Sample records for hanford river protection

  1. Remedial Investigation of Hanford Site Releases to the Columbia River - 13603

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lerch, J.A.; Hulstrom, L.C.; Sands, J.P.

    2013-07-01

    In south-central Washington State, the Columbia River flows through the U.S. Department of Energy Hanford Site. A primary objective of the Hanford Site cleanup mission is protection of the Columbia River, through remediation of contaminated soil and groundwater that resulted from its weapons production mission. Within the Columbia River system, surface water, sediment, and biota samples related to potential Hanford Site hazardous substance releases have been collected since the start of Hanford operations. The impacts from release of Hanford Site radioactive substances to the Columbia River in areas upstream, within, and downstream of the Hanford Site boundary have been previouslymore » investigated as mandated by the U.S. Department of Energy requirements under the Atomic Energy Act. The Remedial Investigation Work Plan for Hanford Site Releases to the Columbia River [1] was issued in 2008 to initiate assessment of the impacts under the Comprehensive Environmental Response, Compensation, and Liability Act of 1980 [2]. The work plan established a phased approach to characterize contaminants, assess current risks, and determine whether or not there is a need for any cleanup actions. Field investigation activities over a 120-mile stretch of the Columbia River began in October 2008 and were completed in 2010. Sampled media included surface water, pore water, surface and core sediment, island soil, and fish (carp, walleye, whitefish, sucker, small-mouth bass, and sturgeon). Information and sample results from the field investigation were used to characterize current conditions within the Columbia River and assess whether current conditions posed a risk to ecological or human receptors that would merit additional study or response actions under CERCLA. The human health and ecological risk assessments are documented in reports that were published in 2012 [3, 4]. Conclusions from the risk assessment reports are being summarized and integrated with remedial investigation

  2. HANFORD SITE RIVER CORRIDOR CLEANUP

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    BAZZELL, K.D.

    2006-02-01

    In 2005, the US Department of Energy (DOE) launched the third generation of closure contracts, including the River Corridor Closure (RCC) Contract at Hanford. Over the past decade, significant progress has been made on cleaning up the river shore that bordes Hanford. However, the most important cleanup challenges lie ahead. In March 2005, DOE awarded the Hanford River Corridor Closure Contract to Washington Closure Hanford (WCH), a limited liability company owned by Washington Group International, Bechtel National and CH2M HILL. It is a single-purpose company whose goal is to safely and efficiently accelerate cleanup in the 544 km{sup 2} Hanfordmore » river corridor and reduce or eliminate future obligations to DOE for maintaining long-term stewardship over the site. The RCC Contract is a cost-plus-incentive-fee closure contract, which incentivizes the contractor to reduce cost and accelerate the schedule. At $1.9 billion and seven years, WCH has accelerated cleaning up Hanford's river corridor significantly compared to the $3.2 billion and 10 years originally estimated by the US Army Corps of Engineers. Predictable funding is one of the key features of the new contract, with funding set by contract at $183 million in fiscal year (FY) 2006 and peaking at $387 million in FY2012. Another feature of the contract allows for Washington Closure to perform up to 40% of the value of the contract and subcontract the balance. One of the major challenges in the next few years will be to identify and qualify sufficient subcontractors to meet the goal.« less

  3. Supplemental groundwater remediation technologies to protect the Columbia River at Hanford, WA

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Thompson, K.M.; Petersen, S.W.; Fruchter, J.S.

    2007-07-01

    Nine projects have been recently selected by the US Department of Energy (EM-22) to address groundwater contaminant migration at the Hanford Site. This paper summarizes the background and objectives of these projects. Five of the selected projects are targeted at hexavalent chromium contamination in Hanford 100 Area groundwater. These projects represent an integrated approach towards identifying the source of hexavalent chromium contamination in the Hanford 100-D Area and treating the groundwater contamination. Currently, there is no effective method to stop strontium-90 associated with the riparian zone sediments from leaching into the river. Phyto-remediation may be a possible way to treatmore » this contamination. Its use at the 100-N Area will be investigated. Another technology currently being tested for strontium-90 contamination at the 100-N Area involves injection (through wells) of a calcium-citrate-phosphate solution, which will precipitate apatite, a natural calcium phosphate mineral. Apatite will adsorb the strontium-90, and then incorporate it as part of the apatite structure, isolating the strontium-90 contamination from entering the river. This EM-22 funded apatite project will develop a strategy for infiltrating the apatite solution from ground surface or a shallow trench to provide treatment over the upper portion of the contaminated zone, which is unsaturated during low river stage. Uranium in groundwater at the Hanford 300 Area is another environmental concern. Preliminary laboratory tests indicate that it may be possible to inject water-soluble phosphate compounds into the uranium contamination to stabilize it. One of the projects will perform laboratory tests using long-chain polyphosphate materials. Then, a field test will be conducted to determine if it is possible to treat groundwater in the unconfined aquifer at the Hanford 300 Area using polyphosphate materials. The rates of abiotic hydrolysis of are key parameters needed to predict the

  4. Supplemental Groundwater Remediation Technologies to Protect the Columbia River at Hanford, WA

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Thompson, K. M.; Petersen, Scott W.; Fruchter, Jonathan S.

    2007-12-15

    Nine projects have been recently selected by the US Department of Energy (EM-22) to address groundwater contaminant migration at the Hanford Site. This paper summarizes the background and objectives of these projects. Five of the selected projects are targeted at hexavalent chromium contamination in Hanford 100 Area groundwater. These projects represent an integrated approach towards identifying the source of hexavalent chromium contamination in the Hanford 100-D Area and treating the groundwater contamination. Currently, there is no effective method to stop strontium-90 associated with the riparian zone sediments from leaching into the river. Phytoremediation may be a possible way to treatmore » this contamination. Its use at the 100-N Area will be investigated. Another technology currently being tested for strontium-90 contamination at the 100-N Area involves injection (through wells) of a calcium-citrate-phosphate solution, which will precipitate apatite, a natural calcium-phosphate mineral. Apatite will adsorb the strontium-90, and then incorporate it as part of the apatite structure, isolating the strontium-90 contamination from entering the river. This EM-22 funded apatite project will develop a strategy for infiltrating the apatite solution from ground surface or a shallow trench to provide treatment over the upper portion of the contaminated zone, which is unsaturated during low river stage.« less

  5. The CHPRC Columbia River Protection Project Quality Assurance Project Plan

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Fix, N. J.

    Pacific Northwest National Laboratory researchers are working on the CHPRC Columbia River Protection Project (hereafter referred to as the Columbia River Project). This is a follow-on project, funded by CH2M Hill Plateau Remediation Company, LLC (CHPRC), to the Fluor Hanford, Inc. Columbia River Protection Project. The work scope consists of a number of CHPRC funded, related projects that are managed under a master project (project number 55109). All contract releases associated with the Fluor Hanford Columbia River Project (Fluor Hanford, Inc. Contract 27647) and the CHPRC Columbia River Project (Contract 36402) will be collected under this master project. Each projectmore » within the master project is authorized by a CHPRC contract release that contains the project-specific statement of work. This Quality Assurance Project Plan provides the quality assurance requirements and processes that will be followed by the Columbia River Project staff.« less

  6. Isotopic tracking of Hanford 300 area derived uranium in the Columbia River.

    PubMed

    Christensen, John N; Dresel, P Evan; Conrad, Mark E; Patton, Gregory W; DePaolo, Donald J

    2010-12-01

    Our objectives in this study are to quantify the discharge rate of uranium (U) to the Columbia River from the Hanford Site's 300 Area and to follow that U downriver to constrain its fate. Uranium from the Hanford Site has variable isotopic composition due to nuclear industrial processes carried out at the site. This characteristic makes it possible to use high-precision isotopic measurements of U in environmental samples to identify even trace levels of contaminant U, determine its sources, and estimate discharge rates. Our data on river water samples indicate that as much as 3.2 kg/day can enter the Columbia River from the 300 Area, which is only a small fraction of the total load of dissolved natural background U carried by the Columbia River. This very low level of Hanford-derived U can be discerned, despite dilution to <1% of natural background U, 400 km downstream from the Hanford Site. These results indicate that isotopic methods can allow the amounts of U from the 300 Area of the Hanford Site entering the Columbia River to be measured accurately to ascertain whether they are an environmental concern or insignificant relative to natural uranium background in the Columbia River.

  7. Monitoring groundwater and river interaction along the Hanford reach of the Columbia River

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Campbell, M.D.

    1994-04-01

    As an adjunct to efficient Hanford Site characterization and remediation of groundwater contamination, an automatic monitor network has been used to measure Columbia River and adjacent groundwater levels in several areas of the Hanford Site since 1991. Water levels, temperatures, and electrical conductivity measured by the automatic monitor network provided an initial database with which to calibrate models and from which to infer ground and river water interactions for site characterization and remediation activities. Measurements of the dynamic river/aquifer system have been simultaneous at 1-hr intervals, with a quality suitable for hydrologic modeling and for computer model calibration and testing.more » This report describes the equipment, procedures, and results from measurements done in 1993.« less

  8. Hanford Internal Dosimetry Program Manual, PNL-MA-552

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Carbaugh, Eugene H.; Bihl, Donald E.; Maclellan, Jay A.

    2009-09-24

    This manual is a guide to the services provided by the Hanford Internal Dosimetry Program (IDP), which is operated by the Pacific Northwest National Laboratory.( ) for the U.S. Department of Energy Richland Operations Office, Office of River Protection and their Hanford Site contractors. The manual describes the roles of and relationships between the IDP and the radiation protection programs of the Hanford Site contractors. Recommendations and guidance are also provided for consideration in implementing bioassay monitoring and internal dosimetry elements of radiation protection programs.

  9. The potential for chromium to affect the fertilization process of Chinook salmon (Oncorhynchus tshawytscha) in the Hanford reach of the Columbia River, Washington, USA.

    PubMed

    Farag, A M; Harper, D D; Cleveland, L; Brumbaugh, W G; Little, E E

    2006-05-01

    The Hanford Nuclear Reservation in south central Washington was claimed by the federal government as a site for the production of plutonium. During the course of production and operation of the facilities at Hanford, radionuclides and chromium were discharged directly into the river and also contaminated the groundwater. This study was designed to assess the effects of chromium (Cr) on Chinook salmon (Oncorhynchus tshawytscha) fertilization under exposure conditions similar to those of the Hanford Reach of the Columbia River. Chinook salmon gametes were exposed to aqueous Cr concentrations ranging from 0 to 266 microg Cr l(-1). The current ambient water-quality criteria (AWQC) established for the protection of aquatic life (United States Environmental Protection Agency [USEPA] 1986) is 11 microg Cr l(-1). Cr has been measured in pore water from bottom sediments of the Columbia River at concentrations >600 microg Cr l(-1). Under exposure conditions designed to closely mimic events that occur in the river, the fertilization of Chinook salmon eggs was not affected by concentrations of Cr ranging from 11 to 266 microg Cr l(-1). Data suggest that the instantaneous nature of fertilization likely limits the potential effects of Cr on fertilization success. As a result, the current AWQC of 11 mug Cr l(-1) is most likely protective of Chinook salmon fertilization.

  10. The potential for chromium to affect the fertilization process of Chinook salmon (Oncorhynchus tshawytscha) in the Hanford Reach of the Columbia River, Washington, USA

    USGS Publications Warehouse

    Farag, A.M.; Harper, D.D.; Cleveland, L.; Brumbaugh, W.G.; Little, E.E.

    2006-01-01

    The Hanford Nuclear Reservation in south central Washington was claimed by the federal government as a site for the production of plutonium. During the course of production and operation of the facilities at Hanford, radionuclides and chromium were discharged directly into the river and also contaminated the groundwater. This study was designed to assess the effects of chromium (Cr) on Chinook salmon (Oncorhynchus tshawytscha) fertilization under exposure conditions similar to those of the Hanford Reach of the Columbia River. Chinook salmon gametes were exposed to aqueous Cr concentrations ranging from 0 to 266 μg Cr l−1. The current ambient water-quality criteria (AWQC) established for the protection of aquatic life (United States Environmental Protection Agency [USEPA] 1986) is 11 μg Cr l−1. Cr has been measured in pore water from bottom sediments of the Columbia River at concentrations >600 μg Cr l−1. Under exposure conditions designed to closely mimic events that occur in the river, the fertilization of Chinook salmon eggs was not affected by concentrations of Cr ranging from 11 to 266 μg Cr l−1. Data suggest that the instantaneous nature of fertilization likely limits the potential effects of Cr on fertilization success. As a result, the current AWQC of 11 μg Cr l−1 is most likely protective of Chinook salmon fertilization.

  11. Simulation of Columbia River Floods in the Hanford Reach

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Waichler, Scott R.; Serkowski, John A.; Perkins, William A.

    Columbia River water elevations and flows in the Hanford Reach affect the environment and facilities along the shoreline, including movement of contaminants in groundwater, fish habitat, and infrastructure subject to flooding. This report describes the hydraulic simulation of hypothetical flood flows using the best available topographic and bathymetric data for the Hanford Reach and the Modular Aquatic Simulation System in 1 Dimension (MASS1) hydrodynamic model. The MASS1 model of the Hanford Reach was previously calibrated to field measurements of water surface elevations. The current model setup can be used for other studies of flow, water levels, and temperature in themore » Reach. The existing MASS1 channel geometry and roughness and other model configuration inputs for the Hanford Reach were used for this study, and previous calibration and validation results for the model are reprinted here for reference. The flood flows for this study were simulated by setting constant flow rates obtained from the U.S. Army Corps of Engineers (USACE) for the Columbia, Snake, and Yakima Rivers, and a constant water level at McNary Dam, and then running the model to steady state. The discharge levels simulated were all low-probability events; for example, a 100-year flood is one that would occur on average every 100 years, or put another way, in any given year there is a 1% chance that a discharge of that level or higher will occur. The simulated floods and their corresponding Columbia River discharges were 100-year (445,000 cfs), 500-year (520,000 cfs), and the USACE-defined Standard Project Flood (960,000 cfs). The resulting water levels from the steady-state floods can be viewed as “worst case” outcomes for the respective discharge levels. The MASS1 output for water surface elevations was converted to the North American Vertical Datum of 1988 and projected across the channel and land surface to enable mapping of the floodplain for each scenario. Floodplain maps show

  12. Risk Assessment Approach for the Hanford Site River Corridor Closure Project

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Thomson, J.E.; Weiss, S.G.; Sands, J.P.

    2007-07-01

    The river corridor portion of the U.S. Department of Energy's (DOE) Hanford Site includes the 100 Area and 300 Area, which border the Columbia River and cover 565 km{sup 2} (218 mi{sup 2}). The River Corridor Closure (RCC) Project scope of work includes 486 contaminated facilities, 4 of 9 deactivated plutonium production reactors, and 370 waste disposal sites. DOE's cleanup actions in the river corridor were initiated in 1994 under the Comprehensive Environmental Response, Compensation, and Liability Act of 1981 (42 U.S.C. 9601, et seq.) (CERCLA) and included source and groundwater operable units (OUs). DOE's RCC Project, awarded to Washingtonmore » Closure Hanford (WCH) in 2005, focuses on source OUs and has allowed cleanup actions to continue in the 100 and 300 Areas with completion by 2013. The regulatory authorization for cleanup actions at source OUs in the river corridor consists primarily of interim action records of decision (RODs), which were supported by qualitative risk assessments and limited field investigations. A key to establishing final cleanup decisions and proceeding toward final CERCLA closeout is completion of quantitative baseline risk assessment activities. Baseline risk assessment is necessary to determine whether cleanup actions are protective of human health and the environment and to identify any course corrections needed to ensure that current and future cleanup actions are protective. Because cleanup actions are ongoing under interim action RODs, it is desirable to establish the final cleanup decision bases as early as possible to minimize the impacts of any identified course corrections to the cleanup approach. Risk assessment is being performed by WCH as the River Corridor Baseline Risk Assessment (RCBRA). The RCBRA uses a multi-step process that summarizes existing data; uses the data quality objectives process to identify both data gaps and unresolved issues through public workshops; and solicits input from regulators, trustees

  13. Hanford Site Groundwater Protection Management Program: Revision 1

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    NONE

    Groundwater protection is a national priority that is promulgated in a variety of environmental regulations at local, state, and federal levels. To effectively coordinate and ensure compliance with applicable regulations, the US Department of Energy has issued DOE Order 5400.1 (now under revision) that requires all US Department of Energy facilities to prepare separate groundwater protection program descriptions and plans. This document describes the Groundwater Protection Management Program for the Hanford Site located in the state of Washington. DOE Order 5400.1 specifies that the Groundwater Protection Management Program cover the following general topical areas: (1) documentation of the groundwater regime,more » (2) design and implementation of a groundwater monitoring program to support resource management and comply with applicable laws and regulations, (3) a management program for groundwater protection and remediation, (4) a summary and identification of areas that may be contaminated with hazardous waste, (5) strategies for controlling these sources, (6) a remedial action program, and (7) decontamination and decommissioning and related remedial action requirements. Many of the above elements are covered by existing programs at the Hanford Site; thus, one of the primary purposes of this document is to provide a framework for coordination of existing groundwater protection activities. Additionally, it describes how information needs are identified and can be incorporated into existing or proposed new programs. The Groundwater Protection Management Program provides the general scope, philosophy, and strategies for groundwater protection/management at the Hanford Site. Subtier documents provide the detailed plans for implementing groundwater-related activities and programs. Related schedule and budget information are provided in the 5-year plan for environmental restoration and waste management at the Hanford Site.« less

  14. Establishing Final Cleanup Decisions for the Hanford Site River Corridor

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lerch, J.A.; Sands, J.P.

    2007-07-01

    A major challenge in the River Corridor Closure Contract is establishing final cleanup decisions for the source operable units in the Hanford Site river corridor. Cleanup actions in the river corridor began in 1994 and have been performed in accordance with a 'bias for action' approach adopted by the Tri-Parties - the U.S. Department of Energy, U.S. Environmental Protection Agency, and Washington State Department of Ecology. This approach enabled early application of cleanup dollars on actual remediation of contaminated waste sites. Consequently, the regulatory framework authorizing cleanup actions at source operable units in the river corridor consists largely of interimmore » action records of decision, which were supported by qualitative risk assessments. Obtaining final cleanup decisions for the source operable units is necessary to determine whether past cleanup actions in the river corridor are protective of human health and the environment and to identify any course corrections that may be needed to ensure that ongoing and future cleanup actions are protective. Because the cleanup actions are ongoing, it is desirable to establish the final cleanup decisions as early as possible to minimize the impacts of any identified course corrections to the present cleanup approach. Development of a strategy to obtain final cleanup decisions for the source operable units in a manner that is responsive to desires for an integrated approach with the groundwater and Columbia River components while maintaining the ability to evaluate each component on its own merit represents a significant challenge. There are many different options for grouping final cleanup decisions, and each involved party or stakeholder brings slightly different interests that shape the approach. Regardless of the selected approach, there are several specific challenges and issues to be addressed before making final cleanup decisions. A multi-agency and contractor working group has been established to

  15. 1988 Hanford riverbank springs characterization report

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Dirkes, R.L.

    1990-12-01

    This reports presents the results of a special study undertaken to characterize the riverbank springs (i.e., ground-water seepage) entering the Columbia River along the Hanford Site. Radiological and nonradiological analyses were performed. River water samples were also analyzed from upstream and downstream of the Site as well as from the immediate vicinity of the springs. In addition, irrigation return water and spring water entering the river along the shoreline opposite Hanford were analyzed. Hanford-origin contaminants were detected in spring water entering the Columbia River along the Hanford Site. The type and concentrations of contaminants in the spring water were similarmore » to those known to exist in the ground water near the river. The location and extent of the contaminated discharges compared favorably with recent ground-water reports and predictions. Spring discharge volumes remain very small relative to the flow of the Columbia. Downstream river sampling demonstrates the impact of ground-water discharges to be minimal, and negligible in most cases. Radionuclide concentrations were below US Department of Energy Derived Concentration Guides (DCGs) with the exception {sup 90}Sr near the 100-N Area. Tritium, while below the DCG, was detected at concentrations above the US Environmental Protection Agency drinking water standards in several springs. All other radionuclide concentrations were below drinking water standards. Nonradiological contaminants were generally undetectable in the spring water. River water contaminant concentrations, outside of the immediate discharge zones, were below drinking water standards in all cases. 19 refs., 5 figs., 12 tabs.« less

  16. Office of River Protection Advanced Low-Activity Waste Glass Research and Development Plan

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kruger, A. A.; Peeler, D. K.; Kim, D. S.

    2015-11-23

    The U.S. Department of Energy Office of River Protection (ORP) has initiated and leads an integrated Advanced Waste Glass (AWG) program to increase the loading of Hanford tank wastes in glass while meeting melter lifetime expectancies and process, regulatory, and product performance requirements. The integrated ORP program is focused on providing a technical, science-based foundation for making key decisions regarding the successful operation of the Hanford Tank Waste Treatment and Immobilization Plant (WTP) facilities in the context of an optimized River Protection Project (RPP) flowsheet. The fundamental data stemming from this program will support development of advanced glass formulations, keymore » product performance and process control models, and tactical processing strategies to ensure safe and successful operations for both the low-activity waste (LAW) and high-level waste vitrification facilities. These activities will be conducted with the objective of improving the overall RPP mission by enhancing flexibility and reducing cost and schedule.« less

  17. HANFORD SCIENCE & TECHNOLOGY NEEDS STATEMENTS 2002

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    WIBLE, R.A.

    This document: (a) provides a comprehensive listing of the Hanford sites science and technology needs for fiscal year (FY) 2002; and (b) identifies partnering and commercialization opportunities within industry, other federal and state agencies, and the academic community. These needs were prepared by the Hanford projects (within the Project Hanford Management Contract, the Environmental Restoration Contract and the River Protection Project) and subsequently reviewed and endorsed by the Hanford Site Technology Coordination Group (STCG). The STCG reviews included participation of DOE-RL and DOE-ORP Management, site stakeholders, state and federal regulators, and Tribal Nations. These needs are reviewed and updated onmore » an annual basis and given a broad distribution.« less

  18. Data Summary Report for teh Remedial Investigation of Hanford Site Releases to the Columbia River, Hanford Site, Washington

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hulstrom, L.

    2011-02-07

    This data summary report summarizes the investigation results to evaluate the nature and distribution of Hanford Site-related contaminants present in the Columbia River. As detailed in DOE/RL-2008-11, more than 2,000 environmental samples were collected from the Columbia River between 2008 and 2010. These samples consisted of island soil, sediment, surface water, groundwater upwelling (pore water, surface water, and sediment), and fish tissue.

  19. The River Corridor Closure Contract How Washington Closure Hanford is Closing A Unique Department of Energy Project - 12425

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Feist, E.T.

    2012-07-01

    Cleanup of the Hanford River Corridor has been one of Hanford Site's top priorities since the early 1990's. This urgency is due to the proximity of hundreds of waste sites to the Columbia River and the groundwater that continues to threaten the Columbia River. In April 2005, the U.S. Department of Energy, Richland Operations Office (DOE-RL) awarded the Hanford River Corridor Closure Contract (RCCC), a cost-plus incentive-fee closure contract with a 2015 end date and first of its kind at Hanford Site, to Washington Closure Hanford (WCH), a limited-liability company owned by URS, Bechtel National, and CH2M HILL. WCH ismore » a single-purpose company whose goal is to safely, compliantly, and efficiently accelerate cleanup in the Hanford River Corridor and reduce or eliminate future obligations to DOE-RL for maintaining long-term stewardship over the site. Accelerated performance of the work-scope while keeping a perspective on contract completion presents challenges that require proactive strategies to support the remaining work-scope through the end of the RCCC. This paper outlines the processes to address the challenges of completing work-scope while planning for contract termination. WCH is responsible for cleanup of the River Corridor 569.8 km{sup 2} (220 mi{sup 2}) of the 1,517.7 km{sup 2} (586 mi{sup 2}) Hanford Site's footprint reduction. At the end of calendar year 2011, WCH's closure implementation is well underway. Fieldwork is complete in three of the largest areas within the RCCC scope (Segments 1, 2, and 3), approximately 44.5% of the River Corridor (Figure 3). Working together, DOE-RL and WCH are in the process of completing the 'paper work' that will document the completion of the work-scope and allow DOE-RL to relieve WCH of contractual responsibilities and transition the completed areas to the Long-Term Stewardship Program, pending final action RODs. Within the next 4 years, WCH will continue to complete cleanup of the River Corridor following the

  20. River Protection Project (RPP) Dangerous Waste Training Plan

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    POHTO, R.E.

    2000-03-09

    This supporting document contains the training plan for dangerous waste management at River Protection Project TSD Units. This document outlines the dangerous waste training program developed and implemented for all Treatment, Storage, and Disposal (TSD) Units operated by River Protection Project (RPP) in the Hanford 200 East, 200 West and 600 Areas and the <90 Day Accumulation Area at 209E. Operating TSD Units managed by RPP are: the Double-Shell Tank (DST) System, 204-AR Waste Unloading Facility, Grout, and the Single-Shell Tank (SST) System. The program is designed in compliance with the requirements of Washington Administrative Code (WAC) 173-303-330 and Titlemore » 40 Code of Federal Regulations (CFR) 265.16 for the development of a written dangerous waste training program and the Hanford Facility Permit. Training requirements were determined by an assessment of employee duties and responsibilities. The RPP training program is designed to prepare employees to operate and maintain the Tank Farms in a safe, effective, efficient, and environmentally sound manner. In addition to preparing employees to operate and maintain the Tank Farms under normal conditions, the training program ensures that employees are prepared to respond in a prompt and effective manner should abnormal or emergency conditions occur. Emergency response training is consistent with emergency responses outlined in the following Building Emergency Plans: HNF-IP-0263-TF and HNF-=IP-0263-209E.« less

  1. Wildlife studies on the Hanford site: 1994 Highlights report

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Cadwell, L.L.

    The purposes of the project are to monitor and report trends in wildlife populations; conduct surveys to identify, record, and map populations of threatened, endangered, and sensitive plant and animal species; and cooperate with Washington State and federal and private agencies to help ensure the protection afforded by law to native species and their habitats. Census data and results of surveys and special study topics are shared freely among cooperating agencies. Special studies are also conducted as needed to provide additional information that may be required to assess, protect, or manage wildlife resources at Hanford. This report describes highlights ofmore » wildlife studies on the Site in 1994. Redd counts of fall chinook salmon in the Hanford Reach suggest that harvest restrictions directed at protecting Snake River salmon may have helped Columbia River stocks as well. The 1994 count (5619) was nearly double that of 1993 and about 63% of the 1989 high of approximately 9000. A habitat map showing major vegetation and land use cover types for the Hanford Site was completed in 1993. During 1994, stochastic simulation was used to estimate shrub characteristics (height, density, and canopy cover) across the previously mapped Hanford landscape. The information provided will be available for use in determining habitat quality for sensitive wildlife species. Mapping Site locations of plant species of concern continued during 1994. Additional sensitive plant species data from surveys conducted by TNC were archived. The 10 nesting pairs of ferruginous hawks that used the Hanford Site in 1993 represented approximately 25% of the Washington State population.« less

  2. HANFORD SITE CENTRAL PLATEAU CLEANUP COMPLETION STRATEGY

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    BERGMAN TB

    2011-01-14

    Cleanup of the Hanford Site is a complex and challenging undertaking. The U.S. Department of Energy (DOE) has developed a comprehensive vision for completing Hanford's cleanup mission including transition to post-cleanup activities. This vision includes 3 principle components of cleanup: the {approx}200 square miles ofland adjacent to the Columbia River, known as the River Corridor; the 75 square miles of land in the center of the Hanford Site, where the majority of the reprocessing and waste management activities have occurred, known as the Central Plateau; and the stored reprocessing wastes in the Central Plateau, the Tank Wastes. Cleanup of themore » River Corridor is well underway and is progressing towards completion of most cleanup actions by 2015. Tank waste cleanup is progressing on a longer schedule due to the complexity of the mission, with construction of the largest nuclear construction project in the United States, the Waste Treatment Plant, over 50% complete. With the progress on the River Corridor and Tank Waste, it is time to place increased emphasis on moving forward with cleanup of the Central Plateau. Cleanup of the Hanford Site has been proceeding under a framework defmed in the Hanford Federal Facility Agreement and Consent Order (Tri-Party Agreement). In early 2009, the DOE, the State of Washington Department of Ecology, and the U.S. Environmental Protection Agency signed an Agreement in Principle in which the parties recognized the need to develop a more comprehensive strategy for cleanup of the Central Plateau. DOE agreed to develop a Central Plateau Cleanup Completion Strategy as a starting point for discussions. This DOE Strategy was the basis for negotiations between the Parties, discussions with the State of Oregon, the Hanford Advisory Board, and other Stakeholder groups (including open public meetings), and consultation with the Tribal Nations. The change packages to incorporate the Central Plateau Cleanup Completion Strategy were

  3. Relationship of the Ben Franklin Dam Alternative to Water and Land Uses, Plans, Policies, and Controls for the Hanford Reach of the Columbia River.

    DTIC Science & Technology

    1980-07-01

    Identify by block number) A HANFORD REACH LAND USE COLUNBIA RIVER ENVIRONNENTAL IMPACT WASHINGTON (STATE) BEN FRANKLIN DAM SIL AWTNAnW (Oinemu iM Mem...he N ndmde IIev e W lj by bcmbm ) IThe construction of Ben Franklin Dam at RN 348 would flood lands along the Hanford Reach of the Columbia River to...400 feet mean sea level an upriver to about the Vernita Bridge. The Hanford Reach, the last free-floving stretch iof the Columbia River , would be

  4. Hanford radiological protection support services. Annual report for 1995

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lyon, M.; Bihl, D.E.; Carbaugh, E.H.

    1996-05-01

    Various Hanford Site radiation protection services provided by the Pacific Northwest National Laboratory for the U.S. Department of Energy Richland Operations Office and Hanford contractors are described in this annual report for calendar year 1995. These activities include external dosimetry measurements and evaluations, internal dosimetry measurements and evaluations, in vivo measurements, radiological record keeping, radiation source calibration, and instrument calibration and evaluation. For each of these activities, the routine program and any program changes or enhancements are described, as well as associated tasks, investigations, and studies. Program-related publications, presentations, and other staff professional activities are also described.

  5. Hanford radiological protection support services annual report for 1994

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lyon, M.; Bihl, D.E.; Fix, J.J.

    1995-06-01

    Various Hanford Site radiation protection services provided by the Pacific Northwest Laboratory for the US Department of Energy Richland Operations Office and Hanford contractors are described in this annual report for the calendar year 1994. These activities include external dosimetry measurements and evaluations, internal dosimetry measurements and evaluations, in vivo measurements, radiological record keeping, radiation source calibration, and instrument calibration and evaluation. For each of these activities, the routine program and any program changes or enhancements are described, as well as associated tasks, investigations, and studies. Program- related publications, presentations, and other staff professional activities are also described.

  6. Immobilization of U(VI) from Oxic Groundwater by Hanford 300 Area Sediments and Effects of Columbia River Water

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ahmed, B.; Cao, Bin; Mishra, Bhoopesh

    2012-09-23

    Regions within the U.S. Department of Energy Hanford 300 Area (300 A) site experience periodic hydrologic influences from the nearby Columbia River as a result of changing river stage, which causes changes in groundwater elevation, flow direction and water chemistry. An important question is the extent to which the mixing of Columbia River water and groundwater impacts the speciation and mobility of uranium (U). In this study, we designed experiments to mimic interactions among U, oxic groundwater or Columbia River water, and 300 A sediments in the subsurface environment of Hanford 300 A. The goals were to investigate mechanisms of:more » 1) U immobilization in 300 A sediments under bulk oxic conditions and 2) U remobilization from U-immobilized 300 A sediments exposed to oxic Columbia River water. Initially, 300 A sediments in column reactors were fed with U(VI)-containing oxic 1) synthetic groundwater (SGW), 2) organic-amended SGW (OA-SGW), and 3) de-ionized (DI) water to investigate U immobilization processes. After that, the sediments were exposed to oxic Columbia River water for U remobilization studies. The results reveal that U was immobilized by 300 A sediments predominantly through reduction (80-85%) when the column reactor was fed with oxic OA-SGW. However, U was immobilized by 300 A sediments through adsorption (100%) when the column reactors were fed with oxic SGW or DI water. The reduced U in the 300 A sediments fed with OA-SGW was relatively resistant to remobilization by oxic Columbia River water. Oxic Columbia River water resulted in U remobilization (~7%) through desorption, and most of the U that remained in the 300 A sediments fed with OA-SGW (~93%) was in the form of uraninite nanoparticles. These results reveal that: 1) the reductive immobilization of U through OA-SGW stimulation of indigenous 300 A sediment microorganisms may be viable in the relatively oxic Hanford 300 A subsurface environments and 2) with the intrusion of Columbia River

  7. Immobilization of U(VI) from oxic groundwater by Hanford 300 Area sediments and effects of Columbia River water.

    PubMed

    Ahmed, Bulbul; Cao, Bin; Mishra, Bhoopesh; Boyanov, Maxim I; Kemner, Kenneth M; Fredrickson, Jim K; Beyenal, Haluk

    2012-09-01

    Regions within the U.S. Department of Energy Hanford 300 Area (300 A) site experience periodic hydrologic influences from the nearby Columbia River as a result of changing river stage, which causes changes in groundwater elevation, flow direction and water chemistry. An important question is the extent to which the mixing of Columbia River water and groundwater impacts the speciation and mobility of uranium (U). In this study, we designed experiments to mimic interactions among U, oxic groundwater or Columbia River water, and 300 A sediments in the subsurface environment of Hanford 300 A. The goals were to investigate mechanisms of: 1) U immobilization in 300 A sediments under bulk oxic conditions and 2) U remobilization from U-immobilized 300 A sediments exposed to oxic Columbia River water. Initially, 300 A sediments in column reactors were fed with U(VI)-containing oxic 1) synthetic groundwater (SGW), 2) organic-amended SGW (OA-SGW), and 3) de-ionized (DI) water to investigate U immobilization processes. After that, the sediments were exposed to oxic Columbia River water for U remobilization studies. The results reveal that U was immobilized by 300 A sediments predominantly through reduction (80-85%) when the column reactor was fed with oxic OA-SGW. However, U was immobilized by 300 A sediments through adsorption (100%) when the column reactors were fed with oxic SGW or DI water. The reduced U in the 300 A sediments fed with OA-SGW was relatively resistant to remobilization by oxic Columbia River water. Oxic Columbia River water resulted in U remobilization (∼7%) through desorption, and most of the U that remained in the 300 A sediments fed with OA-SGW (∼93%) was in the form of uraninite nanoparticles. These results reveal that: 1) the reductive immobilization of U through OA-SGW stimulation of indigenous 300 A sediment microorganisms may be viable in the relatively oxic Hanford 300 A subsurface environments and 2) with the intrusion of Columbia River water

  8. Non-Operational Property Evaluation for the Hanford Site River Corridor - 12409

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lowe, John; Aly, Alaa

    2012-07-01

    The Hanford Site River Corridor consists of the former reactor areas of the 100 Areas and the former industrial (fuel processing) area in the 300 Area. Most of the waste sites are located close to the decommissioned reactors or former industrial facilities along the Columbia River. Most of the surface area of the River Corridor consists of land with little or no subsurface infrastructure or indication of past or present releases of hazardous constituents, and is referred to as non-operational property or non-operational area. Multiple lines of evidence have been developed to assess identified fate and transport mechanisms and tomore » evaluate the potential magnitude and significance of waste site-related contaminants in the non-operational area. Predictive modeling was used for determining the likelihood of locating waste sites and evaluating the distribution of radionuclides in soil based on available soil concentration data and aerial radiological surveys. The results of this evaluation indicated: 1) With the exception of stack emissions, transport pathways associated with waste site contaminants are unlikely to result in dispersion of contaminants in soil away from operational areas, 2) Stack emissions that may have been associated with Hanford Site operations generally emitted short-lived and/or gaseous radionuclides, and (3) the likelihood of detecting elevated radionuclide concentrations or other waste sites in non-operational area soils is very small. The overall conclusions from the NPE evaluation of the River Corridor are: - With the exception of stack emissions to the air, transport pathways associated with waste site contaminants are unlikely to result in dispersion of contaminants in soil away from operational areas. While pathways such as windblown dust, overland transport and biointrusion have the potential for dispersing waste site contaminants, the resulting transport is unlikely to result in substantial contamination in non-operational areas

  9. Fluidized bed steam reformed mineral waste form performance testing to support Hanford Supplemental Low Activity Waste Immobilization Technology Selection

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Jantzen, C. M.; Pierce, E. M.; Bannochie, C. J.

    This report describes the benchscale testing with simulant and radioactive Hanford Tank Blends, mineral product characterization and testing, and monolith testing and characterization. These projects were funded by DOE EM-31 Technology Development & Deployment (TDD) Program Technical Task Plan WP-5.2.1-2010-001 and are entitled “Fluidized Bed Steam Reformer Low-Level Waste Form Qualification”, Inter-Entity Work Order (IEWO) M0SRV00054 with Washington River Protection Solutions (WRPS) entitled “Fluidized Bed Steam Reforming Treatability Studies Using Savannah River Site (SRS) Low Activity Waste and Hanford Low Activity Waste Tank Samples”, and IEWO M0SRV00080, “Fluidized Bed Steam Reforming Waste Form Qualification Testing Using SRS Low Activity Wastemore » and Hanford Low Activity Waste Tank Samples”. This was a multi-organizational program that included Savannah River National Laboratory (SRNL), THOR® Treatment Technologies (TTT), Pacific Northwest National Laboratory (PNNL), Oak Ridge National Laboratory (ORNL), Office of River Protection (ORP), and Washington River Protection Solutions (WRPS). The SRNL testing of the non-radioactive pilot-scale Fluidized Bed Steam Reformer (FBSR) products made by TTT, subsequent SRNL monolith formulation and testing and studies of these products, and SRNL Waste Treatment Plant Secondary Waste (WTP-SW) radioactive campaign were funded by DOE Advanced Remediation Technologies (ART) Phase 2 Project in connection with a Work-For-Others (WFO) between SRNL and TTT.« less

  10. Factors affecting the age-C resident fish community along shorelines of the Hanford Reach of the Columbia River

    USGS Publications Warehouse

    Gadomski, D.M.; Wagner, P.G.

    2009-01-01

    The Hanford Reach is one of the few remaining unimpounded sections of the Columbia River. However, because of flow management at upstream dams, there are often large fluctuations in water level. To determine how environmental conditions might affect age-0 resident fishes in the Hanford Reach, we evaluated species composition, distribution, abundance, and standard lengths of larval and juvenile fishes along shoreline habitats during July and August 1998, 1999, and 2000. Catches in beach seine hauls during all three years were highly variable. The four most abundant taxa collected were three cyprinids, peamouth (Mylocheilus caurinus), northern pikeminnow (Plychocheilus oregonensis), and redside shiner (Richardson ius balteatus); and suckers (Catostoinus spp.). Highest overall catches were in sloughs of the Hanford Reach in 1999, a year with high flows, lower water level fluctuations, and more vegetation. Mean shoreline summer water temperatures were higher in 1998 than in 1999 and 2000, and mean lengths of the four most abundant taxa in late August were also greater in 1998, due presumably to enhanced growth or an earlier spawning season. In spite of flow fluctuations, overall catches of age-0 resident fishes were greater in the riverine Hanford Reach compared to past catches in a more lentic Columbia River reservoir. High abundances of age-0 resident fishes in the Hanford Reach could be due to more spawning and rearing habitat in this structurally complex area, and may mitigate for negative effects of variable flow regimes.

  11. Hanford Waste End Effector Phase I Test Report

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Berglin, Eric J.; Hatchell, Brian K.; Mount, Jason C.

    This test plan describes the Phase 1 testing program of the Hanford Waste End Effector (HWEE) at the Washington River Protection Solutions’ Cold Test Facility (CTF) using a Pacific Northwest National Laboratory (PNNL)-designed testing setup. This effort fulfills the informational needs for initial assessment of the HWEE to support Hanford single-shell tank A-105 retrieval. This task will install the HWEE on a PNNL-designed robotic gantry system at CTF, install and calibrate instrumentation to measure reaction forces and process parameters, prepare and characterize simulant materials, and implement the test program. The tests will involve retrieval of water, sludge, and hardpan simulantsmore » to determine pumping rate, dilution factors, and screen fouling rate.« less

  12. Development and Implementation of the Waste Management Information System to Support Hanford's River Corridor Cleanup

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Nolan, L. M.

    2006-07-01

    This paper describes the development of a Waste Information Management System (WMIS) to support the waste designation, transportation, and disposal processes used by Washington Closure Hanford, LLC to support cleanup of the Columbia River Corridor. This waste, primarily consisting of remediated burial sites and building demolition debris, is disposed at the Environmental Restoration Disposal Facility (ERDF), which is located in the center of the Hanford Site (an approximately 1460 square kilometers site). WMIS uses a combination of bar-code scanning, hand-held computers, and strategic employment of a radio frequency identification (RFID) tag system to track each waste shipment from waste generationmore » to disposal. (authors)« less

  13. Accumulation of radionuclides in bed sediments of the Columbia River between Hanford reactors and McNary Dam

    USGS Publications Warehouse

    Nelson, Jack L.; Haushild, W.L.

    1970-01-01

    Amounts of radionuclides from the Hanford reactors contained in bed sediments of the Columbia River were estimated by two methods: (1) from data on radionuclide concentration for the bed sediments between the reactors and McNary Dam, and (2) from data on radionuclide discharge for river stations at Pasco, Washington, and Umatilla, Oregon. Umatilla is 3.2 kilometers below McNary Dam. Accumulations of radionuclides in the Pasco to Umatilla reach estimated by the two methods agree within about 8%. In October 1965 approximately 16,000 curies of gamma emitting radionuclides were resident in bed sediments of the river between the Hanford reactors and McNary Dam. Concentrations and accumulations of chromium-51, zinc-65, cobalt-60, manganese-54, and scandium-46 generally are much higher near McNary Dam than they are in the vicinity of the reactors. These changes are caused by an increase downstream from the reactors in the proportion of the bed sediment that is fine grained and the proportions of the transported zinc, cobalt, manganese, and scandium radionuclides associated with sediment particles.

  14. The Columbia River Protection Supplemental Technologies Quality Assurance Project Plan

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Fix, N. J.

    The U.S. Department of Energy (DOE) has conducted interim groundwater remedial activities on the Hanford Site since the mid-1990s for several groundwater contamination plumes. DOE established the Columbia River Protection Supplemental Technologies Project (Technologies Project) in 2006 to evaluate alternative treatment technologies. The objectives for the technology project are as follows: develop a 300 Area polyphosphate treatability test to immobilize uranium, design and test infiltration of a phosphate/apatite technology for Sr-90 at 100-N, perform carbon tetrachloride and chloroform attenuation parameter studies, perform vadose zone chromium characterization and geochemistry studies, perform in situ biostimulation of chromium studies for a reducing barriermore » at 100-D, and perform a treatability test for phytoremediation for Sr-90 at 100-N. This document provides the quality assurance guidelines that will be followed by the Technologies Project. This Quality Assurance Project Plan is based on the quality assurance requirements of DOE Order 414.1C, Quality Assurance, and 10 CFR 830, Subpart A--Quality Assurance Requirements as delineated in Pacific Northwest National Laboratory’s Standards-Based Management System. In addition, the technology project is subject to the Environmental Protection Agency (EPA) Requirements for Quality Assurance Project Plans (EPA/240/B-01/003, QA/R-5). The Hanford Analytical Services Quality Assurance Requirements Documents (HASQARD, DOE/RL-96-68) apply to portions of this project and to the subcontractors. HASQARD requirements are discussed within applicable sections of this plan.« less

  15. Overview of Chromium Remediation Technology Evaluations At The Hanford Site, Richland Washington

    NASA Astrophysics Data System (ADS)

    Morse, J. G.; Hanson, J. P.

    2009-12-01

    This paper will present an overview of the different technologies and the results to date for optimizing and improving the remediation of Cr+6 in the soil and groundwater at the Hanford Site. The Hanford Site, par of the U.S. Department of Energy's (DOE)nuclear weapons complex, encompasses approximately 586 square miles in southeast Washington State. The Columbia River flows through the site (Hanford Reach.) Reactors were located along the Hanford Reach as part of the production process. Sodium dichromate was used as a corrosion inhibitor in the cooling water for the reactors. As a result chromium (Cr+6) is present in the soil and groundwater. Since the mid 90's interim groundwater pump and treat systems have been in place to try and contain or mitigate the migration of contaminated groundwater into the Columbia River. The primary concern being the protection of aquatic spawning habitat for salmon and other species. In order to improve the effectiveness of the remedial actions a number of different technologies have been evaluated and/or deployed. These include, permeable reactive barriers, in-situ bio-stimulation, in-situ chemical reduction, zero-valent iron injection and evaluation of improved above ground treatment technologies. An overview of the technologies and results to date are presented.

  16. Tagging studies of mule deer fawns on the Hanford Site, 1969 to 1977

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Eberhardt, L.E.; Hedlund, J.D.; Rickard, W.H.

    1979-10-01

    From 1969 to 1977, 346 mule deer (Odocoileus hemionus) fawns were tagged and released on islands and shoreline habitat associated with the Columbia River on the Hanford Site in south-central Washington. The purpose was to determine the movement of mule deer along the Columbia River shoreline from the Hanford Site through tag recovery. Twenty-one tagged deer have been killed primarily by hunters near the Hanford Site or on areas of the Hanford Site open to public access. Movements of up to 113 km from Hanford have been documented. Although the Columbia River at Hanford is one of the largest andmore » most swift-flowing rivers in North America it is not an impassable barrier to mule deer. River islands are important and perhaps critical fawining habitat for the local deer herd. The selection of these islands by pregnant female deer is apparently influenced by predation, human access, and recreational use of islands. The number of fawns captured decreased during the latter years of the study (1974 to 1977). This is probably a reflection of an actual decrease in deer productivity, particularly along the upper stretch of the Columbia flowing through the Hanford Site. The reasons for this apparent decrease are unkown.« less

  17. Central Plateau Cleanup at DOE's Hanford Site - 12504

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Dowell, Jonathan

    monitoring wells. As a companion to the Hanford Site Cleanup Completion Framework document, DOE issued its draft Central Plateau Cleanup Completion Strategy in September 2009 to provide an outline of DOE's vision for completion of cleanup activities across the Central Plateau. As major elements of the Hanford cleanup along the Columbia River Corridor near completion, DOE believed it appropriate to articulate the agency vision for the remainder of the cleanup mission. The Central Plateau Cleanup Completion Strategy and the Hanford Site Cleanup Completion Framework were provided to the regulatory community, the Tribal Nations, political leaders, the public, and Hanford stakeholders to promote dialogue on Hanford's future. The Central Plateau Cleanup Completion Strategy describes DOE's vision for completion of Central Plateau cleanup and outlines the decisions needed to achieve the vision. The Central Plateau strategy involves steps to: (1) contain and remediate contaminated groundwater, (2) implement a geographic cleanup approach that guides remedy selection from a plateau-wide perspective, (3) evaluate and deploy viable treatment methods for deep vadose contamination to provide long-term protection of the groundwater, and (4) conduct essential waste management operations in coordination with cleanup actions. The strategy will also help optimize Central Plateau readiness to use funding when it is available upon completion of River Corridor cleanup projects. One aspect of the Central Plateau strategy is to put in place the process to identify the final footprint for permanent waste management and containment of residual contamination within the 20-square-mile Industrial-Exclusive Area. The final footprint identified for permanent waste management and containment of residual contamination should be as small as practical and remain under federal ownership and control for as long as a potential hazard exists. Outside the final footprint, the remainder of the Central Plateau will

  18. 75 FR 8051 - Environmental Management Site-Specific Advisory Board, Hanford

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-02-23

    ... DEPARTMENT OF ENERGY Environmental Management Site-Specific Advisory Board, Hanford AGENCY... the Environmental Management Site-Specific Advisory Board (EM SSAB), Hanford (known locally as the Hanford Advisory Board [HAB]), River and Plateau, Tank Waste, Public Involvement, Health Safety and...

  19. Chemical and ecotoxicological characterization of Columbia River sediments below the Hanford site (USA).

    PubMed

    Delistraty, Damon; Yokel, Jerry

    2007-01-01

    Columbia River sediments were characterized (metals, organics, porewater toxicity) with samples (n=12) from four dams below the Hanford site. Analyses were supplemented with colocated radionuclide data, along with comparable data from the Priest Rapids dam, immediately upriver from Hanford. Although not statistically significant (Bonferroni P>0.05), metals were generally highest at Priest Rapids, relative to downriver dams. Semivolatiles, Aroclors, and organochlorine pesticides were below method reporting limits. Radionuclide differences across locations were minor (Bonferroni P>0.05). Whereas Microtox showed little toxicity, Daphnia IQ tests exhibited measurable toxicity at all locations (EC50 = 22 - 78% porewater). Ecotoxicological benchmarks for metals were exceeded at several locations, most notably at Priest Rapids. Except for K-40, radionuclides were below benchmarks. Overall, chemistry and ecotoxicity results suggested that sediments may pose a risk to benthic biota, likely due to metals (derived largely from upriver mining) or factors associated with a reducing environment (e.g., low oxygen, high ammonia).

  20. Metal concentrations, foraging distances, and fledging success of great blue herons nesting along the Hanford Reach of the Columbia River.

    PubMed

    Tiller, Brett L; Marco, J D; Rickard, W H

    2005-05-01

    An ecological risk assessment of the spatial distribution of metal concentrations along the Hanford Reach of the free-flowing Columbia River in southcentral Washington, identified great blue herons, Ardea herodias, at potential risk through the ingestion of contaminated riverine biota, especially fish. We measured metal concentrations in livers of pre-flight herons from the Hanford Reach and excrement samples taken from the same nests. Nests were distributed among three colonies situated upstream and downstream from nine retired plutonium production reactors along the river where metals in reactor coolant waters had been released directly into the river or disposed to shoreline retention basins and ditches. Distances traveled by parent herons to foraging areas along the river shore were determined by visually tracking parent birds as they flew from nests to upriver and downriver foraging sites. Foraging flight distances varied between colonies with mean distances ranging between 0.7 and 3.1 km. Cadmium, Cr, and Pb concentrations were higher in excrement than in the livers of pre-flight herons but the opposite was noted for Cu, Hg, and Zn. Highest metal concentrations of Cr, Cu, Zn, Cd, and Pb, were measured in excrement taken from heron nests at the colony located upstream from all reactors. These results were consistent with metal concentrations reported in river sediment from the same regions, indicating excrement from the heron nests may be a useful indicator of dietary uptake of metals by herons. Fledging success and eggshell thickness measurements were used as an index of health of the local heron population. The results indicate that the reproductive health of great blue herons nesting along the Hanford Reach is among the highest reported in the continental United States.

  1. Hanford Radiological Protection Support Services Annual Report for 1998

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    DE Bihl; JA MacLellan; ML Johnson

    1999-05-14

    During calendar year (CY) 1998, the Pacific Northwest National Laboratory (PNNL) performed its customary radiological protection support services in support of the U.S. Department of Energy (DOE) Richland Operations OffIce (RL) and the Hanford contractors. These services included: 1) external dosimetry, 2) internal dosimetry, 3) in vivo measurements, 4) radiological records, 5) instrument calibra- tion and evaluation, and 6) calibration of radiation sources traceable to the National Institute of Standards and Technology (MST). The services were provided under a number of projects as summarized here.

  2. Contribution of Hanford liquid effluents to strontium-90 levels in offsite soils

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Jaquish, R.E.

    1993-08-01

    Strontium-90 is a major constituent of liquid effluents entering the Columbia River at the 100-N Area. The Columbia River also contains {sup 90}Sr from world-wide fallout that enters the Columbia River upstream of Hanford. Irrigation water pumped from the Columbia River can deposit {sup 90}Sr on soil where it can be taken up by farm crops. Fallout has also deposited {sup 90}Sr directly on soil by atmospheric deposition. A review of the sources of {sup 90}Sr in soil in the vicinity of Hanford indicates that about 2% can be attributed to Hanford liquid effluents. PNL measurements of {sup 90}Sr inmore » soil at a background location agree with predicted levels of fallout made by the Federal Radiation Council in 1964. Alfalfa is routinely monitored for {sup 90}Sr and is of special interest since it has concentrations higher than other farm crops. The concentrations of {sup 90}Sr in alfalfa measured in the Hanford vicinity are in the range one would expect, based on measured soil concentrations and using uptake factors from an earlier {sup 90}Sr uptake study at Hanford.« less

  3. Variables influencing the presence of subyearling fall Chinook salmon in shoreline habitats of the Hanford Reach, Columbia River

    USGS Publications Warehouse

    Tiffan, K.F.; Clark, L.O.; Garland, R.D.; Rondorf, D.W.

    2006-01-01

    Little information currently exists on habitat use by subyearling fall Chinook salmon Oncorhynchus tshawytscha rearing in large, main-stem habitats. We collected habitat use information on subyearlings in the Hanford Reach of the Columbia River during May 1994 and April-May 1995 using point abundance electrofishing. We analyzed measures of physical habitat using logistic regression to predict fish presence and absence in shoreline habitats. The difference between water temperature at the point of sampling and in the main river channel was the most important variable for predicting the presence and absence of subyearlings. Mean water velocities of 45 cm/s or less and habitats with low lateral bank slopes were also associated with a greater likelihood of subyearling presence. Intermediate-sized gravel and cobble substrates were significant predictors of fish presence, but small (<32-mm) and boulder-sized (>256-mm) substrates were not. Our rearing model was accurate at predicting fish presence and absence using jackknifing (80% correct) and classification of observations from an independent data set (76% correct). The habitat requirements of fall Chinook salmon in the Hanford Reach are similar to those reported for juvenile Chinook salmon in smaller systems but are met in functionally different ways in a large river.

  4. Annual Hanford Seismic Report for Fiscal Year 2009

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Rohay, Alan C.; Sweeney, Mark D.; Hartshorn, Donald C.

    2009-12-31

    The Hanford Seismic Assessment Program (HSAP) provides an uninterrupted collection of high-quality raw and processed seismic data from the Hanford Seismic Network for the U.S. Department of Energy and its contractors. The HSAP is responsible for locating and identifying sources of seismic activity and monitoring changes in the historical pattern of seismic activity at the Hanford Site. The data are compiled, archived, and published for use by the Hanford Site for waste management, natural phenomena hazards assessments, and engineering design and construction. In addition, the HSAP works with the Hanford Site Emergency Services Organization to provide assistance in the eventmore » of a significant earthquake on the Hanford Site. The Hanford Seismic Network and the Eastern Washington Regional Network consist of 44 individual sensor sites and 15 radio relay sites maintained by the Hanford Seismic Assessment Team. During FY 2009, the Hanford Seismic Network recorded nearly 3000 triggers on the seismometer system, which included over 1700 seismic events in the southeast Washington area and an additional 370 regional and teleseismic events. There were 1648 events determined to be local earthquakes relevant to the Hanford Site. Nearly all of these earthquakes were detected in the vicinity of Wooded Island, located about eight miles north of Richland just west of the Columbia River. Recording of the Wooded Island events began in January with over 250 events per month through June 2009. The frequency of events decreased starting in July 2009 to approximately 10-15 events per month through September 2009. Most of the events were considered minor (coda-length magnitude [Mc] less than 1.0) with 47 events in the 2.0-3.0 range. The estimated depths of the Wooded Island events are shallow (averaging less than 1.0 km deep) with a maximum depth estimated at 2.3 km. This places the Wooded Island events within the Columbia River Basalt Group (CRBG). The highest-magnitude event (3

  5. Progress of the Enhanced Hanford Single Shell Tank (SST) Integrity Project

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Venetz, Theodore J.; Washenfelder, Dennis J.; Boomer, Kayle D.

    2015-01-07

    To improve the understanding of the single-shell tanks (SSTs) integrity, Washington River Protection Solutions, LLC (WRPS), the USDOE Hanford Site tank contractor, developed an enhanced Single-Shell Tank Integrity Project (SSTIP) in 2009. An expert panel on SST integrity, consisting of various subject matters experts in industry and academia, was created to provide recommendations supporting the development of the project. This panel developed 33 recommendations in four main areas of interest: structural integrity, liner degradation, leak integrity and prevention, and mitigation of contamination migration. In late 2010, seventeen of these recommendations were used to develop the basis for the M-45-10-1 Changemore » Package for the Hanford Federal Agreement and Compliance Order, which is also known as the Tri-Party Agreement.« less

  6. National Register of Historic Places multiple property documentation form -- Historic, archaeological, and traditional cultural properties of the Hanford Site, Washington

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Nickens, P.R.

    The US Department of Energy`s Hanford Site encompasses an area of 560 square miles on the Columbia River in southeastern Washington. Since 1943, the Hanford Site has existed as a protected area for activities primarily related to the production of radioactive materials for national defense uses. For cultural resources on the Hanford Site, establishment of the nuclear reservation as a high security area, with public access restricted, has resulted in a well-protected status, although no deliberate resource protection measures were in effect to mitigate effects of facilities construction and associated activities. Thus, the Hanford Site contains an extensive record ofmore » aboriginal archaeological sites and Native American cultural properties, along with pre-Hanford Euro-American sites (primarily archaeological in nature with the removal of most pre-1943 structures), and a considerable number of Manhattan Project/Cold War era buildings and structures. The recent mission change from production to clean up and disposal of DOE lands created a critical need for development and implementation of new and different cultural resource management strategies. DOE-RL has undertaken a preservation planning effort for the Hanford Site. The intent of this Plan is to enable DOE-RL to organize data and develop goals, objectives, and priorities for the identification, evaluation, registration, protection, preservation, and enhancement of the Site`s historical and cultural properties. Decisions made about the identification, evaluation, registration and treatment of historic properties are most aptly made when relationships between individual properties and other similar properties are considered. The historic context and the multiple property documentation (NTD) process provides DOE-RL the organizational framework for these decisions. Once significant patterns are identified, contexts developed, and expected properties are defined, the NTD process provides the foundation for

  7. Second Quarter Hanford Seismic Report for Fiscal Year 2009

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Rohay, Alan C.; Sweeney, Mark D.; Hartshorn, Donald C.

    2009-07-31

    The Hanford Seismic Assessment Program (HSAP) provides an uninterrupted collection of high-quality raw and processed seismic data from the Hanford Seismic Network for the U.S. Department of Energy and its contractors. The HSAP is responsible for locating and identifying sources of seismic activity and monitoring changes in the historical pattern of seismic activity at the Hanford Site. The data are compiled, archived, and published for use by the Hanford Site for waste management, natural phenomena hazards assessments, and engineering design and construction. In addition, the HSAP works with the Hanford Site Emergency Services Organization to provide assistance in the eventmore » of a significant earthquake on the Hanford Site. The Hanford Seismic Network and the Eastern Washington Regional Network consist of 44 individual sensor sites and 15 radio relay sites maintained by the Hanford Seismic Assessment Team. The Hanford Seismic Network recorded over 800 local earthquakes during the second quarter of FY 2009. Nearly all of these earthquakes were detected in the vicinity of Wooded Island, located about eight miles north of Richland just west of the Columbia River. Most of the events were considered minor (magnitude (Mc) less than 1.0) with 19 events in the 2.0-2.9 range. The estimated depths of the Wooded Island events are shallow (averaging less than 1.0 km deep) with a maximum depth estimated at 1.9 km. This places the Wooded Island events within the Columbia River Basalt Group (CRBG). The low magnitude and the shallowness of the Wooded Island events have made them undetectable to most area residents. However, some Hanford employees working within a few miles of the area of highest activity, and individuals living in homes directly across the Columbia River from the swarm center, have reported feeling some movement. The Hanford SMA network was triggered numerous times by the Wooded Island swarm events. The maximum acceleration values recorded by the SMA network

  8. Third Quarter Hanford Seismic Report for Fiscal Year 2009

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Rohay, Alan C.; Sweeney, Mark D.; Hartshorn, Donald C.

    2009-09-30

    The Hanford Seismic Assessment Program (HSAP) provides an uninterrupted collection of high-quality raw and processed seismic data from the Hanford Seismic Network for the U.S. Department of Energy and its contractors. The HSAP is responsible for locating and identifying sources of seismic activity and monitoring changes in the historical pattern of seismic activity at the Hanford Site. The data are compiled, archived, and published for use by the Hanford Site for waste management, natural phenomena hazards assessments, and engineering design and construction. In addition, the HSAP works with the Hanford Site Emergency Services Organization to provide assistance in the eventmore » of a significant earthquake on the Hanford Site. The Hanford Seismic Network and the Eastern Washington Regional Network consist of 44 individual sensor sites and 15 radio relay sites maintained by the Hanford Seismic Assessment Team. The Hanford Seismic Network recorded 771 local earthquakes during the third quarter of FY 2009. Nearly all of these earthquakes were detected in the vicinity of Wooded Island, located about eight miles north of Richland just west of the Columbia River. The Wooded Island events recorded this quarter is a continuation of the swarm events observed during the January – March 2009 time period and reported in the previous quarterly report (Rohay et al, 2009). The frequency of Wooded Island events has subsided with 16 events recorded during June 2009. Most of the events were considered minor (magnitude (Mc) less than 1.0) with 25 events in the 2.0-3.0 range. The estimated depths of the Wooded Island events are shallow (averaging less than 1.0 km deep) with a maximum depth estimated at 2.2 km. This places the Wooded Island events within the Columbia River Basalt Group (CRBG). The low magnitude of the Wooded Island events has made them undetectable to all but local area residents. However, some Hanford employees working within a few miles of the area of highest

  9. Innovative Use of Cr(VI) Plume Depictions and Pump-and-Treat Capture Analysis to Estimate Risks of Contaminant Discharge to Surface Water at Hanford Reactor Areas

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Miller, Chuck W.; Hanson, James P.; Ivarson, Kristine A.

    2015-01-14

    The Hanford Site nuclear reactor operations required large quantities of high-quality cooling water, which was treated with chemicals including sodium dichromate dihydrate for corrosion control. Cooling water leakage, as well as intentional discharge of cooling water to ground during upset conditions, produced extensive groundwater recharge mounds consisting largely of contaminated cooling water and resulted in wide distribution of hexavalent chromium (Cr[VI]) contamination in the unconfined aquifer. The 2013 Cr(VI) groundwater plumes in the 100 Areas cover approximately 6 km2 (1500 acres), primarily in the 100-HR-3 and 100-KR-4 groundwater operable units (OUs). The Columbia River is a groundwater discharge boundary; wheremore » the plumes are adjacent to the Columbia River there remains a potential to discharge Cr(VI) to the river at concentrations above water quality criteria. The pump-and-treat systems along the River Corridor are operating with two main goals: 1) protection of the Columbia River, and 2) recovery of contaminant mass. An evaluation of the effectiveness of the pump-and-treat systems was needed to determine if the Columbia River was protected from contamination, and also to determine where additional system modifications may be needed. In response to this need, a technique for assessing the river protection was developed which takes into consideration seasonal migration of the plume and hydraulic performance of the operating well fields. Groundwater contaminant plume maps are generated across the Hanford Site on an annual basis. The assessment technique overlays the annual plume and the capture efficiency maps for the various pump and treat systems. The river protection analysis technique was prepared for use at the Hanford site and is described in detail in M.J. Tonkin, 2013. Interpolated capture frequency maps, based on mapping dynamic water level observed in observation wells and derived water levels in the vicinity of extraction and injection

  10. Analysis of Hanford Cast Stone Supplemental LAW using Composition Adjusted SRS Tank 50 Salt Solution

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Crawford, C.; Cozzi, A.; Hill, K.

    Vitrification is the primary disposition path for Low Activity Waste (LAW) at the Department of Energy (DOE) Hanford Site. A cementitious waste form is one of the alternatives being considered for the supplemental immobilization of the LAW that will not be treated by the primary vitrification facility. Washington River Protection Solutions (WRPS) has been directed to generate and collect data on cementitious or pozzolanic waste forms such as Cast Stone.

  11. Columbia River Component Data Evaluation Summary Report

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    C.S. Cearlock

    2006-08-02

    The purpose of the Columbia River Component Data Compilation and Evaluation task was to compile, review, and evaluate existing information for constituents that may have been released to the Columbia River due to Hanford Site operations. Through this effort an extensive compilation of information pertaining to Hanford Site-related contaminants released to the Columbia River has been completed for almost 965 km of the river.

  12. One System Integrated Project Team: Retrieval and Delivery of Hanford Tank Wastes for Vitrification in the Waste Treatment Plant - 13234

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Harp, Benton J.; Kacich, Richard M.; Skwarek, Raymond J.

    The One System Integrated Project Team (IPT) was formed in late 2011 as a way for improving the efficiency of delivery and treatment of highly radioactive waste stored in underground tanks at the U.S. Department of Energy's (DOE's) 586-square-mile Hanford Site in southeastern Washington State. The purpose of the One System IPT is to improve coordination and integration between the Hanford's Waste Treatment Plant (WTP) contractor and the Tank Operations Contractor (TOC). The vision statement is: One System is a WTP and TOC safety-conscious team that, through integrated management and implementation of risk-informed decision and mission-based solutions, will enable themore » earliest start of safe and efficient treatment of Hanford's tank waste, to protect the Columbia River, environment and public. The IPT is a formal collaboration between Bechtel National, Inc. (BNI), which manages design and construction of the WTP for the U.S. Department of Energy's Office of River Protection (DOEORP), and Washington River Protection Solutions (WRPS), which manages the TOC for ORP. More than fifty-six (56) million gallons of highly radioactive liquid waste are stored in one hundred seventy-seven (177) aging, underground tanks. Most of Hanford's waste tanks - one hundred forty-nine (149) of them - are of an old single-shell tank (SST) design built between 1944 and 1964. More than sixty (60) of these tanks have leaked in the past, releasing an estimated one million gallons of waste into the soil and threatening the nearby Columbia River. There are another twenty-eight (28) new double-shelled tanks (DSTs), built from 1968 to 1986, that provide greater protection to the environment. In 1989, DOE, the U.S. Environmental Protection Agency (EPA), and the Washington State Department of Ecology (Ecology) signed a landmark agreement that required Hanford to comply with federal and state environmental standards. It also paved the way for agreements that set deadlines for retrieving the

  13. One System Integrated Project Team: Retrieval And Delivery Of The Hanford Tank Wastes For Vitrification In The Waste Treatment Plant

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Harp, Benton J.; Kacich, Richard M.; Skwarek, Raymond J.

    The One System Integrated Project Team (IPT) was formed in late 2011 as a way for improving the efficiency of delivery and treatment of highly radioactive waste stored in underground tanks at the U.S. Department of Energy's (DOE's) 586-square-mile Hanford Site in southeastern Washington State. The purpose of the One System IPT is to improve coordination and integration between the Hanford's Waste Treatment Plant (WTP) contractor and the Tank Operations Contractor (TOC). The vision statement is: One System is a WTP and TOC safety conscious team that, through integrated management and implementation of risk-informed decision and mission-based solutions, will enablemore » the earliest start of safe and efficient treatment of Hanford's tank waste, to protect the Columbia River, environment and public. The IPT is a formal collaboration between Bechtel National, Inc. (BNI), which manages design and construction of the WTP for the U.S. Department of Energy's Office of River Protection (DOEORP), and Washington River Protection Solutions (WRPS), which manages the TOC for ORP. More than fifty-six (56) million gallons of highly radioactive liquid waste are stored in one hundred seventy-seven (177) aging, underground tanks. Most of Hanford's waste tanks - one hundred forty-nine (149) of them - are of an old single-shell tank (SST) design built between 1944 and 1964. More than sixty (60) of these tanks have leaked in the past, releasing an estimated one million gallons of waste into the soil and threatening the nearby Columbia River. There are another twenty-eight (28) new double-shelled tanks (DSTs), built from 1968 to 1986, that provide greater protection to the environment. In 1989, DOE, the U.S. Environmental Protection Agency (EPA), and the Washington State Department of Ecology (Ecology) signed a landmark agreement that required Hanford to comply with federal and state environmental standards. It also paved the way for agreements that set deadlines for retrieving the

  14. Radionuclides, Trace Metals, and Organic Compounds in Shells of Native Freshwater Mussels Along the Hanford Reach of the Columbia River: 6000 Years Before Present to Current Times

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    B. L. Tiller; T. E. Marceau

    2006-01-25

    This report documents concentrations of radionuclides, trace metals, and semivolatile organic compounds measured in shell samples of the western pearl shell mussel collected along the Hanford Reach of the Columbia River.

  15. Sorption and transport of iodine species in sediments from the Savannah River and Hanford Sites.

    PubMed

    Hu, Qinhong; Zhao, Pihong; Moran, Jean E; Seaman, John C

    2005-07-01

    Iodine is an important element in studies of environmental protection and human health, global-scale hydrologic processes and nuclear nonproliferation. Biogeochemical cycling of iodine is complex, because iodine occurs in multiple oxidation states and as inorganic and organic species that may be hydrophilic, atmophilic, and biophilic. In this study, we applied new analytical techniques to study the sorption and transport behavior of iodine species (iodide, iodate, and 4-iodoaniline) in sediments collected at the Savannah River and Hanford Sites, where anthropogenic (129)I from prior nuclear fuel processing activities poses an environmental risk. We conducted integrated column and batch experiments to investigate the interconversion, sorption and transport of iodine species, and the sediments we examined exhibit a wide range in organic matter, clay mineralogy, soil pH, and texture. The results of our experiments illustrate complex behavior with various processes occurring, including iodate reduction, irreversible retention or mass loss of iodide, and rate-limited and nonlinear sorption. There was an appreciable iodate reduction to iodide, presumably mediated by the structural Fe(II) in some clay minerals; therefore, careful attention must be given to potential interconversion among species when interpreting the biogeochemical behavior of iodine in the environment. The different iodine species exhibited dramatically different sorption and transport behavior in three sediment samples, possessing different physico-chemical properties, collected from different depths at the Savannah River Site. Our study yielded additional insight into processes and mechanisms affecting the geochemical cycling of iodine in the environment, and provided quantitative estimates of key parameters (e.g., extent and rate of sorption) for risk assessment at these sites.

  16. Hanford Tank Farm Vapors Abatement Technology and Vendor Proposals Assessment

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Burns, H. H.; Farrar, M. E.; Fink, S. D.

    2016-09-20

    Suspected chemical vapor releases from the Hanford nuclear waste tank system pose concerns for worker exposure. Washington River Protection Solutions (WRPS) contracted the Savannah River National Laboratory (SRNL) to explore abatement technologies and strategies to remediate the vapors emitted through the ventilation system. In response, SRNL conducted an evaluation of technologies to abate, or reduce, vapor emissions to below 10% of the recognized occupational exposure limits (OELs). The evaluation included a review of published literature and a broadly communicated Request for Information to commercial vendors through a Federal Business Opportunities (Fed Biz Opps) web posting. In addition, SRNL conducted amore » workshop and post-workshop conference calls with interested suppliers (vendors) to assess proposals of relevant technologies. This report reviews applicable technologies and summarizes the approaches proposed by the vendors who participated in the workshop and teleconference interviews. In addition, the report evaluates the estimated performance of the individual technologies for the various classes of chemical compounds present in the Hanford Chemicals of Potential Concern (COPCs) list. Similarly, the report provides a relative evaluation of the vendor proposed approaches against criteria of: technical feasibility (and maturity), design features, operational considerations, secondary waste generation, safety/regulatory, and cost / schedule. These rough order-of-magnitude (ROM) cost estimates are intended to provide a comparison basis between technologies and are not intended to be actual project estimates.« less

  17. Hanford Site Environmental Report for calendar year 1992

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Woodruff, R.K.; Hanf, R.W.; Lundgren, R.E.

    1993-06-01

    This report is prepared annually to summarize environmental data and information, describe environmental management performance, and demonstrate the status of compliance with environmental regulations at the Hanford Site. The following sections: describe the Hanford Site and its mission; summarize the status in 1992 of compliance with environmental regulations; describe the environmental programs at the Hanford Site; discuss public dose estimates from 1992 Hanford activities; present information on effluent monitoring and environmental surveillance, including ground-water protection and monitoring, and discuss activities to ensure quality.

  18. Overview of Hanford Single Shell Tank (SST) Structural Integrity

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Rast, Richard S.; Washenfelder, Dennis J.; Johnson, Jeremy M.

    2013-11-14

    To improve the understanding of the single-shell tanks (SSTs) integrity, Washington River Protection Solutions, LLC (WRPS), the USDOE Hanford Site tank contractor, developed an enhanced Single-Shell Tank Integrity Project (SSTIP) in 2009. An expert panel on SST integrity, consisting of various subject matters experts in industry and academia, was created to provide recommendations supporting the development of the project. This panel developed 33 recommendations in four main areas of interest: structural integrity, liner degradation, leak integrity and prevention, and mitigation of contamination migration, Seventeen of these recommendations were used to develop the basis for the M-45-10-1 Change Package for themore » Hanford Federal Agreement and Compliance Order, which is also known as the Tri-Party Agreement. The structural integrity of the tanks is a key element in completing the cleanup mission at the Hanford Site. There are eight primary recommendations related to the structural integrity of Hanford Single-Shell Tanks. Six recommendations are being implemented through current and planned activities. The structural integrity of the Hanford is being evaluated through analysis, monitoring, inspection, materials testing, and construction document review. Structural evaluation in the form of analysis is performed using modern finite element models generated in ANSYS. The analyses consider in-situ, thermal, operating loads and natural phenomena such as earthquakes. Structural analysis of 108 of 149 Hanford Single-Shell Tanks has concluded that the tanks are structurally sound and meet current industry standards. Analysis of the remaining Hanford Single-Shell Tanks is scheduled for FY2014. Hanford Single-Shell Tanks are monitored through a dome deflection program. The program looks for deflections of the tank dome greater than 1/4 inch. No such deflections have been recorded. The tanks are also subjected to visual inspection. Digital cameras record the interior

  19. Collaboration, Automation, and Information Management at Hanford High Level Radioactive Waste (HLW) Tank Farms

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Aurah, Mirwaise Y.; Roberts, Mark A.

    Washington River Protection Solutions (WRPS), operator of High Level Radioactive Waste (HLW) Tank Farms at the Hanford Site, is taking an over 20-year leap in technology, replacing systems that were monitored with clipboards and obsolete computer systems, as well as solving major operations and maintenance hurdles in the area of process automation and information management. While WRPS is fully compliant with procedures and regulations, the current systems are not integrated and do not share data efficiently, hampering how information is obtained and managed.

  20. Strontium-90 at the Hanford Site and its ecological implications

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    RE Peterson; TM Poston

    2000-05-22

    Strontium-90, a radioactive contaminant from historical operations at the U.S. Department of Energy (DOE) Hanford Site, enters the Columbia River at several locations associated with former plutonium production reactors at the Site. Strontium-90 is of concern to humans and the environment because of its moderately long half-life (29.1 years), its potential for concentrating in bone tissue, and its relatively high energy of beta decay. Although strontium-90 in the environment is not a new issue for the Hanford Site, recent studies of near-river vegetation along the shoreline near the 100 Areas raised public concern about the possibility of strontium-90-contaminated groundwater reachingmore » the riverbed and fall chinook salmon redds. To address these concerns, DOE asked Pacific Northwest National Laboratory (PNNL) to prepare this report on strontium-90, its distribution in groundwater, how and where it enters the river, and its potential ecological impacts, particularly with respect to fall chinook salmon. The purpose of the report is to characterize groundwater contaminants in the near-shore environment and to assess the potential for ecological impact using salmon embryos, one of the most sensitive ecological indicators for aquatic organisms. Section 2.0 of the report provides background information on strontium-90 at the Hanford Site related to historical operations. Public access to information on strontium-90 also is described. Section 3.0 focuses on key issues associated with strontium-90 contamination in groundwater that discharges in the Hanford Reach. The occurrence and distribution of fall chinook salmon redds in the Hanford Reach and characteristics of salmon spawning are described in Section 4.0. Section 5.0 describes the regulatory standards and criteria used to set action levels for strontium-90. Recommendations for initiating additional monitoring and remedial action associated with strontium-90 contamination at the Hanford Site are presented in

  1. Hanford Site 1998 Environmental Report

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    RL Dirkes; RW Hanf; TM Poston

    This Hanford Site environmental report is prepared annually to summarize environmental data and information, to describe environmental management performance, to demonstrate the status of compliance with environmental regulations, and to highlight major environmental programs and efforts. The report is written to meet requirements and guidelines of the U.S. Department of Energy (DOE) and to meet the needs of the public. This summary has been written with a minimum of technical terminology. Individual sections of the report are designed to: describe the Hanford Site and its mission; summarize the status of compliance with environmental regulations; describe the environmental programs at themore » Hanford Site; discuss the estimated radionuclide exposure to the public from 1998 Hanford Site activities; present the effluent monitoring, environmental surveillance, and groundwater protection and monitoring information; and discuss the activities to ensure quality.« less

  2. Expert Panel Recommendations for Hanford Double-Shell Tank Life Extension

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Stewart, Charles W; Bush, Spencer H; Berman, Herbert Stanton

    2001-06-29

    Expert workshops were held in Richland in May 2001 to review the Hanford Double-Shell Tank Integrity Project and make recommendations to extend the life of Hanford's double-shell waste tanks. The workshop scope was limited to corrosion of the primary tank liner, and the main areas for review were waste chemistry control, tank inspection, and corrosion monitoring. Participants were corrosion experts from Hanford, Savannah River Site, Brookhaven National Lab., Pacific Northwest National Lab., and several consultants. This report describes the current state of the three areas of the program, the final recommendations of the workshop, and the rationale for their selection.

  3. OVERVIEW OF HANFORD SINGLE SHELL TANK (SST) STRUCTURAL INTEGRITY - 12123

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    RAST RS; RINKER MW; WASHENFELDER DJ

    2012-01-25

    To improve the understanding of the single-shell tanks (SSTs) integrity, Washington River Protection Solutions, LLC (WRPS), the USDOE Hanford Site tank contractor, developed an enhanced Single-Shell Tank Integrity Project in 2009. An expert panel on SST integrity, consisting of various subject matters experts in industry and academia, was created to provide recommendations supporting the development of the project. This panel developed 33 recommendations in four main areas of interest: structural integrity, liner degradation, leak integrity and prevention, and mitigation of contamination migration. Seventeen of these recommendations were used to develop the basis for the M-45-10-1 Change Package for the Hanfordmore » Federal Agreement and Compliance Order, which is also known as the Tri-Party Agreement. The structural integrity of the tanks is a key element in completing the cleanup mission at the Hanford Site. There are eight primary recommendations related to the structural integrity of Hanford SSTs. Six recommendations are being implemented through current and planned activities. The structural integrity of the Hanford SSTs is being evaluated through analysis, monitoring, inspection, materials testing, and construction document review. Structural evaluation in the form of analysis is performed using modern finite element models generated in ANSYS{reg_sign} The analyses consider in-situ, thermal, operating loads and natural phenomena such as earthquakes. Structural analysis of 108 of 149 Hanford SSTs has concluded that the tanks are structurally sound and meet current industry standards. Analyses of the remaining Hanford SSTs are scheduled for FY2013. Hanford SSTs are monitored through a dome deflection program. The program looks for deflections of the tank dome greater than 1/4 inch. No such deflections have been recorded. The tanks are also subjected to visual inspection. Digital cameras record the interior surface of the concrete tank domes, looking for

  4. Groundwater Data Package for Hanford Assessments

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Thorne, Paul D.; Bergeron, Marcel P.; Williams, Mark D.

    2006-01-31

    This report presents data and interpreted information that supports the groundwater module of the System Assessment Capability (SAC) used in Hanford Assessments. The objective of the groundwater module is to predict movement of radioactive and chemical contaminants through the aquifer to the Columbia River or other potential discharge locations. This data package is being revised as part of the deliverables under the Characterization of Systems Project (#49139) aimed at providing documentation for assessments being conducted under the Hanford Assessments Project (#47042). Both of these projects are components of the Groundwater Remediation and Closure Assessments Projects, managed by the Management andmore » Integration Project (#47043).« less

  5. Hanford Site Environmental Report for Calender Year 2006

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Poston, Ted M.; Hanf, Robert W.; Duncan, Joanne P.

    This report is prepared annually for DOE and provides an overview of activities at the Hanford Site. The report summarizes environmental data that characterize Hanford Site environmental management performance. The report also highlights significant environmental and public protection programs and efforts. Although this report is primarily written to meet DOE reporting requirements and guidelines, it also provides useful summary information for the public, Indian tribes, public officials, regulatory agencies, Hanford contractors, and public officials.

  6. Hanford Site Environmental Report 1999

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    TM Poston; RW Hanf; RL Dirkes

    This Hanford Site environmental report is prepared annually to summarize environmental data and information, to describe environmental management performance, to demonstrate the status of compliance with environmental regulations, and to highlight major environmental programs and efforts. The report is written to meet requirements and guidelines of the U.S. Department of Energy (DOE) and to meet the needs of the public. This summary has been written with a minimum of technical terminology. Individual sections of the report are designed to: (1) describe the Hanford Site and its mission; (2) summarize the status of compliance with environmental regulations; (3) describe the environmentalmore » programs at the Hanford Site; (4) discuss the estimated radionuclide exposure to the public from 1999 Hanford Site activities; (5) present the effluent monitoring, environmental surveillance, groundwater protection and monitoring information; and (6) discuss the activities to ensure quality.« less

  7. Office of River Protection Advanced Low-Activity Waste Glass Research and Development Plan

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Peeler, David K.; Kim, Dong-Sang; Vienna, John D.

    2015-11-01

    The U.S. Department of Energy Office of River Protection (ORP) has initiated and leads an integrated Advanced Waste Glass (AWG) program to increase the loading of Hanford tank wastes in glass while meeting melter lifetime expectancies and process, regulatory, and product performance requirements. The integrated ORP program is focused on providing a technical, science-based foundation for making key decisions regarding the successful operation of the Hanford Tank Waste Treatment and Immobilization Plant (WTP) facilities in the context of an optimized River Protection Project (RPP) flowsheet. The fundamental data stemming from this program will support development of advanced glass formulations, keymore » product performance and process control models, and tactical processing strategies to ensure safe and successful operations for both the low-activity waste (LAW) and high-level waste vitrification facilities. These activities will be conducted with the objective of improving the overall RPP mission by enhancing flexibility and reducing cost and schedule. The purpose of this advanced LAW glass research and development plan is to identify the near-term, mid-term, and longer-term research and development activities required to develop and validate advanced LAW glasses, property-composition models and their uncertainties, and an advanced glass algorithm to support WTP facility operations, including both Direct Feed LAW and full pretreatment flowsheets. Data are needed to develop, validate, and implement 1) new glass property-composition models and 2) a new glass formulation algorithm. Hence, this plan integrates specific studies associated with increasing the Na2O and SO3/halide concentrations in glass, because these components will ultimately dictate waste loadings for LAW vitrification. Of equal importance is the development of an efficient and economic strategy for 99Tc management. Specific and detailed studies are being implemented to understand the fate of Tc

  8. Second Quarter Hanford Seismic Report for Fiscal Year 2010

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Rohay, Alan C.; Sweeney, Mark D.; Hartshorn, Donald C.

    2010-06-30

    The Hanford Seismic Assessment Program (HSAP) provides an uninterrupted collection of high-quality raw and processed seismic data from the Hanford Seismic Network for the U.S. Department of Energy and its contractors. The HSAP is responsible for locating and identifying sources of seismic activity and monitoring changes in the historical pattern of seismic activity at the Hanford Site. The data are compiled, archived, and published for use by the Hanford Site for waste management, natural phenomena hazards assessments, and engineering design and construction. In addition, the HSAP works with the Hanford Site Emergency Services Organization to provide assistance in the eventmore » of a significant earthquake on the Hanford Site. The Hanford Seismic Network and the Eastern Washington Regional Network consist of 44 individual sensor sites and 15 radio relay sites maintained by the Hanford Seismic Assessment Team. The Hanford Seismic Network recorded 90 local earthquakes during the second quarter of FY 2010. Eighty-one of these earthquakes were detected in the vicinity of Wooded Island, located about eight miles north of Richland just west of the Columbia River. The Wooded Island events recorded this quarter were a continuation of the swarm events observed during the 2009 and 2010 fiscal years and reported in previous quarterly and annual reports (Rohay et al; 2009a, 2009b, 2009c, and 2010). Most of the events were considered minor (coda-length magnitude [Mc] less than 1.0) with only 1 event in the 2.0-3.0 range; the maximum magnitude event (3.0 Mc) occurred February 4, 2010 at depth 2.4 km. The average depth of the Wooded Island events during the quarter was 1.6 km with a maximum depth estimated at 3.5 km. This placed the Wooded Island events within the Columbia River Basalt Group (CRBG). The low magnitude of the Wooded Island events has made them undetectable to all but local area residents. The Hanford Strong Motion Accelerometer (SMA) network was triggered

  9. Hanford Double-Shell Tank Extent-of-Condition Review - 15498

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Johnson, J. M.; Baide, D. D.; Barnes, T. J.

    2014-11-19

    During routine visual inspections of Hanford double-shell waste tank 241-AY-102 (AY-102), anomalies were identified on the annulus floor which resulted in further evaluations. Following a formal leak assessment in October 2012, Washington River Protection Solutions, LLC (WRPS) determined that the primary tank of AY-102 was leaking. A formal leak assessment, documented in RPP-ASMT-53793, Tank 241-AY-102 Leak Assessment Report, identified first-of-a-kind construction difficulties and trial-and-error repairs as major contributing factors to tank failure.1 To determine if improvements in double-shell tank (DST) construction occurred after construction of tank AY-102, a detailed review and evaluation of historical construction records was performed for Hanford’smore » remaining twenty-seven DSTs. Review involved research of 241 boxes of historical project documentation to better understand the condition of the Hanford DST farms, noting similarities in construction difficulties/issues to tank AY-102. Information gathered provides valuable insight regarding construction difficulties, future tank operations decisions, and guidance of the current tank inspection program. Should new waste storage tanks be constructed in the future, these reviews also provide valuable lessons-learned.« less

  10. Regulatory off-gas analysis from the evaporation of Hanford simulated waste spiked with organic compounds.

    PubMed

    Saito, Hiroshi H; Calloway, T Bond; Ferrara, Daro M; Choi, Alexander S; White, Thomas L; Gibson, Luther V; Burdette, Mark A

    2004-10-01

    After strontium/transuranics removal by precipitation followed by cesium/technetium removal by ion exchange, the remaining low-activity waste in the Hanford River Protection Project Waste Treatment Plant is to be concentrated by evaporation before being mixed with glass formers and vitrified. To provide a technical basis to permit the waste treatment facility, a relatively organic-rich Hanford Tank 241-AN-107 waste simulant was spiked with 14 target volatile, semi-volatile, and pesticide compounds and evaporated under vacuum in a bench-scale natural circulation evaporator fitted with an industrial stack off-gas sampler at the Savannah River National Laboratory. An evaporator material balance for the target organics was calculated by combining liquid stream mass and analytical data with off-gas emissions estimates obtained using U.S. Environmental Protection Agency (EPA) SW-846 Methods. Volatile and light semi-volatile organic compounds (<220 degrees C BP, >1 mm Hg vapor pressure) in the waste simulant were found to largely exit through the condenser vent, while heavier semi-volatiles and pesticides generally remain in the evaporator concentrate. An OLI Environmental Simulation Program (licensed by OLI Systems, Inc.) evaporator model successfully predicted operating conditions and the experimental distribution of the fed target organics exiting in the concentrate, condensate, and off-gas streams, with the exception of a few semi-volatile and pesticide compounds. Comparison with Henry's Law predictions suggests the OLI Environmental Simulation Program model is constrained by available literature data.

  11. System-Scale Model of Aquifer, Vadose Zone, and River Interactions for the Hanford 300 Area - Application to Uranium Reactive Transport

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Rockhold, Mark L.; Bacon, Diana H.; Freedman, Vicky L.

    2013-10-01

    This report represents a synthesis and integration of basic and applied research into a system-scale model of the Hanford 300 Area groundwater uranium plume, supported by the U.S. Department of Energy’s Richland Operations (DOE-RL) office. The report integrates research findings and data from DOE Office of Science (DOE-SC), Office of Environmental Management (DOE-EM), and DOE-RL projects, and from the site remediation and closure contractor, Washington Closure Hanford, LLC (WCH). The three-dimensional, system-scale model addresses water flow and reactive transport of uranium for the coupled vadose zone, unconfined aquifer, and Columbia River shoreline of the Hanford 300 Area. The system-scale modelmore » of the 300 Area was developed to be a decision-support tool to evaluate processes of the total system affecting the groundwater uranium plume. The model can also be used to address “what if” questions regarding different remediation endpoints, and to assist in design and evaluation of field remediation efforts. For example, the proposed cleanup plan for the Hanford 300 Area includes removal, treatment, and disposal of contaminated sediments from known waste sites, enhanced attenuation of uranium hot spots in the vadose and periodically rewetted zone, and continued monitoring of groundwater with institutional controls. Illustrative simulations of polyphosphate infiltration were performed to demonstrate the ability of the system-scale model to address these types of questions. The use of this model in conjunction with continued field monitoring is expected to provide a rigorous basis for developing operational strategies for field remediation and for defining defensible remediation endpoints.« less

  12. SECONDARY WASTE MANAGEMENT FOR HANFORD EARLY LOW ACTIVITY WASTE VITRIFICATION

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    UNTERREINER BJ

    2008-07-18

    More than 200 million liters (53 million gallons) of highly radioactive and hazardous waste is stored at the U.S. Department of Energy's Hanford Site in southeastern Washington State. The DOE's Hanford Site River Protection Project (RPP) mission includes tank waste retrieval, waste treatment, waste disposal, and tank farms closure activities. This mission will largely be accomplished by the construction and operation of three large treatment facilities at the Waste Treatment and Immobilization Plant (WTP): (1) a Pretreatment (PT) facility intended to separate the tank waste into High Level Waste (HLW) and Low Activity Waste (LAW); (2) a HLW vitrification facilitymore » intended to immobilize the HLW for disposal at a geologic repository in Yucca Mountain; and (3) a LAW vitrification facility intended to immobilize the LAW for shallow land burial at Hanford's Integrated Disposal Facility (IDF). The LAW facility is on target to be completed in 2014, five years prior to the completion of the rest of the WTP. In order to gain experience in the operation of the LAW vitrification facility, accelerate retrieval from single-shell tank (SST) farms, and hasten the completion of the LAW immobilization, it has been proposed to begin treatment of the low-activity waste five years before the conclusion of the WTP's construction. A challenge with this strategy is that the stream containing the LAW vitrification facility off-gas treatment condensates will not have the option of recycling back to pretreatment, and will instead be treated by the Hanford Effluent Treatment Facility (ETF). Here the off-gas condensates will be immobilized into a secondary waste form; ETF solid waste.« less

  13. Hanford Site Environmental Report 1993

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Dirkes, R.L.; Hanf, R.W.; Woodruff, R.K.

    The Hanford Site Environmental Report is prepared annually to summarize environmental data and information, describe environmental management performance, and demonstrate the status of compliance with environmental regulations. The report also highlights major environmental programs and efforts. The report is written to meet reporting requirements and Guidelines of the U.S. Department of Energy (DOE) an to meet the needs of the public. This summary has been written with a minimum of technical terminology. Individual sections of the report are designed to (a) describe the Hanford Site and its mission, (b) summarize the status in 1993 of compliance with environmental regulations, (c)more » describe the environmental programs at the Hanford Site, (d) discuss estimated radionuclide exposure to the public from 1993 Hanford activities, (e) present information on effluent monitoring and environmental surveillance, including ground-water protection and monitoring, (f) discuss activities to ensure quality. More detailed information can be found in the body of the report, the appendixes, and the cited references.« less

  14. A Geophysical Characterization & Monitoring Strategy for Determining Hydrologic Processes in the Hyporheic Corridor at the Hanford 300-Area

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Slater, Lee; Day-Lewis, Frederick; Lane, John

    2011-08-31

    The primary objective of this research was to advance the prediction of solute transport between the Uranium contaminated Hanford aquifer and the Columbia River at the Hanford 300 Area by improving understanding of how fluctuations in river stage, combined with subsurface heterogeneity, impart spatiotemporal complexity to solute exchange along the Columbia River corridor. Our work explored the use of continuous waterborne electrical imaging (CWEI), in conjunction with fiber-optic distributed temperature sensor (FO-DTS) and time-lapse resistivity monitoring, to improve the conceptual model for how groundwater/surface water exchange regulates uranium transport. We also investigated how resistivity and induced polarization can be usedmore » to generate spatially rich estimates of the variation in depth to the Hanford-Ringold (H-R) contact between the river and the 300 Area Integrated Field Research Challenge (IFRC) site. Inversion of the CWEI datasets (a data rich survey containing {approx}60,000 measurements) provided predictions of the distributions of electrical resistivity and polarizability, from which the spatial complexity of the primary hydrogeologic units along the river corridor was reconstructed. Variation in the depth to the interface between the overlying coarse-grained, high permeability Hanford Formation and the underlying finer-grained, less permeable Ringold Formation, an important contact that limits vertical migration of contaminants, has been resolved along {approx}3 km of the river corridor centered on the IFRC site in the Hanford 300 Area. Spatial variability in the thickness of the Hanford Formation captured in the CWEI datasets indicates that previous studies based on borehole projections and drive-point and multi-level sampling likely overestimate the contributing area for uranium exchange within the Columbia River at the Hanford 300 Area. Resistivity and induced polarization imaging between the river and the 300 Area IFRC further imaged

  15. Determination of Columbia River flow times from Pasco, Washington using radioactive tracers introduced by the Hanford reactors

    USGS Publications Warehouse

    Nelson, Jack L.; Perkins, R.W.; Haushild, W.L.

    1966-01-01

    Radioactive tracers introduced into the Columbia River in cooling water from the Hanford reactors were used to measure flow times downstream from Pasco, Washington, as far as Astoria, Oregon. The use of two tracer methods was investigated. One method used the decay of a steady release of Na24 (15-hour half-life) to determine flow times to various downstream locations, and flow times were also determined from the time required for peak concentration of instantaneous releases of I131 (8-day half-life) to reach these locations. Flow times determined from the simultaneous use of the two methods agreed closely. The measured flow times for the 224 miles from Pasco to Vancouver, Washington, ranged from 14.6 to 3.6 days, respectively, for discharges of 108,000 and 630,000 ft3/sec at Vancouver, Washington. A graphic relation for estimating flow times at discharges other than those measured and for several locations between Pasco and Vancouver was prepared from the data of tests made at four river discharges. Some limited data are also presented on the characteristics of dispersion of I131 in the Columbia River.

  16. Screening assessment and requirements for a comprehensive assessment: Volume 1, Draft. Columbia River comprehensive impact assessment

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    NONE

    1997-04-01

    To evaluate the impact to the Columbia River from the Hanford Site-derived contaminants, the U.S. Department of Energy, U.S. Environmental Protection Agency, and Washington State Department of Ecology initiated a study referred to as the Columbia River Comprehensive Impact Assessment (CRCIA). To address concerns about the scope and direction of CRCIA as well as enhance regulator, tribal, stockholder, and public involvement, the CRCIA Management Team was formed in August 1995. The Team agreed to conduct CRCIA using a phased approach. The initial phase, includes two components: 1) a screening assessment to evaluate the potential impact to the river, resulting frommore » current levels of Hanford-derived contaminants in order to support decisions on Interim Remedial Measures, and 2) a definition of the essential work remaining to provide an acceptable comprehensive river impact assessment. The screening assessment is described in Part I of this report. The essential work remaining is Part II of this report. The objective of the screening assessment is to identify areas where the greatest potential exists for adverse effects on humans or the environment. Part I of this report discusses the scope, technical approach, and results of the screening assessment. Part II defines a new paradigm for predecisional participation by those affected by Hanford cleanup decisions.« less

  17. Assessment of Hexavalent Chromium Natural Attenuation for the Hanford Site 100 Area

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Truex, Michael J.; Szecsody, James E.; Qafoku, Nikolla P.

    2015-09-01

    Hexavalent chromium (Cr(VI)) plumes are present in the 100 Area at the Hanford Site. Remediation efforts are under way with objectives of restoring the groundwater to meet the drinking-water standard (48 µg/L) and protecting the Columbia River by ensuring that discharge of groundwater to the river is below the surface-water quality standard (10 µg/L). Current remedies include application of Pump-and-Treat (P&T) at the 100-D, 100-H, and 100-K Areas and Monitored Natural Attenuation (MNA) at the 100-F/IU Area. Remedy selection is still under way at the other 100 Areas. Additional information about the natural attenuation processes for Cr(VI) is important inmore » all of these cases. In this study, laboratory experiments were conducted to demonstrate and quantify natural attenuation mechanisms using 100 Area sediments and groundwater conditions.« less

  18. Hanford Site Environmental Report for Calendar Year 2008

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Poston, Ted M.; Duncan, Joanne P.; Dirkes, Roger L.

    The Hanford Site environmental report is prepared annually for the U.S. Department of Energy (DOE) in accordance with regulatory requirements. The report provides an overview of activities at the Hanford Site; demonstrates the status of the site’s compliance with applicable federal, state, and local environmental laws and regulations, executive orders, and DOE policies and directives; and summarizes environmental data that characterize Hanford Site environmental management performance. The report also highlights significant environmental and public protection programs and efforts. Some historical and early 2009 information is included where appropriate.

  19. Hanford Site Environmental Report for Calendar Year 2009

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Poston, Ted M.; Duncan, Joanne P.; Dirkes, Roger L.

    The Hanford Site environmental report is prepared annually for the U.S. Department of Energy (DOE) in accordance with regulatory requirements. The report provides an overview of activities at the Hanford Site; demonstrates the status of the site’s compliance with applicable federal, state, and local environmental laws and regulations, executive orders, and DOE policies and directives; and summarizes environmental data that characterize Hanford Site environmental management performance. The report also highlights significant environmental and public protection programs and efforts. Some historical and early 2010 information is included where appropriate.

  20. Hanford Site Environmental Report for Calendar Year 2010

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Poston, Ted M.; Duncan, Joanne P.; Dirkes, Roger L.

    The Hanford Site environmental report is prepared annually for the U.S. Department of Energy (DOE) in accordance with regulatory requirements. The report provides an overview of activities at the Hanford Site; demonstrates the status of the site's compliance with applicable federal, state, and local environmental laws and regulations, executive orders, and DOE policies and directives; and summarizes environmental data that characterize Hanford Site environmental management performance. The report also highlights significant environmental and public protection programs and efforts. Some historical and early 2011 information is included where appropriate.

  1. Characterization and Delivery of Hanford High-Level Radioactive Waste Slurry

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Thien, Michael G.; Denslow, Kayte M.; Lee, K. P.

    2014-11-15

    Two primary challenges to characterizing Hanford’s high-level radioactive waste slurry prior to transfer to a treatment facility are the ability to representatively sample million-gallon tanks and to estimate the critical velocity of the complex slurry. Washington River Protection Solutions has successfully demonstrated a sampling concept that minimizes sample errors by collecting multiple sample increments from a sample loop where the mixed tank contents are recirculated. Pacific Northwest National Laboratory has developed and demonstrated an ultrasonic-based Pulse-Echo detection device that is capable of detecting a stationary settled bed of solids in a pipe with flowing slurry. These two concepts are essentialmore » elements of a feed delivery strategy that drives the Hanford clean-up mission.« less

  2. Kd Values for Agricultural and Surface Soils for Use in Hanford Site Farm, Residential, and River Shoreline Scenarios

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Serne, R. Jeffrey

    This report provides best estimate Kd values and a minimum and maximum range of Kd values to be used for agricultural soils and Columbia River bank sediments that exist today or would exist in the future when portions of the Hanford Site are released for farming, residential, and recreational use after the U. S. Department of Energy (DOE) completes clean up of defense waste on the site. The Kd values should be used to determine the fate and transport rates of contaminants and their availability for plant and animal uptake in selected non-groundwater scenarios included in Hanford Site environmental impactmore » statements, risk assessments and specific facility performance assessments. This report describes scenarios such as a small farm where drilling of a well inadvertently goes through buried waste and brings waste to the surface, allowing the tailings to become available for direct human exposure or incorporation into garden crops and farm animals used for food by the farm family. The Kd values recommended in this report can also be used to calculate sediment-water partitioning factors used to predict plant and animal uptake from interaction with the contaminated soil.« less

  3. Hanford Quarter Seismic Report - 98C Seismicity On and Near the Hanford Site, Pasco Basin, Washington: April 1, 1998 Through June 30, 1998

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    DC Hartshorn, SP Reidel, AC Rohay

    1998-10-23

    Hanford Seismic Monitoring provides an uninterrupted collection of high-quality raw and processed seismic data from the Hanford Seismic Network (HSN) for the U.S. Department of Energy and its contractors. The staff also locates aud identifies sources of seismic activity and monitors changes in the hi~orical pattern of seismic activity at the Hanford Site. The data are. compiled archived, and published for use by the Hanford Site for waste management Natural Phenomena Hazards assessments, and engineering design and construction. In addition, the seismic monitoring organization works with the Hanford Site Emergency Services Organization to provide assistance in the event of zinmore » earthquake on the Hanford Site. The HSN and Ihe Eastern Washington Regional Network (EN/RN) consist-of 42 individual sensor sites and 15 radio relay sites maintained by the Hanford Seismic Monitoring staff. The operational rate for the third quarter of FY 1998 for stations in the HSN was 99.99%. The operational rate for the third quarter of FY 1998 for stations of the EWRN was 99.95%. For the third quarter of FY 1998, the acquisition computer triggered 133 times. Of these triggers 11 were local earthquakes: 5 (45Yo) in the Columbia River Basalt Group, 2(1 8%) in the pre-basalt sediments, and 4 (36%) in the crystalline basement. The geologic and tectonic environments where these earthquakes occurred are discussed in this report.« less

  4. Hanford Quarter Seismic Report - 98C Seismicity On and Near the Hanford Site, Pasco Basin, Washington: April 1, 1998 Through June 30, 1998

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    DC Hartshorn, SP Reidel, AC Rohay.

    1998-10-23

    Hanford Seismic Monitoring provides an uninterrupted collection of high-quality raw and processed seismic data from the Hanford Seismic Network (HSN) for the U.S. Department of Energy and its contractors. The staff also locates aud identifies sources of seismic activity and monitors changes in the hi orical pattern of seismic activity at the Hanford Site. The data are. compiled archived, and published for use by the Hanford Site for waste management Natural Phenomena Hazards assessments, and engineering design and construction. In addition, the seismic monitoring organization works with the Hanford Site Emergency Services Organization to provide assistance in the event ofmore » zin earthquake on the Hanford Site. The HSN and Ihe Eastern Washington Regional Network (EN/RN) consist-of 42 individual sensor sites and 15 radio relay sites maintained by the Hanford Seismic Monitoring staff. The operational rate for the third quarter of FY 1998 for stations in the HSN was 99.99%. The operational rate for the third quarter of FY 1998 for stations of the EWRN was 99.95%. For the third quarter of FY 1998, the acquisition computer triggered 133 times. Of these triggers 11 were local earthquakes: 5 (45Yo) in the Columbia River Basalt Group, 2(1 8%) in the pre-basalt sediments, and 4 (36%) in the crystalline basement. The geologic and tectonic environments where these earthquakes occurred are discussed in this report.« less

  5. One perspective on stakeholder involvement at Hanford.

    PubMed

    Martin, Todd

    2011-11-01

    The Hanford nuclear site in Washington State had a major role in the production of nuclear weapons materials during the Manhattan Project in World War II and during the Cold War that followed. The production of weapons-grade radionuclides produced a large amount of radioactive byproducts that have been stored since the mid-1900s at the Hanford Site. These by-product radionuclides have leaked from containment facilities into the groundwater, contaminated buildings used for radionuclide processing, and also contaminated the nuclear reactors used to produce weapons-grade uranium and plutonium. This issue has been a major concern to Hanford stakeholders for several decades, and the U.S. Department of Energy, the U.S. Environmental Protection Agency, and the Washington State Department of Ecology established a Tri-Party Agreement in 1989, at which time Hanford ceased production of nuclear weapons materials and began a major effort to clean up and remediate the Hanford Site's contaminated groundwater, soil, and facilities. This paper describes the concerns of stakeholders in the production of nuclear weapons, the secrecy of Hanford operations, and the potential impacts to public health and the environment from the unintended releases of weapons-grade materials and by-products associated with their production at the Hanford Site. It also describes the involvement of public stakeholders in the development and oversight by the Hanford Advisory Board of the steps that have been taken in cleanup activities at the Hanford Site that began as a major effort about two decades ago. The importance of involvement of the general public and public interest organizations in developing and implementing the Hanford cleanup strategy are described in detail.

  6. Return to the river: strategies for salmon restoration in the Columbia River Basin.

    Treesearch

    Richard N. Williams; Jack A. Standford; James A. Lichatowich; William J. Liss; Charles C. Coutant; Willis E. McConnaha; Richard R. Whitney; Phillip R. Mundy; Peter A. Bisson; Madison S. Powell

    2006-01-01

    The Columbia River today is a great "organic machine" (White 1995) that dominates the economy of the Pacific Northwest. Even though natural attributes remain—for example, salmon production in Washington State's Hanford Reach, the only unimpounded reach of the mainstem Columbia River—the Columbia and Snake River mainstems are dominated...

  7. Identification and Large-Scale Mapping of Riverbed Facies along the Hanford Reach of the Columbia River for Hyporheic Zone Studies

    NASA Astrophysics Data System (ADS)

    Scheibe, T. D.; Hou, Z.; Murray, C. J.; Perkins, W. A.; Arntzen, E.; Richmond, M. C.; Mackley, R.; Johnson, T. C.

    2016-12-01

    The hyporheic zone (HZ) is the sediment layer underlying a river channel within which river water and groundwater may interact, and plays a significant role in controlling energy and nutrient fluxes and biogeochemical reactions in hydrologic systems. The area of this study is the HZ along the Hanford Reach of the Columbia River in southeastern Washington State, where daily and seasonal river stage changes, hydromorphology, and heterogeneous sediment texture drive groundwater-river water exchange and associated biogeochemical processes. The recent alluvial sediments immediately underlying the river are geologically distinct from the surrounding aquifer sediments, and serve as the primary locale of mixing and reaction. In order to effectively characterize the HZ, a novel approach was used to define and map recent alluvial (riverine) facies using river bathymetric attributes (e.g., slope, aspect, and local variability) and simulated hydrodynamic attributes (e.g., shear stress, flow velocity, river depth). The riverine facies were compared with riverbed substrate texture data for confirmation and quantification of textural relationships. Multiple flow regimes representing current (managed) and historical (unmanaged) flow hydrographs were considered to evaluate hydrodynamic controls on the current riverbed grain size distributions. Hydraulic properties were then mapped at reach and local scales by linking textural information to hydraulic property measurements from piezometers. The spatial distribution and thickness of riverine facies is being further constrained by integrating 3D time-lapse electrical resistivity tomography. The mapped distributions of riverine facies and the corresponding flow, transport and biogeochemical properties are supporting the parameterization of multiscale models of hyporheic exchange between groundwater and river water and associated biogeochemical transformations.

  8. Investigation of the Strontium-90 Contaminant Plume along the Shoreline of the Columbia River at the 100-N Area of the Hanford Site

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Mendoza, Donaldo P.; Patton, Gregory W.; Hartman, Mary J.

    2007-10-01

    Efforts are underway to remediate strontium-laden groundwater to the Columbia River at the 100-N Area of the Hanford Site. Past practices of the 100-N reactor liquid waste disposal sites has left strontium-90 sorbed onto sediments which is a continuing source of contaminant discharge to the river. The Remediation Task of the Science and Technology Project assessed the interaction of groundwater and river water at the hyporheic zone. Limited data have been obtained at this interface of contaminant concentrations, geology, groundwater chemistry, affects of river stage and other variables that may affect strontium-90 release. Efforts were also undertaken to determine themore » extent, both laterally and horizontally, of the strontium-90 plume along the shoreline and to potentially find an alternative constituent to monitor strontium-90 that would be more cost effective and could possibly be done under real time conditions. A baseline of strontium-90 concentrations along the shoreline was developed to help assess remediation technologies.« less

  9. GROUNDWATER REMEDIATION SOLUTIONS AT HANFORD

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Gilmore, Tyler J.; Truex, Michael J.; Williams, Mark D.

    2007-02-26

    In 2006, Congress provided funding to the U. S. Department of Energy (DOE) to study new technologies that could be used to treat contamination from the Hanford Site that might impact the Columbia River. The contaminants of concern are primarily metals and radionuclides, which are byproducts of Hanford’s cold war mission to produce plutonium for atomic weapons. The DOE asked Pacific Northwest National Laboratory (PNNL) to consider this problem and develop approaches to address the contamination that threatens the river. DOE identified three high priority sites that had groundwater contamination migrating towards the Columbia river for remediation. The contaminants includedmore » strontium-90, uranium and chromium. Remediation techniques for metals and radionuclides focus primarily on altering the oxidation state of the contaminant chemically or biologically, isolating the contaminants from the environment through adsorption or encapsulation or concentrating the contaminants for removal. A natural systems approach was taken that uses a mass balance concept to frame the problem and determine the most appropriate remedial approach. This approach provides for a scientifically based remedial decision. The technologies selected to address these contaminants included an apatite adsorption barrier coupled with a phytoremediation to address the strontium-90 contamination, injection of polyphosphate into the subsurface to sequester uranium, and a bioremediation approach to reduce chromium contamination in the groundwater. The ability to provide scientifically based approaches is in large part due to work developed under previous DOE Office of Science and Office of Environmental Management projects. For example, the polyphosphate and the bioremediation techniques, were developed by PNNL under the EMSP and NABIR programs. Contaminated groundwater under the Hanford Site poses a potential risk to humans and the Columbia River. These new technologies holds great promise for

  10. Columbia River Component Data Gap Analysis

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    L. C. Hulstrom

    2007-10-23

    This Data Gap Analysis report documents the results of a study conducted by Washington Closure Hanford (WCH) to compile and reivew the currently available surface water and sediment data for the Columbia River near and downstream of the Hanford Site. This Data Gap Analysis study was conducted to review the adequacy of the existing surface water and sediment data set from the Columbia River, with specific reference to the use of the data in future site characterization and screening level risk assessments.

  11. FINAL PROJECT REPORT: A Geophysical Characterization & Monitoring Strategy for Determining Hydrologic Processes in the Hyporheic Corridor at the Hanford 300-Area

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lee Slater

    2011-08-15

    The primary objective of this research was to advance the prediction of solute transport between the Uranium contaminated Hanford aquifer and the Columbia River at the Hanford 300 Area by improving understanding of how fluctuations in river stage, combined with subsurface heterogeneity, impart spatiotemporal complexity to solute exchange along the Columbia River corridor. Our work explored the use of continuous waterborne electrical imaging (CWEI), in conjunction with fiber-optic distributed temperature sensor (FO-DTS) and time-lapse resistivity monitoring, to improve the conceptual model for how groundwater/surface water exchange regulates uranium transport. We also investigated how resistivity and induced polarization can be usedmore » to generate spatially rich estimates of the variation in depth to the Hanford-Ringold (H-R) contact between the river and the 300 Area Integrated Field Research Challenge (IFRC) site. Inversion of the CWEI datasets (a data rich survey containing ~60,000 measurements) provided predictions of the distributions of electrical resistivity and polarizability, from which the spatial complexity of the primary hydrogeologic units along the river corridor was reconstructed. Variation in the depth to the interface between the overlying coarse-grained, high permeability Hanford Formation and the underlying finer-grained, less permeable Ringold Formation, an important contact that limits vertical migration of contaminants, has been resolved along ~3 km of the river corridor centered on the IFRC site in the Hanford 300 Area. Spatial variability in the thickness of the Hanford Formation captured in the CWEI datasets indicates that previous studies based on borehole projections and drive-point and multi-level sampling likely overestimate the contributing area for uranium exchange within the Columbia River at the Hanford 300 Area. Resistivity and induced polarization imaging between the river and the 300 Area IFRC further imaged spatial

  12. Summary of Group Development and Testing for Single Shell Tank Closure at Hanford

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Harbour, John, R.

    2005-04-28

    This report is a summary of the bench-scale and large scale experimental studies performed by Savannah River National Laboratory for CH2M HILL to develop grout design mixes for possible use in producing fill materials as a part of Tank Closure of the Single-Shell Tanks at Hanford. The grout development data provided in this report demonstrates that these design mixes will produce fill materials that are ready for use in Hanford single shell tank closure. The purpose of this report is to assess the ability of the proposed grout specifications to meet the current requirements for successful single shell tank closuremore » which will include the contracting of services for construction and operation of a grout batch plant. The research and field experience gained by SRNL in the closure of Tanks 17F and 20F at the Savannah River Site was leveraged into the grout development efforts for Hanford. It is concluded that the three Hanford grout design mixes provide fill materials that meet the current requirements for successful placement. This conclusion is based on the completion of recommended testing using Hanford area materials by the operators of the grout batch plant. This report summarizes the regulatory drivers and the requirements for grout mixes as tank fill material. It is these requirements for both fresh and cured grout properties that drove the development of the grout formulations for the stabilization, structural and capping layers.« less

  13. RADIOACTIVE DEMONSTRATIONS OF FLUIDIZED BED STEAM REFORMING AS A SUPPLEMENTARY TREATMENT FOR HANFORD'S LOW ACTIVITY WASTE AND SECONDARY WASTES

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Jantzen, C.; Crawford, C.; Cozzi, A.

    The U.S. Department of Energy's Office of River Protection (ORP) is responsible for the retrieval, treatment, immobilization, and disposal of Hanford's tank waste. Currently there are approximately 56 million gallons of highly radioactive mixed wastes awaiting treatment. A key aspect of the River Protection Project (RPP) cleanup mission is to construct and operate the Waste Treatment and Immobilization Plant (WTP). The WTP will separate the tank waste into high-level and low-activity waste (LAW) fractions, both of which will subsequently be vitrified. The projected throughput capacity of the WTP LAW Vitrification Facility is insufficient to complete the RPP mission in themore » time frame required by the Hanford Federal Facility Agreement and Consent Order, also known as the Tri-Party Agreement (TPA), i.e. December 31, 2047. Therefore, Supplemental Treatment is required both to meet the TPA treatment requirements as well as to more cost effectively complete the tank waste treatment mission. The Supplemental Treatment chosen will immobilize that portion of the retrieved LAW that is not sent to the WTP's LAW Vitrification facility into a solidified waste form. The solidified waste will then be disposed on the Hanford site in the Integrated Disposal Facility (IDF). In addition, the WTP LAW vitrification facility off-gas condensate known as WTP Secondary Waste (WTP-SW) will be generated and enriched in volatile components such as Cs-137, I-129, Tc-99, Cl, F, and SO4 that volatilize at the vitrification temperature of 1150 C in the absence of a continuous cold cap. The current waste disposal path for the WTP-SW is to recycle it to the supplemental LAW treatment to avoid a large steady state accumulation in the pretreatment-vitrification loop. Fluidized Bed Steam Reforming (FBSR) offers a moderate temperature (700-750 C) continuous method by which LAW and/or WTP-SW wastes can be processed irrespective of whether they contain organics, nitrates, sulfates

  14. First Quarter Hanford Seismic Report for Fiscal Year 2010

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Rohay, Alan C.; Sweeney, Mark D.; Hartshorn, Donald C.

    2010-03-29

    The Hanford Seismic Network and the Eastern Washington Regional Network consist of 44 individual sensor sites and 15 radio relay sites maintained by the Hanford Seismic Assessment Team. The Hanford Seismic Network recorded 81 local earthquakes during the first quarter of FY 2010. Sixty-five of these earthquakes were detected in the vicinity of Wooded Island, located about eight miles north of Richland just west of the Columbia River. The Wooded Island events recorded this quarter is a continuation of the swarm events observed during fiscal year 2009 and reported in previous quarterly and annual reports (Rohay et al; 2009a, 2009b,more » 2009c, and 2009d). Most of the events were considered minor (coda-length magnitude [Mc] less than 1.0) with only 1 event in the 2.0-3.0 range; the maximum magnitude event (2.5 Mc) occurred on December 22 at depth 2.1 km. The average depth of the Wooded Island events during the quarter was 1.4 km with a maximum depth estimated at 3.1 km. This placed the Wooded Island events within the Columbia River Basalt Group (CRBG). The low magnitude of the Wooded Island events has made them undetectable to all but local area residents. The Hanford SMA network was triggered several times by these events and the SMA recordings are discussed in section 6.0. During the last year some Hanford employees working within a few miles of the swarm area and individuals living directly across the Columbia River from the swarm center have reported feeling many of the larger magnitude events. Strong motion accelerometer (SMA) units installed directly above the swarm area at ground surface measured peak ground accelerations approaching 15% g, the largest values recorded at Hanford. This corresponds to strong shaking of the ground, consistent with what people in the local area have reported. However, the duration and magnitude of these swarm events should not result in any structural damage to facilities. The USGS performed a geophysical survey using satellite

  15. 100-OL-1 Operable Unit Pilot Study: XRF Evaluation of Select Pre-Hanford Orchards

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bunn, Amoret L.; Fritz, Brad G.; Pulsipher, Brent A.

    Prior to the acquisition of land by the U.S. Department of War in February 1943 and the creation of the Hanford Site, the land along the Columbia River was home to over 1000 people. Farming and orchard operations by both homesteaders and commercial organizations were prevalent. Orchard activities and the associated application of lead arsenate pesticide ceased in 1943, when residents were moved from the Hanford Site at the beginning of the Manhattan Project. Today, the residues from historical application of lead arsenate pesticide persist in some locations on the Hanford Site. In 2012, the U.S. Department of Energy, U.S.more » Environmental Protection Agency, and Washington State Department of Ecology established the 100-OL-1 Operable Unit (OU) through the Hanford Federal Facility Agreement and Consent Order, known as the Tri-Party Agreement. The pre-Hanford orchard lands identified as the 100-OL-1 OU are located south of the Columbia River and east of the present-day Vernita Bridge, and extend southeast to the former Hanford townsite. The discontinuous orchard lands within 100-OL-1 OU are approximately 20 km2 (5000 ac). A pilot study was conducted to support the approval of the remedial investigation/feasibility study work plan to evaluate the 100-OL-1 OU. This pilot study evaluated the use of a field portable X-ray fluorescence (XRF) analyzer for evaluating lead and arsenic concentrations on the soil surface as an indicator of lead arsenate pesticide residues in the OU. The objectives of the pilot study included evaluating a field portable XRF analyzer as the analytical method for decision making, estimating the nature and extent of lead and arsenic in surface soils in four decision units, evaluating the results for the purpose of optimizing the sampling approach implemented in the remedial investigation, and collecting information to improve the cost estimate and planning the cultural resources review for sampling activities in the remedial investigation

  16. Chromium Toxicity Test for Fall Chinook Salmon (Oncorhynchus tshawytscha) Using Hanford Site Groundwater: Onsite Early Life-Stage Toxicity Evaluation

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Patton, Gregory W; Dauble, Dennis D; Chamness, Mickie A

    The objective of this study was to evaluate site-specific effects for early life-stage (eyed eggs to free swimming juveniles) fall chinook salmon that might be exposed to hexavalent chromium from Hanford groundwater sources. Our exposure conditions included hexavalent chromium obtained from Hanford groundwater wells near the Columbia River, Columbia River water as the diluent, and locally adapted populations of fall chinook salmon. This report describes both a 96-hr pretest using rainbow trout eggs and an early life-stage test beginning with chinook salmon eggs.

  17. LONG-TERM STEWARDSHIP AT DOE HANFORD SITE - 12575

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    MOREN RJ; GRINDSTAFF KD

    2012-01-11

    The U.S. Department of Energy's (DOE) Hanford Site is located in southeast Washington and consists of 1,518 square kilometers (586 square miles) of land. Established in 1943 as part of the Manhattan Project, Hanford workers produced plutonium for our nation's nuclear defense program until the mid 1980's. Since then, the site has been in cleanup mode that is being accomplished in phases. As we achieve remedial objectives and complete active cleanup, DOE will manage Hanford land under the Long-Term Stewardship (LTS) Program until completion of cleanup and the site becomes ready for transfer to the post cleanup landlord - currentlymore » planned for DOE's Office of Legacy Management (LM). We define Hanford's LTS Program in the ''Hanford Long-Term Stewardship Program Plan,'' (DOE/RL-201 0-35)[1], which describes the scope including the relationship between the cleanup projects and the LTS Program. DOE designed the LTS Program to manage and provide surveillance and maintenance (S&M) of institutional controls and associated monitoring of closed waste sites to ensure the protection of human health and the environment. DOE's Richland Operations Office (DOE-RL) and Hanford cleanup and operations contractors collaboratively developed this program over several years. The program's scope also includes 15 key activities that are identified in the DOE Program Plan (DOE/RL-2010-35). The LTS Program will transition 14 land segments through 2016. The combined land mass is approximately 570 square kilometers (220 square miles), with over 1,300 active and inactive waste sites and 3,363 wells. Land segments vary from buffer zone property with no known contamination to cocooned reactor buildings, demolished support facilities, and remediated cribs and trenches. DOE-RL will transition land management responsibilities from cleanup contractors to the Mission Support Contract (MSC), who will then administer the LTS Program for DOE-RL. This process requires an environment of cooperation

  18. Canada Geese at the Hanford Site – Trends in Reproductive Success, Migration Patterns, and Contaminant Concentrations

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Simmons, Mary Ann; Poston, Ted M.; Tiller, Brett L.

    2010-05-25

    Pacific Northwest National Laboratory (PNNL) has conducted several studies for the U.S. Department of Energy (DOE) to evaluate the status and condition of Canada geese on the Hanford Reach of the Columbia River. This report summarizes results of studies of Canada geese (Branta canadensis moffitti) at the Hanford Site dating back to the 1950s. Results include information on the nesting (reproductive) success of Canada geese using the Hanford Reach, review of the local and regional migration of this species using data from bird banding studies, and summary data describing monitoring and investigations of the accumulation of Hanford-derived and environmental contaminantsmore » by resident goose populations.« less

  19. Wildlife studies on the Hanford Site: 1993 Highlights report

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Cadwell, L.L.

    The Pacific Northwest Laboratory (PNL) Wildlife Resources Monitoring Project was initiated by DOE to track the status of wildlife populations to determine whether Hanford operations affected them. The project continues to conduct a census of wildlife populations that are highly visible, economically or aesthetically important, and rare or otherwise considered sensitive. Examples of long-term data collected and maintained through the Wildlife Resources Monitoring Project include annual goose nesting surveys conducted on islands in the Hanford Reach, wintering bald eagle surveys, and fall Chinook salmon redd (nest) surveys. The report highlights activities related to salmon and mollusks on the Hanford Reachmore » of the Columbia River; describes efforts to map vegetation on the Site and efforts to survey species of concern; provides descriptions of shrub-steppe bird surveys, including bald eagles, Canada geese, and hawks; outlines efforts to monitor mule deer and elk populations on the Site; and describes development of a biological database management system.« less

  20. PILOT-SCALE TEST RESULTS OF A THIN FILM EVAPORATOR SYSTEM FOR MANAGEMENT OF LIQUID HIGH-LEVEL WASTES AT THE HANFORD SITE WASHINGTON USA -11364

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    CORBETT JE; TEDESCH AR; WILSON RA

    2011-02-14

    A modular, transportable evaporator system, using thin film evaporative technology, is planned for deployment at the Hanford radioactive waste storage tank complex. This technology, herein referred to as a wiped film evaporator (WFE), will be located at grade level above an underground storage tank to receive pumped liquids, concentrate the liquid stream from 1.1 specific gravity to approximately 1.4 and then return the concentrated solution back into the tank. Water is removed by evaporation at an internal heated drum surface exposed to high vacuum. The condensed water stream will be shipped to the site effluent treatment facility for final disposal.more » This operation provides significant risk mitigation to failure of the aging 242-A Evaporator facility; the only operating evaporative system at Hanford maximizing waste storage. This technology is being implemented through a development and deployment project by the tank farm operating contractor, Washington River Protection Solutions (WRPS), for the Office of River Protection/Department of Energy (ORPIDOE), through Columbia Energy and Environmental Services, Inc. (Columbia Energy). The project will finalize technology maturity and install a system at one of the double-shell tank farms. This paper summarizes results of a pilot-scale test program conducted during calendar year 2010 as part of the ongoing technology maturation development scope for the WFE.« less

  1. Climate Change and River Ecosystems: Protection and Adaptation Options

    NASA Astrophysics Data System (ADS)

    Palmer, Margaret A.; Lettenmaier, Dennis P.; Poff, N. Leroy; Postel, Sandra L.; Richter, Brian; Warner, Richard

    2009-12-01

    Rivers provide a special suite of goods and services valued highly by the public that are inextricably linked to their flow dynamics and the interaction of flow with the landscape. Yet most rivers are within watersheds that are stressed to some extent by human activities including development, dams, or extractive uses. Climate change will add to and magnify risks that are already present through its potential to alter rainfall, temperature, runoff patterns, and to disrupt biological communities and sever ecological linkages. We provide an overview of the predicted impacts based on published studies to date, discuss both reactive and proactive management responses, and outline six categories of management actions that will contribute substantially to the protection of valuable river assets. To be effective, management must be place-based focusing on local watershed scales that are most relevant to management scales. The first priority should be enhancing environmental monitoring of changes and river responses coupled with the development of local scenario-building exercises that take land use and water use into account. Protection of a greater number of rivers and riparian corridors is essential, as is conjunctive groundwater/surface water management. This will require collaborations among multiple partners in the respective river basins and wise land use planning to minimize additional development in watersheds with valued rivers. Ensuring environmental flows by purchasing or leasing water rights and/or altering reservoir release patterns will be needed for many rivers. Implementing restoration projects proactively can be used to protect existing resources so that expensive reactive restoration to repair damage associated with a changing climate is minimized. Special attention should be given to diversifying and replicating habitats of special importance and to monitoring populations at high risk or of special value so that management interventions can occur if the

  2. Assessing ecological integrity of Ozark rivers to determine suitability for protective status

    USGS Publications Warehouse

    Radwell, A.J.; Kwak, T.J.

    2005-01-01

    Preservation of extraordinary natural resources, protection of water quality, and restoration of impaired waters require a strategy to identify and protect least-disturbed streams and rivers. We applied two objective, quantitative methods to determine stream ecological integrity of headwater reaches of 10 Ozark rivers, 5 with Wild and Scenic River federal protective status. Thirty-four variables representing macroinvertebrate and fish assemblage characteristics, in-stream habitat, riparian vegetation, water quality, and watershed attributes were quantified for each river and analyzed using two multivariate approaches. The first approach, cluster and discriminant analyses, identified two groups of river with only one variable (% forested watershed) reliably distinguishing groups. Our second approach employed ordinal scaling to compare variables for each river to conceptually ideal conditions that were developed as a composite of optimal attributes among the 10 rivers. The composite distance of each river from ideal was then calculated using a unidimensional ranking technique. Two rivers without Wild and Scenic River designation ranked highest relative to ideal (highest ecological integrity), and two others, also without designation, ranked most distant from ideal (lowest ecological integrity). Fish density, number of intolerant fish species, and invertebrate density were influential biotic variables for scaling. Contributing physical variables included riparian forest cover, water nitrate concentration, water turbidity, percentage of forested watershed, percentage of private land ownership, and road density. These methods provide a framework for refinement and application in other regions to facilitate the process of establishing least-disturbed reference conditions and identifying rivers for protection and restoration. ?? 2005 Springer Science+Business Media, Inc.

  3. A Strategy to Conduct an Analysis of the Long-Term Performance of Low-Activity Waste Glass in a Shallow Subsurface Disposal System at Hanford

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Neeway, James J.; Pierce, Eric M.; Freedman, Vicky L.

    2014-08-04

    The federal facilities located on the Hanford Site in southeastern Washington State have been used extensively by the U.S. government to produce nuclear materials for the U.S. strategic defense arsenal. Currently, the Hanford Site is under the stewardship of the U.S. Department of Energy (DOE) Office of Environmental Management (EM). A large inventory of radioactive and mixed waste resulting from the production of nuclear materials has accumulated, mainly in 177 underground single- and double-shell tanks located in the central plateau of the Hanford Site (Mann et al., 2001). The DOE-EM Office of River Protection (ORP) is proceeding with plans tomore » immobilize and permanently dispose of the low-activity waste (LAW) fraction onsite in a shallow subsurface disposal facility (the Integrated Disposal Facility [IDF]). Pacific Northwest National Laboratory (PNNL) was contracted to provide the technical basis for estimating radionuclide release from the engineered portion of the IDF (the source term) as part of an immobilized low-activity waste (ILAW) glass testing program to support future IDF performance assessments (PAs).« less

  4. Three Rivers: Protecting the Yukon's Great Boreal Wilderness

    Treesearch

    Juri Peepre

    2007-01-01

    The Three Rivers Project in the Yukon, Canada, aims to protect a magnificent but little known 30,000 km2 (11,583 miles2) wilderness in the Peel watershed, using the tools of science, visual art, literature, and community engagement. After completing ecological inventories, conservation values maps, and community trips on the Wind, Snake, and Bonnet Plume rivers, the...

  5. Burn Scar Near the Hanford Nuclear Reservation

    NASA Technical Reports Server (NTRS)

    2002-01-01

    This Multi-angle Imaging Spectroradiometer (MISR) image pair shows 'before and after' views of the area around the Hanford Nuclear Reservation near Richland, Washington. On June 27, 2000, a fire in the dry sagebrush was sparked by an automobile crash. The flames were fanned by hot summer winds. By the day after the accident, about 100,000 acres had burned, and the fire's spread forced the closure of highways and loss of homes. These images were obtained by MISR's vertical-viewing (nadir) camera. Compare the area just above and to the right of the line of cumulus clouds in the May 15 image with the same area imaged on August 3. The darkened burn scar measures approximately 35 kilometers across. The Columbia River is seen wending its way around Hanford. Image courtesy NASA/GSFC/JPL, MISR Science Team

  6. Effects of Fluctuating River flow on Groundwater/Surface Water Mixing in the Hyporheic Zone of a Regulated, Large Cobble Bed River

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Arntzen, Evan V.; Geist, David R.; Dresel, P. Evan

    2006-10-31

    Physicochemical relationships in the boundary zone between groundwater and surface water (i.e., the hyporheic zone) are controlled by surface water hydrology and the hydrogeologic properties of the riverbed. We studied how sediment permeability and river discharge altered the vertical hydraulic gradient (VHG) and water quality of the hyporheic zone within the Hanford Reach of the Columbia River. The Columbia River at Hanford is a large, cobble-bed river where water level fluctuates up to 2 m daily because of hydropower generation. Concomitant with recording river stage, continuous readings were made of water temperature, specific conductance, dissolved oxygen, and water level ofmore » the hyporheic zone. The water level data were used to calculate VHG between the river and hyporheic zone. Sediment permeability was estimated using slug tests conducted in piezometers installed into the river bed. The response of water quality measurements and VHG to surface water fluctuations varied widely among study sites, ranging from no apparent response to co-variance with river discharge. At some sites, a hysteretic relationship between river discharge and VHG was indicated by a time lag in the response of VHG to changes in river stage. The magnitude, rate of change, and hysteresis of the VHG response varied the most at the least permeable location (hydraulic conductivity (K) = 2.9 x 10-4 cms-1), and the least at the most permeable location (K=8.0 x 10-3 cms-1). Our study provides empirical evidence that sediment properties and river discharge both control the water quality of the hyporheic zone. Regulated rivers, like the Columbia River at Hanford, that undergo large, frequent discharge fluctuations represent an ideal environment to study hydrogeologic processes over relatively short time scales (i.e., days to weeks) that would require much longer periods of time to evaluate (i.e., months to years) in un-regulated systems.« less

  7. Hanford Laboratories monthly activities report, February 1964

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Not Available

    1964-03-16

    This is the monthly report for the Hanford Laboratories Operation, February, 1964. Reactor fuels, chemistry, dosimetry, separation process, reactor technology financial activities, biology operation, physics and instrumentation research, employee relations, applied mathematics, programming, and radiation protection are discussed.

  8. Hanford Double-Shell Tank Extent-of-Condition Construction Review

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Venetz, Theodore J.; Johnson, Jeremy M.; Gunter, Jason R.

    2013-11-14

    During routine visual inspections of Hanford double-shell waste tank 241-AY-102 (AY-102), anomalies were identified on the annulus floor which resulted in further evaluations. Following a formal leak assessment in October 2012, Washington River Protection Solutions, LLC (WRPS) determined that the primary tank of AY-102 was leaking. The formal leak assessment, documented in RPP-ASMT-53793,Tank 241-AY-102 Leak Assessment Report, identified first-of-a-kind construction difficulties and trial-and-error repairs as major contributing factors to tank failure. To determine if improvements in double-shell tank (DST) construction occurred after construction of tank AY-102, a detailed review and evaluation of historical construction records were performed for the firstmore » three DST tank farms constructed, which included tanks 241-AY-101, 241-AZ-101, 241-AZ-102, 241-SY-101, 241-SY-102, and 241-SY-103. The review for these six tanks involved research and review of dozens of boxes of historical project documentation. These reviews form a basis to better understand the current condition of the three oldest Hanford DST farms. They provide a basis for changes to the current tank inspection program and also provide valuable insight into future tank use decisions. If new tanks are constructed in the future, these reviews provide valuable "lessons-learned" information about expected difficulties as well as construction practices and techniques that are likely to be successful.« less

  9. Hanford Site Environmental Report for Calendar Year 2007

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Poston, Ted M.; Duncan, Joanne P.; Dirkes, Roger L.

    The Hanford Site environmental report is prepared annually for the U.S. Department of Energy (DOE) in accordance with regulatory requirements. The report provides an overview of activities at the site; demonstrates the status of the site’s compliance with applicable federal, state, and local environmental laws and regulations, executive orders, and DOE policies and directives; and summarizes environmental data that characterize Hanford Site environmental management performance. The report also highlights signifi cant environmental and public protection programs and efforts. Some historical and early 2008 information is included where appropriate.

  10. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Flynn, Karen; McCormick, Matt

    Hanford's DOE offices are responsible for one of the largest nuclear cleanup efforts in the world, cleaning up the legacy of nearly five decades of nuclear weapons production. Nowhere in the DOE Complex is cleanup more challenging than at the Hanford Site in southeastern Washington. Hanford cleanup entails remediation of hundreds of large complex hazardous waste sites; disposition of nine production reactors and the preservation of one as a National Historic Landmark; demolition of hundreds of contaminated facilities including five enormous process canyons; remediation of billions of gallons of contaminated groundwater; disposition of millions of tons of low-level, mixed low-level,more » and transuranic waste; disposition of significant quantities of special nuclear material; storage and ultimate disposition of irradiated nuclear fuel; remediation of contamination deep in the soil that could impact groundwater; decontamination and decommissioning of hundreds of buildings and structures; and treatment of 56 million gallons of radioactive waste in 177 large underground tanks through the construction of a first-of-its-kind Waste Treatment Plant. Cleanup of the Hanford Site is a complex and challenging undertaking. The DOE Richland Operations Office has a vision and a strategy for completing Hanford's cleanup including the transition to post-cleanup activities. Information on the strategy is outlined in the Hanford Site Completion Framework. The framework describes three major components of cleanup - River Corridor, Central Plateau, and Tank Waste. It provides the context for individual cleanup actions by describing the key challenges and approaches for the decisions needed to complete cleanup. The U.S. Department of Energy (DOE), as regulated by the U.S. Environmental Protection Agency (EPA) and Washington State Department of Ecology (Ecology), is implementing a strategy to achieve final cleanup decisions for the River Corridor portion of the Hanford Site. The DOE

  11. Hanford`s innovations for science education

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Carter, D.

    1996-12-31

    In recognition of declining science literacy in the United States and a projected shortfall of scientists, engineers and technologists to address environmental problems nationally and internationally during the 21st century, Westinghouse Hanford Company has launched several innovative science education projects at the US Department of Energy Hanford Site. The Hanford Site is very rich in resources that can be brought to bear on the problem: world-class technical experts, state of the art facilities and equipment, and the largest environmental laboratory in the world. During the past two years, several innovative science education initiatives have been conceived and pursued at themore » secondary education level including the International Academy for the Environment (residential high school with an environmental theme), Environmental BATTmobile Program (mobile middle school science education program), and Multicultural Experiences in Math and Science (education program based on cultural contributions to math and science). Hanford scientists, engineers and administrators have worked with the education community (K-12 and college-university) to develop innovative approaches to science education.« less

  12. Use of induced polarization to characterize the hydrogeologic framework of the zone of surface‐water/groundwater exchange at the Hanford 300 Area, WA

    USGS Publications Warehouse

    Slater, Lee; Ntarlagiannis, Dimitrios; Day-Lewis, Frederick D.; Mwakanyamale, Kisa; Lane, John W.; Ward, Andy; Versteeg, Roelof J.

    2010-01-01

    An extensive continuous waterborne electrical imaging (CWEI) survey was conducted along the Columbia River corridor adjacent to the U.S. Department of Energy (DOE) Hanford 300 Area, WA, in order to improve the conceptual model for exchange between surface water and U‐contaminated groundwater. The primary objective was to determine spatial variability in the depth to the Hanford‐Ringold (H‐R) contact, an important lithologic boundary that limits vertical transport of groundwater along the river corridor. Resistivity and induced polarization (IP) measurements were performed along six survey lines parallel to the shore (each greater than 2.5 km in length), with a measurement recorded every 0.5–3.0 m depending on survey speed, resulting in approximately 65,000 measurements. The H‐R contact was clearly resolved in images of the normalized chargeability along the river corridor due to the large contrast in surface area (hence polarizability) of the granular material between the two lithologic units. Cross sections of the lithologic structure along the river corridor reveal a large variation in the thickness of the overlying Hanford unit (the aquifer through which contaminated groundwater discharges to the river) and clearly identify locations along the river corridor where the underlying Ringold unit is exposed to the riverbed. Knowing the distribution of the Hanford and Ringold units along the river corridor substantially improves the conceptual model for the hydrogeologic framework regulating U exchange between groundwater and Columbia River water relative to current models based on projections of data from boreholes on land into the river.

  13. 100 Area Columbia River sediment sampling

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Weiss, S.G.

    1993-09-08

    Forty-four sediment samples were collected from 28 locations in the Hanford Reach of the Columbia River to assess the presence of metals and man-made radionuclides in the near shore and shoreline settings of the Hanford Site. Three locations were sampled upriver of the Hanford Site plutonium production reactors. Twenty-two locations were sampled near the reactors. Three locations were sampled downstream of the reactors near the Hanford Townsite. Sediment was collected from depths of 0 to 6 in. and between 12 to 24 in. below the surface. Samples containing concentrations of metals exceeding the 95 % upper threshold limit values (DOE-RLmore » 1993b) are considered contaminated. Contamination by arsenic, chromium, copper, lead, and zinc was found. Man-made radionuclides occur in all samples except four collected opposite the Hanford Townsite. Man-made radionuclide concentrations were generally less than 1 pCi/g.« less

  14. Fluor Daniel Hanford contract standards/requirements identification document

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bennett, G.L.

    1997-04-24

    This document, the Standards/Requirements Identification Document (S/RID) for the Fluor Daniel Hanford Contract, represents the necessary and sufficient requirements to provide an adequate level of protection of the worker, public health and safety, and the environment.

  15. Hanford Laboratories Operation monthly activities report, September 1961

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Not Available

    1961-10-16

    This is the monthly report for the Hanford Laboratories Operation September 1961. Reactor fuels, chemistry, dosimetry, separation processes, reactor technology, financial activities, biology operation, physics and instrumentation research, operations research and synthesis, programming, and radiation protection operation are discussed.

  16. Environmental cleanup: The challenge at the Hanford Site, Washington, USA

    NASA Astrophysics Data System (ADS)

    Gray, Robert H.; Becker, C. Dale

    1993-07-01

    Numerous challenges face those involved with developing a coordinated and consistent approach to cleaning up the US Department of Energy’s (DOE) Hanford Site in southeastern Washington. These challenges are much greater than those encountered when the site was selected and the world’s first nuclear complex was developed almost 50 years ago. This article reviews Hanford’s history, operations, waste storage/disposal activities, environmental monitoring, and today’s approach to characterize and clean up Hanford under a Federal Facility Agreement and Consent Order, signed by DOE, the Environmental Protection Agency, and the Washington Sate Department of Ecology. Although cleanup of defense-related waste at Hanford holds many positive benefits, negative features include high costs to the US taxpayer, numerous uncertainties concerning the technologies to be employed and the risks involved, and the high probability that special interest groups and activists at large will never be completely satisfied. Issues concerning future use of the site, whether to protect and preserve its natural features or open it to public exploitation, remain to be resolved.

  17. The changing face of Hanford security 1990--1994

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Thielman, J.

    The meltdown of the Cold War was a shock to the systems built to cope with it. At the DOE`s Hanford Site in Washington State, a world-class safeguards and security system was suddenly out of step with the times. The level of protection for nuclear and classified materials was exceptional. But the cost was high and the defense facilities that funded security were closing down. The defense mission had created an umbrella of security over the sprawling Hanford Site. Helicopters designed to ferry special response teams to any trouble spot on the 1,456 square-kilometer site made the umbrella analogy almostmore » literally true. Facilities were grouped into areas, fenced off like a military base, and entrance required a badge check for everyone. Within the fence, additional rings of protection were set up around security interests or targets. The security was effective, but costly to operate and inconvenient for employees and visitors alike. Moreover, the umbrella meant that virtually all employees needed a security clearance just to get to work, whether they worked on classified or unclassified projects. Clearly, some fundamental rethinking of safeguards and security was needed. The effort to meet that challenge is the story of transition at Hanford and documented here.« less

  18. Uranium plume persistence impacted by hydrologic and geochemical heterogeneity in the groundwater and river water interaction zone of Hanford site

    NASA Astrophysics Data System (ADS)

    Chen, X.; Zachara, J. M.; Vermeul, V. R.; Freshley, M.; Hammond, G. E.

    2015-12-01

    The behavior of a persistent uranium plume in an extended groundwater- river water (GW-SW) interaction zone at the DOE Hanford site is dominantly controlled by river stage fluctuations in the adjacent Columbia River. The plume behavior is further complicated by substantial heterogeneity in physical and geochemical properties of the host aquifer sediments. Multi-scale field and laboratory experiments and reactive transport modeling were integrated to understand the complex plume behavior influenced by highly variable hydrologic and geochemical conditions in time and space. In this presentation we (1) describe multiple data sets from field-scale uranium adsorption and desorption experiments performed at our experimental well-field, (2) develop a reactive transport model that incorporates hydrologic and geochemical heterogeneities characterized from multi-scale and multi-type datasets and a surface complexation reaction network based on laboratory studies, and (3) compare the modeling and observation results to provide insights on how to refine the conceptual model and reduce prediction uncertainties. The experimental results revealed significant spatial variability in uranium adsorption/desorption behavior, while modeling demonstrated that ambient hydrologic and geochemical conditions and heterogeneities in sediment physical and chemical properties both contributed to complex plume behavior and its persistence. Our analysis provides important insights into the characterization, understanding, modeling, and remediation of groundwater contaminant plumes influenced by surface water and groundwater interactions.

  19. Overview of Phosphate-Based Remediation Technologies At The Hanford Site, Richland Washington

    NASA Astrophysics Data System (ADS)

    Thompson, K. M.; Fruchter, J. S.

    2009-12-01

    Phosphate-based technologies have been tested to sequester strontium-90 and uranium at the Hanford Site, part of the U.S. Department of Energy's (DOE)nuclear weapons complex that encompasses approximately 586 square miles in southeast Washington State. The Columbia River flows through the site (Hanford Reach) where localized groundwater plumes upwell into the river. Efforts to reduce the flux of Sr-90 to the Columbia River from Hanford Site 100-N Area past practice liquid waste disposal sites have been underway since the early 1990s. Termination of all liquid discharges to the ground in 1993 was a major step toward meeting this goal. However, Sr 90 adsorbed onto sediment beneath liquid waste disposal sites, and onto sediment that extends beneath the near-shore riverbed, remains a continuing contaminant source for impacting groundwater and the Columbia River. Initial remediation efforts using a pump-and treat system proved to be ineffective as a long-term solution because of the geochemical characteristics of Sr-90. Following an evaluation of potential Sr-90 treatment technologies and their applicability under 100-N Area hydrogeologic conditions, the U.S. Department of Energy and the Washington State Department of Ecology agreed to evaluate apatite sequestration as the primary remedial technology, combined with a secondary polishing step utilizing phytoextraction if necessary. DOE is also evaluating the efficacy of using polyphosphate to reduce uranium concentrations in the groundwater with the goal of meeting drinking water standards (30 μg/L). This technology works by forming phosphate minerals (autunite and apatite) in the aquifer that directly sequester the existing aqueous uranium in autunite minerals and precipitates apatite minerals for sorption and long-term treatment of uranium migrating into the treatment zone, thus reducing current and future aqueous uranium concentrations. These remedial technologies are being developed by Pacific Northwest National

  20. HANFORD RIVER PROTECTION PROJECT ENHANCED MISSION PLANNING THROUGH INNOVATIVE TOOLS LIFECYCLE COST MODELING AND AQUEOUS THERMODYNAMIC MODELING - 12134

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    PIERSON KL; MEINERT FL

    2012-01-26

    Two notable modeling efforts within the Hanford Tank Waste Operations Simulator (HTWOS) are currently underway to (1) increase the robustness of the underlying chemistry approximations through the development and implementation of an aqueous thermodynamic model, and (2) add enhanced planning capabilities to the HTWOS model through development and incorporation of the lifecycle cost model (LCM). Since even seemingly small changes in apparent waste composition or treatment parameters can result in large changes in quantities of high-level waste (HLW) and low-activity waste (LAW) glass, mission duration or lifecycle cost, a solubility model that more accurately depicts the phases and concentrations ofmore » constituents in tank waste is required. The LCM enables evaluation of the interactions of proposed changes on lifecycle mission costs, which is critical for decision makers.« less

  1. Toward Empirical Estimation of the Total Value of Protecting Rivers

    NASA Astrophysics Data System (ADS)

    Sanders, Larry D.; Walsh, Richard G.; Loomis, John B.

    1990-07-01

    The purpose of this paper is to develop and apply a procedure to estimate a statistical demand function for the protection of rivers in the Rocky Mountains of Colorado. Other states and nations around the world face a similar problem of estimating how much they can afford to pay for the protection of rivers. The results suggest that in addition to the direct consumption benefits of onsite recreation, total value includes offsite consumption of the flow of information about these activities and resources consumed as preservation benefits. A sample of the general population of the state reports a willingness to pay rather than forego both types of utility. We recommended that offsite values be added to the value of onsite recreation use to determine the total value of rivers to society.

  2. Deformation analysis and prediction of bank protection structure with river level fluctuations

    NASA Astrophysics Data System (ADS)

    Hu, Rui; Xing, Yixuan

    2017-04-01

    Bank structure is an important barrier to maintain the safety of the embankment. The deformation of bank protection structure is not only affected by soil pressure caused by the excavation of the riverway, but also by the water pressure caused river water level fluctuations. Thus, it is necessary to establish a coupled soil-water model to analyze the deformation of bank structure. Based on Druck-Prager failure criteria and groundwater seepage theory, a numerical model of bank protection structure with consideration of the pore water pressure of soil mass is established. According to the measured river level data with seasonal fluctuating, numerical analysis of the deformation of bank protection structure is implemented. The simulation results show that the river water level fluctuation has clear influence on the maximum lateral displacement of the pile. Meanwhile, the distribution of plastic zone is related to the depth of groundwater level. Finally, according to the river water level data of the recent ten years, we analyze the deformation of the bank structure under extreme river level. The result shows that, compared with the scenario of extreme high river level, the horizontal displacement of bank protection structure is larger (up to 65mm) under extreme low river level, which is a potential risk to the embankment. Reference Schweiger H F. On the use of drucker-prager failure criteria for earth pressure problems[J]. Computers and Geotechnics, 1994, 16(3): 223-246. DING Yong-chun,CHENG Ze-kun. Numerical study on performance of waterfront excavation[J]. Chinese Journal of Geotechnical Engineering,2013,35(2):515-521. Wu L M, Wang Z Q. Three gorges reservoir water level fluctuation influents on the stability of the slope[J]. Advanced Materials Research. Trans Tech Publications, 2013, 739: 283-286.

  3. Hanford Site National Environmental Policy Act (NEPA) Characterization

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Duncan, Joanne P.; Burk, Kenneth W.; Chamness, Mickie A.

    2007-09-27

    specific information covering statutory and regulatory requirements for use in an environmental assessment or environmental impact statement. When preparing environmental assessments and EISs, authors should consult Recommendations for the Preparation of Environmental Assessments and Environmental Impact Statements published by the DOE Office of NEPA Oversight (DOE 2004). Additional direction and guidance on the preparation of DOE NEPA documents can be found at http://tis.eh.doe.gov/nepa/guidance.html. Individuals seeking baseline data on the Hanford Site and its past activities may also use the information contained in this document to evaluate projected activities and their impacts. Pacific Northwest National Laboratory (PNNL) staff prepared individual sections of this document, with input from other Hanford Site contractors with the best available information through May 2007. More detailed data are available from reference sources cited or from the authors. For this 2007 revision, the following sections of the document were reviewed by the authors and updated with the best available information through May 2005: Climate and Meteorology Air Quality Geology – Seismicity section only Hydrology – Flow charts for the Columbia and Yakima rivers only Ecology – Threatened and Endangered Species subsection only Socioeconomics Occupational Safety All of Chapter 6.« less

  4. Polychlorinated biphenyl congener patterns in fish near the Hanford Site (Washington State, USA).

    PubMed

    Rodenburg, Lisa A; Delistraty, Damon; Meng, Qingyu

    2015-03-03

    It is well-known that absorption, distribution, metabolism, and excretion (ADME) processes in fish can alter polychlorinated biphenyl (PCB) congener patterns in fish, but these patterns have never been investigated using an advanced source-apportionment tool. In this work, PCB congener patterns in freshwater fish were examined with positive matrix factorization (PMF). PCB congeners were quantified via EPA Method 1668 in fillet and carcass of six species in four study areas in the Columbia River near the Hanford Site. Six factors were resolved with PMF2 software. Depletion and enhancement of PCB congeners in factors, relative to Aroclor 1254, suggested biotransformation (via cytochrome P450) and bioaccumulation in fish, respectively. Notable differences were observed among species and across study locations. For example, sturgeon and whitefish exhibited congener patterns consistent with Aroclor weathering, suggesting potential PCB metabolism in these species. In terms of location, average concentration of total PCBs for all species combined was significantly higher (P < 0.05) at Hanford 100 and 300 areas, relative to upriver and downriver study sites. Furthermore, a distinct PCB signature in sturgeon and whitefish, collected at Hanford study areas, suggests that Hanford is a unique PCB source.

  5. Dynamic Kinetics of Nitrogen Cycle in Groundwater-Surface Water Interaction Zone at Hanford Site

    NASA Astrophysics Data System (ADS)

    Liu, Y.; Liu, C.; Liu, Y.; Xu, F.; Yan, A.; Shi, L.; Zachara, J. M.; Gao, Y.; Qian, W.; Nelson, W.; Fredrickson, J.; Zhong, L.; Thompson, C.

    2015-12-01

    Nitrogen cycle carried out by microbes is an important geobiological process that has global implications for carbon and nitrogen cycling and climate change. This presentation describes a study of nitrogen cycle in groundwater-surface water interaction zone (GSIZ) at the US Department of Energy's Hanford Site. Groundwater at Hanford sites has long been documented with nitrate contamination. Nearby Columbia River stage changes of up to 3 m every day because of daily discharge fluctuation from upstream Priest Rapids Dam; resulting an exchange of groundwater and surface water in a short time period. Yet, nitrogen cycle in the GSIZ at Hanford Site remains unclear. Column studies have been used to identify nitrogen metabolism pathways and investigate kinetics of nitrogen cycle in groundwater saturated zone, surface water saturated zone, and GSIZ. Functional gene and protein abundances were determined by qPCR and PRISM-SRM (high-pressure, high-resolution separations coupled with intelligent selection and multiplexing for sensitive selected reaction monitoring) to identify key enzymatic reactions and metabolic pathways of nitrogen cycle. The results showed that dissimilatory nitrate reduction to ammonium (DNRA) competed with denitrification under anaerobic conditions, reducing 30% of NO3- to NH4+, a cation strongly retained on the sediments. As dissolved oxygen intruded the anaerobic zone with river water, NH4+ was oxidized to NO3-, increasing the mobility of NO3-. Multiplicative Monod models were established to describe nitrogen cycle in columns fed with O2 depleted synthetic groundwater and O2 saturated synthetic river water, respectively. The two models were then coupled to predict the dynamic kinetics of nitrogen cycle in GSIZ.

  6. 78 FR 68431 - Environmental Management Site-Specific Advisory Board, Hanford

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-11-14

    .... FOR FURTHER INFORMATION CONTACT: Kimberly Ballinger, Federal Coordinator, Department of Energy...-6332; or Email: [email protected] . SUPPLEMENTARY INFORMATION: Purpose of the Board: The... DOE Presentation on the Hanford Tank Waste Retrieval, Treatment, and Disposition Framework DOE...

  7. Groundwater remediation solutions at hanford

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Gilmore, T.J.; Truex, M.J.; Williams, M.D.

    2007-07-01

    In 2006, Congress provided funding to the U. S. Department of Energy (DOE) to study new technologies that could be used to treat contamination from the Hanford Site that might impact the Columbia River. DOE identified three high priority sites that had groundwater contamination migrating towards the Columbia river for remediation. The contaminants included strontium-90, uranium and chromium. A natural systems approach was taken that uses a mass balance concept to frame the problem and determine the most appropriate remedial approach. This approach provides for a scientifically based remedial decision. The technologies selected to address these contaminants included an apatitemore » adsorption barrier coupled with a phyto-remediation to address the strontium-90 contamination, injection of polyphosphate into the subsurface to sequester uranium, and a bioremediation approach to reduce chromium contamination in the groundwater. The ability to provide scientifically based approaches to these sites was in large part due to work the Pacific Northwest National Laboratory developed under previous DOE Office of Science and Office of Environmental Management projects. (authors)« less

  8. 2010 River Corridor Closure Contractor Revegetation and Mitigation Monitoring Report

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    C. T. Lindsey, A. L. Johnson

    2010-09-30

    This report documents eh status of revegetation projects and natural resources mitigation efforts conducted for remediated waste sites and other activities associated with CERLA cleanup of National Priorities List waste sites at Hanford. This report contains vegetation monitoring data that were collected in the spring and summer of 2010 from the River Corridor Closure Contract’s revegetation and mitigation areas on the Hanford Site.

  9. 76 FR 28218 - Environmental Management Site-Specific Advisory Board, Hanford

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-05-16

    ...: Red Lion Hotel, 1101 North Columbia Center Boulevard, Kennewick, WA 99336. FOR FURTHER INFORMATION... Committee; Health, Safety and Environmental Protection Committee; Public Involvement Committee; and Budgets... Priorities. [cir] Hanford Advisory Board Budget. [cir] Process Discussions: [dec222] Issue Managers. [dec222...

  10. Radioactive contamination in the environs of the Hanford Works for the period April, May, June 1949

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Paas, H.J.; Singlevich, W.

    1950-04-03

    This report summarizes the measurements made for radioactive contamination in the environs of the Hanford Works for the quarter April through June 1949. This belated document is issued for the records to fill in the gap for the quarterly reports not issued in 1949 because of personnel shortage at that time. Although the data summarized in this report were already reported in the H. I. Evirons Reports for the months involved, it is still of value to study the data combining the three months of data which give better opportunity to evaluate the trends and patterns of the levels ofmore » radioactive contamination emanating from the various sources at the Hanford Works. This document discusses: meteorological data and radioactive contamination in vegetation, the atmosphere, rain, Hanford wastes, the Columbia River, and in drinking water and test wells.« less

  11. OVERVIEW OF ENHANCED HANFORD SINGLE-SHELL TANK (SST) INTEGRITY PROJECT - 12128

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    VENETZ TJ; BOOMER KD; WASHENFELDER DJ

    2012-01-25

    To improve the understanding of the single-shell tanks integrity, Washington River Protection Solutions, LLC, the USDOE Hanford Site tank contractor, developed an enhanced Single-Shell Tank (SST) Integrity Project in 2009. An expert panel on SST integrity, consisting of various subject matters experts in industry and academia, was created to provide recommendations supporting the development of the project. This panel developed 33 recommendations in four main areas of interest: structural integrity, liner degradation, leak integrity and prevention, and mitigation of contamination migration, Seventeen of these recommendations were used to develop the basis for the M-45-10-1 Change Package for the Hanford Federalmore » Agreement and Compliance Order, which is also known as the Tri-Party Agreement. The change package identified two phases of work for SST integrity. The initial phase has been focused on efforts to envelope the integrity of the tanks. The initial phase was divided into two primary areas of investigation: structural integrity and leak integrity. If necessary based on the outcome from the initial work, a second phase would be focused on further definition of the integrity of the concrete and liners. Combined these two phases are designed to support the formal integrity assessment of the Hanford SSTs in 2018 by Independent Qualified Registered Engineer. The work to further define the DOE's understanding of the structural integrity SSTs involves preparing a modern Analysis of Record using a finite element analysis program. Structural analyses of the SSTs have been conducted since 1957, but these analyses used analog calculation, less rigorous models, or focused on individual structures. As such, an integrated understanding of all of the SSTs has not been developed to modern expectations. In support of this effort, other milestones will address the visual inspection of the tank concrete and the collection of concrete core samples from the tanks for

  12. Goat Moths (Lepidoptera: Cossidae) of the Hanford Site and Hanford National Monument, Washington State

    USDA-ARS?s Scientific Manuscript database

    Three species of goat moths are recorded at the Hanford Nuclear Site and Hanford National Monument in south central Washington State. They are: Comadia bertholdi (Grote), 1880, Givira cornelia (Neumoegen & Dyar), 1893, and Prionoxystus robiniae (Peck), 1818. The general habitat of the Hanford area...

  13. Hanford Waste Physical and Rheological Properties: Data and Gaps

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wells, Beric E.; Kurath, Dean E.; Mahoney, Lenna A.

    2011-08-01

    The Hanford Site in Washington State manages 177 underground storage tanks containing approximately 250,000 m3 of waste generated during past defense reprocessing and waste management operations. These tanks contain a mixture of sludge, saltcake and supernatant liquids. The insoluble sludge fraction of the waste consists of metal oxides and hydroxides and contains the bulk of many radionuclides such as the transuranic components and 90Sr. The saltcake, generated by extensive evaporation of aqueous solutions, consists primarily of dried sodium salts. The supernates consist of concentrated (5-15 M) aqueous solutions of sodium and potassium salts. The 177 storage tanks include 149 single-shellmore » tanks (SSTs) and 28 double -hell tanks (DSTs). Ultimately the wastes need to be retrieved from the tanks for treatment and disposal. The SSTs contain minimal amounts of liquid wastes, and the Tank Operations Contractor is continuing a program of moving solid wastes from SSTs to interim storage in the DSTs. The Hanford DST system provides the staging location for waste feed delivery to the Department of Energy (DOE) Office of River Protection’s (ORP) Hanford Tank Waste Treatment and Immobilization Plant (WTP). The WTP is being designed and constructed to pretreat and then vitrify a large portion of the wastes in Hanford’s 177 underground waste storage tanks.« less

  14. Hanford Site Groundwater Monitoring for Fiscal Year 2000

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hartman, Mary J.; Morasch, Launa F.; Webber, William D.

    2001-03-01

    This report presents the results of groundwater and vadose zone monitoring and remediation for fiscal year 2000 on the U.S. Department of Energy's Hanford Site, Washington. The most extensive contaminant plumes are tritium, iodine-129, and nitrate, which all had multiple sources and are very mobile in groundwater. Carbon tetrachloride and associated organic constituents form a relatively large plume beneath the central part of the Site. Hexavalent chromium is present in smaller plumes beneath the reactor areas along the river and beneath the central part of the site. Strontium-90 exceeds standards beneath each of the reactor areas, and technetium-99 and uraniummore » are present in the 200 Areas. RCRA groundwater monitoring continued during fiscal year 2000. Vadose zone monitoring, characterization, remediation, and several technical demonstrations were conducted in fiscal year 2000. Soil gas monitoring at the 618-11 burial ground provided a preliminary indication of the location of tritium in the vadose zone and in groundwater. Groundwater modeling efforts focused on 1) identifying and characterizing major uncertainties in the current conceptual model and 2) performing a transient inverse calibration of the existing site-wide model. Specific model applications were conducted in support of the Hanford Site carbon tetrachloride Innovative Treatment Remediation Technology; to support the performance assessment of the Immobilized Low-Activity Waste Disposal Facility; and in development of the System Assessment Capability, which is intended to predict cumulative site-wide effects from all significant Hanford Site contaminants.« less

  15. RIVER CORRIDOR BUILDINGS 324 & 327 CLEANUP

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    BAZZELL, K.D.; SMITH, B.A.

    2006-02-09

    A major challenge in the recently awarded River Corridor Closure (RCC) Contract at the U.S. Department of Energy's (DOE) Hanford Site is decontaminating and demolishing (D&D) facilities in the 300 Area. Located along the banks of the Columbia River about one mile north of Richland, Washington, the 2.5 km{sup 2} (1 mi{sup 2})300 Area comprises only a small part of the 1517 km{sup 2} (586 mi{sup 2}) Hanford Site. However, with more than 300 facilities ranging from clean to highly contaminated, D&D of those facilities represents a major challenge for Washington Closure Hanford (WCH), which manages the new RCC Projectmore » for DOE's Richland Operations Office (RL). A complicating factor for this work is the continued use of nearly a dozen facilities by the DOE's Pacific Northwest National Laboratory (PNNL). Most of the buildings will not be released to WCH until at least 2009--four years into the seven-year, $1.9 billion RCC Contract. The challenge will be to deactivate, decommission, decontaminate and demolish (D4) highly contaminated buildings, such as 324 and 327, without interrupting PNNL's operations in adjacent facilities. This paper focuses on the challenges associated with the D4 of the 324 Building and the 327 Building.« less

  16. [Evaluation of the efficiency of Angara River water protection measures against pollution by petroleum products].

    PubMed

    Zabuga, G A; Katul'skiĭ, Iu N; Gorbunova, O V; Storozheva, L N

    2011-01-01

    The process installations and storage reservoirs of a petroleum refinery have leaks of petroleum products (PP) that pollute soil, underground waters, and eventually nearest water objects, by worsening their hygienic state. Environmental and economic assessments of the Angara River water protection system that is in operation at the petroleum refinery OAO "Angara Petroleum Company", which comprises well clusters, a gravel-filled trench, and a drainage system, have shown the high values of preventable relative natural and economic damages and other economic indicators. At the same time, comparison of the amount of PPs accumulated at the industrial site with their annual withdrawal has demonstrated a need for further development of a river protection system. Therefore the environmental protection system efficacy evaluated by the quality of goal attainment and by means of a matrix of algorithmized statements was 60% or 5 of 20 scores, which shows the necessity of special measures to protect Angara River waters. The elaboration and implementation of these measures associated with considerable expenditures make it possible not only to increase the environmental efficiency of water protection of the Angara River, but also to do the hygienic quality of water use in its related localities.

  17. Hanford immobilized low-activity tank waste performance assessment

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Mann, F.M.

    1998-03-26

    The Hanford Immobilized Low-Activity Tank Waste Performance Assessment examines the long-term environmental and human health effects associated with the planned disposal of the vitrified low-level fraction of waste presently contained in Hanford Site tanks. The tank waste is the by-product of separating special nuclear materials from irradiated nuclear fuels over the past 50 years. This waste has been stored in underground single and double-shell tanks. The tank waste is to be retrieved, separated into low and high-activity fractions, and then immobilized by private vendors. The US Department of Energy (DOE) will receive the vitrified waste from private vendors and plansmore » to dispose of the low-activity fraction in the Hanford Site 200 East Area. The high-level fraction will be stored at Hanford until a national repository is approved. This report provides the site-specific long-term environmental information needed by the DOE to issue a Disposal Authorization Statement that would allow the modification of the four existing concrete disposal vaults to provide better access for emplacement of the immobilized low-activity waste (ILAW) containers; filling of the modified vaults with the approximately 5,000 ILAW containers and filler material with the intent to dispose of the containers; construction of the first set of next-generation disposal facilities. The performance assessment activity will continue beyond this assessment. The activity will collect additional data on the geotechnical features of the disposal sites, the disposal facility design and construction, and the long-term performance of the waste. Better estimates of long-term performance will be produced and reviewed on a regular basis. Performance assessments supporting closure of filled facilities will be issued seeking approval of those actions necessary to conclude active disposal facility operations. This report also analyzes the long-term performance of the currently planned disposal system as

  18. Fluor Hanford ALARA Center is a D and D Resource

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Waggoner, L.O.

    2008-01-15

    The mission at the Hanford Nuclear Reservation changed when the last reactor plant was shut down in 1989 and work was started to place all the facilities in a safe condition and begin decontamination, deactivation, decommissioning, and demolition (D and D). These facilities consisted of old shutdown reactor plants, spent fuel pools, processing facilities, and 177 underground tanks containing 53 million gallons of highly radioactive and toxic liquids and sludge. New skills were needed by the workforce to accomplish this mission. By 1995, workers were in the process of getting the facilities in a safe condition and it became obviousmore » improvements were needed in their tools, equipment and work practices. The Hanford ALARA Program looked good on paper, but did little to help contractors that were working in the field. The Radiological Control Director decided that the ALARA program needed to be upgraded and a significant improvement could be made if workers had a place they could visit that had samples of the latest technology and could talk to experienced personnel who have had success doing D and D work. Two senior health physics personnel who had many years experience in doing radiological work were chosen to obtain tools and equipment from vendors and find a location centrally located on the Hanford site. Vendors were asked to loan their latest tools and equipment for display. Most vendors responded and the Hanford ALARA Center of Technology opened on October 1, 1996. Today, the ALARA Center includes a classroom for conducting training and a mockup area with gloveboxes. Two large rooms have a containment tent, several glove bags, samples of fixatives/expandable foam, coating displays, protective clothing, heat stress technology, cutting tools, HEPA filtered vacuums, ventilation units, pumps, hydraulic wrenches, communications equipment, shears, nibblers, shrouded tooling, and several examples of innovative tools developed by the Hanford facilities. See

  19. Final Hanford Comprehensive Land-Use Plan Environmental Impact Statement, Hanford Site, Richland, Washington

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    N /A

    This Final ''Hanford Comprehensive Land-Use Plan Environmental Impact Statement'' (HCP EIS) is being used by the Department of Energy (DOE) and its nine cooperating and consulting agencies to develop a comprehensive land-use plan (CLUP) for the Hanford Site. The DOE will use the Final HCP EIS as a basis for a Record of Decision (ROD) on a CLUP for the Hanford Site. While development of the CLUP will be complete with release of the HCP EIS ROD, full implementation of the CLUP is expected to take at least 50 years. Implementation of the CLUP would begin a more detailed planningmore » process for land-use and facility-use decisions at the Hanford Site. The DOE would use the CLUP to screen proposals. Eventually, management of Hanford Site areas would move toward the CLUP land-use goals. This CLUP process could take more than 50 years to fully achieve the land-use goals.« less

  20. 2011 River Corridor Closure Contractor Revegetation and Mitigation Monitoring Report

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    West, W. J.; Lucas, J. G.; Gano, K. A.

    2011-11-14

    This report documents the status of revegetation projects and natural resources mitigation efforts conducted for remediated waste sites and other activities associated with the Comprehensive Environmental Response, Compensation, and Liability Act of 1980 cleanup of National Priorities List waste sites at Hanford. This report contains the vegetation monitoring data that was collected in the spring and summer of 2011 from the River Corridor Closure Contractor’s revegetation and mitigation areas on the Hanford Site.

  1. Food and growth parameters of juvenile chinook in the central Columbia River

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Becker, C.D.

    1994-10-01

    Juvenile chinook, salmon (Oncorhynchus tshawytscha) in the Hanford area of the free-flowing central Columbia River, Washington consume almost entirely adult and larval stages of aquatic insects. The diet is dominated by midges (Diptera: Chironomidae). By numbers, adult midges provided 64 and 58% of the diet and larval midges 17 and 18% of the diet, in 1968 and 1969, respectively. The families Hydropsychidae (Trichoptera), Notonectidae (Hemiptera) and Hypogastruridae (Collembola) are of minor numerical importance with a combined utilization of 7% in 1968 and 15% in 1969. Distinctive features of food and feeding activity of juvenile chinook at Hanford are fourfold: (1)more » the fish utilize relatively few insect groups, predominantly Chironomidae; (2) they depend largely upon autochthonous river organisms; (3) they visually select living prey drifting, floating or swimming in the water; and (4) they are apparently habitat opportunists to a large extent. Analyses were made of variations in diet and numbers of insects consumed between six sampling stations distributed along a 38 km section of the river. Data are provided on feeding intensity, fish lengths, length-weight relationships, and coefficients of condition. Seasonal changes in river temperature and discharge, as well as variations in regulated flow levels are environmental features influencing feeding, growth, and emigration of fish in the Hanford environs.« less

  2. Stochastic simulation of uranium migration at the Hanford 300 Area.

    PubMed

    Hammond, Glenn E; Lichtner, Peter C; Rockhold, Mark L

    2011-03-01

    This work focuses on the quantification of groundwater flow and subsequent U(VI) transport uncertainty due to heterogeneity in the sediment permeability at the Hanford 300 Area. U(VI) migration at the site is simulated with multiple realizations of stochastically-generated high resolution permeability fields and comparisons are made of cumulative water and U(VI) flux to the Columbia River. The massively parallel reactive flow and transport code PFLOTRAN is employed utilizing 40,960 processor cores on DOE's petascale Jaguar supercomputer to simultaneously execute 10 transient, variably-saturated groundwater flow and U(VI) transport simulations within 3D heterogeneous permeability fields using the code's multi-realization simulation capability. Simulation results demonstrate that the cumulative U(VI) flux to the Columbia River is less responsive to fine scale heterogeneity in permeability and more sensitive to the distribution of permeability within the river hyporheic zone and mean permeability of larger-scale geologic structures at the site. Copyright © 2010 Elsevier B.V. All rights reserved.

  3. Spawning Habitat Studies of Hanford Reach Fall Chinook Salmon (Oncorhynchus tshawytscha), Final Report.

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Geist, David R.; Arntzen, Evan V.; Chien, Yi-Ju

    2009-03-02

    The Pacific Northwest National Laboratory conducted this study for the Bonneville Power Administration (BPA) with funding provided through the Northwest Power and Conservation Council(a) and the BPA Fish and Wildlife Program. The study was conducted in the Hanford Reach of the Columbia River. The goal of study was to determine the physical habitat factors necessary to define the redd capacity of fall Chinook salmon that spawn in large mainstem rivers like the Hanford Reach and Snake River. The study was originally commissioned in FY 1994 and then recommissioned in FY 2000 through the Fish and Wildlife Program rolling review ofmore » the Columbia River Basin projects. The work described in this report covers the period from 1994 through 2004; however, the majority of the information comes from the last four years of the study (2000 through 2004). Results from the work conducted from 1994 to 2000 were covered in an earlier report. More than any other stock of Pacific salmon, fall Chinook salmon (Oncorhynchus tshawytscha) have suffered severe impacts from the hydroelectric development in the Columbia River Basin. Fall Chinook salmon rely heavily on mainstem habitats for all phases of their life cycle, and mainstem hydroelectric dams have inundated or blocked areas that were historically used for spawning and rearing. The natural flow pattern that existed in the historic period has been altered by the dams, which in turn have affected the physical and biological template upon which fall Chinook salmon depend upon for successful reproduction. Operation of the dams to produce power to meet short-term needs in electricity (termed power peaking) produces unnatural fluctuations in flow over a 24-hour cycle. These flow fluctuations alter the physical habitat and disrupt the cues that salmon use to select spawning sites, as well as strand fish in near-shore habitat that becomes dewatered. The quality of spawning gravels has been affected by dam construction, flood

  4. Department of Energy Technology Readiness Assessments - Process Guide and Training Plan

    DTIC Science & Technology

    2008-09-12

    Hanford Waste Treatment and Immobilization Plant ( WTP ) Analytical Laboratory, Low Activity Waste (LAW) Facility and Balance of Facilities (3 TRAs... WTP High-Level Waste (HLW) Facility – WTP Pre-Treatment (PT) Facility – Hanford River Protection Project Low Activity Waste Treatment Alternatives

  5. Using remotely sensed imagery and GIS to monitor and research salmon spawning: A case study of the Hanford Reach fall chinook (Oncorhynchus Tshawytscha)

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    RH Visser

    2000-03-16

    The alteration of ecological systems has greatly reduced salmon populations in the Pacific Northwest. The Hanford Reach of the Columbia River, for example, is a component of the last ecosystem in eastern Washington State that supports a relatively healthy population of fall chinook salmon ([Oncorhynchus tshawytscha], Huntington et al. 1996). This population of fall chinook may function as a metapopulation for the Mid-Columbia region (ISG 1996). Metapopulations can seed or re-colonize unused habitat through the mechanism of straying (spawning in non-natal areas) and may be critical to the salmon recovery process if lost or degraded habitat is restored (i.e., themore » Snake, Upper Columbia, and Yakima rivers). For these reasons, the Hanford Reach fall chinook salmon population is extremely important for preservation of the species in the Columbia River Basin. Because this population is important to the region, non-intrusive techniques of analysis are essential for researching and monitoring population trends and spawning activities.« less

  6. Socioeconomic issues for the Bear River Watershed Conservation Land Area Protection Plan

    USGS Publications Warehouse

    Thomas, Catherine Cullinane; Huber, Christopher; Gascoigne, William; Koontz, Lynne

    2012-01-01

    The Bear River Watershed Conservation Area is located in the Bear River Watershed, a vast basin covering fourteen counties across three states. Located in Wyoming, Utah, and Idaho, the watershed spans roughly 7,500 squares miles: 1,500 squares miles in Wyoming; 2,700 squares miles in Idaho; and 3,300 squares miles in Utah (Utah Division of Water Resources, 2004). Three National Wildlife Refuges are currently contained within the boundary of the BRWCA: the Bear River Migratory Bird Refuge in Utah, the Bear Lake National Wildlife Refuge in Idaho, and the Cokeville Meadows National Wildlife Refuge in Wyoming. In 2010, the U.S. Fish and Wildlife Service conducted a Preliminary Project Proposal and identified the Bear River Watershed Conservation Area as having high-value wildlife habitat. This finding initiated the Land Protection Planning process, which is used by the U.S. Fish and Wildlife Service to study land conservation opportunities including adding lands to the National Wildlife Refuge System. The U.S. Fish and Wildlife Service proposes to include part of the Bear River Watershed Conservation Area in the Refuge System by acquiring up to 920,000 acres of conservation easements from willing landowners to maintain landscape integrity and habitat connectivity in the region. The analysis described in this report provides a profile of the social and economic conditions in the Bear River Watershed Conservation Area and addresses social and economic questions and concerns raised during public involvement in the Land Protection Planning process.

  7. Hanford Site National Environmental Policy Act (NEPA) Characterization Report, Revision 17

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Neitzel, Duane A.; Bunn, Amoret L.; Cannon, Sandra D.

    2005-09-30

    . Information in Chapter 6 of this document can be adapted and supplemented with specific information for a chapter covering statutory and regulatory requirements in an environmental assessment or environmental impact statement. When preparing environmental assessments and EISs, authors should also be cognizant of the document titled Recommendations for the Preparation of Environmental Assessments and Environmental Impact Statements published by the DOE Office of NEPA Oversight (DOE 2004). Additional guidance on preparing DOE NEPA documents can be found at http://tis.eh.doe.gov/nepa/guidance.html. Any interested individual seeking baseline data on the Hanford Site and its past activities may also use the information contained in this document to evaluate projected activities and their impacts. For this 2005 revision, the following sections of the document were reviewed by the authors and updated with the best available information through May 2005: Climate and Meteorology Air Quality Geology – Seismicity section only Hydrology – Flow charts for the Columbia and Yakima rivers only Ecology – Threatened and Endangered Species subsection only Socioeconomics Occupational Safety All of Chapter 6.« less

  8. Hanford facility dangerous waste permit application, general information portion

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hays, C.B.

    1998-05-19

    The Hanford Facility Dangerous Waste Permit Application is considered to be a single application organized into a General Information Portion (document number DOE/RL-91-28) and a Unit-Specific Portion. Both the General Information and Unit-Specific portions of the Hanford Facility Dangerous Waste Permit Application address the content of the Part B permit application guidance prepared by the Washington State Department of Ecology (Ecology 1996) and the U.S. Environmental Protection Agency (40 Code of Federal Regulations 270), with additional information needed by the Hazardous and Solid Waste Amendments and revisions of Washington Administrative Code 173-303. Documentation contained in the General Information Portion ismore » broader in nature and could be used by multiple treatment, storage, and/or disposal units (e.g., the glossary provided in this report).« less

  9. Fluor Hanford (FH) River Corridor Transition Plan

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    MCBRIDE, D.J.

    2002-08-28

    This Transition Plan defines the scope and schedule for actions that are critical for a smooth transition of the River Corridor scope of work and to ensure the achievement of transition as planned, with minimal or no impact to ongoing baseline activities.

  10. Westinghouse Hanford Company (WHC) standards/requirements identification document (S/RID)

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bennett, G.L.

    1996-03-15

    This Standards/Requirements Identification Document (S/RID) set forth the Environmental Safety and Health (ES&H) standards/requirements for Westinghouse Hanford Company Level Programs, where implementation and compliance is the responsibility of these organizations. These standards/requirements are adequate to ensure the protection of the health and safety of workers, the public, and the environment.

  11. Women and the Hanford Site

    NASA Astrophysics Data System (ADS)

    Gerber, Michele

    2014-03-01

    When we study the technical and scientific history of the Manhattan Project, women's history is sometimes left out. At Hanford, a Site whose past is rich with hard science and heavy construction, it is doubly easy to leave out women's history. After all, at the World War II Hanford Engineer Works - the earliest name for the Hanford Site - only nine percent of the employees were women. None of them were involved in construction, and only one woman was actually involved in the physics and operations of a major facility - Dr. Leona Woods Marshall. She was a physicist present at the startup of B-Reactor, the world's first full-scale nuclear reactor - now a National Historic Landmark. Because her presence was so unique, a special bathroom had to be built for her in B-Reactor. At World War II Hanford, only two women were listed among the nearly 200 members of the top supervisory staff of the prime contractor, and only one regularly attended the staff meetings of the Site commander, Colonel Franklin Matthias. Overall, women comprised less than one percent of the managerial and supervisory staff of the Hanford Engineer Works, most of them were in nursing or on the Recreation Office staff. Almost all of the professional women at Hanford were nurses, and most of the other women of the Hanford Engineer Works were secretaries, clerks, food-service workers, laboratory technicians, messengers, barracks workers, and other support service employees. The one World War II recruiting film made to attract women workers to the Site, that has survived in Site archives, is entitled ``A Day in the Life of a Typical Hanford Girl.'' These historical facts are not mentioned to criticize the past - for it is never wise to apply the standards of one era to another. The Hanford Engineer Works was a 1940s organization, and it functioned by the standards of the 1940s. Just as we cannot criticize the use of asbestos in constructing Hanford (although we may wish they hadn't used so much of it), we

  12. Cathodic protection for pipelines crossing the Mackenzie River at Norman Wells, Northwest Territories, Canada

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wiskel, B.J.; Wozniewski, A.

    This paper reports on an oil production facility at Norman Wells, N.W.T. The production is centered around the Mackenzie River with oil being produced from wells located on natural and artificial islands as well as from wells located on the mainland. Pipelines have been installed beneath the river to route production from the islands back to the central processing plant on the mainland. Cathodic protection was required for the pipelines crossing the Mackenzie River to prevent external corrosion in an environmentally sensitive area. Several difficulties were encountered in preparing an optimum cathodic design due to the unique production scheme, permafrostmore » and logistical problems associated with the northern location. An innovative approach was therefore required for the design, installation and testing of the cathodic protection system. This paper describes evolution of the cathodic protection system from a conventional one to a system utilizing a close groundbed concept and unique current return path.« less

  13. Hanford Site ground-water monitoring for 1993

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Dresel, P.E.; Luttrell, S.P.; Evans, J.C.

    This report presents the results of the Ground-Water Surveillance Project monitoring for calendar year 1993 on the Hanford Site, Washington. Hanford Site operations from 1943 onward produced large quantities of radiological and chemical waste that have impacted ground-water quality on the Site. Monitoring of water levels and ground-water chemistry is performed to track the extent of contamination and trends in contaminant concentrations. The 1993 monitoring was also designed to identify emerging ground-water quality problems. The information obtained is used to verify compliance with applicable environmental regulations and to evaluate remedial actions. Data from other monitoring and characterization programs were incorporatedmore » to provide an integrated assessment of Site ground-water quality. Additional characterization of the Site`s geologic setting and hydrology was performed to support the interpretation of contaminant distributions. Numerical modeling of sitewide ground-water flow also supported the overall project goals. Water-level monitoring was performed to evaluate ground-water flow directions, to track changes in water levels, and to relate such changes to changes in site disposal practices. Water levels over most of the Hanford Site continued to decline between June 1992 and June 1993. The greatest declines occurred in the 200-West Area. These declines are part of the continued response to the cessation of discharge to U Pond and other disposal facilities. The low permeability in this area which enhanced mounding of waste-water discharge has also slowed the response to the reduction of disposal. Water levels remained nearly constant in the vicinity of B Pond, as a result of continued disposal to the pond. Water levels measured from wells in the unconfined aquifer north and east of the Columbia River indicate that the primary source of recharge is irrigation practices.« less

  14. Planning the Transition to Long-Term Stewardship for the River Corridor

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Cearlock, C.S.; Lerch, J.A.; Sands, J.P.

    2007-07-01

    Long-term stewardship refers to all activities necessary to ensure protection of human health and the environment following completion of remediation, disposal, or stabilization of a site or a portion of a site. Efforts to establish the proposed approach and criteria to be met for long-term stewardship in the river corridor of the Hanford Site in Richland, Washington, are currently being established and a draft plan is expected to be completed in mid-2007 to facilitate planning for a smooth and seamless transition to long-term stewardship. Once the initial criteria have been established, supporting information will be gathered as the work proceeds.more » Near the end of cleanup actions under the River Corridor Closure Contract, these criteria will be finalized in a long-term stewardship plan that documents how the criteria have been met. In addition, the final long-term stewardship plan will also contain a proposed Finding of Suitability to Transfer in accordance with Comprehensive Environmental Response, Compensation, and Liability Act of 1980 Section 120(h) [1]. This final long-term stewardship plan will provide the foundation for post-River Corridor Closure Contract and management activities in the river corridor pending actual property transfer from the U.S. Department of Energy. (authors)« less

  15. 1995 Report on Hanford site land disposal restrictions for mixed waste

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Black, D.G.

    This report was submitted to meet the requirements of Hanford Federal Facility Agreement and Consent Order Milestone M-26-01E. This milestone requires the preparation of an annual report that covers characterization, treatment, storage, minimization, and other aspects of land disposal restricted mixed waste at the Hanford Site. The U.S. Department of Energy, its predecessors, and contractors at the Hanford Site were involved in the production and purification of nuclear defense materials from the early 1940s to the late 1980s. These production activities have generated large quantities of liquid and solid radioactive mixed waste. This waste is subject to regulation under authoritymore » of both the Resource Conservation and Recovery Act of 1976 and Atomic Energy Act of 1954. This report covers mixed waste only. The Washington State Department of Ecology, U.S. Environmental Protection Agency, and U.S. Department of Energy have entered into an agreement, the Hanford Federal Facility Agreement and Consent Order (commonly referred to as the Tri-Party Agreement) to bring the Hanford Site operations into compliance with dangerous waste regulations. The Tri-Party Agreement required development of the original land disposal restrictions (LDRs) plan and its annual updates to comply with LDR requirements for radioactive mixed waste. This report is the fifth update of the plan first issued in 1990. Tri-Party Agreement negotiations completed in 1993 and approved in January 1994 changed and added many new milestones. Most of the changes were related to the Tank Waste Remediation System and these changes are incorporated into this report.« less

  16. Cathodic protection of a remote river pipeline

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Martin, B.A.

    1994-03-01

    The 261-km long 500-mm diam Kutubu pipeline, which runs through dense jungle swamps in Papua, New Guinea, was built for Chevron Niugini to transport oil from the remote Kutubu oil production facility in the Southern Highlands to an offshore loading facility. The pipeline was laid with a section in the bed of a wide, fast-flowing river. This section was subject to substantial telluric effects and current density variations from changing water resistivities. The cathodic protection system's effectiveness was monitored by coupon off'' potentials and required an innovative approach.

  17. An assessment of drinking-water supplies on the Hanford site: an evaluation conducted at a federal nuclear facility in southeastern Washington state.

    PubMed

    Hanf, R William; Kelly, Lynn M

    2005-03-01

    Drinking water is supplied to most U.S. Department of Energy (DOE) facilities on the Hanford Site by DOE-owned, contractor-operated pumping and distribution systems. Water is primarily obtained from the Columbia River, but some facilities use water from on-site groundwater wells. Because of the large amount of radioactive and chemical waste produced, stored, and disposed of at Hanford, some people are concerned that waste materials are contaminating on-site drinking-water supplies. This paper describes the drinking-water facilities and treatment requirements on the Hanford Site and summarizes radiological and non-radiological water quality data obtained from water samples collected from each drinking-water system in use during 2001 and 2002. Monitoring data show that Hanford-produced radionuclides are measurable in some drinking-water samples. The only non-radiological contaminants detected either were by-products of the chlorination process or came from off-site agricultural activities. Contaminant level values were, in all cases, below state and federal drinking-water limits. This information will provide assurance to current employees and future site developers that drinking water on the Hanford Site is safe for public consumption.

  18. 78 FR 75913 - Final Tank Closure and Waste Management Environmental Impact Statement for the Hanford Site...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-12-13

    ... Subtitle C barrier, a multi-layer barrier designed to provide 500-year protection. \\2\\ Under Tank Closure..., which means the tanks, ancillary equipment, and contaminated soil would be removed, and the remaining... Hanford barrier, a multi- layer barrier designed to provide 1,000-year protection. Alternative 6: All...

  19. Hanford Site Solid Waste Acceptance Criteria

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Not Available

    1993-11-17

    This manual defines the Hanford Site radioactive, hazardous, and sanitary solid waste acceptance criteria. Criteria in the manual represent a guide for meeting state and federal regulations; DOE Orders; Hanford Site requirements; and other rules, regulations, guidelines, and standards as they apply to acceptance of radioactive and hazardous solid waste at the Hanford Site. It is not the intent of this manual to be all inclusive of the regulations; rather, it is intended that the manual provide the waste generator with only the requirements that waste must meet in order to be accepted at Hanford Site TSD facilities.

  20. Environmental assessment, K Pool fish rearing, Hanford Site, Richland, Washington

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    NONE

    1996-12-01

    The US Department of Energy (DOE) has a need to respond to a request to lease facilities at the Hanford Site 100-KE and 100-KW filter plant pools (K Pools) for fish rearing activities. These fish rearing activities would be: (1) business ventures with public and private funds and (2) long-term enhancement and supplementation programs for game fish populations in the Columbia River Basin. The proposed action is to enter into a use permit or lease agreement with the YIN or other parties who would rear fish in the 100-K Area Pools. The proposed action would include necessary piping, pump, andmore » electrical upgrades of the facility; cleaning and preparation of the pools; water withdrawal from the Columbia River, and any necessary water or wastewater treatment; and introduction, rearing and release of fish. Future commercial operations may be included.« less

  1. Location analysis and strontium-90 concentrations in deer antlers on the Hanford Site

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Tiller, B L; Eberhardt, L E; Poston, T M

    1995-05-01

    The primary objective of this study was to examine the levels of strontium-90 ({sup 90}Sr) in deer antlers collected from near previously active reactor sites and distant from the reactor sites along that portion of the Columbia River which borders the Hanford Site. A second objective was to analyze the movements and home-ranges of mule deer residing within these areas and determine to what extent this information contributes to the observed {sup 90}Sr concentrations. {sup 90}Sr is a long-lived radionuclide (29.1 year half life) produced by fission in irradiated fuel in plutonium production reactors on the Hanford Site. It ismore » also a major component of atmospheric fallout from weapons testing. Concentrations of radionuclides found in the developed environment onsite do not pose a health concern to humans or various wildlife routinely monitored. However, elevated levels of radionuclides in found biota may indicate routes of exposure requiring attention.« less

  2. Hanford Site Composite Analysis Technical Approach Description: Groundwater Pathway Dose Calculation.

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Morgans, D. L.; Lindberg, S. L.

    The purpose of this technical approach document (TAD) is to document the assumptions, equations, and methods used to perform the groundwater pathway radiological dose calculations for the revised Hanford Site Composite Analysis (CA). DOE M 435.1-1, states, “The composite analysis results shall be used for planning, radiation protection activities, and future use commitments to minimize the likelihood that current low-level waste disposal activities will result in the need for future corrective or remedial actions to adequately protect the public and the environment.”

  3. Effect of bank protection measures, Stehekin River, Chelan County, Washington

    USGS Publications Warehouse

    Nelson, L.M.

    1986-01-01

    An investigation of the lower Stehekin River was conducted to study the effects on flood elevations and velocities from four bank protection and flood prevention measures that are being contemplated as a means of reducing erosional losses of river bank property. These measures are: bank armoring, armored revetment levees, spur dikes, and redevelopment of old cutoff channels. The banks at seven study sites could be armored without adverse effect on the flood velocities and elevations. The largest increases due to armoring--up to 1.6 ft/sec in velocity and 1 ft in elevation--occurred in the vicinity of sites 5, 6, and 7 where the gradient of the river channel is about 50 ft/mi and the velocities are high to begin with (about 6 to 13 ft/sec). The use of a levee in conjunction with armoring on the northeast bank from sites 5 to 7 would increase the velocities as much as 2.8 ft/sec and increase the elevation as much as 1 ft, but it would also provide some flood protection to the east bank, which is frequently inundated. Spur dikes were considered a practical alternative only at site 3, where reduced bank erosion may occur without aggravating flood inundation or erosion elsewhere. The rerouting of flood flow through an old cutoff channel near site 1 increased the velocity by 3.2 ft/sec and the elevation by 1 ft for the 100-year flood; however, it would move floodwater away from residential property where bank erosion is a problem. The few other old channels that shortcut river bends where much erosion occurs are apparently already part of the channel during floods. (Author 's abstract)

  4. Methods and Models of the Hanford Internal Dosimetry Program, PNNL-MA-860

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Carbaugh, Eugene H.; Bihl, Donald E.; Maclellan, Jay A.

    2003-01-03

    This manual describes the technical basis for the design of the routine radiobioassay monitoring program and assessments of internal dose. Its purpose is to provide a historical record of the methods, models, and assumptions used for internal dosimetry at Hanford, and serve as a technical reference for radiation protection and dosimetry staff.

  5. Effects of hydropower operations on spawning habitat, rearing habitat, and standing/entrapment mortality of fall Chinook salmon in the Hanford Reach of the Columbia River

    USGS Publications Warehouse

    Anglin, Donald R.; Haeseker, Steven L.; Skalicky, Joseph J.; Schaller, Howard; Tiffan, Kenneth F.; Hatten, James R.; Hoffarth, Paul; Nugent, John; Benner, David; Yoshinaka, Marv

    2006-01-01

    This report describes research conducted primarily in 2003 and 2004 to evaluate the effects of upstream dam operations on spawning and rearing conditions for fall Chinook salmon, Oncorhynchus tshawytscha, in the Hanford Reach of the Columbia River. Results from habitat modeling tasks which continued in 2005 and 2006 are also included in this report. This study is focused on the effects of streamflows and streamflow fluctuations on 1) entrapment and entrapment mortality of juveniles, 2) adult spawning habitat, and 3) juvenile rearing habitat. An independent peer review was conducted on the draft version of this report utilizing three reviewers, each with different areas of expertise and different levels of knowledge regarding hydrodynamic modeling, fall Chinook biology, life history, and habitat requirements, and fishery issues relating to hydropower development and operations. Peer review comments have been incorporated into this final version.

  6. Hanford Internal Dosimetry Program Manual, PNL-MA-552

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Carbaugh, Eugene H.; Bihl, Donald E.; Maclellan, Jay A.

    2003-10-10

    This manual is a guide to the services provided by the Hanford Internal Dosimetry Program (IDP). It describes the roles of and relationships between the IDP and site contractors, and provides recommendations and guidance for consideration in implementing bioassay monitoring and internal dosimetry elements of radiation protection programs. Guidance includes identifying conditions under which workers should be placed on bioassay programs, types, descritptions, and capabilities of measurements, suggested routine bioassay programs, limitations on services, and practices for recording and reporting results.

  7. The U.S. Department of Energy's Regulatory and Evaluation Framework for Demonstrating Radiation Protection of the Environment: Implementation at the Hanford Site

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Antonio, Ernest J.; Tiller, Brett L.; Domotor, S. L.

    2005-08-01

    Abstract. In 2001, a multi-agency study was conducted to characterize potential environmental effects from radiological and chemical contaminants on the near-shore environment of the Columbia River at the 300 Area of the U.S. Department of Energy’s Hanford Site. Historically, the 300 Area was the location of nuclear fuel fabrication and was the main location for research and development activities from the 1940s until the late 1980s. During past waste handling practices uranium, copper, and other heavy metals were routed to liquid waste streams and ponds near the Columbia River shoreline. The Washington State Department of Health and the Pacific Northwestmore » National Laboratory’s Surface Environmental Surveillance Project sampled various environmental components including river water, riverbank spring water, sediment, fishes, crustaceans, bivalve mollusks, aquatic insects, riparian vegetation, small mammals, and terrestrial invertebrates for analyses of radiological and chemical constituents. The radiological analysis results for water and sediment were used as initial input into the RESRAD BIOTA. The RESRAD BIOTA code showed that maximum radionuclide concentrations measured in water and sediment were lower than the initial screening criteria for concentrations to produce dose rates at existing or proposed limits. Radionuclide concentrations measured in biota samples were used to calculate site-specific bioaccumulation coefficients (Biv) to test the utility of the RESRAD BIOTA’s site-specific screening phase. To further evaluate site-specific effects, the default Relative Biological Effect (RBE) for internal alpha particle emissions was reduced by half and the program’s kinetic/allometric calculation approach was initiated. The subsequent calculations showed the initial RESRAD BIOTA results to be conservative, which is appropriate for screening purposes.« less

  8. Global assessment of river flood protection benefits and corresponding residual risks under climate change

    NASA Astrophysics Data System (ADS)

    Lim, Wee Ho; Yamazaki, Dai; Koirala, Sujan; Hirabayashi, Yukiko; Kanae, Shinjiro; Dadson, Simon J.; Hall, Jim W.

    2016-04-01

    Global warming increases the water-holding capacity of the atmosphere and this could lead to more intense rainfalls and possibly increasing natural hazards in the form of flooding in some regions. This implies that traditional practice of using historical hydrological records alone is somewhat limited for supporting long-term water infrastructure planning. This has motivated recent global scale studies to evaluate river flood risks (e.g., Hirabayashi et al., 2013, Arnell and Gosling, 2014, Sadoff et al., 2015) and adaptations benefits (e.g., Jongman et al., 2015). To support decision-making in river flood risk reduction, this study takes a further step to examine the benefits and corresponding residual risks for a range of flood protection levels. To do that, we channelled runoff information of a baseline period (forced by observed hydroclimate conditions) and each CMIP5 model (historic and future periods) into a global river routing model called CaMa-Flood (Yamazaki et al., 2011). We incorporated the latest global river width data (Yamazaki et al., 2014) into CaMa-Flood and simulate the river water depth at a spatial resolution of 15 min x 15 min. From the simulated results of baseline period, we use the annual maxima river water depth to fit the Gumbel distribution and prepare the return period-flood risk relationship (involving population and GDP). From the simulated results of CMIP5 model, we also used the annual maxima river water depth to obtain the Gumbel distribution and then estimate the exceedance probability (historic and future periods). We apply the return period-flood risk relationship (above) to the exceedance probability and evaluate the flood protection benefits. We quantify the corresponding residual risks using a mathematical approach that is consistent with the modelling structure of CaMa-Flood. Globally and regionally, we find that the benefits of flood protection level peak somewhere between 20 and 500 years; residual risks diminish

  9. Toxicology profiles of chemical and radiological contaminants at Hanford

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Harper, B.L.; Strenge, D.L.; Stenner, R.D.

    1995-07-01

    This document summarizes toxicology information required under Section 3.3 (Toxicity Assessment) of HSRAM, and can also be used to develop the short toxicology profiles required in site assessments (described in HSRAM, Section 3.3.5). Toxicology information is used in the dose-response step of the risk assessment process. The dose-response assessment describes the quantitative relationship between the amount of exposure to a substance and the extent of toxic injury or disease. Data are derived from animal studies or, less frequently, from studies in exposed human populations. The risks of a substance cannot be ascertained with any degree of confidence unless dose-response relationsmore » are quantified. This document summarizes dose-response information available from the US Environmental Protection Agency (EPA). The contaminants selected for inclusion in this document represent most of the contaminants found at Hanford (both radiological and chemical), based on sampling and analysis performed during site investigations, and historical information on waste disposal practices at the Hanford Site.« less

  10. Fluor Daniel Hanford Inc. integrated safety management system phase 1 verification final report

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    PARSONS, J.E.

    1999-10-28

    The purpose of this review is to verify the adequacy of documentation as submitted to the Approval Authority by Fluor Daniel Hanford, Inc. (FDH). This review is not only a review of the Integrated Safety Management System (ISMS) System Description documentation, but is also a review of the procedures, policies, and manuals of practice used to implement safety management in an environment of organizational restructuring. The FDH ISMS should support the Hanford Strategic Plan (DOE-RL 1996) to safely clean up and manage the site's legacy waste; deploy science and technology while incorporating the ISMS theme to ''Do work safely''; andmore » protect human health and the environment.« less

  11. Use of electrical imaging and distributed temperature sensing methods to characterize surface water–groundwater exchange regulating uranium transport at the Hanford 300 Area, Washington

    USGS Publications Warehouse

    Slater, Lee D.; Ntarlagiannis, Dimitrios; Day-Lewis, Frederick D.; Mwakanyamale, Kisa; Versteeg, Roelof J.; Ward, Andy; Strickland, Christopher; Johnson, Carole D.; Lane, John W.

    2010-01-01

    We explored the use of continuous waterborne electrical imaging (CWEI), in conjunction with fiber‐optic distributed temperature sensor (FO‐DTS) monitoring, to improve the conceptual model for uranium transport within the Columbia River corridor at the Hanford 300 Area, Washington. We first inverted resistivity and induced polarization CWEI data sets for distributions of electrical resistivity and polarizability, from which the spatial complexity of the primary hydrogeologic units was reconstructed. Variations in the depth to the interface between the overlying coarse‐grained, high‐permeability Hanford Formation and the underlying finer‐grained, less permeable Ringold Formation, an important contact that limits vertical migration of contaminants, were resolved along ∼3 km of the river corridor centered on the 300 Area. Polarizability images were translated into lithologic images using established relationships between polarizability and surface area normalized to pore volume (Spor). The FO‐DTS data recorded along 1.5 km of cable with a 1 m spatial resolution and 5 min sampling interval revealed subreaches showing (1) temperature anomalies (relatively warm in winter and cool in summer) and (2) a strong correlation between temperature and river stage (negative in winter and positive in summer), both indicative of reaches of enhanced surface water–groundwater exchange. The FO‐DTS data sets confirm the hydrologic significance of the variability identified in the CWEI and reveal a pattern of highly focused exchange, concentrated at springs where the Hanford Formation is thickest. Our findings illustrate how the combination of CWEI and FO‐DTS technologies can characterize surface water–groundwater exchange in a complex, coupled river‐aquifer system.

  12. Redd Site Selection and Spawning Habitat Use by Fall Chinook Salmon: The Importance of Geomorphic Features in Large Rivers

    PubMed

    Geist; Dauble

    1998-09-01

    / Knowledge of the three-dimensional connectivity between rivers and groundwater within the hyporheic zone can be used to improve the definition of fall chinook salmon (Oncorhynchus tshawytscha) spawning habitat. Information exists on the microhabitat characteristics that define suitable salmon spawning habitat. However, traditional spawning habitat models that use these characteristics to predict available spawning habitat are restricted because they can not account for the heterogeneous nature of rivers. We present a conceptual spawning habitat model for fall chinook salmon that describes how geomorphic features of river channels create hydraulic processes, including hyporheic flows, that influence where salmon spawn in unconstrained reaches of large mainstem alluvial rivers. Two case studies based on empirical data from fall chinook salmon spawning areas in the Hanford Reach of the Columbia River are presented to illustrate important aspects of our conceptual model. We suggest that traditional habitat models and our conceptual model be combined to predict the limits of suitable fall chinook salmon spawning habitat. This approach can incorporate quantitative measures of river channel morphology, including general descriptors of geomorphic features at different spatial scales, in order to understand the processes influencing redd site selection and spawning habitat use. This information is needed in order to protect existing salmon spawning habitat in large rivers, as well as to recover habitat already lost.KEY WORDS: Hyporheic zone; Geomorphology; Spawning habitat; Large rivers; Fall chinook salmon; Habitat management

  13. Babocomari River Riparian Protection Project

    Treesearch

    Dan Robinett; Linda Kennedy

    2013-01-01

    The Babocomari River is a major tributary of the San Pedro River in Santa Cruz and Cochise counties, Arizona. This 140,000 acre catchment includes rolling grasslands on the Sonoita plain, oak woodlands in the Canelo Hills and the pine-oak forests of the northwestern Huachuca Mountains. The Babocomari River runs for 22 miles from its headwaters near Sonoita at 5000 feet...

  14. Design, Development, Pre-Testing and Preparation for Full Scale Cold Testing of a System for Field Remediation of Vertical Pipe Units at the Hanford Site 618-10 Burial Grounds -12495

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Halliwell, Stephen

    2012-07-01

    At the Hanford site, in the 1950's and 60's, radioactive waste materials, including Transuranic (TRU) wastes from a number of laboratories were stored in vertical pipe units (VPUs) in what are now the 618-10 and 618-11 burial grounds. Although the current physical condition of the VPUs is unknown, initial R and D studies had shown that in-ground size reduction and stabilization of VPU contents was feasible. This paper describes the R and D work and testing activities to validate the concept of in-ground size reduction and stabilization of VPU contents, and the design and pre-testing of major plant items andmore » augering systems on full size simulated VPUs. The paper also describes the full size prototype equipment which will be used in full size cold testing of simulated VPUs off the Hanford site, to prove the equipment, develop operating procedures, and train operators prior to deployment on site. Safe and effective field remediation, removal and disposal of the VPUs in the 600 area are critical to the success of the River Corridor Closure Contract at the U.S. Department of Energy's Hanford Site. Safe and effective field remediation, removal and disposal of the VPUs in the 600 area are critical to the success of the River Corridor Closure Contract at the U.S. Department of Energy's Hanford Site. (authors)« less

  15. Transient Inverse Calibration of Hanford Site-Wide Groundwater Model to Hanford Operational Impacts - 1943 to 1996

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Cole, Charles R.; Bergeron, Marcel P.; Wurstner, Signe K.

    2001-05-31

    This report describes a new initiative to strengthen the technical defensibility of predictions made with the Hanford site-wide groundwater flow and transport model. The focus is on characterizing major uncertainties in the current model. PNNL will develop and implement a calibration approach and methodology that can be used to evaluate alternative conceptual models of the Hanford aquifer system. The calibration process will involve a three-dimensional transient inverse calibration of each numerical model to historical observations of hydraulic and water quality impacts to the unconfined aquifer system from Hanford operations since the mid-1940s.

  16. Progress on Footprint Reduction at the Hanford Site - 12406

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    McKenney, Dale E.; Seeley, Paul; Farabee, Al

    2012-07-01

    The Department of Energy (DOE) Office of Environmental Management (EM) continues to reduce the footprint of legacy sites throughout the EM complex. Footprint reduction is being accomplished by focusing cleanup activities on decontamination and demolition of excess contaminated facilities, soil and groundwater remediation, and solid waste disposition. All of these initiatives are being accomplished with established technologies in proven regulatory frameworks. Ultimately, completion of these environmental cleanup activities will reduce the monitoring and maintenance costs associated with managing large federal facilities, allowing EM to place more focus on other high priority cleanup efforts and facilitate a successful transition to land-termmore » stewardship of these sites. Through the American Recovery and Reinvestment Act (ARRA) investment, the Department's cleanup footprint has been reduced by 45 percent to date, from 2411 km{sup 2} (931 mi{sup 2}) to 1336 km{sup 2} (516 mi{sup 2}s). With this significant progress on footprint reduction, the Department is on track towards their goal to reduce its overall footprint by approximately 90 percent by 2015. In addition, some areas cleaned up may become available for alternate uses (i.e. recreation, conservation, preservation, industrialization or development). Much of the work to reduce the complex's footprint occurred at the Savannah River Site in South Carolina and the Hanford Site in Washington, but cleanup continues across the complex. Footprint reduction is progressing well at the Hanford Site, supported predominantly through ARRA investment. To date, 994 km{sup 2} (384 mi{sup 2}) (65%) of footprint reduction have been achieved at Hanford, with a goal to achieve a 90% reduction by Fiscal Year 2015. The DOE EM and DOE Richland Operations Office, continue to make great progress to reduce the legacy footprint of the Hanford Site. Footprint reduction is being accomplished by focusing cleanup activities on

  17. Transient groundwater chemistry near a river: Effects on U(VI) transport in laboratory column experiments

    USGS Publications Warehouse

    Yin, J.; Haggerty, R.; Stoliker, D.L.; Kent, D.B.; Istok, J.D.; Greskowiak, J.; Zachara, J.M.

    2011-01-01

    In the 300 Area of a U(VI)-contaminated aquifer at Hanford, Washington, USA, inorganic carbon and major cations, which have large impacts on U(VI) transport, change on an hourly and seasonal basis near the Columbia River. Batch and column experiments were conducted to investigate the factors controlling U(VI) adsorption/desorption by changing chemical conditions over time. Low alkalinity and low Ca concentrations (Columbia River water) enhanced adsorption and reduced aqueous concentrations. Conversely, high alkalinity and high Ca concentrations (Hanford groundwater) reduced adsorption and increased aqueous concentrations of U(VI). An equilibrium surface complexation model calibrated using laboratory batch experiments accounted for the decrease in U(VI) adsorption observed with increasing (bi)carbonate concentrations and other aqueous chemical conditions. In the column experiment, alternating pulses of river and groundwater caused swings in aqueous U(VI) concentration. A multispecies multirate surface complexation reactive transport model simulated most of the major U(VI) changes in two column experiments. The modeling results also indicated that U(VI) transport in the studied sediment could be simulated by using a single kinetic rate without loss of accuracy in the simulations. Moreover, the capability of the model to predict U(VI) transport in Hanford groundwater under transient chemical conditions depends significantly on the knowledge of real-time change of local groundwater chemistry. Copyright 2011 by the American Geophysical Union.

  18. Transient groundwater chemistry near a river: Effects on U(VI) transport in laboratory column experiments

    USGS Publications Warehouse

    Yin, Jun; Haggerty, Roy; Stoliker, Deborah L.; Kent, Douglas B.; Istok, Jonathan D.; Greskowiak, Janek; Zachara, John M.

    2011-01-01

    In the 300 Area of a U(VI)-contaminated aquifer at Hanford, Washington, USA, inorganic carbon and major cations, which have large impacts on U(VI) transport, change on an hourly and seasonal basis near the Columbia River. Batch and column experiments were conducted to investigate the factors controlling U(VI) adsorption/desorption by changing chemical conditions over time. Low alkalinity and low Ca concentrations (Columbia River water) enhanced adsorption and reduced aqueous concentrations. Conversely, high alkalinity and high Ca concentrations (Hanford groundwater) reduced adsorption and increased aqueous concentrations of U(VI). An equilibrium surface complexation model calibrated using laboratory batch experiments accounted for the decrease in U(VI) adsorption observed with increasing (bi)carbonate concentrations and other aqueous chemical conditions. In the column experiment, alternating pulses of river and groundwater caused swings in aqueous U(VI) concentration. A multispecies multirate surface complexation reactive transport model simulated most of the major U(VI) changes in two column experiments. The modeling results also indicated that U(VI) transport in the studied sediment could be simulated by using a single kinetic rate without loss of accuracy in the simulations. Moreover, the capability of the model to predict U(VI) transport in Hanford groundwater under transient chemical conditions depends significantly on the knowledge of real-time change of local groundwater chemistry.

  19. RADIOACTIVE DEMONSTRATION OF FINAL MINERALIZED WASTE FORMS FOR HANFORD WASTE TREATMENT PLANT SECONDARY WASTE BY FLUIDIZED BED STEAM REFORMING USING THE BENCH SCALE REFORMER PLATFORM

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Crawford, C.; Burket, P.; Cozzi, A.

    2012-02-02

    The U.S. Department of Energy's Office of River Protection (ORP) is responsible for the retrieval, treatment, immobilization, and disposal of Hanford's tank waste. Currently there are approximately 56 million gallons of highly radioactive mixed wastes awaiting treatment. A key aspect of the River Protection Project (RPP) cleanup mission is to construct and operate the Waste Treatment and Immobilization Plant (WTP). The WTP will separate the tank waste into high-level and low-activity waste (LAW) fractions, both of which will subsequently be vitrified. The projected throughput capacity of the WTP LAW Vitrification Facility is insufficient to complete the RPP mission in themore » time frame required by the Hanford Federal Facility Agreement and Consent Order, also known as the Tri-Party Agreement (TPA), i.e. December 31, 2047. Therefore, Supplemental Treatment is required both to meet the TPA treatment requirements as well as to more cost effectively complete the tank waste treatment mission. In addition, the WTP LAW vitrification facility off-gas condensate known as WTP Secondary Waste (WTP-SW) will be generated and enriched in volatile components such as {sup 137}Cs, {sup 129}I, {sup 99}Tc, Cl, F, and SO{sub 4} that volatilize at the vitrification temperature of 1150 C in the absence of a continuous cold cap (that could minimize volatilization). The current waste disposal path for the WTP-SW is to process it through the Effluent Treatment Facility (ETF). Fluidized Bed Steam Reforming (FBSR) is being considered for immobilization of the ETF concentrate that would be generated by processing the WTP-SW. The focus of this current report is the WTP-SW. FBSR offers a moderate temperature (700-750 C) continuous method by which WTP-SW wastes can be processed irrespective of whether they contain organics, nitrates, sulfates/sulfides, chlorides, fluorides, volatile radionuclides or other aqueous components. The FBSR technology can process these wastes into a crystalline

  20. DEVELOPMENT OF REMOTE HANFORD CONNECTOR GASKET REPLACEMENT TOOLING FOR DWPF

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Krementz, D.; Coughlin, Jeffrey

    2009-05-05

    The Defense Waste Processing Facility (DWPF) requested the Savannah River National Laboratory (SRNL) to develop tooling and equipment to remotely replace gaskets in mechanical Hanford connectors to reduce personnel radiation exposure as compared to the current hands-on method. It is also expected that radiation levels will continually increase with future waste streams. The equipment is operated in the Remote Equipment Decontamination Cell (REDC), which is equipped with compressed air, two master-slave manipulators (MSM's) and an electro-mechanical manipulator (EMM) arm for operation of the remote tools. The REDC does not provide access to electrical power, so the equipment must be manuallymore » or pneumatically operated. The MSM's have a load limit at full extension of ten pounds, which limited the weight of the installation tool. In order to remotely replace Hanford connector gaskets several operations must be performed remotely, these include: removal of the spent gasket and retaining ring (retaining ring is also called snap ring), loading the new snap ring and gasket into the installation tool and installation of the new gasket into the Hanford connector. SRNL developed and tested tools that successfully perform all of the necessary tasks. Removal of snap rings from horizontal and vertical connectors is performed by separate air actuated retaining ring removal tools and is manipulated in the cell by the MSM. In order install a new gasket, the snap ring loader is used to load a new snap ring into a groove in the gasket installation tool. A new gasket is placed on the installation tool and retained by custom springs. An MSM lifts the installation tool and presses the mounted gasket against the connector block. Once the installation tool is in position, the gasket and snap ring are installed onto the connector by pneumatic actuation. All of the tools are located on a custom work table with a pneumatic valve station that directs compressed air to the desired

  1. Hanford science and technology needs statements document

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Piper, L.L.

    This document is a compilation of the Hanford science and technology needs statements for FY 1998. The needs were developed by the Hanford Site Technology Coordination Group (STCG) with full participation and endorsement of site user organizations, stakeholders, and regulators. The purpose of this document is to: (a) provide a comprehensive listing of Hanford science and technology needs, and (b) identify partnering and commercialization opportunities with industry, other federal and state agencies, and the academic community. The Hanford STCG reviews and updates the needs annually. Once completed, the needs are communicated to DOE for use in the development and prioritizationmore » of their science and technology programs, including the Focus Areas, Cross-Cutting Programs, and the Environmental Management Science Program. The needs are also transmitted to DOE through the Accelerating Cleanup: 2006 Plan. The public may access the need statements on the Internet on: the Hanford Home Page (www.hanford.gov), the Pacific Rim Enterprise Center`s web site (www2.pacific-rim.org/pacific rim), or the STCG web site at DOE headquarters (em-52.em.doegov/ifd/stcg/stcg.htm). This page includes links to science and technology needs for many DOE sites. Private industry is encouraged to review the need statements and contact the Hanford STCG if they can provide technologies that meet these needs. On-site points of contact are included at the ends of each need statement. The Pacific Rim Enterprise Center (206-224-9934) can also provide assistance to businesses interested in marketing technologies to the DOE.« less

  2. Hanford internal dosimetry program manual

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Carbaugh, E.H.; Sula, M.J.; Bihl, D.E.

    1989-10-01

    This document describes the Hanford Internal Dosimetry program. Program Services include administrating the bioassay monitoring program, evaluating and documenting assessments of internal exposure and dose, ensuring that analytical laboratories conform to requirements, selecting and applying appropriate models and procedures for evaluating internal radionuclide deposition and the resulting dose, and technically guiding and supporting Hanford contractors in matters regarding internal dosimetry. 13 refs., 16 figs., 42 tabs.

  3. 78 FR 46931 - Intent To Hold North Dakota Task Force Meeting as Established by the Missouri River Protection...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-08-02

    ... a long-term strategy to improve conservation, protect recreation from sedimentation, improve water quality, improve erosion control, and protect historic and cultural sites along the Missouri River in...

  4. The Columbia River Protection Supplemental Technologies Quality Assurance Project Plan

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Fix, N. J.

    Pacific Northwest National Laboratory researchers are working on the Columbia River Protection Supplemental Technologies Project. This project is a U. S. Department of Energy, Office of Environmental Management-funded initiative designed to develop new methods, strategies, and technologies for characterizing, modeling, remediating, and monitoring soils and groundwater contaminated with metals, radionuclides, and chlorinated organics. This Quality Assurance Project Plan provides the quality assurance requirements and processes that will be followed by the Technologies Project staff.

  5. HANFORD FACILITY ANNUAL DANGEROUS WASTE REPORT CY2005

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    SKOLRUD, J.O.

    2006-02-15

    The Hanford Facility Annual Dangerous Waste Report (ADWR) is prepared to meet the requirements of Washington Administrative Code Sections 173-303-220, Generator Reporting, and 173-303-390, Facility Reporting. In addition, the ADWR is required to meet Hanford Facility RCR4 Permit Condition I.E.22, Annual Reporting. The ADWR provides summary information on dangerous waste generation and management activities for the Calendar Year for the Hanford Facility EPA ID number assigned to the Department of Energy for RCRA regulated waste, as well as Washington State only designated waste and radioactive mixed waste. An electronic database is utilized to collect and compile the large array ofmore » data needed for preparation of this report. Information includes details of waste generated on the Hanford Facility, waste generated offsite and sent to Hanford for management, and other waste management activities conducted at Hanford, including treatment, storage, and disposal. Report details consist of waste descriptions and weights, waste codes and designations, and waste handling codes, In addition, for waste shipped to Hanford for treatment and/or disposal, information on manifest numbers, the waste transporter, the waste receiving facility, and the original waste generators are included. In addition to paper copies, the report is also transmitted electronically to a web site maintained by the Washington State Department of Ecology.« less

  6. Application of the SHOALS survey system to fisheries investigations in the Columbia River

    USGS Publications Warehouse

    Tiffan, Kenneth F.; Wagner, Paul G.; Wolf, Keith S.; Hoffarth , Paul A.

    2009-01-01

    We used a Scanning Hydrographic Operational Airborne LiDAR (Light Detection and Ranging) Survey (SHOALS) system to collect high-resolution bathymetry for 33 km of the Hanford Reach. Data were used in conjunction with hydrodynamic and predictive habitat models within a GIS (Geographical Information System) framework to evaluate the effects of a varying hydrograph on juvenile fall Chinook salmon rearing habitat and risk from stranding and entrapment. Furthermore, we were able to estimate the number of juvenile fish that were stranded and entrapped in pools when operations at Priest Rapids Dam caused rapid decreases in river flows. Our findings were ultimately used to estimate impacts of power generation operations at Priest Rapids Dam and develop long-term policy and operational guidelines to protect juvenile fall Chinook salmon during the spring rearing period.

  7. Vascular Plants of the Hanford Site

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sackschewsky, Michael R.; Downs, Janelle L.

    This report provides an updated listing of the vascular plants present on and near the U.S. Department of Energy Hanford Site. This document is an update of a listing of plants prepared by Sackschewdky et al. in 1992. Since that time there has been a significant increase in the botanical knowledge of the Hanford Site. The present listing is based on an examination of herbarium collections held at PNNL, at WSU-Tri Cities, WSU-Pullman, Bringham Young University, and The University of Washington, and on examination of ecological literature derived from the Hanford and Benton county areas over the last 100 years.more » Based on the most recent analysis, there are approximately 725 different plant species that have been documented on or around the Hanford Site. This represents an approximate 20% increase in the number of species reported within Sackschewsky et al. (1992). This listing directly supports DOE and contractor efforts to assess the potential impacts of Hanford Site operations on the biological environment, including impacts to rare habitats and to species listed as endangered or\\ threatened. This document includes a listing of plants currently listed as endangered, threatened, or otherwise of concern to the Washington Natural Heritage Program or the U.S. Fish and Wildlife Service, as well as those that are currently listed as noxious weeds by the State of Washington. Also provided is an overview of how plants on the Hanford Site can be used by people. This information may be useful in developing risk assessment models, and as supporting information for clean-up level and remediation decisions.« less

  8. 1998 report on Hanford Site land disposal restrictions for mixed waste

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Black, D.G.

    1998-04-10

    This report was submitted to meet the requirements of Hanford Federal Facility Agreement and Consent Order (Tri-Party Agreement) Milestone M-26-01H. This milestone requires the preparation of an annual report that covers characterization, treatment, storage, minimization, and other aspects of managing land-disposal-restricted mixed waste at the Hanford Facility. The US Department of Energy, its predecessors, and contractors on the Hanford Facility were involved in the production and purification of nuclear defense materials from the early 1940s to the late 1980s. These production activities have generated large quantities of liquid and solid mixed waste. This waste is regulated under authority of bothmore » the Resource Conservation and Recovery Act of l976 and the Atomic Energy Act of 1954. This report covers only mixed waste. The Washington State Department of Ecology, US Environmental Protection Agency, and US Department of Energy have entered into the Tri-Party Agreement to bring the Hanford Facility operations into compliance with dangerous waste regulations. The Tri-Party Agreement required development of the original land disposal restrictions (LDR) plan and its annual updates to comply with LDR requirements for mixed waste. This report is the eighth update of the plan first issued in 1990. The Tri-Party Agreement requires and the baseline plan and annual update reports provide the following information: (1) Waste Characterization Information -- Provides information about characterizing each LDR mixed waste stream. The sampling and analysis methods and protocols, past characterization results, and, where available, a schedule for providing the characterization information are discussed. (2) Storage Data -- Identifies and describes the mixed waste on the Hanford Facility. Storage data include the Resource Conservation and Recovery Act of 1976 dangerous waste codes, generator process knowledge needed to identify the waste and to make LDR determinations

  9. Hanford's Supplemental Treatment Project: Full-Scale Integrated Testing of In-Container-Vitrification and a 10,000-Liter Dryer

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Witwer, K.S.; Dysland, E.J.; Garfield, J.S.

    2008-07-01

    The GeoMelt{sup R} In-Container Vitrification{sup TM} (ICV{sup TM}) process was selected by the U.S. Department of Energy (DOE) in 2004 for further evaluation as the supplemental treatment technology for Hanford's low-activity waste (LAW). Also referred to as 'bulk vitrification', this process combines glass forming minerals, LAW, and chemical amendments; dries the mixture; and then vitrifies the material in a refractory-lined steel container. AMEC Nuclear Ltd. (AMEC) is adapting its GeoMelt ICV{sup TM} technology for this application with technical and analytical support from Pacific Northwest National Laboratory (PNNL). The DVBS project is funded by the DOE Office of River Protection andmore » administered by CH2M HILL Hanford Group, Inc. The Demonstration Bulk Vitrification Project (DBVS) was initiated to engineer, construct, and operate a full-scale bulk vitrification pilot-plant to treat up to 750,000 liters of LAW from Waste Tank 241-S-109 at the DOE Hanford Site. Since the beginning of the DBVS project in 2004, testing has used laboratory, crucible-scale, and engineering-scale equipment to help establish process limitations of selected glass formulations and identify operational issues. Full-scale testing has provided critical design verification of the ICV{sup TM} process before operating the Hanford pilot-plant. In 2007, the project's fifth full-scale test, called FS-38D, (also known as the Integrated Dryer Melter Test, or IDMT,) was performed. This test had three primary objectives: 1) Demonstrate the simultaneous and integrated operation of the ICV{sup TM} melter with a 10,000- liter dryer, 2) Demonstrate the effectiveness of a new feed reformulation and change in process methodology towards reducing the production and migration of molten ionic salts (MIS), and, 3) Demonstrate that an acceptable glass product is produced under these conditions. Testing was performed from August 8 to 17, 2007. Process and analytical results demonstrated that the primary

  10. Hanford Site Raptor Nest Monitoring Report for Calendar Year 2013

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Nugent, John J.; Lindsey, Cole T.; Wilde, Justin W.

    2014-02-13

    The U.S. Department of Energy, Richland Operations Office (DOE-RL) conducts ecological monitoring on the Hanford Site to collect and track data needed to ensure compliance with an array of environmental laws, regulations, and policies governing DOE activities. Ecological monitoring data provide baseline information about the plants, animals, and habitat under DOE-RL stewardship at Hanford required for decision-making under the National Environmental Policy Act (NEPA) and Comprehensive Environmental Response, Compensation, and Liability Act (CERCLA). The Hanford Site Comprehensive Land Use Plan (CLUP, DOE/EIS-0222-F) which is the Environmental Impact Statement for Hanford Site activities, helps ensure that DOE-RL, its contractors, and othermore » entities conducting activities on the Hanford Site are in compliance with NEPA. The Hanford Site supports a large and diverse community of raptorial birds (Fitzner et al. 1981), with 26 species of raptors observed on the Hanford Site.« less

  11. Hanford Facility Annual Dangerous Waste Report Calendar Year 2002

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    FREEMAN, D.A.

    2003-02-01

    Hanford CY 2002 dangerous waste generation and management forms. The Hanford Facility Annual Dangerous Waste Report (ADWR) is prepared to meet the requirements of Washington Administrative Code Sections 173-303-220, Generator Reporting, and 173-303-390, Facility Reporting. In addition, the ADWR is required to meet Hanford Facility RCRA Permit Condition I.E.22, Annual Reporting. The ADWR provides summary information on dangerous waste generation and management activities for the Calendar Year for the Hanford Facility EPA ID number assigned to the Department of Energy for RCRA regulated waste, as well as Washington State only designated waste and radioactive mixed waste. The Solid Waste Informationmore » and Tracking System (SWITS) database is utilized to collect and compile the large array of data needed for preparation of this report. Information includes details of waste generated on the Hanford Facility, waste generated offsite and sent to Hanford for management, and other waste management activities conducted at Hanford, including treatment, storage, and disposal. Report details consist of waste descriptions and weights, waste codes and designations, and waste handling codes. In addition, for waste shipped to Hanford for treatment and/or disposal, information on manifest numbers, the waste transporter, the waste receiving facility, and the original waste generators are included. In addition to paper copies, electronic copies of the report are also transmitted to the regulatory agency.« less

  12. PNNL Supports Hanford Waste Treatment

    ScienceCinema

    None

    2018-04-16

    For more than 40 years, technical assistance from PNNL has supported the operations and processing of Hanford tank waste. Our expertise in tank waste chemistry, fluid dynamics and scaling, waste forms, and safety bases has helped to shape the site’s waste treatment baseline and solve operational challenges. The historical knowledge and unique scientific and technical expertise at PNNL are essential to the success of the Hanford mission.

  13. A Conceptual Plan for Mitigating Anadromous Fish Losses in the Hanford Reach, Columbia River, Washington.

    DTIC Science & Technology

    1980-10-01

    Oncorhynchus nerka ) An estimated 1.6 million sockeye salmon smolts pass through the Hanford Reach annually. It is expected that up to 240,000 of these smolts...supplementation or ther- mal modification during critical periods, was selected as a production strategy (Figure 2). 2. Chinook Salmon ( Oncorhynchus tshawytscha) a...supplemental heating or warmer groundwater would be necessary. 3. Coho Salmon ( Oncorhynchus kisutch) The hatchery production cycle of coho salmon is similar to

  14. Hanford Site Anuran Monitoring Report for Calendar Year 2013

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wilde, Justin W.; Johnson, Scott J.; Lindsey, Cole T.

    2014-02-13

    The U.S. Department of Energy, Richland Operations Office (DOE-RL) conducts ecological monitoring on the Hanford Site to collect and track data needed to ensure compliance with an array of environmental laws, regulations, and policies governing DOE activities. Ecological monitoring data provide baseline information about the plants, animals, and habitat under DOE-RL stewardship at Hanford required for decision-making under the National Environmental Policy Act (NEPA) and Comprehensive Environmental Response, Compensation, and Liability Act (CERCLA). The Hanford Site Comprehensive Land Use Plan (CLUP, DOE/EIS-0222-F) which is the Environmental Impact Statement for Hanford Site activities, helps ensure that DOE-RL, its contractors, and othermore » entities conducting activities on the Hanford Site are in compliance with NEPA.« less

  15. Hanford Site National Environmental Policy Act (NEPA) Characterization

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Neitzel, Duane A.; Antonio, Ernest J.; Eschbach, Tara O.

    2001-09-01

    This document describes the U.S. Department of Energy's (DOE) Hanford Site environment. It is updated each year and is intended to provide a consistent description of the Hanford Site environment for the many National Environmental Policy Act (NEPA) documents being prepared by DOE contractors. No statements of significance or environmental consequences are provided. This year's report is the thirteenth revision of the original document published in 1988 and is (until replaced by the fourteenth revision) the only version that is relevant for use in the preparation of Hanford NEPA, State Environmental Policy Act (SEPA), and Comprehensive Environmental Response, Compensation, andmore » Liability Act (CERCLA) documents. The two chapters included in this document (Chapters 4 and 6) are numbered to correspond to the chapters where such information is typically presented in environmental impact statements (Weiss) and other Hanford Site NEPA or CERCLA documentation. Chapter 4.0 (Affected Environment) describes Hanford Site climate and meteorology, geology, hydrology, ecology, cultural, archaeological, and historical resources, socioeconomics, occupational safety, and noise. Chapter 6.0 (Statutory and Regulatory Requirements) describes federal and state laws and regulations, DOE directives and permits, and presidential executive orders that are applicable to the NEPA documents prepared for Hanford Site activities.« less

  16. Hanford Site National Environmental Policy Act (NEPA) Characterization

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Neitzel, Duane A.; Bunn, Amoret L.; Duncan, Joanne P.

    2002-09-01

    This document describes the U.S. Department of Energy's (DOE) Hanford Site environment. It is updated each year and is intended to provide a consistent description of the Hanford Site environment for the many National Environmental Policy Act (NEPA) documents being prepared by DOE contractors. No statements of significance or environmental consequences are provided. This year's report is the thirteenth revision of the original document published in 1988 and is (until replaced by the fourteenth revision) the only version that is relevant for use in the preparation of Hanford NEPA, State Environmental Policy Act (SEPA), and Comprehensive Environmental Response, Compensation, andmore » Liability Act (CERCLA) documents. The two chapters included in this document (Chapters 4 and 6) are numbered to correspond to the chapters where such information is typically presented in environmental impact statements (Weiss) and other Hanford Site NEPA or CERCLA documentation. Chapter 4.0 (Affected Environment) describes Hanford Site climate and meteorology, geology, hydrology, ecology, cultural, archaeological, and historical resources, socioeconomics, occupational safety, and noise. Chapter 6.0 (Statutory and Regulatory Requirements) describes federal and state laws and regulations, DOE directives and permits, and presidential executive orders that are applicable to the NEPA documents prepared for Hanford Site activities.« less

  17. The biologically active zone in upland habitats at the Hanford Site, Washington, USA: Focus on plant rooting depth and biomobilization.

    PubMed

    Lovtang, Sara; Delistraty, Damon; Rochette, Elizabeth

    2018-07-01

    We challenge the suggestion by Sample et al. (2015) that a depth of 305 cm (10 ft) exceeds the depth of biological activity in soils at the Hanford Site, Washington, USA, or similar sites. Instead, we support the standard point of compliance, identified in the Model Toxics Control Act in the state of Washington, which specifies a depth of 457 cm (15 ft) for the protection of both human and ecological receptors at the Hanford Site. Our position is based on additional information considered in our expanded review of the literature, the influence of a changing environment over time, plant community dynamics at the Hanford Site, and inherent uncertainty in the Sample et al. (2015) analysis. Integr Environ Assess Manag 2018;14:442-446. © 2018 SETAC. © 2018 SETAC.

  18. HANFORD WASTE MINERALOGY REFERENCE REPORT

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    DISSELKAMP RS

    2010-06-29

    This report lists the observed mineral phases present in the Hanford tanks. This task was accomplished by performing a review of numerous reports that used experimental techniques including, but not limited to: x-ray diffraction, polarized light microscopy, scanning electron microscopy, transmission electron microscopy, energy dispersive spectroscopy, electron energy loss spectroscopy, and particle size distribution analyses. This report contains tables that can be used as a quick reference to identify the crystal phases observed in Hanford waste.

  19. HANFORD WASTE MINEROLOGY REFERENCE REPORT

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    DISSELKAMP RS

    2010-06-18

    This report lists the observed mineral phase phases present in the Hanford tanks. This task was accomplished by performing a review of numerous reports using experimental techniques including, but not limited to: x-ray diffraction, polarized light microscopy, scanning electron microscopy, transmission electron microscopy, energy dispersive spectroscopy, electron energy loss spectroscopy, and particle size distribution analyses. This report contains tables that can be used as a quick reference to identify the crystal phases present observed in Hanford waste.

  20. Hanford facility dangerous waste permit application, general information portion. Revision 3

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sonnichsen, J.C.

    1997-08-21

    for which Part B permit application documentation has been, or is anticipated to be, submitted. Documentation for treatment, storage, and/or disposal units undergoing closure, or for units that are, or are anticipated to be, dispositioned through other options, will continue to be submitted by the Permittees in accordance with the provisions of the Hanford Federal Facility Agreement and Consent Order. However, the scope of the General Information Portion includes information that could be used to discuss operating units, units undergoing closure, or units being dispositioned through other options. Both the General Information and Unit-Specific portions of the Hanford Facility Dangerous Waste Permit Application address the contents of the Part B permit application guidance documentation prepared by the Washington State Department of Ecology and the U.S. Environmental Protection Agency, with additional information needs defined by revisions of Washington Administrative Code 173-303 and by the Hazardous and Solid Waste Amendments. Documentation contained in the General Information Portion is broader in nature and could be used by multiple treatment, storage, and/or disposal units (i.e., either operating units, units undergoing closure, or units being dispositioned through other options).« less

  1. 75 FR 64718 - Environmental Management Site-Specific Advisory Board, Hanford

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-10-20

    ... DEPARTMENT OF ENERGY Environmental Management Site-Specific Advisory Board, Hanford AGENCY... Environmental Management Site-Specific Advisory Board (EM SSAB), Hanford. The Federal Advisory Committee Act.... ADDRESSES: Red Lion Hanford House, 802 George Washington Way, Richland, Washington. FOR FURTHER INFORMATION...

  2. 76 FR 4645 - Environmental Management Site-Specific Advisory Board, Hanford

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-01-26

    ... DEPARTMENT OF ENERGY Environmental Management Site-Specific Advisory Board, Hanford AGENCY... Environmental Management Site-Specific Advisory Board (EM SSAB), Hanford. The Federal Advisory Committee Act.... ADDRESSES: Red Lion Hanford House, 802 George Washington Way, Richland, Washington 99352. FOR FURTHER...

  3. PROGRESS WITH K BASINS SLUDGE RETRIEVAL STABILIZATION & PACKAGING AT THE HANFORD NUCLEAR SITE

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    KNOLLMEYER, P.M.; PHILLIPS, C; TOWNSON, P.S.

    This paper shows how Fluor Hanford and BNG America have combined nuclear plant skills from the U.S. and the U.K. to devise methods to retrieve and treat the sludge that has accumulated in K Basins at the Hanford Site over many years. Retrieving the sludge is the final stage in removing fuel and sludge from the basins to allow them to be decontaminated and decommissioned, so as to remove the threat of contamination of the Columbia River. A description is given of sludge retrieval using vacuum lances and specially developed nozzles and pumps into Consolidation Containers within the basins. Themore » special attention that had to be paid to the heat generation and potential criticality issues with the irradiated uranium-containing sludge is described. The processes developed to re-mobilize the sludge from the Consolidation Containers and pump it through flexible and transportable hose-in-hose piping to the treatment facility are explained with particular note made of dealing with the abrasive nature of the sludge. The treatment facility, housed in an existing Hanford building, is described, and the uranium-corrosion and grout packaging processes explained. The uranium corrosion process is a robust, tempered process very suitable for dealing with a range of differing sludge compositions. Optimization and simplification of the original sludge corrosion process design is described and the use of transportable and reusable equipment is indicated. The processes and techniques described in the paper are shown to have wide applicability to nuclear cleanup.« less

  4. Hanford Environmental Dose Reconstruction Project

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Cannon, S.D.; Finch, S.M.

    1992-10-01

    The objective of the Hanford Environmental Dose Reconstruction (HEDR) Project is to estimate the radiation doses that individuals and populations could have received from nuclear operations at Hanford since 1944. The independent Technical Steering Panel (TSP) provides technical direction. The project is divided into the following technical tasks. These tasks correspond to the path radionuclides followed from release to impact on humans (dose estimates):Source Terms, Environmental Transport, Environmental Monitoring Data, Demography, Food Consumption, and Agriculture, and Environmental Pathways and Dose Estimates.

  5. Biodiversity of freshwater fish of a protected river in India: comparison with unprotected habitat.

    PubMed

    Sarkar, Uttam Kumar; Pathak, Ajey Kumar; Tyagi, Lalit Kumar; Srivastava, Satyendra Mohan; Singh, Shri Prakash; Dubey, Vineet Kumar

    2013-03-01

    In India, freshwater environments are experiencing serious threats to biodiversity, and there is an urgent priority for the search of alternative techniques to promote fish biodiversity conservation and management. With this aim, the present study was undertaken to assess the fish biodiversity within and outside a river protected area, and to evaluate whether the protected river area provides some benefits to riverine fish biodiversity. To assess this, the pattern of freshwater fish diversity was studied in river Gerua, along with some physicochemical conditions, from April 2000 to March 2004. For this, a comparison was made between a 15km stretch of a protected area (Katerniaghat Wildlife Sanctuary), and an unprotected one 85km downstream. In each site some physicochemical conditions were obtained, and fish were caught by normal gears and the diversity per site described. Our results showed that water temperature resulted warmest during the pre-monsoon season (25 degreeC) and low during the winter (14-15 degreeC); turbidity considerably varied by season. In the protected area, a total of 87 species belonging to eight orders, 22 families and 52 genera were collected; while a maximum of 59 species belonging to six orders, 20 families and 42 genera were recorded from the unprotected areas. Cyprinids were found to be the most dominant genera and Salmostoma bacaila was the most numerous species in the sanctuary area. Other numerous species were Eutropiichthys vacha, Notopterus notopterus, Clupisoma garua and Bagarius bagarius. The results indicated more species, greater abundances, larger individuals, and higher number of endangered fishes within the sanctuary area when compared to the unprotected area. Analysis on the mean abundance of endangered and vulnerable species for the evaluated areas in the sanctuary versus unprotected ones indicated significant differences in fish abundance (p<0.05). These results showed that this riverine protected area could be important

  6. A preliminary survey of selected structures on the Hanford Site for Townsend`s big-eared bat (Plecotus townsendii)

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Becker, J.M.

    A preliminary survey of selected structures on the Hanford Site for Townsend`s big-wed bat (Plecotus townsendii) was conducted by Pacific Northwest Laboratory (PNL) in August and September 1993. The Westinghouse Hanford Company (WHC) commissioned PNL to evaluate the potential for this bat, a candidate for federal protection, to occur in buildings potentially affected by decontamination and decommissioning operations under the Comprehensive Environmental Response, Compensation, and Liability Act (CERCLA). The project involved identifying structures that contained bats and determining whether Townsend`s big-eared bats were among those present. The survey focused on deactivated reactors, other buildings in the 100D and 100K Areas,more » canyon buildings in the 200 Areas, and other structures reported to contain bats. During this six-week survey, Townsend`s big-wed bat was not located. However, some structures likely to contain bat colonies were unable to be surveyed and others were only partially surveyed. These require further investigation over a longer period of time before a final determination on this species can be made. Of the buildings surveyed, the reactors and their associated buildings provided roosting sites most used by bats. No bats were found in canyon buildings in the 200 areas. These buildings are occupied, well-lighted, and offer few entrances for bats. They are also probably too distant from the Columbia River Shoreline, which constitutes the most important bat foraging habitat. We recommend that the remaining reactors and buildings, with emphasis on subterranean tunnels and basements, be surveyed during a more extended time period, i.e., June through September 1994.« less

  7. Radiological risk from consuming fish and wildlife to Native Americans on the Hanford Site (USA).

    PubMed

    Delistraty, Damon; Van Verst, Scott; Rochette, Elizabeth A

    2010-02-01

    Historical operations at the Hanford Site (Washington State, USA) have released a wide array of non-radionuclide and radionuclide contaminants into the environment. As a result of stakeholder concerns, Native American exposure scenarios have been integrated into Hanford risk assessments. Because its contribution to radiological risk to Native Americans is culturally and geographically specific but quantitatively uncertain, a fish and wildlife ingestion pathway was examined in this study. Adult consumption rates were derived from 20 Native American scenarios (based on 12 studies) at Hanford, and tissue concentrations of key radionuclides in fish, game birds, and game mammals were compiled from the Hanford Environmental Information System (HEIS) database for a recent time interval (1995-2007) during the post-operational period. It was assumed that skeletal muscle comprised 90% of intake, while other tissues accounted for the remainder. Acknowledging data gaps, median concentrations of eight radionuclides (i.e., Co-60, Cs-137, Sr-90, Tc-99, U-234, U-238, Pu-238, and Pu-239/240) in skeletal muscle and other tissues were below 0.01 and 1 pCi/g wet wt, respectively. These radionuclide concentrations were not significantly different (Bonferroni P>0.05) on and off the Hanford Site. Despite no observed difference between onsite and offsite tissue concentrations, radiation dose and risk were calculated for the fish and wildlife ingestion pathway using onsite data. With median consumption rates and radionuclide tissue concentrations, skeletal muscle provided 42% of the dose, while other tissues (primarily bone and carcass) accounted for 58%. In terms of biota, fish ingestion was the largest contributor to dose (64%). Among radionuclides, Sr-90 was dominant, accounting for 47% of the dose. At median intake and radionuclide levels, estimated annual dose (0.36 mrem/yr) was below a dose limit of 15 mrem/yr recommended by the United States Environmental Protection Agency (USEPA

  8. Radiological risk from consuming fish and wildlife to Native Americans on the Hanford Site (USA)

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Delistraty, Damon, E-mail: DDEL461@ecy.wa.gov; Verst, Scott Van; Rochette, Elizabeth A.

    Historical operations at the Hanford Site (Washington State, USA) have released a wide array of non-radionuclide and radionuclide contaminants into the environment. As a result of stakeholder concerns, Native American exposure scenarios have been integrated into Hanford risk assessments. Because its contribution to radiological risk to Native Americans is culturally and geographically specific but quantitatively uncertain, a fish and wildlife ingestion pathway was examined in this study. Adult consumption rates were derived from 20 Native American scenarios (based on 12 studies) at Hanford, and tissue concentrations of key radionuclides in fish, game birds, and game mammals were compiled from themore » Hanford Environmental Information System (HEIS) database for a recent time interval (1995-2007) during the post-operational period. It was assumed that skeletal muscle comprised 90% of intake, while other tissues accounted for the remainder. Acknowledging data gaps, median concentrations of eight radionuclides (i.e., Co-60, Cs-137, Sr-90, Tc-99, U-234, U-238, Pu-238, and Pu-239/240) in skeletal muscle and other tissues were below 0.01 and 1 pCi/g wet wt, respectively. These radionuclide concentrations were not significantly different (Bonferroni P>0.05) on and off the Hanford Site. Despite no observed difference between onsite and offsite tissue concentrations, radiation dose and risk were calculated for the fish and wildlife ingestion pathway using onsite data. With median consumption rates and radionuclide tissue concentrations, skeletal muscle provided 42% of the dose, while other tissues (primarily bone and carcass) accounted for 58%. In terms of biota, fish ingestion was the largest contributor to dose (64%). Among radionuclides, Sr-90 was dominant, accounting for 47% of the dose. At median intake and radionuclide levels, estimated annual dose (0.36 mrem/yr) was below a dose limit of 15 mrem/yr recommended by the United States Environmental Protection Agency

  9. 75 FR 8050 - Environmental Management Site-Specific Advisory Board, Hanford

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-02-23

    ... DEPARTMENT OF ENERGY Environmental Management Site-Specific Advisory Board, Hanford AGENCY... Environmental Management Site-Specific Advisory Board (EM SSAB), Hanford. The Federal Advisory Committee Act...: The meeting is open to the public. The EM SSAB, Hanford, welcomes the attendance of the public at its...

  10. Investigation of anatomical anomalies in Hanford Site mule deer

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Tiller, B.L.; Cadwell, L.L.; Poston, T.M.

    Rocky Mountain mule deer (Odocoileus hemionus hemionus), common residents of the Hanford Site, are an important part of the shrub-steppe ecosystem as well as being valued for aesthetics and hunting. Because mule deer have been protected from hunting on the Site for 50 years, the herd has developed unique population characteristics, including a large number of old animals and males with either large or atypically developed antlers, in contrast to other herds in the semi-arid regions of the Northwest. Hanford Site mule deer have been studied since 1991 because of the herd`s unique nature and high degree of public interest.more » A special study of the mule deer herd was initiated in 1993 after observations were made of a relatively large number of male deer with atypical, velvet-covered antlers. This report specifically describes our analyses of adult male deer found on the Site with atypical antlers. The report includes estimates of population densities and composition; home ranges, habitat uses, and dietary habits; natural and human-induced causes of mortality; and the herd`s overall health and reproductive status.« less

  11. Hanford Site Environmental Report for Calendar Year 2002

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Poston, Ted M.; Hanf, Robert W.; Dirkes, Roger L.

    This report is prepared annually to satisfy the requirements of DOE Orders. The report provides an overview of activities at the Hanford Site during 2002 and demonstrates the site's compliance with applicable federal, state, and local environmental laws, regulations, executive orders, and DOE policies; and to summarize environmental data that characterize Hanford Site environmental management performance. The purpose of the report is to provide useful summary information to members of the public, public officials, regulators, Hanford contractors, and elected representatives.

  12. Assessment of Habitat and Streamflow Requirements for Habitat Protection, Usquepaug-Queen River, Rhode Island, 1999-2000

    USGS Publications Warehouse

    Armstrong, David S.; Parker, Gene W.

    2003-01-01

    species that would have been expected to occur in this area. Streamflow records from the gaging station Usquepaug River near Usquepaug were used to (1) determine streamflow requirements for habitat protection by use of the Tennant method, and (2) define a flow regime that mimics the river's natural flow regime by use of the Range of Variability Approach. The Tennant streamflow requirement, defined as 30 percent of the mean annual flow, was 0.64 cubic feet per second per square mile (ft3/s/mi2). This requirement should be considered an initial estimate because flows measured at the Usquepaug River gaging station are reduced by water withdrawals upstream from the gage. The streamflow requirements may need to be revised once a watershed-scale precipitationrunoff model of the Usquepaug River is complete and a simulation of streamflows without water withdrawals has been determined. Streamflow requirements for habitat protection were also determined at seven riffle sites by use of the Wetted-Perimeter and R2Cross methods. Two of these sites were on the mainstem Usquepaug River, one was on the mainstem Queen River, and four were on tributaries and the headwaters of the Queen River. Median streamflow requirements for habitat protection for these sites were 0.41 (ft3/s)/mi2, determined by the Wetted-Perimeter method and 0.72 ft3/s/mi2, determined by the R2Cross method.

  13. Tackling the Challenge of Deep Vadose Zone Remediation at the Hanford Site

    NASA Astrophysics Data System (ADS)

    Morse, J. G.; Wellman, D. M.; Gephart, R.

    2010-12-01

    The Central Plateau of the Hanford Site in Washington State contains some 800 waste disposal sites where 1.7 trillion liters of contaminated water was once discharged into the subsurface. Most of these sites received liquids from the chemical reprocessing of spent uranium fuel to recover plutonium. In addition, 67 single shell tanks have leaked or are suspected to have leaked 3.8 million liters of high alkali and aluminate rich cesium-contaminated liquids into the sediment. Today, this inventory of subsurface contamination contains an estimated 550,000 curies of radioactivity and 150 million kg (165,000 tons) of metals and hazardous chemicals. Radionuclides range from mobile 99Tc to more immobilized 137Cs, 241Am, uranium, and plutonium. A significant fraction of these contaminants likely remain within the deep vadose zone. Plumes of groundwater containing tritium, nitrate, 129I and other contaminants have migrated through the vadose zone and now extend outward from the Central Plateau to the Columbia River. During most of Hanford Site history, subsurface studies focused on groundwater monitoring and characterization to support waste management decisions. Deep vadose zone studies were not a priority because waste practices relied upon that zone to buffer contaminant releases into the underlying aquifer. Remediation of the deep vadose zone is now central to Hanford Site cleanup because these sediments can provide an ongoing source of contamination to the aquifer and therefore to the Columbia River. However, characterization and remediation of the deep vadose zone pose some unique challenges. These include sediment thickness; contaminant depth; coupled geohydrologic, geochemical, and microbial processes controlling contaminant spread; limited availability and effectiveness of traditional characterization tools and cleanup remedies; and predicting contaminant behavior and remediation performance over long time periods and across molecular to field scales. The U

  14. Methods and Models of the Hanford Internal Dosimetry Program, PNNL-MA-860

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Carbaugh, Eugene H.; Bihl, Donald E.; Maclellan, Jay A.

    2009-09-30

    The Hanford Internal Dosimetry Program (HIDP) provides internal dosimetry support services for operations at the Hanford Site. The HIDP is staffed and managed by the Radiation and Health Technology group, within the Pacific Northwest National Laboratory (PNNL). Operations supported by the HIDP include research and development, the decontamination and decommissioning of facilities formerly used to produce and purify plutonium, and waste management activities. Radioelements of particular interest are plutonium, uranium, americium, tritium, and the fission and activation product radionuclides 137Cs, 90Sr, and 60Co. This manual describes the technical basis for the design of the routine bioassay monitoring program and formore » assessment of internal dose. The purposes of the manual are as follows: • Provide assurance that the HIDP derives from a sound technical base. • Promote the consistency and continuity of routine program activities. • Provide a historical record. • Serve as a technical reference for radiation protection personnel. • Aid in identifying and planning for future needs.« less

  15. DASHBOARDS & CONTROL CHARTS EXPERIENCES IN IMPROVING SAFETY AT HANFORD WASHINGTON

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    PREVETTE, S.S.

    2006-02-27

    The aim of this paper is to demonstrate the integration of safety methodology, quality tools, leadership, and teamwork at Hanford and their significant positive impact on safe performance of work. Dashboards, Leading Indicators, Control charts, Pareto Charts, Dr. W. Edward Deming's Red Bead Experiment, and Dr. Deming's System of Profound Knowledge have been the principal tools and theory of an integrated management system. Coupled with involved leadership and teamwork, they have led to significant improvements in worker safety and protection, and environmental restoration at one of the nation's largest nuclear cleanup sites.

  16. A global framework for future costs and benefits of river-flood protection in urban areas

    NASA Astrophysics Data System (ADS)

    Ward, Philip J.; Jongman, Brenden; Aerts, Jeroen C. J. H.; Bates, Paul D.; Botzen, Wouter J. W.; Diaz Loaiza, Andres; Hallegatte, Stephane; Kind, Jarl M.; Kwadijk, Jaap; Scussolini, Paolo; Winsemius, Hessel C.

    2017-09-01

    Floods cause billions of dollars of damage each year, and flood risks are expected to increase due to socio-economic development, subsidence, and climate change. Implementing additional flood risk management measures can limit losses, protecting people and livelihoods. Whilst several models have been developed to assess global-scale river-flood risk, methods for evaluating flood risk management investments globally are lacking. Here, we present a framework for assessing costs and benefits of structural flood protection measures in urban areas around the world. We demonstrate its use under different assumptions of current and future climate change and socio-economic development. Under these assumptions, investments in dykes may be economically attractive for reducing risk in large parts of the world, but not everywhere. In some regions, economically efficient investments could reduce future flood risk below today’s levels, in spite of climate change and economic growth. We also demonstrate the sensitivity of the results to different assumptions and parameters. The framework can be used to identify regions where river-flood protection investments should be prioritized, or where other risk-reducing strategies should be emphasized.

  17. Hanford Site National Environmental Policy Act (NEPA) Characterization

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Cushing, C.E.

    1992-12-01

    This fifth revision of the Hanford Site National Environmental Policy (NEPA) Characterization presents current environmental data regarding the Hanford Site and its immediate environs. This information is intended for use in preparing Site-related NEPA documentation. Information is presented on climate and meteorology, geology and hydrology, ecology, history and archaeology, socioeconomics, land use, and noise levels, prepared by Pacific Northwest Laboratory (PNL) staff. Models are described that are to be used in simulating realized or potential impacts from nuclear materials at the Hanford Site. Included are models of radionuclide transport in groundwater and atmospheric pathways, and of radiation dose to populationsmore » via all known pathways from known initial conditions. Federal and state regulations, DOE orders and permits, and environmental standards directly applicable for the NEPA documents at the Hanford Site, are provided.« less

  18. Hanford Site National Environmental Policy Act (NEPA) Characterization Report

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Neitzel, Duane A.; Bunn, Amoret L.; Cannon, Sandra D.

    2004-09-22

    This document describes the U.S. Department of Energy's (DOE) Hanford Site environment. It is updated each year and is intended to provide a consistent description of the Hanford Site environment for the many National Environmental Policy Act (NEPA) documents being prepared by DOE contractors. No statements of significance or environmental consequences are provided. This year's report is the sixteenth revision of the original document published in 1988 and is (until replaced by the seventeenth revision) the only version that is relevant for use in the preparation of Hanford NEPA, State Environmental Policy Act (SEPA), and Comprehensive Environmental Response, Compensation, andmore » Liability Act (CERCLA) documents. The two chapters included in this document (Chapters 4 and 6) are numbered to correspond to the chapters where such information is typically presented in environmental impact statements (Weiss) and other Hanford Site NEPA or CERCLA documentation. Chapter 4.0 (Affected Environment) describes Hanford Site climate and meteorology, geology, hydrology, ecology, cultural, archaeological, and historical resources, socioeconomics, occupational safety and health, and noise. Chapter 6.0 (Statutory and Regulatory Requirements) describes federal and state laws and regulations, DOE directives and permits, and presidential executive orders that are applicable to the NEPA documents prepared for Hanford Site activities.« less

  19. Hanford cultural resources management plan

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Chatters, J.C.

    1989-06-01

    As a federal agency, the US Department of Energy (DOE) has been directed by Congress and the President to provide leadership in the preservation of prehistoric, historical, and cultural resources on lands it administers, to manage these in a spirit of stewardship for future generations, and to protect and preserve the rights of Native Americans to religious freedom. The purpose of this document is to describe how the DOE-Richland Operations (DOE-RL) will meet those responsibilities on the Hanford Site, pursuant to guidelines for Agency Responsibilities under the Historic Preservation Act (FR 53:31, February 17, 1988). This document is intended formore » multiple uses. Among other things, the text is designed as a manual for cultural resource managers to follow and as an explanation of the process of cultural resource regulatory compliance for the DOE-RL and Site contractors. 10 refs., 17 figs., 11 tabs.« less

  20. GrayQb TM Single-Faced Version 2 (SF2) Hanford Plutonium Reclamation Facility (PRF) deployment report

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Plummer, J. R.; Immel, D. M.; Serrato, M. G.

    2015-11-18

    The Savannah River National Laboratory (SRNL) in partnership with CH2M Plateau Remediation Company (CHPRC) deployed the GrayQb TM SF2 radiation imaging device at the Hanford Plutonium Reclamation Facility (PRF) to assist in the radiological characterization of the canyon. The deployment goal was to locate radiological contamination hot spots in the PRF canyon, where pencil tanks were removed and decontamination/debris removal operations are on-going, to support the CHPRC facility decontamination and decommissioning (D&D) effort. The PRF canyon D&D effort supports completion of the CHPRC Plutonium Finishing Plant Decommissioning Project. The GrayQb TM SF2 (Single Faced Version 2) is a non-destructive examinationmore » device developed by SRNL to generate radiation contour maps showing source locations and relative radiological levels present in the area under examination. The Hanford PRF GrayQbTM Deployment was sponsored by CH2M Plateau Remediation Company (CHPRC) through the DOE Richland Operations Office, Inter-Entity Work Order (IEWO), DOE-RL IEWO- M0SR900210.« less

  1. Hanford analytical sample projections FY 1998--FY 2002

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Joyce, S.M.

    1998-02-12

    Analytical Services projections are compiled for the Hanford site based on inputs from the major programs for the years 1998 through 2002. Projections are categorized by radiation level, protocol, sample matrix and program. Analyses requirements are also presented. This document summarizes the Hanford sample projections for fiscal years 1998 to 2002. Sample projections are based on inputs submitted to Analytical Services covering Environmental Restoration, Tank Waste Remediation Systems (TWRS), Solid Waste, Liquid Effluents, Spent Nuclear Fuels, Transition Projects, Site Monitoring, Industrial Hygiene, Analytical Services and miscellaneous Hanford support activities. In addition, details on laboratory scale technology (development) work, Sample Management,more » and Data Management activities are included. This information will be used by Hanford Analytical Services (HAS) and the Sample Management Working Group (SMWG) to assure that laboratories and resources are available and effectively utilized to meet these documented needs.« less

  2. Office of River Protection Integrated Safety Management System Description

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    CLARK, D.L.

    Revision O was never issued. Finding safe and environmentally sound methods of storage and disposal of 54 million gallons of highly radioactive waste contained in 177 underground tanks is the largest challenge of Hanford cleanup. TWRS was established in 1991 and continues to integrate all aspects of the treatment and management of the high-level radioactive waste tanks. In fiscal Year 1997, program objectives were advanced in a number of areas. RL TWRS refocused the program toward retrieving, treating, and immobilizing the tank wastes, while maintaining safety as first priority. Moving from a mode of storing the wastes to getting themore » waste out of the tanks will provide the greatest cleanup return on the investment and eliminate costly mortgage continuance. There were a number of safety-related achievements in FY1997. The first high priority safety issue was resolved with the removal of 16 tanks from the ''Wyden Watch List''. The list, brought forward by Senator Ron Wyden of Oregon, identified various Hanford safety issues needing attention. One of these issues was ferrocyanide, a chemical present in 24 tanks. Although ferrocyanide can ignite at high temperature, analysis found that the chemical has decomposed into harmless compounds and is no longer a concern.« less

  3. Suggestions on water sources protection for the Gan River of Jiangxi, People's Republic of China

    NASA Astrophysics Data System (ADS)

    Fu, C.; Jiang, Z.

    2007-05-01

    standard. Based on the characteristic of soil erosion in the mountain areas in the upstream portion of the Gan River, Jiangxi Province has carried out a strategy of comprehensive treatment of small river basins since 1983. A total of 374 small basins in Ganzhou city have been treated and 0.5 million hectare of soil erosion area have been treated which is 78.2 percent of the whole soil erosion in this region. Some suggestions on protection of water sources have been proposed as: to continue the comprehensive treatment of soil erosion, to enhance the treatment capacity of domestic sewage, to optimize the treatment technology and control sewage in the cities along the river, to formulate a plan for the basin water resources utilization, and to enhance the performance capacity of environmental protection laws and regulations.

  4. Disposal of Radioactive Waste at Hanford Creates Problems

    ERIC Educational Resources Information Center

    Chemical and Engineering News, 1978

    1978-01-01

    Radioactive storage tanks at the Hanford facility have developed leaks. The situation is presently considered safe, but serious. A report from the National Academy of Science has recommended that the wastes be converted to stable solids and stored at another site on the Hanford Reservation. (Author/MA)

  5. Leaching Characteristics of Hanford Ferrocyanide Wastes

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Edwards, Matthew K.; Fiskum, Sandra K.; Peterson, Reid A.

    2009-12-21

    A series of leach tests were performed on actual Hanford Site tank wastes in support of the Hanford Tank Waste Treatment and Immobilization Plant (WTP). The samples were targeted composite slurries of high-level tank waste materials representing major complex, radioactive, tank waste mixtures at the Hanford Site. Using a filtration/leaching apparatus, sample solids were concentrated, caustic leached, and washed under conditions representative of those planned for the Pretreatment Facility in the WTP. Caustic leaching was performed to assess the mobilization of aluminum (as gibbsite, Al[OH]3, and boehmite AlO[OH]), phosphates [PO43-], chromium [Cr3+] and, to a lesser extent, oxalates [C2O42-]). Ferrocyanidemore » waste released the solid phase 137Cs during caustic leaching; this was antithetical to the other Hanford waste types studied. Previous testing on ferrocyanide tank waste focused on the aging of the ferrocyanide salt complex and its thermal compatibilities with nitrites and nitrates. Few studies, however, examined cesium mobilization in the waste. Careful consideration should be given to the pretreatment of ferrocyanide wastes in light of this new observed behavior, given the fact that previous testing on simulants indicates a vastly different cesium mobility in this waste form. The discourse of this work will address the overall ferrocyanide leaching characteristics as well as the behavior of the 137Cs during leaching.« less

  6. Hanford Reach Fall Chinook Redd Monitoring Report for Calendar Year 2013

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lindsey, Cole T.; Nugent, John J.

    2014-02-10

    The U.S. Department of Energy, Richland Operations Office (DOE-RL) conducts ecological monitoring on the Hanford Site to collect and track data needed to ensure compliance with an array of environmental laws, regulations, and policies governing DOE activities. Ecological monitoring data provide baseline information about the plants, animals, and habitat under DOE-RL stewardship at Hanford required for decision-making under the National Environmental Policy Act (NEPA) and Comprehensive Environmental Response, Compensation, and Liability Act (CERCLA). The Hanford Site Comprehensive Land Use Plan (CLUP, DOE/EIS-0222-F) which is the Environmental Impact Statement for Hanford Site activities, helps ensure that DOE-RL, its contractors, and othermore » entities conducting activities on the Hanford Site are in compliance with NEPA.« less

  7. Hanford Site Black-Tailed Jackrabbit Monitoring Report for Fiscal Year 2013

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lindsey, Cole T.; Nugent, John J.; Wilde, Justin W.

    2014-02-13

    The U.S. Department of Energy, Richland Operations Office (DOE-RL) conducts ecological monitoring on the Hanford Site to collect and track data needed to ensure compliance with an array of environmental laws, regulations, and policies governing DOE activities. Ecological monitoring data provide baseline information about the plants, animals, and habitat under DOE-RL stewardship at Hanford required for decision-making under the National Environmental Policy Act (NEPA) and Comprehensive Environmental Response, Compensation, and Liability Act (CERCLA). The Hanford Site Comprehensive Land Use Plan (CLUP, DOE/EIS-0222-F) which is the Environmental Impact Statement for Hanford Site activities, helps ensure that DOE-RL, its contractors, and othermore » entities conducting activities on the Hanford Site are in compliance with NEPA.« less

  8. Raptors of the Hanford Site and nearby areas of southcentral Washington

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Fitzner, R.E.; Rickard, W.H.; Cadwell, L.L.

    1981-05-01

    This report is concerned with the birds of prey which use the Hanford Site not only during the nesting season but throughout the year. An ecological treatment of five nesting owls (great horned, long-eared, short-eared, barn and burrowing) and five nesting hawks (marsh hawk, red-tailed hawk, Swainson's hawk, prairie falcon and American kestrel) is provided and supportive information on non-nesting species is presented. Factors which control raptor densities and population dynamics throughout all seasons of the year are discussed. Information is also provided for raptors from other areas of southcentral Washington in order to yield a comprehensive picture of howmore » the Hanford Site fits in with regional bird of prey populations. The following were the objectives of this study: (1) to determine the numbers of birds of prey nesting on the Hanford Site, (2) to document the reproductive chronology of each nesting raptor species, (3) to provide analyses of food habits of birds of prey on the Hanford Site coupled with prey abundance data, (4) to determine the productivity of the dominant large birds of prey on the Hanford Site, (5) to determine the distribution and land use patterns of all raptors on the Hanford Site, (6) to determine the kinds and relative abundance of non-nesting raptors on the Hanford Site and adjacent areas of southcentral Washington (7) to document present land use practices on the Hanford Site and their effects on raptors, (8) to document radionuclide levels in birds of prey on the Hanford Site, and (9) to determine the role of birds of prey in radioecological monitoring.« less

  9. Building Nuclear Communities: The Hanford Education Action League.

    ERIC Educational Resources Information Center

    Ratliff, Jeanne; Salvador, Michael

    Many scholars have examined the jeremiad in American rhetoric and political discourse. The Hanford Education Action League (HEAL), which influenced policy changes in the operations of the Hanford Nuclear Reservation in Washington, is a social movement organization whose founding members used the jeremiad to create a symbolic community which…

  10. Fluor Daniel Hanford implementation plan for DOE Order 5480.28, Natural phenomena hazards mitigation

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Conrads, T.J.

    1997-09-12

    Natural phenomena hazards (NPH) are unexpected acts of nature that pose a threat or danger to workers, the public, or the environment. Earthquakes, extreme winds (hurricane and tornado), snow, flooding, volcanic ashfall, and lightning strikes are examples of NPH that could occur at the Hanford Site. U.S. Department of Energy (DOE) policy requires facilities to be designed, constructed, and operated in a manner that protects workers, the public, and the environment from hazards caused by natural phenomena. DOE Order 5480.28, Natural Phenomena Hazards Mitigation, includes rigorous new natural phenomena criteria for the design of new DOE facilities, as well asmore » for the evaluation and, if necessary, upgrade of existing DOE facilities. The Order was transmitted to Westinghouse Hanford Company in 1993 for compliance and is also identified in the Project Hanford Management Contract, Section J, Appendix C. Criteria and requirements of DOE Order 5480.28 are included in five standards, the last of which, DOE-STD-1023, was released in fiscal year 1996. Because the Order was released before all of its required standards were released, enforcement of the Order was waived pending release of the last standard and determination of an in-force date by DOE Richland Operations Office (DOE-RL). Agreement also was reached between the Management and Operations Contractor and DOE-RL that the Order would become enforceable for new structures, systems, and components (SSCS) 60 days following issue of a new order-based design criteria in HNF-PRO-97, Engineering Design and Evaluation. The order also requires that commitments addressing existing SSCs be included in an implementation plan that is to be issued 1 year following the release of the last standard. Subsequently, WHC-SP-1175, Westinghouse Hanford Company Implementation Plan for DOE Order 5480.28, Natural Phenomena Hazards Mitigation, Rev. 0, was issued in November 1996, and this document, HNF-SP-1175, Fluor Daniel Hanford

  11. Status of native stream fishes within selected protected areas of Niobrara River in western Nebraska

    USGS Publications Warehouse

    Spurgeon, Jonathan J.; Stasiak, Richard H.; Cunningham, George R.; Pope, Kevin L.; Pegg, Mark A.

    2014-01-01

    Lotic systems within the Great Plains are characterized by highly fluctuating conditions through both space and time. Fishes inhabiting these systems have adopted specific life-history strategies to survive in such environments; however, anthropogenic disturbance to prairie streams has resulted in declines and extirpation of many native stream fishes. Terrestrial protected areas (i.e., parks and reserves) are designated to support native flora and fauna and, it is assumed, to provide protection to native fishes. We assessed the presence and relative abundance of stream fish populations within protected areas along the Niobrara River in western Nebraska based on data collected during 1979, 1989, 2008, and 2011. The spatial extent of protection, landscape changes resulting in degraded physiochemical parameters, and introduced species may reduce the effectiveness of these terrestrial protected areas in protecting native fishes in Great Plains stream environments.

  12. Conversion and correction factors for historical measurements of iodine-131 in Hanford-area vegetation, 1945--1947. Hanford Environmental Dose Reconstruction Project

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Mart, E.I.; Denham, D.H.; Thiede, M.E.

    1993-12-01

    This report is a result of the Hanford Environmental Dose Reconstruction (HEDR) Project whose goal is to estimate the radiation dose that individuals could have received from emissions since 1944 at the U.S. Department of Energy`s (DOE) Hanford Site near Richland, Washington. The HEDR Project is conducted by Battelle, Pacific Northwest Laboratories (BNW). One of the radionuclides emitted that would affect the radiation dose was iodine-131. This report describes in detail the reconstructed conversion and correction factors for historical measurements of iodine-131 in Hanford-area vegetation which was collected from the beginning of October 1945 through the end of December 1947.

  13. Hanford Site National Environmental Policy Act (NEPA) Characterization, Revision 15

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Neitzel, Duane A.; Bunn, Amoret L.; Burk, Kenneth W.

    2003-09-01

    This document describes the U.S. Department of Energy's (DOE) Hanford Site environment. It is updated each year and is intended to provide a consistent description of the Hanford Site environment for the many National Environmental Policy Act (NEPA) documents being prepared by DOE contractors. No statements of significance or environmental consequences are provided. This year's report is the thirteenth revision of the original document published in 1988 and is (until replaced by the fourteenth revision) the only version that is relevant for use in the preparation of Hanford NEPA, State Environmental Policy Act (SEPA), and Comprehensive Environmental Response, Compensation, andmore » Liability Act (CERCLA) documents. The two chapters included in this document (Chapters 4 and 6) are numbered to correspond to the chapters where such information is typically presented in environmental impact statements (Weiss) and other Hanford Site NEPA or CERCLA documentation. Chapter 4.0 (Affected Environment) describes Hanford Site climate and meteorology, geology, hydrology, ecology, cultural, archaeological, and historical resources, socioeconomics, occupational safety, and noise. Chapter 6.0 (Statutory and Regulatory Requirements) describes federal and state laws and regulations, DOE directives and permits, and presidential executive orders that are applicable to the NEPA documents prepared for Hanford Site activities.« less

  14. Hanford Soil Inventory Model (SIM-v2) Calculated Radionuclide Inventory of Direct Liquid Discharges to Soil in the Hanford Site's 200 Areas.

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Nichols, William E.; Zaher, U.; Agnew, S.

    The Hanford soil inventory model (SIM) provides the basic radionuclide and chemical soil inventories from historical liquid discharges to about 400 sites at the Hanford Site. Although liquid discharge inventory for chemicals is part of the SIM implementation, only radionuclide inventory is discussed here since the focus of this ECF is on providing radionuclides inputs for the composite analysis (CA) per DOE Order 435.1, Radioactive Waste Management, requirements. Furthermore, discharged inventories are only estimated for the soluble portions of the liquid discharges to waste sites/waste management areas located on the 200 Area of the Hanford Site (Central Plateau).

  15. Detroit River habitat inventory

    USGS Publications Warehouse

    Manny, Bruce A.

    2003-01-01

    This inventory complements a previous survey of habitat in Ontario waters of the Detroit River (OMNR,1993). It is a starting point for balanced and sustained use of the river for natural resource conservation and economic development. The objectives of the inventory were to: (1) locate candidate sites for protection and restoration of fish and wildlife habitat in Michigan waters of the Detroit River; (2) describe the ownership and size of each site, as well as its potential for habitat protection and restoration; and (3) subjectively assess the extent to which existing habitat along the river is productive of fish and wildlife and protected from land uses that have degraded or destroyed such habitat.

  16. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Dowell, Jonathan; Franco, Joe

    the adjacent areas that extend from the 100 Area and 300 Area to the Central Plateau. For sites in the River Corridor, remedial actions are expected to restore groundwater to drinking water standards and ensure that aquatic life in the Columbia River is protected by achieving ambient water quality standards. It is intended that these objectives be achieved, unless technically impracticable, within a reasonable timeframe. In those instances where remedial action objectives are not achievable in a reasonable time frame, or are determined to be technically impracticable, programs are being implemented to contain the plume, prevent exposure to contaminated groundwater, and evaluate further risk reduction opportunities as new technologies become available. River Corridor cleanup work also removes potential sources of contamination, which are close to the Columbia River, and places them on the Central Plateau for final disposal. The intent is to shrink the footprint of active cleanup to within the 75-square- mile area of the Central Plateau by removing excess facilities and remediating waste sites. Cleanup actions are supporting anticipated future land uses consistent with the Hanford Reach National Monument, where applicable, and the Hanford Comprehensive Land- Use Plan (DOE 1999). The River Corridor has been divided into six geographic decision areas to achieve source and groundwater remedy decisions. These decisions will provide comprehensive coverage for all areas within the River Corridor and will incorporate ongoing interim action cleanup activities. Cleanup levels will be achieved in order to support anticipated future land uses of conservation and preservation for most of this area and industrial use for the 300 Area. At the conclusion of cleanup actions, the federal government will implement long-term stewardship activities to ensure protection of human health and the environment. (authors)« less

  17. Habitat quality of historic Snake River fall Chinook salmon spawning locations and implications for incubation survival: part 1, substrate quality

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hanrahan, Timothy P.; Geist, David R.; Arntzen, Evan V.

    2005-07-01

    We evaluated substrate quality at two historic fall Chinook salmon (Oncorhynchus tshawytscha) spawning sites in the Snake River, Idaho, USA. The primary objective of this evaluation was to measure sediment permeability within these areas to determine the potential quality of the habitat in the event that anadromous salmonids are reintroduced to the upper Snake River. Riverbed sediments within the two sites in the upper Snake River were sampled using freeze cores and hydraulic slug tests. Sediment grain size distributions at both sites were typical of gravel-bed rivers with the surface layer coarser than the underlying substrate, suggesting the riverbed surfacemore » was armored. Despite the armored nature of the bed, the size of the largest material present on the riverbed surface was well within the size limit of material capable of being excavated by spawning fall Chinook salmon. The percentage of fines was low, suggesting good quality substrate for incubating salmon embryos. Geometric mean particle sizes found in this study compared to a 55% to 80% survival to emergence based on literature values. Hydraulic slug tests showed moderate to high hydraulic conductivity and were comparable to values from current fall Chinook salmon spawning areas in the Hells Canyon Reach of the Snake River and the Hanford Reach of the Columbia River. Predicted estimates of mean egg survival at both sites (48% and 74%) equaled or exceeded estimates from fall Chinook salmon spawning areas in the Hells Canyon Reach and the Hanford Reach.« less

  18. HANFORD FACILITY ANNUAL DANGEROUS WASTE REPORT CY2003 [SEC 1 & 2

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    FREEMAN, D.A.

    2004-02-17

    The Hanford Facility Annual Dangerous Waste Report (ADWR) is prepared to meet the requirements of Washington Administrative Code Sections 173-303-220, Generator Reporting, and 173-303-390, Facility Reporting. In addition, the ADWR is required to meet Hanford Facility RCRA Permit Condition I.E.22, Annual Reporting. The ADWR provides summary information on dangerous waste generation and management activities for the Calendar Year for the Hanford Facility EPA ID number assigned to the Department of Energy for RCRA regulated waste, as well as Washington State only designated waste and radioactive mixed waste. The Solid Waste Information and Tracking System (SWITS) database is utilized to collectmore » and compile the large array of data needed for preparation of this report. Information includes details of waste generated on the Hanford Facility, waste generated offsite and sent to Hanford for management, and other waste management activities conducted at Hanford, including treatment, storage, and disposal. Report details consist of waste descriptions and weights, waste codes and designations, and waste handling codes. In addition, for waste shipped to Hanford for treatment and or disposal, information on manifest numbers, the waste transporter, the waste receiving facility, and the original waste generators are included. In addition to paper copies, the report is also transmitted electronically to a web site maintained by the Washington State Department of Ecology.« less

  19. Hanford Site National Environmental Policy Act (NEPA) Characterization

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Rohay, A.C.; Fosmire, C.J.; Neitzel, D.A.

    1999-09-28

    This document describes the US Department of Energy's (DOE) Hanford Site environment. It is updated each year and is intended to provide a consistent description of the Hanford Site environment for the many NEPA documents being prepared by DOE contractors. No conclusions or recommendations are provided. This year's report is the eleventh revision of the original document published in 1988 and is (until replaced by the 12th revision) the only version that is relevant for use in the preparation of Hanford NEPA; SEPA and CERCLA documents. The two chapters included in this document (Chapters 4 and 6) are numbered tomore » correspond to the chapters where such information is presented in environmental impact statements (EISs) and other Site-related NEPA or CERCLA documentation. Chapter 4.0 (Affected Environment) describes Hanford Site climate and meteorology, geology, hydrology, ecology, cultural, archaeological and historical resources, socioeconomic; occupational safety, and noise. Sources for extensive tabular data related to these topics are provided in the chapter. Most subjects are divided into a general description of the characteristics of the Hanford Site, followed by site-specific information, where available, of the 100,200,300, and other Areas. This division allows the reader to go directly to those sections of particular interest. When specific information on each of these separate areas is not complete or available, the general Hanford Site description should be used. Chapter 6.0 (Statutory and Regulatory Requirements) is essentially a definitive NEPA Chapter 6.0, which describes applicable federal and state laws and regulations, DOE directives and permits, and environmental standards directly applicable to the NEPA documents on the Hanford Site. People preparing environmental assessments and EISs should also be cognizant of the document entitled ''Recommendations for the Preparation of Environmental Assessments and Environmental Impact Statements

  20. Negotiation of a triparty agreement for mixed waste at Hanford

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    McGuire, H.E.; Powers, L.L.; Waite, J.L.

    The US Department of Energy (DOE) is currently pursuing the activities necessary to obtain a final operating permit under the Resource Conservation and Recovery Act (RCRA) at Hanford. In addition, the Environmental Restoration Program has been established to conduct inactive site investigations and remedial actions as required under the Comprehensive Environmental Response, Compensation and Liability Act (CERCLA). The anticipated cost for the inactive site cleanup is significant. This was highlighted in a DOE report, where the expected cost for Hanford cleanup is shown as approximately $27 billion. It is imperative that the RCRA closure and corrective action activities be properlymore » integrated with the CERCLA actions to ensure site cleanup is performed in a consistent and cost-effective manner. It is believed that such an objective would best be served through an integrated triparty agreement between the Washington State Department of Ecology (WSDE), the US Environmental Protection Agency (EPA), and the DOE. The WSDE wants clear enforceability in any agreement and believes such enforceability can only be obtained through a judicial consent decree. A consent decree with WSDE for RCRA compliance would have to be separate from a CERCLA Sec. 120 federal facility agreement since EPA cannot enter into a consent decree with another federal agency.« less

  1. Proceedings of the First Hanford Separation Science Workshop

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Not Available

    1993-05-01

    The First Hanford Separation Science Workshop, sponsored by PNL had two main objectives: (1) assess the applicability of available separation methods for environmental restoration and for minimization, recovery, and recycle of mixed and radioactive mutes; and (2) identify research needs that must be addressed to create new or improved technologies. The information gathered at this workshop not only applies to Hanford but could be adapted to DOE facilities throughout the nation as well. These proceedings have been divided into three components: Background and Introduction to the Problem gives an overview of the history of the Site and the cleanup mission,more » including waste management operations, past disposal practices, current operations, and plans for the future. Also included in this section is a discussion of specific problems concerning the chemistry of the Hanford wastes. Separation Methodologies contains the papers given at the workshop by national experts in the field of separation science regarding the state-of-the-art of various methods and their applicability/adaptability to Hanford. Research Needs identifies further research areas developed in working group sessions. Individual papers are indexed separately.« less

  2. Old river beds under urbanization pressure. Can we protect valuable aquatic ecosystems within the cities?

    NASA Astrophysics Data System (ADS)

    Sikorska, Daria; Sikorski, Piotr

    2016-04-01

    Old river channels are valuable ecosystems in the scale of whole Europe. Protected as Natura 2000 habitats they are characterized by high biodiversity and provide various ecosystem services. River regulation, eutrophication or lack of annual flooding result in an impoverishment and disappearance of these habitats. Moreover they are subjected to severe pressure from uncontrolled expansion of the cities. The aim of this study was to determine factors associated with urbanization mostly contributing to impoverishment of the vegetation associated with the old channels and to identify landscape characteristics favouring high diversity and naturalness. We were seeking for indices that could be implemented in spatial management for preservation of these ecosystems. Vegetation inventory of 28 lakes, being former river Vistula beds near Warsaw was held. The lakes were located in an urban-rural gradient from the city centre, suburban zone to rural areas. Mapping of vegetation was performed for aquatic vegetation, rushes and vegetation of the shores (321 relevés). Human pressure was assessed on the basis of landscape composition of the lakes neighbourhood, characteristic features of the reservoir and water physio-chemical properties. High diversity and naturalness of the vegetation associated with former Vistula River beds was proved. Effects of the human pressure in the vegetation composition were recognized in high share of alien species and impoverishment of native plants. Composition was dependant on the intensity of human pressure in the neighbourhood and was mostly related to percentage of built-up areas and road density. Selected measures allowed to explain not more than 30% of plants composition variation which implies strong effect of local factors. Vegetation composition of former river beds changed significantly along urban-rural gradient, though the trend could be noted only to the city border. Several protection activities were proposed favouring high

  3. Hanford Site Environmental Report for Calendar Year 2005

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Poston, Ted M.; Hanf, Robert W.; Dirkes, Roger L.

    This report, published annually since 1958, includes information and summary analytical data that (1) provide an overview of activities at the Hanford Site during calendar year 2005; (2) demonstrate the site's compliance with applicable federal, state, and local environmental laws and regulations, executive orders, and U.S. Department of Energy (DOE) policies and directives; (3) characterize Hanford Site environmental management performance; and (4) highlight significant environmental programs.

  4. Hanford Site Environmental Report for Calendar Year 2004

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Poston, Ted M.; Hanf, Robert W.; Dirkes, Roger L.

    This report, published annually since 1958, includes information and summary analytical data that (1) provide an overview of activities at the Hanford Site during calendar year 2003; (2) demonstrate the site's compliance with applicable federal, state, and local environmental laws and regulations, executive orders, and U.S. Department of Energy (DOE) policies and directives; (3) characterize Hanford Site environmental management performance; and (4) highlight significant environmental programs.

  5. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Poloski, Adam P.; Wells, Beric E.; Tingey, Joel M.

    The U.S. Department of Energy (DOE) Office of River Protection’s Waste Treatment and Immobilization Plant (WTP) will process and treat radioactive waste that is stored in tanks at the Hanford Site. Piping, pumps, and mixing vessels have been selected to transport, store, and mix the high-level waste slurries in the WTP. This report addresses the analyses performed by the Rheology Working Group (RWG) and Risk Assessment Working Group composed of Pacific Northwest National Laboratory (PNNL), Bechtel National Inc. (BNI), CH2M HILL, DOE Office of River Protection (ORP) and Yasuo Onishi Consulting, LLC staff on data obtained from documented Hanford wastemore » analyses to determine a best-estimate of the rheology of the Hanford tank wastes and their settling behavior. The actual testing activities were performed and reported separately in referenced documentation. Because of this, many of the required topics below do not apply and are so noted.« less

  6. Hanford Environmental Dose Reconstruction Project. Monthly report

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Cannon, S.D.; Finch, S.M.

    1992-10-01

    The objective of the Hanford Environmental Dose Reconstruction (HEDR) Project is to estimate the radiation doses that individuals and populations could have received from nuclear operations at Hanford since 1944. The independent Technical Steering Panel (TSP) provides technical direction. The project is divided into the following technical tasks. These tasks correspond to the path radionuclides followed from release to impact on humans (dose estimates):Source Terms, Environmental Transport, Environmental Monitoring Data, Demography, Food Consumption, and Agriculture, and Environmental Pathways and Dose Estimates.

  7. Case Study in Corporate Memory Recovery: Hanford Tank Farms Miscellaneous Underground Waste Storage Tanks - 15344

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Washenfelder, D. J.; Johnson, J. M.; Turknett, J. C.

    In addition to managing the 177 underground waste storage tanks containing 212,000 m3 (56 million gal) of radioactive waste at the U. S. Department of Energy’s Hanford Site 200 Area Tank Farms, Washington River Protection Solutions LLC is responsible for managing numerous small catch tanks and special surveillance facilities. These are collectively known as “MUSTs” - Miscellaneous Underground Storage Tanks. The MUSTs typically collected drainage and flushes during waste transfer system piping changes; special surveillance facilities supported Tank Farm processes including post-World War II uranium recovery and later fission product recovery from tank wastes. Most were removed from service followingmore » deactivation of the single-shell tank system in 1980 and stabilized by pumping the remaining liquids from them. The MUSTs were isolated by blanking connecting transfer lines and adding weatherproofing to prevent rainwater entry. Over the next 30 years MUST operating records were dispersed into large electronic databases or transferred to the National Archives Regional Center in Seattle, Washington. During 2014 an effort to reacquire the historical bases for the MUSTs’ published waste volumes was undertaken. Corporate Memory Recovery from a variety of record sources allowed waste volumes to be initially determined for 21 MUSTs, and waste volumes to be adjusted for 37 others. Precursors and symptoms of Corporate Memory Loss were identified in the context of MUST records recovery.« less

  8. Hanford Site National Environmental Policy Act (NEPA) Characterization. Revision 5

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Cushing, C.E.

    1992-12-01

    This fifth revision of the Hanford Site National Environmental Policy (NEPA) Characterization presents current environmental data regarding the Hanford Site and its immediate environs. This information is intended for use in preparing Site-related NEPA documentation. Information is presented on climate and meteorology, geology and hydrology, ecology, history and archaeology, socioeconomics, land use, and noise levels, prepared by Pacific Northwest Laboratory (PNL) staff. Models are described that are to be used in simulating realized or potential impacts from nuclear materials at the Hanford Site. Included are models of radionuclide transport in groundwater and atmospheric pathways, and of radiation dose to populationsmore » via all known pathways from known initial conditions. Federal and state regulations, DOE orders and permits, and environmental standards directly applicable for the NEPA documents at the Hanford Site, are provided.« less

  9. Spatial and temporal dynamics of the microbial community in the Hanford unconfined aquifer

    PubMed Central

    Lin, Xueju; McKinley, James; Resch, Charles T; Kaluzny, Rachael; Lauber, Christian L; Fredrickson, James; Knight, Rob; Konopka, Allan

    2012-01-01

    Pyrosequencing analysis of 16S rRNA genes was used to study temporal dynamics of groundwater bacteria and archaea over 10 months within three well clusters separated by ∼30 m and located 250 m from the Columbia River on the Hanford Site, WA. Each cluster contained three wells screened at different depths ranging from 10 to 17 m that differed in hydraulic conductivities. Representative samples were selected for analyses of prokaryotic 16S and eukaryotic 18S rRNA gene copy numbers. Temporal changes in community composition occurred in all nine wells over the 10-month sampling period. However, there were particularly strong effects near the top of the water table when the seasonal rise in the Columbia River caused river water intrusion at the top of the aquifer. The occurrence and disappearance of some microbial assemblages (such as Actinobacteria ACK-M1) were correlated with river water intrusion. This seasonal impact on microbial community structure was greater in the shallow saturated zone than deeper zone in the aquifer. Spatial and temporal patterns for several 16S rRNA gene operational taxonomic units associated with particular physiological functions (for example, methane oxidizers and metal reducers) suggests dynamic changes in fluxes of electron donors and acceptors over an annual cycle. In addition, temporal dynamics in eukaryotic 18S rRNA gene copies and the dominance of protozoa in 18S clone libraries suggest that bacterial community dynamics could be affected not only by the physical and chemical environment but also by top-down biological control. PMID:22456444

  10. Spatial and temporal dynamics of the microbial community in the Hanford unconfined aquifer.

    PubMed

    Lin, Xueju; McKinley, James; Resch, Charles T; Kaluzny, Rachael; Lauber, Christian L; Fredrickson, James; Knight, Rob; Konopka, Allan

    2012-09-01

    Pyrosequencing analysis of 16S rRNA genes was used to study temporal dynamics of groundwater bacteria and archaea over 10 months within three well clusters separated by ~30 m and located 250 m from the Columbia River on the Hanford Site, WA. Each cluster contained three wells screened at different depths ranging from 10 to 17 m that differed in hydraulic conductivities. Representative samples were selected for analyses of prokaryotic 16S and eukaryotic 18S rRNA gene copy numbers. Temporal changes in community composition occurred in all nine wells over the 10-month sampling period. However, there were particularly strong effects near the top of the water table when the seasonal rise in the Columbia River caused river water intrusion at the top of the aquifer. The occurrence and disappearance of some microbial assemblages (such as Actinobacteria ACK-M1) were correlated with river water intrusion. This seasonal impact on microbial community structure was greater in the shallow saturated zone than deeper zone in the aquifer. Spatial and temporal patterns for several 16S rRNA gene operational taxonomic units associated with particular physiological functions (for example, methane oxidizers and metal reducers) suggests dynamic changes in fluxes of electron donors and acceptors over an annual cycle. In addition, temporal dynamics in eukaryotic 18S rRNA gene copies and the dominance of protozoa in 18S clone libraries suggest that bacterial community dynamics could be affected not only by the physical and chemical environment but also by top-down biological control.

  11. Iron Phosphate Glass-Containing Hanford Waste Simulant

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sevigny, Gary J.; Kimura, Marcia L.; Fischer, Christopher M.

    2012-01-18

    Resolution of the nation's high-level tank waste legacy requires the design, construction, and operation of large and technically complex one-of-a-kind processing waste treatment and vitrification facilities. While the ultimate limits for waste loading and melter efficiency have yet to be defined or realized, significant reductions in glass volumes for disposal and mission life may be possible with advancements in melter technologies and/or glass formulations. This test report describes the experimental results from a small-scale test using the research-scale melter (RSM) at Pacific Northwest National Laboratory (PNNL) to demonstrate the viability of iron-phosphate-based glass with a selected waste composition that ismore » high in sulfate (4.37 wt% SO3). The primary objective of the test was to develop data to support a cost-benefit analysis related to the implementation of phosphate-based glasses for Hanford low-activity waste (LAW) and/or other high-level waste streams within the U.S. Department of Energy complex. The testing was performed by PNNL and supported by Idaho National Laboratory, Savannah River National Laboratory, Missouri University of Science and Technology, and Mo-Sci Corporation.« less

  12. CRYPTOSPORIDIUM SOURCE TRACKING TO ENHANCE SOURCE WATER PROTECTION IMPLEMENTATION IN THE POTOMAC RIVER WATERSHED: A REGIONAL APPLIED RESEARCH EFFORTS (RARE) PROJECT

    EPA Science Inventory

    The Potomac River watershed is a critical drinking water supply for the Washington DC metropolitan area. In 2004, the Drinking Water Source Protection Partnership (DWSPP) was formed to help coordinate efforts by local drinking water utilities and government agencies to protect th...

  13. TECHNICAL ASSESSMENT OF BULK VITRIFICATION PROCESS & PRODUCT FOR TANK WASTE TREATMENT AT THE DEPARTMENT OF ENERGY HANFORD SITE

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    SCHAUS, P.S.

    At the U.S. Department of Energy (DOE) Hanford Site, the Waste Treatment Plant (WTP) is being constructed to immobilize both high-level waste (IUW) for disposal in a national repository and low-activity waste (LAW) for onsite, near-surface disposal. The schedule-controlling step for the WTP Project is vitrification of the large volume of LAW, current capacity of the WTP (as planned) would require 50 years to treat the Hanford tank waste, if the entire LAW volume were to be processed through the WTP. To reduce the time and cost for treatment of Hanford Tank Waste, and as required by the Tank Wastemore » Remediation System Environmental Impact Statement Record of Decision and the Hanford Federal Facility Consent Agreement (Tn-Party Agreement), DOE plans to supplement the LAW treatment capacity of the WTP. Since 2002, DOE, in cooperation with the Environmental Protection Agency and State of Washington Department of Ecology has been evaluating technologies that could provide safe and effective supplemental treatment of LAW. Current efforts at Hanford are intended to provide additional information to aid a joint agency decision on which technology will be used to supplement the WTP. A Research, Development and Demonstration permit has been issued by the State of Washington to build and (for a limited time) operate a Demonstration Bulk Vitrification System (DBVS) facility to provide information for the decision on a supplemental treatment technology for up to 50% of the LAW. In the Bulk Vitrification (BV) process, LAW, soil, and glass-forming chemicals are mixed, dried, and placed in a refractory-lined box, Electric current, supplied through two graphite electrodes in the box, melts the waste feed, producing a durable glass waste-form. Although recent modifications to the process have resulted in significant improvements, there are continuing technical concerns.« less

  14. SAFETY AT FLUOR HANFORD (A) CASE STUDY - PREPARED BY THUNDERBIRD SCHOOL OF GLOBAL MANAGEMENT

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    ARNOLD LD

    2009-09-25

    By November of 1997, Fluor Hanford (Fluor) had been the site manager of the Hanford nuclear reservation for a year. The Hanford site had been established as part of the Manhattan Project in the 1940s that gave birth to the atomic bomb. Hanford produced two thirds of U.S. plutonium during the Cold War period. The Hanford site was half the size of Rhode Island and occupied 586 square miles in southeastern Washington State. The production of plutonium for more than 40 years left a huge legacy of chemical and radiological contamination: 80 square miles of contaminated groundwater; 2,300 tons ofmore » spent nuclear fuel stored in underwater basins; 20 tons of plutonium-laced contaminated materials; and 500 contaminated facilities. The cleanup involved a challenging combination of radioactive material handling within an infrastructure constructed in the 1940s and 1950s. The cleanup that began in 1988 was expected to take 30 years or more. Improving safety at Hanford had already proven to be a significant challenge. As the new site manager at Hanford, Fluor Hanford inherited lower- and mid-level managers and thousands of unionized employees, many of whom were second or third generation Hanford employees. These employees had seen many contractors come and go over the years. Some of the managers who had worked with the previous contractor saw Fluor's emphasis on safety as getting in the way of operations. Union-management relations were fractious. Hanford's culture was described as 'production driven-management told everyone what to do, and, if you didn't do it, there were consequences'. Worker involvement in designing and implementing safety programs was negligible. Fluor Hanford also was having trouble satisfying its client, the Department of Energy (DOE). The DOE did not see a clear path forward for performance improvements at Hanford. Clearly, major change was necessary, but how and where should it be implemented?« less

  15. The Japanese aerial attack on Hanford Engineer Works

    NASA Astrophysics Data System (ADS)

    Clark, Charles W.

    The day before the Pearl Harbor attack, December 6, 1941, the University of Chicago Metallurgical Laboratory was given four goals: design a plutonium (Pu) bomb; produce Pu by irradiation of uranium (U); extract Pu from the irradiated U; complete this in time to be militarily significant. A year later the first controlled nuclear chain reaction was attained in Chicago Pile 1 (CP-1). In January 1943, Hanford, WA was chosen as the site of the Pu factory. Neutron irradiation of 238U was to be used to make 239Pu. This was done by a larger version of CP-1, Hanford Reactor B, which went critical in September 1944. By July 1945 it had made enough Pu for two bombs: one used at the Trinity test in July; the other at Nagasaki, Japan in August. I focus on an ironic sidelight to this story: disruption of hydroelectric power to Reactor B by a Japanese fire balloon attack on March 10, 1945. This activated the costly coal-fired emergency backup plant to keep the reactor coolant water flowing, thwarting disaster and vindicating the conservative design of Hanford Engineer Works. Management of the Hanford Engineer Works in World War II, H. Thayer (ASCE Press 1996).

  16. Hanford Environmental Dose Reconstruction Project

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    McMakin, A.H.; Cannon, S.D.; Finch, S.M.

    1992-07-01

    The objective of the Hanford Environmental Dose Reconstruction (HEDR) Project is to estimate the radiation doses that individuals and populations could have received from nuclear operations at Hanford since 1944. The TSP consists of experts in environmental pathways, epidemiology, surface-water transport, ground-water transport, statistics, demography, agriculture, meteorology, nuclear engineering, radiation dosimetry, and cultural anthropology. Included are appointed technical members representing the states of Oregon, Washington, and Idaho, a representative of Native American tribes, and an individual representing the public. The project is divided into the following technical tasks. These tasks correspond to the path radionuclides followed from release to impactmore » on humans (dose estimates): Source terms, environmental transport, environmental monitoring data, demography, food consumption, and agriculture, and environmental pathways and dose estimates. Progress is discussed.« less

  17. 75 FR 51945 - Safety Zone; Potomac River, St. Mary's River, St. Inigoes, MD

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-08-24

    ...-AA00 Safety Zone; Potomac River, St. Mary's River, St. Inigoes, MD AGENCY: Coast Guard, DHS. ACTION... of the St. Mary's River, a tributary of the Potomac River. This action is necessary to provide for.... Navy helicopter located near St. Inigoes, Maryland. This safety zone is intended to protect the...

  18. Chemical composition analysis and product consistency tests to support Enhanced Hanford Waste Glass Models. Results for the Augusta and October 2014 LAW Glasses

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Fox, K. M.; Edwards, T. B.; Best, D. R.

    2015-07-07

    In this report, the Savannah River National Laboratory provides chemical analyses and Product Consistency Test (PCT) results for several simulated low activity waste (LAW) glasses (designated as the August and October 2014 LAW glasses) fabricated by the Pacific Northwest National Laboratory. The results of these analyses will be used as part of efforts to revise or extend the validation regions of the current Hanford Waste Treatment and Immobilization Plant glass property models to cover a broader span of waste compositions.

  19. Hanford Site Asbestos Abatement Plan. Revision 1

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Mewes, B.S.

    The Hanford Site Asbestos Abatement Plan (Plan) lists priorities for asbestos abatement activities to be conducted in Hanford Site facilities. The Plan is based on asbestos assessment information gathered in fiscal year 1989 that evaluated all Hanford Site facilities for the presence and condition of asbestos. Of those facilities evaluated, 414 contain asbestos-containing materials and are classified according to the potential risk of asbestos exposure to building personnel. The Plan requires that asbestos condition update reports be prepared for all affected facilities. The reporting is completed by the asbestos coordinator for each of the 414 affected facilities and transmitted tomore » the Plan manager annually. The Plan manager uses this information to reprioritize future project lists. Currently, five facilities are determined to be Class Al, indicating a high potential for asbestos exposure. Class Al and B1 facilities are the highest priority for asbestos abatement. Abatement of the Class A1 and Bl facilities is scheduled through fiscal year 1997. Removal of asbestos in B1 facilities will reduce the risk for further Class ``A`` conditions to arise.« less

  20. Hanford Internal Dosimetry Project manual. Revision 1

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Carbaugh, E.H.; Bihl, D.E.; MacLellan, J.A.

    1994-07-01

    This document describes the Hanford Internal Dosimetry Project, as it is administered by Pacific Northwest Laboratory (PNL) in support of the US Department of Energy and its Hanford contractors. Project services include administrating the bioassay monitoring program, evaluating and documenting assessment of potential intakes and internal dose, ensuring that analytical laboratories conform to requirements, selecting and applying appropriate models and procedures for evaluating radionuclide deposition and the resulting dose, and technically guiding and supporting Hanford contractors in matters regarding internal dosimetry. Specific chapters deal with the following subjects: practices of the project, including interpretation of applicable DOE Orders, regulations, andmore » guidance into criteria for assessment, documentation, and reporting of doses; assessment of internal dose, including summary explanations of when and how assessments are performed; recording and reporting practices for internal dose; selection of workers for bioassay monitoring and establishment of type and frequency of bioassay measurements; capability and scheduling of bioassay monitoring services; recommended dosimetry response to potential internal exposure incidents; quality control and quality assurance provisions of the program.« less

  1. MICROSCALE METABOLIC, REDOX AND ABIOTIC REACTIONS IN HANFORD 300 AREA SUBSURFACE SEDIMENTS

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Beyenal, Haluk; McLEan, Jeff; Majors, Paul

    2013-11-14

    The Hanford 300 Area is a unique site due to periodic hydrologic influence of river water resulting in changes in groundwater elevation and flow direction. This area is also highly subject to uranium remobilization, the source of which is currently believed to be the region at the base of the vadose zone that is subject to period saturation due to the changes in the water levels in the Columbia River. We found that microbial processes and redox and abiotic reactions which operate at the microscale were critical to understanding factors controlling the macroscopic fate and transport of contaminants in themore » subsurface. The combined laboratory and field research showed how microscale conditions control uranium mobility and how biotic, abiotic and redox reactions relate to each other. Our findings extended the current knowledge to examine U(VI) reduction and immobilization using natural 300 Area communities as well as selected model organisms on redox-sensitive and redox-insensitive minerals. Using innovative techniques developed specifically to probe biogeochemical processes at the microscale, our research expanded our current understanding of the roles played by mineral surfaces, bacterial competition, and local biotic, abiotic and redox reaction rates on the reduction and immobilization of uranium.« less

  2. Chemical Characterization of an Envelope A Sample from Hanford Tank 241-AN-103

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hay, M.S.

    2000-08-23

    A whole tank composite sample from Hanford waste tank 241-AN-103 was received at the Savannah River Technology Center (SRTC) and chemically characterized. Prior to characterization the sample was diluted to {approximately}5 M sodium concentration. The filtered supernatant liquid, the total dried solids of the diluted sample, and the washed insoluble solids obtained from filtration of the diluted sample were analyzed. A mass balance calculation of the three fractions of the sample analyzed indicate the analytical results appear relatively self-consistent for major components of the sample. However, some inconsistency was observed between results where more than one method of determination wasmore » employed and for species present in low concentrations. A direct comparison to previous analyses of material from tank 241-AN-103 was not possible due to unavailability of data for diluted samples of tank 241-AN-103 whole tank composites. However, the analytical data for other types of samples from 241-AN-103 we re mathematically diluted and compare reasonably with the current results. Although the segments of the core samples used to prepare the sample received at SRTC were combined in an attempt to produce a whole tank composite, determination of how well the results of the current analysis represent the actual composition of the Hanford waste tank 241-AN-103 remains problematic due to the small sample size and the large size of the non-homogenized waste tank.« less

  3. Environmental assessment: Reference repository location, Hanford site, Washington

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    none,

    1986-05-01

    In February 1983, the US Department of Energy (DOE) identified a reference repository location at the Hanford Site in Washington as one of the nine potentially acceptable sites for a mined geologic repository for spent nuclear fuel and high-level radioactive waste. The site is in the Columbia Plateau, which is one of five distinct geohydrologic settings considered for the first repository. To determine their suitability, the Hanford Site and the eight other potentially acceptable sites have been evaluated in accordance with the DOE's General Guidelines for the Recommendation of Sites for the Nuclear Waste Repositories. These evaluations were reported inmore » draft environmental assessments (EAs), which were issued for public review and comment. After considering the comments received on the draft EAs, the DOE prepared the final EAs. On the basis of the evaluations reported in this EA, the DOE has found that the Hanford site is not disqualified under the guidelines. The DOE has also found that it is suitable for site characterization because the evidence does not support a conclusion that the site will not be able to meet each of the qualifying conditions specified in the guidelines. On the basis of these findings, the DOE is nominating the Hanford site as one of five sites suitable for characterization.« less

  4. Colloid formation in Hanford sediments reacted with simulated tank waste.

    PubMed

    Mashal, Kholoud; Harsh, James B; Flury, Markus; Felmy, Andrew R; Zhao, Hongting

    2004-11-01

    Solutions of high pH, ionic strength, and aluminum concentration have leaked into the subsurface from underground waste storage tanks atthe Hanford Reservation in Washington State. Here, we test the hypothesis that these waste solutions alter and dissolve the native minerals present in the sediments and that colloidal (diameter < 2 microm) feldspathoids form. We reacted Hanford sediments with simulated solutions representative of Hanford waste tanks. The solutions consisted of 1.4 or 2.8 mol/kg NaOH, 0.125 or 0.25 mol/kg NaAlO4, and 3.7 mol/kg NaNO3 and were contacted with the sediments for a period of 25 or 40 days at 50 degrees C. The colloidal size fraction was separated from the sediments and characterized in terms of mineralogy, morphology, chemical composition, and electrophoretic mobility. Upon reaction with tank waste solutions, native minerals released Si and other elements into the solution phase. This Si precipitated with the Al present in the waste solutions to form secondary minerals, identified as the feldspathoids cancrinite and sodalite. The solution phase was modeled with the chemical equilibrium model GMIN for solution speciation and saturation indices with respect to sodalite and cancrinite. The amount of colloidal material in the sediments increased upon reaction with waste solutions. At the natural pH found in Hanford sediments (pH 8) the newly formed minerals are negatively charged, similar to the unreacted colloidal material present in the sediments. The formation of colloidal material in Hanford sediments upon reaction with tank waste solutions is an important aspect to consider in the characterization of Hanford tank leaks and may affect the fate of hazardous radionuclides present in the tank waste.

  5. Radioactive demonstration of final mineralized waste forms for Hanford waste treatment plant secondary waste (WTP-SW) by fluidized bed steam reforming (FBSR) using the bench scale reformer platform

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Crawford, C.; Burket, P.; Cozzi, A.

    2014-08-01

    The U.S. Department of Energy’s Office of River Protection (ORP) is responsible for the retrieval, treatment, immobilization, and disposal of Hanford’s tank waste. Currently there are approximately 56 million gallons of highly radioactive mixed wastes awaiting treatment. A key aspect of the River Protection Project (RPP) cleanup mission is to construct and operate the Waste Treatment and Immobilization Plant (WTP). The WTP will separate the tank waste into high-level and low-activity waste (LAW) fractions, both of which will subsequently be vitrified. The projected throughput capacity of the WTP LAW Vitrification Facility is insufficient to complete the RPP mission in themore » time frame required by the Hanford Federal Facility Agreement and Consent Order, also known as the Tri-Party Agreement (TPA), i.e. December 31, 2047. Therefore, Supplemental Treatment is required both to meet the TPA treatment requirements as well as to more cost effectively complete the tank waste treatment mission. In addition, the WTP LAW vitrification facility off-gas condensate known as WTP Secondary Waste (WTP-SW) will be generated and enriched in volatile components such as 137Cs, 129I, 99Tc, Cl, F, and SO4 that volatilize at the vitrification temperature of 1150°C in the absence of a continuous cold cap (that could minimize volatilization). The current waste disposal path for the WTP-SW is to process it through the Effluent Treatment Facility (ETF). Fluidized Bed Steam Reforming (FBSR) is being considered for immobilization of the ETF concentrate that would be generated by processing the WTP-SW. The focus of this current report is the WTP-SW.« less

  6. Hanford Site Air Operating Permit Application Supplemental Information [Sec 1 Thru 5] Vol 1 Thru 3 Appendices A Thru C

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    CURN, B.L.

    2000-05-01

    This report documents radionuclide air emissions from the Hanford Site in 1998 and the resulting effective dose equivalent to the maximally exposed individual (MEI) member of the public. The report has been prepared in accordance with the Code of Federal Regulations, Title 40, Protection of the Environment, Part 61, National Emission Standards for Hazardous Air Pollutants (40 CFR 61), Subpart H: ''National Emission Standards for Emissions of Radionuclides Other than Radon from Department of Energy Facilities,'' and with the Washington Administrative Code Chapter 246247, Radiation Protection - Air Emissions. The federal regulations in 40 CFR 61, Subpart H, require themore » measurement and reporting of radionuclides emitted from Department of Energy facilities and the resulting offsite dose from those emissions. A standard of 10 mrem/yr effective dose equivalent (EDE) is imposed on them. The EDE to the MEI due to routine emissions in 1998 from Hanford Site point sources was 1.3 E-02 mrem (1.3 E-04 mSv). which is 0.13 percent of the federal standard. Chapter 246-247 of the Washington Administrative Code (WAC) requires the reporting of radionuclide emissions from all Department of Energy Hanford Site sources. The state has adopted into these regulations the 40 CFR 61 standard of 10 mrem/yr EDE. The EDE to the MEI attributable to diffuse and fugitive radionuclide air emissions from the Hanford Site in 1998 was 2.5 E-02 mrem (2.S E-04 mSv). This dose added to the dose from point sources gives a total for all sources of 3.8 E-02 mrem/yr (3.8 E-04 mSv) EDE. which is 0.38 percent of the 10 mrem/yr standard. An unplanned release on August 26, 1998, in the 300 Area of the Hanford Site resulted in a potential dose of 4.1 E-02 mrem to a hypothetical individual at the nearest point of public access to that area. This hypothetical individual was not the MEI since the wind direction on the day of the release was away from the MEI residence. The potential dose from the unplanned

  7. Residual herbicide study on selected Hanford Site roadsides

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Smith, J.L.; Kemp, C.J.; Sackschewsky, M.R.

    Westinghouse Hanford Company routinely treats roadsides with herbicides to control undesirable plant growth. An experiment was conducted to test perennial grass germination in soils adjacent to roadways of the Hanford Site. The primary variable was the distance from the roadside. A simple germination test was executed in a controlled-environment chamber to determine the residual effects of these applications. As expected, the greatest herbicide activity was found directly adjacent to the roadway, approximately 0 to 20 ft (0 to 6.3 m) from the roadway.

  8. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Matlack, K. S.; Abramowitz, H.; Miller, I. S.

    About 50 million gallons of high-level mixed waste is currently stored in underground tanks at the United States Department of Energy’s (DOE’s) Hanford site in the State of Washington. The Hanford Tank Waste Treatment and Immobilization Plant (WTP) will provide DOE’s Office of River Protection (ORP) with a means of treating this waste by vitrification for subsequent disposal. The tank waste will be separated into low- and high-activity waste fractions, which will then be vitrified respectively into Immobilized Low Activity Waste (ILAW) and Immobilized High Level Waste (IHLW) products. The ILAW product will be disposed in an engineered facility onmore » the Hanford site while the IHLW product is designed for acceptance into a national deep geological disposal facility for high-level nuclear waste. The ILAW and IHLW products must meet a variety of requirements with respect to protection of the environment before they can be accepted for disposal.« less

  9. River Protection Project (RPP) Readiness to Proceed 2 Internal Independent Review Team Final Report

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    SCHAUS, P.S.

    This report describes the results of an independent review team brought in to assess CH2M Hill Hanford Group's readiness and ability to support the RPP's move into its next major phase - retrieval and delivery of tank waste to the Privatization Contractor

  10. Hanford Environmental Dose Reconstruction Project

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Finch, S.M.; McMakin, A.H.

    1991-01-01

    The objective of the Hanford Environmental Dose Reconstruction Project is to estimate the radiation doses that individuals and populations could have received from nuclear operations at Hanford since 1944. The project is being managed and conducted by the Pacific Northwest Laboratory (PNL) under the direction of an independent Technical Steering Panel (TSP). The TSP consists of experts in environmental pathways, epidemiology, surface-water transport, ground-water transport, statistics, demography, agriculture, meteorology, nuclear engineering, radiation dosimetry, and cultural anthropology. Included are appointed technical members representing the states of Oregon and Washington, a representative of Native American tribes, and an individual representing the public.more » The project is divided into the following technical tasks. These tasks correspond to the path radionuclides followed, from release to impact on human (dose estimates): Source Terms; Environmental Transport; Environmental Monitoring Data; Demographics, Agriculture, Food Habits and; Environmental Pathways and Dose Estimates.« less

  11. Dangerous Waste Characteristics of Waste from Hanford Tank 241-S-109

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Tingey, Joel M.; Bryan, Garry H.; Deschane, Jaquetta R.

    2004-11-05

    Existing analytical data from samples taken from Hanford Tank 241-S-109, along with process knowledge of the wastes transferred to this tank, are reviewed to determine whether dangerous waste characteristics currently assigned to all waste in Hanford underground storage tanks are applicable to this tank waste. Supplemental technologies are examined to accelerate the Hanford tank waste cleanup mission and to accomplish the waste treatment in a safer and more efficient manner. The goals of supplemental technologies are to reduce costs, conserve double-shell tank space, and meet the scheduled tank waste processing completion date of 2028.

  12. Stakeholders and public involvement for flood protection: traditional river management organisations for a better consideration of local knowledge?

    NASA Astrophysics Data System (ADS)

    Utz, Stephan; Lane, Stuart; Reynard, Emmanuel

    2016-04-01

    This research explores participatory processes in the domain of river management in Switzerland. The main objective is to understand how traditional, highly participatory, local organisations for flood protection have been institutionalised into current river management policy, and to what extent this has impacted on wider participatory processes of producing knowledge. Traditionally, flood protection strategies have been based upon scientific knowledge but have often ignored the capacities of local actors to contribute to the development of the policy. Thus, there may be a gap between scientists, stakeholders and the public that favours controversies and leads to opposition to flood protection projects. In order to reduce this gap and to increase incorporation of local knowledge, participatory processes are set up. They are considered as allowing the integration of all the actors concerned by flood risks to discuss their positions and to develop alternative solutions. This is a particularly important goal in the Swiss political system where direct democracy (the possibility of calling the decision of any level of government into question through a popular vote) means that a reasonable level of project acceptance is a necessary element of project. In order to support implementation of participatory processes, federal funding includes a special grant to cover the additional costs due to these actions. It is considered that, since its introduction in 2008, this grant certainly furthered participatory processes for flood protection projects and fostered water management policy implementation. However, the implication of stakeholders and public in decision-making processes is much well-established than modern river management often assumes. In some regions, flood protection tasks have been traditionally assumed by local organisations such as dyke corporations (DCs). These comprise land and property owners who are DC members and have to participate in flood protection

  13. Regional Atmospheric Transport Code for Hanford Emission Tracking (RATCHET). Hanford Environmental Dose Reconstruction Project

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ramsdell, J.V. Jr.; Simonen, C.A.; Burk, K.W.

    1994-02-01

    The purpose of the Hanford Environmental Dose Reconstruction (HEDR) Project is to estimate radiation doses that individuals may have received from operations at the Hanford Site since 1944. This report deals specifically with the atmospheric transport model, Regional Atmospheric Transport Code for Hanford Emission Tracking (RATCHET). RATCHET is a major rework of the MESOILT2 model used in the first phase of the HEDR Project; only the bookkeeping framework escaped major changes. Changes to the code include (1) significant changes in the representation of atmospheric processes and (2) incorporation of Monte Carlo methods for representing uncertainty in input data, model parameters,more » and coefficients. To a large extent, the revisions to the model are based on recommendations of a peer working group that met in March 1991. Technical bases for other portions of the atmospheric transport model are addressed in two other documents. This report has three major sections: a description of the model, a user`s guide, and a programmer`s guide. These sections discuss RATCHET from three different perspectives. The first provides a technical description of the code with emphasis on details such as the representation of the model domain, the data required by the model, and the equations used to make the model calculations. The technical description is followed by a user`s guide to the model with emphasis on running the code. The user`s guide contains information about the model input and output. The third section is a programmer`s guide to the code. It discusses the hardware and software required to run the code. The programmer`s guide also discusses program structure and each of the program elements.« less

  14. Hanford Waste Vitrification Plant technical manual

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Larson, D.E.; Watrous, R.A.; Kruger, O.L.

    1996-03-01

    A key element of the Hanford waste management strategy is the construction of a new facility, the Hanford Waste Vitrification Plant (HWVP), to vitrify existing and future liquid high-level waste produced by defense activities at the Hanford Site. The HWVP mission is to vitrify pretreated waste in borosilicate glass, cast the glass into stainless steel canisters, and store the canisters at the Hanford Site until they are shipped to a federal geological repository. The HWVP Technical Manual (Manual) documents the technical bases of the current HWVP process and provides a physical description of the related equipment and the plant. Themore » immediate purpose of the document is to provide the technical bases for preparation of project baseline documents that will be used to direct the Title 1 and Title 2 design by the A/E, Fluor. The content of the Manual is organized in the following manner. Chapter 1.0 contains the background and context within which the HWVP was designed. Chapter 2.0 describes the site, plant, equipment and supporting services and provides the context for application of the process information in the Manual. Chapter 3.0 provides plant feed and product requirements, which are primary process bases for plant operation. Chapter 4.0 summarizes the technology for each plant process. Chapter 5.0 describes the engineering principles for designing major types of HWVP equipment. Chapter 6.0 describes the general safety aspects of the plant and process to assist in safe and prudent facility operation. Chapter 7.0 includes a description of the waste form qualification program and data. Chapter 8.0 indicates the current status of quality assurance requirements for the Manual. The Appendices provide data that are too extensive to be placed in the main text, such as extensive tables and sets of figures. The Manual is a revision of the 1987 version.« less

  15. Hanford Environmental Information System (HEIS) Operator`s Manual. Volume 1

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Schreck, R.I.

    1991-10-01

    The Hanford Environmental Information System (HEIS) is a consolidated set of automated resources that effectively manage the data gathered during environmental monitoring and restoration of the Hanford Site. The HEIS includes an integrated database that provides consistent and current data to all users and promotes sharing of data by the entire user community. This manual describes the facilities available to the operational user who is responsible for data entry, processing, scheduling, reporting, and quality assurance. A companion manual, the HEIS User`s Manual, describes the facilities available-to the scientist, engineer, or manager who uses the system for environmental monitoring, assessment, andmore » restoration planning; and to the regulator who is responsible for reviewing Hanford Site operations against regulatory requirements and guidelines.« less

  16. 75 FR 13269 - Environmental Management Site-Specific Advisory Board, Hanford

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-03-19

    .... ADDRESSES: Red Lion Hotel on the River, Jantzen Beach, 909 North Hayden Island Drive, Portland, OR 97217... Protection Committee; Public Involvement Committee; and Budgets and Contracts Committee Draft Advice on Long...

  17. Estimation of 1945 to 1957 food consumption. Hanford Environmental Dose Reconstruction Project

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Anderson, D.M.; Bates, D.J.; Marsh, T.L.

    This report details the methods used and the results of the study on the estimated historic levels of food consumption by individuals in the Hanford Environmental Dose Reconstruction (HEDR) study area from 1945--1957. This period includes the time of highest releases from Hanford and is the period for which data are being collected in the Hanford Thyroid Disease Study. These estimates provide the food-consumption inputs for the HEDR database of individual diets. This database will be an input file in the Hanford Environmental Dose Reconstruction Integrated Code (HEDRIC) computer model that will be used to calculate the radiation dose. Themore » report focuses on fresh milk, eggs, lettuce, and spinach. These foods were chosen because they have been found to be significant contributors to radiation dose based on the Technical Steering Panel dose decision level.« less

  18. QUEST Hanford Site Computer Users - What do they do?

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    WITHERSPOON, T.T.

    2000-03-02

    The Fluor Hanford Chief Information Office requested that a computer-user survey be conducted to determine the user's dependence on the computer and its importance to their ability to accomplish their work. Daily use trends and future needs of Hanford Site personal computer (PC) users was also to be defined. A primary objective was to use the data to determine how budgets should be focused toward providing those services that are truly needed by the users.

  19. Secondary Waste Form Down-Selection Data Package—Fluidized Bed Steam Reforming Waste Form

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Qafoku, Nikolla; Westsik, Joseph H.; Strachan, Denis M.

    2011-09-12

    The Hanford Site in southeast Washington State has 56 million gallons of radioactive and chemically hazardous wastes stored in 177 underground tanks (ORP 2010). The U.S. Department of Energy (DOE), Office of River Protection (ORP), through its contractors, is constructing the Hanford Tank Waste Treatment and Immobilization Plant (WTP) to convert the radioactive and hazardous wastes into stable glass waste forms for disposal. Within the WTP, the pretreatment facility will receive the retrieved waste from the tank farms and separate it into two treated process streams. These waste streams will be vitrified, and the resulting waste canisters will be sentmore » to offsite (high-level waste [HLW]) and onsite (immobilized low-activity waste [ILAW]) repositories. As part of the pretreatment and ILAW processing, liquid secondary wastes will be generated that will be transferred to the Effluent Treatment Facility (ETF) on the Hanford Site for further treatment. These liquid secondary wastes will be converted to stable solid waste forms that will be disposed of in the Integrated Disposal Facility (IDF). To support the selection of a waste form for the liquid secondary wastes from WTP, Washington River Protection Solutions (WRPS) has initiated secondary waste form testing work at Pacific Northwest National Laboratory (PNNL). In anticipation of a down-selection process for a waste form for the Solidification Treatment Unit to be added to the ETF, PNNL is developing data packages to support that down-selection. The objective of the data packages is to identify, evaluate, and summarize the existing information on the four waste forms being considered for stabilizing and solidifying the liquid secondary wastes. At the Hanford Site, the FBSR process is being evaluated as a supplemental technology for treating and immobilizing Hanford LAW radioactive tank waste and for treating secondary wastes from the WTP pretreatment and LAW vitrification processes.« less

  20. Screening the Hanford tanks for trapped gas

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Whitney, P.

    1995-10-01

    The Hanford Site is home to 177 large, underground nuclear waste storage tanks. Hydrogen gas is generated within the waste in these tanks. This document presents the results of a screening of Hanford`s nuclear waste storage tanks for the presence of gas trapped in the waste. The method used for the screening is to look for an inverse correlation between waste level measurements and ambient atmospheric pressure. If the waste level in a tank decreases with an increase in ambient atmospheric pressure, then the compressibility may be attributed to gas trapped within the waste. In this report, this methodology ismore » not used to estimate the volume of gas trapped in the waste. The waste level measurements used in this study were made primarily to monitor the tanks for leaks and intrusions. Four measurement devices are widely used in these tanks. Three of these measure the level of the waste surface. The remaining device measures from within a well embedded in the waste, thereby monitoring the liquid level even if the liquid level is below a dry waste crust. In the past, a steady rise in waste level has been taken as an indicator of trapped gas. This indicator is not part of the screening calculation described in this report; however, a possible explanation for the rise is given by the mathematical relation between atmospheric pressure and waste level used to support the screening calculation. The screening was applied to data from each measurement device in each tank. If any of these data for a single tank indicated trapped gas, that tank was flagged by this screening process. A total of 58 of the 177 Hanford tanks were flagged as containing trapped gas, including 21 of the 25 tanks currently on the flammable gas watch list.« less

  1. Office of Inspector General audit report on Project Hanford management contract costs and performance

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    NONE

    1998-11-01

    On August 6, 1996, the Richland Operations Office (Richland) awarded the Project Hanford Management Contract (Management Contract) to Fluor Daniel Hanford, Inc. (Fluor Daniel). This performance-based, 5-year contract to support cleanup of the Department of Energy`s (DOE) Hanford Site (Hanford) contained performance goals or expectations related to the stabilization, transition, and diversification of the Tri-Cities` economy near Hanford in southeastern Washington. One of these economic goals was that Fluor Daniel and its major subcontractors would help generate 3,000 new, non-Hanford, private sector jobs that would help stabilize and diversify the Tri-Cities` economy. The contract specifically called for Fluor Daniel tomore » help generate 200 jobs, establish an investment fund, and bring 6 new growth-oriented enterprise companies to the Tri-Cities by the end of Fiscal Year (FY) 1997. The objective of the audit was to determine whether Richland was making adequate progress in stabilizing and diversifying the economy of the Tri-Cities by creating 3,000 new, non-Hanford jobs within 5 years. Accordingly, the author examined the progress made in FY 1997, which was the first year of the Management Contract. Richland and Fluor Daniel are at risk of not meeting the Management Contract`s goals of stabilizing and diversifying the economy of the Tri-Cities because most of the new jobs created during FY 1997 were not comparable to Hanford jobs and, thus, may not sustain long-term economic goals. Therefore, Fluor Daniel has not met its expectations in the first year and is not making adequate progress toward meeting the Management Contract`s overall economic goals.« less

  2. 1999 Report on Hanford Site land disposal restriction for mixed waste

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    BLACK, D.G.

    This report was submitted to meet the requirements of Hanford Federal Facility Agreement and Consent Order (Tri-Party Agreement) Milestone M-26-011. This milestone requires the preparation of an annual report that covers characterization, treatment, storage, minimization, and other aspects of managing land-disposal-restricted mixed waste at the Hanford Facility.

  3. Non-Thermal Treatment of Hanford Site Low-Level Mixed Waste

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    NONE

    1998-09-01

    DOE proposes to transport contact-handled LLMW from the Hanford Site to the Allied Technology Group (ATG) Mixed Waste Facility (MWF) in Richland, Washington, for non-thermal treatment and to return the treated waste to the Hanford Site for eventual land disposal. Over a 3-year period the waste would be staged to the ATG MWF, and treated waste would be returned to the Hanford Site. The ATG MWF would be located on an 18 hectare (ha) (45 acre [at]) ATG Site adjacent to ATG's licensed low-level waste processing facility at 2025 Battelle Boulevard. The ATG MWF is located approximately 0.8 kilometers (km)more » (0.5 miles [mi]) south of Horn Rapids Road and 1.6 km (1 mi) west of Stevens Drive. The property is located within the Horn Rapids triangle in northern Richland (Figure 2.1). The ATG MWF is to be located on the existing ATG Site, near the DOE Hanford Site, in an industrial area in the City of Richland. The effects of siting, construction, and overall operation of the MWF have been evaluated in a separate State Environmental Policy Act (SEPA) EIS (City of Richland 1998). The proposed action includes transporting the LLMW from the Hanford Site to the ATG Facility, non-thermal treatment of the LLMW at the ATG MWF, and transporting the waste from ATG back to the Hanford Site. Impacts fi-om waste treatment operations would be bounded by the ATG SEPA EIS, which included an evaluation of the impacts associated with operating the non-thermal portion of the MWF at maximum design capacity (8,500 metric tons per year) (City of Richland 1998). Up to 50 employees would be required for non-thermal treatment portion of the MWF. This includes 40 employees that would perform waste treatment operations and 10 support staff. Similar numbers were projected for the thermal treatment portion of the MWF (City of Richland 1998).« less

  4. Secondary Waste Form Development and Optimization—Cast Stone

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sundaram, S. K.; Parker, Kent E.; Valenta, Michelle M.

    2011-07-14

    Washington River Protection Services is considering the design and construction of a Solidification Treatment Unit (STU) for the Effluent Treatment Facility (ETF) at Hanford. The ETF is a Resource Conservation and Recovery Act-permitted, multi-waste, treatment and storage unit and can accept dangerous, low-level, and mixed wastewaters for treatment. The STU needs to be operational by 2018 to receive secondary liquid wastes generated during operation of the Hanford Tank Waste Treatment and Immobilization Plant (WTP). The STU to ETF will provide the additional capacity needed for ETF to process the increased volume of secondary wastes expected to be produced by WTP.

  5. Technical basis for internal dosimetry at Hanford

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sula, M.J.; Carbaugh, E.H.; Bihl, D.E.

    1991-07-01

    The Hanford Internal Dosimetry Program, administered by Pacific Northwest Laboratory for the US Department of Energy, provides routine bioassay monitoring for employees who are potentially exposed to radionuclides in the workplace. This report presents the technical basis for routine bioassay monitoring and the assessment of internal dose at Hanford. The radionuclides of concern include tritium, corrosion products ({sup 58}Co, {sup 60}Co, {sup 54}Mn, and {sup 59}Fe), strontium, cesium, iodine, europium, uranium, plutonium, and americium,. Sections on each of these radionuclides discuss the sources and characteristics; dosimetry; bioassay measurements and monitoring; dose measurement, assessment, and mitigation and bioassay follow-up treatment. 78more » refs., 35 figs., 115 tabs.« less

  6. Technical basis for internal dosimetry at Hanford

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sula, M.J.; Carbaugh, E.H.; Bihl, D.E.

    1989-04-01

    The Hanford Internal Dosimetry Program, administered by Pacific Northwest Laboratory for the US Department of Energy, provides routine bioassay monitoring for employees who are potentially exposed to radionuclides in the workplace. This report presents the technical basis for routine bioassay monitoring and the assessment of internal dose at Hanford. The radionuclides of concern include tritium, corrosion products (/sup 58/Co, /sup 60/Co, /sup 54/Mn, and /sup 59/Fe), strontium, cesium, iodine, europium, uranium, plutonium, and americium. Sections on each of these radionuclides discuss the sources and characteristics; dosimetry; bioassay measurements and monitoring; dose measurement, assessment, and mitigation; and bioassay follow-up treatment. 64more » refs., 42 figs., 118 tabs.« less

  7. Coastal protection by a small scale river plume against oil spills in the Northern Gulf of Mexico

    NASA Astrophysics Data System (ADS)

    Kuitenbrouwer, Daan; Reniers, Ad; MacMahan, Jamie; Roth, Mathias K.

    2018-07-01

    The Deepwater Horizon oil spill damaged some beaches along the Northern Gulf of Mexico (NGoMex) coast more than others, possibly related to the presence of natural protection mechanisms. In order to optimize future mitigation efforts to protect the coast, these mechanisms should be understood. The NGoMex coast is characterized by relatively long stretches of sandy beach interrupted by tidal inlets creating ebb-tidal river plumes featuring frontal zones that may act as transport barriers. This research investigates to what extent these plumes are capable of protecting the adjacent coast. This is done by means of a combination of a 3D Eulerian flow model and a Lagrangian particle model to track oil pathways and visualize Lagrangian Coherent Structures located at the plume front. The models are verified with measurements from a field experiment adjacent to Destin Inlet, Florida. The effects of wind, tidal range and river discharge on the oil fate are discussed. It was found that wind is the dominant parameter. Offshore wind prevents oil from beaching. During onshore winds, oil is pushed to shore, but near the inlet the plume is effective in reducing the amount of oil washing ashore during the ebbing tide. In general, the plume redistributes the oil but is not capable of preventing oil from beaching. For strong winds, the influence of the plume is reduced.

  8. Description of the process used to create 1992 Hanford Morality Study database

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Gilbert, E.S.; Buchanan, J.A.; Holter, N.A.

    1992-12-01

    An updated and expanded database for the Hanford Mortality Study has been developed by PNL`s Epidemiology and Biometry Department. The purpose of this report is to document this process. The primary sources of data were the Occupational Health History (OHH) files maintained by the Hanford Environmental Health Foundation (HEHF) and including demographic data and job histories; the Hanford Mortality (HMO) files also maintained by HEHF and including information of deaths of Hanford workers; the Occupational Radiation Exposure (ORE) files maintained by PNL`s Health Physics Department and containing data on external dosimetry; and a file of workers with confirmed internal depositionsmore » of radionuclides also maintained by PNL`s Health Physics Department. This report describes each of these files in detail, and also describes the many edits that were performed to address the consistency and accuracy of data within and between these files.« less

  9. Description of the process used to create 1992 Hanford Morality Study database

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Gilbert, E. S.; Buchanan, J. A.; Holter, N. A.

    1992-12-01

    An updated and expanded database for the Hanford Mortality Study has been developed by PNL's Epidemiology and Biometry Department. The purpose of this report is to document this process. The primary sources of data were the Occupational Health History (OHH) files maintained by the Hanford Environmental Health Foundation (HEHF) and including demographic data and job histories; the Hanford Mortality (HMO) files also maintained by HEHF and including information of deaths of Hanford workers; the Occupational Radiation Exposure (ORE) files maintained by PNL's Health Physics Department and containing data on external dosimetry; and a file of workers with confirmed internal depositionsmore » of radionuclides also maintained by PNL's Health Physics Department. This report describes each of these files in detail, and also describes the many edits that were performed to address the consistency and accuracy of data within and between these files.« less

  10. Determination of an Environmental Background Level of Sr-90 in Urine for the Hanford Bioassay Program Determination of an Environmental Background Level of Sr-90 in Urine for the Hanford Bioassay Program

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Antonio, Cheryl L.; Rivard, James W.

    2009-11-01

    During the decommissioning and maintenance of some of the facilities at the U.S. Department of Energy Hanford Site in Washington State, workers have potential for a 90Sr intake. However, because of worldwide radioactive fallout, 90Sr is present in our environment, and can be detectable in routine urine bioassay samples. It is important for the Hanford Site bioassay program to discern an occupational intake from a non-occupational environmental one. A detailed study of the background 90Sr in the urine of unexposed Hanford workers was performed. A survey of the Hanford Site bioassay database found 128 Hanford workers who were hired betweenmore » 1997 and 2002 and who had a very low potential for an occupational exposure prior to the baseline strontium urinalysis. Each urinalysis sample represented excretion during an approximate 24-hr period. The arithmetic mean value for the 128 pre-exposure baselines was 3.6 ± 5.1 mBq d-1. The 90Sr activities in urine varied from -12 to 20 mBq. The 99th percentile result was 16.4 mBqd-1, which was interpreted to mean that 1% of Hanford workers not occupationally exposed to strontium might exceed 16.4 mBq d-1.« less

  11. Supplemental Immobilization of Hanford Low-Activity Waste: Cast Stone Screening Tests

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Westsik, Joseph H.; Piepel, Gregory F.; Lindberg, Michael J.

    2013-09-30

    IDF. The PA is needed to satisfy both Washington State IDF Permit and DOE Order requirements. Cast Stone has been selected for solidification of radioactive wastes including WTP aqueous secondary wastes treated at the Effluent Treatment Facility (ETF) at Hanford. A similar waste form called Saltstone is used at the Savannah River Site (SRS) to solidify its LAW tank wastes.« less

  12. Inventory Data Package for Hanford Assessments

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kincaid, Charles T.; Eslinger, Paul W.; Aaberg, Rosanne L.

    2006-06-01

    This document presents the basis for a compilation of inventory for radioactive contaminants of interest by year for all potentially impactive waste sites on the Hanford Site for which inventory data exist in records or could be reasonably estimated. This document also includes discussions of the historical, current, and reasonably foreseeable (1944 to 2070) future radioactive waste and waste sites; the inventories of radionuclides that may have a potential for environmental impacts; a description of the method(s) for estimating inventories where records are inadequate; a description of the screening method(s) used to select those sites and contaminants that might makemore » a substantial contribution to impacts; a listing of the remedial actions and their completion dates for waste sites; and tables showing the best estimate inventories available for Hanford assessments.« less

  13. Hanford solid-waste handling facility strategy

    NASA Astrophysics Data System (ADS)

    Albaugh, J. F.

    1982-05-01

    Prior to 1970, transuranic (TRU) solid waste was disposed of at Hanford by shallow land burial. Since 1970, TRU solid waste has been stored in near surface trenches designed to facilitate retrieval after twenty year storage period. Current strategy calls for final disposal in a geologic repository. Funding permitting, in 1983, certification of newly generated TRU waste to the Waste Isolation Pilot Plant (WIPP) criteria for geologic disposal will be initiated. Certified and uncertified waste will continue to be stored at Hanford in retrievable storage until a firm schedule for shipment to WIPP is developed. Previously stored wastes retrieved for geologic disposal and newly generated uncertified waste requires processing to assure compliance with disposal criteria. A facility to perform this function is being developed. A study to determine the requirements of this Waste Receiving and Processing (WRAP) Facility is currently being conducted.

  14. CO{sub 2} pellet decontamination technology at Westinghouse Hanford

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Aldridge, T.L.; Aldrich, L.K. II; Bowman, E.V.

    1995-03-01

    Experimentation and testing with CO{sub 2} pellet decontamination technology is being conducted at Westinghosue Hanford Company (WHC), Richland, Washington. There are 1,100 known existing waste sites at Hanford. The sites specified by federal and state agencies are currently being studied to determine the appropriate cleanup methods best for each site. These sites are contaminated and work on them is in compliance with the Comprehensive Environmental Response, Compensation, and Liability Act (CERCLA). There are also 63 treatment, storage, and disposal units, for example: groups of waste tanks or drums. In 1992, there were 100 planned activities scheduled to bring these unitsmore » into the Resource Conservation and Recovery Act (RCRA) compliance or close them after waste removal. Ninety-six of these were completed. The remaining four were delayed or are being negotiated with regulatory agencies. As a result of past defense program activities at Hanford a tremendous volume of materials and equipment have accumulated and require remediation.« less

  15. Feeding bionomics of juvenile chinook salmon relative to thermal discharges in the central Columbia River

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Becker, C.D.

    1994-10-01

    Juvenile chinook salmon (Oncorhynchus tshawytscha) in the Hanford environs of the central Columbia River, Washington consumed almost entirely adult and larval stages of aquatic insects. The food organisms were dominated by midges (Diptera: Tendipedidae); by numbers, adult midges provided 64 and 58% of the diet and larval midges 17 and 18% of the diet, in 1968 and 1969, respectively. The families Hydropsychidae (Trichoptera), Notonectidae (Hemiptera) and Hypogastruridae (Collembola) were of secondary importance. Small fry fed almost exclusively on the small tendipedids. Over 95% of all food organisms originated within the river ecosystem. The distinctive features of food and feeding activitymore » were fourfold: first, relatively few insect groups were utilized; second, the fish depended on drifting, floating, or swimming organisms; third, they visually selected living prey moving in or on the water; and fourth, they were habitat opportunists to a high degree. The 1969 data, were studied to reveal possible thermal effects of heated discharges from plutonium production reactors at Hanford on food and growth parameters. All data were characterized by considerable variation between and within stations. No discernable effects between coldwater and warmwater stations were revealed by analyses of: (1) groups of food organisms utilized, (2) food and feeding activity, (3) numbers of insects consumed, (4) seasonal increases in fish length, (5) fish length-weight relationships, (6) fish coefficients of condition, and (7) stomach biomass. The lack of detectable thermal effects was apparently due to the fact that the main effluent plumes discharge in midstream and the effluents are well mixed before reaching inshore feeding areas. The transient nature of fish groups at each station, influenced by changes in regulated river flows, and the availability of food organisms in the river drift were ecological factors affecting critical thermal evaluation in situ.« less

  16. Imaging high stage river-water intrusion into a contaminated aquifer along a major river corridor using 2D time-lapse surface electrical resistivity tomography

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wallin, Erin L.; Johnson, Timothy C.; Greenwood, William J.

    2013-03-29

    The Hanford 300 Area is located adjacent to the Columbia River in south-central Washington State, USA, and was a former site for nuclear fuel processing operations. Waste disposal practices resulted in persistent unsaturated zone and groundwater contamination, the primary contaminant of concern being uranium. Uranium behavior at the site is intimately linked with river stage driven groundwater-river water exchange such that understanding the nature of river water intrusion into the 300 Area is critical for predicting uranium desorption and transport. In this paper we use time-lapse electrical resistivity tomography (ERT) to image the inland intrusion of river during high stagemore » conditions. We demonstrate a modified time-lapse inversion approach, whereby the transient water table elevation is explicitly modeled by removing regularization constraints across the water table boundary. This implementation was critical for producing meaningful imaging results. We inverted approximately 1200 data sets (400 per line over 3 lines) using high performance computing resources to produce a time-lapse sequence of changes in bulk conductivity caused by river water intrusion during the 2011 spring runoff cycle over approximately 125 days. The resulting time series for each mesh element was then analyzed using common time series analysis to reveal the timing and location of river water intrusion beneath each line. The results reveal non-uniform flows characterized by preferred flow zones where river water enters and exits quickly with stage increase and decrease, and low permeability zones with broader bulk conductivity ‘break through’ curves and longer river water residence times. The time-lapse ERT inversion approach removes the deleterious effects of changing water table elevation and enables remote and spatial continuous groundwater-river water exchange monitoring using surface based ERT arrays under conditions where groundwater and river water conductivity are in

  17. Colloid-facilitated transport of cesium in variably saturated Hanford sediments.

    PubMed

    Chen, Gang; Flury, Markus; Harsh, James B; Lichtner, Peter C

    2005-05-15

    Radioactive 137Cs has leaked from underground waste tanks into the vadose zone at the Hanford Reservation in south-central Washington State. There is concern that 137Cs, currently located in the vadose zone, can reach the groundwater. In this study, we investigated whether, and to what extent, colloidal particles can facilitate the transport of 137Cs at Hanford. We used colloidal materials isolated from Hanford sediments. Transport experiments were conducted under variably saturated, steady-state flow conditions in repacked, 20 cm long Hanford sediment columns, with effective water saturations ranging from 0.2 to 1.0. Cesium, pre-associated with colloids, was stripped off during transport through the sediments. The higher the flow rates, the less Cs was stripped off, indicating in part that Cs desorption from carrying colloids was a residence-time-dependent process. Depending on the flow rate, up to 70% of the initially sorbed Cs desorbed from colloidal carriers and was captured in the stationary sediments. Less Cs was stripped off colloids under unsaturated than under saturated flow conditions at similar flow rates. This phenomenon was likely due to the reduced availability of sorption sites for Cs on the sediments as the water content decreased and water flow was divided between mobile and immobile regions.

  18. Deep Vadose Zone Treatability Test of Soil Desiccation for the Hanford Central Plateau: Final Report

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Truex, Michael J.; Chronister, Glen B.; Strickland, Christopher E.

    Some of the inorganic and radionuclide contaminants in the deep vadose zone at the Hanford Site are at depths where direct exposure pathways are not of concern, but may need to be remediated to protect groundwater. The Department of Energy developed a treatability test program for technologies to address Tc-99 and uranium in the deep vadose zone. These contaminants are mobile in the subsurface environment, have been detected at high concentrations deep in the vadose zone, and at some locations have reached groundwater. The treatability test of desiccation described herein was conducted as an element of the deep vadose zonemore » treatability test program. Desiccation was shown to be a potentially effective vadose zone remediation technology to protect groundwater when used in conjunction with a surface infiltration barrier.« less

  19. Performance and capacity of river dykes of protection against the floods", through elaboration of performance indicators and decision aid tool in view of the patrimonial assessment of river dykes

    NASA Astrophysics Data System (ADS)

    Vuillet, Marc; Peyras, Laurent; Serre, Damien; Diab, Youssef

    2010-05-01

    France and more generally the World have to face frequent episodes of devastating floods. The human and material damages are multiplied during the failure of a protection structure. In France the length of dykes is estimated to 7500 kilometers, protecting around 15 000 to 18 000 km² and an estimated population between 1.6 to 2 millions. Regrettably, these structures are most of the time old, unidentified, badly maintained, showing signs of weaknesses on numerous occasions. The management of these dikes raises then considerable problems to the decision-makers who are in charge of guaranteeing a maximal safety to the populations at a rational and acceptable management cost. The ambition of the project "Performance and capacity in the service of river dykes of protection against the floods" is to propose to Administrator scientific methods and technical tools for the management of river dykes. These tools will be capable of estimating the capacity in the service of dykes, and to define and organize into a hierarchy the actions of inspection, maintenance and repair. Scientific objectives: • To suggest a methodology of evaluation of the performance of river dykes • To identify and to understand the causes of variability (spatial and temporal) • To analyze the relation between the quality of the data and the quality of the profile of performance • To propose a methodology of auscultation and confortation of the information The research work consists in adapting functional analysis based on safety engineering method, in order to precise the role of each rivers dyke's component in regard to the mechanisms of degradation they suffer. It will allow us to identify failure indicators and decision criteria for evaluating the performance of dykes. The criteria will be the basis to develop a multicriteria decision aid tool allowing to determine the hierarchical organization and the selection of the sections of a park of dykes of protection against the floods, according

  20. Estimation of 1945 to 1957 food consumption. Hanford Environmental Dose Reconstruction Project: Draft

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Anderson, D.M.; Bates, D.J.; Marsh, T.L.

    This report details the methods used and the results of the study on the estimated historic levels of food consumption by individuals in the Hanford Environmental Dose Reconstruction (HEDR) study area from 1945--1957. This period includes the time of highest releases from Hanford and is the period for which data are being collected in the Hanford Thyroid Disease Study. These estimates provide the food-consumption inputs for the HEDR database of individual diets. This database will be an input file in the Hanford Environmental Dose Reconstruction Integrated Code (HEDRIC) computer model that will be used to calculate the radiation dose. Themore » report focuses on fresh milk, eggs, lettuce, and spinach. These foods were chosen because they have been found to be significant contributors to radiation dose based on the Technical Steering Panel dose decision level.« less

  1. Site support program plan for ICF Kaiser Hanford Company, Revision 1

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    NONE

    1995-10-01

    This document is the general administrative plan implemented by the Hanford Site contractor, ICF Kaiser Hanford Company. It describes the mission, administrative structure, projected staffing, to be provided by the contractor. The report breaks out the work responsibilities within the different units of the company, a baseline schedule for the different groups, and a cost summary for the different operating units.

  2. Precipitation of nitrate-cancrinite in Hanford Tank Sludge.

    PubMed

    Buck, E C; McNamara, B K

    2004-08-15

    The chemistry of underground storage tanks containing high-level waste at the Hanford Site in Washington State is an area of continued research interest. Thermodynamic models have predicted the formation of analcime and clinoptilolite in Hanford tanks, rather than cancrinite; however, these predictions were based on carbonate-cancrinite. We report the first observation of a nitrate-cancrinite [possibly Na8(K,Cs)(AlSiO4)6(NO3)2 x nH2O] extracted from a Hanford tank 241-AP-101 sample that was evaporated to 6, 8, and 10 M NaOH concentrations. The nitrate-cancrinite phase formed spherical aggregates (4 microm in diameter) that consisted of platy hexagonal crystals (approximately 0.2 microm thick). Cesium-137 was concentrated in these aluminosilicate structures. These phases possessed a morphology identical to that of nitrate-cancrinite synthesized using simulant tests of nonradioactive tank waste, supporting the contention that it is possible to develop nonradioactive artificial sludges. This investigation points to the continued importance of understanding the solubility of NO3-cancrinite and related phases. Knowledge of the detailed structure of actual phases in the tank waste helps with thermodynamic modeling of tank conditions and waste processing.

  3. Treatment of Bottled Liquid Waste During Remediation of the Hanford 618-10 Burial Ground - 13001

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Faulk, Darrin E.; Pearson, Chris M.; Vedder, Barry L.

    2013-07-01

    A problematic waste form encountered during remediation of the Hanford Site 618-10 burial ground consists of bottled aqueous waste potentially contaminated with regulated metals. The liquid waste requires stabilization prior to landfill disposal. Prior remediation activities at other Hanford burial grounds resulted in a standard process for sampling and analyzing liquid waste using manual methods. Due to the highly dispersible characteristics of alpha contamination, and the potential for shock sensitive chemicals, a different method for bottle processing was needed for the 618-10 burial ground. Discussions with the United States Department of Energy (DOE) and United States Environmental Protection Agency (EPA)more » led to development of a modified approach. The modified approach involves treatment of liquid waste in bottles, up to one gallon per bottle, in a tray or box within the excavation of the remediation site. Bottles are placed in the box, covered with soil and fixative, crushed, and mixed with a Portland cement grout. The potential hazards of the liquid waste preclude sampling prior to treatment. Post treatment verification sampling is performed to demonstrate compliance with land disposal restrictions and disposal facility acceptance criteria. (authors)« less

  4. Using High Performance Computing to Understand Roles of Labile and Nonlabile U(VI) on Hanford 300 Area Plume Longevity

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lichtner, Peter C.; Hammond, Glenn E.

    Evolution of a hexavalent uranium [U(VI)] plume at the Hanford 300 Area bordering the Columbia River is investigated to evaluate the roles of labile and nonlabile forms of U(VI) on the longevity of the plume. A high fidelity, three-dimensional, field-scale, reactive flow and transport model is used to represent the system. Richards equation coupled to multicomponent reactive transport equations are solved for times up to 100 years taking into account rapid fluctuations in the Columbia River stage resulting in pulse releases of U(VI) into the river. The peta-scale computer code PFLOTRAN developed under a DOE SciDAC-2 project is employed inmore » the simulations and executed on ORNL's Cray XT5 supercomputer Jaguar. Labile U(VI) is represented in the model through surface complexation reactions and its nonlabile form through dissolution of metatorbernite used as a surrogate mineral. Initial conditions are constructed corresponding to the U(VI) plume already in place to avoid uncertainties associated with the lack of historical data for the waste stream. The cumulative U(VI) flux into the river is compared for cases of equilibrium and multirate sorption models and for no sorption. The sensitivity of the U(VI) flux into the river on the initial plume configuration is investigated. The presence of nonlabile U(VI) was found to be essential in explaining the longevity of the U(VI) plume and the prolonged high U(VI) concentrations at the site exceeding the EPA MCL for uranium.« less

  5. Hanford Facility Dangerous Waste Permit Application for T Plant Complex

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    BARNES, B.M.

    2002-09-01

    The Hanford Facility Dangerous Waste Permit Application is considered to be a single application organized into a General Information Portion (document number DOE/RL-91-28) and a Unit-Specific Portion. The scope of the Unit-Specific Portion is limited to Part B permit application documentation submitted for individual, operating treatment, storage, and/or disposal units, such as the T Plant Complex (this document, DOE/RL-95-36). Both the General Information and Unit-Specific portions of the Hanford Facility Dangerous Waste Permit Application address the content of the Part B permit application guidance prepared by the Washington State Department of Ecology (Ecology 1996) and the U.S. Environmental Protection Agencymore » (40 Code of Federal Regulations 270), with additional information needs defined by the Hazardous and Solid Waste Amendments and revisions of Washington Administrative Code 173-303. For ease of reference, the Washington State Department of Ecology alpha-numeric section identifiers from the permit application guidance documentation (Ecology 1996) follow, in brackets, the chapter headings and subheadings. A checklist indicating where information is contained in the T Plant Complex permit application documentation, in relation to the Washington State Department of Ecology guidance, is located in the Contents Section. Documentation contained in the General Information Portion is broader in nature and could be used by multiple treatment, storage, and/or disposal units (e.g., the glossary provided in the General Information Portion). Wherever appropriate, the T Plant Complex permit application documentation makes cross-reference to the General Information Portion, rather than duplicating text.« less

  6. Development of occupational exposure limits for the Hanford tank farms.

    PubMed

    Still, Kenneth R; Gardner, Donald E; Snyder, Robert; Anderson, Thomas J; Honeyman, James O; Timchalk, Charles

    2010-04-01

    Production of plutonium for the United States' nuclear weapons program from the 1940s to the 1980s generated 53 million gallons of radioactive chemical waste, which is stored in 177 underground tanks at the Hanford site in southeastern Washington State. Recent attempts to begin the retrieval and treatment of these wastes require moving the waste to more modern tanks and result in potential exposure of the workers to unfamiliar odors emanating from headspace in the tanks. Given the unknown risks involved, workers were placed on supplied air respiratory protection. CH2MHILL, the managers of the Hanford site tank farms, asked an Independent Toxicology Panel (ITP) to assist them in issues relating to an industrial hygiene and risk assessment problem. The ITP was called upon to help determine the risk of exposure to vapors from the tanks, and in general develop a strategy for solution of the problem. This paper presents the methods used to determine the chemicals of potential concern (COPCs) and the resultant development of screening values and Acceptable Occupational Exposure Limits (AOELs) for these COPCs. A total of 1826 chemicals were inventoried and evaluated. Over 1500 chemicals were identified in the waste tanks headspaces and more than 600 of these were assigned screening values; 72 of these compounds were recommended for AOEL development. Included in this list of 72 were 57 COPCs identified by the ITP and of these 47 were subsequently assigned AOELs. An exhaustive exposure assessment strategy was developed by the CH2MHILL industrial hygiene department to evaluate these COPCs.

  7. River networks as biodiversity hotlines.

    PubMed

    Décamps, Henri

    2011-05-01

    For several years, measures to insure healthy river functions and to protect biodiversity have focused on management at the scale of drainage basins. Indeed, rivers bear witness to the health of their drainage basins, which justifies integrated basin management. However, this vision should not mask two other aspects of the protection of aquatic and riparian biodiversity as well as services provided by rivers. First, although largely depending on the ecological properties of the surrounding terrestrial environment, rivers are ecological systems by themselves, characterized by their linearity: they are organized in connected networks, complex and ever changing, open to the sea. Second, the structure and functions of river networks respond to manipulations of their hydrology, and are particularly vulnerable to climatic variations. Whatever the scale considered, river networks represent "hotlines" for sharing water between ecological and societal systems, as well as for preserving both systems in the face of global change. River hotlines are characterized by spatial as well as temporal legacies: every human impact to a river network may be transmitted far downstream from its point of origin, and may produce effects only after a more or less prolonged latency period. Here, I review some of the current issues of river ecology in light of the linear character of river networks. Copyright © 2011 Académie des sciences. Published by Elsevier SAS. All rights reserved.

  8. Fluor Hanford, Inc. Groundwater and Technical Integration Support (Master Project) Quality Assurance Management Plan

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Fix, N. J.

    The scope of the Fluor Hanford, Inc. Groundwater and Technical Integration Support (Master Project) is to provide technical and integration support to Fluor Hanford, Inc., including operable unit investigations at 300-FF-5 and other groundwater operable units, strategic integration, technical integration and assessments, remediation decision support, and science and technology. This Quality Assurance Management Plan provides the quality assurance requirements and processes that will be followed by the Fluor Hanford, Inc. Groundwater and Technical Integration Support (Master Project).

  9. Radioactive Demonstration Of Mineralized Waste Forms Made From Hanford Low Activity Waste (Tank Farm Blend) By Fluidized Bed Steam Reformation (FBSR)

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Jantzen, C. M.; Crawford, C. L.; Bannochie, C. J.

    The U.S. Department of Energy’s Office of River Protection (ORP) is responsible for the retrieval, treatment, immobilization, and disposal of Hanford’s tank waste. A key aspect of the River Protection Project (RPP) cleanup mission is to construct and operate the Hanford Tank Waste Treatment and Immobilization Plant (WTP). The WTP will separate the tank waste into high-level and low-activity waste (LAW) fractions, both of which will subsequently be vitrified. The projected throughput capacity of the WTP LAW Vitrification Facility is insufficient to complete the RPP mission in the time frame required by the Hanford Federal Facility Agreement and Consent Order,more » also known as the Tri-Party Agreement (TPA), i.e. December 31, 2047. Supplemental Treatment is likely to be required both to meet the TPA treatment requirements as well as to more cost effectively complete the tank waste treatment mission. The Supplemental Treatment chosen will immobilize that portion of the retrieved LAW that is not sent to the WTP’s LAW Vitrification facility into a solidified waste form. The solidified waste will then be disposed on the Hanford site in the Integrated Disposal Facility (IDF). Fluidized Bed Steam Reforming (FBSR) offers a moderate temperature (700-750°C) continuous method by which LAW can be processed irrespective of whether the waste contain organics, nitrates, sulfates/sulfides, chlorides, fluorides, volatile radionuclides or other aqueous components. The FBSR technology can process these wastes into a crystalline ceramic (mineral) waste form. The mineral waste form that is produced by co-processing waste with kaolin clay in an FBSR process has been shown to be comparable to LAW glass, i.e. leaches Tc-99, Re and Na at <2g/m 2 during ASTM C1285 (Product Consistency) durability testing. Monolithing of the granular FBSR product was investigated to prevent dispersion during transport or burial/storage. Monolithing in an inorganic geopolymer binder, which is

  10. 77 FR 3241 - Intent To Hold North Dakota Task Force Meeting as Established by the Missouri River Protection...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-01-23

    ... duties of the Task Force are to prepare and approve a plan for the use of the funds made available under... of the Task Force are to prepare and approve a plan for the use of the funds made available under... Force Meeting as Established by the Missouri River Protection and Improvement Act of 2000 (Title VII...

  11. Web-Based Geographic Information System Tool for Accessing Hanford Site Environmental Data

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Triplett, Mark B.; Seiple, Timothy E.; Watson, David J.

    Data volume, complexity, and access issues pose severe challenges for analysts, regulators and stakeholders attempting to efficiently use legacy data to support decision making at the U.S. Department of Energy’s (DOE) Hanford Site. DOE has partnered with the Pacific Northwest National Laboratory (PNNL) on the PHOENIX (PNNL-Hanford Online Environmental Information System) project, which seeks to address data access, transparency, and integration challenges at Hanford to provide effective decision support. PHOENIX is a family of spatially-enabled web applications providing quick access to decades of valuable scientific data and insight through intuitive query, visualization, and analysis tools. PHOENIX realizes broad, public accessibilitymore » by relying only on ubiquitous web-browsers, eliminating the need for specialized software. It accommodates a wide range of users with intuitive user interfaces that require little or no training to quickly obtain and visualize data. Currently, PHOENIX is actively hosting three applications focused on groundwater monitoring, groundwater clean-up performance reporting, and in-tank monitoring. PHOENIX-based applications are being used to streamline investigative and analytical processes at Hanford, saving time and money. But more importantly, by integrating previously isolated datasets and developing relevant visualization and analysis tools, PHOENIX applications are enabling DOE to discover new correlations hidden in legacy data, allowing them to more effectively address complex issues at Hanford.« less

  12. Risk management study for the retired Hanford Site facilities: Qualitative risk evaluation for the retired Hanford Site facilities. Volume 3

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Coles, G.A.; Shultz, M.V.; Taylor, W.E.

    1993-09-01

    This document provides a risk evaluation of the 100 and 200 Area retired, surplus facilities on the Hanford Site. Also included are the related data that were compiled by the risk evaluation team during investigations performed on the facilities. Results are the product of a major effort performed in fiscal year 1993 to produce qualitative information that characterizes certain risks associated with these facilities. The retired facilities investigated for this evaluation are located in the 100 and 200 Areas of the 1,450-km{sup 2} (570-mi{sup 2}) Hanford Site. The Hanford Site is a semiarid tract of land in southeastern Washington State.more » The nearest population center is Richland, Washington, (population 32,000) 30-km (20 mi) southeast of the 200 Area. During walkdown investigations of these facilities, data on real and potential hazards that threatened human health or safety or created potential environmental release issues were identified by the risk evaluation team. Using these findings, the team categorized the identified hazards by facility and evaluated the risk associated with each hazard. The factors contributing to each risk, and the consequence and likelihood of harm associated with each hazard also are included in this evaluation.« less

  13. Validity and sensitivity of a model for assessment of impacts of river floodplain reconstruction on protected and endangered species

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Nooij, R.J.W. de; Lotterman, K.M.; Sande, P.H.J. van de

    Environmental Impact Assessment (EIA) must account for legally protected and endangered species. Uncertainties relating to the validity and sensitivity of EIA arise from predictions and valuation of effects on these species. This paper presents a validity and sensitivity analysis of a model (BIO-SAFE) for assessment of impacts of land use changes and physical reconstruction measures on legally protected and endangered river species. The assessment is based on links between species (higher plants, birds, mammals, reptiles and amphibians, butterflies and dragon- and damselflies) and ecotopes (landscape ecological units, e.g., river dune, soft wood alluvial forests), and on value assignment to protectedmore » and endangered species using different valuation criteria (i.e., EU Habitats and Birds directive, Conventions of Bern and Bonn and Red Lists). The validity of BIO-SAFE has been tested by comparing predicted effects of landscape changes on the diversity of protected and endangered species with observed changes in biodiversity in five reconstructed floodplains. The sensitivity of BIO-SAFE to value assignment has been analysed using data of a Strategic Environmental Assessment concerning the Spatial Planning Key Decision for reconstruction of the Dutch floodplains of the river Rhine, aimed at flood defence and ecological rehabilitation. The weights given to the valuation criteria for protected and endangered species were varied and the effects on ranking of alternatives were quantified. A statistically significant correlation (p < 0.01) between predicted and observed values for protected and endangered species was found. The sensitivity of the model to value assignment proved to be low. Comparison of five realistic valuation options showed that different rankings of scenarios predominantly occur when valuation criteria are left out of the assessment. Based on these results we conclude that linking species to ecotopes can be used for adequate impact assessments

  14. Hanford Single Shell Tank Leak Causes and Locations - 241-TX Farm

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Girardot, C. L.; Harlow, D> G.

    This document identifies 241-TX Tank Farm (TX Farm) leak causes and locations for the 100 series leaking tanks (241-TX-107 and 241-TX-114) identified in RPP-RPT-50870, Rev. 0, Hanford 241-TX Farm Leak Inventory Assessment Report. This document satisfies the TX Farm portion of the target (T04) in the Hanford Federal Facility Agreement and Consent Order milestone M-045-91F.

  15. Progress in Hanford's Double-Shell Tank Integrity Project

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bryson, D.C.; Washenfelder, D.J.; Boomer, K.D.

    2008-07-01

    The U.S. Department of Energy's Office of River Protection has an extensive integrity assessment program for the Hanford Site Double-Shell Tank System. The DOE Orders and environmental protection regulations provide the guidelines for the activities used to inspect and maintain 28 double-shell tanks (DSTs), the waste evaporator, and ancillary equipment that compose this system. This program has been reviewed by oversight and regulatory bodies and found to comply with the established guidelines. The basis for the DOE Order 435.1-1 for tank integrity comes from the Tank Structural Integrity Panel led by Brookhaven National Laboratory during the late 1990's. These guidelinesmore » established criteria for performing Non-Destructive Examination (NDE), for acceptance of the NDE results, for waste chemistry control, and for monitoring the tanks. The environmental regulations mirror these requirements and allow for the tank integrity program to provide compliant storage of the tanks. Both sets of requirements provide additional guidance for the protection of ancillary equipment. CH2M HILL uses two methods of NDE: visual inspection and Ultrasonic Testing (UT). The visual inspection program examines the primary tank and secondary liner of the DST. The primary tank is examined both on the interior surface above the waste in the tank and on the exterior surface facing the annulus of the DST. The interior surface of the tank liner is examined at the same time as the outer surface of the primary tank. The UT program examines representative areas of the primary tank and secondary liner by deploying equipment in the annulus of the tank. Both programs have led to the development of new equipment for remote inspection of the tanks. Compact camera and enhanced lighting systems have been designed and deployed through narrow access ports (called risers) into the tanks. The UT program has designed two generations of crawlers and equipment for deployment through risers into the

  16. Determination of an environmental background level of 90Sr in urine for the Hanford bioassay program.

    PubMed

    Antonio, C L; Rivard, J W

    2009-11-01

    During the decommissioning and maintenance of some of the facilities at the U.S. Department of Energy Hanford Site in Washington State, workers have potential for a Sr intake. However, because of worldwide radioactive fallout, Sr is present in our environment and can be detectable in routine urine bioassay samples. It is important for the Hanford Site bioassay program to discriminate an occupational intake from a non-occupational environmental one. A detailed study of the background Sr in the urine of unexposed Hanford workers was performed. A survey of the Hanford Site bioassay database found 128 Hanford workers who were hired between 1997 and 2002 and who had a very low potential for an occupational exposure prior to the baseline strontium urinalysis. Each urinalysis sample represented excretion during an approximate 24-h period. The arithmetic mean value for the 128 pre-exposure baselines was 3.6 +/- 5.1 mBq d. The 99 percentile result was 17 mBq d, which was interpreted to mean that 1% of Hanford workers not occupationally exposed to strontium might exceed 17 mBq d.

  17. Sediment quality criteria: A review with recommendations for developing criteria for the Hanford Site

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Driver, C.J.

    1994-05-01

    Criteria for determining the quality of liver sediment are necessary to ensure that concentrations of contaminants in aquatic systems are within acceptable limits for the protection of aquatic and human life. Such criteria should facilitate decision-making about remediation, handling, and disposal of contaminants. Several approaches to the development of sediment quality criteria (SQC) have been described and include both descriptive and numerical methods. However, no single method measures all impacts at all times to all organisms (U.S. EPA 1992b). The U.S. EPA`s interest is primarily in establishing chemically based, numerical SQC that are applicable nation-wide (Shea 1988). Of the approachesmore » proposed for SQC development, only three are being considered for numerical SQC on a national level. These approaches include an Equilibrium Partitioning Approach, a site-specific method using bioassays (the Apparent Effects Threshold Approach), and an approach similar to EPA`s water quality criteria (Pavlou and Weston 1984). Although national (or even regional) criteria address a number of political, litigative, and engineering needs, some researchers feel that protection of benthic communities require site-specific, biologically based criteria (Baudo et al. 1990). This is particularly true for areas where complex mixtures of contaminants are present in sediments. Other scientifically valid and accepted procedures for freshwater SQC include a background concentration approach, methods using field or spiked bioassays, a screening level concentration approach, the Apparent Effects Threshold Approach, the Sediment Quality Triad, the International Joint Commission Sediment Assessment Strategy, and the National Status and Trends Program Approach. The various sediment assessment approaches are evaluated for application to the Hanford Reach and recommendations for Hanford Site sediment quality criteria are discussed.« less

  18. Mortality of workers at the Hanford site: 1945-1981

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Gilbert, E.S.; Petersen, G.R.; Buchanan, J.A.

    1989-01-01

    Analyses of mortality of workers at the Hanford Site were updated to include an additional three years of data (1979-81). Deaths occurring in the state of Washington in the years 1982-85 were also evaluated. Hanford workers continued to exhibit a strong healthy worker effect with death rates substantially below those of the general U.S. population. Comparisons by level of radiation exposure within the Hanford worker population provided no evidence of a positive correlation of radiation exposure and mortality from all cancers combined or of mortality from leukemia. Estimates of cancer risk due to radiation were negative, but confidence intervals weremore » wide, indicating that the data were consistent with no risk and with risks several times larger than estimates provided by major groups concerned with risk assessment. Of 18 categories of cancer analyzed, a correlation of borderline statistical significance was identified for female genital cancers (p = 0.05), but was interpreted as probably spurious. The previously identified correlation for multiple myeloma persisted (p = 0.002).« less

  19. Hanford Environmental Dose Reconstruction Project monthly report

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    McMakin, A.H., Cannon, S.D.; Finch, S.M.

    1992-09-01

    The objective of the Hanford Environmental Dose Reconstruction MDR) Project is to estimate the radiation doses that individuals and populations could have received from nuclear operations at Hanford since 1944. The TSP consists of experts in envirorunental pathways. epidemiology, surface-water transport, ground-water transport, statistics, demography, agriculture, meteorology, nuclear engineering. radiation dosimetry. and cultural anthropology. Included are appointed members representing the states of Oregon, Washington, and Idaho, a representative of Native American tribes, and an individual representing the public. The project is divided into the following technical tasks. These tasks correspond to the path radionuclides followed from release to impact onmore » humans (dose estimates): Source Terms; Environmental Transport; Environmental Monitoring Data Demography, Food Consumption, and Agriculture; and Environmental Pathways and Dose Estimates.« less

  20. Hanford Environmental Dose Reconstruction Project. Monthly report

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    McMakin, A.H.; Cannon, S.D.; Finch, S.M.

    1992-07-01

    The objective of the Hanford Environmental Dose Reconstruction (HEDR) Project is to estimate the radiation doses that individuals and populations could have received from nuclear operations at Hanford since 1944. The TSP consists of experts in environmental pathways, epidemiology, surface-water transport, ground-water transport, statistics, demography, agriculture, meteorology, nuclear engineering, radiation dosimetry, and cultural anthropology. Included are appointed technical members representing the states of Oregon, Washington, and Idaho, a representative of Native American tribes, and an individual representing the public. The project is divided into the following technical tasks. These tasks correspond to the path radionuclides followed from release to impactmore » on humans (dose estimates): Source terms, environmental transport, environmental monitoring data, demography, food consumption, and agriculture, and environmental pathways and dose estimates. Progress is discussed.« less

  1. Application of RAD-BCG calculator to Hanford's 300 area shoreline characterization dataset

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Antonio, Ernest J.; Poston, Ted M.; Tiller, Brett L.

    2003-07-01

    Abstract. In 2001, a multi-agency study was conducted to characterize potential environmental effects from radiological and chemical contaminants on the near-shore environment of the Columbia River at the 300 Area of the U.S. Department of Energy’s Hanford Site. Historically, the 300 Area was the location of nuclear fuel fabrication and was the main location for research and development activities from the 1940s until the late 1980s. During past waste handling practices uranium, copper, and other heavy metals were routed to liquid waste streams and ponds near the Columbia River shoreline. The Washington State Department of Health and the Pacific Northwestmore » National Laboratory’s Surface Environmental Surveillance Project sampled various environmental components including river water, riverbank spring water, sediment, fishes, crustaceans, bivalve mollusks, aquatic insects, riparian vegetation, small mammals, and terrestrial invertebrates for analyses of radiological and chemical constituents. The radiological analysis results for water and sediment were used as initial input into the RAD-BCG Calculator. The RAD-BCG Calculator, a computer program that uses an Excel® spreadsheet and Visual Basic® software, showed that maximum radionuclide concentrations measured in water and sediment were lower than the initial screening criteria for concentrations to produce dose rates at existing or proposed limits. Radionuclide concentrations measured in biota samples were used to calculate site-specific bioaccumulation coefficients (Biv) to test the utility of the RAD-BCG-Calculator’s site-specific screening phase. To further evaluate site-specific effects, the default Relative Biological Effect (RBE) for internal alpha particle emissions was reduced by half and the program’s kinetic/allometric calculation approach was initiated. The subsequent calculations showed the initial RAD-BCG Calculator results to be conservative, which is appropriate for screening purposes.« less

  2. Hanford Laboratories monthly activities report, August 1963

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Not Available

    1963-09-16

    This is the monthly report for the Hanford Laboratories Operation, August 1963. Metallurgy, reactor fuels, chemistry, dosimetry, separation processes, reactor technology, financial activities, visits, biology operation, physics and instrumentation research, and employee relations are discussed.

  3. Hanford Site Waste Management Units Report

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Shearer, Jeffrey P.

    2012-02-29

    The Hanford Site Waste Management Units Report (HSWMUR) has been created to meet the requirements of the Tri-Party Agreement (TPA) Action Plan, Section 3.5, which states: “The Hanford Site Waste Management Units Report shall be generated, in a format agreed upon by the Parties, as a calendar year report and issued annually by the DOE by the end of February of each year, and posted electronically for regulator and public access. This report shall reflect all changes made in waste management unit status during the previous year.” This February 2012 version of the HSWMUR contains a comprehensive inventory of themore » 3389 sites and 540 subsites in the Waste Information Data System (WIDS). The information for each site contains a description of each unit and the waste it contains, where applicable. The WIDS database provides additional information concerning the sites contained in this report and is maintained with daily changes to these sites.« less

  4. Hanford Site Waste Management Units Report

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Shearer, Jeffrey P.

    2014-02-19

    The Hanford Site Waste Management Units Report (HSWMUR) has been created to meet the requirements of the Tri-Party Agreement (TPA) Action Plan, Section 3.5, which states: “The Hanford Site Waste Management Units Report shall be generated, in a format agreed upon by the Parties, as a calendar year report and issued annually by the DOE by the end of February of each year, and posted electronically for regulator and public access. This report shall reflect all changes made in waste management unit status during the previous year.” This February 2013 version of the HSWMUR contains a comprehensive inventory of themore » 3438 sites and 569 subsites in the Waste Information Data System (WIDS). The information for each site contains a description of each unit and the waste it contains, where applicable. The WIDS database provides additional information concerning the sites contained in this report and is maintained with daily changes to these sites.« less

  5. Hanford Site Waste Management Units Report

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Shearer, Jeffrey P.

    2013-02-13

    The Hanford Site Waste Management Units Report (HSWMUR) has been created to meet the requirements of the Tri-Party Agreement (TPA) Action Plan, Section 3.5, which states: “The Hanford Site Waste Management Units Report shall be generated, in a format agreed upon by the Parties, as a calendar year report and issued annually by the DOE by the end of February of each year, and posted electronically for regulator and public access. This report shall reflect all changes made in waste management unit status during the previous year.” This February 2013 version of the HSWMUR contains a comprehensive inventory of themore » 3427 sites and 564 subsites in the Waste Information Data System (WIDS). The information for each site contains a description of each unit and the waste it contains, where applicable. The WIDS database provides additional information concerning the sites contained in this report and is maintained with daily changes to these sites.« less

  6. Hanford Laboratories monthly activities report, March 1964

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Not Available

    1964-04-15

    The monthly report for the Hanford Laboratories Operation, March 1964. Reactor fuels, chemistry, dosimetry, separation processes, reactor technology, financial activities, biology operation, and physics and instrumentation research, and applied mathematics operation, and programming operations are discussed.

  7. Blue Ribbon Commission Tour of Hanford Site

    ScienceCinema

    Paul Saueressig

    2017-12-09

    The Blue Ribbon Commission on America's Nuclear Future toured the Department of Energy's Hanford Site on July 14, 2010. Commission members, invited guests, and members of the public visited facilities that store high-level, radioactive waste.

  8. Dewatering Treatment Scale-up Testing Results of Hanford Tank Wastes

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Tedeschi, A.R.; May, T.H.; Bryan, W.E.

    2008-07-01

    This report documents CH2M HILL Hanford Group Inc. (CH2M HILL) 2007 dryer testing results in Richland, WA at the AMEC Nuclear Ltd., GeoMelt Division (AMEC) Horn Rapids Test Site. It provides a discussion of scope and results to qualify the dryer system as a viable unit-operation in the continuing evaluation of the bulk vitrification process. A 10,000 liter (L) dryer/mixer was tested for supplemental treatment of Hanford tank low activity wastes, drying and mixing a simulated non-radioactive salt solution with glass forming minerals. Testing validated the full scale equipment for producing dried product similar to smaller scale tests, and qualifiedmore » the dryer system for a subsequent integrated dryer/vitrification test using the same simulant and glass formers. The dryer system is planned for installation at the Hanford tank farms to dry/mix radioactive waste for final treatment evaluation of the supplemental bulk vitrification process. (authors)« less

  9. Tank Waste Retrieval Lessons Learned at the Hanford Site

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Dodd, R.A.

    One of the environmental remediation challenges facing the nation is the retrieval and permanent disposal of approximately 90 million gallons of radioactive waste stored in underground tanks at the U. S. Department of Energy (DOE) facilities. The Hanford Site is located in southeastern Washington State and stores roughly 60 percent of this waste. An estimated 53 million gallons of high-level, transuranic, and low-level radioactive waste is stored underground in 149 single-shell tanks (SSTs) and 28 newer double-shell tanks (DSTs) at the Hanford Site. These SSTs range in size from 55,000 gallons to 1,000,000 gallon capacity. Approximately 30 million gallons ofmore » this waste is stored in SSTs. The SSTs were constructed between 1943 and 1964 and all have exceeded the nominal 20-year design life. Sixty-seven SSTs are known or suspected to have leaked an estimated 1,000,000 gallons of waste to the surrounding soil. The risk of additional SST leakage has been greatly reduced by removing more than 3 million gallons of interstitial liquids and supernatant and transferring this waste to the DST system. Retrieval of SST salt-cake and sludge waste is underway to further reduce risks and stage feed materials for the Hanford Site Waste Treatment Plant. Regulatory requirements for SST waste retrieval and tank farm closure are established in the Hanford Federal Facility Agreement and Consent Order (HFFACO), better known as the Tri- Party Agreement, or TPA. The HFFACO was signed by the DOE, the State of Washington Department of Ecology (Ecology), and U.S. Environmental Protection Agency (EPA) and requires retrieval of as much waste as technically possible, with waste residues not to exceed 360 ft{sup 3} in 530,000 gallon or larger tanks; 30 ft{sup 3} in 55,000 gallon or smaller tanks; or the limit of waste retrieval technology, whichever is less. If residual waste volume requirements cannot be achieved, then HFFACO Appendix H provisions can be invoked to request Ecology and

  10. Identification of the Spawning, Rearing, and Migratory Requirements of Fall Chinook Salmon in the Columbia River Basin, Annual Report 1993.

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Rondorf, Dennis W.; Tiffan, Kenneth F.

    1994-12-01

    Recovery efforts for the endangered fall chinook salmon necessitates knowledge of the factors limiting the various life history stages. This study attempts to identify those physical and biological factors which affect spawning of the fish in the free-flowing Snake River and their rearing seward migration through Columbia River basin reservoirs. The spawning was generally a November event in 1993, with some activity in late Oct. and early Dec. Spawning habitat availability was assessed by applying hydraulic and habitat models to known fall chinook salmon spawning sites. Juveniles were seined and PIT tagged in the free-flowing Snake River, and in themore » Columbia River in he Hanford Reach and in McNary Reservoir. Subyearling fish were marked at McNary Dam to relate river flow and migration patterns of juveniles to adult returns. Hydroacoustic surveys were conducted on McNary and John Day reservoirs and in net pens.« less

  11. Hydrologic and geochemical data assimilation at the Hanford 300 Area

    NASA Astrophysics Data System (ADS)

    Chen, X.; Hammond, G. E.; Murray, C. J.; Zachara, J. M.

    2012-12-01

    In modeling the uranium migration within the Integrated Field Research Challenge (IFRC) site at the Hanford 300 Area, uncertainties arise from both hydrologic and geochemical sources. The hydrologic uncertainty includes the transient flow boundary conditions induced by dynamic variations in Columbia River stage and the underlying heterogeneous hydraulic conductivity field, while the geochemical uncertainty is a result of limited knowledge of the geochemical reaction processes and parameters, as well as heterogeneity in uranium source terms. In this work, multiple types of data, including the results from constant-injection tests, borehole flowmeter profiling, and conservative tracer tests, are sequentially assimilated across scales within a Bayesian framework to reduce the hydrologic uncertainty. The hydrologic data assimilation is then followed by geochemical data assimilation, where the goal is to infer the heterogeneous distribution of uranium sources using uranium breakthrough curves from a desorption test that took place at high spring water table. We demonstrate in our study that Ensemble-based data assimilation techniques (Ensemble Kalman filter and smoother) are efficient in integrating multiple types of data sequentially for uncertainty reduction. The computational demand is managed by using the multi-realization capability within the parallel PFLOTRAN simulator.

  12. Hanford Works monthly report, December 1950

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Prout, G.R.

    1951-01-22

    This is a progress report of the production reactors on the Hanford Reservation for the month of December 1950. This report takes each division (e.g., manufacturing, medical, accounting, occupational safety, security, reactor operations, etc.) of the site and summarizes its accomplishments and employee relations for that month.

  13. Hanford Works monthly report, April 1952

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Prout, G.R.

    1952-05-20

    This is a progress report of the production reactors on the Hanford Reservation for the month of April 1952. This report takes each division (e.g., manufacturing, medical, accounting, occupational safety, security, reactor operations, etc.) of the site and summarizes its accomplishments and employee relations for that month.

  14. Hanford Works monthly report, August 1950

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Prout, G.R.

    1950-09-18

    This is a progress report of the production reactors on the Hanford Reservation for the month of August 1950. This report takes each division (e.g. manufacturing, medical, accounting, occupational safety, security, reactor operations, etc.) of the site and summarizes its accomplishments and employee relations for that month.

  15. Hanford Works monthly report, March 1951

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Prout, G.R.

    1951-04-20

    This is a progress report of the production reactors on the Hanford Reservation for the month of March 1951. This report takes each division (e.g., manufacturing, medical, accounting, occupational safety, security, reactor operations, etc.) of the site and summarizes its accomplishments and employee relations for that month.

  16. Hanford Works monthly report, May 1951

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Prout, G.R.

    1951-06-21

    This is a progress report of the production reactors on the Hanford Reservation for the month of May 1951. This report takes each division (e.g., manufacturing, medical, accounting, occupational safety, security, reactor operations, etc.) of the site and summarizes its accomplishments and employee relations for that month.

  17. Hanford Works monthly report, July 1951

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Prout, G.R.

    This is a progress report of the production reactors on the Hanford Reservation for the month of July 1951. This report takes each division (e.g., manufacturing, medical, accounting, occupational safety, security, reactor operations, etc.) of the site and summarizes its accomplishments and employee relations for that month.

  18. Hanford Works monthly report, March 1952

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Prout, G.R.

    1952-04-18

    This is a progress report of the production reactors on the Hanford Reservation for the month of April 1952. This report takes each division (e.g., manufacturing, medical, accounting, occupational safety, security, reactor operations, etc.) of the site and summarizes its accomplishments and employee relations for that month.

  19. Hanford Works monthly report, July 1952

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Prout, G.R.

    1952-08-15

    This is a progress report of the production reactors on the Hanford Reservation for the month of July 1952. This report takes each division (e.g., manufacturing, medical, accounting, occupational safety, security, reactor operations, etc.) of the site and summarizes its accomplishments and employee relations for that month.

  20. Hanford works monthly report, September 1951

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Prout, G.R.

    This is a progress report of the production reactors on the Hanford Reservation for the month of September 1951. This report takes each division (e.g., manufacturing, medical, accounting, occupational safety, security, reactor operations, etc.) of the site and summarizes its accomplishments and employee relations for that month.

  1. Hanford Works monthly report, January 1952

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Prout, G.R.

    This is a progress report of the production reactors on the Hanford Reservation for the month of January 1952. This report takes each division (e.g., manufacturing, medical, accounting, occupational safety, security, reactor operations, etc.) of the site and summarizes its accomplishments and employee relations for that month.

  2. Hanford Works monthly report, August 1951

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Not Available

    1951-09-24

    This is a progress report of the production reactors on the Hanford Reservation for the month of August 1951. This report takes each division (e.g., manufacturing, medical, accounting, occupational safety, security, reactor operations, etc.) of the site and summarizes its accomplishments and employee relations for that month.

  3. Hanford Works monthly report, July 1950

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Prout, G.R.

    1950-08-18

    This is a progress report of the production reactors on the Hanford Reservation for the month of July 1950. This report takes each division (e.g., manufacturing, medical, accounting, occupational safety, security, reactor operations, etc.) of the site and summarizes its accomplishments and employee relations for that month.

  4. Hanford Works monthly report, November 1951

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Prout, G.R.

    1951-12-21

    This is a progress report of the production reactors on the Hanford Reservation for the month of November 1951. This report takes each division (e.g., manufacturing, medical, accounting, occupational safety, security, reactor operations, etc.) of the site and summarizes its accomplishments and employee relations for that month.

  5. Hanford Works monthly report, October 1950

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Prout, G.R.

    1950-11-20

    This is a progress report of the production reactors on the Hanford Reservation for the month of October 1950. This report takes each division (e.g., manufacturing, medical, accounting, occupational safety, security, reactor operations, etc.) of the site and summarizes its accomplishments and employee relations for that month.

  6. Hanford Works monthly report, September 1950

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Prout, G.R.

    1950-10-20

    This is a progress report of the production reactors on the Hanford Reservation for the month of September 1950. This report takes each division (e.g., manufacturing, medical, accounting, occupational safety, security, reactor operations, etc.) of the site and summarizes its accomplishments and employee relations for that month.

  7. Hanford Works monthly report, November 1950

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Prout, G.R.

    1950-12-20

    This is a progress report of the production reactors on the Hanford Reservation for the month of November 1950. This report takes each division (e.g. manufacturing, medical, accounting, occupational safety, security, reactor operations, etc.) of the site and summarizes its accomplishments and employee relations for that month.

  8. Hanford Works monthly report, December 1951

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Prout, G.R.

    1952-01-22

    This is a progress report of the production reactors on the Hanford Reservation for the month of December 1951. This report takes each division (e.g., manufacturing, medical, accounting, occupational safety, security, reactor operations, etc.) of the site and summarizes its accomplishments and employee relations for that month.

  9. Effect of Rapidly Changing River Stage on Uranium Flux through the Hyporheic Zone

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Fritz, Brad G.; Arntzen, Evan V.

    2007-11-01

    At the Hanford Site, the flux of uranium contaminated groundwater into the Columbia River varies according to the dynamic changes in hydraulic gradient caused by fluctuating river stage. The river stage changes in response to operations of dams on the Columbia River. Piezometers were installed in the hyporheic zone to facilitate long term, high frequency measurement of water and uranium fluxes into the Columbia River in response to fluctuating river stage. In addition, measurement of the water level in the near shore unconfined aquifer enhanced the understanding of the relationship between fluctuating river stage and uranium flux. The changing rivermore » stage caused head fluctuations in the unconfined aquifer, and resulted in fluctuating hydraulic gradient in the hyporheic zone. Further, influx of river water into the unconfined aquifer caused reduced uranium concentration in near shore groundwater as a result of dilution. Calculated water flux through the hyporheic zone ranged between 0.3 and -0.5 L/min/m2. The flux of uranium through the hyporheic zone exceeded 30 ug/min/m2 during some time periods, but was generally on the order of 3 to 5 ug/min/m2 over the course of this study. It was also found that at this location, the top 20 cm of the hyporheic zone constituted the most restrictive portion of the aquifer, and controlled the flux of water through the hyporheic zone.« less

  10. Challenges of river basin management: Current status of, and prospects for, the River Danube from a river engineering perspective.

    PubMed

    Habersack, Helmut; Hein, Thomas; Stanica, Adrian; Liska, Igor; Mair, Raimund; Jäger, Elisabeth; Hauer, Christoph; Bradley, Chris

    2016-02-01

    In the Danube River Basin multiple pressures affect the river system as a consequence of river engineering works, altering both the river hydrodynamics and morphodynamics. The main objective of this paper is to identify the effects of hydropower development, flood protection and engineering works for navigation on the Danube and to examine specific impacts of these developments on sediment transport and river morphology. Whereas impoundments are characterised by deposition and an excess of sediment with remobilisation of fine sediments during severe floods, the remaining five free flowing sections of the Danube are experiencing river bed erosion of the order of several centimetres per year. Besides the effect of interruption of the sediment continuum, river bed degradation is caused by an increase in the sediment transport capacity following an increase in slope, a reduction of river bed width due to canalisation, prohibition of bank erosion by riprap or regressive erosion following base level lowering by flood protection measures and sediment dredging. As a consequence, the groundwater table is lowered, side-arms are disconnected, instream structures are lost and habitat quality deteriorates affecting the ecological status of valuable floodplains. The lack of sediments, together with cutting off meanders, leads also to erosion of the bed of main arms in the Danube Delta and coastal erosion. This paper details the causes and effects of river engineering measures and hydromorphological changes for the Danube. It highlights the importance of adopting a basin-wide holistic approach to river management and demonstrates that past management in the basin has been characterised by a lack of integration. To-date insufficient attention has been paid to the wide-ranging impacts of river engineering works throughout the basin: from the basin headwaters to the Danube Delta, on the Black Sea coast. This highlights the importance of new initiatives that seek to advance knowledge

  11. Hanford Single-Shell Tank Leak Causes and Locations - 241-BY and 241-TY Farm

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Girardot, Crystal L.; Harlow, Donald G.

    This document identifies 241-BY Tank Farm (BY Farm) and 241-TY Tank Farm (TY Farm) lead causes and locations for the 100 series leaking tanks (241-BY-103, 241-TY-103, 241-TY-104, 241-TY-105 and 241-TY-106) identified in RPP-RPT-43704, Hanford BY Farm Leak Assessments Report, and in RPP-RPT-42296, Hanford TY Farm Leak Assessments Report. This document satisfies the BY and TY Farm portion of the target (T04) in the Hanford Federal Facility Agreement and Consent Order milestone M-045-91F.

  12. River water quality and pollution sources in the Pearl River Delta, China.

    PubMed

    Ouyang, Tingping; Zhu, Zhaoyu; Kuang, Yaoqiu

    2005-07-01

    Some physicochemical parameters were determined for thirty field water samples collected from different water channels in the Pearl River Delta Economic Zone river system. The analytical results were compared with the environmental quality standards for surface water. Using the SPSS software, statistical analyses were performed to determine the main pollutants of the river water. The main purpose of the present research is to investigate the river water quality and to determine the main pollutants and pollution sources. Furthermore, the research provides some approaches for protecting and improving river water quality. The results indicate that the predominant pollutants are ammonium, phosphorus, and organic compounds. The wastewater discharged from households in urban and rural areas, industrial facilities, and non-point sources from agricultural areas are the main sources of pollution in river water in the Pearl River Delta Economic Zone.

  13. Hyporheic Zone Residence Time Distributions in Regulated River Corridors

    NASA Astrophysics Data System (ADS)

    Song, X.; Chen, X.; Shuai, P.; Gomez-Velez, J. D.; Ren, H.; Hammond, G. E.

    2017-12-01

    Regulated rivers exhibit stage fluctuations at multiple frequencies due to both natural processes (e.g., seasonal cycle) and anthropogenic activities (e.g., dam operation). The interaction between the dynamic river flow conditions and the heterogeneous aquifer properties results in complex hydrologic exchange pathways that are ubiquitous in free-flowing and regulated river corridors. The dynamic nature of the exchange flow is reflected in the residence time distribution (RTD) of river water within the groundwater system, which is a key metric that links river corridor biogeochemical processes with the hydrologic exchange. Understanding the dynamics of RTDs is critical to gain the mechanistic understanding of hydrologic exchange fluxes and propose new parsimonious models for river corridors, yet it is understudied primarily due to the high computational demands. In this study, we developed parallel particle tracking algorithms to reveal how river flow variations affect the RTD of river water in the alluvial aquifer. Particle tracking was conducted using the velocity outputs generated by three-dimensional groundwater flow simulations of PFLOTRAN in a 1600 x 800 x 20m model domain within the DOE Hanford Site. Long-term monitoring data of inland well water levels and river stage were used for eight years of flow simulation. Nearly a half million particles were continually released along the river boundary to calculate the RTDs. Spectral analysis of the river stage data revealed high-frequency (sub-daily to weekly) river stage fluctuations caused by dam operations. The higher frequencies of stage variation were progressively filtered to generate multiple sets of flow boundary conditions. A series of flow simulations were performed by using the filtered flow boundary conditions and various degrees of subsurface heterogeneity to study the relative contribution of flow dynamics and physical heterogeneity on river water RTD. Our results revealed multimodal RTDs of river

  14. COLLABORATIVE NEGOTIATIONS A SUCCESSFUL APPROACH FOR NEGOTIATING COMPLIANCE MILESTONES FOR THE TRANSITION OF THE PLUTONIUM FINISHING PLANT (PFP), HANFORD NUCLEAR RESERVATION, AND HANFORD, WASHINGTON

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hebdon, J.; Yerxa, J.; Romine, L.

    The Hanford Nuclear Reservation is a former U. S. Department of Energy Defense Production Site. The site is currently listed on the National Priorities List of the Comprehensive Environmental Response Compensation and Liability Act of 1980 (CERCLA) and is undergoing cleanup and environmental restoration. The PFP is a former Plutonium metal production facility. The operating mission of the PFP ended with a DOE Headquarters shutdown letter in October of 1996. Generally, the receipt of a shutdown letter initiates the start of Transition (as the first step of Decommissioning) of a facility. The Hanford site is subject to the Hanford Federalmore » Facilities Compliance Act and Consent Order (HFFCCO), an order on consent signed by the DOE, the U. S. Environmental Protection Agency, (EPA) and the Washington Department of Ecology (WDOE). Under the HFFCCO, negotiations for transition milestones begin within six months after the issuance of a shutdown order. In the case of the PFP, the Nuclear Materials disposition and stabilization activities, a DOE responsibility, were necessary as precursor activities to Transition. This situation precipitated a crisis in the negotiations between the agencies, and formal negotiations initiated in 1997 ended in failure. The negotiations reached impasse on several key regulatory and operational issues. The 1997 negotiation was characterized by a strongly positional style. DOE and the regulatory personnel took hard lines early in the negotiations and were unable to move to resolution of key issues after a year and a half. This resulted in unhappy stakeholders, poor publicity and work delays as well as wounded relationships between DOE and the regulatory community. In the 2000-2001 PFP negotiations, a completely different approach was suggested and eventually initiated: Collaborative Negotiations. The collaborative negotiation style resulted in agreement between the agencies on all key issues within 6 months of initiation. All parties were

  15. A Study of Vegetation on Revetments Sacramento River Bank Protection Project. Phase 1. Literature Review and Pilot Study

    DTIC Science & Technology

    1990-11-01

    California, Sacramento, CA. 106 Fletcher, William B., and Davidson, Russell L. 1988. "South Santiam River Bank Protection Study, A Pilot Study for the... Poundstone , President Reclamation District 108 P. 0. Box 887 Colusa, CA 95932 Mr. Glenn Hiatt, President Reclamation District 1500 Star Route Knights Landing...R. Farnsworth. Also present were Engineer Kenneth Larch, Attorney George Besyo. Secretary-Manager David P. Grenicher, Emery Poundstone , Jack Wallace

  16. Missouri River, Natural Resources Bibliography.

    DTIC Science & Technology

    1997-07-01

    Missouri River. South Dakota Cons. Dig. 19- Canadian Society of Petroleum Geologists 23. 9:205-19. Missouri River Bibliography 91 1669. SIMPSON PW...Invertebrates of southwestern North Dakota: Report Number 1, Missouri River main stem, aquatic molluscs . Geology Department, 1958-1962. U.S. Public Health... Bioaccumulation 1404, 1559, 1561 Bottom Features 151 Bank Protection 496, 1320, 1840, Bioassays 337 Bottom Sampling 1164 1869 Biochemical Oxygen

  17. Optimal and centralized reservoir management for drought and flood protection via Stochastic Dual Dynamic Programming on the Upper Seine-Aube River system

    NASA Astrophysics Data System (ADS)

    Chiavico, Mattia; Raso, Luciano; Dorchies, David; Malaterre, Pierre-Olivier

    2015-04-01

    Seine river region is an extremely important logistic and economic junction for France and Europe. The hydraulic protection of most part of the region relies on four controlled reservoirs, managed by EPTB Seine-Grands Lacs. Presently, reservoirs operation is not centrally coordinated, and release rules are based on empirical filling curves. In this study, we analyze how a centralized release policy can face flood and drought risks, optimizing water system efficiency. The optimal and centralized decisional problem is solved by Stochastic Dual Dynamic Programming (SDDP) method, minimizing an operational indicator for each planning objective. SDDP allows us to include into the system: 1) the hydrological discharge, specifically a stochastic semi-distributed auto-regressive model, 2) the hydraulic transfer model, represented by a linear lag and route model, and 3) reservoirs and diversions. The novelty of this study lies on the combination of reservoir and hydraulic models in SDDP for flood and drought protection problems. The study case covers the Seine basin until the confluence with Aube River: this system includes two reservoirs, the city of Troyes, and the Nuclear power plant of Nogent-Sur-Seine. The conflict between the interests of flood protection, drought protection, water use and ecology leads to analyze the environmental system in a Multi-Objective perspective.

  18. Hanford Environmental Dose Reconstruction Project monthly report, November 1992

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Cannon, S.D.; Finch, S.M.

    1992-12-31

    The objective of the Hanford Environmental Dose Reconstruction (HEDR) Project is to estimate the radiation doses that individuals and populations could have received from nuclear operations at Hanford since 1944. The TSP consists of experts in environmental pathways, epidemiology, surface-water transport, ground-water transport, statistics, demography, agriculture, meteorology, nuclear engineering, radiation dosimetry, and cultural anthropology. Included are appointed members representing the states of Oregon, Washington. and Idaho, a representative of Native American tribes, and an individual representing the public. The project is divided into the following technical tasks: Source terms; environmental transport; environmental monitoring data; demography, food consumption and agriculture; environmentalmore » pathways and dose estimates.« less

  19. Hanford Environmental Dose Reconstruction Project monthly report, November 1992

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Cannon, S.D.; Finch, S.M.

    1992-01-01

    The objective of the Hanford Environmental Dose Reconstruction (HEDR) Project is to estimate the radiation doses that individuals and populations could have received from nuclear operations at Hanford since 1944. The TSP consists of experts in environmental pathways, epidemiology, surface-water transport, ground-water transport, statistics, demography, agriculture, meteorology, nuclear engineering, radiation dosimetry, and cultural anthropology. Included are appointed members representing the states of Oregon, Washington. and Idaho, a representative of Native American tribes, and an individual representing the public. The project is divided into the following technical tasks: Source terms; environmental transport; environmental monitoring data; demography, food consumption and agriculture; environmentalmore » pathways and dose estimates.« less

  20. Hanford isotope project strategic business analysis yttrium-90 (Y-90)

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    NONE

    1995-10-01

    The purpose of this analysis is to address the short-term direction for the Hanford yttrium-90 (Y-90) project. Hanford is the sole DOE producer of Y-90, and is the largest repository for its source in this country. The production of Y-90 is part of the DOE Isotope Production and Distribution (IP and D) mission. The Y-90 is ``milked`` from strontium-90 (Sr-90), a byproduct of the previous Hanford missions. The use of Sr-90 to produce Y-90 could help reduce the amount of waste material processed and the related costs incurred by the clean-up mission, while providing medical and economic benefits. The costmore » of producing Y-90 is being subsidized by DOE-IP and D due to its use for research, and resultant low production level. It is possible that the sales of Y-90 could produce full cost recovery within two to three years, at two curies per week. Preliminary projections place the demand at between 20,000 and 50,000 curies per year within the next ten years, assuming FDA approval of one or more of the current therapies now in clinical trials. This level of production would incentivize private firms to commercialize the operation, and allow the government to recover some of its sunk costs. There are a number of potential barriers to the success of the Y-90 project, outside the control of the Hanford Site. The key issues include: efficacy, Food and Drug Administration (FDA) approval and medical community acceptance. There are at least three other sources for Y-90 available to the US users, but they appear to have limited resources to produce the isotope. Several companies have communicated interest in entering into agreements with Hanford for the processing and distribution of Y-90, including some of the major pharmaceutical firms in this country.« less

  1. Depth of the biologically active zone in upland habitats at the Hanford Site, Washington: Implications for remediation and ecological risk management.

    PubMed

    Sample, Bradley E; Lowe, John; Seeley, Paul; Markin, Melanie; McCarthy, Chris; Hansen, Jim; Aly, Alaa H

    2015-01-01

    Soil invertebrates, mammals, and plants penetrate and exploit the surface soil layer (i.e., the biologically active zone) to varying depths. As the US Department of Energy remediates radioactive and hazardous wastes in soil at the Hanford Site, a site-specific definition of the biologically active zone is needed to identify the depth to which remedial actions should be taken to protect the environment and avoid excessive cleanup expenditures. This definition may then be considered in developing a point of compliance for remediation in accordance with existing regulations. Under the State of Washington Model Toxic Control Act (MTCA), the standard point of compliance for soil cleanup levels with unrestricted land use is 457 cm (15 ft) below ground surface. When institutional controls are required to control excavations to protect people, MTCA allows a conditional point of compliance to protect biological resources based on the depth of the biologically active zone. This study was undertaken to identify and bound the biologically active zone based on ecological resources present at the Hanford Site. Primary data were identified describing the depths to which ants, mammals, and plants may exploit the surface soil column at the Hanford Site and other comparable locations. The maximum depth observed for harvester ants (Pogonomyrmex spp.) was 270 cm (8.9 ft), with only trivial excavation below 244 cm (8 ft). Badgers (Taxidea taxus) are the deepest burrowing mammal at the Hanford Site, with maximum burrow depths of 230 cm (7.6 ft); all other mammals did not burrow below 122 cm (4 ft). Shrubs are the deepest rooting plants with rooting depths to 300 cm (9.8 ft) for antelope bitterbrush (Purshia tridentata). The 2 most abundant shrub species did not have roots deeper than 250 cm (8.2 ft). The deepest rooted forb had a maximum root depth of 240 cm (7.9 ft). All other forbs and grasses had rooting depths of 200 cm (6.6 ft) or less. These data indicate that the biologically

  2. Elwha River dam removal-Rebirth of a river

    USGS Publications Warehouse

    Duda, Jeffrey J.; Warrick, Jonathan A.; Magirl, Christopher S.

    2011-01-01

    After years of planning for the largest project of its kind, the Department of the Interior will begin removal of two dams on the Elwha River, Washington, in September 2011. For nearly 100 years, the Elwha and Glines Canyon Dams have disrupted natural processes, trapping sediment in the reservoirs and blocking fish migrations, which changed the ecology of the river downstream of the dams. All five Pacific salmon species and steelhead-historically present in large numbers-are locally extirpated or persist in critically low numbers. Upstream of the dams, more than 145 kilometers of pristine habitat, protected inside Olympic National Park, awaits the return of salmon populations. As the dams are removed during a 2-3 year project, some of the 19 million cubic meters of entrapped sediment will be carried downstream by the river in the largest controlled release of sediment into a river and marine waters in history. Understanding the changes to the river and coastal habitats, the fate of sediments, and the salmon recolonization of the Elwha River wilderness will provide useful information for society as future dam removals are considered.

  3. Making a Lasting Impression: Recovery Act Reporting At Hanford - 12528

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Tebrugge, Kimberly; Disney, Maren

    The award of American Recovery and Reinvestment Act funding came with an unprecedented request for transparency to showcase to the American public how the stimulus funding was being put to work to achieve the goals put forth by the U.S. Government. At the U.S. Department of Energy Hanford Site, this request manifested in a contract requirement to provide weekly narrative, photos and video to highlight Recovery Act-funded projects. For DOE contractor CH2M HILL Plateau Remediation Company (CH2M HILL), the largest recipient of Hanford's funding, the reporting mechanism evolved into a communications tool for documenting the highly technical cleanup, then effectivelymore » sharing that story with the DOE and its varying stakeholder audiences. The report set the groundwork for building a streaming narrative of week-by-week progress. With the end of the Recovery Act, CH2M HILL is applying lessons learned from this stringent, transparent reporting process to its long-term reporting and communications of the progress being made in nuclear decommissioning at Hanford. (authors)« less

  4. Ground beetles (Coleoptera, Carabidae) of the Hanford Nuclear Site in south-central Washington State.

    PubMed

    Looney, Chris; Zack, Richard S; Labonte, James R

    2014-01-01

    Carabidae) collected from the Hanford Nuclear Reservation and Hanford National Monument (together the Hanford Site), which is located in south-central Washington State. The Site is a relatively undisturbed relict of the shrub-steppe habitat present throughout much of the western Columbia Basin before the westward expansion of the United States. Species, localities, months of capture, and capture method are reported for field work conducted between 1994 and 2002. Most species were collected using pitfall traps, although other capture methods were employed. Trapping results indicate the Hanford Site supports a diverse ground beetle community, with over 90% of the 92 species captured native to North America. Four species collected during the study period are newly recorded for Washington State: Bembidion diligens Casey, Calosoma obsoletum Say, Pseudaptinus rufulus (LeConte), and Stenolophus lineola (Fabricius). Based on these data, the Site maintains a diverse ground beetle fauna and, due to its size and diversity of habitats, is an important repository of shrub-steppe biodiversity.

  5. Silver Creek Mine Treatment is Golden in Protecting Schuylkill River

    EPA Pesticide Factsheets

    The Schuylkill River spans over 130 miles from its headwaters in Schuylkill County through several counties on to New Philadelphia where it joins the Delaware River. It serves a drinking water source for 1.5 million people.

  6. Roseau River Subbasin, Red River of the North Reconnaissance Report.

    DTIC Science & Technology

    1980-12-01

    river. It was found that much of the area was used -,- .for agricultural purposes (cropland and pasture). A narrow corridor € .of woodlands, sometimes... corridor through disturbed (e.g. cropland) areas. The forested areas afford habitats for a greater variety of wildlife than any other major habitat type in...listing as a Federally protected species (U.S. Army Corps of Engineers, 1975; U.S. Fish and Wildife Service, 1980; International Roseau River Engineering

  7. Improved Management of the Technical Interfaces Between the Hanford Tank Farm Operator and the Hanford Waste Treatment Plant - 13383

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Duncan, Garth M.; Saunders, Scott A.

    2013-07-01

    The Department of Energy (DOE) is constructing the Waste Treatment and Immobilization Plant (WTP) at the Hanford site in Washington to treat and immobilize approximately 114 million gallons of high level radioactive waste (after all retrievals are accomplished). In order for the WTP to be designed and operated successfully, close coordination between the WTP engineering, procurement, and construction contractor, Bechtel National, Inc. and the tank farms operating contractor (TOC), Washington River Protection Solutions, LLC, is necessary. To develop optimal solutions for DOE and for the treatment of the waste, it is important to deal with the fact that two differentmore » prime contractors, with somewhat differing contracts, are tasked with retrieving and delivering the waste and for treating and immobilizing that waste. The WTP and the TOC have over the years cooperated to manage the technical interface. To manage what is becoming a much more complicated interface as the WTP design progresses and new technical issues have been identified, an organizational change was made by WTP and TOC in November of 2011. This organizational change created a co-located integrated project team (IPT) to deal with mutual and interface issues. The Technical Organization within the One System IPT includes employees from both TOC and WTP. This team has worked on a variety of technical issues of mutual interest and concern. Technical issues currently being addressed include: - The waste acceptance criteria; - Waste feed delivery and the associated data quality objectives (DQO); - Evaluation of the effects of performing a riser cut on a single shell tank on WTP operations; - The disposition of secondary waste from both TOC and WTP; - The close coordination of the TOC double shell tank mixing and sampling program and the Large Scale Integrated Test (LSIT) program for pulse jet mixers at WTP along with the associated responses to the Defense Nuclear Facilities Safety Board (DNFSB

  8. Probabilistic Prediction of Riverine Bathymetry

    DTIC Science & Technology

    2011-09-30

    planned a substantial data field collection effort on the Hanford Reach of the Columbia River near Richland, WA, which represents an ideal testing...4 Figure 2. 82-km Hanford Reach of the Columbia River (WA) IMPACT/APPLICATIONS The developed methods are directly applicable to video

  9. Tank vapor mitigation requirements for Hanford Tank Farms

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Rakestraw, L.D.

    1994-11-15

    Westinghouse Hanford Company has contracted Los Alamos Technical Associates to listing of vapors and aerosols that are or may be emitted from the High Level Waste (HLW) tanks at Hanford. Mitigation requirements under Federal and State law, as well as DOE Orders, are included in the listing. The lists will be used to support permitting activities relative to tank farm ventilation system up-grades. This task is designated Task 108 under MJB-SWV-312057 and is an extension of efforts begun under Task 53 of Purchase Order MPB-SVV-03291 5 for Mechanical Engineering Support. The results of that task, which covered only thirty-nine tanks,more » are repeated here to provide a single source document for vapor mitigation requirements for all 177 HLW tanks.« less

  10. Hanford Laboratories Operation monthly activities report, September 1960

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Not Available

    1960-10-15

    This is the monthly report for the Hanford Laboratories Operation, October, 1960. Metallurgy, reactor fuels, chemistry, dosimetry, separation processes, reactor technology, financial activities, visits, biology operation, physics and instrumentation research, and employee relations are discussed.

  11. Hanford Laboratories Operation monthly activities report, November 1962

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Not Available

    1962-12-14

    This is the monthly report for the Hanford Laboratories Operation, November 1962. Metallurgy, reactor fuels, chemistry, dosimetry, separation processes, reactor technology, financial activities, visits, biology operation, physics and instrumentation research, and employee relations are discussed.

  12. Hanford meteorological station computer codes: Volume 9, The quality assurance computer codes

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Burk, K.W.; Andrews, G.L.

    1989-02-01

    The Hanford Meteorological Station (HMS) was established in 1944 on the Hanford Site to collect and archive meteorological data and provide weather forecasts and related services for Hanford Site approximately 1/2 mile east of the 200 West Area and is operated by PNL for the US Department of Energy. Meteorological data are collected from various sensors and equipment located on and off the Hanford Site. These data are stored in data bases on the Digital Equipment Corporation (DEC) VAX 11/750 at the HMS (hereafter referred to as the HMS computer). Files from those data bases are routinely transferred to themore » Emergency Management System (EMS) computer at the Unified Dose Assessment Center (UDAC). To ensure the quality and integrity of the HMS data, a set of Quality Assurance (QA) computer codes has been written. The codes will be routinely used by the HMS system manager or the data base custodian. The QA codes provide detailed output files that will be used in correcting erroneous data. The following sections in this volume describe the implementation and operation of QA computer codes. The appendices contain detailed descriptions, flow charts, and source code listings of each computer code. 2 refs.« less

  13. Commercial milk distribution profiles and production locations. Hanford Environmental Dose Reconstruction Project

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Deonigi, D.E.; Anderson, D.M.; Wilfert, G.L.

    1993-12-01

    The Hanford Environmental Dose Reconstruction (HEDR) Project was established to estimate radiation doses that people could have received from nuclear operations at the Hanford Site since 1944. For this period iodine-131 is the most important offsite contributor to radiation doses from Hanford operations. Consumption of milk from cows that ate vegetation contaminated by iodine-131 is the dominant radiation pathway for individuals who drank milk. Information has been developed on commercial milk cow locations and commercial milk distribution during 1945 and 1951. The year 1945 was selected because during 1945 the largest amount of iodine-131 was released from Hanford facilities inmore » a calendar year; therefore, 1945 was the year in which an individual was likely to have received the highest dose. The year 1951 was selected to provide data for comparing the changes that occurred in commercial milk flows (i.e., sources, processing locations, and market areas) between World War II and the post-war period. To estimate the doses people could have received from this milk flow, it is necessary to estimate the amount of milk people consumed, the source of the milk, the specific feeding regime used for milk cows, and the amount of iodine-131 contamination deposited on feed.« less

  14. Advances in Glass Formulations for Hanford High-Aluminum, High-Iron and Enhanced Sulphate Management in HLW Streams - 13000

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kruger, Albert A.

    2013-07-01

    The current estimates and glass formulation efforts have been conservative in terms of achievable waste loadings. These formulations have been specified to ensure that the glasses are homogenous, contain essentially no crystalline phases, are processable in joule-heated, ceramic-lined melters and meet Hanford Tank Waste Treatment and Immobilization Plant (WTP) Contract terms. The WTP's overall mission will require the immobilization of tank waste compositions that are dominated by mixtures of aluminum (Al), chromium (Cr), bismuth (Bi), iron (Fe), phosphorous (P), zirconium (Zr), and sulphur (S) compounds as waste-limiting components. Glass compositions for these waste mixtures have been developed based upon previousmore » experience and current glass property models. Recently, DOE has initiated a testing program to develop and characterize HLW glasses with higher waste loadings and higher throughput efficiencies. Results of this work have demonstrated the feasibility of increases in waste loading from about 25 wt% to 33-50 wt% (based on oxide loading) in the glass depending on the waste stream. In view of the importance of aluminum limited waste streams at Hanford (and also Savannah River), the ability to achieve high waste loadings without adversely impacting melt rates has the potential for enormous cost savings from reductions in canister count and the potential for schedule acceleration. Consequently, the potential return on the investment made in the development of these enhancements is extremely favorable. Glass composition development for one of the latest Hanford HLW projected compositions with sulphate concentrations high enough to limit waste loading have been successfully tested and show tolerance for previously unreported tolerance for sulphate. Though a significant increase in waste loading for high-iron wastes has been achieved, the magnitude of the increase is not as substantial as those achieved for high-aluminum, high-chromium, high-bismuth or

  15. Advances in Glass Formulations for Hanford High-Alumimum, High-Iron and Enhanced Sulphate Management in HLW Streams - 13000

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kruger, Albert A.

    2013-01-16

    The current estimates and glass formulation efforts have been conservative in terms of achievable waste loadings. These formulations have been specified to ensure that the glasses are homogenous, contain essentially no crystalline phases, are processable in joule-heated, ceramic-lined melters and meet Hanford Tank Waste Treatment and Immobilization Plant (WTP) Contract terms. The WTP?s overall mission will require the immobilization of tank waste compositions that are dominated by mixtures of aluminum (Al), chromium (Cr), bismuth (Bi), iron (Fe), phosphorous (P), zirconium (Zr), and sulphur (S) compounds as waste-limiting components. Glass compositions for these waste mixtures have been developed based upon previousmore » experience and current glass property models. Recently, DOE has initiated a testing program to develop and characterize HLW glasses with higher waste loadings and higher throughput efficiencies. Results of this work have demonstrated the feasibility of increases in waste loading from about 25 wt% to 33-50 wt% (based on oxide loading) in the glass depending on the waste stream. In view of the importance of aluminum limited waste streams at Hanford (and also Savannah River), the ability to achieve high waste loadings without adversely impacting melt rates has the potential for enormous cost savings from reductions in canister count and the potential for schedule acceleration. Consequently, the potential return on the investment made in the development of these enhancements is extremely favorable. Glass composition development for one of the latest Hanford HLW projected compositions with sulphate concentrations high enough to limit waste loading have been successfully tested and show tolerance for previously unreported tolerance for sulphate. Though a significant increase in waste loading for high-iron wastes has been achieved, the magnitude of the increase is not as substantial as those achieved for high-aluminum, high-chromium, high-bismuth or

  16. The influence of small mammal burrowing activity on water storage at the Hanford Site

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Landeen, D.S.

    The amount and rate at which water may penetrate a protective barrier and come into contact with buried radioactive waste is a major concern. Because burrowing animals eventually will reside on the surface of any protective barrier, the effect these burrow systems may have on the loss or retention of water needs to be determined. The first section of this document summarizes the known literature relative to small mammals and the effects that burrowing activities have on water distribution, infiltration, and the overall impact of burrows on the ecosystem. Topics that are summarized include burrow air pressures, airflow, burrow humidity,more » microtopography, mounding, infiltration, climate, soil evaporation, and discussions of large pores relative to water distribution. The second section of this document provides the results of the study that was conducted at the Hanford Site to determine what effect small mammal burrows have on water storage. This Biointrusion task is identified in the Permanent Isolation Surface Barrier Development Plan in support of protective barriers. This particular animal intrusion task is one part of the overall animal intrusion task identified in Animal Intrusion Test Plan.« less

  17. Hanford Site Environmental Report for Calendar Year 2000

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Poston, Ted M.; Hanf, Robert W.; Dirkes, Roger L.

    This Hanford Site environmental report is prepared annually to summarize environmental data and information, to describe environmental management performance, to demonstrate the status of compliance with environmental regulations, and to highlight major environmental programs and efforts.

  18. Hanford Site Environmental Report for Calendar Year 1999

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Poston, Ted M.; Hanf, Robert W.; Dirkes, Roger L.

    The Hanford Site environmental report is prepared annually to summarize environmental data and information, to describe environmental management performance, to demonstrate the status of compliance with environmental regulations, and to highlight major environmental programs and efforts.

  19. Hanford Technical Basis for Multiple Dosimetry Effective Dose Methodology

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hill, Robin L.; Rathbone, Bruce A.

    2010-08-01

    The current method at Hanford for dealing with the results from multiple dosimeters worn during non-uniform irradiation is to use a compartmentalization method to calculate the effective dose (E). The method, as documented in the current version of Section 6.9.3 in the 'Hanford External Dosimetry Technical Basis Manual, PNL-MA-842,' is based on the compartmentalization method presented in the 1997 ANSI/HPS N13.41 standard, 'Criteria for Performing Multiple Dosimetry.' With the adoption of the ICRP 60 methodology in the 2007 revision to 10 CFR 835 came changes that have a direct affect on the compartmentalization method described in the 1997 ANSI/HPS N13.41more » standard, and, thus, to the method used at Hanford. The ANSI/HPS N13.41 standard committee is in the process of updating the standard, but the changes to the standard have not yet been approved. And, the drafts of the revision of the standard tend to align more with ICRP 60 than with the changes specified in the 2007 revision to 10 CFR 835. Therefore, a revised method for calculating effective dose from non-uniform external irradiation using a compartmental method was developed using the tissue weighting factors and remainder organs specified in 10 CFR 835 (2007).« less

  20. Evaluation of AhR-agonists and AhR-agonist activity in sediments of Liaohe River protected areas, China.

    PubMed

    Zhang, Yun; Ke, Xin; Gui, Shaofeng; Wu, Xiaoqiong; Wang, Chunyong; Zhang, Haijun

    2017-02-15

    A total of 9 sediment samples of Liaohe River protected areas were collected to evaluate aryl hydrocarbon receptor agonists (AhR-agonists) and AhR-agonist activity via chemical analysis and in vitro H4IIE cell bioassay. Results indicated that bioassay-derived 2,3,7,8-tetrachlorodibenzo-p-dioxin equivalents (Bio-TEQs) ranged from 89.1 to 251.1pg/g dry weight. Concentrations of 16 EPA polycyclic aromatic hydrocarbons (PAHs), 12 dioxin-like polychlorinated biphenyls (PCBs), and polychlorinated dibenzo-p-dioxins and dibenzofurans (PCDD/Fs) ranged from 256.8 to 560.1ng/g, 79.2 to 416.2pg/g, and 199.6 to 538.4pg/g, respectively. According to potency balance analysis, TEQ chem s based on PAHs, PCBs, and PCDD/Fs could contribute 16.56% to 26.11% of Bio-TEQs. This could be explained by the potential existence of unidentified AhR-agonists and the potential non-additive interactions among AhR-agonists in sediment extracts. Through the different contributions to Bio-TEQs, this study confirms that PCDD/Fs were the main pollutants that induced significantly AhR-agonist activity in sediments of Liaohe River protected areas. Copyright © 2016. Published by Elsevier Ltd.

  1. Protect and Restore Red River Watershed, 2007-2008 Annual Report.

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bransford, Stephanie

    2009-05-04

    The Nez Perce Tribe Department of Fisheries Resource Management, Watershed Division approaches watershed restoration with a ridge-top to ridge-top approach. The Nez Perce Tribe (NPT) and the Nez Perce National Forest (NPNF) have formed a partnership in completing watershed restoration activities, and through this partnership more work is accomplished by sharing funding and resources in our effort. The Nez Perce Tribe began watershed restoration projects within the Red River Watershed of the South Fork Clearwater River in 2001. Progress has been made in restoring the watershed through road decommissioning and culvert replacement. From completing a watershed assessment to two NEPAmore » efforts and a final stream restoration design, we will begin the effort of restoring the mainstem channel of Red River to provide spawning and rearing habitat for anadromous and resident fish species. Roads have been surveyed and prioritized for removal or improvement as well as culverts being prioritized for replacement to accommodate fish passage throughout the watershed. Another major, and extremely, important component of this project is the Red River Meadow Conservation Easement. We have begun the process of pursuing a conservation easement on approximately 270 acres of prime meadow habitat (Red River runs through this meadow and is prime spawning and rearing habitat).« less

  2. Hanford Atomic Products Operation monthly report, January 1956

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Not Available

    1956-02-24

    This is the monthly report for the Hanford Atomic Laboratories Products Operation, February, 1956. Metallurgy, reactor fuels, chemistry, dosimetry, separation processes, reactor technology, financial activities, visits, biology operation, physics and instrumentation research, and employee relations are discussed.

  3. Iodine conceptual model at Hanford: Aqueous speciation and interactions with minerals

    NASA Astrophysics Data System (ADS)

    Qafoku, N. P.; Lawter, A.; McElroy, E.; Szecsody, J. E.; Lee, B.; Truex, M. J.; Smith, F.; Kerisit, S.; Freedman, V. L.

    2017-12-01

    Isotopes of iodine were generated during plutonium production at the U.S. Department of Energy Hanford Site. The fate and transport of 129I in the environment and potential remediation technologies are currently being studied as part of environmental remediation activities at the Hanford Site. A conceptual model describing the nature and extent of subsurface contamination, processes and reactions that control plume behavior, and factors relevant to potential remediation processes is needed to support environmental remedy decisions. Because 129I is an uncommon contaminant, relevant remediation experience and scientific literature are limited. As part of the effort to develop a comprehensive conceptual model of iodine at the Hanford subsurface, we conducted a series of bench-scale experiments to determine the extent of iodine interactions with minerals, abiotic and biotic species transformation via electron transfer reactions, and mechanisms of iodine aqueous species attentuation (i.e., adsorption and co-precipitation). We will also present data collected from solid phase characterization efforts using SEM/EDS, SEM/FIB, TEM/SAED, XANES and NanoSIMS. Interactions of iodine species with natural organic matter are also important; we determined the identity of organic matter compounds at Hanford and their affinity for different aqueous iodine species (i.e., iodate and iodide) using FTICR-MS along with tandem mass spectrometry (MS/MS) to verify organo-iodide/iodate binding. Finally, we used a variety of molecular dymanic calculations to identify energetically competitive incorporation scenarios, and determine incorporation limits and charge compensation mechanisms.

  4. GROUDWATER REMEDIATION AT THE 100-HR-3 OPERABLE UNIT HANFORD SITE WASHINGTON USA - 11507

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    SMOOT JL; BIEBESHEIMER FH; ELUSKIE JA

    2011-01-12

    The 100-HR-3 Groundwater Operable Unit (OU) at the Hanford Site underlies three former plutonium production reactors and the associated infrastructure at the 100-D and 100-H Areas. The primary contaminant of concern at the site is hexavalent chromium; the secondary contaminants are strontium-90, technetium-99, tritium, uranium, and nitrate. The hexavalent chromium plume is the largest plume of its type in the state of Washington, covering an area of approximately 7 km{sup 2} (2.7 mi{sup 2}) with concentrations greater than 20 {micro}g/L. Concentrations range from 60,000 {micro}g/L near the former dichromate transfer station in the 100-D Area to large areas of 20more » to 100 {micro}g/L across much of the plume area. Pump-and-treat operations began in 1997 and continued into 2010 at a limited scale of approximately 200 gal/min. Remediation of groundwater has been fairly successful in reaching remedial action objectives (RAOs) of 20 {micro}g/L over a limited region at the 100-H, but less effective at 100-D. In 2000, an in situ, permeable reactive barrier was installed downgradient of the hotspot in 100-D as a second remedy. The RAOs are still being exceeded over a large portion of the area. The CH2M HILL Plateau Remediation Company was awarded the remediation contract for groundwater in 2008 and initiated a remedial process optimization study consisting of modeling and technical studies intended to enhance the remediation. As a result of the study, 1,400 gal/min of expanded treatment capacity are being implemented. These new systems are designed to meet 2012 and 2020 target milestones for protection of the Columbia River and cleanup of the groundwater plumes.« less

  5. Chemical Disposition of Plutonium in Hanford Site Tank Wastes

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Delegard, Calvin H.; Jones, Susan A.

    2015-05-07

    This report examines the chemical disposition of plutonium (Pu) in Hanford Site tank wastes, by itself and in its observed and potential interactions with the neutron absorbers aluminum (Al), cadmium (Cd), chromium (Cr), iron (Fe), manganese (Mn), nickel (Ni), and sodium (Na). Consideration also is given to the interactions of plutonium with uranium (U). No consideration of the disposition of uranium itself as an element with fissile isotopes is considered except tangentially with respect to its interaction as an absorber for plutonium. The report begins with a brief review of Hanford Site plutonium processes, examining the various means used tomore » recover plutonium from irradiated fuel and from scrap, and also examines the intermediate processing of plutonium to prepare useful chemical forms. The paper provides an overview of Hanford tank defined-waste–type compositions and some calculations of the ratios of plutonium to absorber elements in these waste types and in individual waste analyses. These assessments are based on Hanford tank waste inventory data derived from separately published, expert assessments of tank disposal records, process flowsheets, and chemical/radiochemical analyses. This work also investigates the distribution and expected speciation of plutonium in tank waste solution and solid phases. For the solid phases, both pure plutonium compounds and plutonium interactions with absorber elements are considered. These assessments of plutonium chemistry are based largely on analyses of idealized or simulated tank waste or strongly alkaline systems. The very limited information available on plutonium behavior, disposition, and speciation in genuine tank waste also is discussed. The assessments show that plutonium coprecipitates strongly with chromium, iron, manganese and uranium absorbers. Plutonium’s chemical interactions with aluminum, nickel, and sodium are minimal to non-existent. Credit for neutronic interaction of plutonium with these

  6. 76 FR 23485 - Safety Zone; Red River

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-04-27

    ...-AA00 Safety Zone; Red River AGENCY: Coast Guard, DHS. ACTION: Temporary final rule. SUMMARY: The Coast Guard is establishing a temporary safety zone for all waters of the Red River in the State of North..., extending the entire width of the river. This safety zone is needed to protect persons and vessels from...

  7. Ground beetles (Coleoptera, Carabidae) of the Hanford Nuclear Site in south-central Washington State

    PubMed Central

    Looney, Chris; Zack, Richard S.; LaBonte, James R.

    2014-01-01

    Abstract In this paper we report on ground beetles (Coleoptera: Carabidae) collected from the Hanford Nuclear Reservation and Hanford National Monument (together the Hanford Site), which is located in south-central Washington State. The Site is a relatively undisturbed relict of the shrub-steppe habitat present throughout much of the western Columbia Basin before the westward expansion of the United States. Species, localities, months of capture, and capture method are reported for field work conducted between 1994 and 2002. Most species were collected using pitfall traps, although other capture methods were employed. Trapping results indicate the Hanford Site supports a diverse ground beetle community, with over 90% of the 92 species captured native to North America. Four species collected during the study period are newly recorded for Washington State: Bembidion diligens Casey, Calosoma obsoletum Say, Pseudaptinus rufulus (LeConte), and Stenolophus lineola (Fabricius). Based on these data, the Site maintains a diverse ground beetle fauna and, due to its size and diversity of habitats, is an important repository of shrub-steppe biodiversity. PMID:24715791

  8. Hanford Laboratories Operation monthly activities report, August 1959

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Not Available

    1959-09-15

    This is the monthly report for the Hanford Laboratories Operation, August, 1959. Reactor fuels, chemistry, dosimetry, separation processes, reactor technology financial activities, visits, biology operation, physics and instrumentation research, employee relations, and operations research and synthesis operation are discussed.

  9. Cost benefit analysis of remediation alternatives for controlling the flux of strontium-90 into the Columbia River

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Gustafson, F.W.; Todd, M.E.

    1993-09-01

    The release of large volumes of water to waste disposal cribs at the Hanford Site`s 100-N Area caused contaminants, principally strontium-90, to be carried toward the Columbia River through the groundwater. Since shutdown of the N Reactor, these releases have been discontinued, although small water flows continue to be discharged to the 1325-N crib. Most of the contamination which is now transported to the river is occurring as a result of the natural groundwater movement. The contaminated groundwater at N Springs flows into the river through seeps and springs along the river`s edge. An expedited response action (ERA) has beenmore » proposed to eliminate or restrict the flux of strontium-90 into the river. A cost benefit analysis of potential remedial alternatives was completed that recommends the alternative which best meets given selection criteria prescribed by the Comprehensive Environmental Response, Compensation, and Liability Act (CERCLA). The methodology used for evaluation, cost analysis, and alternative recommendation is the engineering evaluation/cost analysis (EE/CA). Complete remediation of the contaminated groundwater beneath 100-N Area was not a principal objective of the analysis. The objective of the cost benefit analysis was to identify a remedial alternative that optimizes the degree of benefit produced for the costs incurred.« less

  10. Hanford Site Beryllium Program: Past, Present, and Future - 12428

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Fisher, Mark; Garcia, Pete; Goeckner, Julie

    2012-07-01

    The U.S. Department of Energy (DOE) has a long history of beryllium use because of the element's broad application to many nuclear operations and processes. At the Hanford Site beryllium alloy was used to fabricate parts for reactors, including fuel rods for the N-Reactor during plutonium production. Because of continued confirmed cases of chronic beryllium disease (CBD), and data suggesting CBD occurs at exposures to low-level concentrations, the DOE decided to issue a rule to further protect federal and contractor workers from hazards associated with exposure to beryllium. When the beryllium rule was issued in 1999, each of the Hanfordmore » Site contractors developed a Chronic Beryllium Disease Prevention Program (CBDPP) and initial site wide beryllium inventories. A new site-wide CBDPP, applicable to all Hanford contractors, was issued in May, 2009. In the spring of 2010 the DOE Headquarters Office of Health, Safety, and Security (HSS) conducted an independent inspection to evaluate the status of implementation of the Hanford Site Chronic Beryllium Disease Prevention Program (CBDPP). The report identified four Findings and 12 cross-cutting Opportunities for Improvement (OFIs). A corrective action plan (CAP) was developed to address the Findings and crosscutting OFIs. The DOE directed affected site contractors to identify dedicated resources to participate in development of the CAP, along with involving stakeholders. The CAP included general and contractor-specific recommendations. Following initiation of actions to implement the approved CAP, it became apparent that additional definition of product deliverables was necessary to assure that expectations were adequately addressed and CAP actions could be closed. Consequently, a supplement to the original CAP was prepared and transmitted to DOE-HQ for approval. Development of the supplemental CAP was an eight month effort. From the onset a core group of CAP development members were identified to develop a

  11. Cesium migration in saturated silica sand and Hanford sediments as impacted by ionic strength.

    PubMed

    Flury, Markus; Czigány, Szabolcs; Chen, Gang; Harsh, James B

    2004-07-01

    Large amounts of 137Cs have been accidentally released to the subsurface from the Hanford nuclear site in the state of Washington, USA. The cesium-containing liquids varied in ionic strengths, and often had high electrolyte contents, mainly in the form of NaNO3 and NaOH, reaching concentrations up to several moles per liter. In this study, we investigated the effect of ionic strengths on Cs migration through two types of porous media: silica sand and Hanford sediments. Cesium sorption and transport was studied in 1, 10, 100, and 1000 mM NaCl electrolyte solutions at pH 10. Sorption isotherms were constructed from batch equilibrium experiments and the batch-derived sorption parameters were compared with column breakthrough curves. Column transport experiments were analyzed with a two-site equilibrium-nonequilibrium model. Cesium sorption to the silica sand in batch experiments showed a linear sorption isotherm for all ionic strengths, which matched well with the results from the column experiments at 100 and 1000 mM ionic strength; however, the column experiments at 1 and 10 mM ionic strength indicated a nonlinear sorption behavior of Cs to the silica sand. Transport through silica sand occurred under one-site sorption and equilibrium conditions. Cesium sorption to Hanford sediments in both batch and column experiments was best described with a nonlinear Freundlich isotherm. The column experiments indicated that Cs transport in Hanford sediments occurred under two-site equilibrium and nonequilibrium sorption. The effect of ionic strength on Cs transport was much more pronounced in Hanford sediments than in silica sands. Effective retardation factors of Cs during transport through Hanford sediments were reduced by a factor of 10 when the ionic strength increased from 100 to 1000 mM; for silica sand, the effective retardation was reduced by a factor of 10 when ionic strength increased from 1 to 1000 mM. A two order of magnitude change in ionic strength was needed in

  12. Kootenai River Floodplain Ecosystem Operational Loss Assessment, Protection, Mitigation and Rehabilitation, 2007-2008 Annual Report.

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Merz, Norm

    2009-02-18

    The overarching goals of the 'Kootenai River Floodplain Ecosystem Operational Loss Assessment, Protection, Mitigation and Rehabilitation' Project (BPA Project No.2002-011-00) are to: (1) assess abiotic and biotic factors (i.e., geomorphologic, hydrological, aquatic and riparian/floodplain communities) in determining a definitive composition of ecological integrity, (2) develop strategies to assess and mitigate losses of ecosystem functions, and (3) produce a regional operational loss assessment framework. To produce a scientifically defensible, repeatable, and complete assessment tool, KTOI assembled a team of top scientists in the fields of hydrology, hydraulics, ornithology, entomology, statistics, and river ecology, among other expertise. This advisory team is knownmore » as the Research Design and Review Team (RDRT). The RDRT scientists drive the review, selection, and adaptive management of the research designs to evaluate the ecologic functions lost due to the operation of federal hydropower facilities. The unique nature of this project (scientific team, newest/best science, adaptive management, assessment of ecological functions, etc.) has been to work in a dynamic RDRT process. In addition to being multidisciplinary, this model KTOI project provides a stark contrast to the sometimes inflexible process (review, re-review, budgets, etc.) of the Columbia River Basin Fish and Wildlife Program. The project RDRT is assembled annually, with subgroups meeting as needed throughout the year to address project issues, analyses, review, and interpretation. Activities of RDRT coordinated and directed the selection of research and assessment methodologies appropriate for the Kootenai River Watershed and potential for regional application in the Columbia River Basin. The entire RDRT continues to meet annually to update and discuss project progress. RDRT Subcontractors work in smaller groups throughout the year to meet project objectives. Determining the extent to which

  13. Radionuclide Sensors and Systems for Monitoring Technetium-99 and Strontium-90 in Groundwater at the Hanford Site

    NASA Astrophysics Data System (ADS)

    Grate, J. W.; O'Hara, M. J.; Egorov, O. B.; Burge, S. R.

    2009-12-01

    We have developed automated sensor and analyzer devices for detection and monitoring of trace radionuclides in water, using preconcentrating columns and radiometric detection. The preconcentrating minicolumn sensor concept combines selective capture and detection in a single functional unit, where the column contains tens to hundreds of milligrams of selectively sorbent material, and the entire column content is monitored with a radiometric detector. Compared to thin film sensors with a few microgram of sorbent, this approach achieves tremendous preconcentration with efficient mass transport via pumping. Furthermore, in an equilibration-based mode of operation, the preconcentration by the sensor is maximized while eliminating the need for consumable reagents to regenerate the column; it can simply be re-equilibrated. We have demonstrated quantification of radionuclides such as technetium-99 to levels below drinking water standards in an equilibration-based process that produces steady state signals, signal proportional to concentration, and easy re-equilibration to new concentration levels. Alternatively, analyzers can be developed with separate separation and detection units that are fluidically linked. We have demonstrated detection of strontium-90 to levels below drinking water standards by this approach. We are developing autonomous systems for at-site monitoring on the Hanford Site in Washington State, using the fluidic sensor and analyzer methods, with the aim of monitoring natural and accelerated attenuation processes, remediation and barrier performance, and contaminant fluxes in the environment. Figure 1. The strontium-90 monitoring method deployed as part of the Burge Environmental Universal Sensor Platform, shown on the shores of the Columbia River on the Hanford site in Washington State.

  14. Vertical stratification of subsurface microbial community composition across geological formations at the Hanford Site.

    PubMed

    Lin, Xueju; Kennedy, David; Fredrickson, Jim; Bjornstad, Bruce; Konopka, Allan

    2012-02-01

    Microbial diversity in subsurface sediments at the Hanford Site 300 Area near Richland, Washington state (USA) was investigated by analysing 21 samples recovered from depths of 9-52 m. Approximately 8000 near full-length 16S rRNA gene sequences were analysed across geological strata that include a natural redox transition zone. These strata included the oxic coarse-grained Hanford formation, fine-grained oxic and anoxic Ringold Formation sediments, and the weathered basalt group. We detected 1233 and 120 unique bacterial and archaeal OTUs (operational taxonomic units at the 97% identity level) respectively. Microbial community structure and richness varied substantially across the different geological strata. Bacterial OTU richness (Chao1 estimator) was highest (> 700) in the upper Hanford formation, and declined to about 120 at the bottom of the Hanford formation. Just above the Ringold oxic-anoxic interface, richness was about 325 and declined to less than 50 in the deeper reduced zones. The deeper Ringold strata were characterized by a preponderance (c. 90%) of Proteobacteria. The bacterial community in the oxic sediments contained not only members of nine well-recognized phyla but also an unusually high proportion of three candidate divisions (GAL15, NC10 and SPAM). Additionally, 13 novel phylogenetic orders were identified within the Deltaproteobacteria, a clade rich in microbes that carry out redox transformations of metals that are important contaminants on the Hanford Site. © 2011 Society for Applied Microbiology and Blackwell Publishing Ltd.

  15. CESIUM REMOVAL FROM TANKS 241-AN-103 & 241-SX-105 & 241-AZ-101/102 COMPOSITE FOR TESTING IN BENCH SCALE STEAM REFORMER

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    DUNCAN JB; HUBER HJ

    2011-06-08

    This report documents the preparation of three actual Hanford tank waste samples for shipment to the Savannah River National Laboratory (SRNL). Two of the samples were dissolved saltcakes from tank 241-AN-103 (hereafter AN-103) and tank 241-SX-105 (hereafter SX-105); one sample was a supernate composite from tanks 241-AZ-101 and 241-AZ-102 (hereafter AZ-101/102). The preparation of the samples was executed following the test plans LAB-PLAN-10-00006, Test Plan for the Preparation of Samples from Hanford Tanks 241-SX-105, 241-AN-103, 241-AN-107, and LAB-PLN-10-00014, Test Plan for the Preparation of a Composite Sample from Hanford Tanks 241-AZ-101 and 241-AZ-102 for Steam Reformer Testing at the Savannahmore » River National Laboratory. All procedural steps were recorded in laboratory notebook HNF-N-274 3. Sample breakdown diagrams for AN-103 and SX-105 are presented in Appendix A. The tank samples were prepared in support of a series of treatability studies of the Fluidized Bed Steam Reforming (FBSR) process using a Bench-Scale Reformer (BSR) at SRNL. Tests with simulants have shown that the FBSR mineralized waste form is comparable to low-activity waste glass with respect to environmental durability (WSRC-STI-2008-00268, Mineralization of Radioactive Wastes by Fluidized Bed Steam Reforming (FBSR): Comparisons to Vitreous Waste Forms and Pertinent Durability Testing). However, a rigorous assessment requires long-term performance data from FB SR product formed from actual Hanford tank waste. Washington River Protection Solutions, LLC (WRPS) has initiated a Waste Form Qualification Program (WP-S.2.1-20 1 0-00 1, Fluidized Bed Steam Reformer Low-level Waste Form Qualification) to gather the data required to demonstrate that an adequate FBSR mineralized waste form can be produced. The documentation of the selection process of the three tank samples has been separately reported in RPP-48824, 'Sample Selection Process for Bench-Scale Steam Reforming Treatability Studies

  16. CESIUM REMOVAL FROM TANKS 241-AN-103 & 241-SX-105 & 241-AZ-101 & 241AZ-102 COMPOSITE FOR TESTING IN BENCH SCALE STEAM REFORMER

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    DUNCAN JB; HUBER HJ

    2011-04-21

    This report documents the preparation of three actual Hanford tank waste samples for shipment to the Savannah River National Laboratory (SRNL). Two of the samples were dissolved saltcakes from tank 241-AN-103 (hereafter AN-103) and tank 241-SX-105 (hereafter SX-105); one sample was a supernate composite from tanks 241-AZ-101 and 241-AZ-102 (hereafter AZ-101/102). The preparation of the samples was executed following the test plans LAB-PLAN-10-00006, Test Plan for the Preparation of Samples from Hanford Tanks 241-SX-105, 241-AN-103, 241-AN-107, and LAB-PLN-l0-00014, Test Plan for the Preparation of a Composite Sample from Hanford Tanks 241-AZ-101 and 241-AZ-102 for Steam Reformer Testing at the Savannahmore » River National Laboratory. All procedural steps were recorded in laboratory notebook HNF-N-274 3. Sample breakdown diagrams for AN-103 and SX-105 are presented in Appendix A. The tank samples were prepared in support of a series of treatability studies of the Fluidized Bed Steam Reforming (FBSR) process using a Bench-Scale Reformer (BSR) at SRNL. Tests with simulants have shown that the FBSR mineralized waste form is comparable to low-activity waste glass with respect to environmental durability (WSRC-STI-2008-00268, Mineralization of Radioactive Wastes by Fluidized Bed Steam Reforming (FBSR): Comparisons to Vitreous Waste Forms and Pertinent Durability Testing). However, a rigorous assessment requires long-term performance data from FBSR product formed from actual Hanford tank waste. Washington River Protection Solutions, LLC (WRPS) has initiated a Waste Form Qualification Program (WP-5.2.1-2010-001, Fluidized Bed Steam Reformer Low-level Waste Form Qualification) to gather the data required to demonstrate that an adequate FBSR mineralized waste form can be produced. The documentation of the selection process of the three tank samples has been separately reported in RPP-48824, Sample Selection Process for Bench-Scale Steam Reforming Treatability Studies

  17. Character and distribution of borehole breakouts and their relationship to in situ stresses in deep Columbia River Basalts ( Washington State, USA).

    USGS Publications Warehouse

    Paillet, Frederick L.; Kim, K.

    1987-01-01

    The character and distribution of borehole breakouts in deeply buried basalts at the Hanford Site in S central Washington State are examined in light of stress indicator data and hydraulic- fracturing stress data by means of acoustic televiewer and acoustic waveform logging systems. A series of boreholes penetrating the Grande Ronde Basalt of the Columbia River Basalt Group were logged to examine the extent of breakouts at depths near 1000 m. -from Authors

  18. Review of Natural Phenomena Hazard (NPH) Assessments for the DOE Hanford Site

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Snow, Robert L.; Ross, Steven B.

    2011-09-15

    The purpose of this review is to assess the need for updating Natural Phenomena Hazard (NPH) assessments for the DOE's Hanford Site, as required by DOE Order 420.1B Chapter IV, Natural Phenomena Hazards Mitigation, based on significant changes in state-of-the-art NPH assessment methodology or site-specific information. This review is an update and expansion to the September 2010 review of PNNL-19751, Review of Natural Phenomena Hazard (NPH) Assessments for the Hanford 200 Areas (Non-Seismic).

  19. River meander modeling of the Wabash River near the Interstate 64 Bridge near Grayville, Illinois

    USGS Publications Warehouse

    Lant, Jeremiah G.; Boldt, Justin A.

    2018-01-16

    Natural river channels continually evolve and change shape over time. As a result, channel evolution or migration can cause problems for bridge structures that are fixed in the flood plain. A once-stable bridge structure that was uninfluenced by a river’s shape could be encroached upon by a migrating river channel. The potential effect of the actively meandering Wabash River on the Interstate 64 Bridge at the border with Indiana near Grayville, Illinois, was studied using a river migration model called RVR Meander. RVR Meander is a toolbox that can be used to model river channel meander migration with physically based bank erosion methods. This study assesses the Wabash River meandering processes through predictive modeling of natural meandering over the next 100 years, climate change effects through increased river flows, and bank protection measures near the Interstate 64 Bridge.

  20. Model Package Report: Hanford Soil Inventory Model SIM v.2 Build 1

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Nichols, Will E.; Zaher, U.; Mehta, S.

    The Hanford Soil Inventory Model (SIM) is a tool for the estimation of inventory of contaminants that were released to soil from liquid discharges during the U.S. Department of Energy’s Hanford Site operations. This model package report documents the construction and development of a second version of SIM (SIM-v2) to support the needs of Hanford Site Composite Analysis. The SIM-v2 is implemented using GoldSim Pro®1 software with a new model architecture that preserves the uncertainty in inventory estimates while reducing the computational burden (compared to the previous version) and allowing more traceability and transparency in calculation methodology. The calculation architecturemore » is designed in such a manner that future updates to the waste stream composition along with addition or deletion of waste sites can be performed with relative ease. In addition, the new computational platform allows for continued hardware upgrade.« less

  1. A One System Integrated Approach to Simulant Selection for Hanford High Level Waste Mixing and Sampling Tests - 13342

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Thien, Mike G.; Barnes, Steve M.

    2013-07-01

    The Hanford Tank Operations Contractor (TOC) and the Hanford Waste Treatment and Immobilization Plant (WTP) contractor are both engaged in demonstrating mixing, sampling, and transfer system capabilities using simulated Hanford High-Level Waste (HLW) formulations. This represents one of the largest remaining technical issues with the high-level waste treatment mission at Hanford. Previous testing has focused on very specific TOC or WTP test objectives and consequently the simulants were narrowly focused on those test needs. A key attribute in the Defense Nuclear Facilities Safety Board (DNFSB) Recommendation 2010-2 is to ensure testing is performed with a simulant that represents the broadmore » spectrum of Hanford waste. The One System Integrated Project Team is a new joint TOC and WTP organization intended to ensure technical integration of specific TOC and WTP systems and testing. A new approach to simulant definition has been mutually developed that will meet both TOC and WTP test objectives for the delivery and receipt of HLW. The process used to identify critical simulant characteristics, incorporate lessons learned from previous testing, and identify specific simulant targets that ensure TOC and WTP testing addresses the broad spectrum of Hanford waste characteristics that are important to mixing, sampling, and transfer performance are described. (authors)« less

  2. CLOSING IN ON CLOSURE PERSPECTIVES FROM HANFORD & FERNALD AN UPDATE

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    CONNELL, J.D.

    2004-12-22

    In World War II, the arms dramatically changed from machine guns and incendiary bombs to nuclear weapons. Hanford and Fernald, two government-run sites, were part of the infrastructure established for producing the fissile material for making these weapons, as well as building a nuclear arsenal to deter future aggression by other nations. This paper compares and contrasts, from a communications point of view, these two Department of Energy (DOE) closure sites, each with Fluor as a prime contractor. The major differences between the two sites--Hanford in Washington state and Fernald in Ohio--includes the following: size of the site and themore » workforce, timing of closure, definition of end state, DOE oversight, proximity to population centers, readiness of local population for closure, and dependence of the local economy on the site's budget. All of these elements affect how the sites' communication professionals provide information even though the objectives are the same: build public acceptance and support for DOE's mission to accelerate cleanup, interface with stakeholders to help ensure that issues are addressed and goals are met, help workers literally work themselves out of jobs--faster, and prepare the ''host'' communities to deal with the void left when the sites are closed and the government contractors are gone. The 12-months between January 04 and January 05 have seen dramatic transformations at both sites, as Fernald is now just about a year away from closure and FLuor's work at Hanford has made the transition from operations to deactivation and demolition. While Fernald continues to clean out silos of waste and ship it off site, Hanford is dealing with recent state legislation that has the potential to significantly impact the progress of cleanup. These changes have even further accentuated the differences in the content, distribution, and impact of communications.« less

  3. Hanford Atomic Products Operation monthly report for February 1956

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Not Available

    1956-02-21

    This is the monthly report for the Hanford Laboratories Operation, February, 1956. Metallurgy, reactors fuels, chemistry, dosimetry, separation processes, reactor technology financial activities, visits, biology operation, physics and instrumentation research, employee relations are discussed.

  4. Mercury Loads in the South River and Simulation of Mercury Total Maximum Daily Loads (TMDLs) for the South River, South Fork Shenandoah River, and Shenandoah River: Shenandoah Valley, Virginia

    USGS Publications Warehouse

    Eggleston, Jack

    2009-01-01

    Due to elevated levels of methylmercury in fish, three streams in the Shenandoah Valley of Virginia have been placed on the State's 303d list of contaminated waters. These streams, the South River, the South Fork Shenandoah River, and parts of the Shenandoah River, are downstream from the city of Waynesboro, where mercury waste was discharged from 1929-1950 at an industrial site. To evaluate mercury contamination in fish, this total maximum daily load (TMDL) study was performed in a cooperative effort between the U.S. Geological Survey, the Virginia Department of Environmental Quality, and the U.S. Environmental Protection Agency. The investigation focused on the South River watershed, a headwater of the South Fork Shenandoah River, and extrapolated findings to the other affected downstream rivers. A numerical model of the watershed, based on Hydrological Simulation Program-FORTRAN (HSPF) software, was developed to simulate flows of water, sediment, and total mercury. Results from the investigation and numerical model indicate that contaminated flood-plain soils along the riverbank are the largest source of mercury to the river. Mercury associated with sediment accounts for 96 percent of the annual downstream mercury load (181 of 189 kilograms per year) at the mouth of the South River. Atmospherically deposited mercury contributes a smaller load (less than 1 percent) as do point sources, including current discharge from the historic industrial source area. In order to determine how reductions of mercury loading to the stream could reduce methylmercury concentrations in fish tissue below the U.S. Environmental Protection Agency criterion of 0.3 milligrams per kilogram, multiple scenarios were simulated. Bioaccumulation of mercury was expressed with a site-specific exponential relation between aqueous total mercury and methylmercury in smallmouth bass, the indicator fish species. Simulations indicate that if mercury loading were to decrease by 98.9 percent from 189

  5. Polycyclic aromatic hydrocarbons in bottom sediment and bioavailability in streams in the New River Gorge National River and Gauley River National Recreation Area, West Virginia, 2002

    USGS Publications Warehouse

    Messinger, Terrence

    2004-01-01

    Polycyclic aromatic hydrocarbons (PAHs), including some on the U.S. Environmental Protection Agency's priority pollutant list, were found in bottom sediment in streams in the coal-producing region of the Kanawha River Basin in 1996-1998, and in and near the New River Gorge National River in 2002, in concentrations exceeding those thought likely to cause adverse effects to wildlife. Very low concentrations of bioavailable PAHs were measured in streams in and near the New River Gorge National River by the use of semipermeable membrane devices. The apparent contradiction between the high concentrations of total PAHs and the low concentrations of bioavailable PAHs may result from the presence of a substantial amount of particulate coal in bottom sediment.

  6. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Rapko, Brian M.; Bryan, Samuel A.; Chatterjee, Sayandev

    This report summarizes work accomplished in fiscal year (FY) 2013, exploring the chemistry of a low-valence technetium(I) species, [Tc(CO) 3(H 2O) 3] +, a compound of interest due to its implication in the speciation of alkaline-soluble technetium in several Hanford tank waste supernatants. Various aspects of FY 2013’s work were sponsored both by Washington River Protection Solutions and the U.S. Department of Energy’s Office of River Protection; because of this commonality, both sponsors’ work is summarized in this report. There were three tasks in this FY 2013 study. The first task involved examining the speciation of [(CO) 3Tc(H 2O) 3]more » + in alkaline solution by 99Tc nuclear magnetic resonance spectroscopy. The second task involved the purchase and installation of a microcalorimeter suitable to study the binding affinity of [(CO) 3Tc(H 2O) 3] + with various inorganic and organic compounds relevant to Hanford tank wastes, although the actual measure of such binding affinities is scheduled to occur in future FYs. The third task involved examining the chemical reactivity of [(CO) 3Tc(H 2O) 3] + as relevant to the development of a [(CO) 3Tc(H 2O) 3] + spectroelectrochemical sensor based on fluorescence spectroscopy.« less

  7. The use of aquatic bioconcentration factors in ecological risk assessments: Confounding issues, laboratory v/s modeled results

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Brandt, C.; Blanton, M.L.; Dirkes, R.

    1995-12-31

    Bioconcentration in aquatic systems is generally taken to refer to contaminant uptake through non-ingestion pathways (i.e., dermal and respiration uptake). Ecological risk assessments performed on aquatic systems often rely on published data on bioconcentration factors to calibrate models of exposure. However, many published BCFs, especially those from in situ studies, are confounded by uptake from ingestion of prey. As part of exposure assessment and risk analysis of the Columbia River`s Hanford Reach, the authors tested a methodology to estimate radionuclide BCFs for several aquatic species in the Hanford Reach of the Columbia River. The iterative methodology solves for BCFs frommore » known body burdens and environmental media concentrations. This paper provides BCF methodology description comparisons of BCF from literature and modeled values and how they were used in the exposure assessment and risk analysis of the Columbia River`s Hanford Reach.« less

  8. Dangerous Waste Characteristics of Contact-Handled Transuranic Mixed Wastes from Hanford Tanks

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Tingey, Joel M.; Bryan, Garry H.; Deschane, Jaquetta R.

    2004-10-05

    This report summarizes existing analytical data gleaned from samples taken from the Hanford tanks designated as potentially containing transuranic mixed process wastes. Process knowledge of the wastes transferred to these tanks has been reviewed to determine whether the dangerous waste characteristics now assigned to all Hanford underground storage tanks are applicable to these particular wastes. Supplemental technologies are being examined to accelerate the Hanford tank waste cleanup mission and accomplish waste treatment safely and efficiently. To date, 11 Hanford waste tanks have been designated as potentially containing contact-handled (CH) transuranic mixed (TRUM) wastes. The CH-TRUM wastes are found in single-shellmore » tanks B-201 through B-204, T-201 through T-204, T-104, T-110, and T-111. Methods and equipment to solidify and package the CH-TRUM wastes are part of the supplemental technologies being evaluated. The resulting packages and wastes must be acceptable for disposal at the Waste Isolation Pilot Plant (WIPP). The dangerous waste characteristics being considered include ignitability, corrosivity, reactivity, and toxicity arising from the presence of 2,4,5-trichlorophenol at levels above the dangerous waste threshold. The analytical data reviewed include concentrations of sulfur, sulfate, cyanide, 2,4,5-trichlorophenol, total organic carbon, and oxalate; the composition of the tank headspace, pH, and mercury. Differential scanning calorimetry results were used to determine the energetics of the wastes as a function of temperature. This report supercedes and replaces PNNL-14832.« less

  9. Hanford Atomic Products Operation monthly report for June 1955

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Not Available

    1955-07-28

    This is the monthly report for the Hanford Atomic Products Operation, June, 1955. Metallurgy, reactor fuels, chemistry, dosimetry, separation processes, reactor technology, financial activities, visits, biology operation, physics and instrumentation research, and employee relations are discussed.

  10. Unit 3, STA. 6+00 Little Conemaugh River, weirdetail Johnstown ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    Unit 3, STA. 6+00 Little Conemaugh River, weir-detail - Johnstown Local Flood Protection Project, Beginning on Conemaugh River approx 3.8 miles downstream from confluence of Little Conemaugh & Stony Creek Rivers at Johnstown, Johnstown, Cambria County, PA

  11. Unit 3, STA. 6+00 Little Conemaugh River, weircontext Johnstown ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    Unit 3, STA. 6+00 Little Conemaugh River, weir-context - Johnstown Local Flood Protection Project, Beginning on Conemaugh River approx 3.8 miles downstream from confluence of Little Conemaugh & Stony Creek Rivers at Johnstown, Johnstown, Cambria County, PA

  12. Environmental Releases for Calendar Year 2001

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    DYEKMAN, D L

    2002-08-01

    This report fulfills the annual reporting requirements of US Department of Energy (DOE) Order 5400.1, General Environmental Protection Program. The report contains tabular data summaries on air emissions and liquid effluents released to the environment as well as nonroutine releases during calendar year (CY) 2001. These releases, bearing radioactive and hazardous substances, were from Bechtel Hanford, Inc. (BHI), CH2M HILL Hanford Group, Inc. (CHG), and Fluor Hanford (FH) managed facilities and activities. These data were obtained from direct sampling and analysis and from estimates based upon approved release factors. This report further serves as a supplemental resource to the Hanfordmore » Site Environmental Report (HSER PNNL-13910), published by the Pacific Northwest National Laboratory. HSER includes a yearly accounting of the impacts on the surrounding populace and environment from major activities at the Hanford Site. HSER also summarizes the regulatory compliance status of the Hanford Site. Tables ES-1 through ES-5 display comprehensive data summaries of CY2001 air emission and liquid effluent releases. The data displayed in these tables compiles the following: Radionuclide air emissions; Nonradioactive air emissions; Radionuclides in liquid effluents discharged to ground; Total volumes and flow rates of radioactive liquid effluents discharged to ground; and Radionuclides discharged to the Columbia River.« less

  13. Hanford Immobilized Low Activity Waste (ILAW) Performance Assessment 2001 Version [Formerly DOE/RL-97-69] [SEC 1 & 2

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    MANN, F.M.

    2000-08-01

    The Hanford Immobilized Low-Activity Waste Performance Assessment examines the long-term environmental and human health effects associated with the planned disposal of the vitrified low-activity fraction of waste presently contained in Hanford Site tanks. The tank waste is the byproduct of separating special nuclear materials from irradiated nuclear fuels over the past 50 years. This waste is stored in underground single- and double-shell tanks. The tank waste is to be retrieved, separated into low-activity and high-level fractions, and then immobilized by vitrification. The US. Department of Energy (DOE) plans to dispose of the low-activity fraction in the Hanford Site 200 Eastmore » Area. The high-level fraction will be stored at the Hanford Site until a national repository is approved. This report provides the site-specific long-term environmental information needed by the DOE to modify the current Disposal Authorization Statement for the Hanford Site that would allow the following: construction of disposal trenches; and filling of these trenches with ILAW containers and filler material with the intent to dispose of the containers.« less

  14. Understanding Socio-Hydrology System in the Kissimmee River Basin

    NASA Astrophysics Data System (ADS)

    Chen, X.; Wang, D.; Tian, F.; Sivapalan, M.

    2014-12-01

    This study is to develop a conceptual socio-hydrology model for the Kissimmee River Basin. The Kissimmee River located in Florida was channelized in mid-20 century for flood protection. However, the environmental issues caused by channelization led Floridians to conduct a restoration project recently, focusing on wetland recovery. As a complex coupled human-water system, Kissimmee River Basin shows the typical socio-hydrology interactions. Hypothetically, the major reason to drive the system from channelization to restoration is that the community sensitivity towards the environment has changed from controlling to restoring. The model developed in this study includes 5 components: water balance, flood risk, wetland area, crop land area, and community sensitivity. Furthermore, urban population and rural population in the basin have different community sensitivities towards the hydrologic system. The urban population, who live further away from the river are more sensitive to wetland restoration; while the rural population, who live closer to the river are more sensitive to flood protection. The power dynamics between the two groups and its impact on management decision making is described in the model. The model is calibrated based on the observed watershed outflow, wetland area and crop land area. The results show that the overall focus of community sensitivity has changed from flood protection to wetland restoration in the past 60 years in Kissimmee River Basin, which confirms the study hypothesis. There are two main reasons for the community sensitivity change. Firstly, people's flood memory is fading because of the effective flood protection, while the continuously shrinking wetland and the decreasing bird and fish population draw more and more attention. Secondly, in the last 60 years, the urban population in Florida drastically increased compared with a much slower increase of rural population. As a result, the community sensitivity of urban population towards

  15. Evaluation of the 183-D Water Filtration Facility for Bat Roosts and Development of a Mitigation Strategy, 100-D Area, Hanford Site

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lindsey, C. T.; Gano, K. A.; Lucas, J. G.

    The 183-D Water Filtration Facility is located in the 100-D Area of the Hanford Site, north of Richland, Washington. It was used to provide filtered water for cooling the 105-D Reactor and supplying fire-protection and drinking water for all facilities in the 100-D Area. The facility has been inactive since the 1980s and is now scheduled for demolition. Therefore, an evaluation was conducted to determine if any part of the facility was being used as roosting habitat by bats.

  16. Effect of rapidly changing river stage on uranium flux through the hyporheic zone.

    PubMed

    Fritz, Brad G; Arntzen, Evan V

    2007-01-01

    Measurement of ground water/surface water interaction within the hyporheic zone is increasingly recognized as an important aspect of subsurface contaminant fate and transport. Understanding the interaction between ground water and surface water is critical in developing a complete conceptual model of contaminant transport through the hyporheic zone. At the Hanford Site near Richland, Washington, ground water contaminated with uranium discharges to the Columbia River through the hyporheic zone. Ground water flux varies according to changes in hydraulic gradient caused by fluctuating river stage, which changes in response to operation of dams on the Columbia River. Piezometers and continuous water quality monitoring probes were installed in the hyporheic zone to provide long-term, high-frequency measurement of hydraulic gradient and estimated uranium concentrations. Subsequently, the flux of water and uranium was calculated for each half-hour time period over a 15-month study period. In addition, measurement of water levels in the near-shore unconfined aquifer enhanced the understanding of the relationship between river stage, aquifer elevation, and uranium flux. Changing river stage resulted in fluctuating hydraulic gradient within the hyporheic zone. Further, influx of river water caused lower uranium concentrations as a result of dilution. The methods employed in this study provide a better understanding of the interaction between surface and ground water in a situation with a dynamically varying vertical hydraulic gradient and illustrate how the combination of relatively standard methods can be used to derive an accurate estimation of water and contaminant flux through the hyporheic zone.

  17. Stratigraphic Profiles for Selected Hanford Site Seismometer Stations and Other Locations

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Last, George V.

    2014-02-01

    Stratigraphic profiles were constructed for eight selected Hanford Site seismometer stations, five Hanford Site facility reference locations, and seven regional three-component broadband seismometer stations. These profiles provide interpretations of the subsurface layers to support estimation of ground motions from past earthquakes, and the prediction of ground motions from future earthquakes. In most cases these profiles terminated at the top of the Wanapum Basalt, but at selected sites profiles were extended down to the top of the crystalline basement. The composite one-dimensional stratigraphic profiles were based primarily on previous interpretations from nearby boreholes, and in many cases the nearest deep boreholemore » is located kilometers away.« less

  18. Hanford Atomic Products Operation monthly report, April 1954

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    McCune, F.K.

    1954-05-21

    This is a progress report of the production reactors on the Hanford Reservation for the month of April 1954. This report takes each division (e.g., manufacturing, medical, accounting, occupational safety, security, reactor operations, etc.) of the site and summarizes its accomplishments and employee relations for that month.

  19. Hanford Atomic Products Operation monthly report, March 1953

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    McCune, F.K.

    1953-04-22

    This is a progress report of the production reactors on the Hanford Reservation for the month of March 1953. This report takes each division (e.g., manufacturing, medical, accounting, occupational safety, security, reactor operations, etc.) of the site and summarizes its accomplishments and employee relations for that month.

  20. Hanford Atomic Products Operation monthly report, April 1953

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    McCune, F.K.

    1953-05-20

    This is a progress report of the production reactors on the Hanford Reservation for the month of April 1951. This report takes each division (e.g., manufacturing, medical, accounting, occupational safety, security, reactor operations, etc.) of the site and summarizes its accomplishments and employee relations for that month.

  1. Hanford Atomic Products Operation monthly report, January 1954

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    McCune, F.K.

    1954-02-25

    This is a progress report of the production reactors on the Hanford Reservation for the month of January 1954. This report takes each division (e.g., manufacturing, medical, accounting, occupational safety, security, reactor operations, etc.) of the site and summarizes the accomplishments and employee relations for that month.

  2. AN INNOVATIVE APPROACH FOR CONSTRUCTING AN IN-SITU BARRIER FOR STRONTIUM-90 AT THE HANFORD SITE WASHINGTON

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    FABRE RJ

    2008-12-08

    Efforts to reduce the flux of Sr-90 to the Columbia River from Hanford Site 100-N Area past-practice liquid waste disposal sites have been underway since the early 1990s. Termination of all liquid discharges to the ground in 1993 was a major step toward meeting this goal. However, Sr-90 adsorbed on aquifer solids beneath liquid waste disposal sites and extending beneath the near-shore riverbed remains a continuing contaminant source to groundwater and the Columbia River. The initial pump-and-treat system proved to be ineffective as a long-term solution because of the geochemical characteristics of Sr-90. Following an evaluation of potential Sr-90 treatmentmore » technologies and their applicability under 100-NR-2 Operable Unit hydrogeologic conditions, the U.S. Department of Energy and the Washington State Department of Ecology agreed to evaluate apatite sequestration as the primary remedial technology, combined with a secondary polishing step utilizing phytoextraction if necessary. Aqueous injection was initiated in July 2005 to assess the efficacy of in-situ apatite along the 100 m of shoreline where Sr-90 concentrations are highest. The remedial technology is being developed by Pacific Northwest National Laboratory. CH2M Hill Plateau Remediation Company is implementing this technology in the field with support from PNNL.« less

  3. Hazardous Materials Management and Emergency Response Training Center at Hanford

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ollero, J.; Muth, G.; Bergland, R.

    1994-12-31

    The Hanford Site will provide high-fidelity training using simulated job-site situations to prepare workers for known and unknown hazards. Hanford is developing the Hazardous Materials Management and Emergency Response (HAMMER) Training Center to operate as a user facility for the site, region and international labor unions. The center will focus on providing hands-on, realistic training situations. The Training Center is a partnership among U.S. Department of Energy (DOE); its contractors; labor; local, state, and tribal governments; Xavier and Tulane Universities of Louisiana and other Federal agencies. The hands-on training aids at HAMMER is justified based on regulatory training requirements, themore » desire for enhanced safety, and the commitment to continuous improvement of training quality.« less

  4. Radiation Spill at Hanford: The Anatomy of an Accident

    ERIC Educational Resources Information Center

    Gillette, Robert

    1973-01-01

    Describes the circumstances leading to a recent spill of radioactive wastes at the Atomic Energy Commission's Hanford Reservation in Washington. Also briefly discusses previous accidental leaks and plans for safer storage of radioactive waste materials in the future. (JR)

  5. A Review of Iron Phosphate Glasses and Recommendations for Vitrifying Hanford Waste

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Delbert E. Ray; Chandra S. Ray

    2013-11-01

    This report contains a comprehensive review of the research conducted, world-wide, on iron phosphate glass over the past ~30 years. Special attention is devoted to those iron phosphate glass compositions which have been formulated for the purpose of vitrifying numerous types of nuclear waste, with special emphasis on the wastes stored in the underground tanks at Hanford WA. Data for the structural, chemical, and physical properties of iron phosphate waste forms are reviewed for the purpose of understanding their (a) outstanding chemical durability which meets all current DOE requirements, (b) high waste loadings which can exceed 40 wt% (up tomore » 75 wt%) for several Hanford wastes, (c) low melting temperatures, can be as low as 900°C for certain wastes, and (d) high tolerance for “problem” waste components such as sulfates, halides, and heavy metals (chromium, actinides, noble metals, etc.). Several recommendations are given for actions that are necessary to smoothly integrate iron phosphate glass technology into the present waste treatment plans and vitrification facilities at Hanford.« less

  6. Carbon and Nitrogen Response to Forced Inundation of Hyporheic Sediment along an Elevational Transect of the Columbia River

    NASA Astrophysics Data System (ADS)

    Goldman, A. E.; Graham, E.; Crump, A.; Kennedy, D.; Romero, E. B.; Anderson, C.; Dana, K. L.; Fredrickson, J.; Stegen, J.

    2016-12-01

    Diel and seasonal fluctuations of river water discharge in the dam-controlled Hanford Reach of the Columbia River (Washington State, USA) result in irregular wetting and drying of hyporheic sediments within ten meters of the shoreline. As such, nearshore inundation histories vary from seconds to years since last river water exposure and have generated a gradient in groundcover ranging from barren gravel to sparse grasses to trees. In order to understand how history of inundation influences the response of carbon and nitrogen cycling to rewetting, we conducted 0.5-hour and 25-hour forced-inundation laboratory incubations on samples collected every two meters along three 6-meter elevational transects of shoreline along the Hanford Reach. At the time of sample collection, sediment along our elevational transect ranged from currently inundated to one year since last inundation. Incubation sediments were characterized based on spatial and temporal changes in nitrogen and carbon characteristics. We measured headspace CO2, non-particulate organic carbon (NPOC), total organic matter, organic acids, C/N, NO3-, NO2-, NH4+, pH, and moisture content. We found high rates of aerobic respiration at the lowest elevations, attributed to an initial pulse of CO2 not seen at higher elevations, and accumulation of labile organic carbon (i.e., glucose, NPOC) at the highest elevations. We are currently investigating microbial communities with 16S and ITS sequencing in order to explore potential community shifts along the transect and linkages between fungal communities and nitrogen cycling. Our results suggest that inundation history may lead to spatial isolation of microbial communities with subsequent differences in ability to respond to wet-dry cycles. Examining how variations in hydrology impact carbon and nitrogen cycling allows for a more robust understanding of how climate change may alter microbially-mediated interactions and transformations within the hyporheic zone.

  7. Evaluation of Wet Chemical ICP-AES Elemental Analysis Methods usingSimulated Hanford Waste Samples-Phase I Interim Report

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Coleman, Charles J.; Edwards, Thomas B.

    2005-04-30

    The wet chemistry digestion method development for providing process control elemental analyses of the Hanford Tank Waste Treatment and Immobilization Plant (WTP) Melter Feed Preparation Vessel (MFPV) samples is divided into two phases: Phase I consists of: (1) optimizing digestion methods as a precursor to elemental analyses by ICP-AES techniques; (2) selecting methods with the desired analytical reliability and speed to support the nine-hour or less turnaround time requirement of the WTP; and (3) providing baseline comparison to the laser ablation (LA) sample introduction technique for ICP-AES elemental analyses that is being developed at the Savannah River National Laboratory (SRNL).more » Phase II consists of: (1) Time-and-Motion study of the selected methods from Phase I with actual Hanford waste or waste simulants in shielded cell facilities to ensure that the methods can be performed remotely and maintain the desired characteristics; and (2) digestion of glass samples prepared from actual Hanford Waste tank sludge for providing comparative results to the LA Phase II study. Based on the Phase I testing discussed in this report, a tandem digestion approach consisting of sodium peroxide fusion digestions carried out in nickel crucibles and warm mixed-acid digestions carried out in plastic bottles has been selected for Time-and-Motion study in Phase II. SRNL experience with performing this analytical approach in laboratory hoods indicates that well-trained cell operator teams will be able to perform the tandem digestions in five hours or less. The selected approach will produce two sets of solutions for analysis by ICP-AES techniques. Four hours would then be allocated for performing the ICP-AES analyses and reporting results to meet the nine-hour or less turnaround time requirement. The tandem digestion approach will need to be performed in two separate shielded analytical cells by two separate cell operator teams in order to achieve the nine-hour or less

  8. Hanford Atomic Products Operation monthly report for March 1956

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Not Available

    1956-04-20

    This is the monthly report for the Hanford Laboratories Operation, March, 1956. Metallurgy, reactor fuels, chemistry, dosimetry, separation processes, reactor technology; financial activities, visits, biology operation, physics and instrumentation research, employee relations, pile technology, safety and radiological sciences are discussed.

  9. Influences of Coupled Hydrologic and Microbial Processes on River Corridor Biogeochemistry and Ecology

    NASA Astrophysics Data System (ADS)

    Scheibe, T. D.; Song, H. S.; Stegen, J.; Graham, E.; Bao, J.; Goldman, A.; Zhou, T.; Crump, A.; Hou, Z.; Hammond, G. E.; Chen, X.; Huang, M.; Zhang, X.; Nelson, W. C.; Garayburu-Caruso, V. A.

    2017-12-01

    The exchange of water between rivers and surrounding subsurface environments (hydrologic exchange flows or HEFs) is a vital aspect of river ecology and watershed function. HEFs play a key role in water quality, nutrient cycling, and ecosystem health, and they modulate water temperatures and enhance exchange of terrestrial and aquatic nutrients, which lead to elevated biogeochemical activity. However, these coupled hydrologic and microbiological processes are not well understood, particularly in the context of large managed river systems with highly variable discharge, and are poorly represented in system-scale quantitative models. Using the 75 km Hanford Reach of the Columbia River as the research domain, we apply high-resolution flow simulations supported by field observations to understand how variable river discharge interacts with hydromorphic and hydrogeologic structures to generate HEFs and distributions of subsurface residence times. We combine this understanding of hydrologic processes with microbiological activity measurements and reactive transport models to elucidate the holistic impacts of variable discharge on river corridor (surface and subsurface) ecosystems. In particular, our project seeks to develop and test new conceptual and numerical models that explicitly incorporate i) the character (chemical speciation and thermodynamics) of natural organic matter as it varies along flow paths and through mixing of groundwater and surface water, and ii) the history-dependent response of microbial communities to varying time scales of inundation associated with fluctuations in river discharge. The results of these high-resolution mechanistic models are guiding formulation and parameterization of reduced-order models applicable at reach to watershed scales. New understanding of coupled hydrology and microbiology in the river corridor will play a key role in reduction of uncertainties associated with major Earth system biogeochemical fluxes, improving

  10. Hanford Site Groundwater Monitoring for Fiscal Year 2002

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hartman, Mary J.; Morasch, Launa F.; Webber, William D.

    2003-02-28

    This report presents the results of groundwater and vadose zone monitoring and remediation for fiscal year 2002 on the U.S. Department of Energy's Hanford Site in Washington State. This report is written to meet the requirements in CERCLA, RCRA, the Atomic Energy Act of 1954, and Washington State Administrative Code.

  11. 78 FR 9902 - DOE Response to Recommendation 2012-2 of the Defense Nuclear Facilities Safety Board, Hanford...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-02-12

    ... DEPARTMENT OF ENERGY DOE Response to Recommendation 2012-2 of the Defense Nuclear Facilities Safety Board, Hanford Tank Farms Flammable Gas Safety Strategy; Correction AGENCY: Department of Energy... Facilities Safety Board, Hanford Tank Farms Flammable Gas Safety Strategy. This document corrects an error in...

  12. External Performance Evaluation Program Participation at Fluor Hanford (FH) 222S Lab

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    CLARK, G.A.

    2002-06-01

    Fluor Hanford operates the U. S. Department of Energy's (DOE) 2224 Laboratory on the Hanford Site in Southeastern Washington State. 222-S Laboratory recently celebrated its 50th anniversary of providing laboratory services to DOE and DOE contractors on the Hanford Site. The laboratory operated for many years as a production support analytical laboratory, but in the last two decades has supported the Hanford Site cleanup mission. The laboratory performs radioanalytical, inorganic, and organic characterization analyses on highly radioactive liquid and solid tank waste that will eventually be vitrified for long-term storage and or disposal. It is essential that the laboratory reportmore » defensible, highly credible data in its role as a service provider to DOE and DOE contractors. Among other things, the participation in a number of performance evaluation (PE) programs helps to ensure the credibility of the laboratory. The laboratory currently participates in Environmental Resource Associates' Water Pollution (WP) Studies and the DOE Environmental Management Laboratory (EML) Quality Assessment Program (QAP). DOE has mandated participation of the laboratory in the EML QAP. This EML program evaluates the competence of laboratories performing environmental radioanalytical measurements for DOE, and is the most comprehensive and well-established PE program in the DOE community for radiochemical laboratories. Samples are received and analyzed for radionuclides in air filter, soil, vegetation, and water matrices on a semiannual basis. The 222-S Laboratory has performed well in this program over the years as evidenced by the scores in the chart below.« less

  13. Review of technologies for the pretreatment of retrieved single-shell tank waste at Hanford

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Gerber, M.A.

    1992-08-01

    The purpose of the study reported here was to identify and evaluate innovative processes that could be used to pretreat mixed waste retrieved from the 149 single-shell tanks (SSTs) on the US Department of Energy's (DOE) Hanford site. The information was collected as part of the Single Shell Tank Waste Treatment project at Pacific Northwest Laboratory (PNL). The project is being conducted for Westinghouse Hanford Company under their SST Disposal Program.

  14. Review of technologies for the pretreatment of retrieved single-shell tank waste at Hanford

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Gerber, M.A.

    1992-08-01

    The purpose of the study reported here was to identify and evaluate innovative processes that could be used to pretreat mixed waste retrieved from the 149 single-shell tanks (SSTs) on the US Department of Energy`s (DOE) Hanford site. The information was collected as part of the Single Shell Tank Waste Treatment project at Pacific Northwest Laboratory (PNL). The project is being conducted for Westinghouse Hanford Company under their SST Disposal Program.

  15. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Belsher, Jeremy D.; Pierson, Kayla L.; Gimpel, Rod F.

    The Hanford site in southeast Washington contains approximately 207 million liters of radioactive and hazardous waste stored in 177 underground tanks. The U.S. Department of Energy's Office of River Protection is currently managing the Hanford waste treatment mission, which includes the storage, retrieval, treatment and disposal of the tank waste. Two recent studies, employing the modeling tools managed by the One System organization, have highlighted waste cleanup mission sensitivities. The Hanford Tank Waste Operations Simulator Sensitivity Study evaluated the impact that varying 21 different parameters had on the Hanford Tank Waste Operations Simulator model. It concluded that inaccuracies in themore » predicted phase partitioning of a few key components can result in significant changes in the waste treatment duration and in the amount of immobilized high-level waste that is produced. In addition, reducing the efficiency with which tank waste is retrieved and staged can increase mission duration. The 2012 WTP Tank Utilization Assessment concluded that flowsheet models need to include the latest low-activity waste glass algorithms or the waste treatment mission duration and the amount of low activity waste that is produced could be significantly underestimated. (authors)« less

  16. Hanford Environmental Dose Reconstruction Project Monthly Report

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Finch, S.M.

    1991-02-01

    The objective of the Hanford Environmental Dose Reconstruction Project is to estimate the radiation doses that populations could have received from nuclear operations at Hanford since 1944. The project is being managed and conducted by the Pacific Northwest Laboratory (PNL) under the direction of an independent Technical Steering Panel (TSP). The TSP consists of experts in environmental pathways, epidemiology, surface-water transport, ground-water transport, statistics, demography, agriculture, meteorology, nuclear engineering, radiation dosimetry, and cultural anthropology. Included are appointed technical members representing the states of Oregon and Washington, cultural and technical experts nominated by the regional Native American tribes, and an individualmore » representing the public. The project is divided into the following technical tasks. These tasks correspond to the path radionuclides followed, from release to impact on humans (dose estimates): source terms; environmental transport; environmental monitoring data; demographics, agriculture, food habits; and environmental pathways and dose estimates. Project reports and references used in the reports are made available to the public in a public reading room. Project progress is documented in this monthly report, which is available to the public. 3 figs., 3 tabs.« less

  17. Hanford Site Environmental Surveillance Data Report for Calendar Year 2000

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bisping, Lynn E.

    2001-09-27

    This data report contains the actual raw data used to create tables and summaries in the Hanford Site Environmental Report 2000. This report also includes data from special sampling studies performed in 2000.

  18. The apparent solubility of aluminum (III) in Hanford high-level waste.

    PubMed

    Reynolds, Jacob G

    2012-01-01

    The solubility of aluminum in Hanford nuclear waste impacts on the processability of the waste by a number of proposed treatment options. For many years, Hanford staff has anecdotally noted that aluminum appears to be considerably more soluble in Hanford waste than the simpler electrolyte solutions used as analogues. There has been minimal scientific study to confirm these anecdotal observations, however. The present study determines the apparent solubility product for gibbsite in 50 tank samples. The ratio of hydroxide to aluminum in the liquid phase for the samples is calculated and plotted as a function of total sodium molarity. Total sodium molarity is used as a surrogate for ionic strength, because the relative ratios of mono-, di- and trivalent anions are not available for all of the samples. These results were compared to the simple NaOH-NaAl(OH)(4)-H(2)O system, and the NaOH-NaAl(OH)(4)-NaCl-H(2)O system data retrieved from the literature. The results show that gibbsite is apparently more soluble in the samples than in the simple systems whenever the sodium molarity is greater than 2M. This apparent enhanced solubility cannot be explained solely by differences in ionic strength. The change in solubility with ionic strength in simple systems is small compared to the difference between aluminum solubility in Hanford waste and the simple systems. The reason for the apparent enhanced solubility is unknown, but could include kinetic or thermodynamic factors that are not present in the simple electrolyte systems. Any kinetic explanation would have to explain why the samples are always supersaturated whenever the sodium molarity is above 2M. Real waste characterization data should not be used to validate thermodynamic solubility models until it can be confirmed that the apparent enhanced gibbsite solubility is a thermodynamic effect and not a kinetic effect.

  19. Hanford Environmental Dose Reconstruction Project. Monthly report, December 1991

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Finch, S.M.; McMakin, A.H.

    1991-12-31

    The objective of the Hanford Environmental Dose Reconstruction Project is to estimate the radiation doses that individuals and populations could have received from nuclear operations at Hanford since 1944. The project is being managed and conducted by the Pacific Northwest Laboratory (PNL) under the direction of an independent Technical Steering Panel (TSP). The TSP consists of experts in environmental pathways, epidemiology, surface-water transport, ground-water transport, statistics, demography, agriculture, meteorology, nuclear engineering, radiation dosimetry, and cultural anthropology. Included are appointed technical members representing the states of Oregon and Washington, a representative of Native American tribes, and an individual representing the public.more » The project is divided into the following technical tasks. These tasks correspond to the path radionuclides followed, from release to impact on human (dose estimates): Source Terms; Environmental Transport; Environmental Monitoring Data; Demographics, Agriculture, Food Habits and; Environmental Pathways and Dose Estimates.« less

  20. Dangerous Waste Characteristics of Contact-Handled Transuranic Mixed Wastes from the Hanford Tanks

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Tingey, Joel M.; Bryan, Garry H.; Deschane, Jaquetta R.

    2004-08-31

    This report summarizes existing analytical data from samples taken from the Hanford tanks designated as potentially containing transuranic mixed process wastes. Process knowledge of the wastes transferred to these tanks has been reviewed to determine whether the dangerous waste characteristics now assigned to all Hanford underground storage tanks are applicable to these particular wastes. Supplemental technologies are being examined to accelerate the Hanford tank waste cleanup mission and accomplish waste treatment safely and efficiently. To date, 11 Hanford waste tanks have been designated as potentially containing contact-handled (CH) transuranic mixed (TRUM) wastes. The CH-TRUM wastes are found in single-shell tanksmore » B-201 through B-204, T-201 through T-204, T-104, T-110, and T-111. Methods and equipment to solidify and package the CH-TRUM wastes are part of the supplemental technologies being evaluated. The resulting packages and wastes must be acceptable for disposal at the Waste Isolation Pilot Plant (WIPP). The dangerous waste characteristics being considered include ignitability, corrosivity, reactivity, and toxicity arising from the presence of 2,4,5-trichlorophenol at levels above the dangerous waste threshold. The analytical data reviewed include concentrations of sulfur, sulfate, cyanide, 2,4,5-trichlorophenol, total organic carbon, and oxalate; the composition of the tank headspace, pH, and mercury. Differential scanning calorimetry results were used to determine the energetics of the wastes as a function of temperature.« less

  1. Corrosion Management of the Hanford High-Level Nuclear Waste Tanks

    NASA Astrophysics Data System (ADS)

    Beavers, John A.; Sridhar, Narasi; Boomer, Kayle D.

    2014-03-01

    The Hanford site is located in southeastern Washington State and stores more than 200,000 m3 (55 million gallons) of high-level radioactive waste resulting from the production and processing of plutonium. The waste is stored in large carbon steel tanks that were constructed between 1943 and 1986. The leak and structurally integrity of the more recently constructed double-shell tanks must be maintained until the waste can be removed from the tanks and encapsulated in glass logs for final disposal in a repository. There are a number of corrosion-related threats to the waste tanks, including stress-corrosion cracking, pitting corrosion, and corrosion at the liquid-air interface and in the vapor space. This article summarizes the corrosion management program at Hanford to mitigate these threats.

  2. Washing and caustic leaching of Hanford tank sludges: results of FY 1996 studies. Revision

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lumetta, G.J.; Rapko, B.M.; Wagner, M.J.

    During the past few years, the primary mission at the US Department of Energy`s Hanford Site has changed from producing plutonium to restoring the environment. Large volumes of high-level radioactive wastes (HLW), generated during past Pu production and other operations, are stored in underground tanks on site. The current plan for remediating the Hanford tank farms consists of waste retrieval, pretreatment, treatment (immobilization), and disposal. The HLW will be immobilized in a borosilicate glass matrix and then disposed of in a geologic repository. Because of the expected high cost of HLW vitrification and geologic disposal, pretreatment processes will be implementedmore » to reduce the volume of borosilicate glass produced in disposing of the tank wastes. On this basis, a pretreatment plan is being developed. This report describes the sludge washing and caustic leaching test conducted to create a Hanford tank sludge pretreatment flowsheet.« less

  3. Evaluation of thyroid radioactivity measurement data from Hanford workers, 1944--1946

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ikenberry, T.A.

    1991-05-01

    This report describes the preliminary results of an evaluation conducted in support of the Hanford Environmental Dose Reconstruction (HEDR) Project. The primary objective of the HEDR Project is to estimate the radiation doses that populations could have received from nuclear operations at the Hanford Site since 1944. A secondary objective is to make information that HEDR staff members used in estimate radiation doses available to the public. The objectives of this report to make available thyroid measurement data from Hanford workers for the year 1944 through 1946, and to investigate the suitability of those data for use in the HEDRmore » dose estimation process. An important part of this investigation was to provide a description of the uncertainty associated with the data. Lack of documentation on thyroid measurements from this period required that assumptions be made to perform data evaluations. These assumptions introduce uncertainty into the evaluations that could be significant. It is important to recognize the nature of these assumptions, the inherent uncertainty, and the propagation of this uncertainty, and the propagation of this uncertainty through data evaluations to any conclusions that can be made by using the data. 15 refs., 1 fig., 5 tabs.« less

  4. Effects of an extreme flood on river morphology (case study: Karoon River, Iran)

    NASA Astrophysics Data System (ADS)

    Yousefi, Saleh; Mirzaee, Somayeh; Keesstra, Saskia; Surian, Nicola; Pourghasemi, Hamid Reza; Zakizadeh, Hamid Reza; Tabibian, Sahar

    2018-03-01

    An extreme flood occurred on 14 April 2016 in the Karoon River, Iran. The occurred flood discharge was the highest discharge recorded over the last 60 years in the Karoon River. Using the OLI Landsat images taken on 8 April 2016 (before the flood) and 24 April 2016 (after the flood) the geomorphic effects were detected in different land cover types within the 155-km-long study reach. The results show that the flood significantly affected the channel width and the main effect was high mobilization of channel sediments and severe bank erosion in the meandering reaches. According to field surveys, the flood occupied the channel corridor and even the floodplain parts. However, the channel pattern was not significantly altered, although the results show that the average channel width increased from 192 to 256 m. Statistical results indicate a significant change for active channel width and sinuosity index at 99% confidence level for both indexes. The flood-induced morphological changes varied significantly for different land cover types along the Karoon River. Specifically, the channel has widened less in residential areas than in other land cover types because of the occurrence of bank protection structures. However, the value of bank retreat in residential and protected sides of the Karoon River is more than what we expected during the study of extreme flood.

  5. Concentrations, loads, and sources of polychlorinated biphenyls, Neponset River and Neponset River Estuary, eastern Massachusetts

    USGS Publications Warehouse

    Breault, Robert F.

    2011-01-01

    Polychlorinated biphenyls (PCBs) are known to contaminate the Neponset River, which flows through parts of Boston, Massachusetts, and empties into the Neponset River Estuary, an important fish-spawning area. The river is dammed and impassable to fish. The U.S. Geological Survey, in cooperation with the Massachusetts Department of Fish and Game, Division of Ecological Restoration, Riverways Program, collected, analyzed, and interpreted PCB data from bottom-sediment, water, and (or) fish-tissue samples in 2002, 2004-2006. Samples from the Neponset River and Neponset River Estuary were analyzed for 209 PCB congeners, PCB homologs, and Aroclors. In order to better assess the overall health quality of river-bottom sediments, sediment samples were also tested for concentrations of 31 elements. PCB concentrations measured in the top layers of bottom sediment ranged from 28 nanograms per gram (ng/g) just upstream of the Mother Brook confluence to 24,900 ng/g measured in Mother Brook. Concentrations of elements in bottom sediment were generally higher than background concentrations and higher than levels considered toxic to benthic organisms according to freshwater sediment-quality guidelines defined by the U.S. Environmental Protection Agency. Concentrations of dissolved PCBs in water samples collected from the Neponset River (May 13, 2005 to April 28, 2006) averaged about 9.2 nanograms per liter (ng/L) (annual average of monthly values); however, during the months of August (about 16.5 ng/L) and September (about 15.6 ng/L), dissolved PCB concentrations were greater than 14 ng/L, the U.S. Environmental Protection Agency's freshwater continuous chronic criterion for aquatic organisms. Concentrations of PCBs in white sucker (fillets and whole fish) were all greater than 2,000 ng/g wet wt, the U.S. Environmental Protection Agency's guideline for safe consumption of fish: PCB concentrations measured in fish-tissue samples collected from the Tileston and Hollingsworth and

  6. Environmental characterization of two potential locations at Hanford for a new production reactor

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Watson, E.C.; Becker, C.D.; Fitzner, R.E.

    This report describes various environmental aspects of two areas on the Hanford Site that are potential locations for a New Production Reactor (NPR). The area known as the Skagit Hanford Site is considered the primary or reference site. The second area, termed the Firehouse Site, is considered the alternate site. The report encompasses an environmental characterization of these two potential NPR locations. Eight subject areas are covered: geography and demography; ecology; meteorology; hydrology; geology; cultural resources assessment; economic and social effects of station construction and operation; and environmental monitoring. 80 refs., 68 figs., 109 tabs.

  7. Environmental risk assessment in five rivers of Parana River basin, Southern Brazil, through biomarkers in Astyanax spp.

    PubMed

    Barros, Ivaldete Tijolin; Ceccon, Juliana Parolin; Glinski, Andressa; Liebel, Samuel; Grötzner, Sonia Regina; Randi, Marco Antonio Ferreira; Benedito, Evanilde; Ortolani-Machado, Claudia Feijó; Filipak Neto, Francisco; de Oliveira Ribeiro, Ciro Alberto

    2017-07-01

    In the current study, water quality of five river sites in Parana River basin (Brazil), utilized for public water supply, was assessed through a set of biomarkers in fish Astyanax spp. Population growth and inadequate use of land are challenges to the preservation of biodiversity and resources such as water. Some physicochemical parameters as well as somatic indexes, gills and liver histopathology, genotoxicity, and biochemical biomarkers were evaluated. The highest gonadosomatic index (GSI) and antioxidant parameters (catalase and glutathione S-transferase activities, non-protein thiols), as well as the lowest damage to biomolecules (lipid peroxidation, protein carbonylation, DNA damage) were observed in site 0 (Piava River), which is located at an environmental protected area. Site 1, located in the same river, but downstream site 0 and outside the protection area, presents some level of impact. Fish from site 2 (Antas River), which lack of riparian forest and suffer from silting, presented the highest micronucleus incidence and no melanomacrophages. Differently, individuals from site 3 (Xambrê River) and site 4 (Pinhalzinho River) which receive surface runoff from Umuarama city, urban and industrial sewage, have the highest incidences of liver and gill histopathological alterations, including neoplasia, which indicated the worst health conditions of all sites. In particular, site 4 had high levels of total nitrogen and ammonia, high turbidity, and very low oxygen levels, which indicate important chemical impact. Comparison of the biomarkers in fish allowed classification of the five sites in terms of environmental impact and revealed that sites 3 and 4 had particular poor water quality.

  8. An Innovative Approach for Constructing an In-Situ Barrier for Strontium-90 at the Hanford Site, Washington - 9325

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Thompson, K. M.; Fabre, Russel J.; Vermeul, Vincent R.

    2008-12-10

    Efforts to reduce the flux of Sr-90 to the Columbia River from Hanford Site 100-N Area past-practice liquid waste disposal sites have been underway since the early 1990s. Termination of all liquid discharges to the ground in 1993 was a major step toward meeting this goal. However, Sr 90 adsorbed on aquifer solids beneath liquid waste disposal sites and extending beneath the near-shore riverbed remains a continuing contaminant source to groundwater and the Columbia River. The initial pump-and treat system proved to be ineffective as a long-term solution because of the geochemical characteristics of Sr-90. Following an evaluation of potentialmore » Sr-90 treatment technologies and their applicability under 100 NR-2 Operable Unit hydrogeologic conditions, the U.S. Department of Energy and the Washington State Department of Ecology agreed to evaluate apatite sequestration as the primary remedial technology, combined with a secondary polishing step utilizing phytoextraction if necessary. Aqueous injection was initiated in July 2005 to assess the efficacy of in-situ apatite along the 100 m of shoreline where Sr-90 concentrations are highest. The remedial technology is being developed by Pacific Northwest National Laboratory. CH2M Hill Plateau Remediation Company is implementing this technology in the field with support from PNNL.« less

  9. Groundwater quality in the Yuba River and Bear River Watersheds, Sierra Nevada, California

    USGS Publications Warehouse

    Fram, Miranda S.; Jasper, Monica; Taylor, Kimberly A.

    2017-09-27

    Groundwater provides more than 40 percent of California’s drinking water. To protect this vital resource, the State of California created the Groundwater Ambient Monitoring and Assessment (GAMA) Program. The GAMA Program’s Priority Basin Project assesses the quality of groundwater resources used for drinking water supply and increases public access to groundwater-quality information. In the Yuba River and Bear River Watersheds of the Sierra Nevada, many rural households rely on private wells for their drinking water supplies. 

  10. Unit 3, STA. 5+00 lb Stonycreek River, sideslope with balustrade ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    Unit 3, STA. 5+00 lb Stonycreek River, sideslope with balustrade wall & parapets-detail - Johnstown Local Flood Protection Project, Beginning on Conemaugh River approx 3.8 miles downstream from confluence of Little Conemaugh & Stony Creek Rivers at Johnstown, Johnstown, Cambria County, PA

  11. Unit 3, STA. 5+00 lb Stonycreek River, sideslope with balustrade ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    Unit 3, STA. 5+00 lb Stonycreek River, sideslope with balustrade wall & parapets-context - Johnstown Local Flood Protection Project, Beginning on Conemaugh River approx 3.8 miles downstream from confluence of Little Conemaugh & Stony Creek Rivers at Johnstown, Johnstown, Cambria County, PA

  12. Critical Protection Item classification for a waste processing facility at Savannah River Site

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ades, M.J.; Garrett, R.J.

    1993-10-01

    This paper describes the methodology for Critical Protection Item (CPI) classification and its application to the Structures, Systems and Components (SSC) of a waste processing facility at the Savannah River Site (SRS). The WSRC methodology for CPI classification includes the evaluation of the radiological and non-radiological consequences resulting from postulated accidents at the waste processing facility and comparison of these consequences with allowable limits. The types of accidents considered include explosions and fire in the facility and postulated accidents due to natural phenomena, including earthquakes, tornadoes, and high velocity straight winds. The radiological analysis results indicate that CPIs are notmore » required at the waste processing facility to mitigate the consequences of radiological release. The non-radiological analysis, however, shows that the Waste Storage Tank (WST) and the dike spill containment structures around the formic acid tanks in the cold chemical feed area and waste treatment area of the facility should be identified as CPIs. Accident mitigation options are provided and discussed.« less

  13. Deep Vadose Zone Treatability Test for the Hanford Central Plateau: Interim Post-Desiccation Monitoring Results, Fiscal Year 2014

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Truex, Michael J.; Strickland, Christopher E.; Johnson, Christian D.

    Over decades of operation, the U.S. Department of Energy (DOE) and its predecessors have released nearly 2 trillion L (450 billion gal.) of liquid into the vadose zone at the Hanford Site. Much of this discharge of liquid waste into the vadose zone occurred in the Central Plateau, a 200 km 2 (75 mi 2) area that includes approximately 800 waste sites. Some of the inorganic and radionuclide contaminants in the deep vadose zone at the Hanford Site are at depths below the limit of direct exposure pathways, but may need to be remediated to protect groundwater. The Tri-Party Agenciesmore » (DOE, U.S. Environmental Protection Agency, and Washington State Department of Ecology) established Milestone M 015 50, which directed DOE to submit a treatability test plan for remediation of technetium-99 (Tc-99) and uranium in the deep vadose zone. These contaminants are mobile in the subsurface environment and have been detected at high concentrations deep in the vadose zone, and at some locations have reached groundwater. Testing technologies for remediating Tc-99 and uranium will also provide information relevant for remediating other contaminants in the vadose zone. A field test of desiccation is being conducted as an element of the DOE test plan published in March 2008 to meet Milestone M 015 50. The active desiccation portion of the test has been completed. Monitoring data have been collected at the field test site during the post-desiccation period and are reported herein. This is an interim data summary report that includes about 3 years of post-desiccation monitoring data. The DOE field test plan proscribes a total of 5 years of post-desiccation monitoring.« less

  14. Unit 3, STA. 5+00 RB Little Conemaugh River, sideslope with ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    Unit 3, STA. 5+00 RB Little Conemaugh River, sideslope with masonry walls (with parapets)-detail - Johnstown Local Flood Protection Project, Beginning on Conemaugh River approx 3.8 miles downstream from confluence of Little Conemaugh & Stony Creek Rivers at Johnstown, Johnstown, Cambria County, PA

  15. Unit 3, STA. 5+00 RB Little Conemaugh River, sideslope with ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    Unit 3, STA. 5+00 RB Little Conemaugh River, sideslope with masonry walls (with parapets)-context - Johnstown Local Flood Protection Project, Beginning on Conemaugh River approx 3.8 miles downstream from confluence of Little Conemaugh & Stony Creek Rivers at Johnstown, Johnstown, Cambria County, PA

  16. ERF1 -- Enhanced River Reach File 1.2

    USGS Publications Warehouse

    Alexander, Richard B.; Brakebill, John W.; Brew, Robert E.; Smith, Richard A.

    1999-01-01

    U.S. Environmental Protection Agency's River Reach File 1 (RF1) to ensure the hydrologic integrity of the digital reach traces and to quantify the mean water time of travel in river reaches and reservoirs [see USEPA (1996) for a description of the original RF1].

  17. [Effect of water conservancy schistosomiasis control projects combined with molluscicide to control Oncomelania hupensis snails in rivers connecting with Yangtze River in Pukou District, Nanjing City].

    PubMed

    Qiang, Zhou; Li-Xin, Wan; De-Rong, Hang; Qi-Hui, You; Jun, You; Yu-Lin, Zhang; Zhao-Feng, Zhu; Yi-Xin, Huang

    2017-12-07

    To evaluate the effect of the water conservancy schistosomiasis control projects combined with molluscicide to control Oncomelania hupensis snails in the rivers connecting with the Yangtze River. The water conservancy schistosomiasis control projects of Zhujiashan River, Qili River and Gaowang River were chosen as the study objects in Pukou District, Nanjing City. The data review method and field investigation were used to evaluate the effect of the water conservancy schistosomiasis control projects combined with molluscicide to control O. hupensis snails. After the projects of the water level control and concrete slope protection and mollusciciding were implemented, the snails in the project river sections were completely eliminated. The snail diffusion did not happen in the inland irrigation area too. In the outside of the river beach, though the snails still existed, the snail densities plunged below 1.0 snail per 1.0 m 2 . The comprehensive measures of the combination of water level control, concrete slope protection and mollusciciding can effectively control and eliminate the snails, and prevent the snails from spreading.

  18. Rivers Run Through It: Discovering the Interior Columbia River Basin.

    ERIC Educational Resources Information Center

    Davis, Shelley; Wojtanik, Brenda Lincoln; Rieben, Elizabeth

    1998-01-01

    Explores the Columbia River Basin, its ecosystems, and challenges faced by natural resource managers. By studying the basin's complexity, students can learn about common scientific concepts such as the power of water and effects of rain shadows. Students can also explore social-scientific issues such as conflicts between protecting salmon runs and…

  19. Persistence of uranium groundwater plumes: contrasting mechanisms at two DOE sites in the groundwater-river interaction zone.

    PubMed

    Zachara, John M; Long, Philip E; Bargar, John; Davis, James A; Fox, Patricia; Fredrickson, Jim K; Freshley, Mark D; Konopka, Allan E; Liu, Chongxuan; McKinley, James P; Rockhold, Mark L; Williams, Kenneth H; Yabusaki, Steve B

    2013-04-01

    We examine subsurface uranium (U) plumes at two U.S. Department of Energy sites that are located near large river systems and are influenced by groundwater-river hydrologic interaction. Following surface excavation of contaminated materials, both sites were projected to naturally flush remnant uranium contamination to levels below regulatory limits (e.g., 30 μg/L or 0.126 μmol/L; U.S. EPA drinking water standard), with 10 years projected for the Hanford 300 Area (Columbia River) and 12 years for the Rifle site (Colorado River). The rate of observed uranium decrease was much lower than expected at both sites. While uncertainty remains, a comparison of current understanding suggests that the two sites have common, but also different mechanisms controlling plume persistence. At the Hanford 300 A, the persistent source is adsorbed U(VI) in the vadose zone that is released to the aquifer during spring water table excursions. The release of U(VI) from the vadose zone and its transport within the oxic, coarse-textured aquifer sediments is dominated by kinetically-limited surface complexation. Modeling implies that annual plume discharge volumes to the Columbia River are small (

  20. Persistence of uranium groundwater plumes: Contrasting mechanisms at two DOE sites in the groundwater-river interaction zone

    NASA Astrophysics Data System (ADS)

    Zachara, John M.; Long, Philip E.; Bargar, John; Davis, James A.; Fox, Patricia; Fredrickson, Jim K.; Freshley, Mark D.; Konopka, Allan E.; Liu, Chongxuan; McKinley, James P.; Rockhold, Mark L.; Williams, Kenneth H.; Yabusaki, Steve B.

    2013-04-01

    We examine subsurface uranium (U) plumes at two U.S. Department of Energy sites that are located near large river systems and are influenced by groundwater-river hydrologic interaction. Following surface excavation of contaminated materials, both sites were projected to naturally flush remnant uranium contamination to levels below regulatory limits (e.g., 30 μg/L or 0.126 μmol/L; U.S. EPA drinking water standard), with 10 years projected for the Hanford 300 Area (Columbia River) and 12 years for the Rifle site (Colorado River). The rate of observed uranium decrease was much lower than expected at both sites. While uncertainty remains, a comparison of current understanding suggests that the two sites have common, but also different mechanisms controlling plume persistence. At the Hanford 300 A, the persistent source is adsorbed U(VI) in the vadose zone that is released to the aquifer during spring water table excursions. The release of U(VI) from the vadose zone and its transport within the oxic, coarse-textured aquifer sediments is dominated by kinetically-limited surface complexation. Modeling implies that annual plume discharge volumes to the Columbia River are small (< one pore volume). At the Rifle site, slow oxidation of naturally reduced, contaminant U(IV) in the saturated zone and a continuous influx of U(VI) from natural, up-gradient sources influence plume persistence. Rate-limited mass transfer and surface complexation also control U(VI) migration velocity in the sub-oxic Rifle groundwater. Flux of U(VI) from the vadose zone at the Rifle site may be locally important, but it is not the dominant process that sustains the plume. A wide range in microbiologic functional diversity exists at both sites. Strains of Geobacter and other metal reducing bacteria are present at low natural abundance that are capable of enzymatic U(VI) reduction in localized zones of accumulated detrital organic carbon or after organic carbon amendment. Major differences between

  1. Thyroid ultrasound abnormalities in persons exposed during childhood to 131I from the Hanford nuclear site.

    PubMed

    Kopecky, Kenneth J; Onstad, Lynn; Hamilton, Thomas E; Davis, Scott

    2005-06-01

    Approximately 740,000 Ci of 131I were released into the atmosphere from the Hanford Nuclear Site in Washington State during 1944-1957. The Hanford Thyroid Disease Study (HTDS), conducted to determine if thyroid disease is increased among persons exposed as children to that 131I, also investigated whether thyroid ultrasound (US) abnormalities might be increased. The HTDS cohort (n = 5199) was selected from 1940-1946 births to mothers with usual residence in seven Washington counties. Of these, 4350 were located alive, 3447 attended HTDS clinics (1992-1997), and 3440 (1747 females) had evaluable clinical results and sufficient data to characterize their Hanford 131I exposures. US abnormalities were observed in 55.5% of women and 37.4% of men. Thyroid radiation doses from Hanford 131I, which could be estimated for 3191 evaluable participants, ranged from 0.0029 to 2823 mGy (mean, 174 mGy). Estimated dose was not significantly associated with the prevalence of any US abnormality (p = 0.21), US nodules with maximum dimension 5 mm or more (p = 0.64), or average number of US nodules per person (p = 0.80 for nodules with maximum dimension 5 mm or more). These results remained unchanged after accounting for factors that might confound or modify dose-response relationships and for uncertainty of the dose estimates. This study does not support the hypothesis that 131I exposure at Hanford's dose levels and dose rates during infancy and childhood increases the prevalence of adult thyroid US abnormalities.

  2. Recharge at the Hanford Site: Status report

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Gee, G.W.

    A variety of field programs designed to evaluate recharge and other water balance components including precipitation, infiltration, evaporation, and water storage changes, have been carried out at the Hanford Site since 1970. Data from these programs have indicated that a wide range of recharge rates can occur depending upon specific site conditions. Present evidence suggests that minimum recharge occurs where soils are fine-textured and surfaces are vegetated with deep-rooted plants. Maximum recharge occurs where coarse soils or gravels exist at the surface and soils are kept bare. Recharge can occur in areas where shallow-rooted plants dominate the surface, particularly wheremore » soils are coarse-textured. Recharge estimates have been made for the site using simulation models. A US Geological Survey model that attempts to account for climate variability, soil storage parameters, and plant factors has calculated recharge values ranging from near zero to an average of about 1 cm/yr for the Hanford Site. UNSAT-H, a deterministic model developed for the site, appears to be the best code available for estimating recharge on a site-specific basis. Appendix I contains precipitation data from January 1979 to June 1987. 42 refs., 11 figs., 11 tabs.« less

  3. Scale-Up Information for Gas-Phase Ammonia Treatment of Uranium in the Vadose Zone at the Hanford Site Central Plateau

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Truex, Michael J.; Szecsody, James E.; Zhong, Lirong

    Uranium is present in the vadose zone at the Hanford Central Plateau and is of concern for protection of groundwater. The Deep Vadose Zone Treatability Test Plan for the Hanford Central Plateau identified gas-phase treatment and geochemical manipulation as potentially effective treatment approaches for uranium and technetium in the Hanford Central Plateau vadose zone. Based on laboratory evaluation, use of ammonia vapor was selected as the most promising uranium treatment candidate for further development and field testing. While laboratory tests have shown that ammonia treatment effectively reduces the mobility of uranium, additional information is needed to enable deployment of thismore » technology for remediation. Of importance for field applications are aspects of the technology associated with effective distribution of ammonia to a targeted treatment zone, understanding the fate of injected ammonia and its impact on subsurface conditions, and identifying effective monitoring approaches. In addition, information is needed to select equipment and operational parameters for a field design. As part of development efforts for the ammonia technology for remediation of vadose zone uranium contamination, field scale-up issues were identified and have been addressed through a series of laboratory and modeling efforts. This report presents a conceptual description for field application of the ammonia treatment process, engineering calculations to support treatment design, ammonia transport information, field application monitoring approaches, and a discussion of processes affecting the fate of ammonia in the subsurface. The report compiles this information from previous publications and from recent research and development activities. The intent of this report is to provide technical information about these scale-up elements to support the design and operation of a field test for the ammonia treatment technology.« less

  4. Risk perception, future land use and stewardship: comparison of attitudes about Hanford Site and Idaho National Engineering and Environmental Laboratory.

    PubMed

    Burger, J; Sanchez, J; Roush, D; Gochfeld, M

    2001-04-01

    With the ending of the Cold War, the Department of Energy (DOE) is evaluating mission, future land use and stewardship of departmental facilities. This paper compares the environmental concerns and future use preferences of 351 people interviewed at Lewiston, Idaho, about the Hanford Site and Idaho National Engineering and Environmental Laboratory (INEEL), two of DOE's largest sites. Although most subjects lived closer to Hanford than INEEL, most resided in the same state as INEEL. Therefore their economic interests might be more closely allied with INEEL, while their health concerns might be more related to Hanford. Few lived close enough to either site to be directly affected economically. We test the null hypotheses that there are no differences in environmental concerns and future land-use preferences as a function of DOE site, sex, age and education. When asked to list their major concerns about the sites, more people listed human health and safety, and environmental concerns about Hanford compared to INEEL. When asked to list their preferred future land uses, 49% of subjects did not have any for INEEL, whereas only 35% did not know for Hanford. The highest preferred land uses for both sites were as a National Environmental Research Park (NERP), and for camping, hunting, hiking, and fishing. Except for returning the land to the tribes and increased nuclear storage, subjects rated all future uses as more preferred at INEEL than Hanford. Taken together, these data suggest that the people interviewed know more about Hanford, are more concerned about Hanford, rate recreational uses and NERP as their highest preferred land use, and feel that INEEL is more suited for most land uses than Handford. Overall rankings for future land uses were remarkably similar between the sites, indicating that for these stakeholders, DOE lands should be preserved for research and recreation. These preferences should be taken into account when planning for long-term stewardship at

  5. Ecotoxicity and risk to human fish consumers of polychlorinated biphenyls in fish near the Hanford Site (USA).

    PubMed

    Delistraty, Damon

    2013-02-15

    The purpose of this study was to quantify three groups of polychlorinated biphenyl (PCB) congeners (i.e., dioxin-like toxic equivalents [TEQ], non-dioxin-like PCBs, total PCBs) in fish in several species, tissues, and locations in the Columbia River near the Hanford Site. For TEQ and total PCBs, fish ecotoxicity and risk to human fish consumers were also evaluated. Non-dioxin-like PCBs were not assessed for toxicity, due to lack of available benchmarks. In sturgeon liver, TEQ was significantly higher (P<0.05) within the Hanford Site study areas, relative to upriver. However, this same spatial relationship in sturgeon liver did not attain statistical significance for non-dioxin-like PCBs and total PCBs. Non-dioxin-like PCBs and total PCBs were significantly higher (P<0.05) in whitefish fillet than in other species (except carp) and significantly higher (P<0.05) in carp fillet, relative to bass. All PCB residues in carcass were significantly elevated (P<0.005) in comparison to fillet. In addition to PCB source, many factors (e.g., dietary composition, tissue lipid content, fish mobility and home range, age, toxicokinetic processes, seasonal adaptations) influence patterns in PCB bioaccumulation across species, tissues, and locations. TEQ and total PCB residues in liver, fillet, and carcass, observed in this study, were below corresponding no effect residues for TEQ and Aroclors in the literature for fish survival, growth, and reproduction. In contrast, TEQ and total PCBs in fillet in this study exceeded USEPA tissue screening levels for cancer (1E-6 risk) and noncancer (hazard quotient [HQ]=1) toxicity for human fish consumers. Key uncertainties in these comparisons to assess toxicity relate to variation in fish species sensitivity to PCBs and use of Aroclor data in the literature to represent total PCBs. Copyright © 2012 Elsevier B.V. All rights reserved.

  6. Freedom Space for Rivers: A Sustainable Management Approach to Enhance River Resilience

    NASA Astrophysics Data System (ADS)

    Biron, Pascale M.; Buffin-Bélanger, Thomas; Larocque, Marie; Choné, Guénolé; Cloutier, Claude-André; Ouellet, Marie-Audray; Demers, Sylvio; Olsen, Taylor; Desjarlais, Claude; Eyquem, Joanna

    2014-11-01

    River systems are increasingly under stress and pressure from agriculture and urbanization in riparian zones, resulting in frequent engineering interventions such as bank stabilization or flood protection. This study provides guidelines for a more sustainable approach to river management based on hydrogeomorphology concepts applied to three contrasted rivers in Quebec (Canada). Mobility and flooding spaces are determined for the three rivers, and three levels of "freedom space" are subsequently defined based on the combination of the two spaces. The first level of freedom space includes very frequently flooded and highly mobile zones over the next 50 years, as well as riparian wetlands. It provides the minimum space for both fluvial and ecological functionality of the river system. On average for the three studied sites, this minimum space was approximately 1.7 times the channel width, but this minimum space corresponds to a highly variable width which must be determined from a thorough hydrogeomorphic assessment and cannot be predicted using a representative average. The second level includes space for floods of larger magnitude and provides for meanders to migrate freely over a longer time period. The last level of freedom space represents exceptional flood zones. We propose the freedom space concept to be implemented in current river management legislation because it promotes a sustainable way to manage river systems, and it increases their resilience to climate and land use changes in comparison with traditional river management approaches which are based on frequent and spatially restricted interventions.

  7. 77 FR 28368 - Environmental Management Site-Specific Advisory Board, Hanford

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-05-14

    ...This notice announces a meeting of the Environmental Management Site-Specific Advisory Board (EM SSAB), Hanford. The Federal Advisory Committee Act (Pub. L. 92-463, 86 Stat. 770) requires that public notice of this meeting be announced in the Federal Register.

  8. 77 FR 2713 - Environmental Management Site-Specific Advisory Board, Hanford

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-01-19

    ...This notice announces a meeting of the Environmental Management Site-Specific Advisory Board (EM SSAB), Hanford. The Federal Advisory Committee Act (Pub. L. 92-463, 86 Stat. 770) requires that public notice of this meeting be announced in the Federal Register.

  9. 78 FR 4139 - Environmental Management Site-Specific Advisory Board, Hanford

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-01-18

    ...This notice announces a meeting of the Environmental Management Site-Specific Advisory Board (EM SSAB), Hanford. The Federal Advisory Committee Act (Pub. L. 92-463, 86 Stat. 770) requires that public notice of this meeting be announced in the Federal Register.

  10. 78 FR 49738 - Environmental Management Site-Specific Advisory Board, Hanford

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-08-15

    ...This notice announces a meeting of the Environmental Management Site-Specific Advisory Board (EM SSAB), Hanford. The Federal Advisory Committee Act (Pub. L. 92-463, 86 Stat. 770) requires that public notice of this meeting be announced in the Federal Register.

  11. 78 FR 28207 - Environmental Management Site-Specific Advisory Board, Hanford

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-05-14

    ...This notice announces a meeting of the Environmental Management Site-Specific Advisory Board (EM SSAB), Hanford. The Federal Advisory Committee Act (Pub. L. 92-463, 86 Stat. 770) requires that public notice of this meeting be announced in the Federal Register.

  12. Geocode of River Networks in Global Plateaus

    NASA Astrophysics Data System (ADS)

    Ni, J.; Wang, Y.; Wang, T.

    2017-12-01

    As typical hierarchical systems, river networks are of great significance to aquatic organisms and its diversity. Different aspects of river networks have been investigated in previous studies such as network structure, formation cause, material transport, nutrient cycle and habitat variation. Nevertheless, river networks function as biological habitat is far from satisfactory in plateau areas. This paper presents a hierarchical method for habitat characterization of plateau river networks with the geocode extracted from abiotic factors including historical geologic period, climate zone, water source and geomorphic process at different spatial scales. As results, characteristics of biological response with vertical differentiation within typical plateau river networks are elucidated. Altitude, climate and landform are of great influence to habitat and thereby structure of aquatic community, while diverse water source and exogenic action would influence biological abundance or spatiotemporal distribution. Case studies are made in the main stream of the Yellow River and the Yangtze River, respectively extended to the river source to Qinghai-Tibet Plateau, which demonstrate high potentials for decision making support to river protection, ecological rehabilitation and sustainable management of river ecosystems.

  13. Quantifying Km-scale Hydrological Exchange Flows under Dynamic Flows and Their Influences on River Corridor Biogeochemistry

    NASA Astrophysics Data System (ADS)

    Chen, X.; Song, X.; Shuai, P.; Hammond, G. E.; Ren, H.; Zachara, J. M.

    2017-12-01

    Hydrologic exchange flows (HEFs) in rivers play vital roles in watershed ecological and biogeochemical functions due to their strong capacity to attenuate contaminants and process significant quantities of carbon and nutrients. While most of existing HEF studies focus on headwater systems with the assumption of steady-state flow, there is lack of understanding of large-scale HEFs in high-order regulated rivers that experience high-frequency stage fluctuations. The large variability of HEFs is a result of interactions between spatial heterogeneity in hydrogeologic properties and temporal variation in river discharge induced by natural or anthropogenic perturbations. Our 9-year spatially distributed dataset (water elevation, specific conductance, and temperature) combined with mechanistic hydrobiogeochemical simulations have revealed complex spatial and temporal dynamics in km-scale HEFs and their significant impacts on contaminant plume mobility and hyporheic biogeochemical processes along the Hanford Reach. Extended multidirectional flow behaviors of unconfined, river corridor groundwater were observed hundreds of meters inland from the river shore resulting from discharge-dependent HEFs. An appropriately sized modeling domain to capture the impact of regional groundwater flow as well as knowledge of subsurface structures controlling intra-aquifer hydrologic connectivity were essential to realistically model transient storage in this large-scale river corridor. This work showed that both river water and mobile groundwater contaminants could serve as effective tracers of HEFs, thus providing valuable information for evaluating and validating the HEF models. Multimodal residence time distributions with long tails were resulted from the mixture of long and short exchange pathways, which consequently impact the carbon and nutrient cycling within the river corridor. Improved understanding of HEFs using integrated observational and modeling approaches sheds light on

  14. Water resources protection today: end-of-pipe technology and cleaner production. Case study of the Czech Odra River watershed.

    PubMed

    Chour, V

    2001-01-01

    This paper reports on integrated watershed-based protection and sustainable use of water resources to increase the effectiveness of water pollution abatement. The approach includes improvements in end-of-pipe waste-water treatment technologies and implementation of Cleaner Production (CP) principles and policies within the watershed. An example of the general effectiveness of this approach is illustrated by the Czech Odra River Cleaner Production Project where reductions in pollution were achieved with improved industrial production. The CP theme is worth considering as an important challenge for the IWA.

  15. Conceptual Model of Iodine Behavior in the Subsurface at the Hanford Site

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Truex, Michael J.; Lee, Brady D.; Johnson, Christian D.

    Isotopes of iodine were generated during plutonium production within the nine production reactors at the U.S. Department of Energy Hanford Site. The short half-life 131I that was released from the fuel into the atmosphere during the dissolution process (when the fuel was dissolved) in the Hanford Site 200 Area is no longer present at concentrations of concern in the environment. The long half-life 129I generated at the Hanford Site during reactor operations was (1) stored in single-shell and double-shell tanks, (2) discharged to liquid disposal sites (e.g., cribs and trenches), (3) released to the atmosphere during fuel reprocessing operations, ormore » (4) captured by off-gas absorbent devices (silver reactors) at chemical separations plants (PUREX, B-Plant, T-Plant, and REDOX). Releases of 129I to the subsurface have resulted in several large, though dilute, plumes in the groundwater. There is also 129I remaining in the vadose zone beneath disposal or leak locations. The fate and transport of 129I in the environment and potential remediation technologies are currently being studied as part of environmental remediation activities at the Hanford Site. A conceptual model describing the nature and extent of subsurface contamination, factors that control plume behavior, and factors relevant to potential remediation processes is needed to support environmental remedy decisions. Because 129I is an uncommon contaminant, relevant remediation experience and scientific literature are limited. In addition, its behavior in subsurface is different from that of other more common and important contaminants (e.g., U, Cr and Tc) in terms of sorption (adsorption and precipitation), and aqueous phase species transformation via redox reactions. Thus, the conceptual model also needs to both describe known contaminant and biogeochemical process information and identify aspects about which additional information is needed to effectively support remedy decisions.« less

  16. A fish survey of the White River, Nevada

    USGS Publications Warehouse

    Scoppettone, G. Gary; Rissler, Peter H.; Shea, Sean

    2004-01-01

    In spring and summer 1991 and 1992, we surveyed fishes of the White River system, Nye and White Pine Counties, Nevada, to determine the status of natives. There are 5 known native fishes to the White River: Lepidomeda albivallis (White River spinedace), Crenichthys baileyi albivallis (Preston White River springfish), Crenichthys baileyi thermophilus (Moorman White River springfish), Catostomus clarki intermedius (White River desert sucker), and Rhinichthys osculus ssp. (White River speckled dace). All 5 had declined in range. Lepidomeda albivallis had experienced the greatest decline, with less than 50 remaining, and these were restricted to a 70-m stream reach. Rhinichthys osculus spp. was most widespread, found in 18 spring systems. Cottus bairdi (mottled sculpin) was collected for the 1st time from the White River system, where it was probably native. Protective measures should be implemented to conserve all native White River fishes to include C. bairdi.

  17. The apparent solubility of aluminum (III) in Hanford high-level waste

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Reynolds, Jacob G.

    2012-12-01

    The solubility of aluminum in Hanford nuclear waste impacts on the process ability of the waste by a number of proposed treatment options. For many years, Hanford staff has anecdotally noted that aluminum appears to be considerably more soluble in Hanford waste than the simpler electrolyte solutions used as analogues. There has been minimal scientific study to confirm these anecdotal observations, however. The present study determines the apparent solubility product for gibbsite in 50 tank samples. The ratio of hydroxide to aluminum in the liquid phase for the samples is calculated and plotted as a function of total sodium molarity.more » Total sodium molarity is used as a surrogate for ionic strength, because the relative ratios of mono, di and trivalent anions are not available for all of the samples. These results were compared to the simple NaOH-NaAl(OH{sub 4})H{sub 2}O system, and the NaOH-NaAl(OH{sub 4})NaCl-H{sub 2}O system data retrieved from the literature. The results show that gibbsite is apparently more soluble in the samples than in the simple systems whenever the sodium molarity is greater than two. This apparent enhanced solubility cannot be explained solely by differences in ionic strength. The change in solubility with ionic strength in simple systems is small compared to the difference between aluminum solubility in Hanford waste and the simple systems. The reason for the apparent enhanced solubility is unknown, but could include. kinetic or thermodynamic factors that are not present in the simple electrolyte systems. Any kinetic explanation would have to explain why the samples are always supersaturated whenever the sodium molarity is above two. Real waste characterization data should not be used to validate thermodynamic solubility models until it can be confirmed that the apparent enhanced gibbsite solubility is a thermodynamic effect and not a kinetic effect.« less

  18. 77 FR 64112 - Environmental Management Site-Specific Advisory Board, Hanford

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-10-18

    ...This notice announces a meeting of the Environmental Management Site-Specific Advisory Board (EM SSAB), Hanford. The Federal Advisory Committee Act (Pub. L. No. 92-463, 86 Stat. 770) requires that public notice of this meeting be announced in the Federal Register.

  19. Physiological development and migratory behavior of subyearling fall chinook salmon in the Columbia River

    USGS Publications Warehouse

    Tiffan, K.F.; Rondorf, D.W.; Wagner, P.G.

    2000-01-01

    We describe the migratory behavior and physiological development of subyearling fall chinook salmon Oncorhynchus tshawytscha migrating through John Day Reservoir on the Columbia River, Washington and Oregon. Fish were freeze-branded and coded-wire-tagged at McNary Dam, Oregon, from 1991 to 1994, to determine travel time to John Day Dam and subsequent adult contribution. Stepwise multiple regression showed that 47% of the variation in subyearling fall chinook salmon travel time was explained by the reciprocal of minimum flow and fish size. Smoltification, as measured by gill Na+-K+ adenosine triphosphatase (ATPase) activity, was not important in explaining variability in travel time of subyearling chinook salmon. Fish marked early in the out-migration generally traveled faster than middle and late migrants. Seawater challenges were used to describe physiological development and showed that osmoregulatory competence of premigrants in the Hanford Reach of the Columbia River increased with fish size and gill ATPase activity. Once active migrants began passing McNary Dam, fish generally had survival exceeding 90% and were able to regulate their blood plasma Na+ in seawater. Gill ATPase activity increased as premigrants, reared in nearshore areas of the Hanford Reach, reached a peak among active migrants in late June and early July then decreased through the remainder of the out-migration. Salinity preference also peaked in subyearling fall chinook salmon during late June to mid July in 1995. Return of adults from marked groups showed no consistent patterns that would suggest a survival advantage for any portion of the juvenile out-migration. Presumed wild migrants from the middle and late portions of the out-migration were primary contributors to all fisheries, except the Priest Rapids Hatchery. As such, fishery managers should take action to ensure the survival of these fish, especially because they migrate under more unfavorable environmental conditions than early

  20. Commercial milk distribution profiles and production locations. Hanford Environmental Dose Reconstruction Project

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Deonigi, D.E.; Anderson, D.M.; Wilfert, G.L.

    1994-04-01

    The Hanford Environmental Dose Reconstruction (HEDR) Project was established to estimate radiation doses that people could have received from nuclear operations at the Hanford Site since 1944. For this period iodine-131 is the most important offsite contributor to radiation doses from Hanford operations. Consumption of milk from cows that ate vegetation contaminated by iodine-131 is the dominant radiation pathway for individuals who drank milk (Napier 1992). Information has been developed on commercial milk cow locations and commercial milk distribution during 1945 and 1951. The year 1945 was selected because during 1945 the largest amount of iodine-131 was released from Hanfordmore » facilities in a calendar year (Heeb 1993); therefore, 1945 was the year in which an individual was likely to have received the highest dose. The year 1951 was selected to provide data for comparing the changes that occurred in commercial milk flows (i.e., sources, processing locations, and market areas) between World War II and the post-war period. To estimate the doses people could have received from this milk flow, it is necessary to estimate the amount of milk people consumed, the source of the milk, the specific feeding regime used for milk cows, and the amount of iodine-131 contamination deposited on feed.« less

  1. Evaluation of the Hanford 200 West Groundwater Treatment System: Fluidized Bed Bioreactor

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Looney, Brian B.; Jackson, Dennis G.; Dickson, John O.

    A fluidized bed reactor (FBR) in the 200W water treatment facility at Hanford is removing nitrate from groundwater as part of the overall pump-treat-reinject process. Control of the FBR bed solids has proven challenging, impacting equipment, increasing operations and maintenance (O&M), and limiting the throughput of the facility. In response to the operational challenges, the Department of Energy Richland Office (DOE-RL) commissioned a technical assistance team to facilitate a system engineering evaluation and provide focused support recommendations to the Hanford Team. The DOE Environmental Management (EM) technical assistance process is structured to identify and triage technologies and strategies that addressmore » the target problem(s). The process encourages brainstorming and dialog and allows rapid identification and prioritization of possible options. Recognizing that continuous operation of a large-scale FBR is complex, requiring careful attention to system monitoring data and changing conditions, the technical assistance process focused on explicit identification of the available control parameters (“knobs”), how these parameters interact and impact the FBR system, and how these can be adjusted under different scenarios to achieve operational goals. The technical assistance triage process was performed in collaboration with the Hanford team.« less

  2. 1995 annual epidemiologic surveillance report for Hanford Site

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    NONE

    1995-12-31

    The US Department of Energy`s (DOE) commitment to assuring the health and safety of its workers includes the conduct of epidemiologic surveillance activities that provide an early warning system for health problems among workers. A number of DOE sites participate in the Epidemiologic Surveillance Program. This program monitors illnesses and health conditions that result in an absence of five or more consecutive workdays, occupational injuries and illnesses, disabilities and deaths among current workers. This report provides a summary of epidemiologic surveillance data collected from the Hanford Site from January 1, 1995 through December 31, 1995. The data were collected bymore » a coordinator at Hanford and submitted to the Epidemiologic Surveillance Data Center, located at Oak Ridge Institute for Science and Education, where quality control procedures and data analyses were carried out. The information in the main body of the report provides a descriptive analysis of the data collected from the site, and the appendices provides additional detail. The report also contains an expanded Glossary and an Explanation of Diagnostic Categories which gives examples of health conditions in each of the diagnostic categories.« less

  3. Hydrology of the Po River: looking for changing patterns in river discharge

    NASA Astrophysics Data System (ADS)

    Montanari, A.

    2012-05-01

    Scientists and public administrators are devoting increasing attention to the Po River, in Italy, in view of concerns related to the impact of increasing urbanisation and exploitation of water resources. A better understanding of the hydrological regime of the river is necessary to improve water resources management and flood protection. In particular, the analysis of the effects of hydrological and climatic change is crucial for planning sustainable development and economic growth. An extremely interesting issue is to inspect to what extent river flows can be naturally affected by the occurrence of long periods of water abundance or scarcity, which can be erroneously interpreted as irreversible changes due to human impact. In fact, drought and flood periods alternatively occurred in the recent past in the form of long term cycles. This paper presents advanced graphical and analytical methods to gain a better understanding of the temporal distribution of the Po River discharge. In particular, we present an analysis of river flow variability and memory properties to better understand natural patterns and in particular long term changes, which may affect the future flood risk and availability of water resources.

  4. Distribution of microbial biomass and potential for anaerobic respiration in Hanford Site 300 Area subsurface sediment.

    PubMed

    Lin, Xueju; Kennedy, David; Peacock, Aaron; McKinley, James; Resch, Charles T; Fredrickson, James; Konopka, Allan

    2012-02-01

    Subsurface sediments were recovered from a 52-m-deep borehole cored in the 300 Area of the Hanford Site in southeastern Washington State to assess the potential for biogeochemical transformation of radionuclide contaminants. Microbial analyses were made on 17 sediment samples traversing multiple geological units: the oxic coarse-grained Hanford formation (9 to 17.4 m), the oxic fine-grained upper Ringold formation (17.7 to 18.1 m), and the reduced Ringold formation (18.3 to 52 m). Microbial biomass (measured as phospholipid fatty acids) ranged from 7 to 974 pmols per g in discrete samples, with the highest numbers found in the Hanford formation. On average, strata below 17.4 m had 13-fold less biomass than those from shallower strata. The nosZ gene that encodes nitrous oxide reductase (measured by quantitative real-time PCR) had an abundance of 5 to 17 relative to that of total 16S rRNA genes below 18.3 m and <5 above 18.1 m. Most nosZ sequences were affiliated with Ochrobactrum anthropi (97 sequence similarity) or had a nearest neighbor of Achromobacter xylosoxidans (90 similarity). Passive multilevel sampling of groundwater geochemistry demonstrated a redox gradient in the 1.5-m region between the Hanford-Ringold formation contact and the Ringold oxic-anoxic interface. Within this zone, copies of the dsrA gene and Geobacteraceae had the highest relative abundance. The majority of dsrA genes detected near the interface were related to Desulfotomaculum spp. These analyses indicate that the region just below the contact between the Hanford and Ringold formations is a zone of active biogeochemical redox cycling.

  5. Distribution of Microbial Biomass and Potential for Anaerobic Respiration in Hanford Site 300 Area Subsurface Sediment

    PubMed Central

    Lin, Xueju; Kennedy, David; Peacock, Aaron; McKinley, James; Resch, Charles T.; Fredrickson, James

    2012-01-01

    Subsurface sediments were recovered from a 52-m-deep borehole cored in the 300 Area of the Hanford Site in southeastern Washington State to assess the potential for biogeochemical transformation of radionuclide contaminants. Microbial analyses were made on 17 sediment samples traversing multiple geological units: the oxic coarse-grained Hanford formation (9 to 17.4 m), the oxic fine-grained upper Ringold formation (17.7 to 18.1 m), and the reduced Ringold formation (18.3 to 52 m). Microbial biomass (measured as phospholipid fatty acids) ranged from 7 to 974 pmols per g in discrete samples, with the highest numbers found in the Hanford formation. On average, strata below 17.4 m had 13-fold less biomass than those from shallower strata. The nosZ gene that encodes nitrous oxide reductase (measured by quantitative real-time PCR) had an abundance of 5 to 17 relative to that of total 16S rRNA genes below 18.3 m and <5 above 18.1 m. Most nosZ sequences were affiliated with Ochrobactrum anthropi (97 sequence similarity) or had a nearest neighbor of Achromobacter xylosoxidans (90 similarity). Passive multilevel sampling of groundwater geochemistry demonstrated a redox gradient in the 1.5-m region between the Hanford-Ringold formation contact and the Ringold oxic-anoxic interface. Within this zone, copies of the dsrA gene and Geobacteraceae had the highest relative abundance. The majority of dsrA genes detected near the interface were related to Desulfotomaculum spp. These analyses indicate that the region just below the contact between the Hanford and Ringold formations is a zone of active biogeochemical redox cycling. PMID:22138990

  6. ENVIRONMENTAL MONITORING AND ASSESSMENT OF A GREAT RIVER ECOSYSTEM: THE UPPER MISSOURI RIVER PILOT

    EPA Science Inventory

    The Great River Ecosystems (GREs) are extensively modified physically, hydrologically, and chemically and are not receiving adequate protection to prevent further habitat degradation and loss of biotic integrity. In the United States, ecological monitoring and assessment of the G...

  7. 75 FR 27999 - Environmental Management Site-Specific Advisory Board, Hanford

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-05-19

    ...: Red Lion Hotel Hanford House, 802 George Washington Way, Richland, WA 99352. FOR FURTHER INFORMATION...; and Budgets and Contracts Committee Beryllium update CERCLA 5-year review scoping update Lifecycle... [cir] TPA proposed change packages (M-15, M-91) [cir] 2012 Budget Request Board Business Public...

  8. Effectiveness of streambank-stabilization techniques along the Kenai River, Alaska

    USGS Publications Warehouse

    Dorava, Joseph M.

    1999-01-01

    The Kenai River in southcentral Alaska is the State's most popular sport fishery and an economically important salmon river that generates as much as $70 million annually. Boatwake-induced streambank erosion and the associated damage to riparian and riverine habitat present a potential threat to this fishery. Bank-stabilization techniques commonly in use along the Kenai River were selected for evaluation of their effectiveness at attenuating boatwakes and retarding streambank erosion. Spruce trees cabled to the bank and biodegradable man-made logs (called 'bio-logs') pinned to the bank were tested because they are commonly used techniques along the river. These two techniques were compared for their ability to reduce wake heights that strike the bank and to reduce erosion of bank material, as well as for the amount and quality of habitat they provide for juvenile chinook salmon. Additionally, an engineered bank-stabilization project was evaluated because this method of bank protection is being encouraged by managers of the river. During a test that included 20 controlled boat passes, the spruce trees and the bio-log provided a similar reduction in boatwake height and bank erosion; however, the spruce trees provided a greater amount of protective habitat than the bio-log. The engineered bank-stabilization project eroded less during nine boat passes and provided more protective cover than the adjacent unprotected natural bank. Features of the bank-stabilization techniques, such as tree limbs and willow plantings that extended into the water from the bank, attenuated the boatwakes, which helped reduce erosion. These features also provided protective cover to juvenile salmon.

  9. In Situ Quantification of [Re(CO)3]+ by Fluorescence Spectroscopy in Simulated Hanford Tank Waste.

    PubMed

    Branch, Shirmir D; French, Amanda D; Lines, Amanda M; Rapko, Brian M; Heineman, William R; Bryan, Samuel A

    2018-02-06

    A pretreatment protocol is presented that allows for the quantitative conversion and subsequent in situ spectroscopic analysis of [Re(CO) 3 ] + species in simulated Hanford tank waste. In this test case, the nonradioactive metal rhenium is substituted for technetium (Tc-99), a weak beta emitter, to demonstrate proof of concept for a method to measure a nonpertechnetate form of technetium in Hanford tank waste. The protocol encompasses adding a simulated waste sample containing the nonemissive [Re(CO) 3 ] + species to a developer solution that enables the rapid, quantitative conversion of the nonemissive species to a luminescent species which can then be detected spectroscopically. The [Re(CO) 3 ] + species concentration in an alkaline, simulated Hanford tank waste supernatant can be quantified by the standard addition method. In a test case, the [Re(CO) 3 ] + species was measured to be at a concentration of 38.9 μM, which was a difference of 2.01% from the actual concentration of 39.7 μM.

  10. Unit 3, upstream from footbridge Johnstown Local Flood Protection ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    Unit 3, upstream from footbridge - Johnstown Local Flood Protection Project, Beginning on Conemaugh River approx 3.8 miles downstream from confluence of Little Conemaugh & Stony Creek Rivers at Johnstown, Johnstown, Cambria County, PA

  11. Chromium Isotopic Monitoring of HRC-Stimulated Bio-containment at the 100H Test Site, Hanford, Washington

    NASA Astrophysics Data System (ADS)

    Christensen, J. N.; Brown, S. T.; Brodie, E. L.; Chakraborty, R.; Conrad, M. E.; Long, P. E.; Faybishenko, B.; Hazen, T. C.

    2007-12-01

    Hexavalent Cr (Cr(VI)) groundwater contamination is a common problem in the U.S. associated with industrial activity (e.g. electroplating, tanning, paints, anti-corrosion). In the particular case of the Hanford Site, Washington, chromate was used primarily to inhibit corrosion in nuclear reactor cooling systems. During the active operation of the Hanford Site, disposal of waste water bearing chromate, and accidental releases to the vadose zone resulted in significant groundwater contamination with local concentrations near the Columbia river reaching over 1000 ppb Cr(VI). In an effort to test an effective bio-containment strategy for groundwater Cr(VI), a site was selected between the 100D and 100H reactor areas with modest concentrations (~100 ppb Cr(VI) over the past two decades). A slow-release 13C labeled polylactate amendment (HRCTM, Regenesis, Ltd.) was injected into groundwater within a sandy formation to stimulate bacterial activity in order to produce conditions that promote the reduction of dissolved Cr(VI) to insoluble Cr(III) complexes [1]. Since the injection of HRCTM in August 2004, groundwater Cr(VI) concentration has been locally below 1 ppb, and reducing conditions have been maintained to at least the present time. The isotopic composition of Cr can be fractionated during reduction from Cr(VI) to Cr(III) and so has the potential to be used as a monitor of hexavalent Cr reduction [2, 3]. This would provide a direct signature of Cr(VI) reduction, discernable from simple attenuation by dilution. In order to explore the use of Cr isotopic measurements for evaluating processes of Cr(VI) reduction, we have analyzed a series of samples in space and time for Cr isotopic composition (δ53Cr, permil deviation of sample 53Cr/52Cr from that of SRM970). Groundwater samples came from the HRC injection well, from multiple depths of three down-gradient wells, and from an up-gradient well. Samples from down-gradient wells have Cr that is isotopically fractionated

  12. PCB concentrations in Pere Marquette River and Muskegon River watersheds, 2002

    USGS Publications Warehouse

    Fogarty, Lisa R.

    2005-01-01

    the child. Rule 323.1057 (Toxic Substances) of the Part 4. Water Quality Standards gives procedure for calculating water-quality values to protect human, wildlife and aquatic life. For total PCB, the applicable Rule 57 water-quality value is the human cancer value (HCV=0.26 ng/L),In 2002, U. S. Geological Survey (USGS) and Michigan Department of Environmental Quality (MDEQ) cooperatively planned and executed a monitoring program for PCBs in water and sediment from the Pere Marquette River and Muskegon River watersheds. The Pere Marquette and Muskegon River are in the west central part of Michigan's Lower Peninsula (fig. 1). The Pere Marquette River watershed is about 750 square miles, and the Muskegon River is about 2700 square miles. Both rivers are popular recreational waters, and the Pere Marquette River is a Michigan designated Natural River (Part 305 of the Natural Rivers and Environmental Protection Act 451 of 1994).

  13. Incorporating Climate Change Predictions into Watershed Restoration and Protection Strategies (WRAPS) in the Upper Mississippi River Basin

    NASA Astrophysics Data System (ADS)

    Burke, M. P.; Foreman, C. S.

    2014-12-01

    Development of the Watershed Restoration and Protection Strategies (WRAPS) for the Pine and Leech Lake River Watersheds is underway in Minnesota. Project partners participating in this effort include the Minnesota Pollution Control Agency (MPCA), Crow Wing Soil and Water Conservation District (SWCD), Cass County, and other local partners. These watersheds are located in the Northern Lakes and Forest ecoregion of Minnesota and drain to the Upper Mississippi River. To support the Pine and Leech Lake River WRAPS, watershed-scale hydrologic and water-quality models were developed with Hydrological Simulation Program-FORTRAN (HSPF). The HSPF model applications simulate hydrology (discharge, stage), as well as a number of water quality constituents (sediment, temperature, organic and inorganic nitrogen, total ammonia, organic and inorganic phosphorus, dissolved oxygen and biochemical oxygen demand, and algae) continuously for the period 1995-2009 and provide predictions at points of interest within the watersheds, such as observation gages, management boundaries, compliance points, and impaired water body endpoints. The model applications were used to evaluate phosphorus loads to surface waters under resource management scenarios, which were based on water quality threats that were identified at stakeholder meetings. Simulations of land use changes including conversion of forests to agriculture, shoreline development, and full build-out of cities show a watershed-wide phosphorus increases of up to 80%. The retention of 1.1 inches of runoff from impervious surfaces was not enough to mitigate the projected phosphorus load increases. Changes in precipitation projected by climate change models led to a 20% increase in annual watershed phosphorus loads. The scenario results will inform the implementation strategies selected for the WRAPS.

  14. Chemical composition of Hanford Tank SY-102

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Birnbaum, E.; Agnew, S.; Jarvinen, G.

    1993-12-01

    The US Department of Energy established the Tank Waste Remediation System (TWRS) to safely manage and dispose of the radioactive waste, both current and future, stored in double-shell and single-shell tanks at the Hanford sites. One major program element in TWRS is pretreatment which was established to process the waste prior to disposal using the Hanford Waste Vitrification Plant. In support of this program, Los Alamos National Laboratory has developed a conceptual process flow sheet which will remediate the entire contents of a selected double-shelled underground waste tank, including supernatant and sludge, into forms that allow storage and final disposalmore » in a safe, cost-effective and environmentally sound manner. The specific tank selected for remediation is 241-SY-102 located in the 200 West Area. As part of the flow sheet development effort, the composition of the tank was defined and documented. This database was built by examining the history of liquid waste transfers to the tank and by performing careful analysis of all of the analytical data that have been gathered during the tank`s lifetime. In order to more completely understand the variances in analytical results, material and charge balances were done to help define the chemistry of the various components in the tank. This methodology of defining the tank composition and the final results are documented in this report.« less

  15. Occurrence and effects of endocrine-disrupting chemicals in the St. Croix River

    USGS Publications Warehouse

    Elliott, Sarah M.; Lee, Kathy E.

    2016-01-01

    The St. Croix River is one of the last undisturbed, large floodplain rivers in the upper Mississippi River System. The Saint Croix National Scenic Riverway encompasses 255 river miles from the St. Croix Flowage and Namekagon River to the confluence of the St. Croix River with the Mississippi River at Prescott, Wisconsin. The Wild and Scenic Rivers Act of 1968 includes protection of the “outstandingly remarkable values” of the St. Croix and Namekagon rivers, which are included in the first eight designated wild and scenic rivers. The National Park Service (NPS) supports efforts to ensure these high-quality waters are not degraded by endocrine-disrupting or pharmaceutically active chemicals.

  16. Message development for surface markers at the Hanford Radwaste Disposal sites

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kaplan, M.F.

    1984-12-31

    At the Hanford Reservation in Washington, there are sites which received liquid and solid transuranic wastes from the late 1940`s until 1970. Rockwell Hanford Operations (Rockwell) is investigating the feasibility of several options for the permanent disposal of these wastes. One option is to stabilize the wastes in their present locations and to add barriers to minimize water infiltration and root penetration into the wastes. This report forms part of the project to develop a marking system for transuranic wastes on the Hanford Reservation. The focus of this report is the development of the message system to appear on themore » surface markers. A logical framework is developed to deduce what is required by the message system. Alternatives for each message component are evaluated and justification is provided for the choice of each component. The components are then laid out on the surface marker to provide a legible, comprehensible message system. The surface markers are tall, standing monoliths which ring the perimeter of each disposal area. Based on the logical framework, it is recommended that three domains of representation -- symbols, pictures, and language -- be used in the message system. The warning symbol chosen for the message system is the radiation trefoil. Two other options were considered, including the warning symbol developed by the Human Interference Task Force for a high-level waste repository. The trefoil was preferred because of the widespread usage and international acceptance which is already enjoys.« less

  17. Contaminant desorption during long-term leaching of hydroxide-weathered Hanford sediments.

    PubMed

    Thompson, Aaron; Steefel, Carl I; Perdrial, Nicolas; Chorover, Ion

    2010-03-15

    Mineral sorption/coprecipitation is thought to be a principal sequestration mechanism for radioactive (90)Sr and (137)Cs in sediments impacted by hyperalkaline, high-level radioactive waste (HLRW) at the DOE's Hanford site. However, the long-term persistence of neo-formed, contaminant bearing phases after removal of the HLRW source is unknown. We subjected pristine Hanford sediments to hyperalkaline Na-AI-NO(3)-OH solutions containing Sr, Cs, and I at 10(-5), 10(-5), and 10(-7) molal, respectively, for 182 days with either <10 ppmv or 385 ppmv pCO(2). This resulted in the formation of feldspathoid minerals. We leached these weathered sediments with dilute, neutral-pH solutions. After 500 pore volumes (PVs), effluent Sr, Cs, NO(3), Al, Si, and pH reached a steady-state with concentrations elevated above those of feedwater. Reactive transport modeling suggests that even after 500 PV, Cs desorption can be explained by ion exchange reactions, whereas Sr desorption is best described by dissolution of Sr-substituted, neo-formed minerals. While, pCO(2) had no effect on Sr or Cs sorption, sediments weathered at <10 ppmv pCO(2) did desorb more Sr (66% vs 28%) and Cs (13% vs 8%) during leaching than those weathered at 385 ppmv pCO(2). Thus, the dissolution of neo-formed aluminosilicates may represent a long-term, low-level supply of (90)Sr at the Hanford site.

  18. 77 FR 17563 - Low Flow Protection Policy

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-03-26

    ... SUSQUEHANNA RIVER BASIN COMMISSION Low Flow Protection Policy AGENCY: Susquehanna River Basin Commission. ACTION: Notice. SUMMARY: As part of its regular business meeting held on March 15, 2012, in... submit the same in writing on or before May 16, 2012. DATES: The deadline for the submission of written...

  19. Significance of Selective Predation and Development of Prey Protection Measures for Juvenile Salmonids in the Columbia and Snake River Reservoirs: Annual Progress Report, February 1993-February 1994.

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Poe, Thomas P.

    1994-08-01

    This report addresses the problem of predator-prey interactions of juvenile salmonids in the Columbia and Snake River. Six papers are included on selective predation and prey protection. Attention is focused on monitoring the movements, the distribution, and the behavior of juvenile chinook salmon and northern squawfish.

  20. A piecewise regression approach for determining biologically relevant hydraulic thresholds for the protection of fish at river infrastructure

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Boys, Craig A.; Robinson, Wayne; Miller, Brett

    2016-05-13

    Barotrauma injury can occur when fish are exposed to rapid decompression during downstream passage through river infrastructure. A piecewise regression approach was used to objectively quantify barotrauma injury thresholds in two physoclistous species (Murray cod Maccullochella peelii and silver perch Bidyanus bidyanus) following simulated infrastructure passage in barometric chambers. The probability of injuries such as swim bladder rupture; exophthalmia; and haemorrhage and emphysema in various organs increased as the ratio between the lowest exposure pressure and the acclimation pressure (ratio of pressure change RPCE/A) fell. The relationship was typically non-linear and piecewise regression was able to quantify thresholds in RPCE/Amore » that once exceeded resulted in a substantial increase in barotrauma injury. Thresholds differed among injury types and between species but by applying a multi-species precautionary principle, the maintenance of exposure pressures at river infrastructure above 70% of acclimation pressure (RPCE/A of 0.7) should sufficiently protect downstream migrating juveniles of these two physoclistous species. These findings have important implications for determining the risk posed by current infrastructures and informing the design and operation of new ones.« less