Science.gov

Sample records for hanford operational impacts

  1. Transient Inverse Calibration of Hanford Site-Wide Groundwater Model to Hanford Operational Impacts - 1943 to 1996

    SciTech Connect

    Cole, Charles R.; Bergeron, Marcel P.; Wurstner, Signe K.; Thorne, Paul D.; Orr, Samuel; Mckinley, Mathew I.

    2001-05-31

    This report describes a new initiative to strengthen the technical defensibility of predictions made with the Hanford site-wide groundwater flow and transport model. The focus is on characterizing major uncertainties in the current model. PNNL will develop and implement a calibration approach and methodology that can be used to evaluate alternative conceptual models of the Hanford aquifer system. The calibration process will involve a three-dimensional transient inverse calibration of each numerical model to historical observations of hydraulic and water quality impacts to the unconfined aquifer system from Hanford operations since the mid-1940s.

  2. Preliminary examination of the impacts of repository site characterization activities and facility construction and operation activities on Hanford air quality

    SciTech Connect

    Glantz, C.S.; Ramsdell, J.V.

    1986-04-01

    Air quality impacts that would result from site characterization activities and from the construction and operation of a high-level nuclear wste repository at Hanford are estimated using two simple atmospheric dispersion models, HANCHI and CHISHORT. Model results indicate that pollutant concentrations would not exceed ambient air quality standards at any point outside the Hanford fenceline or at any publicly accessible location within the Hanford Site. The increase in pollutant concentrations in nearby communities due to site activities would be minimal. HANCHI and CHISHORT are documented in the appendices of this document. Further study of the repository's impact on air quality will be conducted when more detailed project plans and work schedules are available.

  3. List of currently classified documents relative to Hanford Operations and of potential use in the Columbia River Comprehensive Impact Assessment, January 1, 1973--June 20, 1994

    SciTech Connect

    Miley, T.B.; Huesties, L.R.

    1995-02-01

    The Columbia River Comprehensive Impact Assessment (CRCIA) Project seeks to estimate the current risk from the Columbia River resulting from past and present Hanford activities. To resolve the question of the current risk, it is necessary for the CRCIA Project to have access to any classified information that may be relevant to this study. The purpose of this report is to present the results of the search for relevant classified information. There are two classified matter control centers operated by two prime contractors at the Hanford Site. One is operated by Pacific Northwest Laboratory (PNL) and the other is operated by Westinghouse Hanford Company (WHC). Only the WHC collection contained information relevant to a study of the Columbia River in the time frame of interest: January 1, 1973 through June 20, 1994. A list of the classified documents in the WHC collection is maintained in the WHC Classified Document Control database. The WHC Classified Document Control database was searched. The search criteria were the dates of interest and the basic keywords used for the CRCIA Project`s data compendium (Eslinger et al. 1994). All Hanford-generated, Hanford-related entries that were applicable to the CRCIA Project and the dates of interest were provided. The resulting list of 477 titles comprises the Appendix of this report. The information give for each title is exactly as it appears in the database. Any inconsistencies are the result of duplicating the database.

  4. Potential radiological impacts of upper-bound operational accidents during proposed waste disposal alternatives for Hanford defense waste

    SciTech Connect

    Mishima, J.; Sutter, S.L.; Hawley, K.A.; Jenkins, C.E.; Napier, B.A.

    1986-02-01

    The Geologic Disposal Alternative, the In-Place Stabilization and Disposal Alternative, and the Reference Disposal Alternative are being evaluated for disposal of Hanford defense high-level, transuranic, and tank wastes. Environmental impacts associated with disposal of these wastes according to the alternatives listed above include potential doses to the downwind population from operation during the application of the handling and processing techniques comprising each disposal alternative. Scenarios for operational accident and abnormal operational events are postulated, on the basis of the currently available information, for the application of the techniques employed for each waste class for each disposal alternative. From these scenarios, an upper-bound airborne release of radioactive material was postulated for each waste class and disposal alternative. Potential downwind radiologic impacts were calculated from these upper-bound events. In all three alternatives, the single postulated event with the largest calculated radiologic impact for any waste class is an explosion of a mixture of ferri/ferro cyanide precipitates during the mechanical retrieval or microwave drying of the salt cake in single shell waste tanks. The anticipated downwind dose (70-year dose commitment) to the maximally exposed individual is 3 rem with a total population dose of 7000 man-rem. The same individual would receive 7 rem from natural background radiation during the same time period, and the same population would receive 3,000,000 man-rem. Radiological impacts to the public from all other postulated accidents would be less than that from this accident; furthermore, the radiological impacts resulting from this accident would be less than one-half that from the natural background radiation dose.

  5. Westinghouse Hanford Company operational environmental monitoring annual report, CY 1992

    SciTech Connect

    Schmidt, J.W.; Johnson, A.R.; McKinney, S.M.; Perkins, C.J.

    1993-07-01

    This document presents the results of the Westinghouse Hanford Company near-facility operational environmental monitoring for 1992 in the 100, 200/600, and 300/400 Areas of the Hanford Site, in south-central Washington State in 1992. Surveillance activities included sampling and analyses of ambient air, surface water, groundwater, sediments, soil, and biota. Also, external radiation measurements and radiological surveys were taken at waste disposal sites, radiologically controlled areas, and roads. These activities were conducted to assess and to control the impacts of nuclear facilities and waste sites on the workers and the local environment. Additionally, diffuse sources were monitored to determine compliance with Federal, State, and/or local regulations. In general, although impacts from nuclear facilities are still seen on the Hanford Site and are slightly elevated when compared to offsite, these impacts are less than in previous years.

  6. Hanford Site air operating permit application

    SciTech Connect

    1995-05-01

    The Clean Air Act Amendments of 1990, which amended the Federal Clean Air Act of 1977, required that the US Environmental Protection Agency develop a national Air Operating Permit Program, which in turn would require each state to develop an Air Operating Permit Program to identify all sources of ``regulated`` pollutants. Regulated pollutants include ``criteria`` pollutants (oxides of nitrogen, sulfur oxides, total suspended particulates, carbon monoxide, particulate matter greater than 10 micron, lead) plus 189 other ``Hazardous`` Air Pollutants. The Hanford Site, owned by the US Government and operated by the US Department of Energy, Richland Operations Office, is located in southcentral Washington State and covers 560 square miles of semi-arid shrub and grasslands located just north of the confluence of the Snake and Yakima Rivers with the Columbia River. This land, with restricted public access, provides a buffer for the smaller areas historically used for the production of nuclear materials, waste storage, and waste disposal. About 6 percent of the land area has been disturbed and is actively used. The Hanford Site Air Operating Permit Application consists of more than 1,100 sources and in excess of 300 emission points. Before January 1995, the maintenance and operations contractor and the environmental restoration contractor for the US Department of Energy completed an air emission inventory on the Hanford Site. The inventory has been entered into a database so that the sources and emission points can be tracked and updated information readily can be retrieved. The Hanford Site Air Operating Permit Application contains information current as of April 19, 1995.

  7. Geographic and Operational Site Parameters List (GOSPL) for Hanford Assessments

    SciTech Connect

    Last, George V.; Nichols, William E.; Kincaid, Charles T.

    2006-06-01

    This data package was originally prepared to support a 2004 composite analysis (CA) of low-level waste disposal at the Hanford Site. The Technical Scope and Approach for the 2004 Composite Analysis of Low Level Waste Disposal at the Hanford Site (Kincaid et. al. 2004) identified the requirements for that analysis and served as the basis for initial preparation of this data package. Completion of the 2004 CA was later deferred, with the 2004 Annual Status Report for the Composite Analysis of Low-Level Waste Disposal in the Central Plateau at the Hanford Site (DOE 2005) indicating that a comprehensive update to the CA was in preparation and would be submitted in 2006. However, the U.S. Department of Energy (DOE) has recently decided to further defer the CA update and will use the cumulative assessment currently under preparation for the environmental impact statement (EIS) being prepared for tank closure and other site decisions as the updated CA. Submittal of the draft EIS is currently planned for FY 2008. This data package describes the facility-specific parameters (e.g. location, operational dates, etc.) used to numerically simulate contaminant flow and transport in large-scale Hanford assessments. Kincaid et al. (2004) indicated that the System Assessment Capability (SAC) (Kincaid et al. 2000; Bryce et al. 2002; Eslinger 2002a, 2002b) would be used to analyze over a thousand different waste sites. A master spreadsheet termed the Geographic and Operational Site Parameters List (GOSPL) was assembled to facilitate the generation of keyword input files containing general information on each waste site/facility, its operational/disposal history, and its environmental settings (past, current, and future). This report briefly describes each of the key data fields, including the source(s) of data, and provides the resulting inputs to be used for large-scale Hanford assessments.

  8. SYSTEM PLANNING WITH THE HANFORD WASTE OPERATIONS SIMULATOR

    SciTech Connect

    CRAWFORD TW; CERTA PJ; WELLS MN

    2010-01-14

    At the U. S. Department of Energy's Hanford Site in southeastern Washington State, 216 million liters (57 million gallons) of nuclear waste is currently stored in aging underground tanks, threatening the Columbia River. The River Protection Project (RPP), a fully integrated system of waste storage, retrieval, treatment, and disposal facilities, is in varying stages of design, construction, operation, and future planning. These facilities face many overlapping technical, regulatory, and financial hurdles to achieve site cleanup and closure. Program execution is ongoing, but completion is currently expected to take approximately 40 more years. Strategic planning for the treatment of Hanford tank waste is by nature a multi-faceted, complex and iterative process. To help manage the planning, a report referred to as the RPP System Plan is prepared to provide a basis for aligning the program scope with the cost and schedule, from upper-tier contracts to individual facility operating plans. The Hanford Tank Waste Operations Simulator (HTWOS), a dynamic flowsheet simulation and mass balance computer model, is used to simulate the current planned RPP mission, evaluate the impacts of changes to the mission, and assist in planning near-term facility operations. Development of additional modeling tools, including an operations research model and a cost model, will further improve long-term planning confidence. The most recent RPP System Plan, Revision 4, was published in September 2009.

  9. Potential radiation doses from 1994 Hanford Operations

    SciTech Connect

    Soldat, J.K.; Antonio, E.J.

    1995-06-01

    This section of the 1994 Hanford Site Environmental Report summarizes the potential radiation doses to the public from releases originating at the Hanford Site. Members of the public are potentially exposed to low-levels of radiation from these effluents through a variety of pathways. The potential radiation doses to the public were calculated for the hypothetical MEI and for the general public residing within 80 km (50 mi) of the Hanford Site.

  10. Ground-water contribution to dose from past Hanford Operations. Hanford Environmental Dose Reconstruction Project

    SciTech Connect

    Freshley, M.D.; Thorne, P.D.

    1992-08-01

    The Hanford Environmental Dose Reconstruction (HEDR) Project is being conducted to estimate radiation doses that populations and individuals could have received from Hanford Site operations from 1944 to the present. Four possible pathways by which radionuclides migrating in ground water on the Hanford Site could have reached the public have been identified: (1) through contaminated ground water migrating to the Columbia River; (2) through wells on or adjacent to the Hanford Site; (3) through wells next to the Columbia River downstream of Hanford that draw some or all of their water from the river (riparian wells); and (4) through atmospheric deposition resulting in contamination of a small watershed that, in turn, results in contamination of a shallow well or spring by transport in the ground water. These four pathways make up the ``ground-water pathway,`` which is the subject of this study. Assessment of the ground-water pathway was performed by (1) reviewing the existing extensive literature on ground water and ground-water monitoring at Hanford and (2) performing calculations to estimate radionuclide concentrations where no monitoring data were collected. Radiation doses that would result from exposure to these radionuclides were calculated.

  11. Final Hanford Comprehensive Land-Use Plan Environmental Impact Statement, Hanford Site, Richland, Washington

    SciTech Connect

    N /A

    1999-10-01

    This Final ''Hanford Comprehensive Land-Use Plan Environmental Impact Statement'' (HCP EIS) is being used by the Department of Energy (DOE) and its nine cooperating and consulting agencies to develop a comprehensive land-use plan (CLUP) for the Hanford Site. The DOE will use the Final HCP EIS as a basis for a Record of Decision (ROD) on a CLUP for the Hanford Site. While development of the CLUP will be complete with release of the HCP EIS ROD, full implementation of the CLUP is expected to take at least 50 years. Implementation of the CLUP would begin a more detailed planning process for land-use and facility-use decisions at the Hanford Site. The DOE would use the CLUP to screen proposals. Eventually, management of Hanford Site areas would move toward the CLUP land-use goals. This CLUP process could take more than 50 years to fully achieve the land-use goals.

  12. Documents containing operating data for Hanford separations processes, 1944--1972. Hanford Environmental Dose Reconstruction Project

    SciTech Connect

    Gydesen, S.P.

    1992-09-01

    The purpose of this letter report is to identify documents that record batch, daily, or selected monthly separations processes operating information at the Hanford Site for the years 1944-1972. The information found in these documents is needed to develop the source terms necessary to make dose estimates. The documents have been identified, located, declassified if necessary, evaluated, and made available to the HEDR Project in general, the HEDR Task 03 (Source Terms) in particular, and the public. Complete bibliographic citations and some sample pages from the Hanford separations processes documents are included.

  13. THE HANFORD WASTE FEED DELIVERY OPERATIONS RESEARCH MODEL

    SciTech Connect

    BERRY J; GALLAHER BN

    2011-01-13

    Washington River Protection Solutions (WRPS), the Hanford tank farm contractor, is tasked with the long term planning of the cleanup mission. Cleanup plans do not explicitly reflect the mission effects associated with tank farm operating equipment failures. EnergySolutions, a subcontractor to WRPS has developed, in conjunction with WRPS tank farms staff, an Operations Research (OR) model to assess and identify areas to improve the performance of the Waste Feed Delivery Systems. This paper provides an example of how OR modeling can be used to help identify and mitigate operational risks at the Hanford tank farms.

  14. Ground-water contribution to dose from past Hanford Operations

    SciTech Connect

    Freshley, M.D.; Thorne, P.D.

    1992-08-01

    The Hanford Environmental Dose Reconstruction (HEDR) Project is being conducted to estimate radiation doses that populations and individuals could have received from Hanford Site operations from 1944 to the present. Four possible pathways by which radionuclides migrating in ground water on the Hanford Site could have reached the public have been identified: (1) through contaminated ground water migrating to the Columbia River; (2) through wells on or adjacent to the Hanford Site; (3) through wells next to the Columbia River downstream of Hanford that draw some or all of their water from the river (riparian wells); and (4) through atmospheric deposition resulting in contamination of a small watershed that, in turn, results in contamination of a shallow well or spring by transport in the ground water. These four pathways make up the ground-water pathway,'' which is the subject of this study. Assessment of the ground-water pathway was performed by (1) reviewing the existing extensive literature on ground water and ground-water monitoring at Hanford and (2) performing calculations to estimate radionuclide concentrations where no monitoring data were collected. Radiation doses that would result from exposure to these radionuclides were calculated.

  15. Transient Inverse Calibration of Site-Wide Groundwater Model to Hanford Operational Impacts from 1943 to 1996--Alternative Conceptual Model Considering Interaction with Uppermost Basalt Confined Aquifer

    SciTech Connect

    Vermeul, Vincent R.; Cole, Charles R.; Bergeron, Marcel P.; Thorne, Paul D.; Wurstner, Signe K.

    2001-08-29

    The baseline three-dimensional transient inverse model for the estimation of site-wide scale flow parameters, including their uncertainties, using data on the transient behavior of the unconfined aquifer system over the entire historical period of Hanford operations, has been modified to account for the effects of basalt intercommunication between the Hanford unconfined aquifer and the underlying upper basalt confined aquifer. Both the baseline and alternative conceptual models (ACM-1) considered only the groundwater flow component and corresponding observational data in the 3-Dl transient inverse calibration efforts. Subsequent efforts will examine both groundwater flow and transport. Comparisons of goodness of fit measures and parameter estimation results for the ACM-1 transient inverse calibrated model with those from previous site-wide groundwater modeling efforts illustrate that the new 3-D transient inverse model approach will strengthen the technical defensibility of the final model(s) and provide the ability to incorporate uncertainty in predictions related to both conceptual model and parameter uncertainty. These results, however, indicate that additional improvements are required to the conceptual model framework. An investigation was initiated at the end of this basalt inverse modeling effort to determine whether facies-based zonation would improve specific yield parameter estimation results (ACM-2). A description of the justification and methodology to develop this zonation is discussed.

  16. Transient Inverse Calibration of Site-Wide Groundwater Model to Hanford Operational Impacts from 1943 to 1996--Alternative Conceptual Model Considering Interaction with Uppermost Basalt Confined Aquifer

    SciTech Connect

    Vermeul, Vince R; Cole, Charles R; Bergeron, Marcel P; Thorne, Paul D; Wurstner, Signe K

    2001-08-29

    The baseline three-dimensional transient inverse model for the estimation of site-wide scale flow parameters, including their uncertainties, using data on the transient behavior of the unconfined aquifer system over the entire historical period of Hanford operations, has been modified to account for the effects of basalt intercommunication between the Hanford unconfined aquifer and the underlying upper basalt confined aquifer. Both the baseline and alternative conceptual models (ACM-1) considered only the groundwater flow component and corresponding observational data in the 3-Dl transient inverse calibration efforts. Subsequent efforts will examine both groundwater flow and transport. Comparisons of goodness of fit measures and parameter estimation results for the ACM-1 transient inverse calibrated model with those from previous site-wide groundwater modeling efforts illustrate that the new 3-D transient inverse model approach will strengthen the technical defensibility of the final model(s) and provide the ability to incorporate uncertainty in predictions related to both conceptual model and parameter uncertainty.

  17. List of currently classified documents relative to Hanford Production Facilities Operations originated on the Hanford Site between 1961 and 1972

    SciTech Connect

    Not Available

    1993-04-01

    The United States Department of Energy (DOE) has declared that all Hanford plutonium production- and operations-related information generated between 1944 and 1972 is declassified. Any documents found and deemed useful for meeting Hanford Environmental Dose Reconstruction (HEDR) objectives may be declassified with or without deletions in accordance with DOE guidance by Authorized Derivative Declassifiers. The September 1992, letter report, Declassifications Requested by the Technical Steering Panel of Hanford Documents Produced 1944--1960, (PNWD-2024 HEDR UC-707), provides an important milestone toward achieving a complete listing of documents that may be useful to the HEDR Project. The attached listing of approximately 7,000 currently classified Hanford-originated documents relative to Hanford Production Facilities Operations between 1961 and 1972 fulfills TSP Directive 89-3. This list does not include such titles as the Irradiation Processing Department, Chemical Processing Department, and Hanford Laboratory Operations monthly reports generated after 1960 which have been previously declassified with minor deletions and made publicly available. Also Kaiser Engineers Hanford (KEH) Document Control determined that no KEH documents generated between January 1, 1961 and December 31, 1972 are currently classified. Titles which address work for others have not been included because Hanford Site contractors currently having custodial responsibility for these documents do not have the authority to determine whether other than their own staff have on file an appropriate need-to-know. Furthermore, these documents do not normally contain information relative to Hanford Site operations.

  18. Ground-water contribution to dose from past Hanford operations

    SciTech Connect

    Freshley, M. D.; Thorne, P. D.

    1992-01-01

    The Hanford Environmental Dose Reconstruction (HEOR) Project is being conducted to estimate radiation doses that populations and individuals could have received from Hanford Site operations from 1944 to the present. Four possible pathways by which radionuclides originating in ground water on the Hanford Site could have reached the public have been identified: 1) through contaminated ground water migrating to the Columbia River; 2) through wells on or adjacent to the Hanford Site; 3) through wells that draw some or all of their water from the Columbia River (riparian wells); and 4) through atmospheric deposition resulting in the contamination of a small watershed that, in turn, results in contamination of a shallow well or spring. These four pathways make up the "ground-water pathway ," which is the subject of this study. The objective of the study was to assess the extent to which the groundwater pathway contributed to radiation doses that populations or individuals may have received from past operations at Hanford. The assessment presented in this report was performed by 1) reviewing the extensive literature on ground water and ground-water monitoring at Hanford and 2) performing simple calculations to estimate radionuclide concentrations in ground water and the Columbia River resulting from ground-water discharge. Radiation doses that would result from exposure to this ground water and surface water were calculated. The study conclusion is that the ground-water pathways did not contribute significantly to dose. Compared with background radiation in the TriCities {300 mrem/yr), estimated doses are small: 0.02 mrem/yr effective dose equivalent from discharge of contaminated ground water to the Columbia River; 1 mrem/yr effective dose equivalent from Hanford Site wells; 11 mrem/yr effective dose equivalent from riparian wells; and 1 mrem/yr effective dose equivalent from the watershed. Because the estimated doses are so small, the recommendation is that further work

  19. Implementing and operating the Hanford Environmental Information System (HEIS)

    SciTech Connect

    Cowley, P.J.; Schwab, M.R.; Fox, R.D.

    1994-03-01

    In the process of performing environmental restoration at the 560-square mile Hanford Site in southeastern Washington State, vast amounts of scientific and technical data are being generated from sampling taking place all over the Site. This paper provides an overview of the lessons we have learned in designing, implementing, and putting into operation a computerized system named the Hanford Environmental Information System (HEIS), which is being used to manage the Site`s environmental characterization sampling data. Topics discussed in this paper include helping the Site adapt to a data management culture, the advantages of electronic data over paper data, issues of data validation and defensibility, being a resource to the user community (including the regulatory community), managing and tracking data changes, integrating data from multiple programs, providing configuration control for data and software, getting priorities for software development, and developing a baseline for on-going funding to maintain the infrastructure for the information system.

  20. Radionuclide releases to the Columbia River from Hanford Operations, 1944--1971. Hanford Environmental Dose Reconstruction Project

    SciTech Connect

    Heeb, C.M.; Bates, D.J.

    1994-05-01

    The purpose of the Hanford Environmental Dose Reconstruction (HEDR) Project is to estimate the radiation dose that individuals could have received as a result of radionuclide emissions since 1944 from the Hanford Site. One source of radionuclide releases to the Columbia River was from production reactor operations. This report provides a quantitative estimate of the amount of radioactivity released each month (1944--1971) to the Columbia River from eleven radionuclides as well as from gross beta activity.

  1. Radionuclide releases to the Columbia River from Hanford Operations, 1944--1971. Hanford Environmental Dose Reconstruction Project

    SciTech Connect

    Heeb, C.M.; Bates, D.J.

    1994-01-01

    The purpose of the Hanford Environmental Dose Reconstruction (HEDR) Project is to estimate the radiation dose that individuals could have received as a result of radionuclide emissions since 1944 from the Hanford Site. One source of radionuclide releases to the Columbia River was from production reactor operations. This report provides a quantitative estimate of the amount of radioactivity released each month (1944--1971) to the Columbia River from eleven radionuclides as well as from gross beta activity.

  2. HANFORD SITE SOLID WASTE MANAGEMENT ENVIRONMENTAL IMPACT STATEMENT TECHNICAL INFORMATION DOCUMENT [SEC 1 THRU 4

    SciTech Connect

    FRITZ, L.L.

    2004-03-25

    This Technical Information Document (TID) provides engineering data to support DOE/EIS-0286, ''Hanford Site Solid (Radioactive and Hazardous) Waste Program Environmental Impact Statement''. Assumptions and waste volumes used to calculate engineering data are also provided in this document. This chapter provides a brief description of: the Solid Waste Management Program (including a description of waste types and known characteristics of waste covered under the program), the Hanford Site (including a general discussion of the operating areas), and the alternatives analyzed. The Hanford Site Solid Waste Management Program and DOE/EIS-0286 address solid radioactive waste types generated by various activities from both onsite and offsite generators. The Environmental Restoration (ER) waste management activities are not within the scope of DOE/EIS-0286 or this TID. Activities for processing and disposal of immobilized low-activity waste (ILAW) are not within the scope of the Solid Waste Management Program and this TID.

  3. Modeling needs assessment for Hanford Tank Farm Operations. Vadose Zone Characterization Project at the Hanford Tank Farms

    SciTech Connect

    1996-04-01

    This report presents the results of a modeling-needs assessment conducted for Tank Farm Operations at the Hanford Site. The goal of this project is to integrate geophysical logging and subsurface transport modeling into a broader decision-based framework that will be made available to guide Tank Farm Operations in implementing future modeling studies. In support of this goal, previous subsurface transport modeling studies were reviewed, and stakeholder surveys and interviews were completed (1) to identify regulatory, stakeholder, and Native American concerns and the impacts of these concerns on Tank Farm Operations, (2) to identify technical constraints that impact site characterization and modeling efforts, and (3) to assess how subsurface transport modeling can best be used to support regulatory, stakeholder, Native American, and Tank Farm Operations needs. This report is organized into six sections. Following an introduction, Section 2.0 discusses background issues that relate to Tank Farm Operations. Section 3.0 summarizes the technical approach used to appraise the status of modeling and supporting characterization. Section 4.0 presents a detailed description of how the technical approach was implemented. Section 5.0 identifies findings and observations that relate to implementation of numerical modeling, and Section 6.0 presents recommendations for future activities.

  4. The Westinghouse Hanford Company Operational Environmental Monitoring Program CY-93

    SciTech Connect

    Schmidt, J.W.

    1993-10-01

    The Operational Environmental Monitoring Program (OEMP) provides facility-specific environmental monitoring to protect the environment adjacent to facilities under the responsibility of Westinghouse Hanford Company (WHC) and assure compliance with WHC requirements and local, state, and federal environmental regulations. The objectives of the OEMP are to evaluate: compliance with federal (DOE, EPA), state, and internal WHC environmental radiation protection requirements and guides; performance of radioactive waste confinement systems; and trends of radioactive materials in the environment at and adjacent to nuclear facilities and waste disposal sites. This paper identifies the monitoring responsibilities and current program status for each area of responsibility.

  5. Hanford Environmental Information System (HEIS) Operator`s Manual. Volume 1

    SciTech Connect

    Schreck, R.I.

    1991-10-01

    The Hanford Environmental Information System (HEIS) is a consolidated set of automated resources that effectively manage the data gathered during environmental monitoring and restoration of the Hanford Site. The HEIS includes an integrated database that provides consistent and current data to all users and promotes sharing of data by the entire user community. This manual describes the facilities available to the operational user who is responsible for data entry, processing, scheduling, reporting, and quality assurance. A companion manual, the HEIS User`s Manual, describes the facilities available-to the scientist, engineer, or manager who uses the system for environmental monitoring, assessment, and restoration planning; and to the regulator who is responsible for reviewing Hanford Site operations against regulatory requirements and guidelines.

  6. Radionuclide releases to the atmosphere from Hanford Operations, 1944--1972. Hanford Environmental Dose Reconstruction Project

    SciTech Connect

    Heeb, C.M.

    1994-05-01

    The purpose of the Hanford Environmental Dose Reconstruction Project is to estimate the radiation dose that individuals could have received as a result of radionuclide emissions since 1944 from the Hanford Site. The first step in determining dose is to estimate the amount and timing of radionuclide releases to air and water. This report provides the air release information.

  7. Fission product iodine during early Hanford-Site operations: Its production and behavior during fuel processing, off-gas treatment and release to the atmosphere

    SciTech Connect

    Burger, L.L.

    1991-05-01

    The Hanford Environmental Dose Reconstruction (HEDR) Project was established to estimate the radiological dose impact that Hanford Site operations may have made on the local and regional population. This impact is estimated by examining operations involving radioactive materials that were conducted at the Hanford Site from the startup of the first reactor in 1944 to the present. HEDR Project work is divided among several technical tasks. One of these tasks, Source Terms, is designed to develop quantitative estimates of all significant emissions of radionuclides by Hanford Site operations since 1944. Radiation doses can be estimated from these emissions by accounting for specific radionuclide transport conditions and population demography. This document provides technical information to assist in the evaluation of iodine releases. 115 refs., 5 figs., 3 tabs.

  8. Reducing groundwater impacts on the Columbia River from the Hanford Site

    SciTech Connect

    Bennett, L.J.; Pedersen, K.S.; Johnston, G.A.; Shoulders, A.

    1996-12-31

    The Hanford Works Nuclear Reservation (Hanford Site) is located in eastern Washington and managed under the authority of the U.S. Department of Energy (DOE). Formerly used for nuclear weapons research and production, the Hanford Site is currently used for energy, defense, and environmental research. The Hanford Site encompasses 1,450 square kilometer (560 square miles) of high desert and is located adjacent to the Columbia River just north of Richland, Washington. Nine inactive plutonium production reactors and one active electricity production reactor are located on the site. The active reactor was constructed and is owned and operated by Washington Public Power Supply System. The inactive reactors are located near the Columbia River. In the interior of the site are the 200 East and 200 West Areas where most of the chemical processing and waste management occurred between the early 1940s and the mid 1980s. Over a 46 year period, the groundwater under the Hanford Site has become contaminated from leaks and intentional discharges to leach fields. This contaminated groundwater is slowly migrating toward the Columbia River. During the past ten years, all intentional discharges of radioactive and hazardous wastes to the leach fields have ceased. The only remaining discharges are relatively clean, once-through, non-contact cooling water and water treatment plant sludges. Currently a systematic approach is being implemented through four related projects to eliminate as many of the remaining discharges as possible. The volumes of all remaining discharges are being reduced and then routed to a new treatment and disposal site. Three of the projects will be operational by June 1995 with the fourth project operational by October 1997. This paper discusses the four projects and the anticipated impacts on the groundwater.

  9. Sources of secondary radionuclide releases from Hanford Operations

    SciTech Connect

    Heeb, C.M.; Gydesen, S.P.

    1994-05-01

    This report considers Hanford facilities and operations with the potential to be secondary radionuclide release sources. Facilities that produced radionuclides or processed products of fission reactions and were not covered in previous source term reports are included in this report. The following facilities are described and any potentially significant releases from them are estimated: PUREX (1956--1972, 1983--1988) and REDOX (1952--1967)--campaigns with non-standard feed material (materials other than fuel from single-pass reactors); C PLANT (Hot Semi-Works)--pilot plant and strontium recovery; Z Plant--plutonium finishing; U and UO{sub 3} Plants--uranium recovery; 108 B Plant--tritium extraction; 300 Area Plutonium Recycle Test Reactor (PRTR); 300 Area Low Power Test Reactors; Criticality Accidents; and 400 Area Fast Flux Test Facility (FFTF). The method of analysis was to examine each facility, give a brief description of its purpose and operations, and describe the types of material the facility processed as an indication of the radionuclides it had the potential to release. Where possible, specific radionuclides are estimated and values from the original documents are reported.

  10. Running scenarios using the Waste Tank Safety and Operations Hanford Site model

    SciTech Connect

    Stahlman, E.J.

    1995-11-01

    Management of the Waste Tank Safety and Operations (WTS&O) at Hanford is a large and complex task encompassing 177 tanks and having a budget of over $500 million per year. To assist managers in this task, a model based on system dynamics was developed by the Massachusetts Institute of Technology. The model simulates the WTS&O at the Hanford Tank Farms by modeling the planning, control, and flow of work conducted by Managers, Engineers, and Crafts. The model is described in Policy Analysis of Hanford Tank Farm Operations with System Dynamics Approach (Kwak 1995b) and Management Simulator for Hanford Tank Farm Operations (Kwak 1995a). This document provides guidance for users of the model in developing, running, and analyzing results of management scenarios. The reader is assumed to have an understanding of the model and its operation. Important parameters and variables in the model are described, and two scenarios are formulated as examples.

  11. Maintenance and operations contractor plan for transition to the project Hanford management contract (PHMC)

    SciTech Connect

    Waite, J.L.

    1996-04-12

    This plan has been developed by Westinghouse Hanford Company (WHC), and its subcontractors ICF Kaiser Hanford (ICF KH) and BCS Richland, Inc. (BCSR), at the direction of the US Department of Energy (DOE), Richland Operations Office (RL). WHC and its subcontractors are hereafter referred to as the Maintenance and Operations (M and O) Contractor. The plan identifies actions involving the M and O Contractor that are critical to (1) prepare for a smooth transition to the Project Hanford Management Contractor (PHMC), and (2) support and assist the PHMC and RL in achieving transition as planned, with no or minimal impact to ongoing baseline activities. The plan is structured around two primary phases. The first is the pre-award phase, which started in mid-February 1996 and is currently scheduled to be completed on June 1, 1996, at which time the contract is currently planned to be awarded. The second is the follow-on four-month post-award phase from June 1, 1996, until October 1, 1996. Considering the magnitude and complexity of the scope of work being transitioned, completion in four months will require significant effort by all parties. To better ensure success, the M and O Contractor has developed a pre-award phase that is intended to maximize readiness for transition. Priority is given to preparation for facility assessments and processing of personnel, as these areas are determined to be on the critical path for transition. In addition, the M and O Contractor will put emphasis during the pre-award phase to close out open items prior to contract award, to include grievances, employee concerns, audit findings, compliance issues, etc.

  12. Assessment of potential impacts of major groundwater contaminants to fall chinook salmon (Oncorhynchus tshawytscha) in the Hanford Reach, Columbia River

    SciTech Connect

    Geist, D.R.; Poston, T.M.; Dauble, D.D.

    1994-10-01

    Past operations of Hanford Site facilities have contaminated the groundwater adjacent to the Hanford Reach of the Columbia River, Washington, with various chemical and radiological constituents. The groundwater is hydraulically connected to the river and contains concentrations of contaminants that sometimes exceed federal and/or state drinking water standards or standards for the protection of aquatic life. For example, concentrations of chromium in shoreline seeps and springs at most 100 Area operable units exceed concentrations found to be toxic to fish. Nitrate and tritium concentrations in shoreline seeps are generally below drinking water standards and concentrations potentially toxic to aquatic life, but nitrate concentrations may be high enough to synergistically interact with and exacerbate chromium toxicity. The Hanford Reach also supports the largest run of fall chinook salmon (Oncorhynchus tshawytscha) in the Columbia River Basin. Numbers of fall chinook salmon returning to the Hanford Reach have increased relative to other mainstem populations during the last 30 years. Groundwater discharge appears to occur near some salmon spawning areas, but contaminants are generally not detectable in surface water samples. The concentration and potential toxicity of contaminants in the interstitial waters of the substrate where fall chinook salmon embryogenesis occurs are presently unknown. New tools are required to characterize the extent of groundwater contaminant discharge to the Hanford Reach and to resolve uncertainties associated with assessment of potential impacts to fall chinook salmon.

  13. Hanford MOX fuel lead assemblies data report for the surplus plutonium disposition environmental impact statement

    SciTech Connect

    O`Connor, D.G.; Fisher, S.E.; Holdaway, R.

    1998-08-01

    The purpose of this document is to support the US Department of Energy (DOE) Fissile Materials Disposition Program`s preparation of the draft surplus plutonium disposition environmental impact statement. This is one of several responses to data call requests for background information on activities associated with the operation of the lead assembly (LA) mixed-oxide (MOX) fuel fabrication facility. DOE-MD requested that the DOE Site Operations Offices nominate DOE sites that meet established minimum requirements that could produce MOX LAs. Six initial site combinations were proposed: (1) Argonne National Laboratory-West (ANL-W) with support from Idaho National Engineering and Environmental Laboratory (INEEL), (2) Hanford, (3) Los Alamos National Laboratory (LANL) with support from Pantex, (4) Lawrence Livermore National Laboratory (LLNL), (5) Oak Ridge Reservation (ORR), and (6) Savannah River Site (SRS). After further analysis by the sites and DOE-MD, five site combinations were established as possible candidates for producing MOX LAs: (1) ANL-W with support from INEEL, (2) Hanford, (3) LANL, (4) LLNL, and (5) SRS. Hanford has proposed an LA MOX fuel fabrication approach that would be done entirely inside an S and S Category 1 area. An alternate approach would allow fabrication of fuel pellets and assembly of fuel rods in an S and S Category 1 facility. In all, a total of three LA MOX fuel fabrication options were identified by Hanford that could accommodate the program. In every case, only minor modification would be required to ready any of the facilities to accept the equipment necessary to accomplish the LA program.

  14. Letter report: Title listing of daily operating data on Hanford single-pass reactors, 1944--1971. Hanford Environmental Dose Reconstruction Project

    SciTech Connect

    Gydesen, S.P.

    1992-02-01

    The primary objective of the Hanford Environmental Dose Reconstruction (HEDR) Project is to estimate the radiation dose that populations and individuals could have received as a result of emissions from Hanford Site operations since 1944, with descriptions of the uncertainties inherent in such estimates. A secondary objective is to make project documentation and Hanford-originated references used in the reports available to the public. Hanford-originated documents of potential interest and/or use to the HEDR Project are made publicly available through the US Government`s National Technical Information Service and placed in the US Department of Energy Richland Field Office (RL) Public Reading Room in Richland, Washington. Project work is conducted under several technical tasks, among which is the Source Terms Task. Under this task, estimates of radioactive emissions from Hanford facilities since 1944 are developed. These estimates are based on historical measurements and production information. The Information Resources Task identifies and retrieves historical production operating information for developing source terms. The purpose of this letter report is to identify documents that record daily reactor operating information at the Hanford Site for the years 1944--1971. Complete bibliographic citations and sample pages from each different format for Hanford reactor operations data are included.

  15. Hanford defense waste disposal alternatives: engineering support data for the Hanford Defense Waste-Environmental Impact Statement

    SciTech Connect

    Not Available

    1985-12-01

    This document provides the engineering bases for the development of the Hanford Defense Waste-Environmental Impact Statement. In compliance with the National Environmental Policy Act process and, more specifically, the detailed scope prepared for the Hanford Defense Waste-Environmental Impact Statement, four waste disposal alternatives are identified: geologic disposal; in-place stabilization and disposal; continued storage (no disposal action); and the reference alternative. For each disposal alternative, the following six waste type classifications are addressed: existing tank waste, transuranic-contaminated soil sites (cribs and reverse wells), pre-1970 transuranic buried solid waste sites, retrievably stored and newly generated solid transuranic waste, strontium and cesium capsules, and future tank waste. The disposal alternatives are presented as options for the disposal of each waste type. Data regarding structures, site locations, and inventories for each waste class are provided, and are followed by a description of various technologies applied for implementing the disposal alternatives. Data associated with the resulting impacts (resources consumed, manpower used, emissions, and costs) are tabulated according to the waste class/alternative matrix. This information was used during the preparation of the Hanford Defense Waste-Environmental Impact Statement to develop socioeconomic analyses, accident scenarios, dose estimates, and waste release or migration evaluations.

  16. Non-Operational Property Evaluation for the Hanford Site River Corridor - 12409

    SciTech Connect

    Lowe, John; Aly, Alaa

    2012-07-01

    emissions that may have been associated with Hanford Site operations generally emitted short-lived and/or gaseous radionuclides; these radionuclides either would have decayed and would be undetectable in soil, or likely would not have deposited onto Hanford Site soils. A small fraction of the total historical emissions consisted of long-lived particulate radionuclides, which could have deposited onto the soil. Soil monitoring studies conducted as part of surveillance and monitoring programs do not indicate a build-up of radionuclide concentrations in soil, which might indicate potential deposition impacts from stack emissions. Aerial radiological surveys of the Hanford Site, while effective in detecting gamma-emitting nuclides, also do not indicate deposition patterns in soil from stack emissions. - The surveillance and monitoring programs also have verified that the limited occurrence of biointrusion observed in the River Corridor has not resulted in a spread of contamination into the non-operational areas. - Monitoring of radionuclides in ambient air conducted as part of the surveillance and monitoring programs generally show a low and declining trend of detected concentrations in air. Monitoring of radionuclides in soil and vegetation correspondingly show declining trends in concentrations, particularly for nuclides with short half lives (Cs-137, Co-60 and Sr-90). - Statistical analysis of the geographical distribution of waste sites based on man -made features and topography describes the likely locations of waste sites in the River Corridor. The results from this analysis reinforce the findings from the Orphan Site Evaluation program, which has systematically identified any remaining waste sites within the River Corridor. - Statistical analysis of the distribution of radionuclide concentrations observable from aerial surveys has confirmed that the likelihood of detecting elevated radionuclide concentrations in non-operational area soils is very small; the occurrences

  17. Hanford site solid waste management environmental impact statement technical information document [SEC 1 THRU 4

    SciTech Connect

    FRITZ, L.L.

    2003-04-01

    This Technical Information Document (TID) provides engineering data to support DOE/EIS-0286, ''Hanford Site Solid (Radioactive and Hazardous) Waste Program Environmental Impact Statement,'' including assumptions and waste volumes calculation data.

  18. EVALUATION OF THREE ULTRASONIC INSTRUMENTS FOR CRITICAL VELOCITY DETERMINATION DURING HANFORD TANK WASTE TRANSFER OPERATIONS - 11121

    SciTech Connect

    Bontha, Jagannadha R.; Denslow, Kayte M.; Adkins, Harold E.; Jenks, Jeromy WJ; Burns, Carolyn A.; Schonewill, Philip P.; Morgen, Gerald P.; Greenwood, Margaret S.; Wooley, Theodore A.

    2011-06-01

    Three ultrasonic instruments were evaluated by the Pacific Northwest National Laboratory (PNNL) to determine their ability to detect critical velocities for solids settling during slurry transfer operation between the Hanford Tank farms and the Waste Treatment and Immobilization Plant (WTP). The evaluation was conducted in a flow loop using prototypic transfer piping and a suite of simulants that encompass a broad range of waste physical and rheological properties that are likely encountered during Hanford tank waste transfer operations. The results from the evaluation are presented in this paper.

  19. Development of a Thermodynamic Model for the Hanford Tank Waste Operations Simulator - 12193

    SciTech Connect

    Carter, Robert; Seniow, Kendra

    2012-07-01

    The Hanford Tank Waste Operations Simulator (HTWOS) is the current tool used by the Hanford Tank Operations Contractor for system planning and assessment of different operational strategies. Activities such as waste retrievals in the Hanford tank farms and washing and leaching of waste in the Waste Treatment and Immobilization Plant (WTP) are currently modeled in HTWOS. To predict phase compositions during these activities, HTWOS currently uses simple wash and leach factors that were developed many years ago. To improve these predictions, a rigorous thermodynamic framework has been developed based on the multi-component Pitzer ion interaction model for use with several important chemical species in Hanford tank waste. These chemical species are those with the greatest impact on high-level waste glass production in the WTP and whose solubility depends on the processing conditions. Starting with Pitzer parameter coefficients and species chemical potential coefficients collated from open literature sources, reconciliation with published experimental data led to a self-consistent set of coefficients known as the HTWOS Pitzer database. Using Gibbs energy minimization with the Pitzer ion interaction equations in Microsoft Excel,1 a number of successful predictions were made for the solubility of simple mixtures of the chosen species. Currently, this thermodynamic framework is being programmed into HTWOS as the mechanism for determining the solid-liquid phase distributions for the chosen species, replacing their simple wash and leach factors. Starting from a variety of open literature sources, a collection of Pitzer parameters and species chemical potentials, as functions of temperature, was tested for consistency and accuracy by comparison with available experimental thermodynamic data (e.g., osmotic coefficients and solubility). Reconciliation of the initial set of parameter coefficients with the experimental data led to the development of the self-consistent set known

  20. Documents containing operating data for Hanford separations processes, 1944--1972

    SciTech Connect

    Gydesen, S.P.

    1992-09-01

    The purpose of this letter report is to identify documents that record batch, daily, or selected monthly separations processes operating information at the Hanford Site for the years 1944-1972. The information found in these documents is needed to develop the source terms necessary to make dose estimates. The documents have been identified, located, declassified if necessary, evaluated, and made available to the HEDR Project in general, the HEDR Task 03 (Source Terms) in particular, and the public. Complete bibliographic citations and some sample pages from the Hanford separations processes documents are included.

  1. Westinghouse Hanford Company operational environmental monitoring annual report - calendar year 1995

    SciTech Connect

    Schmidt, J.W., Westinghouse Hanford

    1996-07-30

    This document summarizes the results of the Westinghouse Hanford Company (WHC) near-facility operational environmental monitoring for 1995 in the 100, 200/600, and 300/400 Areas of the Hanford Site, in south-central Washington State. Surveillance activities included sampling and analyses of ambient air, surface water,groundwater, soil, sediments, and biota. Also, external radiation measurements and radiological surveys were taken at waste disposal sites, radiologically controlled areas, and roads. These activities were conducted to assess and control the effects of nuclear facilities and waste sites on the local environment. In addition, diffuse sources were monitored to determine compliance with Federal, State, and/or local regulations. In general, although effects from nuclear facilities can still be observed on the Hanford Site and radiation levels are slightly elevated when compared to offsite locations, the differences are less than in previous years.

  2. Westinghouse Hanford Company operational environmental monitoring annual report, calendar year 1994

    SciTech Connect

    Schmidt, J.; Fassett, J.W.; Johnson, A.R.; Johnson, V.G.; Markes, B.M.; McKinney, S.M.; Moss, K.J.; Perkins, C.J.; Richterich, L.R.

    1995-08-01

    This document presents the results of the Westinghouse Hanford Company near-facility operational environmental monitoring for 1994 in the 100, 200/600, and 300/400 Areas of the Hanford Site, in south-central Washington State. Surveillance activities included sampling and analyses of ambient air surface water, groundwater, soil, sediments, and biota. Also, external radiation measurements and radiological surveys were taken at waste disposal sites, radiologically controlled areas, and roads. These activities were conducted to assess and control the effects of nuclear facilities and waste sites on the local environment. In addition, diffuse sources were monitored to determine compliance with Federal, State, and/or local regulations. In general, although effects from nuclear facilities are still seen on the Hanford Site and radiation levels are slightly elevated when compared to offsite locations, the differences are less than in previous years.

  3. HANFORD DOUBLE SHELL TANK (DST) THERMAL & SEISMIC PROJECT SUMMARY OF COMBINED THERMAL & OPERATING LOADS

    SciTech Connect

    MACKEY, T.C.

    2006-03-17

    This report summarizes the results of the Double-Shell Tank Thermal and Operating Loads Analysis (TOLA) combined with the Seismic Analysis. This combined analysis provides a thorough, defensible, and documented analysis that will become a part of the overall analysis of record for the Hanford double-shell tanks (DSTs).

  4. Safe interim storage of Hanford tank wastes, draft environmental impact statement, Hanford Site, Richland, Washington

    SciTech Connect

    Not Available

    1994-07-01

    This Draft EIS is prepared pursuant to the National Environmental Policy Act (NEPA) and the Washington State Environmental Policy Act (SEPA). DOE and Ecology have identified the need to resolve near-term tank safety issues associated with Watchlist tanks as identified pursuant to Public Law (P.L.) 101-510, Section 3137, ``Safety Measures for Waste Tanks at Hanford Nuclear Reservation,`` of the National Defense Authorization Act for Fiscal Year 1991, while continuing to provide safe storage for other Hanford wastes. This would be an interim action pending other actions that could be taken to convert waste to a more stable form based on decisions resulting from the Tank Waste Remediation System (TWRS) EIS. The purpose for this action is to resolve safety issues concerning the generation of unacceptable levels of hydrogen in two Watchlist tanks, 101-SY and 103-SY. Retrieving waste in dilute form from Tanks 101-SY and 103-SY, hydrogen-generating Watchlist double shell tanks (DSTs) in the 200 West Area, and storage in new tanks is the preferred alternative for resolution of the hydrogen safety issues.

  5. Fluor Hanford Project Focused Progress at Hanford

    SciTech Connect

    HANSON, R.D.

    2000-02-01

    Fluor Hanford is making significant progress in accelerating cleanup at the Hanford site. This progress consistently aligns with a new strategic vision established by the U.S. Department of Energy's Richland Operations Office (RL).

  6. THE IMPACT OF SHRINKING HANFORD BOUNDARIES ON PERMITS FOR TOXIC AIR POLLUTANT EMISSIONS FROM THE HANFORD 200 WEST AREA

    SciTech Connect

    JOHNSON, R.E.

    2005-11-09

    This presentation (CE-580. Graduate Seminar) presents a brief description of an approach to use a simpler dispersion modeling method (SCREEN3) in conjunction with joint frequency tables for Hanford wind conditions to evaluate the impacts of shrinking the Hanford boundaries on the current permits for facilities in the 200 West Area. To fulfill requirements for the graduate student project (CE-702. Master's Special Problems), this evaluation will be completed and published over the next two years. Air toxic emissions play an important role in environmental quality and require a state approved permit. One example relates to containers or waste that are designated as Transuranic Waste (TRU), which are required to have venting devices due to hydrogen generation. The Washington State Department of Ecology (Ecology) determined that the filters used did not meet the definition of a ''pressure relief device'' and that a permit application would have to be submitted by the Central Waste Complex (CWC) for criteria pollutant and toxic air pollutant (TAP) emissions in accordance with Washington Administrative Code (WAC) 173-400 and 173-460. The permit application submitted in 2000 to Ecology used Industrial Source Code III (ISCIII) dispersion modeling to demonstrate that it was not possible for CWC to release a sufficient quantity of fugitive Toxic Air Pollutant emissions that could exceed the Acceptable Source Impact Levels (ASILs) at the Hanford Site Boundary. The modeled emission rates were based on the diurnal breathing in and out through the vented drums (approximately 20% of the drums), using published vapor pressure, molecular weight, and specific gravity data for all 600+ compounds, with a conservative estimate of one exchange volume per day (208 liters per drum). Two permit applications were submitted also to Ecology for the Waste Receiving and Processing Facility and the T Plant Complex. Both permit applications were based on the Central Waste Complex approach, and

  7. The economic and community impacts of closing Hanford's N Reactor and nuclear materials production facilities

    SciTech Connect

    Scott, M.J.; Belzer, D.B.; Nesse, R.J.; Schultz, R.W.; Stokowski, P.A.; Clark, D.C.

    1987-08-01

    This study discusses the negative economic impact on local cities and counties and the State of Washington of a permanent closure of nuclear materials production at the Hanford Site, located in the southeastern part of the state. The loss of nuclear materials production, the largest and most important of the five Department of Energy (DOE) missions at Hanford, could occur if Hanford's N Reactor is permanently closed and not replaced. The study provides estimates of statewide and local losses in jobs, income, and purchases from the private sector caused by such an event; it forecasts impacts on state and local government finances; and it describes certain local community and social impacts in the Tri-Cities (Richland, Kennewick, and Pasco) and surrounding communities. 33 refs., 8 figs., 22 tabs.

  8. Letter report: Title listing of daily operating data on Hanford single-pass reactors, 1944--1971

    SciTech Connect

    Gydesen, S.P.

    1992-02-01

    The primary objective of the Hanford Environmental Dose Reconstruction (HEDR) Project is to estimate the radiation dose that populations and individuals could have received as a result of emissions from Hanford Site operations since 1944, with descriptions of the uncertainties inherent in such estimates. A secondary objective is to make project documentation and Hanford-originated references used in the reports available to the public. Hanford-originated documents of potential interest and/or use to the HEDR Project are made publicly available through the US Government's National Technical Information Service and placed in the US Department of Energy Richland Field Office (RL) Public Reading Room in Richland, Washington. Project work is conducted under several technical tasks, among which is the Source Terms Task. Under this task, estimates of radioactive emissions from Hanford facilities since 1944 are developed. These estimates are based on historical measurements and production information. The Information Resources Task identifies and retrieves historical production operating information for developing source terms. The purpose of this letter report is to identify documents that record daily reactor operating information at the Hanford Site for the years 1944--1971. Complete bibliographic citations and sample pages from each different format for Hanford reactor operations data are included.

  9. The Hanford Site: An anthology of early histories

    SciTech Connect

    Gerber, M.S.

    1993-10-01

    This report discusses the following topics: Memories of War: Pearl Harbor and the Genesis of the Hanford Site; safety has always been promoted at the Hanford Site; women have an important place in Hanford Site history; the boom and bust cycle: A 50-year historical overview of the economic impacts of Hanford Site Operations on the Tri-Cities, Washington; Hanford`s early reactors were crucial to the sites`s history; T-Plant made chemical engineering history; the UO{sub 3} plant has a long history of service. PUREX Plant: the Hanford Site`s Historic Workhorse. PUREX Plant Waste Management was a complex challenge; and early Hanford Site codes and jargon.

  10. Standarized input for Hanford environmental impact statements. Part II: site description

    SciTech Connect

    Jamison, J.D.

    1982-07-01

    Information is presented under the following section headings: summary description; location and physiography; geology; seismology; hydrology; meteorology; ecology; demography and land use; and radiological condition. Five appendixes are included on the 100N, 200 east, 200 west, 300, and 400 areas. This report is intended to provide a description of the Hanford Site against which the environmental impacts of new projects at Hanford can be assessed. It is expected that the summary description amplified with material from the appropriate appendix, will serve as the basic site description section of environmental impact statements prepared to address the requirements of the National Environmental Policy Act (NEPA).

  11. Hanford Environmental Dose Reconstruction Project

    SciTech Connect

    Cannon, S.D.; Finch, S.M.

    1992-10-01

    The objective of the Hanford Environmental Dose Reconstruction (HEDR) Project is to estimate the radiation doses that individuals and populations could have received from nuclear operations at Hanford since 1944. The independent Technical Steering Panel (TSP) provides technical direction. The project is divided into the following technical tasks. These tasks correspond to the path radionuclides followed from release to impact on humans (dose estimates):Source Terms, Environmental Transport, Environmental Monitoring Data, Demography, Food Consumption, and Agriculture, and Environmental Pathways and Dose Estimates.

  12. Hanford Environmental Dose Reconstruction Project

    SciTech Connect

    Finch, S.M.; McMakin, A.H.

    1991-01-01

    The objective of the Hanford Environmental Dose Reconstruction Project is to estimate the radiation doses that individuals and populations could have received from nuclear operations at Hanford since 1944. The project is divided into the following technical tasks. These tasks correspond to the path radionuclides followed, from release to impact on humans (dose estimates): Source terms; environmental transport environmental monitoring data; demographics, agriculture, food habits; environmental pathways and dose estimates.

  13. Hanford Environmental Dose Reconstruction Project

    SciTech Connect

    Finch, S.M.; McMakin, A.H.

    1992-02-01

    The objective of the Hanford Environmental Dose Reconstruction Project is to estimate the radiation doses that individuals and populations could have received from nuclear operations at Hanford since 1944. The project is divided into the following technical tasks. These tasks correspond to the path radionuclides followed, from release to impact on humans (dose estimates): source terms; environmental transport; environmental monitoring data; demography, food consumption, and agriculture; environmental pathways and dose estimates.

  14. Hanford Environmental Dose Reconstruction Project

    SciTech Connect

    Finch, S.M.; McMakin, A.H.

    1992-01-01

    The objective of the Hanford Environmental Dose Reconstruction Project is to estimate the radiation doses that individuals and populations could have received from nuclear operations at Hanford since 1944. The project is divided into the following technical tasks. These tasks correspond to the path radionuclides followed, from release to impact on humans (dose estimates): Source Terms, Environmental Transport, Environmental Monitoring Data, Demography, Food Consumption, and Agriculture, and Environmental Pathways and Dose Estimates.

  15. STRONTIUM-90 LIQUID CONCENTRATION SOLUBILITY CORRELATION IN THE HANFORD TANK WASTE OPERATIONS SIMULATOR

    SciTech Connect

    HOHL, T.; PLACE, D.; WITTMAN, R.

    2004-08-05

    A new correlation was developed to estimate the concentration of strontium-90 in a waste solution based on total organic carbon. This correlation replaces the strontium-90 wash factors, and when applied in the Hanford Tank Waste Operations Simulator, significantly reduced the estimated quantity of strontium-90 in the delivered low-activity waste feed. This is thought to be a more realistic estimate of strontium-90 than using the wash-factor method.

  16. 100-OL-1 Operable Unit Pilot Study: XRF Evaluation of Select Pre-Hanford Orchards

    SciTech Connect

    Bunn, Amoret L.; Fritz, Brad G.; Pulsipher, Brent A.; Gorton, Alicia M.; Bisping, Lynn E.; Brandenberger, Jill M.; Pino, Christian; Martinez, Dominique M.; Rana, Komal; Wellman, Dawn M.

    2014-11-20

    Prior to the acquisition of land by the U.S. Department of War in February 1943 and the creation of the Hanford Site, the land along the Columbia River was home to over 1000 people. Farming and orchard operations by both homesteaders and commercial organizations were prevalent. Orchard activities and the associated application of lead arsenate pesticide ceased in 1943, when residents were moved from the Hanford Site at the beginning of the Manhattan Project. Today, the residues from historical application of lead arsenate pesticide persist in some locations on the Hanford Site. In 2012, the U.S. Department of Energy, U.S. Environmental Protection Agency, and Washington State Department of Ecology established the 100-OL-1 Operable Unit (OU) through the Hanford Federal Facility Agreement and Consent Order, known as the Tri-Party Agreement. The pre-Hanford orchard lands identified as the 100-OL-1 OU are located south of the Columbia River and east of the present-day Vernita Bridge, and extend southeast to the former Hanford townsite. The discontinuous orchard lands within 100-OL-1 OU are approximately 20 km2 (5000 ac). A pilot study was conducted to support the approval of the remedial investigation/feasibility study work plan to evaluate the 100-OL-1 OU. This pilot study evaluated the use of a field portable X-ray fluorescence (XRF) analyzer for evaluating lead and arsenic concentrations on the soil surface as an indicator of lead arsenate pesticide residues in the OU. The objectives of the pilot study included evaluating a field portable XRF analyzer as the analytical method for decision making, estimating the nature and extent of lead and arsenic in surface soils in four decision units, evaluating the results for the purpose of optimizing the sampling approach implemented in the remedial investigation, and collecting information to improve the cost estimate and planning the cultural resources review for sampling activities in the remedial investigation. Based on

  17. Inventory of chemicals used at Hanford Site production plants and support operations (1944-1980)

    SciTech Connect

    Klem, M. J.

    1990-04-01

    A complete list of chemicals used in the production facilities and support operations of the US Department of Energy Hanford Site is presented to aid development of plans for characterizing the radioactive liquid chemical wastes stored in the 149 single-shell tanks. The complete chemical list is compared to the list provided by the regulatory agencies to identify hazardous chemicals stored in the single-shell tanks. A reduced list has been developed by others and is used to identify the chemical constituents for analysis in the Waste Characterization Plan for the Hanford Site Single-Shell Tanks. The chemical list is based on chemical process flowsheets, essential material consumption records, letters, reports, and other historical data. 14 refs., 36 tabs.

  18. Hanford Groundwater Remediation

    SciTech Connect

    Charboneau, B.; Thompson, K. M.; Wilde, R.; Ford, B.; Gerber, M.

    2006-07-01

    By 1990 nearly 50 years of producing plutonium put approximately 1.70 E+12 liters (450 billion gallons) of liquid wastes into the soil of the 1,518-square kilometer (586-square mile) Hanford Site in southeast Washington State. The liquid releases consisted of chemicals used in laboratory experiments, manufacturing and rinsing uranium fuel, dissolving that fuel after irradiation in Hanford's nuclear reactors, and in liquefying plutonium scraps needed to feed other plutonium-processing operations. Chemicals were also added to the water used to cool Hanford's reactors to prevent corrosion in the reactor tubes. In addition, water and acid rinses were used to clean plutonium deposits from piping in Hanford's large radiochemical facilities. All of these chemicals became contaminated with radionuclides. As Hanford raced to help win World War II, and then raced to produce materials for the Cold War, these radioactive liquid wastes were released to the Site's sandy soils. Early scientific experiments seemed to show that the most highly radioactive components of these liquids would bind to the soil just below the surface of the land, thus posing no threat to groundwater. Other experiments predicted that the water containing most radionuclides would take hundreds of years to seep into groundwater, decaying (or losing) most of its radioactivity before reaching the groundwater or subsequently flowing into the Columbia River, although it was known that some contaminants like tritium would move quickly. Evidence today, however, shows that many contaminants have reached the Site's groundwater and the Columbia River, with more on its way. Over 259 square kilometers (100 square miles) of groundwater at Hanford have contaminant levels above drinking-water standards. Also key to successfully cleaning up the Site is providing information resources and public-involvement opportunities to Hanford's stakeholders. This large, passionate, diverse, and geographically dispersed community is

  19. HANFORD GROUNDWATER REMEDIATION

    SciTech Connect

    CHARBONEAU, B; THOMPSON, M; WILDE, R.; FORD, B.; GERBER, M.S.

    2006-02-01

    By 1990 nearly 50 years of producing plutonium put approximately 1.70E + 12 liters (450 billion gallons) of liquid wastes into the soil of the 1,518-square kilometer (586-square mile) Hanford Site in southeast Washington State. The liquid releases consisted of chemicals used in laboratory experiments, manufacturing and rinsing uranium fuel, dissolving that fuel after irradiation in Hanford's nuclear reactors, and in liquefying plutonium scraps needed to feed other plutonium-processing operations. Chemicals were also added to the water used to cool Hanford's reactors to prevent corrosion in the reactor tubes. In addition, water and acid rinses were used to clean plutonium deposits from piping in Hanford's large radiochemical facilities. All of these chemicals became contaminated with radionuclides. As Hanford raced to help win World War II, and then raced to produce materials for the Cold War, these radioactive liquid wastes were released to the Site's sandy soils. Early scientific experiments seemed to show that the most highly radioactive components of these liquids would bind to the soil just below the surface of the land, thus posing no threat to groundwater. Other experiments predicted that the water containing most radionuclides would take hundreds of years to seep into groundwater, decaying (or losing) most of its radioactivity before reaching the groundwater or subsequently flowing into the Columbia River, although it was known that some contaminants like tritium would move quickly. Evidence today, however, shows that many contaminants have reached the Site's groundwater and the Columbia River, with more on its way. Over 259 square kilometers (100 square miles) of groundwater at Hanford have contaminant levels above drinking-water standards. Also key to successfully cleaning up the Site is providing information resources and public-involvement opportunities to Hanford's stakeholders. This large, passionate, diverse, and geographically dispersed community is

  20. Improved Management of the Technical Interfaces Between the Hanford Tank Farm Operator and the Hanford Waste Treatment Plant - 13383

    SciTech Connect

    Duncan, Garth M.; Saunders, Scott A.

    2013-07-01

    The Department of Energy (DOE) is constructing the Waste Treatment and Immobilization Plant (WTP) at the Hanford site in Washington to treat and immobilize approximately 114 million gallons of high level radioactive waste (after all retrievals are accomplished). In order for the WTP to be designed and operated successfully, close coordination between the WTP engineering, procurement, and construction contractor, Bechtel National, Inc. and the tank farms operating contractor (TOC), Washington River Protection Solutions, LLC, is necessary. To develop optimal solutions for DOE and for the treatment of the waste, it is important to deal with the fact that two different prime contractors, with somewhat differing contracts, are tasked with retrieving and delivering the waste and for treating and immobilizing that waste. The WTP and the TOC have over the years cooperated to manage the technical interface. To manage what is becoming a much more complicated interface as the WTP design progresses and new technical issues have been identified, an organizational change was made by WTP and TOC in November of 2011. This organizational change created a co-located integrated project team (IPT) to deal with mutual and interface issues. The Technical Organization within the One System IPT includes employees from both TOC and WTP. This team has worked on a variety of technical issues of mutual interest and concern. Technical issues currently being addressed include: - The waste acceptance criteria; - Waste feed delivery and the associated data quality objectives (DQO); - Evaluation of the effects of performing a riser cut on a single shell tank on WTP operations; - The disposition of secondary waste from both TOC and WTP; - The close coordination of the TOC double shell tank mixing and sampling program and the Large Scale Integrated Test (LSIT) program for pulse jet mixers at WTP along with the associated responses to the Defense Nuclear Facilities Safety Board (DNFSB) Recommendation

  1. Army Digitization Operational Impacts

    DTIC Science & Technology

    1999-06-01

    Army Digitization Operational Impacts Fred P. Stein MITRE Corporation HQS III Corps & Fort Hood ATTN: AFZF-DFCC Bldg. 1001, Rm. 316W Fort Hood, TX...one systems, necessary for minimum capability will be fielded to units at Fort Hood. This paper will describe the impact of these news systems on the...of the new technologies. Finally it will project the impact on the objective systems on the operational Army. This paper will provide a view of what

  2. Hanford Environmental Management Program implementation plan

    SciTech Connect

    Not Available

    1988-08-01

    The Hanford Environmental Management Program (HEMP) was established to facilitate compliance with the applicable environmental statues, regulations, and standards on the Hanford Site. The HEMP provides a structured approach to achieve environmental management objectives. The Hanford Environmental Management Program Plan (HEMP Plan) was prepared as a strategic level planning document to describe the program management, technical implementation, verification, and communications activities that guide the HEMP. Four basic program objectives are identified in the HEMP Plan as follows: establish ongoing monitoring to ensure that Hanford Site operations comply with environmental requirements; attain regulatory compliance through the modification of activities; mitigate any environmental consequences; and minimize the environmental impacts of future operations at the Hanford Site. 2 refs., 24 figs., 27 tabs.

  3. Hanford wells

    SciTech Connect

    Chamness, M.A.; Merz, J.K.

    1993-08-01

    Records describing wells located on or near the Hanford Site have been maintained by Pacific Northwest Laboratory and the operating contractor, Westinghouse Hanford Company. In support of the Ground-Water Surveillance Project, portions of the data contained in these records have been compiled into the following report, which is intended to be used by those needing a condensed, tabular summary of well location and basic construction information. The wells listed in this report were constructed over a period of time spanning almost 70 years. Data included in this report were retrieved from the Hanford Envirorunental Information System (HEIS) database and supplemented with information not yet entered into HEIS. While considerable effort has been made to obtain the most accurate and complete tabulations possible of the Hanford Site wells, omissions and errors may exist. This document does not include data on lithologic logs, ground-water analyses, or specific well completion details.

  4. LITERATURE SURVEY FOR GROUNDWATER TREATMENT OPTIONS FOR NITRATE IODINE-129 AND URANIUM 200-ZP-1 OPERABLE UNIT HANFORD SITE

    SciTech Connect

    BYRNES ME

    2008-06-05

    This literature review presents treatment options for nitrate, iodine-129, and uranium, which are present in groundwater at the 200-ZP-I Groundwater Operable Unit (OU) within the 200 West Area of the Hanford Site. The objective of this review is to determine available methods to treat or sequester these contaminants in place (i.e., in situ) or to pump-and-treat the groundwater aboveground (i.e., ex situ). This review has been conducted with emphasis on commercially available or field-tested technologies, but theoretical studies have, in some cases, been considered when no published field data exist. The initial scope of this literature review included only nitrate and iodine-I 29, but it was later expanded to include uranium. The focus of the literature review was weighted toward researching methods for treatment of nitrate and iodine-129 over uranium because of the relatively greater impact of those compounds identified at the 200-ZP-I OU.

  5. Biota of the 300-FF-1 operable unit. [Westinghouse Hanford Company

    SciTech Connect

    Rickard, W.H. Jr.; Fitzner, R.E.; Brandt, C.A.

    1990-10-01

    This report summarizes Task 5a-2 of the Phase I Remedial Investigation -- Operable Unit Characterization of the 300-FF-1 Operable Unit on the Hanford Site, near Richland, Washington. The ultimate goal of Phase I is to determine the nature and extent of the threat to public health and the environment from releases of hazardous substances from the operable unit. The purpose of Task 5a-2 was to determine what species inhabit the 300-FF-1 Operable Unit and how they use the unit. The focus is on those species listed as endangered or threatened, those that are economically important, or those that constitute significant components of the human food chain. 39 refs., 5 figs., 5 tabs.

  6. Hanford high level waste (HLW) tank mixer pump safe operating envelope reliability assessment

    SciTech Connect

    Fischer, S.R.; Clark, J.

    1993-10-01

    The US Department of Energy and its contractor, Westinghouse Corp., are responsible for the management and safe storage of waste accumulated from processing defense reactor irradiated fuels for plutonium recovery at the Hanford Site. These wastes, which consist of liquids and precipitated solids, are stored in underground storage tanks pending final disposition. Currently, 23 waste tanks have been placed on a safety watch list because of their potential for generating, storing, and periodically releasing various quantities of hydrogen and other gases. Tank 101-SY in the Hanford SY Tank Farm has been found to release hydrogen concentrations greater than the lower flammable limit (LFL) during periodic gas release events. In the unlikely event that an ignition source is present during a hydrogen release, a hydrogen burn could occur with a potential to release nuclear waste materials. To mitigate the periodic gas releases occurring from Tank 101-SY, a large mixer pump currently is being installed in the tank to promote a sustained release of hydrogen gas to the tank dome space. An extensive safety analysis (SA) effort was undertaken and documented to ensure the safe operation of the mixer pump after it is installed in Tank 101-SY.1 The SA identified a need for detailed operating, alarm, and abort limits to ensure that analyzed safety limits were not exceeded during pump operations.

  7. Hanford Environmental Information System (HEIS). Volume 2, Operator`s guide

    SciTech Connect

    Not Available

    1994-01-14

    This report discusses the procedures that establish the configuration control processes for the Hanford Environmental Information System (HEIS) software. The procedures also provide the charter and function of the HEIS Configuration Control Board (CCB) for maintaining software. The software configuration control items covered under these procedures include the HEIS software and database structure. The configuration control processes include both administrative and audit functions. The administrative role includes maintaining the overall change schedule, ensuring consistency of proposed changes, negotiating change plan adjustments, setting priorities, and tracking the status of changes. The configuration control process audits to ensure that changes are performed to applicable standards.

  8. Screening of Potential Remediation Methods for the 200-BP-5 Operable Unit at the Hanford Site

    SciTech Connect

    Truex, Michael J.; Dresel, P. EVAN; Nimmons, Michael J.; Johnson, Christian D.

    2006-09-21

    A screening-level evaluation of potential remediation methods for application to the contaminants of concern (COC) in the 200-BP-5 Operable Unit at the Hanford Site was conducted based on the methods outlined in the Guidance for Conducting Remedial Investigations and Feasibility Studies under CERCLA Interim Final (EPA 1988). The scope of this screening was to identify the most promising remediation methods for use in the more detailed analysis of remediation alternatives that will be conducted as part of the full feasibility study. The screening evaluation was conducted for the primary COC (potential major risk drivers) identified in the groundwater sampling and analysis plan for the operable unit (DOE/RL-2001-49, Rev. 1) with additions.

  9. ALTERNATIVE REMEDIATION TECHNOLOGY STUDY FOR GROUNDWATER TREATMENT AT 200-PO-1 OPERABLE UNIT AT HANFORD SITE

    SciTech Connect

    DADO MA

    2008-07-31

    This study focuses on the remediation methods and technologies applicable for use at 200-PO-I Groundwater Operable Unit (OU) at the Hanford Site. The 200-PO-I Groundwater au requires groundwater remediation because of the existence of contaminants of potential concern (COPC). A screening was conducted on alternative technologies and methods of remediation to determine which show the most potential for remediation of groundwater contaminants. The possible technologies were screened to determine which would be suggested for further study and which were not applicable for groundwater remediation. COPCs determined by the Hanford Site groundwater monitoring were grouped into categories based on properties linking them by remediation methods applicable to each COPC group. The screening considered the following criteria. (1) Determine if the suggested method or technology can be used for the specific contaminants found in groundwater and if the technology can be applied at the 200-PO-I Groundwater au, based on physical characteristics such as geology and depth to groundwater. (2) Evaluate screened technologies based on testing and development stages, effectiveness, implementability, cost, and time. This report documents the results of an intern research project conducted by Mathew Dado for Central Plateau Remediation in the Soil and Groundwater Remediation Project. The study was conducted under the technical supervision of Gloria Cummins and management supervision of Theresa Bergman and Becky Austin.

  10. Evaluation of no-MST operations in the SRS ARP for Hanford LAWPS

    SciTech Connect

    Herman, D.

    2016-11-14

    The Savannah River Site (SRS) Actinide Removal Process has been processing salt waste since 2008. This process includes a filtration step in the 512-S facility. Initial operations included the addition, or strike, of monosodium titanate (MST) to remove soluble actinides and strontium. The added MST and any entrained sludge solids were then separated from the supernate by cross flow filtration. During this time, the filter operations have, on many occasions, been the bottleneck process limiting the rate of salt processing. Recently, 512-S- has started operations utilizing “No-MST” where the MST actinide removal strike was not performed and the supernate was simply pre-filtered prior to Cs removal processing. Direct filtration of decanted tank supernate, as demonstrated in 512-S, is the proposed method of operation for the Hanford Low Activity Waste Pretreatment System (LAWPS) facility. Processing decanted supernate without MST solids has been demonstrated for cross flow filtration to provide a significant improvement in production with the SRS Salt Batches 8 and 9 feed chemistries. The average filtration rate for the first 512-S batch processing cycle using No-MST has increased filtrate production by over 35% of the historical average. The increase was sustained for more than double the amount of filtrate batches processed before cleaning of the filter was necessary. While there are differences in the design of the 512-S and Hanford filter systems, the 512-S system should provide a reasonable indication of LAWPS filter performance with similar feed properties. Based on the data from the 512-S facility and with favorable feed properties, the LAWPS filter, as currently sized at over twice the size of the 512-S filter (532 square feet filtration area versus 235 square feet), has the potential to provide sustained filtrate production at the upper range of the planned LAWPS production rate of 17 gpm.

  11. Revised Draft Hanford Site Solid (Radioactive and Hazardous) Waste Program Environmental Impact Statement, Richland, Washington

    SciTech Connect

    N /A

    2003-04-11

    This ''Revised Draft Hanford Site Solid (Radioactive and Hazardous) Waste Program Environmental Impact Statement'' (HSW EIS) covers three primary aspects of waste management at Hanford--waste treatment, storage, and disposal. It also addresses four kinds of solid waste--low-level waste (LLW), mixed (radioactive and chemically hazardous) low-level waste (MLLW), transuranic (TRU) waste, and immobilized low-activity waste (ILAW). It fundamentally asks the question: how should we manage the waste we have now and will have in the future? This EIS analyzes the impacts of the LLW, MLLW, TRU waste, and ILAW we currently have in storage, will generate, or expect to receive at Hanford. The HSW EIS is intended to help us determine what specific facilities we will continue to use, modify, or construct to treat, store, and dispose of these wastes (Figure S.1). Because radioactive and chemically hazardous waste management is a complex, technical, and difficult subject, we have made every effort to minimize the use of acronyms (making an exception for our four waste types listed above), use more commonly understood words, and provide the ''big picture'' in this summary. An acronym list, glossary of terms, and conversions for units of measure are provided in a readers guide in Volume 1 of this EIS.

  12. Development of a Remotely Operated NDE System for Inspection of Hanford's Double Shell Waste Tank Knuckle Regions

    SciTech Connect

    Pardini, Allan F.; Alzheimer, James M.; Crawford, Susan L.; Diaz, Aaron A.; Gervais, Kevin L.; Harris, Robert V.; Riechers, Douglas M.; Samuel, Todd J.; Schuster, George J.; Tucker, Joseph C.; Roberts, R. A.

    2001-09-28

    This report documents work performed at the PNNL in FY01 to support development of a Remotely Operated NDE (RONDE) system capable of inspecting the knuckle region of Hanford's DSTs. The development effort utilized commercial off-the-shelf (COTS) technology wherever possible and provided a transport and scanning device for implementing the SAFT and T-SAFT techniques.

  13. Development of a Remotely Operated NDE System for Inspection of Hanford's Double Shell Waste Tank Knuckle Regions

    SciTech Connect

    Pardini, Allan F; Alzheimer, James M; Crawford, Susan L; Diaz, Aaron A; Gervais, Kevin L; Harris, Robert V; Riechers, Douglas M; Samuel, Todd J; Schuster, George J; Tucker, Joseph C

    2001-09-28

    This report documents work performed at the PNNL in FY01 to support development of a Remotely Operated NDE (RONDE) system capable of inspecting the knuckle region of Hanford's DSTs. The development effort utilized commercial off-the-shelf (COTS) technology wherever possible and provided a transport and scanning device for implementing the SAFT and T-SAFT techniques.

  14. Summary of Model Toxics Control Act (MTCA) Potential Impacts Related to Hanford Cleanup and the Tri-Party Agreement (TPA)

    SciTech Connect

    IWATATE, D.F.

    2000-07-14

    This white paper provides an initial assessment of the potential impacts of the Model Toxics Control Act (MTCA) regulations (and proposed revisions) on the Hanford site cleanup and addresses concerns that MTCA might impose inappropriate or unachievable clean-up levels and drive clean-up costs higher. The white paper and supporting documentation (Appendices A and B) provide DOE with a concise and up-to-date review of potential MTCA impacts to cost and schedule for the Hanford site activities. MTCA, Chapter 70.105D RCW, is the State of Washington's risk based law governing clean-up of contaminated sites and is implemented by The Washington Department of Ecology (Ecology) under the MTCA Clean-up Regulations, Chapter 173-340 WAC. Hanford cleanup is subject to the MTCA requirements as Applicable, Relevant and Appropriate Requirements (ARARs) for those areas of Hanford being managed under the authority of the Federal Resource Conservation and Recovery Act (RCRA), Comprehensive Environmental Response, Compensation and Liability Act (CERCLA), and the state Dangerous Waste Regulations. MTCA provides Ecology with authority to implement site clean-up actions under both the federal RCRA and CERCLA regulations as well as the state regulations. Most of the Hanford clean-up actions are being implemented under the CERCLA program, however, there is a trend is toward increased use of MTCA procedures and standards. The application of MTCA to the Hanford clean-up has been an evolving process with some of the Hanford clean-up actions considering MTCA standards as an ARAR and using MTCA procedures for remedy selection. The increased use and application of MTCA standards and procedures could potentially impact both cost and schedule for the Hanford cleanup.

  15. Hanford Environmental Dose Reconstruction Project: Monthly Report

    SciTech Connect

    Finch, S.M.

    1990-07-01

    This monthly report summarizes the technical progress and project status for the Hanford Environmental Dose Reconstruction (HEDR) Project being conducted at the Pacific Northwest Laboratory (PNL) under the direction of a Technical Steering Panel (TSP). The objective of the Hanford Environmental Dose Reconstruction Project is to estimate the radiation doses that populations could have received from nuclear operations at Hanford since 1944. The project is divided into the following technical tasks. These tasks correspond to the path radionuclides followed, from release to impact on humans (dose estimates): Source Terms, Environmental Transport, Environmental Monitoring Data, Demographics, Agriculture, Food Habits, and Environmental Pathways and Dose Estimates. 3 figs.

  16. Relationship of infant and fetal mortality to operations at the Hanford Nuclear Reservation, Washington State, 1946-1982

    SciTech Connect

    Cate, S.; Hansom, J.

    1986-09-01

    The relationship of infant and fetal mortality to numbers of nuclear reactors at the Hanford Nuclear Reservation was investigated. Mortality rates were obtained using 36 years of United States vital statistics data. Three different exposure groups were selected based on meteorologic studies of the Hanford area: group 1, counties downwind of Hanford all year; group 2, counties seasonally downwind; and group 3, counties not downwind. Washington state was used as an additional comparison group. Four periods of operation based on fluctuations in numbers of reactors were characterized. Log-linear analysis revealed that the three groups and Washington state had similar trends in infant mortality rates over the four time periods. On the other hand, the trend in fetal mortality rates for group 1 did differ significantly from trends for the two other groups and Washington state. The trends of fetal mortality rates for group 2, group 3, and Washington state were not statistically different. Fetal mortality rates in group 1, however, failed to decline from period 1 (1946-1954) to period 2 (1955-1964) as expected by the trends for the two groups and Washington state. During period 2, the greatest number of reactors were operating. County-specific analysis showed that, of the counties in group 1, the trend in fetal mortality for Benton County, where Hanford is located, was significantly different from that for Washington state. A possible link between Hanford and an excess in fetal deaths is suggested by the deviation in trend of group 1, which appears localized to Benton County and the period of peak activity at Hanford.

  17. Hanford Environmental Dose Reconstruction Project. Monthly report

    SciTech Connect

    Cannon, S.D.; Finch, S.M.

    1992-10-01

    The objective of the Hanford Environmental Dose Reconstruction (HEDR) Project is to estimate the radiation doses that individuals and populations could have received from nuclear operations at Hanford since 1944. The independent Technical Steering Panel (TSP) provides technical direction. The project is divided into the following technical tasks. These tasks correspond to the path radionuclides followed from release to impact on humans (dose estimates):Source Terms, Environmental Transport, Environmental Monitoring Data, Demography, Food Consumption, and Agriculture, and Environmental Pathways and Dose Estimates.

  18. Hanford Environmental Dose Reconstruction Project Monthly Report

    SciTech Connect

    Finch, S.M.; McMakin, A.H.

    1992-03-01

    The objective of the Hanford Environmental Dose Reconstruction Project is to estimate the radiation doses that individuals and populations could have received from nuclear operations at Hanford since 1944. The project is divided into the following technical tasks. These tasks correspond to the path radionuclides followed, from release to impact on humans (dose estimates): Source Terms, Environmental Transport, Environmental Monitoring Data, Demography, Food Consumption, and Agriculture, and Environmental Pathways and Dose Estimates.

  19. Hanford Environmental Dose Reconstruction Project. Monthly report

    SciTech Connect

    Finch, S.M.; McMakin, A.H.

    1992-04-01

    The objective of the Hanford Environmental Dose Reconstruction Project is to estimate the radiation doses that individuals and populations could have received from nuclear operations at Hanford since 1944. The project is divided into the following technical tasks. These tasks correspond to the path radionuclides followed, from release to impact on humans (dose estimates): Source terms, environmental transport, environmental monitoring data, demography, food consumption, and agriculture, and environmental pathways and dose estimates.

  20. Hanford Environmental Dose Reconstruction Project monthly report

    SciTech Connect

    Finch, S.M.

    1991-10-01

    The objective of the Hanford Environmental Dose Reconstruction Project is to estimate the radiation doeses that individuals and populations could have received from nuclear operations at Hanford since 1944. The project is divided into the following technical tasks. These tasks correspond to the path radionuclides followed, from release to impact on humans (dose estimates): Source terms; environmental transport; environmental monitoring data; demographics, agriculture, food habits; environmental pathways and dose estimates.

  1. Evaluation of unit risk factors in support of the Hanford Remedial Action Environmental Impact Statement

    SciTech Connect

    Strenge, D.L.; Chamberlain, P.J. II

    1994-11-01

    This report describes the generation of unit risk factors for use with the Graphical Information System (GIS) being developed by Advanced Sciences, Inc. for the Hanford Remedial Action Environmental Impact Statement. The GIS couples information on source inventory and environmental transport with unit risk factors to estimate the potential risk from contamination at all locations on the Hanford Site. The major components of the effort to generate the unit risk factors were: determination of pollutants to include in the study, definition of media of concern, and definition of exposure assessment scenarios, methods, and parameters. The selection of pollutants was based on inventory lists which indicated the pollutants likely to be encountered at the known waste sites. The final pollutants selected included 47 chemical pollutants and 101 radionuclides. Unit risk factors have been generated for all 148 pollutants per unit initial concentration in five media: soil (per unit mass), soil (per unit area), air, groundwater, and surface water. The exposure scenarios were selected as the basis for the unit risk factor generation. The endpoint in the exposure assessment analysis is expressed as risk of developing cancer for radionuclides and carcinogenic chemicals. For noncarcinogenic chemicals, the risk endpoint is the hazard quotient. The cancer incidence and hazard quotient values are evaluated for all exposure pathways, pollutants, and scenarios. The hazard index values and unit risk values are used by the GIS to produce maps of risk for the Hanford Site.

  2. Anadromous salmonids of the Hanford Reach, Columbia River: 1984 status

    SciTech Connect

    Becker, C.D.

    1985-09-01

    The Hanford Reach, a regulated but flowing section of the Columbia River, supports spawning populations of fall chinook salmon and steelhead. It also serves as a migration route for upriver runs of chinook, coho and sockeye salmon, and of steelhead. Environmental studies conducted in association with activities on the Hanford Site provide a basis for assessing present ecological conditions in the Hanford Reach. Spawning populations of fall chinook salmon at Hanford increased dramatically after 1960, when Priest Rapids Dam was completed, and have remained relatively stable since 1969. Generally, upriver runs of spring, summer, and fall chinook salmon have been depressed, but the fall run has been increasing since 1980. Habitat modification represents the greatest threat to sustained production of fall chinook salmon in the Hanford Reach. Operations on and near the Hanford Site releases of small amounts of radioactivity from onsite operations to river and groundwater, and operation of a steam electric plant, can have negligible effects on salmonids and other aquatic resources. Possible activities with potential future impacts include development of a multi-unit power plant complex at Hanford, construction of a low-head hydroelectric dam above Richland, flow fluctuations from peaking power generation at Priest Rapids Dam, irrigation and reductions of instream flows, and dredging and commercial navigation above Hanford. If reproducing populations of fall chinook salmon and steelhead are to survive in the mid-Columbia River, the Hanford Reach must remain flowing, undeveloped for navigation, and with unimpaired water quality. 156 refs., 16 figs., 7 tabs.

  3. Applying Hanford Tank Mixing Data to Define Pulse Jet Mixer Operation

    SciTech Connect

    Wells, Beric E.; Bamberger, Judith A.; Recknagle, Kurtis P.; Enderlin, Carl W.; Minette, Michael J.; Holton, Langdon K.

    2015-12-07

    Pulse jet mixed (PJM) process vessels are being developed for storing, blending, and chemical processing of nuclear waste slurries at the Waste Treatment and Immobilization Plant (WTP) to be built at Hanford, Washington. These waste slurries exhibit variable process feed characteristics including Newtonian to non-Newtonian rheologies over a range of solids loadings. Waste feed to the WTP from the Hanford Tank Farms will be accomplished via the Waste Feed Delivery (WFD) system which includes million-gallon underground storage double-shell tanks (DSTs) with dual-opposed jet mixer pumps. Experience using WFD type jet mixer pumps to mobilize actual Hanford waste in DSTs may be used to establish design threshold criteria of interest to pulse jet mixed process vessel operation. This paper describes a method to evaluate the pulse jet mixed vessel capability to process waste based on information obtained during mobilizing and suspending waste by the WFD system jet mixer pumps in a DST. Calculations of jet velocity and wall shear stress in a specific pulse jet mixed process vessel were performed using a commercial computational fluid dynamics (CFD) code. The CFD-modelled process vessel consists of a 4.9-m- (16-ft-) diameter tank with a 2:1 semi-elliptical head, a single, 10-cm (4-in.) downward facing 60-degree conical nozzle, and a 0.61-m (24-in.) inside diameter PJM. The PJM is located at 70% of the vessel radius with the nozzle stand-off-distance 14 cm (6 in.) above the vessel head. The CFD modeled fluid velocity and wall shear stress can be used to estimate vessel waste-processing performance by comparison to available actual WFD system process data. Test data from the operation of jet mixer pumps in the 23-m (75-ft) diameter DSTs have demonstrated mobilization, solid particles in a sediment matrix were moved from their initial location, and suspension, mobilized solid particles were moved to a higher elevation in the vessel than their initial location, of waste solids

  4. Hanford Environmental Dose Reconstruction Project

    SciTech Connect

    Finch, S.M.; McMakin, A.H.

    1992-06-01

    The objective of the Hanford Environmental Dose Reconstruction Project is to estimate the radiation doses that individuals and populations could have received from nuclear operations at Hanford since 1944. The project is being managed and conducted by the Battelle Pacific Northwest Laboratories under contract with the Centers for Disease Control. The independent Technical Steering Panel (TSP) provides technical direction. The project is divided into the following technical tasks. These tasks correspond to the path radionuclides followed, from release to impact on humans (dose estimates): source terms; environmental transport; environmental monitoring data; demography, food consumption, and agriculture; environmental pathways and dose estimates.

  5. Hanford External Dosimetry Program

    SciTech Connect

    Fix, J.J.

    1990-10-01

    This document describes the Hanford External Dosimetry Program as it is administered by Pacific Northwest Laboratory (PNL) in support of the US Department of Energy (DOE) and its Hanford contractors. Program services include administrating the Hanford personnel dosimeter processing program and ensuring that the related dosimeter data accurately reflect occupational dose received by Hanford personnel or visitors. Specific chapters of this report deal with the following subjects: personnel dosimetry organizations at Hanford and the associated DOE and contractor exposure guidelines; types, characteristics, and procurement of personnel dosimeters used at Hanford; personnel dosimeter identification, acceptance testing, accountability, and exchange; dosimeter processing and data recording practices; standard sources, calibration factors, and calibration processes (including algorithms) used for calibrating Hanford personnel dosimeters; system operating parameters required for assurance of dosimeter processing quality control; special dose evaluation methods applied for individuals under abnormal circumstances (i.e., lost results, etc.); and methods for evaluating personnel doses from nuclear accidents. 1 ref., 14 figs., 5 tabs.

  6. One perspective on stakeholder involvement at Hanford.

    PubMed

    Martin, Todd

    2011-11-01

    The Hanford nuclear site in Washington State had a major role in the production of nuclear weapons materials during the Manhattan Project in World War II and during the Cold War that followed. The production of weapons-grade radionuclides produced a large amount of radioactive byproducts that have been stored since the mid-1900s at the Hanford Site. These by-product radionuclides have leaked from containment facilities into the groundwater, contaminated buildings used for radionuclide processing, and also contaminated the nuclear reactors used to produce weapons-grade uranium and plutonium. This issue has been a major concern to Hanford stakeholders for several decades, and the U.S. Department of Energy, the U.S. Environmental Protection Agency, and the Washington State Department of Ecology established a Tri-Party Agreement in 1989, at which time Hanford ceased production of nuclear weapons materials and began a major effort to clean up and remediate the Hanford Site's contaminated groundwater, soil, and facilities. This paper describes the concerns of stakeholders in the production of nuclear weapons, the secrecy of Hanford operations, and the potential impacts to public health and the environment from the unintended releases of weapons-grade materials and by-products associated with their production at the Hanford Site. It also describes the involvement of public stakeholders in the development and oversight by the Hanford Advisory Board of the steps that have been taken in cleanup activities at the Hanford Site that began as a major effort about two decades ago. The importance of involvement of the general public and public interest organizations in developing and implementing the Hanford cleanup strategy are described in detail.

  7. Remedial investigation Phase 2 supplemental work plan for the Hanford Site 1100-EM-1 Operable Unit

    SciTech Connect

    Not Available

    1991-09-01

    The 1100 Area, the central warehousing, vehicle maintenance, and transportation operations center for the Hanford Site, was designated an (NPL) National Priorities List site in July 1989. This NPL site was divided into four operable units, and the first equipment maintenance operable unit, 1100-EM-1, was assigned the highest priority. The following summary focuses on the major issues related to contaminant sources, meteorology, surface hydrology, geology, pedology, hydrogeology, and ecology. The 110-EM-1 Phase 1 R1 report recommended further investigation at six waste management units assigned to or within the operable unit. 1100-1 (Battery Acid Pit)--an unlined dry sump, or french drain, used for the disposal of waste acid from vehicle batteries; 1100-2 (Paint and solvent Pit)--a former sand and gravel pit subsequently used for the disposal of construction debris and, reportedly, waste paints, thinner, and solvents; 1100-4 (Antifreeze Tank Site)--The site of a former underground storage tank used for the disposal of waste vehicle antifreeze; UN-1100-6 (Discolored Soil Site)--the location of an apparent disposal event onto the ground surface involving a container of organic waste liquids; Horn Rapids Landfill--a solid waste facility used primarily for the disposal of office and construction waste and the burning of classified documents; asbestos, sewage sludge, fly ash, and, potentially, drums of unidentified organic liquids alleged to be disposed at this location; and Ephemeral Pool--the location of 1100 Area parking lot runoff accumulation during infrequent, high-intensity precipitation events. This remedial investigation supplemental work plan details the efforts for final characterization of the 1100-EM-1 Operable Unit that will provide data to be used for the evaluation of remedial operations in the Phase 3 1100-EM-1 feasibility study. 19 refs., 28 figs., 2 tabs.

  8. Hanford Environmental Dose Reconstruction Project

    SciTech Connect

    Finch, S.M.

    1990-09-01

    This monthly report summarizes the technical progress and project status for the Hanford Environmental Dose Reconstruction (HEDR) Project being conducted at the Pacific Northwest Laboratory (PNL) under the direction of a Technical Steering Panel (TSP). The TSP is composed of experts in numerous technical fields related to this project and represents the interests of the public. The objective of the Hanford Environmental Dose Reconstruction Project is to estimate the radiation doses that populations could have received from nuclear operations at Hanford since 1944. The project is divided into the following technical tasks. These tasks correspond to the path radionuclides followed, from release to impact on humans (dose estimates): source terms, environmental transport, environmental monitoring data, demographics, agriculture, food habits, environmental pathways and dose estimates. 3 figs.

  9. Screening of Potential Remediation Methods for the 200-ZP-1 Operable Unit at the Hanford Site

    SciTech Connect

    Truex, Michael J.; Nimmons, Michael J.; Johnson, Christian D.; Dresel, P EVAN.; Murray, Christopher J.

    2006-08-07

    A screening-level evaluation of potential remediation methods for application to the contaminants of concern (COC) in the 200-ZP-1 Operable Unit at the Hanford Site was conducted based on the methods outlined in the Guidance for Conducting Remedial Investigations and Feasibility Studies under CERCLA Interim Final. The scope of this screening was to identify the most promising remediation methods for use in the more detailed analysis of remediation alternatives that will be conducted as part of the full feasibility study. The screening evaluation was conducted for the primary COC (potential major risk drivers). COC with similar properties were grouped for the screening evaluation. The screening evaluation was conducted in two primary steps. The initial screening step evaluated potential remediation methods based on whether they can be effectively applied within the environmental setting of the 200-ZP-1 Operable Unit for the specified contaminants. In the second step, potential remediation methods were screened using scoping calculations to estimate the scale of infrastructure, overall quantities of reagents, and conceptual approach for applying the method for each defined grouping of COC. Based on these estimates, each method was screened with respect to effectiveness, implementability, and relative cost categories of the CERCLA feasibility study screening process defined in EPA guidance.

  10. Maximizing Operational Efficiencies in Waste Management on the Hanford Plateau Remediation Contract in a Down-turned Market - 13484

    SciTech Connect

    Simiele, Connie J.; Blackford, L. Ty; West, Lori D.

    2013-07-01

    Recent changes in DOE priorities and funding have pressed DOE and its contractors to look for innovative methods to sustain critical operations at sites across the Complex. At the Hanford Site, DOE Richland Operations and its prime contractor, CH2M Hill Plateau Remediation Company (CHPRC), have completed in-depth assessments of the Plateau Remediation Contract (PRC) operations that compared available funding to mission and operational objectives in an effort to maintain requisite safety and compliance margins while realizing cost savings that meet funding profiles. These assessments included confirmation of current baseline activities, identification of potential efficiencies, barriers to implementation, and potential increased risks associated with implementation. Six operating PRC waste management facilities were evaluated against three possible end-states: complete facility closure, maintaining base operations, and performing minimum safe surveillance and maintenance activities. The costs to completely close evaluated facilities were determined to be prohibitively high and this end-state was quickly dropped from consideration. A summary of the analysis of remaining options by facility, efficiencies identified, impact to risk profiles, and expected cost savings is provided in Table I. The expected cost savings are a result of: - right-sizing and cross-training work crews to address maintenance activities across facilities; - combining and sequencing 'like-moded' operational processes; - cross-cutting emergency planning and preparedness staffing; - resource redistribution and optimization; - reducing areas requiring routine surveillance and inspection. For the efficiencies identified, there are corresponding increases in risk, including a loss of breadth and depth of available resources; lengthened response time to emergent issues; inability to invest in opportunities for improvement (OFIs); potential single-point failures or non-compliancies due to resource

  11. Hanford recycling

    SciTech Connect

    Leonard, I.M.

    1996-09-01

    This paper is a study of the past and present recycling efforts on the Hanford site and options for future improvements in the recycling program. Until 1996, recycling goals were voluntarily set by the waste generators: this year, DOE has imposed goals for all its sites to accomplish by 1999. Hanford is presently meeting the voluntary site goals, but may not be able to meet all the new DOE goals without changes to the program. Most of these new DOE goals are recycling goals: * Reduce the generation of radioactive (low-level) waste from routine operations 50 percent through source reduction and recycling. * Reduce the generation of low-level mixed waste from routine operations 50 percent through source reduction and recycling. * Reduce the generation of hazardous waste from routine operations 50 percent through source reduction and recycling. * Recycle 33 percent of the sanitary waste from all operations. * Increase affirmative procurement of EPA-designated recycled items to 100 percent. The Hanford recycling program has made great strides-there has been a 98 percent increase in the amount of paper recycled since its inception in 1990. Hanford recycles paper, chemicals cardboard, tires, oil, batteries, rags, lead weights, fluorescent tubes, aerosol products, concrete, office furniture, computer software, drums, toner cartridges, and scrap metal. Many other items are recycled or reused by individual groups on a one time basis without a formal contract. Several contracts are closed-loop contracts which involve all parts of the recycle loop. Considerable savings are generated from recycling, and much more is possible with increased attention and improvements to this program. General methods for improving the recycling program to ensure that the new goals can be met are: a Contract and financial changes 0 Tracking database and methods improvements 0 Expanded recycling efforts. Specifically, the Hanford recycling program would be improved by: 0 Establishing one overall

  12. Hanford Site Regional Population - 2010 Census

    SciTech Connect

    Hamilton, Erin L.; Snyder, Sandra F.

    2011-08-12

    The U.S. Department of Energy conducts radiological operations in south-central Washington State. Population dose estimates must be performed to provide a measure of the impact from site radiological releases. Results of the U.S. 2010 Census were used to determine counts and distributions for the residential population located within 50-miles of several operating areas of the Hanford Site. Year 2010 was the first census year that a 50-mile population of a Hanford Site operational area exceeded the half-million mark.

  13. Borehole Data Package for Nine CY 2006 Polyphosphate Treatability Testing Wells, 300-FF-5 Operable Unit, Hanford Site, Washington

    SciTech Connect

    Williams, Bruce A.

    2007-04-12

    Nine new CERCLA groundwater monitoring wells were installed in the 300-FF-5 Operable Unit in calendar year 2006 to fulfill commitments for the EM-20 funded polyphosphate treatability test. Nine new performance monitoring wells were drilled into the uppermost unconfined aquifer, to the Hanford formation - Ringold Formation contact boundary, and completed within the permeable Hanford fm. unit 1 gravel-dominated sequence. The overall objective of the polyphosphate treatability test is to evaluate the efficacy of using polyphosphate injections to treat 300 Area uranium contaminated groundwater in situ. The objective of this work was to install the performance monitoring network surrounding the existing treatability injection well C5000 (399-1-23) in support of the implementation of a field scale demonstration of the polyphosphate technology.

  14. GROUDWATER REMEDIATION AT THE 100-HR-3 OPERABLE UNIT HANFORD SITE WASHINGTON USA - 11507

    SciTech Connect

    SMOOT JL; BIEBESHEIMER FH; ELUSKIE JA; SPILIOTOPOULOS A; TONKIN MJ; SIMPKIN T

    2011-01-12

    The 100-HR-3 Groundwater Operable Unit (OU) at the Hanford Site underlies three former plutonium production reactors and the associated infrastructure at the 100-D and 100-H Areas. The primary contaminant of concern at the site is hexavalent chromium; the secondary contaminants are strontium-90, technetium-99, tritium, uranium, and nitrate. The hexavalent chromium plume is the largest plume of its type in the state of Washington, covering an area of approximately 7 km{sup 2} (2.7 mi{sup 2}) with concentrations greater than 20 {micro}g/L. Concentrations range from 60,000 {micro}g/L near the former dichromate transfer station in the 100-D Area to large areas of 20 to 100 {micro}g/L across much of the plume area. Pump-and-treat operations began in 1997 and continued into 2010 at a limited scale of approximately 200 gal/min. Remediation of groundwater has been fairly successful in reaching remedial action objectives (RAOs) of 20 {micro}g/L over a limited region at the 100-H, but less effective at 100-D. In 2000, an in situ, permeable reactive barrier was installed downgradient of the hotspot in 100-D as a second remedy. The RAOs are still being exceeded over a large portion of the area. The CH2M HILL Plateau Remediation Company was awarded the remediation contract for groundwater in 2008 and initiated a remedial process optimization study consisting of modeling and technical studies intended to enhance the remediation. As a result of the study, 1,400 gal/min of expanded treatment capacity are being implemented. These new systems are designed to meet 2012 and 2020 target milestones for protection of the Columbia River and cleanup of the groundwater plumes.

  15. Operation of N Reactor and Fuels Fabrication Facilities, Hanford Reservation, Richland, Benton County, Washington: Environmental assessment

    SciTech Connect

    Not Available

    1980-08-01

    Environmental data, calculations and analyses show no significant adverse radiological or nonradiological impacts from current or projected future operations resulting from N Reactor, Fuels Fabrication and Spent Fuel Storage Facilities. Nonoccupational radiation exposures resulting from 1978 N Reactor operations are summarized and compared to allowable exposure limits.

  16. Continued Evaluation of the Pulse-Echo Ultrasonic Instrument for Critical Velocity Determination during Hanford Tank Waste Transfer Operations

    SciTech Connect

    Denslow, Kayte M.; Bontha, Jagannadha R.; Adkins, Harold E.; Jenks, Jeromy WJ; Burns, Carolyn A.; Schonewill, Philip P.; Hopkins, Derek F.; Thien, Michael G.; Wooley, Theodore A.

    2012-04-01

    Laboratory (PNNL) conducted an extensive evaluation of the ability of three ultrasonic instruments to detect critical velocity for a broad range of simulated Hanford nuclear waste streams containing particles with mean particle sizes of >50 microns. Evaluations were perform using the pipe loop at the Process Development Laboratory – East (PDL-E) at PNNL that was designed and built to evaluate the pipeline plugging issue during slurry transfer operations at the Hanford Waste Treatment Plant. In 2011 the ability of the ultrasonic PulseEcho system to detect critical velocity continued to be evaluated using the PDL-E flow loop and new simulants containing high-density particles with a mean particle size of < 15 microns. The PDL-E flow loop was modified for the 2011 testing to include a new test section that contained 5-MHz and 10-MHz ultrasonic transducers non-invasively mounted to schedule 40 pipe. The test section also contained reference instrumentation to facilitate direct comparison of the real-time PulseEcho transducer responses with experimentally observed critical velocities. This paper presents the results from the 2011 PulseEcho evaluation using a variety of simulated Hanford nuclear waste streams that were selected to encompass the expected high-level waste feed properties.

  17. Hanford Site Anuran Monitoring Report for Calendar Year 2013

    SciTech Connect

    Wilde, Justin W.; Johnson, Scott J.; Lindsey, Cole T.

    2014-02-13

    The U.S. Department of Energy, Richland Operations Office (DOE-RL) conducts ecological monitoring on the Hanford Site to collect and track data needed to ensure compliance with an array of environmental laws, regulations, and policies governing DOE activities. Ecological monitoring data provide baseline information about the plants, animals, and habitat under DOE-RL stewardship at Hanford required for decision-making under the National Environmental Policy Act (NEPA) and Comprehensive Environmental Response, Compensation, and Liability Act (CERCLA). The Hanford Site Comprehensive Land Use Plan (CLUP, DOE/EIS-0222-F) which is the Environmental Impact Statement for Hanford Site activities, helps ensure that DOE-RL, its contractors, and other entities conducting activities on the Hanford Site are in compliance with NEPA.

  18. Hanford Site Raptor Nest Monitoring Report for Calendar Year 2013

    SciTech Connect

    Nugent, John J.; Lindsey, Cole T.; Wilde, Justin W.

    2014-02-13

    The U.S. Department of Energy, Richland Operations Office (DOE-RL) conducts ecological monitoring on the Hanford Site to collect and track data needed to ensure compliance with an array of environmental laws, regulations, and policies governing DOE activities. Ecological monitoring data provide baseline information about the plants, animals, and habitat under DOE-RL stewardship at Hanford required for decision-making under the National Environmental Policy Act (NEPA) and Comprehensive Environmental Response, Compensation, and Liability Act (CERCLA). The Hanford Site Comprehensive Land Use Plan (CLUP, DOE/EIS-0222-F) which is the Environmental Impact Statement for Hanford Site activities, helps ensure that DOE-RL, its contractors, and other entities conducting activities on the Hanford Site are in compliance with NEPA.

  19. Remedial investigation/feasibility study work plan for the 100-KR-4 operable unit, Hanford Site, Richland, Washington

    SciTech Connect

    Not Available

    1992-09-01

    Four areas of the Hanford Site (the 100, 200, 300, and 1100 Areas) have been included on the US Environmental Protection Agency`s (EPA`s) National Priorities List (NPL) under the Comprehensive Environmental Response, Compensation, and Liability Act of 1980 (CERCLA). This work plan and the attached supporting project plans establish the operable unit setting and the objectives, procedures, tasks, and schedule for conducting the CERCLA remedial investigation/feasibility study (RI/FS) for the 100-KR-4 operable unit. The 100-K Area consists of the 100-KR-4 groundwater operable unit and three source operable units. The 100-KR-4 operable unit includes all contamination found in the aquifer soils and water beneath the 100-K Area. Source operable units include facilities and unplanned release sites that are potential sources of contamination.

  20. Potential Impacts of Leakage from Black Rock Reservoir on the Hanford Site Unconfined Aquifer: Initial Hypothetical Simulations of Flow and Contaminant Transport - Errata

    SciTech Connect

    Freedman, Vicky L.

    2007-04-30

    Errata for report documenting initial scoping calculations investigating the potential impacts on the Hanford unconfined aquifer resulting from leakage from the proposed Black Rock Reservoir to the west. These calculations were performed for the U.S. Bureau of Reclamation.

  1. RCRA facility investigation/corrective measures study work plan for the 200-UP-2 Operable Unit, Hanford Site, Richland, Washington

    SciTech Connect

    Not Available

    1993-06-01

    The 200-UP-2 Operable Unit is one of two source operable units at the U Plant Aggregate Area at the Hanford Site. Source operable units include waste management units and unplanned release sites that are potential sources of radioactive and/or hazardous substance contamination. This work plan, while maintaining the title RFI/CMS, presents the background and direction for conducting a limited field investigation in the 200-UP-2 Operable Unit, which is the first part of the process leading to final remedy selection. This report discusses the background, prior recommendations, goals, organization, and quality assurance for the 200-UP-2 Operable Unit Work Plan. The discussion begins with a summary of the regulatory framework and the role of the work plan. The specific recommendations leading into the work plan are then addressed. Next, the goals and organization of the report are discussed. Finally, the quality assurance and supporting documentation are presented.

  2. Superfund record of decision (EPA Region 10): Hanford 300 Area (USDOE), 300-FF-1 and 300-FF-5 operable units, Benton County, WA, July 17, 1996

    SciTech Connect

    1996-08-01

    The decision document presents the selected final remedial and interim remedial actions for portions of the USDOE Hanford 300 Area, Hanford Site, Benton County, Washington. The ROD addresses actual or threatened releases from the wastes sites in the 300-FF-1 Operable Unit and the groundwater in the 300-FF-5 Operable Unit. The third operable unit (300-FF-2) consists of the remaining waste sites in the 300 Area NPL site and any associated groundwater that is not part of 300-FF-5.

  3. Remedial investigation/feasibility study work plan for the 100-BC-2 operable unit, Hanford Site, Richland, Washington

    SciTech Connect

    Not Available

    1993-05-01

    This work plan and attached supporting project plans establish the operable unit setting and the objectives, procedures, tasks, and schedule for conducting the Comprehensive Environmental Response, Compensation, and Liability Act of 1980 (CERCLA) remedial investigation/feasibility study (RI/FS) for the 100-BC-2 operable unit in the 100 Area of the Hanford Site. The 100 Area is one of four areas at the Hanford Site that are on the US Environmental Protection Agency`s (EPA) National Priorities List under CERCLA. The 100-BC-2 operable unit is one of two source operable units in the 100-B/C Area (Figure ES-1). Source operable units are those that contain facilities and unplanned release sites that are potential sources of hazardous substance contamination. The 100-BC-2 source operable unit contains waste sites that were formerly in the 100-BC-2, 100-BC-3, and 100-BC-4 operable units. Because of their size and geographic location, the waste sites from these two operable units were added to 100-BC-2. This allows for a more efficient and effective investigation of the remaining 100-B/C Reactor area waste sites. The investigative approach to waste sites associated with the 100-BC-2 operable unit are listed in Table ES-1. The waste sites fall into three general categories: high priority liquid waste disposal sites, low priority liquid waste disposal sites, and solid waste burial grounds. Several sites have been identified as candidates for conducting an IRM. Two sites have been identified as warranting additional limited field sampling. The two sites are the 116-C-2A pluto crib, and the 116-C-2C sand filter.

  4. Hanford Environmental Dose Reconstruction Project monthly report, August 1992

    SciTech Connect

    McMakin, A.H.; Cannon, S.D.; Finch, S.M.

    1992-09-01

    The objective of the Hanford Environmental Dose Reconstruction (HEDR) Project is to estimate the radiation doses that individuals and populations could have received from nuclear operations at Hanford since 1944. The project is divided into the following technical tasks. These tasks correspond to the path radionuclides followed from release to impact on humans (dose estimates): source terms; environmental transport; environmental monitoring data; demography; food consumption; and agriculture; and environmental pathway and dose estimates.

  5. Hanford Environmental Dose Reconstruction Project monthly report, August 1992

    SciTech Connect

    McMakin, A.H.; Cannon, S.D.; Finch, S.M.

    1992-01-01

    The objective of the Hanford Environmental Dose Reconstruction (HEDR) Project is to estimate the radiation doses that individuals and populations could have received from nuclear operations at Hanford since 1944. The project is divided into the following technical tasks. These tasks correspond to the path radionuclides followed from release to impact on humans (dose estimates): source terms; environmental transport; environmental monitoring data; demography; food consumption; and agriculture; and environmental pathway and dose estimates.

  6. Hanford Environmental Dose Reconstruction Project. Monthly report, November 1991

    SciTech Connect

    Finch, S.M.; McMakin, A.H.

    1991-12-31

    The objective of the Hanford Environmental Dose Reconstruction Project is to estimate the radiation doses that individuals and populations could have received from nuclear operations at Hanford since 1944. The project is divided into the following technical tasks. These tasks correspond to the path radionuclides followed, from release to impact on humans (dose estimates): Source terms; environmental transport environmental monitoring data; demographics, agriculture, food habits; environmental pathways and dose estimates.

  7. Hanford Environmental Dose Reconstruction Project. Monthly report, January 1992

    SciTech Connect

    Finch, S.M.; McMakin, A.H.

    1992-05-01

    The objective of the Hanford Environmental Dose Reconstruction Project is to estimate the radiation doses that individuals and populations could have received from nuclear operations at Hanford since 1944. The project is divided into the following technical tasks. These tasks correspond to the path radionuclides followed, from release to impact on humans (dose estimates): Source Terms, Environmental Transport, Environmental Monitoring Data, Demography, Food Consumption, and Agriculture, and Environmental Pathways and Dose Estimates.

  8. Hanford Environmental Dose Reconstruction Project monthly report, February 1993

    SciTech Connect

    Cannon, S.D.; Finch, S.M.

    1993-01-01

    The objective of the Hanford Environmental Dose Reconstruction (HEDR) Project Is to estimate the radiation doses that individuals and populations could have received from nuclear operations at Hanford since 1944. The project is divided into the following technical tasks. These tasks correspond to the path radionuclides followed from release to impact on humans (dose estimates): Source Terms; Environmental Transport; Environmental Monitoring Data; Demography, Food Consumption, and Agriculture; and Environmental Pathways and Dose Estimates.

  9. Hanford Environmental Dose Reconstruction Project monthly report, February 1993

    SciTech Connect

    Cannon, S.D.; Finch, S.M.

    1993-03-01

    The objective of the Hanford Environmental Dose Reconstruction (HEDR) Project Is to estimate the radiation doses that individuals and populations could have received from nuclear operations at Hanford since 1944. The project is divided into the following technical tasks. These tasks correspond to the path radionuclides followed from release to impact on humans (dose estimates): Source Terms; Environmental Transport; Environmental Monitoring Data; Demography, Food Consumption, and Agriculture; and Environmental Pathways and Dose Estimates.

  10. Hanford Environmental Dose Reconstruction Project monthly report, May 1992

    SciTech Connect

    Finch, S.M.; McMakin, A.H.

    1992-01-01

    The objective of the Hanford Environmental Dose Reconstruction Project is to estimate the radiation doses that individuals and populations could have received from nuclear operations at Hanford since 1944. The project is divided into the following technical tasks. These task correspond to the path radionuclides followed, from release to impact on humans (dose estimates): Source terms, environmental transport, environmental monitoring data, demography, food consumption, and agriculture, and environmental pathways and dose estimates.

  11. Hanford Environmental Dose Reconstruction Project monthly report, May 1992

    SciTech Connect

    Finch, S.M.; McMakin, A.H.

    1992-08-01

    The objective of the Hanford Environmental Dose Reconstruction Project is to estimate the radiation doses that individuals and populations could have received from nuclear operations at Hanford since 1944. The project is divided into the following technical tasks. These task correspond to the path radionuclides followed, from release to impact on humans (dose estimates): Source terms, environmental transport, environmental monitoring data, demography, food consumption, and agriculture, and environmental pathways and dose estimates.

  12. Hanford Environmental Dose Reconstruction Project

    SciTech Connect

    Finch, S. M.; McMakin, A. H.

    1991-09-01

    The objective of the Hanford Environmental Dose Reconstruction Project is to estimate the radiation dose that individuals and populations could have received from nuclear operations at Hanford since 1944. The project is divided into five technical tasks. These tasks correspond to the path radionuclides followed, from release to impact on humans (i.e., dose estimates). The Source Terms Task develops estimates of radioactive emissions from Hanford facilities since 1944. The Environmental Transport Task reconstructs the movements of radioactive particles from the areas of release to populations. The Environmental Monitoring Data Task assemblies, evaluates and reports historical environmental monitoring data. The Demographics, Agriculture and Food Habits Task develops the data needed to identify the populations that could have been affected by the releases. The Environmental Pathways and Dose Estimates Task used the information derived from the other Tasks to estimate the radiation doses individuals could have received from Hanford radiation. This document lists the progress on this project as of September 1991. 3 figs., 2 tabs.

  13. Hanford Environmental Dose Reconstruction Project

    SciTech Connect

    Finch, S.M.

    1990-01-01

    The objective of the Hanford Environmental Dose Reconstruction Project is to estimate the radiation doses that populations could have received from nuclear operations at Hanford since 1944. The project is being managed and conducted by the Pacific Northwest Laboratory (PNL) under the direction of an independent Technical Steering Panel (TSP). The project is divided into the following technical tasks. These tasks correspond to the path radionuclides followed, from release to impact on humans (dose estimates). The Source Terms Task develops estimates of radioactive emissions from Hanford facilities since 1944. The Environmental Transport Task reconstructs the movement of radioactive materials from the areas of release to populations. The Environmental Monitoring Data Task assembles, evaluates, and reports historical environmental monitoring data. The Demographics, Agriculture, Food Habits Task develops the data needed to identify the populations that could have been affected by the releases. In addition to population and demographic data, the food and water resources and consumption patterns for populations are estimated because they provide a primary pathway for the intake of radionuclides. The Environmental Pathways and Dose Estimates Task use the information produced by the other tasks to estimate the radiation doses populations could have received from Hanford radiation. Project progress is documented in this monthly report, which is available to the public. 3 figs., 3 tabs.

  14. LESSONS LEARNED IN OPERATING THE HOSE-IN-HOSE SYSTEM FOR TRANSFSERRING SLUDGE AT HANFORDS K-BASINS

    SciTech Connect

    PERES MW

    2008-01-07

    In May 2007, the Department of Energy and the Fluor Hanford K Basin Closure Project completed transferring sludge from the K East Basin to new containers in the K West Basin using a Hose-in-Hose system. This project presented a number of complex and unique technical, operational, and management challenges that had to be resolved to complete the required transfers and satisfy project milestones. The project team (including DOE; regulators; and Fluor management, operations, maintenance, engineering and all other support organizations) found innovative solutions to each challenge. This paper records lessons learned during the operational phase of the sludge transfer via the Hose-In-Hose system. The subject is limited to the operational phase and does not cover design, development, testing or turnover. A discussion of the situation or problem encountered is provided, along with the lesson learned as applicable to a future program or project.

  15. Hanford Environmental Dose Reconstruction Project Monthly Report

    SciTech Connect

    Finch, S.M.

    1990-01-01

    The objective of the Hanford Environmental Dose Reconstruction Project is to estimate the radiation doses that populations could have received from nuclear operations at Hanford since 1944. The project is being managed and conducted by the Pacific Northwest Laboratory (PNL) under the direction of an independent Technical Steering Panel (TSP). The project is divided into the following technical tasks. These tasks correspond to the path radionuclides followed, from release to impact on humans (dose estimates): source terms; environmental transport; environmental monitoring data; demographics; agriculture; food habits; and environmental pathways and dose estimates. 3 figs.

  16. Hanford Environmental Dose Reconstruction Project Monthly Report

    SciTech Connect

    Finch, S.M.; McMakin, A.H.

    1991-04-01

    The objective of the Hanford Environmental Dose Reconstruction Project is to estimate the radiation doses that populations could have received from nuclear operations at Hanford since 1944. The project is being managed and conducted by the Pacific Northwest Laboratory (PNL) under the direction of an independent Technical Steering Panel (TSP). The project is divided into the following technical tasks. These tasks correspond to the path radionuclides followed, from released to impact on humans (dose estimates): source terms; environmental transport; environmental monitoring data; demographics, agriculture, food habits; and, environmental pathways and dose estimates.

  17. Hanford Environmental Dose Reconstruction Project Monthly Report

    SciTech Connect

    Finch, S.M.

    1991-07-01

    The objective of the Hanford Environmental Dose Reconstruction Project is to estimate the radiation doses that individuals and populations could have received from nuclear operations at Hanford since 1944. The project is being managed and conducted by the Pacific Northwest Laboratory (PNL) under the direction of an independent Technical Steering Panel (TSP). The project is divided into the following technical tasks. These tasks correspond to the path radionuclides followed, from release to impact on humans (dose estimates): Source terms; environmental transport; environmental monitoring data; demographics, agriculture, food habits; and environmental pathways and dose estimates. 2 figs., 2 tabs.

  18. Hanford Environmental Dose Reconstruction Project Monthly Report

    SciTech Connect

    Finch, S.M.; McMakin, A.H.

    1991-05-01

    The objective of the Hanford Environmental Dose Reconstruction Project is to estimate the radiation doses that individuals and populations could have received from nuclear operations at Hanford since 1944. The project is being managed and conducted by the Pacific Northwest Laboratory (PNL) under the direction of an independent Technical Steering Panel (TSP). The project is divided into the following technical tasks. These tasks correspond to the path radionuclides followed, from release to impact on humans (dose estimates): Source Terms, Environmental Transport, Environmental Monitoring Data, Demographics, Agriculture, Food Habits, Environmental Pathways and Dose Estimates. 2 figs., 1 tab.

  19. Hanford Environmental Dose Reconstruction Project Monthly Report

    SciTech Connect

    Finch, S.M.

    1991-03-01

    The objective of the Hanford Environmental Dose Reconstruction Project is to estimate the radiation doses that populations could have received from nuclear operations at Hanford since 1944. The project is being managed and conducted by the Pacific Northwest Laboratory (PNL) under the direction of an independent Technical Steering Panel (TSP). The project is divided into the technical tasks which correspond to the path radionuclides followed, from release to impact on humans (dose estimates): source terms; environmental transport; environment monitoring data; demographics, agriculture, food habits; and environmental pathways and dose estimates. 3 figs., 2 tabs.

  20. Hanford Environmental Dose Reconstruction Project monthly report

    SciTech Connect

    Finch, S.M.

    1990-12-01

    The objective of the Hanford Environmental Dose Reconstruction Project is to estimate the radiation doses that populations could have been have received from nuclear operations at Hanford since 1944. The project is being managed and conducted by the Pacific Northwest Laboratory (PNL) under the direction of an independent Technical Steering Panel (TSP). The project is divided into the following technical tasks. These tasks correspond to the path radionuclides followed, from release to impact on humans (dose estimates): source terms; environmental transport; environmental monitoring data; demographics, agriculture, food habits; and environmental pathways and dose estimates. 3 figs., 3 tabs.

  1. History of the 185-/189-D thermal hydraulics laboratory and its effects on reactor operations at the Hanford Site

    SciTech Connect

    Gerber, M.S.

    1994-09-01

    The 185-D deaeration building and the 189-D refrigeration building were constructed at Hanford during 1943 and 1944. Both buildings were constructed as part of the influent water cooling system for D reactor. The CMS studies eliminated the need for 185-D function. Early gains in knowledge ended the original function of the 189-D building mission. In 1951, 185-D and 189-D were converted to a thermal-hydraulic laboratory. The experiments held in the thermal-hydraulic lab lead to historic changes in Hanford reactor operations. In late 1951, the exponential physics experiments were moved to the 189-D building. In 1958, new production reactor experiments were begun in 185/189-D. In 1959, Plutonium Recycle Test Reactor experiments were added to the 185/189-D facility. By 1960, the 185/189-D thermal hydraulics laboratory was one of the few full service facilities of its type in the nation. During the years 1961--1963 tests continued in the facility in support of existing reactors, new production reactors, and the Plutonium Recycle Test Reactor. In 1969, Fast Flux Test Facility developmental testings began in the facility. Simulations in 185/189-D building aided in the N Reactor repairs in the 1980`s. In 1994 the facility was nominated to the National Register of Historic Places, because of its pioneering role over many years in thermal hydraulics, flow studies, heat transfer, and other reactor coolant support work. During 1994 and 1995 it was demolished in the largest decontamination and decommissioning project thus far in Hanford Site history.

  2. Offsite radiation doses from Hanford Operations for the years 1983 through 1987: A comparison of results calculated by two methods

    SciTech Connect

    Soldat, J.K.

    1989-10-01

    This report compares the results of the calculation of potential radiation doses to the public by two different environmental dosimetric systems for the years 1983 through 1987. Both systems project the environmental movement of radionuclides released with effluents from Hanford operations; their concentrations in air, water, and foods; the intake of radionuclides by ingestion and inhalation; and, finally, the potential radiation doses from radionuclides deposited in the body and from external sources. The first system, in use for the past decade at Hanford, calculates radiation doses in terms of 50-year cumulative dose equivalents to body organs and to the whole body, based on the methodology defined in ICRP Publication 2. This system uses a suite of three computer codes: PABLM, DACRIN, and KRONIC. In the new system, 50-year committed doses are calculated in accordance with the recommendations of the ICRP Publications 26 and 30, which were adopted by the US Department of Energy (DOE) in 1985. This new system calculates dose equivalent (DE) to individual organs and effective dose equivalent (EDE). The EDE is a risk-weighted DE that is designed to be an indicator of the potential health effects arising from the radiation dose. 16 refs., 1 fig., 38 tabs.

  3. Hanford Environmental Dose Reconstruction Project

    SciTech Connect

    McMakin, A.H.; Cannon, S.D.; Finch, S.M.

    1992-07-01

    The objective of the Hanford Environmental Dose Reconstruction (HEDR) Project is to estimate the radiation doses that individuals and populations could have received from nuclear operations at Hanford since 1944. The TSP consists of experts in environmental pathways, epidemiology, surface-water transport, ground-water transport, statistics, demography, agriculture, meteorology, nuclear engineering, radiation dosimetry, and cultural anthropology. Included are appointed technical members representing the states of Oregon, Washington, and Idaho, a representative of Native American tribes, and an individual representing the public. The project is divided into the following technical tasks. These tasks correspond to the path radionuclides followed from release to impact on humans (dose estimates): Source terms, environmental transport, environmental monitoring data, demography, food consumption, and agriculture, and environmental pathways and dose estimates. Progress is discussed.

  4. Hanford Environmental Dose Reconstruction Project

    SciTech Connect

    Finch, S.M.; McMakin, A.H.

    1991-01-01

    The objective of the Hanford Environmental Dose Reconstruction Project is to estimate the radiation doses that individuals and populations could have received from nuclear operations at Hanford since 1944. The project is being managed and conducted by the Pacific Northwest Laboratory (PNL) under the direction of an independent Technical Steering Panel (TSP). The TSP consists of experts in environmental pathways, epidemiology, surface-water transport, ground-water transport, statistics, demography, agriculture, meteorology, nuclear engineering, radiation dosimetry, and cultural anthropology. Included are appointed technical members representing the states of Oregon and Washington, a representative of Native American tribes, and an individual representing the public. The project is divided into the following technical tasks. These tasks correspond to the path radionuclides followed, from release to impact on human (dose estimates): Source Terms; Environmental Transport; Environmental Monitoring Data; Demographics, Agriculture, Food Habits and; Environmental Pathways and Dose Estimates.

  5. Hanford Emergency Response Plan

    SciTech Connect

    Wagoner, J.D.

    1994-04-01

    The Hanford Emergency Response Plan for the US Department of Energy (DOE), Richland Operations Office (RL), incorporates into one document an overview of the emergency management program for the Hanford Site. The program has been developed in accordance with DOE orders, and state and federal regulations to protect worker and public health and safety and the environment in the event of an emergency at or affecting the Hanford Site. This plan provides a description of how the Hanford Site will implement the provisions of DOE 5500 series and other applicable Orders in terms of overall policies and concept of operations. It should be used as the basis, along with DOE Orders, for the development of specific contractor and RL implementing procedures.

  6. Hanford Environmental Dose Reconstruction Project Monthly Report

    SciTech Connect

    Finch, S.M.

    1990-10-01

    This monthly report summarizes the technical progress and project status for the Hanford Environmental Dose Reconstruction (HEDR) Project being conducted at the Pacific Northwest Laboratory (PNL) under the direction of a Technical Steering Panel (TSP). The TSP is composed of experts in numerous technical fields related to this project and represents the interests of the public. The objective of the Hanford Environmental Dose Reconstruction Project is to estimate the radiation doses that populations could have received from nuclear operations at Hanford since 1944. The project is being managed and conducted by the Pacific Northwest Laboratory (PNL) under the direction of an independent Technical Steering Panel (TSP). The project is divided into the following technical tasks. These tasks correspond to the path radionuclides followed, from release to impact on humans (dose estimates): source terms, environmental transport, environmental monitoring data, demographics, agriculture, food habits, and environmental pathways and dose estimates. 3 figs., 3 tabs.

  7. Hanford cultural resources laboratory

    SciTech Connect

    Wright, M.K.

    1995-06-01

    This section of the 1994 Hanford Site Environmental Report describes activities of the Hanford Cultural Resources Laboratory (HCRL) which was established by the Richland Operations Office in 1987 as part of PNL.The HCRL provides support for the management of the archaeological, historical, and traditional cultural resources of the site in a manner consistent with the National Historic Preservation Act, the Native American Graves Protection and Repatriation Act, and the American Indian Religious Freedom Act.

  8. IMPACT ASSESSMENT OF EXISTING VADOSE ZONE CONTAMINATION AT THE HANFORD SITE SX TANK FARM

    SciTech Connect

    KHALEEL R

    2007-11-01

    The USDOE has initiated an impact assessment of existing vadose zone contamination at the Hanford Site SX tank farm in southeastern Washington State. The assessment followed the Resource Conservation and Recovery Act (RCRA) Corrective Action process to address the impacts of past tank waste releases to the vadose zone at the single-shell tank farm. Numerical models were developed that consider the extent of contamination presently within the vadose zone and predict contaminant movement through the vadose zone to groundwater. The transport of representative mobile (technetium-99) and immobile (cesium-137) constituents was evaluated in modeling. The model considered the accelerated movement of moisture around and beneath single-shell tanks that is attributed to bare, gravel surfaces resulting from the construction of the underground storage tanks. Infiltration, possibly nearing 100 mm yr{sup -1}, is further amplified in the tank farm because of the umbrella effect created by percolating moisture being diverted by the impermeable, sloping surface of the large, 24-m-diameter, buried tank domes. For both the base case (no-action alternative) simulation and a simulation that considered placement of an interim surface barrier to minimize infiltration, predicted, groundwater concentrations for technetium-99 at the SX tank farm boundary were exceedingly high, on the order of 10{sup 6} pCi L{sup -1}. The predicted concentrations are, however, somewhat conservative because of our use of two-dimensional modeling for a three-dimensional problem. A series of simulations were performed, using recharge rates of 50, 30, and 10 mm yr{sup -1}, and compared to the basecase(100 mm yr{sup -1}) results. As expected, lowering meteoric recharge delayed peak arrival times and reduced peak concentrations at the tank farm boundary.

  9. Impact Assessment of Existing Vadose Zone Contamination at the Hanford Site SX Tank Farm

    SciTech Connect

    Khaleel, Raziuddin; White, Mark D.; Oostrom, Martinus; Wood, Marcus I.; Mann, Frederick M.; Kristofzski, John G.

    2007-11-01

    The USDOE has initiated an impact assessment of existing vadose zone contamination at the Hanford Site SX tank farm in southeastern Washington State. The assessment followed the Resource Conservation and Recovery Act (RCRA) Corrective Action process to address the impacts of past tank waste releases to the vadose zone at the single-shell tank farm. Numerical models were developed that consider the extent of contamination presently within the vadose zone and predict contaminant movement through the vadose zone to groundwater. The transport of representative mobile (technetium-99) and immobile (cesium-137) constituents was evaluated in modeling. The model considered the accelerated movement of moisture around and beneath single-shell tanks that is attributed to bare, gravel surfaces resulting from the construction of the underground storage tanks. Infiltration, possibly nearing 100 mm yr–1, is further amplified in the tank farm because of the umbrella effect created by percolating moisture being diverted by the impermeable, sloping surface of the large, 24-m-diameter, buried tank domes. For both the base case (no-action alternative) simulation and a simulation that considered placement of an interim surface barrier to minimize infiltration, predicted groundwater concentrations for technetium-99 at the SX tank farm boundary were exceedingly high, on the order of 106 pCi L–1. The predicted concentrations are, however, somewhat conservative because of our use of two-dimensional modeling for a three-dimensional problem. A series of simulations were performed, using recharge rates of 50, 30, and 10 mm yr–1, and compared to the base case (100 mm yr–1) results. As expected, lowering meteoric recharge delayed peak arrival times and reduced peak concentrations at the tank farm boundary.

  10. Superfund record of decision (EPA Region 10): Hanford 200 Area (USDOE), operable unit 200-zp-1, Benton County, WA, May 24, 1995

    SciTech Connect

    1995-07-01

    The decision document presents the selected interim remedial measure (IRM) for the USDOE Hanford 200-ZP-1 operable unit, 200 Area, Hanford Site, Benton County, Washington. The selected remedy uses groundwater pump and treat and is intended to minimize further migration of carbon tetrachloride, chloroform, and trichloroethylene (TCE) in the groundwater of the 200 West Area. To do this, the IRM is designed to stabilize and reduce contaminant mass in the high concentration portion of the plume. The high concentration portion of the plume corresponds to the area within the 2000 - 3000 parts per billion (ppb) contour of carbon tetrachloride.

  11. Hanford spent fuel inventory baseline

    SciTech Connect

    Bergsman, K.H.

    1994-07-15

    This document compiles technical data on irradiated fuel stored at the Hanford Site in support of the Hanford SNF Management Environmental Impact Statement. Fuel included is from the Defense Production Reactors (N Reactor and the single-pass reactors; B, C, D, DR, F, H, KE and KW), the Hanford Fast Flux Test Facility Reactor, the Shipping port Pressurized Water Reactor, and small amounts of miscellaneous fuel from several commercial, research, and experimental reactors.

  12. Listed waste history at Hanford facility TSD units

    SciTech Connect

    Miskho, A.G.

    1996-06-14

    This document was prepared to close out an occurrence report that Westinghouse Hanford Company issued on December 29, 1994. Occurrence Report RL-WHC-GENERAL-1994-0020 was issued because knowledge became available that could have impacted start up of a Hanford Site facility. The knowledge pertained to how certain wastes on the Hanford Site were treated, stored, or disposed of. This document consolidates the research performed by Westinghouse Hanford Company regarding listed waste management at onsite laboratories that transfer waste to the Double-Shell Tank System. Liquid and solid (non-liquid) dangerous wastes and mixed wastes at the Hanford Site are generated from various Site operations. These wastes may be sampled and characterized at onsite laboratories to meet waste management requirements. In some cases, the wastes that are generated in the field or in the laboratory from the analysis of samples require further management on the Hanford Site and are aggregated together in centralized tank storage facilities. The process knowledge presented herein documents the basis for designation and management of 242-A Evaporator Process Condensate, a waste stream derived from the treatment of the centralized tank storage facility waste (the Double-Shell Tank System). This document will not be updated as clean up of the Hanford Site progresses.

  13. Evaluation and Screening of Remedial Technologies for Uranium at the 300-FF-5 Operable Unit, Hanford Site, Washington

    SciTech Connect

    Nimmons, Michael J.

    2007-08-01

    Pacific Northwest National Laboratory (PNNL) is presently conducting a re-evaluation of remedies addressing persistent dissolved uranium concentrations in the upper aquifer under the 300 Area of the Hanford Site in southeastern Washington State. This work is being conducted as a Phase III feasibility study for the 300-FF-5 Operable Unit on behalf of the U.S. Department of Energy. As part of the feasibility study process, a comprehensive inventory of candidate remedial technologies was conducted by PNNL. This report documents the identification and screening of candidate technologies. The screening evaluation was conducted in accordance with guidance and processes specified by U.S. Environmental Protection Agency regulations associated with implementation of the Comprehensive Environmental Response, Compensation, and Liability Act process.

  14. Limited Field Investigation Report for Uranium Contamination in the 300 Area, 300-FF-5 Operable Unit, Hanford Site, Washington

    SciTech Connect

    Williams, Bruce A.; Brown, Christopher F.; Um, Wooyong; Nimmons, Michael J.; Peterson, Robert E.; Bjornstad, Bruce N.; Lanigan, David C.; Serne, R. Jeffrey; Spane, Frank A.; Rockhold, Mark L.

    2007-11-01

    Four new CERCLA groundwater monitoring wells were installed in the 300-FF-5 Operable Unit in FY 2006 to fulfill commitments for well installations proposed in the Hanford Federal Facility Agreement and Consent Order Milestone M-24-57. Wells were installed to collect data to determine the distribution of process uranium and other contaminants of potential concern in groundwater. These data will also support uranium contaminant transport simulations and the wells will supplement the water quality monitoring network for the 300-FF-5 OU. This report supplies the information obtained during drilling, characterization, and installation of the new groundwater monitoring wells. This document also provides a compilation of hydrogeologic, geochemical, and well construction information obtained during drilling, well development, and sample collection/analysis activities.

  15. Superfund record of decision (EPA Region 10): Hanford 100 area (USDOE), operable units 100-hr-3 and 100-kr-4, Hanford Site, Benton County, WA, March 26, 1996

    SciTech Connect

    1996-05-01

    This decision document presents the selected interim remedial actions for portions of the USDOE Hanford 100 Area, Hanford Site, Benton County, Washington. The selected remedy is an interim action that involves removing hexavalent chromium from groundwater that discharges into the Columbia River. To intercept the chromium plumes, groundwater will be pumped from approximately 30 wells located along and inland from the river shoreline. The water will then be treated using an ion exchange treatment technology to remove chromium. The treated effluent will then be returned to the aquifer using injection wells located upgradient of the existing chromium plumes. The interim action includes monitoring of the groundwater near the river and the effluent from the treatment system to determine system performance in meeting the remedial action objectives for protection of the Columbia River. The interim action also involves institutional controls to protect human health from groundwater contaminants.

  16. References for radioactive releases to the Columbia River from Hanford Operations, 1944--1957

    SciTech Connect

    Hall, R.B.

    1991-11-01

    A search was made for published documents related to discharges of radioactive material from Hanford Site facilities to the Columbia River from 1944--1957. The purpose was to list documents that contain data that might be useful in developing a source term for waterborne releases. Source term development work will take place in FY 1992, and FY 1993. This tabulation of published summaries of release data shows the type of measurements that were being made from 1944--1957 and the magnitude of discharges to the Columbia River. In the early years, very little data were collected that related to specific radionuclides. However, most of the key radionuclides were known to be present in effluents from occasional specific radionuclide analyses.

  17. MODELING TRANSPORT IN THE DOWN GRADIENT PORTION OF THE 200-PO-1 OPERABLE UNIT AT THE HANFORD SITE

    SciTech Connect

    MEHTA S; ALY AH; MILLER CW; MAYENNA A

    2009-12-03

    Remedial Investigations are underway for the 200-PO-l Operable Unit (OU) at the U.S. Department of Energy's Hanford Site in Washington State. To support the baseline risk assessment and evaluation of remedial alternatives, fate and transport modeling is being conducted to predict the future concentration of contaminants of potential concern in the 200-PO-1 OU. This study focuses on modeling the 'down gradient' transport of those contaminants that migrate beyond the 3-D model domain selected for performing detailed 'source area' modeling within the 200-PO-1 OU. The down gradient portion is defined as that region of the 200-PO-1 OU that is generally outside the 200 Area (considered 'source area') of the Hanford Site. A 1-D transport model is developed for performing down gradient contaminant fate and transport modeling. The 1-D transport model is deemed adequate based on the inferred transport pathway of tritium in the past and the observation that most of the contaminant mass remains at or near the water table within the unconfined aquifer of the Hanford Formation and the Cold-Creek/Pre-Missoula Gravel unit. The Pipe Pathway feature of the GoldSim software is used to perform the calculations. The Pipe Pathway uses a Laplace transform approach to provide analytical solutions to a broad range of advection-dominated mass transport systems involving one-dimensional advection, longitudinal dispersion, retardation, decay and ingrowth, and exchanges with immobile storage zones. Based on the historical concentration distribution data for the extensive tritium plume in this area, three Pipe Pathways are deemed adequate for modeling transport of contaminants. Each of these three Pipe Pathways is discretized into several zones, based on the saturated thickness variation in the unconfined aquifer and the location of monitoring wells used for risk assessment calculation. The mass fluxes of contaminants predicted to exit the source area model domain are used as an input to the

  18. Vascular Plants of the Hanford Site

    SciTech Connect

    Sackschewsky, Michael R.; Downs, Janelle L.

    2001-09-28

    This report provides an updated listing of the vascular plants present on and near the U.S. Department of Energy Hanford Site. This document is an update of a listing of plants prepared by Sackschewdky et al. in 1992. Since that time there has been a significant increase in the botanical knowledge of the Hanford Site. The present listing is based on an examination of herbarium collections held at PNNL, at WSU-Tri Cities, WSU-Pullman, Bringham Young University, and The University of Washington, and on examination of ecological literature derived from the Hanford and Benton county areas over the last 100 years. Based on the most recent analysis, there are approximately 725 different plant species that have been documented on or around the Hanford Site. This represents an approximate 20% increase in the number of species reported within Sackschewsky et al. (1992). This listing directly supports DOE and contractor efforts to assess the potential impacts of Hanford Site operations on the biological environment, including impacts to rare habitats and to species listed as endangered or\\ threatened. This document includes a listing of plants currently listed as endangered, threatened, or otherwise of concern to the Washington Natural Heritage Program or the U.S. Fish and Wildlife Service, as well as those that are currently listed as noxious weeds by the State of Washington. Also provided is an overview of how plants on the Hanford Site can be used by people. This information may be useful in developing risk assessment models, and as supporting information for clean-up level and remediation decisions.

  19. Surface radiation survey for the Phase 1 remedial investigation of the 300-FF-1 operable unit on the Hanford Site

    SciTech Connect

    Teel, S.S.; Olsen, K.B.

    1990-10-01

    This report summarizes Task 3a-1 of the Phase I Remedial Investigation for the 300-FF-1 Operable Unit on the Hanford Site, near Richland, Washington. The purpose of the Remedial Investigation is to determine the nature and extent of the risk presented by releases of hazardous substances from the operable unit. The purpose of Task 3a-1 was to locate any areas of contaminated soil outside of operable unit waste facility boundaries. Surface radiation survey and sampling activities in the 300-FF-1 Operable Unit were conducted from September 1989 to December 1989 and April 1990 to June 1990. Surveys were conducted primarily using portable Geiger-Muller beta/gamma detectors. As a result, 77 locations were found where radiation occurred above a statistically calculated background estimate. The Ultra Sonic Ranging and Data System (USRADS) was also used to survey a limited area. Analysis of the USRADS data revealed several elevated measurements that were not detected at the same locations with the Geiger-Muller detector. 6 refs., 14 figs., 4 tabs.

  20. System Performance Testing of the Pulse-Echo Ultrasonic Instrument for Critical Velocity Determination during Hanford Tank Waste Transfer Operations - 13584

    SciTech Connect

    Denslow, Kayte M.; Bontha, Jagannadha R.; Adkins, Harold E.; Jenks, Jeromy WJ; Hopkins, Derek F.; Thien, Michael G.; Kelly, Steven E.; Wooley, Theodore A.

    2013-06-01

    The delivery of Hanford double-shell tank waste to the Hanford Tank Waste Treatment and Immobilization Plant (WTP) is governed by specific Waste Acceptance Criteria that are identified in ICD 19 - Interface Control Document for Waste Feed. Waste must be certified as acceptable before it can be delivered to the WTP. The fluid transfer velocity at which solid particulate deposition occurs in waste slurry transport piping (critical velocity) is a key waste acceptance parameter that must be accurately characterized to determine if the waste is acceptable for transfer to the WTP. Washington River Protection Solutions and the Pacific Northwest National Laboratory have been evaluating the ultrasonic PulseEcho instrument since 2010 for its ability to detect particle settling and determine critical velocity in a horizontal slurry transport pipeline for slurries containing particles with a mean particle diameter of ≥14 micrometers (μm). In 2012 the PulseEcho instrument was further evaluated under WRPS’ System Performance test campaign to identify critical velocities for slurries that are expected to be encountered during Hanford tank waste retrieval operations or bounding for tank waste feed. This three-year evaluation has demonstrated the ability of the ultrasonic PulseEcho instrument to detect the onset of critical velocity for a broad range of physical and rheological slurry properties that are likely encountered during the waste feed transfer operations between the Hanford tank farms and the WTP.

  1. System Performance Testing of the Pulse-Echo Ultrasonic Instrument for Critical Velocity Determination during Hanford Tank Waste Transfer Operations - 13584

    SciTech Connect

    Denslow, Kayte M.; Bontha, Jagannadha R.; Adkins, Harold E.; Jenks, Jeromy W.J.; Hopkins, Derek F.; Thien, Michael G.; Kelly, Steven E.; Wooley, Theodore A.

    2013-07-01

    The delivery of Hanford double-shell tank waste to the Hanford Tank Waste Treatment and Immobilization Plant (WTP) is governed by specific Waste Acceptance Criteria that are identified in ICD 19 - Interface Control Document for Waste Feed. Waste must be certified as acceptable before it can be delivered to the WTP. The fluid transfer velocity at which solid particulate deposition occurs in waste slurry transport piping (critical velocity) is a key waste acceptance parameter that must be accurately characterized to determine if the waste is acceptable for transfer to the WTP. Washington River Protection Solutions and the Pacific Northwest National Laboratory have been evaluating the ultrasonic PulseEcho instrument since 2010 for its ability to detect particle settling and determine critical velocity in a horizontal slurry transport pipeline for slurries containing particles with a mean particle diameter of =14 micrometers (μm). In 2012 the PulseEcho instrument was further evaluated under WRPS' System Performance test campaign to identify critical velocities for slurries that are expected to be encountered during Hanford tank waste retrieval operations or bounding for tank waste feed. This three-year evaluation has demonstrated the ability of the ultrasonic PulseEcho instrument to detect the onset of critical velocity for a broad range of physical and rheological slurry properties that are likely encountered during the waste feed transfer operations between the Hanford tank farms and the WTP. (authors)

  2. Environmental assessment for the resiting, construction, and operation of the Environmental and Molecular Sciences Laboratory at the Hanford Site, Richland, Washington

    SciTech Connect

    Not Available

    1994-07-01

    This environmental assessment (EA) presents estimated environmental impacts from the resiting, construction, and operation of the US Department of Energy`s (DOE`s) Environmental and Molecular Sciences Laboratory (EMSL), which is proposed to be constructed and operated on land near the south boundary of the Hanford Site near Richland, Washington. The EMSL, if constructed, would be a modern research facility in which experimental, theoretical, and computational techniques can be focused on environmental restoration problems, such as the chemical and transport behavior of complex mixtures of contaminants in the environment. The EMSL design includes approximately 18,500 square meters (200,000 square feet) of floor space on a 12-hectare (30-acre) site. The proposed new site is located within the city limits of Richland in north Richland, at the south end of DOE`s 300 Area, on land to be deeded to the US by the Battelle Memorial Institute. Approximately 200 persons are expected to be employed in the EMSL and approximately 60 visiting scientists may be working in the EMSL at any given time. State-of-the-art equipment is expected to be installed and used in the EMSL. Small amounts of hazardous substances (chemicals and radionuclides) are expected to be used in experimental work in the EMSL.

  3. Smart-1 Moon Impact Operations

    NASA Technical Reports Server (NTRS)

    Ayala, Andres; Rigger, Ralf

    2007-01-01

    This paper describes the operations to control the Moon impact of the 3-axis stabilized spacecraft SMART-1 in September 2006. SMART-1 was launched on 27/09/2003. It was the first ESA mission to use an Electric Propulsion (EP) engine as the main motor to spiral out of the Earth gravity field and reach a scientific moon orbit [1]. During September 2005 the last EP maneuvers were performed using the remaining Xenon, in order to compensate for the 3rd body perturbations of the Sun and Earth. These operations extended the mission for an additional year. Afterwards the EP performance became unpredictable and low, so that no meaningful operation for the moon impact could be done. To move the predicted impact point on the 16/8/2006 into visibility from Earth an alternative Delta-V strategy was designed. Due to their alignment, the attitude thrusters could not be used directly to generate the Delta-V, so this strategy was based on controlled angular momentum biasing. Firing along the velocity vector around apolune, the remaining Hydrazine left from the attitude control budget was used, to shift the impact to the required coordinates.

  4. Cesium migration in saturated silica sand and Hanford sediments as impacted by ionic strength.

    PubMed

    Flury, Markus; Czigány, Szabolcs; Chen, Gang; Harsh, James B

    2004-07-01

    Large amounts of 137Cs have been accidentally released to the subsurface from the Hanford nuclear site in the state of Washington, USA. The cesium-containing liquids varied in ionic strengths, and often had high electrolyte contents, mainly in the form of NaNO3 and NaOH, reaching concentrations up to several moles per liter. In this study, we investigated the effect of ionic strengths on Cs migration through two types of porous media: silica sand and Hanford sediments. Cesium sorption and transport was studied in 1, 10, 100, and 1000 mM NaCl electrolyte solutions at pH 10. Sorption isotherms were constructed from batch equilibrium experiments and the batch-derived sorption parameters were compared with column breakthrough curves. Column transport experiments were analyzed with a two-site equilibrium-nonequilibrium model. Cesium sorption to the silica sand in batch experiments showed a linear sorption isotherm for all ionic strengths, which matched well with the results from the column experiments at 100 and 1000 mM ionic strength; however, the column experiments at 1 and 10 mM ionic strength indicated a nonlinear sorption behavior of Cs to the silica sand. Transport through silica sand occurred under one-site sorption and equilibrium conditions. Cesium sorption to Hanford sediments in both batch and column experiments was best described with a nonlinear Freundlich isotherm. The column experiments indicated that Cs transport in Hanford sediments occurred under two-site equilibrium and nonequilibrium sorption. The effect of ionic strength on Cs transport was much more pronounced in Hanford sediments than in silica sands. Effective retardation factors of Cs during transport through Hanford sediments were reduced by a factor of 10 when the ionic strength increased from 100 to 1000 mM; for silica sand, the effective retardation was reduced by a factor of 10 when ionic strength increased from 1 to 1000 mM. A two order of magnitude change in ionic strength was needed in

  5. Cesium migration in saturated silica sand and Hanford sediments as impacted by ionic strength

    NASA Astrophysics Data System (ADS)

    Flury, Markus; Czigány, Szabolcs; Chen, Gang; Harsh, James B.

    2004-07-01

    Large amounts of 137Cs have been accidentally released to the subsurface from the Hanford nuclear site in the state of Washington, USA. The cesium-containing liquids varied in ionic strengths, and often had high electrolyte contents, mainly in the form of NaNO 3 and NaOH, reaching concentrations up to several moles per liter. In this study, we investigated the effect of ionic strengths on Cs migration through two types of porous media: silica sand and Hanford sediments. Cesium sorption and transport was studied in 1, 10, 100, and 1000 mM NaCl electrolyte solutions at pH 10. Sorption isotherms were constructed from batch equilibrium experiments and the batch-derived sorption parameters were compared with column breakthrough curves. Column transport experiments were analyzed with a two-site equilibrium-nonequilibrium model. Cesium sorption to the silica sand in batch experiments showed a linear sorption isotherm for all ionic strengths, which matched well with the results from the column experiments at 100 and 1000 mM ionic strength; however, the column experiments at 1 and 10 mM ionic strength indicated a nonlinear sorption behavior of Cs to the silica sand. Transport through silica sand occurred under one-site sorption and equilibrium conditions. Cesium sorption to Hanford sediments in both batch and column experiments was best described with a nonlinear Freundlich isotherm. The column experiments indicated that Cs transport in Hanford sediments occurred under two-site equilibrium and nonequilibrium sorption. The effect of ionic strength on Cs transport was much more pronounced in Hanford sediments than in silica sands. Effective retardation factors of Cs during transport through Hanford sediments were reduced by a factor of 10 when the ionic strength increased from 100 to 1000 mM; for silica sand, the effective retardation was reduced by a factor of 10 when ionic strength increased from 1 to 1000 mM. A two order of magnitude change in ionic strength was needed in

  6. Surface radiation survey and soil sampling of the 300-FF-1 operable unit, Hanford Site, southeastern Washington: A case study

    SciTech Connect

    Teel, S.S.; Olsen, K.B.

    1990-10-01

    The methods used for conducting a radiological characterization of the soil surface for the Phase I Remedial Investigation of a Comprehensive Environmental Response, Compensation, and Liability Act (CERCLA) site is presented via a case study. The study site is an operable unit (300-FF-1) located in and adjacent to the 300 Area of the US Department of Energy's Hanford Site in southeastern Washington State. The operable unit contains liquid and solid waste disposal facilities associated with nuclear fuels fabrication. Continuous surface radiation surveying and soil sampling of selected locations were conducted. Contamination was found in several locations within the operable unit including areas near the liquid and solid waste disposal facilities. Instruments used during surveying included portable beta/gamma (P-11) detectors, and the Ultrasonic Ranging and Data System using an NaI (Tl) detector. Laboratory analyses results indicate that above-background radiation levels were primarily due to the presence of uranium. Both types of field instruments used in the study were effective in detecting surface contamination from radionuclides; however, each had specific advantages. Guidelines are presented for the optimum use of these instruments when performing a radiological characterization of the soil surface. 4 refs., 3 figs., 3 tabs.

  7. Hanford Reach Fall Chinook Redd Monitoring Report for Calendar Year 2013

    SciTech Connect

    Lindsey, Cole T.; Nugent, John J.

    2014-02-10

    The U.S. Department of Energy, Richland Operations Office (DOE-RL) conducts ecological monitoring on the Hanford Site to collect and track data needed to ensure compliance with an array of environmental laws, regulations, and policies governing DOE activities. Ecological monitoring data provide baseline information about the plants, animals, and habitat under DOE-RL stewardship at Hanford required for decision-making under the National Environmental Policy Act (NEPA) and Comprehensive Environmental Response, Compensation, and Liability Act (CERCLA). The Hanford Site Comprehensive Land Use Plan (CLUP, DOE/EIS-0222-F) which is the Environmental Impact Statement for Hanford Site activities, helps ensure that DOE-RL, its contractors, and other entities conducting activities on the Hanford Site are in compliance with NEPA.

  8. Hanford Site Black-Tailed Jackrabbit Monitoring Report for Fiscal Year 2013

    SciTech Connect

    Lindsey, Cole T.; Nugent, John J.; Wilde, Justin W.; Johnson, Scott J.

    2014-02-13

    The U.S. Department of Energy, Richland Operations Office (DOE-RL) conducts ecological monitoring on the Hanford Site to collect and track data needed to ensure compliance with an array of environmental laws, regulations, and policies governing DOE activities. Ecological monitoring data provide baseline information about the plants, animals, and habitat under DOE-RL stewardship at Hanford required for decision-making under the National Environmental Policy Act (NEPA) and Comprehensive Environmental Response, Compensation, and Liability Act (CERCLA). The Hanford Site Comprehensive Land Use Plan (CLUP, DOE/EIS-0222-F) which is the Environmental Impact Statement for Hanford Site activities, helps ensure that DOE-RL, its contractors, and other entities conducting activities on the Hanford Site are in compliance with NEPA.

  9. Public involvement in environmental surveillance at Hanford

    SciTech Connect

    Hanf, R.W. Jr.; Patton, G.W.; Woodruff, R.K.; Poston, T.M.

    1994-08-01

    Environmental surveillance at the Hanford Site began during the mid-1940s following the construction and start-up of the nation`s first plutonium production reactor. Over the past approximately 45 years, surveillance operations on and off the Site have continued, with virtually all sampling being conducted by Hanford Site workers. Recently, the US Department of Energy Richland Operations Office directed that public involvement in Hanford environmental surveillance operations be initiated. Accordingly, three special radiological air monitoring stations were constructed offsite, near hanford`s perimeter. Each station is managed and operated by two local school teaches. These three stations are the beginning of a community-operated environmental surveillance program that will ultimately involve the public in most surveillance operations around the Site. The program was designed to stimulate interest in Hanford environmental surveillance operations, and to help the public better understand surveillance results. The program has also been used to enhance educational opportunities at local schools.

  10. Hanford annual second quarter seismic report, fiscal year 1998: Seismicity on and near the Hanford Site, Pasco, Washington

    SciTech Connect

    Hartshorn, D.C.; Reidel, S.P.; Rohay, A.C.

    1998-06-01

    Hanford Seismic Monitoring provides an uninterrupted collection of high quality raw and processed seismic data from the Hanford Seismic Network (HSN) for the US Department of Energy and its contractors. The staff also locates and identifies sources of seismic activity and monitors changes in the historical pattern of seismic activity at the Hanford Site. The data are compiled, archived, and published for use by the Hanford Site for waste management, Natural Phenomena Hazards assessments, and engineering design and construction. In addition, the seismic monitoring organization works with the Hanford Site Emergency Services Organization to provide assistance in the event of an earthquake on the Hanford Site. The HSN and the Eastern Washington Regional Network (ENN) consist of 42 individual sensor sites and 15 radio relay sites maintained by the Hanford Seismic Monitoring staff. The operational rate for the second quarter of FY98 for stations in the HSN was 99.92%. The operational rate for the second quarter of FY98 for stations of the EWRN was 99.46%. For the second quarter of FY98, the acquisition computer triggered 159 times. Of these triggers 14 were local earthquakes: 7 (50%) in the Columbia River Basalt Group, 3 (21%) in the pre-basalt sediments, and 4 (29%) in the crystalline basement. The geologic and tectonic environments where these earthquakes occurred are discussed in this report. The most significant seismic event for the second quarter was on March 23, 1998 when a 1.9 Mc occurred near Eltopia, WA and was felt by local residents. Although this was a small event, it was felt at the surface and is an indication of the potential impact on Hanford of seismic events that are common to the Site.

  11. The impact of safety analyses on the design of the Hanford Waste Vitrification Plant

    SciTech Connect

    Koppenaal, T.J.; Yee, A.K.; Reisdorf, J.B.; Hall, B.W.

    1993-04-01

    Accident analyses are being performed to evaluate and document the safety of the Hanford Waste Vitrification Plant (HWVP). The safety of the HWVP is assessed by evaluating worst-case accident scenarios and determining the dose to offsite and onsite receptors. Air dispersion modeling is done with the GENII computer code. Three accidents are summarized in this paper, and their effects on the safety and the design of the HWVP are demonstrated.

  12. Decommissioning of eight surplus production reactors at the Hanford Site, Richland, Washington. Addendum (Final Environmental Impact Statement)

    SciTech Connect

    Not Available

    1992-12-01

    The first section of this volume summarizes the content of the draft environmental impact statement (DEIS) and this Addendum, which together constitute the final environmental impact statement (FEIS) prepared on the decommissioning of eight surplus plutonium production reactors at Hanford. The FEIS consists of two volumes. The first volume is the DEIS as written. The second volume (this Addendum) consists of a summary; Chapter 9, which contains comments on the DEIS and provides DOE`s responses to the comments; Appendix F, which provides additional health effects information; Appendix K, which contains costs of decommissioning in 1990 dollars; Appendix L, which contains additional graphite leaching data; Appendix M, which contains a discussion of accident scenarios; Appendix N, which contains errata; and Appendix 0, which contains reproductions of the letters, transcripts, and exhibits that constitute the record for the public comment period.

  13. A safety assessment for proposed pump mixing operations to mitigate episodic gas releases in tank 241-SY-101: Hanford Site,Richland, Washington

    SciTech Connect

    Lentsch, J.W.

    1996-07-01

    This safety assessment addresses each of the elements required for the proposed action to remove a slurry distributor and to install, operate, and remove a mixing pump in Tank 241-SY-101,which is located within the Hanford Site, Richland, Washington.The proposed action is required as part of an ongoing evaluation of various mitigation concepts developed to eliminate episodic gas releases that result in hydrogen concentrations in the tank dome space that exceed the lower flammability limit.

  14. Safety assessment for proposed pump mixing operations to mitigate episodic gas releases in tank 241-101-SY: Hanford Site, Richland, Washington

    SciTech Connect

    Lentsch, J.W., Westinghouse Hanford

    1996-05-16

    This safety assessment addresses each of the elements required for the proposed action to remove a slurry distributor and to install, operate, and remove a mixing pump in Tank 241-SY-101, which is located within the Hanford Site, Richland, Washington. The proposed action is required as part of an ongoing evaluation of various mitigation concepts developed to eliminate episodic gas releases that result in hydrogen concentrations in the tank dome space that exceed the lower flammability limit.

  15. References for radioactive releases to the Columbia River from Hanford Operations, 1944--1957. Letter report: Hanford Environmental Dose Reconstruction Project

    SciTech Connect

    Hall, R.B.

    1991-11-01

    A search was made for published documents related to discharges of radioactive material from Hanford Site facilities to the Columbia River from 1944--1957. The purpose was to list documents that contain data that might be useful in developing a source term for waterborne releases. Source term development work will take place in FY 1992, and FY 1993. This tabulation of published summaries of release data shows the type of measurements that were being made from 1944--1957 and the magnitude of discharges to the Columbia River. In the early years, very little data were collected that related to specific radionuclides. However, most of the key radionuclides were known to be present in effluents from occasional specific radionuclide analyses.

  16. HEIS: An integrated information system for environmental restoration and monitoring at Hanford

    SciTech Connect

    Tzemos, S.; Kissinger, B.

    1991-11-01

    The US Department of Energy`s Hanford Site has about 1500 waste sites that contain a complex mixture of chemical and radioactive contaminants. After many years of environmental monitoring to assess the impact of Hanford operations to the environment, the Site`s mission is shifting to environmental restoration. The Hanford Environmental Information System (HEIS) is being developed to provide advanced tools to (1) support environmental restoration and routine site-wide monitoring, and (2) aid the scientists in understanding and conducting the restoration efforts. This paper describes some of the highlights and distinctive features of HEIS.

  17. HEIS: An integrated information system for environmental restoration and monitoring at Hanford

    SciTech Connect

    Tzemos, S.; Kissinger, B.

    1991-11-01

    The US Department of Energy's Hanford Site has about 1500 waste sites that contain a complex mixture of chemical and radioactive contaminants. After many years of environmental monitoring to assess the impact of Hanford operations to the environment, the Site's mission is shifting to environmental restoration. The Hanford Environmental Information System (HEIS) is being developed to provide advanced tools to (1) support environmental restoration and routine site-wide monitoring, and (2) aid the scientists in understanding and conducting the restoration efforts. This paper describes some of the highlights and distinctive features of HEIS.

  18. Hanford Environmental Dose Reconstruction Project. Quarterly report, June--August 1993

    SciTech Connect

    Cannon, S.D.; Finch, S.M.

    1993-10-01

    The objective of the Hanford Environmental Dose Reconstruction (HEDR) Project is to estimate the radiation doses that individuals and populations could have received from nuclear operations at Hanford since 1944. The project is divided into the following technical tasks. These tasks correspond to the path radionuclides followed from release to impact on humans (dose estimates): Source Terms, Environmental Transport, Environmental Monitoring Data, Demography, Food Consumption, and Agriculture, and Environmental Pathways and Dose Estimates.

  19. Hanford Environmental Dose Reconstruction Project. Quarterly report, December 1993--February 1994

    SciTech Connect

    Cannon, S.D.

    1994-04-01

    The objective of the Hanford Environmental Dose Reconstruction (HEDR) Project is to estimate the radiation doses that individuals and populations could have received from nuclear operations at Hanford since 1944. The project is divided into the following technical tasks. These tasks correspond to the path radio-nuclides followed from release to impact on humans(dose estimates): source terms; environmental transport; environmental monitoring data; demography, food consumption, agriculture; environmental pathways; and dose estimates.

  20. Hanford Environmental Dose Reconstruction Project, Quarterly report, September--November 1993

    SciTech Connect

    Cannon, S.D.; Finch, S.M.

    1993-12-31

    The objective of the Hanford Environmental Dose Reconstruction (HEDR) Project is to estimate the radiation doses that individuals and populations could have received from nuclear operations at Hanford since 1944. The project is divided into the following technical tasks. These tasks correspond to the path radionuclides followed from release to impact on humans (dose estimates); Source Terms, Environmental Transport, Environmental Monitoring Data, Demography, Food Consumption, and Agriculture, and Environmental Pathways and Dose Estimates.

  1. Hanford Environmental Dose Reconstruction Project. Monthly report

    SciTech Connect

    Finch, S. M.; McMakin, A. H.

    1991-09-01

    The objective of the Hanford Environmental Dose Reconstruction Project is to estimate the radiation dose that individuals and populations could have received from nuclear operations at Hanford since 1944. The project is divided into five technical tasks. These tasks correspond to the path radionuclides followed, from release to impact on humans (i.e., dose estimates). The Source Terms Task develops estimates of radioactive emissions from Hanford facilities since 1944. The Environmental Transport Task reconstructs the movements of radioactive particles from the areas of release to populations. The Environmental Monitoring Data Task assemblies, evaluates and reports historical environmental monitoring data. The Demographics, Agriculture and Food Habits Task develops the data needed to identify the populations that could have been affected by the releases. The Environmental Pathways and Dose Estimates Task used the information derived from the other Tasks to estimate the radiation doses individuals could have received from Hanford radiation. This document lists the progress on this project as of September 1991. 3 figs., 2 tabs.

  2. Assessment of impacts from water level fluctuations on fish in the Hanford Reach, Columbia River

    SciTech Connect

    Becker, C.D.; Fickeisen, D.H.; Montgomery, J.C.

    1981-05-01

    Observations on the effects of water level fluctuations in the Hanford Reach of the Columbia River, Washington, were made in 1976 and 1977. The two years provided contrasting flow regimes: high water and fluctuations of greater magnitude prevailed in 1976; low water and higher temperatures prevailed in 1977. Situations where fish and other aquatic organisms were destroyed by changing water levels were observed and evaluated each year in three study areas: Hanford, F-Area, and White Bluffs sloughs. Losses primarily were due to stranding, entrapment (with or without complete dewatering), and predation. Juvenile fish were more susceptible to entrapment and stranding than were adult fish. Estimates of actual losses were biased and conservative because relatively few fish could be found after each decline of water level and dewatering. The most valued species of fish affected by water level fluctuations at Hanford were the anadromus fall chinook salmon (Oncorhynchus tshawytscha) and the resident smallmouth bass (Micropterus dolomieui). Crucial periods for chinook salmon occurred during winter when incubating eggs were in the gravel of the main channel, and before and during seaward migration in the spring when fry were abundant in shoreline zones. The crucial period for smallmouth bass was during spring and early summer when adults were spawning in warmed sloughs and shoreline zones. Chinook salmon and smallmouth bass fry were vulnerable to stranding and entrapment, and smallmouth bass nests were susceptible to exposure and temperature changes resulting from repeated water level fluctuations. Thus, flow manipulation may be crucial to their survival. The extent to which other species of riverine fish were affected by water level fluctuations depended upon their use of shoreline zones for spawning and rearing young.

  3. Superfund Record of Decision (EPA Region 10): Hanford 200 Area (USDOE), (200-UP-1 Operable Unit), Benton County, WA, February 11, 1997

    SciTech Connect

    1997-11-01

    This decision document presents the selected Interim Remedial Action (IRA) for the US Department of Energy (US DOE) Hanford 200-UP-1 Operable Unit (OU), 200 Area, Hanford Site, Benton County, Washington. The selected remedy consists of pumping the highest concentration zone of the contaminated groundwater plume at 200-UP-1 and treatment using the existing Effluent Treatment Facility (ETF) located in the 200 East Area. The selected remedy is intended to reduce contaminant mass within the plume and minimize migration of uranium and technetium-99 from the 200 West Area. The selected remedy will remove and treat these two contaminants of concern, in addition to the specific co-contaminants of nitrate and carbon tetrachloride which exist within the groundwater.

  4. Structural Analysis Results of Thermal, Operating and Seismic Analysis for Hanford Single-Shell Tank Integrity - 12261

    SciTech Connect

    Pilli, Siva P.; Rinker, Michael W.

    2012-07-01

    Since Hanford's 149 Single-Shell Tanks (SSTs) are well beyond their design life, the U.S. Department of Energy has commissioned a state of the art engineering analysis to assess the structural integrity of the tanks to ensure that they are fit for service during the cleanup and closure phase. The structural integrity analysis has several challenging factors. There are four different tank sizes in various configurations that require analysis. Within each tank type there are different waste level and temperature histories, soil overburden depths, tank floor arrangements, riser sizes and locations, and other on-tank structures that need to be addressed. Furthermore, soil properties vary throughout the tank farms. This paper describes the structural integrity analysis that was performed for the SSTs using finite element models that incorporate the detailed design features of each tank type. The analysis was performed with two different models: an ANSYS static model for the Thermal and Operating Loads Analysis, and an ANSYS dynamic model for the seismic analysis. The TOLA analyses simulate the waste level and thermal history and it included a matrix of analysis cases that bounded the material property uncertainties. The TOLA also predicts the occurrence of concrete thermal degradations and cracking, reinforcement yielding, and soil plasticity. The seismic analysis matrix included uncertainty in waste properties, waste height and the soil modulus. In seismic analysis the tank concrete was modeled as a linear elastic material that was adjusted for the present day degraded conditions. Also, the soil was treated as a linear elastic material while special modeling techniques were used to avoid soil arching and achieve proper soil pressure on the tank walls. Seismic time histories in both the horizontal and vertical directions were applied to the seismic model. Structural demands from both Thermal and Operating Loads Analysis and seismic models were extracted in the form of

  5. Remedial Investigation/Feasibility Study Work Plan for the 200-UP-1 Groundwater Operable Unit, Hanford Site, Richland, Washington. Revision

    SciTech Connect

    Not Available

    1994-01-01

    This work plan identifies the objectives, tasks, and schedule for conducting a Remedial Investigation/Feasibility Study for the 200-UP-1 Groundwater Operable Unit in the southern portion of the 200 West Groundwater Aggregate Area of the Hanford Site. The 200-UP-1 Groundwater Operable Unit addresses contamination identified in the aquifer soils and groundwater within its boundary, as determined in the 200 West Groundwater Aggregate Area Management Study Report (AAMSR) (DOE/RL 1992b). The objectives of this work plan are to develop a program to investigate groundwater contaminants in the southern portion of the 200 West Groundwater Aggregate Area that were designated for Limited Field Investigations (LFIs) and to implement Interim Remedial Measures (IRMs) recommended in the 200 West Groundwater AAMSR. The purpose of an LFI is to evaluate high priority groundwater contaminants where existing data are insufficient to determine whether an IRM is warranted and collect sufficient data to justify and implement an IRM, if needed. A Qualitative Risk Assessment (QRA) will be performed as part of the LFI. The purpose of an IRM is to develop and implement activities, such as contaminant source removal and groundwater treatment, that will ameliorate some of the more severe potential risks of groundwater contaminants prior to the RI and baseline Risk Assessment (RA) to be conducted under the Final Remedy Selection (FRS) at a later date. This work plan addresses needs of a Treatability Study to support the design and implementation of an interim remedial action for the Uranium-{sup 99}{Tc}-Nitrate multi-contaminant IRM plume identified beneath U Plant.

  6. PNNL Supports Hanford Waste Treatment

    ScienceCinema

    None

    2016-07-12

    For more than 40 years, technical assistance from PNNL has supported the operations and processing of Hanford tank waste. Our expertise in tank waste chemistry, fluid dynamics and scaling, waste forms, and safety bases has helped to shape the site’s waste treatment baseline and solve operational challenges. The historical knowledge and unique scientific and technical expertise at PNNL are essential to the success of the Hanford mission.

  7. PNNL Supports Hanford Waste Treatment

    SciTech Connect

    2015-06-16

    For more than 40 years, technical assistance from PNNL has supported the operations and processing of Hanford tank waste. Our expertise in tank waste chemistry, fluid dynamics and scaling, waste forms, and safety bases has helped to shape the site’s waste treatment baseline and solve operational challenges. The historical knowledge and unique scientific and technical expertise at PNNL are essential to the success of the Hanford mission.

  8. Impact of Redd Loss at Vernita Bar on Hanford Reach Chinook Salmon Production: Final Report 1988.

    SciTech Connect

    Rogers, Donald E.

    1988-10-01

    This report describes the effect on chinook salmon production within the Hanford Reach of redd loss at Vernita Bar. The current target escapement of 40,000 chinook past McNary dam has no real biological justification because the wrong data were used in the analysis and the methods used are now known to be very unreliable for the type of data available. The escapement that maximizes MSY may be lower than 40,000, or much higher, and reliable estimates of optimum escapement are unlikely to be available for several more years. If the optimum escapement is truly 40,000 (or less), then loss of a few hundred redds on Vernita Bar would have no detrimental, and possibly beneficial consequences on total chinook production from the Hanford Reach, so long as escapements are in excess of 40,000. If the optimal escapement is actually much higher (60,000+), the biological cost of redd loss when escapements are in excess of 40,000 would be about two fish in the adult return for every redd lost. So long as escapements exceed 40,000, the issue of redd loss at Vernita Bar is simply a question of losing a few dozen or hundred adult fish in the next brood and is not an issue of stock conservation. 12 refs., 6 figs., 12 tabs.

  9. Hanford Tank 241-C-106: Impact of Cement Reactions on Release of Contaminants from Residual Waste

    SciTech Connect

    Deutsch, William J.; Krupka, Kenneth M.; Lindberg, Michael J.; Cantrell, Kirk J.; Brown, Christopher F.; Schaef, Herbert T.

    2006-09-01

    The CH2M HILL Hanford Group, Inc. (CH2M HILL) is producing risk/performance assessments to support the closure of single-shell tanks at the U.S. Department of Energy's Hanford Site. As part of this effort, staff at Pacific Northwest National Laboratory were asked to develop release models for contaminants of concern that are present in residual sludge remaining in tank 241-C-106 (C-106) after final retrieval of waste from the tank. Initial work to produce release models was conducted on residual tank sludge using pure water as the leaching agent. The results were reported in an earlier report. The decision has now been made to close the tanks after waste retrieval with a cementitious grout to minimize infiltration and maintain the physical integrity of the tanks. This report describes testing of the residual waste with a leaching solution that simulates the composition of water passing through the grout and contacting the residual waste at the bottom of the tank.

  10. Petition to Object to Department of Energy's Hanford Site, Richland, Washington, Title V Operating Permit

    EPA Pesticide Factsheets

    This document may be of assistance in applying the Title V air operating permit regulations. This document is part of the Title V Petition Database available at www2.epa.gov/title-v-operating-permits/title-v-petition-database. Some documents in the database are a scanned or retyped version of a paper photocopy of the original. Although we have taken considerable effort to quality assure the documents, some may contain typographical errors. Contact the office that issued the document if you need a copy of the original.

  11. Hanford Environmental Dose Reconstruction Project. Monthly report, June 1992

    SciTech Connect

    Finch, S.M.; McMakin, A.H.

    1992-06-01

    The objective of the Hanford Environmental Dose Reconstruction Project is to estimate the radiation doses that individuals and populations could have received from nuclear operations at Hanford since 1944. The project is being managed and conducted by the Battelle Pacific Northwest Laboratories under contract with the Centers for Disease Control. The independent Technical Steering Panel (TSP) provides technical direction. The project is divided into the following technical tasks. These tasks correspond to the path radionuclides followed, from release to impact on humans (dose estimates): source terms; environmental transport; environmental monitoring data; demography, food consumption, and agriculture; environmental pathways and dose estimates.

  12. Potential Impacts of Leakage from Black Rock Reservoir on the Hanford Site Unconfined Aquifer: Initial Hypothetical Simulations of Flow and Contaminant Transport

    SciTech Connect

    Freedman, Vicky L.

    2008-01-30

    Initial scoping calculations of the unconfined aquifer at the Hanford Site were carried out for the U.S. Bureau of Reclamation (USBR) to investigate the potential impacts on the Hanford unconfined aquifer that would result from leakage from the proposed Black Rock Reservoir to the west. Although impacts on groundwater flow and contaminant transport were quantified based on numerical simulation results, the investigation represented a qualitative assessment of the potential lateral recharge that could result in adverse effects on the aquifer. Because the magnitude of the potential leakage is unknown, hypothetical bounding calculations were performed. When a quantitative analysis of the magnitude of the potential recharge from Black Rock Reservoir is obtained, the hydrologic impacts analysis will be revisited. The analysis presented in this report represents initial bounding calculations. A maximum lateral recharge (i.e., upland flux) was determined in the first part of this study by executing steady-state flow simulations that raised the water table no higher than the elevation attained in the Central Plateau during the Hanford operational period. This metric was selected because it assumed a maximum remobilization of contaminants that existed under previous fully saturated conditions. Three steady-state flow fields were then used to analyze impacts to transient contaminant transport: a maximum recharge (27,000 acre-ft/yr), a no additional flux (365 acre-ft/yr), and an intermediate recharge case (16,000 acre-ft/yr). The transport behavior of four radionuclides was assessed for a 300 year simulation period with the three flow fields. The four radionuclides are tritium, iodine-129, technetium-99, and uranium-238. Transient flow and transport simulations were used to establish hypothetical concentration distributions in the subsurface. Using the simulated concentration distributions in 2005 as initial conditions for steady-state flow runs, simulations were executed to

  13. Potential Impacts of Leakage from Black Rock Reservoir on the Hanford Site Unconfined Aquifer: Initial Hypothetical Simulations of Flow and Contaminant Transport

    SciTech Connect

    Freedman, Vicky L.

    2007-03-09

    Initial scoping calculations of the unconfined aquifer at the Hanford Site were carried out for the U.S. Bureau of Reclamation (USBR) to investi¬gate the potential impacts on the Hanford unconfined aquifer that would result from leakage from the proposed Black Rock Reservoir to the west. Although impacts on groundwater flow and contaminant transport were quantified based on numerical simulation results, the investigation represented a quali¬tative assessment of the potential lateral recharge that could result in adverse effects on the aquifer. Because the magnitude of the potential leakage is unknown, hypothetical bounding calculations were performed. When a quantitative analysis of the magnitude of the potential recharge from Black Rock Reservoir is obtained, the hydrologic impacts analysis will be revisited. The analysis presented in this report represent initial bounding calculations. A maximum lateral recharge (i.e., upland flux) was determined in the first part of this study by executing steady-state flow simulations that raised the water table no higher than the elevation attained in the Central Plateau during the Hanford operational period. This metric was selected because it assumed a maximum remobilization of contaminants that existed under previous fully saturated conditions. Three steady-state flow fields were then used to analyze impacts to transient contaminant transport: a maximum recharge (27,000 acre-ft/yr), a no additional flux (365 acre-ft/yr), and an intermediate recharge case (16,000 acre-ft/yr). The transport behavior of four radionuclides was assessed for a 300 year simula¬tion period with the three flow fields. The four radionuclides are current contaminants of concern (COCs) in the Central Plateau and include tritium, iodine-129, technetium-99, and uranium-238. Transient flow and transport simulations were used to establish hypothetical concentration distributions in the subsurface. Using the simulated concentration distributions in 2005

  14. Management of Hanford Site non-defense production reactor spent nuclear fuel, Hanford Site, Richland, Washington

    SciTech Connect

    1997-03-01

    The US Department of Energy (DOE) needs to provide radiologically, and industrially safe and cost-effective management of the non-defense production reactor spent nuclear fuel (SNF) at the Hanford Site. The proposed action would place the Hanford Site`s non-defense production reactor SNF in a radiologically- and industrially-safe, and passive storage condition pending final disposition. The proposed action would also reduce operational costs associated with storage of the non-defense production reactor SNF through consolidation of the SNF and through use of passive rather than active storage systems. Environmental, safety and health vulnerabilities associated with existing non-defense production reactor SNF storage facilities have been identified. DOE has determined that additional activities are required to consolidate non-defense production reactor SNF management activities at the Hanford Site, including cost-effective and safe interim storage, prior to final disposition, to enable deactivation of facilities where the SNF is now stored. Cost-effectiveness would be realized: through reduced operational costs associated with passive rather than active storage systems; removal of SNF from areas undergoing deactivation as part of the Hanford Site remediation effort; and eliminating the need to duplicate future transloading facilities at the 200 and 400 Areas. Radiologically- and industrially-safe storage would be enhanced through: (1) removal from aging facilities requiring substantial upgrades to continue safe storage; (2) utilization of passive rather than active storage systems for SNF; and (3) removal of SNF from some storage containers which have a limited remaining design life. No substantial increase in Hanford Site environmental impacts would be expected from the proposed action. Environmental impacts from postulated accident scenarios also were evaluated, and indicated that the risks associated with the proposed action would be small.

  15. Recommended environmental dose calculation methods and Hanford-specific parameters

    SciTech Connect

    Schreckhise, R.G.; Rhoads, K.; Napier, B.A.; Ramsdell, J.V. ); Davis, J.S. )

    1993-03-01

    This document was developed to support the Hanford Environmental Dose overview Panel (HEDOP). The Panel is responsible for reviewing all assessments of potential doses received by humans and other biota resulting from the actual or possible environmental releases of radioactive and other hazardous materials from facilities and/or operations belonging to the US Department of Energy on the Hanford Site in south-central Washington. This document serves as a guide to be used for developing estimates of potential radiation doses, or other measures of risk or health impacts, to people and other biota in the environs on and around the Hanford Site. It provides information to develop technically sound estimates of exposure (i.e., potential or actual) to humans or other biotic receptors that could result from the environmental transport of potentially harmful materials that have been, or could be, released from Hanford operations or facilities. Parameter values and information that are specific to the Hanford environs as well as other supporting material are included in this document.

  16. Selected Hanford reactor and separations operating data for 1960--1964

    SciTech Connect

    Gydesen, S.P.

    1992-09-01

    The purpose of this letter report is to reconstruct from available information that data which can be used to develop daily reactor operating history for 1960--1964. The information needed for source team calculations (as determined by the Source Terms Task Leader) were extracted and included in this report. The data on the amount of uranium dissolved by the separations plants (expressed both as tons and as MW) is also included in this compilation.

  17. Westinghouse Hanford Company Conduct of Operations Manual: GOCO cross-cultivation committee. Revision 1, Operational excellence task force

    SciTech Connect

    Not Available

    1991-11-01

    Conduct of Operations is a set of standards which establishes an overall philosophy for achieving excellence in the operation of DOE facilities. These standards have application in many facets of our business and shall be considered by each organization that conducts or supports Operations in their efforts to improve overall organizational performance. The formality and accuracy resulting from the implementation of the elements of this manual will enhance safe operations and result in a higher quality product. The elements of the Conduct of Operations Requirements for DOE Facilities (DOE 5480.19) are tools to do our work. In like manner the tools and methods given in the Maintenance Management Program (DOE 4330.3A) are complementary and are to be used to the fullest. These DOE documents taken together and integrated into site implementation provide the framework for well operated facilities committed to excellence and not just compliance. The goal of this manual is to promote greater ownership and accountability by each individual worker and supervisor. Evidence of our success will include accountability by workers on the floor and in technical inquisitiveness at all levels. Striving for excellence involves all of us and we should not wait for someone else to find our problems.

  18. Hanford wells

    SciTech Connect

    McGhan, V.L.

    1989-06-01

    The Site Characterization and Assessment Section of the Geosciences Department at Pacific Northwest Laboratory (PNL) has compiled a list of wells located on or near the Hanford Site. Information has been updated on wells existing from the days before construction of the Hanford Works to the present. This work was funded by the US Department of Energy (DOE). The list of wells will be used by DOE contractors who need condensed, tabular information on well location, construction, and completion dates. This report does not include data on lithologic logs and ground-water contamination. Moreover, the completeness of this list is limited because of new well construction and existing well modifications, which are continually under way. Despite these limitations, this list represents the most complete description possible of data pertaining to wells on or adjacent to the Hanford Site. 7 refs., 1 fig., 2 tabs.

  19. HANFORD DOUBLE SHELL TANK THERMAL AND SEISMIC PROJECT SUMMARY OF COMBINED THERMAL AND OPERATING LOADS WITH SEISMIC ANALYSIS

    SciTech Connect

    MACKEY TC; DEIBLER JE; RINKER MW; JOHNSON KI; ABATT FG; KARRI NK; PILLI SP; STOOPS KL

    2009-01-15

    This report summarizes the results of the Double-Shell Tank Thermal and Operating Loads Analysis (TaLA) combined with the Seismic Analysis. This combined analysis provides a thorough, defensible, and documented analysis that will become a part of the overall analysis of record for the Hanford double-shell tanks (DSTs). The bases of the analytical work presented herein are two ANSYS{reg_sign} finite element models that were developed to represent a bounding-case tank. The TaLA model includes the effects of temperature on material properties, creep, concrete cracking, and various waste and annulus pressure-loading conditions. The seismic model considers the interaction of the tanks with the surrounding soil including a range of soil properties, and the effects of the waste contents during a seismic event. The structural evaluations completed with the representative tank models do not reveal any structural deficiencies with the integrity of the DSTs. The analyses represent 60 years of use, which extends well beyond the current date. In addition, the temperature loads imposed on the model are significantly more severe than any service to date or proposed for the future. Bounding material properties were also selected to provide the most severe combinations. While the focus of the analyses was a bounding-case tank, it was necessary during various evaluations to conduct tank-specific analyses. The primary tank buckling evaluation was carried out on a tank-specific basis because of the sensitivity to waste height, specific gravity, tank wall thickness, and primary tank vapor space vacuum limit. For this analysis, the occurrence of maximum tank vacuum was classified as a service level C, emergency load condition. The only area of potential concern in the analysis was with the buckling evaluation of the AP tank, which showed the current limit on demand of l2-inch water gauge vacuum to exceed the allowable of 10.4 inches. This determination was based on analysis at the

  20. Hanford Environmental Dose Reconstruction Project. Monthly report

    SciTech Connect

    McMakin, A.H.; Cannon, S.D.; Finch, S.M.

    1992-07-01

    The objective of the Hanford Environmental Dose Reconstruction (HEDR) Project is to estimate the radiation doses that individuals and populations could have received from nuclear operations at Hanford since 1944. The TSP consists of experts in environmental pathways, epidemiology, surface-water transport, ground-water transport, statistics, demography, agriculture, meteorology, nuclear engineering, radiation dosimetry, and cultural anthropology. Included are appointed technical members representing the states of Oregon, Washington, and Idaho, a representative of Native American tribes, and an individual representing the public. The project is divided into the following technical tasks. These tasks correspond to the path radionuclides followed from release to impact on humans (dose estimates): Source terms, environmental transport, environmental monitoring data, demography, food consumption, and agriculture, and environmental pathways and dose estimates. Progress is discussed.

  1. Hanford Environmental Dose Reconstruction Project monthly report

    SciTech Connect

    McMakin, A.H., Cannon, S.D.; Finch, S.M.

    1992-09-01

    The objective of the Hanford Environmental Dose Reconstruction MDR) Project is to estimate the radiation doses that individuals and populations could have received from nuclear operations at Hanford since 1944. The TSP consists of experts in envirorunental pathways. epidemiology, surface-water transport, ground-water transport, statistics, demography, agriculture, meteorology, nuclear engineering. radiation dosimetry. and cultural anthropology. Included are appointed members representing the states of Oregon, Washington, and Idaho, a representative of Native American tribes, and an individual representing the public. The project is divided into the following technical tasks. These tasks correspond to the path radionuclides followed from release to impact on humans (dose estimates): Source Terms; Environmental Transport; Environmental Monitoring Data Demography, Food Consumption, and Agriculture; and Environmental Pathways and Dose Estimates.

  2. Hanford Environmental Dose Reconstruction Project monthly report

    SciTech Connect

    McMakin, A.H., Cannon, S.D.; Finch, S.M.

    1992-09-01

    The objective of the Hanford Environmental Dose Reconstruction MDR) Project is to estimate the radiation doses that individuals and populations could have received from nuclear operations at Hanford since 1944. The TSP consists of experts in envirorunental pathways. epidemiology, surface-water transport, ground-water transport, statistics, demography, agriculture, meteorology, nuclear engineering. radiation dosimetry. and cultural anthropology. Included are appointed members representing the states of Oregon, Washington, and Idaho, a representative of Native American tribes, and an individual representing the public. The project is divided into the following technical tasks. These tasks correspond to the path radionuclides followed from release to impact on humans (dose estimates): Source Terms; Environmental Transport; Environmental Monitoring Data Demography, Food Consumption, and Agriculture; and Environmental Pathways and Dose Estimates.

  3. HANFORD BERYLLIUM STEERING GROUP CHARTER

    SciTech Connect

    HEWITT, E.R.

    2003-11-19

    The purpose of the Beryllium Steering Group (BSG) is to (1) provide a forum for discussion of beryllium issues and concerns among Hanford prime contractors and DOE; (2) review proposed changes in prime contractor Chronic Beryllium Disease Prevention Programs (CBDPP) to determine if these changes will result in significant impacts to other contractors and their employees; (3) review proposed changes to Beryllium Hanford Facilities List prior to updating of this list.

  4. HANFORD SITE AIR OPERATING PERMIT SEMIANNUAL REPORT FOR THE PERIOD 07/01/2004 THRU 12/31/2004

    SciTech Connect

    GREEN, W.E.

    2005-01-19

    The Hanford Site Air Operating Permit (AOP), Number 00-05-006, became effective on July 2, 2001. One condition contained in the AOP, ''Standard Terms and Conditions'', Section 4.3.3, is the requirement to submit semiannual reports by March 15th and September 15th each year, which are certified for truth, accuracy, and completeness by a Responsible Official. This semiannual report contains information from July 1, 2004 through December 31, 2004. Copies of semiannual reports are transmitted to the Washington State Department of Ecology (Ecology). the Washington State Department of Health (WDOH), the Benton Clean Air Authority (BCAA), and the US Environmental Protection Agency (EPA), Region 10. For the applicable reporting period, AOP, ''Standard Terms and Conditions'', Section 4.3.3, as amended in August 2002 and December 2002, identifies the following. (1) Each semiannual report will provide a reference to deviation reports submitted to the regulatory agencies as required by Section 4.5. ''Permit Deviation Reporting''. (2) Each semiannual report will consist of reports of any required monitoring not submitted previously to the agencies or a reference to reports of required monitoring submitted during the reporting period. (3) Each semiannual report will contain a summary of any substantiated air emission complaint investigation(s) required in Table 1.2 of AOP, Attachment 1, and issued during the reporting period. (4) For all minor radioactive emission points (potential to emit <0.1 mrem to the maximally exposed individual) listed in AOP, Attachment 2. Tables 1.2. 1.3, and 2.1, each semiannual report will confirm that any required monitoring was conducted to verify low emissions during the reporting period. Data derived from that monitoring will be reported in the Annual National Emission Standards for Hazardous Air Pollutants (NESHAP) Report (AOP, ''Standard Terms and Conditions'', Section 4.3.1). AOP requirement is for annual monitoring (e.g., four 1 week samples

  5. History of Hanford Site Defense Production (Brief)

    SciTech Connect

    GERBER, M S

    2001-02-01

    This paper acquaints the audience with the history of the Hanford Site, America's first full-scale defense plutonium production site. The paper includes the founding and basic operating history of the Hanford Site, including World War II construction and operations, three major postwar expansions (1947-55), the peak years of production (1956-63), production phase downs (1964-the present), a brief production spurt from 1984-86, the end of the Cold War, and the beginning of the waste cleanup mission. The paper also delineates historical waste practices and policies as they changed over the years at the Hanford Site, past efforts to chemically treat, ''fractionate,'' and/or immobilize Hanford's wastes, and resulting major waste legacies that remain today. This paper presents original, primary-source research into the waste history of the Hanford Site. Finally, the paper places the current Hanford Site waste remediation endeavors in the broad context of American and world history.

  6. Environmental monitoring at Hanford, Washington, USA: A brief site history and summary of recent results

    NASA Astrophysics Data System (ADS)

    Gray, R. H.; Jaquish, R. E.; Mitchell, P. J.; Rickard, W. H.

    1989-09-01

    Nuclear and nonnuclear industrial and research activities have been conducted on the Hanford reservation since 1943. Materials originating from these activities may enter the surrounding environment through releases of airborne and liquid effluents and solid wastes. Concern about the environmental effects of these releases has evolved over the past four decades into a comprehensive onsite and offsite monitoring program. Today, environmental monitoring to assess potential impacts of released materials includes field sampling and chemical and physical analyses of air, ground and surface water, fish and wildlife, soil, vegetation, and foodstuffs. This paper reviews the history of Hanford operations and summarizes the current environmental monitoring program and its major findings. Mathematical models based on monitoring data show that radiation doses to people living near the Hanford site are well below existing regulatory standards. Only trace amounts of radionuclides from Hanford have been detected in the offsite environment.

  7. Scoring methods and results for qualitative evaluation of public health impacts from the Hanford high-level waste tanks. Integrated Risk Assessment Program

    SciTech Connect

    Buck, J.W.; Gelston, G.M.; Farris, W.T.

    1995-09-01

    The objective of this analysis is to qualitatively rank the Hanford Site high-level waste (HLW) tanks according to their potential public health impacts through various (groundwater, surface water, and atmospheric) exposure pathways. Data from all 149 single-shell tanks (SSTs) and 23 of the 28 double-shell tanks (DSTs) in the Tank Waste Remediation System (TWRS) Program were analyzed for chemical and radiological carcinogenic as well as chemical noncarcinogenic health impacts. The preliminary aggregate score (PAS) ranking system was used to generate information from various release scenarios. Results based on the PAS ranking values should be considered relative health impacts rather than absolute risk values.

  8. Hanford Patrol Academy demolition sites closure plan

    SciTech Connect

    Not Available

    1993-09-30

    The Hanford Site is owned by the U.S. Government and operated by the U.S. Department of Energy, Richland Operations Office. Westinghouse Hanford Company is a major contractor to the U.S. Department of Energy, Richland Operations Office and serves as co-operator of the Hanford Patrol Academy Demolition Sites, the unit addressed in this paper. This document consists of a Hanford Facility Dangerous Waste Part A Permit Application, Form 3 (Revision 4), and a closure plan for the site. An explanation of the Part A Form 3 submitted with this closure plan is provided at the beginning of the Part A section. This Hanford Patrol Academy Demolition Sites Closure Plan submittal contains information current as of December 15, 1994.

  9. SHORT AND LONG-TERM FIRE IMPACTS ON HANFORD BARRIER PERFORMANCE

    SciTech Connect

    Ward, Anderson L.; Leary, Kevin D.; Link, Steven O.; Berlin, Gregory T.; Cammann, Jerry W.; Mandis, M. L.; Buelow, Laura C.

    2009-03-05

    A critical unknown in long-term engineered barrier use is the post-fire hydrologic function where institutional controls are in-tact but there are no resources to implement maintenance activities such as re-planting. This objective of this study was to simulate wild fire on an engineered barrier at the Hanford Site and document the post-fire changes in barrier performance. Soil physical, chemical, and hydrologic conditions; plant floristics and density; and animal use were characterized pre- and post-burn. Fuel load on the surface ranged from 4.7 to 5.71 tons/acre. Fire was initiated by drip torch and measurements of flame height and temperature were made at nine locations on the barrier surface. Flame heights exceeded 30 ft and temperatures ranged from 250 C at 1.5 cm below the surface to over 700 C at 1 m above the surface. Soil organic matter, soil wettability, and hydraulic conductivity all decreased significantly relative to pre-fire conditions. Post-fire samples showed an increase in major soil nutrients, pH, and electrical conductivity measured in 1:1 extracts whereas organic matter decreased. Decreases in wettabilty and organic matter are indicative of conditions more conducive to runoff and soil loss. The results of this study will contribute to a better understanding of post-fire recovery in a post-institutional control environment. This should lead to enhanced stakeholder acceptance regarding the long-term efficacy of ET barriers. This study will also support improvements in the design of ET barriers and performance monitoring systems. Such improvements are needed to best meet the long-term commitment to the safe in-place isolation of waste for hundreds if not thousands of years.

  10. Hanford Site Air Operating Permit Application Supplemental Information [Sec 1 Thru 5] Vol 1 Thru 3 Appendices A Thru C

    SciTech Connect

    CURN, B.L.

    2000-05-01

    This report documents radionuclide air emissions from the Hanford Site in 1998 and the resulting effective dose equivalent to the maximally exposed individual (MEI) member of the public. The report has been prepared in accordance with the Code of Federal Regulations, Title 40, Protection of the Environment, Part 61, National Emission Standards for Hazardous Air Pollutants (40 CFR 61), Subpart H: ''National Emission Standards for Emissions of Radionuclides Other than Radon from Department of Energy Facilities,'' and with the Washington Administrative Code Chapter 246247, Radiation Protection - Air Emissions. The federal regulations in 40 CFR 61, Subpart H, require the measurement and reporting of radionuclides emitted from Department of Energy facilities and the resulting offsite dose from those emissions. A standard of 10 mrem/yr effective dose equivalent (EDE) is imposed on them. The EDE to the MEI due to routine emissions in 1998 from Hanford Site point sources was 1.3 E-02 mrem (1.3 E-04 mSv). which is 0.13 percent of the federal standard. Chapter 246-247 of the Washington Administrative Code (WAC) requires the reporting of radionuclide emissions from all Department of Energy Hanford Site sources. The state has adopted into these regulations the 40 CFR 61 standard of 10 mrem/yr EDE. The EDE to the MEI attributable to diffuse and fugitive radionuclide air emissions from the Hanford Site in 1998 was 2.5 E-02 mrem (2.S E-04 mSv). This dose added to the dose from point sources gives a total for all sources of 3.8 E-02 mrem/yr (3.8 E-04 mSv) EDE. which is 0.38 percent of the 10 mrem/yr standard. An unplanned release on August 26, 1998, in the 300 Area of the Hanford Site resulted in a potential dose of 4.1 E-02 mrem to a hypothetical individual at the nearest point of public access to that area. This hypothetical individual was not the MEI since the wind direction on the day of the release was away from the MEI residence. The potential dose from the unplanned event

  11. Carbon Tetrachloride Partition Coefficients Measured by Aqueous Sorption to Hanford Sediments from Operable Units 200-UP-1 and 200-ZP-1

    SciTech Connect

    Wellman, Dawn M.; Riley, Robert G.; Cordova, Elsa A.; Parker, Kent E.; Mitroshkov, Alexandre V.

    2007-09-30

    Kd values obtained on sediment samples from 200-UP-1 and 10-ZP-1 contribute to a larger Kd database that exists for other Hanford sediments, and contains significant desorption data for CCl4. Adsorption results presented here validate the use of a linear adsorption isotherm (Kd) to predict short contact time CCl4 adsorption to sediments in 200-UP-1 groundwater plume for a distinct ranges in CCl4 concentration. However, this does not imply that values of Kd will be constant if the groundwater chemical composition at 200-UP-1 changes with space or time. Additionally, results presented here suggest the potential significance of slower intraparticle diffusion on the long-term fate of CCl4 within the subsurface Hanford environment. Such behavior could afford prolonged desorption of CCl4 and serve as a long-term source of contaminant CCl4 to the aquifer. Further evaluation of possible bimodal sorption behavior for CCl4 and the mechanism of CCl¬4 sequestration should be the subject of future investigations to provide a thorough, mechanistic understanding of the retention and long-term fate of CCl4. Comparison of previous data with new results (e.g., from this study) will allow inferences to be made on how the 200-UP-1 Kd values for CCl4 may compare with sediments from other Hanford locations. This site-specific sorption data, when complemented by the chemical, geologic, mineralogic, hydrologic, and physical characterization data that are also being collected (see Sampling and Analysis Plan for the 200-UP-1 Groundwater Monitoring Well Network, DOE 2002) can be used to develop a robust, scientifically defensible data base to allow risk predictions to be generated and to aid in future remediation decisions for the 200-UP-1 and 200-ZP-1 operable units.

  12. COMPARISON OF OXALIC ACID CLEANING RESULTS AT SRS AND HANFORD AND THE IMPACT ON ENHANCED CHEMICAL CLEANING DEPLOYMENT

    SciTech Connect

    Spires, R.; Ketusky, E.

    2010-01-05

    Waste tanks must be rendered clean enough to satisfy very rigorous tank closure requirements. During bulk waste removal, most of the radioactive sludge and salt waste is removed from the waste tank. The waste residue on the tank walls and interior components and the waste heel at the bottom of the tank must be removed prior to tank closure to render the tank clean enough to meet the regulatory requirement for tank closure. Oxalic acid has been used within the DOE complex to clean residual materials from carbon steel tanks with varying degrees of success. Oxalic acid cleaning will be implemented at both the Savannah River Site and Hanford to clean tanks and serves as the core cleaning technology in the process known as Enhanced Chemical Cleaning. Enhanced Chemical Cleaning also employs a process that decomposes the spent oxalic acid solutions. The oxalic acid cleaning campaigns that have been performed at the two sites dating back to the 1980's are compared. The differences in the waste characteristics, oxalic acid concentrations, flushing, available infrastructure and execution of the campaigns are discussed along with the impact on the effectiveness of the process. The lessons learned from these campaigns that are being incorporated into the project for Enhanced Chemical Cleaning are also explored.

  13. Hanford Site Air Operating Permit Semiannual Report for the period July 21 2001 Thru December 31 2001

    SciTech Connect

    GREEN, W.E.

    2002-02-01

    The Hanford Site Air Operating Permit (AOP), Number 00-05-006, became effective on July 2, 2001. One condition contained in the AOP, ''Standard Terms and Conditions'', Section 4.3.3, is the requirement to submit semiannual reports by March 15th and August 15th each year, which are certified for truth and accuracy by a Responsible Official. This first semiannual report contains information for the period from July 2, 2001 through December 31, 2001. Hereafter, the March 15th semiannual report will contain information for the period from July 1 through December 31. The semiannual report submitted by August 15th will contain information for the period from January 1 through June 30. Copies of the semiannual reports are transmitted to the Washington State Department of Ecology (Ecology), the Washington State Department of Health (WDOH), the Benton Clean Air Authority (BCAA), and the U.S. Environmental Protection Agency (EPA), Region 10. For the applicable reporting period, AOP, ''Standard Terms and Conditions'', Section 4.3.3, identifies the following: (1) Each semiannual report will provide a reference to deviation reports submitted to the regulatory agencies as required by Section 4.5, ''Permit Deviation Reporting''. (2) Each semiannual report will consist of reports of any required monitoring not submitted previously to the agencies or a reference to reports of required monitoring that were submitted during the reporting period. (3) Each semiannual report will contain a summary of any substantiated air emission complaint investigation(s) required in Table 1.2 of AOP, Attachment 1, and issued during the reporting period (4) For all minor radioactive emission points (potential to emit <0.1 mrem to the maximally exposed individual) listed in AOP, Attachment 2. Tables 1.2, 1.3 and 2.1. each semiannual report will confirm that any required monitoring was conducted to verify low emissions during the reporting period. The data derived from that monitoring will be reported

  14. Hanford Site climatological data summary 1996, with historical data

    SciTech Connect

    Hoitink, D.J.; Burk, K.W.

    1997-04-01

    This document presents the climatological data measured at the US Department of Energy`s Hanford Site for calendar year 1996. Pacific Northwest National Laboratory operates the Hanford Meteorology Station and the Hanford Meteorological Monitoring Network from which these data were collected. The information includes updated historical climatologies for temperature, precipitation, normal and extreme values of temperature and precipitation, and other miscellaneous meteorological parameters.

  15. Technology's Impact on Library Operations.

    ERIC Educational Resources Information Center

    Jui, Doris

    For the last 58 years, automation has helped to enhance the library system; library operations such as circulation, cataloging, acquisitions, and serials have changed significantly due to technology. Circulation control is often the first activity a library considers automating. In addition to loan transactions, an automated circulation system can…

  16. Central Plateau Cleanup at DOE's Hanford Site - 12504

    SciTech Connect

    Dowell, Jonathan

    2012-07-01

    The discussion of Hanford's Central Plateau includes significant work in and around the center of the Hanford Site - located about 7 miles from the Columbia River. The Central Plateau is the area to which operations will be shrunk in 2015 when River Corridor cleanup is complete. This work includes retrieval and disposal of buried waste from miles of trenches; the cleanup and closure of massive processing canyons; the clean-out and demolition to 'slab on grade' of the high-hazard Plutonium Finishing Plant; installation of key groundwater treatment facilities to contain and shrink plumes of contaminated groundwater; demolition of all other unneeded facilities; and the completion of decisions about remaining Central Plateau waste sites. A stated goal of EM has been to shrink the footprint of active cleanup to less than 10 square miles by 2020. By the end of FY2011, Hanford will have reduced the active footprint of cleanup by 64 percent exceeding the goal of 49 percent. By 2015, Hanford will reduce the active footprint of cleanup by more than 90 percent. The remaining footprint reduction will occur between 2015 and 2020. The Central Plateau is a 75-square-mile region near the center of the Hanford Site including the area designated in the Hanford Comprehensive Land Use Plan Environmental Impact Statement (DOE 1999) and Record of Decision (64 FR 61615) as the Industrial-Exclusive Area, a rectangular area of about 20 square miles in the center of the Central Plateau. The Industrial-Exclusive Area contains the 200 East and 200 West Areas that have been used primarily for Hanford's nuclear fuel processing and waste management and disposal activities. The Central Plateau also encompasses the 200 Area CERCLA National Priorities List site. The Central Plateau has a large physical inventory of chemical processing and support facilities, tank systems, liquid and solid waste disposal and storage facilities, utility systems, administrative facilities, and groundwater monitoring

  17. Threatened and endangered wildlife species of the Hanford Site related to CERCLA characterization activities

    SciTech Connect

    Fitzner, R.E.; Weiss, S.G.; Stegen, J.A.

    1994-06-01

    The US Department of Energy`s (DOE) Hanford Site has been placed on the National Priorities List, which requires that it be remediated under the Comprehensive Environmental Response, Compensation, and Liability Act (CERCLA) or Superfund. Potentially contaminated areas of the Hanford Site were grouped into operable units, and detailed characterization and investigation plans were formulated. The DOE Richland Operations Office requested Westinghouse Hanford Company (WHC) to conduct a biological assessment of the potential impact of these characterization activities on the threatened, endangered, and sensitive wildlife species of the Hanford Site. Additional direction for WHC compliances with wildlife protection can be found in the Environmental Compliance Manual. This document is intended to meet these requirements, in part, for the CERCLA characterization activities, as well as for other work comparable in scope. This report documents the biological assessment and describes the pertinent components of the Hanford Site as well as the planned characterization activities. Also provided are accounts of endangered, threatened, and federal candidate wildlife species on the Hanford Site and information as to how human disturbances can affect these species. Potential effects of the characterization activities are described with recommendations for mitigation measures.

  18. Year 2000 project for the Hanford PHMC

    SciTech Connect

    LAYFIELD, K.A.

    1999-02-24

    This project evolved from the technical understanding that computers may or may not be able to transition into or function properly when the century changes to the year 2000 and the sudden awareness of the widespread potential impact. This realization took on a formal emphasis at the Hanford Site in 1996. It took approximately a year and a half to assimilate and understand the problem and to develop and implement the approach in an effective operating management framework. Described next are some of the complexities, unusual conditions, issues and barriers faced by the project team.

  19. Effects of hydropower operations on spawning habitat, rearing habitat, and standing/entrapment mortality of fall Chinook salmon in the Hanford Reach of the Columbia River

    USGS Publications Warehouse

    Anglin, Donald R.; Haeseker, Steven L.; Skalicky, Joseph J.; Schaller, Howard; Tiffan, Kenneth F.; Hatten, James R.; Hoffarth, Paul; Nugent, John; Benner, David; Yoshinaka, Marv

    2006-01-01

    This report describes research conducted primarily in 2003 and 2004 to evaluate the effects of upstream dam operations on spawning and rearing conditions for fall Chinook salmon, Oncorhynchus tshawytscha, in the Hanford Reach of the Columbia River. Results from habitat modeling tasks which continued in 2005 and 2006 are also included in this report. This study is focused on the effects of streamflows and streamflow fluctuations on 1) entrapment and entrapment mortality of juveniles, 2) adult spawning habitat, and 3) juvenile rearing habitat. An independent peer review was conducted on the draft version of this report utilizing three reviewers, each with different areas of expertise and different levels of knowledge regarding hydrodynamic modeling, fall Chinook biology, life history, and habitat requirements, and fishery issues relating to hydropower development and operations. Peer review comments have been incorporated into this final version.

  20. In-place HEPA (high efficiency, particulate air) filter testing at Hanford: Operating experiences, calibrations, and lessons learned

    SciTech Connect

    Flores, D.S.; Decelis, D.G.

    1989-10-01

    High Efficiency, Particulate Air (HEPA) Filters provide a minimum of 99.97% removal efficiency for particles greater than or equal to .3 microns in diameter. Each HEPA filter installation at Hanford is, at specified intervals, functionally tested for leaks. The test procedure involves a dioctylphthalate (DOP) smoke generator and a calibrated airborne particle detector. The DOP generator produces smoke of a known quantitative particle size distribution upstream of the filter. The airborne particle detector is first placed upstream, and then downstream of the filter to determine percent penetration. The smoke generator is characterized using a calibrated laser spectrometer, and the particle detector is calibrated using a calibrated picoammeter. 2 refs., 4 figs.

  1. Pollution Prevention Accomplishments Hanford Site FY2001

    SciTech Connect

    COENENBERG, J.G.

    2001-12-01

    In Fiscal Year 2001, the Hanford Site Prime Contractors, Bechtel Hanford Inc. (BHI), CH2M Hill hanford Group (CHG), Fluor Hanford Inc. (FH), and Pacific Northwest National Laboratory (PNNL) achieved over $32 million in cost savings/avoidance. The total cost savings/avoidance includes accomplishments reported to DOE Headquarters and additional accomplishments achieved on the Hanford Site. This accomplishment report highlights the major successes totaling over $5.5 million in cost savings/avoidance. The following summarizes the FY 2001 waste reduced, and cost savings/avoidance by waste category for accomplishments documented in this report. Additionally, this accomplishment report documents the hanford site Return on Investment (ROI) projects completed or in progress during FY 2001. The ROI projects continue to show excellent results this past year. The ROI program funds waste minimization projects that provide a high return on investment. The funding is available to all Hanford contractors for pollution prevention projects. This accomplishment report highlights 7 ROI projects implemented and 6 projects that were in progress during FY 2001. The annual cost savings of the ROI projects completed and in progress is over $53.5 million. The Hanford Site continues to be the leader in pollution prevention and waste minimization across the DOE complex. This was evidenced by meeting aggressive Hanford Site waste generation goals and operating an outstanding recycling program. Additionally, waste streams are continuously evaluated and reduced through effective analysis and implementation via Pollution Prevention Opportunity Assessments.

  2. THE POSITIVE IMPACTS OF AMERICAN REINVESTMENT AND RECOVERY ACT (ARRA) FUNDING TO THE WASTE MANAGEMENT PROGRAM ON HANFORD'S PLATEAU REMEDIATION PROJECT

    SciTech Connect

    BLACKFORD LT

    2010-01-19

    In April 2009, the Department of Energy (DOE) Richland Operations Office (RL) was allocated $1.6 billion (B) in ARRA funding to be applied to cleanup projects at the Hanford Site. DOE-RL selected projects to receive ARRA funding based on 3-criteria: creating/saving jobs, reducing the footprint of the Hanford Site, and reducing life-cycle costs for cleanup. They further selected projects that were currently covered under regulatory documents and existing prime contracts, which allowed work to proceed quickly. CH2M HILL Plateau Remediation Company (CHPRC) is a prime contractor to the DOE focused on the environmental cleanup of the DOE Hanford Site Central Plateau. CHPRC was slated to receive $1.36B in ARRA funding. As of January, 2010, CHPRC has awarded over $200 million (M) in subcontracts (64% to small businesses), created more that 1,100 jobs, and touched more than 2,300 lives - all in support of long-term objectives for remediation of the Central Plateau, on or ahead of schedule. ARRA funding is being used to accelerate and augment cleanup activities already underway under the baseline Plateau Remediation Contract (PRC). This paper details challenges and accomplishments using ARRA funding to meet DOE-RL objectives of creating/saving jobs, expediting cleanup, and reducing lifecycle costs for cleanup during the first months of implementation.

  3. Multimedia environmental monitoring: 50 years at Hanford.

    PubMed

    Gray, R H

    1993-07-01

    Environmental monitoring has been an ongoing activity on the U.S. Department of Energy's Hanford Site in southeastern Washington for almost 50 years. Objectives are to detect and assess potential impacts of Site operations on air, surface and ground waters, foodstuffs, fish, wildlife, soil and vegetation. Data from monitoring effects are used to calculate the overall radiological dose to humans working onsite or residing in nearby communities. In 1989, measured Hanford Site perimeter concentrations of airborne radionuclides were below applicable guidelines. Concentrations of radionuclides and nonradiological water quality in the Columbia River were in compliance with applicable standards. Foodstuffs irrigated with river water taken downstream of the Site showed radionuclide levels that were similar to those found in foodstuffs from control areas. Low levels of (137)Cs and (90)Sr in most onsite wildlife samples and concentrations of radionuclides in soils and vegetation from on- and offsite locations were typical of those attributable to worldwide fallout. The calculated dose potentially received by a maximally exposed individual (i.e., based on hypothetical, worst-case assumptions for all routes of exposure) in 1989 (0.05 mrem/yr) was similar to those calculated for 1985 through 1988.In addition to monitoring radioactivity in fish and wildlife, population numbers of key species are determined. Chinook salmon (Oncorhynchus tshawytscha) spawning in the Columbia River at Hanford has increased in recent years with a concomitant increase in winter roosting activity of bald eagles (Haliaeetus leucocephalus). An elk (Cervus elaphus) herd, established by immigration in 1972, is also increasing. The Hanford Site currently serves as a refuge for Canada goose (Branta canadensis), great blue heron (Ardea herodias), and various plants and other animals, e.g., mule deer (Odocoileus hemionus), and coyotes (Canis latrans).

  4. Evaluation of the Hanford RI/FS cost projections

    SciTech Connect

    Not Available

    1991-06-01

    The US Department of Energy-Richland Operations (DOE-RL) tasked the Environmental Management Operations (EMO) to review the cost estimates and implementation process for the Hanford Remedial Investigation/Feasibility Study (RI/FS) Program as defined by the Hanford RCRA/CERLA Past Practices Cost Models. The purpose of the review was to determine if there were opportunities to reduce the RI/FS costs at Hanford, with a focus on the approach being taken at Hanford to implement and complete the RI/FS process. This volume contains 4 appendices for the evaluation of the Hanford RI/FS Cost Projections.

  5. FEASIBILITY STUDY OF PRESSURE PULSING PIPELINE UNPLUGGING TECHNOLOGIES FOR HANFORD

    SciTech Connect

    Servin, M. A.; Garfield, J. S.; Golcar, G. R.

    2012-12-20

    The ability to unplug key waste transfer routes is generally essential for successful tank farms operations. All transfer lines run the risk of plugging but the cross site transfer line poses increased risk due to its longer length. The loss of a transfer route needed to support the waste feed delivery mission impacts the cost and schedule of the Hanford clean up mission. This report addresses the engineering feasibility for two pressure pulse technologies, which are similar in concept, for pipeline unplugging.

  6. Annual Report - Remotely Operated NDE System for Inspection of Hanford's Waste Tank Knuckle Regions and Development of a Small Roving Annulus Inspection Vehicle T-SAFT Scanning Bridge for Savannah River Site Applications

    SciTech Connect

    Pardini, Allan F.; Crawford, Susan L.; Harris, Robert V.; Samuel, Todd J.; Roberts, Ron A.; Alzheimer, James M.; Gervais, Kevin L.; Maynard, Melody A.; Tucker, Joseph C.

    2002-10-07

    The design, development, and performance testing of a prototype system known as the Remotely Operated Nondestructive Examination (RONDE)system to examine the knuckle region of a Hanford DST have been completed. The design and fabrication of a scanning bridge to support the Savannah River Site utilizing similar technology was also completed.

  7. Airport noise impact reduction through operations

    NASA Technical Reports Server (NTRS)

    Deloach, R.

    1981-01-01

    The airport-noise levels and annoyance model (ALAMO) developed at NASA Langley Research Center is comprised of a system of computer programs which is capable of quantifying airport community noise impact in terms of noise level, population distribution, and human subjective response to noise. The ALAMO can be used to compare the noise impact of an airport's current operating scenario with the noise impact which would result from some proposed change in airport operations. The relative effectiveness of number of noise-impact reduction alternatives is assessed for a major midwest airport. Significant reductions in noise impact are predicted for certain noise abatement strategies while others are shown to result in relatively little noise relief.

  8. Women and the Hanford Site

    NASA Astrophysics Data System (ADS)

    Gerber, Michele

    2014-03-01

    When we study the technical and scientific history of the Manhattan Project, women's history is sometimes left out. At Hanford, a Site whose past is rich with hard science and heavy construction, it is doubly easy to leave out women's history. After all, at the World War II Hanford Engineer Works - the earliest name for the Hanford Site - only nine percent of the employees were women. None of them were involved in construction, and only one woman was actually involved in the physics and operations of a major facility - Dr. Leona Woods Marshall. She was a physicist present at the startup of B-Reactor, the world's first full-scale nuclear reactor - now a National Historic Landmark. Because her presence was so unique, a special bathroom had to be built for her in B-Reactor. At World War II Hanford, only two women were listed among the nearly 200 members of the top supervisory staff of the prime contractor, and only one regularly attended the staff meetings of the Site commander, Colonel Franklin Matthias. Overall, women comprised less than one percent of the managerial and supervisory staff of the Hanford Engineer Works, most of them were in nursing or on the Recreation Office staff. Almost all of the professional women at Hanford were nurses, and most of the other women of the Hanford Engineer Works were secretaries, clerks, food-service workers, laboratory technicians, messengers, barracks workers, and other support service employees. The one World War II recruiting film made to attract women workers to the Site, that has survived in Site archives, is entitled ``A Day in the Life of a Typical Hanford Girl.'' These historical facts are not mentioned to criticize the past - for it is never wise to apply the standards of one era to another. The Hanford Engineer Works was a 1940s organization, and it functioned by the standards of the 1940s. Just as we cannot criticize the use of asbestos in constructing Hanford (although we may wish they hadn't used so much of it), we

  9. Long-term environmental monitoring at Hanford, Washington

    SciTech Connect

    Gray, R.H.

    1990-11-01

    Environmental monitoring has been an ongoing activity on the US Department of Energy's Hanford Site in southeastern Washington for over 45 years. Objectives are to detect and assess potential impacts of Site operations (nuclear and nonnuclear) on air, surface and ground water, foodstuffs, fish, wildlife, soils and vegetation. Data from monitoring efforts are used to calculate the overall radiological dose to humans working onsite or residing in nearby communities. In 1988, measured Hanford Site perimeter concentrations of airborne radionuclides were below applicable guidelines. In addition to monitoring radioactivity in fish and wildlife, population numbers of key species are determined. Chinook salmon (Oncorhynchus tshawytscha) spawning in the Columbia River at Hanford has increased in recent years with a concomitant increase in winter roosting activity of bald eagles (Haliaeetus leucocephalus). An elk (Cervus elaphus) herd, established by immigration in 1972, is increasing. The Hanford Site also serves as a refuge for Canada good (Branta canadensis) and great blue heron (Ardea herodias), and various plants and other animals, e.g., (Odocoileus hemionus) and coyote (Canis latrans). 32 refs., 4 figs.

  10. Hanford Environmental Management Program Plan

    SciTech Connect

    DeFigh-Price, C.

    1989-09-01

    The Hanford Environmental Management Program (HEMP) was established in November 1986 by the US Department of Energy-Richland Operations Office (DOE-RL). Westinghouse Hanford Company (WHC) has been assigned responsibility to manage this program. The program`s goal is to integrate environmental activities such as reporting and planning and to facilitate compliance with environmental regulations. This document describes the scope of work funded by this program for Fiscal Year (FY) 1990, presents the prioritized tasks covered, the management structure in place and the assessment allocation methodology used to determine the FY 1990 assessments. 15 refs., 3 figs., 2 tabs.

  11. Superfund record of decision (EPA region 10): Hanford Area (USDOE), 100-IU-1, 100-IU-3, 100-IU-4 and 100-IU-5 operable units, Benton County, WA, February 2, 1996

    SciTech Connect

    1997-08-01

    This decision document presents the selected action for portions of the U.S. Department of Energy (USDOE) Hanford 100 Area, Hanford Site, Benton County, WA. The selected action addresses waste sites identified in the 100-IU-1, 100-IU-3, 100-IU-4, and 100-IU-5 Operable Units. These four operable units occupy portions of Benton, Franklin, and Grant Counties, WA. This decision is based on the Administrative Record for the 100 Area and for the specific operable units. No further action is required at the 100-IU-1, 100-IU-3, 100-IU-4, and 100-IU-5 Operable Units; however, USDOE commits to the development and implementation of a Mitigation Action Plan in coordination with the Natural Resource Trustees for any additional required mitigation measures.

  12. Overview and History of DOE's Hanford Site - 12502

    SciTech Connect

    Flynn, Karen; McCormick, Matt

    2012-07-01

    Hanford's DOE offices are responsible for one of the largest nuclear cleanup efforts in the world, cleaning up the legacy of nearly five decades of nuclear weapons production. Nowhere in the DOE Complex is cleanup more challenging than at the Hanford Site in southeastern Washington. Hanford cleanup entails remediation of hundreds of large complex hazardous waste sites; disposition of nine production reactors and the preservation of one as a National Historic Landmark; demolition of hundreds of contaminated facilities including five enormous process canyons; remediation of billions of gallons of contaminated groundwater; disposition of millions of tons of low-level, mixed low-level, and transuranic waste; disposition of significant quantities of special nuclear material; storage and ultimate disposition of irradiated nuclear fuel; remediation of contamination deep in the soil that could impact groundwater; decontamination and decommissioning of hundreds of buildings and structures; and treatment of 56 million gallons of radioactive waste in 177 large underground tanks through the construction of a first-of-its-kind Waste Treatment Plant. Cleanup of the Hanford Site is a complex and challenging undertaking. The DOE Richland Operations Office has a vision and a strategy for completing Hanford's cleanup including the transition to post-cleanup activities. Information on the strategy is outlined in the Hanford Site Completion Framework. The framework describes three major components of cleanup - River Corridor, Central Plateau, and Tank Waste. It provides the context for individual cleanup actions by describing the key challenges and approaches for the decisions needed to complete cleanup. The U.S. Department of Energy (DOE), as regulated by the U.S. Environmental Protection Agency (EPA) and Washington State Department of Ecology (Ecology), is implementing a strategy to achieve final cleanup decisions for the River Corridor portion of the Hanford Site. The DOE Richland

  13. Non-Thermal Treatment of Hanford Site Low-Level Mixed Waste

    SciTech Connect

    1998-09-01

    DOE proposes to transport contact-handled LLMW from the Hanford Site to the Allied Technology Group (ATG) Mixed Waste Facility (MWF) in Richland, Washington, for non-thermal treatment and to return the treated waste to the Hanford Site for eventual land disposal. Over a 3-year period the waste would be staged to the ATG MWF, and treated waste would be returned to the Hanford Site. The ATG MWF would be located on an 18 hectare (ha) (45 acre [at]) ATG Site adjacent to ATG's licensed low-level waste processing facility at 2025 Battelle Boulevard. The ATG MWF is located approximately 0.8 kilometers (km) (0.5 miles [mi]) south of Horn Rapids Road and 1.6 km (1 mi) west of Stevens Drive. The property is located within the Horn Rapids triangle in northern Richland (Figure 2.1). The ATG MWF is to be located on the existing ATG Site, near the DOE Hanford Site, in an industrial area in the City of Richland. The effects of siting, construction, and overall operation of the MWF have been evaluated in a separate State Environmental Policy Act (SEPA) EIS (City of Richland 1998). The proposed action includes transporting the LLMW from the Hanford Site to the ATG Facility, non-thermal treatment of the LLMW at the ATG MWF, and transporting the waste from ATG back to the Hanford Site. Impacts fi-om waste treatment operations would be bounded by the ATG SEPA EIS, which included an evaluation of the impacts associated with operating the non-thermal portion of the MWF at maximum design capacity (8,500 metric tons per year) (City of Richland 1998). Up to 50 employees would be required for non-thermal treatment portion of the MWF. This includes 40 employees that would perform waste treatment operations and 10 support staff. Similar numbers were projected for the thermal treatment portion of the MWF (City of Richland 1998).

  14. Airport noise impact reduction through operations

    NASA Technical Reports Server (NTRS)

    Deloach, R.

    1981-01-01

    The effects of various aeronautical, operational, and land-use noise impact reduction alternatives are assessed for a major midwestern airport. Specifically, the relative effectiveness of adding sound absorbing material to aircraft engines, imposing curfews, and treating houses with acoustic insulation are examined.

  15. Laboratory and Modeling Evaluations in Support of Field Testing for Desiccation at the Hanford Site

    SciTech Connect

    Truex, Michael J.; Oostrom, Martinus; Freedman, Vicky L.; Strickland, Christopher E.; Wietsma, Thomas W.; Tartakovsky, Guzel D.; Ward, Anderson L.

    2011-02-23

    The Deep Vadose Zone Treatability Test Plan for the Hanford Central Plateau includes testing of the desiccation technology as a potential technology to be used in conjunction with surface infiltration control to limit the flux of technetium and other contaminants in the vadose zone to the groundwater. Laboratory and modeling efforts were conducted to investigate technical uncertainties related to the desiccation process and its impact on contaminant transport. This information is intended to support planning, operation, and interpretation of a field test for desiccation in the Hanford Central Plateau.

  16. Remedial Investigation of Hanford Site Releases to the Columbia River - 13603

    SciTech Connect

    Lerch, J.A.; Hulstrom, L.C.; Sands, J.P.

    2013-07-01

    In south-central Washington State, the Columbia River flows through the U.S. Department of Energy Hanford Site. A primary objective of the Hanford Site cleanup mission is protection of the Columbia River, through remediation of contaminated soil and groundwater that resulted from its weapons production mission. Within the Columbia River system, surface water, sediment, and biota samples related to potential Hanford Site hazardous substance releases have been collected since the start of Hanford operations. The impacts from release of Hanford Site radioactive substances to the Columbia River in areas upstream, within, and downstream of the Hanford Site boundary have been previously investigated as mandated by the U.S. Department of Energy requirements under the Atomic Energy Act. The Remedial Investigation Work Plan for Hanford Site Releases to the Columbia River [1] was issued in 2008 to initiate assessment of the impacts under the Comprehensive Environmental Response, Compensation, and Liability Act of 1980 [2]. The work plan established a phased approach to characterize contaminants, assess current risks, and determine whether or not there is a need for any cleanup actions. Field investigation activities over a 120-mile stretch of the Columbia River began in October 2008 and were completed in 2010. Sampled media included surface water, pore water, surface and core sediment, island soil, and fish (carp, walleye, whitefish, sucker, small-mouth bass, and sturgeon). Information and sample results from the field investigation were used to characterize current conditions within the Columbia River and assess whether current conditions posed a risk to ecological or human receptors that would merit additional study or response actions under CERCLA. The human health and ecological risk assessments are documented in reports that were published in 2012 [3, 4]. Conclusions from the risk assessment reports are being summarized and integrated with remedial investigation

  17. Programmatic agreement among the USDOE/RL Operations Office, the Advisory Council on Historic Preservation, and the WA State Historic Preservation Office for the maintenance, deactivation, alteration and demolition of the built environment on the Hanford Site, Washington

    SciTech Connect

    Lloyd, D.W.

    1997-08-01

    This Programmatic Agreement (PA) addresses the built environment (i.e., buildings and structures) constructed during the Manhattan Project and Cold War Era periods of Hanford`s operational history. As such it encompasses the years 1943 through 1990. The identification, evaluation, and treatment of buildings and historic archeological remains on the Hanford Site predating 1943 will be accomplished through Sections 800.4 through 800.6 of the Council`s regulations. This PA will be in effect from the date of signature until September 30, 2000. Completion of the Sitewide Treatment Plan established under this PA satisfies all Section 106 requirements for identification, evaluation, and treatment necessary for all undertakings, up to and including demolition which may affect Manhattan Project and Cold War Era properties. This PA may be extended if the Sitewide Treatment Plan has not been completed by the end of FY 2000. Identification, evaluation, and treatment of properties constructed on the Hanford Site after 1990 will be handled pursuant to the regulations in effect at the time such properties are eligible for review.

  18. Recommended environmental dose calculation methods and Hanford-specific parameters. Revision 2

    SciTech Connect

    Schreckhise, R.G.; Rhoads, K.; Napier, B.A.; Ramsdell, J.V.; Davis, J.S.

    1993-03-01

    This document was developed to support the Hanford Environmental Dose overview Panel (HEDOP). The Panel is responsible for reviewing all assessments of potential doses received by humans and other biota resulting from the actual or possible environmental releases of radioactive and other hazardous materials from facilities and/or operations belonging to the US Department of Energy on the Hanford Site in south-central Washington. This document serves as a guide to be used for developing estimates of potential radiation doses, or other measures of risk or health impacts, to people and other biota in the environs on and around the Hanford Site. It provides information to develop technically sound estimates of exposure (i.e., potential or actual) to humans or other biotic receptors that could result from the environmental transport of potentially harmful materials that have been, or could be, released from Hanford operations or facilities. Parameter values and information that are specific to the Hanford environs as well as other supporting material are included in this document.

  19. Impact of robotic operative efficiency on profitability.

    PubMed

    Geller, Elizabeth J; Matthews, Catherine A

    2013-07-01

    We sought to determine the impact of robotic operative efficiency on profitability and assess the impact of secondary variables. Financial data were collected for all robotic cases performed for fiscal years 2010 (FY10) and 2011 (FY11) at University of North Carolina at Chapel Hill, and included 9 surgical subspecialties. Profitability was defined as a positive operating income. From July 2009 through June 2011, 1295 robotic cases were performed. Robotic surgery was profitable in both fiscal years, with an operating income of $386,735 in FY10 and $822,996 in FY11. In FY10, urogynecology and pediatric surgery were the only nonprofitable subspecialties. In FY11, all subspecialties were profitable. Profitability was associated with case time, payor mix, and procedure type (all P < .05). Urogynecology case time decreased from 220-179 minutes (P = .012) and pediatric surgery from 418-258 minutes (P = .019). Robotic operative efficiency has a large impact on overall profitability regardless of surgical specialty. Copyright © 2013 Mosby, Inc. All rights reserved.

  20. Hanford inventory program user`s manual

    SciTech Connect

    Hinkelman, K.C.

    1994-09-12

    Provides users with instructions and information about accessing and operating the Hanford Inventory Program (HIP) system. The Hanford Inventory Program is an integrated control system that provides a single source for the management and control of equipment, parts, and material warehoused by Westinghouse Hanford Company in various site-wide locations. The inventory is comprised of spare parts and equipment, shop stock, special tools, essential materials, and convenience storage items. The HIP replaced the following systems; ACA, ASP, PICS, FSP, WSR, STP, and RBO. In addition, HIP manages the catalog maintenance function for the General Supplies inventory stocked in the 1164 building and managed by WIMS.

  1. HEPA Filter Use at the Hanford Site

    SciTech Connect

    Kriskovich, J. R.

    2002-02-28

    High Efficiency Particulate Air (HEPA) filters are relied upon at the Hanford site to support several different activities. Each facility relies upon the filters to provide the same function; remove radioactive particulate from various air streams. However, HEPA filters are operated in differing environmental conditions from one facility to another and the constituents in the air streams also differ. In addition, some HEPA filters at the Hanford site have been in service for several years. As a result, an assessment was performed which evaluated the service life and conditions of the HEPA filters at the Hanford site.

  2. Hanford Site Development Plan

    SciTech Connect

    Hathaway, H.B.; Daly, K.S.; Rinne, C.A.; Seiler, S.W.

    1993-05-01

    The Hanford Site Development Plan (HSDP) provides an overview of land use, infrastructure, and facility requirements to support US Department of Energy (DOE) programs at the Hanford Site. The HSDP`s primary purpose is to inform senior managers and interested parties of development activities and issues that require a commitment of resources to support the Hanford Site. The HSDP provides an existing and future land use plan for the Hanford Site. The HSDP is updated annually in accordance with DOE Order 4320.1B, Site Development Planning, to reflect the mission and overall site development process. Further details about Hanford Site development are defined in individual area development plans.

  3. Hanford Environmental Dose Reconstruction Project. Monthly report, December 1991

    SciTech Connect

    Finch, S.M.; McMakin, A.H.

    1991-12-31

    The objective of the Hanford Environmental Dose Reconstruction Project is to estimate the radiation doses that individuals and populations could have received from nuclear operations at Hanford since 1944. The project is being managed and conducted by the Pacific Northwest Laboratory (PNL) under the direction of an independent Technical Steering Panel (TSP). The TSP consists of experts in environmental pathways, epidemiology, surface-water transport, ground-water transport, statistics, demography, agriculture, meteorology, nuclear engineering, radiation dosimetry, and cultural anthropology. Included are appointed technical members representing the states of Oregon and Washington, a representative of Native American tribes, and an individual representing the public. The project is divided into the following technical tasks. These tasks correspond to the path radionuclides followed, from release to impact on human (dose estimates): Source Terms; Environmental Transport; Environmental Monitoring Data; Demographics, Agriculture, Food Habits and; Environmental Pathways and Dose Estimates.

  4. Degradation of dome cutting minerals in Hanford waste

    SciTech Connect

    Reynolds, Jacob G.; Huber, Heinz J.; Cooke, Gary A.

    2013-01-11

    At the Hanford Tank Farms, recent changes in retrieval technology require cutting new risers in several single-shell tanks. The Hanford Tank Farm Operator is using water jet technology with abrasive silicate minerals such as garnet or olivine to cut through the concrete and rebar dome. The abrasiveness of these minerals, which become part of the high-level waste stream, may enhance the erosion of waste processing equipment. However, garnet and olivine are not thermodynamically stable in Hanford waste, slowly degrading over time. How likely these materials are to dissolve completely in the waste before the waste is processed in the Waste Treatment and Immobilization Plant can be evaluated using theoretical analysis for olivine and collected direct experimental evidence for garnet. Based on an extensive literature study, a large number of primary silicates decompose into sodalite and cancrinite when exposed to Hanford waste. Given sufficient time, the sodalite also degrades into cancrinite. Even though cancrinite has not been directly added to any Hanford tanks during process times, it is the most common silicate observed in current Hanford waste. By analogy, olivine and garnet are expected to ultimately also decompose into cancrinite. Garnet used in a concrete cutting demonstration was immersed in a simulated supernate representing the estimated composition of the liquid retrieving waste from Hanford tank 241-C-107 at both ambient and elevated temperatures. This simulant was amended with extra NaOH to determine if adding caustic would help enhance the degradation rate of garnet. The results showed that the garnet degradation rate was highest at the highest NaOH concentration and temperature. At the end of 12 weeks, however, the garnet grains were mostly intact, even when immersed in 2 molar NaOH at 80 deg C. Cancrinite was identified as the degradation product on the surface of the garnet grains. In the case of olivine, the rate of degradation in the high-pH regimes

  5. Degradation of Dome Cutting Minerals in Hanford Waste - 13100

    SciTech Connect

    Reynolds, Jacob G.; Cooke, Gary A.; Huber, Heinz J.

    2013-07-01

    At the Hanford Tank Farms, recent changes in retrieval technology require cutting new risers in several single-shell tanks. The Hanford Tank Farm Operator is using water jet technology with abrasive silicate minerals such as garnet or olivine to cut through the concrete and rebar dome. The abrasiveness of these minerals, which become part of the high-level waste stream, may enhance the erosion of waste processing equipment. However, garnet and olivine are not thermodynamically stable in Hanford waste, slowly degrading over time. How likely these materials are to dissolve completely in the waste before the waste is processed in the Waste Treatment and Immobilization Plant can be evaluated using theoretical analysis for olivine and collected direct experimental evidence for garnet. Based on an extensive literature study, a large number of primary silicates decompose into sodalite and cancrinite when exposed to Hanford waste. Given sufficient time, the sodalite also degrades into cancrinite. Even though cancrinite has not been directly added to any Hanford tanks during process times, it is the most common silicate observed in current Hanford waste. By analogy, olivine and garnet are expected to ultimately also decompose into cancrinite. Garnet used in a concrete cutting demonstration was immersed in a simulated supernate representing the estimated composition of the liquid retrieving waste from Hanford tank 241-C-107 at both ambient and elevated temperatures. This simulant was amended with extra NaOH to determine if adding caustic would help enhance the degradation rate of garnet. The results showed that the garnet degradation rate was highest at the highest NaOH concentration and temperature. At the end of 12 weeks, however, the garnet grains were mostly intact, even when immersed in 2 molar NaOH at 80 deg. C. Cancrinite was identified as the degradation product on the surface of the garnet grains. In the case of olivine, the rate of degradation in the high

  6. Hazards by meteoroid Impacts onto operational spacecraft

    NASA Astrophysics Data System (ADS)

    Landgraf, M.; Jehn, R.; Flury, W.

    Operational spacecraft in Earth orbit or on interplanetary trajectories are exposed to high-velocity particles that can cause damage to sensitive on-board instrumentation. In general there are two types of hazard: direct destruction of functional elements by impacts, and indirect disturbance of instruments by the generated impact plasma. The latter poses a threat especially for high-voltage instrumentation and electronics. While most meteoroids have sizes in the order of a few micrometre, and typical masses of 10-15 kg, the most dangerous population with sizes in the millimetre and masses in the milligramme range exhibits still substantial impact fluxes in the order of 2 × 10-11 m-2 s-1 . This level of activity can by significantly elevated during passages of the spacecraft through cometary trails, which on Earth cause events like the well-known Leonid and Perseid meteor streams. The total mass flux of micrometeoroids onto Earth is about 107 kg yr-1 , which is about one order of magnitude less than the estimated mass flux of large objects like comets and asteroids with individual masses above 105 kg. In order to protect spacecraft from the advert effects of meteoroid impacts, ESA performs safety operations on its spacecraft during meteor streams, supported by real-time measurements of the meteor activity. A summary of past and future activities is given.

  7. The Deep Impact Network Experiment Operations Center

    NASA Technical Reports Server (NTRS)

    Torgerson, J. Leigh; Clare, Loren; Wang, Shin-Ywan

    2009-01-01

    Delay/Disruption Tolerant Networking (DTN) promises solutions in solving space communications challenges arising from disconnections as orbiters lose line-of-sight with landers, long propagation delays over interplanetary links, and other phenomena. DTN has been identified as the basis for the future NASA space communications network backbone, and international standardization is progressing through both the Consultative Committee for Space Data Systems (CCSDS) and the Internet Engineering Task Force (IETF). JPL has developed an implementation of the DTN architecture, called the Interplanetary Overlay Network (ION). ION is specifically implemented for space use, including design for use in a real-time operating system environment and high processing efficiency. In order to raise the Technology Readiness Level of ION, the first deep space flight demonstration of DTN is underway, using the Deep Impact (DI) spacecraft. Called the Deep Impact Network (DINET), operations are planned for Fall 2008. An essential component of the DINET project is the Experiment Operations Center (EOC), which will generate and receive the test communications traffic as well as "out-of-DTN band" command and control of the DTN experiment, store DTN flight test information in a database, provide display systems for monitoring DTN operations status and statistics (e.g., bundle throughput), and support query and analyses of the data collected. This paper describes the DINET EOC and its value in the DTN flight experiment and potential for further DTN testing.

  8. The Deep Impact Network Experiment Operations Center

    NASA Technical Reports Server (NTRS)

    Torgerson, J. Leigh; Clare, Loren; Wang, Shin-Ywan

    2009-01-01

    Delay/Disruption Tolerant Networking (DTN) promises solutions in solving space communications challenges arising from disconnections as orbiters lose line-of-sight with landers, long propagation delays over interplanetary links, and other phenomena. DTN has been identified as the basis for the future NASA space communications network backbone, and international standardization is progressing through both the Consultative Committee for Space Data Systems (CCSDS) and the Internet Engineering Task Force (IETF). JPL has developed an implementation of the DTN architecture, called the Interplanetary Overlay Network (ION). ION is specifically implemented for space use, including design for use in a real-time operating system environment and high processing efficiency. In order to raise the Technology Readiness Level of ION, the first deep space flight demonstration of DTN is underway, using the Deep Impact (DI) spacecraft. Called the Deep Impact Network (DINET), operations are planned for Fall 2008. An essential component of the DINET project is the Experiment Operations Center (EOC), which will generate and receive the test communications traffic as well as "out-of-DTN band" command and control of the DTN experiment, store DTN flight test information in a database, provide display systems for monitoring DTN operations status and statistics (e.g., bundle throughput), and support query and analyses of the data collected. This paper describes the DINET EOC and its value in the DTN flight experiment and potential for further DTN testing.

  9. Strontium-90 at the Hanford Site and its ecological implications

    SciTech Connect

    RE Peterson; TM Poston

    2000-05-22

    Strontium-90, a radioactive contaminant from historical operations at the U.S. Department of Energy (DOE) Hanford Site, enters the Columbia River at several locations associated with former plutonium production reactors at the Site. Strontium-90 is of concern to humans and the environment because of its moderately long half-life (29.1 years), its potential for concentrating in bone tissue, and its relatively high energy of beta decay. Although strontium-90 in the environment is not a new issue for the Hanford Site, recent studies of near-river vegetation along the shoreline near the 100 Areas raised public concern about the possibility of strontium-90-contaminated groundwater reaching the riverbed and fall chinook salmon redds. To address these concerns, DOE asked Pacific Northwest National Laboratory (PNNL) to prepare this report on strontium-90, its distribution in groundwater, how and where it enters the river, and its potential ecological impacts, particularly with respect to fall chinook salmon. The purpose of the report is to characterize groundwater contaminants in the near-shore environment and to assess the potential for ecological impact using salmon embryos, one of the most sensitive ecological indicators for aquatic organisms. Section 2.0 of the report provides background information on strontium-90 at the Hanford Site related to historical operations. Public access to information on strontium-90 also is described. Section 3.0 focuses on key issues associated with strontium-90 contamination in groundwater that discharges in the Hanford Reach. The occurrence and distribution of fall chinook salmon redds in the Hanford Reach and characteristics of salmon spawning are described in Section 4.0. Section 5.0 describes the regulatory standards and criteria used to set action levels for strontium-90. Recommendations for initiating additional monitoring and remedial action associated with strontium-90 contamination at the Hanford Site are presented in Section 6

  10. Overview of the Hanford Environmental Dose Reconstruction Project

    SciTech Connect

    Shipler, D.B.; Napier, B.A.; Ikenberry, T.A.

    1992-04-01

    The objective of the Hanford Environmental Dose Reconstruction (HEDR) Project is to estimate the radiation doses that specific and representative individuals and populations may have received as a result of releases of radioactive materials from historical operations at the Hanford Site. These dose estimates would account for the uncertainties of information regarding facilities operations, environmental monitoring, demography, food consumption and lifestyles, and the variability of natural phenomena. Other objectives of the HEDR Project include: supporting the Hanford Thyroid Disease Study (HTDS), declassifying Hanford-generated information and making it available to the public, performing high-quality, credible science, and conducting the project in an open, public forum. The project is briefly described.

  11. Overview of the Hanford Environmental Dose Reconstruction Project

    SciTech Connect

    Shipler, D.B.; Napier, B.A.; Ikenberry, T.A.

    1992-04-01

    The objective of the Hanford Environmental Dose Reconstruction (HEDR) Project is to estimate the radiation doses that specific and representative individuals and populations may have received as a result of releases of radioactive materials from historical operations at the Hanford Site. These dose estimates would account for the uncertainties of information regarding facilities operations, environmental monitoring, demography, food consumption and lifestyles, and the variability of natural phenomena. Other objectives of the HEDR Project include: supporting the Hanford Thyroid Disease Study (HTDS), declassifying Hanford-generated information and making it available to the public, performing high-quality, credible science, and conducting the project in an open, public forum. The project is briefly described.

  12. Hanford Site environmental data for calendar year 1991 -- Ground water

    SciTech Connect

    Dresel, P.E.; Bates, D.J.; Merz, J.K.

    1993-03-01

    This report tabulates ground-water radiological and chemical data reported for calendar year 1991 by the Ground-Water Surveillance Project, Resource Conservation and Recovery Act (RCRA) Monitoring, and Operational Monitoring. The Ground-Water Surveillance Project is conducted by the Pacific Northwest Laboratory and the RCRA and Operational Monitoring Projects are conducted by the Westinghouse Hanford Company. This document supplements the reports Hanford Site Ground-Water Monitoring for 1991 (Evans et al. 1992) and Hanford Site Environmental Report for Calendar Year 1991 (Woodruff and Hanf 1992). The data listings provided here were generated from the Hanford Environmental Information System database.

  13. Hanford Site environmental management specification

    SciTech Connect

    Grygiel, M.L.

    1998-06-10

    The US Department of Energy, Richland Operations Office (RL) uses this Hanford Site Environmental Management Specification (Specification) to document top-level mission requirements and planning assumptions for the prime contractors involved in Hanford Site cleanup and infrastructure activities under the responsibility of the US Department of Energy, Office of Environmental Management. This Specification describes at a top level the activities, facilities, and infrastructure necessary to accomplish the cleanup of the Hanford Site and assigns this scope to Site contractors and their respective projects. This Specification also references the key National Environmental Policy Act of 1969 (NEPA), Comprehensive Environmental Response, Compensation, and Liability Act of 1980 (CERCLA), and safety documentation necessary to accurately describe the cleanup at a summary level. The information contained in this document reflects RL`s application of values, priorities, and critical success factors expressed by those involved with and affected by the Hanford Site project. The prime contractors and their projects develop complete baselines and work plans to implement this Specification. These lower-level documents and the data that support them, together with this Specification, represent the full set of requirements applicable to the contractors and their projects. Figure 1-1 shows the relationship of this Specification to the other basic Site documents. Similarly, the documents, orders, and laws referenced in this specification represent only the most salient sources of requirements. Current and contractual reference data contain a complete set of source documents.

  14. Impact of staffing parameters on operational reliability

    SciTech Connect

    Hahn, H.A.; Houghton, F.K.

    1993-02-01

    This paper reports on a project related to human resource management of the Department of Energy`s (DOE`s) High-Level Waste (HLW) Tank program. Safety and reliability of waste tank operations is impacted by several issues, including not only the design of the tanks themselves, but also how operations and operational personnel are managed. As demonstrated by management assessments performed by the Tiger Teams, DOE believes that the effective use of human resources impacts environment safety, and health concerns. For the of the current paper, human resource management activities are identified as ``Staffing`` and include the of developing the functional responsibilities and qualifications of technical and administrative personnel. This paper discusses the importance of staff plans and management in the overall view of safety and reliability. The work activities and procedures associated with the project, a review of the results of these activities, including a summary of the literature and a preliminary analysis of the data. We conclude that although identification of staffing issues and the development of staffing plans contributes to the overall reliability and safety of the HLW tanks, the relationship is not well understood and is in need of further development.

  15. Impact of staffing parameters on operational reliability

    SciTech Connect

    Hahn, H.A.; Houghton, F.K.

    1993-01-01

    This paper reports on a project related to human resource management of the Department of Energy's (DOE's) High-Level Waste (HLW) Tank program. Safety and reliability of waste tank operations is impacted by several issues, including not only the design of the tanks themselves, but also how operations and operational personnel are managed. As demonstrated by management assessments performed by the Tiger Teams, DOE believes that the effective use of human resources impacts environment safety, and health concerns. For the of the current paper, human resource management activities are identified as Staffing'' and include the of developing the functional responsibilities and qualifications of technical and administrative personnel. This paper discusses the importance of staff plans and management in the overall view of safety and reliability. The work activities and procedures associated with the project, a review of the results of these activities, including a summary of the literature and a preliminary analysis of the data. We conclude that although identification of staffing issues and the development of staffing plans contributes to the overall reliability and safety of the HLW tanks, the relationship is not well understood and is in need of further development.

  16. High Level Waste Feed Certification in Hanford Double Shell Tanks

    SciTech Connect

    Thien, Micheal G.; Wells, Beric E.; Adamson, Duane J.

    2010-03-01

    The ability to effectively mix, sample, certify, and deliver consistent batches of High Level Waste (HLW) feed from the Hanford Double Shell Tanks (DST) to the Waste Treatment and Immobilization Plant (WTP) presents a significant mission risk with potential to impact mission length and the quantity of HLW glass produced. DOE’s River Protection Project (RPP) mission modeling and WTP facility modeling assume that individual 3785 cubic meter (1 million gallon) HLW feed tanks are homogenously mixed, representatively sampled, and consistently delivered to the WTP. It has been demonstrated that homogenous mixing of HLW sludge in Hanford DSTs is not likely achievable with the baseline design thereby causing representative sampling and consistent feed delivery to be more difficult. Inconsistent feed to the WTP could cause additional batch to batch operational adjustments that reduces operating efficiency and has the potential to increase the overall mission length. The Hanford mixing and sampling demonstration program will identify DST mixing performance capability, will evaluate representative sampling techniques, and will estimate feed batch consistency. An evaluation of demonstration program results will identify potential mission improvement considerations that will help ensure successful mission completion. This paper will discuss the history, progress, and future activities that will define and mitigate the mission risk.

  17. Hanford Environmental Dose Reconstruction Project Monthly Report

    SciTech Connect

    Finch, S.M.

    1991-02-01

    The objective of the Hanford Environmental Dose Reconstruction Project is to estimate the radiation doses that populations could have received from nuclear operations at Hanford since 1944. The project is being managed and conducted by the Pacific Northwest Laboratory (PNL) under the direction of an independent Technical Steering Panel (TSP). The TSP consists of experts in environmental pathways, epidemiology, surface-water transport, ground-water transport, statistics, demography, agriculture, meteorology, nuclear engineering, radiation dosimetry, and cultural anthropology. Included are appointed technical members representing the states of Oregon and Washington, cultural and technical experts nominated by the regional Native American tribes, and an individual representing the public. The project is divided into the following technical tasks. These tasks correspond to the path radionuclides followed, from release to impact on humans (dose estimates): source terms; environmental transport; environmental monitoring data; demographics, agriculture, food habits; and environmental pathways and dose estimates. Project reports and references used in the reports are made available to the public in a public reading room. Project progress is documented in this monthly report, which is available to the public. 3 figs., 3 tabs.

  18. Hanford External Dosimetry Technical Basis Manual PNL-MA-842

    SciTech Connect

    Rathbone, Bruce A.

    2005-02-25

    The Hanford External Dosimetry Technical Basis Manual PNL-MA-842 documents the design and implementation of the external dosimetry system used at Hanford. The manual describes the dosimeter design, processing protocols, dose calculation methodology, radiation fields encountered, dosimeter response characteristics, limitations of dosimeter design under field conditions, and makes recommendations for effective use of the dosimeters in the field. The manual describes the technical basis for the dosimetry system in a manner intended to help ensure defensibility of the dose of record at Hanford and to demonstrate compliance with 10 CFR 835, DOELAP, DOE-RL, ORP, PNSO, and Hanford contractor requirements. The dosimetry system is operated by PNNL’s Hanford External Dosimetry Program which provides dosimetry services to all Hanford contractors. The primary users of this manual are DOE and DOE contractors at Hanford using the dosimetry services of PNNL. Development and maintenance of this manual is funded directly by DOE and DOE contractors. Its contents have been reviewed and approved by DOE and DOE contractors at Hanford through the Hanford Personnel Dosimetry Advisory Committee which is chartered and chaired by DOE-RL and serves as means of coordinating dosimetry practices across contractors at Hanford. This manual was established in 1996. Since inception, it has been revised many times and maintained by PNNL as a controlled document with controlled distribution. Rev. 0 marks the first revision to be released through PNNL’s Electronic Records & Information Capture Architecture (ERICA) database.

  19. Vibrational impacts of hush house operation

    SciTech Connect

    Witten, A.J.

    1988-01-01

    United States Air Force (USAF) facilities are required to test turboprop and turbojet engines before or after maintenance or repair and prior to installation on aircraft to ensure that no problems were introduced or remain uncorrected. This requirement prevents the installation of engines in aircraft which require further maintenance. There are a number of facilities in use by USAF for conducting engine diagnostic tests. The most modern of these facilities is the hush house which is a hangar-like structure designed to isolate the noise associated with extended engine operations from the surrounding environment. One type of hush house, the T-10, is of particular concern because of vibrational impacts to surrounding structures induced by subaudible sound (infrasound) emitted during operation. While these facilities fulfill the design requirement of reducing audible noise, serious siting problems have been reported at several installations because of infrasound-induced vibrations. The worst of these include the abandonment of an avionics laboratory because induced vibrations interfered with this facilities function and structural damage to a concrete block maintenance facility. This paper describes a predictive method for assessing vibration-driven structural impacts. 9 refs., 2 figs.

  20. CLOSING IN ON CLOSURE PERSPECTIVES FROM HANFORD & FERNALD AN UPDATE

    SciTech Connect

    CONNELL, J.D.

    2004-12-22

    In World War II, the arms dramatically changed from machine guns and incendiary bombs to nuclear weapons. Hanford and Fernald, two government-run sites, were part of the infrastructure established for producing the fissile material for making these weapons, as well as building a nuclear arsenal to deter future aggression by other nations. This paper compares and contrasts, from a communications point of view, these two Department of Energy (DOE) closure sites, each with Fluor as a prime contractor. The major differences between the two sites--Hanford in Washington state and Fernald in Ohio--includes the following: size of the site and the workforce, timing of closure, definition of end state, DOE oversight, proximity to population centers, readiness of local population for closure, and dependence of the local economy on the site's budget. All of these elements affect how the sites' communication professionals provide information even though the objectives are the same: build public acceptance and support for DOE's mission to accelerate cleanup, interface with stakeholders to help ensure that issues are addressed and goals are met, help workers literally work themselves out of jobs--faster, and prepare the ''host'' communities to deal with the void left when the sites are closed and the government contractors are gone. The 12-months between January 04 and January 05 have seen dramatic transformations at both sites, as Fernald is now just about a year away from closure and FLuor's work at Hanford has made the transition from operations to deactivation and demolition. While Fernald continues to clean out silos of waste and ship it off site, Hanford is dealing with recent state legislation that has the potential to significantly impact the progress of cleanup. These changes have even further accentuated the differences in the content, distribution, and impact of communications.

  1. Hanford Site groundwater monitoring for fiscal year 1996

    SciTech Connect

    Hartman, M.J.; Dresel, P.E.; Borghese, J.V.

    1997-02-01

    This report presents the results of groundwater and vadose-zone monitoring for fiscal year (FY) 1996 on the Hanford Site, Washington. Hanford Site operations from 1943 onward produced large quantities of radiological and chemical waste that affected groundwater quality on the site. Characterization and monitoring of the vadose zone during FY 1996 comprised primarily spectral gamma logging, soil-gas monitoring, and electrical resistivity tomography. Water-level monitoring was performed to evaluate groundwater-flow directions, to track changes in water levels, and to relate such changes to evolving disposal practices. Water levels over most of the Hanford Site continued to decline between June 1995 and June 1996. Groundwater chemistry was monitored to track the extent of contamination, to note trends, and to identify emerging groundwater-quality problems. The most widespread radiological contaminant plumes were tritium and iodine-129. Smaller plumes of strontium-90, technetium-99, and plutonium also were present at levels above the U.S. Environmental Protection Agency or State of Washington interim drinking water standards. Uranium concentrations greater than the proposed drinking water standard were also observed. Nitrate, fluoride, chromium, carbon tetrachloride, chloroform, trichloroethylene, and cis-1,2-dichlomethylene were present in groundwater samples at levels above their U.S. Environmental Protection Agency or State of Washington maximum contaminant levels. The nitrate plume is the most extensive. Three-dimensional, numerical, groundwater models were applied to the Hanford Site to predict contaminant-flow paths and the impact of operational changes on site groundwater conditions. Other models were applied to assess the performance of three separate pump-and-treat systems.

  2. Hanford quarterly seismic monitoring report 96C

    SciTech Connect

    Reidel, S.P.

    1996-09-24

    Seismic monitoring at the Hanford Site was established in 1969 by the United States Geological Survey (USGS) under a contract with the U.S. Atomic Energy Commission. In 1975 the University of Washington assumed responsibility for and expanded the network. In 1979 the Basalt Waste Isolation Program (BWIP) became responsible for collecting seismic data for the site as part of site characterization. Rockwell International Operations followed by Westinghouse Hanford Company (WHC), Geosciences Group, operated the local network and were the contract technical advisors for the Eastern Washington Regional Network operated by the University of Washington. Funding ended for BWIP in December 1988. Seismic Monitoring and the University of Washington contract was then transferred WHC`s Environmental Division. Seismic Monitoring is currently assigned to WHC`s Hanford Technical Services (HTS), part of the Environmental Division. The Seismic Monitoring Analysis and Repair Team (SMART) operates, maintains, and analyzes data from the Hanford Seismic Network (HSN), extending the site historical seismic database and fulfilling U.S. Department of Energy, Richland Operations Office requirements and orders. The Seismic Monitoring Analysis and Repair Team also maintains the Eastern Washington Regional Network (EWRN). The University of Washington uses the data from the EWRN and other seismic networks in the Northwest to provide the SMART with necessary regional input for the seismic hazards analysis at the Hanford Site.

  3. ELECTROCHEMICAL NOISE BASED CORROSION MONITORING HANFORD SITE PROGRAM STATUS

    SciTech Connect

    EDGEMON, G.L.

    2005-03-21

    The Hanford Site near Richland, Washington has 177 underground waste tanks that store approximately 253 million liters of radioactive waste from 50 years of plutonium production. Prior to 1995 no online corrosion monitoring systems were in place at Hanford to facilitate the early detection of the onset of localized corrosion should it occur in a waste tank. Because of this, a program was started in 1995 to develop an electrochemical noise (EN) corrosion monitoring system to improve Hanford's corrosion monitoring strategy. Three systems are now installed and operating at Hanford. System design, performance history, data and the results of a recent analysis of tank vapor space data are presented.

  4. Hanford whole body counting manual

    SciTech Connect

    Palmer, H.E.; Rieksts, G.A.; Lynch, T.P.

    1990-06-01

    This document describes the Hanford Whole Body Counting Program as it is administered by Pacific Northwest Laboratory (PNL) in support of the US Department of Energy--Richland Operations Office (DOE-RL) and its Hanford contractors. Program services include providing in vivo measurements of internally deposited radioactivity in Hanford employees (or visitors). Specific chapters of this manual deal with the following subjects: program operational charter, authority, administration, and practices, including interpreting applicable DOE Orders, regulations, and guidance into criteria for in vivo measurement frequency, etc., for the plant-wide whole body counting services; state-of-the-art facilities and equipment used to provide the best in vivo measurement results possible for the approximately 11,000 measurements made annually; procedures for performing the various in vivo measurements at the Whole Body Counter (WBC) and related facilities including whole body counts; operation and maintenance of counting equipment, quality assurance provisions of the program, WBC data processing functions, statistical aspects of in vivo measurements, and whole body counting records and associated guidance documents. 16 refs., 48 figs., 22 tabs.

  5. Order Responding to Petitions for the Administrator to Object to the Department of Energy's Hanford Site Operating Permit

    EPA Pesticide Factsheets

    This document may be of assistance in applying the Title V air operating permit regulations. This document is part of the Title V Petition Database available at www2.epa.gov/title-v-operating-permits/title-v-petition-database. Some documents in the database are a scanned or retyped version of a paper photocopy of the original. Although we have taken considerable effort to quality assure the documents, some may contain typographical errors. Contact the office that issued the document if you need a copy of the original.

  6. Radioactive Waste Evaporation: Current Methodologies Employed for the Development, Design, and Operation of Waste Evaporators at the Savannah River Site and Hanford Waste Treatment Plant

    SciTech Connect

    Calloway, T.B.

    2003-09-11

    Evaporation of High level and Low Activity (HLW and LAW) radioactive wastes for the purposes of radionuclide separation and volume reduction has been conducted at the Savannah River and Hanford Sites for more than forty years. Additionally, the Savannah River Site (SRS) has used evaporators in preparing HLW for immobilization into a borosilicate glass matrix. This paper will discuss the methodologies, results, and achievements of the SRTC evaporator development program that was conducted in support of the SRS and Hanford WTP evaporator processes. The cross pollination and application of waste treatment technologies and methods between the Savannah River and Hanford Sites will be highlighted. The cross pollination of technologies and methods is expected to benefit the Department of Energy's Mission Acceleration efforts by reducing the overall cost and time for the development of the baseline waste treatment processes.

  7. 1997 evaluation of tritium removal and mitigation technologies for Hanford Site wastewaters

    SciTech Connect

    Jeppson, D.W.; Biyani, R.K.; Duncan, J.B.; Flyckt, D.L.; Mohondro, P.C.; Sinton, G.L.

    1997-07-24

    This report contains results of a biennial assessment of tritium separation technology and tritium nitration techniques for control of tritium bearing wastewaters at the Hanford Site. Tritium in wastewaters at Hanford have resulted from plutonium production, fuel reprocessing, and waste handling operations since 1944. this assessment was conducted in response to the Hanford Federal Facility Agreement and Consent Order.

  8. DOE/RL Hanford Site Air Operating Permit Annual Compliance Certification Report for the Period July 2 2001 through December 31 2001 [SEC 1 & 2

    SciTech Connect

    GREEN, W.E.

    2002-05-22

    The Hanford Site Air Operating Permit (AOP), Number 00-05-006, became effective on July 2, 2001. The AOP, Section 4.3.4, ''Annual Compliance Certification'', requires submittal of an annual compliance certification report no later than 12 months following the effective date of the permit. This report is to be certified for truth, accuracy, and completeness by a Responsible Official. This first annual compliance certification report contains information for the period from July 2, 2001 through December 31, 2001. Hereafter, the annual compliance certification report will contain information for the period from January 1 through December 31, as required by the AOP Section 4.3, ''Submittals''. Copies of the annual compliance certification reports are transmitted to the Washington State Department of Ecology (Ecology), the Washington State Department of Health (WDOH), the Benton Clean Air Authority (BCAA), and the U.S. Environmental Protection Agency (EPA), Region 10. For the applicable reporting period, Section 4.3.3, ''Annual Compliance Certification'', requires the following content for the annual compliance certification report: (1) The identification of each term or condition of the permit that is the basis of the certification; (2) The compliance status; (3) Whether compliance was continuous or intermittent; (4) The method(s) used to determine the compliance status of the source over the reporting period consistent with Washington Administrative Code (WAC) 173401 -61 5(3)(a); and (5) Such other facts as Ecology, WDOH, or BCAA might be required to determine the compliance status of the source. According to WAC 173-401-630(5), no certification is required for insignificant emission units. The specific terms and conditions for this annual compliance certification report consist of all emission point specific terms and conditions contained in the AOP Attachment 1 and Attachment 2 tables, plus Attachment 3 for asbestos and open burning.

  9. HIGH ALUMINUM HLW GLASSES FOR HANFORDS WTP

    SciTech Connect

    KRUGER AA; JOSEPH I; BOWMAN BW; GAN H; KOT W; MATLACK KS; PEGG IL

    2009-08-19

    The world's largest radioactive waste vitrification facility is now under construction at the United State Department of Energy's (DOE's) Hanford site. The Hanford Tank Waste Treatment and Immobilization Plant (WTP) is designed to treat nearly 53 million gallons of mixed hazardous and radioactive waste now residing in 177 underground storage tanks. This multi-decade processing campaign will be one of the most complex ever undertaken because of the wide chemical and physical variability of the waste compositions generated during the cold war era that are stored at Hanford. The DOE Office of River Protection (ORP) has initiated a program to improve the long-term operating efficiency of the WTP vitrification plants with the objective of reducing the overall cost of tank waste treatment and disposal and shortening the duration of plant operations. Due to the size, complexity and duration of the WTP mission, the lifecycle operating and waste disposal costs are substantial. As a result, gains in High Level Waste (HLW) and Low Activity Waste (LAW) waste loadings, as well as increases in glass production rate, which can reduce mission duration and glass volumes for disposal, can yield substantial overall cost savings. EnergySolutions and its long-term research partner, the Vitreous State Laboratory (VSL) of the Catholic University of America, have been involved in a multi-year ORP program directed at optimizing various aspects of the HLW and LAW vitrification flow sheets. A number of Hanford HLW streams contain high concentrations of aluminum, which is challenging with respect to both waste loading and processing rate. Therefore, a key focus area of the ORP vitrification process optimization program at EnergySolutions and VSL has been development of HLW glass compositions that can accommodate high Al{sub 2}O{sub 3} concentrations while maintaining high processing rates in the Joule Heated Ceramic Melters (JHCMs) used for waste vitrification at the WTP. This paper, reviews

  10. Monitoring fish, wildlife, radionuclides and chemicals at Hanford, Washington

    SciTech Connect

    Gray, R.H.

    1989-02-01

    Concern about the effects of potential releases from nuclear and non-nuclear activities on the US Department of Energy's Hanford Site in southeastern Washington has evolved over four decades into a comprehensive environmental monitoring and surveillance program. The program includes field sampling, and chemical and physical analyses of air, surface and ground water, fish, wildlife, soil, foodstuffs, and natural vegetation. In addition to monitoring radioactivity in fish and wildlife, population numbers of key species are determined, usually during the breeding season. Data from monitoring efforts are used to assess the environmental impacts of Hanford operations and calculate the overall radiological dose to humans onsite, at the Site perimeter, or residing in nearby communities. Chinook salmon (Oncorhynchus tshawytscha) spawning in the Columbia River at Hanford has increased in recent years with a concomitant increase in winter nesting activity of bald eagles (Haliaeetus leucocephalus). An elk (Cervus elaphus) herd, established by immigration in 1972, is also increasing. Nesting Canada goose (Branta canadensis) and great blue heron (Ardea herodias), and various other animals, e.g., mule deer (Odocoileus hemionus) and coyotes (Canis latrans) are common. Measured exposure to penetrating radiation and calculated radiation doses to the public are well below applicable regulatory limits. 35 refs., 4 figs.

  11. Hanford Site ground-water monitoring for 1994

    SciTech Connect

    Dresel, P.E.; Thorne, P.D.; Luttrell, S.P.

    1995-08-01

    This report presents the results of the Ground-Water Surveillance Project monitoring for calendar year 1994 on the Hanford Site, Washington. Hanford Site operations from 1943 onward produced large quantities of radiologic and chemical waste that have impacted ground-water quality on the Site. Monitoring of water levels and ground-water chemistry is performed to track the extent of contamination and trends in contaminant concentrations. The 1994 monitoring was also designed to identify emerging ground-water quality problems. The information obtained is used to verify compliance with applicable environmental regulations and to evaluate remedial actions. Data from other monitoring and characterization programs were incorporated to provide an integrated assessment of Site ground-water quality. Additional characterization of the Site`s geologic setting and hydrology was performed to support the interpretation of contaminant distributions. Numerical modeling of sitewide ground-water flow also supported the overall project goals. Water-level monitoring was performed to evaluate ground-water flow directions, to track changes in water levels, and to relate such changes to changes in site disposal practices. Water levels over most of the Hanford Site continued to decline between June 1993 and June 1994. These declines are part of the continued response to the cessation of discharge to U Pond and other disposal facilities. The low permeability in this area which enhanced mounding of waste-water discharge has also slowed the response to the reduction of disposal.

  12. Hanford Site Environmental Surveillance Data Report for Calendar Year 2007

    SciTech Connect

    Bisping, Lynn E.

    2008-10-13

    Environmental surveillance on and around the Hanford Site, located in southeastern Washington State, is conducted by the Pacific Northwest National Laboratory, which is operated by Battelle for the U.S. Department of Energy. The environmental surveillance data collected for this report provide a historical record of radionuclide and radiation levels attributable to natural causes, worldwide fallout, and Hanford Site operations. Data were also collected to monitor several chemicals and metals in Columbia River water, sediment, and wildlife. These data are included in this appendix. This report is the first of two appendices that support "Hanford Site Environmental Report for Calendar Year 2007" (PNNL-17603), which describes the Hanford Site mission and activities, general environmental features, radiological and chemical releases from operations, status of compliance with environmental regulations, status of programs to accomplish compliance, Hanford Site cleanup and remediation efforts, and environmental monitoring activities and results.

  13. Hanford Site Environmental Surveillance Data Report for Calendar Year 2008

    SciTech Connect

    Bisping, Lynn E.

    2009-08-11

    Environmental surveillance on and around the Hanford Site, located in southeastern Washington State, is conducted by the Pacific Northwest National Laboratory, which is operated by Battelle for the U.S. Department of Energy. The environmental surveillance data collected for this report provide a historical record of radionuclide and radiation levels attributable to natural causes, worldwide fallout, and Hanford Site operations. Data were also collected to monitor several chemicals and metals in Columbia River water, sediment, and wildlife. These data are included in this appendix. This report is the first of two appendices that support "Hanford Site Environmental Report for Calendar Year 2008" (PNNL-18427), which describes the Hanford Site mission and activities, general environmental features, radiological and chemical releases from operations, status of compliance with environmental regulations, status of programs to accomplish compliance, Hanford Site cleanup and remediation efforts, and environmental monitoring activities and results.

  14. Building Nuclear Communities: The Hanford Education Action League.

    ERIC Educational Resources Information Center

    Ratliff, Jeanne; Salvador, Michael

    Many scholars have examined the jeremiad in American rhetoric and political discourse. The Hanford Education Action League (HEAL), which influenced policy changes in the operations of the Hanford Nuclear Reservation in Washington, is a social movement organization whose founding members used the jeremiad to create a symbolic community which…

  15. Effluent emissions monitoring at the DOE Hanford Site

    SciTech Connect

    Vance, L.W.

    1993-05-01

    There are numerous regulatory requirements controlling the effluent emissions monitoring at a U.S. Department of Energy site. This paper defines how these regulatory effluent emissions monitoring requirements and the Quality Assurance oversight of these requirements were implemented by Westinghouse Hanford Company, the operations contractor, at the DOE Hanford Site.

  16. A Short History of Hanford

    SciTech Connect

    Gephart, Roy E.

    2002-11-01

    Nine nuclear reactors and four reprocessing plants at Hanford produced nearly two-thirds of the plutonium used in the United States for government purposes . These site operations also created large volumes of radioactive and chemical waste. Some contaminants were released into the environment, exposing people who lived downwind and downstream. Other contaminants were stored. The last reactor was shut down in 1987, and the last reprocessing plant closed in 1990. Most of the human-made radioactivity and about half of the chemicals remaining onsite are kept in underground tanks and surface facilities. The rest exists in the soil, groundwater, and burial grounds. Hanford contains about 40% of all the radioactivity that exists across the nuclear weapons complex. Today, environmental restoration activities are under way.

  17. Hanford Site liquid waste acceptance criteria

    SciTech Connect

    LUECK, K.J.

    1999-09-11

    This document provides the waste acceptance criteria for liquid waste managed by Waste Management Federal Services of Hanford, Inc. (WMH). These waste acceptance criteria address the various requirements to operate a facility in compliance with applicable environmental, safety, and operational requirements. This document also addresses the sitewide miscellaneous streams program.

  18. Radioactive contamination of fish, shellfish, and waterfowl exposed to Hanford effluents: Annual summaries, 1945--1972. Hanford Environmental Dose Reconstruction Project

    SciTech Connect

    Hanf, R.W.; Dirkes, R.L.; Duncan, J.P.

    1992-07-01

    The objective of the Hanford Environmental Dose Reconstruction Project (HEDR) is to estimate the potential radiation doses received by people living within the sphere of influence of the Hanford Site. A potential critical pathway for human radiation exposure is through the consumption of waterfowl that frequent onsite waste-water ponds or through eating of fish, shellfish, and waterfowl that reside in/on the Columbia River and its tributaries downstream of the reactors. This document summarizes information on fish, shellfish, and waterfowl radiation contamination for samples collected by Hanford monitoring personnel and offsite agencies for the period 1945 to 1972. Specific information includes the types of organisms sampled, the kinds of tissues and organs analyzed, the sampling locations, and the radionuclides reported. Some tissue concentrations are also included. We anticipate that these yearly summaries will be helpful to individuals and organizations interested in evaluating aquatic pathway information for locations impacted by Hanford operations and will be useful for planning the direction of future HEDR studies.

  19. An initial inverse calibration of the ground-water flow model for the Hanford unconfined aquifer

    SciTech Connect

    Jacobson, E.A. . Desert Research Inst.); Freshly, M.D. )

    1990-03-01

    Large volumes of process cooling water are discharged to the ground form U.S. Department of Energy (DOE) nuclear fuel processing operations in the central portion of the Hanford Site in southeastern Washington. Over the years, these large volumes of waste water have recharged the unconfined aquifer at the Site. This artificial recharge has affected ground-water levels and contaminant movement in the unconfined aquifer. Ground-water flow and contaminant transport models have been applied to assess the impacts of site operations on the rate and direction of ground-water flow and contaminant transport in unconfined aquifer at the Hanford Site. The inverse calibration method developed by Neuman and modified by Jacobson was applied to improve calibration of a ground-water flow model of the unconfined aquifer at the Hanford Site. All information about estimates of hydraulic properties of the aquifer, hydraulic heads, boundary conditions, and discharges to and withdrawals form the aquifer is included in the inverse method to obtain an initial calibration of the ground-water flow model. The purpose of this report is to provide a description of the inverse method, its initial application to the unconfined aquifer at Hanford, and to present results of the initial inverse calibration. 28 refs., 19 figs., 1 tab.

  20. Identification of Mission Sensitivities with Mission Modeling from the One System Organization at Hanford - 13292

    SciTech Connect

    Belsher, Jeremy D.; Pierson, Kayla L.; Gimpel, Rod F.

    2013-07-01

    The Hanford site in southeast Washington contains approximately 207 million liters of radioactive and hazardous waste stored in 177 underground tanks. The U.S. Department of Energy's Office of River Protection is currently managing the Hanford waste treatment mission, which includes the storage, retrieval, treatment and disposal of the tank waste. Two recent studies, employing the modeling tools managed by the One System organization, have highlighted waste cleanup mission sensitivities. The Hanford Tank Waste Operations Simulator Sensitivity Study evaluated the impact that varying 21 different parameters had on the Hanford Tank Waste Operations Simulator model. It concluded that inaccuracies in the predicted phase partitioning of a few key components can result in significant changes in the waste treatment duration and in the amount of immobilized high-level waste that is produced. In addition, reducing the efficiency with which tank waste is retrieved and staged can increase mission duration. The 2012 WTP Tank Utilization Assessment concluded that flowsheet models need to include the latest low-activity waste glass algorithms or the waste treatment mission duration and the amount of low activity waste that is produced could be significantly underestimated. (authors)

  1. Operational Sustainment: The Impact of Critical Decisions upon Operational Design

    DTIC Science & Technology

    1989-05-17

    tension between sustainment and operational design focusing upon the 32 critical sustainment uec sions which interface with comnat activities. It has...Remote Areas." SAMS Monograph, Fort Leavenworth, KS, 1 April 1986, p. 1. 50. Martin Middlebrook, Operation Corporate : The Falklands War, 1982 (London...Falklands. New York, NY: Praeger, 1983. Middlebrook, Martin. Operation Corporate : The Falklands War 1982. London, England: Penquin Books, Ltd, 1985. 53

  2. Hanford Site radioactive hazardous materials packaging directory

    SciTech Connect

    McCarthy, T.L.

    1995-12-01

    The Hanford Site Radioactive Hazardous Materials Packaging Directory (RHMPD) provides information concerning packagings owned or routinely leased by Westinghouse Hanford Company (WHC) for offsite shipments or onsite transfers of hazardous materials. Specific information is provided for selected packagings including the following: general description; approval documents/specifications (Certificates of Compliance and Safety Analysis Reports for Packaging); technical information (drawing numbers and dimensions); approved contents; areas of operation; and general information. Packaging Operations & Development (PO&D) maintains the RHMPD and may be contacted for additional information or assistance in obtaining referenced documentation or assistance concerning packaging selection, availability, and usage.

  3. Climatological summary of wind and temperature data for the Hanford Meteorology Monitoring Network

    SciTech Connect

    Glantz, C.S.; Schwartz, M.N.; Burk, K.W.; Kasper, R.B.; Ligotke, M.W.; Perrault, P.J.

    1990-09-01

    This document presents climatological summaries of wind and temperature data collected at the twenty-five monitoring stations operated by the Hanford Meteorology Monitoring Network. The climatological analyses presented here involve hourly averaged wind data collected over an 8-year period beginning in 1982 (fewer wind data are available for the several monitoring stations that began full-time operation after 1982) and hourly averaged air temperature data collected over 2-year period beginning in mid-1988. The tables and figures presented in this document illustrate the spatial and temporal variation of meteorological parameters across the Hanford Site and the surrounding areas. This information is useful for emergency response applications, routine meteorological forecasting, planning and scheduling operations, facility design, and environmental impact studies.

  4. Outcome-Based Planning-Hanford's Shift Towards Closure and Shrinking the Hanford Site

    SciTech Connect

    Ballard, W. W.; Holten, R.; Johnson, W.; Reichmuth, B.; White, M.; Wood, T.

    2002-02-26

    Over the past two years, the U.S. Department of Energy (DOE) Richland Operations Office (RL) has formulated a focused, outcomes-based vision for accelerated cleanup of the Hanford Site. The primary elements, or outcomes, of this vision are to (1) accelerate restoration of the Columbia River Corridor, (2) transition the Central Plateau to long-term waste management, thereby shrinking the footprint of active site cleanup and operations, and (3) prepare for the future. The third outcome includes operation of the Pacific Northwest National Laboratory (PNNL), a key element of the foundation for Hanford's future; leveraging DOE's assets; and working with the community to understand their vision and reflect it as appropriate in the execution of the Hanford 2012 Vision. The purpose of these three outcomes is to provide a near term focus, aimed at achieving definitive end points over the next decade, while not precluding any long-term end-state associated with the completion of the Environmental Management (EM) mission at Hanford. The sheer expanse of the Hanford Site, the inherent hazards associated with the significant inventory of nuclear materials and wastes, the large number of aging contaminated facilities, the diverse nature and extent of environmental contamination, and the proximity to the Columbia River make the Hanford Site arguably the world's largest and most complex environmental cleanup project. Current projections are that it will cost over $80 billion and take over four decades to complete the cleanup at Hanford. Accelerated cleanup of the River Corridor portion of the Site will allow the remediation effort to focus on specific, near-term outcomes. Hanford's success in achieving these outcomes will reduce urgent risk, shrink the Site, remove contamination and wastes from the proximity of the river, and consolidate waste management activities on the Central Plateau. Hanford has begun implementation of this vision. Performance-based contracts are being

  5. Annual Hanford Site Environmental Permitting Status Report

    SciTech Connect

    HOMAN, N.A.

    2000-10-01

    The information contained in, and/or referenced in, this Annual Hanford Site Environmental Permitting Status Report addresses Permit Condition II.W (Other Permits and/or Approvals) of the Dangerous Waste Portion of the Resource Conservation and Recovery Act Permit for the Treatment, Storage, and Disposal of Dangerous Waste, issued by the Washington State Department of Ecology (WA7890008967). Condition II.W specifies that the Permittees are responsible for obtaining all other applicable federal, state, and local permits authorizing the development and operation of the Hanford Facility. This status report also addresses Permit Condition I.E.22, as interpreted in Section 12.1.25 of the Hanford Facility Dangerous Waste Permit Application, General Information Portion (DOE/RL-91-28, Rev. 4), that states this report will be prepared annually and a copy of this report will be placed in the Facility Operating Record, General Information file by October 1 of each year.

  6. Defining operative mortality: Impact on outcome reporting.

    PubMed

    Maximus, Steven; Milliken, Jeffrey C; Danielsen, Beate; Khan, Junaid; Shemin, Richard; Carey, Joseph S

    2016-04-01

    Death is an important outcome of procedural interventions. The death rate, or mortality rate, is subject to variability by definition. The Society of Thoracic Surgeons Adult Cardiac Surgery Database definition of "operative" mortality originally included all in-hospital deaths and deaths occurring within 30 days of the procedure. In recent versions of the Society of Thoracic Surgeons Adult Cardiac Surgery Database, "in-hospital" has been modified to include "patients transferred to other acute care facilities," and "deaths within 30 days unless clearly unrelated to the procedure" has been changed to "deaths within 30 days regardless of cause." This study addresses the impact of these redefinitions on outcome reporting. The California Office of Statewide Health Planning and Development hospitalized patient discharge database was queried for the year 2009, the most recent year that data files could be linked to the vital statistics death files to include all-cause mortality. Isolated coronary artery bypass grafting, isolated valve, coronary artery bypass grafting valve, and percutaneous coronary intervention procedures were identified by International Classification of Diseases, Ninth Edition, Clinical Modification procedure codes. Percutaneous coronary intervention procedures were further divided into acute coronary syndrome (percutaneous coronary intervention acute coronary syndrome) and all other percutaneous coronary intervention (percutaneous coronary intervention no acute coronary syndrome). Deaths were counted by 5 methods depending on the time and place of occurrence: (1) in-hospital or during the index hospitalization; (2) in-hospital + connected hospitalization, defined as a transfer to another acute care facility on the same day or within 24 hours of discharge; (3) in-hospital + 30 day, death during index hospitalization or within 30 days after the procedure; (4) in-hospital + connected + 30 day readmission, death during index hospitalization, transfer to

  7. Hazardous chemical and radioactive wastes at Hanford

    SciTech Connect

    Keller, J.F.; Stewart, T.L.

    1991-07-01

    The Hanford Site was established in 1944 to produce plutonium for defense. During the past four decades, a number of reactors, processing facilities, and waste management facilities have been built at Hanford for plutonium production. Generally, Hanford`s 100 Area was dedicated to reactor operation; the 200 Area to fuel reprocessing, plutonium recovery, and waste management; and the 300 Area to fuel fabrication and research and development. Wastes generated from these operations included highly radioactive liquid wastes, which were discharged to single- and double-shell tanks; solid wastes, including both transuranic (TRU) and low-level wastes, which were buried or discharged to caissons; and waste water containing low- to intermediate-level radioactivity, which was discharged to the soil column via near-surface liquid disposal units such as cribs, ponds, and retention basins. Virtually all of the wastes contained hazardous chemical as well as radioactive constituents. This paper will focus on the hazardous chemical components of the radioactive mixed waste generated by plutonium production at Hanford. The processes, chemicals used, methods of disposition, fate in the environment, and actions being taken to clean up this legacy are described by location.

  8. SUCCESSFUL PRIVATIZATION OF HANFORD SITE FABRICATION SERVICES

    SciTech Connect

    KELLY, D.S.

    2004-11-18

    This paper describes the elements of Fluor Hanford's successful privatization of a major support services function. The privatization has accelerated the closure of the Department of Energy's Hanford Site by streamlining operations and using the realized cost savings to maintain the accelerated schedules set by the Department of Energy (DOE) and other regulatory stakeholders. Issues with worker demographics, future workload forecasting, budget optimization, and long-term community economic development were key components to Fluor Hanford's decision to choose the controversial and difficult pathway of outsourcing a Cold War legacy function to a private company. Many privatization efforts are abandoned in the preliminary planning stages due to extreme risk: frequently the final return on investment is less than anticipated. In this case, Fluor Hanford has successfully leveraged onsite assets to support the ongoing clean-up mission, provide potential long-term employment for the displaced workforce as site closure progresses, and establish a manufacturing base supporting the local economy. Based on several factors, which are described in this paper, the privatization of the Hanford Site Fabrication Services to an offsite vendor operating a large local business unit has been successful for virtually all of the stakeholders.

  9. Assessment of the Species Composition, Densities, and Distribution of Native Freshwater Mussels along the Benton County Shoreline of the Hanford Reach, Columbia River, 2004

    SciTech Connect

    Mueller, Robert P.; Tiller, Brett L.; Bleich, Matthew D.; Turner, Gerald; Welch, Ian D.

    2011-01-31

    The Hanford Reach of the Columbia River is the last unimpounded section of the river and contains substrate characteristics (cobble, gravel, sand/silt) suitable for many of the native freshwater mussels known to exist in the Pacific Northwest. Information concerning the native mussel species composition, densities, and distributions in the mainstem of the Columbia River is limited. Under funding from the U.S. Department of Energy Richland Operations Office (DOE-RL), Pacific Northwest National Laboratory conducted an assessment of the near-shore habitat on the Hanford Reach. Surveys conducted in 2004 as part of the Ecological Monitoring and Compliance project documented several species of native mussels inhabiting the near-shore habitat of the Hanford Reach. Findings reported here may be useful to resource biologists, ecologists, and DOE-RL to determine possible negative impacts to native mussels from ongoing near-shore remediation activities associated with Hanford Site cleanup. The objective of this study was to provide an initial assessment of the species composition, densities, and distribution of the freshwater mussels (Margaritiferidae and Unionidae families) that exist in the Hanford Reach. Researchers observed and measured 201 live native mussel specimens. Mussel density estimated from these surveys is summarized in this report with respect to near-shore habitat characteristics including substrate size, substrate embeddedness, relative abundance of aquatic vegetation, and large-scale geomorphic/hydrologic characteristics of the Hanford Reach.

  10. Operating room design and its impact on operating room economics.

    PubMed

    Krupka, Dan C; Sandberg, Warren S

    2006-04-01

    Operating rooms are high-cost/high-revenue environments. In an era of rising costs and declining reimbursement, it is essential to optimize the effectiveness of the operating room suite, maximizing throughput of profitable cases while minimizing the costs of necessary, but unprofitable, procedures. Operating room management focuses on reducing wasted time in order to perform more cases in regular business hours, reduce overtime, or provide a better experience for staff and patients. It has been difficult to improve perioperative efficiency enough to reliably add cases during regular hours because the required time savings are so large, while most interventions can save only a few minutes per case. Recent work, however, has changed the basic paradigms for turning over operating rooms, dramatically reducing nonproductive time and increasing operating room throughput. In some situations, the additional expense required to achieve throughput improvements is more than offset by financial gains. Redesigning perioperative systems can increase operating room throughput, but not all case mixes benefit from the required additional resources. Thus hospitals should choose judiciously if, and to what degree, high throughput environments are implemented. Once implemented, access to these environments can be used as an incentive for improved surgical performance.

  11. FIRE IMPACTS ON AN ENGINEERED BARRIER’S PERFORMANCE: THE HANFORD BARRIER ONE YEAR AFTER A CONTROLLED BURN

    SciTech Connect

    Ward, Anderson L.; Link, Steven O.; Leary, Kevin D.; Berlin, Gregory T.

    2010-03-31

    A critical unknown for long-term engineered barrier performance is the effect of wild fire during a post-institutional control environment where routine maintenance may be limited or non-existent. In September 2008, a controlled burn was conducted on one half of a vegetated, multilayered capillary barrier emplaced over a Hanford waste site. The effects on barrier performance have been monitored and documented over the past year. Soil physical, chemical, and hydrologic properties; plant floristics and density; and animal-use were characterized before and after the fire with the unburned half of the barrier serving as a control. Temperatures during the controlled burn ranged from 250 oC at 1.5 cm below the surface to over 700 oC at 1 m above the surface. Significant decreases in hydraulic conductivity and surface-soil wettability were observed immediately after the fire due primarily to hydrophobic conditions created by the fire. Major soil nutrients, pH, and electrical conductivity remain elevated post-fire. Up until June 2009, post-burn soil moisture content in the 0-1 m depth interval was significantly lower on the burned section than the unburned section and is attributed to differences in surface evaporation. Higher soil moisture contents in the 1-2 m interval on the burned section are attributed to insignificant water uptake owing to the absence of deep-rooted shrubs. Moisture profiles reversed after June to show lower water contents throughout the profile on the unburned section. Dense stands of sagebrush were destroyed from the fire allowing many more species to emerge thereby increasing species diversity. Seed sources contributing to this species diversification were from either the existing seedbank and/or wind-blown sources. Measurements are ongoing and the results are expected to help close a knowledge gap about barrier recovery after major disturbances.

  12. Hanford Site Development Plan

    SciTech Connect

    Rinne, C.A.; Curry, R.H.; Hagan, J.W.; Seiler, S.W.; Sommer, D.J. ); Yancey, E.F. )

    1990-01-01

    The Hanford Site Development Plan (Site Development Plan) is intended to guide the short- and long-range development and use of the Hanford Site. All acquisition, development, and permanent facility use at the Hanford Site will conform to the approved plan. The Site Development Plan also serves as the base document for all subsequent studies that involve use of facilities at the Site. This revision is an update of a previous plan. The executive summary presents the highlights of the five major topics covered in the Site Development Plan: general site information, existing conditions, planning analysis, Master Plan, and Five-Year Plan. 56 refs., 67 figs., 31 tabs.

  13. Hanford`s innovations for science education

    SciTech Connect

    Carter, D.

    1996-12-31

    In recognition of declining science literacy in the United States and a projected shortfall of scientists, engineers and technologists to address environmental problems nationally and internationally during the 21st century, Westinghouse Hanford Company has launched several innovative science education projects at the US Department of Energy Hanford Site. The Hanford Site is very rich in resources that can be brought to bear on the problem: world-class technical experts, state of the art facilities and equipment, and the largest environmental laboratory in the world. During the past two years, several innovative science education initiatives have been conceived and pursued at the secondary education level including the International Academy for the Environment (residential high school with an environmental theme), Environmental BATTmobile Program (mobile middle school science education program), and Multicultural Experiences in Math and Science (education program based on cultural contributions to math and science). Hanford scientists, engineers and administrators have worked with the education community (K-12 and college-university) to develop innovative approaches to science education.

  14. Hanford past-practice strategy

    SciTech Connect

    Thompson, K.M.

    1991-11-01

    In May 1989, the US Environmental Protection Agency (EPA), the State of Washington Department of Ecology (Ecology) and the US Department of Energy (DOE) entered into an Interagency Agreement to provide a legal and procedural framework for cleanup and regulatory compliance at numerous hazardous waste sites at the Hanford Site. Four subareas of the Hanford Site (the 100, 200, 300, and 1100 Areas) have been included on the EPA`s National Priorities List (NPL). Under the Hanford Federal Facility Agreement and Consent Order (Tri-Party Agreement), the more than 1,000 inactive waste disposal and unplanned release sites were originally grouped into 78 operable units (74 source operable units and 4 groundwater operable units, which underlie the source units). The contamination is in the form of solely hazardous waste, radioactive mixed waste, and other Comprehensive Environmental Response, Compensation and Liability Act (CERCLA) hazardous substances. Included within the Tri-Party Agreement are 55 Resource Conservation and Recovery Act (RCRA) treatment, storage, or disposal (TSD) facilities, which will be closed or permitted to operate in accordance with Washington Administrative Code (WAC) 173-303 (RCRA) regulations. The parties have undertaken an ongoing dialogue over the past year to develop a new strategy for streamlining the past-practice corrective action process. This strategy provides new concepts for (1) accelerating decision making by maximizing the use of existing data consistent with data quality objectives and (2) undertaking expedited response actions and/or interim remedial measures as appropriate to either remove threats to human health and welfare and the environment or to reduce risk by reducing toxicity, mobility, or volume of contaminants.

  15. Hanford Site National Environmental Policy Act (NEPA) characterization. Revision 10

    SciTech Connect

    Neitzel, D.A.; Fosmire, C.J.; Fowler, R.A.

    1998-09-01

    This document describes the US Department of Energy`s (DOE) Hanford Site environment and is numbered to correspond to the chapters where such information is presented in Hanford Site NEPA related documents. The document is intended to provide a consistent description of the Hanford Site environment for the many NEPA documents that are being prepared by contractors. The two chapters in this document (Chapters 4 and 6) are numbered this way to correspond to the chapters where such information is presented in environmental impact statements (EISs) and other Site-related NEPA or CERCLA documentation. Chapter 4.0 (Affected Environment) describes the Hanford Site environment, and includes information on climate and meteorology, geology, hydrology, ecology, cultural, archaeological and historical resources, socioeconomics, and noise. Chapter 6.0 (Statutory and Regulatory Requirements) describes applicable federal and state laws and regulations, DOE directives and permits, and environmental standards directly applicable to the NEPA documents on the Hanford Site.

  16. 1997 annual report on waste generation and waste minimization progress as required by DOE Order 5400.1, Hanford Site

    SciTech Connect

    Segall, P.

    1998-04-13

    Hanford`s missions are to safely clean up and manage the site`s legacy wastes, and to develop and deploy science and technology. Through these missions Hanford will contribute to economic diversification of the region. Hanford`s environmental management or cleanup mission is to protect the health and safety of the public, workers, and the environment; control hazardous materials; and utilize the assets (people, infra structure, site) for other missions. Hanford`s science and technology mission is to develop and deploy science and technology in the service of the nation including stewardship of the Hanford Site. Pollution Prevention is a key to the success of these missions by reducing the amount of waste to be managed and identifying/implementing cost effective waste reduction projects. Hanford`s original mission, the production of nuclear materials for the nation`s defense programs, lasted more than 40 years, and like most manufacturing operations, Hanford`s operations generated large quantities of waste and pollution. However, the by-products from Hanford operations pose unique problems like radiation hazards, vast volumes of contaminated water and soil, and many contaminated structures including reactors, chemical plants and evaporation ponds. The cleanup activity is an immense and challenging undertaking, which includes characterization and decommissioning of 149 single shell storage tanks, treating 28 double shell tanks, safely disposing of over 2,100 metric tons of spent nuclear fuel stored on site, removing numerous structures, and dealing with significant solid waste, ground water, and land restoration issues.

  17. Hanford Site Infrastructure Plan

    SciTech Connect

    Not Available

    1990-01-01

    The Hanford Site Infrastructure Plan (HIP) has been prepared as an overview of the facilities, utilities, systems, and services that support all activities on the Hanford Site. Its purpose is three-fold: to examine in detail the existing condition of the Hanford Site's aging utility systems, transportation systems, Site services and general-purpose facilities; to evaluate the ability of these systems to meet present and forecasted Site missions; to identify maintenance and upgrade projects necessary to ensure continued safe and cost-effective support to Hanford Site programs well into the twenty-first century. The HIP is intended to be a dynamic document that will be updated accordingly as Site activities, conditions, and requirements change. 35 figs., 25 tabs.

  18. Multiple missions: The 300 Area in Hanford Site history

    SciTech Connect

    Gerber, M.S.

    1993-09-01

    This report provides an historical overview of the role of the 300 Area buildings at the Hanford Reservation. Topics covered are: Early fuel fabrication at the Hanford site (313 and 314 Buildings); N reactor fuel fabrication in the 300 Area; 305 test pile was Hanford`s first operating reactor; Early process improvement chemical research (321 and 3706 Buildings); Major 1952 and 1953 expansions in the 300 area (325 and 329 Buildings); Early 300 area facilities constructed to support reactor development (326 and 327 Buildings); Hanford site ventures with the peaceful atom (309, 308 and 318 Buildings); Modern 300 Area Buildings; Significant miscellaneous buildings in the 300 area; 300 Area process waste handling and disposal.

  19. Summary of literature review of risk communication: Hanford Environmental Dose Reconstruction Project

    SciTech Connect

    Byram, S.J.

    1991-05-01

    The Hanford Environmental Dose Reconstruction (HEDR) Project will estimate radiation exposures people may have received from radioactive materials released during past operations at the Department of Energy's Hanford Site near Richland, Washington. The project is being conducted by Pacific Northwest Laboratory (PNL) under the direction of an independent Technical Steering Panel (TSP). The Centers for Disease Control (CDC) will use HEDR dose estimates in studies to investigate a potential link between thyroid disease and historical Hanford emissions. The HEDR Project was initiated to address public concerns about the possible health impacts from past releases of radioactive materials from Hanford. The TSP recognized early in the project that special mechanisms would be required to communicate effectively to the many different concerned audiences. To identify and develop these mechanisms, the TSP issued Directive 89-7 to PNL in May 1989. The TSP directed PNL to examine methods to communicate the causes and effects of uncertainties in the dose estimates. A literature review was conducted as the first activity in response to the TSP's directive. This report presents the results of the literature review. The objective of the literature review was to identify key principles'' that could be applied to develop communications strategies for the project. 26 refs., 6 figs.

  20. Radioactive contamination of fish, shellfish, and waterfowl exposed to Hanford effluents: Annual summaries, 1945--1972

    SciTech Connect

    Hanf, R.W.; Dirkes, R.L.; Duncan, J.P.

    1992-07-01

    The objective of the Hanford Environmental Dose Reconstruction Project (HEDR) is to estimate the potential radiation doses received by people living within the sphere of influence of the Hanford Site. A potential critical pathway for human radiation exposure is through the consumption of waterfowl that frequent onsite waste-water ponds or through eating of fish, shellfish, and waterfowl that reside in/on the Columbia River and its tributaries downstream of the reactors. This document summarizes information on fish, shellfish, and waterfowl radiation contamination for samples collected by Hanford monitoring personnel and offsite agencies for the period 1945 to 1972. Specific information includes the types of organisms sampled, the kinds of tissues and organs analyzed, the sampling locations, and the radionuclides reported. Some tissue concentrations are also included. We anticipate that these yearly summaries will be helpful to individuals and organizations interested in evaluating aquatic pathway information for locations impacted by Hanford operations and will be useful for planning the direction of future HEDR studies.

  1. Hanford Site environmental data for calendar year 1990 -- Ground water

    SciTech Connect

    Dresel, P.E.; Bates, D.J.; Merz, J.K.

    1993-03-01

    This report tabulates ground-water radiological and chemical data for calendar year 1990 by the Ground-Water Surveillance Project, reported Resource Conservation and Recovery Act (RCRA) Monitoring, and Operational Monitoring. The Ground-Water Surveillance Project is conducted by the Pacific Northwest Laboratory and the RCRA and Operational Monitoring Projects are conducted by the Westinghouse Hanford Company. This document supplements the reports Hanford Site Ground-Water Monitoring for 1990 (Evans et al. 1992) and mental Report for Calendar Year 1990 (Woodruff and Hanf 1991). The data listings provided here were generated from the Hanford Environmental Information System database.

  2. Hanford Internal Dosimetry Program Manual, PNL-MA-552

    SciTech Connect

    Carbaugh, Eugene H.; Bihl, Donald E.; Maclellan, Jay A.

    2009-09-24

    This manual is a guide to the services provided by the Hanford Internal Dosimetry Program (IDP), which is operated by the Pacific Northwest National Laboratory.( ) for the U.S. Department of Energy Richland Operations Office, Office of River Protection and their Hanford Site contractors. The manual describes the roles of and relationships between the IDP and the radiation protection programs of the Hanford Site contractors. Recommendations and guidance are also provided for consideration in implementing bioassay monitoring and internal dosimetry elements of radiation protection programs.

  3. Hanford Facility contingency plan

    SciTech Connect

    Sutton, L.N.; Miskho, A.G.; Brunke, R.C.

    1993-10-01

    The Hanford Facility Contingency Plan, together with each TSD unit-specific contingency plan, meets the WAC 173-303 requirements for a contingency plan. This plan includes descriptions of responses to a nonradiological hazardous materials spill or release at Hanford Facility locations not covered by TSD unit-specific contingency plans or building emergency plans. This plan includes descriptions of responses for spills or releases as a result of transportation activities, movement of materials, packaging, and storage of hazardous materials.

  4. Three-dimensional conceptual model for the Hanford Site unconfined aquifer system: FY 1994 status report

    SciTech Connect

    Thorne, P.D.; Chamness, M.A.; Vermeul, V.R.; Macdonald, Q.C.; Schubert, S.E.

    1994-11-01

    This report documents work conducted during the fiscal year 1994 to development an improved three-dimensional conceptual model of ground-water flow in the unconfined aquifer system across the Hanford Site Ground-Water Surveillance Project, which is managed by Pacific Northwest Laboratory. The main objective of the ongoing effort to develop an improved conceptual model of ground-water flow is to provide the basis for improved numerical report models that will be capable of accurately predicting the movement of radioactive and chemical contaminant plumes in the aquifer beneath Hanford. More accurate ground-water flow models will also be useful in assessing the impacts of changes in facilities and operations. For example, decreasing volumes of operational waste-water discharge are resulting in a declining water table in parts of the unconfined aquifer. In addition to supporting numerical modeling, the conceptual model also provides a qualitative understanding of the movement of ground water and contaminants in the aquifer.

  5. Hanford environmental dose reconstruction project: Monthly report

    SciTech Connect

    Dennis, B.S.

    1989-02-01

    The objective of the Hanford Environmental Dose Reconstruction Project is to estimate the radiation doses that populations could have received from nuclear operations at Hanford since 1944. The Technical Steering Panel consists of experts in environmental pathways, epidemiology, surface-water transport, ground-water transport, statistics, demography, agriculture, meteorology, nuclear engineering, radiation dosimetry, and cultural anthropology. Included among the members are appointed technical members representing the States of Oregon and Washington, cultural and technical experts nominated by the Indian tribes in the region, and an individual representing the public.

  6. Hanford year 2000 Business Continuity Plan

    SciTech Connect

    VORNEY, S.V.

    1999-11-01

    The goal of Department of Energy Richland Operations (DOE-RL) Year 2000 (Y2K) effort is to ensure that the Hanford site successfully continues its mission as we approach and enter the 21th century. The Y2K Business Continuity Planning process provides a structured approach to identify Y2K risks to the site and to mitigate these risks through Y2K Contingency Planning, ''Zero-Day'' Transition Planning and Emergency Preparedness. This document defines the responsibilities, processes and plans for Hanford's Y2K Business Continuity. It identifies proposed business continuity drills, tentative schedule and milestones.

  7. First Quarter Hanford Seismic Report for Fiscal Year 1999

    SciTech Connect

    DC Hartshorn; SP Reidel; AC Rohay

    1999-05-26

    Hanford Seismic Monitoring provides an uninterrupted collection of high-quality raw and processed seismic data from the Hanford Seismic Network (HSN) for the U.S. Department of Energy and its contractors. They also locate and identify sources of seismic activity and monitors changes in the historical pattern of seismic activity at the Hanford Site. The data are compiled, archived, and published for use by the Hanford Site for waste management Natural Phenomena Hazards assessments, and engineering design and construction. In addition, the seismic monitoring organization works with the Hanford Site Emergency Services Organization to provide assistance in the event of a significant earthquake on the Hanford Site. The HSN and the Eastern Washington Regional Network (EWRN) consists of 42 individual sensor sites and 15 radio relay sites maintained by the Hanford Seismic Monitoring staff. The operational rate for the first quarter of FY99 for stations in the HSN was 99.8%. There were 121 triggers during the first quarter of fiscal year 1999. Fourteen triggers were local earthquakes; seven (50%) were in the Columbia River Basalt Group, no earthquakes occurred in the pre-basalt sediments, and seven (50%) were in the crystalline basement. One earthquake (7%) occurred near or along the Horn Rapids anticline, seven earthquakes (50%) occurred in a known swarm area, and six earthquakes (43%) were random occurrences. No earthquakes triggered the Hanford Strong Motion Accelerometer during the first quarter of FY99.

  8. Project Hanford Management Contract (PHMC) pollution prevention program implementation plan

    SciTech Connect

    Place, B.G., Westinghouse Hanford

    1996-12-31

    This plan documents the Project Hanford Management Contract (PHMC) Pollution Prevention/Waste Minimization (P2/WMin) Program. The subject implementation plan has been updated to reflect the Fiscal Year (FY) 1997 contract structure in which Fluor Daniel Hanford, Inc. (FDH) is the management and integration contractor. The P2/WMin Program scope includes FDH as the principal PHMC contractor, and B&W Hanford Company (BWHC), Duke Engineering & Services Hanford, Inc. (DESH), Lockheed Martin Hanford Corporation, (LMHC), Numatec Hanford Corporation (NHC), Rust Federal Services of Hanford, Inc. (RFSH), and DynCorp Tri-Cities Services, Inc. (DYN) as PHMC contractors, as well as subcontracting enterprise companies, such as Fluor Daniel Northwest, Inc. (FDNW), Lockheed Martin Services, Inc. (LMSI), and Rust Federal Services Northwest (RFS), which provide engineering, operation, construction, maintenance, and computer services for the Hanford Site. The P2/WMin Program scope also includes all other subcontractor-affiliated enterprise companies, such as B&W Protec, Inc. (BWP), DE&S Northwest, Inc. (DESNW), and SGN Eurisys Services Corp. (SESC).

  9. Environmental surveillance at Hanford for CY-1979

    SciTech Connect

    Houston, J.R.; Blumer, P.J.

    1980-04-01

    Environmental data were collected for most environmental media including air, Columbia River water, external radiation, foodstuffs (milk, beef, eggs, poultry, and produce) and wildlife (deer, fish, and game birds), as well as soil and vegetation samples. In general, offsite levels of radionuclides attributable to Hanford operations during 1979 were indistinguishable from background levels. The data are summarized in the following highlights. Air quality measurements of NO/sub 2/ in the vicinity of the Hanford Site and releases of SO/sub 2/ onsite were well within the applicable federal and state standards. Particulate air concentrations exceed the standards primarily because of agricultural activities in the area. Discharges of waste water from Hanford facilities in the Columbia River under the National Pollution Discharge Elimination System (NPDES) permit were all within the parameter limits on the permit.

  10. Hanford Environmental Dose Reconstruction Project Monthly Report

    SciTech Connect

    Finch, S.M.

    1990-05-01

    This monthly report summarizes the technical progress and project status for the Hanford Environmental Dose Reconstruction (HEDR) Project being conducted at Pacific Northwest Laboratory (PNL) under the direction of a Technical Steering Panel (TSP). The TSP is composed of experts in numerous technical fields related to this project and represents the interests of the public. The US Department of Energy (DOE) funds the project. The objective of the Hanford Environmental Dose Reconstruction Project is to estimate the radiation doses that populations could have received from nuclear operations at Hanford since 1944. The project is divided into the following technical tasks. These tasks address each of the primary steps in the path from radioactive releases to dose estimates source terms, environmental transport, environmental monitoring data, demographics, agriculture, and food habits, and environmental pathways and dose estimates.

  11. Hanford Environmental Dose Reconstruction Project Monthly Report

    SciTech Connect

    Finch, S.M.

    1990-06-01

    This monthly report summarizes the technical progress and project status for the Hanford Environmental Dose Reconstruction (HEDR) Project being conducted at Pacific Northwest Laboratory (PNL) under the direction of a Technical Steering Panel (TSP). The TSP is composed of experts in numerous technical fields related to this project and represents the interests of the public. The objective of the Hanford Environmental Dose Reconstruction Project is to estimate the radiation doses that populations could have received from nuclear operations at Hanford since 1944. The project is divided into technical tasks which address each of the primary steps in the path from radioactive releases to dose estimates: source terms, environmental transport, environmental monitoring data, demographics, agriculture, and food habits, and environmental pathways and dose estimates.

  12. In situ bioremediation of Hanford groundwater

    SciTech Connect

    Skeen, R.S.; Roberson, K.R.; Workman, D.J. ); Petersen, J.N.; Shouche, M. . Dept. of Chemical Engineering)

    1992-04-01

    Liquid wastes containing radioactive, hazardous, and regulated chemicals have been generated throughout the 40+ years of operations at the US Department of Energy's (DOE) Hanford Site. Some of these wastes were discharged to the soil column and many of the waste components, including nitrate, carbon tetrachloride (CCl{sub 4}), and several radionuclides, have been detected in the Hanford groundwater. Current DOE policy prohibits the disposal of contaminated liquids directly to the environment, and remediation of existing contaminated groundwaters may be required. In situ bioremediation is one technology currently being developed at Hanford to meet the need for cost effective technologies to clean groundwater contaminated with CCl{sub 4}, nitrate, and other organic and inorganic contaminants. This paper focuses on the latest results of an on going effort to develop effective in situ remediation strategies through the use of predictive simulations.

  13. In situ bioremediation of Hanford groundwater

    SciTech Connect

    Skeen, R.S.; Roberson, K.R.; Workman, D.J.; Petersen, J.N.; Shouche, M.

    1992-04-01

    Liquid wastes containing radioactive, hazardous, and regulated chemicals have been generated throughout the 40+ years of operations at the US Department of Energy`s (DOE) Hanford Site. Some of these wastes were discharged to the soil column and many of the waste components, including nitrate, carbon tetrachloride (CCl{sub 4}), and several radionuclides, have been detected in the Hanford groundwater. Current DOE policy prohibits the disposal of contaminated liquids directly to the environment, and remediation of existing contaminated groundwaters may be required. In situ bioremediation is one technology currently being developed at Hanford to meet the need for cost effective technologies to clean groundwater contaminated with CCl{sub 4}, nitrate, and other organic and inorganic contaminants. This paper focuses on the latest results of an on going effort to develop effective in situ remediation strategies through the use of predictive simulations.

  14. Recent plutonium metal production experience at Hanford

    SciTech Connect

    Gibson, M.W.; Nyman, D.H. )

    1989-11-01

    Plutonium metal is produced at the Hanford site in the remote mechanical C (RMC) line. The line is housed in the plutonium finishing plant (PFP). The PFP is operated by the Westinghouse Hanford Company for the U.S. Department of Energy. The RMC line was built in the early 1960s and operated until 1973 when it was shut down. The line was restarted in 1985 and has operated on a campaign basis since that time. The RMC line converts plutonium nitrate solution to plutonium metal in the classic precipitation/calcination/fluorination/reduction process. The operations are contained in glove boxes with a dry air atmosphere. Most of the process is remotely controlled from a central control room. Numerous process improvements were made in the line before initiating operations in 1985 and in 1988. These changes, in conjunction with improved conduct of operations, have resulted in improved yields.

  15. Impact of High Wind Power Penetration on Hydroelectric Unit Operations

    SciTech Connect

    Hodge, B. M.; Lew, D.; Milligan, M.

    2011-01-01

    The Western Wind and Solar Integration Study (WWSIS) investigated the operational impacts of very high levels of variable generation penetration rates (up to 35% by energy) in the western United States. This work examines the impact of this large amount of wind penetration on hydroelectric unit operations. Changes in hydroelectric unit operating unit patterns are examined for an aggregation of all hydro generators. The cost impacts of maintaining hydro unit flexibility are assessed and compared for a number of different modes of system operation.

  16. Heterogeneous Clustering: Operational and User Impacts

    NASA Technical Reports Server (NTRS)

    Salm, Saita Wood

    1999-01-01

    Heterogeneous clustering can improve overall utilization of multiple hosts and can provide better turnaround to users by balancing workloads across hosts. Building a cluster requires both operational changes and revisions in user scripts.

  17. Documentation of Hanford Site independent review of the Hanford Waste Vitrification Plant Preliminary Safety Analysis Report

    SciTech Connect

    Herborn, D.I.

    1991-10-01

    The requirements for Westinghouse Hanford independent review of the Preliminary Safety Analysis Report (PSAR) are contained in Section 1.0, Subsection 4.3 of WCH-CM-4-46. Specifically, this manual requires the following: (1) Formal functional reviews of the HWVP PSAR by the future operating organization (HWVP Operations), and the independent review organizations (HWVP and Environmental Safety Assurance, Environmental Assurance, and Quality Assurance); and (2) Review and approval of the HWVP PSAR by the Tank Waste Disposal (TWD) Subcouncil of the Safety and Environmental Advisory Council (SEAC), which provides independent advice to the Westinghouse Hanford President and executives on matters of safety and environmental protection. 7 refs.

  18. Hanford performance evaluation program for Hanford site analytical services

    SciTech Connect

    Markel, L.P.

    1995-09-01

    The U.S. Department of Energy (DOE) Order 5700.6C, Quality Assurance, and Title 10 of the Code of Federal Regulations, Part 830.120, Quality Assurance Requirements, states that it is the responsibility of DOE contractors to ensure that ``quality is achieved and maintained by those who have been assigned the responsibility for performing the work.`` Hanford Analytical Services Quality Assurance Plan (HASQAP) is designed to meet the needs of the Richland Operations Office (RL) for maintaining a consistent level of quality for the analytical chemistry services provided by contractor and commmercial analytical laboratory operations. Therefore, services supporting Hanford environmental monitoring, environmental restoration, and waste management analytical services shall meet appropriate quality standards. This performance evaluation program will monitor the quality standards of all analytical laboratories supporting the Hanforad Site including on-site and off-site laboratories. The monitoring and evaluation of laboratory performance can be completed by the use of several tools. This program will discuss the tools that will be utilized for laboratory performance evaluations. Revision 0 will primarily focus on presently available programs using readily available performance evaluation materials provided by DOE, EPA or commercial sources. Discussion of project specific PE materials and evaluations will be described in section 9.0 and Appendix A.

  19. Annual Hanford Seismic Report for Fiscal Year 2008

    SciTech Connect

    Rohay, Alan C.; Sweeney, Mark D.; Hartshorn, Donald C.; Clayton, Ray E.; Devary, Joseph L.

    2008-12-29

    119 degrees and 120 degrees west longitude). The event was not reported as being felt on the Hanford Site or causing any damage and was communicated to the Pacific Northwest National Laboratory Operations Center per HSAP communi¬cations procedures. The event is not considered to be significant with regard to site safety and not unprecedented given the site’s seismic history. The Hanford strong motion accelerometer (SMA) stations at the 200 East Area, 300 Area, and 400 Area were triggered by the May 18 event. The maximum acceleration recorded at the SMA stations (0.17% at the 300 Area) was 12 times smaller than the reportable action level (2% g) for Hanford Site facilities.

  20. Fluor Hanford, Inc. Groundwater and Technical Integration Support (Master Project) Quality Assurance Management Plan

    SciTech Connect

    Fix, N. J.

    2008-02-20

    The scope of the Fluor Hanford, Inc. Groundwater and Technical Integration Support (Master Project) is to provide technical and integration support to Fluor Hanford, Inc., including operable unit investigations at 300-FF-5 and other groundwater operable units, strategic integration, technical integration and assessments, remediation decision support, and science and technology. This Quality Assurance Management Plan provides the quality assurance requirements and processes that will be followed by the Fluor Hanford, Inc. Groundwater and Technical Integration Support (Master Project).

  1. Hanford External Dosimetry Technical Basis Manual PNL-MA-842

    SciTech Connect

    Rathbone, Bruce A.

    2009-08-28

    The Hanford External Dosimetry Technical Basis Manual PNL-MA-842 documents the design and implementation of the external dosimetry system used at Hanford. The manual describes the dosimeter design, processing protocols, dose calculation methodology, radiation fields encountered, dosimeter response characteristics, limitations of dosimeter design under field conditions, and makes recommendations for effective use of the dosimeters in the field. The manual describes the technical basis for the dosimetry system in a manner intended to help ensure defensibility of the dose of record at Hanford and to demonstrate compliance with 10 CFR 835, DOELAP, DOE-RL, ORP, PNSO, and Hanford contractor requirements. The dosimetry system is operated by PNNL’s Hanford External Dosimetry Program (HEDP) which provides dosimetry services to all Hanford contractors. The primary users of this manual are DOE and DOE contractors at Hanford using the dosimetry services of PNNL. Development and maintenance of this manual is funded directly by DOE and DOE contractors. Its contents have been reviewed and approved by DOE and DOE contractors at Hanford through the Hanford Personnel Dosimetry Advisory Committee (HPDAC) which is chartered and chaired by DOE-RL and serves as means of coordinating dosimetry practices across contractors at Hanford. This manual was established in 1996. Since inception, it has been revised many times and maintained by PNNL as a controlled document with controlled distribution. The first revision to be released through PNNL’s Electronic Records & Information Capture Architecture (ERICA) database was designated Revision 0. Revision numbers that are whole numbers reflect major revisions typically involving changes to all chapters in the document. Revision numbers that include a decimal fraction reflect minor revisions, usually restricted to selected chapters or selected pages in the document.

  2. Pellet impact drilling operational parameters: experimental research

    NASA Astrophysics Data System (ADS)

    Kovalyov, A. V.; Ryabchikov, S. Ya; Isaev, Ye D.; Aliev, F. R.; Gorbenko, M. V.; Baranova, A. V.

    2015-02-01

    The article deals with the study of particle-impact drilling that is designed to enhance the rate-of-penetration function in hard and tough drilling environments. It contains the experimental results on relation between drilling parameters and drilling efficiency, the experiments being conducted by means of a specially designed laboratory model. To interpret the results properly a high-speed camera was used to capture the pellet motion. These results can be used to choose optimal parameters, as well as to develop enhanced design of ejector pellet impact drill bits.

  3. Resource book: Decommissioning of contaminated facilities at Hanford

    SciTech Connect

    Not Available

    1991-09-01

    In 1942 Hanford was commissioned as a site for the production of weapons-grade plutonium. The years since have seen the construction and operation of several generations of plutonium-producing reactors, plants for the chemical processing of irradiated fuel elements, plutonium and uranium processing and fabrication plants, and other facilities. There has also been a diversification of the Hanford site with the building of new laboratories, a fission product encapsulation plant, improved high-level waste management facilities, the Fast Flux test facility, commercial power reactors and commercial solid waste disposal facilities. Obsolescence and changing requirements will result in the deactivation or retirement of buildings, waste storage tanks, waste burial grounds and liquid waste disposal sites which have become contaminated with varying levels of radionuclides. This manual was established as a written repository of information pertinent to decommissioning planning and operations at Hanford. The Resource Book contains, in several volumes, descriptive information of the Hanford Site and general discussions of several classes of contaminated facilities found at Hanford. Supplementing these discussions are appendices containing data sheets on individual contaminated facilities and sites at Hanford. Twelve appendices are provided, corresponding to the twelve classes into which the contaminated facilities at Hanford have been organized. Within each appendix are individual data sheets containing administrative, geographical, physical, radiological, functional and decommissioning information on each facility within the class. 68 refs., 54 figs., 18 tabs.

  4. Resource book: Decommissioning of contaminated facilities at Hanford

    SciTech Connect

    Not Available

    1991-09-01

    In 1942 Hanford was commissioned as a site for the production of weapons-grade plutonium. The years since have seen the construction and operation of several generations of plutonium-producing reactors, plants for the chemical processing of irradiated fuel elements, plutonium and uranium processing and fabrication plants, and other facilities. There has also been a diversification of the Hanford site with the building of new laboratories, a fission product encapsulation plant, improved high-level waste management facilities, the Fast Flux test facility, commercial power reactors and commercial solid waste disposal facilities. Obsolescence and changing requirements will result in the deactivation or retirement of buildings, waste storage tanks, waste burial grounds and liquid waste disposal sites which have become contaminated with varying levels of radionuclides. This manual was established as a written repository of information pertinent to decommissioning planning and operations at Hanford. The Resource Book contains, in several volumes, descriptive information of the Hanford Site and general discussions of several classes of contaminated facilities found at Hanford. Supplementing these discussions are appendices containing data sheets on individual contaminated facilities and sites at Hanford. Twelve appendices are provided, corresponding to the twelve classes into which the contaminated facilities at Hanford have been organized. Within each appendix are individual data sheets containing administrative, geographical, physical, radiological, functional and decommissioning information on each facility within the class. 49 refs., 44 figs., 14 tabs.

  5. Hanford Site technical baseline database

    SciTech Connect

    Porter, P.E., Westinghouse Hanford

    1996-05-10

    This document includes a cassette tape that contains the Hanford specific files that make up the Hanford Site Technical Baseline Database as of May 10, 1996. The cassette tape also includes the delta files that delineate the differences between this revision and revision 3 (April 10, 1996) of the Hanford Site Technical Baseline Database.

  6. Ergonomic Impact of Fastening Operation (Preprint)

    DTIC Science & Technology

    2008-09-01

    System for Impact Loading in Shear Fastener Installation. International Journal of Industrial Ergonomics . To be published in 2008 Kihlberg S...Kjellberg A, Lindbeck L (1995) Discomfort from pneumatic tool torque reaction: acceptability limits. International Journal of Industrial Ergonomics 15: 417

  7. Minimizing soil impacts from forest operations

    Treesearch

    Emily A. Carter

    2011-01-01

    Several studies were conducted by Forest Service researchers and University and Industrial collaborators that investigated the potential for lessening soil surface disturbances and compaction in forest operations through modifications of machine components or harvest systems. Specific machine modifications included change in tire size, use of dual tire systems,...

  8. Third Dimension Deep Operations Impacts and Implications

    DTIC Science & Technology

    1990-03-15

    p. III- 1. 3. Joint Chiefs of Staff, JCS Publication 3-01.3, p. A-1. 4 CHAPTER II THIRD DIMENSION OPERATIONS Military history is replete with examples...Review, Vol. 21, pp. 1111-1115. 27. Temple, Parker L. III. "Of Autogyros and Dinosaurs ." Airoower Journal, Vol. II, Fall 1988, p. 44. 28. U.S

  9. Team Hanford: Records management in a multi-contractor environment

    SciTech Connect

    Anderson, E.N.; Anderson, T.V.; Munch, J.W.; Potter, C.N.

    1993-08-01

    Expanding technology, increased emphasis on cost containment, and an ever growing list of requirements and regulations present challenges to records managers. The multi-contractor environment of the Department of Energy`s (DOE) Hanford Site further complicates the picture. In an effort to strengthen the site`s records management program, representatives of DOE`s Richland Operations Office and its four Hanford contractors joined forces. This synergistic Team Hanford approach continues to spawn success and is looked on as a model for similar DOE sites.

  10. Hanford Site climatological data summary 1997, with historical data

    SciTech Connect

    Hoitink, D.J.; Burk, K.W.

    1998-03-01

    This document presents the climatological data measured at the U.S. Department of Energy`s Hanford Site for calendar year 1997. Pacific Northwest National Laboratory operates the Hanford Meteorology Station and the Hanford Meteorological Monitoring Network from which these data were collected. The information contained herein includes updated historical climatologies for temperature, precipitation, normal and extreme values of temperature and precipitation, and other miscellaneous meteorological parameters. Further, the data are adjunct to and update Hoitink and Burk; however, Appendix B - Wind Climatology is excluded.

  11. Hanford Action Tracking System release planning support documents

    SciTech Connect

    Keasling, R.

    1995-05-05

    This document contains impacts, plans, resource requirements, schedules, and documents to ensure the conduct of activities for the operation of the Hanford Action Tracking System (HATS). Each discrete topic in this document applies to a specific area of management and team interaction. These formally establish the planning, resources, documentation, and training responsibilities for the system management team. This document is composed of four appendices. These include the following: (1) organization impacts and implementation plan--expected organizational impacts resulting from setting up the new support system for the HATS, the plan to address each of these impacts and other system implementation requirements; (2) training and information requirements--training and information needed to use and operate the HATS; (3) operation/maintenance resources--resources required to maintain and operate the HATS once the system becomes operations; (4) training package--HATS implementation training needs, includes a training procedure, the environment for training users (tools and materials required for the facility, trainer, and trainee); schedule, and handout materials and forms to be completed at the time of training.

  12. Characterization of the Hanford Site and environs

    SciTech Connect

    Cushing, C.E.

    1991-03-01

    The US Department of Energy (DOE) proposes to site, construct, and operate a new production reactor (NPR) intended to produce materials for the US nuclear weapons program. The DOE has determined that this proposed action constitutes an action that may significantly affect the quality of the human environment; therefore, the DOE is preparing an environmental impact statement (EIS) to assess the potential impacts of the proposed action and reasonable alternatives on the human and natural environment. The NPR-EIS is being prepared in accordance with Section 102(2)(C) of the National Environmental Policy Act of 1969 (NEPA), as implemented in regulations (40 CFR 1500--1508) promulgated by the Council on Environmental Quality (CEQ). Information on the potentially affected environment at the Hanford Site and its environs was provided to ANL by PNL in various submissions during CY-1989, and some of that information was consolidated into this report, which is considered to be supporting documentation for the NPR-EIS. 93 refs., 35 figs., 46 tabs.

  13. Hazardous chemical and radioactive wastes at Hanford

    SciTech Connect

    Keller, J.F.; Stewart, T.L.

    1991-07-01

    The Hanford Site was established in 1944 to produce plutonium for defense. During the past four decades, a number of reactors, processing facilities, and waste management facilities have been built at Hanford for plutonium production. Generally, Hanford's 100 Area was dedicated to reactor operation; the 200 Area to fuel reprocessing, plutonium recovery, and waste management; and the 300 Area to fuel fabrication and research and development. Wastes generated from these operations included highly radioactive liquid wastes, which were discharged to single- and double-shell tanks; solid wastes, including both transuranic (TRU) and low-level wastes, which were buried or discharged to caissons; and waste water containing low- to intermediate-level radioactivity, which was discharged to the soil column via near-surface liquid disposal units such as cribs, ponds, and retention basins. Virtually all of the wastes contained hazardous chemical as well as radioactive constituents. This paper will focus on the hazardous chemical components of the radioactive mixed waste generated by plutonium production at Hanford. The processes, chemicals used, methods of disposition, fate in the environment, and actions being taken to clean up this legacy are described by location.

  14. Use Of Stream Analyzer For Solubility Predictions Of Selected Hanford Tank Waste

    SciTech Connect

    Pierson, Kayla; Belsher, Jeremy; Ho, Quynh-dao

    2012-11-02

    The Hanford Tank Waste Operations Simulator (HTWOS) models the mission to manage, retrieve, treat and vitrify Hanford waste for long-term storage and disposal. HTWOS is a dynamic, flowsheet, mass balance model of waste retrieval and treatment activities. It is used to evaluate the impact of changes on long-term mission planning. The project is to create and evaluate the integrated solubility model (ISM). The ISM is a first step in improving the chemistry basis in HTWOS. On principal the ISM is better than the current HTWOS solubility. ISM solids predictions match the experimental data well, with a few exceptions. ISM predictions are consistent with Stream Analyzer predictions except for chromium. HTWOS is producing more realistic results with the ISM.

  15. Shielding analysis of the TRUPACT-series casks for transportation of Hanford HLW

    SciTech Connect

    Banjac, V.; Sanchez, P.E.; Hills, C.R.; Heger, A.S. )

    1993-01-01

    In this paper, the authors propose the possibility of utilizing the TRUPACT-series casks for the transportation of high-level waste (HLW) from the Hanford reservation. The configurations of the TRUPACT series are a rectangular parallelepiped and a right circular cylinder, which are the TRUPACT-1 and -11, respectively. The TRUPACT series was designed as a type B contact-handled transuranic (CH-TRU) waste transportation system for use in Waste Isolation Pilot Plant-related operations and was subjected to type B container accident tests, which it successfully passed. Thus from a safety standpoint, the TRUPACT series is provided with double containment, impact limitation, and fire-retardant capabilities. However, the shielding analysis has shown the major modifications are required to allow for the transport of even a reasonable fraction of Hanford HLW.

  16. Interim Safe Storage of Plutonium Production Reactors at the US DOE Hanford Site - 13438

    SciTech Connect

    Schilperoort, Daryl L.; Faulk, Darrin

    2013-07-01

    Nine plutonium production reactors located on DOE's Hanford Site are being placed into an Interim Safe Storage (ISS) period that extends to 2068. The Environmental Impact Statement (EIS) for ISS [1] was completed in 1993 and proposed a 75-year storage period that began when the EIS was finalized. Remote electronic monitoring of the temperature and water level alarms inside the safe storage enclosure (SSE) with visual inspection inside the SSE every 5 years are the only planned operational activities during this ISS period. At the end of the ISS period, the reactor cores will be removed intact and buried in a landfill on the Hanford Site. The ISS period allows for radioactive decay of isotopes, primarily Co-60 and Cs-137, to reduce the dose exposure during disposal of the reactor cores. Six of the nine reactors have been placed into ISS by having an SSE constructed around the reactor core. (authors)

  17. Management of petroleum underground storage tanks at the Hanford Site

    SciTech Connect

    Douglas, L.M.; Mihalic, M.A.

    1991-09-01

    This report represents the timetables, responsible organizations, and methods required to comply with the newly promulgated Washington Administrative Code (WAC) 173-360 Underground Storage Tank (UST) Regulations which became effective December 29, 1990. This report only addresses UST systems that contain nonradioactive material. A total of 84 tanks at the Hanford Site are currently regulated under WAC 173-360. In addition, 32 regulated tanks have been removed as a result of the federally mandated program and the newly implemented state regulations. The majority of the USTs at the Hanford Site are operated by Westinghouse Hanford; however, one is operated by Kaiser Engineers Hanford (KEH) and one by Pacific Northwest Laboratory (PNL). 6 refs.

  18. A Study Plan for Determining Recharge Rates at the Hanford Site Using Environmental Tracers

    SciTech Connect

    Murphy, E. M.; Szecsody, J. E.; Phillips, S. J.

    1991-02-01

    This report presents a study plan tor estimating recharge at the Hanford Site using environmental tracers. Past operations at the Hanford Site have led to both soil and groundwater contamination, and recharge is one of the primary mechanisms for transporting contaminants through the vadose zone and into the groundwater. The prediction of contaminant movement or transport is one aspect of performance assessment and an important step in the remedial investigation/feasibility study (RI/FS) process. In the past, recharge has been characterized by collecting lysimeter data. Although lysimeters can generate important and reliable data, their limitations include 1) fixed location, 2) fixed sediment contents, 3) edge effects, 4) low rates, and 5) relatively short duration of measurement. These limitations impact the ability to characterize the spatial distribution of recharge at the Hanford Site, and thus the ability to predict contaminant movement in the vadose zone. An alternative to using fixed lysimeters for determining recharge rates in the vadose zone is to use environmental tracers. Tracers that have been used to study water movement in the vadose zone include total chloride, {sup 36}CI, {sup 3}H, and {sup 2}H/{sup 18}O. Atmospheric levels of {sup 36}CI and {sup 3}H increased during nuclear bomb testing in the Pacific, and the resulting "bomb pulse" or peak concentration can be measured in the soil profile. Locally, past operations at the Hanford Site have resu~ed in the atmospheric release of numerous chemical and isotopic tracers, including nitrate, {sup 129}I, and {sup 99}Tc. The radionuclides, in particular, reached a well-defined atmospheric peak in 1945. Atmospheric releases of {sup 129}I and {sup 99}Tc were greatly reduced by mid-1946, but nitrogen oxides continued to be released from the uranium separations facilities. As a result, the nitrate concentrations probably peaked in the mid-1950s, when the greatest number of separations facilities were operating

  19. Inventory Data Package for Hanford Assessments

    SciTech Connect

    Kincaid, Charles T.; Eslinger, Paul W.; Aaberg, Rosanne L.; Miley, Terri B.; Nelson, Iral C.; Strenge, Dennis L.; Evans, John C.

    2006-06-01

    This document presents the basis for a compilation of inventory for radioactive contaminants of interest by year for all potentially impactive waste sites on the Hanford Site for which inventory data exist in records or could be reasonably estimated. This document also includes discussions of the historical, current, and reasonably foreseeable (1944 to 2070) future radioactive waste and waste sites; the inventories of radionuclides that may have a potential for environmental impacts; a description of the method(s) for estimating inventories where records are inadequate; a description of the screening method(s) used to select those sites and contaminants that might make a substantial contribution to impacts; a listing of the remedial actions and their completion dates for waste sites; and tables showing the best estimate inventories available for Hanford assessments.

  20. Third Quarter Hanford Seismic Report for Fiscal Year 2008

    SciTech Connect

    Rohay, Alan C.; Sweeney, Mark D.; Hartshorn, Donald C.; Clayton, Ray E.; Devary, Joseph L.

    2008-09-01

    . The May 18 event, not reported as being felt on the Hanford site or causing any damage, was communicated to the PNNL Operations Center per HSAP communications procedures. The event is not considered to be significant with regard to site safety and not unprecedented given the site’s seismic history. The Hanford strong motion accelerometer (SMA) stations at the 200 East Area, 300 Area, and the 400 Area were triggered by the May 18 event. The reportable action level of 2% g for Hanford facilities is approximately 12 times larger than the peak acceleration (0.17%) observed at the 300 Area SMA station and no action was required.

  1. Hanford Site Wide Transportation Safety Document [SEC 1 Thru 3

    SciTech Connect

    MCCALL, D L

    2002-06-01

    This safety evaluation report (SER) documents the basis for the US Department of Energy (DOE), Richland Operations Office (RL) to approve the Hanford Sitewide Transportation Safety Document (TSD) for onsite Transportation and Packaging (T&P) at Hanford. Hanford contractors, on behalf of DOE-RL, prepared and submitted the Hanford Sitewide Transportation Safety Document, DOE/RL-2001-0036, Revision 0, (DOE/RL 2001), dated October 4, 2001, which is referred to throughout this report as the TSD. In the context of the TSD, Hanford onsite shipments are the activities of moving hazardous materials, substances, and wastes between DOE facilities and over roadways where public access is controlled or restricted and includes intra-area and inter-area movements. The TSD sets forth requirements and standards for onsite shipment of radioactive and hazardous materials and wastes within the confines of the Hanford Site on roadways where public access is restricted by signs, barricades, fences, or other means including road closures and moving convoys controlled by Hanford Site security forces.

  2. Hanford Site ground-water monitoring for 1993

    SciTech Connect

    Dresel, P.E.; Luttrell, S.P.; Evans, J.C.

    1994-09-01

    This report presents the results of the Ground-Water Surveillance Project monitoring for calendar year 1993 on the Hanford Site, Washington. Hanford Site operations from 1943 onward produced large quantities of radiological and chemical waste that have impacted ground-water quality on the Site. Monitoring of water levels and ground-water chemistry is performed to track the extent of contamination and trends in contaminant concentrations. The 1993 monitoring was also designed to identify emerging ground-water quality problems. The information obtained is used to verify compliance with applicable environmental regulations and to evaluate remedial actions. Data from other monitoring and characterization programs were incorporated to provide an integrated assessment of Site ground-water quality. Additional characterization of the Site`s geologic setting and hydrology was performed to support the interpretation of contaminant distributions. Numerical modeling of sitewide ground-water flow also supported the overall project goals. Water-level monitoring was performed to evaluate ground-water flow directions, to track changes in water levels, and to relate such changes to changes in site disposal practices. Water levels over most of the Hanford Site continued to decline between June 1992 and June 1993. The greatest declines occurred in the 200-West Area. These declines are part of the continued response to the cessation of discharge to U Pond and other disposal facilities. The low permeability in this area which enhanced mounding of waste-water discharge has also slowed the response to the reduction of disposal. Water levels remained nearly constant in the vicinity of B Pond, as a result of continued disposal to the pond. Water levels measured from wells in the unconfined aquifer north and east of the Columbia River indicate that the primary source of recharge is irrigation practices.

  3. Catalog of borehole lithologic logs from the 600 Area, Hanford Site

    SciTech Connect

    Fecht, K R; Lillie, J T

    1982-03-01

    Rockwell Hanford Operations (Rockwell) geoscientists are studying the Hanford Site subsurface environment to assure safe management operations, disposal, and storage of radioactive waste. As part of this effort, geoscientists have collected geotechnical data from about 3000 boreholes drilled on the Hanford Site since the early 1900s. These boreholes have been used for subsurface geologic, hydrologic, and engineering investigation, water supply, ground-water monitoring, and natural gas production. This report is a catalog of all obtainable (about 800) lithologic logs from boreholes in a portion of the Hanford Site known as the 600 Area.

  4. HEDR model validation plan. Hanford Environmental Dose Reconstruction Project

    SciTech Connect

    Napier, B.A.; Gilbert, R.O.; Simpson, J.C.; Ramsdell, J.V. Jr.; Thiede, M.E.; Walters, W.H.

    1993-06-01

    The Hanford Environmental Dose Reconstruction (HEDR) Project has developed a set of computational ``tools`` for estimating the possible radiation dose that individuals may have received from past Hanford Site operations. This document describes the planned activities to ``validate`` these tools. In the sense of the HEDR Project, ``validation`` is a process carried out by comparing computational model predictions with field observations and experimental measurements that are independent of those used to develop the model.

  5. Public agency partnership: Hanford`s history artifacts as a communications tool

    SciTech Connect

    Gerber, M.S.

    1994-02-01

    The Hanford Site in eastern Washington state currently is engaged in the largest waste cleanup in world history. In order to make informed decisions about remediation options, the public throughout the Pacific Northwest and the nation needs to understand the wastes that are present, their sources of generation, their composition, and their behavior in the environment. The fact that Hanford operations` were conducted in secret for over four decades presents a unique public information challenge to those who currently are responsible for communicating with the public.

  6. 1988 Hanford riverbank springs characterization report

    SciTech Connect

    Dirkes, R.L.

    1990-12-01

    This reports presents the results of a special study undertaken to characterize the riverbank springs (i.e., ground-water seepage) entering the Columbia River along the Hanford Site. Radiological and nonradiological analyses were performed. River water samples were also analyzed from upstream and downstream of the Site as well as from the immediate vicinity of the springs. In addition, irrigation return water and spring water entering the river along the shoreline opposite Hanford were analyzed. Hanford-origin contaminants were detected in spring water entering the Columbia River along the Hanford Site. The type and concentrations of contaminants in the spring water were similar to those known to exist in the ground water near the river. The location and extent of the contaminated discharges compared favorably with recent ground-water reports and predictions. Spring discharge volumes remain very small relative to the flow of the Columbia. Downstream river sampling demonstrates the impact of ground-water discharges to be minimal, and negligible in most cases. Radionuclide concentrations were below US Department of Energy Derived Concentration Guides (DCGs) with the exception {sup 90}Sr near the 100-N Area. Tritium, while below the DCG, was detected at concentrations above the US Environmental Protection Agency drinking water standards in several springs. All other radionuclide concentrations were below drinking water standards. Nonradiological contaminants were generally undetectable in the spring water. River water contaminant concentrations, outside of the immediate discharge zones, were below drinking water standards in all cases. 19 refs., 5 figs., 12 tabs.

  7. Chemical Species in the Vapor Phase of Hanford Double-Shell Tanks: Potential Impacts on Waste Tank Corrosion Processes

    SciTech Connect

    Felmy, Andrew R.; Qafoku, Odeta; Arey, Bruce W.; Boomer, Kayle D.

    2010-09-22

    The presence of corrosive and inhibiting chemicals on the tank walls in the vapor space, arising from the waste supernatant, dictate the type and degree of corrosion that occurs there. An understanding of how waste chemicals are transported to the walls and the affect on vapor species from changing supernatant chemistry (e.g., pH, etc.), are basic to the evaluation of risks and impacts of waste changes on vapor space corrosion (VSC). In order to address these issues the expert panel workshop on double-shell tank (DST) vapor space corrosion testing (RPP-RPT-31129) participants made several recommendations on the future data and modeling needs in the area of DST corrosion. In particular, the drying of vapor phase condensates or supernatants can form salt or other deposits at the carbon steel interface resulting in a chemical composition at the near surface substantially different from that observed directly in the condensates or the supernatants. As a result, over the past three years chemical modeling and experimental studies have been performed on DST supernatants and condensates to predict the changes in chemical composition that might occur as condensates or supernatants equilibrate with the vapor space species and dry at the carbon steel surface. The experimental studies included research on both the chemical changes that occurred as the supernatants dried as well as research on how these chemical changes impact the corrosion of tank steels. The chemical modeling and associated experimental studies were performed at the Pacific Northwest National Laboratory (PNNL) and the research on tank steel corrosion at the Savannah River National Laboratory (SRNL). This report presents a summary of the research conducted at PNNL with special emphasis on the most recent studies conducted in FY10. An overall summary of the project results as well as their broader implications for vapor space corrosion of the DST’s is given at the end of this report.

  8. Review Of Rheology Models For Hanford Waste Blending

    SciTech Connect

    Koopman, D. C.; Stone, M.

    2013-09-26

    are not necessarily satisfactory (justified) for interpolations, due to the number of unknown variables equal the number of known data points, resulting in a coefficient of determination of one. SRS has had some success predicting the rheology of waste blends for similar waste types using rheological properties of the individual wastes and empirical blending viscosity equations. Both the Kendall-Monroe and Olney-Carlson equations were used. High accuracy was not obtained, but predictions were reasonable compared to measured flow curves. Blending SRS processed waste with frit slurry (much larger particles and the source of SRS glass formers) is a different sort of problem than that of two similar slurries of precipitated waste particles. A different approach to rheology prediction has had some success describing the incorporation of large frit particles into waste than the one used for blending two wastes. In this case, the Guth-Simha equation was used. If Hanford waste is found to have significant particles in the >100 μm diameter range, then it might be necessary to handle those particles differently from broadly distributed waste particles that are primarily <30 μm in diameter. The following are recommendations for the Hanford tank farms: Investigate the impact of large-scale mixing operations on yield stress for one or more Hanford tanks to see if Hanford waste rheological properties change to become more like SRS waste during both tank retrieval and tank qualification operations; Determine rheological properties of mobilized waste slurries by direct measurement rather than by prediction; Collect and characterize samples during the waste feed qualification process for each campaign; o From single source tanks that feed the qualification tanks; o Blends from the qualification tanks; Predictive rheological models must be used with caution, due to the lack of data to support such models and the utilization of the results that come from these models in making process

  9. Evaluation of the Hanford RI/FS cost projections

    SciTech Connect

    Not Available

    1991-06-01

    The US Department of Energy-Richland Operations (DOE-RL) tasked the Environmental Management Operations (EMO) to review the cost estimates and implementation process for the Hanford Remedial Investigation/Feasibility Study (RI/FS) Program as defined by the Hanford RCRA/CERCLA Past Particles Cost Model. The purpose of the review was to determine if there were opportunities to reduce the RI/FS costs at Hanford, with a focus on the approach being taken at Hanford to implement and complete the RI/FS process. Three specific tasks comprised the review. The first focused on the cost model assumptions to assess whether the assumptions and resulting estimates were representative of the cost of performing work at Hanford. The second involved a detailed review of the regulatory and other driving forces that define the scope and approach to be taken at Hanford. The purpose of the review was to develop recommendations on changes what would help streamline the past practices process and reduce the cost and schedule. The third (Task 1C) provided a review of the scope and approach planned for two operable units (OUs), 100-HR-1 and 100-HR-3, as contained in their detailed draft RI/FS work plans. These work plans were reviewed for appropriate application of and conformance to the regulations and other requirements examined in the first two tasks. 4 refs.

  10. Release Data Package for Hanford Site Assessments

    SciTech Connect

    Riley, Robert G.; Lopresti, Charles A.; Engel, David W.

    2006-07-01

    Beginning in fiscal year (FY) 2003, the U.S. Department of Energy (DOE) Richland Operations Office initiated activities, including the development of data packages, to support a Hanford assessment. This report describes the data compiled in FY 2003 through 2005 to support the Release Module of the System Assessment Capability (SAC) for the updated composite analysis. This work was completed as part of the Characterization of Systems Project, part of the Remediation and Closure Science Project, the Hanford Assessments Project, and the Characterization of Systems Project managed by Pacific Northwest National Laboratory. Related characterization activities and data packages for the vadose zone and groundwater are being developed under the remediation Decision Support Task of the Groundwater Remediation Project managed by Fluor Hanford, Inc. The Release Module applies release models to waste inventory data from the Inventory Module and accounts for site remediation activities as a function of time. The resulting releases to the vadose zone, expressed as time profiles of annual rates, become source terms for the Vadose Zone Module. Radioactive decay is accounted for in all inputs and outputs of the Release Module. The Release Module is implemented as the VADER (Vadose zone Environmental Release) computer code. Key components of the Release Module are numerical models (i.e., liquid, soil-debris, cement, saltcake, and reactor block) that simulate contaminant release from the different waste source types found at the Hanford Site. The Release Module also handles remediation transfers to onsite and offsite repositories.

  11. Hanford Site Solid Waste Landfill permit application

    SciTech Connect

    Not Available

    1991-01-01

    Daily activities at the Hanford Site generate sanitary solid waste (nonhazardous and nonradioactive) that is transported to and permanently disposed of at the Hanford Site Solid Waste Landfill. This permit application describes the manner in which the solid Waste Landfill will be operated under Washington State Department of Ecology Minimum Functional Standards for Solid Waste Handling, Washington Administrative Code 173-304. The solid Waste Landfill is owned by the US Department of Energy -- Richland Operations Office and is used for disposal of solid waste generated at the US Department of Energy Hanford Site. The jurisdictional health department's permit application form for the Solid Waste Landfill is provided in Chapter 1.0. Chapter 2.0 provides a description of the Hanford Site and the Solid Waste Landfill and reviews applicable locational, general facility, and landfilling standards. Chapter 3.0 discusses the characteristics and quantity of the waste disposed of in the Solid Waste Landfill. Chapter 4.0 reviews the regional and site geology and hydrology and the groundwater and vadose zone quality beneath the landfill. Chapters 5.0, 6.0, and 7.0 contain the plan of operation, closure plan, and postclosure plan, respectively. The plan of operation describes the routine operation and maintenance of the Solid Waste Landfill, the environmental monitoring program, and the safety and emergency plans. Chapter 5.0 also addresses the operational cover, environmental controls, personnel requirements, inspections, recordkeeping, reporting, and site security. The postclosure plan describes requirements for final cover maintenance and environmental monitoring equipment following final closure. Chapter 8.0 discusses the integration of closure and postclosure activities between the Solid Waste Landfill and adjacent Nonradioactive Dangerous Waste Landfill. 76 refs., 48 figs, 15 tabs.

  12. Hanford Seismic Network

    SciTech Connect

    Reidel, S.P.; Hartshorn, D.C.

    1997-05-01

    This report describes the Hanford Seismic Network. The network consists of two instrument arrays: seismometers and strong motion accelerometers. The seismometers determine the location and magnitude of earthquakes, and the strong motion accelerometers determine ground motion. Together these instruments arrays comply with the intent of DOE Order 5480.20, Natural Phenomena Hazards Mitigation.

  13. Processing constraints on high-level nuclear waste glasses for Hanford Waste Vitrification Plant

    SciTech Connect

    Hrma, P.R.

    1993-09-01

    The work presented in this paper is a part of a major technology program supported by the U.S. Department of Energy (DOE) in preparation for the planned operation of the Hanford Waste Vitrification Plant (HWVP). Because composition of Hanford waste varies greatly, processability is a major concern for successful vitrification. This paper briefly surveys general aspects of waste glass processability and then discusses their ramifications for specific examples of Hanford waste streams.

  14. HIGH-LEVEL WASTE FEED CERTIFICATION IN HANFORD DOUBLE-SHELL TANKS

    SciTech Connect

    THIEN MG; WELLS BE; ADAMSON DJ

    2010-01-14

    The ability to effectively mix, sample, certify, and deliver consistent batches of High Level Waste (HLW) feed from the Hanford Double Shell Tanks (DST) to the Waste Treatment and Immobilization Plant (WTP) presents a significant mission risk with potential to impact mission length and the quantity of HLW glass produced. DOE's River Protection Project (RPP) mission modeling and WTP facility modeling assume that individual 3785 cubic meter (l million gallon) HLW feed tanks are homogenously mixed, representatively sampled, and consistently delivered to the WTP. It has been demonstrated that homogenous mixing ofHLW sludge in Hanford DSTs is not likely achievable with the baseline design thereby causing representative sampling and consistent feed delivery to be more difficult. Inconsistent feed to the WTP could cause additional batch-to-batch operational adjustments that reduce operating efficiency and have the potential to increase the overall mission length. The Hanford mixing and sampling demonstration program will identify DST mixing performance capability, will evaluate representative sampling techniques, and will estimate feed batch consistency. An evaluation of demonstration program results will identify potential mission improvement considerations that will help ensure successful mission completion. This paper will discuss the history, progress, and future activities that will define and mitigate the mission risk.

  15. HANFORD SITE LOW EXPOSURE PIPELINE REPAIR USING A NON-METALLIC COMPOSITE SYSTEM

    SciTech Connect

    HUTH RJ

    2009-11-12

    At the Department of Energy, Richland Operations (DOE-RL) Hanford site in eastern Washington, a 350 mm (14 inch) diameter high density polyethylene (HDPE) pump recirculation pipeline failed at a bonded joint adjacent to a radiologically and chemically contaminated groundwater storage basin. The responsible DOE-RL contractor, CH2MHill Plateau Remediation Company, applied a fiberglass reinforced plastic (composite) field repair system to the failed joint. The system was devised specifically for the HDPE pipe repair at the Hanford site, and had not been used on this type of plastic piping previously. This paper introduces the pipe failure scenario, describes the options considered for repair and discusses the ultimate resolution of the problem. The failed pipeline was successfully returned to service with minimal impact on waste water treatment plant operating capacity. Additionally, radiological and chemical exposures to facility personnel were maintained as low as reasonably achievable (ALARA). The repair is considered a success for the near term, and future monitoring will prove whether the repair can be considered for long term service and as a viable alternative for similar piping failures at the Hanford site.

  16. Hanford Site National Environmental Policy Act (NEPA) Characterization

    SciTech Connect

    Cushing, C.E.

    1992-12-01

    This fifth revision of the Hanford Site National Environmental Policy (NEPA) Characterization presents current environmental data regarding the Hanford Site and its immediate environs. This information is intended for use in preparing Site-related NEPA documentation. Information is presented on climate and meteorology, geology and hydrology, ecology, history and archaeology, socioeconomics, land use, and noise levels, prepared by Pacific Northwest Laboratory (PNL) staff. Models are described that are to be used in simulating realized or potential impacts from nuclear materials at the Hanford Site. Included are models of radionuclide transport in groundwater and atmospheric pathways, and of radiation dose to populations via all known pathways from known initial conditions. Federal and state regulations, DOE orders and permits, and environmental standards directly applicable for the NEPA documents at the Hanford Site, are provided.

  17. Hanford Site National Environmental Policy Act (NEPA) Characterization. Revision 5

    SciTech Connect

    Cushing, C.E.

    1992-12-01

    This fifth revision of the Hanford Site National Environmental Policy (NEPA) Characterization presents current environmental data regarding the Hanford Site and its immediate environs. This information is intended for use in preparing Site-related NEPA documentation. Information is presented on climate and meteorology, geology and hydrology, ecology, history and archaeology, socioeconomics, land use, and noise levels, prepared by Pacific Northwest Laboratory (PNL) staff. Models are described that are to be used in simulating realized or potential impacts from nuclear materials at the Hanford Site. Included are models of radionuclide transport in groundwater and atmospheric pathways, and of radiation dose to populations via all known pathways from known initial conditions. Federal and state regulations, DOE orders and permits, and environmental standards directly applicable for the NEPA documents at the Hanford Site, are provided.

  18. Plutonium and Americium Geochemistry at Hanford: A Site Wide Review

    SciTech Connect

    Cantrell, Kirk J.; Felmy, Andrew R.

    2012-08-23

    This report was produced to provide a systematic review of the state-of-knowledge of plutonium and americium geochemistry at the Hanford Site. The report integrates existing knowledge of the subsurface migration behavior of plutonium and americium at the Hanford Site with available information in the scientific literature regarding the geochemistry of plutonium and americium in systems that are environmentally relevant to the Hanford Site. As a part of the report, key research needs are identified and prioritized, with the ultimate goal of developing a science-based capability to quantitatively assess risk at sites contaminated with plutonium and americium at the Hanford Site and the impact of remediation technologies and closure strategies.

  19. Contaminant Transport Through Subsurface Material from the DOE Hanford Reservation

    SciTech Connect

    Pace, M.N.; Mayes, M.A.; Jardine, P.M.; Fendorf, S.E.; Nehlhorn, T.L.; Yin, X.P.; Ladd, J.; Teerlink, J.; Zachara, J.M.

    2003-03-26

    Accelerated migration of contaminants in the vadose zone has been observed beneath tank farms at the U.S. Department of Energy's Hanford Reservation. This paper focuses on the geochemical processes controlling the fate and transport of contaminants in the sediments beneath the Hanford tank farms. Laboratory scale batch sorption experiments and saturated transport experiments were conducted using reactive tracers U(VI), Sr, Cs, Co and Cr(VI) to investigate geochemical processes controlling the rates and mechanisms of sorption to Hanford subsurface material. Results indicate that the rate of sorption is influenced by changes in solution chemistry such as ionic strength, pH and presence of competing cations. Sediment characteristics such as mineralogy, iron content and cation/anion exchange capacity coupled with the dynamics of flow impact the number of sites available for sorption. Investigative approaches using a combination of batch and transport experiments will contribute to the conceptual and Hanford vadose zone.

  20. Pit Viper strikes at the Hanford site. Pit maintenance using robotics at the Hanford Tank Farms

    SciTech Connect

    Roeder-Smith, Lynne

    2002-06-30

    The Pit Viper - a remote operations waste retrieval system - was developed to replace manual operations in the valve pits of waste storge tanks at the Hanford Site. The system consists of a typical industrial backhoe fitted with a robotic manipulator arm and is operated remotely from a control trailer located outside of the tank farm. Cameras mounted to the arm and within the containment tent allow the operator to view the entire pit area and operate the system using a joystick. The arm's gripper can grasp a variety of tools that allow personnel to perform cleaning, debris removal, and concrete repair tasks -- a more efficient and less dose-intensive process than the previous "long-pole" method. The project team overcame a variety of obstacles during development and testing of the Pit Viper system, and deployment occurred in Hanford Tank C-104 in December 2001.

  1. Hanford Site National Environmental Policy Act (NEPA) characterization. Revision 6

    SciTech Connect

    Cushing, C.E.; Baker, D.A.; Chamness, M.A.

    1994-08-01

    This sixth revision of the Hanford Site National Environmental Policy (NEPA) Characterization presents current environmental data regarding the Hanford Site and its immediate environs. This information is intended for use in preparing Site-related NEPA documentation. Chapter 4.0 summarizes up-to-date information on climate and meteorology, geology and hydrology, ecology, history and archaeology, socioeconomics, land use, and noise levels prepared by Pacific Northwest Laboratory (PNL) staff. More detailed data are available from reference sources cited or from the authors; Chapter 5.0 has been significantly updated from the fifth revision. It describes models, including their principal underlying assumptions, that are to be used in simulating realized or potential impacts from nuclear materials at the Hanford Site. Included are models of radionuclide transport in groundwater and atmospheric pathways, and of radiation dose to populations via all known pathways from known initial conditions; The updated Chapter 6.0 provides the preparer with the federal and state regulations, DOE orders and permits, and environmental standards directly applicable to the NEPA documents on the Hanford Site, following the structure of Chapter 4.0. No conclusions or recommendations are given in this report. Rather, it is a compilation of information on the Hanford Site environment that can be utilized directly by Site contractors. This information can also be used by any interested individual seeking baseline data on the Hanford Site and its past activities by which to evaluate projected activities and their impacts.

  2. Hanford Site National Environmental Policy Act (NEPA) characterization. Revision 7

    SciTech Connect

    Cushing, C.E.; Baker, D.A.; Chamness, M.A.

    1995-09-01

    This seventh revision of the Hanford Site National Environmental Policy (NEPA) Characterization presents current environmental data regarding the Hanford Site and its immediate environs. This information is intended for use in preparing Site-related NEPA documentation. Chapter 4.0 summarizes up-to-date information on climate and meteorology, geology, hydrology, environmental monitoring, ecology, history and archaeology, socioeconomics, land use, and noise levels prepared by Pacific Northwest Laboratory (PNL) staff. More detailed data are available from reference sources cited or from the authors. Chapter 5.0 was not updated from the sixth revision (1994). It describes models, including their principal underlying assumptions, that are to be used in simulating realized or potential impacts from nuclear materials at the Hanford Site. Included are models of radionuclide transport in groundwater and atmospheric pathways, and of radiation dose to populations via all known pathways from known initial conditions. The updated Chapter 6.0 provides the preparer with the federal and state regulations, DOE Orders and permits, and environmental standards directly applicable to the NEPA documents on the Hanford Site, following the structure of Chapter 4.0. No conclusions or recommendations are given in this report. Rather, it is a compilation of information on the Hanford Site environment that can be used directly by Site contractors. This information can also be used by any interested individual seeking baseline data on the Hanford Site and its past activities by which to evaluate projected activities and their impacts.

  3. Hanford Site environmental surveillance data report for calendar year 1996

    SciTech Connect

    Bisping, L.E.

    1997-09-01

    Environmental surveillance at the Hanford Site collects data that provides a historical record of radionuclide and radiation levels attributable to natural causes, worldwide fallout, and Hanford operations. Data are also collected to monitor several chemicals and metals in Columbia River water and sediment. In addition, Hanford Site wildlife samples were also collected for metals analysis. Pacific Northwest National Laboratory publishes an annual environmental report for the Hanford Site each calendar year. The Hanford Site Environmental Report for Calendar Year 1996 describes the site mission and activities, general environmental features, radiological and chemical releases from operations, status of compliance with environmental regulations, status of programs to accomplish compliance, and environmental monitoring activities and results. The report includes a summary of offsite and onsite environmental monitoring data collected during 1996 by PNNL`s Environmental Monitoring Program. Appendix A of that report contains data summaries created from river monitoring and sediment data. This volume contains the actual raw data used to create the summaries. The data volume also includes Hanford Site drinking water radiological data.

  4. Annual Hanford Site environmental permitting status report

    SciTech Connect

    Sonnichsen, J.C.

    1998-09-17

    The information contained and/or referenced in this Annual Hanford Site Environmental Permitting Status Report (Status Report) addresses the State Environmental Policy Act (SEPA) of 1971 and Condition II.W. of the Resource Conservation and Recovery Act (RCRA) of 1976 Permit, Dangerous Waste Portion (DW Portion). Condition II.W. of the RCRA Permit specifies the Permittees are responsible for all other applicable federal, state, and local permits for the development and operation of the Hanford Facility. Condition II.W. of the RCRA Permit specifies that the Permittees are to use their best efforts to obtain such permits. For the purposes of permit condition, `best efforts` means submittal of documentation and/or approval(s) in accordance with schedules specified in applicable regulations, or as determined through negotiations with the applicable regulatory agencies. This Status Report includes information on all existing and anticipated environmental permitting. Environmental permitting required by RCRA, the Hazardous and Solid Waste Amendments (HSWA) of 1984, and non-RCRA permitting (solid waste handling, Clean Air Act Amendments of 1990, Clean Water Act Amendments of 1987, Washington State waste discharge, and onsite sewage system) is addressed. Information on RCRA and non-RCRA is current as of July 31, 1998. For the purposes of RCRA and the State of Washington Hazardous Waste Management Act of 1976 [as administered through the Dangerous Waste Regulations, Washington Active Code (WAC) 173-303], the Hanford Facility is considered a single facility. As such, the Hanford Facility has been issued one US Environmental Protection Agency (EPA)/State Identification Number (WA7890008967). This EPA/State identification number encompasses over 60 treatment, storage, and/or disposal (TSD) units. The Washington State Department of Ecology (Ecology) has been delegated authority by the EPA to administer the RCRA, including mixed waste authority. The RCRA permitting approach for

  5. Feasibility study for the processing of Hanford Site cesium and strontium isotopic sources in the Hanford Waste Vitrification Plant

    SciTech Connect

    Anantatmula, R.P.; Watrous, R.A.; Nelson, J.L.; Perez, J.M.; Peters, R.D.; Peterson, M.E.

    1991-09-01

    The final environmental impact statement for the disposal of defense-related wastes at the Hanford Site (Final Environmental Impact Statement: Disposal of Hanford Defense High-Level, Transuranic and Tank Wastes [HDW-EIS] [DOE 1987]) states that the preferred alternative for disposal of cesium and strontium wastes at the Hanford Site will be to package and ship these wastes to the commercial high-level waste repository. The Record of Decision for this EIS states that before shipment to a geologic repository, these wastes will be packaged in accordance with repository waste acceptance criteria. However, the high cost per canister for repository disposal and uncertainty about the acceptability of overpacked capsules by the repository suggest that additional alternative means of disposal be considered. Vitrification of the cesium and strontium salts in the Hanford Waste Vitrification Plant (HWVP) has been identified as a possible alternative to overpacking. Subsequently, Westinghouse Hanford Company`s (Westinghouse Hanford) Projects Technical Support Office undertook a feasibility study to determine if any significant technical issues preclude the vitrification of the cesium and strontium salts. Based on the information presented in this report, it is considered technically feasible to blend the cesium chloride and strontium fluoride salts with neutralized current acid waste (NCAW) and/or complexant concentrate (CC) waste feedstreams, or to blend the salts with fresh frit and process the waste through the HWVP.

  6. Hanford and Savannah River Site Programmatic and Technical Integration

    SciTech Connect

    Ramsey, William Gene

    2013-08-15

    Abstract only. The Hanford Site and the Savannah River Site (SRS) were the primary plutonium production facilities within the U.S. nuclear weapons complex. Radioactive wastes were generated as part of these missions and are stored in similar fashion. The majority of radioactivity maintained by the two sites is located in underground carbon steel tanks in the physical form of supernatant, saltcake, or sludge. Disposition of SRS tank waste is ongoing by converting it into glass (pathway for sludge and radionuclides separated from supernatant or dissolved saltcake) or cement (pathway for the decontaminated supernatant and dissolved saltcake). Tank closure activity has also begun at SRS and will continue for the duration of mission. The Hanford tank waste inventory is roughly 2/3rds larger than SRS's by volume- but nominally half the radioactivity. The baseline disposition path includes high-level and low-activity waste vitrification with separate disposition of contact-handled transuranic tank waste. Retrieval of tank waste from aging single­ shell tanks (SSTs) into double-shell tanks (DSTs) is currently ongoing. As vitrification commences later this decade, Hanford will be in a similar operations mode as SRS. Site integration is increasing as the missions align. The ongoing integration is centered on key issues that impact both sites- regardless of mission timeframe. Three recent workshop exchanges have been held to improve communication with the primary intent of improving operations and technical work organization. The topics of these workshops are as follows: DST space utilization, optimization, and closure; Waste Feed Qualification; and, Cementitious Waste Forms. Key goals for these and future exchanges include aligning research and technology, preparing for joint initiatives (to maximize budgetary value for the customer), and reviewing lessons learned. Each site has played a leading role in the development of technology and operational practices that can be

  7. Hanford cultural resources management plan

    SciTech Connect

    Chatters, J.C.

    1989-06-01

    As a federal agency, the US Department of Energy (DOE) has been directed by Congress and the President to provide leadership in the preservation of prehistoric, historical, and cultural resources on lands it administers, to manage these in a spirit of stewardship for future generations, and to protect and preserve the rights of Native Americans to religious freedom. The purpose of this document is to describe how the DOE-Richland Operations (DOE-RL) will meet those responsibilities on the Hanford Site, pursuant to guidelines for Agency Responsibilities under the Historic Preservation Act (FR 53:31, February 17, 1988). This document is intended for multiple uses. Among other things, the text is designed as a manual for cultural resource managers to follow and as an explanation of the process of cultural resource regulatory compliance for the DOE-RL and Site contractors. 10 refs., 17 figs., 11 tabs.

  8. INITIAL SINGLE SHELL TANK (SST) SYSTEM PERFORMANCE ASSESSMENT OF THE HANFORD SITE

    SciTech Connect

    JARAYSI, M.N.

    2007-01-08

    The ''Initial Single-Shell Tank System Performance Assessment for the Hanford Site [1] (SST PA) presents the analysis of the long-term impacts of residual wastes assumed to remain after retrieval of tank waste and closure of the SST farms at the US Department of Energy (DOE) Hanford Site. The SST PA supports key elements of the closure process agreed upon in 2004 by DOE, the Washington State Department of Ecology (Ecology), and the US Environmental Protection Agency (EPA). The SST PA element is defined in Appendix I of the ''Hanford Federal Facility Agreement and Consent Order'' (HFFACO) (Ecology et al. 1989) [2], the document that establishes the overall closure process for the SST and double-shell tank (DST) systems. The approach incorporated in the SST PA integrates substantive features of both hazardous and radioactive waste management regulations into a single analysis. The defense-in-depth approach used in this analysis defined two major engineering barriers (a surface barrier and the grouted tank structure) and one natural barrier (the vadose zone) that will be relied on to control waste release into the accessible environment and attain expected performance metrics. The analysis evaluates specific barrier characteristics and other site features that influence contaminant migration by the various pathways. A ''reference'' case and a suite of sensitivity/uncertainty cases are considered. The ''reference case'' evaluates environmental impacts assuming central tendency estimates of site conditions. ''Reference'' case analysis results show residual tank waste impacts on nearby groundwater, air resources; or inadvertent intruders to be well below most important performance objectives. Conversely, past releases to the soil, from previous tank farm operations, are shown to have groundwater impacts that re significantly above most performance objectives. Sensitivity/uncertainty cases examine single and multiple parameter variability along with plausible alternatives

  9. Initial Single-Shell Tank System Performance Assessment for the Hanford Site

    SciTech Connect

    Jaraysi, M.N.; Kristofzski, J.G.; Connelly, M.P.; Wood, M.I.; Knepp, A.J.; Quintero, R.A.

    2007-07-01

    The Initial Single-Shell Tank System Performance Assessment for the Hanford Site (SST PA) presents the analysis of the long-term impacts of residual wastes assumed to remain after retrieval of tank wastes and closure of the SST farms at the U.S. Department of Energy (DOE) Hanford Site. The SST PA supports key elements of the closure process agreed upon in 2004 by DOE, the Washington State Department of Ecology (Ecology), and the U.S. Environmental Protection Agency (EPA). The SST PA element is defined in Appendix I of the Hanford Federal Facility Agreement and Consent Order (HFFACO) (Ecology et al. 1989), the document that establishes the overall closure process for the SST and double-shell tank (DST) systems. The approach incorporated in the SST PA integrates substantive features of both hazardous and radioactive waste management regulations into a single analysis. The defense-in-depth approach used in this analysis defined two major engineering barriers (a surface barrier and the grouted tank structure) and one natural barrier (the vadose zone) that will be relied on to control waste release into the accessible environment and attain expected performance metrics. The analysis evaluates specific barrier characteristics and other site features that influence contaminant migration by the various pathways. A 'reference' case and a suite of sensitivity/uncertainty cases are considered. The 'reference case' evaluates environmental impacts assuming central tendency estimates of site conditions. 'Reference' case analysis results show residual tank waste impacts on nearby groundwater, air resources; or inadvertent intruders to be well below most important performance objectives. Conversely, past releases to the soil, from previous tank farm operations, are shown to have groundwater impacts that are significantly above most performance objectives. Sensitivity/uncertainty cases examine single and multiple parameter variability along with plausible alternatives to 'reference

  10. Environmental disasters: preparing for impact assessments and operational feedback.

    PubMed

    Verger, Pierre; Bard, Denis; Noiville, Christine; Lahidji, Reza

    2008-01-01

    On March 24, 2006, the French Minister of Environment asked the Committee for Prevention and Precaution (CPP), an independent multidisciplinary committee created in 1996, to conduct a methodological analysis of operational feedback of natural and technological disasters to determine if France is equipped to collect the information and data necessary for the assessment, and optimal management of a disaster and its consequences. The Committee's analysis was based on the testimony it heard from 13 experts--scientists and representatives of associations and advocacy groups--and its review of the literature, including operational feedback reports. Its response to the Minister focused on the assessment of the health, social, environmental, and economic impacts of disasters and on their operational feedback (defined as the systematic analysis of a past event to draw lessons for the management of the risk), as practiced in France. It presents the results of the literature review about the consequences of disasters, expert's views on the current utility and limitations of impact assessments and operational feedback, the CPP's discussion of these results, and its recommendations to improve impact assessment and operational feedback of disasters. These recommendations cover preparation for and activation of data collection and operational feedback, financial provisions, coordination of stakeholders, education and training in disaster preparedness, and the distribution and use of data from operational feedback.

  11. ANNUAL HANFORD SITE ENVIRONMENTAL PERMITTING STATUS REPORT

    SciTech Connect

    WELSCH, K.R.

    2004-11-10

    The information contained in, and/or referenced in, this ''Annual Hanford Site Environmental Permitting Status Report'' addresses Hanford Facility Resource Conservation and Recovery Act Permit (Permit) condition II.W (Other Permits and/or Approvals), issued by the Washington State Department of Ecology (WA7890008967). Permit Condition II.W specifies that the Permittees are responsible for obtaining all other applicable federal, state, and local permits authorizing the development and operation of the Hanford facility. This status report also addresses Permit Condition I.E.22, as interpreted in Section 12.1.25 of the Hanford Facility Dangerous Waste Permit Application, General Information Portion (DOE/RL-91-28, latest revision), that states this report will be prepared annually and a copy of this report will be placed in the Facility Operating Record, General Information file by October 1 of each year. DOE has proposed to eliminate Permit Condition I.E.22 requirement from DOE/RL-91-28 because this report is not required by WAC 173-303-390. The ''Annual Hanford Site Environmental Permitting Status Report'' includes, but is not limited to the following types of environmental permits: (1) The Hazardous Waste Management Program as defined in 40 CFR Part 261; (2) The Underground Injection Control Program under the state Waste Discharge Program; (3) The National Pollution Discharge Elimination System under the Clean Air Act; (4) The Prevention of Significant Deterioration program under the Clean Air Act; (5) The National Emission Standards for Hazardous Pollutants under the Clean Air Act; (6) And other sitewide environmental permits including solid waste, state waste discharge, onsite sewage system, and underground storage tanks. Emission units/points that are currently regulated under CERCLA are no longer included in this report. The report provides a cross-reference of the environmental permits and construction approvals for the various Hanford Site ''Resource

  12. Fiscal year 1991 report on archaeological surveys of the 100 Areas, Hanford Site, Washington

    SciTech Connect

    Chatters, J.C.; Gard, H.A.; Minthorn, P.E.

    1992-09-01

    In compliance with Section 106 of the National Historic Preservation Act (NHPA), and at the request of Westinghouse Hanford Company, the Hanford Cultured Resources Laboratory (HCRL) conducted an archaeological survey during FY 1991 of the 100-Area reactor compounds on the US Department of Energy's Hanford Site. This survey was conducted as part of a comprehensive resources review of 100-Area Comprehensive Environmental Response, Compensation, and Liability Act (CERCLA) operable units in support of CERCLA characterization activities. The work included a lite and records review and pedestrian survey of the project area following procedures set forth in the Hanford Cultural Resources Management Plan.

  13. Fiscal year 1991 report on archaeological surveys of the 100 Areas, Hanford Site, Washington

    SciTech Connect

    Chatters, J.C.; Gard, H.A.; Minthorn, P.E.

    1992-09-01

    In compliance with Section 106 of the National Historic Preservation Act (NHPA), and at the request of Westinghouse Hanford Company, the Hanford Cultured Resources Laboratory (HCRL) conducted an archaeological survey during FY 1991 of the 100-Area reactor compounds on the US Department of Energy`s Hanford Site. This survey was conducted as part of a comprehensive resources review of 100-Area Comprehensive Environmental Response, Compensation, and Liability Act (CERCLA) operable units in support of CERCLA characterization activities. The work included a lite and records review and pedestrian survey of the project area following procedures set forth in the Hanford Cultural Resources Management Plan.

  14. DEEP VADOSE ZONE CONTAMINATION DUE TO RELEASES FROM HANFORD SITE TANKS

    SciTech Connect

    JARAYSI MN

    2008-01-22

    CH2M HILL Hanford Group, Inc. (the Hanford Tank Farm Operations contractor) and the Department of Energy's Office of River Protection have just completed the first phase of the Hanford Single-Shell Tank RCRA Corrective Action Program. The focus of this first phase was to characterize the nature and extent of past Hanford single-shell tank releases and to characterize the resulting fate and transport of the released contaminants. Most of these plumes are below 20 meters, with some reaching groundwater (at 60 to 120 meters below ground surface [bgs]).

  15. Hanford well custodians. Revision 1

    SciTech Connect

    Schatz, A.L.; Underwood, D.J.

    1995-02-02

    The Hanford Site Groundwater Protection Management Program recognized the need to integrate monitoring well activities in a centralized manner. A key factor to Hanford Site well integration was the need to clearly identify a responsible party for each of the wells. WHC was asked to identify all wells on site, the program(s) using each well, and the program ultimately responsible for the well. This report lists the custodian and user(s) for each Hanford well and supplies a comprehensive list of all decommissioned and orphaned wells on the Hanford Site. This is the first update to the original report released in December 1993.

  16. Environmental Impacts from the Operation of Cooling Towers at SRP

    SciTech Connect

    Smith, F.G. III

    2001-06-26

    An assessment has been made of the environmental effects that would occur from the operation of cooling towers at the SRP reactors. A more realistic numerical model of the cooling tower plume has been used to reassess the environmental impacts. The following effects were considered: (1) the occurrence of fog and ice and their impact on nearby structures, (2) drift and salt deposition from the plume, (3) the length and height of the visible plume, and (4) the possible dose from tritium.

  17. NASA/MOD Operations Impacts from Shuttle Program

    NASA Technical Reports Server (NTRS)

    Fitzpatrick, Michael; Mattes, Gregory; Grabois, Michael; Griffith, Holly

    2011-01-01

    Operations plays a pivotal role in the success of any human spaceflight program. This paper will highlight some of the core tenets of spaceflight operations from a systems perspective and use several examples from the Space Shuttle Program to highlight where the success and safety of a mission can hinge upon the preparedness and competency of the operations team. Further, awareness of the types of operations scenarios and impacts that can arise during human crewed space missions can help inform design and mission planning decisions long before a vehicle gets into orbit. A strong operations team is crucial to the development of future programs; capturing the lessons learned from the successes and failures of a past program will allow for safer, more efficient, and better designed programs in the future. No matter how well a vehicle is designed and constructed, there are always unexpected events or failures that occur during space flight missions. Preparation, training, real-time execution, and troubleshooting are skills and values of the Mission Operations Directorate (MOD) flight controller; these operational standards have proven invaluable to the Space Shuttle Program. Understanding and mastery of these same skills will be required of any operations team as technology advances and new vehicles are developed. This paper will focus on individual Space Shuttle mission case studies where specific operational skills, techniques, and preparedness allowed for mission safety and success. It will detail the events leading up to the scenario or failure, how the operations team identified and dealt with the failure and its downstream impacts. The various options for real-time troubleshooting will be discussed along with the operations team final recommendation, execution, and outcome. Finally, the lessons learned will be summarized along with an explanation of how these lessons were used to improve the operational preparedness of future flight control teams.

  18. The impact of urban operations on helicopter noise requirements

    NASA Technical Reports Server (NTRS)

    Spector, S. R.

    1978-01-01

    The interrelationship of urban helicopter operations, helicopter noise, and the establishment of urban public-use heliports is discussed. Public resistance to urban helicopter operations due to concern for safety and noise is shown to negatively impact the establishment of public-use heliports in urban centers. It is indicated that increased government and industry effort to reduce helicopter noise is needed to ensure continued growth in the helicopter industry.

  19. The Impact of Unmanned Aerial Systems on Joint Operational Art

    DTIC Science & Technology

    2012-05-17

    The Impact of Unmanned Aerial Systems on Joint Operational Art A Monograph by Major Joel E Pauls USAF School of Advanced Military Studies...Unmanned Aerial Systems on Joint Operational Art 6. AUTHOR(S) Joel E. Pauls Major, United States Air Force 7. PERFORMING ORGANIZATION NAME(S) AND...Approved for Public Release; Distribution is Unlimited 13. ABSTRACT (Maximum 200 Words) The use of Unmanned Aerial Systems (UAS) by the United States

  20. HANFORD TANK CLEANUP UPDATE

    SciTech Connect

    BERRIOCHOA MV

    2011-04-07

    Access to Hanford's single-shell radioactive waste storage tank C-107 was significantly improved when workers completed the cut of a 55-inch diameter hole in the top of the tank. The core and its associated cutting equipment were removed from the tank and encased in a plastic sleeve to prevent any potential spread of contamination. The larger tank opening allows use of a new more efficient robotic arm to complete tank retrieval.

  1. Hanford analytical services quality assurance requirements documents

    SciTech Connect

    Hyatt, J.E.

    1997-09-25

    Hanford Analytical Services Quality Assurance Requirements Document (HASQARD) is issued by the Analytical Services, Program of the Waste Management Division, US Department of Energy (US DOE), Richland Operations Office (DOE-RL). The HASQARD establishes quality requirements in response to DOE Order 5700.6C (DOE 1991b). The HASQARD is designed to meet the needs of DOE-RL for maintaining a consistent level of quality for sampling and field and laboratory analytical services provided by contractor and commercial field and laboratory analytical operations. The HASQARD serves as the quality basis for all sampling and field/laboratory analytical services provided to DOE-RL through the Analytical Services Program of the Waste Management Division in support of Hanford Site environmental cleanup efforts. This includes work performed by contractor and commercial laboratories and covers radiological and nonradiological analyses. The HASQARD applies to field sampling, field analysis, and research and development activities that support work conducted under the Hanford Federal Facility Agreement and Consent Order Tri-Party Agreement and regulatory permit applications and applicable permit requirements described in subsections of this volume. The HASQARD applies to work done to support process chemistry analysis (e.g., ongoing site waste treatment and characterization operations) and research and development projects related to Hanford Site environmental cleanup activities. This ensures a uniform quality umbrella to analytical site activities predicated on the concepts contained in the HASQARD. Using HASQARD will ensure data of known quality and technical defensibility of the methods used to obtain that data. The HASQARD is made up of four volumes: Volume 1, Administrative Requirements; Volume 2, Sampling Technical Requirements; Volume 3, Field Analytical Technical Requirements; and Volume 4, Laboratory Technical Requirements. Volume 1 describes the administrative requirements

  2. Hanford Site National Environmental Policy Act (NEPA) Characterization

    SciTech Connect

    Neitzel, Duane A.; Bunn, Amoret L.; Duncan, Joanne P.; Eschbach, Tara O.; Fowler, Richard A.; Fritz, Brad G.; Goodwin, Shannon M.; Harvey, David W.; Hendrickson, Paul L.; Hoitink, Dana J.; Horton, Duane G.; Last, George V.; Poston, Ted M.; Prendergast-Kennedy, Ellen L.; Rohay, Alan C.; Scott, Michael J.; Thorne, Paul D.

    2002-09-01

    This document describes the U.S. Department of Energy's (DOE) Hanford Site environment. It is updated each year and is intended to provide a consistent description of the Hanford Site environment for the many National Environmental Policy Act (NEPA) documents being prepared by DOE contractors. No statements of significance or environmental consequences are provided. This year's report is the thirteenth revision of the original document published in 1988 and is (until replaced by the fourteenth revision) the only version that is relevant for use in the preparation of Hanford NEPA, State Environmental Policy Act (SEPA), and Comprehensive Environmental Response, Compensation, and Liability Act (CERCLA) documents. The two chapters included in this document (Chapters 4 and 6) are numbered to correspond to the chapters where such information is typically presented in environmental impact statements (Weiss) and other Hanford Site NEPA or CERCLA documentation. Chapter 4.0 (Affected Environment) describes Hanford Site climate and meteorology, geology, hydrology, ecology, cultural, archaeological, and historical resources, socioeconomics, occupational safety, and noise. Chapter 6.0 (Statutory and Regulatory Requirements) describes federal and state laws and regulations, DOE directives and permits, and presidential executive orders that are applicable to the NEPA documents prepared for Hanford Site activities.

  3. Hanford Site National Environmental Policy Act (NEPA) Characterization Report

    SciTech Connect

    Neitzel, Duane A.; Bunn, Amoret L.; Cannon, Sandra D.; Duncan, Joanne P.; Fowler, Richard A.; Fritz, Brad G.; Harvey, David W.; Hendrickson, Paul L.; Hoitink, Dana J.; Horton, Duane G.; Last, George V.; Poston, Ted M.; Prendergast-Kennedy, Ellen L.; Reidel, Steve P.; Rohay, Alan C.; Scott, Michael J.; Thorne, Paul D.

    2004-09-22

    This document describes the U.S. Department of Energy's (DOE) Hanford Site environment. It is updated each year and is intended to provide a consistent description of the Hanford Site environment for the many National Environmental Policy Act (NEPA) documents being prepared by DOE contractors. No statements of significance or environmental consequences are provided. This year's report is the sixteenth revision of the original document published in 1988 and is (until replaced by the seventeenth revision) the only version that is relevant for use in the preparation of Hanford NEPA, State Environmental Policy Act (SEPA), and Comprehensive Environmental Response, Compensation, and Liability Act (CERCLA) documents. The two chapters included in this document (Chapters 4 and 6) are numbered to correspond to the chapters where such information is typically presented in environmental impact statements (Weiss) and other Hanford Site NEPA or CERCLA documentation. Chapter 4.0 (Affected Environment) describes Hanford Site climate and meteorology, geology, hydrology, ecology, cultural, archaeological, and historical resources, socioeconomics, occupational safety and health, and noise. Chapter 6.0 (Statutory and Regulatory Requirements) describes federal and state laws and regulations, DOE directives and permits, and presidential executive orders that are applicable to the NEPA documents prepared for Hanford Site activities.

  4. Hanford Site National Environmental Policy Act (NEPA) Characterization, Revision 15

    SciTech Connect

    Neitzel, Duane A.; Bunn, Amoret L.; Burk, Kenneth W.; Cannon, Sandra D.; Duncan, Joanne P.; Fowler, Richard A.; Fritz, Brad G.; Harvey, David W.; Hendrickson, Paul L.; Horton, Duane G.; Last, George V.; Poston, Ted M.; Prendergast-Kennedy, Ellen L.; Reidel, Steve P.; Scott, Michael J.; Thorne, Paul D.; Woody, Dave M.

    2003-09-01

    This document describes the U.S. Department of Energy's (DOE) Hanford Site environment. It is updated each year and is intended to provide a consistent description of the Hanford Site environment for the many National Environmental Policy Act (NEPA) documents being prepared by DOE contractors. No statements of significance or environmental consequences are provided. This year's report is the thirteenth revision of the original document published in 1988 and is (until replaced by the fourteenth revision) the only version that is relevant for use in the preparation of Hanford NEPA, State Environmental Policy Act (SEPA), and Comprehensive Environmental Response, Compensation, and Liability Act (CERCLA) documents. The two chapters included in this document (Chapters 4 and 6) are numbered to correspond to the chapters where such information is typically presented in environmental impact statements (Weiss) and other Hanford Site NEPA or CERCLA documentation. Chapter 4.0 (Affected Environment) describes Hanford Site climate and meteorology, geology, hydrology, ecology, cultural, archaeological, and historical resources, socioeconomics, occupational safety, and noise. Chapter 6.0 (Statutory and Regulatory Requirements) describes federal and state laws and regulations, DOE directives and permits, and presidential executive orders that are applicable to the NEPA documents prepared for Hanford Site activities.

  5. Hanford Site National Environmental Policy Act (NEPA) Characterization

    SciTech Connect

    Neitzel, Duane A.; Antonio, Ernest J.; Eschbach, Tara O.; Fowler, Richard A.; Goodwin, Shannon M.; Harvey, David W.; Hendrickson, Paul L.; Hoitink, Dana J.; Horton, Duane G.; Last, George V.; Poston, Ted M.; Prendergast, Ellen L.; Rohay, Alan C.; Thorne, Paul D.

    2001-09-01

    This document describes the U.S. Department of Energy's (DOE) Hanford Site environment. It is updated each year and is intended to provide a consistent description of the Hanford Site environment for the many National Environmental Policy Act (NEPA) documents being prepared by DOE contractors. No statements of significance or environmental consequences are provided. This year's report is the thirteenth revision of the original document published in 1988 and is (until replaced by the fourteenth revision) the only version that is relevant for use in the preparation of Hanford NEPA, State Environmental Policy Act (SEPA), and Comprehensive Environmental Response, Compensation, and Liability Act (CERCLA) documents. The two chapters included in this document (Chapters 4 and 6) are numbered to correspond to the chapters where such information is typically presented in environmental impact statements (Weiss) and other Hanford Site NEPA or CERCLA documentation. Chapter 4.0 (Affected Environment) describes Hanford Site climate and meteorology, geology, hydrology, ecology, cultural, archaeological, and historical resources, socioeconomics, occupational safety, and noise. Chapter 6.0 (Statutory and Regulatory Requirements) describes federal and state laws and regulations, DOE directives and permits, and presidential executive orders that are applicable to the NEPA documents prepared for Hanford Site activities.

  6. Hanford Site National Environmental Policy Act (NEPA) characterization. Revision 8

    SciTech Connect

    Neitzel, D.A.; Bjornstad, B.N.; Fosmire, C.J.; Fowler, R.A.

    1996-08-01

    This eighth revision of the Hanford Site National Environmental Policy Act (NEPA) Characterization presents current environmental data regarding the Hanford Site and its immediate environs. This information is intended for use in preparing Chapters 4 and 6 in Hanford Site-related NEPA documents. Chapter 4 (Affected Environment) includes information on climate and meteorology, geology, hydrology, ecology, historical, archaeological and cultural resources, socioeconomics, and noise. Chapter 6 (Statutory and Regulatory Requirements) provides the preparer with the federal and state regulations, DOE directives and permits, and environmental standards directly applicable to the NEPA documents on the Hanford Site. The following sections were updated in this revision: climate and meteorology; ecology (threatened and endangered species section only); historical; archaeological and cultural resources; and all of chapter 6. No conclusions or recommendations are given in this report. Rather, it is a compilation of information on the Hanford Site environment that can be used directly by Site contractors. This information can also be used by any interested individual seeking baseline data on the hanford Site and its past activities by which to evaluate projected activities and their impacts.

  7. Westinghouse Hanford Company 100 Areas environmental releases for 1989

    SciTech Connect

    Rokkan, D.J.

    1990-11-01

    This document contains information on nonradioactive and radioactive substances released to the environment from Westinghouse Hanford Company (Westinghouse Hanford) facilities in the 100 Areas during calendar year 1989. Analyses of samples routinely collected from radioactive liquid and airborne streams were performed by a contract laboratory and the Westinghouse Hanford 100-N radioanalytical laboratory. Analyses of nonradioactive constituents were performed by the Hanford Environmental Health Foundation and the Westinghouse Hanford 100-N water chemistry laboratory. The N Reactor has been shutdown since January 7, 1987. Because of this continued shutdown, both the radiological and chemical releases in 1989 were generally less than in previous years. The extended shutdown was initially ordered to allow upgrading of reactor safety systems. Following completion of most upgrades, N Reactor has remained shutdown, in cold standby.'' The reactor has been kept in cold standby due to recent decisions affecting its role in the production of special nuclear materials. No adverse trends were observed in the routine discharges of radioactive and chemical constitutents. Releases from 100-N Area were within the Westinghouse Hanford technical specifications that limit operation of the N Reactor. 10 refs., 21 tabs.

  8. Evaluation of Soil Flushing for Application to the Deep Vadose Zone in the Hanford Central Plateau

    SciTech Connect

    Truex, Michael J.; Oostrom, Martinus; Zhang, Z. F.; Carroll, Kenneth C.; Schramke, Janet A.; Wietsma, Thomas W.; Tartakovsky, Guzel D.; Gordon, Kathryn A.; Last, George V.

    2010-11-01

    Soil flushing was included in the Deep Vadose Zone Treatability Test Plan for the Hanford Central Plateau as a technology with the potential to remove contaminants from the vadose zone. Soil flushing operates through the addition of water, and if necessary an appropriate mobilizing agent, to mobilize contaminants and flush them from the vadose zone and into the groundwater where they are subsequently captured by a pump-and-treat system. There are uncertainties associated with applying soil flushing technology to contaminants in the deep vadose zone at the Hanford Central Plateau. The modeling and laboratory efforts reported herein are intended to provide a quantitative assessment of factors that impact water infiltration and contaminant flushing through the vadose zone and into the underlying groundwater. Once in the groundwater, capture of the contaminants would be necessary, but this aspect of implementing soil flushing was not evaluated in this effort. Soil flushing was evaluated primarily with respect to applications for technetium and uranium contaminants in the deep vadose zone of the Hanford Central Plateau.

  9. A preliminary examination of audience-related communications issues for the Hanford Environmental Dose Reconstruction Project

    SciTech Connect

    Holmes, C.W.

    1991-04-01

    The Hanford Environmental Dose Reconstruction (HEDR) Project will estimate radiation doses people may have received from exposure to radioactive materials released during past operations at the US Department of Energy's (DOE) Hanford Site near Richland, Washington. The HEDR Project was initiated in response to public concerns about possible health impacts from past releases of radioactive materials from Hanford. The TSP recognized early in the project that special mechanisms would be required to effectively communicate to the many different concerned audiences. Accordingly, the TSP directed PNL to examine methods for communicating causes and effects of uncertainties in the dose estimates. After considering the directive and discussing it with the Communications Subcommittee of the TSP, PNL undertook a broad investigation of communications methods to consider for inclusion in the TSP's current communications program. As part of this investigation, a literature review was conducted regarding risk communications. A key finding was that, in order to successfully communicate risk-related information, a thorough understanding of the knowledge level, concerns and information needs of the intended recipients (i.e., the audience) is necessary. Hence, a preliminary audience analysis was conducted as part of the present research. This report summarizes the results of this analysis. 1 ref., 9 tabs.

  10. Site support program plan for ICF Kaiser Hanford Company, Revision 1

    SciTech Connect

    1995-10-01

    This document is the general administrative plan implemented by the Hanford Site contractor, ICF Kaiser Hanford Company. It describes the mission, administrative structure, projected staffing, to be provided by the contractor. The report breaks out the work responsibilities within the different units of the company, a baseline schedule for the different groups, and a cost summary for the different operating units.

  11. Draft environmental impact statement for the siting, construction, and operation of New Production Reactor capacity. Volume 1, Summary

    SciTech Connect

    Not Available

    1991-04-01

    This Environmental Impact Statement (EIS) assesses the potential environmental impacts, both on a broad programmatic level and on a project-specific level, concerning a proposed action to provide new tritium production capacity to meet the nation`s nuclear defense requirements well into the 21st century. A capacity equivalent to that of about a 3,000-megawatt (thermal) heavy-water reactor was assumed as a reference basis for analysis in this EIS; this is the approximate capacity of the existing production reactors at DOE`s Savannah River Site near Aiken, South Carolina. The EIS programmatic alternatives address Departmental decisions to be made on whether to build new production facilities, whether to build one or more complexes, what size production capacity to provide, and when to provide this capacity. Project-specific impacts for siting, constructing, and operating new production reactor capacity are assessed for three alternative sites: the Hanford Site near Richland, Washington; the Idaho National Engineering Laboratory near Idaho Falls, Idaho; and the Savannah River Site. For each site, the impacts of three reactor technologies (and supporting facilities) are assessed: a heavy-water reactor, a light-water reactor, and a modular high-temperature gas-cooled reactor. Impacts of the no-action alternative also are assessed. The EIS evaluates impacts related to air quality; noise levels; surface water, groundwater, and wetlands; land use; recreation; visual environment; biotic resources; historical, archaeological, and cultural resources; socioeconomics; transportation; waste management; and human health and safety. The EIS describes in detail the potential radioactive releases from new production reactors and support facilities and assesses the potential doses to workers and the general public.

  12. Draft environmental impact statement siting, construction, and operation of New Production Reactor capacity. Volume 4, Appendices D-R

    SciTech Connect

    1991-04-01

    This Environmental Impact Statement (EIS) assesses the potential environmental impacts, both on a broad programmatic level and on a project-specific level, concerning a proposed action to provide new tritium production capacity to meet the nation`s nuclear defense requirements well into the 21st century. A capacity equivalent to that of about a 3,000-megawatt (thermal) heavy-water reactor was assumed as a reference basis for analysis in this EIS; this is the approximate capacity of the existing production reactors at DOE`s Savannah River Site near Aiken, South Carolina. The EIS programmatic alternatives address Departmental decisions to be made on whether to build new production facilities, whether to build one or more complexes, what size production capacity to provide, and when to provide this capacity. Project-specific impacts for siting, constructing, and operating new production reactor capacity are assessed for three alternative sites: the Hanford Site near Richland, Washington; the Idaho National Engineering Laboratory near Idaho Falls, Idaho; and the Savannah River Site. For each site, the impacts of three reactor technologies (and supporting facilities) are assessed: a heavy-water reactor, a light-water reactor, and a modular high-temperature gas-cooled reactor. Impacts of the no-action alternative also are assessed. The EIS evaluates impacts related to air quality; noise levels; surface water, groundwater, and wetlands; land use; recreation; visual environment; biotic resources; historical, archaeological, and cultural resources; socioeconomics; transportation; waste management; and human health and safety. The EIS describes in detail the potential radioactive releases from new production reactors and support facilities and assesses the potential doses to workers and the general public. This volume contains 15 appendices.

  13. The Impact of a Simulation Game on Operations Management Education

    ERIC Educational Resources Information Center

    Pasin, Federico; Giroux, Helene

    2011-01-01

    This study presents a new simulation game and analyzes its impact on operations management education. The proposed simulation was empirically tested by comparing the number of mistakes during the first and second halves of the game. Data were gathered from 100 teams of four or five undergraduate students in business administration, taking their…

  14. The Impact of a Simulation Game on Operations Management Education

    ERIC Educational Resources Information Center

    Pasin, Federico; Giroux, Helene

    2011-01-01

    This study presents a new simulation game and analyzes its impact on operations management education. The proposed simulation was empirically tested by comparing the number of mistakes during the first and second halves of the game. Data were gathered from 100 teams of four or five undergraduate students in business administration, taking their…

  15. GROUNDWATER REMEDIATION SOLUTIONS AT HANFORD

    SciTech Connect

    Gilmore, Tyler J.; Truex, Michael J.; Williams, Mark D.

    2007-02-26

    In 2006, Congress provided funding to the U. S. Department of Energy (DOE) to study new technologies that could be used to treat contamination from the Hanford Site that might impact the Columbia River. The contaminants of concern are primarily metals and radionuclides, which are byproducts of Hanford’s cold war mission to produce plutonium for atomic weapons. The DOE asked Pacific Northwest National Laboratory (PNNL) to consider this problem and develop approaches to address the contamination that threatens the river. DOE identified three high priority sites that had groundwater contamination migrating towards the Columbia river for remediation. The contaminants included strontium-90, uranium and chromium. Remediation techniques for metals and radionuclides focus primarily on altering the oxidation state of the contaminant chemically or biologically, isolating the contaminants from the environment through adsorption or encapsulation or concentrating the contaminants for removal. A natural systems approach was taken that uses a mass balance concept to frame the problem and determine the most appropriate remedial approach. This approach provides for a scientifically based remedial decision. The technologies selected to address these contaminants included an apatite adsorption barrier coupled with a phytoremediation to address the strontium-90 contamination, injection of polyphosphate into the subsurface to sequester uranium, and a bioremediation approach to reduce chromium contamination in the groundwater. The ability to provide scientifically based approaches is in large part due to work developed under previous DOE Office of Science and Office of Environmental Management projects. For example, the polyphosphate and the bioremediation techniques, were developed by PNNL under the EMSP and NABIR programs. Contaminated groundwater under the Hanford Site poses a potential risk to humans and the Columbia River. These new technologies holds great promise for

  16. Environmental Impact Analysis Process. Environmental Impact Statement. Supersonic Flight Operations in the Reserve Military Operations Area, Holloman AFB, New Mexico

    DTIC Science & Technology

    1983-09-01

    mexicanus Muskrat Ondatra zibethica OLD WORLD RATS AND MICE MURIDAE Black Rat Rattus rattus House Mouse Mus musculus PORCUPINE ERETHIZONIDAE 5 Porcupine...carpet was a band about 16 feet wide parallel to the curved flight track. At the point where the overpressure is twice the nominal carpet, the width...iEFER TO: AS3 mU BJECT: Environmental Impact Statement - Supersonic Flight Operations in the Reserve Military Operations Area, Holloman AFB, New Mexico

  17. Hanford Environmental Management Program plan; Revision 1

    SciTech Connect

    DeFigh-Price, C.

    1990-08-01

    The Hanford Environmental Management Program (HEMP) was established in November 1986 by the US Department of Energy-Richland Operations Office. Westinghouse Hanford Company has been assigned responsibility to manage this program. The program`s goal is to integrate environmental activities such as regulatory reporting and planning and to facilitate compliance with environmental regulations. Key activities include preparing and/or coordinating waste management and environmental restoration site-wide planning documents, maintaining the Waste Inventory Data System, coordinating site-wide regulatory reporting (SARA Title III, Dangerous Waste Report, etc.), Tri-Party Agreement Administration and Base (nonprogram specific) regulatory permitting and National Environmental Policy Act activities. Fiscal year (FY) 1991 is the first year this activity will be directly funded. This document describes accomplishments in FY 1990, the scope of work funded by this program for FY 1991, the prioritized tasks covered, and the management structure in place. 16 refs., 4 figs., 1 tab.

  18. Annual Hanford Site Environmental Permitting status report

    SciTech Connect

    SONNICHSEN, J.C.

    1999-10-18

    The information contained in, and/or referenced in, this Annual Hanford Site Environmental Permitting Status Report addresses Permit Condition II.W (Other Permits and/or Approvals) of the Dangerous Waste Portion of the Resource Conservation and Recovery Act Permit for the Treatment, Storage, and Disposal of Dangerous Waste, issued by the Washington State Department of Ecology (WA7890008967). Condition II.W specifies that the Permittees are responsible for obtaining all other applicable federal, state, and local permits authorizing the development and operation of the Hanford Facility. Condition II.W further specifies that the Permittees are to use their best efforts to obtain such permits. For the purposes of this Permit Condition, ''best efforts'' mean submittal of documentation and/or approval(s) in accordance with schedules specified in applicable regulations, or as determined through negotiations with the applicable regulatory agencies.

  19. Review Of Rheology Modifiers For Hanford Waste

    SciTech Connect

    Pareizs, J. M.

    2013-09-30

    As part of Savannah River National Laboratory (SRNL)'s strategic development scope for the Department of Energy - Office of River Protection (DOE-ORP) Hanford Tank Waste Treatment and Immobilization Plant (WTP) waste feed acceptance and product qualification scope, the SRNL has been requested to recommend candidate rheology modifiers to be evaluated to adjust slurry properties in the Hanford Tank Farm. SRNL has performed extensive testing of rheology modifiers for use with Defense Waste Processing Facility (DWPF) simulated melter feed - a high undissolved solids (UDS) mixture of simulated Savannah River Site (SRS) Tank Farm sludge, nitric and formic acids, and glass frit. A much smaller set of evaluations with Hanford simulated waste have also been completed. This report summarizes past work and recommends modifiers for further evaluation with Hanford simulated wastes followed by verification with actual waste samples. Based on the review of available data, a few compounds/systems appear to hold the most promise. For all types of evaluated simulated wastes (caustic Handford tank waste and DWPF processing samples with pH ranging from slightly acidic to slightly caustic), polyacrylic acid had positive impacts on rheology. Citric acid also showed improvement in yield stress on a wide variety of samples. It is recommended that both polyacrylic acid and citric acid be further evaluated as rheology modifiers for Hanford waste. These materials are weak organic acids with the following potential issues: The acidic nature of the modifiers may impact waste pH, if added in very large doses. If pH is significantly reduced by the modifier addition, dissolution of UDS and increased corrosion of tanks, piping, pumps, and other process equipment could occur. Smaller shifts in pH could reduce aluminum solubility, which would be expected to increase the yield stress of the sludge. Therefore, it is expected that use of an acidic modifier would be limited to concentrations that do not

  20. Hanford site sodium management plan

    SciTech Connect

    Guttenberg, S.

    1995-09-25

    The Hanford Site Sodium Management Plan, Revision 1, provides changes to the major elements and management strategy to ensure an integrated and coordinated approach for disposition of the more than 350,000 gallons of sodium and related sodium facilities located at the DOE`s Hanford Site

  1. Hanford Waste Vitrification Plant technical manual

    SciTech Connect

    Larson, D.E.; Watrous, R.A.; Kruger, O.L.

    1996-03-01

    A key element of the Hanford waste management strategy is the construction of a new facility, the Hanford Waste Vitrification Plant (HWVP), to vitrify existing and future liquid high-level waste produced by defense activities at the Hanford Site. The HWVP mission is to vitrify pretreated waste in borosilicate glass, cast the glass into stainless steel canisters, and store the canisters at the Hanford Site until they are shipped to a federal geological repository. The HWVP Technical Manual (Manual) documents the technical bases of the current HWVP process and provides a physical description of the related equipment and the plant. The immediate purpose of the document is to provide the technical bases for preparation of project baseline documents that will be used to direct the Title 1 and Title 2 design by the A/E, Fluor. The content of the Manual is organized in the following manner. Chapter 1.0 contains the background and context within which the HWVP was designed. Chapter 2.0 describes the site, plant, equipment and supporting services and provides the context for application of the process information in the Manual. Chapter 3.0 provides plant feed and product requirements, which are primary process bases for plant operation. Chapter 4.0 summarizes the technology for each plant process. Chapter 5.0 describes the engineering principles for designing major types of HWVP equipment. Chapter 6.0 describes the general safety aspects of the plant and process to assist in safe and prudent facility operation. Chapter 7.0 includes a description of the waste form qualification program and data. Chapter 8.0 indicates the current status of quality assurance requirements for the Manual. The Appendices provide data that are too extensive to be placed in the main text, such as extensive tables and sets of figures. The Manual is a revision of the 1987 version.

  2. SAFETY AT FLUOR HANFORD (A) CASE STUDY - PREPARED BY THUNDERBIRD SCHOOL OF GLOBAL MANAGEMENT

    SciTech Connect

    ARNOLD LD

    2009-09-25

    By November of 1997, Fluor Hanford (Fluor) had been the site manager of the Hanford nuclear reservation for a year. The Hanford site had been established as part of the Manhattan Project in the 1940s that gave birth to the atomic bomb. Hanford produced two thirds of U.S. plutonium during the Cold War period. The Hanford site was half the size of Rhode Island and occupied 586 square miles in southeastern Washington State. The production of plutonium for more than 40 years left a huge legacy of chemical and radiological contamination: 80 square miles of contaminated groundwater; 2,300 tons of spent nuclear fuel stored in underwater basins; 20 tons of plutonium-laced contaminated materials; and 500 contaminated facilities. The cleanup involved a challenging combination of radioactive material handling within an infrastructure constructed in the 1940s and 1950s. The cleanup that began in 1988 was expected to take 30 years or more. Improving safety at Hanford had already proven to be a significant challenge. As the new site manager at Hanford, Fluor Hanford inherited lower- and mid-level managers and thousands of unionized employees, many of whom were second or third generation Hanford employees. These employees had seen many contractors come and go over the years. Some of the managers who had worked with the previous contractor saw Fluor's emphasis on safety as getting in the way of operations. Union-management relations were fractious. Hanford's culture was described as 'production driven-management told everyone what to do, and, if you didn't do it, there were consequences'. Worker involvement in designing and implementing safety programs was negligible. Fluor Hanford also was having trouble satisfying its client, the Department of Energy (DOE). The DOE did not see a clear path forward for performance improvements at Hanford. Clearly, major change was necessary, but how and where should it be implemented?

  3. CALCULATING ECONOMIC RISK AFTER HANFORD CLEANUP

    SciTech Connect

    Scott, M.J.

    2003-02-27

    Since late 1997, researchers at the Hanford Site have been engaged in the Groundwater Protection Project (formerly, the Groundwater/Vadose Zone Project), developing a suite of integrated physical and environmental models and supporting data to trace the complex path of Hanford legacy contaminants through the environment for the next thousand years, and to estimate corresponding environmental, human health, economic, and cultural risks. The linked set of models and data is called the System Assessment Capability (SAC). The risk mechanism for economics consists of ''impact triggers'' (sequences of physical and human behavior changes in response to, or resulting from, human health or ecological risks), and processes by which particular trigger mechanisms induce impacts. Economic impacts stimulated by the trigger mechanisms may take a variety of forms, including changes in either costs or revenues for economic sectors associated with the affected resource or activity. An existing local economic impact model was adapted to calculate the resulting impacts on output, employment, and labor income in the local economy (the Tri-Cities Economic Risk Model or TCERM). The SAC researchers ran a test suite of 25 realization scenarios for future contamination of the Columbia River after site closure for a small subset of the radionuclides and hazardous chemicals known to be present in the environment at the Hanford Site. These scenarios of potential future river contamination were analyzed in TCERM. Although the TCERM model is sensitive to river contamination under a reasonable set of assumptions concerning reactions of the authorities and the public, the scenarios show low enough future contamination that the impacts on the local economy are small.

  4. TECHNICAL ASSESSMENT OF BULK VITRIFICATION PROCESS & PRODUCT FOR TANK WASTE TREATMENT AT THE DEPARTMENT OF ENERGY HANFORD SITE

    SciTech Connect

    SCHAUS, P.S.

    2006-07-21

    At the U.S. Department of Energy (DOE) Hanford Site, the Waste Treatment Plant (WTP) is being constructed to immobilize both high-level waste (IUW) for disposal in a national repository and low-activity waste (LAW) for onsite, near-surface disposal. The schedule-controlling step for the WTP Project is vitrification of the large volume of LAW, current capacity of the WTP (as planned) would require 50 years to treat the Hanford tank waste, if the entire LAW volume were to be processed through the WTP. To reduce the time and cost for treatment of Hanford Tank Waste, and as required by the Tank Waste Remediation System Environmental Impact Statement Record of Decision and the Hanford Federal Facility Consent Agreement (Tn-Party Agreement), DOE plans to supplement the LAW treatment capacity of the WTP. Since 2002, DOE, in cooperation with the Environmental Protection Agency and State of Washington Department of Ecology has been evaluating technologies that could provide safe and effective supplemental treatment of LAW. Current efforts at Hanford are intended to provide additional information to aid a joint agency decision on which technology will be used to supplement the WTP. A Research, Development and Demonstration permit has been issued by the State of Washington to build and (for a limited time) operate a Demonstration Bulk Vitrification System (DBVS) facility to provide information for the decision on a supplemental treatment technology for up to 50% of the LAW. In the Bulk Vitrification (BV) process, LAW, soil, and glass-forming chemicals are mixed, dried, and placed in a refractory-lined box, Electric current, supplied through two graphite electrodes in the box, melts the waste feed, producing a durable glass waste-form. Although recent modifications to the process have resulted in significant improvements, there are continuing technical concerns.

  5. Impact of Scatterometer Ocean Wind Vector Data on NOAA Operations

    NASA Astrophysics Data System (ADS)

    Jelenak, Z.; Chang, P.; Brennan, M. J.; Sienkiewicz, J. M.

    2015-12-01

    Near real-time measurements of ocean surface vector winds (OSVW), including both wind speed and direction from non-NOAA satellites, are being widely used in critical operational NOAA forecasting and warning activities. The scatterometer wind data data have had major operational impact in: a) determining wind warning areas for mid-latitude systems (gale, storm,hurricane force); b) determining tropical cyclone 34-knot and 50-knot wind radii. c) tracking the center location of tropical cyclones, including the initial identification of their formation. d) identifying and warning of extreme gap and jet wind events at all latitudes. e) identifying the current location of frontal systems and high and low pressure centers. f) improving coastal surf and swell forecasts Much has been learned about the importance and utility of satellite OSVW data in operational weather forecasting and warning by exploiting OSVW research satellites in near real-time. Since December 1999 when first data from QuikSCAT scatterometer became available in near real time NOAA operations have been benefiting from ASCAT scatterometer observations on MetOp-A and B, Indian OSCAT scatterometer on OceanSat-3 and lately NASA's RapidScat mission on International Space Station. With oceans comprising over 70 percent of the earth's surface, the impacts of these data have been tremendous in serving society's needs for weather and water information and in supporting the nation's commerce with information for safe, efficient, and environmentally sound transportation and coastal preparedness. The satellite OSVW experience that has been gained over the past decade by users in the operational weather community allows for realistic operational OSVW requirements to be properly stated for future missions. Successful model of transitioning research data into operation implemented by Ocean Winds Team in NOAA's NESDIS/STAR office and subsequent data impacts will be presented and discussed.

  6. Quantifying impacts of heat waves on power grid operation

    SciTech Connect

    Ke, Xinda; Wu, Di; Rice, Jennie S.; Kintner-Meyer, Michael CW; Lu, Ning

    2016-12-01

    Climate change is projected to cause an increase in the severity and frequency of extreme weather events such as heat waves and droughts. Such changes present planning and operating challenges and risks to many economic sectors. In the electricity sector, statistics of extreme events in the past have been used to help plan for future peak loads, determine associated infrastructure requirements, and evaluate operational risks, but industry-standard planning tools have yet to be coupled with or informed by temperature models to explore the impacts of the "new normal" on planning studies. For example, high ambient temperatures during heat waves reduce the output capacity and efficiency of gas fired combustion turbines just when they are needed most to meet peak demands. This paper describes the development and application of a production cost and unit commitment model coupled to high resolution, hourly temperature data and a temperature dependent load model. The coupled system has the ability to represent the impacts of hourly temperatures on load conditions and available capacity and efficiency of combustion turbines, and therefore capture the potential impacts on system reliability and production cost. Ongoing work expands this capability to address the impacts of water availability and temperature on power grid operation.

  7. RETRIEVAL & TREATMENT OF HANFORD TANK WASTE

    SciTech Connect

    EACKER, J.A.; SPEARS, J.A.; STURGES, M.H.; MAUSS, B.M.

    2006-01-20

    The Hanford Tank Farms contain 53 million gal of radioactive waste accumulated during over 50 years of operations. The waste is stored in 177 single-shell and double-shell tanks in the Hanford 200 Areas. The single-shell tanks were put into operation from the early 1940s through the 1960s with wastes received from several generations of processing facilities for the recovery of plutonium and uranium, and from laboratories and other ancillary facilities. The overall hanford Tank Farm system represents one of the largest nuclear legacies in the world driving towards completion of retrieval and treatment in 2028 and the associated closure activity completion by 2035. Remote operations, significant radiation/contamination levels, limited access, and old facilities are just some of the challenges faced by retrieval and treatment systems. These systems also need to be able to successfully remove 99% or more of the waste, and support waste treatment, and tank closure. The Tank Farm retrieval program has ramped up dramatically in the past three years with design, fabrication, installation, testing, and operations ongoing on over 20 of the 149 single-shell tanks. A variety of technologies are currently being pursued to retrieve different waste types, applications, and to help establish a baseline for recovery/operational efficiencies. The paper/presentation describes the current status of retrieval system design, fabrication, installation, testing, readiness, and operations, including: (1) Saltcake removal progress in Tanks S-102, S-109, and S-112 using saltcake dissolution, modified sluicing, and high pressure water lancing techniques; (2) Sludge vacuum retrieval experience from Tanks C-201, C-202, C-203, and C-204; (3) Modified sluicing experience in Tank C-103; (4) Progress on design and installation of the mobile retrieval system for sludge in potentially leaking single-shell tanks, particularly Tank C-101; and (5) Ongoing installation of various systems in the next

  8. Ground water maps of Hanford Site Separations Areas, December 1989

    SciTech Connect

    Kasza, G.L.

    1990-06-01

    The Separations Areas consist of the 200 East and 200 West areas and the surrounding vicinity on the Hanford Site. Chemical processing operations are carried out in the Separations Areas by Westinghouse Hanford Company for the US Department of Energy-Richland Operations Office. This set of ground water maps consists of: (1) Separations Areas depth-to-water map, (2) Separations Areas water table map, and (3) a map comparing the potentiometric surface of the Rattlesnake Ridge confined aquifer with the water table of the unconfined aquifer. The field measurements for these maps were collected during December 1989. 3 figs., 1 tab.

  9. COMPREHENSIVE CLOSURE PLAN FOR THE HANFORD CENTRAL PLATEAU

    SciTech Connect

    LACKEY, M.B.

    2005-05-31

    This paper describes a comprehensive and strategic plan that has been recently developed for the environmental closure of the Central Plateau area of the Hanford Site, a former weapons-production complex managed by the U.S. Department of Energy (DOE). This approach was submitted to the DOE Richland Operations Office by Fluor Hanford to provide a framework and roadmap to integrate ongoing operations with closure of facilities that are no longer actively used--all with a view to closing the Central Plateau by 2035. The plan is currently under consideration by the DOE.

  10. Search Hanford accessible reports electronically system design description. Revision 1

    SciTech Connect

    Gilomen, T.L.

    1995-12-31

    The Search Hanford Accessible Records Electronically (SHARE) system was produced by a combined team of personnel from Westinghouse Hanford Company (WHC) Corrective Action Data Systems (CADS) and Information Resource Management (IRM) Information and Scientific Systems (ISS) organizations. The ESQD Text Evaluation and exchange Tool (ETEXT) prototype was used as a basis for the requirements used to support this design/build effort. TOPIC was used to build the SHARE application. TOPIC is a text search and retrieval software product produced by the Verity Corporation. The TOPIC source code is not provided with the product, and the programs cannot be changed. TOPIC can be customized for special requirements. The software is fully documented. Help messages, menu and screen layouts, command edits and options, and internal system design are all described in the TOPIC documentation. This System Design Description (SDD) will not reiterate the TOPIC documentation and design. Instead, it will focus on the SHARE installation of TOPIC. This SDD is designed to assist the SHARE database/infobase administrator (DBA) in maintaining and supporting the application. It assumes that the assigned DBA is knowledgeable in using the TOPIC product, and is also knowledgeable in using a personal computer (PC), Disk Operating System (DOS) commands, and the document WHC-CM-3-10. SHARE is an Impact Level 4 system, and all activities related to SHARE must conform with the WHC-CM-3-10 procedures for an Impact Level 4 system. The Alternatives Analysis will be treated as a level 3-Q document, to allow for reference by potential future projects.

  11. Hanford tanks initiative plan

    SciTech Connect

    McKinney, K.E.

    1997-07-01

    Abstract: The Hanford Tanks Initiative (HTI) is a five-year project resulting from the technical and financial partnership of the U.S. Department of Energy`s Office of Waste Management (EM-30) and Office of Science and Technology Development (EM-50). The HTI project accelerates activities to gain key technical, cost performance, and regulatory information on two high-level waste tanks. The HTI will provide a basis for design and regulatory decisions affecting the remainder of the Tank Waste Remediation System`s tank waste retrieval Program.

  12. ANNUAL HANFORD SITE ENVIRONMENTAL PERMITTING STATUS REPORT

    SciTech Connect

    SONNICHSEN, J.C.

    2003-09-11

    The information contained in, and/or referenced in, this ''Annual Hanford Site Environmental Permitting Status Report'' addresses Permit Condition II.W (Other Permits and/or Approvals) of the ''Dangerous Waste Portion of the Resource Conservation and Recovery Act Permit for the Treatment, Storage, and Disposal of Dangerous Waste'', issued by the Washington State Department of Ecology (WA7890008967). Condition II.W specifies that the Permittees are responsible for obtaining all other applicable federal, state, and local permits authorizing the development and operation of the Hanford Facility. This status report also addresses Permit Condition I.E.22, as interpreted in Section 12.1.25 of the ''Hanford Facility Dangerous Waste Permit Application, General Information Portion'' (DOE/RL-91-28, latest revision), that states this report will be prepared annually and a copy of this report will be placed in the Facility Operating Record, General Information file by October 1 of each year. The Washington State Department of Ecology ''Dangerous Waste Regulations'' (WAC 173-303) recently were amended to require that all Part As for final status permit applications include a listing of specific environmental permits and construction approvals for various environmental programs. The list of environmental programs is provided in WAC 173-303-803(3)(k). In response to this requirement, a list is provided that provides a cross-reference of the environmental permits and construction approvals for the various Hanford Site ''Resource Conservation and Recovery Act of 1976'' treatment, storage, and/or disposal units that are incorporated or are scheduled for incorporation as final status operating treatment, storage, and/or disposal units. In support of the previously discussed requirement (WAC 173-303-803(3)(k)), the ''Annual Hanford Site Environmental Permitting Status Report'' includes, but is not limited to the following types of environmental permits: (1) The Hazardous Waste

  13. Annual Hanford Site Environmental Permitting Status Report

    SciTech Connect

    HOMAN, N.A.

    2002-09-16

    The information contained in, and/or referenced in, this Annual Hanford Site Environmental Permitting Status Report addresses Permit Condition I1.W (Other Permits and/or Approvals) of the Dangerous Waste Portion of the Resource Conservation and Recovery Act Permit for the Treatment, Storage, and Disposal of Dangerous Waste, issued by the Washington State Department of Ecology (WA7890008967). Condition II.W specifies that the Permittees are responsible for obtaining all other applicable federal, state, and local permits authorizing the development and operation of the Hanford Facility. This status report also addresses Permit Condition LE.22, as interpreted in Section 12.1.25 of the Hanford Facility Dangerous Waste Permit Application, General Information Portion (DOE/RL-91-28, latest revision), that states this report will be prepared annually and a copy of this report will be placed in the Facility Operating Record, General Information file by October 1 of each year. The Washington State Department of Ecology Dangerous Waste Regulations (WAC 173-303) recently were amended to require that all Part As for final status permit applications include a listing of specific environmental permits and construction approvals for various environmental programs. The list of environmental programs is provided in WAC 173-303-803(3)(k). In response to this requirement, a list is provided that provides a cross-reference of the environmental permits and construction approvals for the various Hanford Site Resource Conservation and Recovery Act of 1976 treatment, storage, and/or disposal units that are incorporated or are scheduled for incorporation as final status operating treatment, storage, and/or disposal units. In support of the previously discussed requirement (WAC 173-303-803(3)(k)), the Annual Hanford Site Environmental Permitting Status Report includes, but is not limited to the following types of environmental permits: The Hazardous Waste Management Program as defined in 40

  14. Environmental Assessment and Finding of No Significant Impact: Widening Trench 36 of the 218-E-12B Low-Level Burial Ground, Hanford Site, Richland, Washington

    SciTech Connect

    N /A

    1999-02-11

    This environmental assessment was prepared to assess potential environmental impacts associated with the proposed action to widen and operate unused Trench 36 in the 218-E-12B Low-Level Burial Ground for disposal of low-level waste. Information contained herein will be used by the Manager, U.S. Department of Energy, Richland Operations Office, to determine if the Proposed Action is a major federal action significantly affecting the quality of the human environment. If the Proposed Action is determined to be major and significant, an environmental impact statement will be prepared. If the Proposed Action is determined not to be major and significant, a Finding of No Significant Impact will be issued and the action may proceed. Criteria used to evaluate significance can be found in Title 40, Code of Federal Regulations 1508.27. This environmental assessment was prepared in compliance with the ''National Environmental Policy Act of1969'', as amended, the Council on Environmental Quality Regulations for Implementing the Procedural Provisions of ''National Environmental Policy Act'' (Title 40, Code of Federal Regulations 1500-1508), and the U.S. Department of Energy Implementing Procedures for ''National Environmental Polio Act'' (Title 10, Code of Federal Regulations 1021). The following is a description of each section of this environmental assessment. (1) Purpose and Need for Action. This section provides a brief statement concerning the problem or opportunity the U.S, Department of Energy is addressing with the Proposed Action. Background information is provided. (2) Description of the Proposed Action. This section provides a description of the Proposed Action with sufficient detail to identify potential environmental impacts. (3) Alternatives to the Proposed Action. This section describes reasonable,alternative actions to the Proposed Action, which addresses the Purpose and Need. A No Action Alternative, as required by Title 10, Code of Federal Regulations 1021

  15. Hanford 200 area (sanitary) waste water system

    SciTech Connect

    Danch, D.A.; Gay, A.E.

    1994-09-01

    The US Department of Energy (DOE) Hanford Site is located in southeastern Washington State. The Hanford Site is approximately 1,450 sq. km (560 sq. mi) of semiarid land set aside for activities of the DOE. The reactor fuel processing and waste management facilities are located in the 200 Areas. Over the last 50 years at Hanford dicard of hazardous and sanitary waste water has resulted in billions of liters of waste water discharged to the ground. As part of the TPA, discharges of hazardous waste water to the ground and waters of Washington State are to be eliminated in 1995. Currently sanitary waste water from the 200 Area Plateau is handled with on-site septic tank and subsurface disposal systems, many of which were constructed in the 1940s and most do not meet current standards. Features unique to the proposed new sanitary waste water handling systems include: (1) cost effective operation of the treatment system as evaporative lagoons with state-of-the-art liner systems, and (2) routing collection lines to avoid historic contamination zones. The paper focuses on the challenges met in planning and designing the collection system.

  16. Hanford annual first quarter seismic report, fiscal year 1998: Seismicity on and near the Hanford Site, Pasco Basin, Washington

    SciTech Connect

    Hartshorn, D.C.; Reidel, S.P.; Rohay, A.C.

    1998-02-01

    Hanford Seismic Monitoring provides an uninterrupted collection of high-quality raw and processed seismic data from the Hanford Seismic Network (HSN) for the US Department of Energy and its contractors. The staff also locates and identifies sources of seismic activity and monitors changes in the historical pattern of seismic activity at the hanford Site. The data are compiled, archived, and published for use by the Hanford Site for waste management, Natural Phenomena Hazards assessments, and engineering design and construction. In addition, the seismic monitoring organization works with the Hanford Site Emergency Services Organization to provide assistance in the event of an earthquake on the Hanford Site. The HSN and the Eastern Washington Regional Network (EWRN) consist of 41 individual sensor sites and 15 radio relay sites maintained by the Hanford Seismic Monitoring staff. The operational rate for the first quarter of FY98 for stations in the HSN was 98.5%. The operational rate for the first quarter of FY98 for stations of the EWRN was 99.1%. For the first quarter of FY98, the acquisition computer triggered 184 times. Of these triggers 23 were local earthquakes: 7 in the Columbia River Basalt Group, and 16 in the crystalline basement. The geologic and tectonic environments where these earthquakes occurred are discussed in this report. The most significant earthquakes in this quarter were a series of six events which occurred in the Cold Creek depression (approximately 4 km SW of the 200 West Area), between November 6 and November 11, 1997. All events were deep (> 15 km) and were located in the crystalline basement. The first event was the largest, having a magnitude of 3.49 M{sub c}. Two events on November 9, 1997 had magnitudes of 2.81 and 2.95 M{sub c}, respectively. The other events had magnitudes between 0.7 and 1.2 M{sub c}.

  17. Schedule Optimization Study, Hanford RI/FS Program

    SciTech Connect

    Not Available

    1992-12-01

    A Schedule Optimization Study (SOS) of the US Department of Energy (DOE) Hanford Site Remedial Investigation/Feasibility Study (RI/FS) Program was conducted by an independent team of professionals from other federal agencies and the private sector experienced in environmental restoration. This team spent two weeks at Hanford in September 1992 examining the reasons for the lengthy RI/FS process at Hanford and developing recommendations to expedite the process. The need for the study arose out of a schedule dispute regarding the submission of the 1100-EM-1 Operable Unit RI/FS Work Plan. This report documents the study called for in the August 29, 1991, Dispute Resolution Committee Decision Statement. Battelle's Environmental Management Operations (EMO) coordinated the effort for DOE's Richland Field Office (RL).

  18. Groundwater maps of the Hanford Site Separations Area, January 1989

    SciTech Connect

    Kasza, G.L.; Schatz, A.L.

    1989-03-01

    The groundwater maps of the Hanford Site Separations Area, dated January 1989, are prepared by the Environmental Engineering and Technology Function, Environmental Division, Westinghouse Hanford Company. The groundwater maps are updated on a semiannual basis and are complementary to the Hanford Site water table map prepared by Pacific Northwest Laboratory. The Separations Area consists of the 200 East and 200 West areas and the surrounding vicinity on the Hanford Site. Chemical processing operations are carried out in the Separations Area by Westinghouse Hanford for the US Department of Energy - Richland Operations Office. This set of groundwater maps consists of: (1) Separations Area depth-to-water map, (2) Separations Area water table map, and (3) a map comparing the potentiometric surface of the Rattlesnake Ridge confined aquifer with the water table of the unconfined aquifer. The field measurements for these maps were collected during the period January 19 to February 8, 1989, and are listed in Table 1. For clarity, the locating prefixes have been omitted from all well numbers shown on the maps. Wells in the 200 Areas have the prefix 299, and the wells outside of these areas have the prefix 699.

  19. Facility-specific waste minimization plans at Westinghouse Hanford Company

    SciTech Connect

    Craig, P.A.

    1990-06-01

    A waste minimization program is required by public law and federal and state regulations for hazardous waste generators and treatment, storage, and disposal facilities. The US Department of Energy (DOE) has directed its contractors to develop an effective strategy to minimize the generation of hazardous, radioactive, and mixed wastes at the Hanford Site in compliance with state and federal regulations. Since Westinghouse Hanford Company (Westinghouse Hanford) has a large and diversified operation, a key component of the Westinghouse Hanford waste minimization program is facility-specific waste minimization plans which document present and future activities to reduce the volume and toxicity of waste generated. Preparation and implementation of these plans will demonstrate facility compliance to Westinghouse Hanford and DOE requirements, as well as state and federal regulations. The plans include both the goals and the activities for their achievement and provide a basis for evaluation. Preparation of the plans is divided into two phases. The first phase involves writing the general'' plan which describes the facility operations, the types of waste produced, and the administrative controls used by the facility to ensure waste minimization. The second phase involves a detailed characterization of each waste stream. This characterization includes baselining the quantity of waste generated, brainstorming possible options to minimize waste, and documenting other factors such as cost and environmental and safety issues involved with the generation of the waste. This section is ever-changing as more information is obtained and as the waste minimization program evolves. 2 figs.

  20. Hanford Site environmental surveillance data report for calendar year 1995

    SciTech Connect

    Bisping, L.E.

    1996-07-01

    Environmental surveillance at the Hanford Site collects data that provides a historical record of radionuclide and radiation levels attributable to natural causes, worldwide fallout, and Hanford operations. Data are also collected to monitor several chemicals and metals in Columbia River Water and Sediment. Pacific Northwest National Laboratory publishes an annual environmental report for the Hanford Site each calendar year. The Hanford Site Environmental Report for Calendar Year 1995 describes the Site mission and activities, general environmental features, radiological and chemical releases from operations, status of compliance with environmental regulations, status of programs to accomplish compliance, and environmental monitoring activities and results. The report includes a summary of offsite and onsite environmental monitoring data collected during 1995 by PNNL`s Environmental Monitoring Program. Appendix A of that report contains data summaries created from raw surface, river monitoring data, and chemical air data. This volume contains the actual raw data used to create the summaries. The data volume also includes Hanford Site drinking water radiological data.

  1. Hanford/Tomsk reciprocal site visit: Plutonium agreement compliance talks

    SciTech Connect

    Libby, R.A.; Sorenson, R.; Six, D.; Schiegel, S.C.

    1994-11-01

    The objective of the visit to Hanford Site was to: demonstrate equipment, technology, and methods for calculating Pu production, measuring integrated reactor power, and storing and safeguarding PuO{sub 2}; demonstrate the shutdown of Hanford production reactors; and foster openness and transparency of Hanford operations. The first day`s visit was an introduction to Hanford and a review of the history of the reactors. The second day consisted of discussions on the production reactors, reprocessing operations, and PuO{sub 2} storage. The group divided on the third day to tour facilities. Group A toured the N reactor, K-West reactor, K-West Basins, B reactor, and participated in a demonstration and discussion of reactor modeling computer codes. Group B toured the Hanford Pu Storage Facility, 200-East Area, N-cell (oxide loadout station), the Automated Storage Facility, and the Nondestructive Assay Measurement System. Group discussions were held during the last day of the visit, which included scheduling of a US visit to Russia.

  2. Potential Environmental Impacts of Army Laser Operations: An Overview

    DTIC Science & Technology

    1983-06-01

    Aberdeen Proving Ground, MD 21010. AUTHORITY CRDEC ltr, 29 Mar 1990 THIS PAGE IS UNCLASSIFIED AD CHEMICAL S SYSTEMS LA1BORATORY US Army Armament Research ...and Development Command Aberdeen Proving Ground, Maryland 21010 Lii TECHNICAL REPORT ARCSL-TR-83066 POTENTIAL ENVIRONMENTAL MIACTS OF ARMY LASER...PERIOD COVERED Technical Report POTENTIAL ENVIRONMENTAL IMPACTS OF ARMY LASER 25 March 1982 - 30 June 1983 OPERATIONS. AN OVERVIEW *. PERFORMING ORG

  3. OVERVIEW OF HANFORD SINGLE SHELL TANK (SST) STRUCTURAL INTEGRITY - 12123

    SciTech Connect

    RAST RS; RINKER MW; WASHENFELDER DJ; JOHNSON JB

    2012-01-25

    To improve the understanding of the single-shell tanks (SSTs) integrity, Washington River Protection Solutions, LLC (WRPS), the USDOE Hanford Site tank contractor, developed an enhanced Single-Shell Tank Integrity Project in 2009. An expert panel on SST integrity, consisting of various subject matters experts in industry and academia, was created to provide recommendations supporting the development of the project. This panel developed 33 recommendations in four main areas of interest: structural integrity, liner degradation, leak integrity and prevention, and mitigation of contamination migration. Seventeen of these recommendations were used to develop the basis for the M-45-10-1 Change Package for the Hanford Federal Agreement and Compliance Order, which is also known as the Tri-Party Agreement. The structural integrity of the tanks is a key element in completing the cleanup mission at the Hanford Site. There are eight primary recommendations related to the structural integrity of Hanford SSTs. Six recommendations are being implemented through current and planned activities. The structural integrity of the Hanford SSTs is being evaluated through analysis, monitoring, inspection, materials testing, and construction document review. Structural evaluation in the form of analysis is performed using modern finite element models generated in ANSYS{reg_sign} The analyses consider in-situ, thermal, operating loads and natural phenomena such as earthquakes. Structural analysis of 108 of 149 Hanford SSTs has concluded that the tanks are structurally sound and meet current industry standards. Analyses of the remaining Hanford SSTs are scheduled for FY2013. Hanford SSTs are monitored through a dome deflection program. The program looks for deflections of the tank dome greater than 1/4 inch. No such deflections have been recorded. The tanks are also subjected to visual inspection. Digital cameras record the interior surface of the concrete tank domes, looking for cracks and

  4. Overview of Hanford Single Shell Tank (SST) Structural Integrity

    SciTech Connect

    Rast, Richard S.; Washenfelder, Dennis J.; Johnson, Jeremy M.

    2013-11-14

    To improve the understanding of the single-shell tanks (SSTs) integrity, Washington River Protection Solutions, LLC (WRPS), the USDOE Hanford Site tank contractor, developed an enhanced Single-Shell Tank Integrity Project (SSTIP) in 2009. An expert panel on SST integrity, consisting of various subject matters experts in industry and academia, was created to provide recommendations supporting the development of the project. This panel developed 33 recommendations in four main areas of interest: structural integrity, liner degradation, leak integrity and prevention, and mitigation of contamination migration, Seventeen of these recommendations were used to develop the basis for the M-45-10-1 Change Package for the Hanford Federal Agreement and Compliance Order, which is also known as the Tri-Party Agreement. The structural integrity of the tanks is a key element in completing the cleanup mission at the Hanford Site. There are eight primary recommendations related to the structural integrity of Hanford Single-Shell Tanks. Six recommendations are being implemented through current and planned activities. The structural integrity of the Hanford is being evaluated through analysis, monitoring, inspection, materials testing, and construction document review. Structural evaluation in the form of analysis is performed using modern finite element models generated in ANSYS. The analyses consider in-situ, thermal, operating loads and natural phenomena such as earthquakes. Structural analysis of 108 of 149 Hanford Single-Shell Tanks has concluded that the tanks are structurally sound and meet current industry standards. Analysis of the remaining Hanford Single-Shell Tanks is scheduled for FY2014. Hanford Single-Shell Tanks are monitored through a dome deflection program. The program looks for deflections of the tank dome greater than 1/4 inch. No such deflections have been recorded. The tanks are also subjected to visual inspection. Digital cameras record the interior surface of

  5. Hanford External Dosimetry Technical Basis Manual PNL-MA-842

    SciTech Connect

    Rathbone, Bruce A.

    2007-03-12

    The Hanford External Dosimetry Technical Basis Manual PNL-MA-842 documents the design and implementation of the external dosimetry system used at Hanford. The manual describes the dosimeter design, processing protocols, dose calculation methodology, radiation fields encountered, dosimeter response characteristics, limitations of dosimeter design under field conditions, and makes recommendations for effective use of the dosimeters in the field. The manual describes the technical basis for the dosimetry system in a manner intended to help ensure defensibility of the dose of record at Hanford and to demonstrate compliance with 10 CFR 835, DOELAP, DOE-RL, ORP, PNSO, and Hanford contractor requirements. The dosimetry system is operated by PNNL’s Hanford External Dosimetry Program (HEDP) which provides dosimetry services to all Hanford contractors. The primary users of this manual are DOE and DOE contractors at Hanford using the dosimetry services of PNNL. Development and maintenance of this manual is funded directly by DOE and DOE contractors. Its contents have been reviewed and approved by DOE and DOE contractors at Hanford through the Hanford Personnel Dosimetry Advisory Committee (HPDAC) which is chartered and chaired by DOE-RL and serves as means of coordinating dosimetry practices across contractors at Hanford. This manual was established in 1996. Since inception, it has been revised many times and maintained by PNNL as a controlled document with controlled distribution. Rev. 0 marks the first revision to be released through PNNL’s Electronic Records & Information Capture Architecture (ERICA) database. Revision numbers that are whole numbers reflect major revisions typically involving changes to all chapters in the document. Revision numbers that include a decimal fraction reflect minor revisions, usually restricted to selected chapters or selected pages in the document. Revision Log: Rev. 0 (2/25/2005) Major revision and expansion. Rev. 0.1 (3/12/2007) Minor

  6. Operational Environmental Monitoring Program Quality Assurance Project Plan

    SciTech Connect

    Perkins, C.J.

    1994-08-01

    This Quality Assurance Project Plan addresses the quality assurance requirements for the activities associated with the preoperational and operational environmental monitoring performed by Westinghouse Hanford Company as it implements the Operational Environmental Monitoring program. This plan applies to all sampling and monitoring activities performed by Westinghouse Hanford Company in implementing the Operational Environmental Monitoring program at the Hanford Site.

  7. Modeling the Environmental Impact of Air Traffic Operations

    NASA Technical Reports Server (NTRS)

    Chen, Neil

    2011-01-01

    There is increased interest to understand and mitigate the impacts of air traffic on the climate, since greenhouse gases, nitrogen oxides, and contrails generated by air traffic can have adverse impacts on the climate. The models described in this presentation are useful for quantifying these impacts and for studying alternative environmentally aware operational concepts. These models have been developed by leveraging and building upon existing simulation and optimization techniques developed for the design of efficient traffic flow management strategies. Specific enhancements to the existing simulation and optimization techniques include new models that simulate aircraft fuel flow, emissions and contrails. To ensure that these new models are beneficial to the larger climate research community, the outputs of these new models are compatible with existing global climate modeling tools like the FAA's Aviation Environmental Design Tool.

  8. Flammable gas/slurry growth unreviewed safety question:justification for continued operation for the tank farms at the Hanford site

    SciTech Connect

    Leach, C.E., Westinghouse Hanford

    1996-07-31

    This Justification for Continued Operation (JCO) provides a basis for continued operation in 176 high level waste tanks, double contained receiver tanks (DCRTs), catch tanks, 244-AR Vault, 242-S and 242-T Evaporators and inactive miscellaneous underground storage tanks (IMUSTs) relative to flammable gas hazards. Required controls are specified.

  9. FLUOR HANFORD DECOMMISSIONING UPDATE

    SciTech Connect

    GERBER MS

    2008-04-21

    Fluor Hanford is completing D&D of the K East Basin at the U.S. Department of Energy's (DOE's) Hanford Site in southeastern Washington State this spring, with demolition expected to begin in June. Located about 400 yards from the Columbia River, the K East Basin is one of two indoor pools that formerly contained irradiated nuclear fuel, radioactive sludge and tons of contaminated debris. In unique and path-breaking work, workers finished removing the spent fuel from the K Basins in 2004. In May 2007, workers completed vacuuming the sludge into containers in the K East Basin, and transferring it into containers in the K West Basin. In December, they finished vacuuming the remainder of K West Basin sludge into these containers. The K East Basin was emptied of its radioactive inventory first because it was more contaminated than the K West Basin, and had leaked in the past. In October 2007, Fluor Hanford began physical D&D of the 8,400-square foot K East Basin by pouring approximately 14-inches of grout into the bottom of it. Grout is a type of special cement used for encasing waste. Two months later, Fluor Hanford workers completed sluicing contaminated sand from the large filter that had sieved contaminants from the basin water for more than 50 years. Next, they poured grout into the filter housing and the vault that surrounds the filter, as well as into ion exchange columns that also helped filter basin water. For a six-week period in February and March, personnel drained the approximately one million gallons of contaminated water from the K East Basin. The effort required more than 200 tanker truck loads that transported the water to an effluent treatment facility for treatment and then release. A thin fixative was also applied to the basin walls as the water was removed to hold residual contamination in place. As soon as the water was out of the basin, Fluor pumped in approximately 18 feet of 'controlled density fill' material (somewhat similar to sand) to shield

  10. Hanford quarterly seismic report -- 97A seismicity on and near the Hanford Site, Pasco Basin, Washington, October 1, 1996 through December 31, 1996

    SciTech Connect

    Hartshorn, D.C.; Reidel, S.P.

    1997-02-01

    Seismic Monitoring is part of PNNL`s Applied Geology and Geochemistry Group. The Seismic Monitoring Analysis and Repair Team (SMART) operates, maintains, and analyzes data from the hanford Seismic Network (HSN), extending the site historical seismic database and fulfilling US Department of Energy, Richland Operations Office requirements and orders. The SMART also maintains the Eastern Washington Regional Network (EWRN). The University of Washington uses the data from the EWRN and other seismic networks in the Northwest to provide the SMART with necessary regional input for the seismic hazards analysis at the Hanford Site. The SMART is tasked to provide an uninterrupted collection of high-quality raw seismic data from the HSN located on and around the Hanford Site. These unprocessed data are permanently archived. SMART also is tasked to locate and identify sources of seismic activity, monitor changes in the historical pattern of seismic activity at the Hanford Site, and build a local earthquake database (processed data) that is permanently archived. Local earthquakes are defined as earthquakes that occur within 46 degrees to 47 degrees west longitude and 119 degrees to 120 degrees north latitude. The data are used by the Hanford contractor for waste management activities, Natural Phenomena Hazards assessments and engineering design and construction. In addition, the seismic monitoring organization works with Hanford Site Emergency Services Organization to provide assistance in the event of an earthquake on the Hanford Site.

  11. Hanford Quarter Seismic Report - 98C Seismicity On and Near the Hanford Site, Pasco Basin, Washington: April 1, 1998 Through June 30, 1998

    SciTech Connect

    DC Hartshorn, SP Reidel, AC Rohay

    1998-10-23

    Hanford Seismic Monitoring provides an uninterrupted collection of high-quality raw and processed seismic data from the Hanford Seismic Network (HSN) for the U.S. Department of Energy and its contractors. The staff also locates aud identifies sources of seismic activity and monitors changes in the hi~orical pattern of seismic activity at the Hanford Site. The data are. compiled archived, and published for use by the Hanford Site for waste management Natural Phenomena Hazards assessments, and engineering design and construction. In addition, the seismic monitoring organization works with the Hanford Site Emergency Services Organization to provide assistance in the event of zin earthquake on the Hanford Site. The HSN and Ihe Eastern Washington Regional Network (EN/RN) consist-of 42 individual sensor sites and 15 radio relay sites maintained by the Hanford Seismic Monitoring staff. The operational rate for the third quarter of FY 1998 for stations in the HSN was 99.99%. The operational rate for the third quarter of FY 1998 for stations of the EWRN was 99.95%. For the third quarter of FY 1998, the acquisition computer triggered 133 times. Of these triggers 11 were local earthquakes: 5 (45Yo) in the Columbia River Basalt Group, 2(1 8%) in the pre-basalt sediments, and 4 (36%) in the crystalline basement. The geologic and tectonic environments where these earthquakes occurred are discussed in this report.

  12. HANFORD DOUBLE SHELL TANK (DST) THERMAL & SEISMIC PROJECT SEISMIC ANALYSIS OF HANFORD DOUBLE SHELL TANKS

    SciTech Connect

    MACKEY, T.C.

    2006-03-17

    M&D Professional Services, Inc. (M&D) is under subcontract to Pacific Northwest National Laboratory (PNNL) to perform seismic analysis of the Hanford Site double-shell tanks (DSTs) in support of a project entitled ''Double-Shell Tank (DSV Integrity Project--DST Thermal and Seismic Analyses)''. The overall scope of the project is to complete an up-to-date comprehensive analysis of record of the DST system at Hanford in support of Tri-Party Agreement Milestone M-48-14, The work described herein was performed in support of the seismic analysis of the DSTs. The thermal and operating loads analysis of the DSTs is documented in Rinker et al. (2004). The work statement provided to M&D (PNNL 2003) required that the seismic analysis of the DSTs assess the impacts of potentially non-conservative assumptions in previous analyses and account for the additional soil mass due to the as-found soil density increase, the effects of material degradation, additional thermal profiles applied to the full structure including the soil-structure response with the footings, the non-rigid (low frequency) response of the tank roof, the asymmetric seismic-induced soil loading, the structural discontinuity between the concrete tank wall and the support footing and the sloshing of the tank waste. The seismic analysis considers the interaction of the tank with the surrounding soil and the effects of the primary tank contents. The DSTs and the surrounding soil are modeled as a system of finite elements. The depth and width of the soil incorporated into the analysis model are sufficient to obtain appropriately accurate analytical results. The analyses required to support the work statement differ from previous analysis of the DSTs in that the soil-structure interaction (SSI) model includes several (nonlinear) contact surfaces in the tank structure, and the contained waste must be modeled explicitly in order to capture the fluid-structure interaction behavior between the primary tank and contained

  13. Hanford External Dosimetry Technical Basis Manual PNL-MA-842

    SciTech Connect

    Rathbone, Bruce A.

    2011-04-04

    The Hanford External Dosimetry Technical Basis Manual PNL-MA-842 documents the design and implementation of the external dosimetry system used at the U.S. Department of Energy (DOE) Hanford site. The manual describes the dosimeter design, processing protocols, dose calculation methodology, radiation fields encountered, dosimeter response characteristics, limitations of dosimeter design under field conditions, and makes recommendations for effective use of the dosimeters in the field. The manual describes the technical basis for the dosimetry system in a manner intended to help ensure defensibility of the dose of record at Hanford and to demonstrate compliance with requirements of 10 CFR 835, the DOE Laboratory Accreditation Program, the DOE Richland Operations Office, DOE Office of River Protection, DOE Pacific Northwest Office of Science, and Hanford’s DOE contractors. The dosimetry system is operated by the Pacific Northwest National Laboratory (PNNL) Hanford External Dosimetry Program which provides dosimetry services to PNNL and all Hanford contractors. The primary users of this manual are DOE and DOE contractors at Hanford using the dosimetry services of PNNL. Development and maintenance of this manual is funded directly by DOE and DOE contractors. Its contents have been reviewed and approved by DOE and DOE contractors at Hanford through the Hanford Personnel Dosimetry Advisory Committee which is chartered and chaired by DOE-RL and serves as means of coordinating dosimetry practices across contractors at Hanford. This manual was established in 1996. Since its inception, it has been revised many times and maintained by PNNL as a controlled document with controlled distribution. The first revision to be released through PNNL’s Electronic Records & Information Capture Architecture database was designated Revision 0. Revision numbers that are whole numbers reflect major revisions typically involving significant changes to all chapters in the document. Revision

  14. Hanford External Dosimetry Technical Basis Manual PNL-MA-842

    SciTech Connect

    Rathbone, Bruce A.

    2010-04-01

    The Hanford External Dosimetry Technical Basis Manual PNL-MA-842 documents the design and implementation of the external dosimetry system used at the U.S. Department of Energy (DOE) Hanford site. The manual describes the dosimeter design, processing protocols, dose calculation methodology, radiation fields encountered, dosimeter response characteristics, limitations of dosimeter design under field conditions, and makes recommendations for effective use of the dosimeters in the field. The manual describes the technical basis for the dosimetry system in a manner intended to help ensure defensibility of the dose of record at Hanford and to demonstrate compliance with requirements of 10 CFR 835, the DOE Laboratory Accreditation Program, the DOE Richland Operations Office, DOE Office of River Protection, DOE Pacific Northwest Office of Science, and Hanford’s DOE contractors. The dosimetry system is operated by the Pacific Northwest National Laboratory (PNNL) Hanford External Dosimetry Program which provides dosimetry services to PNNL and all Hanford contractors. The primary users of this manual are DOE and DOE contractors at Hanford using the dosimetry services of PNNL. Development and maintenance of this manual is funded directly by DOE and DOE contractors. Its contents have been reviewed and approved by DOE and DOE contractors at Hanford through the Hanford Personnel Dosimetry Advisory Committee which is chartered and chaired by DOE-RL and serves as means of coordinating dosimetry practices across contractors at Hanford. This manual was established in 1996. Since its inception, it has been revised many times and maintained by PNNL as a controlled document with controlled distribution. The first revision to be released through PNNL’s Electronic Records & Information Capture Architecture database was designated Revision 0. Revision numbers that are whole numbers reflect major revisions typically involving significant changes to all chapters in the document. Revision

  15. Analysis of Dependencies and Impacts of Metroplex Operations

    NASA Technical Reports Server (NTRS)

    DeLaurentis, Daniel A.; Ayyalasomayajula, Sricharan

    2010-01-01

    This report documents research performed by Purdue University under subcontract to the George Mason University (GMU) for the Metroplex Operations effort sponsored by NASA's Airportal Project. Purdue University conducted two tasks in support of the larger efforts led by GMU: a) a literature review on metroplex operations followed by identification and analysis of metroplex dependencies, and b) the analysis of impacts of metroplex operations on the larger U.S. domestic airline service network. The tasks are linked in that the ultimate goal is an understanding of the role of dependencies among airports in a metroplex in causing delays both locally and network-wide. The Purdue team has formulated a system-of-systems framework to analyze metroplex dependencies (including simple metrics to quantify them) and develop compact models to predict delays based on network structure. These metrics and models were developed to provide insights for planners to formulate tailored policies and operational strategies that streamline metroplex operations and mitigate delays and congestion.

  16. Plans and Progress on Hanford MLLW Treatment and Disposal

    SciTech Connect

    McDonald, K. M.; Blackford, L. T.; Nester, D. E.; Connolly, R. R.; McKenney, D. E.; Moy, S. K.

    2003-02-24

    Mixed low-level waste (MLLW) contains both low-level radioactive materials and low-level hazardous chemicals. The hazardous component of mixed waste has characteristics identified by any or all of the following statutes: the Resource Conservation and Recovery Act of 1976 (RCRA), as amended; the Toxic Substances Control Act of 1976; and Washington State dangerous waste regulations. The Fluor Hanford Waste Management Project (WMP) is responsible for storing, treating, and disposing of solid MLLW, which includes organic and inorganic solids, organics and inorganic lab packs, debris, lead, mercury, long-length equipment, spent melters, and remote-handled (RH) and oversized MLLW. Hanford has 7,000 cubic meters, or about 25%, of the MLLW in storage at U.S. Department of Energy (DOE) sites. Hanford plans to receive 57,000 cubic meters from on-site generators, or about 50% of DOE's newly generated MLLW. In addition, the Hanford Environment Restoration Program and off-site generators having approved Federal Facility Consent Agreement site treatment plans will most likely send 200 cubic meters of waste to be treated and returned to the generators. Volumes of off-site waste receipts will be affected when the MLLW Record of Decision is issued as part of the process for the Hanford Site Solid Waste Environmental Impact Statement (EIS). The WMP objective relative to MLLW is to treat and dispose of {approx}8000 cubic meters of existing inventory and newly-generated waste by September 30, 2006.

  17. DETERMINATION OF PERRHENATE ADSORPTION KINETICS FROM HANFORD WASTE SIMULANTS USING SUPERLING 639 RESIN

    SciTech Connect

    Duffey, C.; King, W.; Hamm, L.

    2002-04-02

    This report describes the results of SuperLig{reg_sign} 639 sorption kinetics tests conducted at the Savannah River Technology Center (SRTC) in support of the Hanford River Protection Project - Waste Treatment Plant (RPP-WTP). The RPP-WTP contract was awarded to Bechtel for the design, construction, and initial operation of a plant for the treatment and vitrification of millions of gallons of radioactive waste currently stored in tanks at Hanford, WA. Part of the current treatment process involves the removal of technetium from tank supernate solutions using columns containing SuperLig{reg_sign} 639 resin. This report is part of a body of work intended to quantify and optimize the operation of the technetium removal columns with regard to various parameters (such as liquid flow rate, column aspect ratio, resin particle size, loading and elution temperature, etc.). The tests were conducted using nonradioactive simulants of the actual tank waste samples containing rhenium as a chemical surrogate for the technetium in the actual waste. Previous column tests evaluated the impacts of liquid flow rate, bed aspect ratio, solution temperature and composition upon SuperLig{reg_sign} 639 column performance (King et al., 2000, King et al., 2003). This report describes the results of kinetics tests to determine the impacts of resin particle size, solution composition, and temperature on the rate of uptake of perrhenate ions.

  18. Hanford Site Environmental Report 1999

    SciTech Connect

    TM Poston; RW Hanf; RL Dirkes

    2000-09-28

    This Hanford Site environmental report is prepared annually to summarize environmental data and information, to describe environmental management performance, to demonstrate the status of compliance with environmental regulations, and to highlight major environmental programs and efforts. The report is written to meet requirements and guidelines of the U.S. Department of Energy (DOE) and to meet the needs of the public. This summary has been written with a minimum of technical terminology. Individual sections of the report are designed to: (1) describe the Hanford Site and its mission; (2) summarize the status of compliance with environmental regulations; (3) describe the environmental programs at the Hanford Site; (4) discuss the estimated radionuclide exposure to the public from 1999 Hanford Site activities; (5) present the effluent monitoring, environmental surveillance, groundwater protection and monitoring information; and (6) discuss the activities to ensure quality.

  19. Introduction to the Hanford Site

    SciTech Connect

    Cushing, C.E.

    1995-06-01

    This section of the 1994 Hanford Site Environmental Report discusses the Site mission and provides general information about the site. The U.S. DOE has established a new mission for Hanford including: Management of stored wastes, environmental restoration, research and development, and development of new technologies. The Hanford Reservation is located in south central Washington State just north of the confluence of the Snake and Yakima Rivers with the Columbia River. The approximately 1,450 square kilometers which comprises the Hanford Site, with restricted public access, provides a buffer for the smaller areas within the site which have historically been used for the production of nuclear materials, radioactive waste storage, and radioactive waste disposal.

  20. Hanford Facility RCRA permit handbook

    SciTech Connect

    1996-03-01

    Purpose of this Hanford Facility (HF) RCRA Permit Handbook is to provide, in one document, information to be used for clarification of permit conditions and guidance for implementing the HF RCRA Permit.

  1. Hanford Site Environmental Report 1993

    SciTech Connect

    Dirkes, R.L.; Hanf, R.W.; Woodruff, R.K.

    1994-06-01

    The Hanford Site Environmental Report is prepared annually to summarize environmental data and information, describe environmental management performance, and demonstrate the status of compliance with environmental regulations. The report also highlights major environmental programs and efforts. The report is written to meet reporting requirements and Guidelines of the U.S. Department of Energy (DOE) an to meet the needs of the public. This summary has been written with a minimum of technical terminology. Individual sections of the report are designed to (a) describe the Hanford Site and its mission, (b) summarize the status in 1993 of compliance with environmental regulations, (c) describe the environmental programs at the Hanford Site, (d) discuss estimated radionuclide exposure to the public from 1993 Hanford activities, (e) present information on effluent monitoring and environmental surveillance, including ground-water protection and monitoring, (f) discuss activities to ensure quality. More detailed information can be found in the body of the report, the appendixes, and the cited references.

  2. Hanford Site 1998 Environmental Report

    SciTech Connect

    RL Dirkes; RW Hanf; TM Poston

    1999-09-21

    This Hanford Site environmental report is prepared annually to summarize environmental data and information, to describe environmental management performance, to demonstrate the status of compliance with environmental regulations, and to highlight major environmental programs and efforts. The report is written to meet requirements and guidelines of the U.S. Department of Energy (DOE) and to meet the needs of the public. This summary has been written with a minimum of technical terminology. Individual sections of the report are designed to: describe the Hanford Site and its mission; summarize the status of compliance with environmental regulations; describe the environmental programs at the Hanford Site; discuss the estimated radionuclide exposure to the public from 1998 Hanford Site activities; present the effluent monitoring, environmental surveillance, and groundwater protection and monitoring information; and discuss the activities to ensure quality.

  3. Legend and legacy: Fifty years of defense production at the Hanford Site

    SciTech Connect

    Gerber, M.S.

    1992-09-01

    Today, the Hanford Site is engaged in the largest waste cleanup effort ever undertaken in human history. That in itself makes the endeavor historic and unique. The Hanford Site has been designated the ``flagship`` of Department of Energy (DOE) waste remediation endeavors. And, just as the wartime Hanford Project remains unmatched in history, no counterpart exists for the current waste cleanup enterprise. This report provides a summary of the extensive historical record, however, which does give a partial road map. The science of environmental monitoring pioneered at the Hanford Site, and records of this type are the most complete of any in the world, from private companies or public agencies, for the early years of Site operations. The Hanford Site was unique for establishing a detailed, scientific, and multi-faceted environmental monitoring program.

  4. Impacts of Center of Mass Shifts on Messenger Spacecraft Operations

    NASA Technical Reports Server (NTRS)

    O'Shaughnessy, D. J.; Vaughan, R. M.; Chouinard, T. L., III; Jaekle, D. E.

    2007-01-01

    The MESSENGER (MErcury Surface, Space ENvironment, GEochemistry, and Ranging) has successfully completed its first three years of flight operations following launch on August 3, 2004. As part of NASA s Discovery Program, MESSENGER will observe Mercury during flybys in 2008 and 2009, as well as from orbit beginning in March 2011. This paper discusses the impact that center of mass (CM) location changes have had on many mission activities, particularly angular momentum management and maneuver execution. Momentum trends were altered significantly following the first deep-space maneuver, and these changes were related to a change in the CM. The CM location also impacts maneuver execution, and uncertainties in its location led to the significant direction errors experienced at trajectory correction maneuver 11. Because of the spacecraft sensitivity to CM location, efforts to estimate its position are important to momentum and maneuver prediction. This paper summarizes efforts to estimate the CM from flight data, as well as the operational strategy to handle CM uncertainties and their impact on momentum trends and maneuver execution accuracy.

  5. Technitium Management at the Hanford Site

    SciTech Connect

    Robbins, Rebecca A.

    2013-08-15

    Long Abstract. Full Text. The Hanford tank waste contains approx 26,000 Ci of technetium-99 (Tc-99), the majority of which is in the supernate fraction. Tc-99 is a long-lived radionuclide with a half-life of approx 212,000 years and, in its predominant pertechnetate (TcO{sub 4}) form, is highly soluble and very mobile in the vadose zone and ultimately the groundwater. Tc-99 is identified as the major dose contributor (in groundwater) by past Hanford site performance assessments and therefore considered a key radionuclide of concern at Hanford. The United States Department of Energy (DOE) River Protection Project's (RPP) long-term Tc-99 management strategy is to immobilize the Tc-99 in a waste form that will retain the Tc-99 for many thousands of years. To achieve this, the RPP flowsheet will immobilize the majority of the Tc-99 as a vitrified low-activity waste product that will be ultimately disposed on site in the Integrated Disposal Facility. The Tc-99 will be released gradually from the glass at very low rates such that the groundwater concentrations at any point in time would be substantially below regulatory limits.The liquid secondary waste will be immobilized in a low-temperature matrix (cast stone) and the solid secondary waste will be stabilized using grout. Although the Tc-99 that is immobilized in glass will meet the release rate for disposal in IDF, a proportion is driven into the secondary waste stream that will not be vitrified and therefore presents a disposal risk. If a portion of the Tc-99 were to be removed from the Hanford waste inventory and disposed off-site, (e.g., as HLW), it could lessen a major constraint on LAW waste form performance, i.e., the requirement to retain Tc-99 over thousands of years and have a positive impact on the IDF Performance Assessment. There are several technologies available at various stages of technical maturity that can be employed for Tc-99 removal. The choice of technology and the associated efficacy of the

  6. A brief history of the T Plant facility at the Hanford Site. Addendum 1

    SciTech Connect

    Gerber, M.S.

    1994-05-16

    T Plant (221-T) was the first and largest of the early chemical separations plants at the Hanford Engineer Works (HEW) (World War II name for the Hanford Site). Officially designated as a Cell Building by the Manhattan Engineer District (MED) of the Army Corps of Engineers (agency responsible for HEW), T Plant served as the headquarters of chemical processing operations at Hanford from its construction until the opening of the REDOX Plant in January 1952. Because it formed a crucial link in the first full-scale plutonium production operations in world history, it meets criteria established in the National Historic Preservation Act of 1966 as a National Historic Structure.

  7. Environmental Survey preliminary report, Hanford Site, Richland, Washington

    SciTech Connect

    Not Available

    1987-08-01

    This report presents the preliminary findings from the first phase of the Environmental Survey of the United States Department of Energy (DOE) Hanford Site, conducted August 18 through September 5, 1986. The Survey is being conducted by an interdisciplinary team of environmental specialists, led and managed by the Office of Environment, Safety and Health's Office of Environmental Audit. Individual team components are being supplied by a private contractor. The objective of the Survey is to identify environmental problems and areas of environmental risk associated with the Hanford Site. The Survey covers all environmental media and all areas of environmental regulation. It is being performed in accordance with the DOE Environmental Survey Manual. This phase of the Survey involves the review of existing site environmental data, observations of the operations carried on at the Hanford Site, and interviews with site personnel. The Survey team developed a Sampling and Analysis Plan to assist in further assessing certain of the environmental problems identified during its on-site activities. The Sampling and Analysis Plan will be executed by a DOE National Laboratory or a support contractor. When completed, the results will be incorporated into the Environmental Survey Interim Report for the Hanford Site. The Interim Report will reflect the final determinations of the Hanford Site Survey. 44 refs., 88 figs., 74 tabs.

  8. Hanford Cultural Resources Laboratory annual report for fiscal year 1993

    SciTech Connect

    Last, G.V.; Wright, M.K.; Crist, M.E.; Cadoret, N.A.; Dawson, M.V.; Simmons, K.A.; Harvey, D.W.; Longenecker, J.G.

    1994-09-01

    The Hanford Cultural Resources Laboratory (HCRL) was established by the US Department of Energy, Richland Operations Office (DOE-RL) in 1987 as part of Pacific Northwest Laboratory (PNL). The HCRL provides support for managing the archaeological, historical, and cultural resources of the Hanford Site, Washington, consistent with the National Historic Preservation Act of 1966 (NHPA), the Archaeological Resources Protection Agency of 1979, the Native American Grave Protection and Repatriation Act of 1990, and the American Indian Religious Freedom Act of 1978. The HCRL responsibilities have been set forth in the Hanford Cultural Resources Management Plan as a prioritized list of tasks to be undertaken to keep the DOE-RL in compliance with federal statutes, regulations, and guidelines. For FY 1993, these tasks were to: conduct cultural resource reviews pursuant to Section 106 of the NHPA; monitor the condition of known historic properties; identify, recover, and inventory artifacts collected from the Hanford Site; educate the public about cultural resources values and the laws written to protect them; conduct surveys of the Hanford Site in accordance with Section 110 of the NHPA. Research also was conducted as a spin-off of these tasks and is reported here.

  9. The Hanford Reservation: A refuge for native plants and animals

    SciTech Connect

    Gray, R.H.; Rickard, W.H.

    1991-04-01

    The US Department of Energy's Hanford Site provides a refuge for plant and animal populations that have been either eradicated or greatly reduced on, surrounding farm lands. The Columbia River, both upstream and downstream of the Site, and much of the adjacent areas have experienced severe alterations during the past 5 decades, mostly from the construction and operation of a series of hydroelectric dams, increased agricultural activities, and the diversion and use of river water for irrigation. The Hanford Reach of the Columbia River provides nesting areas for waterfowl and other birds. The Hanford Reach serves as a migration route for salmon (Oncorhynchus sp.) and steelhead trout (Salmo gairdneri, now reclassified as O. mykiss). In addition, chinook salmon (O. tshawytscha) and steelhead trout spawn in the Hanford Reach. Bald eagles (Haliaeetus leucocephalus) congregate along the Hanford Reach in the fall and winter to feed on the spawned-out carcasses of salmon and waterfowl. Nesting Canada goose (Branta canadensis), great blue heron (Ardea herodias), various plants and other animals, e.g., elk (Cervus elaphus), mule deer (Odocoileus hemionus), and coyotes (Canis latrans) are common. 65 refs., 5 figs., 1 tab.

  10. Hanford Cultural Resources Laboratory annual report for fiscal year 1989

    SciTech Connect

    Chatters, J.C.; Cadoret, N.A.; Minthorn, P.E.

    1990-06-01

    This report summarizes activities of the Hanford Cultural Resources Laboratory (HCRL) during fiscal year 1989. The HCRL provides support for managing the archaeological, historical, and cultural resources of the Hanford Site, Washington, in a manner consistent with the National Historic Preservation Act of 1966, the Archaeological Resources Protection Act of 1979, and the American Indian Religious Freedom Act of 1978. A major task in FY 1989 was completion and publication of the Hanford Cultural Resources Management Plan, which prioritizes tasks to be undertaken to bring the US Department of Energy -- Richland Operations into compliance with federal statutes, relations, and guidelines. During FY 1989, six tasks were performed. In order of priority, these were conducting 107 cultural resource reviews, monitoring the condition of 40 known prehistoric archaeological sites, assessing the condition of artifact collections from the Hanford Site, evaluating three sites and nominating two of those to the National Register of Historic Places, developing an education program and presenting 11 lectures to public organizations, and surveying approximately 1 mi{sup 2} of the Hanford Site for cultural resources. 7 refs., 4 figs., 4 tabs.

  11. Hanford Site waste minimization and pollution prevention awareness program plan

    SciTech Connect

    Place, B.G.

    1998-09-24

    This plan, which is required by US Department of Energy (DOE) Order 5400. 1, provides waste minimization and pollution prevention guidance for all Hanford Site contractors. The plan is primary in a hierarchical series that includes the Hanford Site Waste Minimization and Pollution Prevention Awareness Program Plan, Prime contractor implementation plans, and the Hanford Site Guide for Preparing and Maintaining Generator Group Pollution Prevention Program Documentation (DOE-RL, 1997a) describing programs required by Resource Conservation and Recovery Act of 1976 (RCRA) 3002(b) and 3005(h) (RCRA and EPA, 1994). Items discussed include the pollution prevention policy and regulatory background, organizational structure, the major objectives and goals of Hanford Site`s pollution prevention program, and an itemized description of the Hanford Site pollution prevention program. The document also includes US Department of Energy, Richland Operations Office`s (RL`s) statement of policy on pollution prevention as well as a listing of regulatory drivers that require a pollution prevention program.

  12. Hanford internal dosimetry program manual

    SciTech Connect

    Carbaugh, E.H.; Sula, M.J.; Bihl, D.E.; Aldridge, T.L.

    1989-10-01

    This document describes the Hanford Internal Dosimetry program. Program Services include administrating the bioassay monitoring program, evaluating and documenting assessments of internal exposure and dose, ensuring that analytical laboratories conform to requirements, selecting and applying appropriate models and procedures for evaluating internal radionuclide deposition and the resulting dose, and technically guiding and supporting Hanford contractors in matters regarding internal dosimetry. 13 refs., 16 figs., 42 tabs.

  13. HANFORD WASTE MINEROLOGY REFERENCE REPORT

    SciTech Connect

    DISSELKAMP RS

    2010-06-18

    This report lists the observed mineral phase phases present in the Hanford tanks. This task was accomplished by performing a review of numerous reports using experimental techniques including, but not limited to: x-ray diffraction, polarized light microscopy, scanning electron microscopy, transmission electron microscopy, energy dispersive spectroscopy, electron energy loss spectroscopy, and particle size distribution analyses. This report contains tables that can be used as a quick reference to identify the crystal phases present observed in Hanford waste.

  14. HANFORD WASTE MINERALOGY REFERENCE REPORT

    SciTech Connect

    DISSELKAMP RS

    2010-06-29

    This report lists the observed mineral phases present in the Hanford tanks. This task was accomplished by performing a review of numerous reports that used experimental techniques including, but not limited to: x-ray diffraction, polarized light microscopy, scanning electron microscopy, transmission electron microscopy, energy dispersive spectroscopy, electron energy loss spectroscopy, and particle size distribution analyses. This report contains tables that can be used as a quick reference to identify the crystal phases observed in Hanford waste.

  15. Fluid dynamics, particulate segregation, chemical processes, and natural ore analog discussions that relate to the potential for criticality in Hanford tanks

    SciTech Connect

    Barney, G.S.

    1996-09-27

    This report presents an in-depth review of the potential for nuclear criticality to occur in Hanford defense waste tanks during past, current and future safe storage and maintenance operations. The report also briefly discusses the potential impacts of proposed retrieval activities, although retrieval was not a main focus of scope. After thorough review of fluid dynamic aspects that focus on particle segregation, chemical aspects that focus on solubility and adsorption processes that might concentrate plutonium and/or separate plutonium from the neutron absorbers in the tank waste, and ore-body formation and mining operations, the interdisciplinary team has come to the conclusion that there is negligible risk of nuclear critically under existing storage conditions in Hanford site underground waste storage tanks. Further, for the accident scenarios considered an accidental criticality is incredible.

  16. Hanford surplus facilities programs facilities listings and descriptions. Revision 1

    SciTech Connect

    Kiser, S.K.; Witt, T.L.

    1994-01-01

    On the Hanford Site, many surplus facilities exist (including buildings, stacks, tanks, cribs, burial grounds, and septic systems) that are scheduled to be decommissioned. Many of these facilities contain large inventories of radionuclides, which present potential radiological hazards on and off the Hanford Site. Some structures with limited structural deterioration present potential radiological and industrial safety hazards to personnel. Because of the condition of these facilities, a systematic surveillance and maintenance program is performed to identify and correct potential hazards to personnel and the environment until eventual decommissioning operations are completed.

  17. Hanford radiological protection support services annual report for 1994

    SciTech Connect

    Lyon, M.; Bihl, D.E.; Fix, J.J.; Piper, R.K.; Froelich, T.J.; Olsen, P.C.

    1995-06-01

    Various Hanford Site radiation protection services provided by the Pacific Northwest Laboratory for the US Department of Energy Richland Operations Office and Hanford contractors are described in this annual report for the calendar year 1994. These activities include external dosimetry measurements and evaluations, internal dosimetry measurements and evaluations, in vivo measurements, radiological record keeping, radiation source calibration, and instrument calibration and evaluation. For each of these activities, the routine program and any program changes or enhancements are described, as well as associated tasks, investigations, and studies. Program- related publications, presentations, and other staff professional activities are also described.

  18. Hanford Radiological Protection Support Services annual report for 1993

    SciTech Connect

    Lyon, M.; Bihl, D.E.; Fix, J.J.; Froelich, T.J.; Piper, R.K.; Olsen, P.C.

    1994-07-01

    Various Hanford Site radiation protection services provided by the Pacific Northwest Laboratory for the US Department of Energy Richland Operations Office and Hanford contractors are described in this annual report for calendar year 1993. These activities include internal dosimetry measurements and evaluations, in vivo measurements, external dosimetry measurements and evaluations, instrument calibration and evaluation, radiation source calibration, and radiological record keeping. For each of these activities, the routine program and any program changes or enhancements are described, as well as associated tasks, investigations, and studies. Program-related publications, presentations, and other staff professional activities are also described.

  19. Hanford Environmental Dose Reconstruction Project: Monthly report, May 1989

    SciTech Connect

    Dennis, B.S.

    1989-01-01

    The objective of the Hanford Environmental Dose Reconstruction Project is to estimate the radiation doses that populations could have received from nuclear operations at Hanford since 1944. The project is being managed and conducted by Pacific Northwest Laboratory under the direction of independent Technical Steering Panel. The Technical Steering Panel consists of experts in environmental pathways, epidemiology, surface-water transport, ground-water transport, statistics, demography, agriculture, meteorology, nuclear engineering, radiation dosimetry, and cultural anthropology. Included among the members are appointed technical members representing the States of Oregon and Washington, cultural and technical experts nominated by the Indian tribes in the region, and an individual representing the public.

  20. Hanford radiological protection support services annual report for 1997

    SciTech Connect

    Lyon, M.; Bihl, D.E.; Fix, J.J.; Johnson, M.L.; Lynch, T.P.; Piper, R.K.

    1998-06-01

    Various Hanford Site radiation protection services provided by the Pacific Northwest National Laboratory for the US Department of Energy Richland Operations Office and Hanford contractors are described in this annual report for calendar year 1997. These activities include external dosimetry measurements and evaluations, internal dosimetry measurements and evaluations, in vivo measurements, radiological exposure record keeping, radiation source calibration, and instrument calibration and evaluation. For each of these activities, the routine program and any program changes or enhancements are described as well as associated tasks, investigations, and studies. Program-related publications, presentations, and other staff professional activities are also described.

  1. Validation of HEDR models. Hanford Environmental Dose Reconstruction Project

    SciTech Connect

    Napier, B.A.; Simpson, J.C.; Eslinger, P.W.; Ramsdell, J.V. Jr.; Thiede, M.E.; Walters, W.H.

    1994-05-01

    The Hanford Environmental Dose Reconstruction (HEDR) Project has developed a set of computer models for estimating the possible radiation doses that individuals may have received from past Hanford Site operations. This document describes the validation of these models. In the HEDR Project, the model validation exercise consisted of comparing computational model estimates with limited historical field measurements and experimental measurements that are independent of those used to develop the models. The results of any one test do not mean that a model is valid. Rather, the collection of tests together provide a level of confidence that the HEDR models are valid.

  2. Hanford radiological protection support services annual report for 1990

    SciTech Connect

    Lyon, M; Bihl, D E; Fix, J J; Piper, R K; Freolich, T J; Leonowich, J A; Lynch, T P

    1991-07-01

    Various Hanford site-wide radiation protection services provided by the Pacific Northwest Laboratory for the US Department of Energy-Richland Operations Office and Hanford contractors are described in this annual report for calendar year 1990. These activities include internal dosimetry measurements and evaluations, in vivo measurements, external dosimetry measurements and evaluations, instrument calibration and evaluation, radiation source calibration, and radiological records keeping. For each of these activities, the routine program, program changes and enhancements, associated tasks, investigations and studies, and related publications, presentations, and other staff professional activities are discussed as applicable. 22 refs., 10 figs., 19 tabs.

  3. Hanford radiological protection support services annual report for 1996

    SciTech Connect

    Lyon, M.; Bihl, D.E.; Fix, J.J.; Froelich, T.J.; Piper, R.K.; Schulze, S.A.

    1997-06-01

    Various Hanford Site radiation protection services provided by the Pacific Northwest National Laboratory for the US Department of Energy Richland Operations Office and Hanford contractors are described in this annual report for calendar year 1996. These activities include external dosimetry measurements and evaluations, internal dosimetry measurements and evaluations, in vivo measurements, radiological exposure record keeping, radiation source calibration, and instrument calibration and evaluation. For each of these activities, the routine program and any program changes or enhancements are described, as well as associated tasks, investigations, and studies. Program-related publications, presentations, and other staff professional activities are also described.

  4. Hanford Environmental Dose Reconstruction Project monthly report, November 1992

    SciTech Connect

    Cannon, S.D.; Finch, S.M.

    1992-12-31

    The objective of the Hanford Environmental Dose Reconstruction (HEDR) Project is to estimate the radiation doses that individuals and populations could have received from nuclear operations at Hanford since 1944. The TSP consists of experts in environmental pathways, epidemiology, surface-water transport, ground-water transport, statistics, demography, agriculture, meteorology, nuclear engineering, radiation dosimetry, and cultural anthropology. Included are appointed members representing the states of Oregon, Washington. and Idaho, a representative of Native American tribes, and an individual representing the public. The project is divided into the following technical tasks: Source terms; environmental transport; environmental monitoring data; demography, food consumption and agriculture; environmental pathways and dose estimates.

  5. Hanford Environmental Dose Reconstruction Project monthly report, November 1992

    SciTech Connect

    Cannon, S.D.; Finch, S.M.

    1992-01-01

    The objective of the Hanford Environmental Dose Reconstruction (HEDR) Project is to estimate the radiation doses that individuals and populations could have received from nuclear operations at Hanford since 1944. The TSP consists of experts in environmental pathways, epidemiology, surface-water transport, ground-water transport, statistics, demography, agriculture, meteorology, nuclear engineering, radiation dosimetry, and cultural anthropology. Included are appointed members representing the states of Oregon, Washington. and Idaho, a representative of Native American tribes, and an individual representing the public. The project is divided into the following technical tasks: Source terms; environmental transport; environmental monitoring data; demography, food consumption and agriculture; environmental pathways and dose estimates.

  6. Hanford radiological protection support services. Annual report for 1995

    SciTech Connect

    Lyon, M.; Bihl, D.E.; Carbaugh, E.H.

    1996-05-01

    Various Hanford Site radiation protection services provided by the Pacific Northwest National Laboratory for the U.S. Department of Energy Richland Operations Office and Hanford contractors are described in this annual report for calendar year 1995. These activities include external dosimetry measurements and evaluations, internal dosimetry measurements and evaluations, in vivo measurements, radiological record keeping, radiation source calibration, and instrument calibration and evaluation. For each of these activities, the routine program and any program changes or enhancements are described, as well as associated tasks, investigations, and studies. Program-related publications, presentations, and other staff professional activities are also described.

  7. 12. Architectural Floor Plans, 233S, U.S. Atomic Energy Commission, Hanford ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    12. Architectural Floor Plans, 233-S, U.S. Atomic Energy Commission, Hanford Atomic Products Operations, General Electric Company, Dwg. H-2-30464, 1956. - Reduction-Oxidation Complex, Plutonium Concentration Facility, 200 West Area, Richland, Benton County, WA

  8. Prototype Database and User's Guide of Saturated Zone Hydraulic Properties forthe Hanford Site

    SciTech Connect

    Thorne, Paul D.; Newcomer, Darrell R.

    2002-09-01

    Predicting the movement of contaminants in groundwater beneath the Hanford Site is important for both understanding the impacts of these contaminants and for planning effective cleanup activities. These predictions are based on knowledge of the distribution of hydraulic properties within the aquifers underlying the Hanford Site. The Characterization of Systems (CoS) Task, under the Groundwater/Vadose Integration Project, is responsible for establishing a consistent set of data, parameters, and conceptual models to support estimates contaminant migration and impact.

  9. Westinghouse Hanford Company FY 1996 Materials Management Plan (MMP)

    SciTech Connect

    Higginson, M.C.

    1995-12-01

    The safe and sound operation of facilities and the storage of nuclear material are top priorities within Hanford`s environmental management, site restoration mission. The assumptions, plans and Special Nuclear Material (SNM) inventory summaries contained in this document were prepared for Department of Energy (DOE) use for interim and long- range planning. In accordance with Richland DOE field office (DOE-RL) direction, year-end inventory values were not projected over an 11 year period, as historically done in previous MMP documents. This decision was made since significant SNM movements to or from Hanford are not projected in the foreseeable future. Instead, the inventory summaries within this document reflect an ``as of date`` of June 30, 1995.

  10. Hanford general employee training: Computer-based training instructor's manual

    SciTech Connect

    Not Available

    1990-10-01

    The Computer-Based Training portion of the Hanford General Employee Training course is designed to be used in a classroom setting with a live instructor. Future references to this course'' refer only to the computer-based portion of the whole. This course covers the basic Safety, Security, and Quality issues that pertain to all employees of Westinghouse Hanford Company. The topics that are covered were taken from the recommendations and requirements for General Employee Training as set forth by the Institute of Nuclear Power Operations (INPO) in INPO 87-004, Guidelines for General Employee Training, applicable US Department of Energy orders, and Westinghouse Hanford Company procedures and policy. Besides presenting fundamental concepts, this course also contains information on resources that are available to assist students. It does this using Interactive Videodisk technology, which combines computer-generated text and graphics with audio and video provided by a videodisk player.

  11. Characterization and process technology capabilities for Hanford tank waste disposal

    SciTech Connect

    Buelt, J.L.; Weimer, W.C.; Schrempf, R.E.

    1996-03-01

    The purpose of this document is to describe the Paciflc Northwest National Laboratory`s (the Laboratory) capabilities in characterization and unit process and system testing that are available to support Hanford tank waste processing. This document is organized into two parts. The first section discusses the Laboratory`s extensive experience in solving the difficult problems associated with the characterization of Hanford tank wastes, vitrified radioactive wastes, and other very highly radioactive and/or heterogeneous materials. The second section of this document discusses the Laboratory`s radioactive capabilities and facilities for separations and waste form preparation/testing that can be used to Support Hanford tank waste processing design and operations.

  12. Wildlife studies on the Hanford Site: 1993 Highlights report

    SciTech Connect

    Cadwell, L.L.

    1994-04-01

    The Pacific Northwest Laboratory (PNL) Wildlife Resources Monitoring Project was initiated by DOE to track the status of wildlife populations to determine whether Hanford operations affected them. The project continues to conduct a census of wildlife populations that are highly visible, economically or aesthetically important, and rare or otherwise considered sensitive. Examples of long-term data collected and maintained through the Wildlife Resources Monitoring Project include annual goose nesting surveys conducted on islands in the Hanford Reach, wintering bald eagle surveys, and fall Chinook salmon redd (nest) surveys. The report highlights activities related to salmon and mollusks on the Hanford Reach of the Columbia River; describes efforts to map vegetation on the Site and efforts to survey species of concern; provides descriptions of shrub-steppe bird surveys, including bald eagles, Canada geese, and hawks; outlines efforts to monitor mule deer and elk populations on the Site; and describes development of a biological database management system.

  13. Master schedule for CY-1981 Hanford environmental surveillance routine program

    SciTech Connect

    Blumer, P.J.; Sula, M.J.; Eddy, P.A.

    1980-12-01

    The current schedule of data collection for the routine environmental surveillance program at the Hanford Site is provided. Questions about specific entries should be referred to the authors since modifications to the schedule are made during the year and special areas of study, usually of short duration, are not scheduled. The environmental surveillance program objectives are to evaluate the levels of radioactive and nonradioactive pollutants in the Hanford environs, as required in Manual Chapter 0513, and to monitor Hanford operations for compliance with applicable environmental criteria given in Manual Chapter 0524 and Washington State Water Quality Standards. Air quality data obtained in a separate program are also reported. The collection schedule for potable water is shown but it is not part of the routine environmental surveillance program. Schedules are presented for the following subjects: air, Columbia River, sanitary water, surface water, ground water, foodstuffs, wildlife, soil and vegetation, external radiation measurement, portable instrument surveys, and surveillance of waste disposal sites. (JGB)

  14. Kinetics of in situ bioremediation of Hanford groundwater

    SciTech Connect

    Skeen, R.S.; Cote, S.M.; Truex, M.J.; Petersen, J.N.

    1992-04-01

    Liquid wastes containing radioactive, hazardous, and regulated chemicals have been generated throughout the 40+ years of operations at the US Department of Energy`s (DOE) Hanford Site. Some of these wastes were discharged to the soil column and many of the waste components, including nitrate, carbon tetrachloride (CCl{sub 4}), and several radionuclides, have been detected in the Hanford groundwater. Current DOE policy prohibits the disposal of contaminated liquids directly to the environment, and may require the remediation of existing contaminated groundwaters. In situ bioremediation is one technology currently being developed at Hanford to meet the need for cost effective technologies to clean groundwater contaminated with CCl{sub 4}, nitrate, and other organic and inorganic contaminants. This paper focuses on the latest results of an on-going effort to quantify the biological and chemical reactions that would occur during in situ bioremediation.

  15. Kinetics of in situ bioremediation of Hanford groundwater

    SciTech Connect

    Skeen, R.S.; Cote, S.M.; Truex, M.J. ); Petersen, J.N. . Dept. of Chemical Engineering)

    1992-04-01

    Liquid wastes containing radioactive, hazardous, and regulated chemicals have been generated throughout the 40+ years of operations at the US Department of Energy's (DOE) Hanford Site. Some of these wastes were discharged to the soil column and many of the waste components, including nitrate, carbon tetrachloride (CCl[sub 4]), and several radionuclides, have been detected in the Hanford groundwater. Current DOE policy prohibits the disposal of contaminated liquids directly to the environment, and may require the remediation of existing contaminated groundwaters. In situ bioremediation is one technology currently being developed at Hanford to meet the need for cost effective technologies to clean groundwater contaminated with CCl[sub 4], nitrate, and other organic and inorganic contaminants. This paper focuses on the latest results of an on-going effort to quantify the biological and chemical reactions that would occur during in situ bioremediation.

  16. Operational Impacts of Large Deployments of Offshore Wind (Poster)

    SciTech Connect

    Ibanez, E.; Heaney, M.

    2014-10-01

    The potential operational impact of deploying 54 GW of offshore wind in the United States was examined. The capacity was not evenly distributed; instead, it was concentrated in regions with better wind quality and close to load centers (Table 1). A statistical analysis of offshore wind power time series was used to assess the effect on the power system. The behavior of offshore wind resembled that of onshore wind, despite the former presenting higher capacity factors, more consistent power output across seasons, and higher variability levels. Thus, methods developed to manage onshore wind variability can be extended and applied to offshore wind.

  17. Mitigating the Impact of Sensor Uncertainty on Unmanned Aircraft Operations

    NASA Technical Reports Server (NTRS)

    Jack, Devin P.; Hoffler, Keith D.; Sturdy, James L.

    2017-01-01

    Without a pilot onboard an aircraft, a Detect-and-Avoid (DAA) system, in conjunction with surveillance sensors, must be used to provide the remotely-located Pilot-in-Command sufficient situational awareness in order to keep the Unmanned Aircraft (UA) safely separated from other aircraft. To facilitate safe operations of UA within the U.S.' National Airspace System, the uncertainty associated with surveillance sensors must be accounted for. An approach to mitigating the impact of sensor uncertainty on achievable separation has been developed to support technical requirements for DAA systems.

  18. The impact of heat stress on operative performance and cognitive function during simulated laparoscopic operative tasks.

    PubMed

    Berg, Regan J; Inaba, Kenji; Sullivan, Maura; Okoye, Obi; Siboni, Stefano; Minneti, Michael; Teixeira, Pedro G; Demetriades, Demetrios

    2015-01-01

    Increasing ambient temperature to prevent intraoperative patient hypothermia remains widely advocated despite unconvincing evidence of efficacy. Heat stress is associated with decreased cognitive and psychomotor performance across multiple tasks but remains unexamined in an operative context. We assessed the impact of increased ambient temperature on laparoscopic operative performance and surgeon cognitive stress. Forty-two performance measures were obtained from 21 surgery trainees participating in the counter-balanced, within-subjects study protocol. Operative performance was evaluated with adaptations of the validated, peg-transfer, and intracorporeal knot-tying tasks from the Fundamentals of Laparoscopic Surgery program. Participants trained to proficiency before enrollment. Task performance was measured at two ambient temperatures, 19 and 26°C (66 and 79°F). Participants were randomly counterbalanced to initial hot or cold exposure before crossing over to the alternate environment. Cognitive stress was measured using the validated Surgical Task Load Index (SURG-TLX). No differences in performance of the peg-transfer and intracorporeal knot-tying tasks were seen across ambient conditions. Assessed via use of the six bipolar scales of the SURG-TLX, we found differences in task workload between the hot and cold conditions in the areas of physical demands (hot 10 [3-12], cold 5 [2.5-9], P = .013) and distractions (hot 8 [3.5-15.5], cold 3 [1.5-5.5], P = .001). Participant perception of distraction remained greater in the hot condition on full scoring of the SURG-TLX. Increasing ambient temperature to levels advocated for prevention of intraoperative hypothermia does not greatly decrease technical performance in short operative tasks. Surgeons, however, do report increased perceptions of distraction and physical demand. The impact of these findings on performance and outcomes during longer operative procedures remains unclear. Copyright © 2015 Elsevier Inc. All

  19. Dust Storm Impacts on Human Mars Mission Equipment and Operations

    NASA Technical Reports Server (NTRS)

    Rucker, M. A.

    2017-01-01

    Although it is tempting to use dust impacts on Apollo lunar exploration mission equipment and operations as an analog for human Mars exploration, there are a number of important differences to consider. Apollo missions were about a week long; a human Mars mission will start at least two years before crew depart from Earth, when cargo is pre-deployed, and crewed mission duration may be over 800 days. Each Apollo mission landed at a different site; although no decisions have been made, NASA is investigating multiple human missions to a single Mars landing site, building up capability over time and lowering costs by re-using surface infrastructure. Apollo missions used two, single-use spacecraft; a human Mars mission may require as many as six craft for different phases of the mission, most of which would be re-used by subsequent crews. Apollo crews never ventured more than a few kilometers from their lander; Mars crews may take "camping trips" a hundred kilo-meters or more from their landing site, utilizing pressurized rovers to explore far from their base. Apollo mission designers weren't constrained by human for-ward contamination of the Moon; if we plan to search for evidence of life on Mars we'll have to be more careful. These differences all impact how we will mitigate and manage dust on our human Mars mission equipment and operations.

  20. Major operations and activities

    SciTech Connect

    Black, D.G.

    1995-06-01

    This section of the 1994 Hanford Site Environmental Report summarizes the major operations and activities on the site. These operations and activities include site management, waste management, environmental restoration and corrective actions, and research and technology development.

  1. Hanford Site Transuranic (TRU) Waste Certification Plan

    SciTech Connect

    GREAGER, T.M.

    1999-12-14

    The Hanford Site Transuranic Waste Certification Plan establishes the programmatic framework and criteria with in which the Hanford Site ensures that contract-handled TRU wastes can be certified as compliant with the WIPP WAC and TRUPACT-II SARP.

  2. Hanford Site Transuranic (TRU) Waste Certification Plan

    SciTech Connect

    GREAGER, T.M.

    1999-09-09

    The Hanford Site Transuranic Waste Certification Plan establishes the programmatic framework and criteria within which the Hanford Site ensures that contract-handled TRU wastes can be certified as compliant with the WIPP WAC and TRUPACT-II SARP.

  3. Offsite radiation doses summarized from Hanford environmental monitoring reports for the years 1957-1984. [Contains glossary

    SciTech Connect

    Soldat, J.K.; Price, K.R.; McCormack, W.D.

    1986-02-01

    Since 1957, evaluations of offsite impacts from each year of operation have been summarized in publicly available, annual environmental reports. These evaluations included estimates of potential radiation exposure to members of the public, either in terms of percentages of the then permissible limits or in terms of radiation dose. The estimated potential radiation doses to maximally exposed individuals from each year of Hanford operations are summarized in a series of tables and figures. The applicable standard for radiation dose to an individual for whom the maximum exposure was estimated is also shown. Although the estimates address potential radiation doses to the public from each year of operations at Hanford between 1957 and 1984, their sum will not produce an accurate estimate of doses accumulated over this time period. The estimates were the best evaluations available at the time to assess potential dose from the current year of operation as well as from any radionuclides still present in the environment from previous years of operation. There was a constant striving for improved evaluation of the potential radiation doses received by members of the public, and as a result the methods and assumptions used to estimate doses were periodically modified to add new pathways of exposure and to increase the accuracy of the dose calculations. Three conclusions were reached from this review: radiation doses reported for the years 1957 through 1984 for the maximum individual did not exceed the applicable dose standards; radiation doses reported over the past 27 years are not additive because of the changing and inconsistent methods used; and results from environmental monitoring and the associated dose calculations reported over the 27 years from 1957 through 1984 do not suggest a significant dose contribution from the buildup in the environment of radioactive materials associated with Hanford operations.

  4. Analysis and Prediction of Weather Impacted Ground Stop Operations

    NASA Technical Reports Server (NTRS)

    Wang, Yao Xun

    2014-01-01

    When the air traffic demand is expected to exceed the available airport's capacity for a short period of time, Ground Stop (GS) operations are implemented by Federal Aviation Administration (FAA) Traffic Flow Management (TFM). The GS requires departing aircraft meeting specific criteria to remain on the ground to achieve reduced demands at the constrained destination airport until the end of the GS. This paper provides a high-level overview of the statistical distributions as well as causal factors for the GSs at the major airports in the United States. The GS's character, the weather impact on GSs, GS variations with delays, and the interaction between GSs and Ground Delay Programs (GDPs) at Newark Liberty International Airport (EWR) are investigated. The machine learning methods are used to generate classification models that map the historical airport weather forecast, schedule traffic, and other airport conditions to implemented GS/GDP operations and the models are evaluated using the cross-validations. This modeling approach produced promising results as it yielded an 85% overall classification accuracy to distinguish the implemented GS days from the normal days without GS and GDP operations and a 71% accuracy to differentiate the GS and GDP implemented days from the GDP only days.

  5. Superfund Record of Decision (EPA Region 10): Hanford 1100 Area Site (USDOE), Benton County, WA, September 1993

    SciTech Connect

    Not Available

    1993-09-01

    The decision document presents the selected remedial actions for the USDOE Hanford 1100 Area, Hanford Site, Benton County, Washington. The selected remedy for the 1100 Area NPL Site addresses actual or threatened releases at the four 1100 Area Operable Units: 1100-EM-1, 1100-EM-2, 1100-EM-3, and 1100-IU-1.

  6. LONG-TERM STEWARDSHIP AT DOE HANFORD SITE - 12575

    SciTech Connect

    MOREN RJ; GRINDSTAFF KD

    2012-01-11

    The U.S. Department of Energy's (DOE) Hanford Site is located in southeast Washington and consists of 1,518 square kilometers (586 square miles) of land. Established in 1943 as part of the Manhattan Project, Hanford workers produced plutonium for our nation's nuclear defense program until the mid 1980's. Since then, the site has been in cleanup mode that is being accomplished in phases. As we achieve remedial objectives and complete active cleanup, DOE will manage Hanford land under the Long-Term Stewardship (LTS) Program until completion of cleanup and the site becomes ready for transfer to the post cleanup landlord - currently planned for DOE's Office of Legacy Management (LM). We define Hanford's LTS Program in the ''Hanford Long-Term Stewardship Program Plan,'' (DOE/RL-201 0-35)[1], which describes the scope including the relationship between the cleanup projects and the LTS Program. DOE designed the LTS Program to manage and provide surveillance and maintenance (S&M) of institutional controls and associated monitoring of closed waste sites to ensure the protection of human health and the environment. DOE's Richland Operations Office (DOE-RL) and Hanford cleanup and operations contractors collaboratively developed this program over several years. The program's scope also includes 15 key activities that are identified in the DOE Program Plan (DOE/RL-2010-35). The LTS Program will transition 14 land segments through 2016. The combined land mass is approximately 570 square kilometers (220 square miles), with over 1,300 active and inactive waste sites and 3,363 wells. Land segments vary from buffer zone property with no known contamination to cocooned reactor buildings, demolished support facilities, and remediated cribs and trenches. DOE-RL will transition land management responsibilities from cleanup contractors to the Mission Support Contract (MSC), who will then administer the LTS Program for DOE-RL. This process requires an environment of cooperation between

  7. Retrospective assessment of personnel neutron dosimetry for workers at the Hanford Site

    SciTech Connect

    Fix, J.J.; Wilson, R.H.; Baumgartner, W.B.

    1996-09-01

    This report was prepared to examine the specific issue of the potential for unrecorded neutron dose for Hanford workers, particularly in comparison with the recorded whole body (neutron plus photon) dose. During the past several years, historical personnel dosimetry practices at Hanford have been documented in several technical reports. This documentation provides a detailed history of the technology, radiation fields, and administrative practices used to measure and record dose for Hanford workers. Importantly, documentation has been prepared by personnel whose collective experience spans nearly the entire history of Hanford operations beginning in the mid-1940s. Evaluations of selected Hanford radiation dose records have been conducted along with statistical profiles of the recorded dose data. The history of Hanford personnel dosimetry is complex, spanning substantial evolution in radiation protection technology, concepts, and standards. Epidemiologic assessments of Hanford worker mortality and radiation dose data were initiated in the early 1960s. In recent years, Hanford data have been included in combined analyses of worker cohorts from several Department of Energy (DOE) sites and from several countries through the International Agency for Research on Cancer (IARC). Hanford data have also been included in the DOE Comprehensive Epidemiologic Data Resource (CEDR). In the analysis of Hanford, and other site data, the question of comparability of recorded dose through time and across the respective sites has arisen. DOE formed a dosimetry working group composed of dosimetrists and epidemiologists to evaluate data and documentation requirements of CEDR. This working group included in its recommendations the high priority for documentation of site-specific radiation dosimetry practices used to measure and record worker dose by the respective DOE sites.

  8. The Empirical Analysis of Impact of Alliances on Airline Operations

    NASA Technical Reports Server (NTRS)

    Iatrou, Kostas; Alamdari, Fariba

    2003-01-01

    Airline alliances are dominating the current air transport industry with the largest carriers of the world belonging to one of the four alliance groupings - "Wings", Star Alliance, one world, SkyTeam - which represent 56% of world Revenue Passenger Kilometers. Although much research has been carried out to evaluate the impact of alliance membership on performance of airlines, it would be of interest to ascertain the degree of impact perceived by participating airlines in alliances. It is the purpose of this paper to gather the opinion of all the airlines, belonging to the four global alliance groupings on the impact alliances have had on their traffic and on their performance in general To achieve this, a comprehensive survey of the alliance management departments of airlines participating in the four global strategic alliances was carried out. With this framework the survey has examined which type of cooperation among carriers (FFP, Code Share, Strategic Alliance without antitrust immunity, Strategic Alliance with antitrust immunity) has produced the most positive impact on traffic and which type of route (short haul, long haul, hub-hub, hub-non hub, non hub-non hub) has been mostly affected. In addition, the respondent airlines quantified the effect alliances have had on specific areas of their operation, such as load factors, traffic, costs, revenue and fares. Their responses have been analysed under each global alliances grouping, under airline and under geographic region to establish which group, type of carrier and geographic region has benefited most. The results show that each of the four global alliances groupings has experienced different results according to the type of collaboration agreed amongst their member airlines.

  9. Surgical approach to impacted mandibular third molars--operative classification.

    PubMed

    Abu-El Naaj, Imad; Braun, Refael; Leiser, Yoav; Peled, Micha

    2010-03-01

    The aim of the present study is to suggest a convenient way to classify the position of the impacted third mandibular molar relative to the mandibular canal and to suggest indications for the use of each surgical approach for mandibular third molar extraction. The presented new typing system, Third Molar Classification (TMC), is a simple and easy-to-apply method for the surgical management of mandibular third molars and can be extended for any ectopic or impacted mandibular tooth. There are 3 major types of third molar positions. The second type is subdivided further into 2 subtypes. In the present study, 9 patients with high-risk mandibular third molars were treated according to the present classification and are presented and discussed. Patients typed as TMC IIb were treated with a sagittal split osteotomy approach and patients typed as TMC III were treated with an extraoral approach. The operative classification was successfully implemented in very rare cases of deeply impacted mandibular third molars. In 3 of 9 cases (33%) minor complications included some degree of hypoesthesia using the extraoral approach; these complications resolved spontaneously without the need for any intervention. The present study describes the use of a new surgical classification system for treatment planning in all types of mandibular third molar extractions. We believe that the present classification could help the oral and maxillofacial surgeon in decision-making and limit the possible risks that are present when attempting to extract impacted mandibular third molars. Copyright (c) 2010 American Association of Oral and Maxillofacial Surgeons. Published by Elsevier Inc. All rights reserved.

  10. Columbia River System Operation Review : Final Environmental Impact Statement, Appendix O: Economic and Social Impact.

    SciTech Connect

    Columbia River System Operation Review

    1995-11-01

    This Appendix O of the Final Environmental Impact Statement for the Columbia River System measures the economic and social effects of the alternative system operation strategies and includes both geographic and methodology components. Areas discussed in detail include the following: purpose, scope and process; an economic history of the Columbia River Basin and its use today including the Columbia River and Socio-economic development in the Northwest and Major uses of the River System; Analysis procedures and methodologies including national economic evaluation, the concepts, analysis of assumptions, analysis for specific river uses, water quality, Regional evaluation, analysis, and social impacts; alternatives and impacts including implementation costs, andromous fish, resident fish and wildlife, flood control, irrigation and municipal and industrial water supply, navigation impacts, power, recreation, annual costs, regional economic analysis. Extensive comparison of alternatives is included.

  11. MANHATTAN PROJECT B REACTOR HANFORD WASHINGTON [HANFORD'S HISTORIC B REACTOR (12-PAGE BOOKLET)

    SciTech Connect

    GERBER MS

    2009-04-28

    The Hanford Site began as part of the United States Manhattan Project to research, test and build atomic weapons during World War II. The original 670-square mile Hanford Site, then known as the Hanford Engineer Works, was the last of three top-secret sites constructed in order to produce enriched uranium and plutonium for the world's first nuclear weapons. B Reactor, located about 45 miles northwest of Richland, Washington, is the world's first full-scale nuclear reactor. Not only was B Reactor a first-of-a-kind engineering structure, it was built and fully functional in just 11 months. Eventually, the shoreline of the Columbia River in southeastern Washington State held nine nuclear reactors at the height of Hanford's nuclear defense production during the Cold War era. The B Reactor was shut down in 1968. During the 1980's, the U.S. Department of Energy began removing B Reactor's support facilities. The reactor building, the river pumphouse and the reactor stack are the only facilities that remain. Today, the U.S. Department of Energy (DOE) Richland Operations Office offers escorted public access to B Reactor along a designated tour route. The National Park Service (NPS) is studying preservation and interpretation options for sites associated with the Manhattan Project. A draft is expected in summer 2009. A final report will recommend whether the B Reactor, along with other Manhattan Project facilities, should be preserved, and if so, what roles the DOE, the NPS and community partners will play in preservation and public education. In August 2008, the DOE announced plans to open B Reactor for additional public tours. Potential hazards still exist within the building. However, the approved tour route is safe for visitors and workers. DOE may open additional areas once it can assure public safety by mitigating hazards.

  12. GIS Operations at the U.S. Department of Energy’s Hanford Site: A Review of the Current Status and a Proposed Action to Ensure Long-Term Data Sustainability

    SciTech Connect

    Coleman, Andre M.; Webber, William D.

    2005-07-27

    This paper provides a current state of spatial data collections, use, management, and challenges at the Hanford Site through the use and development of a Spatial Data Infrastructure. Recommendations designed to ensure data quality, usability and sustainability now and into the future are presented.

  13. CARBON-14 IN SAGEBRUSH ON THE HANFORD SITE AND VICINITY

    SciTech Connect

    Price, K. R.

    1981-07-01

    The purpose of this study was to estimate the levels of {sup 14}C in sagebrush wood from plants growing on the Hanford Site and vicinity and to determine if these levels could be attributed to past and present operations at Hanford. Mature sagebrush plants were collected at one onsite and two offsite locations and analyzed for {sup 14}C. The offsite samples were collected both 60 km upwind and 26 km downwind from fuel reprocessing facilities on the Hanford Site. The results from these samples showed no statistically significant increased levels of {sup 14}C for any time period during the operation of Hanford fuel reprocessing facilities. However, samples representative of the postnuclear era showed a 30% increase in {sup 14}C content over prenuclear era (pre-1944) samples. This increase is primarily attributable to worldwide fallout resulting from atmospheric testing of nuclear weapons. An important finding of the study was the approximate fourfold increase in {sup 14}C detected in sagebrush wood collected onsite near the PUREX fuel reprocessing facility at Hanford. This result implies that sagebrush plants growing within 0.5 km of PUREX while the facility was in operation were exposed to an estimated average air concentration four times normal or about 4 pCi/m{sup 3}. This was during those times when the sagebrush was actively growing and assimilating carbon. The data indicate that sagebrush wood provides an historical record of changes in {sup 14}C assimilation and, thus, some basis for judging what to expect in the way of increased levels of {sup 14}C in vegetation following the proposed restart of PUREX operations.

  14. The Hanford Site focus, 1994

    SciTech Connect

    Peterson, J.M.

    1994-03-01

    This report describes what the Hanford Site will look like in the next two years. We offer thumbnail sketches of Hanford Site programs and the needs we are meeting through our efforts. We describe our goals, some recent accomplishments, the work we will do in fiscal year (FY) 1994, the major activities the FY 1995 budget request covers, and the economic picture in the next few years. The Hanford Site budget shows the type of work being planned. US Department of Energy (DOE) sites like the Hanford Site use documents called Activity Data Sheets to meet this need. These are building blocks that are included in the budget. Each Activity Data Sheet is a concise (usually 4 or 5 pages) summary of a piece of work funded by the DOE`s Environmental Restoration and Waste Management budget. Each sheet describes a waste management or environmental restoration need over a 5-year period; related regulatory requirements and agreements; and the cost, milestones, and steps proposed to meet the need. The Hanford Site is complex and has a huge budget, and its Activity Data Sheets run to literally thousands of pages. This report summarizes the Activity Data Sheets in a less detailed and much more reader-friendly fashion.

  15. Institutional environmental impact statement (space shuttle development and operations) amendment no. 1. [space shuttle operations at Kennedy Space Center

    NASA Technical Reports Server (NTRS)

    1973-01-01

    Data are presented to support the environmental impact statement on space shuttle actions at Kennedy Space Center. Studies indicate that land use to accommodate space shuttle operations may have the most significant impact. The impacts on air, water and noise quality are predicted to be less on the on-site environment. Considerations of operating modes indicate that long and short term land use will not affect wildlife productivity. The potential for adverse environmental impact is small and such impacts will be local, short in duration, controllable, and environmentally acceptable.

  16. Recent plutonium metal production experience at Hanford

    SciTech Connect

    Gibson, M.W.; Nyman, D.H.

    1989-10-01

    Plutonium metal is produced at the Hanford Site in the Remote Mechanical C (RMC) line. The line is housed in the Plutonium Finishing Plant (PFP). The RMC line was built in the early 1960s and operated until 1973 when it was shut down. The line was restarted in 1985 and has operated on a campaign basis since that time. The fiscal years (FY) 1988/89 RMC line campaigns have shown improved yields and plant safety performance when compared to previous years. This is attributed to numerous process improvements that have been made in the line and to an enhanced standard of disciplined operations. This report discusses the improvements made to the RMC line.

  17. Hanford Site National Evnironmental Policy Act (NEPA) characterization. Revision 4

    SciTech Connect

    Cushing, C.E.

    1991-12-01

    This fourth revision of the Hanford Site National Environmental Policy (NEPA) Characterization presents current environmental data regarding the Hanford Site and its immediate environs. This information is intended for use in preparing Site-related NEPA documentation. In Chapter 4.0 are presented summations of up-to-date information about climate and meteorology, geology and hydrology, ecology, history and archaeology, socioeconomics, land use, and noise levels. Chapter 5.0 describes models, including their principal assumptions, that are to be used in simulating realized or potential impacts from nuclear materials at the Hanford Site. Included are models of radionuclides transport in groundwater and atmospheric pathways, and of radiation dose to populations via all known pathways from known initial conditions. Chapter 6.0 provides the preparer with the federal and state regulations, DOE orders and permits, and environmental standards directly applicable for environmental impact statements for the Hanford Site, following the structure Chapter 4.0. NO conclusions or recommendations are given in this report.

  18. Hanford Site National Evnironmental Policy Act (NEPA) characterization

    SciTech Connect

    Cushing, C.E.

    1991-12-01

    This fourth revision of the Hanford Site National Environmental Policy (NEPA) Characterization presents current environmental data regarding the Hanford Site and its immediate environs. This information is intended for use in preparing Site-related NEPA documentation. In Chapter 4.0 are presented summations of up-to-date information about climate and meteorology, geology and hydrology, ecology, history and archaeology, socioeconomics, land use, and noise levels. Chapter 5.0 describes models, including their principal assumptions, that are to be used in simulating realized or potential impacts from nuclear materials at the Hanford Site. Included are models of radionuclides transport in groundwater and atmospheric pathways, and of radiation dose to populations via all known pathways from known initial conditions. Chapter 6.0 provides the preparer with the federal and state regulations, DOE orders and permits, and environmental standards directly applicable for environmental impact statements for the Hanford Site, following the structure Chapter 4.0. NO conclusions or recommendations are given in this report.

  19. Advances in the Glass Formulations for the Hanford Tank Waste Treatment and Immobilization Plant

    SciTech Connect

    Kruger, Albert A.; Vienna, John D.; Kim, Dong Sang

    2015-01-14

    The Department of Energy-Office of River Protection (DOE-ORP) is constructing the Hanford Tank Waste Treatment and Immobilization Plant (WTP) to treat radioactive waste currently stored in underground tanks at the Hanford site in Washington. The WTP that is being designed and constructed by a team led by Bechtel National, Inc. (BNI) will separate the tank waste into High Level Waste (HLW) and Low Activity Waste (LAW) fractions with the majority of the mass (~90%) directed to LAW and most of the activity (>95%) directed to HLW. The pretreatment process, envisioned in the baseline, involves the dissolution of aluminum-bearing solids so as to allow the aluminum salts to be processed through the cesium ion exchange and report to the LAW Facility. There is an oxidative leaching process to affect a similar outcome for chromium-bearing wastes. Both of these unit operations were advanced to accommodate shortcomings in glass formulation for HLW inventories. A by-product of this are a series of technical challenges placed upon materials selected for the processing vessels. The advances in glass formulation play a role in revisiting the flow sheet for the WTP and hence, the unit operations that were being imposed by minimal waste loading requirements set forth in the contract for the design and construction of the plant. Another significant consideration to the most recent revision of the glass models are the impacts on resolution of technical questions associated with current efforts for design completion.

  20. FY 1992 revised task plans for the Hanford Environmental Dose Reconstruction Project

    SciTech Connect

    Shipler, D.B.

    1992-04-01

    The purpose of the Hanford Environmental Dose Reconstruction (HEDR) Project is to estimate radiation doses from Hanford Site operations since 1944 to populations and individuals. The primary objectives of work to be performed in FY 1992 is to determine the appropriate scope (space, time, and radionuclides, pathways and individuals/population groups) and accuracy (level of uncertainty in dose estimates) for the project. Another objective is to use a refined computer model to estimate Native American tribal doses and individual doses for the Hanford Thyroid Disease Study (HTDS). Project scope and accuracy requirements defined in FY 1992 can translated into model and data requirements that must be satisfied during FY 1993.

  1. FY 1992 revised task plans for the Hanford Environmental Dose Reconstruction Project. Revision 1

    SciTech Connect

    Shipler, D.B.

    1992-04-01

    The purpose of the Hanford Environmental Dose Reconstruction (HEDR) Project is to estimate radiation doses from Hanford Site operations since 1944 to populations and individuals. The primary objectives of work to be performed in FY 1992 is to determine the appropriate scope (space, time, and radionuclides, pathways and individuals/population groups) and accuracy (level of uncertainty in dose estimates) for the project. Another objective is to use a refined computer model to estimate Native American tribal doses and individual doses for the Hanford Thyroid Disease Study (HTDS). Project scope and accuracy requirements defined in FY 1992 can translated into model and data requirements that must be satisfied during FY 1993.

  2. Hanford Environmental Monitoring Program schedule for samples, analyses, and measurements for calendar year 1985

    SciTech Connect

    Blumer, P.J.; Price, K.R.; Eddy, P.A.; Carlile, J.M.V.

    1984-12-01

    This report provides the CY 1985 schedule of data collection for the routine Hanford Surface Environmental Monitoring and Ground-Water Monitoring Programs at the Hanford Site. The purpose is to evaluate and report the levels of radioactive and nonradioactive pollutants in the Hanford environs, as required in DOE Order 5484.1. The routine sampling schedule provided herein does not include samples scheduled to be collected during FY 1985 in support of special studies, special contractor support programs, or for quality control purposes. In addition, the routine program outlined in this schedule is subject to modification during the year in response to changes in site operations, program requirements, or unusual sample results.

  3. Description and evaluation of the Hanford personnel dosimeter program from 1944 through 1989. [Contain Glossary

    SciTech Connect

    Wilson, R.H.; Fix, J.J.; Baumgartner, W.V.; Nichols, L.L.

    1990-09-01

    This report describes the evolution of personnel dosimeter technology at Hanford since the inception of Hanford operations in 1944. Each of the personnel dosimeter systems used by people working or visiting Hanford is described. In addition, the procedures used to calibrate and calculate dose for each of the dosimeter systems are described. The accuracy of the recorded dose, primarily whole body deep dose, for the different dosimeter systems is evaluated. The evaluation is based on an extensive review of historical literature, as well as a 1989 intercomparison study of all film dosimeters and performance testing of the thermoluminescent dosimeter, also conducted during 1989. 73 refs., 40 figs., 41 tabs.

  4. Hanford basalt flow mineralogy

    SciTech Connect

    Ames, L.L.

    1980-09-01

    Mineralogy of the core samples from five core wells was examined in some detail. The primary mineralogy study included an optical examination of polished mounts, photomicrographs, chemical analyses of feldspars, pyroxenes, metallic oxides and microcrystalline groundmasses and determination from the chemical analyses of the varieties of feldspars, pyroxenes and metallic oxides. From the primary mineralogy data, a firm understanding of the average Hanford basalt flow primary mineralogy emerged. The average primary feldspar was a laboradorite, the average pyroxene was an augite and the average metallic oxide was a solid solution of ilmenite and magnetite. Secondary mineralization consisted of vug filling and joint coating, chiefly with a nontronite-beidellite clay, several zeolites, quartz, calcite, and opal. Specific flow units also were examined to determine the possibility of using the mineralogy to trace flows between core wells. These included units of the Pomona, the Umatilla and a high chromium flow just below the Huntzinger. In the Umatilla, or high barium flow, the compositional variation of the feldspars was unique in range. The pyroxenes in the Pomona were relatively highly zoned and accumulated chromium. The high chromium flow contained chromium spinels that graded in chromium content into simple magnetites very low in chromium content. A study of the statistical relationships of flow unit chemical constituents showed that flow unit constituents could be roughly correlated between wells. The probable cause of the correlation was on-going physical-chemical changes in the source magma.

  5. Hanford and the Tri-Cities economy 1997

    SciTech Connect

    Scott, M.J.

    1998-04-09

    The missions of the US Department of Energy`s Richland Operations Office (DOE/RL) are to safely manage the Hanford Site, to manage and clean up its legacy wastes, and to develop and deploy new science and technology in the environmental and energy fields. Collectively, DOE/RL and its contractors are the most important single entity in the Tri-Cities local economy (Pasco, Kennewick, and Richland, Washington, and the surrounding area). While the relevant economic region affected by DOE/RL and its contractors actually embraces a geographic area reaching from Yakima in the west to Walla Walla in the east and from Moses Lake in the north to Pendleton, Oregon, in the south, over 90% of economic impacts likely occur in Benton and Franklin Counties. These two counties are defined as the local Tri-Cities economy for purposes of this study. In the Federal fiscal year (FY) 1997 (October 1, 1996 through September 30, 1997), the total impact of DOE`s local $1.7 billion budget was felt through payrolls and local purchases of goods and services that totaled about $774 million. Directly or indirectly, the DOE/RL budget sustained an estimated 36% of all local employment (30,300 out of 84,800 jobs) and up to 67% of local wage income.

  6. Impact of integrated programs on general surgery operative volume.

    PubMed

    Jensen, Amanda R; Nickel, Brianne L; Dolejs, Scott C; Canal, David F; Torbeck, Laura; Choi, Jennifer N

    2017-03-01

    Integrated residencies are now commonplace, co-existing with categorical general surgery residencies. The purpose of this study was to define the impact of integrated programs on categorical general surgery operative volume. Case logs from categorical general, integrated plastics, vascular, and thoracic surgery residents from a single institution from 2008 to 2016 were collected and analyzed. Integrated residents have increased the number of cases they perform that would have previously been general surgery resident cases from 11 in 2009-2010 to 1392 in 2015-2016. Despite this, there was no detrimental effect on total major cases of graduating chief residents. Multiple integrated programs can co-exist with a general surgery program through careful collaboration and thoughtful consideration to longitudinal needs of individual trainees. As additional programs continue to be created, both integrated and categorical program directors must continue to collaborate to insure the integrity of training for all residents. Copyright © 2017 Elsevier Inc. All rights reserved.

  7. The Contingency of Success: Operations for Deep Impact's Planet Hunt

    NASA Technical Reports Server (NTRS)

    Rieber, Richard R.; Sharrow, Robert F.

    2009-01-01

    The Deep Impact Flyby spacecraft completed its prime mission in August 2005. It was reactivated for a mission of opportunity add-on called EPOXI on September 25, 2007. The first portion of EPOXI, called EPOCh (Extra-solar Planetary Observation & CHaracterization), occurred from January 21, 2008 through August 31, 2008. Its purpose was to characterize transiting hot-Jupiters by measuring the effects the planet has on the luminosity of its parent star. These observations entailed using the spacecraft in ways it was never intended. A new green-light, success-oriented operational strategy was devised that entailed high amounts of automation and minimal intervention from the ground. The specifics, techniques, and key challenges to obtaining the 172,209 usable science images from EPOCh are discussed in detail.

  8. Hanford External Dosimetry Technical Basis Manual PNL-MA-842

    SciTech Connect

    Rathbone, Bruce A.

    2010-01-01

    The Hanford External Dosimetry Technical Basis Manual PNL-MA-842 documents the design and implementation of the external dosimetry system used at Hanford. The manual describes the dosimeter design, processing protocols, dose calculation methodology, radiation fields encountered, dosimeter response characteristics, limitations of dosimeter design under field conditions, and makes recommendations for effective use of the dosimeters in the field. The manual describes the technical basis for the dosimetry system in a manner intended to help ensure defensibility of the dose of record at Hanford and to demonstrate compliance with 10 CFR 835, DOELAP, DOE-RL, ORP, PNSO, and Hanford contractor requirements. The dosimetry system is operated by PNNL’s Hanford External Dosimetry Program (HEDP) which provides dosimetry services to all Hanford contractors. The primary users of this manual are DOE and DOE contractors at Hanford using the dosimetry services of PNNL. Development and maintenance of this manual is funded directly by DOE and DOE contractors. Its contents have been reviewed and approved by DOE and DOE contractors at Hanford through the Hanford Personnel Dosimetry Advisory Committee (HPDAC) which is chartered and chaired by DOE-RL and serves as means of coordinating dosimetry practices across contractors at Hanford. This manual was established in 1996. Since its inception, it has been revised many times and maintained by PNNL as a controlled document with controlled distribution. The first revision to be released through PNNL’s Electronic Records & Information Capture Architecture (ERICA) database was designated Revision 0. Revision numbers that are whole numbers reflect major revisions typically involving significant changes to all chapters in the document. Revision numbers that include a decimal fraction reflect minor revisions, usually restricted to selected chapters or selected pages in the document. Maintenance and distribution of controlled hard copies of the

  9. Proceedings of the First Hanford Separation Science Workshop

    SciTech Connect

    Not Available

    1993-05-01

    The First Hanford Separation Science Workshop, sponsored by PNL had two main objectives: (1) assess the applicability of available separation methods for environmental restoration and for minimization, recovery, and recycle of mixed and radioactive mutes; and (2) identify research needs that must be addressed to create new or improved technologies. The information gathered at this workshop not only applies to Hanford but could be adapted to DOE facilities throughout the nation as well. These proceedings have been divided into three components: Background and Introduction to the Problem gives an overview of the history of the Site and the cleanup mission, including waste management operations, past disposal practices, current operations, and plans for the future. Also included in this section is a discussion of specific problems concerning the chemistry of the Hanford wastes. Separation Methodologies contains the papers given at the workshop by national experts in the field of separation science regarding the state-of-the-art of various methods and their applicability/adaptability to Hanford. Research Needs identifies further research areas developed in working group sessions. Individual papers are indexed separately.

  10. Use of outdoor containments at Westinghouse Hanford Company

    SciTech Connect

    Brown, R.L.; Sparks, D.L.

    1993-08-01

    This discussion describes the development and application of outdoor containments at Hanford Site Tank Farm facilities. Tank Farms is a huge facility, spread over the 200 East and 200 West Areas of the Hanford Site. Westinghouse Hanford Company operates the Tank Farms for the US Department of Energy. The operation and maintenance of this facility require routine access to underground storage tanks and above ground support structures. In the past, workers often accessed tanks and structures in the open, without containment. In general this approach worked; however, it relied on the skill of our crafts and calm weather conditions. The current regulatory environment and our increased focus on safety demand use of more stringent and reliable containment techniques. Historically, the use of containments has been limited mostly to indoor activities which support radiological maintenance at facilities such as reactors and process facilities. Expanding the use of these containments to support work at the Tank Farms and other outdoor activities presents many challenges. Westinghouse Hanford is actively pursuing innovative solutions to issues of outdoor containments. The process of evaluating new containment solutions, and our lessons learned are described below.

  11. Accelerated clean-up at the Hanford Site

    SciTech Connect

    Frain, J.M.; Johnson, W.L.

    1994-01-01

    The Hanford Site began operations in 1943 as one of the sites for plutonium production associated with the Manhattan Project. It has been used, in part, for nuclear reactor operation, reprocessing of spent fuel, and management of radioactive waste. The Hanford Site covers approximately 1,434 km{sup 2} (560 mi{sup 2}2) in southeastern Washington State. The subject of this paper, the 618-9 Burial Ground, is located on the Hanford Site approximately 1.6 km (1 mi) west of the Columbia River, and a few miles north of Richland, Washington. Throughout Hanford Site history, prior to legislation regarding disposal of chemical waste products, some chemical waste byproducts were disposed ,ia burial in trenches. One such trench was the 618-9 Burial Ground. This burial ground was suspected to contain approximately 19,000 L (5,000 gal) of uranium-contaminated organic solvent, disposed in standard 55-gal (208-L) metal drums. The waste was produced from research and development activities related to fuel reprocessing.

  12. Technical Scope and Approach for the 2004 Composite Analysis of Low Level Waste Disposal at the Hanford Site

    SciTech Connect

    Kincaid, Charles T.; Bryce, Robert W.; Buck, John W.

    2004-07-09

    A composite analysis is required by U.S. Department of Energy (DOE) Manual 435.1-1 to ensure public safety through the management of active and planned low-level radioactive waste disposal facilities associated with the Hanford Site (DOE/HQ-Manual 435.1-1). A Composite Analysis is defined as ''a reasonably conservative assessment of the cumulative impact from active and planned low-level waste disposal facilities, and all other sources from radioactive contamination that could interact with the low-level waste disposal facility to affect the dose to future members of the public''. At the Hanford Site, a composite analysis is required for continued disposal authorization for the immobilized low-activity waste, tank waste vitrification plant melters, low level waste in the 200 East and 200 West Solid Waste Burial Grounds, and Comprehensive Environmental Response, Compensation, and Liability Act (CERCLA) waste in the Environmental Restoration Disposal Facility. The 2004 Composite Analysis will be a site-wide analysis, considering final remedial actions for the Columbia River corridor and the Central Plateau at the Hanford Site. The river corridor includes waste sites and facilities in each of the 100 Areas as well as the 300, 400, and 600 Areas. The remedial actions for the river corridor are being conducted to meet residential land use standards with the vision of the river corridor being devoted to a combination of recreation and preservation. The ''Central Plateau'' describes the region associated with operations and waste sites of the 200 Areas. DOE is developing a strategy for closure of the Central Plateau area by 2035. At the time of closure, waste management activities will shrink to a Core Zone within the Central Plateau. The Core Zone will contain the majority of Hanford's permanently disposed waste

  13. Impact of pyrethroid resistance on operational malaria control in Malawi.

    PubMed

    Wondji, Charles S; Coleman, Michael; Kleinschmidt, Immo; Mzilahowa, Themba; Irving, Helen; Ndula, Miranda; Rehman, Andrea; Morgan, John; Barnes, Kayla G; Hemingway, Janet

    2012-11-20

    The impact of insecticide resistance on insect-borne disease programs is difficult to quantify. The possibility of eliminating malaria in high-transmission settings is heavily dependent on effective vector control reducing disease transmission rates. Pyrethroids are the dominant insecticides used for malaria control, with few options for their replacement. Their failure will adversely affect our ability to control malaria. Pyrethroid resistance has been selected in Malawi over the last 3 y in the two major malaria vectors Anopheles gambiae and Anopheles funestus, with a higher frequency of resistance in the latter. The resistance in An. funestus is metabolically based and involves the up-regulation of two duplicated P450s. The same genes confer resistance in Mozambican An. funestus, although the levels of up-regulation differ. The selection of resistance over 3 y has not increased malaria transmission, as judged by annual point prevalence surveys in 1- to 4-y-old children. This is true in areas with long-lasting insecticide-treated nets (LLINs) alone or LLINs plus pyrethroid-based insecticide residual spraying (IRS). However, in districts where IRS was scaled up, it did not produce the expected decrease in malaria prevalence. As resistance increases in frequency from this low initial level, there is the potential for vector population numbers to increase with a concomitant negative impact on control efficacy. This should be monitored carefully as part of the operational activities in country.

  14. Impact of pyrethroid resistance on operational malaria control in Malawi

    PubMed Central

    Wondji, Charles S.; Coleman, Michael; Kleinschmidt, Immo; Mzilahowa, Themba; Irving, Helen; Ndula, Miranda; Rehman, Andrea; Morgan, John; Barnes, Kayla G.; Hemingway, Janet

    2012-01-01

    The impact of insecticide resistance on insect-borne disease programs is difficult to quantify. The possibility of eliminating malaria in high-transmission settings is heavily dependent on effective vector control reducing disease transmission rates. Pyrethroids are the dominant insecticides used for malaria control, with few options for their replacement. Their failure will adversely affect our ability to control malaria. Pyrethroid resistance has been selected in Malawi over the last 3 y in the two major malaria vectors Anopheles gambiae and Anopheles funestus, with a higher frequency of resistance in the latter. The resistance in An. funestus is metabolically based and involves the up-regulation of two duplicated P450s. The same genes confer resistance in Mozambican An. funestus, although the levels of up-regulation differ. The selection of resistance over 3 y has not increased malaria transmission, as judged by annual point prevalence surveys in 1- to 4-y-old children. This is true in areas with long-lasting insecticide-treated nets (LLINs) alone or LLINs plus pyrethroid-based insecticide residual spraying (IRS). However, in districts where IRS was scaled up, it did not produce the expected decrease in malaria prevalence. As resistance increases in frequency from this low initial level, there is the potential for vector population numbers to increase with a concomitant negative impact on control efficacy. This should be monitored carefully as part of the operational activities in country. PMID:23118337

  15. Hanford Site Groundwater Monitoring for Fiscal Year 2003

    SciTech Connect

    Hartman, Mary J.; Morasch, Launa F.; Webber, William D.

    2004-04-12

    This report presents the results of groundwater and vadose zone monitoring and remediation for fiscal year 2003 (October 2002 through September 2003) on the U.S. Department of Energy's Hanford Site, Washington. The most extensive contaminant plumes in groundwater are tritium, iodine-129, and nitrate, which all had multiple sources and are very mobile in groundwater. The largest portions of these plumes are migrating from the central Hanford Site to the southeast, toward the Columbia River. Concentrations of tritium, nitrate, and some other contaminants continued to exceed drinking water standards in groundwater discharging to the river in some locations. However, contaminant concentrations in river water remained low and were far below standards. Carbon tetrachloride and associated organic constituents form a relatively large plume beneath the central part of the Hanford Site. Hexavalent chromium is present in smaller plumes beneath the reactor areas along the river and beneath the central part of the site. Strontium-90 exceeds standards beneath all but one of the reactor areas, and technetium-99 and uranium are present in the 200 Areas. Uranium exceeds standards in the 300 Area in the south part of the Hanford Site. Minor contaminant plumes with concentrations greater than standards include carbon-14, cesium-137, cis-1,2-dichloroethene, cyanide, fluoride, plutonium, and trichloroethene. Monitoring for the ''Comprehensive Environmental Response, Compensation, and Liability Act'' is conducted in 11 groundwater operable units. The purpose of this monitoring is to define and track plumes and to monitor the effectiveness of interim remedial actions. Interim groundwater remediation in the 100 Areas continued with the goal of reducing the amount of chromium (100-K, 100-D, and 100-H) and strontium-90 (100-N) reaching the Columbia River. The objective of two interim remediation systems in the 200 West Area is to prevent the spread of carbon tetrachloride and technetium-99

  16. FLUOR HANFORD SAFETY MANAGEMENT PROGRAMS

    SciTech Connect

    GARVIN, L. J.; JENSEN, M. A.

    2004-04-13

    This document summarizes safety management programs used within the scope of the ''Project Hanford Management Contract''. The document has been developed to meet the format and content requirements of DOE-STD-3009-94, ''Preparation Guide for US. Department of Energy Nonreactor Nuclear Facility Documented Safety Analyses''. This document provides summary descriptions of Fluor Hanford safety management programs, which Fluor Hanford nuclear facilities may reference and incorporate into their safety basis when producing facility- or activity-specific documented safety analyses (DSA). Facility- or activity-specific DSAs will identify any variances to the safety management programs described in this document and any specific attributes of these safety management programs that are important for controlling potentially hazardous conditions. In addition, facility- or activity-specific DSAs may identify unique additions to the safety management programs that are needed to control potentially hazardous conditions.

  17. Hanford Site sustainable development initiatives

    SciTech Connect

    Sullivan, C.T.

    1994-05-01

    Since the days of the Manhattan Project of World War II, the economic well being of the Tri-Cities (Pasco, Kennewick, and Richland) of Washington State has been tied to the US Department of Energy missions at the nearby Hanford Site. As missions at the Site changed, so did the economic vitality of the region. The Hanford Site is now poised to complete its final mission, that of environmental restoration. When restoration is completed, the Site may be closed and the effect on the local economy will be devastating if action is not taken now. To that end, economic diversification and transition are being planned. To facilitate the process, the Hanford Site will become a sustainable development demonstration project.

  18. Bacterial burden in the operating room: impact of airflow systems.

    PubMed

    Hirsch, Tobias; Hubert, Helmine; Fischer, Sebastian; Lahmer, Armin; Lehnhardt, Marcus; Steinau, Hans-Ulrich; Steinstraesser, Lars; Seipp, Hans-Martin

    2012-09-01

    Wound infections present one of the most prevalent and frequent complications associated with surgical procedures. This study analyzes the impact of currently used ventilation systems in the operating room to reduce bacterial contamination during surgical procedures. Four ventilation systems (window-based ventilation, supported air nozzle canopy, low-turbulence displacement airflow, and low-turbulence displacement airflow with flow stabilizer) were analyzed. Two hundred seventy-seven surgical procedures in 6 operating rooms of 5 different hospitals were analyzed for this study. Window-based ventilation showed the highest intraoperative contamination (13.3 colony-forming units [CFU]/h) followed by supported air nozzle canopy (6.4 CFU/h; P = .001 vs window-based ventilation) and low-turbulence displacement airflow (3.4 and 0.8 CFU/h; P < .001 vs window-based ventilation and supported air nozzle canopy). The highest protection was provided by the low-turbulence displacement airflow with flow stabilizer (0.7 CFU/h), which showed a highly significant difference compared with the best supported air nozzle canopy theatre (3.9 CFU/h; P < .001). Furthermore, this system showed no increase of contamination in prolonged durations of surgical procedures. This study shows that intraoperative contamination can be significantly reduced by the use of adequate ventilation systems. Copyright © 2012 Association for Professionals in Infection Control and Epidemiology, Inc. Published by Mosby, Inc. All rights reserved.

  19. Hanford, diversification, and the Tri-Cities Economy FY 1998

    SciTech Connect

    SCOTT, M.J.

    1999-04-14

    The missions of the U.S. Department of Energy's Richland Operations Office (DOE/RL) are to safely manage the Hanford Site, to manage and clean up its legacy wastes, and to develop and deploy new science and technology in the environmental and energy fields. Collectively, DOE/RL and its contractors are the most important single entity in the Tri-Cities local economy (Pasco, Kennewick, and Richland, Washington, and the surrounding area). Although the relevant economic region affected by DOE/RL and its contractors actually embraces a geographic area reaching from Yakima in the west to Walla Walla in the east and from Moses Lake in the north to Pendleton, Oregon, in the south, over 90% of economic impacts likely occur in Benton and Franklin Counties. These two counties are defined as the ''local'' Tri-Cities economy for purposes of this study (see Figure 1). In the federal fiscal year (IV) 1998 (October 1, 1997 through September 30, 1998), the total impact of DOEs local $1.6 billion budget was felt through payrolls of $519 million and local purchases of goods and services of $246 million. The total local spending of $765 million was down slightly from the FY 1997 total of $774 million. Taking into account the slightly greater multiplier effects of this spending due to changes in its mix, the DOE/RL budget sustained an estimated 36% of all local employment (31,200 out of 86,000 jobs) and up to 64% of local wage income ($1.55 billion out of $2.40 billion). This was up slightly from the year before (29,500 jobs, $1.49 billion income). DOE budget increases in FY 1999 are expected to result in a net increase of about 200 local DOE contractor jobs over the September 30, 1998 level, or about equal to the FY 1998 average. In addition, economic diversification more than offset the impact of the local DOE losses in FY 1998 and, together with an initial economic boost from privatization of Hanford's tank waste cleanup, is expected to play a significant expansive role in FY 1999

  20. HANFORD SITE RIVER CORRIDOR CLEANUP

    SciTech Connect

    BAZZELL, K.D.

    2006-02-01

    In 2005, the US Department of Energy (DOE) launched the third generation of closure contracts, including the River Corridor Closure (RCC) Contract at Hanford. Over the past decade, significant progress has been made on cleaning up the river shore that bordes Hanford. However, the most important cleanup challenges lie ahead. In March 2005, DOE awarded the Hanford River Corridor Closure Contract to Washington Closure Hanford (WCH), a limited liability company owned by Washington Group International, Bechtel National and CH2M HILL. It is a single-purpose company whose goal is to safely and efficiently accelerate cleanup in the 544 km{sup 2} Hanford river corridor and reduce or eliminate future obligations to DOE for maintaining long-term stewardship over the site. The RCC Contract is a cost-plus-incentive-fee closure contract, which incentivizes the contractor to reduce cost and accelerate the schedule. At $1.9 billion and seven years, WCH has accelerated cleaning up Hanford's river corridor significantly compared to the $3.2 billion and 10 years originally estimated by the US Army Corps of Engineers. Predictable funding is one of the key features of the new contract, with funding set by contract at $183 million in fiscal year (FY) 2006 and peaking at $387 million in FY2012. Another feature of the contract allows for Washington Closure to perform up to 40% of the value of the contract and subcontract the balance. One of the major challenges in the next few years will be to identify and qualify sufficient subcontractors to meet the goal.