Sample records for hanging pendulum thrust

  1. Development of a two-dimensional dual pendulum thrust stand for Hall thrusters.

    PubMed

    Nagao, N; Yokota, S; Komurasaki, K; Arakawa, Y

    2007-11-01

    A two-dimensional dual pendulum thrust stand was developed to measure thrust vectors [axial and horizontal (transverse) direction thrusts] of a Hall thruster. A thruster with a steering mechanism is mounted on the inner pendulum, and thrust is measured from the displacement between inner and outer pendulums, by which a thermal drift effect is canceled out. Two crossover knife-edges support each pendulum arm: one is set on the other at a right angle. They enable the pendulums to swing in two directions. Thrust calibration using a pulley and weight system showed that the measurement errors were less than 0.25 mN (1.4%) in the main thrust direction and 0.09 mN (1.4%) in its transverse direction. The thrust angle of the thrust vector was measured with the stand using the thruster. Consequently, a vector deviation from the main thrust direction of +/-2.3 degrees was measured with the error of +/-0.2 degrees under the typical operating conditions for the thruster.

  2. Development of a two-dimensional dual pendulum thrust stand for Hall thrusters

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Nagao, N.; Yokota, S.; Komurasaki, K.

    A two-dimensional dual pendulum thrust stand was developed to measure thrust vectors (axial and horizontal (transverse) direction thrusts) of a Hall thruster. A thruster with a steering mechanism is mounted on the inner pendulum, and thrust is measured from the displacement between inner and outer pendulums, by which a thermal drift effect is canceled out. Two crossover knife-edges support each pendulum arm: one is set on the other at a right angle. They enable the pendulums to swing in two directions. Thrust calibration using a pulley and weight system showed that the measurement errors were less than 0.25 mN (1.4%)more » in the main thrust direction and 0.09 mN (1.4%) in its transverse direction. The thrust angle of the thrust vector was measured with the stand using the thruster. Consequently, a vector deviation from the main thrust direction of {+-}2.3 deg. was measured with the error of {+-}0.2 deg. under the typical operating conditions for the thruster.« less

  3. High-power, null-type, inverted pendulum thrust stand.

    PubMed

    Xu, Kunning G; Walker, Mitchell L R

    2009-05-01

    This article presents the theory and operation of a null-type, inverted pendulum thrust stand. The thrust stand design supports thrusters having a total mass up to 250 kg and measures thrust over a range of 1 mN to 5 N. The design uses a conventional inverted pendulum to increase sensitivity, coupled with a null-type feature to eliminate thrust alignment error due to deflection of thrust. The thrust stand position serves as the input to the null-circuit feedback control system and the output is the current to an electromagnetic actuator. Mechanical oscillations are actively damped with an electromagnetic damper. A closed-loop inclination system levels the stand while an active cooling system minimizes thermal effects. The thrust stand incorporates an in situ calibration rig. The thrust of a 3.4 kW Hall thruster is measured for thrust levels up to 230 mN. The uncertainty of the thrust measurements in this experiment is +/-0.6%, determined by examination of the hysteresis, drift of the zero offset and calibration slope variation.

  4. Recommended Practices in Thrust Measurements

    NASA Technical Reports Server (NTRS)

    Polk, James E.; Pancotti, Anthony; Haag, Thomas; King, Scott; Walker, Mitchell; Blakely, Joseph; Ziemer, John

    2013-01-01

    Accurate, direct measurement of thrust or impulse is one of the most critical elements of electric thruster characterization, and one of the most difficult measurements to make. The American Institute of Aeronautics and Astronautics has started an initiative to develop standards for many important measurement processes in electric propulsion, including thrust measurements. This paper summarizes recommended practices for the design, calibration, and operation of pendulum thrust stands, which are widely recognized as the best approach for measuring micro N- to mN-level thrust and micro Ns-level impulse bits. The fundamentals of pendulum thrust stand operation are reviewed, along with its implementation in hanging pendulum, inverted pendulum, and torsional balance configurations. Methods of calibration and recommendations for calibration processes are presented. Sources of error are identified and methods for data processing and uncertainty analysis are discussed. This review is intended to be the first step toward a recommended practices document to help the community produce high quality thrust measurements.

  5. Thrust Stand for Electric Propulsion Performance Evaluation

    NASA Technical Reports Server (NTRS)

    Markusic, T. E.; Jones, J. E.; Cox, M. D.

    2004-01-01

    An electric propulsion thrust stand capable of supporting thrusters with total mass of up to 125 kg and 1 mN to 1 N thrust levels has been developed and tested. The mechanical design features a conventional hanging pendulum arm attached to a balance mechanism that transforms horizontal motion into amplified vertical motion, with accommodation for variable displacement sensitivity. Unlike conventional hanging pendulum thrust stands, the deflection is independent of the length of the pendulum arm, and no reference structure is required at the end of the pendulum. Displacement is measured using a non-contact, optical linear gap displacement transducer. Mechanical oscillations are attenuated using a passive, eddy current damper. An on-board microprocessor-based level control system, which includes a two axis accelerometer and two linear-displacement stepper motors, continuously maintains the level of the balance mechanism - counteracting mechanical %era drift during thruster testing. A thermal control system, which includes heat exchange panels, thermocouples, and a programmable recirculating water chiller, continuously adjusts to varying thermal loads to maintain the balance mechanism temperature, to counteract thermal drifts. An in-situ calibration rig allows for steady state calibration both prior to and during thruster testing. Thrust measurements were carried out on a well-characterized 1 kW Hall thruster; the thrust stand was shown to produce repeatable results consistent with previously published performance data.

  6. Recommended Practices in Thrust Measurements

    DTIC Science & Technology

    2013-10-01

    Turin.5,38 This stand consists of two BeCu plates which hang from flexible BeCu mounts on a rigid block of Zerodur c, a material with a very low coe...2013 Figure 4. Example of a state-of-the-art hanging pendulum thrust stand. 38 Two spherical mirrors mounted on the plates form an optical cavity for...the Zerodur frame. Temperature control and careful choice of materials were used to minimize and correct for thermal drift. 2. Thrust Stand Performance

  7. Non-contact thrust stand calibration method for repetitively pulsed electric thrusters.

    PubMed

    Wong, Andrea R; Toftul, Alexandra; Polzin, Kurt A; Pearson, J Boise

    2012-02-01

    A thrust stand calibration technique for use in testing repetitively pulsed electric thrusters for in-space propulsion has been developed and tested using a modified hanging pendulum thrust stand. In the implementation of this technique, current pulses are applied to a solenoid to produce a pulsed magnetic field that acts against a permanent magnet mounted to the thrust stand pendulum arm. The force on the magnet is applied in this non-contact manner, with the entire pulsed force transferred to the pendulum arm through a piezoelectric force transducer to provide a time-accurate force measurement. Modeling of the pendulum arm dynamics reveals that after an initial transient in thrust stand motion the quasi-steady average deflection of the thrust stand arm away from the unforced or "zero" position can be related to the average applied force through a simple linear Hooke's law relationship. Modeling demonstrates that this technique is universally applicable except when the pulsing period is increased to the point where it approaches the period of natural thrust stand motion. Calibration data were obtained using a modified hanging pendulum thrust stand previously used for steady-state thrust measurements. Data were obtained for varying impulse bit at constant pulse frequency and for varying pulse frequency. The two data sets exhibit excellent quantitative agreement with each other. The overall error on the linear regression fit used to determine the calibration coefficient was roughly 1%.

  8. Non-Contact Thrust Stand Calibration Method for Repetitively-Pulsed Electric Thrusters

    NASA Technical Reports Server (NTRS)

    Wong, Andrea R.; Toftul, Alexandra; Polzin, Kurt A.; Pearson, J. Boise

    2011-01-01

    A thrust stand calibration technique for use in testing repetitively-pulsed electric thrusters for in-space propulsion has been developed and tested using a modified hanging pendulum thrust stand. In the implementation of this technique, current pulses are applied to a solenoidal coil to produce a pulsed magnetic field that acts against the magnetic field produced by a permanent magnet mounted to the thrust stand pendulum arm. The force on the magnet is applied in this non-contact manner, with the entire pulsed force transferred to the pendulum arm through a piezoelectric force transducer to provide a time-accurate force measurement. Modeling of the pendulum arm dynamics reveals that after an initial transient in thrust stand motion the quasisteady average deflection of the thrust stand arm away from the unforced or zero position can be related to the average applied force through a simple linear Hooke s law relationship. Modeling demonstrates that this technique is universally applicable except when the pulsing period is increased to the point where it approaches the period of natural thrust stand motion. Calibration data were obtained using a modified hanging pendulum thrust stand previously used for steady-state thrust measurements. Data were obtained for varying impulse bit at constant pulse frequency and for varying pulse frequency. The two data sets exhibit excellent quantitative agreement with each other as the constant relating average deflection and average thrust match within the errors on the linear regression curve fit of the data. Quantitatively, the error on the calibration coefficient is roughly 1% of the coefficient value.

  9. Thrust Measurements in Ballistic Pendulum Ablative Laser Propulsion Experiments

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Brazolin, H.; Rodrigues, N. A. S.; Minucci, M. A. S.

    This paper describes a setup for thrust measurement in ablative laser propulsion experiments, based on a simple ballistic pendulum associated to an imaging system, which is being assembled at IEAv. A light aluminium pendulum holding samples is placed inside a 100 liters vacuum chamber with two optical windows: the first (in ZnSe) for the laser beam and the second (in fused quartz) for the pendulum visualization. A TEA-CO{sub 2} laser beam is focused to the samples providing ablation and transferring linear moment to the pendulum as a whole. A CCD video camera captures the oscillatory movement of the pendulum andmore » the its trajectory is obtained by image processing. By fitting the trajectory of the pendulum to a dumped sinusoidal curve is possible to obtain the amplitude of the movement which is directly related to the momentum transfered to the sample.« less

  10. Pulsed Electric Propulsion Thrust Stand Calibration Method

    NASA Technical Reports Server (NTRS)

    Wong, Andrea R.; Polzin, Kurt A.; Pearson, J. Boise

    2011-01-01

    The evaluation of the performance of any propulsion device requires the accurate measurement of thrust. While chemical rocket thrust is typically measured using a load cell, the low thrust levels associated with electric propulsion (EP) systems necessitate the use of much more sensitive measurement techniques. The design and development of electric propulsion thrust stands that employ a conventional hanging pendulum arm connected to a balance mechanism consisting of a secondary arm and variable linkage have been reported in recent publications by Polzin et al. These works focused on performing steady-state thrust measurements and employed a static analysis of the thrust stand response. In the present work, we present a calibration method and data that will permit pulsed thrust measurements using the Variable Amplitude Hanging Pendulum with Extended Range (VAHPER) thrust stand. Pulsed thrust measurements are challenging in general because the pulsed thrust (impulse bit) occurs over a short timescale (typically 1 micros to 1 millisecond) and cannot be resolved directly. Consequently, the imparted impulse bit must be inferred through observation of the change in thrust stand motion effected by the pulse. Pulsed thrust measurements have typically only consisted of single-shot operation. In the present work, we discuss repetition-rate pulsed thruster operation and describe a method to perform these measurements. The thrust stand response can be modeled as a spring-mass-damper system with a repetitive delta forcing function to represent the impulsive action of the thruster.

  11. Structural analysis using thrust-fault hanging-wall sequence diagrams: Ogden duplex, Wasatch Range, Utah

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Schirmer, T.W.

    1988-05-01

    Detailed mapping and cross-section traverses provide the control for structural analysis and geometric modeling of the Ogden duplex, a complex thrust system exposed in the Wasatch Mountains, east of Ogden, Utah. The structures consist of east-dipping folded thrust faults, basement-cored horses, lateral ramps and folds, and tear faults. The sequence of thrusting determined by means of lateral overlap of horses, thrust-splay relationships, and a top-to-bottom piggyback development is Willard thrust, Ogden thrust, Weber thrust, and Taylor thrust. Major decollement zones occur in the Cambrian shales and limestones. The Tintic Quartzite is the marker for determining gross geometries of horses. Thismore » exposed duplex serves as a good model to illustrate the method of constructing a hanging-wall sequence diagram - a series of longitudinal cross sections that move forward in time and space, and show how a thrust system formed as it moved updip over various footwall ramps. A hanging wall sequence diagram also shows the complex lateral variations in a thrust system and helps to locate lateral ramps, lateral folds, tear faults, and other features not shown on dip-oriented cross sections. 8 figures.« less

  12. Flat-ramp vs. convex-concave thrust geometries in a deformable hanging wall: new insights from analogue modeling experiments

    NASA Astrophysics Data System (ADS)

    Almeida, Pedro; Tomas, Ricardo; Rosas, Filipe; Duarte, Joao; Terrinha, Pedro

    2015-04-01

    Different modes of strain accommodation affecting a deformable hanging-wall in a flat-ramp-flat thrust system were previously addressed through several (sandbox) analog modeling studies, focusing on the influence of different variables, such as: a) thrust ramp dip angle and friction (Bonini et al, 2000); b) prescribed thickness of the hanging-wall (Koy and Maillot, 2007); and c) sin-thrust erosion (compensating for topographic thrust edification, e.g. Persson and Sokoutis, 2002). In the present work we reproduce the same experimental procedure to investigate the influence of two different parameters on hanging-wall deformation: 1) the geometry of the thrusting surface; and 2) the absence of a velocity discontinuity (VD) that is always present in previous similar analogue modeling studies. Considering the first variable we use two end member ramp geometries, flat-ramp-flat and convex-concave, to understand the control exerted by the abrupt ramp edges in the hanging-wall stress-strain distribution, comparing the obtain results with the situation in which such edge singularities are absent (convex-concave thrust ramp). Considering the second investigated parameter, our motivation was the recognition that the VD found in the different analogue modeling settings simply does not exist in nature, despite the fact that it has a major influence on strain accommodation in the deformable hanging-wall. We thus eliminate such apparatus artifact from our models and compare the obtained results with the previous ones. Our preliminary results suggest that both investigated variables play a non-negligible role on the structural style characterizing the hanging-wall deformation of convergent tectonic settings were such thrust-ramp systems were recognized. Acknowledgments This work was sponsored by the Fundação para a Ciência e a Tecnologia (FCT) through project MODELINK EXPL/GEO-GEO/0714/2013. Pedro Almeida wants to thank to FCT for the Ph.D. grant (SFRH/BD/52556/2014) under the

  13. Thrust Stand for Vertically Oriented Electric Propulsion Performance Evaluation

    NASA Technical Reports Server (NTRS)

    Moeller, Trevor; Polzin, Kurt A.

    2010-01-01

    A variation of a hanging pendulum thrust stand capable of measuring the performance of an electric thruster operating in the vertical orientation is presented. The vertical orientation of the thruster dictates that the thruster must be horizontally offset from the pendulum pivot arm, necessitating the use of a counterweight system to provide a neutrally-stable system. Motion of the pendulum arm is transferred through a balance mechanism to a secondary arm on which deflection is measured. A non-contact light-based transducer is used to measure displacement of the secondary beam. The members experience very little friction, rotating on twisting torsional pivots with oscillatory motion attenuated by a passive, eddy current damper. Displacement is calibrated using an in situ thrust calibration system. Thermal management and self-leveling systems are incorporated to mitigate thermal and mechanical drifts. Gravitational restoring force and torsional spring constants associated with flexure pivots provide restoring moments. An analysis of the design indicates that the thrust measurement range spans roughly four decades, with the stand capable of measuring thrust up to 12 N for a 200 kg thruster and up to approximately 800 mN for a 10 kg thruster. Data obtained from calibration tests performed using a 26.8 lbm simulated thruster indicated a resolution of 1 mN on 100 mN-level thrusts, while those tests conducted on 200 lbm thruster yielded a resolution of roughly 2.5 micro at thrust levels of 0.5 N and greater.

  14. Thrust stand for vertically oriented electric propulsion performance evaluation

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Moeller, Trevor; Polzin, Kurt A.

    A variation of a hanging pendulum thrust stand capable of measuring the performance of an electric thruster operating in the vertical orientation is presented. The vertical orientation of the thruster dictates that the thruster must be horizontally offset from the pendulum pivot arm, necessitating the use of a counterweight system to provide a neutrally stable system. Motion of the pendulum arm is transferred through a balance mechanism to a secondary arm on which deflection is measured. A noncontact light-based transducer is used to measure displacement of the secondary beam. The members experience very little friction, rotating on twisting torsional pivotsmore » with oscillatory motion attenuated by a passive, eddy-current damper. Displacement is calibrated using an in situ thrust calibration system. Thermal management and self-leveling systems are incorporated to mitigate thermal and mechanical drifts. Gravitational force and torsional spring constants associated with flexure pivots provide restoring moments. An analysis of the design indicates that the thrust measurement range spans roughly four decades, with the stand capable of measuring thrust up to 12 N for a 200 kg thruster and up to approximately 800 mN for a 10 kg thruster. Data obtained from calibration tests performed using a 26.8 lbm simulated thruster indicated a resolution of 1 mN on 100 mN level thrusts, while those tests conducted on a 200 lbm thruster yielded a resolution of roughly 2.5 mN at thrust levels of 0.5 N and greater.« less

  15. Anomalous Thrust Production from an RF Test Device Measured on a Low-Thrust Torsion Pendulum

    NASA Technical Reports Server (NTRS)

    Brady, David; White, Harold G.; March, Paul; Lawrence, James T.; Davies, Frank J.

    2014-01-01

    This paper describes the eight-day August 2013 test campaign designed to investigate and demonstrate viability of using classical magnetoplasmadynamics to obtain a propulsive momentum transfer via the quantum vacuum virtual plasma. This paper will not address the physics of the quantum vacuum plasma thruster, but instead will describe the test integration, test operations, and the results obtained from the test campaign. Approximately 30-50 micro-Newtons of thrust were recorded from an electric propulsion test article consisting primarily of a radio frequency (RF) resonant cavity excited at approximately 935 megahertz. Testing was performed on a low-thrust torsion pendulum that is capable of detecting force at a single-digit micronewton level, within a stainless steel vacuum chamber with the door closed but at ambient atmospheric pressure. Several different test configurations were used, including two different test articles as well as a reversal of the test article orientation. In addition, the test article was replaced by an RF load to verify that the force was not being generated by effects not associated with the test article. The two test articles were designed by Cannae LLC of Doylestown, Pennsylvania. The torsion pendulum was designed, built, and operated by Eagleworks Laboratories at the NASA Johnson Space Center of Houston, Texas. Approximately six days of test integration were required, followed by two days of test operations, during which, technical issues were discovered and resolved. Integration of the two test articles and their supporting equipment was performed in an iterative fashion between the test bench and the vacuum chamber. In other words, the test article was tested on the bench, then moved to the chamber, then moved back as needed to resolve issues. Manual frequency control was required throughout the test. Thrust was observed on both test articles, even though one of the test articles was designed with the expectation that it would not

  16. Analogue modelling of thrust systems: Passive vs. active hanging wall strain accommodation and sharp vs. smooth fault-ramp geometries

    NASA Astrophysics Data System (ADS)

    Rosas, F. M.; Duarte, J. C.; Almeida, P.; Schellart, W. P.; Riel, N.; Terrinha, P.

    2017-06-01

    We present new analogue modelling results of crustal thrust-systems in which a deformable (brittle) hanging wall is assumed to endure passive internal deformation during thrusting, i.e. exclusively as a consequence of having to adapt its shape to the variable geometry of a rigid footwall. Building on previous experimental contributions, we specifically investigate the role of two so far overlooked critical variables: a) concave-convex (CC) vs. flat-ramp-flat (FRF) thrust ramp geometry; and b) presence vs. absence of a basal velocity discontinuity (VD). Regarding the first variable, we compare new results for considered (CC) smoother ramp types against classical experiments in which (FRF) sharp ramp geometries are always prescribed. Our results show that the considered sharp vs. smooth variation in the thrust-ramp geometry produces important differences in the distribution of the local stress field in the deformable hanging wall above both (lower and upper) fault bends, with corresponding styles of strain accommodation being expressed by marked differences in measured morpho-structural parameters. Regarding the second variable, we for the first time report analogue modelling results of this type of experiments in which basal VDs are experimentally prescribed to be absent. Our results critically show that true passive hanging wall deformation is only possible to simulate in the absence of any basal VD, since active shortening accommodation always necessarily occurs in the hanging wall above such a discontinuity (i.e. above the lower fault bend). In addition, we show that the morpho-structural configuration of model thrust-wedges formed for prescribed VD absence conditions complies well with natural examples of major overthrusts, wherein conditions must occur that approximate a frictionless state along the main basal thrust-plane.

  17. Anomalous Thrust Production from an RF Test Device Measured on a Low-Thrust Torsion Pendulum

    NASA Technical Reports Server (NTRS)

    Brady, David A.; White, Harold G.; March, Paul; Lawrence, James T.; Davies, Frank J.

    2014-01-01

    This paper describes the test campaigns designed to investigate and demonstrate viability of using classical magnetoplasmadynamics to obtain a propulsive momentum transfer via the quantum vacuum virtual plasma. This paper will not address the physics of the quantum vacuum plasma thruster (QVPT), but instead will describe the recent test campaign. In addition, it contains a brief description of the supporting radio frequency (RF) field analysis, lessons learned, and potential applications of the technology to space exploration missions. During the first (Cannae) portion of the campaign, approximately 40 micronewtons of thrust were observed in an RF resonant cavity test article excited at approximately 935 megahertz and 28 watts. During the subsequent (tapered cavity) portion of the campaign, approximately 91 micronewtons of thrust were observed in an RF resonant cavity test article excited at approximately 1933 megahertz and 17 watts. Testing was performed on a low-thrust torsion pendulum that is capable of detecting force at a single-digit micronewton level. Test campaign results indicate that the RF resonant cavity thruster design, which is unique as an electric propulsion device, is producing a force that is not attributable to any classical electromagnetic phenomenon and therefore is potentially demonstrating an interaction with the quantum vacuum virtual plasma.

  18. Initial Thrust Measurements of Marshall's Ion-ioN Thruster

    NASA Technical Reports Server (NTRS)

    Schloeder, Natalie R.; Scogin, Tyler; Liu, Thomas M.; Walker, Mitchell L. R.; Polzin, Kurt A.; Dankanich, John W.; Aanesland, Ane

    2015-01-01

    Electronegative ion thrusters are a variation of tradition gridded ion thruster technology differentiated by the production and acceleration of both positive and negative ions. Benefits of electronegative ion thrusters include the elimination of lifetime-limiting cathodes from the thruster architecture and the ability to generate appreciable thrust from both charge species. Following the continued development of electronegative ion thruster technology as exhibited by the PEGASES (Plasma Propulsion with Electronegative GASES) thruster, direct thrust measurements are required to push interest in electronegative ion thruster technology forward. For this work, direct thrust measurements of the MINT (Marshall's Ion-ioN Thruster) will be taken on a hanging pendulum thrust stand for propellant mixtures of Sulfur Hexafluoride and Argon at volumetric flow rates of 5-25 sccm at radio frequency power levels of 100-600 watts at a radio frequency of 13.56 MHz. Acceleration grid operation is operated using a square waveform bias of +/-300 volts at a frequency of 25 kHz.

  19. A simple pendulum laser interferometer for determining the gravitational constant

    PubMed Central

    Parks, Harold V.; Faller, James E.

    2014-01-01

    We present a detailed account of our 2004 experiment to measure the Newtonian constant of gravitation with a suspended laser interferometer. The apparatus consists of two simple pendulums hanging from a common support. Each pendulum has a length of 72 cm and their separation is 34 cm. A mirror is embedded in each pendulum bob, which then in combination form a Fabry–Perot cavity. A laser locked to the cavity measures the change in pendulum separation as the gravitational field is modulated due to the displacement of four 120 kg tungsten masses. PMID:25201994

  20. Structural analysis of hanging wall and footwall blocks within the Río Guanajibo fold-and-thrust belt in Southwest Puerto Rico

    NASA Astrophysics Data System (ADS)

    Laó-Dávila, Daniel A.; Llerandi-Román, Pablo A.

    2017-01-01

    The Río Guanajibo fold-and-thrust belt (RGFT), composed of Cretaceous serpentinite and volcano-sedimentary rocks, represents the deformation front of a contractional event in SW Puerto Rico during the Paleogene. Previous studies inferred structural and stratigraphic relationships from poorly exposed outcrops. New road cuts exposed the Yauco (YF) and El Rayo Formations (ERF) providing insights on the deformation of the hanging wall and footwall. We described the nature and orientation of faults and folds and analyzed the kinematic indicators to characterize the deformation. The YF occurs in the hanging wall and shows a sequence of folded, medium-bedded mudstone and thinly bedded shale and sandstone. Major folds strike NW-SE and are gentle with steeply inclined axial planes and sub-horizontal fold axes. Minor folds are open with moderately inclined axial planes and gently to moderately inclined SE-plunging fold axes. NW-SE striking reverse and thrust faults cut layers and show movement to the SW. Steep left-lateral faults strike NW-SE and NE-SW, and smaller right-lateral strike-slip faults strike NNE-SSW. At the footwall, the ERF consists of bioclastic limestone and polymictic orthoconglomerates and paraconglomerates. Reverse and strike-slip faults cut along lithological contacts. Results suggest that the hanging wall and footwall accommodated strain along preexisting weaknesses, which are dependent on lithology and sedimentary structures. The kinematic analysis suggests that shortening in the NE-SW direction was partitioned between folding and interlayer shortening, accommodated by flexural slip, and reverse and left-lateral faults that resulted from contraction. The RGFT represents the Paleogene back arc deformation of a bivergent thrust system.

  1. A simple pendulum laser interferometer for determining the gravitational constant.

    PubMed

    Parks, Harold V; Faller, James E

    2014-10-13

    We present a detailed account of our 2004 experiment to measure the Newtonian constant of gravitation with a suspended laser interferometer. The apparatus consists of two simple pendulums hanging from a common support. Each pendulum has a length of 72 cm and their separation is 34 cm. A mirror is embedded in each pendulum bob, which then in combination form a Fabry-Perot cavity. A laser locked to the cavity measures the change in pendulum separation as the gravitational field is modulated due to the displacement of four 120 kg tungsten masses. © 2014 The Author(s) Published by the Royal Society. All rights reserved.

  2. Thrust Stand for Electric Propulsion Performance Evaluation

    NASA Technical Reports Server (NTRS)

    Polzin, Kurt A.; Markusic, Thomas E.; Stanojev, Boris J.; Dehoyos, Amado; Spaun, Benjamin

    2006-01-01

    An electric propulsion thrust stand capable of supporting testing of thrusters having a total mass of up to 125 kg and producing thrust levels between 100 microN to 1 N has been developed and tested. The design features a conventional hanging pendulum arm attached to a balance mechanism that converts horizontal deflections produced by the operating thruster into amplified vertical motion of a secondary arm. The level of amplification is changed through adjustment of the location of one of the pivot points linking the system. Response of the system depends on the relative magnitudes of the restoring moments applied by the displaced thruster mass and the twisting torsional pivots connecting the members of the balance mechanism. Displacement is measured using a non-contact, optical linear gap displacement transducer and balance oscillatory motion is attenuated using a passive, eddy-current damper. The thrust stand employs an automated leveling and thermal control system. Pools of liquid gallium are used to deliver power to the thruster without using solid wire connections, which can exert undesirable time-varying forces on the balance. These systems serve to eliminate sources of zero-drift that can occur as the stand thermally or mechanically shifts during the course of an experiment. An in-situ calibration rig allows for steady-state calibration before, during and after thruster operation. Thrust measurements were carried out on a cylindrical Hall thruster that produces mN-level thrust. The measurements were very repeatable, producing results that compare favorably with previously published performance data, but with considerably smaller uncertainty.

  3. PPT Thrust Stand

    NASA Technical Reports Server (NTRS)

    Haag, Thomas W.

    1995-01-01

    A torsional-type thrust stand has been designed and built to test Pulsed Plasma Thrusters (PPT's) in both single shot and repetitive operating modes. Using this stand, momentum per pulse was determined strictly as a function of thrust stand deflection, spring constant, and natural frequency. No empirical corrections were required. The accuracy of the method was verified using a swinging impact pendulum. Momentum transfer data between the thrust stand and the pendulum were consistent to within 1%. Following initial calibrations, the stand was used to test a Lincoln Experimental Satellite (LES-8/9) thruster. The LES-8/9 system had a mass of approximately 7.5 kg, with a nominal thrust to weight ratio of 1.3 x 10(exp -5). A total of 34 single shot thruster pulses were individually measured. The average impulse bit per pulse was 266 microN-s, which was slightly less than the value of 300 microN-s published in previous reports on this device. Repetitive pulse measurements were performed similar to ordinary steady-state thrust measurements. The thruster was operated for 30 minutes at a repetition rate of 132 pulses per minute and yielded an average thrust of 573 microN. Using average thrust, the average impulse bit per pulse was estimated to be 260 microN-s, which was in agreement with the single shot data. Zero drift during the repetitive pulse test was found to be approximately 1% of the measured thrust.

  4. Limited fluid in carbonate-shale hosted thrust faults of the Rocky Mountain Fold-and-Thrust Belt (Sun River Canyon, Montana)

    NASA Astrophysics Data System (ADS)

    OBrien, V. J.; Kirschner, D. L.

    2001-12-01

    It is widely accepted that fluids play a fundamental role in the movement of thrust faults in foreland fold-and-thrust belts. We have begun a combined structure-geochemistry study of faults in the Rocky Mountain fold-and-thrust belt in order to provide more insight into the occurrence and role(s) of fluid in the deformation of thrust faults. We focus on faults exposed in the Sun River Canyon of Montana, an area that contains some of the best exposures of the Rocky Mountain fold-and-thrust belt in the U.S. Samples were collected from two well exposed thrusts in the Canyon -- the Diversion and French thrusts. Both faults have thrust Mississippian dolostones over Cretaceous shales. Displacement exceeds several kilometers. Numerous small-displacement, subsidiary faults characterize the deformation in the hanging wall carbonates. The footwall shales accommodated more penetrative deformation, resulting in well developed foliation and small-scale folds. Stable isotope data have been obtained from host rock samples and veins from these faults. The data delimit an arcuate trend in oxygen-carbon isotope space. Approximately 50 host rock carbonate samples from the hanging walls have carbon and oxygen isotope values ranging from +3 to 0 and 28 to 19 per mil, respectively. There is no apparent correlation between isotopic values and distance from thrust fault at either locality. Fifteen samples of fibrous slickensides on small-displacement faults in the hanging walls have similar carbon and lower oxygen isotope values (down to 16 per mil). And 15 veins that either post-date thrusting or are of indeterminate origin have carbon and oxygen isotope values down to -3 and12 per mil, respectively. The isotopic data collected during the initial stages of this project are similar to some results obtained several hundred kilometers north in the Front Ranges of the Canadian Rockies (Kirschner and Kennedy, JGR 2000) and in carbonate fold-thrust belts of the Swiss Helvetic Alps and Italian

  5. Electronic system for the complex measurement of a Wilberforce pendulum

    NASA Astrophysics Data System (ADS)

    Kos, B.; Grodzicki, M.; Wasielewski, R.

    2018-05-01

    The authors present a novel application of a micro-electro-mechanical measurement system to the description of basic physical phenomena in a model Wilberforce pendulum. The composition of the kit includes a tripod with a mounted spring with freely hanging bob, a module GY-521 on the MPU 6050 coupled with an Arduino Uno, which in conjunction with a PC acts as measuring set. The system allows one to observe the swing of the pendulum in real time. Obtained data stays in good agreement with both theoretical predictions and previous works. The aim of this article is to introduce the study of a Wilberforce pendulum to the canon of physical laboratory exercises due to its interesting properties and multifaceted method of measurement.

  6. Morphological evolution of spiders predicted by pendulum mechanics.

    PubMed

    Moya-Laraño, Jordi; Vinković, Dejan; De Mas, Eva; Corcobado, Guadalupe; Moreno, Eulalia

    2008-03-26

    Animals have been hypothesized to benefit from pendulum mechanics during suspensory locomotion, in which the potential energy of gravity is converted into kinetic energy according to the energy-conservation principle. However, no convincing evidence has been found so far. Demonstrating that morphological evolution follows pendulum mechanics is important from a biomechanical point of view because during suspensory locomotion some morphological traits could be decoupled from gravity, thus allowing independent adaptive morphological evolution of these two traits when compared to animals that move standing on their legs; i.e., as inverted pendulums. If the evolution of body shape matches simple pendulum mechanics, animals that move suspending their bodies should evolve relatively longer legs which must confer high moving capabilities. We tested this hypothesis in spiders, a group of diverse terrestrial generalist predators in which suspensory locomotion has been lost and gained a few times independently during their evolutionary history. In spiders that hang upside-down from their webs, their legs have evolved disproportionately longer relative to their body sizes when compared to spiders that move standing on their legs. In addition, we show how disproportionately longer legs allow spiders to run faster during suspensory locomotion and how these same spiders run at a slower speed on the ground (i.e., as inverted pendulums). Finally, when suspensory spiders are induced to run on the ground, there is a clear trend in which larger suspensory spiders tend to run much more slowly than similar-size spiders that normally move as inverted pendulums (i.e., wandering spiders). Several lines of evidence support the hypothesis that spiders have evolved according to the predictions of pendulum mechanics. These findings have potentially important ecological and evolutionary implications since they could partially explain the occurrence of foraging plasticity and dispersal

  7. Direct thrust measurement of a permanent magnet helicon double layer thruster

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Takahashi, K.; Lafleur, T.; Charles, C.

    2011-04-04

    Direct thrust measurements of a permanent magnet helicon double layer thruster have been made using a pendulum thrust balance and a high sensitivity laser displacement sensor. At the low pressures used (0.08 Pa) an ion beam is detected downstream of the thruster exit, and a maximum thrust force of about 3 mN is measured for argon with an rf input power of about 700 W. The measured thrust is proportional to the upstream plasma density and is in good agreement with the theoretical thrust based on the maximum upstream electron pressure.

  8. Test stand for precise measurement of impulse and thrust vector of small attitude control jets

    NASA Technical Reports Server (NTRS)

    Woodruff, J. R.; Chisel, D. M.

    1973-01-01

    A test stand which accurately measures the impulse bit and thrust vector of reaction jet thrusters used in the attitude control system of space vehicles has been developed. It can be used to measure, in a vacuum or ambient environment, both impulse and thrust vector of reaction jet thrusters using hydrazine or inert gas propellants. The ballistic pendulum configuration was selected because of its accuracy, simplicity, and versatility. The pendulum is mounted on flexure pivots rotating about a vertical axis at the center of its mass. The test stand has the following measurement capabilities: impulse of 0.00004 to 4.4 N-sec (0.00001 to 1.0 lb-sec) with a pulse duration of 0.5 msec to 1 sec; static thrust of 0.22 to 22 N (0.05 to 5 lb) with a 5 percent resolution; and thrust angle alinement of 0.22 to 22 N (0.05 to 5 lb) thrusters with 0.01 deg accuracy.

  9. Optical Kapitza pendulum

    NASA Astrophysics Data System (ADS)

    Jones, Philip H.; Smart, Thomas J.; Richards, Christopher J.; Cubero, David

    2016-09-01

    The Kapitza pendulum is the paradigm for the phenomenon of dynamical stabilization, whereby an otherwise unstable system achieves a stability that is induced by fast modulation of a control parameter. In the classic, macroscopic Kapitza pendulum, a rigid pendulum is stabilized in the upright, inverted pendulum using a particle confined in a ring-shaped optical trap, subject to a drag force via fluid flow and driven via oscillating the potential in a direction parallel to the fluid flow. In the regime of vanishing Reynold's number with high-frequency driving the inverted pendulum is no longer stable, but new equilibrium positions appear that depend on the amplitude of driving. As the driving frequency is decreased a yet different behavior emerges where stability of the pendulum depends also on the details of the pendulum hydrodynamics. We present a theory for the observed induced stability of the overdamped pendulum based on the separation of timescales in the pendulum motion as formulated by Kapitza, but with the addition of a viscous drag. Excellent agreement is found between the predicted behavior from the analytical theory and the experimental results across the range of pendulum driving frequencies. We complement these results with Brownian motion simulations, and we characterize the stabilized pendulum by both time- and frequency-domain analyses of the pendulum Brownian motion.

  10. Thrust Stand Characterization of the NASA Evolutionary Xenon Thruster (NEXT)

    NASA Technical Reports Server (NTRS)

    Diamant, Kevin D.; Pollard, James E.; Crofton, Mark W.; Patterson, Michael J.; Soulas, George C.

    2010-01-01

    Direct thrust measurements have been made on the NASA Evolutionary Xenon Thruster (NEXT) ion engine using a standard pendulum style thrust stand constructed specifically for this application. Values have been obtained for the full 40-level throttle table, as well as for a few off-nominal operating conditions. Measurements differ from the nominal NASA throttle table 10 (TT10) values by 3.1 percent at most, while at 30 throttle levels (TLs) the difference is less than 2.0 percent. When measurements are compared to TT10 values that have been corrected using ion beam current density and charge state data obtained at The Aerospace Corporation, they differ by 1.2 percent at most, and by 1.0 percent or less at 37 TLs. Thrust correction factors calculated from direct thrust measurements and from The Aerospace Corporation s plume data agree to within measurement error for all but one TL. Thrust due to cold flow and "discharge only" operation has been measured, and analytical expressions are presented which accurately predict thrust based on thermal thrust generation mechanisms.

  11. Experimental Results of Schlicher's Thrusting Antenna

    NASA Technical Reports Server (NTRS)

    Fralick, Gustave C.; Niedra, Janis M.

    2001-01-01

    Experiments were conducted to test the claims by Rex L. Schlicher, et al., (Patent 5,142,86 1) that a certain antenna geometry produces thrust greatly exceeding radiation reaction, when driven by repetitive, fast rise, and relatively slower decay current pulses. In order to test this hypothesis, the antenna was suspended by strings as a 3 in pendulum. Current pulses were fed to the antenna along the suspension path by a very flexible coaxial line constructed from loudspeaker cable and copper braid sheath. When driving the antenna via this cabling, our pulser was capable of sustaining 1200 A pulses at a rate of 30 per second up to a minute. In this way, bursts of pulses could be delivered in synch with the pendulum period in order to build up any motion. However, when using a laser beam passing through a lens attached to the antenna to amplify linear displacement by a factor of at least 25, no correlated motion of the beam spot could be detected on a distant wall. We conclude, in agreement with the momentum theorem of classical electromagnetic theory, that any thrust produced is far below practically useful levels. Hence, within classical electrodynamics, there is little hope of detecting any low level motion that cannot be explained by interactions with surrounding structural steel and the Earth's magnetic field.

  12. Emplacement history of a thrust sheet based on analysis of pressure solution cleavage and deformed fossils

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Protzman, G.M.; Mitra, G.

    The emplacement history of a thrust sheet is recorded by the strain accumulated in its hanging wall and footwall. Detailed studies of second order structures and analysis of strain due to pressure solution and plastic deformation allow the authors to determine the deformation history of the Meade thrust in the Idaho - Wyoming thrust belt. Emplacement of the Meade thrust was accompanied by the formation of a series of second order in echelon folds in the footwall. Temporal relations based on detailed structural studies show that these folds, which are confined to the Jurassic Twin Creek Formation, formed progressively inmore » front of the advancing Meade thrust and were successively truncated and overridden by footwall imbricates of the Meade thrust. The Twin Creek Formation in both the hanging wall and footwall of the Meade thrust is penetratively deformed, with a well developed pressure solution cleavage. In addition, plastic strain is recorded by deformed Pentacrinus within fossil hash layers in the Twin Creek. Much of this penetrative deformation took place early in the history of the thrust sheet as layer parallel shortening, and the cleavage and deformed fossils behaved passively during subsequent folding and faulting. The later stages of deformation may be sequentially removed through balancing techniques to track successive steps in the deformation. This strain history, which is typical of an internal thrust sheet, is partly controlled by the lithologies involved, timing between successive thrusts, and the amount of interaction between major faults.« less

  13. Direct thrust measurements and modelling of a radio-frequency expanding plasma thruster

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lafleur, T.; Charles, C.; Boswell, R. W.

    2011-08-15

    It is shown analytically that the thrust from a simple plasma thruster (in the absence of a magnetic field) is given by the maximum upstream electron pressure, even if the plasma diverges downstream. Direct thrust measurements of a thruster are then performed using a pendulum thrust balance and a laser displacement sensor. A maximum thrust of about 2 mN is obtained at 700 W for a thruster length of 17.5 cm and a flow rate of 0.9 mg s{sup -1}, while a larger thrust of 4 mN is obtained at a similar power for a length of 9.5 cm andmore » a flow rate of 1.65 mg s{sup -1}. The measured thrusts are in good agreement with the maximum upstream electron pressure found from measurements of the plasma parameters and in fair agreement with a simple global approach used to model the thruster.« less

  14. Broadband pendulum energy harvester

    NASA Astrophysics Data System (ADS)

    Liang, Changwei; Wu, You; Zuo, Lei

    2016-09-01

    A novel electromagnetic pendulum energy harvester with mechanical motion rectifier (MMR) is proposed and investigated in this paper. MMR is a mechanism which rectifies the bidirectional swing motion of the pendulum into unidirectional rotation of the generator by using two one-way clutches in the gear system. In this paper, two prototypes of pendulum energy harvester with MMR and without MMR are designed and fabricated. The dynamic model of the proposed MMR pendulum energy harvester is established by considering the engagement and disengagement of the one way clutches. The simulation results show that the proposed MMR pendulum energy harvester has a larger output power at high frequencies comparing with non-MMR pendulum energy harvester which benefits from the disengagement of one-way clutch during pendulum vibration. Moreover, the proposed MMR pendulum energy harvester is broadband compare with non-MMR pendulum energy harvester, especially when the equivalent inertia is large. An experiment is also conducted to compare the energy harvesting performance of these two prototypes. A flywheel is attached at the end of the generator to make the disengagement more significant. The experiment results also verify that MMR pendulum energy harvester is broadband and has a larger output power at high frequency over the non-MMR pendulum energy harvester.

  15. Experiment with Conical Pendulum

    ERIC Educational Resources Information Center

    Tongaonkar, S. S.; Khadse, V. R.

    2011-01-01

    Conical pendulum is similar to simple pendulum with the difference that the bob, instead of moving back and forth, swings around in a horizontal circle. Thus, in a conical pendulum the bob moves at a constant speed in a circle with the string tracing out a cone. This paper describes an experiment with conical pendulum, with determination of g from…

  16. Simple Pendulum Determination of the Gravitational Constant

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Parks, Harold V.; Sandia National Laboratories, Albuquerque, New Mexico 87185; Faller, James E.

    We determined the Newtonian constant of gravitation G by interferometrically measuring the change in spacing between two free-hanging pendulum masses caused by the gravitational field from large tungsten source masses. We find a value for G of (6.672 34{+-}0.000 14)x10{sup -11} m{sup 3} kg{sup -1} s{sup -2}. This value is in good agreement with the 1986 Committee on Data for Science and Technology (CODATA) value of (6.672 59{+-}0.000 85)x10{sup -11} m{sup 3} kg{sup -1} s{sup -2}[Rev. Mod. Phys. 59, 1121 (1987)] but differs from some more recent determinations as well as the latest CODATA recommendation of (6.674 28{+-}0.000 67)x10{sup -11}more » m{sup 3} kg{sup -1} s{sup -2}[Rev. Mod. Phys. 80, 633 (2008)].« less

  17. Complex pendulum biomass sensor

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hoskinson, Reed L.; Kenney, Kevin L.; Perrenoud, Ben C.

    A complex pendulum system biomass sensor having a plurality of pendulums. The plurality of pendulums allow the system to detect a biomass height and density. Each pendulum has an angular deflection sensor and a deflector at a unique height. The pendulums are passed through the biomass and readings from the angular deflection sensors are fed into a control system. The control system determines whether adjustment of machine settings is appropriate and either displays an output to the operator, or adjusts automatically adjusts the machine settings, such as the speed, at which the pendulums are passed through the biomass. In anmore » alternate embodiment, an entanglement sensor is also passed through the biomass to determine the amount of biomass entanglement. This measure of entanglement is also fed into the control system.« less

  18. Timing and conditions of peak metamorphism and cooling across the Zimithang Thrust, Arunachal Pradesh, India

    NASA Astrophysics Data System (ADS)

    Warren, Clare J.; Singh, Athokpam K.; Roberts, Nick M. W.; Regis, Daniele; Halton, Alison M.; Singh, Rajkumar B.

    2014-07-01

    The Zimithang Thrust juxtaposes two lithotectonic units of the Greater Himalayan Sequence in Arunachal Pradesh, NE India. Monazite U-Pb, muscovite 40Ar/39Ar and thermobarometric data from rocks in the hanging and footwall constrain the timing and conditions of their juxtaposition across the structure, and their subsequent cooling. Monazite grains in biotite-sillimanite gneiss in the hanging wall yield LA-ICP-MS U-Pb ages of 16 ± 0.2 to 12.7 ± 0.4 Ma. A schistose gneiss within the high strain zone yields overlapping-to-younger monazite ages of 14.9 ± 0.3 to 11.5 ± 0.3 Ma. Garnet-staurolite-mica schists in the immediate footwall yield older monazite ages of 27.3 ± 0.6 to 17.1 ± 0.2 Ma. Temperature estimates from Ti-in-biotite and garnet-biotite thermometry suggest similar peak temperatures were achieved in the hanging and footwalls (~ 525-650 °C). Elevated temperatures of ~ 700 °C appear to have been reached in the high strain zone itself and in the footwall further from the thrust. Single grain fusion 40Ar/39Ar muscovite data from samples either side of the thrust yield ages of ~ 7 Ma, suggesting that movement along the thrust juxtaposed the two units by the time the closure temperature of Ar diffusion in muscovite had been reached. These data confirm previous suggestions that major orogen-parallel out-of-sequence structures disrupt the Greater Himalayan Sequence at different times during Himalayan evolution, and highlight an eastwards-younging trend in 40Ar/39Ar muscovite cooling ages at equivalent structural levels along Himalayan strike.

  19. Initiation process of a thrust fault revealed by analog experiments

    NASA Astrophysics Data System (ADS)

    Yamada, Yasuhiro; Dotare, Tatsuya; Adam, Juergen; Hori, Takane; Sakaguchi, Hide

    2016-04-01

    We conducted 2D (cross-sectional) analog experiments with dry sand using a high resolution digital image correlation (DIC) technique to reveal initiation process of a thrust fault in detail, and identified a number of "weak shear bands" and minor uplift prior to the thrust initiation. The observations suggest that the process can be divided into three stages. Stage 1: characterized by a series of abrupt and short-lived weak shear bands at the location where the thrust will be generated later. Before initiation of the fault, the area to be the hanging wall starts to uplift. Stage 2: defined by the generation of the new thrust and its active displacement. The location of the new thrust seems to be constrained by its associated back-thrust, produced at the foot of the surface slope (by the previous thrust). The activity of the previous thrust turns to zero once the new thrust is generated, but the timing of these two events is not the same. Stage 3: characterized by a constant displacement along the (new) thrust. Similar minor shear bands can be seen in the toe area of the Nankai accretionary prism, SW Japan and we can correlate the along-strike variations in seismic profiles to the model results that show the characteristic features in each thrust development stage.

  20. Measuring g with a classroom pendulum using changes in the pendulum string length

    NASA Astrophysics Data System (ADS)

    Oliveira, V.

    2016-11-01

    This frontline presents a simple apparatus for measuring the acceleration of gravity using a classroom pendulum. Instead of the traditional method where the pendulum period is measured as a function of its length, here the period is measured as a function of changes in the pendulum string length. The major advantage of this method is that students can measure these changes with a greater accuracy than measuring the total pendulum length.

  1. Development of a Thrust Stand to Meet LISA Mission Requirements

    NASA Technical Reports Server (NTRS)

    Willis, William D., III; Zakrzwski, Charles M.; Merkowitz, Stephen M.

    2002-01-01

    A thrust stand has been built to measure the force-noise produced by electrostatic micro-Newton (muN) thrusters. The LISA mission's Disturbance Reduction System (DRS) requires thrusters that are capable of producing continuous thrust levels between 1-100 muN with a resolution of 0.1 muN. The stationary force-noise produced by these thrusters must not exceed 0.1 muN/dHz in the measurement bandwidth 10(exp -4) to 1 Hz. The LISA Thrust Stand (LTS) is a torsion-balance type thrust stand designed to meet the following requirements: stationary force-noise measurements from l0( -4) to 1 Hz with 0.1 muN/dHz sensitivity, absolute thrust measurements from 1-100 muN with better than 0.1 muN resolution, and dynamic thruster response from to 10 Hz. The LTS employs a unique vertical configuration, autocollimator for angular position measurements, and electrostatic actuators that are used for dynamic pendulum control and null-mode measurements. Force-noise levels are measured indirectly by characterizing the thrust stand as a spring-mass system. The LTS was initially designed to test the indium FEEP thruster developed by the Austrian Research Center in Seibersdorf (ARCS), but can be modified for testing other thrusters of this type.

  2. Development of A Thrust Stand to Meet LISA Mission Requirements

    NASA Technical Reports Server (NTRS)

    Willis, William D., III; Zakrzwski, C. M.; Bauer, Frank H. (Technical Monitor)

    2002-01-01

    A thrust stand has been built and tested that is capable of measuring the force-noise produced by electrostatic micro-Newton (micro-Newton) thrusters. The LISA mission's Disturbance Reduction System (DRS) requires thrusters that are capable of producing continuous thrust levels between 1-100 micro-Newton with a resolution of 0.1 micro-Newton. The stationary force-noise produced by these thrusters must not exceed 0.1 pN/4Hz in a 10 Hz bandwidth. The LISA Thrust Stand (LTS) is a torsion-balance type thrust stand designed to meet the following requirements: stationary force-noise measurements from 10(exp-4) to 1 Hz with 0.1 micro-Newton resolution, absolute thrust measurements from 1-100 micro-Newton with better than 0.1 micro-Newton resolution, and dynamic thruster response from 10(exp -4) to 10 Hz. The ITS employs a unique vertical configuration, autocollimator for angular position measurements, and electrostatic actuators that are used for dynamic pendulum control and null-mode measurements. Force-noise levels are measured indirectly by characterizing the thrust stand as a spring-mass system. The LTS was initially designed to test the indium FEEP thruster developed by the Austrian Research Center in Seibersdorf (ARCS), but can be modified for testing other thrusters of this type.

  3. Determination of tectonic shortening rates from progressively deformed flights of terraces above the Chelungpu and Changhua thrust ramps, Taiwan

    NASA Astrophysics Data System (ADS)

    Yue, L.; Suppe, J.

    2007-12-01

    The Chelungpu and Changhua thrust ramps in central Taiwan show contrasting hanging-wall structural geometries that suggest different kinematics, even though they involve the same stratigraphic section and basal detachment. The Chelungpu thrust shows a classic fault-bend folding geometry, which predicts folding solely by kink-band migration, whereas the hanging wall of the Changhua thrust demonstrates the characteristic geometry of a shear fault-bend folding, which predicts a progressive limb rotation with minor kink-band migration. We test the kinematic predictions of classic and shear fault-bend folding theories by analyzing deformed flights of terraces and coseismic displacements in the Mw=7.6 Chi-Chi earthquake. The Chelungpu terraces shows differences in uplift magnitudes across active axial surfaces that closely approximate the assumptions of classical fault-bend folding, including constant fault-parallel displacement, implying conservation of bed length, and hanging-wall uplift rates that are proportional to the sine of the fault dip. This provides a basis for precise determination of total fault slip since the formation of each terrace and combined with terrace dating gives long- term fault-slip rates for the Chelungpu thrust system. An estimation of the long term fault-slip rate of the Chelungpu thrust in the north Hsinshe terrace yields 15 mm/yr over the last 55 ka, which is similar to the combined shortening rate of 16 mm/y on the Chelungpu and Chushiang thrusts in the south estimated by Simoes et al. in 2006. Evan the coseismic displacements of 3 to 9m in the Chi-Chi earthquake are approximately fault-parallel but have additional transient components that are averaged out over the timescale of terrace deformation, which represents 10-100 large earthquakes. In contrast, terrace deformation in the hanging wall of the Changhua thrust ramp shows progressive limb rotation, as predicted from its shear fault-bend folding geometry, which combined with terrace

  4. Determination of tectonic shortening rates from progressively deformed flights of terraces above the Chelungpu and Changhua thrust ramps, Taiwan

    NASA Astrophysics Data System (ADS)

    Yue, L.; Suppe, J.

    2004-12-01

    The Chelungpu and Changhua thrust ramps in central Taiwan show contrasting hanging-wall structural geometries that suggest different kinematics, even though they involve the same stratigraphic section and basal detachment. The Chelungpu thrust shows a classic fault-bend folding geometry, which predicts folding solely by kink-band migration, whereas the hanging wall of the Changhua thrust demonstrates the characteristic geometry of a shear fault-bend folding, which predicts a progressive limb rotation with minor kink-band migration. We test the kinematic predictions of classic and shear fault-bend folding theories by analyzing deformed flights of terraces and coseismic displacements in the Mw=7.6 Chi-Chi earthquake. The Chelungpu terraces shows differences in uplift magnitudes across active axial surfaces that closely approximate the assumptions of classical fault-bend folding, including constant fault-parallel displacement, implying conservation of bed length, and hanging-wall uplift rates that are proportional to the sine of the fault dip. This provides a basis for precise determination of total fault slip since the formation of each terrace and combined with terrace dating gives long- term fault-slip rates for the Chelungpu thrust system. An estimation of the long term fault-slip rate of the Chelungpu thrust in the north Hsinshe terrace yields 15 mm/yr over the last 55 ka, which is similar to the combined shortening rate of 16 mm/y on the Chelungpu and Chushiang thrusts in the south estimated by Simoes et al. in 2006. Evan the coseismic displacements of 3 to 9m in the Chi-Chi earthquake are approximately fault-parallel but have additional transient components that are averaged out over the timescale of terrace deformation, which represents 10-100 large earthquakes. In contrast, terrace deformation in the hanging wall of the Changhua thrust ramp shows progressive limb rotation, as predicted from its shear fault-bend folding geometry, which combined with terrace

  5. Thrusting and back-thrusting as post-emplacement kinematics of the Almora klippe: Insights from Low-temperature thermochronology

    NASA Astrophysics Data System (ADS)

    Patel, R. C.; Singh, Paramjeet; Lal, Nand

    2015-06-01

    Crystalline klippen over the Lesser Himalayan Sequence (LHS) in the Kumaon and Garhwal regions of NW-Himalaya, are the representative of southern portion of the Main Central Thrust (MCT) hanging wall. These were tectonically transported over the juxtaposed thrust sheets (Berinag, Tons and Ramgarh) of the LHS zone along the MCT. These klippen comprise of NW-SE trending synformal folded thrust sheet bounded by thrusts in the south and north. In the present study, the exhumation histories of two well-known klippen namely Almora and Baijnath, and the Ramgarh thrust sheet, in the Kumaon and Garhwal regions vis-a-vis Himalayan orogeny have been investigated using Apatite Fission Track (AFT) ages. Along a ~ 60 km long orogen perpendicular transect across the Almora klippe and the Ramgarh thrust sheet, 16 AFT cooling ages from the Almora klippe and 2 from the Ramgarh thrust sheet have been found to range from 3.7 ± 0.8 to 13.2 ± 2.7 Ma, and 6.3 ± 0.8 to 7.2 ± 1.0 Ma respectively. From LHS meta-sedimentary rocks only a single AFT age of 3.6 ± 0.8 Ma could be obtained. Three AFT ages from the Baijnath klippe range between 4.7 ± 0.5 and 6.6 ± 0.8 Ma. AFT ages and exhumation rates of different klippen show a dynamic coupling between tectonic and erosion processes in the Kumaon and Garhwal regions of NW-Himalaya. However, the tectonic processes play a dominant role in controlling the exhumation. Thrusting and back thrusting within the Almora klippe and Ramgarh thrust sheet are the post-emplacement kinematics that controlled the exhumation of the Almora klippe. Combining these results with the already published AFT ages from the crystalline klippen and the Higher Himalayan Crystalline (HHC), the kinematics of emplacement of the klippen over the LHS and exhumation pattern across the MCT in the Kumaon and Garhwal regions of NW-Himalaya have been investigated.

  6. Geometry of a large-scale low-angle mid-crustal thrust (Woodroffe Thrust, Central Australia)

    NASA Astrophysics Data System (ADS)

    Wex, Sebastian; Mancktelow, Neil S.; Hawemann, Friedrich; Pennacchioni, Giorgio; Camacho, Alfredo

    2015-04-01

    Young orogens, such as the Alps, mainly expose the upper part of the continental crust and it is not possible to follow large-scale thrusts (e.g. the Glarus Thrust) to great depth in order to study their changing rheological behavior. This knowledge, however, is crucial for determining the overall kinematic and dynamic response during collision, as middle to lower crustal rocks represent the major part of the total crustal section. Information from deeper parts of the continental crust can only be obtained directly by investigating regions where these levels are now exhumed. The Musgrave Ranges in Central Australia is a very well exposed, semi-desert area, in which numerous large-scale shear zones developed during the Petermann Orogeny around 550 Ma. The most prominent structure is the ˜400 km long E-W trending Woodroffe Thrust, which placed ˜1.2 Ga granulites onto similarly-aged amphibolite and granulite facies gneisses along a generally south-dipping thrust plane with a top-to-north shear sense. Geothermobarometric calculations on the associated mylonites established that the structure developed under mid-crustal conditions (500-650°C, 0.8-1 GPa). Regional P/T variations in the direction of thrusting are small, but show trends consistent with the south-dipping orientation of the thrust plane, which predicts deeper levels and a higher metamorphic grade in the south than in the north. They imply a very low gradient of only around 3°C/km for a distance of some 30 km in the movement direction of the thrust. Combined with a geothermal gradient on the order of 20°C/km, calculated from four separate P/T estimates from the hanging wall and footwall, this regional gradient indicates that the Woodroffe Thrust was originally shallow-dipping at an average angle of only around 9°. This suggests that upper crustal brittle thrusts do not necessarily steepen into the middle to lower crust, but can define very shallow-dipping, large-scale planar features, with dimensions in

  7. Precarious rock and overturned transformer evidence for ground shaking in the Ms 7.7 Kern County earthquake: An analog for disastrous shaking from a major thrust fault in the Los Angeles basin

    USGS Publications Warehouse

    Brune, J.N.; Anooshehpoor, A.; Shi, B.; Zheng, Yen

    2004-01-01

    Precariously balanced rocks and overturned transformers in the vicinity of the White Wolf fault provide constraints on ground motion during the 1952 Ms 7.7 Kern County earthquake, a possible analog for an anticipated large earthquake in the Los Angeles basin (Shaw et al., 2002; Dolan et al., 2003). On the northeast part of the fault preliminary estimates of ground motion on the footwall give peak accelerations considerably lower than predicted by standard regression curves. On the other hand, on the hanging-wall, there is evidence of intense ground shattering and lack of precarious rocks, consistent with the intense hanging-wall accelerations suggested by foam-rubber modeling, numerical modeling, and observations from previous thrust fault earthquakes. There is clear evidence of the effects of rupture directivity in ground motions on the hanging-wall side of the fault (from both precarious rocks and numerical simulations). On the southwest part of the fault, which is covered by sediments, the thrust fault did not reach the surface ("blind" thrust). Overturned and damaged transformers indicate significant transfer of energy from the hanging wall to the footwall, an effect that may not be as effective when the rupture reaches the surface (is not "blind"). Transformers near the up-dip projection of the fault tip have been damaged or overturned on both the hanging-wall and footwall sides of the fault. The transfer of energy is confirmed in a numerical lattice model and could play an important role in a similar situation in Los Angeles. We suggest that the results of this study can provide important information for estimating the effects of a large thrust fault rupture in the Los Angeles basin, specially given the fact that there is so little instrumental data from large thrust fault earthquakes.

  8. Thrust faults and related structures in the crater floor of Mount St. Helens volcano, Washington

    USGS Publications Warehouse

    Chadwick, W.W.; Swanson, D.A.

    1989-01-01

    A lava dome was built in the crater of Mount St. Helens by intermittent intrusion and extrusion of dacite lava between 1980 and 1986. Spectacular ground deformation was associated with the dome-building events and included the development of a system of radial cracks and tangential thrust faults in the surrounding crater floor. These cracks and thrusts, best developed and studied in 1981-1982, formed first and, as some evolved into strike-slip tear faults, influenced the subsequent geometry of thrusting. Once faulting began, deformation was localized near the thrust scarps and their bounding tear faults. The magnitude of displacements systematically increased before extrusions, whereas the azimuth and inclination of displacements remained relatively constant. The thrust-fault scarps were bulbous in profile, lobate in plan, and steepened during continued fault movement. The hanging walls of each thrust were increasingly disrupted as cumulative fault slip increased. -from Authors

  9. Initiation of a thrust fault revealed by analog experiments

    NASA Astrophysics Data System (ADS)

    Dotare, Tatsuya; Yamada, Yasuhiro; Adam, Juergen; Hori, Takane; Sakaguchi, Hide

    2016-08-01

    To reveal in detail the process of initiation of a thrust fault, we conducted analog experiments with dry quartz sand using a high-resolution digital image correlation technique to identify minor shear-strain patterns for every 27 μm of shortening (with an absolute displacement accuracy of 0.5 μm). The experimental results identified a number of "weak shear bands" and minor uplift prior to the initiation of a thrust in cross-section view. The observations suggest that the process is closely linked to the activity of an adjacent existing thrust, and can be divided into three stages. Stage 1 is characterized by a series of abrupt and short-lived weak shear bands at the location where the thrust will subsequently be generated. The area that will eventually be the hanging wall starts to uplift before the fault forms. The shear strain along the existing thrust decreases linearly during this stage. Stage 2 is defined by the generation of the new thrust and active displacements along it, identified by the shear strain along the thrust. The location of the new thrust may be constrained by its back-thrust, generally produced at the foot of the surface slope. The activity of the existing thrust falls to zero once the new thrust is generated, although these two events are not synchronous. Stage 3 of the thrust is characterized by a constant displacement that corresponds to the shortening applied to the model. Similar minor shear bands have been reported in the toe area of the Nankai accretionary prism, SW Japan. By comparing several transects across this subduction margin, we can classify the lateral variations in the structural geometry into the same stages of deformation identified in our experiments. Our findings may also be applied to the evaluation of fracture distributions in thrust belts during unconventional hydrocarbon exploration and production.

  10. Was Himalayan normal faulting triggered by initiation of the Ramgarh-Munsiari Thrust?

    USGS Publications Warehouse

    Robinson, Delores M.; Pearson, Ofori N.

    2013-01-01

    The Ramgarh–Munsiari thrust is a major orogen-scale fault that extends for more than 1,500 km along strike in the Himalayan fold-thrust belt. The fault can be traced along the Himalayan arc from Himachal Pradesh, India, in the west to eastern Bhutan. The fault is located within the Lesser Himalayan tectonostratigraphic zone, and it translated Paleoproterozoic Lesser Himalayan rocks more than 100 km toward the foreland. The Ramgarh–Munsiari thrust is always located in the proximal footwall of the Main Central thrust. Northern exposures (toward the hinterland) of the thrust sheet occur in the footwall of the Main Central thrust at the base of the high Himalaya, and southern exposures (toward the foreland) occur between the Main Boundary thrust and Greater Himalayan klippen. Although the metamorphic grade of rocks within the Ramgarh–Munsiari thrust sheet is not significantly different from that of Greater Himalayan rock in the hanging wall of the overlying Main Central thrust sheet, the tectonostratigraphic origin of the two different thrust sheets is markedly different. The Ramgarh–Munsiari thrust became active in early Miocene time and acted as the roof thrust for a duplex system within Lesser Himalayan rocks. The process of slip transfer from the Main Central thrust to the Ramgarh–Munsiari thrust in early Miocene time and subsequent development of the Lesser Himalayan duplex may have played a role in triggering normal faulting along the South Tibetan Detachment system.

  11. Hang cleans and hang snatches produce similar improvements in female collegiate athletes

    PubMed Central

    Ayers, JL; DeBeliso, M; Sevene, TG

    2016-01-01

    Olympic weightlifting movements and their variations are believed to be among the most effective ways to improve power, strength, and speed in athletes. This study investigated the effects of two Olympic weightlifting variations (hang cleans and hang snatches), on power (vertical jump height), strength (1RM back squat), and speed (40-yard sprint) in female collegiate athletes. 23 NCAA Division I female athletes were randomly assigned to either a hang clean group or hang snatch group. Athletes participated in two workout sessions a week for six weeks, performing either hang cleans or hang snatches for five sets of three repetitions with a load of 80-85% 1RM, concurrent with their existing, season-specific, resistance training program. Vertical jump height, 1RM back squat, and 40-yard sprint all had a significant, positive improvement from pre-training to post-training in both groups (p≤0.01). However, when comparing the gain scores between groups, there was no significant difference between the hang clean and hang snatch groups for any of the three dependent variables (i.e., vertical jump height, p=0.46; 1RM back squat, p=0.20; and 40-yard sprint, p=0.46). Short-term training emphasizing hang cleans or hang snatches produced similar improvements in power, strength, and speed in female collegiate athletes. This provides strength and conditioning professionals with two viable programmatic options in athletic-based exercises to improve power, strength, and speed. PMID:27601779

  12. Hang cleans and hang snatches produce similar improvements in female collegiate athletes.

    PubMed

    Ayers, J L; DeBeliso, M; Sevene, T G; Adams, K J

    2016-09-01

    Olympic weightlifting movements and their variations are believed to be among the most effective ways to improve power, strength, and speed in athletes. This study investigated the effects of two Olympic weightlifting variations (hang cleans and hang snatches), on power (vertical jump height), strength (1RM back squat), and speed (40-yard sprint) in female collegiate athletes. 23 NCAA Division I female athletes were randomly assigned to either a hang clean group or hang snatch group. Athletes participated in two workout sessions a week for six weeks, performing either hang cleans or hang snatches for five sets of three repetitions with a load of 80-85% 1RM, concurrent with their existing, season-specific, resistance training program. Vertical jump height, 1RM back squat, and 40-yard sprint all had a significant, positive improvement from pre-training to post-training in both groups (p≤0.01). However, when comparing the gain scores between groups, there was no significant difference between the hang clean and hang snatch groups for any of the three dependent variables (i.e., vertical jump height, p=0.46; 1RM back squat, p=0.20; and 40-yard sprint, p=0.46). Short-term training emphasizing hang cleans or hang snatches produced similar improvements in power, strength, and speed in female collegiate athletes. This provides strength and conditioning professionals with two viable programmatic options in athletic-based exercises to improve power, strength, and speed.

  13. Development of a Transient Thrust Stand with Sub-Millisecond Resolution

    NASA Astrophysics Data System (ADS)

    Spells, Corbin Fraser

    The transient thrust stand has been developed to offer 0.1 ms time resolved thrust measurements for the characterization of mono-propellant thrusters for spacecraft applications. Results demonstrated that the system was capable of obtaining dynamic thrust profiles within 5 % and 0.1 ms. Measuring and improving the thrust performance of mono-propellant thrusters will require 1 ms time resolved forces to observe shot-to-shot variations, oscillations, and minimum impulse bits. To date, no thrust stand is capable of measuring up to 22 N forces with a time response of up to 10 kHz. Calibration forces up to 22 N with a frequency response greater than 0.1 ms were obtained using voice coil actuators. Steady state and low frequency measurements were obtained using displacement and velocity sensors and were combined with high frequency vibration modes measured using several accelerometers along the thrust stand arm. The system uses a predictor-based subspace algorithm to obtain a high order state space model of the thrust stand capable of defining the high frequency vibration modes. The high frequency vibration modes are necessary to provide the time response of 0.1 ms. Thruster forces are estimated using an augmented Kalman filter to combine sensor traces from four accelerometers, a velocity sensor, and displacement transducer. Combining low frequency displacement data with high frequency acceleration measurements provides accurate force data across a broad time domain. The transient thrust stand uses a torsional pendulum configuration to minimize influence from external vibration and achieve high force resolution independent of thruster weight.

  14. Comparison of fault-related folding algorithms to restore a fold-and-thrust-belt

    NASA Astrophysics Data System (ADS)

    Brandes, Christian; Tanner, David

    2017-04-01

    Fault-related folding means the contemporaneous evolution of folds as a consequence of fault movement. It is a common deformation process in the upper crust that occurs worldwide in accretionary wedges, fold-and-thrust belts, and intra-plate settings, in either strike-slip, compressional, or extensional regimes. Over the last 30 years different algorithms have been developed to simulate the kinematic evolution of fault-related folds. All these models of fault-related folding include similar simplifications and limitations and use the same kinematic behaviour throughout the model (Brandes & Tanner, 2014). We used a natural example of fault-related folding from the Limón fold-and-thrust belt in eastern Costa Rica to test two different algorithms and to compare the resulting geometries. A thrust fault and its hanging-wall anticline were restored using both the trishear method (Allmendinger, 1998; Zehnder & Allmendinger, 2000) and the fault-parallel flow approach (Ziesch et al. 2014); both methods are widely used in academia and industry. The resulting hanging-wall folds above the thrust fault are restored in substantially different fashions. This is largely a function of the propagation-to-slip ratio of the thrust, which controls the geometry of the related anticline. Understanding the controlling factors for anticline evolution is important for the evaluation of potential hydrocarbon reservoirs and the characterization of fault processes. References: Allmendinger, R.W., 1998. Inverse and forward numerical modeling of trishear fault propagation folds. Tectonics, 17, 640-656. Brandes, C., Tanner, D.C. 2014. Fault-related folding: a review of kinematic models and their application. Earth Science Reviews, 138, 352-370. Zehnder, A.T., Allmendinger, R.W., 2000. Velocity field for the trishear model. Journal of Structural Geology, 22, 1009-1014. Ziesch, J., Tanner, D.C., Krawczyk, C.M. 2014. Strain associated with the fault-parallel flow algorithm during kinematic fault

  15. Using U-Th-Pb petrochronology to determine rates of ductile thrusting: Time windows into the Main Central Thrust, Sikkim Himalaya

    NASA Astrophysics Data System (ADS)

    Mottram, Catherine M.; Parrish, Randall R.; Regis, Daniele; Warren, Clare J.; Argles, Tom W.; Harris, Nigel B. W.; Roberts, Nick M. W.

    2015-07-01

    Quantitative constraints on the rates of tectonic processes underpin our understanding of the mechanisms that form mountains. In the Sikkim Himalaya, late structural doming has revealed time-transgressive evidence of metamorphism and thrusting that permit calculation of the minimum rate of movement on a major ductile fault zone, the Main Central Thrust (MCT), by a novel methodology. U-Th-Pb monazite ages, compositions, and metamorphic pressure-temperature determinations from rocks directly beneath the MCT reveal that samples from 50 km along the transport direction of the thrust experienced similar prograde, peak, and retrograde metamorphic conditions at different times. In the southern, frontal edge of the thrust zone, the rocks were buried to conditions of 550°C and 0.8 GPa between 21 and 18 Ma along the prograde path. Peak metamorphic conditions of 650°C and 0.8-1.0 GPa were subsequently reached as this footwall material was underplated to the hanging wall at 17-14 Ma. This same process occurred at analogous metamorphic conditions between 18-16 Ma and 14.5-13 Ma in the midsection of the thrust zone and between 13 Ma and 12 Ma in the northern, rear edge of the thrust zone. Northward younging muscovite 40Ar/39Ar ages are consistently 4 Ma younger than the youngest monazite ages for equivalent samples. By combining the geochronological data with the >50 km minimum distance separating samples along the transport axis, a minimum average thrusting rate of 10 ± 3 mm yr-1 can be calculated. This provides a minimum constraint on the amount of Miocene India-Asia convergence that was accommodated along the MCT.

  16. Structural styles of the Guess Creek fault block beneath the Great Smoky thrust sheet, Blount County, Tennessee

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Carter, M.W.; Davidson, G.L.; Heller, J.A.

    1993-03-01

    A road cut along US 321 N, approximately 1 km NW of Walland, TN, exposes a previously unexposed complexly deformed section of Middle Ordovician clastic wedge [Chickamauga Group, Sevier Shale] sedimentary rocks. It provides an excellent opportunity to analyze both the lithologic assemblages and complex folding and faulting beneath the Great Smoky thrust sheet. Arkosic quartzite of the Lower Cambrian Cochran Conglomerate [Chilhowee Group], has been thrust over weaker Sevier Shale in the hanging wall of the Guess Creek fault. Regionally, the Great Smoky fault separates metamorphosed Precambrian to Lower Cambrian clastic shelf, slope, and rift facies rocks of themore » western Blue Ridge from Cambro-Ordovician carbonate shelf and orogenic wedge deposits of the foreland fold and thrust belt. West of the Great Smoky fault, the Guess Creek fault has been interpreted to floor duplexed Cambro-Ordovician rocks exposed in windows beneath the Great Smoky thrust sheet in the vicinity of the Great Smoky Mountains National Park. The Sevier Shale here consists of variably cleaved shale, siltstone, sandstone, and conglomerate. It exhibits a variety of fold styles throughout the exposure, ranging from predominantly noncylindrical tight folds to broad, open structures. A weak axial-planar pencil cleavage is developed in the Middle Ordovician shale and siltstone, along with a secondary cleavage that transects the axial surfaces of the folds. Minor thrust faults within the Sevier Shale appear to have formed by propagation through tightened fold hinges or bedding-parallel slip. The fold pattern observed in the roadcut appears to be partly the result of movement along a tear fault that broke both the hanging wall and footwall of the Great Smoky thrust sheet after emplacement. Slickenline orientations along minor thrust surfaces in the Cochran Conglomerate indicate eastward-directed, oblique-slip movement of the tear fault.« less

  17. The Pendulum Equation

    ERIC Educational Resources Information Center

    Fay, Temple H.

    2002-01-01

    We investigate the pendulum equation [theta] + [lambda][squared] sin [theta] = 0 and two approximations for it. On the one hand, we suggest that the third and fifth-order Taylor series approximations for sin [theta] do not yield very good differential equations to approximate the solution of the pendulum equation unless the initial conditions are…

  18. Direct measurement of the impulse in a magnetic thrust chamber system for laser fusion rocket

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Maeno, Akihiro; Yamamoto, Naoji; Nakashima, Hideki

    2011-08-15

    An experiment is conducted to measure an impulse for demonstrating a magnetic thrust chamber system for laser fusion rocket. The impulse is produced by the interaction between plasma and magnetic field. In the experiment, the system consists of plasma and neodymium permanent magnets. The plasma is created by a single-beam laser aiming at a polystyrene spherical target. The impulse is 1.5 to 2.2 {mu}Ns by means of a pendulum thrust stand, when the laser energy is 0.7 J. Without magnetic field, the measured impulse is found to be zero. These results indicate that the system for generating impulse is working.

  19. Thrust Slip Rates as a Control on the Presence and Spatial Distribution of High Metamorphic Heating Rates in Collisional Systems: The "Hot Iron" Model Revisited

    NASA Astrophysics Data System (ADS)

    Thigpen, R.; Ashley, K. T.; Law, R. D.; Mako, C. A.

    2017-12-01

    In natural systems, two key observations indicate that major strain discontinuities such as faults and shear zones should play a fundamental role in orogenic thermal evolution: (1) Large faults and shear zones often separate components of the composite orogen that have experienced broadly different thermal and deformational histories, and (2) quantitative metamorphic and diffusional studies indicate that heating rates are much faster and the duration of peak conditions much shorter in natural collisional systems than those predicted by numerical continuum deformation models. Because heat transfer processes such as conduction usually operate at much slower time scales than rates of other tectonic processes, thermal evolution is often transient and thus can be strongly influenced by tectonic disturbances that occur at rates much faster than thermal relaxation. Here, we use coupled thermal-mechanical finite element models of thrust faults to explore how fault slip rate may fundamentally influence the thermal evolution of individual footwall and hanging wall thrust slices. The model geometry involves a single crustal-scale thrust with a dip of 25° that is translated up the ramp at average velocities of 20, 35, and 50 km Myr-1, interpreted to represent average to relatively high slip rates observed in many collisional systems. Boundary conditions include crustal radioactive heat production, basal mantle heat flow, and surface erosion rates that are a function of thrust rate and subsequent topography generation. In the models, translation of the hanging wall along the crustal-scale detachment results in erosion, exhumation, and retrograde metamorphism of the emerging hanging wall topography and coeval burial, `hot iron' heating, and prograde metamorphism of the thrust footwall. Thrust slip rates of 20, 35, and 50 km Myr-1 yield maximum footwall heating rates ranging from 55-90° C Myr-1 and maximum hanging wall cooling rates of 138-303° C Myr-1. These relatively rapid

  20. Swinging into Pendulums with a Background.

    ERIC Educational Resources Information Center

    Barrow, Lloyd H.; Cook, Julie

    1993-01-01

    Explains reasons why students have misconceptions concerning pendulum swings. Presents a series of 10 pendulum task cards to provide middle-school students with a solid mental scaffolding upon which to build their knowledge of kinetic energy and pendulums. (PR)

  1. Testing and evaluation of the LES-6 pulsed plasma thruster by means of a torsion pendulum system

    NASA Technical Reports Server (NTRS)

    Hamidian, J. P.; Dahlgren, J. B.

    1973-01-01

    Performance characteristics of the LES-6 pulsed plasma thruster over a range of input conditions were investigated by means of a torsion pendulum system. Parameters of particular interest included the impulse bit and time average thrust (and their repeatability), specific impulse, mass ablated per discharge, specific thrust, energy per unit area, efficiency, and variation of performance with ignition command rate. Intermittency of the thruster as affected by input energy and igniter resistance were also investigated. Comparative experimental data correlation with the data presented. The results of these tests indicate that the LES-6 thruster, with some identifiable design improvements, represents an attractive reaction control thruster for attitude contol applications on long-life spacecraft requiring small metered impulse bits for precise pointing control of science instruments.

  2. Pendulum and modified pendulum appliances for maxillary molar distalization in Class II malocclusion - a systematic review.

    PubMed

    Al-Thomali, Yousef; Basha, Sakeenabi; Mohamed, Roshan Noor

    2017-08-01

    The main purpose of the present systematic review was to evaluate the quantitative effects of the pendulum appliance and modified pendulum appliances for maxillary molar distalization in Class II malocclusion. Our systematic search included MEDLINE, EMBASE, CINAHL, PsychINFO, Scopus and key journals and review articles; the date of the last search was 30 January 2017. We graded the methodological quality of the studies by means of the Quality Assessment Tool for Quantitative Studies, developed for the Effective Public Health Practice Project (EPHPP). In total, 203 studies were identified for screening, and 25 studies were eligible. The quality assessment rated four (16%) of the study as being of strong quality and 21 (84%) of these studies as being of moderate quality. The pendulum appliances showed mean molar distalization of 2-6.4 mm, distal tipping of molars from 6.67° to 14.50° and anchorage loss with mean premolar and incisor mesial movement of 1.63-3.6 mm and 0.9-6.5 mm, respectively. The bone anchored pendulum appliances (BAPAs) showed mean molar distalization of 4.8-6.4 mm, distal tipping of molars from 9° to 11.3° and mean premolar distalization of 2.7-5.4 mm. Pendulum and modified pendulum appliances are effective in molar distalization. Pendulum appliance with K-loop modification, implant supported pendulum appliance and BAPA significantly reduced anchorage loss of the anterior teeth and distal tipping of the molar teeth.

  3. Revolutionizing Space Propulsion Through the Characterization of Iodine as Fuel for Hall-Effect Thrusters

    DTIC Science & Technology

    2011-03-01

    for controlled thruster operation at varying conditions. An inverted pendulum was used to take thrust measurements. Thrust to power ratio, anode...for comparison will include thrust, T. Thrust 21 can be measured by a sensitive inverted pendulum thrust stand. Specific impulse would be...to this pressure. III.4 Diagnostic Equipment The instrument used to take thrust measurements was the Busek T8 inverted pendulum thrust stand [13

  4. A miniature electrothermal thruster using microwave-excited microplasmas: Thrust measurement and its comparison with numerical analysis

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Takao, Yoshinori; Eriguchi, Koji; Ono, Kouichi

    2007-06-15

    A microplasma thruster has been developed, consisting of a cylindrical microplasma source 10 mm long and 1.5 mm in inner diameter and a conical micronozzle 1.0-1.4 mm long with a throat of 0.12-0.2 mm in diameter. The feed or propellant gas employed is Ar at pressures of 10-100 kPa, and the surface-wave-excited plasma is established by 4.0 GHz microwaves at powers of <10 W. The thrust has been measured by a combination of target and pendulum methods, exhibiting the performance improved by discharging the plasma. The thrust obtained is 1.4 mN at an Ar gas flow rate of 60 SCCMmore » (1.8 mg/s) and a microwave power of 6 W, giving a specific impulse of 79 s and a thrust efficiency of 8.7%. The thrust and specific impulse are 0.9 mN and 51 s, respectively, in cold-gas operation. A comparison with numerical analysis indicates that the pressure thrust contributes significantly to the total thrust at low gas flow rates, and that the micronozzle tends to have an isothermal wall rather than an adiabatic.« less

  5. Dynamic characteristics of rotor blades with pendulum absorbers

    NASA Technical Reports Server (NTRS)

    Murthy, V. R.; Goglia, G. L.

    1977-01-01

    The point transmission matrix for a vertical plane pendulum on a rotating blade undergoing combined flapwise bending, and chordwise bending and torsion is derived. The equilibrium equation of the pendulum is linearized for small oscillations about the steady state. A FORTRAN program was written for the case of a vertical plane pendulum attached to a uniform blade with flapwise bending degree of freedom for cantilever boundary conditions. The frequency has a singular value right at the uncoupled pendulum natural frequency and thus introduces two frequencies corresponding to the nearest natural frequency of the blade without pendulum. In both of these modes it was observed that the pendulum deflection is large. One frequency can be thought of as a coupled pendulum frequency and the other as a coupled bending and pendulum frequency.

  6. Low grade metamorphism fluid circulation in a sedimentary environment thrust fault zone: properties and modeling

    NASA Astrophysics Data System (ADS)

    Trincal, Vincent; Lacroix, Brice; Buatier, Martine D.; Charpentier, Delphine; Labaume, Pierre; Lahfid, Abdeltif

    2014-05-01

    In fold-and-thrust belts, shortening is mainly accommodated by thrust faults that can constitute preferential pathways for fluid circulation. The present study focuses on the Pic de Port Vieux thrust, a second-order thrust related to major Gavarnie thrust in the Axial Zone of the Pyrenees. The fault juxtaposes lower Triassic red siltstones and sandstones in the hanging-wall and Upper Cretaceous limestone in the footwall. A dense network of synkinematic quartz-chlorite veins is present in outcrop and allows to unravel the nature of the fluid that circulated in the fault zone. The hanging wall part of fault zone comprises a core which consists of intensely foliated phyllonite; the green color of this shear zone is related to the presence of abundant newly-formed chlorite. Above, the damage zone consists of red pelites and sandstones. Both domains feature kinematic markers like S-C type shear structures associated with shear and extension quartz-chlorite veins and indicate a top to the south displacement. In the footwall, the limestone display increasing mylonitization and marmorization when getting close to the contact. In order to investigate the mineralogical and geochemical changes induced by deformation and subsequent fluid flow, sampling was conducted along a complete transect of the fault zone, from the footwall limestone to the red pelites of the hanging wall. In the footwall limestone, stable isotope and Raman spectroscopy analyzes were performed. The strain gradient is strongly correlated with a high decrease in δ18OV PDB values (from -5.5 to -14) when approaching the thrust (i.e. passing from limestone to marble) while the deformation temperatures estimated with Raman spectroscopy on carbon remain constant around 300° C. These results suggest that deformation is associated to a dynamic calcite recrystallization of carbonate in a fluid-open system. In the hanging wall, SEM observations, bulk chemical XRF analyses and mineral quantification from XRD

  7. Conical Pendulum--Linearization Analyses

    ERIC Educational Resources Information Center

    Dean, Kevin; Mathew, Jyothi

    2016-01-01

    A theoretical analysis is presented, showing the derivations of seven different linearization equations for the conical pendulum period "T", as a function of radial and angular parameters. Experimental data obtained over a large range of fixed conical pendulum lengths (0.435 m-2.130 m) are plotted with the theoretical lines and…

  8. Piaget and the Pendulum

    NASA Astrophysics Data System (ADS)

    Bond, Trevor G.

    Piaget's investigations into children's understanding of the laws governing the movement of a simple pendulum were first reported in 1955 as part of a report into how children's knowledge of the physical world changes during development. Chapter 4 of Inhelder & Piaget (1955/1958) entitled `The Oscillation of a Pendulum and the Operations of Exclusion'' demonstrated how adolescents could construct the experimental strategies necessary to isolate each of the variables, exclude the irrelevant factors and conclude concerning the causal role of length. This became one of the most easily replicable tasks from the Genevan school and was used in a number of important investigations to detect the onset of formal operational thinking. While it seems that the pendulum investigation fits nicely into Piaget's sequence of studies of concepts such as time, distance and speed suggested to him by Einstein, more recent research (Bond 2001) shows Inhelder to be directly responsible for the investigations into children's induction of physical laws. The inter-relationship between the pendulum problem, developing thought and scientific method is revealed in a number of Genevan and post-Piagetian investigations.

  9. The Doppler Pendulum Experiment

    ERIC Educational Resources Information Center

    Lee, C. K.; Wong, H. K.

    2011-01-01

    An experiment to verify the Doppler effect of sound waves is described. An ultrasonic source is mounted at the end of a simple pendulum. As the pendulum swings, the rapid change of frequency can be recorded by a stationary receiver using a simple frequency-to-voltage converter. The experimental results are in close agreement with the Doppler…

  10. Segmented Hoop as a Physical Pendulum

    ERIC Educational Resources Information Center

    Layton, William; Rodriguez, Nuria

    2013-01-01

    An interesting demonstration with a surprising result is to suspend a hoop from a point near its edge and set it swinging in a vertical plane as a pendulum. If a simple pendulum of length equal to the diameter of the hoop is set oscillating at the same time, the two will have nearly the same period. However, the real surprise is if the pendulum is…

  11. Spatial heterogeneity of stress and driving fluid pressure ratio inferred from mineral vein orientation along seismogenic megasplay fault (Nobeoka Thrust, Japan)

    NASA Astrophysics Data System (ADS)

    Otsubo, M.; Miyakawa, A.; Kawasaki, R.; Sato, K.; Yamaguchi, A.; Kimura, G.

    2015-12-01

    Fault zones including the damage zone and the fault core have a controlling influence on the crust's mechanical and fluid flow properties (e.g., Faulkner et al., 2010). In the Nankai subduction zone, southwest Japan, the velocity structures indicate the contrast of the pore fluid pressure between hanging wall and footwall of the megasplay fault (Tsuji et al., 2014). Nobeoka Thrust, which is an on-land example of an ancient megasplay fault, provides an excellent record of deformation and fluid flow at seismogenic depths (Kondo et al., 2005; Yamaguchi et al., 2011). Yamaguchi et al. (2011) showed that the microchemical features of syn-tectonic mineral veins along fault zones of the Nobeoka Thrust. The inversion approaches by using the mineral vein orientations can provide stress regimes and fluid driving pressure ratio (Jolly and Sanderson, 1997) at the time of fracture opening (e.g., Yamaji et al., 2010). In this study, we show (1) stress regimes in co- and post seismic period of the Nobeoka Thrust and (2) spatial heterogeneity of the fluid driving pressure ratio by using the mineral veins (extension veins) around the fault zone in the Nobeoka Thrust. We applied the inversion approach proposed by Sato et al. (2013) to estimate stress regimes by using the mineral vein orientations. The estimated stresses are the normal faulting stress regimes of which sigma 3 axes are almost horizontal and trend NNW-SSE in both the hanging wall and the footwall. The stress regimes are the negative stress for the reverse faulting stress regime that Kawasaki et al. (2014) estimated from the minor faults in the core samples of the Nobeoka Thrust Drilling Project (Hamahashi et al., 2013). And, the orientation of the sigma 3 axes of the estimated stress regime is parallel to the slip direction of the Nobeoka Thrust (Top to SSE; Kondo et al., 2005). These facts indicate the normal faulting stress regime at the time of fracture opening is the secondary stress generated by the slip of the

  12. Single and Multi-Pulse Low-Energy Conical Theta Pinch Inductive Pulsed Plasma Thruster Performance

    NASA Technical Reports Server (NTRS)

    Hallock, A. K.; Martin, A. K.; Polzin, K. A.; Kimberlin, A. C.; Eskridge, R. H.

    2013-01-01

    Impulse bits produced by conical theta-pinch inductive pulsed plasma thrusters possessing cone angles of 20deg, 38deg, and 60deg, were quantified for 500J/pulse operation by direct measurement using a hanging-pendulum thrust stand. All three cone angles were tested in single-pulse mode, with the 38deg model producing the highest impulse bits at roughly 1 mN-s operating on both argon and xenon propellants. A capacitor charging system, assembled to support repetitively-pulsed thruster operation, permitted testing of the 38deg thruster at a repetition-rate of 5 Hz at power levels of 0.9, 1.6, and 2.5 kW. The average thrust measured during multiple-pulse operation exceeded the value obtained when the single-pulse impulse bit is multiplied by the repetition rate.

  13. Pseudotachylyte formation vs. mylonitization - repeated cycles of seismic fracture and aseismic creep in the middle crust (Woodroffe Thrust, Central Australia)

    NASA Astrophysics Data System (ADS)

    Wex, Sebastian; Mancktelow, Neil; Hawemann, Friedrich; Camacho, Alfredo; Pennacchioni, Giorgio

    2014-05-01

    The Musgrave Ranges in Central Australia provide excellent exposure of the shallowly south-dipping Woodroffe Thrust, which placed ~1200 Ma granulites onto amphibolite facies gneisses. This ~400 km long E-W structure developed under mid-crustal conditions during the intracratonic Petermann Orogeny around 550 Ma. From field observations and measurements, the shortening direction is constrained to be N-S and the movement sense top-to-north. Ductile deformation during this process almost entirely localized in the footwall rocks, developing a zone of mylonites, ultramylonites and sheared pseudotachylytes, several hundred metres wide, with pseudotachylyte abundance rapidly decreasing further into the footwall. In contrast, the hanging wall behaved in a predominantly brittle manner, producing significant volumes of pseudotachylyte breccia and isolated veins, but was otherwise mostly unaffected and only weakly foliated. The difference in rheological behaviour is reflected in the pseudotachylyte fabric, which is dominantly sheared in the footwall and largely unsheared in the hanging wall. Low-strain domains in the footwall show that localized shearing initiated along pseudotachylyte veins and that shear zones and mylonitic foliations were in turn exploited by subsequent pseudotachylyte veins. Neither phyllonitization nor synkinematic growth of new muscovite is observed. In contrast to models with a simple brittle-to-viscous transition, these observations show that a continuous cycle of brittle fracturing and shearing is active in dry mid-crustal environments. The products of multiple earthquakes and ductile overprint, repeatedly exploiting the same structural discontinuity, are composite layers of sheared pseudotachylyte. In the Woodroffe Thrust, these layers are numerous and frequently observed parallel to the foliation in the footwall mylonites. The thickest of these sheared pseudotachylyte horizons (~15 m thick) mark the immediate contact to the hanging wall and almost

  14. A contribution to calculation of the mathematical pendulum

    NASA Astrophysics Data System (ADS)

    Anakhaev, K. N.

    2014-11-01

    In this work, as a continuation of rigorous solutions of the mathematical pendulum theory, calculated dependences were obtained in elementary functions (with construction of plots) for a complete description of the oscillatory motion of the pendulum with determination of its parameters, such as the oscillation period, deviation angles, time of motion, angular velocity and acceleration, and strains in the pendulum rod (maximum, minimum, zero, and gravitational). The results of calculations according to the proposed dependences closely (≪1%) coincide with the exact tabulated data for individual points. The conditions of ascending at which the angular velocity, angular acceleration, and strains in the pendulum rod reach their limiting values equal to and 5 m 1 g, respectively, are shown. It was revealed that the angular acceleration does not depend on the pendulum oscillation amplitude; the pendulum rod strain equal to the gravitation force of the pendulum R s = m 1 g at the time instant is also independent on the amplitude. The dependences presented in this work can also be invoked for describing oscillations of a physical pendulum, mass on a spring, electric circuit, etc.

  15. Tertiary structural evolution of the Gangdese thrust system southeastern Tibet

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Yin, An; Harrison, M.; Ryerson, F.J.

    1994-09-10

    Structural and thermochronological investigations of southern Tibet (Xizang) suggest that intracontinental thrusting has been the dominant cause for formation of thickened crust in the southernmost Tibetan plateau since late Oligocene. Two thrust systems are documented in this study: the north dipping Gangdese system (GTS) and the younger south dipping Renbu-Zedong system (RZT). West of Lhasa, the Gangdese thrust juxtaposes the Late Cretaceous forearc basin deposits of the Lhasa Block (the Xigaze Group) over the Tethyan sedimentary rocks of the Indian plate, whereas east of Lhasa, the fault juxtaposes the Late Cretaceous-Eocene, Andean-type arc (the Gangdese batholith) over Tethyan sedimentary rocks.more » Near Zedong, 150 km southeast of Lhasa, the Gangdese thrust is marked by a >200-m-thick mylonitic shear zone that consists of deformed granite and metasedimentary rocks. A major south dipping backthrust in the hanging wall of the Gangdese thrust puts the Xigaze Group over Tertiary conglomerates and the Gangdese plutonics north of Xigaze and west of Lhasa. A lower age bound for the Gangdese thrust of 18.3{+-}0.5 Ma is given by crosscutting relationships. The timing of slip on the Gangdese thrust is estimate to be 27-23 Ma from {sup 40}Ar/{sup 39}Ar thermochronology, and a displacement of at least 46{+-}9 km is indicated near Zedong. The age of the Gangdese thrust (GT) is consistent with an upper age limit of {approximately}24 Ma for the initiation of movement on the Main Central thrust. In places, the younger Renbu-Zedong fault is thrust over the trace of the GT, obscuring its exposure. The RZT appears to have been active at circa 18 Ma but had ceased movement by 8{+-}1 Ma. The suture between India and Asia has been complexely modified by development of the GTS, RZT, and, locally, strike-slip and normal fault systems. 64 refs., 14 figs., 2 tabs.« less

  16. Initial Thrust Measurements of Marshall's Ion-ioN Thruster

    NASA Technical Reports Server (NTRS)

    Caruso, Natalie R. S.; Scogin, Tyler; Liu, Thomas M.; Walker, Mitchell L. R.; Polzin, Kurt A.; Dankanich, John W.

    2015-01-01

    Electronegative ion thrusters are a variation of traditional gridded ion thruster technology differentiated by the production and acceleration of both positive and negative ions. Benefits of electronegative ion thrusters include the elimination of lifetime-limiting cathodes from the thruster architecture and the ability to generate appreciable thrust from both charge species. While much progress has been made in the development of electronegative ion thruster technology, direct thrust measurements are required to unambiguously demonstrate the efficacy of the concept and support continued development. In the present work, direct thrust measurements of the thrust produced by the MINT (Marshall's Ion-ioN Thruster) are performed using an inverted-pendulum thrust stand in the High-Power Electric Propulsion Laboratory's Vacuum Test Facility-1 at the Georgia Institute of Technology with operating pressures ranging from 4.8 x 10(exp -5) and 5.7 x 10(exp -5) torr. Thrust is recorded while operating with a propellant volumetric mixture ratio of 5:1 argon to nitrogen with total volumetric flow rates of 6, 12, and 24 sccm (0.17, 0.34, and 0.68 mg/s). Plasma is generated using a helical antenna at 13.56 MHz and radio frequency (RF) power levels of 150 and 350 W. The acceleration grid assembly is operated using both sinusoidal and square waveform biases of +/-350 V at frequencies of 4, 10, 25, 125, and 225 kHz. Thrust is recorded for two separate thruster configurations: with and without the magnetic filter. No thrust is discernable during thruster operation without the magnetic filter for any volumetric flow rate, RF forward Power level, or acceleration grid biasing scheme. For the full thruster configuration, with the magnetic filter installed, a brief burst of thrust of approximately 3.75 mN +/- 3 mN of error is observed at the start of grid operation for a volumetric flow rate of 24 sccm at 350 W RF power using a sinusoidal waveform grid bias at 125 kHz and +/- 350 V

  17. Width of surface rupture zone for thrust earthquakes: implications for earthquake fault zoning

    NASA Astrophysics Data System (ADS)

    Boncio, Paolo; Liberi, Francesca; Caldarella, Martina; Nurminen, Fiia-Charlotta

    2018-01-01

    The criteria for zoning the surface fault rupture hazard (SFRH) along thrust faults are defined by analysing the characteristics of the areas of coseismic surface faulting in thrust earthquakes. Normal and strike-slip faults have been deeply studied by other authors concerning the SFRH, while thrust faults have not been studied with comparable attention. Surface faulting data were compiled for 11 well-studied historic thrust earthquakes occurred globally (5.4 ≤ M ≤ 7.9). Several different types of coseismic fault scarps characterize the analysed earthquakes, depending on the topography, fault geometry and near-surface materials (simple and hanging wall collapse scarps, pressure ridges, fold scarps and thrust or pressure ridges with bending-moment or flexural-slip fault ruptures due to large-scale folding). For all the earthquakes, the distance of distributed ruptures from the principal fault rupture (r) and the width of the rupture zone (WRZ) were compiled directly from the literature or measured systematically in GIS-georeferenced published maps. Overall, surface ruptures can occur up to large distances from the main fault ( ˜ 2150 m on the footwall and ˜ 3100 m on the hanging wall). Most of the ruptures occur on the hanging wall, preferentially in the vicinity of the principal fault trace ( > ˜ 50 % at distances < ˜ 250 m). The widest WRZ are recorded where sympathetic slip (Sy) on distant faults occurs, and/or where bending-moment (B-M) or flexural-slip (F-S) fault ruptures, associated with large-scale folds (hundreds of metres to kilometres in wavelength), are present. A positive relation between the earthquake magnitude and the total WRZ is evident, while a clear correlation between the vertical displacement on the principal fault and the total WRZ is not found. The distribution of surface ruptures is fitted with probability density functions, in order to define a criterion to remove outliers (e.g. 90 % probability of the cumulative distribution

  18. An inexpensive, multipurpose physical pendulum

    NASA Astrophysics Data System (ADS)

    Schultz, David

    2012-10-01

    The pendulum is a highly versatile tool for teaching physics. Many special purpose pendula for student experiments have been described.1-4 In this paper, I describe an inexpensive, multipurpose physical pendulum that can function as both a variable gravity and ballistic pendulum. I designed the apparatus for use in a rotational dynamics unit of the AP Physics C mechanics course. The use of a bike wheel hub pivot allows for low-friction, rugged operation that yields results commensurate with those obtained with much more expensive pendula available on the market (typically 500 per unit5), placing these types of experiments within reach of the teacher on a restricted budget.

  19. The Pendulum and the Calculus.

    ERIC Educational Resources Information Center

    Sworder, Steven C.

    A pair of experiments, appropriate for the lower division fourth semester calculus or differential equations course, are presented. The second order differential equation representing the equation of motion of a simple pendulum is derived. The period of oscillation for a particular pendulum can be predicted from the solution to this equation. As a…

  20. Control of Torsional Vibrations by Pendulum Masses

    NASA Technical Reports Server (NTRS)

    Stieglitz, Albert

    1942-01-01

    Various versions of pendulum masses have been developed abroad within the past few years by means of which resonant vibrations of rotating shafts can be eliminated at a given tuning. They are already successfully employed on radial engines in the form of pendulous counterweights. Compared with the commonly known torsional vibration dampers, the pendulum masses have the advantage of being structurally very simple, requiring no internal damping and being capable of completely eliminating certain vibrations. Unexplained, so far, remains the problem of behavior of pendulum masses in other critical zones to which they are not tuned, their dynamic behavior at some tuning other than in resonance, and their effect within a compound vibration system and at simultaneous application of several differently tuned pendulous masses. These problems are analyzed in the present report. The results constitute an enlargement of the scope of application of pendulum masses, especially for in-line engines. Among other things it is found that the natural frequency of a system can be raised by means of a correspondingly tuned pendulum mass. The formulas necessary for the design of any practical version are developed, and a pendulum mass having two different natural frequencies simultaneously is described.

  1. Vibration analysis of rotor blades with pendulum absorbers

    NASA Technical Reports Server (NTRS)

    Murthy, V. R.; Hammond, C. E.

    1979-01-01

    A comprehensive vibration analysis of rotor blades with spherical pendulum absorbers is presented. Linearized equations of motion for small oscillations about the steady-state deflection of a spherical pendulum on elastic rotor blades undergoing coupled flapwise bending, chordwise bending, and torsional vibrations are obtained. A transmission matrix formulation is given to determine the natural vibrational characteristics of rotor blades with spherical or simple flapping pendulum absorbers. The natural frequencies and mode shapes of a hingeless rotor blade with a spherical pendulum are computed.

  2. Lyapunov stability analysis for the generalized Kapitza pendulum

    NASA Astrophysics Data System (ADS)

    Druzhinina, O. V.; Sevastianov, L. A.; Vasilyev, S. A.; Vasilyeva, D. G.

    2017-12-01

    In this work generalization of Kapitza pendulum whose suspension point moves in the vertical and horizontal planes is made. Lyapunov stability analysis of the motion for this pendulum subjected to excitation of periodic driving forces and stochastic driving forces that act in the vertical and horizontal planes has been studied. The numerical study of the random motion for generalized Kapitza pendulum under stochastic driving forces has made. It is shown the existence of stable quasi-periodic motion for this pendulum.

  3. Suicidal hanging within an automobile.

    PubMed

    Blanco Pampin, J M; López-Abajo Rodriguez, B A

    2001-12-01

    Accidental asphyxia related to cars has been described in different reports, but suicidal hanging in an automobile is very unusual. Two cases of suicidal hanging inside an automobile are described, illustrating an unusual form of hanging. In one case, the deceased used his belt as a ligature, and the point of attachment was the window of the car. The second victim used the safety belt of the passenger seat. In both cases, the automobile engine was turned off, all the windows were closed, and the door locks were blocked. The medicolegal cause of hanging was based on the scene of the investigation, police and witness reports, social history, autopsy findings, and toxicologic examinations.

  4. Helicopter vibration suppression using simple pendulum absorbers on the rotor blade

    NASA Technical Reports Server (NTRS)

    Pierce, G. A.; Hanouva, M. N. H.

    1982-01-01

    A comprehensive anaytical design procedure for the installation of simple pendulums on the blades of a helicopter rotor to suppress the root reactions is presented. A frequency response anaysis is conducted of typical rotor blades excited by a harmonic variation of spanwise airload distributions as well as a concentrated load at the tip. The results presented included the effect of pendulum tuning on the minimization of the hub reactions. It is found that a properly designed flapping pendulum attenuates the root out-of-plane force and moment whereas the optimum designed lead-lag pendulum attenuates the root in-plane reactions. For optimum pendulum tuning the parameters to be determined are the pendulum uncoupled natural frequency, the pendulum spanwise location and its mass. It is found that the optimum pendulum frequency is in the vicinity of the excitation frequency. For the optimum pendulum a parametric study is conducted. The parameters varied include prepitch, pretwist, precone and pendulum hinge offset.

  5. Pendulum Motion in Main Parachute Clusters

    NASA Technical Reports Server (NTRS)

    Ray, Eric S.; Machin, Ricardo A.

    2015-01-01

    The coupled dynamics of a cluster of parachutes to a payload are notoriously difficult to predict. Often the payload is designed to be insensitive to the range of attitude and rates that might occur, but spacecraft generally do not have the mass and volume budgeted for this robust of a design. The National Aeronautics and Space Administration (NASA) Orion Capsule Parachute Assembly System (CPAS) implements a cluster of three mains for landing. During testing of the Engineering Development Unit (EDU) design, it was discovered that with a cluster of two mains (a fault tolerance required for human rating) the capsule coupled to the parachute cluster could get into a limit cycle pendulum motion which would exceed the spacecraft landing capability. This pendulum phenomenon could not be predicted with the existing models and simulations. A three phased effort has been undertaken to understand the consequence of the pendulum motion observed, and explore potential design changes that would mitigate this phenomenon. This paper will review the early analysis that was performed of the pendulum motion observed during EDU testing, summarize the analysis ongoing to understand the root cause of the pendulum phenomenon, and discuss the modeling and testing that is being pursued to identify design changes that would mitigate the risk.

  6. Ask the pendulum: personality predictors of ideomotor performance.

    PubMed

    Olson, Jay A; Jeyanesan, Ewalina; Raz, Amir

    2017-01-01

    For centuries, people have asked questions to hand-held pendulums and interpreted their movements as responses from the divine. These movements occur due to the ideomotor effect, wherein priming or thinking of a motion causes muscle movements that end up swinging the pendulum. By associating particular swinging movements with "yes" and "no" responses, we investigated whether pendulums can aid decision-making and which personality traits correlate with this performance. Participants ( N = 80 ) completed a visual detection task in which they searched for a target letter among rapidly presented characters. In the verbal condition, participants stated whether they saw the target in each trial. In the pendulum condition, participants instead mentally "asked" a hand-held pendulum whether the target was present; particular motions signified "yes" and "no". We measured the accuracy of their responses as well as their sensitivity and bias using signal detection theory. We also assessed four personality measures: locus of control (feelings of control over one's life), transliminality (sensitivity to subtle stimuli), need for cognition (preference for analytical thinking), and faith in intuition (preference for intuitive thinking). Overall, locus of control predicted verbal performance and transliminality predicted pendulum performance. Accuracy was low in both conditions (verbal: 57%, pendulum: 53%), but bias was higher in the verbal condition ( d = 1.10 ). We confirmed this bias difference in a second study ( d = 0.47 , N = 40 ). Our results suggest that people have different decision strategies when using a pendulum compared to conscious guessing. These findings may help explain why some people can answer questions more accurately with pendulums and Ouija boards. More broadly, identifying the differences between ideomotor and verbal responses could lead to practical ways to improve decision-making.

  7. Ask the pendulum: personality predictors of ideomotor performance

    PubMed Central

    Olson, Jay A; Jeyanesan, Ewalina; Raz, Amir

    2017-01-01

    Abstract For centuries, people have asked questions to hand-held pendulums and interpreted their movements as responses from the divine. These movements occur due to the ideomotor effect, wherein priming or thinking of a motion causes muscle movements that end up swinging the pendulum. By associating particular swinging movements with “yes” and “no” responses, we investigated whether pendulums can aid decision-making and which personality traits correlate with this performance. Participants (N=80) completed a visual detection task in which they searched for a target letter among rapidly presented characters. In the verbal condition, participants stated whether they saw the target in each trial. In the pendulum condition, participants instead mentally “asked” a hand-held pendulum whether the target was present; particular motions signified “yes” and “no”. We measured the accuracy of their responses as well as their sensitivity and bias using signal detection theory. We also assessed four personality measures: locus of control (feelings of control over one’s life), transliminality (sensitivity to subtle stimuli), need for cognition (preference for analytical thinking), and faith in intuition (preference for intuitive thinking). Overall, locus of control predicted verbal performance and transliminality predicted pendulum performance. Accuracy was low in both conditions (verbal: 57%, pendulum: 53%), but bias was higher in the verbal condition (d=1.10). We confirmed this bias difference in a second study (d=0.47, N=40). Our results suggest that people have different decision strategies when using a pendulum compared to conscious guessing. These findings may help explain why some people can answer questions more accurately with pendulums and Ouija boards. More broadly, identifying the differences between ideomotor and verbal responses could lead to practical ways to improve decision-making. PMID:29877514

  8. Pendulums in the Physics Education Literature: A Bibliography

    ERIC Educational Resources Information Center

    Gauld, Colin

    2004-01-01

    Articles about the pendulum in four journals devoted to the teaching of physics and one general science teaching journal (along with other miscellaneous articles from other journals) are listed in three broad categories--types of pendulums, the contexts in which these pendulums are used in physics teaching at secondary or tertiary levels and a…

  9. Radial forcing and Edgar Allan Poe's lengthening pendulum

    NASA Astrophysics Data System (ADS)

    McMillan, Matthew; Blasing, David; Whitney, Heather M.

    2013-09-01

    Inspired by Edgar Allan Poe's The Pit and the Pendulum, we investigate a radially driven, lengthening pendulum. We first show that increasing the length of an undriven pendulum at a uniform rate does not amplify the oscillations in a manner consistent with the behavior of the scythe in Poe's story. We discuss parametric amplification and the transfer of energy (through the parameter of the pendulum's length) to the oscillating part of the system. In this manner, radial driving can easily and intuitively be understood, and the fundamental concept applied in many other areas. We propose and show by a numerical model that appropriately timed radial forcing can increase the oscillation amplitude in a manner consistent with Poe's story. Our analysis contributes a computational exploration of the complex harmonic motion that can result from radially driving a pendulum and sheds light on a mechanism by which oscillations can be amplified parametrically. These insights should prove especially valuable in the undergraduate physics classroom, where investigations into pendulums and oscillations are commonplace.

  10. Response of pendulums to complex input ground motion

    USGS Publications Warehouse

    Graizer, V.; Kalkan, E.

    2008-01-01

    Dynamic response of most seismological instruments and many engineering structures to ground shaking can be represented via response of a pendulum (single-degree-of-freedom oscillator). In most studies, pendulum response is simplified by considering the input from uni-axial translational motion alone. Complete ground motion however, includes not only translational components but also rotations (tilt and torsion). In this paper, complete equations of motion for three following types of pendulum are described: (i) conventional (mass-on-rod), (ii) mass-on-spring type, and (iii) inverted (astatic), then their response sensitivities to each component of complex ground motion are examined. The results of this study show that a horizontal pendulum similar to an accelerometer used in strong motion measurements is practically sensitive to translational motion and tilt only, while inverted pendulum commonly utilized to idealize multi-degree-of-freedom systems is sensitive not only to translational components, but also to angular accelerations and tilt. For better understanding of the inverted pendulum's dynamic behavior under complex ground excitation, relative contribution of each component of motion on response variants is carefully isolated. The systematically applied loading protocols indicate that vertical component of motion may create time-dependent variations on pendulum's oscillation period; yet most dramatic impact on response is produced by the tilting (rocking) component. ?? 2007 Elsevier Ltd. All rights reserved.

  11. Axisymmetric Liquid Hanging Drops

    ERIC Educational Resources Information Center

    Meister, Erich C.; Latychevskaia, Tatiana Yu

    2006-01-01

    The geometry of drops hanging on a circular capillary can be determined by numerically solving a dimensionless differential equation that is independent on any material properties, which enables one to follow the change of the height, surface area, and contact angle of drops hanging on a particular capillary. The results show that the application…

  12. Experiments with a Magnetically Controlled Pendulum

    ERIC Educational Resources Information Center

    Kraftmakher, Yaakov

    2007-01-01

    A magnetically controlled pendulum is used for observing free and forced oscillations, including nonlinear oscillations and chaotic motion. A data-acquisition system stores the data and displays time series of the oscillations and related phase plane plots, Poincare maps, Fourier spectra and histograms. The decay constant of the pendulum can be…

  13. Hang-It-Up Artists

    ERIC Educational Resources Information Center

    Szekely, George

    2009-01-01

    The best lesson ideas often derive from childhood recollections. When brought to class, play memories and art mementos from the teacher's childhood paint a powerful homage to children's art. A survey of a child's room in the dark, or with lights on, discloses interesting hanging sites, means of attachment and unusual items drafted for hanging, all…

  14. [Sensory illusions in hang-gliding].

    PubMed

    Bousquet, F; Bizeau, A; Resche-Rigon, P; Taillemite, J P; De Rotalier

    1997-01-01

    Sensory illusions in hang-gliding and para-gliding. Hang-gliding and para-gliding are at the moment booming sports. Sensory illusions are physiological phenomena sharing the wrong perception of the pilote's real position in space. These phenomena are very familiar to aeroplane pilotes, they can also be noticed on certain conditions with hang-gliding pilotes. There are many and various sensory illusions, but only illusions of vestibular origin will be dealt with in this article. Vestibular physiology is reminded with the working principle of a semicircular canal. Physiology and laws of physics explain several sensory illusions, especially when the pilote loses his visual landmarks: flying through a cloud, coriolis effect. Also some specific stages of hang-gliding foster those phenomena: spiraling downwards, self-rotation, following an asymetric closing of the parachute, spin on oneself. Therefore a previous briefing for the pilotes seems necessary.

  15. Response of Pendulums to Translational and Rotational Components of Ground Motion

    NASA Astrophysics Data System (ADS)

    Graizer, V.; Kalkan, E.

    2008-12-01

    Dynamic response of most seismological instruments and many engineering structures to ground shaking can be represented via response of a pendulum (single-degree-of-freedom oscillator). Pendulum response is usually simplified by considering the input from uni-axial translational motion only. Complete ground motion however, includes not only translational components but also rotations (tilt and torsion). We consider complete equations of motion for three following types of pendulum: (i) conventional mass-on-rod, (ii) mass- on-spring type, and (iii) inverted (astatic), then their response sensitivities to each component of complex ground motion are examined. Inverted pendulums are used in seismology for more than 100 years, for example, classical Wiechert's horizontal seismograph built around 1905 and still used at some seismological observatories, and recent Guralp's horizontal seismometers CMG-40T and CMG-3T. Inverted pendulums also have significant importance for engineering applications where they are often used to simulate the dynamic response of various structural systems. The results of this study show that a horizontal pendulum similar to a modern accelerometer used in strong motion measurements is practically sensitive to translational motion and tilt only, while inverted pendulum is sensitive not only to translational components, but also to angular accelerations and tilt. For better understanding of the inverted pendulum's dynamic behavior under complex ground excitation, relative contribution of each component of motion on response variants is carefully isolated. The responses of pendulums are calculated in time-domain using close-form solution Duhamel's integral with complex input forcing functions. As compared to a common horizontal pendulum, response of an inverted pendulum is sensitive to acceleration of gravity and vertical acceleration when it reaches the level close to 1.0 g. Gravity effect introduces nonlinearity into the differential equation of

  16. Evidence for Seismic and Aseismic Slip along a Foreland Thrust Fault, Southern Appalachians

    NASA Astrophysics Data System (ADS)

    Newman, J.; Wells, R. K.; Holyoke, C. W.; Wojtal, S. F.

    2013-12-01

    Studies of deformation along ancient thrust faults form the basis for much of our fundamental understanding of fault and shear zone processes. These classic studies interpreted meso- and microstructures as formed during aseismic creep. Recent experimental studies, and studies of naturally deformed rocks in seismically active regions, reveal similar microstructures to those observed locally in a carbonate foreland thrust from the southern Appalachians, suggesting that this thrust fault preserves evidence of both seismic and aseismic deformation. The Copper Creek thrust, TN, accommodated 15-20 km displacement, at depths of 4-6 km, as estimated from balanced cross-sections. At the Diggs Gap exposure of the Copper Creek thrust, an approximately 2 cm thick, vein-like shear zone separates shale layers in the hanging wall and footwall. The shear zone is composed of anastomosing layers of ultrafine-grained calcite and/or shale as well as aggregate clasts of ultrafine-grained calcite or shale. The boundary between the shear zone and the hanging wall is sharp, with slickensides along the boundary, parallel to the shear zone movement direction. A 350 μm-thick layer of ultrafine-grained calcite separates the shear zone and the footwall. Fault parallel and perpendicular calcite veins are common in the footwall and increase in density towards the shear zone. Microstructures within the vein-like shear zone that are similar to those observed in experimental studies of unstable slip include: ultrafine-grained calcite (~0.34 μm), nano-aggregate clasts (100-300 nm), injection structures, and vein-wrapped and matrix-wrapped clasts. Not all structures within the shear zone and ultrafine-grained calcite layer suggest seismic slip. Within the footwall veins and calcite aggregate clasts within the shear zone, pores at twin-twin intersections suggest plasticity-induced fracturing as the main mechanism for grain size reduction. Interpenetrating grain boundaries in ultrafine

  17. Foot trajectory approximation using the pendulum model of walking.

    PubMed

    Fang, Juan; Vuckovic, Aleksandra; Galen, Sujay; Conway, Bernard A; Hunt, Kenneth J

    2014-01-01

    Generating a natural foot trajectory is an important objective in robotic systems for rehabilitation of walking. Human walking has pendular properties, so the pendulum model of walking has been used in bipedal robots which produce rhythmic gait patterns. Whether natural foot trajectories can be produced by the pendulum model needs to be addressed as a first step towards applying the pendulum concept in gait orthosis design. This study investigated circle approximation of the foot trajectories, with focus on the geometry of the pendulum model of walking. Three able-bodied subjects walked overground at various speeds, and foot trajectories relative to the hip were analysed. Four circle approximation approaches were developed, and best-fit circle algorithms were derived to fit the trajectories of the ankle, heel and toe. The study confirmed that the ankle and heel trajectories during stance and the toe trajectory in both the stance and the swing phases during walking at various speeds could be well modelled by a rigid pendulum. All the pendulum models were centred around the hip with pendular lengths approximately equal to the segment distances from the hip. This observation provides a new approach for using the pendulum model of walking in gait orthosis design.

  18. Simple pendulum for blind students

    NASA Astrophysics Data System (ADS)

    Goncalves, A. M. B.; Cena, C. R.; Alves, D. C. B.; Errobidart, N. C. G.; Jardim, M. I. A.; Queiros, W. P.

    2017-09-01

    Faced with the need to teach physics to the visually impaired, in this paper we propose a way to demonstrate the dependence of distance and time in a pendulum experiment to blind students. The periodic oscillation of the pendulum is translated, by an Arduino and an ultrasonic sensor, in a periodic variation of frequency in a speaker. The main advantage of this proposal is the possibility that a blind student understands the movement without necessity of touching it.

  19. Pendulum motions of extended lunar space elevator

    NASA Astrophysics Data System (ADS)

    Burov, A. A.; Kosenko, I. I.

    2014-09-01

    In the usual everyday life, it is well known that the inverted pendulum is unstable and is ready to fall to "all four sides," to the left and to the right, forward and backward. The theoretical studies and the lunar experience of moon robots and astronauts also confirms this property. The question arises: Is this property preserved if the pendulum is "very, very long"? It turns out that the answer is negative; namely, if the pendulum length significantly exceeds the Moon radius, then the radial equilibria at which the pendulum is located along the straight line connecting the Earth and Moon centers are Lyapunov stable and the pendulum does not fall in any direction at all. Moreover, if the pendulum goes beyond the collinear libration points, then it can be extended and manufactured from cables. This property was noted by F. A. Tsander and underlies the so-called lunar space elevator (e.g., see [1]). In the plane of the Earth and Moon orbits, there are some other equilibria which turn out to be unstable. The question is, Are there equilibria at which the pendulum is located outside the orbital plane? In this paper, we show that the answer is positive, but such equilibria are unstable in the secular sense. We also study necessary conditions for the stability of lunar pendulum oscillations in the plane of the lunar orbit. It was numerically discovered that stable and unstable equilibria alternate depending on the oscillation amplitude and the angular velocity of rotation. The study of the lunar elevator dynamics originates in [2]. The concept of lunar elevator was developed in detail in [3, 4]. Several classes of equilibria with the finiteness of the Moon size taken into account were studied in [5]. The possibility of location of an orbital station fixed to the Moon surface by a pair of tethers was investigated in [6]. The problem of orientation of the terminal station of the lunar space elevator was studied in [7]. The influence of the tether length variations on the

  20. Agonal sequences in four filmed hangings: analysis of respiratory and movement responses to asphyxia by hanging.

    PubMed

    Sauvageau, Anny

    2009-01-01

    The human pathophysiology of asphyxia by hanging is still poorly understood, despite great advances in forensic science. In that context, filmed hangings may hold the key to answer questions regarding the sequence of events leading to death in human asphyxia. Four filmed hangings were analyzed. Rapid loss of consciousness was observed between 13 sec and 18 sec after onset of hanging, closely followed by convulsions (at 14-19 sec). A complex pattern of decerebration rigidity (19-21 sec in most cases), followed by a quick phase of decortication rigidity (1 min 00 sec-1 min 08 sec in most cases), an extended phase of decortication rigidity (1 min 04 sec-1 min 32 sec) and loss of muscle tone (1 min 38 sec-2 min 47 sec) was revealed. Very deep respiratory attempts started between 20 and 22 sec, the last respiratory attempt being detected between 2 min 00 sec and 2 min 04 sec. Despite differences in the types of hanging, this unique study reveals similarities that are further discussed.

  1. Pendulum Mass Affects the Measurement of Articular Friction Coefficient

    PubMed Central

    Akelman, Matthew R.; Teeple, Erin; Machan, Jason T.; Crisco, Joseph J.; Jay, Gregory D.; Fleming, Braden C.

    2012-01-01

    Friction measurements of articular cartilage are important to determine the relative tribologic contributions made by synovial fluid or cartilage, and to assess the efficacy of therapies for preventing the development of post-traumatic osteoarthritis. Stanton’s equation is the most frequently used formula for estimating the whole joint friction coefficient (μ) of an articular pendulum, and assumes pendulum energy loss through a mass-independent mechanism. This study examines if articular pendulum energy loss is indeed mass independent, and compares Stanton’s model to an alternative model, which incorporates viscous damping, for calculating μ. Ten loads (25-100% body weight) were applied in a random order to an articular pendulum using the knees of adult male Hartley guinea pigs (n = 4) as the fulcrum. Motion of the decaying pendulum was recorded and μ was estimated using two models: Stanton’s equation, and an exponential decay function incorporating a viscous damping coefficient. μ estimates decreased as mass increased for both models. Exponential decay model fit error values were 82% less than the Stanton model. These results indicate that μ decreases with increasing mass, and that an exponential decay model provides a better fit for articular pendulum data at all mass values. In conclusion, inter-study comparisons of articular pendulum μ values should not be made without recognizing the loads used, as μ values are mass dependent. PMID:23122223

  2. Pendulum mass affects the measurement of articular friction coefficient.

    PubMed

    Akelman, Matthew R; Teeple, Erin; Machan, Jason T; Crisco, Joseph J; Jay, Gregory D; Fleming, Braden C

    2013-02-01

    Friction measurements of articular cartilage are important to determine the relative tribologic contributions made by synovial fluid or cartilage, and to assess the efficacy of therapies for preventing the development of post-traumatic osteoarthritis. Stanton's equation is the most frequently used formula for estimating the whole joint friction coefficient (μ) of an articular pendulum, and assumes pendulum energy loss through a mass-independent mechanism. This study examines if articular pendulum energy loss is indeed mass independent, and compares Stanton's model to an alternative model, which incorporates viscous damping, for calculating μ. Ten loads (25-100% body weight) were applied in a random order to an articular pendulum using the knees of adult male Hartley guinea pigs (n=4) as the fulcrum. Motion of the decaying pendulum was recorded and μ was estimated using two models: Stanton's equation, and an exponential decay function incorporating a viscous damping coefficient. μ estimates decreased as mass increased for both models. Exponential decay model fit error values were 82% less than the Stanton model. These results indicate that μ decreases with increasing mass, and that an exponential decay model provides a better fit for articular pendulum data at all mass values. In conclusion, inter-study comparisons of articular pendulum μ values should not be made without recognizing the loads used, as μ values are mass dependent. Copyright © 2012 Elsevier Ltd. All rights reserved.

  3. [Evaluation of pendulum testing of spasticity].

    PubMed

    Le Cavorzin, P; Hernot, X; Bartier, O; Carrault, G; Chagneau, F; Gallien, P; Allain, H; Rochcongar, P

    2002-11-01

    To identify valid measurements of spasticity derived from the pendulum test of the leg in a representative population of spastic patients. Pendulum testing was performed in 15 spastic and 10 matched healthy subjects. The reflex-mediated torque evoked in quadriceps femoris, as well as muscle mechanical parameters (viscosity and elasticity), were calculated using mathematical modelling. Correlation with the two main measures derived from the pendulum test reported in the literature (the Relaxation Index and the area under the curve) was calculated in order to select the most valid. Among mechanical parameters, only viscosity was found to be significantly higher in the spastic group. As expected, the computed integral of the reflex-mediated torque was found to be larger in spastics than in healthy subjects. A significant non-linear (logarithmic) correlation was found between the clinically-assessed muscle spasticity (Ashworth grading) and the computed reflex-mediated torque, emphasising the non-linear behaviour of this scale. Among measurements derived from the pendulum test which are proposed in the literature for routine estimation of spasticity, the Relaxation Index exhibited an unsuitable U-shaped pattern of variation with increasing reflex-mediated torque. On the opposite, the area under the curve revealed a linear regression, which is more convenient for routine estimation of spasticity. The pendulum test of the leg is a simple technique for the assessment of spastic hypertonia. However, the measurement generally used in the literature (the Relaxation Index) exhibits serious limitations, and would benefit to be replaced by more valid measures, such as the area under the goniometric curve, especially for the assessment of therapeutics.

  4. Frozen Pendulum?

    ERIC Educational Resources Information Center

    Barker, Bernard

    2012-01-01

    This article examines the New Labour legacy in education, reviews the arguments of "The Pendulum Swings" in the light of contributions to this themed issue, examines early Coalition policymaking, and recommends four principles that should guide the search for a new approach to school improvement. Recent initiatives are found to be a…

  5. Fault-related fold styles and progressions in fold-thrust belts: Insights from sandbox modeling

    NASA Astrophysics Data System (ADS)

    Yan, Dan-Ping; Xu, Yan-Bo; Dong, Zhou-Bin; Qiu, Liang; Zhang, Sen; Wells, Michael

    2016-03-01

    Fault-related folds of variable structural styles and assemblages commonly coexist in orogenic belts with competent-incompetent interlayered sequences. Despite their commonality, the kinematic evolution of these structural styles and assemblages are often loosely constrained because multiple solutions exist in their structural progression during tectonic restoration. We use a sandbox modeling instrument with a particle image velocimetry monitor to test four designed sandbox models with multilayer competent-incompetent materials. Test results reveal that decollement folds initiate along selected incompetent layers with decreasing velocity difference and constant vorticity difference between the hanging wall and footwall of the initial fault tips. The decollement folds are progressively converted to fault-propagation folds and fault-bend folds through development of fault ramps breaking across competent layers and are followed by propagation into fault flats within an upper incompetent layer. Thick-skinned thrust is produced by initiating a decollement fault within the metamorphic basement. Progressive thrusting and uplifting of the thick-skinned thrust trigger initiation of the uppermost incompetent decollement with formation of a decollement fold and subsequent converting to fault-propagation and fault-bend folds, which combine together to form imbricate thrust. Breakouts at the base of the early formed fault ramps along the lowest incompetent layers, which may correspond to basement-cover contacts, domes the upmost decollement and imbricate thrusts to form passive roof duplexes and constitute the thin-skinned thrust belt. Structural styles and assemblages in each of tectonic stages are similar to that in the representative orogenic belts in the South China, Southern Appalachians, and Alpine orogenic belts.

  6. Parametric pendulum based wave energy converter

    NASA Astrophysics Data System (ADS)

    Yurchenko, Daniil; Alevras, Panagiotis

    2018-01-01

    The paper investigates the dynamics of a novel wave energy converter based on the parametrically excited pendulum. The herein developed concept of the parametric pendulum allows reducing the influence of the gravity force thereby significantly improving the device performance at a regular sea state, which could not be achieved in the earlier proposed original point-absorber design. The suggested design of a wave energy converter achieves a dominant rotational motion without any additional mechanisms, like a gearbox, or any active control involvement. Presented numerical results of deterministic and stochastic modeling clearly reflect the advantage of the proposed design. A set of experimental results confirms the numerical findings and validates the new design of a parametric pendulum based wave energy converter. Power harvesting potential of the novel device is also presented.

  7. Precessional Periods of Long and Short Foucault Pendulums

    ERIC Educational Resources Information Center

    Soga, Michitoshi

    1978-01-01

    Derives the precessional period of a Foucault pendulum without using small oscillation amplitudes. Shows that if the path of the pendulum passes through the origin, the periods for differing amplitudes are essentially the same. (GA)

  8. The Multiple Pendulum Problem via Maple[R

    ERIC Educational Resources Information Center

    Salisbury, K. L.; Knight, D. G.

    2002-01-01

    The way in which computer algebra systems, such as Maple, have made the study of physical problems of some considerable complexity accessible to mathematicians and scientists with modest computational skills is illustrated by solving the multiple pendulum problem. A solution is obtained for four pendulums with no restriction on the size of the…

  9. Verifying the Hanging Chain Model

    ERIC Educational Resources Information Center

    Karls, Michael A.

    2013-01-01

    The wave equation with variable tension is a classic partial differential equation that can be used to describe the horizontal displacements of a vertical hanging chain with one end fixed and the other end free to move. Using a web camera and TRACKER software to record displacement data from a vibrating hanging chain, we verify a modified version…

  10. Light rays and the tidal gravitational pendulum

    NASA Astrophysics Data System (ADS)

    Farley, A. N. St J.

    2018-05-01

    Null geodesic deviation in classical general relativity is expressed in terms of a scalar function, defined as the invariant magnitude of the connecting vector between neighbouring light rays in a null geodesic congruence projected onto a two-dimensional screen space orthogonal to the rays, where λ is an affine parameter along the rays. We demonstrate that η satisfies a harmonic oscillator-like equation with a λ-dependent frequency, which comprises terms accounting for local matter affecting the congruence and tidal gravitational effects from distant matter or gravitational waves passing through the congruence, represented by the amplitude, of a complex Weyl driving term. Oscillating solutions for η imply the presence of conjugate or focal points along the rays. A polarisation angle, is introduced comprising the orientation of the connecting vector on the screen space and the phase, of the Weyl driving term. Interpreting β as the polarisation of a gravitational wave encountering the light rays, we consider linearly polarised waves in the first instance. A highly non-linear, second-order ordinary differential equation, (the tidal pendulum equation), is then derived, so-called due to its analogy with the equation describing a non-linear, variable-length pendulum oscillating under gravity. The variable pendulum length is represented by the connecting vector magnitude, whilst the acceleration due to gravity in the familiar pendulum formulation is effectively replaced by . A tidal torque interpretation is also developed, where the torque is expressed as a coupling between the moment of inertia of the pendulum and the tidal gravitational field. Precessional effects are briefly discussed. A solution to the tidal pendulum equation in terms of familiar gravitational lensing variables is presented. The potential emergence of chaos in general relativity is discussed in the context of circularly, elliptically or randomly polarised gravitational waves encountering the null

  11. Segmented Hoop as a Physical Pendulum

    NASA Astrophysics Data System (ADS)

    Layton, William; Rodriguez, Nuria

    2013-10-01

    An interesting demonstration with a surprising result is to suspend a hoop from a point near its edge and set it swinging in a vertical plane as a pendulum. If a simple pendulum of length equal to the diameter of the hoop is set oscillating at the same time, the two will have nearly the same period. However, the real surprise is if the pendulum is segmented horizontally (as illustrated in Fig. 1) into smaller pieces that are symmetrical about the point of suspension, each smaller segment will also have the same period. Constructing such a demonstration can be difficult, but thanks to a suggestion from a fellow physics teacher a dissectible hula hoop can be purchased that serves well in this demonstration.2 A setup that has been repeated many times at various physics teacher meetings in Southern California is illustrated below.

  12. Lateral propagation of folding and thrust faulting at Mahan, S.E. Iran

    NASA Astrophysics Data System (ADS)

    Walker, R. T.

    2003-12-01

    Folding identified near the town of Mahan in S.E. Iran has no record of historical activity, and yet there are clear geomorphological indications of recent fold growth, presumably driven by movements on underlying thrust faults. The structures at Mahan may still be capable of producing destructive earthquakes, posing a considerable hazard to local population centres. We describe a drainage evolution that shows the effect of lateral propagation of surface folding and the effect of tilting above an underlying thrust fault. River systems cross and incise through the fold segments. Each of these rivers show a distinct deflection parallel to the fold axis. This deflection starts several kilometres into the hanging-wall of the underlying thrust fault. Remnants of several abandoned drainage channels and abandoned alluvial fans are preserved within the folds. The westward lateral propagation of folding is also suggested by an increase in relief and exposure of deeper stratigraphic layers across fold segments in the east of the system, implying a greater cumulative displacement in the east than in the west. The preservation of numerous dry valleys across the fold suggests a continual forcing of drainage around the nose of the growing fold, rather than an along strike variation in slip-rate.

  13. A novel pendulum test for measuring roller chain efficiency

    NASA Astrophysics Data System (ADS)

    Wragge-Morley, R.; Yon, J.; Lock, R.; Alexander, B.; Burgess, S.

    2018-07-01

    This paper describes a novel pendulum decay test for determining the transmission efficiency of chain drives. The test involves releasing a pendulum with an initial potential energy and measuring its decaying oscillations: under controlled conditions the decay reveals the losses in the transmission to a high degree of accuracy. The main advantage over motorised rigs is that there are significantly fewer sources of friction and inertia and hence measurement error. The pendulum rigs have an accuracy around 0.6% for the measurement of the coefficient of friction, giving an accuracy of transmission efficiency measurement around 0.012%. A theoretical model of chain friction combined with the equations of motion enables the coefficient of friction to be determined from the decay rate of pendulum velocity. The pendulum rigs operate at relatively low speeds. However, they allow an accurate determination of the coefficient of friction to estimate transmission efficiency at higher speeds. The pendulum rig revealed a previously undetected rocking behaviour in the chain links at very small articulation angles. In this regime, the link interfaces were observed to roll against one another rather than slide. This observation indicates that a very high-efficiency transmission can be achieved if the articulation angle is very low.

  14. Agonal sequences in a filmed suicidal hanging: analysis of respiratory and movement responses to asphyxia by hanging.

    PubMed

    Sauvageau, Anny; Racette, Stéphanie

    2007-07-01

    The forensic literature on the pathophysiology of human hanging is still limited. Therefore, forensic pathologists often feel uncomfortable when confronted with related questions. Here presented is the filmed suicidal hanging of a 37-year-old man. This recording allows a unique analysis of agonal movement sequences: loss of consciousness (13 sec), convulsions (15 sec), decortication rigidity (21 sec), decerebration rigidity (46 sec), second decortication rigidity (1 min 11 sec), loss of muscle tone, (1 min 38 sec) and last isolated muscle movement (4 min 10 sec). As for respiratory responses, very deep respiratory attempts started at 20 sec. Respiratory movements progressively decreased and completely stopped at 2 min. Despite the fact that extending the presented data on all cases of hanging asphyxia would be a mistake, this case gives a very interesting insight into movement and respiratory response to asphyxia by hanging.

  15. Expedition 54 plaque hanging ceremony

    NASA Image and Video Library

    2018-04-26

    NASA astronauts Joe Acaba and Mark Vande Hei Acaba visited Marshall April 11 for their honorary Expedition 54 plaque hanging ceremony and to provide valuable feedback of their on-orbit science investigations with the Payload Operations and Integration Center team. Chris Buckley is awarded privilege of hanging Mission 54 placque, shown here with Astronaut Mark Vande Hei (L) and Astronaut Joe Acaba

  16. Turning Points of the Spherical Pendulum and the Golden Ratio

    ERIC Educational Resources Information Center

    Essen, Hanno; Apazidis, Nicholas

    2009-01-01

    We study the turning point problem of a spherical pendulum. The special cases of the simple pendulum and the conical pendulum are noted. For simple initial conditions the solution to this problem involves the golden ratio, also called the golden section, or the golden number. This number often appears in mathematics where you least expect it. To…

  17. Retrospective Analysis of Hanging Deaths in Ontario.

    PubMed

    Tugaleva, Elena; Gorassini, Donald R; Shkrum, Michael J

    2016-11-01

    Hanging deaths from investigation standpoint are rarely problematic. Unusual circumstances can on occasion raise suspicion of foul play. Associated neck injuries are reported in the literature with variable frequency (from 0% to 76.8%). This study retrospectively analyzed 755 hanging deaths in Ontario (Canada) to evaluate the demographic features and circumstances of hanging fatalities, and the frequency of hanging-related neck injuries. A number of cases showed unusual/special circumstances (e.g., complex, double suicides, restraints). Among 632 cases with complete autopsies, hyoid and larynx fractures were present in 46 cases (7.3%) with the most common being isolated hyoid fractures. The incidence of cricoid fractures was 0.5% and cervical spine injuries, 1.1%. A higher incidence of neck injuries occurred among males, long drop hangings, and in cases with complete suspension. There was a tendency for the number of fractures to increase with increasing age and weight of the deceased. © 2016 American Academy of Forensic Sciences.

  18. Suicidal Decapitation by Hanging-A Population-based Study.

    PubMed

    Byard, Roger W; Gilbert, John D

    2018-05-01

    A prospective study was undertaken at Forensic Science SA over a 15-year period from July 2002 to June 2017 for all cases of adult (>18 years) suicidal hangings with decapitation. A total of 1446 cases of suicidal hangings were identified from a general population of approximately 1.5 million (1206 males-age range 18-97 years, average 42.6; and 240 females-age range 18-96 years, average 40.1). Only three cases of decapitation were found, all from long-drop hangings; these consisted of three males (ages 32-55 years; average 45 years). Spinal transections had occurred between the first and second, second and third, and third and fourth cervical vertebrae, respectively. In this study, the number of suicidal hangings with decapitation represented only 0.2% of the total number of hangings. These events are therefore extremely rare, most likely due to most suicidal hangings occurring from relatively low levels in a domestic environment. © 2017 American Academy of Forensic Sciences.

  19. Thrust-induced collapse of mountains-an example from the "Big Bend" region of the San Andreas Fault, western transverse ranges, California

    USGS Publications Warehouse

    Kellogg, Karl S.

    2005-01-01

    Mount Pinos and Frazier Mountain are two prominent mountains just south of the San Andreas fault in the western Transverse Ranges of southern California, a region that has undergone rapid Quaternary contraction and uplift. Both mountains are underlain, at least in part, by thrusts that place granitic and gneissic rocks over sedimentary rocks as young as Pliocene. Broad profiles and nearly flat summits of each mountain have previously been interpreted as relicts of a raised erosion surface. However, several features bring this interpretation into question. First, lag or stream gravels do not mantle the summit surfaces. Second, extensive landslide deposits, mostly pre?Holocene and deeply incised, mantle the flanks of both mountains. Third, a pervasive fracture and crushed?rock network pervades the crystalline rocks underlying both mountains. The orientation of the fractures, prominent in roadcuts on Mount Pinos, is essentially random. 'Hill?and?saddle' morphology characterizes ridges radiating from the summits, especially on Mount Pinos; outcrops are sparse on the hills and are nonexistent in the saddles, suggesting fractures are concentrated in the saddles. Latest movement on the thrusts underlying the two mountain massifs is probably early Quaternary, during which the mountains were uplifted to considerably higher (although unknown) elevations than at present. A model proposes that during thrusting, ground accelerations in the hanging wall, particularly near thrust tips, were high enough to pervasively fracture the hanging?wall rocks, thereby weakening them and producing essentially an assemblage of loose blocks. Movement over flexures in the fault surface accentuated fracturing. The lowered shear stresses necessary for failure, coupled with deep dissection and ongoing seismic activity, reduced gravitational potential by spreading the mountain massifs, triggering flanking landslides and producing broad, flat?topped mountains. This study developed from mapping in

  20. How Short and Light Can a Simple Pendulum Be for Classroom Use?

    ERIC Educational Resources Information Center

    Oliveira, V.

    2014-01-01

    We compare the period of oscillation of an ideal simple pendulum with the period of a more "real" pendulum constituted of a rigid sphere and a rigid slender rod. We determine the relative error in the calculation of the local acceleration of gravity if the period of the ideal pendulum is used instead of the period of this real pendulum.

  1. How short and light can a simple pendulum be for classroom use?

    NASA Astrophysics Data System (ADS)

    Oliveira, V.

    2014-07-01

    We compare the period of oscillation of an ideal simple pendulum with the period of a more ‘real’ pendulum constituted of a rigid sphere and a rigid slender rod. We determine the relative error in the calculation of the local acceleration of gravity if the period of the ideal pendulum is used instead of the period of this real pendulum.

  2. Seismic cross-coupling noise in torsion pendulums

    NASA Astrophysics Data System (ADS)

    Shimoda, Tomofumi; Aritomi, Naoki; Shoda, Ayaka; Michimura, Yuta; Ando, Masaki

    2018-05-01

    Detection of low-frequency gravitational waves around 0.1 Hz is one of the important targets for future gravitational wave observation. One of the main sources of the expected signals is gravitational waves from binary intermediate-mass black hole coalescences which is proposed as one of the formation scenarios of supermassive black holes. By using a torsion pendulum, which can have a resonance frequency of a few millihertz, such signals can be measured on the ground since its rotational motion can act as a free mass down to 0.01 Hz. However, sensitivity of a realistic torsion pendulum will suffer from torsional displacement noise introduced from translational ground motion in the main frequency band of interest. Such noise is called seismic cross-coupling noise, and there has been little research on it. In this paper, systematic investigation is performed to identify routes of cross-coupling transfer for standard torsion pendulums. Based on the results, this paper also proposes reduction schemes of cross-coupling noise, and they were demonstrated experimentally in agreement with theory. This result establishes a basic way to reduce seismic noise in torsion pendulums for the most significant coupling routes.

  3. Steady States of the Parametric Rotator and Pendulum

    ERIC Educational Resources Information Center

    Bouzas, Antonio O.

    2010-01-01

    We discuss several steady-state rotation and oscillation modes of the planar parametric rotator and pendulum with damping. We consider a general elliptic trajectory of the suspension point for both rotator and pendulum, for the latter at an arbitrary angle with gravity, with linear and circular trajectories as particular cases. We treat the…

  4. Seismic interpretation and thrust tectonics of the Amadeus Basin, central Australia, along the BMR regional seismic line

    NASA Astrophysics Data System (ADS)

    Shaw, Russell D.; Korsch, Russell J.; Wright, C.; Goleby, B. R.

    At the northern margin of the Amadeus Basin the monoclinal upturn (the MacDonnell Homocline) is interpreted to be the result of rotation and limited back-thrusting of the sedimentary sequence in front of a southerly-directed, imbricate basement thrust-wedge. This thrust complex is linked at depth to the crust-cutting Redbank Thrust Zone. In the northern part of the basin immediately to the south, regional seismic reflection profiling across the Missionary Plain shows a sub-horizontal, north-dipping, parautochthonous sedimentary sequence between about 8.5 km and 12.0 km thick. This sedimentary sequence shows upturning only at the northern and southern extremities, and represents an unusual, relatively undeformed region between converging thrust systems. In this intervening region, the crust appears to have been tilted downwards and northwards in response to the upthrusting to the north. Still farther to the south, the vertical uplift of the southern hanging wall of the Gardiner Thrust is about 6 km. Seismic reflection profiling in the region immediately south of the Gardiner Thrust indicates repetition of the sedimentary sequence. At the far end of the profile, in the Kernot Range, an imbricate thrust system fans ahead of a ramp-flat thrust pair. This thrust system (the Kernot Range Thrust System) occurs immediately north of an aeromagnetic domain boundary which marks the southern limit of a central ridge region characterized by thin Palaeozoic sedimentary cover and shallow depths to magnetic basement. A planar seismic event, imaged to a depth of at least 18 km, may correspond to the same boundary and is interpreted as a pre-basin Proterozoic thrust. Overall, the structure in the shallow sedimentary section in the central-southern region of the Amadeus Basin indicates that north-directed thrusting during the Dovonian-Carboniferous Alice Springs Orogeny was thin-skinned. During this orogeny an earlier thrust system, formed during the Petermann Ranges Orogeny and

  5. Square-Wave Model for a Pendulum with Oscillating Suspension

    ERIC Educational Resources Information Center

    Yorke, Ellen D.

    1978-01-01

    Demonstrates that if a sinusoidal oscillation of the point of support of a pendulum is approximated by a square wave, a matrix method may be used to discuss parametric resonance and the stability of the inverted pendulum. (Author/SL)

  6. Fluid-rock interactions related to metamorphic reducing fluid flow in meta-sediments: example of the Pic-de-Port-Vieux thrust (Pyrenees, Spain)

    NASA Astrophysics Data System (ADS)

    Trincal, Vincent; Buatier, Martine; Charpentier, Delphine; Lacroix, Brice; Lanari, Pierre; Labaume, Pierre; Lahfid, Abdeltif; Vennemann, Torsten

    2017-09-01

    In orogens, shortening is mainly accommodated by thrusts, which constitute preferential zones for fluid-rock interactions. Fluid flow, mass transfer, and mineralogical reactions taking place along thrusts have been intensely investigated, especially in sedimentary basins for petroleum and uranium research. This study combines petrological investigations, mineralogical quantifications, and geochemical characterizations with a wide range of analytical tools with the aim of defining the fluid properties (nature, origin, temperature, and redox) and fluid-host rock interactions (mass transfers, recrystallization mechanisms, and newly formed synkinematic mineralization) in the Pic-de-Port-Vieux thrust fault zone (Pyrenees, Spain). We demonstrate that two geochemically contrasted rocks have been transformed by fluid flow under low-grade metamorphism conditions during thrusting. The hanging-wall Triassic red pelite was locally bleached, while the footwall Cretaceous dolomitic limestone was mylonitized. The results suggest that thrusting was accompanied by a dynamic calcite recrystallization in the dolomitic limestone as well as by leaching of iron via destabilization of iron oxides and phyllosilicate crystallization in the pelite. Geochemical and physical changes highlighted in this study have strong implications on the understanding of the thrust behavior (tectonic and hydraulic), and improve our knowledge of fluid-rock interactions in open fluid systems in the crust.

  7. A Simple Method to Measure the Trajectory of a Spherical Pendulum

    ERIC Educational Resources Information Center

    Yang, Hujiang; Xiao, Jinghua; Yang, Tianyu; Qiu, Chen

    2011-01-01

    Compared with a single gravity pendulum, the spherical pendulum behaves more complicatedly in experiments, which makes it difficult to measure. In this paper, we present a method to visualize the trajectories of a spherical pendulum by employing a gravity ball with a lit LED and a digital camera. This new measurement is inexpensive and easy to…

  8. On periodic solutions of an Atwood's pendulum

    NASA Astrophysics Data System (ADS)

    Mittleman, Donald

    1987-05-01

    An Atwood's pendulum is defined as an Atwood's machine in which one of two masses is allowed to swing as a pendulum while the other remains constrained to move only in the vertical direction. The pendulum motion of the one mass induces a varying tension in the connecting wire; this, in turn, produces motion in the second mass. It is shown that this motion can be made periodic if the ratio of the two masses and the dependency of this ratio on the initial conditions are chosen as prescribed in this report. If this condition is not met, the motion consists of the superposition of two motions. The first is motion in a constant gravitational field where the effective gravity is kg; the factor k is determined explicitly. The second is the periodic motion that is the central theme of this report. During the course of the analysis, the fundamental frequency of the periodic motion is determined. It is shown to be slightly higher than the frequency of a pendulum of comparable length swinging in the Earth's gravitational field; the factor is given explicitly. This work is restricted to the extent that small approximations are introduced initially for trigonometric functions.

  9. Soup-Can Pendulum

    ERIC Educational Resources Information Center

    Peters, Randall D.

    2004-01-01

    In these studies, a vegetable can containing fluid was swung as a pendulum by supporting its end-lips with a pair of knife edges. The motion was measured with a capacitive sensor and the logarithmic decrement in free decay was estimated from computer-collected records. Measurements performed with nine different homogeneous liquids, distributed…

  10. A Comprehensive Analytical Solution of the Nonlinear Pendulum

    ERIC Educational Resources Information Center

    Ochs, Karlheinz

    2011-01-01

    In this paper, an analytical solution for the differential equation of the simple but nonlinear pendulum is derived. This solution is valid for any time and is not limited to any special initial instance or initial values. Moreover, this solution holds if the pendulum swings over or not. The method of approach is based on Jacobi elliptic functions…

  11. A Laboratory Experiment on Coupled Non-Identical Pendulums

    ERIC Educational Resources Information Center

    Li, Ang; Zeng, Jingyi; Yang, Hujiang; Xiao, Jinghua

    2011-01-01

    In this paper, coupled pendulums with different lengths are studied. Through steel magnets, each pendulum is coupled with others, and a stepping motor is used to drive the whole system. To record the data automatically, we designed a data acquisition system with a CCD camera connected to a computer. The coupled system shows in-phase, locked-phase…

  12. Outcomes of therapeutic hypothermia in unconscious patients after near-hanging.

    PubMed

    Lee, Byung Kook; Jeung, Kyung Woon; Lee, Hyoung Youn; Lim, Jae Hoon

    2012-09-01

    Hanging has been increasingly used to commit suicide. There is no specific treatment besides general intensive care after near-hanging. Therapeutic hypothermia (TH) has been used in unconscious patients after near-hanging. To describe the outcomes in unconscious patients after near-hanging in order to determine whether TH improves the outcome of near-hanging injury. Medical charts were reviewed of unconscious patients after near-hanging who presented to Chonnam National University Hospital between January 2006 and December 2010 and who were considered to be eligible for TH. According to local policy, unconscious survivors after near-hanging, whether or not they experienced cardiac arrest at the scene, were treated with TH if this was agreed by next-of-kin. There were 16 survivors of asphyxial cardiac arrest after near-hanging, of whom 13 received TH. Among them, only one (7.7%, 95% CI 1.4% to 33.3%) attained Cerebral Performance Category (CPC) 1; the other 15 patients had poor neurological outcomes (CPC 5 in seven patients and CPC 4 in eight patients). Nine of the patients did not experience cardiac arrest at the scene and of these, four received TH and five received normothermic treatment. All patients who did not have cardiac arrest recovered and were discharged with CPC 1. In this study, outcomes in unconscious near-hanging patients with cardiac arrest were poor despite treatment with TH. Before recommending TH in near-hanging patients, a prospective, randomised controlled study is required.

  13. Analyzing spring pendulum phenomena with a smart-phone acceleration sensor

    NASA Astrophysics Data System (ADS)

    Kuhn, Jochen; Vogt, Patrik

    2012-11-01

    This paper describes two further pendulum experiments using the acceleration sensor of a smartphone in this column (for earlier contributions concerning this topic, including the description of the operation and use of the acceleration sensor, see Refs. 1 and 2). In this paper we focus on analyzing spring pendulum phenomena. Therefore two spring pendulum experiments will be described in which a smartphone is used as a pendulum body and SPARKvue3 software is used in conjunction with an iPhone or an iPod touch, or the Accelogger4 app for an Android device.1,2 As described in Ref. 1, the values measured by the smartphone are subsequently exported to a spreadsheet application (e.g., MS Excel) for analysis.

  14. Pendulum Phenomena and the Assessment of Scientific Inquiry Capabilities

    ERIC Educational Resources Information Center

    Zachos, Paul

    2004-01-01

    Phenomena associated with the "pendulum" present numerous opportunities for assessing higher order human capabilities related to "scientific inquiry" and the "discovery" of natural law. This paper illustrates how systematic "assessment of scientific inquiry capabilities", using "pendulum" phenomena, can provide a useful tool for classroom teachers…

  15. Distinguishing thrust sequences in gravity-driven fold and thrust belts

    NASA Astrophysics Data System (ADS)

    Alsop, G. I.; Weinberger, R.; Marco, S.

    2018-04-01

    Piggyback or foreland-propagating thrust sequences, where younger thrusts develop in the footwalls of existing thrusts, are generally assumed to be the typical order of thrust development in most orogenic settings. However, overstep or 'break-back' sequences, where later thrusts develop above and in the hangingwalls of earlier thrusts, may potentially form during cessation of movement in gravity-driven mass transport deposits (MTDs). In this study, we provide a detailed outcrop-based analysis of such an overstep thrust sequence developed in an MTD in the southern Dead Sea Basin. Evidence that may be used to discriminate overstep thrusting from piggyback thrust sequences within the gravity-driven fold and thrust belt includes upright folds and forethrusts that are cut by younger overlying thrusts. Backthrusts form ideal markers that are also clearly offset and cut by overlying younger forethrusts. Portions of the basal detachment to the thrust system are folded and locally imbricated in footwall synclines below forethrust ramps, and these geometries also support an overstep sequence. However, new 'short-cut' basal detachments develop below these synclines, indicating that movement continued on the basal detachment rather than it being abandoned as in classic overstep sequences. Further evidence for 'synchronous thrusting', where movement on more than one thrust occurs at the same time, is provided by displacement patterns on sequences of thrust ramp imbricates that systematically increases downslope towards the toe of the MTD. Older thrusts that initiate downslope in the broadly overstep sequence continue to move and therefore accrue greater displacements during synchronous thrusting. Our study provides a template to help distinguish different thrust sequences in both orogenic settings and gravity-driven surficial systems, with displacement patterns potentially being imaged in seismic sections across offshore MTDs.

  16. Measure synchronization in a Huygens's non-dissipative two-pendulum clocks system

    NASA Astrophysics Data System (ADS)

    Tian, Jing; Chen, ZiChen; Qiu, HaiBo; Xi, XiaoQiang

    2018-01-01

    In this paper, we characterize measure synchronization (MS) in a four-degrees-of-freedom Huygens's two-pendulum clocks system. The two-pendulum clocks are connected by a massless spring with stiffness constant k. We find that with the stiffness constant k increasing, the coupled pendulums system achieves MS above a threshold value of k c . The energy characteristics of measure synchronization have been discussed, it is found that averaged energy of each pendulum system provide us an easy way to characterize MS transition. Furthermore, we discuss the dependence of the critical value for MS transition on initial conditions and the characteristic parameters of the system.

  17. Introduction to the Treatment of Non-Linear Effects Using a Gravitational Pendulum

    ERIC Educational Resources Information Center

    Weltner, Klaus; Esperidiao, Antonio Sergio C.; Miranda, Paulo

    2004-01-01

    We show that the treatment of pendulum movement, other than the linear approximation,may be an instructive experimentally based introduction to the physics of non-linear effects. Firstly the natural frequency of a gravitational pendulum is measured as function of its amplitude. Secondly forced oscillations of a gravitational pendulum are…

  18. Figuring the Acceleration of the Simple Pendulum

    NASA Astrophysics Data System (ADS)

    Lieberherr, Martin

    2011-12-01

    The centripetal acceleration has been known since Huygens' (1659) and Newton's (1684) time.1,2 The physics to calculate the acceleration of a simple pendulum has been around for more than 300 years, and a fairly complete treatise has been given by C. Schwarz in this journal.3 But sentences like "the acceleration is always directed towards the equilibrium position" beside the picture of a swing on a circular arc can still be found in textbooks, as e.g. in Ref. 4. Vectors have been invented by Grassmann (1844)5 and are conveniently used to describe the acceleration in curved orbits, but acceleration is more often treated as a scalar with or without sign, as the words acceleration/deceleration suggest. The component tangential to the orbit is enough to deduce the period of the simple pendulum, but it is not enough to discuss the forces on the pendulum, as has been pointed out by Santos-Benito and A. Gras-Marti.6 A suitable way to address this problem is a nice figure with a catch for classroom discussions or homework. When I plotted the acceleration vectors of the simple pendulum in their proper positions, pictures as in Fig. 1 appeared on the screen. The endpoints of the acceleration vectors, if properly scaled, seemed to lie on a curve with a familiar shape: a cardioid. Is this true or just an illusion?

  19. Pendulum migration and healthcare in border área.

    PubMed

    Zaslavsky, Ricardo; Goulart, Bárbara Niegia Garcia de

    2017-12-01

    This article aims to reflect about the importance and the potential impact of pendulum migration in the pursuance for healthcare, and, specifically, about the peculiarity of this kind of mobility in border areas. It describes the context in which the pendulum migration is inserted for the modification of the urban space in the 20th century, makes initial comments about legal aspects of the theme in health sector, and describes the reality of the Brazil-Argentina-Paraguay triple border as an important location of pendulum migration for the pursuance of healthcare as an illustrative fact. In this way, hypotheses are formulated about the causes of the pendulum migration impact on patient's health like the effect of the distance covered from home to healthcare facilities, and organizational aspects related to healthcare like the uncertainty about having or not health assistance due to international mobility. It concludes that this kind of mobility is very common in the pursuance of healthcare despite the traditional approach to the theme mentioning only work or study. Besides that, it is very important to study its impact on health and to include this theme on the cross border healthcare debate.

  20. Duodenoscope hang time does not correlate with risk of bacterial contamination.

    PubMed

    Heroux, Riley; Sheppard, Michelle; Wright, Sharon B; Sawhney, Mandeep; Hirsch, Elizabeth B; Kalaidjian, Robin; Snyder, Graham M

    2017-04-01

    Current professional guidelines recommend a maximum hang time for reprocessed duodenoscopes of 5-14 days. We sought to study the association between hang time and risk of duodenoscope contamination. We analyzed cultures of the elevator mechanism and working channel collected in a highly standardized fashion just before duodenoscope use. Hang time was calculated as the time from reprocessing to duodenoscope sampling. The relationship between hang time and duodenoscope contamination was estimated using a calculated correlation coefficient between hang time in days and degree of contamination on the elevator mechanism and working channel. The 18 study duodenoscopes were cultured 531 times, including 465 (87.6%) in the analysis dataset. Hang time ranged from 0.07-39.93 days, including 34 (7.3%) with hang time ≥7.00 days. Twelve cultures (2.6%) demonstrated elevator mechanism and/or working channel contamination. The correlation coefficients for hang time and degree of duodenoscope contamination were very small and not statistically significant (-0.0090 [P = .85] for elevator mechanism and -0.0002 [P = 1.00] for working channel). Odds ratios for hang time (dichotomized at ≥7.00 days) and elevator mechanism and/or working channel contamination were not significant. We did not find a significant association between hang time and risk of duodenoscope contamination. Future guidelines should consider a recommendation of no limit for hang time. Copyright © 2017 Association for Professionals in Infection Control and Epidemiology, Inc. Published by Elsevier Inc. All rights reserved.

  1. Suicidal hanging donors for lung transplantation

    PubMed Central

    Ananiadou, Olga; Schmack, Bastian; Zych, Bartlomiej; Sabashnikov, Anton; Garcia-Saez, Diana; Mohite, Prashant; Weymann, Alexander; Mansur, Ashham; Zeriouh, Mohamed; Marczin, Nandor; De Robertis, Fabio; Simon, Andre Rüdiger; Popov, Aron-Frederik

    2018-01-01

    Abstract In the context of limited donor pool in cardiothoracic transplantation, utilization of organs from high risk donors, such as suicidal hanging donors, while ensuring safety, is under consideration. We sought to evaluate the outcomes of lung transplantations (LTx) that use organs from this group. Between January 2011 and December 2015, 265 LTx were performed at our center. Twenty-two recipients received lungs from donors after suicidal hanging (group 1). The remaining 243 transplantations were used as a control (group 2). Analysis of recipient and donor characteristics as well as outcomes was performed. No statistically significant difference was found in the donor characteristics between analyzed groups, except for higher incidence of cardiac arrest, younger age and smoking history of hanging donors (P < .001, P = .022 and P = .0042, respectively). Recipient preoperative and perioperative characteristics were comparable. Postoperatively in group 1 there was a higher incidence of extracorporeal life support (27.3 vs 9.1%, P = .019). There were no significant differences in chronic lung allograft dysfunction-free survival between group 1 and 2: 92.3 vs 94% at 1 year and 65.9 vs 75.5% at 3 years (P = .99). The estimated cumulative survival rate was also similar between groups: 68.2 vs 83.2% at 1 year and 68.2% versus 72% at 3 years (P = .3758). Hanging as a donor cause of death is not associated with poor mid-term survival or chronic lung allograft dysfunction following transplantation. These results encourage assessment of lungs from hanging donors, and their consideration for transplantation. PMID:29620623

  2. Deformation of Fold-and-Thrust Belts above a Viscous Detachment: New Insights from Analogue Modelling Experiments

    NASA Astrophysics Data System (ADS)

    Nogueira, Carlos R.; Marques, Fernando O.

    2015-04-01

    Theoretical and experimental studies on fold-and-thrusts belts (FTB) have shown that, under Coulomb conditions, deformation of brittle thrust wedges above a dry frictional basal contact is characterized by dominant frontward vergent thrusts (forethrusts) with thrust spacing and taper angle being directly influenced by the basal strength (increase in basal strength leading to narrower thrust spacing and higher taper angles); whereas thrust wedges deformed above a weak viscous detachment, such as salt, show a more symmetric thrust style (no prevailing vergence of thrusting) with wider thrust spacing and shallower wedges. However, different deformation patterns can be found on this last group of thrust wedges both in nature and experimentally. Therefore we focused on the strength (friction) of the wedge basal contact, the basal detachment. We used a parallelepiped box with four fixed walls and one mobile that worked as a vertical piston drove by a computer controlled stepping motor. Fine dry sand was used as the analogue of brittle rocks and silicone putty (PDMS) with Newtonian behaviour as analogue of the weak viscous detachment. To investigate the strength of basal contact on thrust wedge deformation, two configurations were used: 1) a horizontal sand pack with a dry frictional basal contact; and 2) a horizontal sand pack above a horizontal PDMS layer, acting as a basal weak viscous contact. Results of the experiments show that: the model with a dry frictional basal detachment support the predictions for the Coulomb wedges, showing a narrow wedge with dominant frontward vergence of thrusting, close spacing between FTs and high taper angle. The model with a weak viscous frictional basal detachment show that: 1) forethrusts (FT) are dominant showing clearly an imbricate asymmetric geometry, with wider spaced thrusts than the dry frictional basal model; 2) after FT initiation, the movement on the thrust can last up to 15% model shortening, leading to great amount of

  3. Instability dynamics and breather formation in a horizontally shaken pendulum chain.

    PubMed

    Xu, Y; Alexander, T J; Sidhu, H; Kevrekidis, P G

    2014-10-01

    Inspired by the experimental results of Cuevas et al. [Phys. Rev. Lett. 102, 224101 (2009)], we consider theoretically the behavior of a chain of planar rigid pendulums suspended in a uniform gravitational field and subjected to a horizontal periodic driving force applied to the pendulum pivots. We characterize the motion of a single pendulum, finding bistability near the fundamental resonance and near the period-3 subharmonic resonance. We examine the development of modulational instability in a driven pendulum chain and find both a critical chain length and a critical frequency for the appearance of the instability. We study the breather solutions and show their connection to the single-pendulum dynamics and extend our analysis to consider multifrequency breathers connected to the period-3 periodic solution, showing also the possibility of stability in these breather states. Finally we examine the problem of breather generation and demonstrate a robust scheme for generation of on-site and off-site breathers.

  4. The Reproduction of Scientific Understanding about Pendulum Motion in the Public

    NASA Astrophysics Data System (ADS)

    Manabu, Sumida

    This paper describes life-span development of understanding about pendulum motion and effects of school science. The subjects were 2,766 people ranging from kindergartners up to 88 years senior citizens. The conflict and consensus between children and their parent's understanding of pendulum motion were also analyzed. The kindergartner's understanding, mostly non-scientific, made a marked developmental change to another type of non-scientific understanding by the time they reach G 4. Parents with scientific understanding do not presumably nurture scientifically minded children,even though about half of them can apply scientific conceptions that shorter pendulums swing faster, and the amplitude and speed of pendulum motion do not depend on its weight. There seems to be another type of developmental change from scientific understanding to non-scientific understanding around their fifties. Itis suggested that the scientific understanding in the public about pendulum motion become predominant due to the educational intervention through school science.

  5. Stabilization and tracking control of X-Z inverted pendulum with sliding-mode control.

    PubMed

    Wang, Jia-Jun

    2012-11-01

    X-Z inverted pendulum is a new kind of inverted pendulum which can move with the combination of the vertical and horizontal forces. Through a new transformation, the X-Z inverted pendulum is decomposed into three simple models. Based on the simple models, sliding-mode control is applied to stabilization and tracking control of the inverted pendulum. The performance of the sliding mode control is compared with that of the PID control. Simulation results show that the design scheme of sliding-mode control is effective for the stabilization and tracking control of the X-Z inverted pendulum. Copyright © 2012 ISA. Published by Elsevier Ltd. All rights reserved.

  6. Course of Near-hanging Victims Succumbed to Death: A Seven Year Study

    PubMed Central

    Mugadlimath, Anand B.; Zine, K.U.; Farooqui, Jamebaseer M.; Phalke, Balaji J.

    2015-01-01

    Introduction: Near hanging refers to victims who survive a hanging injury following attempted hanging, long enough to reach hospital. Delayed deaths in near hanging patients are mostly due to complication of hanging. The purpose of this study was to evaluate the demographics, mortality patterns and cause of delayed deaths in near hanging victims. Materials and Methods: In this study autopsy files over a seven year period from 2007 to 2013 were reviewed, and data of near hanging deaths (attempted hanging cases who succumbed to death and subjected for medicolegal autopsy) was extracted. Records of 14,000 autopsies was reviewed, and 10 deceased having died delayed deaths after near hanging episode were identified. In each case, the patients’ details, including gender, age, type of suspension, type of ligature material used for hanging and subsequent hanging mark produced were reviewed using autopsy reports and photographs taken during autopsy. Results: Demographic and pathological aspects of the each case discussed to throw light on autopsy findings in victims who died following near hanging. Complete suspension was present in 3 cases, while partial suspension was present in 7 cases. Survivals in delayed death after near hanging episode have ranged from 9 h to 72 d. Hypoxic encephalopathy was the most common cause of death, followed by pneumonia. Conclusion: Most of the near hanging patients did succumb to hypoxic encephalopathy; however, consolidation of lungs (pneumonia) was the next common cause of death reflecting need for aggressive oxygen therapy and selective resuscitation should be performed in all such cases. PMID:25954634

  7. University of Florida Torsion Pendulum for Testing Key LISA Technology

    NASA Astrophysics Data System (ADS)

    Apple, Stephen; Chilton, Andrew; Olatunde, Taiwo Janet; Hillsberry, Daniel; Parry, Samantha; Ciani, Giacomo; Wass, Peter; Mueller, Guido; Conklin, John

    2018-01-01

    This presentation will describe the design and performance of a new torsion pendulum at the University of Florida used for testing inertial sensors and associated technologies for use in space – based gravitational wave observatories and geodesy missions. In particular this new torsion pendulum facility is testing inertial sensors and associated technology for the upcoming LISA (laser interferometer space antenna) space-based gravitational wave observatory mission. The torsion pendulum apparatus is comprised of a suspended cross bar assembly that has LISA test mass mockups at each of its ends. Two of the test mass mockups are enclosed by capacitive sensors which provide actuation and position sensing. The entire assembly is housed in a vacuum chamber. The pendulum cross-bar converts rotational motion of the test masses about the suspension fiber axis into translational motion. The 22 cm cross bar arm length along with the extremely small torsional spring constant of the suspension fiber results in a near free fall condition in the translational degree-of-freedom orthogonal to both the member and the suspension fiber. The test masses are electrically isolated from the pendulum assembly and their charge is controlled via photoemission using fiber coupled UV LEDS. Position of the test masses is measured using both capacitive and interferometric readout. The broadband sensitivity of the capacitive readout and laser interferometer readout is 30 nm/√Hz and 0.5 nm/√Hz respectively. The performance of the pendulum measured in equivalent acceleration noise acting on a LISA test mass is approximately 3 × 10-13 ms-2/√Hz at 2 mHz. This presentation will also discuss the design and fabrication of a flight-like gravitational reference sensor that will soon be integrated into the torsion pendulum facility. This flight-like GRS will allow for noise performance measurements in a more LISA-like configuration.

  8. Analytical study of the critical behavior of the nonlinear pendulum

    NASA Astrophysics Data System (ADS)

    Lima, F. M. S.

    2010-11-01

    The dynamics of a simple pendulum consisting of a small bob and a massless rigid rod has three possible regimes depending on its total energy E: Oscillatory (when E is not enough for the pendulum to reach the top position), "perpetual ascent" when E is exactly the energy needed to reach the top, and nonoscillatory for greater energies. In the latter regime, the pendulum rotates periodically without velocity inversions. In contrast to the oscillatory regime, for which an exact analytic solution is known, the other two regimes are usually studied by solving the equation of motion numerically. By applying conservation of energy, I derive exact analytical solutions to both the perpetual ascent and nonoscillatory regimes and an exact expression for the pendulum period in the nonoscillatory regime. Based on Cromer's approximation for the large-angle pendulum period, I find a simple approximate expression for the decrease of the period with the initial velocity in the nonoscillatory regime, valid near the critical velocity. This expression is used to study the critical slowing down, which is observed near the transition between the oscillatory and nonoscillatory regimes.

  9. Pendulum Underwater - An Approach for Quantifying Viscosity

    NASA Astrophysics Data System (ADS)

    Leme, José Costa; Oliveira, Agostinho

    2017-12-01

    The purpose of the experiment presented in this paper is to quantify the viscosity of a liquid. Viscous effects are important in the flow of fluids in pipes, in the bloodstream, in the lubrication of engine parts, and in many other situations. In the present paper, the authors explore the oscillations of a physical pendulum in the form of a long and lightweight wire that carries a ball at its lower end, which is totally immersed in water, so as to determine the water viscosity. The system used represents a viscous damped pendulum and we tried different theoretical models to describe it. The experimental part of the present paper is based on a very simple and low-cost image capturing apparatus that can easily be replicated in a physics classroom. Data on the pendulum's amplitude as a function of time were acquired using digital video analysis with the open source software Tracker.

  10. What Makes the Foucault Pendulum Move among the Stars?

    ERIC Educational Resources Information Center

    Phillips, Norman

    2004-01-01

    Foucault's pendulum exhibition in 1851 occurred in an era now known by development of the theorems of Coriolis and the formulation of dynamical meteorology by Ferrel. Yet today the behavior of the pendulum is often misunderstood. The existence of a horizontal component of Newtonian gravitation is essential for understanding the behavior with…

  11. Assessment of energy harvesting and vibration mitigation of a pendulum dynamic absorber

    NASA Astrophysics Data System (ADS)

    Kecik, Krzysztof

    2018-06-01

    The paper presents a novel system for simultaneous energy harvesting and vibration mitigation. The system consists of two main parts: an autoparametric pendulum vibration absorber and an energy harvester device. The recovered energy is from oscillation of a levitating magnet in a coil. The energy harvesting system is mounted in a pendulum structure. The system allows energy recovery from a semi-trivial solution (pendulum in rest) or/and swinging of a pendulum. The influence of harvester parameters on the system response and energy harvesting in a parametric resonance is studied in detail. The harvester device does not decrease vibration reduction effectiveness.

  12. Localized Flow of Frictional Or Creeping Materials In A Lower Flat Thrust To Ramp Transition

    NASA Astrophysics Data System (ADS)

    Maillot, B.; Leroy, Y.

    The passage of rock through zones of localized shear deformation in the form of back- thrusts or kink planes is common in fold and thrust belts. The stationary flow through these two types of hinges is examined for the particular case of a lower flat to ramp transition of a fault-bend fold. The simple shear transformation resulting in strain lo- calization is studied both analytically and numerically. The overall equilibrium of the hanging wall, accounting for friction over the ramp, constrains the shear and normal forces acting on the hinge boundaries. For frictional materials, the localization oc- curs in the form of a velocity discontinuity, defining the backthrust, with a dip which is shown not to bissect ramp angle nor to conserve the thrust nappe thickness, if a criteria based on a minimization of the total dissipation is considered. For creeping materials, the strain localization as a kink plane is shown to require a destabilizing deformation mechanism, selected here to be flexural slip. The rotation of the stress tensor due to the gradient in pressure, the thicknening and thinning of the creeping material, the rate and amount of flexural slip through the hinge are analyzed to define potential tectonic markers.

  13. The influences of load mass changing on inverted pendulum stability based on simulation study

    NASA Astrophysics Data System (ADS)

    Pangaribuan, Timbang; Nasruddin, M. N.; Marlianto, Eddy; Sigiro, Mula

    2017-09-01

    An inverted pendulum has nonlinear dynamic, so it is not easy to do in analysis to see its behavior. From many observations which have been made, there are two things that need to be added on the perfection of inverted pendulum. Firstly, when the pendulum has a large mass, and the second when the pendulum is given a load mass much larger than mass of the inverted pendulum. There are some question, first, how big the load mass can be given so that the movement of the inverted pendulum stay stable is. Second, how weight the changes and moves of load mass which can be given. For all the changes, it hopes the inverted pendulum is stay stable. Finally, the final result is still expected to be as stable, it must need conclude what kind of controller is capable of carrying such a mass burden, and how large the mass load limit can be given.

  14. Ratchet baryogenesis and an analogy with the forced pendulum

    NASA Astrophysics Data System (ADS)

    Bamba, Kazuharu; Barrie, Neil D.; Sugamoto, Akio; Takeuchi, Tatsu; Yamashita, Kimiko

    2018-06-01

    A new scenario of baryogenesis via the ratchet mechanism is proposed based on an analogy with the forced pendulum. The oscillation of the inflaton field during the reheating epoch after inflation plays the role of the driving force, while the phase 𝜃 of a scalar baryon field (a complex scalar field with baryon number) plays the role of the angle of the pendulum. When the inflaton is coupled to the scalar baryon, the behavior of the phase 𝜃 can be analogous to that of the angle of the forced pendulum. If the oscillation of the driving force is adjusted to the pendulum’s motion, a directed rotation of the pendulum is obtained with a nonvanishing value of 𝜃˙, which models successful baryogenesis since 𝜃˙ is proportional to the baryon number density. Similar ratchet models which lead to directed motion have been used in the study of molecular motors in biology. There, the driving force is supplied by chemical reactions, while in our scenario this role is played by the inflaton during the reheating epoch.

  15. 3-D simulation of hanging wall effect at dam site

    NASA Astrophysics Data System (ADS)

    Zhang, L.; Xu, Y.

    2017-12-01

    Hanging wall effect is one of the near fault effects. This paper focuses on the difference of the ground motions on the hanging wall side between the footwall side of the fault at dam site considering the key factors, such as actual topography, the rupture process. For this purpose, 3-D ground motions are numerically simulated by the spectrum element method (SEM), which takes into account the physical mechanism of generation and propagation of seismic waves. With the SEM model of 548 million DOFs, excitation and propagation of seismic waves are simulated to compare the difference between the ground motion on the hanging wall side and that on the footwall side. Take Dagangshan region located in China as an example, several seismogenic finite faults with different dip angle are simulated to investigate the hanging wall effect. Furthermore, by comparing the ground motions of the receiving points, the influence of several factors on hanging wall effect is investigated, such as the dip of the fault and the fault type (strike slip fault or dip-slip fault). The peak acceleration on the hanging wall side is obviously larger than those on the footwall side, which numerically evidences the hanging wall effect. Besides, the simulation shows that only when the dip is less than 70° does the hanging wall effect deserve attention.

  16. A Performance Comparison of Xenon and Krypton Propellant on an SPT-100 Hall Thruster (Preprint)

    DTIC Science & Technology

    2011-08-10

    plume data from electrostatic probes. This paper presents the results of performance measurements made using an inverted pendulum thrust stand. Krypton...inverted pendulum thrust stand. Krypton operating conditions were tested over a large range of operating powers from 800 W to 3.9 kW. Analysis of how...advantages for missions where high thrust at reduced specific impulse is advantageous, primarily for orbit raising missions. Bismuth’s main drawback is

  17. Oscillations of a Simple Pendulum with Extremely Large Amplitudes

    ERIC Educational Resources Information Center

    Butikov, Eugene I.

    2012-01-01

    Large oscillations of a simple rigid pendulum with amplitudes close to 180[degrees] are treated on the basis of a physically justified approach in which the cycle of oscillation is divided into several stages. The major part of the almost closed circular path of the pendulum is approximated by the limiting motion, while the motion in the vicinity…

  18. Working Model of a Foucault Pendulum at Intermediate Latitudes

    ERIC Educational Resources Information Center

    Sears, Francis W.

    1969-01-01

    Describes a working model of a Foucault pendulum at intermediate latitudes constructed of a steel drill rod with a steel ball attached at one end. The rod makes an angle of 45 degrees with the rotation axis of a horizontal turntable. The vibrating system is the same as that which led Foucault to construct his first gravity pendulum. (LC)

  19. Pendulum Therapy of Molar Distalization in Mixed Dentition.

    PubMed

    Patil, Raju Umaji; Prakash, Amit; Agarwal, Anshu

    2016-01-01

    Early and timely pedo-orthodontic treatment is aimed at eliminating the disturbances of skeletal or dentoalveolar development, to harmonize the stomatognathic system before the full eruption of all permanent teeth. The advantages of pendulum appliance are its minimal dependence on patient's compliance (child cooperation), ease of fabrication, onetime activation and adjustment of the springs if necessary to correct minor transverse and vertical molar positions. This article reports a successful treatment method of class II malocclusion with pendulum appliance in mixed dentition phase. Distalization of maxillary molar was done, followed by guidance of canine impaction orthodontically and other dental correction using 0.022 MBT appliances. Posttreatment results were stable and remarkable. How to cite this article: Patil RU, Prakash A, Agarwal A. Pendulum Therapy of Molar Distalization in Mixed Dentition. Int J Clin Pediatr Dent 2016;9(1):67-73.

  20. Pendulum Therapy of Molar Distalization in Mixed Dentition

    PubMed Central

    Prakash, Amit; Agarwal, Anshu

    2016-01-01

    ABSTRACT Early and timely pedo-orthodontic treatment is aimed at eliminating the disturbances of skeletal or dentoalveolar development, to harmonize the stomatognathic system before the full eruption of all permanent teeth. The advantages of pendulum appliance are its minimal dependence on patient’s compliance (child cooperation), ease of fabrication, onetime activation and adjustment of the springs if necessary to correct minor transverse and vertical molar positions. This article reports a successful treatment method of class II malocclusion with pendulum appliance in mixed dentition phase. Distalization of maxillary molar was done, followed by guidance of canine impaction orthodontically and other dental correction using 0.022 MBT appliances. Posttreatment results were stable and remarkable. How to cite this article: Patil RU, Prakash A, Agarwal A. Pendulum Therapy of Molar Distalization in Mixed Dentition. Int J Clin Pediatr Dent 2016;9(1):67-73. PMID:27274159

  1. Mathematic study of the rotor motion with a pendulum selfbalancing device

    NASA Astrophysics Data System (ADS)

    Ivkina, O. P.; Ziyakaev, G. R.; Pashkov, E. N.

    2016-09-01

    The rotary machines used in manufacturing may become unbalanced leading to vibration. In some cases, the problem may be solved by installing self-balancing devices (SBDs). Certain factors, however, exhibit a pronounced effect on the efficiency of these devices. The objective of the research comprised of establishing the most beneficial spatial position of pendulums to minimize the necessary time to repair the rotor unbalance. The mathematical research of the motion of a rotor with pendulum SBDs in the situation of their misalignment was undertaken. This objective was achieved by using the Lagrange equations of the second type. The analysis identified limiting cases of location of the rotor unbalance vector and the vector of housing's unbalance relative to each other, as well as the minimum capacity of the pendulum. When determining pendulums ’ parameters during the SBD design process, it is necessary to take into account the rotor unbalance and the unbalance of the machine body, which is caused by the misalignment of rotor axis and pendulum's axis of rotation.

  2. Active tectonic of the Medlicott Wadia Thrust (Western Himalaya) inferred from morphotectonic analysis

    NASA Astrophysics Data System (ADS)

    Vignon, V.; Mugnier, J. L.; Replumaz, A.; Vassallo, R.; Ramakrishnan, R.; Srivastava, P.; Malik, M. M.; Jouanne, F.; Carcaillet, J.

    2010-12-01

    We study the main emergence of the Main Himalayan Thrust (MHT), in the western Himalaya. The MHT is the active Indian/Asian plate boundary and is responsible for M > 8 shallow earthquakes. Its main emergence in west Himalaya occurred along the Medlicott Wadia Thrust (MWT) responsible for the 2005 M 7.6 Balakot earthquake in Pakistan. In the Riasi area, two major rivers, the Chenab and the Anji, have built large fluvial terraces across the MWT. We have mapped the geometry of the terraces and the elevation of the tectonic scarps using kinematic GPS, total station measurements and satellite imagery. The terraces have been dated combining several methods: cosmogenic-nuclide dating (10Be) on boulders constituting the terrace treads, and Optically Stimulated Luminescence (OSL) on fine-grained deposit layers. At the hanging wall of the fault, the Palaeozoic limestone bedrock is deeply incised by Chenab River that formed a series of stepped strath terraces from the present river level up to 350 m above it. We have mapped and measured the relative height of 8 terraces and of their alluvial cover. To estimate the incision rate of the hanging wall, we dated 3 terraces, situated respectively 375 m, 250m and 100m above the present day river bed. The highest terrace has a minimum exposure age of 28 ka. This yield a maximum incision rate of 1,3 cm/yr over the last 28 ka. At the foot wall of the fault, we have mapped 6 terraces deposited above tertiary foreland basin sediment (Siwalik). The most extended terrace, on which the Riasi city is built, forms the top of a more than 40 m thick aggradation sedimentary body, deposited between 16 and 14 ka. A tributary inflowing stream (Nodda River) deposited a steep alluvial fan above the active fault. Nodda River incised since ~4 ka its own deposits and provides a natural trench, revealing three splays of the Riasi thrust. Along the northern splay, Precambrian limestones are thrust over Quaternary sediments. This splay is sealed by Chenab

  3. Inverting the Pendulum Using Fuzzy Control (Center Director's Discretionary Fund (Project 93-02)

    NASA Technical Reports Server (NTRS)

    Kissel, R. R.; Sutherland, W. T.

    1997-01-01

    A single pendulum was simulated in software and then built on a rotary base. A fuzzy controller was used to show its advantages as a nonlinear controller since bringing the pendulum inverted is extremely nonlinear. The controller was implemented in a Motorola 6811 microcontroller. A double pendulum was simulated and fuzzy control was used to hold it in a vertical position. The double pendulum was not built into hardware for lack of time. This project was for training and to show advantages of fuzzy control.

  4. Note: A 1-m Foucault pendulum rolling on a ball.

    PubMed

    Salva, H R; Benavides, R E; Venturino, J A; Cuscueta, D J; Ghilarducci, A A

    2013-10-01

    We have built a short Foucault pendulum of 1-m length. The aim of this work was to increase the sensitivity to elliptical trajectories from other longer pendula. The design was a semi-rigid pendulum that rolls over a small ball. The measurements of the movements (azimuth and elliptical trajectory) were done by an optical method. The resulting pendulum works in a medium satisfactory way due to problems of the correct choice of the mass of the bob together with the diameter of the supporting ball. It is also important to keep the rolling surface very clean.

  5. Foucault pendulum with eddy-current damping of the elliptical motion

    NASA Astrophysics Data System (ADS)

    Mastner, G.; Vokurka, V.; Maschek, M.; Vogt, E.; Kaufmann, H. P.

    1984-10-01

    A newly designed Foucault pendulum is described in which the mechanical Charron ring, used throughout in previous designs for damping of the elliptical motion of the pendulum, is replaced by an electromagnetic eddy-current brake, consisting of a permanent magnet attached to the bottom of the bob and a metallic ring. This damping device is very efficient, as it is self-aligning, symmetrical in the damping effect, and never wears out. The permanent magnet is also used, together with a coil assembly and an electronic circuitry, for the dipole-torque drive of the pendulum as well as for accurate stabilization of the amplitude of the swing. A latched time display, controlled by Hall probes activated by the magnet, is used to visualize the Foucault rotation. The pendulum system and its associated electronic circuitry are described in detail. The optimizing of the drive mode is discussed. Measurements of deviations from theoretical value of the Foucault rotation velocity made automatically in a continuous run show a reproducible accuracy of ±1% or better in individual 360° rotations during the summer months. The quality factor of the pendulum as mechanical resonator was measured as a function of the amplitude in the presence of the eddy-current damping ring.

  6. White River National Forest Hanging Lake Capacity Study

    DOT National Transportation Integrated Search

    2016-05-01

    Due to overcrowding at Hanging Lake, the Volpe Center performed a capacity study for the White River National Forest. This capacity study examines the visitation and environmental constraints of Hanging Lake parking lot, trail, and site to develop th...

  7. Agonal sequences in eight filmed hangings: analysis of respiratory and movement responses to asphyxia by hanging.

    PubMed

    Sauvageau, Anny; LaHarpe, Romano; Geberth, Vernon J

    2010-09-01

    It has been proposed that filmed hangings may hold the key to a better understanding of human asphyxia, and The Working Group on Human Asphyxia was formed to systematically review and compare these video recordings. This study analyzed eight filmed hangings. Considering time 0 to represent the onset of the final hanging, rapid loss of consciousness was observed (at 8-18 sec), closely followed by convulsions (at 10-19 sec). A complex pattern of decerebrate rigidity and decorticate rigidity then followed. Between 1 min 38 sec and 2 min 15 sec, muscle tone seemed to be lost, the body becoming progressively flaccid. From then on, isolated body movements were observed from time to time, the last one occurring between 1 min 2 sec and 7 min 31 sec. As for the respiratory responses, all cases presented deep rhythmic abdominal respiratory movements (last one between 1 min 2 sec and 2 min 5 sec). © 2010 American Academy of Forensic Sciences.

  8. Modeling the evolution of a ramp-flat-ramp thrust system: A geological application of DynEarthSol2D

    NASA Astrophysics Data System (ADS)

    Feng, L.; Choi, E.; Bartholomew, M. J.

    2013-12-01

    DynEarthSol2D (available at http://bitbucket.org/tan2/dynearthsol2) is a robust, adaptive, two-dimensional finite element code that solves the momentum balance and the heat equation in Lagrangian form using unstructured meshes. Verified in a number of benchmark problems, this solver uses contingent mesh adaptivity in places where shear strain is focused (localization) and a conservative mapping assisted by marker particles to preserve phase and facies boundaries during remeshing. We apply this cutting-edge geodynamic modeling tool to the evolution of a thrust fault with a ramp-flat-ramp geometry. The overall geometry of the fault is constrained by observations in the northern part of the southern Appalachian fold and thrust belt. Brittle crust is treated as a Mohr-Coulomb plastic material. The thrust fault is a zone of a finite thickness but has a lower cohesion and friction angle than its surrounding rocks. When an intervening flat separates two distinct sequential ramps crossing different stratigraphic intervals, the thrust system will experience more complex deformations than those from a single thrust fault ramp. The resultant deformations associated with sequential ramps would exhibit a spectrum of styles, of which two end members correspond to ';overprinting' and ';interference'. Reproducing these end-member styles as well as intermediate ones, our models show that the relative importance of overprinting versus interference is a sensitive function of initial fault geometry and hanging wall displacement. We further present stress and strain histories extracted from the models. If clearly distinguishable, they will guide the interpretation of field observations on thrust faults.

  9. Characteristic Features of Hanging: A Study in Rural District of Central India.

    PubMed

    Ambade, Vipul Namdeorao; Kolpe, Dayanand; Tumram, Nilesh; Meshram, Satin; Pawar, Mohan; Kukde, Hemant

    2015-09-01

    The ligature mark is the most relevant feature of hanging. This study was undertaken with a view to determine the characteristic features of hanging and its association with ligature material or mode of suspension. Of a total medicolegal deaths reported at an Apex Medical Centre, hanging was noted in 4.1% cases, all suicidal with mortality rate of 1.5 per 100,000 population per year. The hanging was complete in 67.7% with nylon rope as the commonest type of ligature material used for ligation. The hanging mark was usually single, situated above thyroid cartilage, incomplete, prominent, and directed toward nape of neck. The mark of dribbling of saliva was seen in 11.8% cases. Facial congestion, petechial hemorrhage, and cyanosis were significantly seen in partial hanging. Though occasionally reported, the argent line was noted in 78.7% hanging deaths with neck muscle hemorrhage in 23.6% cases. Fracture of neck structure was predominant in complete hanging. © 2015 American Academy of Forensic Sciences.

  10. Equilibrium and Stability of a Pendulum in an Orbiting Spaceship.

    ERIC Educational Resources Information Center

    Blitzer, Leon

    1979-01-01

    Investigates the behavior of a simple pendulum attached to a fixed point inside a satellite moving in a circular orbit about the earth. It is found that the number of equilibrium positions depends on the length of the pendulum and the location of the point of attachment. (HM)

  11. Hands Tied with Bag Full of Books in Suicidal Hanging.

    PubMed

    Sikary, Asit Kumar; Behera, Chittaranjan; Murty, Om Prakash; Rautji, Ravi

    2016-01-01

    Hanging deaths associated with binding of limbs, masking of a face, and gagging are always suspicious. In suicidal hanging, the victim uses these added techniques to prevent him from backing out of his decision and to ensure death. However, binding of limbs and adding extra weight to the suspension in hanging are not reported. Herein, we report a case where the victim tied a bag containing books weighing 7 kg (15.4 lbs) to both his hands during hanging. The forensic specialist must be aware of the unusual presentation of suicidal hanging which may suggest foul play. The manner of death must be established after detailed analysis of circumstantial evidence, information obtained from the witnesses, complete autopsy, and toxicological examination. © 2015 American Academy of Forensic Sciences.

  12. Thrust rollers

    NASA Technical Reports Server (NTRS)

    Vranish, John M. (Inventor)

    2007-01-01

    A thrust roller bearing system comprising an inner rotating member, an outer rotating member and multiple rollers coupling the inner rotating member with outer rotating member. The inner and outer rotating members include thrust lips to enable the rollers to act as thrust rollers. The rollers contact inner and outer rotating members at bearing contact points along a contact line. Consequently, the radial/tilt and thrust forces move synchronously and simultaneously to create a bearing action with no slipping.

  13. Multi-directional energy harvesting by piezoelectric cantilever-pendulum with internal resonance

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Xu, J.; Tang, J., E-mail: jtang@engr.uconn.edu

    This letter reports a piezoelectric cantilever-pendulum design for multi-directional energy harvesting. A pendulum is attached to the tip of a piezoelectric cantilever-type energy harvester. This design aims at taking advantage of the nonlinear coupling between the pendulum motion in 3-dimensional space and the beam bending vibration at resonances. Experimental studies indicate that, under properly chosen parameters, 1:2 internal resonance can be induced, which enables the multi-directional energy harvesting with a single cantilever. The advantages of the design with respect to traditional piezoelectric cantilever are examined.

  14. A new class of compact high sensitive tiltmeter based on the UNISA folded pendulum mechanical architecture

    NASA Astrophysics Data System (ADS)

    Barone, Fabrizio; Giordano, Gerardo

    2018-02-01

    We present the Extended Folded Pendulum Model (EFPM), a model developed for a quantitative description of the dynamical behavior of a folded pendulum generically oriented in space. This model, based on the Tait-Bryan angular reference system, highlights the relationship between the folded pendulum orientation in the gravitational field and its natural resonance frequency. Tis model validated by tests performed with a monolithic UNISA Folded Pendulum, highlights a new technique of implementation of folded pendulum based tiltmeters.

  15. Explicit Analytical Solution of a Pendulum with Periodically Varying Length

    ERIC Educational Resources Information Center

    Yang, Tianzhi; Fang, Bo; Li, Song; Huang, Wenhu

    2010-01-01

    A pendulum with periodically varying length is an interesting physical system. It has been studied by some researchers using traditional perturbation methods (for example, the averaging method). But due to the limitation of the conventional perturbation methods, the solutions are not valid for long-term prediction of the pendulum. In this paper,…

  16. Idealisation and Galileo's Pendulum Discoveries: Historical, Philosophical and Pedagogical Considerations

    ERIC Educational Resources Information Center

    Matthews, Michael R.

    2004-01-01

    Galileo's discovery of the properties of pendulum motion depended on his adoption of the novel methodology of idealisation. Galileo's laws of pendulum motion could not be accepted until the empiricist methodological constraints placed on science by Aristotle, and by common sense, were overturned. As long as scientific claims were judged by how the…

  17. The sympathy of two pendulum clocks: beyond Huygens' observations.

    PubMed

    Peña Ramirez, Jonatan; Olvera, Luis Alberto; Nijmeijer, Henk; Alvarez, Joaquin

    2016-03-29

    This paper introduces a modern version of the classical Huygens' experiment on synchronization of pendulum clocks. The version presented here consists of two monumental pendulum clocks--ad hoc designed and fabricated--which are coupled through a wooden structure. It is demonstrated that the coupled clocks exhibit 'sympathetic' motion, i.e. the pendula of the clocks oscillate in consonance and in the same direction. Interestingly, when the clocks are synchronized, the common oscillation frequency decreases, i.e. the clocks become slow and inaccurate. In order to rigorously explain these findings, a mathematical model for the coupled clocks is obtained by using well-established physical and mechanical laws and likewise, a theoretical analysis is conducted. Ultimately, the sympathy of two monumental pendulum clocks, interacting via a flexible coupling structure, is experimentally, numerically, and analytically demonstrated.

  18. Variable shortening on the Main Frontal Thrust in Nepal

    NASA Astrophysics Data System (ADS)

    Almeida, R. V.; Hubbard, J.; Lee, Y. S.; Liberty, L. M.; Paudel, L.; Shrestha, A.; Sapkota, S. N.; Joshi, G.

    2017-12-01

    The Main Frontal Thrust (MFT) is the youngest, most active, and southernmost thrust system in the Himalaya. It is located in the footwall of the Main Boundary thrust (MBT), deforming Miocene to Pliocene age Siwalik Group rocks. Although often considered a single, continuous fault, in reality as many as four subparallel faults, spaced 5-30 km apart, make up this fault system. Estimates of total shortening across the MFT for eastern and central Nepal vary from 15 to 40 km, based on cross-sections and surface measurements. However, when the same methods are applied, shortening does not vary significantly along strike (Hirschmiller et al., 2014), suggesting contrasting methodologies rather than a difference in interpreted along strike structural history. Based on high resolution seismic reflection imaging, we present new interpretations of total shortening recorded by the MFT system in central vs. eastern Nepal (200 km apart), together with a detailed transect of field observations in central Nepal. Our structural interpretations demonstrate that the geological shortening recorded on the MFT ranges from >20 km in central Nepal to <1 km in far eastern Nepal. Geodetic measurements show only a slight decrease in interseismic convergence from central (15±1 mm/yr) to eastern Nepal (14±1 mm/yr) and therefore cannot explain this dramatic difference (Lindsey et al., in prep). Taken at face value, these results imply that the MBT must have been much more recently active in eastern Nepal ( 70 ka) than central Nepal ( 1.4 Ma). We propose an alternative model that does not require this dramatic difference in the age of the MFT. As one end-member, it is indeed possible that the MFT may have broken forward much more recently in the east. However, it is also possible that older MFT thrust sheets have formed, and then have been consumed as the MBT passively slid south in the hanging wall of the MFT. Distinguishing between these models is important not only for understanding the

  19. A simple, low-cost, data logging pendulum built from a computer mouse

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Gintautas, Vadas; Hubler, Alfred

    Lessons and homework problems involving a pendulum are often a big part of introductory physics classes and laboratory courses from high school to undergraduate levels. Although laboratory equipment for pendulum experiments is commercially available, it is often expensive and may not be affordable for teachers on fixed budgets, particularly in developing countries. We present a low-cost, easy-to-build rotary sensor pendulum using the existing hardware in a ball-type computer mouse. We demonstrate how this apparatus may be used to measure both the frequency and coefficient of damping of a simple physical pendulum. This easily constructed laboratory equipment makes it possible formore » all students to have hands-on experience with one of the most important simple physical systems.« less

  20. A Performance and Plume Comparison of Xenon and Krypton Propellant on the SPT-100

    DTIC Science & Technology

    2012-07-02

    HET (1.35 kW), performance measurements were made using an inverted pendulum thrust stand. The plume was also characterized by a Faraday probe and RPA...performance reduction for the case of the flight model SPT-100 HET (1.35 kW), per- formance measurements were made using an inverted pendulum thrust stand...where high thrust at reduced specific impulse is advantageous, such as orbit raising missions. Bismuth’s main drawback is that the metal must be

  1. Idealisation and Galileo's Pendulum Discoveries: Historical, Philosophical and Pedagogical Considerations

    NASA Astrophysics Data System (ADS)

    Matthews, Michael R.

    2004-11-01

    Galileo's discovery of the properties of pendulum motion depended on his adoption of the novel methodology of idealisation. Galileo's laws of pendulum motion could not be accepted until the empiricist methodological constraints placed on science by Aristotle, and by common sense, were overturned. As long as scientific claims were judged by how the world was immediately seen to behave, and as long as mathematics and physics were kept separate, then Galileo's pendulum claims could not be substantiated; the evidence was against them. Proof of the laws required not just a new science, but a new way of doing science, a new way of handling evidence, a new methodology of science. This was Galileo's method of idealisatioin. It was the foundation of the Galilean-Newtonian Paradigm which characterised the Scientific Revolution of the 17th century, and the subsequent centuries of modern science. As the pendulum was central to Galileo's and Newton's physics, appreciating the role of idealisation in their work is an instructive way to learn about the nature of science.

  2. The Pendulum in the 21st Century-Relic or Trendsetter

    ERIC Educational Resources Information Center

    Peters, Randall D.

    2004-01-01

    When identifying instruments that have had great influence on the history of physics, none comes to mind more quickly than the pendulum. Though first treated scientifically by Galileo in the 16th century, and in some respects nearly "dead" by the middle of the 20th century; the pendulum experienced "rebirth" by becoming an archetype of chaos. With…

  3. Changes in stature following plyometric drop-jump and pendulum exercises.

    PubMed

    Fowler, N E; Lees, A; Reilly, T

    1997-12-01

    The aim of this study was to compare the changes in stature following the performance of plyometric exercises using drop-jumps and a pendulum swing. Eight male participants aged 21.7 +/- 1.8 years with experience of plyometric training gave their informed consent to act as participants. Participants undertook two exercise regimens and a 15-min standing test in a random order. The exercises entailed the performance of 50 drop-jumps from a height of 0.28 m or 50 pendulum rebounds. Participants were instructed to perform maximal jumps or rebounds using a 'bounce' style. Measurements of stature were performed after a 20-min period of standing (pre-exercise), 2-min after exercise (post-exercise) and after a 20-min standing recovery (recovery). Back pain and muscle soreness were assessed using an analogue-visual scale, at each of the above times and also 24 and 36 h after the test. Peak torque during isokinetic knee extension at 1.04 rads-1 was measured immediately before and after the exercise bouts, to assess the degree of muscular fatigue. Ground/wall reaction force data were recorded using a Kistler force platform mounted in the floor for drop-jumps and vertically on the rebound wall for pendulum exercises. Drop-jumps resulted in the greatest (p < 0.05) change in stature (-2.71 +/- 0.8 mm), compared to pendulum exercises (-1.77 +/- 0.7 mm) and standing (-0.39 +/- 0.2 mm). Both exercise regimens resulted in a significant (p < 0.01) decrease in stature when compared to the standing condition. Drop-jumps resulted in significantly greater peak impact forces (p < 0.05) than pendulum exercises (drop-jumps = 3.2 +/- 0.5 x body weight, pendulum = 2.6 +/- 0.5 x body weight). The two exercise conditions both invoked a small degree of muscle soreness but there were no significant differences between conditions. Both exercise regimens resulted in a non-significant decrease in peak torque indicating a similar degree of muscular fatigue. Based on the lower shrinkage resulted and

  4. The Hanging Cord with a Real Tip Mass

    ERIC Educational Resources Information Center

    Deschaine, J. S.; Suits, B. H.

    2008-01-01

    Normal mode solutions for the perfectly flexible hanging cord problem have been known for over 200 years. More recently, theoretical results for a hanging cord with a point mass attached were presented. Here the theoretical results are tested experimentally using high-precision techniques which are accessible for use in an introductory laboratory.…

  5. The sympathy of two pendulum clocks: beyond Huygens’ observations

    PubMed Central

    Peña Ramirez, Jonatan; Olvera, Luis Alberto; Nijmeijer, Henk; Alvarez, Joaquin

    2016-01-01

    This paper introduces a modern version of the classical Huygens’ experiment on synchronization of pendulum clocks. The version presented here consists of two monumental pendulum clocks—ad hoc designed and fabricated—which are coupled through a wooden structure. It is demonstrated that the coupled clocks exhibit ‘sympathetic’ motion, i.e. the pendula of the clocks oscillate in consonance and in the same direction. Interestingly, when the clocks are synchronized, the common oscillation frequency decreases, i.e. the clocks become slow and inaccurate. In order to rigorously explain these findings, a mathematical model for the coupled clocks is obtained by using well-established physical and mechanical laws and likewise, a theoretical analysis is conducted. Ultimately, the sympathy of two monumental pendulum clocks, interacting via a flexible coupling structure, is experimentally, numerically, and analytically demonstrated. PMID:27020903

  6. Lyapunov optimal feedback control of a nonlinear inverted pendulum

    NASA Technical Reports Server (NTRS)

    Grantham, W. J.; Anderson, M. J.

    1989-01-01

    Liapunov optimal feedback control is applied to a nonlinear inverted pendulum in which the control torque was constrained to be less than the nonlinear gravity torque in the model. This necessitates a control algorithm which 'rocks' the pendulum out of its potential wells, in order to stabilize it at a unique vertical position. Simulation results indicate that a preliminary Liapunov feedback controller can successfully overcome the nonlinearity and bring almost all trajectories to the target.

  7. Autonomous navigation system. [gyroscopic pendulum for air navigation

    NASA Technical Reports Server (NTRS)

    Merhav, S. J. (Inventor)

    1981-01-01

    An inertial navigation system utilizing a servo-controlled two degree of freedom pendulum to obtain specific force components in the locally level coordinate system is described. The pendulum includes a leveling gyroscope and an azimuth gyroscope supported on a two gimbal system. The specific force components in the locally level coordinate system are converted to components in the geographical coordinate system by means of a single Euler transformation. The standard navigation equations are solved to determine longitudinal and lateral velocities. Finally, vehicle position is determined by a further integration.

  8. Fabrication and Operation of Microfluidic Hanging-Drop Networks.

    PubMed

    Misun, Patrick M; Birchler, Axel K; Lang, Moritz; Hierlemann, Andreas; Frey, Olivier

    2018-01-01

    The hanging-drop network (HDN) is a technology platform based on a completely open microfluidic network at the bottom of an inverted, surface-patterned substrate. The platform is predominantly used for the formation, culturing, and interaction of self-assembled spherical microtissues (spheroids) under precisely controlled flow conditions. Here, we describe design, fabrication, and operation of microfluidic hanging-drop networks.

  9. Two-Pendulum Model of Propellant Slosh in Europa Clipper PMD Tank

    NASA Technical Reports Server (NTRS)

    Ng, Wanyi; Benson, David

    2017-01-01

    The objective of this fluids analysis is to model propellant slosh for the Europa Clipper mission using a two-pendulum model, such that controls engineers can predict slosh behavior during the mission. Propellant slosh causes shifts in center of mass and exerts forces and torques on the spacecraft which, if not adequately controlled, can lead to mission failure. The two-pendulum model provides a computationally simple model that can be used to predict slosh for the Europa Clipper tank geometry. The Europa Clipper tank is cylindrical with a domed top and bottom and includes a propellant management device (PMD). Due to the lack of experimental data in low gravity environments, computational fluid dynamics (CFD) simulation results were used as 'real' slosh behavior for two propellants at three fill fractions. Key pendulum parameters were derived that allow the pendulum model's center of mass, forces, and moments to closely match the CFD data. The parameter trends were examined as a function of tank fill fraction and compared with solutions to analytic equations that describe the frequency of slosh in tanks with simple geometries. The trends were monotonic as expected, and parameters resembled analytical predictions; any differences could be explained by the specific differences in the geometry of the tank. This paper summarizes the new method developed at Goddard Space Flight Center (GSFC) for deriving pendulum parameters for two-pendulum equivalent sloshing models. It presents the results of this method and discusses the validity of the results. This analysis is at a completed stage and will be applied in the immediate future to the evolving tank geometry as Europa Clipper moves past its preliminary design review (PDR) phase.

  10. Acute pulmonary emphysema in death by hanging: a morphometric digital study.

    PubMed

    Castiglioni, Claudia; Baumann, Pia; Fracasso, Tony

    2016-09-01

    Acute pulmonary emphysema (APE) has been described in cases of mechanical asphyxia such as ligature or manual strangulation but not in cases of hanging. In this study, we wanted to verify by morphometric digital analysis of lung tissue whether APE occurs in death by hanging.We investigated 16 cases of hanging (eight complete, eight incomplete), 10 cases of freshwater drowning (positive control group), and 10 cases of acute external bleeding (negative control group). Tissue sections were obtained from each pulmonary lobe. For each slide, five fields were randomly selected. The area of every alveolar space was measured by image analysis software. The mean alveolar area (MAA) was calculated for each group.In incomplete hanging, MAA was significantly higher than that observed in complete hanging and similar to the one observed in freshwater drowning.APE in cases of incomplete hanging can be considered as a sign of vitality. The high number of conditions that can cause alveolar distension (that were excluded in this study) limits the applicability of this vital sign in the routine forensic practice.

  11. Analysis of the linearity of half periods of the Lorentz pendulum

    NASA Astrophysics Data System (ADS)

    Wickramasinghe, T.; Ochoa, R.

    2005-05-01

    We analyze the motion of the Lorentz pendulum, a simple pendulum whose length is changed at a constant rate k. We show both analytically and numerically that the half period Tn, the time between half oscillations as measured from midpoint to midpoint, increases linearly with the oscillation number n such that Tn+1-Tn≈kπ2/2g, where g is the acceleration due to gravity. A video camera is used to record the motion of the oscillating bob of the pendulum and verify the linearity of Tn with oscillation number. The theory and the experiment are suitable for an advanced undergraduate laboratory.

  12. The Reproduction of Scientific Understanding about Pendulum Motion in the Public

    ERIC Educational Resources Information Center

    Manabu, Sumida

    2004-01-01

    This paper describes life-span development of understanding about pendulum motion and effects of school science. The subjects were 2,766 people ranging from kindergartners up to 88 years senior citizens. The conflict and consensus between children and their parent's understanding of pendulum motion were also analyzed. The kindergartner's…

  13. Comparison of strain rates of dart impacted plaques and pendulum impacted bumpers

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Scammell, K.L.

    1987-01-01

    The difference in strain rates prevailing during pendulum impact of bumpers versus high speed dart impact of plaques was investigated. Uni-axial strain gages were applied to the tension side of the plaques and bumpers directly opposite the point of impact. The plaques were impacted with an instrumented high rate dart impact tester and the bumpers impacted with a full scale bumper pendulum impact tester. Theoretical calculations and actual strain rate data support the conclusion that the strain rate of a plaque during dart impact significantly exceeds that of bumper strain rate during pendulum impact.

  14. Structural analysis of Nalagarh lobe, NW Himalaya: implication of thrusting across tectonic edge of NW limb of Nahan salient, Himachal Pradesh, India

    NASA Astrophysics Data System (ADS)

    Bhakuni, S. S.; Philip, G.; Suresh, N.

    2017-07-01

    The Main Boundary Fault (MBF), convex towards southwest, forms the leading edge of the Nahan salient. Near the southern end of an oblique ramp, a lobe-shaped physiographic front, named in this work as Nalagarh lobe, has developed across NW limb of salient. The lobe has formed across the MBF that separates the hanging wall Lower Tertiary Dharmsala rocks from the footwall Upper Tertiary Siwalik rocks and overlying Quaternaries. In front of lobe, thrust fault splays (Splay-1 and Splay-2) and associated tectonic fabrics have developed within the Late Pleistocene fan deposit. Structural elements developed across the front of Nalagarh lobe are analysed with reference to evolution of lobe. An unweathered 15-m-high hanging wall or wedge top forms the uplifted and rejuvenated bedrock fault scarp of the MBF. Below the MBF, the fan deposit has underthrust along Splay-1. Later the Splay-2 formed within fan deposit near south of Splay-1. Geometry of the overturned limb of tight to isoclinal fault propagation fold, formed on Splay-2 plane, suggests that the fold formed by normal drag, produced by intermittent fault-slips along Splay-2. The displacement along Splay-2 offset the marker bed to 1 m by which some clasts rotated parallel to the traces of brittle axial planes of fold. The variable fold geometry and style of deformation are analysed along length of thrust splays for 5 km. It is revealed that the lobe is bounded by transverse thrust faults along its NW and SE margins. The geometry of salient and oblique ramp suggests that the transverse thrust faults and associated transverse folds formed by right-lateral displacement along the NW limb of the salient. Marking the northern margin of the intermontane piggyback basin of Pinjaur dun, the MBF is interpreted to be an out-of-sequence thrust that has brought up the Lower Tertiary Dharmsala rocks over the Late Pleistocene fan deposit. The geometry of lobe and its bounding transverse faults suggest that faults are intimately

  15. Design and evaluation of thrust vectored nozzles using a multicomponent thrust stand

    NASA Technical Reports Server (NTRS)

    Carpenter, Thomas W.; Blattner, Ernest W.; Stagner, Robert E.; Contreras, Juanita; Lencioni, Dennis; Mcintosh, Greg

    1990-01-01

    Future aircraft with the capability of short takeoff and landing, and improved maneuverability especially in the post-stall flight regime will incorporate exhaust nozzles which can be thrust vectored. In order to conduct thrust vector research in the Mechanical Engineering Department at Cal Poly, a program was planned with two objectives; design and construct a multicomponent thrust stand for the specific purpose of measuring nozzle thrust vectors; and to provide quality low moisture air to the thrust stand for cold flow nozzle tests. The design and fabrication of the six-component thrust stand was completed. Detailed evaluation tests of the thrust stand will continue upon the receipt of one signal conditioning option (-702) for the Fluke Data Acquisition System. Preliminary design of thrust nozzles with air supply plenums were completed. The air supply was analyzed with regard to head loss. Initial flow visualization tests were conducted using dual water jets.

  16. [Study on molecular recognition technology in active constituents extracted and isolated from Aconitum pendulum].

    PubMed

    Ma, Xue-Qin; Li, Guo-Shan; Fu, Xue-Yan; Ma, Jing-Zu

    2011-03-01

    To investigate CD molecular recognition technology applied in active constituents extracted and isolated from traditional Chinese medicine--Aconitum pendulum. The inclusion constant and form probability of the inclusion complex of Aconitum pendulum with p-CD was calculated by UV spectra method. The active constituents of Aconitum pendulum were extracted and isolated by molecular recognition technology. The inclusion complex was identified by UV. The chemical constituents of Aconitum pendulum and inclusion complex was determined by HPLC. The analgesic effects of inclusion complex was investigated by experiment of intraperitoneal injection of acetic acid in rats. The inclusion complex was identified and confirmed by UV spectra method, the chemical components of inclusion complex were simple, and the content of active constituents increased significantly, the analgesic effects of inclusion complex was well. The molecular recognition technology can be used for extracting and isolating active constituents of Aconitum pendulum, and the effects are obvious.

  17. Measuring g Using a Magnetic Pendulum and Telephone Pickup

    NASA Astrophysics Data System (ADS)

    Sinacore, J.; Takai, H.

    2010-10-01

    The simple pendulum has long been used to measure g, the acceleration due to gravity, with a precision of a few percent. Achieving agreement with the accepted value of less than 1% is feasible in the high school laboratory, though it requires some care. The precision of the measurement is bound by how accurately the period and the pendulum length are determined. To improve on the period measurement, we have developed a simple and inexpensive method using a magnet and telephone pickup.2

  18. Relationship between Biomechanical Characteristics of Spinal Manipulation and Neural Responses in an Animal Model: Effect of Linear Control of Thrust Displacement versus Force, Thrust Amplitude, Thrust Duration, and Thrust Rate

    PubMed Central

    Reed, William R.; Cao, Dong-Yuan; Long, Cynthia R.; Kawchuk, Gregory N.; Pickar, Joel G.

    2013-01-01

    High velocity low amplitude spinal manipulation (HVLA-SM) is used frequently to treat musculoskeletal complaints. Little is known about the intervention's biomechanical characteristics that determine its clinical benefit. Using an animal preparation, we determined how neural activity from lumbar muscle spindles during a lumbar HVLA-SM is affected by the type of thrust control and by the thrust's amplitude, duration, and rate. A mechanical device was used to apply a linear increase in thrust displacement or force and to control thrust duration. Under displacement control, neural responses during the HVLA-SM increased in a fashion graded with thrust amplitude. Under force control neural responses were similar regardless of the thrust amplitude. Decreasing thrust durations at all thrust amplitudes except the smallest thrust displacement had an overall significant effect on increasing muscle spindle activity during the HVLA-SMs. Under force control, spindle responses specifically and significantly increased between thrust durations of 75 and 150 ms suggesting the presence of a threshold value. Thrust velocities greater than 20–30 mm/s and thrust rates greater than 300 N/s tended to maximize the spindle responses. This study provides a basis for considering biomechanical characteristics of an HVLA-SM that should be measured and reported in clinical efficacy studies to help define effective clinical dosages. PMID:23401713

  19. Einstein versus the Simple Pendulum Formula: Does Gravity Slow All Clocks?

    ERIC Educational Resources Information Center

    Puri, Avinash

    2015-01-01

    According to the Newtonian formula for a simple pendulum, the period of a pendulum is inversely proportional to the square root of "g", the gravitational field strength. Einstein's theory of general relativity leads to the result that time slows down where gravity is intense. The two claims look contradictory and can muddle student and…

  20. An Apparatus to Demonstrate Linear and Nonlinear Oscillations of a Pendulum

    ERIC Educational Resources Information Center

    Mayer, V. V.; Varaksina, E. I.

    2016-01-01

    A physical pendulum with a magnetic load is proposed for comparison of linear and nonlinear oscillations. The magnetic load is repelled by permanent magnets which are disposed symmetrically relative to the load. It is established that positions of the pendulum and the magnets determine the dependence of restoring force on displacement of the load.…

  1. Maxillary molar distalization: Pendulum and Fast-Back, comparison between two approaches for Class II malocclusion.

    PubMed

    Caprioglio, Alberto; Beretta, Matteo; Lanteri, Claudio

    2011-01-01

    To compare the dento-alveolar and skeletal effects produced by two different molar intraoral distalization appliances, Pendulum and Fast-Back, both followed by fixed appliances, in the treatment of Class II malocclusion. 41 patients for Pendulum (18 males and 23 females) and 35 for Fast-Back (14 males and 21 females) were selected, with a mean age at the start of treatment of 12.11 years in the Pendulum group and 13.3 for in the Fast-Back group. The durations of the distalization phase were 8 months in the Pendulum group and 9 months in the Fast-Back group, and the durations of the second phase of treatment with fixed appliances were 19 months in the Pendulum group and 20 months in the Fast-Back group. Lateral cephalograms were analyzed at 3 observation times: before treatment, after distalization and after comprehensive orthodontic treatment. During molar distalization the Pendulum subjects showed greater distal molar movement and less anchorage loss at both the premolars and maxillary incisors than the Fast-Back subjects. Pendulum and Fast-Back produced similar amounts of distal molar movement and overcorrection of molar relationship at the end of distalization though the Fast-Back induced a more bodily movement. Very little change occurred in the inclination of the mandibular plane at the end of the 2-phase treatment in both groups. At the end of treatment the maxillary first molars were on average 1mm more distal in the Pendulum group compared to the Fast-Back group, while the total molar correction was 3.2mm with 3.9° of distal inclination for the Pendulum and 2mm with 1.1° of mesial inclination for the Fast-Back. Both appliance were equally effective in inducing a satisfactory Class I relationship in 97.2% of the cases. The Pendulum and the Fast-Back induce similar dentoskeletal effects. The use of the two distalization devices, therefore, can be considered clinically equivalent. Copyright © 2011 Società Italiana di Ortodonzia SIDO. Published by Elsevier

  2. Electromagnetic energy harvesting from a dual-mass pendulum oscillator

    NASA Astrophysics Data System (ADS)

    Wang, Hongyan; Tang, Jiong

    2016-04-01

    This paper presents the analysis of a type of vibration energy harvester composed of an electromagnetic pendulum oscillator combined to an elastic main structure. In this study, the elastic main structure connected to the base is considered as a single degree-of-freedom (DOF) spring-mass-damper subsystem. The electromagnetic pendulum oscillator is considered as a dual-mass two-frequency subsystem, which is composed of a hollow bar with a tip winded coil and a magnetic mass with a spring located in the hollow bar. As the pendulum swings, the magnetic mass can move along the axial direction of the bar. Thus, the relative motion between the magnet and the coil induces a wire current. A mathematical model of the coupled system is established. The system dynamics a 1:2:1 internal resonance. Parametric analysis is carried out to demonstrate the effect of the excitation acceleration, excitation frequency, load resistance, and frequency tuning parameters on system performance.

  3. A biomechanical model of the craniomandibular complex and cervical spine based on the inverted pendulum.

    PubMed

    Gillies, G T; Broaddus, W C; Stenger, J M; Taylor, A G

    1998-01-01

    The head and neck constitute an inverted pendulum that is stabilized during consciousness by neuromuscular restoring forces. An analysis of the dynamics of this inverted pendulum suggests that the mechanics of the mandible and temporomandibular joint might couple into those of the pendulum's stabilization process. In this article, physical principles of the inverted pendulum model as these apply to the head and neck are explored, and the authors describe implications of mandibular mechanics for the forces acting on the head and neck at equilibrium. This novel application of the inverted pendulum model predicts that alteration or pathology of temporomandibular mechanics would lead to perturbations of the normal forces acting in the head and neck. Under certain circumstances, these perturbations could be expected to contribute to symptoms and result in additional or accelerated degenerative effects.

  4. Decomposition Rate and Pattern in Hanging Pigs.

    PubMed

    Lynch-Aird, Jeanne; Moffatt, Colin; Simmons, Tal

    2015-09-01

    Accurate prediction of the postmortem interval requires an understanding of the decomposition process and the factors acting upon it. A controlled experiment, over 60 days at an outdoor site in the northwest of England, used 20 freshly killed pigs (Sus scrofa) as human analogues to study decomposition rate and pattern. Ten pigs were hung off the ground and ten placed on the surface. Observed differences in the decomposition pattern required a new decomposition scoring scale to be produced for the hanging pigs to enable comparisons with the surface pigs. The difference in the rate of decomposition between hanging and surface pigs was statistically significant (p=0.001). Hanging pigs reached advanced decomposition stages sooner, but lagged behind during the early stages. This delay is believed to result from lower variety and quantity of insects, due to restricted beetle access to the aerial carcass, and/or writhing maggots falling from the carcass. © 2015 American Academy of Forensic Sciences.

  5. Shaping low-thrust trajectories with thrust-handling feature

    NASA Astrophysics Data System (ADS)

    Taheri, Ehsan; Kolmanovsky, Ilya; Atkins, Ella

    2018-02-01

    Shape-based methods are becoming popular in low-thrust trajectory optimization due to their fast computation speeds. In existing shape-based methods constraints are treated at the acceleration level but not at the thrust level. These two constraint types are not equivalent since spacecraft mass decreases over time as fuel is expended. This paper develops a shape-based method based on a Fourier series approximation that is capable of representing trajectories defined in spherical coordinates and that enforces thrust constraints. An objective function can be incorporated to minimize overall mission cost, i.e., achieve minimum ΔV . A representative mission from Earth to Mars is studied. The proposed Fourier series technique is demonstrated capable of generating feasible and near-optimal trajectories. These attributes can facilitate future low-thrust mission designs where different trajectory alternatives must be rapidly constructed and evaluated.

  6. Analysis of Pendulum Period with an iPod Touch/iPhone

    ERIC Educational Resources Information Center

    Briggle, Justin

    2013-01-01

    We describe the use of Apple's iPod touch/iPhone, acting as the pendulum bob, as a means of measuring pendulum period, making use of the device's three-axis digital accelerometer and the freely available SPARKvue app from PASCO scientific. The method can be readily incorporated into an introductory physics laboratory experiment.…

  7. The Bravais Pendulum: The Distinct Charm of an Almost Forgotten Experiment

    ERIC Educational Resources Information Center

    Babovic, V. M.; Mekic, S.

    2011-01-01

    In the year 1851 in Paris, the apparent change of the plane of oscillation of a linear pendulum was observed by Leon Foucault. In the same year, at the same place, the unequal duration of the oscillations of a right- and left-handed conical pendulum was observed by Bravais. Today, the Foucault pendula are common at universities, the Bravais…

  8. Roles of Abductive Reasoning and Prior Belief in Children's Generation of Hypotheses about Pendulum Motion

    ERIC Educational Resources Information Center

    Kwon, Yong-Ju; Jeong, Jin-Su; Park, Yun-Bok

    2006-01-01

    The purpose of the present study was to test the hypothesis that student's abductive reasoning skills play an important role in the generation of hypotheses on pendulum motion tasks. To test the hypothesis, a hypothesis-generating test on pendulum motion, and a prior-belief test about pendulum motion were developed and administered to a sample of…

  9. Strange mechanics of the neutrino flavor pendulum

    NASA Astrophysics Data System (ADS)

    Johns, Lucas; Fuller, George M.

    2018-01-01

    We identify in the flavor transformation of astrophysical neutrinos a new class of phenomena, a common outcome of which is the suppression of flavor conversion. Appealing to the equivalence between a bipolar neutrino system and a gyroscopic pendulum, we find that these phenomena have rather striking interpretations in the mechanical picture: in one instance, the gyroscopic pendulum initially precesses in one direction, then comes to a halt and begins to precess in the opposite direction—a counterintuitive behavior that we analogize to the motion of a toy known as a rattleback. We analyze these behaviors in the early Universe, wherein a chance connection to sterile neutrino dark matter emerges, and we briefly suggest how they might manifest in compact-object environments.

  10. Pendulum Motion and Differential Equations

    ERIC Educational Resources Information Center

    Reid, Thomas F.; King, Stephen C.

    2009-01-01

    A common example of real-world motion that can be modeled by a differential equation, and one easily understood by the student, is the simple pendulum. Simplifying assumptions are necessary for closed-form solutions to exist, and frequently there is little discussion of the impact if those assumptions are not met. This article presents a…

  11. Hang Gliders

    NASA Technical Reports Server (NTRS)

    1981-01-01

    Francis M. Rogallo and his wife Gertrude researched flexible controllable fabric airfoils with a delta, V-shaped, configuration for use on inexpensive private aircraft. They were issued a flex-wing patent and refined their designs. Development of Rogallo wings, used by U.S. Moyes, Inc. substantially broadened the flexible airfoil technology base which originated from NASA's reentry parachute. The Rogallo technology, particularly the airfoil frame was incorporated in the design of a kite by John Dickenson. The Dickenson kite served as prototype for the Australian Moyes line of hang gliders. Company no longer exists.

  12. Surface-tension driven open microfluidic platform for hanging droplet culture

    PubMed Central

    de Groot, T. E.; Veserat, K. S.; Berthier, E.; Beebe, D. J.; Theberge, A. B.

    2015-01-01

    The hanging droplet technique for three-dimensional tissue culture has been used for decades in biology labs, with the core technology remaining relatively unchanged. Recently microscale approaches have expanded the capabilities of the hanging droplet method, making it more user-friendly. We present a spontaneously driven, open hanging droplet culture platform to address many limitations of current platforms. Our platform makes use of two interconnected hanging droplet wells, a larger well where cells are cultured and a smaller well for user interface via a pipette. The two-well system results in lower shear stress in the culture well during fluid exchange, enabling shear sensitive or non-adherent cells to be cultured in a droplet. The ability to perform fluid exchanges in-droplet enables long-term culture, treatment, and characterization without disruption of the culture. The open well format of the platform was utilized to perform time-dependent coculture, enabling culture configurations with bone tissue scaffolds and cells grown in suspension. The open nature of the system allowed the direct addition or removal of tissue over the course of an experiment, manipulations that would be impractical in other microfluidic or hanging droplet culture platforms. PMID:26660268

  13. A measurement of G with a cryogenic torsion pendulum.

    PubMed

    Newman, Riley; Bantel, Michael; Berg, Eric; Cross, William

    2014-10-13

    A measurement of Newton's gravitational constant G has been made with a cryogenic torsion pendulum operating below 4 K in a dynamic mode in which G is determined from the change in torsional period when a field source mass is moved between two orientations. The source mass was a pair of copper rings that produced an extremely uniform gravitational field gradient, whereas the pendulum was a thin fused silica plate, a combination that minimized the measurement's sensitivity to error in pendulum placement. The measurement was made using an as-drawn CuBe torsion fibre, a heat-treated CuBe fibre, and an as-drawn Al5056 fibre. The pendulum operated with a set of different large torsional amplitudes. The three fibres yielded high Q-values: 82 000, 120 000 and 164 000, minimizing experimental bias from fibre anelasticity. G-values found with the three fibres are, respectively: {6.67435(10),6.67408(15),6.67455(13)}×10(-11) m(3) kg(-1) s(-2), with corresponding uncertainties 14, 22 and 20 ppm. Relative to the CODATA2010 G-value, these are higher by 77, 37 and 107 ppm, respectively. The unweighted average of the three G-values, with the unweighted average of their uncertainties, is 6.67433(13)×10(-11) m(3) kg(-1) s(-2) (19 ppm). © 2014 The Author(s) Published by the Royal Society. All rights reserved.

  14. Exploring the shallow structure of the San Ramón thrust fault in Santiago, Chile (~33.5° S), using active seismic and electric methods

    NASA Astrophysics Data System (ADS)

    Díaz, D.; Maksymowicz, A.; Vargas, G.; Vera, E.; Contreras-Reyes, E.; Rebolledo, S.

    2014-08-01

    The crustal-scale west-vergent San Ramón thrust fault system, which lies at the foot of the main Andean Cordillera in central Chile, is a geologically active structure with manifestations of late Quaternary complex surface rupture on fault segments along the eastern border of the city of Santiago. From the comparison of geophysical and geological observations, we assessed the subsurface structural pattern that affects the sedimentary cover and rock-substratum topography across fault scarps, which is critical for evaluating structural models and associated seismic hazard along the related faults. We performed seismic profiles with an average length of 250 m, using an array of 24 geophones (Geode), with 25 shots per profile, to produce high-resolution seismic tomography to aid in interpreting impedance changes associated with the deformed sedimentary cover. The recorded travel-time refractions and reflections were jointly inverted by using a 2-D tomographic approach, which resulted in variations across the scarp axis in both the velocities and the reflections that are interpreted as the sedimentary cover-rock substratum topography. Seismic anisotropy observed from tomographic profiles is consistent with sediment deformation triggered by west-vergent thrust tectonics along the fault. Electrical soundings crossing two fault scarps were used to construct subsurface resistivity tomographic profiles, which reveal systematic differences between lower resistivity values in the hanging wall with respect to the footwall of the geological structure, and clearly show well-defined east-dipping resistivity boundaries. These boundaries can be interpreted in terms of structurally driven fluid content change between the hanging wall and the footwall of the San Ramón fault. The overall results are consistent with a west-vergent thrust structure dipping ~55° E in the subsurface beneath the piedmont sediments, with local complexities likely associated with variations in fault

  15. Craniocervical injuries in judicial hangings: an anthropologic analysis of six cases.

    PubMed

    Spence, M W; Shkrum, M J; Ariss, A; Regan, J

    1999-12-01

    Restoration projects and archaeologic excavations in two Canadian prisons resulted in the recovery of the skeletons of six felons executed by judicial hanging. Damage inflicted by hanging on various skeletal elements was observed. Among the injuries seen were fractures of the hyoid cornua, styloid processes, occipital bones, and cervical vertebral bodies (C2) and transverse processes (C1, C2, C3, and C5). Despite the general uniformity of the hanging technique, which involved a subaural knot, the trauma to the skeletal elements and the cause of death varied among individuals. Although some of this variation was probably due to minor differences in hanging practices, individual anatomic peculiarities of the victims likely also contributed.

  16. On the Stable Limit Cycle of a Weight-Driven Pendulum Clock

    ERIC Educational Resources Information Center

    Llibre, J; Teixeira, M. A.

    2010-01-01

    In a recent paper (Denny 2002 Eur. J. Phys. 23 449-58), entitled "The pendulum clock: a venerable dynamical system", Denny showed that in a first approximation the steady-state motion of a weight-driven pendulum clock is shown to be a stable limit cycle. He placed the problem in a historical context and obtained an approximate solution using the…

  17. Self-excited electrostatic pendulum showing electrohydrodynamic-force-induced oscillation

    NASA Astrophysics Data System (ADS)

    Stephan, Karl D.; Hernandez Guerrero, José M.

    2017-12-01

    The electrohydrodynamic (EHD) effect ("ion wind") associated with corona discharges in air has been extensively investigated and modeled. We present a simple experiment that shows how both the magnitude and direction of EHD forces can change in such a way as to impart energy continuously to an oscillating electrostatic pendulum. The amplitude of oscillations of an electrostatic pendulum subject to EHD forces can grow approximately exponentially over a period of minutes, and we describe a qualitative theory to account for this effect, along with implications of these experiments for theories of ball lightning.

  18. Viscous-pendulum damper suppresses structural vibrations

    NASA Technical Reports Server (NTRS)

    Reed, W. H., III

    1964-01-01

    The viscous pendulum damper consists of a cylinder containing round trays on which round lead slugs rest. When assembled, the container is filled with a viscous liquid and attached, with axis vertical, to the structure. The device permits varying the damping of structural vibrations.

  19. Dielectric Barrier Discharge (DBD) Plasma Actuators Thrust-Measurement Methodology Incorporating New Anti-Thrust Hypothesis

    NASA Technical Reports Server (NTRS)

    Ashpis, David E.; Laun, Matthew C.

    2014-01-01

    We discuss thrust measurements of Dielectric Barrier Discharge (DBD) plasma actuators devices used for aerodynamic active flow control. After a review of our experience with conventional thrust measurement and significant non-repeatability of the results, we devised a suspended actuator test setup, and now present a methodology of thrust measurements with decreased uncertainty. The methodology consists of frequency scans at constant voltages. The procedure consists of increasing the frequency in a step-wise fashion from several Hz to the maximum frequency of several kHz, followed by frequency decrease back down to the start frequency of several Hz. This sequence is performed first at the highest voltage of interest, then repeated at lower voltages. The data in the descending frequency direction is more consistent and selected for reporting. Sample results show strong dependence of thrust on humidity which also affects the consistency and fluctuations of the measurements. We also observed negative values of thrust or "anti-thrust", at low frequencies between 4 Hz and up to 64 Hz. The anti-thrust is proportional to the mean-squared voltage and is frequency independent. Departures from the parabolic anti-thrust curve are correlated with appearance of visible plasma discharges. We propose the anti-thrust hypothesis. It states that the measured thrust is a sum of plasma thrust and anti-thrust, and assumes that the anti-thrust exists at all frequencies and voltages. The anti-thrust depends on actuator geometry and materials and on the test installation. It enables the separation of the plasma thrust from the measured total thrust. This approach enables more meaningful comparisons between actuators at different installations and laboratories. The dependence on test installation was validated by surrounding the actuator with a large diameter, grounded, metal sleeve.

  20. A Simple, Low-Cost, Data-Logging Pendulum Built from a Computer Mouse

    ERIC Educational Resources Information Center

    Gintautas, Vadas; Hubler, Alfred

    2009-01-01

    Lessons and homework problems involving a pendulum are often a big part of introductory physics classes and laboratory courses from high school to undergraduate levels. Although laboratory equipment for pendulum experiments is commercially available, it is often expensive and may not be affordable for teachers on fixed budgets, particularly in…

  1. Comparison of the effects produced by headgear and pendulum appliances followed by fixed orthodontic treatment.

    PubMed

    Angelieri, Fernanda; de Almeida, Renato Rodrigues; Janson, Guilherme; Castanha Henriques, José Fernando; Pinzan, Arnaldo

    2008-12-01

    This study compared the effects produced by two different molar distalizers, namely cervical headgear (CHG) and the intraoral pendulum appliance, associated with fixed orthodontic appliances. The headgear group comprised 30 patients (19 females, 11 males), with an initial age of 13.07 years [standard deviation (SD) = 1.3], treated with CHG and fixed orthodontic appliances for a mean period of 3.28 years, and the pendulum group 22 patients (15 females, 7 males), with initial age of 13.75 years (SD = 1.86), treated with the pendulum appliance followed by fixed orthodontic appliances for a mean period of 4.12 years. Lateral cephalograms were taken at the start (T1) and on completion (T2) of orthodontic treatment. The pendulum and CHG groups were similar as to initial age, severity of the Class II malocclusion, gender distribution, initial cephalometric characteristics, and initial and final treatment priority index (TPI). Only treatment time was not similar between the groups, with a need for annualization for data for the pendulum group. The data were compared with independent t-tests. There was significantly greater restriction of maxillary forward growth and improvement of the skeletal maxillomandibular relationship in the CHG group (P < 0.05). The maxillary molars were more mesially tipped and extruded and the mandibular molars more uprighted in the CHG group compared with the pendulum group (P < 0.05). There was more labial tipping of the mandibular incisors and greater overbite reduction in the pendulum group. The pendulum appliance produced only dentoalveolar effects, different from the CHG appliance, which restricted maxillary forward displacement, thus improving the skeletal maxillomandibular relationship.

  2. A composite controller for trajectory tracking applied to the Furuta pendulum.

    PubMed

    Aguilar-Avelar, Carlos; Moreno-Valenzuela, Javier

    2015-07-01

    In this paper, a new composite scheme is proposed, where the total control action is composed of the sum of a feedback-linearization-based controller and an energy-based compensation. This new proposition is applied to the rotary inverted pendulum or Furuta pendulum. The Furuta pendulum is a well-known underactuated mechanical system with two degrees of freedom. The control objective in this case is the tracking of a desired periodic trajectory in the actuated joint, while the unactuated link is regulated at the upward position. The closed-loop system is analyzed showing uniformly ultimately boundedness of the error trajectories. The design procedure is shown in a constructive form, such that it may be applied to other underactuated mechanical systems, with the proper definitions of the output function and the energy function. Numerical simulations and real-time experiments show the practical viability of the controller. Finally, the proposed algorithm is compared with a tracking controller previously reported in the literature. The new algorithm shows better performance in both arm trajectory tracking and pendulum regulation. Copyright © 2015 ISA. Published by Elsevier Ltd. All rights reserved.

  3. Design and analysis of a torsion braid pendulum displacement transducer

    NASA Technical Reports Server (NTRS)

    Rind, E.; Bryant, E. L.

    1981-01-01

    The dynamic properties at various temperatures of braids impregnated with polymer can be measured by using the braid as the suspension of a torsion pendulum. This report describes the electronic and mechanical design of a torsional braid pendulum displacement transducer which is an advance in the state of the art. The transducer uses a unique optical design consisting of refracting quartz windows used in conjunction with a differential photocell to produce a null signal. The release mechanism for initiating free torsional oscillation of the pendulum has also been improved. Analysis of the precision and accuracy of the transducer indicated that the maximum relative error in measuring torsional amplitude was approximately 0. A serious problem inherent in all instruments which use a torsional suspension was analyzed: misalignment of the physical and torsional axes of the torsional member which results in modulation of the amplitude of the free oscillation.

  4. Interactive Internet Based Pendulum for Learning Mechatronics

    NASA Astrophysics Data System (ADS)

    Sethson, Magnus R.

    2003-01-01

    This paper describes an Internet based remote experimental setup of a double lined pendulum mechanism for students experiments at the M. Sc. Level. Some of the first year experience using this web-based setup in classes is referred. In most of the courses given at the division of mechanical engineering systems at Linkoeping Institute of Technology we provide experimental setups to enhance the teaching Of M.Sc. students. Many of these experimental setups involve mechatronical systems. Disciplines like fluid power, electronics, and mechanics and also software technologies are used in each experiment. As our campus has recently been split into two different cities some new concepts for distance learning have been studied. The one described here tries to implement remotely controlled mechatronic setups for teaching basic programming of real-time operating systems and analysis of the dynamics of mechanical systems. The students control the regulators for the pendulum through a web interface and get measurement results and a movie back through their email. The present setup uses a double linked pendulum that is controlled by a DC-motor and monitored through both camera and angular position sensors. All software needed is hosted on a double-processor PC running the RedHat 7.1. distribution complemented with real-time scheduling using DIAPM-RTAI 1.7. The Internet site is presented to the students using PHP, Apache and MySQL. All of the used software originates from the open source domain. The experience from integrating these technologies and security issues is discussed together with the web-camera interface. One of the important experiences from this project so far is the need for a good visual feedback. This is both in terms of video speed but also in resolution. It has been noticed that when the students makes misstates and wants to search the failure they want clear, large images with high resolution to support their personal believes in the cause of the failure. Even

  5. Human Subject Effects on Torsion Pendulum Oscillations: Further Evidence of Mediation by Convection Currents.

    PubMed

    Hammerschlag, Richard; Linda Baldwin, Ann; Schwartz, Gary E

    When a human subject sits beneath a wire mesh, hemispheric torsion pendulum (TP) a rapid-onset series of oscillations at frequencies both higher and lower than the fundamental frequency of the TP have been consistently observed. This study was designed to replicate and extend prior findings that suggest the human subject effect on TP behavior is due to subject-generated, heat-induced convection currents. Effects on pendulum behavior were tested after draping an aluminized "space blanket" over the subject and by replacing the subject with a thermal mattress pad shaped to approximate the human form. Experiments were performed in a basic science university research laboratory. Real-time recordings and Fast Fourier Transform frequency spectra of pendulum oscillatory movement. The space blanket blocked, while the mattress pad mimicked, the human subject induced complex array of pendulum oscillations. Our findings support and strengthen previous results that suggest the effects of human subjects on behavior of a torsion pendulum are mediated by body-heat-induced air convection rather than an unknown type of biofield. Copyright © 2016 Elsevier Inc. All rights reserved.

  6. Exploring the shallow structure of the San Ramón thrust fault in Santiago, Chile (∼33.5° S), using active seismic and electric methods

    NASA Astrophysics Data System (ADS)

    Díaz, D.; Maksymowicz, A.; Vargas, G.; Vera, E.; Contreras-Reyes, E.; Rebolledo, S.

    2014-01-01

    The crustal-scale west-vergent San Ramón thrust fault system at the foot of the main Andean Cordillera in central Chile is a geologically active structure with Quaternary manifestations of complex surface rupture along fault segments in the eastern border of Santiago city. From the comparison of geophysical and geological observations, we assessed the subsurface structure pattern affecting sedimentary cover and rock-substratum topography across fault scarps, which is critic for evaluating structural modeling and associated seismic hazard along this kind of faults. We performed seismic profiles with an average length of 250 m, using an array of twenty-four geophones (GEODE), and 25 shots per profile, supporting high-resolution seismic tomography for interpreting impedance changes associated to deformed sedimentary cover. The recorded traveltime refractions and reflections were jointly inverted by using a 2-D tomographic approach, which resulted in variations across the scarp axis in both velocities and reflections interpreted as the sedimentary cover-rock substratum topography. Seismic anisotropy observed from tomographic profiles is consistent with sediment deformation triggered by west-vergent thrust tectonics along the fault. Electrical soundings crossing two fault scarps supported subsurface resistivity tomographic profiles, which revealed systematic differences between lower resistivity values in the hanging wall with respect to the footwall of the geological structure, clearly limited by well-defined east-dipping resistivity boundaries. The latter can be interpreted in terms of structurally driven fluid content-change between the hanging wall and the footwall of a permeability boundary associated with the San Ramón fault. The overall results are consistent with a west-vergent thrust structure dipping ∼55° E at subsurface levels in piedmont sediments, with local complexities being probably associated to fault surface rupture propagation, fault-splay and

  7. Tiltmeter studies in earthquake prediction

    USGS Publications Warehouse

    Johnston, M.

    1978-01-01

    tilt measurements give us a means of monitoring vertical displacements or local uplift of the crust. The simplest type of tiltmeter is a stationary pendulum (fig. 1). As the Earth's surface distorts locally, the pendulum housing is tilted while, of course, the pendulum continues to hang vertically (that is, in the direction of the gravity vector). The tilt angle is the angle through which the pendulum housing is tilted. The pendulum is the inertial reference (the force of gravity remains unchanged at the site), and tilting of the instrument housing represents the moving reference frame. We note in passing that the tiltmeter could also be used to measure the force of gravity by using the pendulum in the same way as Henry Kater did in his celebrated measurement of g in 1817. 

  8. Chemistry and the Pendulum--What Have They to Do with Each Other?

    ERIC Educational Resources Information Center

    De Berg, K. C.

    2006-01-01

    Physicists have known for some time that pendulum motion is a useful analogy for other physical processes. Chemists have played with the idea from time to time but the strength of the analogy between pendulum motion and chemical processes has only received prominent published recognition since about 1980, although there are details of the analogy…

  9. Intelligent clutch control with incremental encoder to improve wear issues of an intercept pendulum in real time

    NASA Astrophysics Data System (ADS)

    Jalba, C. K.; Diekmann, R.; Epple, S.

    2017-01-01

    A pendulum impact tester is a technical device which is used to perform plasticity characterizations of metallic materials. Results are calculated based on fracture behavior under pendulum impact loadings according to DIN 50115, DIN 51222/EN 10045. The material is held at the two ends and gets struck in the middle. A mechanical Problem occurs when testing materials with a very high impact toughness. These specimen often do not break when hit by the pendulum. To return the pendulum to its initial position, the operator presses a service button. After a delay of approximately 2 seconds a clutch is activated which connects the arm of the pendulum with an electric motor to return it back upright in start position. At the moment of clutch activation, the pendulum can still swing or bounce with any speed in any direction at any different position. Due to the lack of synchronization between pendulum speed and constant engine speed, the clutch suffers heavy wear of friction. This disadvantage results in considerable service and repair costs for the customer. As a solution to this problem this article presents a customized technical device to significantly increase the lifetime of the clutch. It was accomplished by a precisely controlled activation of the clutch at a point of time when pendulum and motor are at synchronized speed and direction using incremental encoders.

  10. Neural network-based motion control of an underactuated wheeled inverted pendulum model.

    PubMed

    Yang, Chenguang; Li, Zhijun; Cui, Rongxin; Xu, Bugong

    2014-11-01

    In this paper, automatic motion control is investigated for one of wheeled inverted pendulum (WIP) models, which have been widely applied for modeling of a large range of two wheeled modern vehicles. First, the underactuated WIP model is decomposed into a fully actuated second order subsystem Σa consisting of planar movement of vehicle forward and yaw angular motions, and a nonactuated first order subsystem Σb of pendulum motion. Due to the unknown dynamics of subsystem Σa and the universal approximation ability of neural network (NN), an adaptive NN scheme has been employed for motion control of subsystem Σa . The model reference approach has been used whereas the reference model is optimized by the finite time linear quadratic regulation technique. The pendulum motion in the passive subsystem Σb is indirectly controlled using the dynamic coupling with planar forward motion of subsystem Σa , such that satisfactory tracking of a set pendulum tilt angle can be guaranteed. Rigours theoretic analysis has been established, and simulation studies have been performed to demonstrate the developed method.

  11. Magnetic effect in the test of the weak equivalence principle using a rotating torsion pendulum

    NASA Astrophysics Data System (ADS)

    Zhu, Lin; Liu, Qi; Zhao, Hui-Hui; Yang, Shan-Qing; Luo, Pengshun; Shao, Cheng-Gang; Luo, Jun

    2018-04-01

    The high precision test of the weak equivalence principle (WEP) using a rotating torsion pendulum requires thorough analysis of systematic effects. Here we investigate one of the main systematic effects, the coupling of the ambient magnetic field to the pendulum. It is shown that the dominant term, the interaction between the average magnetic field and the magnetic dipole of the pendulum, is decreased by a factor of 1.1 × 104 with multi-layer magnetic shield shells. The shield shells reduce the magnetic field to 1.9 × 10-9 T in the transverse direction so that the dipole-interaction limited WEP test is expected at η ≲ 10-14 for a pendulum dipole less than 10-9 A m2. The high-order effect, the coupling of the magnetic field gradient to the magnetic quadrupole of the pendulum, would also contribute to the systematic errors for a test precision down to η ˜ 10-14.

  12. Magnetic effect in the test of the weak equivalence principle using a rotating torsion pendulum.

    PubMed

    Zhu, Lin; Liu, Qi; Zhao, Hui-Hui; Yang, Shan-Qing; Luo, Pengshun; Shao, Cheng-Gang; Luo, Jun

    2018-04-01

    The high precision test of the weak equivalence principle (WEP) using a rotating torsion pendulum requires thorough analysis of systematic effects. Here we investigate one of the main systematic effects, the coupling of the ambient magnetic field to the pendulum. It is shown that the dominant term, the interaction between the average magnetic field and the magnetic dipole of the pendulum, is decreased by a factor of 1.1 × 10 4 with multi-layer magnetic shield shells. The shield shells reduce the magnetic field to 1.9 × 10 -9 T in the transverse direction so that the dipole-interaction limited WEP test is expected at η ≲ 10 -14 for a pendulum dipole less than 10 -9 A m 2 . The high-order effect, the coupling of the magnetic field gradient to the magnetic quadrupole of the pendulum, would also contribute to the systematic errors for a test precision down to η ∼ 10 -14 .

  13. Pendulum Exercises After Hip Arthroscopy: A Video Technique.

    PubMed

    Sauber, Ryan; Saborio, George; Nickel, Beth M; Kivlan, Benjamin R; Christoforetti, John J

    2016-08-01

    Advanced hip joint-preserving arthroscopic techniques have been shown to improve patient-reported functional outcomes with low rates of postoperative complications. Prior work has shown that formation of adhesive scar is a potential source of persistent pain and cause for revision surgery. As resources for postoperative in-studio physical therapy become scarce, a home-based strategy to avoid scar formation without adding formal therapy cost may be beneficial. The purpose of this technical note is to introduce a patient-centered educational video technique for home-caregiver delivery of manual hip pendulum exercises in the postoperative setting. This video technique offers access to our method for pendulum exercise as part of early recovery after advanced hip arthroscopy.

  14. Retrospective analysis of 319 hanging and strangulation cases between 2001 and 2014 in Shanghai.

    PubMed

    Ma, Jianlong; Jing, Haojia; Zeng, Yan; Tao, Li; Yang, Yulei; Ma, Kaijun; Chen, Long

    2016-08-01

    In this study, we retrospectively analyzed 141 cases of hanging and 178 cases of ligature strangulation recorded in the Shanghai Municipal Public Security Bureau between January 2001 and December 2014 to explore the characteristics of hanging and ligature strangulation and to supply a scientific reference for forensic pathology. Several significant differences between hanging and ligature strangulation were found. Hanging cases were mostly suicide, with some accidental cases. Strangulation cases were mostly homicide, with a few cases of suicide or sexual asphyxia. Male hanging was more common than female hanging, with a ratio of 5:2. However, there were more female than male strangulation cases, with a ratio of 13:5. The ligature marks in hanging cases were almost all of a "U" type and above the hyoid bone. The ligature marks in strangulation cases were almost always a closed circle, but the position varied. The most common vital reactions were subcutaneous hemorrhage, exfoliation and blister, which are strong evidence of antemortem injury. Hemorrhagic spots were found on the temporalis, scalp, chest and back in strangulation cases, but were rare in hanging cases. Hemorrhagic manifestations were most common in the sternocleidomastoid muscle in hanging cases, and in the sternohyoid and sternothyroid muscles in strangulation cases. Fractures occurred in only ∼17% of victims. There are notable differences between hanging and ligature strangulation, which can help distinguish between these causes of death. These characteristics should be considered in forensic practice. Copyright © 2016 Elsevier Ltd and Faculty of Forensic and Legal Medicine. All rights reserved.

  15. Experimental Control of Simple Pendulum Model

    ERIC Educational Resources Information Center

    Medina, C.

    2004-01-01

    This paper conveys information about a Physics laboratory experiment for students with some theoretical knowledge about oscillatory motion. Students construct a simple pendulum that behaves as an ideal one, and analyze model assumption incidence on its period. The following aspects are quantitatively analyzed: vanishing friction, small amplitude,…

  16. Non-extraction treatment of severe crowding with pendulum appliance.

    PubMed

    Gandikota, Chandrasekhar; Venkata, Yudhister Palla; Challa, Padmalatha; Juvvadi, Shubhaker Rao

    2013-07-01

    An extraction case was planned for non-extraction treatment using pendulum appliance and the effect of appliance was evaluated in a 14-year-old girl with a severe maxillary and mandibular crowding followed by non-extraction fixed appliance preadjusted edgewise appliance mechanotherapy. Total treatment time was for 22 months. The obtuse nasolabial angle was maintained intact. Correction of crowding, co-ordinated arch forms was achieved with molar distalization. The impetus on soft-tissue paradigm is stressed in this case report and pendulum appliance can indeed boost our clinical acumen and swing our priorities toward non-extraction treatment.

  17. What Makes the Foucault Pendulum Move among the Stars?

    NASA Astrophysics Data System (ADS)

    Phillips, Norman

    2004-11-01

    Foucault's pendulum exhibition in 1851 occurred in an era now known by development of the theorems of Coriolis and the formulation of dynamical meteorology by Ferrel. Yet today the behavior of the pendulum is often misunderstood. The existence of a horizontal component of Newtonian gravitation is essential for understanding the behavior with respect to the stars. Two simple mechanical principles describe why the path of oscillation is fixed only at the poles; the principle of centripetal acceleration and the principle of conservation of angular momentum. A sky map is used to describe the elegant path among the stars produced by these principles.

  18. Width of the Surface Rupture Zone for Thrust Earthquakes and Implications for Earthquake Fault Zoning: Chi-Chi 1999 and Wenchuan 2008 Earthquakes

    NASA Astrophysics Data System (ADS)

    Boncio, P.; Caldarella, M.

    2016-12-01

    We analyze the zones of coseismic surface faulting along thrust faults, whit the aim of defining the most appropriate criteria for zoning the Surface Fault Rupture Hazard (SFRH) along thrust faults. Normal and strike-slip faults were deeply studied in the past, while thrust faults were not studied with comparable attention. We analyze the 1999 Chi-Chi, Taiwan (Mw 7.6) and 2008 Wenchuan, China (Mw 7.9) earthquakes. Several different types of coseismic fault scarps characterize the two earthquakes, depending on the topography, fault geometry and near-surface materials. For both the earthquakes, we collected from the literature, or measured in GIS-georeferenced published maps, data about the Width of the coseismic Rupture Zone (WRZ). The frequency distribution of WRZ compared to the trace of the main fault shows that the surface ruptures occur mainly on and near the main fault. Ruptures located away from the main fault occur mainly in the hanging wall. Where structural complexities are present (e.g., sharp bends, step-overs), WRZ is wider then for simple fault traces. We also fitted the distribution of the WRZ dataset with probability density functions, in order to define a criterion to remove outliers (e.g., by selecting 90% or 95% probability) and define the zone where the probability of SFRH is the highest. This might help in sizing the zones of SFRH during seismic microzonation (SM) mapping. In order to shape zones of SFRH, a very detailed earthquake geologic study of the fault is necessary. In the absence of such a very detailed study, during basic (First level) SM mapping, a width of 350-400 m seems to be recommended (95% of probability). If the fault is carefully mapped (higher level SM), one must consider that the highest SFRH is concentrated in a narrow zone, 50 m-wide, that should be considered as a "fault-avoidance (or setback) zone". These fault zones should be asymmetric. The ratio of footwall to hanging wall (FW:HW) calculated here ranges from 1:5 to 1:3.

  19. Analysis of the Pendular and Pitch Motions of a Driven Three-Dimensional Pendulum

    ERIC Educational Resources Information Center

    Findley, T.; Yoshida, S.; Norwood, D. P.

    2007-01-01

    A three-dimensional pendulum, modelled after the Laser Interferometer Gravitational-Wave Observatory's suspended optics, was constructed to investigate the pendulum's dynamics due to suspension point motion. In particular, we were interested in studying the pendular-pitch energy coupling. Determination of the pendular's Q value (the quality factor…

  20. The influence of gravity on the distribution of the deposit formed onto a substrate by sessile, hanging, and sandwiched hanging drop evaporation.

    PubMed

    Sandu, Ion; Fleaca, Claudiu Teodor

    2011-06-15

    The focus of the present article is the study of the influence of gravity on the particle deposition profiles on a solid substrate during the evaporation of sessile, hanging and sandwiched hanging drops of colloidal particle suspensions. For concentrations of nanoparticles in the colloidal solutions in the range 0.0001-1 wt.%, highly diluted suspensions will preferentially form rings while concentrated suspensions will preferentially form spots in both sessile and hanging drop evaporation. For intermediary concentrations, the particle deposition profiles will depend on the nanoparticle aggregation dynamics in the suspension during the evaporation process, gravity and on the detailed evaporation geometry. The evaporation of a drop of toluene/carbon nanoparticle suspension hanging from a pendant water drop will leave on the substrate a circular spot with no visible external ring. By contrast, a clear external ring is formed on the substrate by the sessile evaporation of a similar drop of suspension sandwiched between a water drop and the substrate. From the application viewpoint, these processes can be used to create preferential electrical conductive carbon networks and contacts for arrays of self-assembled nanostructures fabricated on solid substrates as well as on flexible polymeric substrates. Copyright © 2011 Elsevier Inc. All rights reserved.

  1. Helicopter vibration suppression using simple pendulum absorbers on the rotor blade

    NASA Technical Reports Server (NTRS)

    Hamouda, M.-N. H.; Pierce, G. A.

    1981-01-01

    A design procedure is presented for the installation of simple pendulums on the blades of a helicopter rotor to suppress the root reactions. The procedure consists of a frequency response analysis for a hingeless rotor blade excited by a harmonic variation of spanwise airload distributions during forward flight, as well as a concentrated load at the tip. The structural modeling of the blade provides for elastic degrees of freedom in flap and lead-lag bending plus torsion. Simple flap and lead-lag pendulums are considered individually. Using a rational order scheme, the general nonlinear equations of motion are linearized. A quasi-steady aerodynamic representation is used in the formation of the airloads. The solution of the system equations derives from their representation as a transfer matrix. The results include the effect of pendulum tuning on the minimization of the hub reactions.

  2. Study of endolaryngeal structures by videolaryngoscopy after hanging: a new approach to understanding the physiopathogenesis.

    PubMed

    Duband, S; Timoshenko, A P; Mohammedi, R; Prades, J-M; Barral, F-G; Debout, M; Péoc'h, M

    2009-11-20

    To evaluate laryngoscopic findings in hanging cases and to compare them with magnetic resonance imaging (MRI) and forensic autopsy results. Postmortem nasolaryngofibroscopy and MRI of five people who died from hanging were performed. Three people who died from other causes than hanging were also examined with a flexible laryngofibroscope. The results were compared with injuries discovered during forensic autopsy. In all five hanging cases, laryngofibroscopic investigation showed a vocal fold position in complete adduction confirmed by MRI. This position did not seem to be influenced by the intensity of the forces applied to neck or postmortem delay and cadaveric phenomena. The vocal cords of the three non-hanging deceased were found in the intermediate position. These findings could suggest that pressure applied to the cervical nervous and cartilaginous structures or their elongation during hanging could lead to closure of the glottis with vocal cord adduction maintained after death. Laryngofibroscopic examination in hanging cases could be very useful in confirming the vital character of the hanging and understanding asphyxial phenomena in incomplete suspension without laryngeal crush.

  3. Stratigraphy and structure of the Sevier thrust belt and proximal foreland-basin system in central Utah: A transect from the Sevier Desert to the Wasatch Plateau

    USGS Publications Warehouse

    Lawton, T.F.; Sprinkel, D.A.; Decelles, P.G.; Mitra, G.; Sussman, A.J.; Weiss, M.P.

    1997-01-01

    The Sevier orogenic belt in central Utah comprises four north-northwest trending thrust plates and two structural culminations that record crustal shortening and uplift in late Mesozoic and early Tertiary time. Synorogenic clastic rocks, mostly conglomerate and sandstone, exposed within the thrust belt were deposited in wedge-top and foredeep depozones within the proximal part of the foreland-basin system. The geologic relations preserved between thrust structures and synorogenic deposits demonstrate a foreland-breaking sequence of thrust deformation that was modified by minor out-of-sequence thrust displacement. Structural culminations in the interior part of the thrust belt deformed and uplifted some of the thrust sheets following their emplacement. Strata in the foreland basin indicate that the thrust sheets of central Utah were emplaced between latest Jurassic and Eocene time. The oldest strata of the foredeep depozone (Cedar Mountain Formation) are Neocomian and were derived from the hanging wall of the Canyon Range thrust. The foredeep depozone subsided most rapidly during Albian through Santonian or early Campanian time and accumulated about 2.5 km of conglomeratic strata (Indianola Group). The overlying North Horn Formation accumulated in a wedge-top basin from the Campanian to the Eocene and records propagation of the Gunnison thrust beneath the former foredeep. The Canyon Range Conglomerate of the Canyon Mountains, equivalent to the Indianola Group and the North Horn Formation, was deposited exclusively in a wedge-top setting on the Canyon Range and Pavant thrust sheets. This field trip, a three day, west-to-east traverse of the Sevier orogenic belt in central Utah, visits localities where timing of thrust structures is demonstrated by geometry of cross-cutting relations, growth strata associated with faults and folds, or deformation of foredeep deposits. Stops in the Canyon Mountains emphasize geometry of late structural culminations and relationships of

  4. Two-Pendulum Model of Propellant Slosh in Europa Clipper PMD Tank

    NASA Technical Reports Server (NTRS)

    Ng, Wanyi; Benson, David

    2017-01-01

    Model propellant slosh for Europa Clipper using two pendulums such that controls engineers can predict slosh behavior during the mission. Importance of predicting propellant slosh; (1) Sloshing changes CM (center of mass) of spacecraft and exerts forces and torques on spacecraft. (2) Avoid natural frequencies of structures. (3) Size ACS (Attitude Control Systems) thrusters to counteract forces and torques. Can model sloshing fluid as two pendulums with specific parameters (mass, length, damping),

  5. Motion of a pendulum with damping and vibrating axis of suspension at unconventional values of parameters

    NASA Astrophysics Data System (ADS)

    Demidov, Ivan; Sorokin, Vladislav

    2018-05-01

    Motion of a pendulum with damping and vibrating axis of suspension is considered at unconventional values of parameters. Case when the frequency of external loading and the natural frequency of the pendulum in the absence of this loading are of the same order is studied. Vibration intensity is assumed to be relatively low. In this case, the corresponding equation of the pendulum's motions doesn't involve an explicit small parameter. To solve the equation a new modification of the method of direct separation of motions is used. As the result, stability conditions of the pendulum inverted position are determined. Effects of damping on these conditions are discussed.

  6. Fluid-rock interaction recorded in fault rocks of the Nobeoka Thrust, fossilized megasplay fault in an ancient accretionary complex

    NASA Astrophysics Data System (ADS)

    Hasegawa, R.; Yamaguchi, A.; Fukuchi, R.; Kitamura, Y.; Kimura, G.; Hamada, Y.; Ashi, J.; Ishikawa, T.

    2017-12-01

    The relationship between faulting and fluid behavior has been in debate. In this study, we clarify the fluid-rock interaction in the Nobeoka Thrust by major/trace element composition analysis using the boring core of the Nobeoka Thrust, an exhumed analogue of an ancient megasplay fault in Shimanto accretionary complex, southwest Japan. The hanging wall and the footwall of the Nobeoka Thrust show difference in lithology and metamorphic grade, and their maximum burial temperature is estimated from vitrinite reflectance analysis to be 320 330°C and 250 270°C, respectively (Kondo et al., 2005). The fault zone was formed in a fluid-rich condition, as evidenced by warm fluid migration suggested by fluid inclusion analysis (Kondo et al., 2005), implosion brecciation accompanied by carbonate precipitation followed by formation of pseudotachylyte (Okamoto et al., 2006), ankerite veins coseismically formed under reducing conditions (Yamaguchi et al., 2011), and quartz veins recording stress rotation in seismic cycles (Otsubo et al., 2016). In this study, first we analyzed the major/trace element composition across the principal slip zone (PSZ) of the Nobeoka Thrust by using fragments of borehole cores penetrated through the Nobeoka Thrust. Many elements fluctuated just above the PSZ, whereas K increase and Na, Si decrease suggesting illitization of plagioclase, as well as positive anomalies in Li and Cs were found within the PSZ. For more detail understanding, we observed polished slabs and thin sections of the PSZ. Although grain size reduction of deformed clast and weak development of foliation were observed entirely in the PSZ by macroscopic observation, remarkable development of composite planar fabric nor evidence of friction melting were absent. In this presentation, we show the result of major/trace element composition corresponding to the internal structure of PSZ, and discuss fluid-rock interaction and its impact to megasplay fault activity in subduction zones.

  7. Thrust bearing

    NASA Technical Reports Server (NTRS)

    Anderson, W. J. (Inventor)

    1976-01-01

    A gas lubricated thrust bearing is described which employs relatively rigid inwardly cantilevered spokes carrying a relatively resilient annular member or annulus. This annulus acts as a beam on which are mounted bearing pads. The resilience of the beam mount causes the pads to accept the load and, with proper design, responds to a rotating thrust-transmitting collar by creating a gas film between the pads and the thrust collar. The bearing may be arranged for load equalization thereby avoiding the necessity of gimbal mounts or the like for the bearing. It may also be arranged to respond to rotation in one or both directions.

  8. Development of a software-hardware complex for studying the process of grinding by a pendulum deformer

    NASA Astrophysics Data System (ADS)

    Borisov, A. P.

    2018-01-01

    The article is devoted to the development of a software and hardware complex for investigating the grinding process on a pendulum deformer. The hardware part of this complex is the Raspberry Pi model 2B platform, to which a contactless angle sensor is connected, which allows to obtain data on the angle of deviation of the pendulum surface, usb-cameras, which allow to obtain grain images before and after grinding, and stepping motors allowing lifting of the pendulum surface and adjust the clearance between the pendulum and the supporting surfaces. The program part of the complex is written in C # and allows receiving data from the sensor and usb-cameras, processing the received data, and also controlling the synchronous-step motors in manual and automatic mode. The conducted studies show that the rational mode is the deviation of the pendulum surface by an angle of 400, and the location of the grain in the central zone of the support surface, regardless of the orientation of the grain in space. Also, due to the non-contact angle sensor, energy consumption for grinding, speed and acceleration of the pendulum surface, as well as vitreousness of grain and the energy consumption are calculated. With the help of photographs obtained from usb cameras, the work of a pendulum deformer based on the Rebinder formula and calculation of the grain area before and after grinding is determined.

  9. Analysis and experimental studies of the control of hang gliders

    NASA Technical Reports Server (NTRS)

    Phillips, W. H.

    1974-01-01

    A theoretical analysis of the longitudinal and lateral characteristics of hang gliders in straight flight, pullups, and turns is presented. Some examples of the characteristics of a straight-wing configuration and a Rogallo-wing configuration are given. A means for improving the control of hang gliders while retaining the same basic control feel is proposed.

  10. Dynamic recrystallization mechanisms and their transition in the Daling Thrust (DT) zone, Darjeeling-Sikkim Himalaya

    NASA Astrophysics Data System (ADS)

    Ghosh, Subhajit; Bose, Santanu; Mandal, Nibir; Dasgupta, Sujoy

    2016-04-01

    The Daling Thrust (DT) delineates a zone of intense shear localization in the Lesser Himalayan Sequence (LHS) of the Darjeeling-Sikkim Himalaya. From microstructural studies of deformed quartzite samples, we show a transition in the dynamic recrystallization mechanism with increasing distance from the DT, dominated by grain boundary bulging (BLG) recrystallization closest to the DT, and progressively replaced by sub-grain rotation (SGR) recrystallization away from the thrust. The transition is marked by a characteristic variation in the fractal dimension (D) of grain boundaries, estimated from the area-perimeter method. For the BLG regime, D ≈ 1.046, which decreases significantly to a value as low as 1.025 for the SGR regime. Using the available thermal data for BLG and SGR recrystallization, we infer increasing deformation temperatures away from the DT in the hanging wall. Based on the quartz piezometer our estimates reveal strong variations in the flow stress (59.00 MPa to 16.00 MPa) over a distance of 1.2 km from the DT. Deformation mechanism maps constructed for different temperatures indicate that the strain rates (10- 12 S- 1 to 10- 14 S- 1) comply with the geologically possible range. Finally, we present a mechanical model to provide a possible explanation for the cause of stress intensification along the DT.

  11. Hanging Out with Which Friends? Friendship-Level Predictors of Unstructured and Unsupervised Socializing in Adolescence

    PubMed Central

    Siennick, Sonja E.; Osgood, D. Wayne

    2012-01-01

    Companions are central to explanations of the risky nature of unstructured and unsupervised socializing, yet we know little about whom adolescents are with when hanging out. We examine predictors of how often friendship dyads hang out via multilevel analyses of longitudinal friendship-level data on over 5,000 middle schoolers. Adolescents hang out most with their most available friends and their most generally similar friends, not with their most at-risk or similarly at-risk friends. These findings vary little by gender and wave. Together, the findings suggest that the risks of hanging out stem from the nature of hanging out as an activity, not the nature of adolescents’ companions, and that hanging out is a context for friends’ mutual reinforcement of pre-existing characteristics. PMID:23204811

  12. Hanging Out with Which Friends? Friendship-Level Predictors of Unstructured and Unsupervised Socializing in Adolescence.

    PubMed

    Siennick, Sonja E; Osgood, D Wayne

    2012-12-01

    Companions are central to explanations of the risky nature of unstructured and unsupervised socializing, yet we know little about whom adolescents are with when hanging out. We examine predictors of how often friendship dyads hang out via multilevel analyses of longitudinal friendship-level data on over 5,000 middle schoolers. Adolescents hang out most with their most available friends and their most generally similar friends, not with their most at-risk or similarly at-risk friends. These findings vary little by gender and wave. Together, the findings suggest that the risks of hanging out stem from the nature of hanging out as an activity, not the nature of adolescents' companions, and that hanging out is a context for friends' mutual reinforcement of pre-existing characteristics.

  13. Asymmetric Thrust Reversers

    NASA Technical Reports Server (NTRS)

    Chandler, Jesse M. (Inventor); Suciu, Gabriel L. (Inventor)

    2018-01-01

    An aircraft includes a propulsion supported within an aft portion of a fuselage A thrust reverser is mounted in the aft portion of the fuselage proximate the propulsion system for directing thrust in a direction to slow the aircraft. The thrust reverser includes an upper blocker door movable about a first pivot axis to a deployed position and a lower blocker door movable about a second pivot axis not parallel to the first pivot axis.

  14. The epidemiology of injury in hang-gliding and paragliding.

    PubMed

    Rekand, Tiina

    2012-01-01

    Para- and hang-gliding are modern air sports that developed in the 20th century. Performers should possess technical skills and manage certified equipment for successful flight. Injuries may happen during the take-off, flight and landing. PubMed was searched using the search terms 'paragliding' and/or 'hang-gliding'. The reference lists of articles identified in the search strategy were also searched for relevant articles. The most common injuries are fractures, dislocations or sprains in the extremities, followed by spinal and head traumas. Multiple injuries after accidents are common. Collision with electrical wires may cause burn injuries. Fatal outcomes are caused by brain injuries, spinal cord injuries at the cervical level or aorta rupture. Accidents happen because of risk-taking behavior, lack of education or use of self-modified equipment. Observational studies have suggested the need for protection of the head, trunk and lower extremities. The measures proposed are often based on conclusions of observational studies and not proven through randomized studies. Better education along with focusing on possible risk factors will probably diminish the risks of hang- and paragliding. Large denominator-based case series, case-control and population-based studies are needed for assessment of the risks of hang- and paragliding. Copyright © 2012 S. Karger AG, Basel.

  15. Water collection behavior and hanging ability of bioinspired fiber.

    PubMed

    Hou, Yongping; Chen, Yuan; Xue, Yan; Zheng, Yongmei; Jiang, Lei

    2012-03-13

    Since the water-collecting ability of the wetted cribellate spider capture silk is the result of a unique fiber structure, bioinspired fibers have been researched significantly so as to expose a new water-acquiring route in fogging-collection projects. However, the design of the geometry of bioinspired fiber is related to the ability of hanging drops, which has not been investigated in depth so far. Here, we fabricate bioinspired fibers to investigate the water collection behavior and the influence of geometry (i.e., periodicity of spindle knot) on the hanging-drop ability. We especially discuss water collection related to the periodicity of geometry on the bioinspired fiber. We reveal the length of the three phase contact line (TCL) at threshold conditions in conjunction with the maximal volume of a hanging drop at different modes. The study demonstrates that the geometrical structure of bioinspired fiber induces much stronger water hanging ability than that of uniform fiber, attributed to such special geometry that offers effectively an increasing TCL length or limits the contact length to be shorted. In addition, the geometry also improves the fog-collection efficiency by controlling tiny water drops to be collected in the large water drops at a given location.

  16. Robust hopping based on virtual pendulum posture control.

    PubMed

    Sharbafi, Maziar A; Maufroy, Christophe; Ahmadabadi, Majid Nili; Yazdanpanah, Mohammad J; Seyfarth, Andre

    2013-09-01

    A new control approach to achieve robust hopping against perturbations in the sagittal plane is presented in this paper. In perturbed hopping, vertical body alignment has a significant role for stability. Our approach is based on the virtual pendulum concept, recently proposed, based on experimental findings in human and animal locomotion. In this concept, the ground reaction forces are pointed to a virtual support point, named virtual pivot point (VPP), during motion. This concept is employed in designing the controller to balance the trunk during the stance phase. New strategies for leg angle and length adjustment besides the virtual pendulum posture control are proposed as a unified controller. This method is investigated by applying it on an extension of the spring loaded inverted pendulum (SLIP) model. Trunk, leg mass and damping are added to the SLIP model in order to make the model more realistic. The stability is analyzed by Poincaré map analysis. With fixed VPP position, stability, disturbance rejection and moderate robustness are achieved, but with a low convergence speed. To improve the performance and attain higher robustness, an event-based control of the VPP position is introduced, using feedback of the system states at apexes. Discrete linear quartic regulator is used to design the feedback controller. Considerable enhancements with respect to stability, convergence speed and robustness against perturbations and parameter changes are achieved.

  17. Interpreting lateral dynamic weight shifts using a simple inverted pendulum model.

    PubMed

    Kennedy, Michael W; Bretl, Timothy; Schmiedeler, James P

    2014-01-01

    Seventy-five young, healthy adults completed a lateral weight-shifting activity in which each shifted his/her center of pressure (CoP) to visually displayed target locations with the aid of visual CoP feedback. Each subject's CoP data were modeled using a single-link inverted pendulum system with a spring-damper at the joint. This extends the simple inverted pendulum model of static balance in the sagittal plane to lateral weight-shifting balance. The model controlled pendulum angle using PD control and a ramp setpoint trajectory, and weight-shifting was characterized by both shift speed and a non-minimum phase (NMP) behavior metric. This NMP behavior metric examines the force magnitude at shift initiation and provides weight-shifting balance performance information that parallels the examination of peak ground reaction forces in gait analysis. Control parameters were optimized on a subject-by-subject basis to match balance metrics for modeled results to metric values calculated from experimental data. Overall, the model matches experimental data well (average percent error of 0.35% for shifting speed and 0.05% for NMP behavior). These results suggest that the single-link inverted pendulum model can be used effectively to capture lateral weight-shifting balance, as it has been shown to model static balance. Copyright © 2014 Elsevier B.V. All rights reserved.

  18. Harvesting the High-Hanging Fruit

    ERIC Educational Resources Information Center

    Kenton, Jay D.

    2014-01-01

    For many years, higher education institutions have been harvesting the low-hanging fruit when it comes to budget reductions and adjustments. Easier changes have often been made--such as cutting administration, using more adjunct faculty, contracting out inefficient or non effective auxiliary operations and so forth. Until recently such strategies,…

  19. Extraordinary Oscillations of an Ordinary Forced Pendulum

    ERIC Educational Resources Information Center

    Butikov, Eugene I.

    2008-01-01

    Several well-known and newly discovered counterintuitive regular and chaotic modes of the sinusoidally driven rigid planar pendulum are discussed and illustrated by computer simulations. The software supporting the investigation offers many interesting predefined examples that demonstrate various peculiarities of this famous physical model.…

  20. 11. BUILDING NO. 620B. INTERIOR VIEW LOOKING NORTH, SHOWING PENDULUM ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    11. BUILDING NO. 620-B. INTERIOR VIEW LOOKING NORTH, SHOWING PENDULUM AND FRAME IN FOREGROUND, SHIELD FOR OPERATORS IN BACKGROUND. FRICTION TEST IS OBSERVED FROM BEHIND BLAST SHIELD BY A SERIES OF MIRRORS. ANVIL IN CENTER OF PENDULUM FRAME HOLDS EXPLOSIVE WHOSE SENSITIVITY TO FRICTION IS TO BE TESTED. PANS ON EITHER SIDE CATCH ANY UNBURNT EXPLOSIVE SLUNG FROM ANVIL DURING TEST TO PREVENT EXPLOSIVE HAZARD. - Picatinny Arsenal, 600 Area, Test Areas District, State Route 15 near I-80, Dover, Morris County, NJ

  1. A microNewton thrust stand for average thrust measurement of pulsed microthruster.

    PubMed

    Zhou, Wei-Jing; Hong, Yan-Ji; Chang, Hao

    2013-12-01

    A torsional thrust stand has been developed for the study of the average thrust for microNewton pulsed thrusters. The main body of the thrust stand mainly consists of a torsional balance, a pair of flexural pivots, a capacitive displacement sensor, a calibration assembly, and an eddy current damper. The behavior of the stand was thoroughly studied. The principle of thrust measurement was analyzed. The average thrust is determined as a function of the average equilibrium angle displacement of the balance and the spring stiffness. The thrust stand has a load capacity up to 10 kg, and it can theoretically measure the force up to 609.6 μN with a resolution of 24.4 nN. The static calibrations were performed based on the calibration assembly composed of the multiturn coil and the permanent magnet. The calibration results demonstrated good repeatability (less than 0.68% FSO) and good linearity (less than 0.88% FSO). The assembly of the multiturn coil and the permanent magnet was also used as an exciter to simulate the microthruster to further research the performance of the thrust stand. Three sets of force pulses at 17, 33.5, and 55 Hz with the same amplitude and pulse width were tested. The repeatability error at each frequency was 7.04%, 1.78%, and 5.08%, respectively.

  2. Hang Gliders for Sport

    NASA Technical Reports Server (NTRS)

    1976-01-01

    Hang gliding is growing rapidly. Free Flight produces 1,000 gliders a month and other companies are entering the field. Wing is simple to control, pulling back on control bar allows you to pick up speed and at the same time lowers your altitude. Pushing forward slows your speed and levels you off. Birdmen can choose from prone, upright or swing seat harnesses in either kits or ready-to-fly gliders.

  3. Dynamics of quiet human stance: computer simulations of a triple inverted pendulum model.

    PubMed

    Günther, Michael; Wagner, Heiko

    2016-01-01

    For decades, the biomechanical description of quiet human stance has been dominated by the single inverted pendulum (SIP) paradigm. However, in the past few years, the SIP model family has been falsified as an explanatory approach. Double inverted pendulum models have recently proven to be inappropriate. Human topology with three major leg joints suggests in a natural way to examine triple inverted pendulum (TIP) models as an appropriate approach. In this study, we focused on formulating a TIP model that can synthesise stable balancing attractors based on minimalistic sensor information and actuation complexity. The simulated TIP oscillation amplitudes are realistic in vertical direction. Along with the horizontal ankle, knee and hip positions, though, all simulated joint angle amplitudes still exceed the measured ones about threefold. It is likely that they could be eventually brought down to the physiological range by using more sensor information. The TIP systems' eigenfrequency spectra come out as another major result. The eigenfrequencies spread across about 0.1 Hz...20 Hz. Our main result is that joint stiffnesses can be reduced even below statically required values by using an active hip torque balancing strategy. When reducing mono- and bi-articular stiffnesses further down to levels threatening dynamic stability, the spectra indicate a change from torus-like (stable) to strange (chaotic) attractors. Spectra of measured ground reaction forces appear to be strange-attractor-like. We would conclude that TIP models are a suitable starting point to examine more deeply the dynamic character of and the essential structural properties behind quiet human stance. Abbreviations and technical terms Inverted pendulum body exposed to gravity and pivoting in a joint around position of unstable equilibrium (operating point) SIP single inverted pendulum: one rigid body pivoting around fixation to the ground (external joint) DIP double inverted pendulum: two bodies

  4. Test of spatial isotropy using a cryogenic torsion pendulum

    NASA Technical Reports Server (NTRS)

    Phillips, Peter R.

    1987-01-01

    Motion of the earth through the cosmic neutrino background, or through certain kinds of vacuum states, produces a term of the form g(sigma) x v in the energy of an electron. To search for such a term, a cryogenic torsion pendulum carrying a transversely polarized magnet was used. Superconducting shields reduced magnetic torques. A sigma x v term would produce a sinusoidal oscillation of the pendulum with a period of one sidereal day. Such an oscillation was not detected, and a new limit of 8.5 x 10 to the -18th eV has been set for the splitting of the spin states of an electron at rest on the earth.

  5. Spacing of Imbricated Thrust Faults and the Strength of Thrust-Belts and Accretionary Wedges

    NASA Astrophysics Data System (ADS)

    Ito, G.; Regensburger, P. V.; Moore, G. F.

    2017-12-01

    The pattern of imbricated thrust blocks is a prominent characteristic of the large-scale structure of thrust-belts and accretionary wedges around the world. Mechanical models of these systems have a rich history from laboratory analogs, and more recently from computational simulations, most of which, qualitatively reproduce the regular patterns of imbricated thrusts seen in nature. Despite the prevalence of these patterns in nature and in models, our knowledge of what controls the spacing of the thrusts remains immature at best. We tackle this problem using a finite difference, particle-in-cell method that simulates visco-elastic-plastic deformation with a Mohr-Coulomb brittle failure criterion. The model simulates a horizontal base that moves toward a rigid vertical backstop, carrying with it an overlying layer of crust. The crustal layer has a greater frictional strength than the base, is cohesive, and is initially uniform in thickness. As the layer contracts, a series of thrust blocks immerge sequentially and form a wedge having a mean taper consistent with that predicted by a noncohesive, critical Coulomb wedge. The widths of the thrust blocks (or spacing between adjacent thrusts) are greatest at the front of the wedge, tend to decrease with continued contraction, and then tend toward a pseudo-steady, minimum width. Numerous experiments show that the characteristic spacing of thrusts increases with the brittle strength of the wedge material (cohesion + friction) and decreases with increasing basal friction for low (<8°) taper angles. These relations are consistent with predictions of the elastic stresses forward of the frontal thrust and at what distance the differential stress exceeds the brittle threshold to form a new frontal thrust. Hence the characteristic spacing of the thrusts across the whole wedge is largely inherited at the very front of the wedge. Our aim is to develop scaling laws that will illuminate the basic physical processes controlling

  6. The Pendulum Weaves All Knots and Links

    NASA Astrophysics Data System (ADS)

    Starrett, John

    2003-08-01

    From a topological point of view, periodic orbits of three dimensional dynamical systems are knots, that is, circles (S∧1) embedded in the three sphere (S∧3) or in R∧3. The ensemble of periodic orbits comprising the skeleton of a 3-D strange attractor form a link: a collection of (not necessarily linked) knots. Joan Birman and Robert Williams used a topological device known as the template, a branched two-manifold that results when the stable direction is collapsed out of an attractor, to analyze the knot and link types appearing in the geometric Lorenz attractor. More recently, Robert Ghrist has shown the existence of universal templates: templates that support all knot and link types. I show that the template constructed from the geometric attractor of a forced physical pendulum contains a universal template as a subtemplate, and therefore the orbit set of the pendulum contains every knot and link type.

  7. The Pendulum as a Vehicle for Transitioning from Classical to Quantum Physics: History, Quantum Concepts, and Educational Challenges

    ERIC Educational Resources Information Center

    Barnes, Marianne B.; Garner, James; Reid, David

    2004-01-01

    In this article we use the pendulum as the vehicle for discussing the transition from classical to quantum physics. Since student knowledge of the classical pendulum can be generalized to all harmonic oscillators, we propose that a quantum analysis of the pendulum can lead students into the unanticipated consequences of quantum phenomena at the…

  8. [Accidental hanging during auto-erotic practices].

    PubMed

    Vieira, D N; da Silva, A G

    1989-01-01

    An unusual case of accidental hanging during autoerotic practices in a 25-year-old male student is described and the autoerotic asphyxia syndrome briefly discussed. The authors stressed the importance of a correct diagnostic of accidental death in these cases.

  9. The conundrum of hanging points in correctional facilities.

    PubMed

    Pridmore, Saxby; Pridmore, William

    2017-02-01

    We aimed to explore aspects of the removal of hanging points from correctional facilities. An argument can be made that individuals have a right to die/suicide. The United Nations holds that except for freedom of movement, prisoners have the same rights as non-prisoners. The rights of the individual and the duty of many custodial institutions are in conflict. This introduces a conundrum; when all hanging points are removed from correctional facilities, prisoners without mental disorder, but with a sustained wish to die, will not be able to achieve that end, while non-prisoners will be well able to do so.

  10. Propagation-invariant beams with quantum pendulum spectra: from Bessel beams to Gaussian beam-beams.

    PubMed

    Dennis, Mark R; Ring, James D

    2013-09-01

    We describe a new class of propagation-invariant light beams with Fourier transform given by an eigenfunction of the quantum mechanical pendulum. These beams, whose spectra (restricted to a circle) are doubly periodic Mathieu functions in azimuth, depend on a field strength parameter. When the parameter is zero, pendulum beams are Bessel beams, and as the parameter approaches infinity, they resemble transversely propagating one-dimensional Gaussian wave packets (Gaussian beam-beams). Pendulum beams are the eigenfunctions of an operator that interpolates between the squared angular momentum operator and the linear momentum operator. The analysis reveals connections with Mathieu beams, and insight into the paraxial approximation.

  11. Expedition 54 plaque hanging ceremony

    NASA Image and Video Library

    2018-04-26

    NASA astronauts Joe Acaba and Mark Vande Hei Acaba visited Marshall April 11 for their honorary Expedition 54 plaque hanging ceremony and to provide valuable feedback of their on-orbit science investigations with the Payload Operations and Integration Center team. Astronauts Mark Vande Hei (L) and Astronaut Joe Acaba sign autographs for Kassandra Stephens

  12. Expedition 54 plaque hanging ceremony

    NASA Image and Video Library

    2018-04-26

    NASA astronauts Joe Acaba and Mark Vande Hei Acaba visited Marshall April 11 for their honorary Expedition 54 plaque hanging ceremony and to provide valuable feedback of their on-orbit science investigations with the Payload Operations and Integration Center team. Astronauts Mark Vande Hei (L) and Astronaut Joe Acaba sign autographs for Lori Meggs.

  13. Expedition 54 plaque hanging ceremony

    NASA Image and Video Library

    2018-04-26

    NASA astronauts Joe Acaba and Mark Vande Hei Acaba visited Marshall April 11 for their honorary Expedition 54 plaque hanging ceremony and to provide valuable feedback of their on-orbit science investigations with the Payload Operations and Integration Center team. Payload Operations Director Phillipia Simmons with Astronauts Joe Acaba (L) and Mark Vande Hei

  14. Expedition 54 plaque hanging ceremony

    NASA Image and Video Library

    2018-04-26

    NASA astronauts Joe Acaba and Mark Vande Hei Acaba visited Marshall April 11 for their honorary Expedition 54 plaque hanging ceremony and to provide valuable feedback of their on-orbit science investigations with the Payload Operations and Integration Center team. Astronauts Mark Vande Hei (L) and Astronaut Joe Acaba sign autographs for Samantha Gurley.

  15. Uncertainty of in-flight thrust determination

    NASA Technical Reports Server (NTRS)

    Abernethy, Robert B.; Adams, Gary R.; Steurer, John W.; Ascough, John C.; Baer-Riedhart, Jennifer L.; Balkcom, George H.; Biesiadny, Thomas

    1986-01-01

    Methods for estimating the measurement error or uncertainty of in-flight thrust determination in aircraft employing conventional turbofan/turbojet engines are reviewed. While the term 'in-flight thrust determination' is used synonymously with 'in-flight thrust measurement', in-flight thrust is not directly measured but is determined or calculated using mathematical modeling relationships between in-flight thrust and various direct measurements of physical quantities. The in-flight thrust determination process incorporates both ground testing and flight testing. The present text is divided into the following categories: measurement uncertainty methodoogy and in-flight thrust measurent processes.

  16. A Novel Real-Time Data Acquisition Using an Excel Spreadsheet in Pendulum Experiment Tool with Light-Based Timer

    ERIC Educational Resources Information Center

    Adhitama, Egy; Fauzi, Ahmad

    2018-01-01

    In this study, a pendulum experimental tool with a light-based timer has been developed to measure the period of a simple pendulum. The obtained data was automatically recorded in an Excel spreadsheet. The intensity of monochromatic light, sensed by a 3DU5C phototransistor, dynamically changes as the pendulum swings. The changed intensity varies…

  17. A novel real-time data acquisition using an Excel spreadsheet in pendulum experiment tool with light-based timer

    NASA Astrophysics Data System (ADS)

    Adhitama, Egy; Fauzi, Ahmad

    2018-05-01

    In this study, a pendulum experimental tool with a light-based timer has been developed to measure the period of a simple pendulum. The obtained data was automatically recorded in an Excel spreadsheet. The intensity of monochromatic light, sensed by a 3DU5C phototransistor, dynamically changes as the pendulum swings. The changed intensity varies the resistance value and was processed by the microcontroller, ATMega328, to obtain a signal period as a function of time and brightness when the pendulum crosses the light. Through the experiment, using calculated average periods, the gravitational acceleration value has been accurately and precisely determined.

  18. Seismometer using a vertical long natural-period rotational pendulum with magnetic levitation

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Otake, Yuji; Araya, Akito; Hidano, Kazuo

    We have demonstrated a highly sensitive/wideband vertical-component seismometer using an astatic rotational pendulum to obtain a long natural period. This seismometer employs magnetic levitation for removing any parasitic resonances of a spring to support a weight due to gravity and the thermal dependence of the spring constant. The pendulum has a cylindrical plunger-type permanent magnet that has a weight at one side of its end edge. The plunger magnet is inserted into a uniform magnetic field generated by a window-frame-type permanent magnet, and attached to two crossed-leaf spring hinges as a rotational axis outside of the bore of the magnet.more » Magnetic forces applied to the plunger magnet counterbalance the gravitational force at the weight. To realize stable operation of the rotational pendulum without any unnecessary movements of the plunger magnet, a tilt of lines of the magnetic force in the bore of the window-frame magnet was compensated by a tilted magnetic-pole surface near to its opening. The field uniformity reached 10{sup -4} owing to this compensation. The thermal dependence of a magnetic field strength of about 10{sup -3}/K was also compensated by as much as 9x10{sup -5}/K by Ni-Fe metal having a negative permeability coefficient. The metal was attached along the sidewalls of the window-frame magnet. To determine the feedback control parameters for a feedback control seismometer, the natural period of a prototype rotational pendulum was measured. It was more than 8 s, and was able to be changed from 5 to 8 s by using an additional magnetic spring, similar to the voice coil actuator of a speaker. This change was in accordance with theoretical calculations, and showed that the pendulum movement did not include a big nonlinearity caused by the tilt of the lines of the magnetic force. No parasitic resonances were found during experiments. A velocity feedback-control circuit and a capacitance position detector to measure the weight position were

  19. The anatomy of a major late-stage thrust and implications for models of late-stage collisional orogenesis in the Caledonian crust of northern Scandinavia

    NASA Astrophysics Data System (ADS)

    Anderson, Mark; Hames, Willis; Stokes, Alison

    2010-05-01

    Within the stack of Caledonian crystalline thrust sheets of northern Scandinavia, a single amphibolite facies lithotectonic unit, the Småtinden nappe, is identified as a major, basement-coupled ("stretching") shear zone. This dominantly pelitic unit achieved peak metamorphic conditions of 535-550°C and 8-9kbars, and the stretching geometry suggests that this most likely occurred in response to overthrusting of a hot, pre-assembled Caledonian thrust stack. Along-strike variations in microstructural geometries and patterns of mineral zoning in widely developed porphyroblast phases suggest, however, subsequent strain partitioning within the zone during late-stage decoupling of the thrust stack from the basement along major out-of-sequence thrusts. Large parts of the nappe are characterised by relatively late, static growth preserving concordant Si-Se relationships, and typically symmetrical external fabrics consistent with formation under dominantly pure shear conditions. In the Salangen area, however, the nappe is characterised by early garnet growth, with discordant Si-Se relationships and asymmetric external fabric geometries consistent with formation during ESE-directed simple shear. Remarkably consistent thermometric estimates from chlorites in both regimes (post- and syn-shearing) suggest that out-of-sequence ramping occurred at temperatures in the range 370-400 ̊C, within the typical range of blocking temperatures for argon retention in muscovite. 40Ar-39Ar dating of muscovites from S-C fabrics in the out-of-sequence shear zone suggest that late-stage thrusting occurred during the middle-late Devonian (ca. 395-375 Ma). Hanging-wall and footwall geometries coupled with these radiometric dates indicate that the development of these late thrusts closely relates to reactivation of pre-Caledonian Baltic basement during the Devonian (400-370 Ma). East-west contraction during the upper end of this time frame is peculiar considering that this was the period of large

  20. Analysis of pendulum period with an iPod touch/iPhone

    NASA Astrophysics Data System (ADS)

    Briggle, Justin

    2013-05-01

    We describe the use of Apple’s iPod touch/iPhone, acting as the pendulum bob, as a means of measuring pendulum period, making use of the device’s three-axis digital accelerometer and the freely available SPARKvue app from PASCO scientific. The method can be readily incorporated into an introductory physics laboratory experiment. Moreover, the principles described may be carried out with any number of smartphone devices containing an integrated accelerometer and paired with an appropriate application for collecting and sending accelerometer data as a comma-separated value file.

  1. Recurrence Effects in the Parametric Spring Pendulum.

    ERIC Educational Resources Information Center

    Falk, Lars

    1978-01-01

    Gives a perturbation analysis to recurrence effects of the spring pendulum. The recurrence depends on two conservation laws which determine the motion in an intermediate region; oscillations outside this region are unstable and must return. Gives the relation to Fermi-Pasta-Ulam problem together with the explicit solution. (Author/GA)

  2. Quantum dynamics of a plane pendulum

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Leibscher, Monika; Schmidt, Burkhard

    A semianalytical approach to the quantum dynamics of a plane pendulum is developed, based on Mathieu functions which appear as stationary wave functions. The time-dependent Schroedinger equation is solved for pendular analogs of coherent and squeezed states of a harmonic oscillator, induced by instantaneous changes of the periodic potential energy function. Coherent pendular states are discussed between the harmonic limit for small displacements and the inverted pendulum limit, while squeezed pendular states are shown to interpolate between vibrational and free rotational motion. In the latter case, full and fractional revivals as well as spatiotemporal structures in the time evolution ofmore » the probability densities (quantum carpets) are quantitatively analyzed. Corresponding expressions for the mean orientation are derived in terms of Mathieu functions in time. For periodic double well potentials, different revival schemes, and different quantum carpets are found for the even and odd initial states forming the ground tunneling doublet. Time evolution of the mean alignment allows the separation of states with different parity. Implications for external (rotational) and internal (torsional) motion of molecules induced by intense laser fields are discussed.« less

  3. Accidental hanging by a T-shirt collar in a man with morphine intoxication: an unusual case.

    PubMed

    Kodikara, Sarathchandra; Alagiyawanna, Ramesh

    2011-09-01

    Accidental hanging is rare across all age groups, and it is even rarer in the adult population except in autoerotic asphyxia. Few cases have been reported in the literature, which describe unusual patterns of accidental hanging. This article focuses on an unusual pattern of accidental hanging of a 25-year-old man, who was in a state of morphine-induced central nervous system depression and found dead in a sitting position with the collar of his T-shirt hanging off a jutting-out root of a tree. The hanged collar acted as a ligature compressing the neck.

  4. Distribution of hanging garden vegetation associations on the Colorado Plateau, USA

    Treesearch

    James F. Fowler; N. L. Stanton; Ronald L. Hartman

    2007-01-01

    Hanging gardens are island-like habitats dominated by mesophytic-hydrophytic plant communities, growing on seeps on the xeric canyon walls of the Colorado Plateau in the American West. We measured the abundance of species and physical microhabitat characteristics of 73 individual hanging gardens during the growing seasons of 1991-1993. Cluster analysis of a simplified...

  5. The 2015 April 25 Gorkha Earthquake and its Aftershocks: Implications for lateral heterogeneity on the Main Himalayan Thrust

    NASA Astrophysics Data System (ADS)

    Mitra, S.; Kumar, A.; Priestley, K. F.

    2016-12-01

    The 2015 Gorkha earthquake (Mw 7.8) occurred by thrust faulting on a ˜150 km long and ˜70 km wide, locked downdip segment of the Main Himalayan Thrust (MHT), causing the Himalaya to slip SSW over the Indian Plate, and was followed by major-to-moderate aftershocks. Back projection of teleseismic P-wave and inversion of teleseismic body waves provide constraints on the geometry and kinematics of the mainshock rupture and source mechanism of aftershocks. The mainshock initiated ˜80 km west of Katmandu, close to the locking line on the MHT and propagated eastwards, along ˜117° azimuth, for a duration of ˜70 s, in multi-stage rupture. The mainshock has been modeled using four sub-events, propagating from west-to-east. The first sub-event (0-20 s) ruptured at a velocity of ˜3.5 km/s on a ˜6° N dipping flat segment of the MHT with thrust motion. The second sub-event (20-35 s) ruptured a ˜18° W dipping lateral ramp on the MHT in oblique thrust motion. The rupture velocity dropped from 3.5 km/s to 2.5 km/s, as a result of updip propagation of the rupture. The third sub-event (35-50 s) ruptured a ˜7° N dipping, eastward flat segment of the MHT with thrust motion and resulted in the largest amplitude arrivals at teleseismic distances. The fourth sub-event (50-70 s) occurred by left-lateral strike-slip motion on a steeply dipping transverse fault, at high angle to the MHT and arrested the eastward propagation of the mainshock rupture. Eastward stress build-up following the mainshock resulted in the largest aftershock (Mw 7.3), which occurred on the MHT, immediately east of the mainshock rupture. Source mechanism of moderate aftershocks reveal stress adjustment at the edges of the mainshock fault, flexural faulting on top of the downgoing Indian Plate and extensional faulting in the hanging wall of the MHT.

  6. Combined input shaping and feedback control for double-pendulum systems

    NASA Astrophysics Data System (ADS)

    Mar, Robert; Goyal, Anurag; Nguyen, Vinh; Yang, Tianle; Singhose, William

    2017-02-01

    A control system combining input shaping and feedback is developed for double-pendulum systems subjected to external disturbances. The proposed control method achieves fast point-to-point response similar to open-loop input-shaping control. It also minimizes transient deflections during the motion of the system, and disturbance-induced residual swing using the feedback control. Effects of parameter variations such as the mass ratio of the double pendulum, the suspension length ratio, and the move distance were studied via numerical simulation. The most important results were also verified with experiments on a small-scale crane. The controller effectively suppresses the disturbances and is robust to modelling uncertainties and task variations.

  7. The Slinky Wilberforce pendulum: A simple coupled oscillator

    NASA Astrophysics Data System (ADS)

    Mewes, Matthew

    2014-03-01

    The Wilberforce pendulum is an effective classroom demonstration of coupled oscillations and the beat-like behavior that arises in weakly coupled tuned oscillators. We describe a simple and inexpensive version constructed from a Slinky spring toy and a soup can.

  8. Maximum thrust mode evaluation

    NASA Technical Reports Server (NTRS)

    Orme, John S.; Nobbs, Steven G.

    1995-01-01

    Measured reductions in acceleration times which resulted from the application of the F-15 performance seeking control (PSC) maximum thrust mode during the dual-engine test phase is presented as a function of power setting and flight condition. Data were collected at altitudes of 30,000 and 45,000 feet at military and maximum afterburning power settings. The time savings for the supersonic acceleration is less than at subsonic Mach numbers because of the increased modeling and control complexity. In addition, the propulsion system was designed to be optimized at the mid supersonic Mach number range. Recall that even though the engine is at maximum afterburner, PSC does not trim the afterburner for the maximum thrust mode. Subsonically at military power, time to accelerate from Mach 0.6 to 0.95 was cut by between 6 and 8 percent with a single engine application of PSC, and over 14 percent when both engines were optimized. At maximum afterburner, the level of thrust increases were similar in magnitude to the military power results, but because of higher thrust levels at maximum afterburner and higher aircraft drag at supersonic Mach numbers the percentage thrust increase and time to accelerate was less than for the supersonic accelerations. Savings in time to accelerate supersonically at maximum afterburner ranged from 4 to 7 percent. In general, the maximum thrust mode has performed well, demonstrating significant thrust increases at military and maximum afterburner power. Increases of up to 15 percent at typical combat-type flight conditions were identified. Thrust increases of this magnitude could be useful in a combat situation.

  9. Measuring axial pump thrust

    DOEpatents

    Suchoza, Bernard P.; Becse, Imre

    1988-01-01

    An apparatus for measuring the hydraulic axial thrust of a pump under operation conditions is disclosed. The axial thrust is determined by forcing the rotating impeller off of an associated thrust bearing by use of an elongate rod extending coaxially with the pump shaft. The elongate rod contacts an impeller retainer bolt where a bearing is provided. Suitable measuring devices measure when the rod moves to force the impeller off of the associated thrust bearing and the axial force exerted on the rod at that time. The elongate rod is preferably provided in a housing with a heat dissipation mechanism whereby the hot fluid does not affect the measuring devices.

  10. Ion thrusting system

    NASA Technical Reports Server (NTRS)

    Hartley, Frank T. (Inventor)

    2007-01-01

    An ion thrusting system is disclosed comprising an ionization membrane having at least one area through which a gas is passed, and which ionizes the gas molecules passing therethrough to form ions and electrons, and an accelerator element which accelerates the ions to form thrust. In some variations, a potential is applied to the ionization membrane may be reversed to thrust ions in an opposite direction. The ionization membrane may also include an opening with electrodes that are located closer than a mean free path of the gas being ionized. Methods of manufacture and use are also provided.

  11. Pattern of burn injury in hang-glider pilots.

    PubMed

    Campbell, D C; Nano, T; Pegg, S P

    1996-06-01

    High-voltage electrical injury has been well documented in a number of situations, such as the occupational hazard of linesmen and construction workers, and in the context of overhead railway power lines. Two cases of hang-glider pilots contacting 11,000-volt power lines have recently been treated in the Royal Brisbane Hospital Burns Unit. They demonstrate an interesting pattern of injury, not described in current burns literature, involving both hand and lower abdominal burns. Both patients sustained full-thickness patches of burn injury, with underlying muscle damage and peripheral neurological injury. This distribution of injury seems to be closely related to the design of the hang glider.

  12. Improved gas thrust bearings

    NASA Technical Reports Server (NTRS)

    Anderson, W. J.; Etsion, I.

    1979-01-01

    Two variations of gas-lubricated thrust bearings extend substantially load-carrying range over existing gas bearings. Dual-Action Gas Thrust Bearing's load-carrying capacity is more than ninety percent greater than that of single-action bearing over range of compressibility numbers. Advantages of Cantilever-mounted Thrust Bearing are greater tolerance to dirt ingestion, good initial lift-off characteristics, and operational capability over wide temperature range.

  13. Approximate Expressions for the Period of a Simple Pendulum Using a Taylor Series Expansion

    ERIC Educational Resources Information Center

    Belendez, Augusto; Arribas, Enrique; Marquez, Andres; Ortuno, Manuel; Gallego, Sergi

    2011-01-01

    An approximate scheme for obtaining the period of a simple pendulum for large-amplitude oscillations is analysed and discussed. When students express the exact frequency or the period of a simple pendulum as a function of the oscillation amplitude, and they are told to expand this function in a Taylor series, they always do so using the…

  14. Robust Control Algorithm for a Two Cart System and an Inverted Pendulum

    NASA Technical Reports Server (NTRS)

    Wilson, Chris L.; Capo-Lugo, Pedro

    2011-01-01

    The Rectilinear Control System can be used to simulate a launch vehicle during liftoff. Several control schemes have been developed that can control different dynamic models of the rectilinear plant. A robust control algorithm was developed that can control a pendulum to maintain an inverted position. A fluid slosh tank will be attached to the pendulum in order to test robustness in the presence of unknown slosh characteristics. The rectilinear plant consists of a DC motor and three carts mounted in series. Each cart s weight can be adjusted with brass masses and the carts can be coupled with springs. The pendulum is mounted on the first cart and an adjustable air damper can be attached to the third cart if desired. Each cart and the pendulum have a quadrature encoder to determine position. Full state feedback was implemented in order to develop the control algorithm along with a state estimator to determine the velocity states of the system. A MATLAB program was used to convert the state space matrices from continuous time to discrete time. This program also used a desired phase margin and damping ratio to determine the feedback gain matrix that would be used in the LabVIEW program. This experiment will allow engineers to gain a better understanding of liquid propellant slosh dynamics, therefore enabling them to develop more robust control algorithms for launch vehicle systems

  15. LISA technology development using the UF precision torsion pendulum

    NASA Astrophysics Data System (ADS)

    Apple, Stephen; Chilton, Andrew; Olatunde, Taiwo; Ciani, Giacomo; Mueller, Guido; Conklin, John

    2015-04-01

    LISA will directly observe low-frequency gravitational waves emitted by sources ranging from super-massive black hole mergers to compact galactic binaries. A laser interferometer will measure picometer changes in the distances between free falling test masses separated by millions of kilometers. A test mass and its associated sensing, actuation, charge control and caging subsystems are referred to as a gravitational reference sensor (GRS). The demanding acceleration noise requirement for the LISA GRS has motivated a rigorous testing campaign in Europe and a dedicated technology mission, LISA Pathfinder, scheduled for launch in the fall of 2015. At the University of Florida we are developing a nearly thermally noise limited torsion pendulum for testing GRS technology enhancements that may improve the performance and/or reduce the cost of the LISA GRS. This experimental facility is based on the design of a similar facility at the University of Trento, and consists of a vacuum enclosed torsion pendulum that suspends mock-ups of the LISA test masses, surrounded by electrode housings. Some of the technologies that will be demonstrated by this facility include a novel TM charge control scheme based on ultraviolet LEDs, an all-optical TM position and attitude sensor, and drift mode operation. This presentation will describe the design of the torsion pendulum facility, its current acceleration noise performance, and the status of the GRS technologies under development.

  16. Precision Measurement of Distribution of Film Thickness on Pendulum for Experiment of G

    NASA Astrophysics Data System (ADS)

    Liu, Lin-Xia; Guan, Sheng-Guo; Liu, Qi; Zhang, Ya-Ting; Shao, Cheng-Gang; Luo, Jun

    2009-09-01

    Distribution of film thickness coated on the pendulum of measuring the Newton gravitational constant G is determined with a weighing method by means of a precision mass comparator. The experimental result shows that the gold film on the pendulum will contribute a correction of -24.3 ppm to our G measurement with an uncertainty of 4.3 ppm, which is significant for improving the G value with high precision.

  17. Hanging out with Which Friends? Friendship-Level Predictors of Unstructured and Unsupervised Socializing in Adolescence

    ERIC Educational Resources Information Center

    Siennick, Sonja E.; Osgood, D. Wayne

    2012-01-01

    Companions are central to explanations of the risky nature of unstructured and unsupervised socializing, yet we know little about whom adolescents are with when hanging out. We examine predictors of how often friendship dyads hang out via multilevel analyses of longitudinal friendship-level data on over 5,000 middle schoolers. Adolescents hang out…

  18. The Zagros hinterland fold-and-thrust belt in-sequence thrusting, Iran

    NASA Astrophysics Data System (ADS)

    Sarkarinejad, Khalil; Ghanbarian, Mohammad Ali

    2014-05-01

    The collision of the Iranian microcontinent with the Afro-Arabian continent resulted in the deformation of the Zagros orogenic belt. The foreland of this belt in the Persian Gulf and Arabian platform has been investigated for its petroleum and gas resource potentials, but the Zagros hinterland is poorly investigated and our knowledge about its deformation is much less than other parts of this orogen. Therefore, this work presents a new geological map, stratigraphic column and two detailed geological cross sections. This study indicates the presence of a hinterland fold-and-thrust belt on northeastern side of the Zagros orogenic core that consists of in-sequence thrusting and basement involvement in this important part of the Zagros hinterland. The in-sequence thrusting resulted in first- and second-order duplex systems, Mode I fault-bend folding, fault-propagation folding and asymmetric detachment folding which indicate close relationships between folding and thrusting. Study of fault-bend folds shows that layer-parallel simple shear has the same role in the southeastern and northwestern parts of the study area (αe = 23.4 ± 9.1°). A major lateral ramp in the basement beneath the Talaee plain with about one kilometer of vertical offset formed parallel to the SW movement direction and perpendicular to the major folding and thrusting.

  19. Classroom Explorations: Pendulums, Mirrors, and Galileo's Drama

    ERIC Educational Resources Information Center

    Cavicchi, Elizabeth

    2011-01-01

    What do you see in a mirror when not looking at yourself? What goes on as a pendulum swings? Undergraduates in a science class supposed that these behaviors were obvious until their explorations exposed questions with no quick answers. While exploring materials, students researched Galileo, his trial, and its aftermath. Galileo came to life both…

  20. Figuring the Acceleration of the Simple Pendulum

    ERIC Educational Resources Information Center

    Lieberherr, Martin

    2011-01-01

    The centripetal acceleration has been known since Huygens' (1659) and Newton's (1684) time. The physics to calculate the acceleration of a simple pendulum has been around for more than 300 years, and a fairly complete treatise has been given by C. Schwarz in this journal. But sentences like "the acceleration is always directed towards the…

  1. EAST Multicenter Trial on Targeted Temperature Management for Hanging-Induced Cardiac Arrest.

    PubMed

    Hsu, Cindy H; Haac, Bryce E; Drake, Mack; Bernard, Andrew C; Aiolfi, Alberto; Inaba, Kenji; Hinson, Holly E; Agarwal, Chinar; Galante, Joseph; Tibbits, Emily M; Johnson, Nicholas J; Carlbom, David; Mirhoseini, Mina F; Patel, Mayur B; OʼBosky, Karen R; Chan, Christian; Udekwu, Pascal O; Farrell, Megan; Wild, Jeffrey L; Young, Katelyn A; Cullinane, Daniel C; Gojmerac, Deborah J; Weissman, Alexandra; Callaway, Clifton; Perman, Sarah M; Guerrero, Mariana; Aisiku, Imoigele P; Seethala, Raghu R; Co, Ivan N; Madhok, Debbie Y; Darger, Bryan; Kim, Dennis Y; Spence, Lara; Scalea, Thomas M; Stein, Deborah M

    2018-04-19

    We sought to determine the outcome of suicidal hanging and the impact of targeted temperature management (TTM) on hanging-induced cardiac arrest (CA) through an Eastern Association for the Surgery of Trauma (EAST) multicenter retrospective study. We analyzed hanging patient data and TTM variables from January 1992 to December 2015. Cerebral performance category (CPC) score of 1 or 2 was considered good neurologic outcome, while CPC of 3 or 4 was considered poor outcome. Classification and Regression Trees (CART) recursive partitioning was used to develop multivariate predictive models for survival and neurological outcome. Total of 692 hanging patients from 17 centers were analyzed for this study. Their overall survival rate was 77%, and the CA survival rate was 28.6%. The CA patients had significantly higher severity of illness and worse outcome than the non-CA patients. Of the 175 CA patients who survived to hospital admission, 81 patients (46.3%) received post-cardiac arrest TTM. The unadjusted survival of TTM CA patients (24.7% vs 39.4%, p<0.05) and good neurologic outcome (19.8% vs 37.2%, p<0.05) were worse than non-TTM CA patients. However, when subgroup analyses were performed between those with admission GCS of 3-8, the differences between TTM and non-TTM CA survival (23.8% vs 30.0%, p=0.37) and good neurologic outcome (18.8% vs 28.7%, p=0.14) were not significant. TTM implementation and post-cardiac arrest management varied between the participating centers. CART models identified variables predictive of favorable and poor outcome for hanging and TTM patients with excellent accuracy. CA hanging patients had worse outcome than non-CA patients. TTM CA patients had worse unadjusted survival and neurologic outcome than non-TTM patients. These findings may be explained by their higher severity of illness, variable TTM implementation, and differences in post-cardiac arrest management. Future prospective studies are necessary to ascertain the effect of TTM on

  2. Changes consequent to maxillary molar distalization with the bone-anchored pendulum appliance.

    PubMed

    Cambiano, Aldo Otazú; Janson, Guilherme; Fuziy, Acácio; Garib, Daniela Gamba; Lorenzoni, Diego Coelho

    2017-01-01

    This retrospective study aimed to evaluate the dentoalveolar, skeletal, and soft tissue effects obtained with bone-anchored pendulum appliance in patients with Class II malocclusion. A total of 18 patients (4 male, 14 female) at a mean pretreatment age of 14.0 years (+1.08) were enrolled in this study. All patients were treated with the bone-anchored pendulum appliance for an average duration of 4.8 months. Only the active distalization period was evaluated with predistalization and postdistalization lateral cephalograms. Skeletal, dentoalveolar, and soft tissue variables were obtained. Based on these variables, the treatment effects were evaluated with dependent t -test. Correction of Class II molar relationship resulted from distal movement of 3.45 mm and tipping of 11.24° of the first maxillary molars. The premolars were distalized accompanying the molars. The bone-anchored pendulum appliance proved to be an effective method for distalization of maxillary molars in cases that require maximum anchorage, avoiding reciprocal mesial movement of premolars and incisors.

  3. Measuring axial pump thrust

    DOEpatents

    Suchoza, B.P.; Becse, I.

    1988-11-08

    An apparatus for measuring the hydraulic axial thrust of a pump under operation conditions is disclosed. The axial thrust is determined by forcing the rotating impeller off of an associated thrust bearing by use of an elongate rod extending coaxially with the pump shaft. The elongate rod contacts an impeller retainer bolt where a bearing is provided. Suitable measuring devices measure when the rod moves to force the impeller off of the associated thrust bearing and the axial force exerted on the rod at that time. The elongate rod is preferably provided in a housing with a heat dissipation mechanism whereby the hot fluid does not affect the measuring devices. 1 fig.

  4. Modified liver hanging maneuver focusing on outflow control in pure laparoscopic left-sided hepatectomy.

    PubMed

    Kim, Ji Hoon

    2018-04-01

    Outflow control during laparoscopic liver resection necessitates the use of technically demanding procedures since the hepatic veins are fragile and vulnerable to damage during parenchymal transection. The liver hanging maneuver reduces venous backflow bleeding during deep parenchymal transection. The present report describes surgical outcomes and a technique to achieve outflow control during application of the modified liver hanging maneuver in patients undergoing laparoscopic left-sided hepatectomy. A retrospective review was performed of clinical data from 29 patients who underwent laparoscopic left-sided hepatectomy using the modified liver hanging maneuver between February 2013 and March 2017. For this hanging technique, the upper end of the hanging tape was placed on the lateral aspect of the left hepatic vein. The tape was then aligned with the ligamentum venosum. The position of the lower end of the hanging tape was determined according to left-sided hepatectomy type. The hanging tape gradually encircled either the left hepatic vein or the common trunk of the left hepatic vein and middle hepatic vein. The surgical procedures comprised: left lateral sectionectomy (n = 10); left hepatectomy (n = 17); and extended left hepatectomy including the middle hepatic vein (n = 2). Median operative time was 210 min (range 90-350 min). Median intraoperative blood loss was 200 ml (range 60-600 ml). Two intraoperative major hepatic vein injuries occurred during left hepatectomy. Neither patient developed massive bleeding or air embolism. Postoperative major complications occurred in one patient (3.4%). Median postoperative hospital stay was 7 days (range 4-15 days). No postoperative mortality occurred. The present modified liver hanging maneuver is a safe and effective method of outflow control during laparoscopic left-sided hepatectomy.

  5. Development of Gravity Acceleration Measurement Using Simple Harmonic Motion Pendulum Method Based on Digital Technology and Photogate Sensor

    NASA Astrophysics Data System (ADS)

    Yulkifli; Afandi, Zurian; Yohandri

    2018-04-01

    Development of gravitation acceleration measurement using simple harmonic motion pendulum method, digital technology and photogate sensor has been done. Digital technology is more practical and optimizes the time of experimentation. The pendulum method is a method of calculating the acceleration of gravity using a solid ball that connected to a rope attached to a stative pole. The pendulum is swung at a small angle resulted a simple harmonic motion. The measurement system consists of a power supply, Photogate sensors, Arduino pro mini and seven segments. The Arduino pro mini receives digital data from the photogate sensor and processes the digital data into the timing data of the pendulum oscillation. The calculation result of the pendulum oscillation time is displayed on seven segments. Based on measured data, the accuracy and precision of the experiment system are 98.76% and 99.81%, respectively. Based on experiment data, the system can be operated in physics experiment especially in determination of the gravity acceleration.

  6. The time-delayed inverted pendulum: Implications for human balance control

    NASA Astrophysics Data System (ADS)

    Milton, John; Cabrera, Juan Luis; Ohira, Toru; Tajima, Shigeru; Tonosaki, Yukinori; Eurich, Christian W.; Campbell, Sue Ann

    2009-06-01

    The inverted pendulum is frequently used as a starting point for discussions of how human balance is maintained during standing and locomotion. Here we examine three experimental paradigms of time-delayed balance control: (1) mechanical inverted time-delayed pendulum, (2) stick balancing at the fingertip, and (3) human postural sway during quiet standing. Measurements of the transfer function (mechanical stick balancing) and the two-point correlation function (Hurst exponent) for the movements of the fingertip (real stick balancing) and the fluctuations in the center of pressure (postural sway) demonstrate that the upright fixed point is unstable in all three paradigms. These observations imply that the balanced state represents a more complex and bounded time-dependent state than a fixed-point attractor. Although mathematical models indicate that a sufficient condition for instability is for the time delay to make a corrective movement, τn, be greater than a critical delay τc that is proportional to the length of the pendulum, this condition is satisfied only in the case of human stick balancing at the fingertip. Thus it is suggested that a common cause of instability in all three paradigms stems from the difficulty of controlling both the angle of the inverted pendulum and the position of the controller simultaneously using time-delayed feedback. Considerations of the problematic nature of control in the presence of delay and random perturbations ("noise") suggest that neural control for the upright position likely resembles an adaptive-type controller in which the displacement angle is allowed to drift for small displacements with active corrections made only when θ exceeds a threshold. This mechanism draws attention to an overlooked type of passive control that arises from the interplay between retarded variables and noise.

  7. Decoupling the structure from the ground motion during earthquakes by employing friction pendulums

    NASA Astrophysics Data System (ADS)

    Gillich, G. R.; Iancu, V.; Gillich, N.; Korka, Z. I.; Chioncel, C. P.; Hatiegan, C.

    2018-01-01

    Avoiding dynamic loads on structures during earthquakes is an actual issue since seismic actions can harm or destroy the built environment. Several attempts to prevent this are possible, the essence being to decouple the structure from the ground motion during earthquakes and preventing in this way large deflections and high accelerations. A common approach is the use of friction pendulums, with cylindrical or spherical surfaces but not limited to that, inserted between the ground and the structure, respectively between the pillar and the superstructure. This type of bearings permits small pendulum motion and in this way, earthquake-induced displacements that occur in the bearings are not integrally transmitted to the structure. The consequence is that the structure is subject to greatly reduced lateral loads and shaking movements. In the experiments, conducted to prove the efficiency of the friction pendulums, we made use of an own designed and manufactured shaking table. Two types of sliding surfaces are analyzed, one polynomial of second order (i.e. circular) and one of a superior order. For both pendulum types, analytical models were developed. The results have shown that the structure is really decoupled from the ground motion and has a similar behaviour as that described by the analytic model.

  8. Thrust vectoring systems

    NASA Technical Reports Server (NTRS)

    King, H. J.; Schnelker, D.; Ward, J. W.; Dulgeroff, C.; Vahrenkamp, R.

    1972-01-01

    The design, fabrication, and testing of thrust vectorable ion optical systems capable of controlling the thrust direction from both 5- and 30-cm diameter ion thrusters is described. Both systems are capable of greater than 10 deg thrust deflection in any azimuthal direction. The 5-cm system is electrostatic and hence has a short response time and minimal power consumption. It has recently been tested for more than 7500 hours on an operational thruster. The 30-cm system is mechanical, has a response time of the order of 1 min, and consumes less than 0.3% of the total system input power at full deflection angle.

  9. Quadriceps femoris spasticity in children with cerebral palsy: measurement with the pendulum test and relationship with gait abnormalities.

    PubMed

    Szopa, Andrzej; Domagalska-Szopa, Małgorzata; Kidoń, Zenon; Syczewska, Małgorzata

    2014-12-16

    Development of a reliable and objective test of spasticity is important for assessment and treatment of children with cerebral palsy. The pendulum test has been reported to yield reliable measurements of spasticity and to be sensitive to variations in spasticity in these children. However, the relationship between the pendulum test scores and other objective measures of spasticity has not been studied. The present study aimed to assess the effectiveness of an accelerometer-based pendulum test as a measurement of spasticity in CP, and to explore the correlation between the measurements of this test and the global index of deviation from normal gait in in children with cerebral palsy. We studied thirty-six children with cerebral palsy, including 18 with spastic hemiplegia and 18 with spastic diplegia, and a group of 18 typically-developing children. Knee extensor spasticity was assessed bilaterally using the accelerometer-based pendulum test and three-dimensional gait analysis. The Gillette Gait Index was calculated from the results of the gait analysis. The data from the accelerometer-based pendulum test could be used to distinguish between able-bodied children and children with cerebral palsy. Additionally, two of the measurements, first swing excursion and relaxation index, could be used to differentiate the degree of knee extensor spasticity in the children with cerebral palsy. Only a few moderate correlations were found between the Gillette Gait Index and the pendulum test data. This study demonstrates that the pendulum test can be used to discriminate between typically developing children and children with CP, as well as between various degrees of spasticity, such as spastic hemiplegia and spastic diplegia, in the knee extensor muscle of children with CP. Deviations from normal gait in children with CP were not correlated with the results of the pendulum test.

  10. Dynamic modelling of a double-pendulum gantry crane system incorporating payload

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ismail, R. M. T. Raja; Ahmad, M. A.; Ramli, M. S.

    The natural sway of crane payloads is detrimental to safe and efficient operation. Under certain conditions, the problem is complicated when the payloads create a double pendulum effect. This paper presents dynamic modelling of a double-pendulum gantry crane system based on closed-form equations of motion. The Lagrangian method is used to derive the dynamic model of the system. A dynamic model of the system incorporating payload is developed and the effects of payload on the response of the system are discussed. Extensive results that validate the theoretical derivation are presented in the time and frequency domains.

  11. An analytical approach to the external force-free motion of pendulums on surfaces of constant curvature

    NASA Astrophysics Data System (ADS)

    Rubio, Rafael M.; Salamanca, Juan J.

    2018-07-01

    The dynamics of external force free motion of pendulums on surfaces of constant Gaussian curvature is addressed when the pivot moves along a geodesic obtaining the Lagrangian of the system. As an application it is possible the study of elastic and quantum pendulums.

  12. The 2015 April 25 Gorkha (Nepal) earthquake and its aftershocks: implications for lateral heterogeneity on the Main Himalayan Thrust

    NASA Astrophysics Data System (ADS)

    Kumar, Ajay; Singh, Shashwat K.; Mitra, S.; Priestley, K. F.; Dayal, Shankar

    2017-02-01

    The 2015 Gorkha earthquake (Mw 7.8) occurred by thrust faulting on a ˜150 km long and ˜70 km wide, locked downdip segment of the Main Himalayan Thrust (MHT), causing the Himalaya to slip SSW over the Indian Plate, and was followed by major-to-moderate aftershocks. Back projection of teleseismic P-wave and inversion of teleseismic body waves provide constraints on the geometry and kinematics of the main-shock rupture and source mechanism of aftershocks. The main-shock initiated ˜80 km west of Katmandu, close to the locking line on the MHT and propagated eastwards along ˜117° azimuth for a duration of ˜70 s, with varying rupture velocity on a heterogeneous fault surface. The main-shock has been modelled using four subevents, propagating from west-to-east. The first subevent (0-20 s) ruptured at a velocity of ˜3.5 km s- 1 on a ˜6°N dipping flat segment of the MHT with thrust motion. The second subevent (20-35 s) ruptured a ˜18° W dipping lateral ramp on the MHT in oblique thrust motion. The rupture velocity dropped from 3.5 km s- 1 to 2.5 km s- 1, as a result of updip propagation of the rupture. The third subevent (35-50 s) ruptured a ˜7°N dipping, eastward flat segment of the MHT with thrust motion and resulted in the largest amplitude arrivals at teleseismic distances. The fourth subevent (50-70 s) occurred by left-lateral strike-slip motion on a steeply dipping transverse fault, at high angle to the MHT and arrested the eastward propagation of the main-shock rupture. Eastward stress build-up following the main-shock resulted in the largest aftershock (Mw 7.3), which occurred on the MHT, immediately east of the main-shock rupture. Source mechanisms of moderate aftershocks reveal stress adjustment at the edges of the main-shock fault, flexural faulting on top of the downgoing Indian Plate and extensional faulting in the hanging wall of the MHT.

  13. Power Series Solution to the Pendulum Equation

    ERIC Educational Resources Information Center

    Benacka, Jan

    2009-01-01

    This note gives a power series solution to the pendulum equation that enables to investigate the system in an analytical way only, i.e. to avoid numeric methods. A method of determining the number of the terms for getting a required relative error is presented that uses bigger and lesser geometric series. The solution is suitable for modelling the…

  14. Periodic solutions of a spring-pendulum system.

    NASA Technical Reports Server (NTRS)

    Broucke, R.; Baxa, P. A.

    1973-01-01

    A study has been made of a dynamical system composed of a pendulum and a harmonic oscillator, in order to show the remarkable resemblance with many classical celestial mechanics problems, in particular, the restricted three-body problem. It is shown that the well-known investigations of periodic orbits can be applied to the present dynamics problem.

  15. Soro West: A non-seismically defined, fault cut-off prospect in the Papuan Fold and Thrust Belt, Papua New Guinea

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Robinson, W.F.; Swift, C.M. Jr.

    Soro West is a fault cut-off prospect located in the frontal portion of the Papuan Fold and Thrust Belt. Prospective Toro and Imburu sandstones are interpreted to be in the hanging wall of the Soro Thrust. Truncation against the thrust, both updip and through lateral ramps, provides the trapping mechanism. The Soro West Prospect was defined using geological, geochemical, remote sensing, and geophysical data. The definition and location of the trap is a primary risk and work was focused on this aspect. Surface geological data (lithology, strikes, and dips) topography and synthetic aperture radar imagery were incorporated into the evaluation.more » Statistical curvature analysis techniques helped define the shape of the structure and the locations of the lateral ramps. Strontium isotope analyses of Darai Limestone surface samples refined erosional levels using a locally-derived reference curve. Severe karst precludes the acquisition of coherent surface seismic data, so the primary geophysical tool used was magnetotellurics (MT). A detailed, pre-survey feasibility study defined expected responses from alternative structural models. The MT data demonstrated that the limestone at surface is underlain by thick conductive clastics and not another Darai Limestone sheet. The data also constrained the range of fault cut-off positions significantly. Multiple, three-dimensionally consistent, restorable alternative structural models were created using results from all analyses. These led to a positive assessment of the prospect and an exploratory test is to be drilled in 1996.« less

  16. Human balancing of an inverted pendulum: position control by small, ballistic-like, throw and catch movements

    PubMed Central

    Loram, Ian D; Lakie, Martin

    2002-01-01

    In standing, there are small sways of the body. Our interest is to use an artificial task to illuminate the mechanisms underlying the sways and to account for changes in their size. Using the ankle musculature, subjects balanced a large inverted pendulum. The equilibrium of the pendulum is unstable and quasi-regular sway was observed like that in quiet standing. By giving full attention to minimising sway subjects could systematically reduce pendulum movement. The pendulum position, the torque generated at each ankle and the soleus and tibialis anterior EMGs were recorded. Explanations about how the human inverted pendulum is balanced usually ignore the fact that balance is maintained over a range of angles and not just at one angle. Any resting equilibrium position of the pendulum is unstable and in practice temporary; movement to a different resting equilibrium position can only be accomplished by a biphasic ‘throw and catch’ pattern of torque and not by an elastic mechanism. Results showed that balance was achieved by the constant repetition of a neurally generated ballistic-like biphasic pattern of torque which can control both position and sway size. A decomposition technique revealed that there was a substantial contribution to changes in torque from intrinsic mechanical ankle stiffness; however, by itself this was insufficient to maintain balance or to control position. Minimisation of sway size was caused by improvement in the accuracy of the anticipatory torque impulses. We hypothesise that examination of centre of mass and centre of pressure data for quiet standing will duplicate these results. PMID:11986396

  17. A new torsion pendulum for gravitational reference sensor technology development.

    PubMed

    Ciani, Giacomo; Chilton, Andrew; Apple, Stephen; Olatunde, Taiwo; Aitken, Michael; Mueller, Guido; Conklin, John W

    2017-06-01

    We report on the design and sensitivity of a new torsion pendulum for measuring the performance of ultra-precise inertial sensors and for the development of associated technologies for space-based gravitational wave observatories and geodesy missions. The apparatus comprises a 1 m-long, 50 μm-diameter tungsten fiber that supports an inertial member inside a vacuum system. The inertial member is an aluminum crossbar with four hollow cubic test masses at each end. This structure converts the rotation of the torsion pendulum into translation of the test masses. Two test masses are enclosed in capacitive sensors which provide readout and actuation. These test masses are electrically insulated from the rest of the crossbar and their electrical charge is controlled by photoemission using fiber-coupled ultraviolet light emitting diodes. The capacitive readout measures the test mass displacement with a broadband sensitivity of 30 nm∕Hz and is complemented by a laser interferometer with a sensitivity of about 0.5 nm∕Hz. The performance of the pendulum, as determined by the measured residual torque noise and expressed in terms of equivalent force acting on a single test mass, is roughly 200 fN∕Hz around 2 mHz, which is about a factor of 20 above the thermal noise limit of the fiber.

  18. Low thrust vehicle concept study

    NASA Technical Reports Server (NTRS)

    1980-01-01

    Low thrust chemical (hydrogen-oxygen) propulsion systems configured specifically for low acceleration orbit transfer of large space systems were defined. Results indicate that it is cost effective and least risk to combine the OTV and stowed spacecraft in a single 65 K Shuttle. The study shows that the engine for an optimized low thrust stage (1) does not require very low thrust; (2) 1-3 K thrust range appears optimum; (3) thrust transient is not a concern; (4) throttling probably not worthwhile; and (5) multiple thrusters complicate OTV/LSS design and aggravate LSS loads. Regarding the optimum vehicle for low acceleration missions, the single shuttle launch (LSS and expendable OTV) is most cost effective and least risky. Multiple shuttles increase diameter 20%. The space based radar structure short OTV (which maximizes space available for packaged LSS) favors use of torus tank. Propellant tank pressures/vapor residuals are little affected by engine thrust level or number of burns.

  19. Rendering the "Not-So-Simple" Pendulum Experimentally Accessible.

    ERIC Educational Resources Information Center

    Jackson, David P.

    1996-01-01

    Presents three methods for obtaining experimental data related to acceleration of a simple pendulum. Two of the methods involve angular position measurements and the subsequent calculation of the acceleration while the third method involves a direct measurement of the acceleration. Compares these results with theoretical calculations and…

  20. Tuned mass damping system for a pendulum in gravity and microgravity fields

    NASA Astrophysics Data System (ADS)

    Atour, Farah

    2016-07-01

    An electrodynamic tether is a simple idea, but one with an amazing number of uses. Electrodynamic tether is a long conductor wire that is attached to the satellite, which can act as a generator or motor, from its motion through the earth's magnetic field. And it has the potential to make space travel significantly cheaper. The lack of electrodynamic tether's widespread in common applications can be attributed to the variable Lorentz forces occuring on the tethers, which will cause them to oscillate and may go out of control, de-orbit the satellite and fall to Earth. A tuned mass damper system, for short refered as tilger, is suggested as damper of oscillations of tethers. A system composed of a tuned mass damper and a simple pendulum simulating the tether was therefore constructed. 350 sets of experimental trials were done on the system, while it was installed inside a drop tower capsule resting on the ground, in order to pick four optimum setup experiments that will undergo a series of microgravity experiments at the Bremen Drop Tower in Bremen, Germany. The GJU Bachelor Research students found that the oscillations of the simple pendulum will not be affected by the tilger during the free fall experiment, except if a feedback mechanism is installed between the simple pendulum and the tilger. In this case, the tilger will dampen the simple pendulum oscillations during free fall.

  1. Thrust modeling for hypersonic engines

    NASA Technical Reports Server (NTRS)

    Riggins, D. W.; Mcclinton, C. R.

    1995-01-01

    Expressions for the thrust losses of a scramjet engine are developed in terms of irreversible entropy increases and the degree of incomplete combustion. A method is developed which allows the calculation of the lost vehicle thrust due to different loss mechanisms within a given flow-field. This analysis demonstrates clearly the trade-off between mixing enhancement and resultant increased flow losses in scramjet combustors. An engine effectiveness parameter is defined in terms of thrust loss. Exergy and the thrust-potential method are related and compared.

  2. A pendulum experiment on added mass and equivalence.

    NASA Astrophysics Data System (ADS)

    Donnelly, Russell; Neill, Douglas; Livelybrooks, Dean

    2005-11-01

    The concept of added mass in fluid mechanics has been known for many years. A familiar example is the accelerated motion of a sphere through an inviscid fluid which has an added mass of one-half the mass of the fluid displaced. This result is widely used in quantum fluids; for example giving a finite mass to a trapped electron in superfluid helium-4, which is a free electron in a bubble about 36 Angstroms in diameter. A derivation of this result is contained in Landau-Lifshitz ``Fluid Mechanics'', Section 12. The period of oscillation of a simple pendulum in a vacuum is independent of the mass because of the principle of equivalence of gravitational and inertial masses. In a fluid however, both buoyancy and added mass enter the problem. We present results of experiments of simple pendulums of different materials oscillating in various fluids. The results agree closely with the results obtained for the added mass in inviscid fluids, as expected.

  3. The Chunky Gal Mountain fault-detachment-normal fault providing evidence for Early-to-Middle Paleozoic extensional unroofing of the eastern Blue Ridge, or folded thrust

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hatcher, R.D. Jr.

    1993-03-01

    The Chunky Gal Mountain fault (CGMF), located in the western Blue Ridge of southern NC and northern GA, contains unequivocal evidence for hanging wall-down-to-the-west movement. The 50 m-thick fault zone here consists of a series of shear zones in the footwall in a mass of mylonitized garnet-rich biotite gneiss. The main contact with the hanging wall reveals both a contrast in rock type and truncation of fabrics. Above the fault are amphibolite, ultramafic rocks, and minor metasandstone and pelitic schist of the Buck Creek mafic-ultramafic complex, while the footwall contains complexly folded metasandstone, pelitic schist, and calcsilicate pods of themore » Coleman River Formation. In the present orientation, the mylonitic foliation in the footwall rocks of the GGMF is subvertical; foliation in the hanging wall is subhorizontal at road level. These rocks were metamorphosed to upper amphibolite facies assemblages, and, after emplacement of the CGMF, were cut by brittle faults and trondhjemite dikes that contain no obvious tectonic fabric. Movement on the CGMF occurred near the thermal peak because enough heat remained in the rocks after movement to statically anneal the mylonite microfabric, but mesoscopic rotated porphyroclasts, rotated (dragged) earlier foliation, and some S-C fabrics clearly indicate the shear sense and vergence of this structure. Shear zones related to the CGMF transposed earlier fabrics, although some relicts preserving earlier structures remain in the shear zones. These rotated but untransposed relicts of amphibolite and garnet-rich biotite gneiss mylonite may indicate locally higher strain rates in subsidiary shear zones. The thermal/mechanical properties of the CGMF make it difficult to connect to the Shope Fork or Soque River thrusts farther south and east. Thus the hanging-wall-down configuration provides an alternative hypothesis that the CGMF may be a detachment-normal fault related to Taconian extensional unroofing of the Appalachians.« less

  4. Stability of controlled inverted pendulum under permanent horizontal perturbations of the supporting point

    NASA Astrophysics Data System (ADS)

    Aleksandrov, V. V.; Reyes-Romero, M.; Sidorenko, G. Yu.; Temoltzi-Auila, R.

    2010-04-01

    We consider the problem of choosing a test perturbation of a movable foundation of a single-link inverted pendulum so as to test a vestibular prosthesis prototype located at the top of this pendulum in an extreme situation. The obtained results permit concluding that the information transmitted from otolithic organs of the human vestibular system to muscles of the locomotor apparatus is very important and improves the quality of stabilization of the human vertical posture preventing the possible fall.

  5. An energy-optimal solution for transportation control of cranes with double pendulum dynamics: Design and experiments

    NASA Astrophysics Data System (ADS)

    Sun, Ning; Wu, Yiming; Chen, He; Fang, Yongchun

    2018-03-01

    Underactuated cranes play an important role in modern industry. Specifically, in most situations of practical applications, crane systems exhibit significant double pendulum characteristics, which makes the control problem quite challenging. Moreover, most existing planners/controllers obtained with standard methods/techniques for double pendulum cranes cannot minimize the energy consumption when fulfilling the transportation tasks. Therefore, from a practical perspective, this paper proposes an energy-optimal solution for transportation control of double pendulum cranes. By applying the presented approach, the transportation objective, including fast trolley positioning and swing elimination, is achieved with minimized energy consumption, and the residual oscillations are suppressed effectively with all the state constrains being satisfied during the entire transportation process. As far as we know, this is the first energy-optimal solution for transportation control of underactuated double pendulum cranes with various state and control constraints. Hardware experimental results are included to verify the effectiveness of the proposed approach, whose superior performance is reflected by being experimentally compared with some comparative controllers.

  6. Thrust distribution for attitude control in a variable thrust propulsion system with four ACS nozzles

    NASA Astrophysics Data System (ADS)

    Lim, Yeerang; Lee, Wonsuk; Bang, Hyochoong; Lee, Hosung

    2017-04-01

    A thrust distribution approach is proposed in this paper for a variable thrust solid propulsion system with an attitude control system (ACS) that uses a reduced number of nozzles for a three-axis attitude maneuver. Although a conventional variable thrust solid propulsion system needs six ACS nozzles, this paper proposes a thrust system with four ACS nozzles to reduce the complexity and mass of the system. The performance of the new system was analyzed with numerical simulations, and the results show that the performance of the system with four ACS nozzles was similar to the original system while the mass of the whole system was simultaneously reduced. Moreover, a feasibility analysis was performed to determine whether a thrust system with three ACS nozzles is possible.

  7. Estimation of coefficient of rolling friction by the evolvent pendulum method

    NASA Astrophysics Data System (ADS)

    Alaci, S.; Ciornei, F. C.; Ciogole, A.; Ciornei, M. C.

    2017-05-01

    The paper presents a method for finding the coefficient of rolling friction using an evolvent pendulum. The pendulum consists in a fixed cylindrical body and a mobile body presenting a plane surface in contact with a cylindrical surface. The mobile body is placed over the fixed one in an equilibrium state; after applying a small impulse, the mobile body oscillates. The motion of the body is video recorded and afterwards the movie is analyzed by frames and the decrease with time of angular amplitude of the pendulum is found. The equation of motion is established for oscillations of the mobile body. The equation of motion, differential nonlinear, is integrated by Runge-Kutta method. Imposing the same damping both to model’s solution and to theoretical model, the value of coefficient of rolling friction is obtained. The last part of the paper presents results for actual pairs of materials. The main advantage of the method is the fact that the dimensions of contact regions are small, of order a few millimeters, and thus is substantially reduced the possibility of variation of mechanical characteristic for the two surfaces.

  8. Dynamic Modeling and Simulation of a Rotational Inverted Pendulum

    NASA Astrophysics Data System (ADS)

    Duart, J. L.; Montero, B.; Ospina, P. A.; González, E.

    2017-01-01

    This paper presents an alternative way to the dynamic modeling of a rotational inverted pendulum using the classic mechanics known as Euler-Lagrange allows to find motion equations that describe our model. It also has a design of the basic model of the system in SolidWorks software, which based on the material and dimensions of the model provides some physical variables necessary for modeling. In order to verify the theoretical results, It was made a contrast between the solutions obtained by simulation SimMechanics-Matlab and the system of equations Euler-Lagrange, solved through ODE23tb method included in Matlab bookstores for solving equations systems of the type and order obtained. This article comprises a pendulum trajectory analysis by a phase space diagram that allows the identification of stable and unstable regions of the system.

  9. HangOut: generating clean PSI-BLAST profiles for domains with long insertions.

    PubMed

    Kim, Bong-Hyun; Cong, Qian; Grishin, Nick V

    2010-06-15

    Profile-based similarity search is an essential step in structure-function studies of proteins. However, inclusion of non-homologous sequence segments into a profile causes its corruption and results in false positives. Profile corruption is common in multidomain proteins, and single domains with long insertions are a significant source of errors. We developed a procedure (HangOut) that, for a single domain with specified insertion position, cleans erroneously extended PSI-BLAST alignments to generate better profiles. HangOut is implemented in Python 2.3 and runs on all Unix-compatible platforms. The source code is available under the GNU GPL license at http://prodata.swmed.edu/HangOut/. Supplementary data are available at Bioinformatics online.

  10. Pendulum Underwater--An Approach for Quantifying Viscosity

    ERIC Educational Resources Information Center

    Leme, José Costa; Oliveira, Agostinho

    2017-01-01

    The purpose of the experiment presented in this paper is to quantify the viscosity of a liquid. Viscous effects are important in the flow of fluids in pipes, in the bloodstream, in the lubrication of engine parts, and in many other situations. In the present paper, the authors explore the oscillations of a physical pendulum in the form of a long…

  11. In plane oscillation of a bifilar pendulum

    NASA Astrophysics Data System (ADS)

    Hinrichsen, Peter F.

    2016-11-01

    The line tensions, the horizontal and vertical accelerations as well as the period of large angle oscillations parallel to the plane of a bifilar suspension are presented and have been experimentally investigated using strain gauges and a smart phone. This system has a number of advantages over the simple pendulum for studying large angle oscillations, and for measuring the acceleration due to gravity.

  12. A double pendulum swing experiment: In search of a better bat

    NASA Astrophysics Data System (ADS)

    Cross, Rod

    2005-04-01

    Experimental results on the large-amplitude motion of a double pendulum are presented, with emphasis on the first half cycle. The initial part of the swing is reproducible and is of interest in modeling various human movement activities such as running, throwing, kicking, and the swing of a bat or racquet. Beyond this time, the motion is chaotic. The forces and torques acting on each pendulum segment are analyzed to explain its motion. The results show how a "perfect" bat could be designed where all the kinetic energy from the player's arms is transferred to the ball and none is retained in the arms or the bat after the impact.

  13. Geometric effects resulting from the asymmetry of dipping fault: Hanging wall/ footwall effects

    NASA Astrophysics Data System (ADS)

    Wang, Dong; Xie, Li-Li; Hu, Jin-Jun

    2008-05-01

    Root-mean-square distance D rms with characteristic of weighted-average is introduced in this article firstly. D rms can be used to capture the general proximity of a site to a dipping fault plane comparing with the rupture distance D rup and the seismogenic distance D seis. Then, using D rup, D seis and D rms, the hanging wall/footwall effects on the peak ground acceleration (PGA) during the 1999 Chi-Chi earthquake are evaluated by regression analysis. The logarithm residual shows that the PGA on hanging wall is much greater than that on footwall at the same D rup or D seis when the D rup or D seis is used as site-to-source distance measure. In contrast, there is no significant difference between the PGA on hanging wall and that on footwall at the same D rms when D rms is used. This result confirms that the hanging wall/footwall effect is mainly a geometric effect caused by the asymmetry of dipping fault. Therefore, the hanging wall/footwall effect on the near-fault ground motions can be ignored in the future attenuation analysis if the root-mean-square distance D rms is used as the site-to-source distance measure.

  14. Measurement method of magnetic field for the wire suspended micro-pendulum accelerometer.

    PubMed

    Lu, Yongle; Li, Leilei; Hu, Ning; Pan, Yingjun; Ren, Chunhua

    2015-04-13

    Force producer is one of the core components of a Wire Suspended Micro-Pendulum Accelerometer; and the stability of permanent magnet in the force producer determines the consistency of the acceleration sensor's scale factor. For an assembled accelerometer; direct measurement of magnetic field strength is not a feasible option; as the magnetometer probe cannot be laid inside the micro-space of the sensor. This paper proposed an indirect measurement method of the remnant magnetization of Micro-Pendulum Accelerometer. The measurement is based on the working principle of the accelerometer; using the current output at several different scenarios to resolve the remnant magnetization of the permanent magnet. Iterative Least Squares algorithm was used for the adjustment of the data due to nonlinearity of this problem. The calculated remnant magnetization was 1.035 T. Compared to the true value; the error was less than 0.001 T. The proposed method provides an effective theoretical guidance for measuring the magnetic field of the Wire Suspended Micro-Pendulum Accelerometer; correcting the scale factor and temperature influence coefficients; etc.

  15. Changes consequent to maxillary molar distalization with the bone-anchored pendulum appliance

    PubMed Central

    Cambiano, Aldo Otazú; Janson, Guilherme; Fuziy, Acácio; Garib, Daniela Gamba; Lorenzoni, Diego Coelho

    2017-01-01

    OBJECTIVES: This retrospective study aimed to evaluate the dentoalveolar, skeletal, and soft tissue effects obtained with bone-anchored pendulum appliance in patients with Class II malocclusion. MATERIALS AND METHODS: A total of 18 patients (4 male, 14 female) at a mean pretreatment age of 14.0 years (+1.08) were enrolled in this study. All patients were treated with the bone-anchored pendulum appliance for an average duration of 4.8 months. Only the active distalization period was evaluated with predistalization and postdistalization lateral cephalograms. Skeletal, dentoalveolar, and soft tissue variables were obtained. Based on these variables, the treatment effects were evaluated with dependent t-test. RESULTS: Correction of Class II molar relationship resulted from distal movement of 3.45 mm and tipping of 11.24° of the first maxillary molars. The premolars were distalized accompanying the molars. CONCLUSIONS: The bone-anchored pendulum appliance proved to be an effective method for distalization of maxillary molars in cases that require maximum anchorage, avoiding reciprocal mesial movement of premolars and incisors. PMID:29119095

  16. Oxygen/Alcohol Dual Thrust RCS Engines

    NASA Technical Reports Server (NTRS)

    Angstadt, Tara; Hurlbert, Eric

    1999-01-01

    A non-toxic dual thrust RCS engine offers significant operational, safety, and performance advantages to the space shuttle and the next generation RLVs. In this concept, a single engine produces two thrust levels of 25 and 870 lbf. The low thrust level is provided by the spark torch igniter, which, with the addition of 2 extra valves, can also be made to function as a vernier. A dual thrust RCS engine allows 38 verniers to be packaged more efficiently on a vehicle. These 38 vemiers improve translation and reduce cross coupling, thereby providing more pure roll, pitch, and yaw maneuvers of the vehicle. Compared to the 6 vemiers currently on the shuttle, the 38 dual thrust engines would be 25 to 40% more efficient for the same maneuvers and attitude control. The vernier thrust level also reduces plume impingement and contamination concerns. Redundancy is also improved, thereby improving mission success reliability. Oxygen and ethanol are benign propellants which do not create explosive reaction products or contamination, as compared to hypergolic propellants. These characteristics make dual-thrust engines simpler to implement on a non-toxic reaction control system. Tests at WSTF in August 1999 demonstrated a dual-thrust concept that is successful with oxygen and ethanol. Over a variety of inlet pressures and mixture ratios at 22:1 area ratio, the engine produced between 230 and 297 sec Isp, and thrust levels from 8 lbf. to 50 lbf. This paper describes the benefits of dual-thrust engines and the recent results from tests at WSTF.

  17. Orion Multi-Purpose Crew Vehicle Solving and Mitigating the Two Main Cluster Pendulum Problem

    NASA Technical Reports Server (NTRS)

    Ali, Yasmin; Sommer, Bruce; Troung, Tuan; Anderson, Brian; Madsen, Christopher

    2017-01-01

    The Orion Multi-purpose Crew Vehicle (MPCV) Orion spacecraft will return humans from beyond earth's orbit, including Mars and will be required to land 20,000 pounds of mass safely in the ocean. The parachute system nominally lands under 3 main parachutes, but the system is designed to be fault tolerant and land under 2 main parachutes. During several of the parachute development tests, it was observed that a pendulum, or swinging, motion could develop while the Crew Module (CM) was descending under two parachutes. This pendulum effect had not been previously predicted by modeling. Landing impact analysis showed that the landing loads would double in some places across the spacecraft. The CM structural design limits would be exceeded upon landing if this pendulum motion were to occur. The Orion descent and landing team was faced with potentially millions of dollars in structural modifications and a severe mass increase. A multidisciplinary team was formed to determine root cause, model the pendulum motion, study alternate canopy planforms and assess alternate operational vehicle controls & operations providing mitigation options resulting in a reliability level deemed safe for human spaceflight. The problem and solution is a balance of risk to a known solution versus a chance to improve the landing performance for the next human-rated spacecraft.

  18. A method for the determination of the coefficient of rolling friction using cycloidal pendulum

    NASA Astrophysics Data System (ADS)

    Ciornei, M. C.; Alaci, S.; Ciornei, F. C.; Romanu, I. C.

    2017-08-01

    The paper presents a method for experimental finding of coefficient of rolling friction appropriate for biomedical applications based on the theory of cycloidal pendulum. When a mobile circle rolls over a fixed straight line, the points from the circle describe trajectories called normal cycloids. To materialize this model, it is sufficient that a small region from boundary surfaces of a moving rigid body is spherical. Assuming pure rolling motion, the equation of motion of the cycloidal pendulum is obtained - an ordinary nonlinear differential equation. The experimental device is composed by two interconnected balls rolling over the material to be studied. The inertial characteristics of the pendulum can be adjusted via weights placed on a rod. A laser spot oscillates together to the pendulum and provides the amplitude of oscillations. After finding the experimental parameters necessary in differential equation of motion, it can be integrated using the Runge-Kutta of fourth order method. The equation was integrated for several materials and found values of rolling friction coefficients. Two main conclusions are drawn: the coefficient of rolling friction influenced significantly the amplitude of oscillation but the effect upon the period of oscillation is practically imperceptible. A methodology is proposed for finding the rolling friction coefficient and the pure rolling condition is verified.

  19. Dynamics of ultralight aircraft: Dive recovery of hang gliders

    NASA Technical Reports Server (NTRS)

    Jones, R. T.

    1977-01-01

    Longitudinal control of a hang glider by weight shift is not always adequate for recovery from a vertical dive. According to Lanchester's phugoid theory, recovery from rest to horizontal flight ought to be possible within a distance equal to three times the height of fall needed to acquire level flight velocity. A hang glider, having a wing loading of 5 kg sq m and capable of developing a lift coefficient of 1.0, should recover to horizontal flight within a vertical distance of about 12 m. The minimum recovery distance can be closely approached if the glider is equipped with a small all-moveable tail surface having sufficient upward deflection.

  20. Optimal thrust level for orbit insertion

    NASA Astrophysics Data System (ADS)

    Cerf, Max

    2017-07-01

    The minimum-fuel orbital transfer is analyzed in the case of a launcher upper stage using a constantly thrusting engine. The thrust level is assumed to be constant and its value is optimized together with the thrust direction. A closed-loop solution for the thrust direction is derived from the extremal analysis for a planar orbital transfer. The optimal control problem reduces to two unknowns, namely the thrust level and the final time. Guessing and propagating the costates is no longer necessary and the optimal trajectory is easily found from a rough initialization. On the other hand the initial costates are assessed analytically from the initial conditions and they can be used as initial guess for transfers at different thrust levels. The method is exemplified on a launcher upper stage targeting a geostationary transfer orbit.

  1. Frequency Shift During Mass Properties Testing Using Compound Pendulum Method

    NASA Technical Reports Server (NTRS)

    Wolfe, David; Regan, Chris

    2012-01-01

    During mass properties testing on the X-48B Blended Wing Body aircraft (The Boeing Company, Chicago, Illinois) at the National Aeronautics and Space Administration Dryden Flight Research Center, Edwards, California, large inertia measurement errors were observed in results from compound pendulum swings when compared to analytical models. By comparing periods of oscillations as measured from an average over the test period versus the period of each oscillation, it was noticed that the frequency of oscillation was shifting significantly throughout the test. This phenomenon was only noticed during compound pendulum swings, and not during bifilar pendulum swings. The frequency shift was only visible upon extensive data analysis of the frequency for each oscillation, and did not appear in averaged frequency data over the test period. Multiple test articles, test techniques, and hardware setups were used in attempts to eliminate or identify the cause of the frequency shift. Plotting the frequency of oscillation revealed a region of minimal shift that corresponded to a larger amplitude range. This region of minimal shift provided the most accurate results compared to a known test article; however, the amplitudes that produce accurate inertia measurements are amplitudes larger than those generally accepted in mass properties testing. This paper examines two case studies of the frequency shift, using mass properties testing performed on a dummy test article, and on the X-48B Blended Wing Body aircraft.

  2. Soup-can Pendulum

    NASA Astrophysics Data System (ADS)

    Peters, Randall D.

    2004-11-01

    In these studies, a vegetable can containing fluidwas swung as a pendulum by supporting its end-lipswith a pair of knife edges. The motion was measuredwith a capacitive sensor and the logarithmic decrementin free decay was estimated from computer-collectedrecords. Measurements performed with nine differenthomogeneous liquids, distributed through six decadesin the viscosity η, showed that the damping ofthe system is dominated by η rather than externalforces from air or the knife edges. The log decrementwas found to be maximum (0.28) in the vicinity ofη = 0.7 Pa s and fell off more than 15 fold(below 2 × 10-2) for both small viscosity(η < 1 × 10-3 Pa s) and also for largeviscosity (η > 1 × 103 Pa s). A simple modelhas been formulated, which yields reasonable agreementbetween theory and experiment by approximating therelative rotation of can and liquid.

  3. Adding the 'heart' to hanging drop networks for microphysiological multi-tissue experiments.

    PubMed

    Rismani Yazdi, Saeed; Shadmani, Amir; Bürgel, Sebastian C; Misun, Patrick M; Hierlemann, Andreas; Frey, Olivier

    2015-11-07

    Microfluidic hanging-drop networks enable culturing and analysis of 3D microtissue spheroids derived from different cell types under controlled perfusion and investigating inter-tissue communication in multi-tissue formats. In this paper we introduce a compact on-chip pumping approach for flow control in hanging-drop networks. The pump includes one pneumatic chamber located directly above one of the hanging drops and uses the surface tension at the liquid-air-interface for flow actuation. Control of the pneumatic protocol provides a wide range of unidirectional pulsatile and continuous flow profiles. With the proposed concept several independent hanging-drop networks can be operated in parallel with only one single pneumatic actuation line at high fidelity. Closed-loop medium circulation between different organ models for multi-tissue formats and multiple simultaneous assays in parallel are possible. Finally, we implemented a real-time feedback control-loop of the pump actuation based on the beating of a human iPS-derived cardiac microtissue cultured in the same system. This configuration allows for simulating physiological effects on the heart and their impact on flow circulation between the organ models on chip.

  4. Space Shuttle booster thrust imbalance analysis

    NASA Technical Reports Server (NTRS)

    Bailey, W. R.; Blackwell, D. L.

    1985-01-01

    An analysis of the Shuttle SRM thrust imbalance during the steady-state and tailoff portions of the boost phase of flight are presented. Results from flights STS-1 through STS-13 are included. A statistical analysis of the observed thrust imbalance data is presented. A 3 sigma thrust imbalance history versus time was generated from the observed data and is compared to the vehicle design requirements. The effect on Shuttle thrust imbalance from the use of replacement SRM segments is predicted. Comparisons of observed thrust imbalances with respect to predicted imbalances are presented for the two space shuttle flights which used replacement aft segments (STS-9 and STS-13).

  5. Co-seismic thermal dissociation of carbonate fault rocks: Naukluft Thrust, central Namibia

    NASA Astrophysics Data System (ADS)

    Rowe, C. D.; Miller, J. A.; Sylvester, F.; Backeberg, N.; Faber, C.; Mapani, B.

    2009-12-01

    Frictional heating has been shown to dissociate carbonate minerals in fault rocks and rock slides at high velocities, producing in-situ fluid pressure spikes and resulting in very low effective friction. We describe the textural and geochemical effects of repeated events of frictional-thermal dissociation and fluidization along a low-angle continental thrust fault. The Naukluft Thrust in central Namibia is a regional décollement along which the Naukluft Nappe Complex was emplaced over the Nama Basin in the southern foreland of the ~ 550Ma Damara Orogen. Fault rocks in the thrust show a coupled geochemical and structural evolution driven by dolomitization reactions during fault activity and facilitated by fluid flow along the fault surface. The earliest developed fault rocks are calcite-rich calcmylonites which were progressively dolomitized along foliation. Above a critical dolomite/calcite ratio, the rocks show only brittle deformation fabrics dominated by breccias, cataclasites, and locally, a thin (1-3cm) microcrystalline, smooth white ultracataclasite. The fault is characterized by the prevalence of an unusual “gritty dolomite” yellow cataclasite containing very well rounded clasts in massive to flow-banded fine dolomitic matrix. This cataclasite, locally known as the “gritty dolomite”, may reach thicknesses of up to ~ 10m without evidence of internal cross-cutting relations with randomly distributed clasts (an “unsorted” texture). The gritty dolomite also forms clastic injections into the hanging wall of the fault, frequently where the fault surface changes orientation. Color-cathodoluminescence images show that individual carbonate grains within the “gritty dolomite” have multiple layers of thin (~10-100 micron) dolomite coatings and that the grains were smoothed and rounded between each episode of coating precipitation. Coated grains are in contact with one another but grain cores are never seen in contact. CL-bright red dolomite which forms

  6. 25. LOBBY FIREPLACE. NOTE THE GEYSER DECORATING THE FIREPLACE SCREEN ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    25. LOBBY FIREPLACE. NOTE THE GEYSER DECORATING THE FIREPLACE SCREEN AND THE WEIGHTS AND PENDULUM HANGING FROM THE CLOCK DESIGNED BY ARCHITECT ROBERT C. REAMER. - Old Faithful Inn, 900' northeast of Snowlodge & 1050' west of Old Faithful Lodge, Lake, Teton County, WY

  7. Thrust Measurement of Dielectric Barrier Discharge (DBD) Plasma Actuators: New Anti-Thrust Hypothesis, Frequency Sweeps Methodology, Humidity and Enclosure Effects

    NASA Technical Reports Server (NTRS)

    Ashpis, David E.; Laun, Matthew C.

    2014-01-01

    We discuss thrust measurements of Dielectric Barrier Discharge (DBD) plasma actuators devices used for aerodynamic active flow control. After a review of our experience with conventional thrust measurement and significant non-repeatability of the results, we devised a suspended actuator test setup, and now present a methodology of thrust measurements with decreased uncertainty. The methodology consists of frequency scans at constant voltages. The procedure consists of increasing the frequency in a step-wise fashion from several Hz to the maximum frequency of several kHz, followed by frequency decrease back down to the start frequency of several Hz. This sequence is performed first at the highest voltage of interest, then repeated at lower voltages. The data in the descending frequency direction is more consistent and selected for reporting. Sample results show strong dependence of thrust on humidity which also affects the consistency and fluctuations of the measurements. We also observed negative values of thrust, or "anti-thrust", at low frequencies between 4 Hz and up to 64 Hz. The anti-thrust is proportional to the mean-squared voltage and is frequency independent. Departures from the parabolic anti-thrust curve are correlated with appearance of visible plasma discharges. We propose the anti-thrust hypothesis. It states that the measured thrust is a sum of plasma thrust and anti-thrust, and assumes that the anti-thrust exists at all frequencies and voltages. The anti-thrust depends on actuator geometry and materials and on the test installation. It enables the separation of the plasma thrust from the measured total thrust. This approach enables more meaningful comparisons between actuators at different installations and laboratories. The dependence on test installation was validated by surrounding the actuator with a grounded large-diameter metal sleeve. Strong dependence on humidity is also shown; the thrust significantly increased with decreasing humidity, e

  8. Micro thrust and heat generator

    DOEpatents

    Garcia, Ernest J.

    1998-01-01

    A micro thrust and heat generator has a means for providing a combustion fuel source to an ignition chamber of the micro thrust and heat generator. The fuel is ignited by a ignition means within the micro thrust and heat generator's ignition chamber where it burns and creates a pressure. A nozzle formed from the combustion chamber extends outward from the combustion chamber and tappers down to a narrow diameter and then opens into a wider diameter where the nozzle then terminates outside of said combustion chamber. The pressure created within the combustion chamber accelerates as it leaves the chamber through the nozzle resulting in pressure and heat escaping from the nozzle to the atmosphere outside the micro thrust and heat generator. The micro thrust and heat generator can be microfabricated from a variety of materials, e.g., of polysilicon, on one wafer using surface micromachining batch fabrication techniques or high aspect ratio micromachining techniques (LIGA).

  9. Micro thrust and heat generator

    DOEpatents

    Garcia, E.J.

    1998-11-17

    A micro thrust and heat generator have a means for providing a combustion fuel source to an ignition chamber of the micro thrust and heat generator. The fuel is ignited by a ignition means within the micro thrust and heat generator`s ignition chamber where it burns and creates a pressure. A nozzle formed from the combustion chamber extends outward from the combustion chamber and tappers down to a narrow diameter and then opens into a wider diameter where the nozzle then terminates outside of said combustion chamber. The pressure created within the combustion chamber accelerates as it leaves the chamber through the nozzle resulting in pressure and heat escaping from the nozzle to the atmosphere outside the micro thrust and heat generator. The micro thrust and heat generator can be microfabricated from a variety of materials, e.g., of polysilicon, on one wafer using surface micromachining batch fabrication techniques or high aspect ratio micromachining techniques (LIGA). 30 figs.

  10. Core-Log-Seismic Integrative Study of a Subduction Zone Megasplay Fault -An Example from the Nobeoka Thrust, Shimanto Belt, Southwest Japan

    NASA Astrophysics Data System (ADS)

    Hamahashi, M.; Tsuji, T.; Saito, S.; Tanikawa, W.; Hamada, Y.; Hashimoto, Y.; Kimura, G.

    2016-12-01

    Investigating the mechanical properties and deformation patterns of megathrusts in subduction zones is important to understand the generation of large earthquakes. The Nobeoka Thrust, a fossilized megasplay fault in Kyushu Shimanto Belt, southwest Japan, exposes foliated fault rocks that were formed under the temperature range of 180-350° (Kondo et al., 2005). During the Nobeoka Thrust Drilling Project (2011), core samples and geophysical logging data were obtained recovering a continuous distribution of multiple fault zones, which provide the opportunity to examine their structure and physical properties in various scales (Hamahashi et al., 2013; 2015). By performing logging data analysis, discrete sample physical property measurements, and synthetic modeling of seismic reflections along the Nobeoka Thrust, we conducted core-log-seismic integrative study to characterize the effects of damage zone architecture and structural anisotropy towards the physical properties of the megasplay. A clear contrast in physical properties across the main fault core and surrounding damage zones were identified, where the fault rocks preserve the porosity of 4.8% in the hanging wall and 7.6% in the footwall, and P-wave velocity of 4.8 km/s and 4.2 km/s, respectively. Multiple sandstone-rich- and shale-rich damage zones were found from the drilled cores, in which velocity decreases significantly in the brecciated zones. The internal structure of these foliated fault rocks consist of heterogeneous lithology and texture, and velocity anisotropy ranges 1-18% (P-wave) and 1.5-80% (S-wave), affected by structural dip angle, foliation density, and sandstone/mudstone ratio. To evaluate the fault properties at the seismogenic depth, we developed velocity/earth models and synthetic modeling of seismic reflection using acoustic logs across the thrust and parameterized lithological and structural elements in the identified multiple damage zones.

  11. Towards the miniaturization of monolithic folded pendulums: a new approach to the implementation of small and light sensors for ground, space, and marine applications

    NASA Astrophysics Data System (ADS)

    Barone, F.; Giordano, G.

    2018-03-01

    The UNISA Folded Pendulum technological platform is very promising for the implementation of high sensitive, large band miniaturized mechanical seismometers and accelerometers in different materials. In fact, the symmetry of its mechanical architecture allows to take full advantage of one of the most relevant properties of the folded pendulum, that is the scalability. This property is very useful for the design of folded pendulums of small size and weight, provided with a suitable combination of physical and geometrical parameters. Using a lagrangian simplified model of folded pendulum, we present and discuss this idea, showing different possible approaches that may lead to the miniaturization of a folded pendulum. Finally we present a first prototype of miniaturized folded pendulum, discussing its characteristics and limitations, in connection with scientific ground, marine and space applications.

  12. Low thrust optimal orbital transfers

    NASA Technical Reports Server (NTRS)

    Cobb, Shannon S.

    1994-01-01

    For many optimal transfer problems it is reasonable to expect that the minimum time solution is also the minimum fuel solution. However, if one allows the propulsion system to be turned off and back on, it is clear that these two solutions may differ. In general, high thrust transfers resemble the well known impulsive transfers where the burn arcs are of very short duration. The low and medium thrust transfers differ in that their thrust acceleration levels yield longer burn arcs and thus will require more revolutions. In this research, we considered two approaches for solving this problem: a powered flight guidance algorithm previously developed for higher thrust transfers was modified and an 'averaging technique' was investigated.

  13. On the motion of one-dimensional double pendulum

    NASA Astrophysics Data System (ADS)

    Burian, S. N.; Kalnitsky, V. S.

    2018-05-01

    A two-dimensional dynamic Lagrangian system of a double mathematical pendulum with one special constraint is considered. Configuration spaces for a given constraints (ellipses) are studied. The diagrams of paths and reactions in the course of motion along them are shown. The calculations of the transversal intersection case and in the case of tangency are given.

  14. The Pendulum: A Paradigm for the Linear Oscillator

    ERIC Educational Resources Information Center

    Newburgh, Ronald

    2004-01-01

    The simple pendulum is a model for the linear oscillator. The usual mathematical treatment of the problem begins with a differential equation that one solves with the techniques of the differential calculus, a formal process that tends to obscure the physics. In this paper we begin with a kinematic description of the motion obtained by experiment…

  15. Galileo and the Pendulum: Latching on to Time

    ERIC Educational Resources Information Center

    Machamer, Peter; Hepburn, Brian

    2004-01-01

    Galileo changed the very concepts or categories by which natural philosophy could deal with matter and motion. Central to these changes was his introduction of time as a fundamental concept. He worked with the pendulum and with the inclined plane to discover his new concept of motion. Both of these showed him that acceleration and time were…

  16. Evaluation of Vitality in the Experimental Hanging Model of Rats by Using Immunohistochemical IL-1β Antibody Staining.

    PubMed

    Balandiz, Hüseyin; Pehlivan, Sultan; Çiçek, Ali Fuat; Tuğcu, Harun

    2015-12-01

    Hanging is the most common suicide method in the world, and the discrimination of antemortem-postmortem hanging must be done at autopsy. The aim of this experimental study was to examine the immunohistochemical expression of IL-1β antibody at the hanging mark skin samples of rats to discriminate antemortem and postmortem hangings. A total of 20 Wistar albino rats were used for this study. The groups were as follows: A-1, antemortem control group; A-2, antemortem second-hour hanging mark skin samples; A-3, antemortem 24th-hour hanging mark skin samples; A-4, antemortem 72nd-hour hanging mark skin samples; B-1, postmortem control group; and B-2, postmortem second-hour hanging mark skin samples. Interleukin-1β immunostaining was performed to all tissue samples. For epidermal cells, group A-1 samples did not show IL-1β immunostaining, group A-2 samples were severely immunostained, and groups A-3 and A-4 samples' staining were slightly decreased. There was no IL-1β antibody staining in groups B-1 and B-2 samples. For adnexal cells, groups A-1 and B-1 samples did not show IL-1β immunostaining, staining of group A-2 samples was mild to severe, and groups A-3 and A-4 samples' staining were slightly decreased. Half of the group B-2 samples did not show IL-1β immunostaining. For subepidermal cells, most of the samples of groups A-1 and B-1 showed slight immunostaining, groups A-2 and B-2 samples' staining were mild to severe, and there were slight immunostaining in groups A-3 and A-4 samples. The majority of vascular structure cells did not show IL-1β immunostaining. Interleukin-1β immunostaining of epidermal cells can discriminate antemortem-postmortem hangings, but vascular structure cells and subepidermal cells cannot discriminate vital hangings.

  17. Propeller thrust analysis using Prandtl's lifting line theory, a comparison between the experimental thrust and the thrust predicted by Prandtl's lifting line theory

    NASA Astrophysics Data System (ADS)

    Kesler, Steven R.

    The lifting line theory was first developed by Prandtl and was used primarily on analysis of airplane wings. Though the theory is about one hundred years old, it is still used in the initial calculations to find the lift of a wing. The question that guided this thesis was, "How close does Prandtl's lifting line theory predict the thrust of a propeller?" In order to answer this question, an experiment was designed that measured the thrust of a propeller for different speeds. The measured thrust was compared to what the theory predicted. In order to do this experiment and analysis, a propeller needed to be used. A walnut wood ultralight propeller was chosen that had a 1.30 meter (51 inches) length from tip to tip. In this thesis, Prandtl's lifting line theory was modified to account for the different incoming velocity depending on the radial position of the airfoil. A modified equation was used to reflect these differences. A working code was developed based on this modified equation. A testing rig was built that allowed the propeller to be rotated at high speeds while measuring the thrust. During testing, the rotational speed of the propeller ranged from 13-43 rotations per second. The thrust from the propeller was measured at different speeds and ranged from 16-33 Newton's. The test data were then compared to the theoretical results obtained from the lifting line code. A plot in Chapter 5 (the results section) shows the theoretical vs. actual thrust for different rotational speeds. The theory over predicted the actual thrust of the propeller. Depending on the rotational speed, the error was: at low speeds 36%, at low to moderate speeds 84%, and at high speeds the error increased to 195%. Different reasons for these errors are discussed.

  18. Using a Modified Simple Pendulum to Find the Variations in the Value of “g”

    NASA Astrophysics Data System (ADS)

    Arnold, Jonathan P.; Efthimiou, C.

    2007-05-01

    The simple pendulum is one of the most known and studied system of Newtonian Mechanics. It also provides one of the most elegant and simple devices to measure the acceleration of gravity at any location. In this presentation we will revisit the problem of measuring the acceleration of gravity using a simple pendulum and will present a modification to the standard technique that increases the accuracy of the measurement.

  19. Predictor-based control for an inverted pendulum subject to networked time delay.

    PubMed

    Ghommam, J; Mnif, F

    2017-03-01

    The inverted pendulum is considered as a special class of underactuated mechanical systems with two degrees of freedom and a single control input. This mechanical configuration allows to transform the underactuated system into a nonlinear system that is referred to as the normal form, whose control design techniques for stabilization are well known. In the presence of time delays, these control techniques may result in inadequate behavior and may even cause finite escape time in the controlled system. In this paper, a constructive method is presented to design a controller for an inverted pendulum characterized by a time-delayed balance control. First, the partial feedback linearization control for the inverted pendulum is modified and coupled with a state predictor to compensate for the delay. Several coordinate transformations are processed to transform the estimated partial linearized system into an upper-triangular form. Second, nested saturation and backstepping techniques are combined to derive the control law of the transformed system that would complete the design of the whole control input. The effectiveness of the proposed technique is illustrated by numerical simulations. Copyright © 2017 ISA. Published by Elsevier Ltd. All rights reserved.

  20. Lateral dampers for thrust bearings

    NASA Technical Reports Server (NTRS)

    Hibner, D. H.; Szafir, D. R.

    1985-01-01

    The development of lateral damping schemes for thrust bearings was examined, ranking their applicability to various engine classes, selecting the best concept for each engine class and performing an in-depth evaluation. Five major engine classes were considered: large transport, military, small general aviation, turboshaft, and non-manrated. Damper concepts developed for evaluation were: curved beam, constrained and unconstrained elastomer, hybrid boost bearing, hydraulic thrust piston, conical squeeze film, and rolling element thrust face.

  1. Reconfigurable microfluidic hanging drop network for multi-tissue interaction and analysis.

    PubMed

    Frey, Olivier; Misun, Patrick M; Fluri, David A; Hengstler, Jan G; Hierlemann, Andreas

    2014-06-30

    Integration of multiple three-dimensional microtissues into microfluidic networks enables new insights in how different organs or tissues of an organism interact. Here, we present a platform that extends the hanging-drop technology, used for multi-cellular spheroid formation, to multifunctional complex microfluidic networks. Engineered as completely open, 'hanging' microfluidic system at the bottom of a substrate, the platform features high flexibility in microtissue arrangements and interconnections, while fabrication is simple and operation robust. Multiple spheroids of different cell types are formed in parallel on the same platform; the different tissues are then connected in physiological order for multi-tissue experiments through reconfiguration of the fluidic network. Liquid flow is precisely controlled through the hanging drops, which enable nutrient supply, substance dosage and inter-organ metabolic communication. The possibility to perform parallelized microtissue formation on the same chip that is subsequently used for complex multi-tissue experiments renders the developed platform a promising technology for 'body-on-a-chip'-related research.

  2. A PDMS-Based Microfluidic Hanging Drop Chip for Embryoid Body Formation.

    PubMed

    Wu, Huei-Wen; Hsiao, Yi-Hsing; Chen, Chih-Chen; Yet, Shaw-Fang; Hsu, Chia-Hsien

    2016-07-06

    The conventional hanging drop technique is the most widely used method for embryoid body (EB) formation. However, this method is labor intensive and limited by the difficulty in exchanging the medium. Here, we report a microfluidic chip-based approach for high-throughput formation of EBs. The device consists of microfluidic channels with 6 × 12 opening wells in PDMS supported by a glass substrate. The PDMS channels were fabricated by replicating polydimethyl-siloxane (PDMS) from SU-8 mold. The droplet formation in the chip was tested with different hydrostatic pressures to obtain optimal operation pressures for the wells with 1000 μm diameter openings. The droplets formed at the opening wells were used to culture mouse embryonic stem cells which could subsequently developed into EBs in the hanging droplets. This device also allows for medium exchange of the hanging droplets making it possible to perform immunochemistry staining and characterize EBs on chip.

  3. Application of hanging drop technique to optimize human IgG formulations.

    PubMed

    Li, Guohua; Kasha, Purna C; Late, Sameer; Banga, Ajay K

    2010-01-01

    The purpose of this work is to assess the hanging drop technique in screening excipients to develop optimal formulations for human immunoglobulin G (IgG). A microdrop of human IgG and test solution hanging from a cover slide and undergoing vapour diffusion was monitored by a stereomicroscope. Aqueous solutions of IgG in the presence of different pH, salt concentrations and excipients were prepared and characterized. Low concentration of either sodium/potassium phosphate or McIlvaine buffer favoured the solubility of IgG. Addition of sucrose favoured the stability of this antibody while addition of NaCl caused more aggregation. Antimicrobial preservatives were also screened and a complex effect at different buffer conditions was observed. Dynamic light scattering, differential scanning calorimetry and size exclusion chromatography studies were performed to further validate the results. In conclusion, hanging drop is a very easy and effective approach to screen protein formulations in the early stage of formulation development.

  4. Dynamics of gas-thrust bearings

    NASA Technical Reports Server (NTRS)

    Stiffler, A. K.; Tapia, R. R.

    1978-01-01

    Computer program calculates load coefficients, up to third harmonic, for hydrostatic gas thrust bearings. Program is useful in identification of industrial situations where gas-thrust bearings have potential applications.

  5. INTERIOR OF COLD STORAGE ROOM, SHOWING MOVABLE HANGING RACKS. ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    INTERIOR OF COLD STORAGE ROOM, SHOWING MOVABLE HANGING RACKS. - Naval Air Station Barbers Point, Aircraft Storehouse, Between Midway & Card Streets at Enterprise Avenue intersection, Ewa, Honolulu County, HI

  6. The experimental determination of the moments of inertia of airplanes by a simplified compound-pendulum method

    NASA Technical Reports Server (NTRS)

    Gracey, William

    1948-01-01

    A simplified compound-pendulum method for the experimental determination of the moments of inertia of airplanes about the x and y axes is described. The method is developed as a modification of the standard pendulum method reported previously in NACA report, NACA-467. A brief review of the older method is included to form a basis for discussion of the simplified method. (author)

  7. Fold-to-fault progression of a major thrust zone revealed in horses of the North Mountain fault zone, Virginia and West Virginia, USA

    USGS Publications Warehouse

    Orndorff, Randall C.

    2012-01-01

    The method of emplacement and sequential deformation of major thrust zones may be deciphered by detailed geologic mapping of these important structures. Thrust fault zones may have added complexity when horse blocks are contained within them. However, these horses can be an important indicator of the fault development holding information on fault-propagation folding or fold-to-fault progression. The North Mountain fault zone of the Central Appalachians, USA, was studied in order to better understand the relationships of horse blocks to hanging wall and footwall structures. The North Mountain fault zone in northwestern Virginia and eastern panhandle of West Virginia is the Late Mississippian to Permian Alleghanian structure that developed after regional-scale folding. Evidence for this deformation sequence is a consistent progression of right-side up to overturned strata in horses within the fault zone. Rocks on the southeast side (hinterland) of the zone are almost exclusively right-side up, whereas rocks on the northwest side (foreland) of the zone are almost exclusively overturned. This suggests that the fault zone developed along the overturned southeast limb of a syncline to the northwest and the adjacent upright limb of a faulted anticline to the southeast.

  8. Change in stress with seismic cycles identified at an out of sequence thrust in an on-land accretionary complex: The Nobeoka thrust, Shimanto Belt, Kyusyu, SW Japan

    NASA Astrophysics Data System (ADS)

    Yamaguchi, M.; Hashimoto, Y.; Yamaguchi, A.; Kimura, G.

    2011-12-01

    Seismic surveys along accretionary prisms have revealed that the out-of sequence thrusts (OSTs) are commonly developed within accretionary wedges branching from seismogenic subduction plate boundaries. The OSTs are also recognized in on-land accretionary complexes as large thrust faults cutting paleo-thermal structures. The OSTs are thought to play a role in tsunami genesis at a coseismic event. Stress history on OSTs is significant to understand the OSTs' role in seismic cycles. We estimated, thus palaeostresses from micro-faults along an OST in an on-land accretionary complexes. We focused on the Nobeoka fault which is an OST in an on-land accretionary complex, the Shimato Belt, Kyusyu, SW Japan. A gap in paleothermal temperature (up to 70 degree C) is observed at the fault. The Nobeoka thrust strikes almost EW at coastline. The Cretaceous Makimine formation and Paleogene Kitagawa formation are located at the hanging wall of the fault, comprising mainly of pelitic schist. The footwall of the fault is the Paleogene Hyuga formation composed mainly of shale. A lot of micro-faults are well developed just below the thrust for a few hundred meters to the south. Those micro faults are considered to be related to the Nobeoka thurst because slip direction and sense of the micro-faults are consistent with that of the Nobeoka thrust. The micro-faults are commonly accompanied by mineral veins of quartz and ankerite. Yamaguchi et al. (2010) suggested that the differences of mineral veins are possibly related to the seismic cycle. In this study, we conducted stress inversion analysis for the micro-faults to examine the change in stress between them, which might be related to the seismic cycle. We divided the micro-fault into two as a micro-fault with quartz veins and that with ankerite veins. Slip direction from slicken fibers and slip sense by slicken steps were obtained. HIM (hough inversion method) by Yamaji et al. (2006) was used to estimate the stress. Two stress states

  9. Distalization of Maxillary First Permanent Molar by Pendulum Appliance in Mixed Dentition Period.

    PubMed

    Paranna, Sujatha; Shetty, Prakashchandra; Anandakrishna, Latha; Rawat, Anuradha

    2017-01-01

    Mesial drifting of molar teeth in maxillary arch is corrected by movement of the molars distally. In addition to traditional distal movement techniques, such as extraoral force application and removable appliances, various intra-arch devices have been introduced since 1980s. These intra-arch appliances have nearly eliminated the need for patient cooperation. The purpose of this paper is to report a case of 10-year-old male patient with loss of space in maxillary molar teeth treated by intra-arch appliance-pendulum appliance by distalization of maxillary first permanent molar teeth. Distaliza-tion of the permanent molar teeth helped in proper eruption of second premolar teeth without any extensive treatment procedures. In the present case report, the treatment of developing malocclusion was corrected by utilizing the concept of interceptive orthodontics. Hence, correction of space loss in mixed dentition period using pendulum appliance can eliminate the fixed orthodontic therapy. Paranna S, Shetty P, Anandakrishna L, Rawat A. Distalization of Maxillary First Permanent Molar by Pendulum Appliance in Mixed Dentition Period. Int J Clin Pediatr Dent 2017;10(3):299-301.

  10. Geometry of a large-scale, low-angle, midcrustal thrust (Woodroffe Thrust, central Australia)

    NASA Astrophysics Data System (ADS)

    Wex, S.; Mancktelow, N. S.; Hawemann, F.; Camacho, A.; Pennacchioni, G.

    2017-11-01

    The Musgrave Block in central Australia exposes numerous large-scale mylonitic shear zones developed during the intracontinental Petermann Orogeny around 560-520 Ma. The most prominent structure is the crustal-scale, over 600 km long, E-W trending Woodroffe Thrust, which is broadly undulate but generally dips shallowly to moderately to the south and shows an approximately top-to-north sense of movement. The estimated metamorphic conditions of mylonitization indicate a regional variation from predominantly midcrustal (circa 520-620°C and 0.8-1.1 GPa) to lower crustal ( 650°C and 1.0-1.3 GPa) levels in the direction of thrusting, which is also reflected in the distribution of preserved deformation microstructures. This variation in metamorphic conditions is consistent with a south dipping thrust plane but is only small, implying that a ≥60 km long N-S segment of the Woodroffe Thrust was originally shallowly dipping at an average estimated angle of ≤6°. The reconstructed geometry suggests that basement-cored, thick-skinned, midcrustal thrusts can be very shallowly dipping on a scale of many tens of kilometers in the direction of movement. Such a geometry would require the rocks along the thrust to be weak, but field observations (e.g., large volumes of syntectonic pseudotachylyte) argue for a strong behavior, at least transiently. Localization on a low-angle, near-planar structure that crosscuts lithological layers requires a weak precursor, such as a seismic rupture in the middle to lower crust. If this was a single event, the intracontinental earthquake must have been large, with the rupture extending laterally over hundreds of kilometers.

  11. The anisosphere as a new tool for interpreting Foucault pendulum experiments. Part I: harmonic oscillators

    NASA Astrophysics Data System (ADS)

    Verreault, René

    2017-08-01

    In an attempt to explain the tendency of Foucault pendula to develop elliptical orbits, Kamerlingh Onnes derived equations of motion that suggest the use of great circles on a spherical surface as a graphical illustration for an anisotropic bi-dimensional harmonic oscillator, although he did not himself exploit the idea any further. The concept of anisosphere is introduced in this work as a new means of interpreting pendulum motion. It can be generalized to the case of any two-dimensional (2-D) oscillating system, linear or nonlinear, including the case where coupling between the 2 degrees of freedom is present. Earlier pendulum experiments in the literature are revisited and reanalyzed as a test for the anisosphere approach. While that graphical method can be applied to strongly nonlinear cases with great simplicity, this part I is illustrated through a revisit of Kamerlingh Onnes' dissertation, where a high performance pendulum skillfully emulates a 2-D harmonic oscillator. Anisotropy due to damping is also described. A novel experiment strategy based on the anisosphere approach is proposed. Finally, recent original results with a long pendulum using an electronic recording alidade are presented. A gain in precision over traditional methods by 2-3 orders of magnitude is achieved.

  12. Low Thrust Orbital Maneuvers Using Ion Propulsion

    NASA Astrophysics Data System (ADS)

    Ramesh, Eric

    2011-10-01

    Low-thrust maneuver options, such as electric propulsion, offer specific challenges within mission-level Modeling, Simulation, and Analysis (MS&A) tools. This project seeks to transition techniques for simulating low-thrust maneuvers from detailed engineering level simulations such as AGI's Satellite ToolKit (STK) Astrogator to mission level simulations such as the System Effectiveness Analysis Simulation (SEAS). Our project goals are as follows: A) Assess different low-thrust options to achieve various orbital changes; B) Compare such approaches to more conventional, high-thrust profiles; C) Compare computational cost and accuracy of various approaches to calculate and simulate low-thrust maneuvers; D) Recommend methods for implementing low-thrust maneuvers in high-level mission simulations; E) prototype recommended solutions.

  13. Linear active disturbance rejection control of underactuated systems: the case of the Furuta pendulum.

    PubMed

    Ramírez-Neria, M; Sira-Ramírez, H; Garrido-Moctezuma, R; Luviano-Juárez, A

    2014-07-01

    An Active Disturbance Rejection Control (ADRC) scheme is proposed for a trajectory tracking problem defined on a nonfeedback linearizable Furuta Pendulum example. A desired rest to rest angular position reference trajectory is to be tracked by the horizontal arm while the unactuated vertical pendulum arm stays around its unstable vertical position without falling down during the entire maneuver and long after it concludes. A linear observer-based linear controller of the ADRC type is designed on the basis of the flat tangent linearization of the system around an arbitrary equilibrium. The advantageous combination of flatness and the ADRC method makes it possible to on-line estimate and cancels the undesirable effects of the higher order nonlinearities disregarded by the linearization. These effects are triggered by fast horizontal arm tracking maneuvers driving the pendulum substantially away from the initial equilibrium point. Convincing experimental results, including a comparative test with a sliding mode controller, are presented. © 2013 ISA. Published by ISA. All rights reserved.

  14. A possible explanation for foreland thrust propagation

    NASA Astrophysics Data System (ADS)

    Panian, John; Pilant, Walter

    1990-06-01

    A common feature of thin-skinned fold and thrust belts is the sequential nature of foreland directed thrust systems. As a rule, younger thrusts develop in the footwalls of older thrusts, the whole sequence propagating towards the foreland in the transport direction. As each new younger thrust develops, the entire sequence is thickened; particularly in the frontal region. The compressive toe region can be likened to an advancing wave; as the mountainous thrust belt advanced the down-surface slope stresses drive thrusts ahead of it much like a surfboard rider. In an attempt to investigate the stresses in the frontal regions of thrustsheets, a numerical method has been devised from the algorithm given by McTigue and Mei [1981]. The algorithm yields a quickly computed approximate solution of the gravity- and tectonic-induced stresses of a two-dimensional homogeneous elastic half-space with an arbitrarily shaped free surface of small slope. A comparison of the numerical method with analytical examples shows excellent agreement. The numerical method was devised because it greatly facilitates the stress calculations and frees one from using the restrictive, simple topographic profiles necessary to obtain an analytical solution. The numerical version of the McTigue and Mei algorithm shows that there is a region of increased maximum resolved shear stress, τ, directly beneath the toe of the overthrust sheet. Utilizing the Mohr-Coulomb failure criterion, predicted fault lines are computed. It is shown that they flatten and become horizontal in some portions of this zone of increased τ. Thrust sheets are known to advance upon weak decollement zones. If there is a coincidence of increased τ, a weak rock layer, and a potential fault line parallel to this weak layer, we have in place all the elements necessary to initiate a new thrusting event. That is, this combination acts as a nucleating center to initiate a new thrusting event. Therefore, thrusts develop in sequence

  15. Static Performance of Six Innovative Thrust Reverser Concepts for Subsonic Transport Applications: Summary of the NASA Langley Innovative Thrust Reverser Test Program

    NASA Technical Reports Server (NTRS)

    Asbury, Scott C.; Yetter, Jeffrey A.

    2000-01-01

    The NASA Langley Configuration Aerodynamics Branch has conducted an experimental investigation to study the static performance of innovative thrust reverser concepts applicable to high-bypass-ratio turbofan engines. Testing was conducted on a conventional separate-flow exhaust system configuration, a conventional cascade thrust reverser configuration, and six innovative thrust reverser configurations. The innovative thrust reverser configurations consisted of a cascade thrust reverser with porous fan-duct blocker, a blockerless thrust reverser, two core-mounted target thrust reversers, a multi-door crocodile thrust reverser, and a wing-mounted thrust reverser. Each of the innovative thrust reverser concepts offer potential weight savings and/or design simplifications over a conventional cascade thrust reverser design. Testing was conducted in the Jet-Exit Test Facility at NASA Langley Research Center using a 7.9%-scale exhaust system model with a fan-to-core bypass ratio of approximately 9.0. All tests were conducted with no external flow and cold, high-pressure air was used to simulate core and fan exhaust flows. Results show that the innovative thrust reverser concepts achieved thrust reverser performance levels which, when taking into account the potential for system simplification and reduced weight, may make them competitive with, or potentially more cost effective than current state-of-the-art thrust reverser systems.

  16. Subsurface structural interpretation by applying trishear algorithm: An example from the Lenghu5 fold-and-thrust belt, Qaidam Basin, Northern Tibetan Plateau

    NASA Astrophysics Data System (ADS)

    Pei, Yangwen; Paton, Douglas A.; Wu, Kongyou; Xie, Liujuan

    2017-08-01

    The application of trishear algorithm, in which deformation occurs in a triangle zone in front of a propagating fault tip, is often used to understand fault related folding. In comparison to kink-band methods, a key characteristic of trishear algorithm is that non-uniform deformation within the triangle zone allows the layer thickness and horizon length to change during deformation, which is commonly observed in natural structures. An example from the Lenghu5 fold-and-thrust belt (Qaidam Basin, Northern Tibetan Plateau) is interpreted to help understand how to employ trishear forward modelling to improve the accuracy of seismic interpretation. High resolution fieldwork data, including high-angle dips, 'dragging structures', thinning hanging-wall and thickening footwall, are used to determined best-fit trishear model to explain the deformation happened to the Lenghu5 fold-and-thrust belt. We also consider the factors that increase the complexity of trishear models, including: (a) fault-dip changes and (b) pre-existing faults. We integrate fault dip change and pre-existing faults to predict subsurface structures that are apparently under seismic resolution. The analogue analysis by trishear models indicates that the Lenghu5 fold-and-thrust belt is controlled by an upward-steepening reverse fault above a pre-existing opposite-thrusting fault in deeper subsurface. The validity of the trishear model is confirmed by the high accordance between the model and the high-resolution fieldwork. The validated trishear forward model provides geometric constraints to the faults and horizons in the seismic section, e.g., fault cutoffs and fault tip position, faults' intersecting relationship and horizon/fault cross-cutting relationship. The subsurface prediction using trishear algorithm can significantly increase the accuracy of seismic interpretation, particularly in seismic sections with low signal/noise ratio.

  17. Human balancing of an inverted pendulum: is sway size controlled by ankle impedance?

    PubMed Central

    Loram, Ian D; Kelly, Sue M; Lakie, Martin

    2001-01-01

    Using the ankle musculature, subjects balanced a large inverted pendulum. The equilibrium of the pendulum is unstable and quasi-regular sway was observed like that in quiet standing. Two main questions were addressed. Can subjects systematically change sway size in response to instruction and availability of visual feedback? If so, do subjects decrease sway size by increasing ankle impedance or by some alternative mechanism? The position of the pendulum, the torque generated at each ankle and the soleus and tibialis anterior EMG were recorded. Results showed that subjects could significantly reduce the mean sway size of the pendulum by giving full attention to that goal. With visual feedback sway size could be minimised significantly more than without visual feedback. In changing sway size, the frequency of the sways was not changed. Results also revealed that ankle impedance and muscle co-contraction were not significantly changed when the sway size was decreased. As the ankle impedance and sway frequency do not change when the sway size is decreased, this implies no change in ankle stiffness or viscosity. Increasing ankle impedance, stiffness or viscosity are not the only methods by which sway size could be reduced. A reduction in torque noise or torque inaccuracy via a predictive process which provides active damping could reduce sway size without changing ankle impedance and is plausible given the data. Such a strategy involving motion recognition and generation of an accurate motor response may require higher levels of control than changing ankle impedance by altering reflex or feedforward gain. PMID:11313453

  18. In full swing? How do pendulum migrant labourers in Vietnam adjust their sexual perspectives to their rural-urban lives?

    PubMed

    Nguyen, Huong Ngoc; Hardesty, Melissa; Hong, Khuat Thu

    2011-11-01

    Having emerged only recently due to fast urbanisation and globalisation, pendulum migrant labourers in Vietnam are economically, culturally and socially difficult to locate - though they are estimated to number in their millions. Defined by their frequent migration between village and city, pendulum migrant labourers occupy an extended period of liminality. Are they traditional villagers or liberal city people when it comes to sex? Does city life radically change their views on sexuality? Starting with the premise that living environments play a key role in structuring the practical and symbolic realities of sex, this paper explores how extended periods of circular migration between the village and city - living environments that differ markedly in terms of socioeconomic and cultural conditions - affect the sexual views and perspectives of Vietnamese pendulum migrant labourers. Analysis from in-depth interviews with 23 married pendulum migrant labourers revealed that even though they had been living the pendulum life for several years, they continued to identify themselves, sexually, as traditional villagers. Among labourers the link between sexuality and living environment was a matter of pragmatism - matching 'suitable' sexual behaviour to social, even if imagined, location - and of privilege or 'leagues' - matching behaviour and comportment to social pedigree.

  19. Clinical usefulness of the pendulum test using a NK table to measure the spasticity of patients with brain lesions.

    PubMed

    Kim, Yong-Wook

    2013-10-01

    . [Purpose] The purpose of the present study was to investigate the clinical usefulness (reliability and validity) of the pendulum test using a Noland-Kuckhoff (NK) table with an attached electrogoniometer to measure the spasticity of patients with brain lesions. [Subjects] The subjects were 31 patients with stroke or traumatic brain injury. [Methods] The intraclass correlation coefficient (ICC) was used to verify the test-retest reliability of spasticity measures obtained using the pendulum test. Pearson's product correlation coefficient was used to examine the validity of the pendulum test using the amplitude of the patellar tendon reflex (PTR) test, an objective and quantitative measure of spasticity. [Results] The test-retest reliability was high, reflecting a significant correlation between the test and the retest (ICCs = 0.95-0.97). A significant negative correlation was found between the amplitude of the PTR test and the four variables measured in the pendulum test (r = -0.77- -0.85). [Conclusion] The pendulum test using a NK table is an objective measure of spasticity and can be used in the clinical setting in place of more expensive and complicated equipment. Further studies are needed to investigate the therapeutic effect of this method on spasticity.

  20. A double pendulum model of tennis strokes

    NASA Astrophysics Data System (ADS)

    Cross, Rod

    2011-05-01

    The physics of swinging a tennis racquet is examined by modeling the forearm and the racquet as a double pendulum. We consider differences between a forehand and a serve, and show how they differ from the swing of a bat and a golf club. It is also shown that the swing speed of a racquet, like that of a bat or a club, depends primarily on its moment of inertia rather than on its mass.

  1. Apparatus for Teaching Physics: A Very Short, Portable Foucault Pendulum.

    ERIC Educational Resources Information Center

    Kruglak, Haym

    1983-01-01

    Describes the construction of a small (portable), inexpensive, and easy to build Foucault pendulum. Includes photographs of the apparatus, a schematic of the electrical circuit used, and discussion of the amount of accuracy to be expected during classroom investigation. (JM)

  2. Control of the constrained planar simple inverted pendulum

    NASA Technical Reports Server (NTRS)

    Bavarian, B.; Wyman, B. F.; Hemami, H.

    1983-01-01

    Control of a constrained planar inverted pendulum by eigenstructure assignment is considered. Linear feedback is used to stabilize and decouple the system in such a way that specified subspaces of the state space are invariant for the closed-loop system. The effectiveness of the feedback law is tested by digital computer simulation. Pre-compensation by an inverse plant is used to improve performance.

  3. Human balancing of an inverted pendulum with a compliant linkage: neural control by anticipatory intermittent bias

    PubMed Central

    Lakie, Martin; Caplan, Nicholas; Loram, Ian D

    2003-01-01

    These experiments were prompted by the recent discovery that the intrinsic stiffness of the ankle is inadequate to stabilise passively the body in standing. Our hope was that showing how a large inverted pendulum was manually balanced with low intrinsic stiffness would elucidate the active control of human standing. The results show that the pendulum can be satisfactorily stabilised when intrinsic stiffness is low. Analysis of sway size shows that intrinsic stiffness actually plays little part in stabilisation. The sway duration is also substantially independent of intrinsic stiffness. This suggests that the characteristic sway of the pendulum, rather than being dictated by stiffness and inertia, may result from the control pattern of hand movements. The key points revealed by these experiments are that with low intrinsic stiffness the hand provides pendulum stability by intermittently altering the bias of the spring and, on average, the hand moves in opposition to the load. The results lead to a new and testable hypothesis; namely that in standing, the calf muscle shortens as the body sways forward and lengthens as it sways backwards. These findings are difficult to reconcile with stretch reflex control of the pendulum and are of particular relevance to standing. They may also be relevant to postural maintenance in general whenever the CNS controls muscles which operate through compliant linkages. The results also suggest that in standing, rather than providing passive stability, the intrinsic stiffness acts as an energy efficient buffer which provides decoupling between muscle and body. PMID:12832494

  4. Determination of the Optimal Position of Pendulums of an Active Self-balancing Device

    NASA Astrophysics Data System (ADS)

    Ziyakaev, G. R.; Kazakova, O. A.; Yankov, V. V.; Ivkina, O. P.

    2017-04-01

    The demand of the modern manufacturing industry for machines with high motion speed leads to increased load and vibration activity of the main elements of rotor systems. Vibration reduces operating life of bearings, has adversary effects on human organism, and can cause accidents. One way to compensate for a rotating rotor's imbalance is the use of active self-balancing devices. The aim of this work is to determine the position of their pendulums, in which the imbalance is minimized. As a result of the study, a formula for determining the angle of the pendulums was obtained.

  5. A hanging drop culture method to study terminal erythroid differentiation.

    PubMed

    Gutiérrez, Laura; Lindeboom, Fokke; Ferreira, Rita; Drissen, Roy; Grosveld, Frank; Whyatt, David; Philipsen, Sjaak

    2005-10-01

    To design a culture method allowing the quantitative and qualitative analysis of terminal erythroid differentiation. Primary erythroid progenitors derived either from mouse tissues or from human umbilical cord blood were differentiated using hanging drop cultures and compared to methylcellulose cultures. Cultured cells were analyzed by FACS to assess differentiation. We describe a practical culture method by adapting the previously described hanging drop culture system to conditions allowing terminal differentiation of primary erythroid progenitors. Using minimal volumes of media and small numbers of cells, we obtained quantitative terminal erythroid differentiation within two days of culture in the case of murine cells and 4 days in the case of human cells. The established methods for ex vivo culture of primary erythroid progenitors, such as methylcellulose-based burst-forming unit-erythroid (BFU-E) and colony-forming unit-erythroid (CFU-E) assays, allow the detection of committed erythroid progenitors but are of limited value to study terminal erythroid differentiation. We show that the application of hanging drop cultures is a practical alternative that, in combination with clonogenic assays, enables a comprehensive assessment of the behavior of primary erythroid cells ex vivo in the context of genetic and drug-induced perturbations.

  6. Gravity field error analysis for pendulum formations by a semi-analytical approach

    NASA Astrophysics Data System (ADS)

    Li, Huishu; Reubelt, Tilo; Antoni, Markus; Sneeuw, Nico

    2017-03-01

    Many geoscience disciplines push for ever higher requirements on accuracy, homogeneity and time- and space-resolution of the Earth's gravity field. Apart from better instruments or new observables, alternative satellite formations could improve the signal and error structure compared to Grace. One possibility to increase the sensitivity and isotropy by adding cross-track information is a pair of satellites flying in a pendulum formation. This formation contains two satellites which have different ascending nodes and arguments of latitude, but have the same orbital height and inclination. In this study, the semi-analytical approach for efficient pre-mission error assessment is presented, and the transfer coefficients of range, range-rate and range-acceleration gravitational perturbations are derived analytically for the pendulum formation considering a set of opening angles. The new challenge is the time variations of the opening angle and the range, leading to temporally variable transfer coefficients. This is solved by Fourier expansion of the sine/cosine of the opening angle and the central angle. The transfer coefficients are further applied to assess the error patterns which are caused by different orbital parameters. The simulation results indicate that a significant improvement in accuracy and isotropy is obtained for small and medium initial opening angles of single polar pendulums, compared to Grace. The optimal initial opening angles are 45° and 15° for accuracy and isotropy, respectively. For a Bender configuration, which is constituted by a polar Grace and an inclined pendulum in this paper, the behaviour of results is dependent on the inclination (prograde vs. retrograde) and on the relative baseline orientation (left or right leading). The simulation for a sun-synchronous orbit shows better results for the left leading case.

  7. Effects of conventional anchorage on premolar root development during treatment with a pendulum appliance.

    PubMed

    Kinzinger, Gero; Pantel, Cora; Ludwig, Björn; Gülden, Norbert; Glasl, Bettina; Lisson, Jörg

    2010-07-01

    By metrically analyzing orthopantomograms, we aimed in this study to retrospectively investigate whether maxillary premolars used as anchoring teeth during molar distalization with pendulum appliances would reveal inhibited root development. The upper molars were distalized with a modified pendulum appliance (Pendulum K) in 36 adolescents (14 males, 22 females, mean age 12.3 years). Mean treatment period was 19.5 weeks. Orthopantomograms of each patient were taken at the start (time point T1) and after completion of molar distalization (time point T2). The enlargement of the posterior region was ascertained individually quadrant by quadrant for each radiograph, followed by measurement of the vestibular tooth lengths of the premolars whose root development was for the most part not yet complete. To assess further root development in the premolar region, the differences were calculated between tooth lengths at the start and end of treatment. During treatment with the pendulum appliance a general increase in tooth lengths in the anchorage region was observed (1.37 +/- 1.70 mm, p<0.0001). Differentiated by dental age, we noted increases in tooth lengths of patients with second molars in the budding stage (patient group PG 1: 0.93 +/- 1.37 mm, p<0.0001) as well as of patients with fully-erupted second molars (patient group PG 2: 1.81 +/- 1.88 mm, p<0.0001). Both groups demonstrated greater increases in the second premolars than the first premolars; the increases group-wise were larger in PG 2 than PG 1. However, both the group comparison (PG 1 versus PG 2) and the side comparison (right versus left) (differentiated into first and second molars) showed no statistically relevant differences. Visual assessment of the radiographs revealed no evidence of treatment-related root deviations. A highly complex system of forces acts on the anchoring teeth during molar distalization with the conventionally-anchored Pendulum K. However, the Pendulum K appliance's specific

  8. Wireless Orbiter Hang-Angle Inclinometer System

    NASA Technical Reports Server (NTRS)

    Lucena, Angel; Perotti, Jose; Green, Eric; Byon, Jonathan; Burns, Bradley; Mata, Carlos; Randazzo, John; Blalock, Norman

    2011-01-01

    A document describes a system to reliably gather the hang-angle inclination of the orbiter. The system comprises a wireless handheld master station (which contains the main station software) and a wireless remote station (which contains the inclinometer sensors, the RF transceivers, and the remote station software). The remote station is designed to provide redundancy to the system. It includes two RF transceivers, two power-management boards, and four inclinometer sensors.

  9. Characterization and reproducibility of HepG2 hanging drop spheroids toxicology in vitro.

    PubMed

    Hurrell, Tracey; Ellero, Andrea Antonio; Masso, Zelie Flavienne; Cromarty, Allan Duncan

    2018-02-21

    Hepatotoxicity remains a major challenge in drug development despite preclinical toxicity screening using hepatocytes of human origin. To overcome some limitations of reproducing the hepatic phenotype, more structurally and functionally authentic cultures in vitro can be introduced by growing cells in 3D spheroid cultures. Characterisation and reproducibility of HepG2 spheroid cultures using a high-throughput hanging drop technique was performed and features contributing to potential phenotypic variation highlighted. Cultured HepG2 cells were seeded into Perfecta 3D® 96-well hanging drop plates and assessed over time for morphology, viability, cell cycle distribution, protein content and protein-mass profiles. Divergent aspects which were assessed included cell stocks, seeding density, volume of culture medium and use of extracellular matrix additives. Hanging drops are advantageous due to no complex culture matrix being present, enabling background free extractions for downstream experimentation. Varying characteristics were observed across cell stocks and batches, seeding density, culture medium volume and extracellular matrix when using immortalized HepG2 cells. These factors contribute to wide-ranging cellular responses and highlights concerns with respect to generating a reproducible phenotype in HepG2 hanging drop spheroids. Copyright © 2018 Elsevier Ltd. All rights reserved.

  10. Adding the ‘heart’ to hanging drop networks for microphysiological multi-tissue experiments†

    PubMed Central

    Yazdi, Saeed Rismani; Shadmani, Amir; Bürgel, Sebastian C.; Misun, Patrick M.; Hierlemann, Andreas; Frey, Olivier

    2017-01-01

    Microfluidic hanging-drop networks enable culturing and analysis of 3D microtissue spheroids derived from different cell types under controlled perfusion and investigating inter-tissue communication in multi-tissue formats. In this paper we introduce a compact on-chip pumping approach for flow control in hanging-drop networks. The pump includes one pneumatic chamber located directly above one of the hanging drops and uses the surface tension at the liquid–air-interface for flow actuation. Control of the pneumatic protocol provides a wide range of unidirectional pulsatile and continuous flow profiles. With the proposed concept several independent hanging-drop networks can be operated in parallel with only one single pneumatic actuation line at high fidelity. Closed-loop medium circulation between different organ models for multi-tissue formats and multiple simultaneous assays in parallel are possible. Finally, we implemented a real-time feedback control-loop of the pump actuation based on the beating of a human iPS-derived cardiac microtissue cultured in the same system. This configuration allows for simulating physiological effects on the heart and their impact on flow circulation between the organ models on chip. PMID:26401602

  11. Anticipation by basketball defenders: an explanation based on the three-dimensional inverted pendulum model.

    PubMed

    Fujii, Keisuke; Shinya, Masahiro; Yamashita, Daichi; Kouzaki, Motoki; Oda, Shingo

    2014-01-01

    We previously estimated the timing when ball game defenders detect relevant information through visual input for reacting to an attacker's running direction after a cutting manoeuvre, called cue timing. The purpose of this study was to investigate what specific information is relevant for defenders, and how defenders process this information to decide on their opponents' running direction. In this study, we hypothesised that defenders extract information regarding the position and velocity of the attackers' centre of mass (CoM) and the contact foot. We used a model which simulates the future trajectory of the opponent's CoM based upon an inverted pendulum movement. The hypothesis was tested by comparing observed defender's cue timing, model-estimated cue timing using the inverted pendulum model (IPM cue timing) and cue timing using only the current CoM position (CoM cue timing). The IPM cue timing was defined as the time when the simulated pendulum falls leftward or rightward given the initial values for position and velocity of the CoM and the contact foot at the time. The model-estimated IPM cue timing and the empirically observed defender's cue timing were comparable in median value and were significantly correlated, whereas the CoM cue timing was significantly more delayed than the IPM and the defender's cue timings. Based on these results, we discuss the possibility that defenders may be able to anticipate the future direction of an attacker by forwardly simulating inverted pendulum movement.

  12. Thrust Performance Evaluation of a Turbofan Engine Based on Exergetic Approach and Thrust Management in Aircraft

    NASA Astrophysics Data System (ADS)

    Yalcin, Enver

    2017-05-01

    The environmental parameters such as temperature and air pressure which are changing depending on altitudes are effective on thrust and fuel consumption of aircraft engines. In flights with long routes, thrust management function in airplane information system has a structure that ensures altitude and performance management. This study focused on thrust changes throughout all flight were examined by taking into consideration their energy and exergy performances for fuel consumption of an aircraft engine used in flight with long route were taken as reference. The energetic and exergetic performance evaluations were made under the various altitude conditions. The thrust changes for different altitude conditions were obtained to be at 86.53 % in descending direction and at 142.58 % in ascending direction while the energy and exergy efficiency changes for the referenced engine were found to be at 80.77 % and 84.45 %, respectively. The results revealed here can be helpful to manage thrust and reduce fuel consumption, but engine performance will be in accordance with operation requirements.

  13. An Experiment on a Physical Pendulum and Steiner's Theorem

    ERIC Educational Resources Information Center

    Russeva, G. B.; Tsutsumanova, G. G.; Russev, S. C.

    2010-01-01

    Introductory physics laboratory curricula usually include experiments on the moment of inertia, the centre of gravity, the harmonic motion of a physical pendulum, and Steiner's theorem. We present a simple experiment using very low cost equipment for investigating these subjects in the general case of an asymmetrical test body. (Contains 3 figures…

  14. Comparison of two different methods of preoperative marking for toric intraocular lens implantation: bubble marker versus pendulum marker.

    PubMed

    Farooqui, Javed Hussain; Koul, Archana; Dutta, Ranjan; Shroff, Noshir Minoo

    2016-01-01

    To compare the accuracy of two different methods of preoperative marking for toric intraocular lens (IOL) implantation, bubble marker versus pendulum marker, as a means of establishing the reference point for the final alignment of the toric IOL to achieve an outcome as close as possible to emmetropia. Toric IOLs were implanted in 180 eyes of 110 patients. One group (55 patients) had preoperative marking of both eyes done with bubble marker (ASICO AE-2791TBL) and the other group (55 patients) with pendulum marker (Rumex(®)3-193). Reference marks were placed at 3-, 6-, and 9-o'clock positions on the limbus. Slit-lamp photographs were analyzed using Adobe Photoshop (version 7.0). Amount of alignment error (in degrees) induced in each group was measured. Mean absolute rotation error in the preoperative marking in the horizontal axis was 2.42±1.71 in the bubble marker group and 2.83±2.31in the pendulum marker group (P=0.501). Sixty percent of the pendulum group and 70% of the bubble group had rotation error ≤3 (P=0.589), and 90% eyes of the pendulum group and 96.7% of the bubble group had rotation error ≤5 (P=0.612). Both preoperative marking techniques result in approximately 3 of alignment error. Both marking techniques are simple, predictable, reproducible and easy to perform.

  15. Syntectonic Fluid-Rock Interactions Involving Surficial Waters in the Sevier Thrust Belt, Tendoy Mountains, Southwest Montana

    NASA Astrophysics Data System (ADS)

    Johnson, A. C.; Anastasio, D. J.; Bebout, G. E.

    2002-05-01

    Calcite veins and Mississippian carbonates from the Sevier thrust front record syntectonic meteoric fluid infiltration and hydrocarbon migration. The Tendoy and Four Eyes Canyon thrust sheets were emplaced onto the western margin of the Late Cretaceous Western Interior Seaway \\{WIS\\}. Low salinity \\{Tice = -0.6° C to +3.6° C\\} and low temperature \\{110° C +/- 10\\} fluids interacted with hanging-wall carbonates at a depth of 5km. Most veins have single or multiple generations of varying apertures, composed predominately of large euhedral crystals with some finer grained layers and protolith inclusions. Orientation analysis of mutually cross-cutting, high-angle vein sets suggest development concurrent with Four Eyes Canyon thrusting but prior to Tendoy thrusting. These vein sets are generally cut by later synfolding bed-parallel shear veins. Reactivation of both the bed-parallel and bed-perpendicular vein sets \\{strike parallel and strike perpendicular\\} in the Four Eyes Canyon thrust sheet occurred subsequent to Sevier compression, creating wide, coarse crystalline veins that often transect Sevier structures. Oxygen and Carbon isotope analyses of veins allow for reconstruction of fluid-rock interactions during thrust sheet emplacement and later reactivation. All veins and variably deformed host-rocks were microsampled and analyzed for δ 18OV-SMOW and δ 13CV-PDB. Small Tendoy veins \\{1mm-1cm wide\\} have calcite δ 18O values of +8.9 to +28.8‰ and calculated fluid \\{as H2O\\} of -8.3 to +11.6‰ \\{100° C\\}, -7.3 to +12.6‰ \\{110° C\\}, and -6.3 to +13.6‰ \\{120° C\\}. Four Eyes Canyon veins \\{1cm-3m wide\\} have calcite δ 18O values of +5.9 to +17.0‰ and calculated fluid of -11.3 to -0.2‰ \\{100° C\\}, -10.3 to +0.8‰ \\{110° C\\}, and -9.3 to +1.8‰ \\{120° C\\}. While there is significant variation in δ 18O there is relatively little systematic variation seen in δ 13C. Protolith carbonate has δ 18O values of +22.2‰ +/- 3

  16. Clinical Usefulness of the Pendulum Test Using a NK Table to Measure the Spasticity of Patients with Brain Lesions

    PubMed Central

    Kim, Yong-Wook

    2013-01-01

    . [Purpose] The purpose of the present study was to investigate the clinical usefulness (reliability and validity) of the pendulum test using a Noland-Kuckhoff (NK) table with an attached electrogoniometer to measure the spasticity of patients with brain lesions. [Subjects] The subjects were 31 patients with stroke or traumatic brain injury. [Methods] The intraclass correlation coefficient (ICC) was used to verify the test–retest reliability of spasticity measures obtained using the pendulum test. Pearson's product correlation coefficient was used to examine the validity of the pendulum test using the amplitude of the patellar tendon reflex (PTR) test, an objective and quantitative measure of spasticity. [Results] The test–retest reliability was high, reflecting a significant correlation between the test and the retest (ICCs = 0.95–0.97). A significant negative correlation was found between the amplitude of the PTR test and the four variables measured in the pendulum test (r = −0.77– −0.85). [Conclusion] The pendulum test using a NK table is an objective measure of spasticity and can be used in the clinical setting in place of more expensive and complicated equipment. Further studies are needed to investigate the therapeutic effect of this method on spasticity. PMID:24259775

  17. Prognosis at 6 and 12months after self-attempted hanging.

    PubMed

    Gantois, Guillaume; Parmentier-Decrucq, Erika; Duburcq, Thibault; Favory, Raphaël; Mathieu, Daniel; Poissy, Julien

    2017-11-01

    Patients surviving a self-attempted hanging have a total neurological recovery in 57-77% of cases at hospital discharge, but no long-term data are available. In this observational study, all patients hospitalized post-self-attempted hanging in the intensive care unit (ICU) in a 5-year period were included. Neurological evaluations at 6 and 12months were performed according to Cerebral Performance Category (CPC) scores. Factors associated with neurological recovery were determined by comparing CPC2+3+4 (bad recovery) vs. CPC1 (good recovery). Of 231 patients included, 104 (47%) were found to have cardiac arrest (CA). Ninety-five (41%) patients died in the ICU: 93 (89%) in the CA group and 2 (1.6%) in the group without CA. Neurological evaluations at 6 and 12months were obtained in 97 of the 136 surviving patients. At 6months, in the CA group (n=9), the CPC score was 1 for 6 patients, 2 for 2, and 4 for 1 patient. In the group without CA (n=88), 79 patients had normal neurological status at 6months and 78 at 12months. Among these patients, 96% returned home, 77% returned to work, 16 (18%) patients re-attempted suicide within the year. Risk factors of neurological sequelae at 6months were a CA at the hanging site (P=0.045), an elevated diastolic blood pressure (87 vs. 70 mm Hg; P=0.04), a lower initial Glasgow score (4 vs. 5; P=0.04), and an elevated blood glucose level (139 vs. 113 mg/dL; P<0.001). Patients surviving a self-attempted hanging who did not have a CA had a good neurological outcome. The rate of suicidal recidivism is particularly important, which justifies joint work with psychiatrists. Copyright © 2017 Elsevier Inc. All rights reserved.

  18. Distalization of Maxillary First Permanent Molar by Pendulum Appliance in Mixed Dentition Period

    PubMed Central

    Shetty, Prakashchandra; Anandakrishna, Latha; Rawat, Anuradha

    2017-01-01

    Introduction Mesial drifting of molar teeth in maxillary arch is corrected by movement of the molars distally. In addition to traditional distal movement techniques, such as extraoral force application and removable appliances, various intra-arch devices have been introduced since 1980s. These intra-arch appliances have nearly eliminated the need for patient cooperation. Case report The purpose of this paper is to report a case of 10-year-old male patient with loss of space in maxillary molar teeth treated by intra-arch appliance-pendulum appliance by distalization of maxillary first permanent molar teeth. Distaliza-tion of the permanent molar teeth helped in proper eruption of second premolar teeth without any extensive treatment procedures. Conclusion In the present case report, the treatment of developing malocclusion was corrected by utilizing the concept of interceptive orthodontics. Hence, correction of space loss in mixed dentition period using pendulum appliance can eliminate the fixed orthodontic therapy. How to cite this article Paranna S, Shetty P, Anandakrishna L, Rawat A. Distalization of Maxillary First Permanent Molar by Pendulum Appliance in Mixed Dentition Period. Int J Clin Pediatr Dent 2017;10(3):299-301. PMID:29104393

  19. Thrust Breakdown Characteristics of Conventional Propellers

    DTIC Science & Technology

    2007-09-01

    extends beyond the trailing edge of the blade . These sheets violently collapse as the blade moves out of the wake deficit produced by the hull. This...thrust breakdown, vibration, noise , erosion and blade damage. Propellers operating with enough cavitation to cause thrust breakdown can experience...7 Figure 5. Sensitivity of thrust reduction to harmonic content in wake (Prop 5491) .................. 8 Figure 6. Comparison of

  20. Technical strategy of triple jump: differences of inverted pendulum model between hop-dominated and balance techniques.

    PubMed

    Fujibayashi, Nobuaki; Otsuka, Mitsuo; Yoshioka, Shinsuke; Isaka, Tadao

    2017-10-24

    The present study aims to cross-sectionally clarify the characteristics of the motions of an inverted pendulum model, a stance leg, a swing leg and arms in different triple-jumping techniques to understand whether or not hop displacement is relatively longer rather than step and jump displacements. Eighteen male athletes performed the triple jump with a full run-up. Based on the technique of the jumpers, they were classified as hop-dominated (n = 10) or balance (n = 8) jumpers. The kinematic data were calculated using motion capture and compared between the two techniques using the inverted pendulum model. The hop-dominated jumpers had a significantly longer hop displacement and faster vertical centre-of-mass (COM) velocity of their whole body at hop take-off, which was generated by faster rotation behaviours of inverted pendulum model and faster swinging behaviours of arms. Conversely, balance jumpers had a significantly longer jump displacement and faster horizontal COM velocity of their whole body at take-off, which was generated by a stiffer inverted pendulum model and stance leg. The results demonstrate that hop-dominated and balance jumpers enhanced each dominated-jump displacement using different swing- and stance-leg motions. This information may help to enhance the actual displacement of triple jumpers using different jumping techniques.

  1. In-flight thrust determination

    NASA Technical Reports Server (NTRS)

    Abernethy, Robert B.; Adams, Gary R.; Ascough, John C.; Baer-Riedhart, Jennifer L.; Balkcom, George H.; Biesiadny, Thomas

    1986-01-01

    The major aspects of processes that may be used for the determination of in-flight thrust are reviewed. Basic definitions are presented as well as analytical and ground-test methods for gathering data and calculating the thrust of the propulsion system during the flight development program of the aircraft. Test analysis examples include a single-exhaust turbofan, an intermediate-cowl turbofan, and a mixed-flow afterburning turbofan.

  2. World Pendulum--A Distributed Remotely Controlled Laboratory (RCL) to Measure the Earth's Gravitational Acceleration Depending on Geographical Latitude

    ERIC Educational Resources Information Center

    Grober, S.; Vetter, M.; Eckert, B.; Jodl, H.-J.

    2007-01-01

    We suggest that different string pendulums are positioned at different locations on Earth and measure at each place the gravitational acceleration (accuracy [delta]g is approximately equal to 0.01 m s[superscript -2]). Each pendulum can be remotely controlled via the internet by a computer located somewhere on Earth. The theoretical part describes…

  3. Optimal high- and low-thrust geocentric transfer

    NASA Technical Reports Server (NTRS)

    Sackett, L. L.; Edelbaum, T. N.

    1974-01-01

    A computer code which rapidly calculates time optimal combined high- and low-thrust transfers between two geocentric orbits in the presence of a strong gravitational field has been developed as a mission analysis tool. The low-thrust portion of the transfer can be between any two arbitrary ellipses. There is an option for including the effect of two initial high-thrust impulses which would raise the spacecraft from a low, initially circular orbit to the initial orbit for the low-thrust portion of the transfer. In addition, the effect of a single final impulse after the low-thrust portion of the transfer may be included. The total Delta V for the initial two impulses must be specified as well as the Delta V for the final impulse. Either solar electric or nuclear electric propulsion can be assumed for the low-thrust phase of the transfer.

  4. New Approaches to Data Acquisitions in a Torsion Pendulum Experiment

    ERIC Educational Resources Information Center

    Jiang, Daya; Xiao, Jinghua; Li, Haihong; Dai, Qionglin

    2007-01-01

    In this paper, two simple non-contact and cost-effective methods to acquire data in the student laboratory are applied to investigate the motion of a torsion pendulum. The first method is based on a Hall sensor, while the second makes use of an optical mouse.

  5. Tubular copper thrust chamber design study

    NASA Technical Reports Server (NTRS)

    Masters, A. I.; Galler, D. E.

    1992-01-01

    The use of copper tubular thrust chambers is particularly important in high performance expander cycle space engines. Tubular chambers have more surface area than flat wall chambers, and this extra surface area provides enhanced heat transfer for additional energy to power the cycle. This paper was divided into two sections: (1) a thermal analysis and sensitivity study; and (2) a preliminary design of a selected thrust chamber configuration. The thermal analysis consisted of a statistical optimization to determine the optimum tube geometry, tube booking, thrust chamber geometry, and cooling routing to achieve the maximum upper limit chamber pressure for a 25,000 pound thrust engine. The preliminary design effort produced a layout drawing of a tubular thrust chamber that is three inches shorter than the Advanced Expander Test Bed (AETB) milled channel chamber but is predicted to provide a five percent increase in heat transfer. Testing this chamber in the AETB would confirm the inherent advantages of tubular chamber construction and heat transfer.

  6. Suicide attempt by hanging in preadolescent children: a case series.

    PubMed

    Omigbodun, O O; Adejumo, O A; Babalola, O O

    2008-10-01

    Suicide is now among the five top causes of death in youth worldwide. However, during the preadolescent period, suicidal behaviour is rare and difficult to define because the cognitive level of young children limits their ability to plan and understand the consequences or the finality of suicide. There is virtually no information about preadolescent suicidal behaviour in Nigeria. To illustrate the presentation and psychosocial issues associated with preadolescent suicidal attempt using the 'hanging' method in Nigeria. Three case scenarios of suicide attempt by hanging in preadolescents seen at the University College Hospital, Ibadan between 2005 and 2006 were interviewed in detail along with mental state and physical examination. Family and individual therapies were embarked upon. Types of psychopathology found in the preadolescents include depressive symptoms, conduct and oppositional defiant disorder and impulse control problems. Stressful life events such as family disruption, physical abuse, and bullying at school were factors associated with suicidal behaviour. The influence of the media in providing information about 'hanging' as a method of suicide was evident. Therapy yield varying results. High risk parameters for suicide in children should be known to all health professionals. The importance of intervention strategies particularly media education, monitoring systems and further research on suicidal behaviour in this environment is apparent.

  7. A Rare Vehicle-Assisted Ligature Hanging: Suicide at the Wheel.

    PubMed

    Barranco, Rosario; Caputo, Fiorella; Bonsignore, Alessandro; Fraternali Orcioni, Giulio; Ventura, Francesco

    2018-03-01

    Suicide by hanging inside a motor vehicle is a rare occurrence. A 48-year-old woman suffering from major depression was found having agonal breathing inside her automobile. A 20-mm diameter blue nylon rope was wrapped tightly around her neck, with its other end tied to a nearby wooden fence post. Despite resuscitation attempts, she was declared deceased after several minutes. The vehicle was located in an area with a slight downward slope. The motor was off. It was in neutral gear, with the parking brake disengaged. Consequently, the gravitational forces, attributable to the mass of the vehicle and the declivity of the terrain, caused the rope to tighten.The dynamics fulfill the criteria for a partial hanging, given the difference in height between the point at which the rope was secured to the post and woman's neck, which in turn presented the typical oblique upward groove.This case, thus, represents a unique mode of partial hanging inside a passenger vehicle, rarely reported in the literature. The relative lack of internal injury is also noteworthy, along with the fact that the victim was discovered while still alive. The latter feature can be explained by the absence of the sudden or violent acceleration forces that can be generated with the engine on.

  8. Measuring "g" Using a Magnetic Pendulum and Telephone Pickup

    ERIC Educational Resources Information Center

    Sinacore, J.; Takai, H.

    2010-01-01

    The simple pendulum has long been used to measure "g", the acceleration due to gravity, with a precision of a few percent. Achieving agreement with the accepted value of less than 1% is feasible in the high school laboratory, though it requires some care. The precision of the measurement is bound by how accurately the period and the pendulum…

  9. Precision Mass Property Measurements Using a Five-Wire Torsion Pendulum

    NASA Technical Reports Server (NTRS)

    Swank, Aaron J.

    2012-01-01

    A method for measuring the moment of inertia of an object using a five-wire torsion pendulum design is described here. Typical moment of inertia measurement devices are capable of 1 part in 10(exp 3) accuracy and current state of the art techniques have capabilities of about one part in 10(exp 4). The five-wire apparatus design shows the prospect of improving on current state of the art. Current measurements using a laboratory prototype indicate a moment of inertia measurement precision better than a part in 10(exp 4). In addition, the apparatus is shown to be capable of measuring the mass center offset from the geometric center. Typical mass center measurement devices exhibit a measurement precision up to approximately 1 micrometer. Although the five-wire pendulum was not originally designed for mass center measurements, preliminary results indicate an apparatus with a similar design may have the potential of achieving state of the art precision.

  10. The Pendulum: From Constrained Fall to the Concept of Potential

    NASA Astrophysics Data System (ADS)

    Bevilacqua, Fabio; Falomo, Lidia; Fregonese, Lucio; Giannetto, Enrico; Giudice, Franco; Mascheretti, Paolo

    2006-08-01

    Kuhn underlined the relevance of Galileo’s gestalt switch in the interpretation of a swinging body from constrained fall to time metre. But the new interpretation did not eliminate the older one. The constrained fall, both in the motion of pendulums and along inclined planes, led Galileo to the law of free fall. Experimenting with physical pendulums and assuming the impossibility of perpetual motion Huygens obtained a law of conservation of vis viva at specific positions, beautifully commented by Mach. Daniel Bernoulli generalised Huygens results introducing the concept of potential and the related independence of the ‘work’ done from the trajectories (paths) followed: vis viva conservation at specific positions is now linked with the potential. Feynman’s modern way of teaching the subject shows striking similarities with Bernoulli’s approach. A number of animations and simulations can help to visualise and teach some of the pendulum’s interpretations related to what we now see as instances of energy conservation.

  11. The frequency of human, manual adjustments in balancing an inverted pendulum is constrained by intrinsic physiological factors

    PubMed Central

    Loram, Ian D; Gawthrop, Peter J; Lakie, Martin

    2006-01-01

    While standing naturally and when manually or pedally balancing an equivalent inverted pendulum, the load sways slowly (characteristic unidirectional duration ∼1 s) and the controller, calf muscles or hand, makes more frequent adjustments (characteristic unidirectional duration 400 ms). Here we test the hypothesis that these durations reflect load properties rather than some intrinsic property of the human neuromuscular system. Using a specialized set-up mechanically analogous to real standing, subjects manually balanced inverted pendulums with different moments of inertia through a compliant spring representing the Achilles tendon. The spring bias was controlled by a sensitive joystick via a servo motor and accurate visual feedback was provided on an oscilloscope. As moment of inertia decreased, inverted pendulum sway size increased and it became difficult to sustain successful balance. The mean duration of unidirectional balance adjustments did not change. Moreover, the mean duration of unidirectional inverted pendulum sway reduced only slightly, remaining around 1 s. The simplest explanation is that balance was maintained by a process of manual adjustments intrinsically limited to a mean frequency of two to three unidirectional adjustments per second corresponding to intermittent control observed in manual tracking experiments. Consequently the inverted pendulum sway duration, mechanically related to the bias duration, reflects an intrinsic constraint of the neuromuscular control system. Given the similar durations of sway and muscle adjustments observed in real standing, we postulate that the characteristic duration of unidirectional standing sway reflects intrinsic intermittent control rather than the inertial properties of the body. PMID:16973712

  12. Alternative model of thrust-fault propagation

    NASA Astrophysics Data System (ADS)

    Eisenstadt, Gloria; de Paor, Declan G.

    1987-07-01

    A widely accepted explanation for the geometry of thrust faults is that initial failures occur on deeply buried planes of weak rock and that thrust faults propagate toward the surface along a staircase trajectory. We propose an alternative model that applies Gretener's beam-failure mechanism to a multilayered sequence. Invoking compatibility conditions, which demand that a thrust propagate both upsection and downsection, we suggest that ramps form first, at shallow levels, and are subsequently connected by flat faults. This hypothesis also explains the formation of many minor structures associated with thrusts, such as backthrusts, wedge structures, pop-ups, and duplexes, and provides a unified conceptual framework in which to evaluate field observations.

  13. Combination radial and thrust magnetic bearing

    NASA Technical Reports Server (NTRS)

    Blumenstock, Kenneth A. (Inventor)

    2002-01-01

    A combination radial and thrust magnetic bearing is disclosed that allows for both radial and thrust axes control of an associated shaft. The combination radial and thrust magnetic bearing comprises a rotor and a stator. The rotor comprises a shaft, and first and second rotor pairs each having respective rotor elements. The stator comprises first and second stator elements and a magnet-sensor disk. In one embodiment, each stator element has a plurality of split-poles and a corresponding plurality of radial force coils and, in another embodiment, each stator element does not require thrust force coils, and radial force coils are replaced by double the plurality of coils serving as an outer member of each split-pole half.

  14. The alteration of extraocular muscle arc after hang-back recession in animal experiments.

    PubMed

    Lee, J; Kim, S

    1996-01-01

    We did an animal experimental study to investigate the extraocular muscle arc after hang-back recession on horizontal rectus muscles of five dogs. Two tiny sutures using 8-0 nylon were made on the sclera 8-10 mm posterior to the muscle insertion along the upper and lower margins of the right lateral rectus and left medial rectus to compare the altered muscle arc with the original muscle arc. Hang-back recession was performed on the horizontal rectus muscles and three months later we investigated the change in the muscle arc. Four of the 10 muscles operated showed no change, four were displaced upward (mean +/- SD; 1.00 +/- 0.16 mm) and two were displaced downward (1.00 +/- 0.00 mm). The average displacement was 0.60 +/- 0.52 mm. The alteration of muscle arc after hang-back recession thus seems insignificant.

  15. Common Cause Case Study: An Estimated Probability of Four Solid Rocket Booster Hold-down Post Stud Hang-ups

    NASA Technical Reports Server (NTRS)

    Cross, Robert

    2005-01-01

    Until Solid Rocket Motor ignition, the Space Shuttle is mated to the Mobil Launch Platform in part via eight (8) Solid Rocket Booster (SRB) hold-down bolts. The bolts are fractured using redundant pyrotechnics, and are designed to drop through a hold-down post on the Mobile Launch Platform before the Space Shuttle begins movement. The Space Shuttle program has experienced numerous failures where a bolt has "hung-up." That is, it did not clear the hold-down post before liftoff and was caught by the SRBs. This places an additional structural load on the vehicle that was not included in the original certification requirements. The Space Shuttle is currently being certified to withstand the loads induced by up to three (3) of eight (8) SRB hold-down post studs experiencing a "hang-up." The results af loads analyses performed for four (4) stud-hang ups indicate that the internal vehicle loads exceed current structural certification limits at several locations. To determine the risk to the vehicle from four (4) stud hang-ups, the likelihood of the scenario occurring must first be evaluated. Prior to the analysis discussed in this paper, the likelihood of occurrence had been estimated assuming that the stud hang-ups were completely independent events. That is, it was assumed that no common causes or factors existed between the individual stud hang-up events. A review of the data associated with the hang-up events, showed that a common factor (timing skew) was present. This paper summarizes a revised likelihood evaluation performed for the four (4) stud hang-ups case considering that there are common factors associated with the stud hang-ups. The results show that explicitly (i.e. not using standard common cause methodologies such as beta factor or Multiple Greek Letter modeling) taking into account the common factor of timing skew results in an increase in the estimated likelihood of four (4) stud hang-ups of an order of magnitude over the independent failure case.

  16. Common Cause Case Study: An Estimated Probability of Four Solid Rocket Booster Hold-Down Post Stud Hang-ups

    NASA Technical Reports Server (NTRS)

    Cross, Robert

    2005-01-01

    Until Solid Rocket Motor ignition, the Space Shuttle is mated to the Mobil Launch Platform in part via eight (8) Solid Rocket Booster (SRB) hold-down bolts. The bolts are fractured using redundant pyrotechnics, and are designed to drop through a hold-down post on the Mobile Launch Platform before the Space Shuttle begins movement. The Space Shuttle program has experienced numerous failures where a bolt has hung up. That is, it did not clear the hold-down post before liftoff and was caught by the SRBs. This places an additional structural load on the vehicle that was not included in the original certification requirements. The Space Shuttle is currently being certified to withstand the loads induced by up to three (3) of eight (8) SRB hold-down experiencing a "hang-up". The results of loads analyses performed for (4) stud hang-ups indicate that the internal vehicle loads exceed current structural certification limits at several locations. To determine the risk to the vehicle from four (4) stud hang-ups, the likelihood of the scenario occurring must first be evaluated. Prior to the analysis discussed in this paper, the likelihood of occurrence had been estimated assuming that the stud hang-ups were completely independent events. That is, it was assumed that no common causes or factors existed between the individual stud hang-up events. A review of the data associated with the hang-up events, showed that a common factor (timing skew) was present. This paper summarizes a revised likelihood evaluation performed for the four (4) stud hang-ups case considering that there are common factors associated with the stud hang-ups. The results show that explicitly (i.e. not using standard common cause methodologies such as beta factor or Multiple Greek Letter modeling) taking into account the common factor of timing skew results in an increase in the estimated likelihood of four (4) stud hang-ups of an order of magnitude over the independent failure case.

  17. Comparison of two different methods of preoperative marking for toric intraocular lens implantation: bubble marker versus pendulum marker

    PubMed Central

    Farooqui, Javed Hussain; Koul, Archana; Dutta, Ranjan; Shroff, Noshir Minoo

    2016-01-01

    AIM To compare the accuracy of two different methods of preoperative marking for toric intraocular lens (IOL) implantation, bubble marker versus pendulum marker, as a means of establishing the reference point for the final alignment of the toric IOL to achieve an outcome as close as possible to emmetropia. METHODS Toric IOLs were implanted in 180 eyes of 110 patients. One group (55 patients) had preoperative marking of both eyes done with bubble marker (ASICO AE-2791TBL) and the other group (55 patients) with pendulum marker (Rumex®3-193). Reference marks were placed at 3-, 6-, and 9-o'clock positions on the limbus. Slit-lamp photographs were analyzed using Adobe Photoshop (version 7.0). Amount of alignment error (in degrees) induced in each group was measured. RESULTS Mean absolute rotation error in the preoperative marking in the horizontal axis was 2.42±1.71 in the bubble marker group and 2.83±2.31in the pendulum marker group (P=0.501). Sixty percent of the pendulum group and 70% of the bubble group had rotation error ≤3 (P=0.589), and 90% eyes of the pendulum group and 96.7% of the bubble group had rotation error ≤5 (P=0.612). CONCLUSION Both preoperative marking techniques result in approximately 3 of alignment error. Both marking techniques are simple, predictable, reproducible and easy to perform. PMID:27275425

  18. Anatomical basis of the liver hanging maneuver.

    PubMed

    Trotovsek, Blaz; Belghiti, Jacques; Gadzijev, Eldar M; Ravnik, Dean; Hribernik, Marija

    2005-01-01

    The anterior approach to right hepatectomy using the liver hanging maneuver without liver mobilization claims to be anatomically evaluated. During this procedure a 4 to 6-cm blind dissection between the inferior vena cava and the liver is performed. Short subhepatic veins, entering the inferior vena cava could be torn and a hemorrhage, difficult to control, could occur. On 100 corrosive casts of livers the anterior surface of the inferior vena cava was studied to evaluate the position, diameter and draining area of short subhepatic veins and inferior right hepatic vein. The width of the narrowest point on the planned route of blind dissection was determined. The average value of the narrowest point on the planned route of blind dissection was 8.7+/-2.3mm (range 2-15mm). The ideal angle of dissection being 0 degrees was found in 93% of cases. In 7% we found the angle of 5 degrees toward the right border of inferior vena cava to be the better choice. Our results show that liver hanging maneuver is a safe procedure. With the dissection in the proposed route the risk of disrupting short subhepatic veins is low (7%).

  19. String & Sticky Tape Experiments: Two-Dimensional Collisions Using Pendulums.

    ERIC Educational Resources Information Center

    Edge, R. D.

    1989-01-01

    Introduces a method for two-dimensional kinematics measurements by hanging marbles with long strings. Describes experimental procedures for conservation of momentum and obtaining the coefficient of restitution. Provides diagrams and mathematical expressions for the activities. (YP)

  20. Thrust Control Loop Design for Electric-Powered UAV

    NASA Astrophysics Data System (ADS)

    Byun, Heejae; Park, Sanghyuk

    2018-04-01

    This paper describes a process of designing a thrust control loop for an electric-powered fixed-wing unmanned aerial vehicle equipped with a propeller and a motor. In particular, the modeling method of the thrust system for thrust control is described in detail and the propeller thrust and torque force are modeled using blade element theory. A relation between current and torque of the motor is obtained using an experimental setup. Another relation between current, voltage and angular velocity is also obtained. The electric motor and the propeller dynamics are combined to model the thrust dynamics. The associated trim and linearization equations are derived. Then, the thrust dynamics are coupled with the flight dynamics to allow a proper design for the thrust loop in the flight control. The proposed method is validated by an application to a testbed UAV through simulations and flight test.

  1. Reliability and validity of pendulum test measures of spasticity obtained with the Polhemus tracking system from patients with chronic stroke.

    PubMed

    Bohannon, Richard W; Harrison, Steven; Kinsella-Shaw, Jeffrey

    2009-07-30

    Spasticity is a common impairment accompanying stroke. Spasticity of the quadriceps femoris muscle can be quantified using the pendulum test. The measurement properties of pendular kinematics captured using a magnetic tracking system has not been studied among patients who have experienced a stroke. Therefore, this study describes the test-retest reliability and known groups and convergent validity of the pendulum test measures obtained with the Polhemus tracking system. Eight patients with chronic stroke underwent pendulum tests with their affected and unaffected lower limbs, with and without the addition of a 2.2 kg cuff weight at the ankle, using the Polhemus magnetic tracking system. Also measured bilaterally were knee resting angles, Ashworth scores (grades 0-4) of quadriceps femoris muscles, patellar tendon (knee jerk) reflexes (grades 0-4), and isometric knee extension force. Three measures obtained from pendular traces of the affected side were reliable (intraclass correlation coefficient > or = .844). Known groups validity was confirmed by demonstration of a significant difference in the measurements between sides. Convergent validity was supported by correlations > or = .57 between pendulum test measures and other measures reflective of spasticity. Pendulum test measures obtained with the Polhemus tracking system from the affected side of patients with stroke have good test-retest reliability and both known groups and convergent validity.

  2. Magnetic shielding in a low temperature torsion pendulum experiment. [superconducting cylinders for attenuation earth field

    NASA Technical Reports Server (NTRS)

    Phillips, P. R.

    1979-01-01

    A new type of ether drift experiment searches for anomalous torques on a permanent magnet. A torsion pendulum is used at liquid helium temperature, so that superconducting cylinders can be used to shield magnetic fields. Lead shields attenuate the earth's field, while Nb-Sn shields fastened to the pendulum contain the fields of the magnet. The paper describes the technique by which the earth's field can be reduced below 0.0001 G while simultaneously the moment of the magnet can be reduced by a factor 7 x 10 to the 4th.

  3. An Approximate Solution to the Equation of Motion for Large-Angle Oscillations of the Simple Pendulum with Initial Velocity

    ERIC Educational Resources Information Center

    Johannessen, Kim

    2010-01-01

    An analytic approximation of the solution to the differential equation describing the oscillations of a simple pendulum at large angles and with initial velocity is discussed. In the derivation, a sinusoidal approximation has been applied, and an analytic formula for the large-angle period of the simple pendulum is obtained, which also includes…

  4. Extended performance solar electric propulsion thrust system study. Volume 2: Baseline thrust system

    NASA Technical Reports Server (NTRS)

    Poeschel, R. L.; Hawthorne, E. I.

    1977-01-01

    Several thrust system design concepts were evaluated and compared using the specifications of the most advanced 30- cm engineering model thruster as the technology base. Emphasis was placed on relatively high-power missions (60 to 100 kW) such as a Halley's comet rendezvous. The extensions in thruster performance required for the Halley's comet mission were defined and alternative thrust system concepts were designed in sufficient detail for comparing mass, efficiency, reliability, structure, and thermal characteristics. Confirmation testing and analysis of thruster and power-processing components were performed, and the feasibility of satisfying extended performance requirements was verified. A baseline design was selected from the alternatives considered, and the design analysis and documentation were refined. The baseline thrust system design features modular construction, conventional power processing, and a concentractor solar array concept and is designed to interface with the space shuttle.

  5. Comparative evaluation of molar distalization therapy with erupted second molar: Segmented versus Quad Pendulum appliance.

    PubMed

    Caprioglio, Alberto; Cozzani, Mauro; Fontana, Mattia

    2014-01-01

    There are controversial opinions about the effect of erupted second molars on distalization of the first molars. Most of the distalizing devices are anchored on the first molars, without including second molars; so, differences between sequentially distalize maxillary molars (second molar followed by the first molar) or distalize second and first molars together are not clear. The aim of the study was to compare sequential versus simultaneous molar distalization therapy with erupted second molar using two different modified Pendulum appliances followed by fixed appliances. The treatment sample consisted of 35 class II malocclusion subjects, divided in two groups: group 1 consisted of 24 patients (13 males and 11 females) with a mean pre-treatment age of 12.9 years, treated with the Segmented Pendulum (SP) and fixed appliances; group 2 consisted of 11 patients (6 males and 5 females) with a mean pre-treatment age of 13.2 years, treated with the Quad Pendulum (QP) and fixed appliances. Lateral cephalograms were obtained before treatment (T1), at the end of distalization (T2), and at the end of orthodontic fixed appliance therapy (T3). A Student t test was used to identify significant between-group differences between T1 to T2, T2 to T3, and T1 to T3. QP and SP were equally effective in distalizing maxillary molars (3.5 and 4 mm, respectively) between T1 and T2; however, the maxillary first molar showed less distal tipping (4.6° vs. 9.6°) and more extrusion (1.1 vs. 0.2 mm) in the QP group than in the SP group, as well as the vertical facial dimension, which increased more in the QP group (1.2°) than in the SP group (0.7°). At T3, the QP group maintained greater increase in lower anterior facial height and molar extrusion and decrease in overbite than the SP group. Quad Pendulum seems to have greater increase in vertical dimension and molar extrusion than the Segmented Pendulum.

  6. Target thrust measurement for applied-field magnetoplasmadynamic thruster

    NASA Astrophysics Data System (ADS)

    Wang, B.; Yang, W.; Tang, H.; Li, Z.; Kitaeva, A.; Chen, Z.; Cao, J.; Herdrich, G.; Zhang, K.

    2018-07-01

    In this paper, we present a flat target thrust stand which is designed to measure the thrust of a steady-state applied-field magnetoplasmadynamic thruster (AF-MPDT). In our experiments we varied target-thruster distances and target size to analyze their influence on the target thrust measurement results. The obtained thrust-distance curves increase to local maximum and then decreases with the increasing distance, which means that the plume of the AF-MPDT can still accelerate outside the thruster exit. The peak positions are related to the target sizes: larger targets can make the peak positions further from the thruster and decrease the measurement errors. To further improve the reliability of measurement results, a thermal equilibrium assumption combined with Knudsen’s cosine law is adapted to analyze the error caused by the back stream of plume particles. Under the assumption, the error caused by particle backflow is no more than 3.6% and the largest difference between the measured thrust and the theoretical thrust is 14%. Moreover, it was verified that target thrust measurement can disturb the working of the AF-MPD thruster, and the influence on the thrust measurement result is no more than 1% in our experiment.

  7. Pulsed Ejector Thrust Amplification Tested and Modeled

    NASA Technical Reports Server (NTRS)

    Wilson, Jack

    2004-01-01

    There is currently much interest in pulsed detonation engines for aeronautical propulsion. This, in turn, has sparked renewed interest in pulsed ejectors to increase the thrust of such engines, since previous, though limited, research had indicated that pulsed ejectors could double the thrust in a short device. An experiment has been run at the NASA Glenn Research Center, using a shrouded Hartmann-Sprenger tube as a source of pulsed flow, to measure the thrust augmentation of a statistically designed set of ejectors. A Hartmann- Sprenger tube directs the flow from a supersonic nozzle (Mach 2 in the present experiment) into a closed tube. Under appropriate conditions, an oscillation is set up in which the jet flow alternately fills the tube and then spills around flow emerging from the tube. The tube length determines the frequency of oscillation. By shrouding the tube, the flow was directed out of the shroud as an axial stream. The set of ejectors comprised three different ejector lengths, three ejector diameters, and three nose radii. The thrust of the jet alone, and then of the jet plus ejector, was measured using a thrust plate. The arrangement is shown in this photograph. Thrust augmentation is defined as the thrust of the jet with an ejector divided by the thrust of the jet alone. The experiments exhibited an optimum ejector diameter and length for maximizing the thrust augmentation, but little dependence on nose radius. Different frequencies were produced by changing the length of the Hartmann-Sprenger tube, and the experiment was run at a total of four frequencies. Additional measurements showed that the major feature of the pulsed jet was a starting vortex ring. The size of the vortex ring depended on the frequency, as did the optimum ejector diameter.

  8. Adaptive Neural Network Control for the Trajectory Tracking of the Furuta Pendulum.

    PubMed

    Moreno-Valenzuela, Javier; Aguilar-Avelar, Carlos; Puga-Guzman, Sergio A; Santibanez, Victor

    2016-12-01

    The purpose of this paper is to introduce a novel adaptive neural network-based control scheme for the Furuta pendulum, which is a two degree-of-freedom underactuated system. Adaptation laws for the input and output weights are also provided. The proposed controller is able to guarantee tracking of a reference signal for the arm while the pendulum remains in the upright position. The key aspect of the derivation of the controller is the definition of an output function that depends on the position and velocity errors. The internal and external dynamics are rigorously analyzed, thereby proving the uniform ultimate boundedness of the error trajectories. By using real-time experiments, the new scheme is compared with other control methodologies, therein demonstrating the improved performance of the proposed adaptive algorithm.

  9. Pendulum test measure correlates with gait parameters in children with cerebral palsy.

    PubMed

    Lotfian, M; Mirbagheri, M M; Kharazi, M R; Dadashi, F; Nourian, R; Irani, A; Mirbagheri, A

    2016-08-01

    Individuals with cerebral palsy (CP) usually suffer from different impairments including gait impairment and spasticity. Spastic hypertonia is a defining feature of spasticity and manifests as a mechanical abnormality. The objective of this study was to determine the relationship between spastic hypertonia and gait impairments in spastic children with CP, addressing an important controversial issue. Spastic hypertonia was quantified using the pendulum test. The gait impairments were evaluated using the motion capture system in a gait laboratory. Our results showed significant correlations among gait parameters; i.e. walking speed, step length, and the pendulum test measures. This indicates that neuromuscular abnormalities are associated with spasticity and may contribute to gait impairments. The clinical implication is that the impaired gait in children with CP may be improved with the treatment of neuromuscular abnormalities.

  10. Period of an Interrupted Pendulum

    NASA Astrophysics Data System (ADS)

    Miller, Bradley E.

    2002-11-01

    While demonstrating a classic conservation-of-energy problem to my AP Physics students, I became curious about the periodic motion that ensued for certain initial conditions. The original problem consists of releasing a mass at the end of a string from an initial position horizontal to the plane of a table. The string comes in contact with a peg some distance below the point where the string is attached at the top. One is asked to find what minimum fraction of the string's length should the peg be placed to have the mass complete a circle about the peg. However, when the mass is released from much lower heights, the system undergoes periodic motion that can be thought of as an interrupted pendulum.

  11. 37. PATTERNS HANGING FROM CEILING AND OFFICE WALL, NOTE CRAFTSMANSHIP ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    37. PATTERNS HANGING FROM CEILING AND OFFICE WALL, NOTE CRAFTSMANSHIP OF CURVE-LOOKING NORTHWEST. - W. A. Young & Sons Foundry & Machine Shop, On Water Street along Monongahela River, Rices Landing, Greene County, PA

  12. Kinematics and strain distribution of a thrust-related fold system in the Lewis thrust plate, northwestern Montana (U.S.A.)

    NASA Astrophysics Data System (ADS)

    Yin, An; Oertel, Gerhard

    1993-06-01

    In order to understand interactions between motion along thrusts and the associated style of deformation and strain distribution in their hangingwalls, geologic mapping and strain measurements were conducted in an excellently exposed thrust-related fold system in the Lewis thrust plate, northwestern Montana. This system consists of: (1) an E-directed basal thrust (the Gunsight thrust) that has a flat-ramp geometry and a slip of about 3.6 km; (2) an E-verging asymmetric anticline with its nearly vertical forelimb truncated by the basal thrust from below; (3) a 4-km wide fold belt, the frontal fold complex, that lies directly in front of the E-verging anticline; (4) a W-directed bedding-parallel fault (the Mount Thompson fault) that bounds the top of the frontal fold belt and separates it from the undeformed to broadly folded strata above; and (5) regionally developed, W-dipping spaced cleavage. Although the overall geometry of the thrust-related fold system differs from any previously documented fault-related folds, the E-verging anticline itself resembles geometrically a Rich-type fault-bend fold. The observed initial cut-off and fold interlimb angles of this anticline, however, cannot be explained by cross-section balancing models for the development of either a fault-bend fold or a fault propagation fold. Possible origins for the E-verging anticline include (1) the fold initiated as an open fault-bend fold and tightened only later during its emplacement along the basal thrust and (2) the fold started as either a fault-bend or a fault-propagation fold, but simultaneous or subsequent volume change incompatible with any balanced cross-section models altered its shape. Strain in the thrust-related fold system was determined by the preferred orientation of mica and chlorite grains. The direction and magnitude of the post-compaction strain varies from place to place. Strains in the foreclimb of the hangingwall anticline imply bedding-parallel thinning at some

  13. Death by hanging while watching violent pornographic videos on the Internet - suicide or accidental autoerotic death?

    PubMed

    Vennemann, B; Pollak, S

    2006-03-01

    In deaths by hanging, it may sometimes be difficult to differentiate between autoerotic accident and suicide. Our report deals with a 30-year-old man who was found hanged in the living room of his flat. The deceased was wearing headphones connected to a PC. Within the deceased's view was a computer screen showing the last picture of a video file downloaded from the Internet with the head of an unclothed, allegedly hanged female. The deceased's left hand was inside his trousers in the genital region. The autopsy did not only show findings typical for hanging, but also advanced sarcoidosis, which was known to the victim. Although this basic illness could have been a possible motive for suicide, the circumstances in the presented case pointed more in the direction of an accidental autoerotic death. As far as we know, this is the first description of a death during autoerotic activity in which sexual stimulation was achieved by watching a video file downloaded from the Internet.

  14. 384 hanging drop arrays give excellent Z-factors and allow versatile formation of co-culture spheroids.

    PubMed

    Hsiao, Amy Y; Tung, Yi-Chung; Qu, Xianggui; Patel, Lalit R; Pienta, Kenneth J; Takayama, Shuichi

    2012-05-01

    We previously reported the development of a simple, user-friendly, and versatile 384 hanging drop array plate for 3D spheroid culture and the importance of utilizing 3D cellular models in anti-cancer drug sensitivity testing. The 384 hanging drop array plate allows for high-throughput capabilities and offers significant improvements over existing 3D spheroid culture methods. To allow for practical 3D cell-based high-throughput screening and enable broader use of the plate, we characterize the robustness of the 384 hanging drop array plate in terms of assay performance and demonstrate the versatility of the plate. We find that the 384 hanging drop array plate performance is robust in fluorescence- and colorimetric-based assays through Z-factor calculations. Finally, we demonstrate different plate capabilities and applications, including: spheroid transfer and retrieval for Janus spheroid formation, sequential addition of cells for concentric layer patterning of different cell types, and culture of a wide variety of cell types. Copyright © 2011 Wiley Periodicals, Inc.

  15. 384 Hanging Drop Arrays Give Excellent Z-factors and Allow Versatile Formation of Co-culture Spheroids

    PubMed Central

    Hsiao, Amy Y.; Tung, Yi-Chung; Qu, Xianggui; Patel, Lalit R.; Pienta, Kenneth J.; Takayama, Shuichi

    2012-01-01

    We previously reported the development of a simple, user-friendly, and versatile 384 hanging drop array plate for 3D spheroid culture and the importance of utilizing 3D cellular models in anti-cancer drug sensitivity testing. The 384 hanging drop array plate allows for high-throughput capabilities and offers significant improvements over existing 3D spheroid culture methods. To allow for practical 3D cell-based high-throughput screening and enable broader use of the plate, we characterize the robustness of the 384 hanging drop array plate in terms of assay performance and demonstrate the versatility of the plate. We find that the 384 hanging drop array plate performance is robust in fluorescence- and colorimetric-based assays through z-factor calculations. Finally, we demonstrate different plate capabilities and applications, including: spheroid transfer and retrieval for Janus spheroid formation, sequential addition of cells for concentric layer patterning of different cell types, and culture of a wide variety of cell types. PMID:22161651

  16. Trypsin inhibitors from Capsicum baccatum var. pendulum leaves involved in Pepper yellow mosaic virus resistance.

    PubMed

    Moulin, M M; Rodrigues, R; Ribeiro, S F F; Gonçalves, L S A; Bento, C S; Sudré, C P; Vasconcelos, I M; Gomes, V M

    2014-11-07

    Several plant organs contain proteinase inhibitors, which are produced during normal plant development or are induced upon pathogen attack to suppress the enzymatic activity of phytopathogenic microorganisms. In this study, we examined the presence of proteinase inhibitors, specifically trypsin inhibitors, in the leaf extract of Capsicum baccatum var. pendulum inoculated with PepYMV (Pepper yellow mosaic virus). Leaf extract from plants with the accession number UENF 1624, which is resistant to PepYMV, was collected at 7 different times (0, 24, 48, 72, 96, 120, and 144 h). Seedlings inoculated with PepYMV and control seedlings were grown in a growth chamber. Protein extract from leaf samples was partially purified by reversed-phase chromatography using a C2/C18 column. Residual trypsin activity was assayed to detect inhibitors followed by Tricine-SDS-PAGE analysis to determine the N-terminal peptide sequence. Based on trypsin inhibitor assays, trypsin inhibitors are likely constitutively synthesized in C. baccatum var. pendulum leaf tissue. These inhibitors are likely a defense mechanism for the C. baccatum var. pendulum- PepYMV pathosystem.

  17. Balancing a simulated inverted pendulum through motor imagery: an EEG-based real-time control paradigm.

    PubMed

    Yue, Jingwei; Zhou, Zongtan; Jiang, Jun; Liu, Yadong; Hu, Dewen

    2012-08-30

    Most brain-computer interfaces (BCIs) are non-time-restraint systems. However, the method used to design a real-time BCI paradigm for controlling unstable devices is still a challenging problem. This paper presents a real-time feedback BCI paradigm for controlling an inverted pendulum on a cart (IPC). In this paradigm, sensorimotor rhythms (SMRs) were recorded using 15 active electrodes placed on the surface of the subject's scalp. Subsequently, common spatial pattern (CSP) was used as the basic filter to extract spatial patterns. Finally, linear discriminant analysis (LDA) was used to translate the patterns into control commands that could stabilize the simulated inverted pendulum. Offline trainings were employed to teach the subjects to execute corresponding mental tasks, such as left/right hand motor imagery. Five subjects could successfully balance the online inverted pendulum for more than 35s. The results demonstrated that BCIs are able to control nonlinear unstable devices. Furthermore, the demonstration and extension of real-time continuous control might be useful for the real-life application and generalization of BCI. Copyright © 2012 Elsevier Ireland Ltd. All rights reserved.

  18. Intermittent Feedback-Control Strategy for Stabilizing Inverted Pendulum on Manually Controlled Cart as Analogy to Human Stick Balancing

    PubMed Central

    Yoshikawa, Naoya; Suzuki, Yasuyuki; Kiyono, Ken; Nomura, Taishin

    2016-01-01

    The stabilization of an inverted pendulum on a manually controlled cart (cart-inverted-pendulum; CIP) in an upright position, which is analogous to balancing a stick on a fingertip, is considered in order to investigate how the human central nervous system (CNS) stabilizes unstable dynamics due to mechanical instability and time delays in neural feedback control. We explore the possibility that a type of intermittent time-delayed feedback control, which has been proposed for human postural control during quiet standing, is also a promising strategy for the CIP task and stick balancing on a fingertip. Such a strategy hypothesizes that the CNS exploits transient contracting dynamics along a stable manifold of a saddle-type unstable upright equilibrium of the inverted pendulum in the absence of control by inactivating neural feedback control intermittently for compensating delay-induced instability. To this end, the motions of a CIP stabilized by human subjects were experimentally acquired, and computational models of the system were employed to characterize the experimental behaviors. We first confirmed fat-tailed non-Gaussian temporal fluctuation in the acceleration distribution of the pendulum, as well as the power-law distributions of corrective cart movements for skilled subjects, which was previously reported for stick balancing. We then showed that the experimental behaviors could be better described by the models with an intermittent delayed feedback controller than by those with the conventional continuous delayed feedback controller, suggesting that the human CNS stabilizes the upright posture of the pendulum by utilizing the intermittent delayed feedback-control strategy. PMID:27148031

  19. Intermittent Feedback-Control Strategy for Stabilizing Inverted Pendulum on Manually Controlled Cart as Analogy to Human Stick Balancing.

    PubMed

    Yoshikawa, Naoya; Suzuki, Yasuyuki; Kiyono, Ken; Nomura, Taishin

    2016-01-01

    The stabilization of an inverted pendulum on a manually controlled cart (cart-inverted-pendulum; CIP) in an upright position, which is analogous to balancing a stick on a fingertip, is considered in order to investigate how the human central nervous system (CNS) stabilizes unstable dynamics due to mechanical instability and time delays in neural feedback control. We explore the possibility that a type of intermittent time-delayed feedback control, which has been proposed for human postural control during quiet standing, is also a promising strategy for the CIP task and stick balancing on a fingertip. Such a strategy hypothesizes that the CNS exploits transient contracting dynamics along a stable manifold of a saddle-type unstable upright equilibrium of the inverted pendulum in the absence of control by inactivating neural feedback control intermittently for compensating delay-induced instability. To this end, the motions of a CIP stabilized by human subjects were experimentally acquired, and computational models of the system were employed to characterize the experimental behaviors. We first confirmed fat-tailed non-Gaussian temporal fluctuation in the acceleration distribution of the pendulum, as well as the power-law distributions of corrective cart movements for skilled subjects, which was previously reported for stick balancing. We then showed that the experimental behaviors could be better described by the models with an intermittent delayed feedback controller than by those with the conventional continuous delayed feedback controller, suggesting that the human CNS stabilizes the upright posture of the pendulum by utilizing the intermittent delayed feedback-control strategy.

  20. Medium-frequency impulsive-thrust-activated liquid hydrogen reorientation with Geyser

    NASA Technical Reports Server (NTRS)

    Hung, R. J.; Shyu, K. L.

    1992-01-01

    Efficient technique are studied for accomplishing propellant resettling through the minimization of propellant usage through impulsive thrust. A comparison between the use of constant-thrust and impulsive-thrust accelerations for the activation of propellant resettlement shows that impulsive thrust is superior to constant thrust for liquid reorientation in a reduced-gravity environment. This study shows that when impulsive thrust with 0.1-1.0-, and 10-Hz frequencies for liquid-fill levels in the range between 30-80 percent is considered, the selection of 1.0-Hz-frequency impulsive thrust over the other frequency ranges of impulsive thrust is the optimum. Characteristics of the slosh waves excited during the course of 1.0-Hz-frequency impulsive-thrust liquid reorientation were also analyzed.

  1. 9. BUILDING NO. 620B, FRICTION PENDULUM BUILDING. 29FOOT DROP TOWER ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    9. BUILDING NO. 620-B, FRICTION PENDULUM BUILDING. 29-FOOT DROP TOWER SITS BEHIND BLAST SHIELD IN FRONT OF BUILDING. - Picatinny Arsenal, 600 Area, Test Areas District, State Route 15 near I-80, Dover, Morris County, NJ

  2. Sustainable Equity: Avoiding the Pendulum Effect in the Life Sciences

    ERIC Educational Resources Information Center

    Parker, Tatiana C. Tatum; Rosenthal, Rebecca

    2011-01-01

    In order to understand and resolve the disproportionate number of women in the sciences it is necessary to look at historical educational trends. Through the ages there is evidence of a "pendulum effect" where there have been major shifts focusing science education either on male or females. To be able to realistically establish sustainable equity…

  3. The Pendulum: From Constrained Fall to the Concept of Potential

    ERIC Educational Resources Information Center

    Bevilacqua, Fabio; Falomo, Lidia; Fregonese, Lucio; Giannetto, Enrico; Giudice, Franco; Mascheretti, Paolo

    2006-01-01

    Kuhn underlined the relevance of Galileo's gestalt switch in the interpretation of a swinging body from constrained fall to time metre. But the new interpretation did not eliminate the older one. The constrained fall, both in the motion of pendulums and along inclined planes, led Galileo to the law of free fall. Experimenting with physical…

  4. Application of the Homotopy Perturbation Method to the Nonlinear Pendulum

    ERIC Educational Resources Information Center

    Belendez, A.; Hernandez, A.; Belendez, T.; Marquez, A.

    2007-01-01

    The homotopy perturbation method is used to solve the nonlinear differential equation that governs the nonlinear oscillations of a simple pendulum, and an approximate expression for its period is obtained. Only one iteration leads to high accuracy of the solutions and the relative error for the approximate period is less than 2% for amplitudes as…

  5. The use of laterally vectored thrust to counter thrust asymmetry in a tactical jet aircraft

    NASA Technical Reports Server (NTRS)

    1983-01-01

    A nonlinear, six degree-of-freedom flight simulator for a twin engine tactical jet was built on a hybrid computer to investigate lateral vectoring of the remaining thrust component for the case of a single engine failure at low dynamic pressures. Aircraft control was provided by an automatic controller rather than a pilot, and thrust vector control was provided by an open-loop controller that deflected a vane (located on the periphery of each exhaust jet and normally streamlined for noninterference with the flow). Lateral thrust vectoring decreased peak values of lateral control deflections, eliminated the requirement for steady-state lateral aerodynamic control deflections, and decreased the amount of altitude lost for a single engine failure.

  6. Thermoluminesence Properties and Ages along the Stony Creek, Hanging Wall of Alpine Fault, New Zealand

    NASA Astrophysics Data System (ADS)

    Nishikawa, O.; Theeraporn, C.; Takashima, I.; Shigematsu, N.; Little, T. A.; Boulton, C. J.

    2015-12-01

    The Alpine Fault, New Zealand is an oblique slip thrust with significantly high slip rate, and its dip-slip component causes the rapid uplift of the Southern Alps and the extremely high geothermal gradient in it. Thermoluminescence (TL) dating is a method using the phenomenon that energy accumulated in the crystal from radiation of surrounding radioactive elements is reemitted in the form of light when heating the minerals. This method covers a wide range of age from 1,000 to 1,000,000 years, and has relatively low reset temperature for the accumulation of radiation dose. Therefore, TL dating is a feasible geochronometry for the reconstruction of the thermal history of the area with very high uplifting rate. In order to determine uplifting rates and their distribution in the Southern Alps adjacent to the Alpine fault, ten rock samples were collected for TL dating in the distance 1 km from main fault plane along the Stony Creek. All the samples commonly include quartz veins which are folded tightly or in isoclinal form parallel to the foliations. TL dating was performed using quartz grains separated from host rock. A widely ranging TL ages are obtained from the hanging wall of the fault. The rocks within 600m from present shear zone yield ages ranging from 55.2 ka to 88.8 ka, showing older ages with distance from shear zone. Within 600 m to 900 m from the fault, relatively younger ages, 54.7 to 34.4 ka are obtained. Assuming the thermal gradient of 10 °C /100 m and exhumation rate of 10 m / kyr, the zeroing depth and temperature of TL signals is estimated from 350 to 900 m and from 45 to 100 °C, respectively. The range of TL ages is very large amounted to 50,000 years in the narrow zone. This may be responsible for the variety of TL zeroing temperatures in the hanging wall rocks rather than disturbance of thermal structure and/or inhomogeneity of uplifting rate in this area. Annealing tests are necessary to clarify the real properties of TL for each sample tested.

  7. Segregation simulation of binary granular matter under horizontal pendulum vibrations

    NASA Astrophysics Data System (ADS)

    Ma, Xuedong; Zhang, Yanbing; Ran, Heli; Zhang, Qingying

    2016-08-01

    Segregation of binary granular matter with different densities under horizontal pendulum vibrations was investigated through numerical simulation using a 3D discrete element method (DEM). The particle segregation mechanism was theoretically analyzed using gap filling, momentum and kinetic energy. The effect of vibrator geometry on granular segregation was determined using the Lacey mixing index. This study shows that dynamic changes in particle gaps under periodic horizontal pendulum vibrations create a premise for particle segregation. The momentum of heavy particles is higher than that of light particles, which causes heavy particles to sink and light particles to float. With the same horizontal vibration parameters, segregation efficiency and stability, which are affected by the vibrator with a cylindrical convex geometry, are superior to that of the original vibrator and the vibrator with a cross-bar structure. Moreover, vibrator geometry influences the segregation speed of granular matter. Simulation results of granular segregation by using the DEM are consistent with the final experimental results, thereby confirming the accuracy of the simulation results and the reliability of the analysis.

  8. Reliability and validity of pendulum test measures of spasticity obtained with the Polhemus tracking system from patients with chronic stroke

    PubMed Central

    Bohannon, Richard W; Harrison, Steven; Kinsella-Shaw, Jeffrey

    2009-01-01

    Background Spasticity is a common impairment accompanying stroke. Spasticity of the quadriceps femoris muscle can be quantified using the pendulum test. The measurement properties of pendular kinematics captured using a magnetic tracking system has not been studied among patients who have experienced a stroke. Therefore, this study describes the test-retest reliability and known groups and convergent validity of the pendulum test measures obtained with the Polhemus tracking system. Methods Eight patients with chronic stroke underwent pendulum tests with their affected and unaffected lower limbs, with and without the addition of a 2.2 kg cuff weight at the ankle, using the Polhemus magnetic tracking system. Also measured bilaterally were knee resting angles, Ashworth scores (grades 0–4) of quadriceps femoris muscles, patellar tendon (knee jerk) reflexes (grades 0–4), and isometric knee extension force. Results Three measures obtained from pendular traces of the affected side were reliable (intraclass correlation coefficient ≥ .844). Known groups validity was confirmed by demonstration of a significant difference in the measurements between sides. Convergent validity was supported by correlations ≥ .57 between pendulum test measures and other measures reflective of spasticity. Conclusion Pendulum test measures obtained with the Polhemus tracking system from the affected side of patients with stroke have good test-retest reliability and both known groups and convergent validity. PMID:19642989

  9. Improving the sensitivity of a torsion pendulum by using an optical spring method

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wang Qinglan; Yeh Hsienchi; Zhou Zebing

    We present a scheme aiming at improving the sensitivity of a torsion pendulum by means of radiation-pressure-induced optical spring. Two partial-reflective mirrors are installed on the opposite sides of a torsion pendulum, and one high-reflective mirror is mounted at the end of the torsion beam so that two identical Fabry-Perot cavities can be formed and aligned in series. Due to the antisymmetric radiation pressures acting on the opposite sides of the torsion beam, a negative restoring coefficient can be generated within a certain dynamic range, such that both the resultant torsional rigidity and the resonant frequency of the torsion pendulummore » are reduced, and the minimum detectable response torque in high-frequency region can be reduced accordingly.« less

  10. Modes of thrust generation in flying animals

    NASA Astrophysics Data System (ADS)

    Luo, Haoxiang; Song, Jialei; Tobalske, Bret; Luo Team; Tobalske Team

    2016-11-01

    For flying animals in forward flight, thrust is usually much smaller as compared with weight support and has not been given the same amount of attention. Several modes of thrust generation are discussed in this presentation. For insects performing slow flight that is characterized by low advance ratios (i.e., the ratio between flight speed and wing speed), thrust is usually generated by a "backward flick" mode, in which the wings moves upward and backward at a faster speed than the flight speed. Paddling mode is another mode used by some insects like fruit flies who row their wings backward during upstroke like paddles (Ristroph et al., PRL, 2011). Birds wings have high advance ratios and produce thrust during downstroke by directing aerodynamic lift forward. At intermediate advance ratios around one (e.g., hummingbirds and bats), the animal wings generate thrust during both downstroke and upstroke, and thrust generation during upstroke may come at cost of negative weight support. These conclusions are supported by previous experiment studies of insects, birds, and bats, as well as our recent computational modeling of hummingbirds. Supported by the NSF.

  11. Low-thrust chemical orbit transfer propulsion

    NASA Technical Reports Server (NTRS)

    Pelouch, J. J., Jr.

    1979-01-01

    The need for large structures in high orbit is reported in terms of the many mission opportunities which require such structures. Mission and transportation options for large structures are presented, and it is shown that low-thrust propulsion is an enabling requirement for some missions and greatly enhancing to many others. Electric and low-thrust chemical propulsion are compared, and the need for an requirements of low-thrust chemical propulsion are discussed in terms of the interactions that are perceived to exist between the propulsion system and the large structure.

  12. Computational Investigation of Fluidic Counterflow Thrust Vectoring

    NASA Technical Reports Server (NTRS)

    Hunter, Craig A.; Deere, Karen A.

    1999-01-01

    A computational study of fluidic counterflow thrust vectoring has been conducted. Two-dimensional numerical simulations were run using the computational fluid dynamics code PAB3D with two-equation turbulence closure and linear Reynolds stress modeling. For validation, computational results were compared to experimental data obtained at the NASA Langley Jet Exit Test Facility. In general, computational results were in good agreement with experimental performance data, indicating that efficient thrust vectoring can be obtained with low secondary flow requirements (less than 1% of the primary flow). An examination of the computational flowfield has revealed new details about the generation of a countercurrent shear layer, its relation to secondary suction, and its role in thrust vectoring. In addition to providing new information about the physics of counterflow thrust vectoring, this work appears to be the first documented attempt to simulate the counterflow thrust vectoring problem using computational fluid dynamics.

  13. Thrust control system design of ducted rockets

    NASA Astrophysics Data System (ADS)

    Chang, Juntao; Li, Bin; Bao, Wen; Niu, Wenyu; Yu, Daren

    2011-07-01

    The investigation of the thrust control system is aroused by the need for propulsion system of ducted rockets. Firstly the dynamic mathematical models of gas flow regulating system, pneumatic servo system and ducted rocket engine were established and analyzed. Then, to conquer the discussed problems of thrust control, the idea of information fusion was proposed to construct a new feedback variable. With this fused feedback variable, the thrust control system was designed. According to the simulation results, the introduction of the new fused feedback variable is valid in eliminating the contradiction between rapid response and stability for the thrust control system of ducted rockets.

  14. The thrust belt in Southwest Montana and east-central Idaho

    USGS Publications Warehouse

    Ruppel, Edward T.; Lopez, David A.

    1984-01-01

    The leading edge of the Cordilleran fold and thrust in southwest Montana appears to be a continuation of the edge of the Wyoming thrust belt, projected northward beneath the Snake River Plain. Trces of the thrust faults that form the leading edge of the thrust belts are mostly concealed, but stratigraphic and structural evidence suggests that the belt enters Montana near the middle of the Centennial Mountains, continues west along the Red Rock River valley, and swings north into the Highland Mountains near Butte. The thrust belt in southwest Montana and east-central Idaho includes at least two major plates -- the Medicine Lodge and Grasshopper thrust plates -- each of which contains a distinctive sequence of rocks, different in facies and structural style from those of the cratonic region east of the thrust belt. The thrust plates are characterized by persuasive, open to tight and locally overturned folds, and imbricate thrust faults, structural styles unusual in Phanerozoic cratonic rocks. The basal decollement zones of the plates are composed of intensely sheared, crushed, brecciated, and mylonitized rocks, the decollement at the base of the Medicine Lodge plate is as much as 300 meters thick. The Medicine Lodge and Grasshopper thrust plates are fringed on the east by a 10- to 50-kilometer-wide zone of tightly folded rocks cut by imbricate thrust fauls, a zone that forms the eastern margin of the thrust belt in southwest Montana. The frontal fold and thrust zone includes rocks that are similar to those of the craton, even though they differ in details of thickness, composition, or stratigraphic sequence. The zone is interpreted to be one of terminal folding and thrusting in cratonic rocks overridden by the major thrust plates from farther west. The cratonic rocks were drape-folded over rising basement blocks that formed a foreland bulge in front of the thrust belt. The basement blocks are bounded by steep faults of Proterozoic ancestry, which also moved as tear

  15. A Wave Power Device with Pendulum Based on Ocean Monitoring Buoy

    NASA Astrophysics Data System (ADS)

    Chai, Hui; Guan, Wanchun; Wan, Xiaozheng; Li, Xuanqun; Zhao, Qiang; Liu, Shixuan

    2018-01-01

    The ocean monitoring buoy usually exploits solar energy for power supply. In order to improve power supply capacity, this paper proposes a wave power device according to the structure and moving character of buoy. The wave power device composes of pendulum mechanism that converts wave energy into mechanical energy and energy storage mechanism where the mechanical energy is transferred quantitatively to generator. The hydrodynamic equation for the motion of buoy system with generator devise is established based on the potential flow theory, and then the characteristics of pendulum motion and energy conversion properties are analysed. The results of this research show that the proposed wave power devise is able to efficiently and periodically convert wave energy into power, and increasing the stiffness of energy storage spring is benefit for enhancing the power supply capacity of the buoy. This study provides a theory reference for the development of technology on wave power generator for ocean monitoring buoy.

  16. Pendulum impact tests of wooden and steel highway guardrail posts

    Treesearch

    Charles J. Gatchell; Jarvis D. Michie

    1974-01-01

    Impact strength characteristics of southern pine, red oak, and steel highway guardrail posts were evaluated in destructive impact testing with a 4,000-pound pendulum at the Southwest Research Institute. Effects were recorded with high-speed motion-picture equipment. Comparisons were based on reactions to the point of major post failure. Major comparisons of 6x6-inch...

  17. Misconceptions of Mexican Teachers in the Solution of Simple Pendulum

    ERIC Educational Resources Information Center

    Garcia Trujillo, Luis Antonio; Ramirez Díaz, Mario H.; Rodriguez Castillo, Mario

    2013-01-01

    Solving the position of a simple pendulum at any time is apparently one of the most simple and basic problems to solve in high school and college physics courses. However, because of this apparent simplicity, teachers and physics texts often assume that the solution is immediate without pausing to reflect on the problem formulation or verifying…

  18. Effective equations for the quantum pendulum from momentous quantum mechanics

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hernandez, Hector H.; Chacon-Acosta, Guillermo; Departamento de Matematicas Aplicadas y Sistemas, Universidad Autonoma Metropolitana-Cuajimalpa, Artificios 40, Mexico D. F. 01120

    In this work we study the quantum pendulum within the framework of momentous quantum mechanics. This description replaces the Schroedinger equation for the quantum evolution of the system with an infinite set of classical equations for expectation values of configuration variables, and quantum dispersions. We solve numerically the effective equations up to the second order, and describe its evolution.

  19. Powered Descent Guidance with General Thrust-Pointing Constraints

    NASA Technical Reports Server (NTRS)

    Carson, John M., III; Acikmese, Behcet; Blackmore, Lars

    2013-01-01

    The Powered Descent Guidance (PDG) algorithm and software for generating Mars pinpoint or precision landing guidance profiles has been enhanced to incorporate thrust-pointing constraints. Pointing constraints would typically be needed for onboard sensor and navigation systems that have specific field-of-view requirements to generate valid ground proximity and terrain-relative state measurements. The original PDG algorithm was designed to enforce both control and state constraints, including maximum and minimum thrust bounds, avoidance of the ground or descent within a glide slope cone, and maximum speed limits. The thrust-bound and thrust-pointing constraints within PDG are non-convex, which in general requires nonlinear optimization methods to generate solutions. The short duration of Mars powered descent requires guaranteed PDG convergence to a solution within a finite time; however, nonlinear optimization methods have no guarantees of convergence to the global optimal or convergence within finite computation time. A lossless convexification developed for the original PDG algorithm relaxed the non-convex thrust bound constraints. This relaxation was theoretically proven to provide valid and optimal solutions for the original, non-convex problem within a convex framework. As with the thrust bound constraint, a relaxation of the thrust-pointing constraint also provides a lossless convexification that ensures the enhanced relaxed PDG algorithm remains convex and retains validity for the original nonconvex problem. The enhanced PDG algorithm provides guidance profiles for pinpoint and precision landing that minimize fuel usage, minimize landing error to the target, and ensure satisfaction of all position and control constraints, including thrust bounds and now thrust-pointing constraints.

  20. Low-thrust chemical rocket engine study

    NASA Technical Reports Server (NTRS)

    Shoji, J. M.

    1981-01-01

    An analytical study evaluating thrust chamber cooling engine cycles and preliminary engine design for low thrust chemical rocket engines for orbit transfer vehicles is described. Oxygen/hydrogen, oxygen/methane, and oxygen/RP-1 engines with thrust levels from 444.8 N to 13345 N, and chamber pressures from 13.8 N/sq cm to 689.5 N/sq cm were evaluated. The physical and thermodynamic properties of the propellant theoretical performance data, and transport properties are documented. The thrust chamber cooling limits for regenerative/radiation and film/radiation cooling are defined and parametric heat transfer data presented. A conceptual evaluation of a number of engine cycles was performed and a 2224.1 N oxygen/hydrogen engine cycle configuration and a 2224.1 N oxygen/methane configuration chosen for preliminary engine design. Updated parametric engine data, engine design drawings, and an assessment of technology required are presented.

  1. In-water gas combustion for thrust production

    NASA Astrophysics Data System (ADS)

    Teslenko, V. S.; Drozhzhin, A. P.; Medvedev, R. N.

    2017-07-01

    The paper presents the results of experimental study for hydrodynamic processes occurring during combustion of a stoichiometric mixture propane-oxygen in combustion chambers with different configurations and submerged into water. The pulses of force acting upon a thrust wall were measured for different geometries: cylindrical, conic, hemispherical, including the case of gas combustion near a flat thrust wall. After a single charge of stoichiometric mixture propane-oxygen is burnt near the thrust wall, the process of cyclic generation of force pulses develops. The first pulse is generated due to pressure growth during gas combustion, and the following pulses are the result of hydrodynamic pulsations of the gaseous cavity. Experiments demonstrated that efficient generation of thrust occurs if all bubble pulsations are used during combustion of a single gas combustion. In the series of experiments, the specific impulse on the thrust wall was in the range 104-105 s (105-106 m/s) with account for positive and negative components of impulse.

  2. The Lunar Dust Pendulum

    NASA Technical Reports Server (NTRS)

    Kuntz, Kip; Collier, Michael R.; Stubbs, Timothy J.; Farrell, William M.

    2011-01-01

    Shadowed regions on the lunar surface acquire a negative potential. In particular, shadowed craters can have a negative potential with respect to the surrounding lunar regolith in sunlight, especially near the terminator regions. Here we analyze the motion of a positively charged lnnar dust grain in the presence of a shadowed crater at a negative potential in vacuum. Previous models describing the transport of charged lunar dust close to the surface have typically been limited to one-dimensional motion in the vertical direction, e.g. electrostatic levitation; however. the electric fields in the vicinity of shadowed craters will also have significant components in the horizontal directions. We propose a model that includes both the horizontal and vertical motion of charged dust grains near shadowed craters. We show that the dust grains execute oscillatory trajectories and present an expression for the period of oscillation drawing an analogy to the motion of a pendulum.

  3. The Lunar Dust Pendulum

    NASA Technical Reports Server (NTRS)

    Collier, Michael R.; Stubbs, Timothy J.; Farrell, William M.

    2011-01-01

    Shadowed regions on the lunar surface acquire a negative potential. In particular, shadowed craters can have a negative potential with respect to the surrounding lunar regolith in sunlight, especially near the terminator regions. Here we analyze the motion of a positively charged lunar dust grain in the presence of a shadowed crater at a negative potential in vacuum. Previous models describing the transport of charged lunar dust close to the surface have typically been limited to one-dimensional motion in the vertical direction, e.g. electrostatic levitation; however, the electric fields in the vicinity of shadowed craters will also have significant components in the horizontal directions. We propose a model that includes both the horizontal and vertical motion of charged dust grains near shadowed craters. We show that the dust grains execute oscillatory trajectories and present an expression for the period of oscillation drawing an analogy to the motion of a pendulum.

  4. Acceleration control system for semi-active in-car crib with joint application of regular and inverted pendulum mechanisms

    NASA Astrophysics Data System (ADS)

    Kawashima, T.

    2016-09-01

    To reduce the risk of injury to an infant in an in-car crib (or in a child safety bed) collision shock during a car crash, it is necessary to maintain a constant force acting on the crib below a certain allowable value. To realize this objective, we propose a semi-active in-car crib system with the joint application of regular and inverted pendulum mechanisms. The arms of the proposed crib system support the crib like a pendulum while the pendulum system itself is supported like an inverted pendulum by the arms. In addition, the friction torque of each arm is controlled using a brake mechanism that enables the proposed in-car crib to decrease the acceleration of the crib gradually and maintain it around the target value. This system not only reduces the impulsive force but also transfers the force to the infant's back using a spin control system, i.e., the impulse force acts is made to act perpendicularly on the crib. The spin control system was developed in our previous work. This work focuses on the acceleration control system. A semi-active control law with acceleration feedback is introduced, and the effectiveness of the system is demonstrated using numerical simulation and model experiment.

  5. Culturing muscle fibres in hanging drop: a novel approach to solve an old problem.

    PubMed

    Archacka, Karolina; Pozzobon, Michela; Repele, Andrea; Rossi, Carlo Alberto; Campanella, Michelangelo; De Coppi, Paolo

    2014-02-01

    The satellite cells (SCs) associated with muscle fibres play a key role in postnatal growth and regeneration of skeletal muscle. Commonly used methods of isolation and in vitro culture of SCs lead to the mixture of their subpopulations that exist within muscle. To solve this problem, we used the well established technique, the hanging drop system, to culture SCs in a three-dimensional environment and thus, to monitor them in their original niche. Using hanging drop technique, we were able to culture SCs associated with the fibre at least for 9 days with one transfer of fibres to the fresh drops. In comparison, in the classical method of myofibres culture, that is, on the dishes coated with Matrigel, SCs leave the fibres within 3 days after the isolation. Cells cultured in both systems differed in expression of Pax7 and MyoD. While almost all cells cultured in adhesion system expressed MyoD before the fifth day of the culture, the majority of SCs cultured in hanging drop still maintained expression of Pax7 and were not characterised by the presence of MyoD. Among the cells cultured with single myofibre for up to 9 days, we identified two different subclones of SCs: low proliferative clone and high proliferative clone, which differed in proliferation rate and membrane potential. The hanging drop enables the myofibres to be kept in suspension for at least 9 days, and thus, allows SCs and their niche to interact each other for prolonged time. In a consequence, SCs cultured in hanging drop maintain expression of Pax7 while those cultured in a traditional adhesion culture, that is, devoid of signals from the original niche, activate and preferentially undergo differentiation as manifested by expression of MyoD. Thus, the innovative method of SCs culturing in the hanging drop system may serve as a useful tool to study the fate of different subpopulations of these cells in their anatomical location and to determine reciprocal interactions between them and their niche.

  6. Vertical-plane pendulum absorbers for minimizing helicopter vibratory loads

    NASA Technical Reports Server (NTRS)

    Amer, K. B.; Neff, J. R.

    1974-01-01

    The use of pendulum dynamic absorbers mounted on the blade root and operating in the vertical plane to minimize helicopter vibratory loads was discussed. A qualitative description was given of the concept of the dynamic absorbers and some results of analytical studies showing the degree of reduction in vibratory loads attainable are presented. Operational experience of vertical plane dynamic absorbers on the OH-6A helicopter is also discussed.

  7. Mini-implant-borne Pendulum B appliance for maxillary molar distalisation: design and clinical procedure.

    PubMed

    Wilmes, Benedict; Katyal, Vandana; Drescher, Dieter

    2014-11-01

    A treatment objective of upper molar distalisation may often be required during the correction of a malocclusion. Distalisation is not only indicated for the management of Class II patients, but also for Class III surgery patients who require decompensation in the upper arch if upper incisor retrusion is needed. Unfortunately, most conventional intra-oral devices for non-compliance maxillary molar distalisation experience anchorage loss. A Pendulum type of appliance and a mini-implant-borne distalisation mechanism have been designed which can be inserted at chair-side, without a prior laboratory procedure and immediately after mini-implant placement. For re-activation purposes, a distal screw may be added to the Pendulum B appliance.

  8. Christiaan Huygens and the Problem of the Hanging Chain

    ERIC Educational Resources Information Center

    Bukowski, John F.

    2008-01-01

    The seventeen-year-old Christiaan Huygens was the first to prove that a hanging chain did not take the form of the parabola, as was commonly thought in the early seventeenth century. We will examine Huygen's geometrical proof, and we will investigate the later history of the catenary.

  9. Tests on Thrust Augmenters for Jet Propulsion

    NASA Technical Reports Server (NTRS)

    Jacobs, Eastman N; Shoemaker, James M

    1932-01-01

    This series of tests was undertaken to determine how much the reaction thrust of a jet could be increased by the use of thrust augmenters and thus to give some indication as to the feasibility of jet propulsion for airplanes. The tests were made during the first part of 1927 at the Langley Memorial Aeronautical Laboratory. A compressed air jet was used in connection with a series of annular guides surrounding the jet to act as thrust augmenters. The results show that, although it is possible to increase the thrust of a jet, the increase is not large enough to affect greatly the status of the problem of the application of jet propulsion to airplanes.

  10. THRUST BEARING

    DOEpatents

    Heller, P.R.

    1958-09-16

    A thrust bearing suitable for use with a rotor or blower that is to rotate about a vertical axis is descrihed. A centrifagal jack is provided so thnt the device may opernte on one hearing at starting and lower speeds, and transfer the load to another bearing at higher speeds. A low viscosity fluid is used to lubricate the higher speed operation bearing, in connection with broad hearing -surfaces, the ability to withstand great loads, and a relatively high friction loss, as contraated to the lower speed operatio;n bearing which will withstand only light thrust loads but is sufficiently frictionfree to avoid bearing seizure during slow speed or startup operation. An axially aligned shaft pin provides the bearing surface for low rotational speeds, but at higher speed, weights operating against spring tension withdraw nthe shaft pin into the bearing proper and the rotor shaft comes in contact with the large bearing surfaces.

  11. 75 FR 73074 - Duke Energy Hanging Rock II, LLC; Supplemental Notice That Initial Market-Based Rate Filing...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-11-29

    ... DEPARTMENT OF ENERGY Federal Energy Regulatory Commission [Docket No. ER11-2064-000] Duke Energy Hanging Rock II, LLC; Supplemental Notice That Initial Market-Based Rate Filing Includes Request for... proceeding, of Duke Energy Hanging Rock II, LLC's application for market-based rate authority, with an...

  12. Origin of the Uinta recess, Sevier fold thrust belt, Utah: influence of basin architecture on fold thrust belt geometry

    NASA Astrophysics Data System (ADS)

    Paulsen, Timothy; Marshak, Stephen

    1999-11-01

    Structural trends in the Sevier fold-thrust belt define a pronounced concave-to-the-foreland map-view curve, the Uinta recess, in north-central Utah. This recess separates two convex-to-the-foreland curves, the Provo salient on the south and the Wyoming salient on the north. The two limbs of the recess comprise transverse zones (fault zones at a high-angle to the regional trend of the orogen) that border the flanks of the east-west-trending Uinta/Cottonwood arch. Our structural analysis indicates that the transverse zones formed during the Sevier orogeny, and that they differ markedly from each other in structural style. The Charleston transverse zone (CTZ), on the south side of the arch, initiated as a complex sinistral strike-slip fault system that defines the abrupt northern boundary of the Provo salient. The Mount Raymond transverse zone (MRTZ), on the north side of the arch, represents the region in which the southeast-verging southern limb of the gently curving Wyoming salient was tilted northwards during the Laramide phase of uplift of the Uinta/Cottonwood arch. In effect, the MRTZ represents an oblique cross section through a thrust belt. The contrasting architecture of these transverse zones demonstrates how pre-deformation basin geometry influences the geometry of a fold-thrust belt. Analysis of isopach maps indicates that, at the time the Sevier fold-thrust belt formed, the area just north of the present site of the Uinta/Cottonwood arch was a basement high, with a gently dipping north flank, and a steeply dipping south flank. Thus, predeformational sediment thickened abruptly to the south of the high and thickened gradually to the north of the high. As illustrated by sandbox models, the distance that a fold-thrust belt propagates into the foreland depends on the thickness of the sedimentary layer being deformed, so the shape of the salient mimics the longitudinal cross-sectional shape of the sedimentary basin. Where basins taper gradually along strike

  13. Quiet Clean Short-Haul Experimental Engine (QCSEE) acoustic and aerodynamic tests on a scale model over-the-wing thrust reverser and forward thrust nozzle

    NASA Technical Reports Server (NTRS)

    Stimpert, D. L.

    1978-01-01

    An acoustic and aerodynamic test program was conducted on a 1/6.25 scale model of the Quiet, Clean, Short-Haul Experimental Engine (QCSEE) forward thrust over-the-wing (OTW) nozzle and OTW thrust reverser. In reverse thrust, the effect of reverser geometry was studied by parametric variations in blocker spacing, blocker height, lip angle, and lip length. Forward thrust nozzle tests determined the jet noise levels of the cruise and takeoff nozzles, the effect of opening side doors to achieve takeoff thrust, and scrubbing noise of the cruise and takeoff jet on a simulated wing surface. Velocity profiles are presented for both forward and reverse thrust nozzles. An estimate of the reverse thrust was made utilizing the measured centerline turning angle.

  14. On the calculation of low-thrust fail-safe trajectories

    NASA Technical Reports Server (NTRS)

    Sauer, C. G., Jr.

    1975-01-01

    A guidance algorithm is developed for a low-thrust spacecraft such that target intercept is possible in spite of premature thrust termination along the trajectory. Such a trajectory is called a 'fail-safe' trajectory and the spacecraft thrust is utilized to minimize the relative target-spacecraft approach speed. The fail-safe guidance algorithm is solved using the concept of a critical thrust plane and a non-critical thrust direction. Several examples of fail-safe guidance are presented for a solar-electric propulsion flyby mission to the comet Encke.

  15. 14 CFR 33.97 - Thrust reversers.

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... 14 Aeronautics and Space 1 2013-01-01 2013-01-01 false Thrust reversers. 33.97 Section 33.97 Aeronautics and Space FEDERAL AVIATION ADMINISTRATION, DEPARTMENT OF TRANSPORTATION AIRCRAFT AIRWORTHINESS STANDARDS: AIRCRAFT ENGINES Block Tests; Turbine Aircraft Engines § 33.97 Thrust reversers. (a) If the...

  16. 14 CFR 33.97 - Thrust reversers.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... 14 Aeronautics and Space 1 2011-01-01 2011-01-01 false Thrust reversers. 33.97 Section 33.97 Aeronautics and Space FEDERAL AVIATION ADMINISTRATION, DEPARTMENT OF TRANSPORTATION AIRCRAFT AIRWORTHINESS STANDARDS: AIRCRAFT ENGINES Block Tests; Turbine Aircraft Engines § 33.97 Thrust reversers. (a) If the...

  17. 14 CFR 33.97 - Thrust reversers.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... 14 Aeronautics and Space 1 2014-01-01 2014-01-01 false Thrust reversers. 33.97 Section 33.97 Aeronautics and Space FEDERAL AVIATION ADMINISTRATION, DEPARTMENT OF TRANSPORTATION AIRCRAFT AIRWORTHINESS STANDARDS: AIRCRAFT ENGINES Block Tests; Turbine Aircraft Engines § 33.97 Thrust reversers. (a) If the...

  18. Mechanical design of the University of Florida Torsion Pendulum for testing the LISA Gravitational Reference Sensor

    NASA Astrophysics Data System (ADS)

    Shelley, Ryan; Chilton, Andrew; Olatunde, Tawio; Ciani, Giacomo; Mueller, Guido; Conklin, John

    2014-03-01

    The Laser Interferometer Space Antenna (LISA) requires free falling test masses, whose acceleration must be below 3 fm/s2/rtHz in the lower part of LISA's frequency band ranging from 0.1 to 100 mHz. Gravitational reference sensors (GRS) house the test masses, shield them from external disturbances, control their orientation, and sense their position at the nm/rtHz level. The GRS torsion pendulum is a laboratory test bed for GRS technology. By decoupling the system of test masses from the gravity of the Earth, it is possible to identify and quantify many sources of noise in the sensor. The mechanical design of the pendulum is critical to the study of the noise sources and the development of new technologies that can improve performance and reduce cost. The suspended test mass is a hollow, gold-coated, aluminum cube which rests inside a gold-coated, aluminum housing with electrodes for sensing and actuating all six degrees of freedom. This poster describes the design, analysis, and assembly of the mechanical subsystems of the UF Torsion Pendulum.

  19. Teaching from a Microgravity Environment: Harmonic Oscillator and Pendulum

    NASA Astrophysics Data System (ADS)

    Benge, Raymond; Young, Charlotte; Davis, Shirley; Worley, Alan; Smith, Linda; Gell, Amber

    2009-04-01

    This presentation reports on an educational experiment flown in January 2009 as part of NASA's Microgravity University program. The experiment flown was an investigation into the properties of harmonic oscillators in reduced gravity. Harmonic oscillators are studied in every introductory physics class. The equation for the period of a harmonic oscillator does not include the acceleration due to gravity, so the period should be independent of gravity. However, the equation for the period of a pendulum does include the acceleration due to gravity, so the period of a pendulum should appear longer under reduced gravity (such as lunar or Martian gravity) and shorter under hyper-gravity. These environments can be simulated aboard an aircraft. Video of the experiments being performed aboard the aircraft is to be used in introductory physics classes. Students will be able to record information from watching the experiment performed aboard the aircraft in a similar manner to how they collect data in the laboratory. They can then determine if the experiment matches theory. Video and an experimental procedure are being prepared based upon this flight, and these materials will be available for download by faculty anywhere with access to the internet who wish to use the experiment in their own classrooms.

  20. Evaluation of various thrust calculation techniques on an F404 engine

    NASA Technical Reports Server (NTRS)

    Ray, Ronald J.

    1990-01-01

    In support of performance testing of the X-29A aircraft at the NASA-Ames, various thrust calculation techniques were developed and evaluated for use on the F404-GE-400 engine. The engine was thrust calibrated at NASA-Lewis. Results from these tests were used to correct the manufacturer's in-flight thrust program to more accurately calculate thrust for the specific test engine. Data from these tests were also used to develop an independent, simplified thrust calculation technique for real-time thrust calculation. Comparisons were also made to thrust values predicted by the engine specification model. Results indicate uninstalled gross thrust accuracies on the order of 1 to 4 percent for the various in-flight thrust methods. The various thrust calculations are described and their usage, uncertainty, and measured accuracies are explained. In addition, the advantages of a real-time thrust algorithm for flight test use and the importance of an accurate thrust calculation to the aircraft performance analysis are described. Finally, actual data obtained from flight test are presented.

  1. Acceleration of neutrons in a scheme of a tautochronous mathematical pendulum (physical principles)

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Rivlin, Lev A

    We consider the physical principles of neutron acceleration through a multiple synchronous interaction with a gradient rf magnetic field in a scheme of a tautochronous mathematical pendulum. (laser applications and other aspects of quantum electronics)

  2. A 10 nN resolution thrust-stand for micro-propulsion devices

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Chakraborty, Subha; Courtney, Daniel G.; Shea, Herbert, E-mail: herbert.shea@epfl.ch

    We report on the development of a nano-Newton thrust-stand that can measure up to 100 μN thrust from different types of microthrusters with 10 nN resolution. The compact thrust-stand measures the impingement force of the particles emitted from a microthruster onto a suspended plate of size 45 mm × 45 mm and with a natural frequency over 50 Hz. Using a homodyne (lock-in) readout provides strong immunity to facility vibrations, which historically has been a major challenge for nano-Newton thrust-stands. A cold-gas thruster generating up to 50 μN thrust in air was first used to validate the thrust-stand. Better thanmore » 10 nN resolution and a minimum detectable thrust of 10 nN were achieved. Thrust from a miniature electrospray propulsion system generating up to 3 μN of thrust was measured with our thrust-stand in vacuum, and the thrust was compared with that computed from beam diagnostics, obtaining agreement within 50 nN to 150 nN. The 10 nN resolution obtained from this thrust-stand matches that from state-of-the-art nano-Newton thrust-stands, which measure thrust directly from the thruster by mounting it on a moving arm (but whose natural frequency is well below 1 Hz). The thrust-stand is the first of its kind to demonstrate less than 3 μN resolution by measuring the impingement force, making it capable of measuring thrust from different types of microthrusters, with the potential of easy upscaling for thrust measurement at much higher levels, simply by replacing the force sensor with other force sensors.« less

  3. A 10 nN resolution thrust-stand for micro-propulsion devices

    NASA Astrophysics Data System (ADS)

    Chakraborty, Subha; Courtney, Daniel G.; Shea, Herbert

    2015-11-01

    We report on the development of a nano-Newton thrust-stand that can measure up to 100 μN thrust from different types of microthrusters with 10 nN resolution. The compact thrust-stand measures the impingement force of the particles emitted from a microthruster onto a suspended plate of size 45 mm × 45 mm and with a natural frequency over 50 Hz. Using a homodyne (lock-in) readout provides strong immunity to facility vibrations, which historically has been a major challenge for nano-Newton thrust-stands. A cold-gas thruster generating up to 50 μN thrust in air was first used to validate the thrust-stand. Better than 10 nN resolution and a minimum detectable thrust of 10 nN were achieved. Thrust from a miniature electrospray propulsion system generating up to 3 μN of thrust was measured with our thrust-stand in vacuum, and the thrust was compared with that computed from beam diagnostics, obtaining agreement within 50 nN to 150 nN. The 10 nN resolution obtained from this thrust-stand matches that from state-of-the-art nano-Newton thrust-stands, which measure thrust directly from the thruster by mounting it on a moving arm (but whose natural frequency is well below 1 Hz). The thrust-stand is the first of its kind to demonstrate less than 3 μN resolution by measuring the impingement force, making it capable of measuring thrust from different types of microthrusters, with the potential of easy upscaling for thrust measurement at much higher levels, simply by replacing the force sensor with other force sensors.

  4. An optimized protocol for handling and processing fragile acini cultured with the hanging drop technique.

    PubMed

    Snyman, Celia; Elliott, Edith

    2011-12-15

    The hanging drop three-dimensional culture technique allows cultivation of functional three-dimensional mammary constructs without exogenous extracellular matrix. The fragile acini are, however, difficult to preserve during processing steps for advanced microscopic investigation. We describe adaptations to the protocol for handling of hanging drop cultures to include investigation using confocal, scanning, and electron microscopy, with minimal loss of cell culture components. Copyright © 2011 Elsevier Inc. All rights reserved.

  5. Thrust and Propulsive Efficiency from an Instructive Viewpoint

    ERIC Educational Resources Information Center

    Kaufman, Richard D.

    2010-01-01

    In a typical engineering or physics curriculum, the momentum equation is used for the determination of jet engine thrust. Even a simple thrust analysis requires a heavy emphasis on mathematics that can cause students and engineers to lose a physical perspective on thrust. This article provides for this physical understanding using only static…

  6. Extended performance solar electric propulsion thrust system study. Volume 3: Tradeoff studies of alternate thrust system configurations

    NASA Technical Reports Server (NTRS)

    Hawthorne, E. I.

    1977-01-01

    Several thrust system design concepts were evaluated and compared using the specifications of the most advanced 30 cm engineering model thruster as the technology base. Emphasis was placed on relatively high power missions. The extensions in thruster performance required for the Halley's comet mission were defined and alternative thrust system concepts were designed in sufficient detail for comparing mass, efficiency, reliability, structure, and thermal characteristics. Confirmation testing and analysis of thruster and power-processing components were performed. A baseline design was selected from the alternatives considered, and the design analysis and documentation were refined. A program development plan was formulated that outlines the work structure considered necessary for developing, qualifying, and fabricating the flight hardware for the baseline thrust system within the time frame of a project to rendezvous with Halley's comet. An assessment was made of the costs and risks associated with a baseline thrust system as provided to the mission project under this plan. Critical procurements and interfaces were identified and defined.

  7. Performance of an inverted pendulum model directly applied to normal human gait.

    PubMed

    Buczek, Frank L; Cooney, Kevin M; Walker, Matthew R; Rainbow, Michael J; Concha, M Cecilia; Sanders, James O

    2006-03-01

    In clinical gait analysis, we strive to understand contributions to body support and propulsion as this forms a basis for treatment selection, yet the relative importance of gravitational forces and joint powers can be controversial even for normal gait. We hypothesized that an inverted pendulum model, propelled only by gravity, would be inadequate to predict velocities and ground reaction forces during gait. Unlike previous ballistic and passive dynamic walking studies, we directly compared model predictions to gait data for 24 normal children. We defined an inverted pendulum from the average center-of-pressure to the instantaneous center-of-mass, and derived equations of motion during single support that allowed a telescoping action. Forward and inverse dynamics predicted pendulum velocities and ground reaction forces, and these were statistically and graphically compared to actual gait data for identical strides. Results of forward dynamics replicated those in the literature, with reasonable predictions for velocities and anterior ground reaction forces, but poor predictions for vertical ground reaction forces. Deviations from actual values were explained by joint powers calculated for these subjects. With a telescoping action during inverse dynamics, predicted vertical forces improved dramatically and gained a dual-peak pattern previously missing in the literature, yet expected for normal gait. These improvements vanished when telescoping terms were set to zero. Because this telescoping action is difficult to explain without muscle activity, we believe these results support the need for both gravitational forces and joint powers in normal gait. Our approach also begins to quantify the relative contributions of each.

  8. Novel application of a Wii remote to measure spasticity with the pendulum test: Proof of concept

    PubMed Central

    Yeh, Chien-Hung; Hung, Chi-Yao; Wang, Yung-Hung; Hsu, Wei-Tai; Chang, Yi-Chung; Yeh, Jia-Rong; Lee, Po-Lei; Hu, Kun; Kang, Jiunn-Horng; Lo, Men-Tzung

    2016-01-01

    Background The pendulum test is a standard clinical test for quantifying the severity of spasticity. In the test, an electrogoniometer is typically used to measure the knee angular motion. The device is costly and difficult to set up such that the pendulum test is normally time consuming. Objective The goal of this study is to determine whether a Nintendo Wii remote can replace the electrogroniometer for reliable assessment of the angular motion of the knee in the pendulum test. Methods The pendulum test was performed in three control participants and 13 hemiplegic stroke patients using both a Wii remote and an electrogoniometer. The correlation coefficient and the Bland–Altman difference plot were used to compare the results obtained from the two devices. The Wilcoxon signed-rank test was used to compare the difference between hemiplegia-affected and nonaffected sides in the hemiplegic stroke patients. Results There was a fair to strong correlation between measurements from the Wii remote and the electrogoniometer (0.513 < R2 < 0.800). Small but consistent differences between the Wii remote and electrogoniometer were identified from the Bland–Altman difference plot. Within the hemiplegic stroke patients, both devices successfully distinguished the hemiplegia-affected (spastic) side from the nonaffected (nonspastic) side (both with p < .0001*). In addition, the intraclass correlation coefficient, standard error of measurement, and minimum detectable differences were highly consistent for both devices. Conclusion Our findings suggest that the Wii remote may serve as a convenient and cost-efficient tool for the assessment of spasticity. PMID:26669955

  9. Novel application of a Wii remote to measure spasticity with the pendulum test: Proof of concept.

    PubMed

    Yeh, Chien-Hung; Hung, Chi-Yao; Wang, Yung-Hung; Hsu, Wei-Tai; Chang, Yi-Chung; Yeh, Jia-Rong; Lee, Po-Lei; Hu, Kun; Kang, Jiunn-Horng; Lo, Men-Tzung

    2016-01-01

    The pendulum test is a standard clinical test for quantifying the severity of spasticity. In the test, an electrogoniometer is typically used to measure the knee angular motion. The device is costly and difficult to set up such that the pendulum test is normally time consuming. The goal of this study is to determine whether a Nintendo Wii remote can replace the electrogroniometer for reliable assessment of the angular motion of the knee in the pendulum test. The pendulum test was performed in three control participants and 13 hemiplegic stroke patients using both a Wii remote and an electrogoniometer. The correlation coefficient and the Bland-Altman difference plot were used to compare the results obtained from the two devices. The Wilcoxon signed-rank test was used to compare the difference between hemiplegia-affected and nonaffected sides in the hemiplegic stroke patients. There was a fair to strong correlation between measurements from the Wii remote and the electrogoniometer (0.513

  10. Investigation of Thrust Augmentation of a 1600-pound Thrust Centrifugal-flow-type Turbojet Engine by Injection of Refrigerants at Compressor Inlets

    NASA Technical Reports Server (NTRS)

    Jones, William L.; Dowman, Harry W.

    1947-01-01

    Investigations were conducted to determine effectiveness of refrigerants in increasing thrust of turbojet engines. Mixtures of water an alcohol were injected for a range of total flows up to 2.2 lb/sec. Kerosene was injected into inlets covering a range of injected flows up to approximately 30% of normal engine fuel flow. Injection of 2.0 lb/sec of water alone produced an increase in thrust of 35.8% of rate engine conditions and kerosene produced a negligible increase in thrust. Carbon dioxide increased thrust 23.5 percent.

  11. Water resources and effects of potential surface coal mining on dissolved solids in Hanging Woman Creek basin, southeastern Montana

    USGS Publications Warehouse

    Cannon, M.R.

    1989-01-01

    Groundwater resources of the Hanging Woman Creek basin, Montana include Holocene and Pleistocene alluvial aquifers and sandstone , coal, and clinker aquifers in the Paleocene Fort Union Formation. Surface water resources are composed of Hanging Woman Creek, its tributaries, and small stock ponds. Dissolved-solids concentrations in groundwater ranged from 200 to 11,00 mg/L. Generally, concentrations were largest in alluvial aquifers and smallest in clinker aquifers. Near its mouth, Hanging Woman Creek had a median concentration of about 1,800 mg/L. Mining of the 20-foot to 35-foot-thick Anderson coal bed and 3-foot to 16-foot thick Dietz coal bed could increase dissolved-solids concentrations in shallow aquifers and in Hanging Woman Creek because of leaching of soluble minerals from mine spoils. Analysis of saturated-paste extracts from 158 overburden samples indicated that water moving through mine spoils would have a median increase in dissolved-solids concentration of about 3,700 mg/L, resulting in an additional dissolved-solids load to Hanging Woman Creek of about 3.0 tons/day. Hanging Woman Creek near Birney could have an annual post-mining dissolved-solids load of 3,415 tons at median discharge, a 47% increase from pre-mining conditions load. Post-mining concentrations of dissolved solids, at median discharge, could range from 2,380 mg/L in March to 3,940 mg/L in August, compared to mean pre-mining concentrations that ranged from 1,700 mg/L in July, November, and December to 2,060 mg/L in May. Post-mining concentrations and loads in Hanging Woman Creek would be smaller if a smaller area were mined. (USGS)

  12. Nanonewton thrust measurement of photon pressure propulsion using semiconductor laser

    NASA Astrophysics Data System (ADS)

    Iwami, K.; Akazawa, Taku; Ohtsuka, Tomohiro; Nishida, Hiroyuki; Umeda, Norihiro

    2011-09-01

    To evaluate the thrust produced by photon pressure emitted from a 100 W class continuous-wave semiconductor laser, a torsion-balance precise thrust stand is designed and tested. Photon emission propulsion using semiconductor light sources attract interests as a possible candidate for deep-space propellant-less propulsion and attitude control system. However, the thrust produced by photon emission as large as several ten nanonewtons requires precise thrust stand. A resonant method is adopted to enhance the sensitivity of the biflier torsional-spring thrust stand. The torsional spring constant and the resonant of the stand is 1.245 × 10-3 Nm/rad and 0.118 Hz, respectively. The experimental results showed good agreement with the theoretical estimation. The thrust efficiency for photon propulsion was also defined. A maximum thrust of 499 nN was produced by the laser with 208 W input power (75 W of optical output) corresponding to a thrust efficiency of 36.7%. The minimum detectable thrust of the stand was estimated to be 2.62 nN under oscillation at a frequency close to resonance.

  13. Implementation of Push Recovery Strategy Using Triple Linear Inverted Pendulum Model in “T-FloW” Humanoid Robot

    NASA Astrophysics Data System (ADS)

    Dimas Pristovani, R.; Raden Sanggar, D.; Dadet, Pramadihanto.

    2018-04-01

    Push recovery is one of humanbehaviorwhich is a strategy to defend the body from anexternal force in any environment. This paper describes push recovery strategy which usesMIMO decoupled control system method. The dynamics system uses aquasi-dynamic system based on triple linear inverted pendulum model (TLIPM). The analysis of TLIPMuses zero moment point (ZMP) calculation from ZMP simplification in last research. By using this simplification of dynamics system, the control design can be simplified into 3 serial SISOwith known and uncertain disturbance models in each inverted pendulum. Each pendulum has different plan to damp the external force effect. In this experiment, PID controller (closed- loop)is used to arrange the damp characteristic.The experiment result shows thatwhen using push recovery control strategy (closed-loop control) is about 85.71% whilewithout using push recovery control strategy (open-loop control) it is about 28.57%.

  14. Multiphysics Nuclear Thermal Rocket Thrust Chamber Analysis

    NASA Technical Reports Server (NTRS)

    Wang, Ten-See

    2005-01-01

    The objective of this effort is t o develop an efficient and accurate thermo-fluid computational methodology to predict environments for hypothetical thrust chamber design and analysis. The current task scope is to perform multidimensional, multiphysics analysis of thrust performance and heat transfer analysis for a hypothetical solid-core, nuclear thermal engine including thrust chamber and nozzle. The multiphysics aspects of the model include: real fluid dynamics, chemical reactivity, turbulent flow, and conjugate heat transfer. The model will be designed to identify thermal, fluid, and hydrogen environments in all flow paths and materials. This model would then be used to perform non- nuclear reproduction of the flow element failures demonstrated in the Rover/NERVA testing, investigate performance of specific configurations and assess potential issues and enhancements. A two-pronged approach will be employed in this effort: a detailed analysis of a multi-channel, flow-element, and global modeling of the entire thrust chamber assembly with a porosity modeling technique. It is expected that the detailed analysis of a single flow element would provide detailed fluid, thermal, and hydrogen environments for stress analysis, while the global thrust chamber assembly analysis would promote understanding of the effects of hydrogen dissociation and heat transfer on thrust performance. These modeling activities will be validated as much as possible by testing performed by other related efforts.

  15. White River National Forest Hanging Lake transportation and operations study

    DOT National Transportation Integrated Search

    2017-05-01

    Hanging Lake is a recreation site located on land managed by the U.S. Forest Service (USFS) under the jurisdiction of the White River National Forests Eagle-Holy Cross Ranger District. Due to its increasing popularity over the past few years, the ...

  16. Detail view to show the bronze gates hanging in the ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    Detail view to show the bronze gates hanging in the driveway portals; the open grille is foliated and crowned with patriotic eagle emblems - United States Department of Commerce, Bounded by Fourteenth, Fifteenth, and E streets and Constitution Avenue, Washington, District of Columbia, DC

  17. Thrust Augmentation with Mixer/Ejector Systems

    NASA Technical Reports Server (NTRS)

    Presz, Walter M., Jr.; Reynolds, Gary; Hunter, Craig

    2002-01-01

    Older commercial aircraft often exceed FAA (Federal Aviation Administration) sideline noise regulations. The major problem is the jet noise associated with the high exhaust velocities of the low bypass ratio engines on such aircraft. Mixer/ejector exhaust systems can provide a simple means of reducing the jet noise on these aircraft by mixing cool ambient air with the high velocity engine gases before they are exhausted to ambient. This paper presents new information on thrust performance predictions, and thrust augmentation capabilities of mixer/ejectors. Results are presented from the recent development program of the patented Alternating Lobe Mixer Ejector Concept (ALMEC) suppressor system for the Gulfstream GII, GIIB and GIII aircraft. Mixer/ejector performance procedures are presented which include classical control volume analyses, compound compressible flow theory, lobed nozzle loss correlations and state of the art computational fluid dynamic predictions. The mixer/ejector thrust predictions are compared to subscale wind tunnel test model data and actual aircraft flight test measurements. The results demonstrate that a properly designed mixer/ejector noise suppressor can increase effective engine bypass ratio and generate large thrust gains at takeoff conditions with little or no thrust loss at cruise conditions. The cruise performance obtained for such noise suppressor systems is shown to be a strong function of installation effects on the aircraft.

  18. Unusual planned complex suicide committed with a muzzle-loading pistol in combination with subsequent hanging.

    PubMed

    Ondruschka, Benjamin; Morgenthal, Sylvia; Dreβler, Jan; Bayer, Ronny

    2016-11-01

    In Germany, suicides by firearms are not very common in contrast to deaths by hanging and intoxications. The use of historical muzzle-loading firearms in the context of suicides is a rarity. Contact shots from muzzle loaders cause an unusual wound morphology with extensive soot soiling. We report the case of a 59-year-old man, who committed a planned complex suicide by shooting into his mouth with a replica percussion gun in combination with hanging. The gunshot injury showed strong explosive effects in the oral cavity with fractures of the facial bones and the skull associated with cerebral evisceration (so-called Krönlein shot). Due to the special constellation of the case with hanging immediately after the shot, external bleeding from the head injuries was only moderate. Therefore, the head injuries could be assessed and partially reconstructed already at the scene.

  19. Thrust Direction Optimization: Satisfying Dawn's Attitude Agility Constraints

    NASA Technical Reports Server (NTRS)

    Whiffen, Gregory J.

    2013-01-01

    The science objective of NASA's Dawn Discovery mission is to explore the two largest members of the main asteroid belt, the giant asteroid Vesta and the dwarf planet Ceres. Dawn successfully completed its orbital mission at Vesta. The Dawn spacecraft has complex, difficult to quantify, and in some cases severe limitations on its attitude agility. The low-thrust transfers between science orbits at Vesta required very complex time varying thrust directions due to the strong and complex gravity and various science objectives. Traditional thrust design objectives (like minimum (Delta)V or minimum transfer time) often result in thrust direction time evolutions that can not be accommodated with the attitude control system available on Dawn. This paper presents several new optimal control objectives, collectively called thrust direction optimization that were developed and necessary to successfully navigate Dawn through all orbital transfers at Vesta.

  20. Reinforcement learning for stabilizing an inverted pendulum naturally leads to intermittent feedback control as in human quiet standing.

    PubMed

    Michimoto, Kenjiro; Suzuki, Yasuyuki; Kiyono, Ken; Kobayashi, Yasushi; Morasso, Pietro; Nomura, Taishin

    2016-08-01

    Intermittent feedback control for stabilizing human upright stance is a promising strategy, alternative to the standard time-continuous stiffness control. Here we show that such an intermittent controller can be established naturally through reinforcement learning. To this end, we used a single inverted pendulum model of the upright posture and a very simple reward function that gives a certain amount of punishments when the inverted pendulum falls or changes its position in the state space. We found that the acquired feedback controller exhibits hallmarks of the intermittent feedback control strategy, namely the action of the feedback controller is switched-off intermittently when the state of the pendulum is located near the stable manifold of the unstable saddle-type upright equilibrium of the inverted pendulum with no active control: this action provides an opportunity to exploit transiently converging dynamics toward the unstable upright position with no help of the active feedback control. We then speculate about a possible physiological mechanism of such reinforcement learning, and suggest that it may be related to the neural activity in the pedunculopontine tegmental nucleus (PPN) of the brainstem. This hypothesis is supported by recent evidence indicating that PPN might play critical roles for generation and regulation of postural tonus, reward prediction, as well as postural instability in patients with Parkinson's disease.