicate the application of the observational approach for chromium site remediation. Conceptual models of contamination and site conditions are difficult to establish and get consensus on. Mid-stream revisions to the design of large excavations are time-consuming and costly. And regulatory constraints and contract performance incentives can be impediments to the flexible responses required under the observational

  20. Comparison of permeable reactive barrier, funnel and gate, nonpumped wells, and low-capacity wells for groundwater remediation.

    PubMed

    Hudak, Paul F

    2014-01-01

    This modeling study compared the performance of a no-action and four active groundwater remediation alternatives: a permeable reactive barrier, a funnel and gate, nonpumped wells with filter media, and a low-capacity extraction and injection well. The simulated aquifer had an average seepage velocity of 0.04 m d(-1), and the initial contaminant plume was 58 m long and 13 m wide. For each active alternative, mass transport modeling identified the smallest structure necessary to contain and remove the contaminant plume. Although the no-action alternative did not contain the plume, each active alternative did contain and remove the plume, but with significantly different installation and operation requirements. Low-capacity pumping wells required the least infrastructure, with one extraction well and one injection well each discharging only 1.7 m(3) d(-1). The amount of time necessary to remove the contaminant plume was similar among active alternatives, except for the funnel and gate, which required much more time. Results of this study suggest that, for a modest seepage velocity and relatively narrow contaminant plume, low-capacity wells may be an effective alternative for groundwater remediation.

  1. Results of Phase I groundwater quality assessment for single-shell tank waste management Area S-SX at the Hanford Site

    SciTech Connect

    Johnson, V.G.; Chou, C.J.

    1998-01-01

    Pacific Northwest National Laboratory (PNNL) conducted a Phase I, Resource Conservation and Recovery Act of 1976 (RCRA) groundwater quality assessment for the Richland Field Office of the U.S. Department of Energy (DOE-RL), in accordance with the Federal Facility Compliance Agreement. The purpose of the investigation was to determine if the Single-Shell Tank Waste Management Area (WMA) S-SX has impacted groundwater quality. The WMA is located in the southern portion of the 200 West Area of the Hanford Site and consists of the 241-S and 241-SX tank farms and ancillary waste systems. The unit is regulated under RCRA interim-status regulations (40 CFR 265, Subpart F) and was placed in assessment groundwater monitoring (40 CFR 265.93 [d]) in August 1996 because of elevated specific conductance and technetium-99, a non-RCRA co-contaminant, in downgradient monitoring wells. Major findings of the assessment are summarized below: (1) Distribution patterns for radionuclides and RCRA/dangerous waste constituents indicate WMA S-SX has contributed to groundwater contamination observed in downgradient monitoring wells. (2) Drinking water standards for nitrate and technetium-99 are currently exceeded in one RCRA-compliant well (299-W22-46) located at the southeastern comer of the SX tank farm. (3) Technetium-99, nitrate, and chromium concentrations in downgradient well 299-W22-46 (the well with the highest current concentrations) appear to be declining after reaching maximum concentrations in May 1997. (4) Cesium-137 and strontium-90, major constituents of concern in single-shell tank waste, were not detected in any of the RCRA-compliant wells in the WMA network, including the well with the highest current technetium-99 concentrations (299-W22-46). (5) Low but detectable strontium-90 and cesium-137 were found in one old well (2-W23-7), located inside and between the S and SX tank farms.

  2. Radioiodine sorption/desorption and speciation transformation by subsurface sediments from the Hanford Site

    SciTech Connect

    Xu, Chen; Kaplan, Daniel I.; Zhang, Saijin; Athon, Matthew; Ho, Yi-Fang; Li, Hsiu-Ping; Yeager, Chris; Schwehr, Kathy; Grandbois, Russell; Wellman, Dawn M.; Santschi, Peter H.

    2015-01-01

    During the last few decades, considerable research efforts have been extended to identify more effective remediation treatment technologies to lower the 129I concentrations to below federal drinking water standards at the Hanford Site (Richland, USA). Few studies have taken iodate into consideration, though recently iodate, instead of iodide, was identified as the major species in the groundwater of 200-West Area within the Hanford Site. The objective of this study was thus to quantify and understand aqueous radioiodine species transformations and uptake by three sediments collected from the semiarid, carbonate-rich environment of the Hanford subsurface. All three sediments reduced iodate (IO-) to iodide (I-), but the loamy-sand sediment reduced more IO3- (100% reduced within 7 days) than the two sand-textured sediments (~20% reduced after 28 days). No dissolved organo-iodine species were observed in any of these studies.

  3. PERMEABLE REACTIVE BARRIER STRATEGIES FOR REMEDIATION OF ARSENIC-CONTAMINATED GROUNDWATER

    EPA Science Inventory

    Results are presented from laboratory batch tests using zero-valent iron to treat arsenic-contaminated groundwater. The laboratory tests were conducted using near- neutral pH groundwater from a contaminated aquifer located adjacent to a custom smelting facility. Experiments we...

  4. Vertical circulation flows for vadose and groundwater zone in situ (bio-)remediation

    SciTech Connect

    Stamm, J.

    1995-12-31

    Vertical circulation flows have been established under in situ remediation techniques. Their hydraulic flow field permits physical and biological remediation of the saturated, as well as the unsaturated subsoil. A special advantage is that these techniques can be combined with any appropriate in-well or on-site technique. Even addition of nutrients and/or electron acceptors for stimulating biological degradation processes are possible. This paper discusses the different remediation techniques and the numerical results associated with the influence of hydrogeologic conditions on the system`s radius of influence and time behavior. Attention is focused on BTEX, PCE, and TCE.

  5. Combined nano-biotechnology for in-situ remediation of mixed contamination of groundwater by hexavalent chromium and chlorinated solvents.

    PubMed

    Němeček, Jan; Pokorný, Petr; Lhotský, Ondřej; Knytl, Vladislav; Najmanová, Petra; Steinová, Jana; Černík, Miroslav; Filipová, Alena; Filip, Jan; Cajthaml, Tomáš

    2016-09-01

    The present report describes a 13month pilot remediation study that consists of a combination of Cr(VI) (4.4 to 57mg/l) geofixation and dechlorination of chlorinated ethenes (400 to 6526μg/l), achieved by the sequential use of nanoscale zerovalent iron (nZVI) particles and in situ biotic reduction supported by whey injection. The remediation process was monitored using numerous techniques, including physical-chemical analyses and molecular biology approaches which enabled both the characterization of the mechanisms involved in pollutant transformation and the description of the overall background processes of the treatment. The results revealed that nZVI was efficient toward Cr(VI) by itself and completely removed it from the groundwater (LOQ 0.05mg/l) and the subsequent application of whey resulted in a high removal of chlorinated ethenes (97 to 99%). The persistence of the reducing conditions, even after the depletion of the organic substrates, indicated a complementarity between nZVI and the whey phases in the combined technology as the subsequent application of whey phase partially assisted the microbial regeneration of the spent nZVI by promoting its reduction into Fe(II), which further supported remediation conditions at the site. Illumina sequencing and the detection of functional vcrA and bvcA genes documented a development in the reducing microbes (iron-reducing, sulfate-reducing and chlororespiring bacteria) that benefited under the conditions of the site and that was probably responsible for the high dechlorination and/or Cr(VI) reduction. The results of this study demonstrate the feasibility and high efficiency of the combined nano-biotechnological approach of nZVI and whey application in-situ for the removal of Cr(VI) and chlorinated ethenes from the groundwater of the contaminated site. Copyright © 2016 Elsevier B.V. All rights reserved.

  6. The development and application of a multilevel decision analysis model for the remediation of contaminated groundwater under uncertainty.

    PubMed

    Wang, Todd A; McTernan, William F

    2002-03-01

    A study was initiated which combined elements of stochastic hydrology, risk assessment, simulation modeling, cost analysis and decision making to define the optimum remediation choice(s) for a Superfund site in the southern United States. The effort focused upon the premise that groundwater remediation is inherently complex due to uncertainties in the geological matrix as well as in contaminant concentrations at points of compliance and/or exposure. The technical analyst should supply the decision maker with estimates of these uncertainties as well as the cost penalties required to reduce them to manageable levels. Monte Carlo transport modeling was employed to define the probability of contaminant excursions from the site, while geostatistical simulation identified a joint plume configuration and its attendant probability. Bayesian modeling was used to define the worth of additional data. These individual components were combined within a Decision Model to identify optimum remediation configurations for a given levels of risk tolerance which could be supplied by the decision maker or affected community. Sensitivity analyses were conducted to define ranges over which the decision would not be affected by variation in the respective decision parameter.

  7. Demonstration test and evaluation of ultraviolet/ultraviolet catalyzed peroxide oxidation for groundwater remediation at Oak Ridge K-25 Site

    SciTech Connect

    1994-12-31

    In the UItraviolet/Ultraviolet Catalyzed Groundwater Remediation program, W.J. Schafer Associates, Inc. (WJSA) demonstrated, tested and evaluated a new ultraviolet (UV) lamp integrated with an existing commercial technology employing UV catalyzed peroxide oxidation to destroy organics in groundwater at an Oak Ridge K-25 site. The existing commercial technology is the perox-pure{trademark} process of Peroxidation Systems Incorporated (PSI) that employs standard UV lamp technology to catalyze H{sub 2}O{sub 2} into OH radicals, which attack many organic molecules. In comparison to classical technologies for remediation of groundwater contaminated with organics, the perox-pure{trademark} process not only is cost effective but also reduces contaminants to harmless by-products instead of transferring the contaminants from one medium to another (such as in activated carbon or air stripping). Although the perox-pure{trademark} process is cost effective against many organics, it is not effective for some organic contaminants of interest to DOE such as TCA, which has the highest concentration of the organics at the K-25 test site. Contaminants such as TCA are treated more readily by direct photolysis using short wavelength UV light. WJSA has been developing a unique UV lamp which is very efficient in the short UV wavelength region. Consequently, combining this UV lamp with the perox-pure{trademark} process results in a means for treating essentially all organic contaminants. In the program reported here, the new UV lamp lifetime was improved and the lamp integrated into a PSI demonstration trailer. Even though this UV lamp operated at less than optimum power and UV efficiency, the destruction rate for the TCA was more than double that of the commercial unit. An optimized UV lamp may double again the destruction rate; i.e., a factor of four greater than the commercial system.

  8. Column tests to enhance sulphide precipitation with liquid organic electron donators to remediate AMD-influenced groundwater

    NASA Astrophysics Data System (ADS)

    Bilek, Felix

    2006-03-01

    Dump groundwaters in the former East-German lignite-mining district are characterized by high amounts of ferrous iron and sulphate. Both the pyrite weathering products endanger the surface water quality when discharged into lakes. Only the precipitation of both contaminants in the subsurface can prevent the further contamination of surface waters. The two-step process of microbial catalyzed sulphate reduction and iron sulphide precipitation is limited by the low availability of natural organic substances as electron donators. Therefore, a new remediation technique is developed based on the injection of a liquid organic electron donator (methanol) into the contaminated aquifer. The saturated aquifer is used as a bioreactor, where iron monosulphides are precipitated in the groundwater-filled pore space. Column experiments were performed under natural pressure and temperature conditions with natural anoxic groundwater and original sediments to test the remediation technology. The test showed that a complete iron removal (4 mmol/l), even under rather acid conditions (pH 3.8), is possible after having established an active sulphate reducer population. The turnover of the added organic substance with sulphate is complete and the amount of the resulting sulphide controls the effluent pH. In addition, intensified microbial activity triggers the turnover of natural organic substances. Also, natural Fe(III) hydroxides react with the sulphide produced. Considering the long natural retention times (decades), artificially enhanced FeS precipitation is spontaneous, although it shows kinetic behaviour in the range of days. In light of the promising results, the development of a field scale application of this technique is considered to be necessary. It will have to focus on the improved precipitation control of the FeS in the subsurface.

  9. FINAL FRONTIER AT HANFORD TACKLING THE CENTRAL PLATEAU

    SciTech Connect

    GERBER MS

    2008-03-04

    The large land area in the center of the vast Department of Energy (DOE) Hanford Site in southeast Washington State is known as 'the plateau'--aptly named because its surface elevations are 250-300 feet above the groundwater table. By contrast, areas on the 585-square mile Site that border the Columbia River sit just 30-80 feet above the water table. The Central Plateau, which covers an ellipse of approximately 70 square miles, contains Hanford's radiochemical reprocessing areas--the 200 East and 200 West Areas--and includes the most highly radioactive waste and contaminated facilities on the Site. Five 'canyons' where chemical processes were used to separate out plutonium (Pu), 884 identified soil waste sites (including approximately 50 miles of solid waste burial trenches), more than 900 structures, and all of Hanford's liquid waste storage tanks reside in the Central Plateau. (Notes: Canyons is a nickname given by Hanford workers to the chemical reprocessing facilities. The 177, underground waste tanks at Hanford comprise a separate work scope and are not under Fluor's management). Fluor Hanford, a DOE prime cleanup contractor at the Site for the past 12 years, has moved aggressively to investigate Central Plateau waste sites in the last few years, digging more than 500 boreholes, test pits, direct soil 'pushes' or drive points; logging geophysical data sets; and performing electrical-resistivity scans (a non-intrusive technique that maps patterns of sub-surface soil conductivity). The goal is to identify areas of contamination areas in soil and solid waste sites, so that cost-effective and appropriate decisions on remediation can be made. In 2007, Fluor developed a new work plan for DOE that added 238 soil waste-site characterization activities in the Central Plateau during fiscal years (FYs) 2007-2010. This number represents a 50 percent increase over similar work previously done in central Hanford. Work Plans are among the required steps in the Comprehensive

  10. CENTRAL PLATEAU REMEDIATION

    SciTech Connect

    ROMINE, L.D.

    2006-02-01

    A systematic approach to closure planning is being implemented at the Hanford Site's Central Plateau to help achieve the goal of closure by the year 2035. The overall objective of Central Plateau remediation is to protect human health and the environment from the significant quantity of contaminated material that resulted from decades of plutonium production in support of the nation's defense. This goal will be achieved either by removing contaminants or placing the residual contaminated materials in a secure configuration that minimizes further migration to the groundwater and reduces the potential for inadvertent intrusion into contaminated sites. The approach to Central Plateau cleanup used three key concepts--closure zones, closure elements, and closure process steps--to create an organized picture of actions required to complete remediation. These actions were merged with logic ties, constraints, and required resources to produce an integrated time-phased schedule and cost profile for Central Plateau closure. Programmatic risks associated with implementation of Central Plateau closure were identified and analyzed. Actions to mitigate the most significant risks are underway while high priority remediation projects continue to make progress.

  11. Applications of Nano Reactive Materials in Remediation of Persistence Organic Pollutants in Sediments and Groundwater - Presentation

    EPA Science Inventory

    Remediation of sediments and water contaminated hydrophobic organic chemicals (HOCs) such as polychlorinated biphenyls (PCBs) remains a scientific and technical challenge. PCBs-contaminated sediments are ubiquitous despite the production and use of PCBs was banned in 1979 due to...

  12. Applications of Nano Reactive Materials in Remediation of Persistence Organic Pollutants in Sediments and Groundwater - Presentation

    EPA Science Inventory

    Remediation of sediments and water contaminated hydrophobic organic chemicals (HOCs) such as polychlorinated biphenyls (PCBs) remains a scientific and technical challenge. PCBs-contaminated sediments are ubiquitous despite the production and use of PCBs was banned in 1979 due to...

  13. The handbook of groundwater engineering

    SciTech Connect

    Delleur, J.W.

    1998-12-31

    From an engineering perspective, this book provides a practical treatment of groundwater flow; substance transport, well construction, groundwater production, site characterization, and remediation of groundwater pollution.

  14. Rhizofiltration using sunflower (Helianthus annuus L.) and bean (Phaseolus vulgaris L. var. vulgaris) to remediate uranium contaminated groundwater.

    PubMed

    Lee, Minhee; Yang, Minjune

    2010-01-15

    The uranium removal efficiencies of rhizofiltration in the remediation of groundwater were investigated in lab-scale experiments. Sunflower (Helianthus annuus L.) and bean (Phaseolus vulgaris L. var. vulgaris) were cultivated and an artificially uranium contaminated solution and three genuine groundwater samples were used in the experiments. More than 80% of the initial uranium in solution and genuine groundwater, respectively, was removed within 24h by using sunflower and the residual uranium concentration of the treated water was lower than 30 microg/L (USEPA drinking water limit). For bean, the uranium removal efficiency of the rhizofiltration was roughly 60-80%. The maximum uranium removal via rhizofiltration for the two plant cultivars occurred at pH 3-5 of solution and their uranium removal efficiencies exceeded 90%. The lab-scale continuous rhizofiltration clean-up system delivered over 99% uranium removal efficiency, and the results of SEM and EDS analyses indicated that most uranium accumulated in the roots of plants. The present results suggested that the uranium removal capacity of two plants evaluated in the clean-up system was about 25mg/kg of wet plant mass. Notably, the removal capacity of the root parts only was more than 500 mg/kg.

  15. Using the natural biodegradation potential of shallow soils for in-situ remediation of deep vadose zone and groundwater.

    PubMed

    Avishai, Lior; Siebner, Hagar; Dahan, Ofer; Ronen, Zeev

    2017-02-15

    In this study, we examined the ability of top soil to degrade perchlorate from infiltrating polluted groundwater under unsaturated conditions. Column experiments designed to simulate typical remediation operation of daily wetting and draining cycles of contaminated water amended with an electron donor. Covering the infiltration area with bentonite ensured anaerobic conditions. The soil remained unsaturated, and redox potential dropped to less than -200mV. Perchlorate was reduced continuously from ∼1150mg/L at the inlet to ∼300mg/L at the outlet in daily cycles. Removal efficiency was between 60 and 84%. No signs of bioclogging were observed during three operation months although occasional iron reduction observed due to excess electron donor. Changes in perchlorate reducing bacteria numbers were inferred from an increased in pcrA gene abundances from ∼10(5) to 10(7) copied per gram at the end of the experiment indicating the growth of perchlorate-reducing bacteria. We proposed that the topsoil may serve as a bioreactor to treat high concentrations of perchlorate from the contaminated groundwater. The treated water that infiltrates from the topsoil through the vadose zone could be used to flush perchlorate from the deep vadose zone into the groundwater where it is retrieved again for treatment in the topsoil.

  16. Arsenic in groundwater in Bangladesh: A geostatistical and epidemiological framework for evaluating health effects and potential remedies

    NASA Astrophysics Data System (ADS)

    Yu, Winston H.; Harvey, Charles M.; Harvey, Charles F.

    2003-06-01

    This paper examines the health crisis in Bangladesh due to dissolved arsenic in groundwater. First, we use geostatistical methods to construct a map of arsenic concentrations that divides Bangladesh into regions and estimate vertical concentration trends in these regions. Then, we use census data to estimate exposure distributions in the regions; we use epidemiological data from West Bengal and Taiwan to estimate dose response funct