Sample records for hanks balanced salt

  1. In vitro corrosion of ZEK100 plates in Hank's Balanced Salt Solution

    PubMed Central

    2012-01-01

    Background In recent years magnesium alloys have been intensively investigated as potential resorbable materials with appropriate mechanical and corrosion properties. Particularly in orthopedic research magnesium is interesting because of its mechanical properties close to those of natural bone, the prevention of both stress shielding and removal of the implant after surgery. Methods ZEK100 plates were examined in this in vitro study with Hank's Balanced Salt Solution under physiological conditions with a constant laminar flow rate. After 14, 28 and 42 days of immersion the ZEK100 plates were mechanically tested via four point bending test. The surfaces of the immersed specimens were characterized by SEM, EDX and XRD. Results The four point bending test displayed an increased bending strength after 6 weeks immersion compared to the 2 week group and 4 week group. The characterization of the surface revealed the presence of high amounts of O, P and Ca on the surface and small Mg content. This indicates the precipitation of calcium phosphates with low solubility on the surface of the ZEK100 plates. Conclusions The results of the present in vitro study indicate that ZEK100 is a potential candidate for degradable orthopedic implants. Further investigations are needed to examine the degradation behavior. PMID:22413949

  2. Comparison of soymilk, powdered milk, Hank's balanced salt solution and tap water on periodontal ligament cell survival.

    PubMed

    Moazami, Fariborz; Mirhadi, Hosein; Geramizadeh, Bita; Sahebi, Safoura

    2012-04-01

    The purpose of this study was to evaluate the ability of soymilk, powdered milk, and Hank's balanced salt solution (HBSS) to maintain human periodontal ligament (PDL) cell viability in vitro. PDL cells were obtained from extracted healthy third molars and cultured in Dulbecco's modified Eagles medium (DMEM). The cultures were exposed for 1, 2, 4, and 8 h to experimental solutions (tap water served as negative control and DMEM as positive control) at 37°C. The viable cells were then counted using the trypan blue exclusion technique. Data were analyzed by using one-way anova, post hoc Scheffe and two-way anova test. Statistical analysis showed that HBSS, powdered baby formula, and soymilk maintain cell viability equally well in different periods of times. Tap water cannot keep cells viable as well as other solutions. Soymilk and powdered baby formula can be recommended as suitable storage media for avulsed teeth for up to 8 h. © 2011 John Wiley & Sons A/S.

  3. Fibroblast Viability after Storage at 20 °C in Milk, Hank's Balanced Salt Solution and Coconut Water.

    PubMed

    Souza, Beatriz Dulcineia Mendes de; Alves, Ana Maria Hecke; Santos, Luciane Geanini Pena Dos; Simões, Claudia Maria de Oliveira; Felippe, Wilson Tadeu; Felippe, Mara Cristina Santos

    2016-01-01

    The objective of this study was to evaluate the effectiveness of various storage media at 20 °C in maintaining the viability of human periodontal ligament fibroblasts (HPLF) over time. HPLF were maintained at 20 °C in skim milk (SM), whole milk (WM), freshly prepared Hank's balanced salt solution (HBSS), Save-A-Tooth(r), natural coconut water (NCW), coconut water industrialized (ICW) and tap water (negative control) for 3, 6, 24, 48, 72, 96 and 120 h. Cells maintained in Minimal Essential Medium (MEM-37) at 37 °C served as a positive control. Cell viability was determined by MTT assay. Statistical analysis was performed by Kruskal-Wallis test and Scheffe test (α = 5%). From 24 h, NCW was significantly better in maintaining cell viability than all other tested storage media (p<0.05). SM and WM were significantly better than HBSS for up to 72 h. Save-A-Tooth(r) and ICW were the worst conservation storage media. In conclusion, the effectiveness of the tested storage media to maintain the viability of the periodontal ligament cells was as follows, in a descending order: NCW > MEM-37> SM and IM> HBSS> ICW > Save-A-Tooth(r)> tap water.

  4. Viability of human periodontal ligament fibroblasts in milk, Hank's balanced salt solution and coconut water as storage media.

    PubMed

    Souza, B D M; Lückemeyer, D D; Reyes-Carmona, J F; Felippe, W T; Simões, C M O; Felippe, M C S

    2011-02-01

    To evaluate the effectiveness of various storage media at 5 °C for maintaining the viability of human periodontal ligament fibroblasts (PDLF). Plates with PDLF were soaked in recently prepared Hank's balanced salt solution (HBSS), skimmed milk, whole milk, Save-A-Tooth(®) system's HBSS (Save), natural coconut water, industrialized coconut water or tap water (negative control) at 5 °C for 3, 6, 24, 48, 72, 96 and 120 h. Minimum essential medium (MEM) at 37 °C served as the positive control. PDL cell viability was determined by MTT assay. Data were statistically analysed by Kruskal-Wallis test complemented by the Scheffé test (α=5%). The greatest number of viable cells was observed for MEM. Skimmed and whole milk, followed by natural coconut water and HBSS, were the most effective media in maintaining cell viability (P<0.05). From 24 to 120 h, Save, industrialized coconut water and tap water were the worst storage media. Skimmed and whole milk had the greatest capacity to maintain PDLF viability when compared with natural coconut water, HBSS, Save, industrialized coconut water and tap water. © 2010 International Endodontic Journal.

  5. Study the Synthesis, Characterization and Immersion of Dense and Porous Bovine Hydroxyapatite Structures in Hank's Balanced Salt Solution

    NASA Astrophysics Data System (ADS)

    Eslami, N.; Mahmoodian, R.; Hamdi, M.; Khatir, Nadia Mahmoudi; Herliansyah, M. K.; Rafieerad, Ali Reza

    2017-04-01

    The bone-bonding potential of biomaterials is evaluated in vitro through examining the surface apatite formation in Hank's media to enhance biocompatibility, which is also applicable to facilitate in vivo osseointegration of implantable devices. Hence, bovine hydroxyapatite (BHA) bioceramic structures have been used in various biomedical applications such as orthopedic implants. In this article, the microstructure, in vitro bioactivity, and nanomechanical properties of the synthesized dense and porous BHA are investigated via scanning electron microscopy, x-ray diffraction, energy-dispersive x-ray spectroscopy, Fourier transform infrared spectroscopy, and nanoindentation analysis. From the obtained results, porous BHA mostly possesses adequate requirements for substitution as implants in the human body.

  6. Comparative evaluation of maintenance of cell viability of an experimental transport media “coconut water” with Hank's balanced salt solution and milk, for transportation of an avulsed tooth: An in vitro cell culture study

    PubMed Central

    Thomas, Toby; Gopikrishna, Velayutham; Kandaswamy, Deivanayagam

    2008-01-01

    The purpose of this study was to evaluate the efficiency of a new storage medium, coconut water, in comparison with other traditional storage media like Hank's balanced salt solution (HBBS) and milk, in maintaining the viability of an established cell line BHK-21/C13 (baby hamster kidney fibroblasts) using the direct suspension cell culture technique. The storage media tested in the study were divided into three major groups and two control groups - Group A: HBBS, Group B: milk, and Group C: coconut water. The positive and negative controls corresponded to 0-minute and 24-hour dry times respectively. The three groups were then divided into five subgroups, each denoting the storage time periods 15 min, 30 min, 45 min, 60 min and 120 min respectively. The cell line BHK-21/C13 was subcultured and the number of cells was standardized by making a cell suspension using Minimal Essential Medium in five culture plates. One ml of each experimental group (HBBS, milk and coconut water) was added to eight wells of each culture plate. The culture plates containing the cells and the experimental groups were incubated for the respective time periods. The cells were then counted with a Neubauer counting chamber, under light microscope. The results were statistically analyzed using One-way ANOVA and Multiple Range Test using the Tukey-HSD procedure to identify the significant groups at p ≤ 0.05. Within the parameters of this study, it appears that coconut water may be a better alternative to HBSS or milk, in terms of maintaining cell viability. Coconut water can be used as a superior transport medium for avulsed teeth. PMID:20142880

  7. GRAHAM NELSON AND ANDREW HANKS WITH BREADBOARD ENGINE PROJECT CO

    NASA Image and Video Library

    2016-09-14

    Graham Nelson, right, and Andrew Hanks examine a combustion chamber developed by engineers at NASA's Marshall Space Flight Center in Huntsville, Alabama, for an additively manufactured demonstration breadboard engine project. Nelson is project manager and Hanks is test lead for the project, in which engineers are designing components from scratch to be made entirely by 3-D printing.

  8. The Exceptional Art of Hank Mobley's 1955-1970 Jazz Compositions

    ERIC Educational Resources Information Center

    Clark, Russell M.

    2009-01-01

    Hank Mobley had profound influence on the East coast style of jazz. As a composer, he was a major contributor to the development of the specific style of East Coast jazz known as hard bop. Between the years of 1955 and 1970, Hank Mobley recorded one hundred-forty two original compositions. Due to the lack of published transcriptions and analyses…

  9. Water and salt balance of Great Salt Lake, Utah, and simulation of water and salt movement through the causeway

    USGS Publications Warehouse

    Wold, Steven R.; Thomas, Blakemore E.; Waddell, Kidd M.

    1997-01-01

    The water and salt balance of Great Salt Lake primarily depends on the amount of inflow from tributary streams and the conveyance properties of a causeway constructed during 1957-59 that divides the lake into the south and north parts. The conveyance properties of the causeway originally included two culverts, each 15 feet wide, and the permeable rock-fill material.During 1980-86, the salt balance changed as a result of record high inflow that averaged 4,627,000 acre-feet annually and modifications made to the conveyance properties of the causeway that included opening a 300-foot-wide breach. In this study, a model developed in 1973 by Waddell and Bolke to simulate the water and salt balance of the lake was revised to accommodate the high water-surface altitude and modifications made to the causeway. This study, done by the U.S. Geological Survey in cooperation with the Utah Department of Natural Resources, Division of State Lands and Forestry, updates the model with monitoring data collected during 1980-86. This report describes the calibration of the model and presents the results of simulations for three hypothetical 10-year periods.During January 1, 1980, to July 31, 1984, a net load of 0.5 billion tons of dissolved salt flowed from the south to the north part of the lake primarily as a result of record inflows. From August 1, 1984, when the breach was opened, to December 31,1986, a net load of 0.3 billion tons of dissolved salt flowed from the north to the south part of the lake primarily as a result of the breach.For simulated inflow rates during a hypothetical 10-year period resulting in the water-surface altitude decreasing from about 4,200 to 4,192 feet, there was a net movement of about 1.0 billion tons of dissolved salt from the south to the north part, and about 1.7 billion tons of salt precipitated in the north part. For simulated inflow rates during a hypothetical 10-year period resulting in a rise in water-surface altitude from about 4,200 to 4

  10. A trip to inner space: insights into salt balance from cosmonauts.

    PubMed

    Ortiz-Melo, David; Coffman, Thomas M

    2013-01-08

    The epidemiological association between high salt intake and hypertension is well established. However, in most patients, the specific defect causing salt-dependent hypertension cannot be discerned. In this issue of Cell Metabolism, Rakova and associates use an unprecedented study design to characterize long-term salt balance in humans (Rakova et al., 2012). Copyright © 2013 Elsevier Inc. All rights reserved.

  11. Magnesium degradation influenced by buffering salts in concentrations typical of in vitro and in vivo models.

    PubMed

    Agha, Nezha Ahmad; Feyerabend, Frank; Mihailova, Boriana; Heidrich, Stefanie; Bismayer, Ulrich; Willumeit-Römer, Regine

    2016-01-01

    Magnesium and its alloys have considerable potential for orthopedic applications. During the degradation process the interface between material and tissue is continuously changing. Moreover, too fast or uncontrolled degradation is detrimental for the outcome in vivo. Therefore in vitro setups utilizing physiological conditions are promising for the material/degradation analysis prior to animal experiments. The aim of this study is to elucidate the influence of inorganic salts contributing to the blood buffering capacity on degradation. Extruded pure magnesium samples were immersed under cell culture conditions for 3 and 10 days. Hank's balanced salt solution without calcium and magnesium (HBSS) plus 10% of fetal bovine serum (FBS) was used as the basic immersion medium. Additionally, different inorganic salts were added with respect to concentration in Dulbecco's modified Eagle's medium (DMEM, in vitro model) and human plasma (in vivo model) to form 12 different immersion media. Influences on the surrounding environment were observed by measuring pH and osmolality. The degradation interface was analyzed by electron-induced X-ray emission (EIXE) spectroscopy, including chemical-element mappings and electron microprobe analysis, as well as Fourier transform infrared reflection micro-spectroscopy (FTIR). Copyright © 2015 Elsevier B.V. All rights reserved.

  12. Selenium mass balance in the Great Salt Lake, Utah

    USGS Publications Warehouse

    Diaz, X.; Johnson, W.P.; Naftz, D.L.

    2009-01-01

    A mass balance for Se in the south arm of the Great Salt Lake was developed for September 2006 to August 2007 of monitoring for Se loads and removal flows. The combined removal flows (sedimentation and volatilization) totaled to a geometric mean value of 2079??kg Se/yr, with the estimated low value being 1255??kg Se/yr, and an estimated high value of 3143??kg Se/yr at the 68% confidence level. The total (particulates + dissolved) loads (via runoff) were about 1560??kg Se/yr, for which the error is expected to be ?? 15% for the measured loads. Comparison of volatilization to sedimentation flux demonstrates that volatilization rather than sedimentation is likely the major mechanism of selenium removal from the Great Salt Lake. The measured loss flows balance (within the range of uncertainties), and possibly surpass, the measured annual loads. Concentration histories were modeled using a simple mass balance, which indicated that no significant change in Se concentration was expected during the period of study. Surprisingly, the measured total Se concentration increased during the period of the study, indicating that the removal processes operate at their low estimated rates, and/or there are unmeasured selenium loads entering the lake. The selenium concentration trajectories were compared to those of other trace metals to assess the significance of selenium concentration trends. ?? 2008 Elsevier B.V.

  13. Effects of ionic compositions of the medium on monosodium glutamate binding to taste epithelial cells.

    PubMed

    Hayashi, Y; Tsunenari, T; Mori, T

    1999-03-01

    Monosodium glutamate and nucleotides are umami taste substances in animals and have a synergistic effect on each other. We studied the ligand-binding properties of the glutamate receptors in taste epithelial cells isolated from bovine tongue. Specific glutamate binding was observed in an enriched suspension of taste receptor cells in Hanks' balanced salt solution, while no specific glutamate binding was apparent in the absence of divalent ions or when the cells had been depolarized by a high content of potassium in Hanks' balanced salt solution. There was no significant difference between the release of glutamate under depolarized or divalent ion-free conditions and under normal conditions. However, glutamate was easily released from the depolarized cells in the absence of divalent ions. These data suggest that the binding of glutamate to receptors depends on divalent ions, which also have an effect on maintaining binding between glutamate and receptors.

  14. Balanced sediment fluxes in southern California’s Mediterranean-climate zone salt marshes

    USGS Publications Warehouse

    Rosencranz, Jordan A.; Ganju, Neil K.; Ambrose, Richard F.; Brosnahan, Sandra M.; Dickhudt, Patrick J.; Guntenspergen, Glenn R.; MacDonald, Glen M.; Takekawa, John Y.; Thorne, Karen M.

    2016-01-01

    Salt marsh elevation and geomorphic stability depends on mineral sedimentation. Many Mediterranean-climate salt marshes along southern California, USA coast import sediment during El Niño storm events, but sediment fluxes and mechanisms during dry weather are potentially important for marsh stability. We calculated tidal creek sediment fluxes within a highly modified, sediment-starved, 1.5-km2 salt marsh (Seal Beach) and a less modified 1-km2marsh (Mugu) with fluvial sediment supply. We measured salt marsh plain suspended sediment concentration and vertical accretion using single stage samplers and marker horizons. At Seal Beach, a 2014 storm yielded 39 and 28 g/s mean sediment fluxes and imported 12,000 and 8800 kg in a western and eastern channel. Western channel storm imports offset 8700 kg exported during 2 months of dry weather, while eastern channel storm imports augmented 9200 kg imported during dry weather. During the storm at Mugu, suspended sediment concentrations on the marsh plain increased by a factor of four; accretion was 1–2 mm near creek levees. An exceptionally high tide sequence yielded 4.4 g/s mean sediment flux, importing 1700 kg: 20 % of Mugu’s dry weather fluxes. Overall, low sediment fluxes were observed, suggesting that these salt marshes are geomorphically stable during dry weather conditions. Results suggest storms and high lunar tides may play large roles, importing sediment and maintaining dry weather sediment flux balances for southern California salt marshes. However, under future climate change and sea level rise scenarios, results suggest that balanced sediment fluxes lead to marsh elevational instability based on estimated mineral sediment deficits.

  15. In vitro degradation of ZM21 magnesium alloy in simulated body fluids.

    PubMed

    Witecka, Agnieszka; Bogucka, Aleksandra; Yamamoto, Akiko; Máthis, Kristián; Krajňák, Tomáš; Jaroszewicz, Jakub; Święszkowski, Wojciech

    2016-08-01

    In vitro degradation behavior of squeeze cast (CAST) and equal channel angular pressed (ECAP) ZM21 magnesium alloy (2.0wt% Zn-0.98wt% Mn) was studied using immersion tests up to 4w in three different biological environments. Hanks' Balanced Salt Solution (Hanks), Earle's Balanced Salt Solution (Earle) and Eagle minimum essential medium supplemented with 10% (v/v) fetal bovine serum (E-MEM+10% FBS) were used to investigate the effect of carbonate buffer system, organic compounds and material processing on the degradation behavior of the ZM21 alloy samples. Corrosion rate of the samples was evaluated by their Mg(2+) ion release, weight loss and volume loss. In the first 24h, the corrosion rate sequence of the CAST samples was as following: Hanks>E-MEM+10% FBS>Earle. However, in longer immersion periods, the corrosion rate sequence was Earle>E-MEM+10% FBS≥Hanks. Strong buffering effect provided by carbonate buffer system helped to maintain the pH avoiding drastic increase of the corrosion rate of ZM21 in the initial stage of immersion. Organic compounds also contributed to maintain the pH of the fluid. Moreover, they adsorbed on the sample surface and formed an additional barrier on the insoluble salt layer, which was effective to retard the corrosion of CAST samples. In case of ECAP, however, this effect was overcome by the occurrence of strong localized corrosion due to the lower pH of the medium. Corrosion of ECAP samples was much greater than that of CAST, especially in Hanks, due to higher sensitivity of ECAP to localized corrosion and the presence of Cl(-). The present work demonstrates the importance of using an appropriate solution for a reliable estimation of the degradation rate of Mg-base degradable implants in biological environments, and concludes that the most appropriate solution for this purpose is E-MEM+10% FBS, which has the closest chemical composition to human blood plasma. Copyright © 2016 Elsevier B.V. All rights reserved.

  16. Mechanical degradation of porous titanium with entangled structure filled with biodegradable magnesium in Hanks' solution.

    PubMed

    Li, Qiuyan; Jiang, Guofeng; Wang, Cunlong; Dong, Jie; He, Guo

    2015-12-01

    The degradation behavior of the porous titanium with entangled structure filled with biodegradable magnesium (p-Ti/Mg) in Hanks' solution was investigated. It was found that the p-Ti/Mg composite had higher strength than pure magnesium and porous titanium with entangled structure (p-Ti). Although the magnesium in p-Ti/Mg was completely dissolved in Hanks' solution after immersion for 104 h, the rest of the sample still maintained strength of about 86 MPa. Moreover, the produced porousness (due to magnesium-degradation) could provide channels for the ingrowth and transportation of bone cells. However, the high corrosion rate of p-Ti/Mg is still a problem when used as a candidate biomedical material, which needs further improvement. Copyright © 2015 Elsevier B.V. All rights reserved.

  17. Henry (Hank) J. Moore (1928-1998)

    NASA Astrophysics Data System (ADS)

    Thompson, Thomas W.

    Henry (Hank) J. Moore, a member of the AGU Planetary Sciences section, died of a heart attack on September 21, 1998. He was in Utah while on a family trip to visit his daughter. His 70th birthday occurred just 3 weeks before his death. Henry, who was born in Albuquerque, New Mexico, took great pride in having found and visited the small town of Albuquerque in the Extremadura region of Spain, noting the geologic similarities between that part of Spain and his birthplace in America.Henry, known for his contributions to the Apollo,Viking, Magellan, and Mars Pathfinder missions, attributed his career to a chance encounter with Gene Shoemaker in 1960. Henry was completing his Ph.D. work in geology at Stanford University and Gene obviously had spotted Henry's keen analytical mind. I suspect this pivotal meeting was far from a chance encounter.

  18. ADCC employing an NK cell line (haNK) expressing the high affinity CD16 allele with avelumab, an anti-PD-L1 antibody.

    PubMed

    Jochems, Caroline; Hodge, James W; Fantini, Massimo; Tsang, Kwong Y; Vandeveer, Amanda J; Gulley, James L; Schlom, Jeffrey

    2017-08-01

    NK-92 cells, and their derivative, designated aNK, were obtained from a patient with non-Hodgkin lymphoma. Prior clinical studies employing adoptively transferred irradiated aNK cells have provided evidence of clinical benefit and an acceptable safety profile. aNK cells have now been engineered to express IL-2 and the high affinity (ha) CD16 allele (designated haNK). Avelumab is a human IgG1 anti-PD-L1 monoclonal antibody, which has shown evidence of clinical activity in a range of human tumors. Prior in vitro studies have shown that avelumab has the ability to mediate antibody-dependent cell-mediated cytotoxicity (ADCC) of human tumor cells when combined with NK cells. In the studies reported here, the ability of avelumab to enhance the lysis of a range of human carcinoma cells by irradiated haNK cells via the ADCC mechanism is demonstrated; this ADCC is shown to be inhibited by anti-CD16 blocking antibody and by concanamycin A, indicating the use of the granzyme/perforin pathway in tumor cell lysis. Studies also show that while NK cells have the ability to lyse aNK or haNK cells, the addition of NK cells to irradiated haNK cells does not inhibit haNK-mediated lysis of human tumor cells, with or without the addition of avelumab. Avelumab-mediated lysis of tumor cells by irradiated haNK cells is also shown to be similar to that of NK cells bearing the V/V Fc receptor high affinity allele. These studies thus provide the rationale for the clinical evaluation of the combined use of avelumab with that of irradiated adoptively transferred haNK cells. © 2017 UICC.

  19. Growing pains: Hank Chamberlin and the Arkansas A&M forestry program, 1946-1957

    Treesearch

    Don C. Bragg

    2017-01-01

    Almost immediately after he started in the fall of 1945, Henry H. "Hank" Chamberlin faced many challenges in getting the two-year applied forestry program at Arkansas A&M College (AA&M) up and running. As the newly hired director of the one-mandepartment, Chamberlin needed to build this program with virtually no financial resources...

  20. Salt

    USGS Publications Warehouse

    Franson, J.C.; Friend, M.

    1999-01-01

    Animals become victims of salt poisoning or toxicosis when toxic levels of sodium and chloride accumulate in the blood after they ingest large amounts of salt or, in some species, are deprived of water. For birds, salt sources may include saline water and road salt.Normally, the salt glands of birds (Fig. 47.1) excrete sodium and chloride to maintain the proper physiologic chemical balance. However, when there has been insufficient time for acclimation of the salt gland to the saline environment, or when salt gland function is compromised by exposure to certain pesticides or oil, the electrolyte balance of the blood may be upset by the excess sodium and chloride, resulting in toxicosis. Salt accumulation on the outside of the body, or salt encrustation, is a greater problem for waterbirds that use very saline waters than is salt toxicosis. Salt encrustation can lead to exertion, acute muscle degeneration, and eventual drowning during the struggle to escape entrapment.

  1. Seasonal Distribution and Abundance of Larval and Juvenile Lost River and Shortnose Suckers in Hanks Marsh, Upper Klamath National Wildlife Refuge, Upper Klamath Lake, Oregon: 2007 Annual Report

    USGS Publications Warehouse

    Anderson, Greer O.; Wilkens, Alexander X.; Burdick, Summer M.; VanderKooi, Scott P.

    2009-01-01

    In the summer of 2007, we undertook an assessment of larval and juvenile sucker use of Hanks Marsh in Upper Klamath Lake, Oregon. This 1,200-acre marsh on the southeastern shoreline of the lake represents part of the last remaining natural emergent wetland habitat in the lake. Because of the suspected importance of this type of habitat to larval and juvenile endangered Lost River and shortnose suckers, it was thought that sucker abundance in the marsh might be comparatively greater than in other non-vegetated areas of the lake. It also was hoped that Hanks Marsh would serve as a reference site for wetland restoration projects occurring in other areas of the lake. Our study had four objectives: to (1) examine seasonal distribution and relative abundance of larval suckers in and adjacent to Hanks Marsh in relation to habitat features such as depth, vegetation, water quality, and relative abundance of non-sucker species; (2) determine the presence or absence and describe the distribution of juvenile suckers [35 to 80 mm standard length (SL)] along the periphery of Hanks Marsh; (3) assess spatial and temporal overlap between larval suckers and their potential predators; and (4) assess suitability of water quality throughout the summer for young-of-the-year suckers. Due to the low number of suckers found in the marsh and our inability to thoroughly sample all marsh habitats due to declining lake levels during the summer, we were unable to completely address these objectives in this pilot study. The results, however, do give some indication of the relative use of Hanks Marsh by sucker and non-sucker species. Through sampling of larval and juvenile suckers in various habitat types within the marsh, we determined that sucker use of Hanks Marsh may be very low in comparison with other areas of the lake. We caught only 42 larval and 19 juvenile suckers during 12 weeks of sampling throughout the marsh. Sucker catches were rare in Hanks Marsh, and were lower than catch rates

  2. Seaglider surveys at Ocean Station Papa: Diagnosis of upper-ocean heat and salt balances using least squares with inequality constraints

    NASA Astrophysics Data System (ADS)

    Pelland, Noel A.; Eriksen, Charles C.; Cronin, Meghan F.

    2017-06-01

    Heat and salt balances in the upper 200 m are examined using data from Seaglider spatial surveys June 2008 to January 2010 surrounding a NOAA surface mooring at Ocean Station Papa (OSP; 50°N, 145°W). A least-squares approach is applied to repeat Seaglider survey and moored measurements to solve for unknown or uncertain monthly three-dimensional circulation and vertical diffusivity. Within the surface boundary layer, the estimated heat and salt balances are dominated throughout the surveys by turbulent flux, vertical advection, and for heat, radiative absorption. When vertically integrated balances are considered, an estimated upwelling of cool water balances the net surface input of heat, while the corresponding large import of salt across the halocline due to upwelling and diffusion is balanced by surface moisture input and horizontal import of fresh water. Measurement of horizontal gradients allows the estimation of unresolved vertical terms over more than one annual cycle; diffusivity in the upper-ocean transition layer decreases rapidly to the depth of the maximum near-surface stratification in all months, with weak seasonal modulation in the rate of decrease and profile amplitude. Vertical velocity is estimated to be on average upward but with important monthly variations. Results support and expand existing evidence concerning the importance of horizontal advection in the balances of heat and salt in the Gulf of Alaska, highlight time and depth variability in difficult-to-measure vertical transports in the upper ocean, and suggest avenues of further study in future observational work at OSP.

  3. In vitro radiolabel uptake viability assay for Onchocerca microfilariae

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Callahan, H.L.; Wakeman, J.M.; Crouch, R.K.

    1989-02-01

    A radiolabel uptake viability assay for Onchocerca cervicalis using (/sup 3/H)2-deoxy-D-glucose in Hanks' balanced salt solution, pH 7.5, at 30 C is described and compared to the traditional visual motility assay. A correlation of r = 0.92 between the assays was found, with the radiolabel uptake method apparently a more sensitive indicator of microfilarial viability.

  4. Influence of the chloride ion concentration on the corrosion of high-purity Mg, ZE41 and AZ91 in buffered Hank's solution.

    PubMed

    Taltavull, C; Shi, Z; Torres, B; Rams, J; Atrens, A

    2014-02-01

    This research studied the influence of the chloride ion concentration on the corrosion behaviour of high-purity magnesium (Mg) and two Mg alloys in Hank's solution, using hydrogen evolution and weight loss. A buffer based on CO2 and NaHCO3 was used to maintain the pH constant. The corrosion behaviour was governed by a partially protective surface film, and film breakdown by the chloride ions. The carbonated calcium phosphate layer that formed in Hank's solution was important in determining the protective properties of the surface film.

  5. Experiments on the heat-induced salt balance changes in cow's milk.

    PubMed

    Pouliot, Y; Boulet, M; Paquin, P

    1989-01-01

    The heat-induced changes in salt balance between the colloidal phase of milk and its serum were studied using an ultrafiltration technique. Milk permeate was isolated at the heating temperature by means of a hollow fibre ultrafiltration cartridge coupled with a stainless steel heat exchanger unit. The milk samples initially at 4 degrees C were heated to 20, 40, 60, 80 or 90 degrees C. Ca, P, Mg and citrate contents of the permeates were determined. The decreases in Ca and P were proportional to the increase in temperature. Smaller losses in Mg and citrate were observed. An initial sharp decrease in concentration occurred within the first seconds of holding time and was followed by a slower and smaller decrease. The possible occurrence of a two-stage mechanism for the heat-induced salt precipitation is discussed. The precipitation of dicalcium phosphate is believed to occur together with some tricalcium citrate precipitation.

  6. The springs of Lake Pátzcuaro: chemistry, salt-balance, and implications for the water balance of the lake

    USGS Publications Warehouse

    Bischoff, James L.; Israde-Alcántara, Isabel; Garduno-Monroy, Victor H.; Shanks, Wayne C.

    2004-01-01

    Lake Pa??tzcuaro, the center of the ancient Tarascan civilization located in the Mexican altiplano west of the city of Morelia, has neither river input nor outflow. The relatively constant lake-salinity over the past centuries indicates the lake is in chemical steady state. Springs of the south shore constitute the primary visible input to the lake, so influx and discharge must be via sub-lacustrine ground water. The authors report on the chemistry and stable isotope composition of the springs, deeming them representative of ground-water input. The springs are dominated by Ca, Mg and Na, whereas the lake is dominated by Na. Combining these results with previously published precipitation/rainfall measurements on the lake, the authors calculate the chemical evolution from spring water to lake water, and also calculate a salt balance of the ground-water-lake system. Comparing Cl and ??18O compositions in the springs and lake water indicates that 75-80% of the spring water is lost evaporatively during evolution toward lake composition. During evaporation Ca and Mg are lost from the water by carbonate precipitation. Each liter of spring water discharging into the lake precipitates about 18.7 mg of CaCO3. Salt balance calculations indicate that ground water input to the lake is 85.9??106 m3/a and ground water discharge from the lake is 23.0??106 m3/a. Thus, the discharge is about 27% of the input, with the rest balanced by evaporation. A calculation of time to reach steady-state ab initio indicates that the Cl concentration of the present day lake would be reached in about 150 a. ?? 2004 Elsevier Ltd. All rights reserved.

  7. Impact of co-digestion on existing salt and nutrient mass balances for a full-scale dairy energy project.

    PubMed

    Camarillo, Mary Kay; Stringfellow, William T; Spier, Chelsea L; Hanlon, Jeremy S; Domen, Jeremy K

    2013-10-15

    Anaerobic digestion of manure and other agricultural waste streams with subsequent energy production can result in more sustainable dairy operations; however, importation of digester feedstocks onto dairy farms alters previously established carbon, nutrient, and salinity mass balances. Salt and nutrient mass balance must be maintained to avoid groundwater contamination and salination. To better understand salt and nutrient contributions of imported methane-producing substrates, a mass balance for a full-scale dairy biomass energy project was developed for solids, carbon, nitrogen, sulfur, phosphorus, chloride, and potassium. Digester feedstocks, consisting of thickened manure flush-water slurry, screened manure solids, sudan grass silage, and feed-waste, were tracked separately in the mass balance. The error in mass balance closure for most elements was less than 5%. Manure contributed 69.2% of influent dry matter while contributing 77.7% of nitrogen, 90.9% of sulfur, and 73.4% of phosphorus. Sudan grass silage contributed high quantities of chloride and potassium, 33.3% and 43.4%, respectively, relative to the dry matter contribution of 22.3%. Five potential off-site co-digestates (egg waste, grape pomace, milk waste, pasta waste, whey wastewater) were evaluated for anaerobic digestion based on salt and nutrient content in addition to bio-methane potential. Egg waste and wine grape pomace appeared the most promising co-digestates due to their high methane potentials relative to bulk volume. Increasing power production from the current rate of 369 kW to the design value of 710 kW would require co-digestion with either 26800 L d(-1) egg waste or 60900 kg d(-1) grape pomace. However, importation of egg waste would more than double nitrogen loading, resulting in an increase of 172% above the baseline while co-digestion with grape pomace would increase potassium by 279%. Careful selection of imported co-digestates and management of digester effluent is required to

  8. Hydrogen Sulfide Regulates Salt Tolerance in Rice by Maintaining Na+/K+ Balance, Mineral Homeostasis and Oxidative Metabolism Under Excessive Salt Stress

    PubMed Central

    Mostofa, Mohammad G.; Saegusa, Daisuke; Fujita, Masayuki; Tran, Lam-Son Phan

    2015-01-01

    Being a salt sensitive crop, rice growth and development are frequently affected by soil salinity. Hydrogen sulfide (H2S) has been recently explored as an important priming agent regulating diverse physiological processes of plant growth and development. Despite its enormous prospects in plant systems, the role of H2S in plant stress tolerance is still elusive. Here, a combined pharmacological, physiological and biochemical approach was executed aiming to examine the possible mechanism of H2S in enhancement of rice salt stress tolerance. We showed that pretreating rice plants with H2S donor sodium bisulfide (NaHS) clearly improved, but application of H2S scavenger hypotaurine with NaHS decreased growth and biomass-related parameters under salt stress. NaHS-pretreated salt-stressed plants exhibited increased chlorophyll, carotenoid and soluble protein contents, as well as suppressed accumulation of reactive oxygen species (ROS), contributing to oxidative damage protection. The protective mechanism of H2S against oxidative stress was correlated with the elevated levels of ascorbic acid, glutathione, redox states, and the enhanced activities of ROS- and methylglyoxal-detoxifying enzymes. Notably, the ability to decrease the uptake of Na+ and the Na+/K+ ratio, as well as to balance mineral contents indicated a role of H2S in ion homeostasis under salt stress. Altogether, our results highlight that modulation of the level of endogenous H2S genetically or exogenously could be employed to attain better growth and development of rice, and perhaps other crops, under salt stress. Furthermore, our study reveals the importance of the implication of gasotransmitters like H2S for the management of salt stress, thus assisting rice plants to adapt to adverse environmental changes. PMID:26734015

  9. The water balance of the urban Salt Lake Valley: a multiple-box model validated by observations

    NASA Astrophysics Data System (ADS)

    Stwertka, C.; Strong, C.

    2012-12-01

    A main focus of the recently awarded National Science Foundation (NSF) EPSCoR Track-1 research project "innovative Urban Transitions and Arid-region Hydro-sustainability (iUTAH)" is to quantify the primary components of the water balance for the Wasatch region, and to evaluate their sensitivity to climate change and projected urban development. Building on the multiple-box model that we developed and validated for carbon dioxide (Strong et al 2011), mass balance equations for water in the atmosphere and surface are incorporated into the modeling framework. The model is used to determine how surface fluxes, ground-water transport, biological fluxes, and meteorological processes regulate water cycling within and around the urban Salt Lake Valley. The model is used to evaluate the hypotheses that increased water demand associated with urban growth in Salt Lake Valley will (1) elevate sensitivity to projected climate variability and (2) motivate more attentive management of urban water use and evaporative fluxes.

  10. A High Resolution Tampa Bay Hydrodynamic Model and its Application to Residence Time Estimation and Salt Balance Diagnosis

    NASA Astrophysics Data System (ADS)

    Zheng, L.; Weisberg, R. H.

    2016-02-01

    A 3D, numerical circulation model, with high resolution (20 m) at important mass conveyances (inlets and rivers etc.), is developed to estimate the bulk residence time and diagnose the salt balances and salt fluxes for Tampa Bay estuary. These analyses are justified via quantitative comparisons between the simulation and observations of sea level, velocity and salinity. The non-tidal circulation is the primary agent for the flushing of Tampa Bay. Tides alone have a minor effect. Exceptions pertain to within a tidal excursion from the bay mouth and regions with multiple inlets where different tide phases aid in flushing. The fully 3D salt flux divergences (SFD) and fluxes vary spatially throughout the estuary. On experimental duration (three month) average, the total advective SFD is balanced primarily by the vertical diffusive SFD, except near the bottom of the channel where the horizontal diffusive SFD is also important. Instantaneously, the local rate of salinity change is controlled primarily by the advective SFD, with a secondary contribution by the vertical diffusive SFD everywhere and the horizontal diffusive SFD near the channel bottom. After decomposing the advective salt fluxes and their divergences into mean quantity and tidal pumping, the horizontal and vertical advective SFDs by the mean quantities are large and counterbalance, with their sum being a small but significant residual. The horizontal and vertical advective SFDs by tidal pumping are relatively small (when compared with the mean quantities) and counterbalance; but, when summed, their residual is comparable in magnitude to that by the mean quantities. So whereas the salt fluxes by tidal pumping are secondary importance to the salt fluxes by the mean quantities, their total flux divergences are of comparable importance. The salt flux 3D components vary along the Tampa Bay axis, and these findings may be typical of coastal plain estuaries given their geometrical complexities.

  11. Balancing sub- and supra-salt strain in salt-influenced rifts: Implications for extension estimates

    NASA Astrophysics Data System (ADS)

    Coleman, Alexander J.; Jackson, Christopher A.-L.; Duffy, Oliver B.

    2017-09-01

    The structural style of salt-influenced rifts may differ from those formed in predominantly brittle crust. Salt can decouple sub- and supra-salt strain, causing sub-salt faults to be geometrically decoupled from, but kinematically coupled to and responsible for, supra-salt forced folding. Salt-influenced rifts thus contain more folds than their brittle counterparts, an observation often ignored in extension estimates. Fundamental to determining whether sub- and supra-salt structures are kinematically coherent, and the relative contributions of thin- (i.e. gravity-driven) and thick-skinned (i.e. whole-plate stretching) deformation to accommodating rift-related strain, is our ability to measure extension at both structural levels. We here use published physical models of salt-influenced extension to show that line-length estimates yield more accurate values of sub- and supra-salt extension compared to fault-heave, before applying these methods to seismic data from the Halten Terrace, offshore Norway. We show that, given the abundance of ductile deformation in salt-influenced rifts, significant amounts of extension may be ignored, leading to the erroneous interpretations of thin-skinned, gravity-gliding. If a system is kinematically coherent, supra-salt structures can help predict the occurrence and kinematics of sub-salt faults that may be poorly imaged and otherwise poorly constrained.

  12. Water and salt balance modelling to predict the effects of land-use changes in forested catchments. 1. Small catchment water balance model

    NASA Astrophysics Data System (ADS)

    Sivapalan, Murugesu; Ruprecht, John K.; Viney, Neil R.

    1996-03-01

    A long-term water balance model has been developed to predict the hydrological effects of land-use change (especially forest clearing) in small experimental catchments in the south-west of Western Australia. This small catchment model has been used as the building block for the development of a large catchment-scale model, and has also formed the basis for a coupled water and salt balance model, developed to predict the changes in stream salinity resulting from land-use and climate change. The application of the coupled salt and water balance model to predict stream salinities in two small experimental catchments, and the application of the large catchment-scale model to predict changes in water yield in a medium-sized catchment that is being mined for bauxite, are presented in Parts 2 and 3, respectively, of this series of papers.The small catchment model has been designed as a simple, robust, conceptually based model of the basic daily water balance fluxes in forested catchments. The responses of the catchment to rainfall and pan evaporation are conceptualized in terms of three interdependent subsurface stores A, B and F. Store A depicts a near-stream perched aquifer system; B represents a deeper, permanent groundwater system; and F is an intermediate, unsaturated infiltration store. The responses of these stores are characterized by a set of constitutive relations which involves a number of conceptual parameters. These parameters are estimated by calibration by comparing observed and predicted runoff. The model has performed very well in simulations carried out on Salmon and Wights, two small experimental catchments in the Collie River basin in south-west Western Australia. The results from the application of the model to these small catchments are presented in this paper.

  13. Salt balance: From space experiments to revolutionizing new clinical concepts on earth - A historical review

    NASA Astrophysics Data System (ADS)

    Gerzer, Rupert

    2014-11-01

    For a long time, sodium balance appeared to be a ;done deal; and was thought to be well understood. However, experiments in preparation of space missions showed that the concept of osmotic sodium storage and close correlations of sodium with water balance are only part of the regulatory mechanisms of body salt. By now it has turned out that the human skin is an important storage place and regulator for sodium, that sodium storage involves macrophages which in turn salt-dependently co-regulate blood pressure, that body sodium also strongly influences bone and protein metabolism, and that immune functions are also strongly influenced by sodium. In addition, the aging process appears to lead to increased body sodium storage, which in turn might influence the aging process of the human body. The current review article summarizes the developments that have led to these revolutionizing new findings and concepts as well as consequences deriving from these findings. Therefore, it is not intended in this article to give a complete literature overview over the whole field but to focus on such key literature and considerations that led to the respective developments.

  14. Performance Comparison of High-Speed Dual-Pneumatic Vitrectomy Cutters during Simulated Vitrectomy with Balanced Salt Solution.

    PubMed

    Abulon, Dina Joy K; Buboltz, David C

    2015-02-01

    To measure flow rate of balanced salt solution and IOP during simulated vitrectomy using two sets of high-speed dual-pneumatic probes. A closed-model eye system measured IOP and flow rate of a balanced salt solution through infusion cannula. The Constellation Vision System was tested with two sets of high-speed dual-pneumatic probes (UltraVit 23-gauge and enhanced 25+-gauge 5000-cpm probes; UltraVit 23-gauge and enhanced 25+-gauge 7500-cpm probes; n = 6 each) under different vacuum levels and cut rates in three duty cycle modes. In both probe sets, flow rates were dependent on cut rate with the biased open and biased closed duty cycles. Flow rates were highest with the biased open duty cycle, lower with the 50/50 duty cycle, and lowest with the biased closed duty cycle. IOP, as expected, was inversely associated with flow rate using both probe sets. The 7500-cpm probes offer greater control and customization compared with 5000-cpm probes under certain experimental conditions. At maximum cut rates, performance of 7500-cpm probes was similar to that of 5000-cpm probes, suggesting that 7500-cpm probes may be used without sacrifice of flow rate and IOP stability. Customization of vitrectomy parameters allows greater surgeon control during vitrectomy and may expand the usefulness of vitrectomy probes.

  15. Hydrology and Salt Balance in a Large, Hypersaline Coastal Lagoon: Lagoa de Araruama, Brazil

    NASA Astrophysics Data System (ADS)

    Kjerfve, Björn; Schettini, C. A. F.; Knoppers, Bastiaan; Lessa, Guilherme; Ferreira, H. O.

    1996-06-01

    Lagoa de Araruama in the state of Rio de Janeiro, Brazil, is a hypersaline coastal lagoon as a result of semi-arid climate conditions, a small drainage basin and a choked entrance channel. The lagoon has been continuously hypersaline for at least 4·5 centuries, but the mean salinity has varied substantially. It has recently decreased from 57 to 52 as indicated by density (salinity) measurements between 1965 and 1990. Analysis of more than 20 years of salinity time series data, in addition to monthly lagoon cruises to measure the spatial salinity distribution, indicate that the lagoon salinity largely fluctuates in response to the difference between evaporation and precipitation. The major factor explaining the long-term trend of decreasing salinity in the lagoon is the constant pumping of 1 m 3s -1of freshwater to the communities surrounding the lagoon from an adjacent watershed, and subsequent discharge of this water into Lagoa de Araruama. The net salt budget is primarily a balance between the advective import of salt from the coastal ocean and eddy diffusive export of salt to the ocean, although the extensive mining of salt from the lagoon during past decades is also a small but significant contribution to the salt budget. The flushing half-life is proposed as a useful time scale of water exchange, is calculated based on a combination of hydrological and tidal processes, and is excellent for comparison of lagoons and assessing water quality changes. The flushing half-life measures 83·5 days for Lagoa de Araruama, considerably longer than for most other coastal lagoons. The proposed dredging of a second ocean channel to Lagoa de Araruama is probably not a good idea. It is likely to accelerate the decrease of lagoon salinity and somewhat improve the lagoon water exchange. At the same time, this will eliminate the apparent buffering capacity provided by the hypersaline environment, and thus may potentially cause water quality problems.

  16. Water and salt balance in young male football players in training during the holy month of Ramadan.

    PubMed

    Shirreffs, Susan M; Maughan, Ronald J

    2008-12-01

    The aim of this study was to assess water and salt balance in young football players in training during Ramadan. Measurements were made in 92 young male football players before and during the month of Ramadan. Fifty-five participants were observing Ramadan fasting, while the other 37 participants were eating and drinking without restriction. In week 3 of Ramadan, water and salt balance measures were made during a training session of 60-70 min duration that was performed at an ambient temperature of 25-28 degrees C and relative humidity of 50-53%. Body mass was recorded before and after training. Fluid intake was assessed in non-fasting players by weighing drink bottles before and after training, and the volume of any urine output was recorded. Sweat composition was estimated from absorbent patches applied to four skin sites for the duration of training. Mean sweat loss of players amounted to 1.41 litres (s = 0.36) in fasting players and 1.61 litres (s = 0.51) in non-fasting players (P = 0.038). Mean fluid intake during training in non-fasting players was 1.92 litres (s = 0.66). Sweat sodium concentration was 20 mmol . l(-1) (s = 8) in fasting players and 17 mmol . l(-1) (s = 7) in non-fasting players, and total sweat sodium loss during training was 0.67 g (s = 0.41) and 0.65 g (s = 0.37) [corresponding to a salt loss of 1.7 g (s = 1.1) and 1.7 g (s = 0.9)] respectively, with no difference between fasting and non-fasting players. Sweat sodium loss was not related to estimated dietary sodium intake (r = -0.07). These descriptive data show large individual variations in all measured parameters with relatively little difference in sweat parameters between fasting and non-fasting individuals.

  17. Effect of temperature and seven storage media on human periodontal ligament fibroblast viability.

    PubMed

    de Souza, Beatriz Dulcineia Mendes; Bortoluzzi, Eduardo Antunes; Reyes-Carmona, Jessie; Dos Santos, Luciane Geanini Pena; Simões, Claudia Maria de Oliveira; Felippe, Wilson Tadeu; Felippe, Mara Cristina Santos

    2017-04-01

    Natural resources, such as coconut water, propolis, and egg whites, have been examined as possible storage media for avulsed teeth. However, there is a lack of research focused on the efficacy of these three products together compared with Hank's balanced salt solution and milk. The aim of this study was to evaluate the capacity of seven storage media to maintain the viability of human periodontal ligament fibroblasts (PDLFs). PDLFs were kept at 5°C and 20°C, in skimmed milk (SMilk), whole milk (WMilk), recently prepared Hank's balanced salt solution (HBSS), Save-A-Tooth ® system's HBSS (Save), natural coconut water (Coconut), Propolis, and egg white (Egg) for 3, 6, 24, 48, 72, 96, and 120 h, through the analysis of tetrazolium salt-based colorimetric (MTT) assay. At 5°C, SMilk and WMilk were better than HBSS in maintaining cell viability, from 24 h onward. At 20°C, HBSS was the best storage medium at 96 and 120 h. At both temperatures, from 6 h onward, Coconut, Propolis and Egg were less effective than SMilk, WMilk, and HBSS. In general, the performance of Coconut, Propolis and Egg were not influenced by storage temperature. However, the lowest temperature undermined the effectiveness of HBSS from 24 h and favored SMilk and WMilk, from 96 and 48 h onward, respectively. Save and water were the worst storage media. SMilk was the best storage medium, followed by WMilk and HBSS. Coconut, Propolis, and Egg can be indicated for the conservation of PDLF up to 3 h. The lower temperature (5°C) undermined the effectiveness of HBSS and favored SMilk and WMilk. © 2016 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd.

  18. Effects of salt stress on ion balance and nitrogen metabolism of old and young leaves in rice (Oryza sativa L.)

    PubMed Central

    2012-01-01

    Background It is well known that salt stress has different effects on old and young tissues. However, it remains largely unexplored whether old and young tissues have different regulatory mechanism during adaptation of plants to salt stress. The aim of this study was to investigate whether salt stress has different effects on the ion balance and nitrogen metabolism in the old and young leaves of rice, and to compare functions of both organs in rice salt tolerance. Results Rice protected young leaves from ion harm via the large accumulation of Na+ and Cl− in old leaves. The up-regulation of OsHKT1;1, OsHAK10 and OsHAK16 might contribute to accumulation of Na+ in old leaves under salt stress. In addition, lower expression of OsHKT1;5 and OsSOS1 in old leaves may decrease frequency of retrieving Na+ from old leaf cells. Under salt stress, old leaves showed higher concentration of NO3− content than young leaves. Up-regulation of OsNRT1;2, a gene coding nitrate transporter, might contribute to the accumulation of NO3− in the old leaves of salt stressed-rice. Salt stress clearly up-regulated the expression of OsGDH2 and OsGDH3 in old leaves, while strongly down-regulated expression of OsGS2 and OsFd-GOGAT in old leaves. Conclusions The down-regulation of OsGS2 and OsFd-GOGAT in old leaves might be a harmful response to excesses of Na+ and Cl−. Under salt stress, rice might accumulate Na+ and Cl− to toxic levels in old leaves. This might influence photorespiration process, reduce NH4+ production from photorespiration, and immediately down-regulate the expression of OsGS2 and OsFd-GOGAT in old leaves of salt stressed rice. Excesses of Na+ and Cl− also might change the pathway of NH4+ assimilation in old leaves of salt stressed rice plants, weaken GOGAT/GS pathway and elevate GDH pathway. PMID:23082824

  19. Ultra-long–term human salt balance studies reveal interrelations between sodium, potassium, and chloride intake and excretion12

    PubMed Central

    Birukov, Anna; Rakova, Natalia; Lerchl, Kathrin; Engberink, Rik HG Olde; Johannes, Bernd; Wabel, Peter; Moissl, Ulrich; Rauh, Manfred; Luft, Friedrich C; Titze, Jens

    2016-01-01

    Background: The intake of sodium, chloride, and potassium is considered important to healthy nutrition and cardiovascular disease risk. Estimating the intake of these electrolytes is difficult and usually predicated on urine collections, commonly for 24 h, which are considered the gold standard. We reported on data earlier for sodium but not for potassium or chloride. Objective: We were able to test the value of 24-h urine collections in a unique, ultra-long–term balance study conducted during a simulated trip to Mars. Design: Four healthy men were observed while ingesting 12 g salt/d, 9 g salt/d, and 6 g salt/d, while their potassium intake was maintained at 4 g/d for 105 d. Six healthy men were studied while ingesting 12 g salt/d, 9 g salt/d, and 6 g salt/d, with a re-exposure of 12 g/d, while their potassium intake was maintained at 4 g/d for 205 d. Food intake and other constituents were recorded every day for each subject. All urine output was collected daily. Results: Long-term urine recovery rates for all 3 electrolytes were very high. Rather than the expected constant daily excretion related to daily intake, we observed remarkable daily variation in excretion, with a 7-d infradian rhythm at a relatively constant intake. We monitored 24-h aldosterone excretion in these studies and found that aldosterone appeared to be the regulator for all 3 electrolytes. We report Bland–Altman analyses on the value of urine collections to estimate intake. Conclusions: A single 24-h urine collection cannot predict sodium, potassium, or chloride intake; thus, multiple collections are necessary. This information is important when assessing electrolyte intake in individuals. PMID:27225435

  20. Blood pressure, magnesium and other mineral balance in two rat models of salt-sensitive, induced hypertension: effects of a non-peptide angiotensin II receptor type 1 antagonist.

    PubMed

    Rondón, Lusliany Josefina; Marcano, Eunice; Rodríguez, Fátima; del Castillo, Jesús Rafael

    2014-01-01

    The renin-angiotensin system is critically involved in regulating arterial blood pressure (BP). Inappropriate angiotensin type-1 receptor activation by angiotensin-II (Ang-II) is related to increased arterial BP. Mg has a role in BP; it can affect cardiac electrical activity, myocardial contractility, and vascular tone. To evaluate the relationship between high BP induced by a high sodium (Na) diet and Mg, and other mineral balances, two experimental rat models of salt-sensitive, induced-hypertension were used: Ang-II infused and Dahl salt-sensitive (SS) rats. We found that: 1) Ang-II infusion progressively increased BP, which was accompanied by hypomagnesuria and signs of secondary hyperaldosteronism; 2) an additive effect between Ang-II and a high Na load may have an effect on strontium (Sr), zinc (Zn) and copper (Cu) balances; 3) Dahl SS rats fed a high Na diet had a slow pressor response, accompanied by altered Mg, Na, potassium (K), and phosphate (P) balances; and 4) losartan prevented BP increases induced by Ang II-NaCl, but did not modify mineral balances. In Dahl SS rats, losartan attenuated high BP and ameliorated magnesemia, Na and K balances. Mg metabolism maybe considered a possible defect in this strain of rat that may contribute to hypertension.

  1. Effects of feeding salt-tolerant forage cultivated in saline-alkaline land on rumen fermentation, feed digestibility and nitrogen balance in lamb.

    PubMed

    Wang, Cong; Dong, Kuan Hu; Liu, Qiang; Yang, Wen Zhu; Zhao, Xiang; Liu, Sheng Qiang; He, Ting Ting; Liu, Zhuang Yu

    2011-05-01

    Mixing salt-tolerant plants with other plants may affect rumen fermentation, which could result in an increase of feed conversion rate. The objective of this study was to evaluate the effects of partially or entirely replacing the corn stover with a mixture of salt-tolerant forage (Dahurian wildrye grass, weeping alkaligrass and erect milkvetch) in the diet of lambs on ruminal fermentation, feed digestibility and nitrogen (N) balance. Ratios of corn stover to the mixture of salt-tolerant forages in the four experimental diets were 100:0, 67:33, 33:67 and 0:100, respectively, for control, low (LF), medium (MF) and high (HF). Ruminal pH was lower (P = 0.048) with LF and MF than with control and HF diets. Total VFA concentration was consistently higher (P = 0.039) for LF and MF than for control and HF with increasing amount of salt-tolerant forage. Ratio of acetate to propionate was linearly (P = 0.019) decreased due to the decrease in acetate production. Digestibilities of OM, NDF and CP in the whole tract linearly (P < 0.002) decreased with increasing amount of salt-tolerant forage. Similarly, retained N and ratio of retained N to digestible N also linearly (P < 0.005) decreased. Feeding salt-tolerant forage cultivated in saline-alkaline land improved rumen fermentation with increased total VFA production, and changed the rumen fermentation pattern to increased butyrate production. However, the decreased feed digestibility in the whole digestive tract of lamb may reduce nutrient availability to animals and thus adversely affect animal productivity. Additionally, feeding salt-tolerant forages may require more protein supplement to meet animal requirements, because of the low protein content and low protein digestibility of the salt-tolerant forages. Copyright © 2011 Society of Chemical Industry.

  2. Salinity controls on plant transpiration and soil water balance

    NASA Astrophysics Data System (ADS)

    Perri, S.; Molini, A.; Suweis, S. S.; Viola, F.; Entekhabi, D.

    2017-12-01

    Soil salinization and aridification represent a major threat for the food security and sustainable development of drylands. The two problems are deeply connected, and their interplay is expected to be further enhanced by climate change and projected population growth. Salt-affected land is currently estimated to cover around 1.1 Gha, and is particularly widespread in semi-arid to hyper-arid climates. Over 900 Mha of these saline/sodic soils are potentially available for crop or biomass production. Salt-tolerant plants have been recently proposed as valid solution to exploit or even remediate salinized soils. However the effects of salinity on evapotranspiration, soil water balance and the long-term salt mass balance in the soil, are still largely unexplored. In this contribution we analyze the feedback of evapotranspiration on soil salinization, with particular emphasis on the role of vegetation and plant salt-tolerance. The goal is to introduce a simple modeling framework able to shed some light on how (a) soil salinity controls plant transpiration, and (b) salinization itself is favored/impeded by different vegetation feedback. We introduce at this goal a spatially lumped stochastic model of soil moisture and salt mass dynamics averaged over the active soil depth, and accounting for the effect of salinity on evapotranspiration. Here, the limiting effect of salinity on ET is modeled through a simple plant response function depending on both salt concentration in the soil and plant salt-tolerance. The coupled soil moisture and salt mass balance is hence used to obtain the conditional steady-state probability density function (pdf) of soil moisture for given salt tolerance and salinization level, Our results show that salinity imposes a limit in the soil water balance and this limit depends on plant salt-tolerance mainly through the control of the leaching occurrence (tolerant plants exploit water more efficiently than the sensitive ones). We also analyzed the

  3. Moderate (20%) fructose-enriched diet stimulates salt-sensitive hypertension with increased salt retention and decreased renal nitric oxide.

    PubMed

    Gordish, Kevin L; Kassem, Kamal M; Ortiz, Pablo A; Beierwaltes, William H

    2017-04-01

    Previously, we reported that 20% fructose diet causes salt-sensitive hypertension. In this study, we hypothesized that a high salt diet supplemented with 20% fructose (in drinking water) stimulates salt-sensitive hypertension by increasing salt retention through decreasing renal nitric oxide. Rats in metabolic cages consumed normal rat chow for 5 days (baseline), then either: (1) normal salt for 2 weeks, (2) 20% fructose in drinking water for 2 weeks, (3) 20% fructose for 1 week, then fructose + high salt (4% NaCl) for 1 week, (4) normal chow for 1 week, then high salt for 1 week, (5) 20% glucose for 1 week, then glucose + high salt for 1 week. Blood pressure, sodium excretion, and cumulative sodium balance were measured. Systolic blood pressure was unchanged by 20% fructose or high salt diet. 20% fructose + high salt increased systolic blood pressure from 125 ± 1 to 140 ± 2 mmHg ( P  < 0.001). Cumulative sodium balance was greater in rats consuming fructose + high salt than either high salt, or glucose + high salt (114.2 ± 4.4 vs. 103.6 ± 2.2 and 98.6 ± 5.6 mEq/Day19; P  < 0.05). Sodium excretion was lower in fructose + high salt group compared to high salt only: 5.33 ± 0.21 versus 7.67 ± 0.31 mmol/24 h; P  < 0.001). Nitric oxide excretion was 2935 ± 256  μ mol/24 h in high salt-fed rats, but reduced by 40% in the 20% fructose + high salt group (2139 ± 178  μ mol /24 hrs P  < 0.01). Our results suggest that fructose predisposes rats to salt-sensitivity and, combined with a high salt diet, leads to sodium retention, increased blood pressure, and impaired renal nitric oxide availability. © 2017 The Authors. Physiological Reports published by Wiley Periodicals, Inc. on behalf of The Physiological Society and the American Physiological Society.

  4. The role of succulent halophytes in the water balance of salt marsh rodents.

    PubMed

    Coulombe, Harry N

    1970-09-01

    The role of succulent halophytes in the water balance and ecology of salt marsh rodents is dependent upon an evaluation of the composition of the available sources and the physiological properties of their potential consumers. Studies of the osmotic properties of succulent halophytes from southern California coastal salt marshes are presented, together with experiments regarding the utilization of Common Pickleweed (Salicornia virginica L.) by indigenous populations of cricetid rodents (harvest mouse Reithrodontomys megalotis limicola Von Bloecker, and meadow-mouse Microtus californicus stephensi Von Bloecker). These data are discussed in relation to other available information concerning the ecology of coastal salt marshes, particularly in western North America.Extruded sap of Common Pickleweed was found to have a mean total osmotic pressure (TOP) of 1,450 mOsm/liter, with an average chloride ion content of 876 mEq/liter (about 70% of the TOP). A related species, Salicornia subterminale, had a slightly lower TOP (1,300 mOsm/liter), of which about 29% was accounted for by chloride ion concentration. Sea Blight (Suaeda fruticosa) was the only species in which the TOP correlated with the distance from the tide level; sap TOP increased away from the lagoon's edge. In both Sea Blight and Common Pickle weed, TOP was not directly related to chloride content, indicating the importance of other osmotically active solutes.Harvest mice were placed on three experimental regimes: 1) millet seeds only, 2) pickleweed only, and 3) pickleweed and millet seed. Meadow mice were tested on the last regime only. Harvest mice survived best on a strict millet seed diet; when Salicornia was consumed to a detectable extent, the mice did not survive. Meadow mice, however, could survive using Salicornia as a dietary source in conjunction with seeds. Kidney electrolyte concentrating abilities indicated that harvest mice should be able to utilize pickleweed; this was not confirmed in my

  5. Effects of Clofibrate on Salt Loading-Induced Hypertension in Rats

    PubMed Central

    Cruz, Antonio; Rodríguez-Gómez, Isabel; Pérez-Abud, Rocío; Vargas, Miguel Ángel; Wangensteen, Rosemary; Quesada, Andrés; Osuna, Antonio; Moreno, Juan Manuel

    2011-01-01

    The effects of clofibrate on the hemodynamic and renal manifestations of increased saline intake were analyzed. Four groups of male Wistar rats were treated for five weeks: control, clofibrate (240 mg/kg/day), salt (2% via drinking water), and salt + clofibrate. Body weight, systolic blood pressure (SBP), and heart rate (HR) were recorded weekly. Finally, SBP, HR, and morphologic, metabolic, plasma, and renal variables were measured. Salt increased SBP, HR, urinary isoprostanes, NOx, ET, vasopressin and proteinuria and reduced plasma free T4 (FT4) and tissue FT4 and FT3 versus control rats. Clofibrate prevented the increase in SBP produced by salt administration, reduced the sodium balance, and further reduced plasma and tissue thyroid hormone levels. However, clofibrate did not modify the relative cardiac mass, NOx, urinary ET, and vasopressin of saline-loaded rats. In conclusion, chronic clofibrate administration prevented the blood pressure elevation of salt-loaded rats by decreasing sodium balance and reducing thyroid hormone levels. PMID:20981147

  6. Corrosion Behavior of Pure Copper Surrounded by Hank's Physiological Electrolyte at 310 K (37 °C) as a Potential Biomaterial for Contraception: An Analogy Drawn Between Micro- and Nano-grained Copper

    NASA Astrophysics Data System (ADS)

    Fattah-alhosseini, Arash; Imantalab, Omid; Vafaeian, Saeed; Ansari, Ghazaleh

    2017-08-01

    This work aims to evaluate the corrosion behavior of pure copper from the microstructural viewpoint for a biomedical application, namely intrauterine devices. For this purpose, Tafel polarization and electrochemical impedance spectroscopy (EIS) techniques were used to evaluate the corrosion behavior of annealed pure copper (with the average grain size of 45 ± 1 µm) and nano-grained microstructure in physiological electrolyte of Hank at 310 K (37 °C). Pure copper in nanoscale grain size, typically an average of 90 ± 5 nm, was successfully made by eight-cycle accumulative roll bonding process at room temperature. On the basis of Tafel polarization results, it was revealed that nano-grained sample had lower corrosion current density and more noble corrosion potential for prolonged exposure in Hank's physiological solution at 310 K (37 °C). In addition, the EIS results showed that the nano-grained sample had more corrosion resistance compared to the coarse-grained one for long-time immersion.

  7. Regulation of ion homeostasis by aminolevulinic acid in salt-stressed wheat seedlings

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Türk, Hülya, E-mail: hulyaa.turk@hotmail.com; East Anatolian High Technology Research and Application Center, Ataturk University, Erzurum; Genişel, Mucip, E-mail: m.genisel@hotmail.com

    2016-04-18

    Salinity is regarded as a worldwide agricultural threat, as it seriously limits plant development and productivity. Salt stress reduces water uptake in plants by disrupting the osmotic balance of soil solution. In addition, it creates a damaged metabolic process by causing ion imbalance in cells. In this study, we aim to examine the negative effects of 5-aminolevulinic acid (ALA) (20 mg/l) on the ion balance in wheat seedling leaves exposed to salt stress (150 mM). Sodium is known to be highly toxic for plant cells at high concentrations, and is significantly increased by salt stress. However, it can be reduced by combinedmore » application of ALA and salt, compared to salt application alone. On the other hand, while the K{sup +}/Na{sup +} ratio was reduced by salt stress, ALA application changed this ratio in favor of K{sup +}. Manganese, iron, and copper were also able to reduce stress. However, ALA pre-treatment resulted in mineral level increments. Conversely, the stress-induced rise in magnesium, potassium, calcium, phosphorus, zinc, and molybdenum were further improved by ALA application. These data clearly show that ALA has an important regulatory effect of ion balance in wheat leaves.« less

  8. The altered balance between sympathetic nervous system and nitric oxide in salt hypertensive Dahl rats: ontogenetic and F2 hybrid studies.

    PubMed

    Dobesová, Zdena; Kunes, Jaroslav; Zicha, Josef

    2002-05-01

    DeltaMAPL-NAME (P < 0.001). The slope of the relationship between basal BP and pentolinium-induced BP changes was steeper than that between basal BP and BP changes elicited by l-NAME. The positive correlation of basal BP with DeltaMAPpento/DeltaMAPL-NAME ratio (P < 0.01) indicates that an altered balance between sympathetic vasoconstriction and NO-dependent vasodilation was associated with high blood pressure, even in the F2 population of Dahl rats. A comparison of young and adult salt-hypertensive Dahl rats stressed the importance of increased residual BP and relative NO deficiency for the severity of hypertension, because these two alterations were absent in a less-pronounced form of salt hypertension elicited in adulthood. The findings obtained in our young salt-loaded F2 population also confirm the major importance of both sympathetic hyperactivity and relative NO deficiency for the maintenance of salt hypertension in Dahl rats.

  9. Discontinuous hygroscopic growth of an aqueous surfactant/salt aerosol particle levitated in an electrodynamic balance

    NASA Astrophysics Data System (ADS)

    Soonsin, V.; Krieger, U. K.; Peter, T.

    2010-12-01

    Organic compounds are a major fraction of tropospheric aerosol. The organic fraction is usually internally mixed with inorganic salts. Surface-active organic matter or surfactants, enriched in the oceanic surface layer and transferred to the atmosphere by bubble-bursting processes, are the most likely candidates to contribute the observed organic fraction in sea salt aerosol [1, 2]. If the organic substance is a surfactant, it will lower the surface tension. In addition aggregates of the organic monomers, called micelles, will form if the concentration of the organic exceeds a certain limit (critical micelle concentration). These aggregates do have different morphology (spheres or globular or rod like micelles, or spherical bilayer vesicles etc.) and size, depending on the nature of the organic molecule, its concentration and the concentration of inorganic salts [3]. These aggregate may promote solubilisation of organic compounds in aqueous atmospheric aerosol. We performed measurements of ternary aqueous solution particles consisting of tetraethylene glycol monooctyl ether (C8E4) as organic surfactant and sodium chloride (NaCl) as inorganic salt and water (H2O) using single levitated aerosol particles in an electrodynamic balance. The particles can be stored contact-free in a temperature and humidity controlled chamber and optical resonance spectroscopy is used to monitor radius change [4]. Mie resonance spectra of ternary droplets show discontinuous growth with increasing relative humidity (RH) and also discontinuous shrinkage with decreasing relative humidity. We observe this behavior at temperatures and RHs at which the salt is completely deliquesced and the concentration of the organic surfactant is larger than the critical micelle concentration. Independent measurements of particle mass show also discontinuous water uptake. We speculate that this discontinuous, step-like, growth is caused by disaggregation of a micelle needed to conserve the monolayer of

  10. Increased salt consumption induces body water conservation and decreases fluid intake.

    PubMed

    Rakova, Natalia; Kitada, Kento; Lerchl, Kathrin; Dahlmann, Anke; Birukov, Anna; Daub, Steffen; Kopp, Christoph; Pedchenko, Tetyana; Zhang, Yahua; Beck, Luis; Johannes, Bernd; Marton, Adriana; Müller, Dominik N; Rauh, Manfred; Luft, Friedrich C; Titze, Jens

    2017-05-01

    The idea that increasing salt intake increases drinking and urine volume is widely accepted. We tested the hypothesis that an increase in salt intake of 6 g/d would change fluid balance in men living under ultra-long-term controlled conditions. Over the course of 2 separate space flight simulation studies of 105 and 205 days' duration, we exposed 10 healthy men to 3 salt intake levels (12, 9, or 6 g/d). All other nutrients were maintained constant. We studied the effect of salt-driven changes in mineralocorticoid and glucocorticoid urinary excretion on day-to-day osmolyte and water balance. A 6-g/d increase in salt intake increased urine osmolyte excretion, but reduced free-water clearance, indicating endogenous free water accrual by urine concentration. The resulting endogenous water surplus reduced fluid intake at the 12-g/d salt intake level. Across all 3 levels of salt intake, half-weekly and weekly rhythmical mineralocorticoid release promoted free water reabsorption via the renal concentration mechanism. Mineralocorticoid-coupled increases in free water reabsorption were counterbalanced by rhythmical glucocorticoid release, with excretion of endogenous osmolyte and water surplus by relative urine dilution. A 6-g/d increase in salt intake decreased the level of rhythmical mineralocorticoid release and elevated rhythmical glucocorticoid release. The projected effect of salt-driven hormone rhythm modulation corresponded well with the measured decrease in water intake and an increase in urine volume with surplus osmolyte excretion. Humans regulate osmolyte and water balance by rhythmical mineralocorticoid and glucocorticoid release, endogenous accrual of surplus body water, and precise surplus excretion. Federal Ministry for Economics and Technology/DLR; the Interdisciplinary Centre for Clinical Research; the NIH; the American Heart Association (AHA); the Renal Research Institute; and the TOYOBO Biotechnology Foundation. Food products were donated by APETITO

  11. The energy balance within a bubble column evaporator

    NASA Astrophysics Data System (ADS)

    Fan, Chao; Shahid, Muhammad; Pashley, Richard M.

    2018-05-01

    Bubble column evaporator (BCE) systems have been studied and developed for many applications, such as thermal desalination, sterilization, evaporative cooling and controlled precipitation. The heat supplied from warm/hot dry bubbles is to vaporize the water in various salt solutions until the solution temperature reaches steady state, which was derived into the energy balance of the BCE. The energy balance and utilization involved in each BCE process form the fundamental theory of these applications. More importantly, it opened a new field for the thermodynamics study in the form of heat and vapor transfer in the bubbles. In this paper, the originally derived energy balance was reviewed on the basis of its physics in the BCE process and compared with new proposed energy balance equations in terms of obtained the enthalpy of vaporization (Δ H vap) values of salt solutions from BCE experiments. Based on the analysis of derivation and Δ H vap values comparison, it is demonstrated that the original balance equation has high accuracy and precision, within 2% over 19-55 °C using improved systems. Also, the experimental and theoretical techniques used for determining Δ H vap values of salt solutions were reviewed for the operation conditions and their accuracies compared to the literature data. The BCE method, as one of the most simple and accurate techniques, offers a novel way to determine Δ H vap values of salt solutions based on its energy balance equation, which had error less than 3%. The thermal energy required to heat the inlet gas, the energy used for water evaporation in the BCE and the energy conserved from water vapor condensation were estimated in an overall energy balance analysis. The good agreement observed between input and potential vapor condensation energy illustrates the efficiency of the BCE system. Typical energy consumption levels for thermal desalination for producing pure water using the BCE process was also analyzed for different inlet air

  12. Molten salts and nuclear energy production

    NASA Astrophysics Data System (ADS)

    Le Brun, Christian

    2007-01-01

    Molten salts (fluorides or chlorides) were considered near the beginning of research into nuclear energy production. This was initially due to their advantageous physical and chemical properties: good heat transfer capacity, radiation insensitivity, high boiling point, wide range solubility for actinides. In addition it was realised that molten salts could be used in numerous situations: high temperature heat transfer, core coolants with solid fuels, liquid fuel in a molten salt reactor, solvents for spent nuclear solid fuel in the case of pyro-reprocessing and coolant and tritium production in the case of fusion. Molten salt reactors, one of the six innovative concepts chosen by the Generation IV international forum, are particularly interesting for use as either waste incinerators or thorium cycle systems. As the neutron balance in the thorium cycle is very tight, the possibility to perform online extraction of some fission product poisons from the salt is very attractive. In this article the most important questions that must be addressed to demonstrate the feasibility of molten salt reactor will be reviewed.

  13. Ethylenediamine salt of 5-nitrotetrazole and preparation

    DOEpatents

    Lee, Kien-yin; Coburn, Michael D.

    1985-01-01

    Ethylenediamine salt of 5-nitrotetrazole and preparation. This salt has been found to be useful as an explosive alone and in eutectic mixtures with ammonium nitrate and/or other explosive compounds. Its eutectic with ammonium nitrate has been demonstrated to behave in a similar manner to a monomolecular explosive such as TNT, and is less sensitive than the pure salt. Moreover, this eutectic mixture, which contains 87.8 mol % of ammonium nitrate, is close to the CO.sub.2 -balanced composition of 90 mol %, and has a relatively low melting point of 110.5 C. making it readily castable. The ternary eutectic system containing the ethylenediamine salt of 5-nitrotetrazole, ammonium nitrate and ethylenediamine dinitrate has a eutectic temperature of 89.5 C. and gives a measured detonation pressure of 24.8 GPa, which is 97.6% of the calculated value. Both the pure ethylenediamine salt and its known eutectic compounds behave in substantially ideal manner. Methods for the preparation of the salt are described.

  14. Effects of supplementary desalted mother liquor as replacement of commercial salt in diet for Thai native cattle on digestibility, energy and nitrogen balance, and rumen conditions.

    PubMed

    Sato, Yoshiaki; Angthong, Wanna; Butcha, Patima; Takeda, Motoharu; Oishi, Kazato; Hirooka, Hiroyuki; Kumagai, Hajime

    2018-05-16

    Four Thai native cattle were used in a 4 × 4 Latin square design experiment to evaluate the availability of desalted mother liquor (DML) as replacement of salt in concentrate. Each cattle was assigned to one of the following concentrate feeding treatments: C1, 1% NaCl was added as salt; C2, 2% NaCl was added as salt; D1, 1% NaCl was replaced by DML; D2, 2% NaCl was replaced by DML, on a dry matter (DM) basis. The animals were fed rice straw and experimental concentrates (40:60) at 1.9% of body weight on a DM basis, daily. Acid detergent fiber expressed exclusive of residual ash (ADFom) digestibility in DML treatment was higher than salt treatment (p < .05) and D2 feeding showed the highest value (60.8%). There were no significant differences in blood metabolites, nitrogen retention, ruminal ammonia nitrogen, methane emission or energy efficiency among treatments. Molar percent of acetate on volatile fatty acids in rumen fluid 4 hr post-feeding tended to be higher in DML treatment than salt treatment (p = .08). The results indicated that adding DML could improve ADFom digestibility and salt could be replaced by DML up to 2% as NaCl in concentrate without adverse effects on nitrogen balance, rumen conditions, blood metabolites and methane emission. © 2018 Japanese Society of Animal Science.

  15. The effects of salinity in the soil water balance: A Budyko's approach

    NASA Astrophysics Data System (ADS)

    Perri, S.; Viola, F.; Molini, A.

    2017-12-01

    Soil degradation and water scarcity pose important constraints on productivity and development of arid and semi-arid countries. Among the main causes of loss of soil fertility, aridification and soil salinization are deeply connected threats enhanced by climate change. Assessing water availability is fundamental for a large number of applications especially in arid regions. An approach often adopted to estimate the long-term rainfall partitioning into evapotranspiration and runoff is the Budyko's curve. However, the classical Budyko framework might not be able to properly reproduce the water balance in salt affected basins, especially under elevated soil salinization conditions. Salinity is a limiting factor for plant transpiration (as well as growth) affecting both short and long term soil moisture dynamics and ultimately the hydrologic balance. Soluble salts cause a reduction of soil water potential similar to the one arising from droughts, although plant adaptations to soil salinity show extremely different traits and can vary from species to species. In a similar context, the salt-tolerance plants are expected to control the amount of soil moisture lost to transpiration in saline soils, also because salinity reduces evaporation. We propose a simple framework to include the effects of salinization on the surface energy and water balance within a simple Budyko approach. By introducing the effects of salinity in the stochastic water balance we are able to include the influence of vegetation type (i.e. in terms of salt-tolerance) on evapotranspiration-runoff partitioning under different climatic conditions. The water balance components are thus compared to data obtained from arid salt-affected regions.

  16. Salt craving: the psychobiology of pathogenic sodium intake.

    PubMed

    Morris, Michael J; Na, Elisa S; Johnson, Alan Kim

    2008-08-06

    Ionic sodium, obtained from dietary sources usually in the form of sodium chloride (NaCl, common table salt) is essential to physiological function, and in humans salt is generally regarded as highly palatable. This marriage of pleasant taste and physiological utility might appear fortunate--an appealing taste helps to ensure that such a vital substance is ingested. However, the powerful mechanisms governing sodium retention and sodium balance are unfortunately best adapted for an environment in which few humans still exist. Our physiological and behavioral means for maintaining body sodium and fluid homeostasis evolved in hot climates where sources of dietary sodium were scarce. For many reasons, contemporary diets are high in salt and daily sodium intakes are excessive. High sodium consumption can have pathological consequences. Although there are a number of obstacles to limiting salt ingestion, high sodium intake, like smoking, is a modifiable behavioral risk factor for many cardiovascular diseases. This review discusses the psychobiological mechanisms that promote and maintain excessive dietary sodium intake. Of particular importance are experience-dependent processes including the sensitization of the neural systems underlying sodium appetite and the effects of sodium balance on hedonic state and mood. Accumulating evidence suggests that plasticity within the central nervous system as a result of experience with high salt intake, sodium depletion, or a chronic unresolved sodium appetite fosters enduring changes in sodium related appetitive and consummatory behaviors.

  17. Dynamics of salt playa polygons

    NASA Astrophysics Data System (ADS)

    Goehring, L.; Fourrière, A.

    2014-12-01

    In natural salt playa or in evaporation pools for the salt extraction industry, one can sometimes see surprising regular structures formed by ridges of salt. These ridges connect together to form a self-organized network of polygons one to two meters in diameter, which we call salt polygons. Here we propose a mechanism based on porous media convection of salty water in soil to explain the formation and the scaling of the salt polygons. Surface evaporation causes a steady upward flow of salty water, which can cause precipitation near the surface. A vertical salt gradient then builds up in the porous soil, with heavy salt-saturated water lying over the less salty source water. This can drive convection when a threshold is reached, given by a critical Rayleigh number of about 7. We suggest that the salt polygons are the surface expression of the porous medium convection, with salt crystallizing along the positions of the convective downwellings. To study this instability directly, we developed a 2D analogue experiment using a Hele-Shaw cell filled with a porous medium saturated with a salt solution and heated from above. We perform a linear stability analysis of this system, and find that it is unstable to convection, with a most unstable wavelength that is set by a balance between salt diffusion and water evaporation. The Rayleigh number in our experiment is controlled by the particle size of our model soil, and the evaporation rate. We obtain results that scale with the observation of natural salt polygons. Using dye, we observe the convective movement of salty water and find downwelling convective plumes underneath the spots where surface salt ridges form, as shown in the attached figure.

  18. Increased salt consumption induces body water conservation and decreases fluid intake

    PubMed Central

    Rakova, Natalia; Kitada, Kento; Lerchl, Kathrin; Dahlmann, Anke; Birukov, Anna; Daub, Steffen; Kopp, Christoph; Pedchenko, Tetyana; Zhang, Yahua; Beck, Luis; Marton, Adriana; Müller, Dominik N.; Rauh, Manfred; Luft, Friedrich C.

    2017-01-01

    BACKGROUND. The idea that increasing salt intake increases drinking and urine volume is widely accepted. We tested the hypothesis that an increase in salt intake of 6 g/d would change fluid balance in men living under ultra-long-term controlled conditions. METHODS. Over the course of 2 separate space flight simulation studies of 105 and 205 days’ duration, we exposed 10 healthy men to 3 salt intake levels (12, 9, or 6 g/d). All other nutrients were maintained constant. We studied the effect of salt-driven changes in mineralocorticoid and glucocorticoid urinary excretion on day-to-day osmolyte and water balance. RESULTS. A 6-g/d increase in salt intake increased urine osmolyte excretion, but reduced free-water clearance, indicating endogenous free water accrual by urine concentration. The resulting endogenous water surplus reduced fluid intake at the 12-g/d salt intake level. Across all 3 levels of salt intake, half-weekly and weekly rhythmical mineralocorticoid release promoted free water reabsorption via the renal concentration mechanism. Mineralocorticoid-coupled increases in free water reabsorption were counterbalanced by rhythmical glucocorticoid release, with excretion of endogenous osmolyte and water surplus by relative urine dilution. A 6-g/d increase in salt intake decreased the level of rhythmical mineralocorticoid release and elevated rhythmical glucocorticoid release. The projected effect of salt-driven hormone rhythm modulation corresponded well with the measured decrease in water intake and an increase in urine volume with surplus osmolyte excretion. CONCLUSION. Humans regulate osmolyte and water balance by rhythmical mineralocorticoid and glucocorticoid release, endogenous accrual of surplus body water, and precise surplus excretion. FUNDING. Federal Ministry for Economics and Technology/DLR; the Interdisciplinary Centre for Clinical Research; the NIH; the American Heart Association (AHA); the Renal Research Institute; and the TOYOBO Biotechnology

  19. Hydration patterns and salting effects in sodium chloride solution.

    PubMed

    Li, Weifeng; Mu, Yuguang

    2011-10-07

    The salting effects of 2M sodium chloride electrolyte are studied based on a series of model solutes with properties ranging from hydrophobic to hydrophilic. Generally, hydrophobic solutes will be salted out and hydrophilic solutes will be salted in by NaCl solution. The solvation free energy changes are highly correlated with Kirkwood-Buff integrals. The underlying mechanism resorts to the preferential binding of ions and water to solutes. Our results demonstrate that the salting effect not only depends on the salt's position in Hofmeister series, but also on the solutes' specifics. Taking the hydration free energies of solutes and ions as independent variables, a schematic diagram of salting effects is suggested. The resolved multifaceted salting effects rely on the sensitive balance of the tripartite interaction among solutes, ions, and water. © 2011 American Institute of Physics

  20. Biocorrosion investigation of two shape memory nickel based alloys: Ni-Mn-Ga and thin film NiTi.

    PubMed

    Stepan, L L; Levi, D S; Gans, E; Mohanchandra, K P; Ujihara, M; Carman, G P

    2007-09-01

    Thin film nitinol and single crystal Ni-Mn-Ga represent two new shape memory materials with potential to be used as percutaneously placed implant devices. However, the biocompatibility of these materials has not been adequately assessed. Immersion tests were conducted on both thin film nitinol and single crystal Ni-Mn-Ga in Hank's balanced salt solution at 37 degrees C and pH 7.4. After 12 h, large pits were found on the Ni-Mn-Ga samples while thin film nitinol displayed no signs of corrosion. Further electrochemical tests on thin film nitinol samples revealed breakdown potentials superior to a mechanically polished nitinol disc. These results suggest that passivation or electropolishing of thin film nitinol maybe unnecessary to promote corrosion resistance.

  1. Salting-out and salting-in: competitive effects of salt on the aggregation behavior of soy protein particles and their emulsifying properties.

    PubMed

    Xu, Hua-Neng; Liu, Yang; Zhang, Lianfu

    2015-08-07

    Emulsions stabilized by protein particles have gained increasing research attention due to their combined advantages of biocompatibility and superior stability. In this study, colloidal particles consisting of soy protein isolates (SPIs) prepared through a heat-treatment procedure are used to make oil-in-water emulsions at a protein concentration of 10 g L(-1) and a pH of 5.91. We investigate parallelly the effects of NaCl on the stability and rheological properties of the particle suspensions and their stabilized emulsions at salt concentrations of 0, 100 and 400 mM. The aggregation behavior of the particles is strongly dependent on the NaCl concentration, showing signs of sedimentation at low NaCl concentration (100 mM) but redispersion again at high NaCl concentration (400 mM). The extensive particle aggregation is beneficial to the formation of a continuous interfacial film for the emulsions, and hence results in a remarkable increase of creaming stability and interfacial viscoelastic moduli. The results can be explained in terms of two competitive effects of NaCl: salting-out and salting-in, which are attributed to complex electrostatic interactions between the particles as a function of NaCl concentration. The delicate balance between salting-out and salting-in provides an interesting insight into the nature of underlying protein particle interactions in aqueous suspensions and a possible mechanism for tailoring their emulsifying properties via salt effects.

  2. Ionomic and metabolic responses to neutral salt or alkaline salt stresses in maize (Zea mays L.) seedlings.

    PubMed

    Guo, Rui; Shi, LianXuan; Yan, Changrong; Zhong, Xiuli; Gu, FengXue; Liu, Qi; Xia, Xu; Li, Haoru

    2017-02-10

    Soil salinity and alkalinity present a serious threat to global agriculture. However, most of the studies have focused on neutral salt stress, and the information on the metabolic responses of plants to alkaline salt stress is limited. This investigation aimed at determining the influence of neutral salt and alkaline salt stresses on the content of metal elements and metabolites in maize plant tissues, by using mixtures of various proportions of NaCl, NaHCO 3 , Na 2 SO 4 , and Na 2 CO 3 . We found that alkaline salt stress suppressed more pronouncedly the photosynthesis and growth of maize plants than salinity stress. Under alkaline salt stress conditions, metal ions formed massive precipitates, which ultimately reduced plant nutrient availability. On the other hand, high neutral salt stress induced metabolic changes in the direction of gluconeogenesis leading to the enhanced formation of sugars as a reaction contributing to the mitigation of osmotic stress. Thus, the active synthesis of sugars in shoots was essential to the development of salt tolerance. However, the alkaline salt stress conditions characterized by elevated pH values suppressed substantially the levels of photosynthesis, N metabolism, glycolysis, and the production of sugars and amino acids. These results indicate the presence of different defensive mechanisms responsible for the plant responses to neutral salt and alkaline salt stresses. In addition, the increased concentration of organic acids and enhanced metabolic energy might be potential major factors that can contribute to the maintenance intracellular ion balance in maize plants and counteract the negative effects of high pH under alkaline salt stress.

  3. Iris reconstruction using autologous iris preserved in cold balanced salt solution for 8 hours in iatrogenic total iridodialysis during cataract surgery: a case report.

    PubMed

    Bang, Seung Pil; Jun, Jong Hwa

    2017-04-04

    A large iris defect or extensive iridodialysis can be an intractable cause of visual disturbance, photophobia, glare, monocular diplopia, or cosmetic deformity. The implantation of an artificial iris substitute could be an effective option, but this can cause a reduction in endothelial cell density. We succeeded in the anatomical restoration of iris tissue that was totally dialyzed out of the eye, and was preserved in cold balanced salt solution for 8 h. Engrafted iris tissue was maintained within the aqueous humor. A 71-year-old man was referred to our clinic for management of an iatrogenic total iridodialysis. The totally dialyzed iris tissue was immediately preserved in sterile cold balanced salt solution and packed in a sterile biopsy bottle that was surrounded with ice cubes. Under general anesthesia, a pars plana vitrectomy was performed to remove the remaining lens cortex and vitreous fiber anterior to the equator. A sulcus-positioned intraocular lens (IOL) was repositioned and fixed by ab externo scleral sutures. Preserved iris tissue was inserted and ironed using both iris spatula and ocular viscoelastic devices. Five-point ab interno scleral sutures were made 1.0 mm posterior to the limbus. The engrafted iris was successfully maintained for 6 months and did not undergo any atrophic change or depigmentation, which may be caused by primary implantation failure due to a blocked blood supply.

  4. Salt craving: The psychobiology of pathogenic sodium intake

    PubMed Central

    Morris, Michael J.; Na, Elisa S.; Johnson, Alan Kim

    2008-01-01

    Ionic sodium, obtained from dietary sources usually in the form of sodium chloride (NaCl, common table salt) is essential to physiological function, and in humans salt is generally regarded as highly palatable. This marriage of pleasant taste and physiological utility might appear fortunate – an appealing taste helps to ensure that such a vital substance is ingested. However, the powerful mechanisms governing sodium retention and sodium balance are unfortunately best adapted for an environment in which few humans still exist. Our physiological and behavioral means for maintaining body sodium and fluid homeostasis evolved in hot climates where sources of dietary sodium were scarce. For many reasons, contemporary diets are high in salt and daily sodium intakes are excessive. High sodium consumption can have pathological consequences. Although there are a number of obstacles to limiting salt ingestion, high sodium intake, like smoking, is a modifiable behavioral risk factor for many cardiovascular diseases. This review discusses the psychobiological mechanisms that promote and maintain excessive dietary sodium intake. Of particular importance are experience-dependent processes including the sensitization of the neural systems underlying sodium appetite and the effects of sodium balance on hedonic state and mood. Accumulating evidence suggests that plasticity within the central nervous system as a result of experience with high salt intake, sodium depletion, or a chronic unresolved sodium appetite fosters enduring changes in sodium related appetitive and consummatory behaviors. PMID:18514747

  5. Ethylenediamine salt of 5-nitrotetrazole and preparation

    DOEpatents

    Lee, K.; Coburn, M.D.

    1984-05-17

    The ethylenediamine salt of 5-nitrotetrazole has been found to be useful as an explosive alone and in eutectic mixtures with ammonium nitrate and/or other explosive compounds. Its eutectic with ammonium nitrate has been demonstrated to behave in a similar manner to a monomolecular explosive such as TNT, and is less sensitive than the pure salt. Moreover, this eutectic mixture, which contains 87.8 mol% of ammonium nitrate, is close to the CO/sub 2/-balanced composition of 90 mol%, and has a relatively low melting point of 110.5 C making it readily castable. The ternary eutectic system containing the ethylenediamine salt of 5-nitrotetrazole, ammonium nitrate and ethylenediamine dinitrate has a eutectic temperature of 89.5 C and gives a measured detonation pressure of 24.8 GPa, which is 97.6% of the calculated value. Both the pure ethylenediamine salt and its known eutectic compounds behave in substantially ideal manner. Methods for the preparation of the salt are described.

  6. Zebrafish as a Model for Systems Medicine R&D: Rethinking the Metabolic Effects of Carrier Solvents and Culture Buffers Determined by (1)H NMR Metabolomics.

    PubMed

    Akhtar, Muhammad T; Mushtaq, Mian Y; Verpoorte, Robert; Richardson, Michael K; Choi, Young H

    2016-01-01

    Zebrafish is a frequently employed model organism in systems medicine and biomarker discovery. A crosscutting fundamental question, and one that has been overlooked in the field, is the "system-wide" (omics) effects induced in zebrafish by metabolic solvents and culture buffers. Indeed, any bioactivity or toxicity test requires that the target compounds are dissolved in an appropriate nonpolar solvent or aqueous media. It is important to know whether the solvent or the buffer itself has an effect on the zebrafish model organism. We evaluated the effects of two organic carrier solvents used in research with zebrafish, as well as in drug screening: dimethyl sulfoxide (DMSO) and ethanol, and two commonly used aqueous buffers (egg water and Hank's balanced salt solution). The effects of three concentrations (0.01, 0.1, and 1%) of DMSO and ethanol were tested in the 5-day-old zebrafish embryo using proton nuclear magnetic resonance ((1)H NMR) based metabolomics. DMSO (1% and 0.1%, but not 0.01%) exposure significantly decreased the levels of adenosine triphosphate (ATP), betaine, alanine, histidine, lactate, acetate, and creatine (p < 0.05). By contrast, ethanol exposure did not alter the embryos' metabolome at any concentration tested. The two different aqueous media noted above impacted the zebrafish embryo metabolome as evidenced by changes in valine, alanine, lactate, acetate, betaine, glycine, glutamate, adenosine triphosphate, and histidine. These results show that DMSO has greater effects on the embryo metabolome than ethanol, and thus is used with caution as a carrier solvent in zebrafish biomarker research and oral medicine. Moreover, the DMSO concentration should not be higher than 0.01%. Careful attention is also warranted for the use of the buffers egg water and Hank's balanced salt solution in zebrafish. In conclusion, as zebrafish is widely used as a model organism in life sciences, metabolome changes induced by solvents and culture buffers warrant further

  7. Plasma-Sprayed Ti6Al4V Alloy Composite Coatings Reinforced with In Situ Formed TiB-TiN

    NASA Astrophysics Data System (ADS)

    Anand, Akrity; Das, Mitun; Kundu, Biswanath; Balla, Vamsi Krishna; Bodhak, Subhadip; Gangadharan, S.

    2017-12-01

    Plasma spraying was used to deposit premixed Ti6Al4V + 15 wt.% BN powder on titanium substrate to fabricate Ti6Al4V matrix composite coatings reinforced with in situ synthesized TiB-TiN. The formation of in situ TiB-TiN reinforcements increased with plasma power. The in situ reaction appears to be complete under present experimental conditions but with considerable oxidation of Ti in the composite coatings. The hardness of composite coatings was 7 times higher (855HV), and the in vitro wear rate (2.4 × 10-5 mm3/N m) was one order of magnitude less than that of titanium substrate. However, the microstructural non-uniformity decreased the corrosion resistance of these composite coatings in Hank's balanced salt solution.

  8. Fludrocortisone therapy in cerebral salt wasting.

    PubMed

    Taplin, Craig E; Cowell, Christopher T; Silink, Martin; Ambler, Geoffrey R

    2006-12-01

    Cerebral salt wasting is an increasingly recognized condition in pediatrics and is characterized by inappropriate natriuresis and volume contraction in the presence of cerebral pathology. Diagnosis can be difficult and therapy challenging. A few single case reports of the successful use of fludrocortisone exist. We report 4 patients with cerebral salt wasting, all of whom presented with hyponatremia in the presence of known intracerebral pathology. All had clinically significant hyponatremia, and 3 had hyponatremic seizures. Two of the patients also satisfied clinical criteria for diabetes insipidus. They all were treated with regimens using increased sodium and fluid administration but experienced ongoing salt wasting. Fludrocortisone was instituted in all 4 patients and in 3 resulted in rapid improvement in net sodium balance, enabling the weaning of hypertonic fluids and stabilization of serum electrolytes. In 3 patients, fludrocortisone treatment was complicated by hypokalemia, and in 1 patient by hypertension, which necessitated a dose reduction or brief cessation of therapy. Duration of therapy was 4 to 125 days. Cerebral salt wasting presents considerable management challenges; however, fludrocortisone therapy can be an effective adjunct to treatment.

  9. Water balance and N-metabolism in broccoli (Brassica oleracea L. var. Italica) plants depending on nitrogen source under salt stress and elevated CO2.

    PubMed

    Zaghdoud, Chokri; Carvajal, Micaela; Ferchichi, Ali; Del Carmen Martínez-Ballesta, María

    2016-11-15

    Elevated [CO2] and salinity in the soils are considered part of the effects of future environmental conditions in arid and semi-arid areas. While it is known that soil salinization decreases plant growth, an increased atmospheric [CO2] may ameliorate the negative effects of salt stress. However, there is a lack of information about the form in which inorganic nitrogen source may influence plant performance under both conditions. Single factor responses and the interactive effects of two [CO2] (380 and 800ppm), three different NO3(-)/NH4(+) ratios in the nutrient solution (100/0, 50/50 and 0/100, with a total N concentration of 3.5mM) and two NaCl concentrations (0 and 80mM) on growth, leaf gas exchange parameters in relation to root hydraulic conductance and N-assimilating enzymes of broccoli (Brassica oleracea L. var. Italica) plants were determined. The results showed that a reduced NO3(-) or co-provision of NO3(-) and NH4(+) could be an optimal source of inorganic N for broccoli plants. In addition, elevated [CO2] ameliorated the effect of salt exposure on the plant growth through an enhanced rate of photosynthesis, even at low N-concentration. However, NO3(-) or NO3(-)/NH4(+) co-provision display differential plant response to salt stress regarding water balance, which was associated to N metabolism. The results may contribute to our understanding of N-fertilization modes under increasing atmospheric [CO2] to cope with salt stress, where variations in N nutrition significantly influenced plant response. Copyright © 2016 Elsevier B.V. All rights reserved.

  10. Agreement between 24-hour salt ingestion and sodium excretion in a controlled environment.

    PubMed

    Lerchl, Kathrin; Rakova, Natalia; Dahlmann, Anke; Rauh, Manfred; Goller, Ulrike; Basner, Mathias; Dinges, David F; Beck, Luis; Agureev, Alexander; Larina, Irina; Baranov, Victor; Morukov, Boris; Eckardt, Kai-Uwe; Vassilieva, Galina; Wabel, Peter; Vienken, Jörg; Kirsch, Karl; Johannes, Bernd; Krannich, Alexander; Luft, Friedrich C; Titze, Jens

    2015-10-01

    Accurately collected 24-hour urine collections are presumed to be valid for estimating salt intake in individuals. We performed 2 independent ultralong-term salt balance studies lasting 105 (4 men) and 205 (6 men) days in 10 men simulating a flight to Mars. We controlled dietary intake of all constituents for months at salt intakes of 12, 9, and 6 g/d and collected all urine. The subjects' daily menus consisted of 27 279 individual servings, of which 83.0% were completely consumed, 16.5% completely rejected, and 0.5% incompletely consumed. Urinary recovery of dietary salt was 92% of recorded intake, indicating long-term steady-state sodium balance in both studies. Even at fixed salt intake, 24-hour urine collection for sodium excretion (UNaV) showed infradian rhythmicity. We defined a ±25 mmol deviation from the average difference between recorded sodium intake and UNaV as the prediction interval to accurately classify a 3-g difference in salt intake. Because of the biological variability in UNaV, only every other daily urine sample correctly classified a 3-g difference in salt intake (49%). By increasing the observations to 3 consecutive 24-hour collections and sodium intakes, classification accuracy improved to 75%. Collecting seven 24-hour urines and sodium intake samples improved classification accuracy to 92%. We conclude that single 24-hour urine collections at intakes ranging from 6 to 12 g salt per day were not suitable to detect a 3-g difference in individual salt intake. Repeated measurements of 24-hour UNaV improve precision. This knowledge could be relevant to patient care and the conduct of intervention trials. © 2015 American Heart Association, Inc.

  11. Immunization of sockeye salmon (Oncorhynchus nerka) against vibriosis using the hyperosmotic infiltration technique

    USGS Publications Warehouse

    Croy, Thomas R.; Amend, Donald F.

    1977-01-01

    Various procedures of hyperosmotic infiltration (HI) and intraperitoneal injection were used to vaccinate sockeye salmon (Oncorhynchus nerka) with killed Vibrio anguillarum. Excellent protection was evident against experimentally induced vibriosis in the groups immunized by HI with 10 × Hanks' balanced salt solution (HBSS), 1 × HBSS with 8.0% NaCl and 5.3% NaCl, as well as in the injected groups. Comparisons were made among the various immunization methods by vaccinating fish with ten-fold serial dilutions of bacterin, then challenging them by the water contact method after 6 or 9 weeks. Protection was somewhat better with 10 × HBSS than with 5.3% NaCl, and 1 × HBSS containing 8.0% NaCl was markedly superior to the vaccination of fish without hyperosmotic treatment. Agglutinin titers did not exceed 1 : 8 in any group.

  12. Electrochemical Performance Estimation of Anodized AZ31B Magnesium Alloy as Function of Change in the Current Density

    NASA Astrophysics Data System (ADS)

    Girón, L.; Aperador, W.; Tirado, L.; Franco, F.; Caicedo, J. C.

    2017-08-01

    The anodized AZ31B magnesium alloys were synthesized via electrodeposition processes. The aim of this work was to determine the electrochemical behavior of magnesium alloys by using anodized alloys as a protective coating. The anodized alloys were characterized by x-ray diffraction, exhibiting the crystallography orientation for Mg and MgO phases. The x-ray photoelectron spectroscopy was used to determine the chemical composition of anodized magnesium alloys. By using electrochemical impedance spectroscopy and Tafel curves, it was possible to estimate the electrochemical behavior of anodized AZ31B magnesium alloys in Hank's balanced salt solution (HBSS). Scanning electron microscopy was performed to analyze chemical changes and morphological surface changes on anodized Mg alloys due to the reaction in HBSS/anodized magnesium surface interface. Electrochemical behavior in HBSS indicates that the coatings may be a promising material for biomedical industry.

  13. Modeling salt movement and halophytic crop growth on marginal lands with the APEX model

    NASA Astrophysics Data System (ADS)

    Goehring, N.; Saito, L.; Verburg, P.; Jeong, J.; Garrett, A.

    2016-12-01

    Saline soils negatively impact crop productivity in nearly 20% of irrigated agricultural lands worldwide. At these saline sites, cultivation of highly salt-tolerant plants, known as halophytes, may increase productivity compared to conventional salt-sensitive crops (i.e., glycophytes), thereby increasing the economic potential of marginal lands. Through a variety of mechanisms, halophytes are more effective than glycophytes at excluding, accumulating, and secreting salts from their tissues. Each mechanism can have a different impact on the salt balance in the plant-soil-water system. To date, little information is available to understand the long-term impacts of halophyte cultivation on environmental quality. This project utilizes the Agricultural Policy/Environmental Extender (APEX) model, developed by the US Department of Agriculture, to model the growth and production of two halophytic crops. The crops being modeled include quinoa (Chenopodium quinoa), which has utilities for human consumption and forage, and AC Saltlander green wheatgrass (Elymus hoffmannii), which has forage utility. APEX simulates salt movement between soil layers and accounts for the salt balance in the plant-soil-water system, including salinity in irrigation water and crop-specific salt uptake. Key crop growth parameters in APEX are derived from experimental growth data obtained under non-stressed conditions. Data from greenhouse and field experiments in which quinoa and AC Saltlander were grown under various soil salinity and irrigation salinity treatments are being used to parameterize, calibrate, and test the model. This presentation will discuss progress on crop parameterization and completed model runs under different salt-affected soil and irrigation conditions.

  14. Linking the salt transcriptome with physiological responses of a salt-resistant Populus species as a strategy to identify genes important for stress acclimation.

    PubMed

    Brinker, Monika; Brosché, Mikael; Vinocur, Basia; Abo-Ogiala, Atef; Fayyaz, Payam; Janz, Dennis; Ottow, Eric A; Cullmann, Andreas D; Saborowski, Joachim; Kangasjärvi, Jaakko; Altman, Arie; Polle, Andrea

    2010-12-01

    To investigate early salt acclimation mechanisms in a salt-tolerant poplar species (Populus euphratica), the kinetics of molecular, metabolic, and physiological changes during a 24-h salt exposure were measured. Three distinct phases of salt stress were identified by analyses of the osmotic pressure and the shoot water potential: dehydration, salt accumulation, and osmotic restoration associated with ionic stress. The duration and intensity of these phases differed between leaves and roots. Transcriptome analysis using P. euphratica-specific microarrays revealed clusters of coexpressed genes in these phases, with only 3% overlapping salt-responsive genes in leaves and roots. Acclimation of cellular metabolism to high salt concentrations involved remodeling of amino acid and protein biosynthesis and increased expression of molecular chaperones (dehydrins, osmotin). Leaves suffered initially from dehydration, which resulted in changes in transcript levels of mitochondrial and photosynthetic genes, indicating adjustment of energy metabolism. Initially, decreases in stress-related genes were found, whereas increases occurred only when leaves had restored the osmotic balance by salt accumulation. Comparative in silico analysis of the poplar stress regulon with Arabidopsis (Arabidopsis thaliana) orthologs was used as a strategy to reduce the number of candidate genes for functional analysis. Analysis of Arabidopsis knockout lines identified a lipocalin-like gene (AtTIL) and a gene encoding a protein with previously unknown functions (AtSIS) to play roles in salt tolerance. In conclusion, by dissecting the stress transcriptome of tolerant species, novel genes important for salt endurance can be identified.

  15. Agreement between twenty-four hour salt ingestion and sodium excretion in a controlled environment

    PubMed Central

    Lerchl, Kathrin; Rakova, Natalia; Dahlmann, Anke; Rauh, Manfred; Goller, Ulrike; Basner, Mathias; Dinges, David F.; Beck, Luis; Agureev, Alexander; Larina, Irina; Baranov, Victor; Morukov, Boris; Eckardt, Kai-Uwe; Vassilieva, Galina; Wabel, Peter; Vienken, Jörg; Kirsch, Karl; Johannes, Bernd; Krannich, Alexander; Luft, Friedrich C.; Titze, Jens

    2015-01-01

    Accurately collected 24-hour urine collections are presumed to be valid for estimating salt intake in individuals. We performed two independent ultra-long-term salt balance studies lasting 105 (4 men) and 205 (6 men) days in 10 men simulating a flight to Mars. We controlled dietary intake of all constituents for months at salt intakes of 12, 9, and 6 grams per day and collected all urine. The subjects’ daily menus consisted of 27,279 individual servings, out of which 83.0% were completely consumed, 16.5% completely rejected, and 0.5% incompletely consumed. Urinary recovery of dietary salt was 92% of recorded intake, indicating long-term steady state sodium balance in both studies. Even at fixed salt intake, 24-hour sodium excretion (UNaV) showed infradian rhythmicity. We defined a ±25 mmol deviation from the average difference between recorded sodium intake and UNaV as the prediction interval to accurately classify a 3-gram difference in salt intake. Due to the biological variability in UNaV, only every-other daily urine sample correctly classified a 3-gram difference in salt intake (49%). By increasing the observations to three consecutive 24-hour collections and sodium intakes, classification accuracy improved to 75%. Collecting seven 24-hour urines and sodium intake samples improved classification accuracy to 92%. We conclude that single 24-hour urine collections at intakes ranging from 6–12 grams salt per day were not suitable to detect a 3-gram difference in individual salt intake. Repeated measurements of 24-hour UNaV improve precision. This knowledge could be relevant to patient care and the conduct of intervention trials. PMID:26259596

  16. Effective salt criteria in callus-cultured tomato genotypes.

    PubMed

    Dogan, Mahmut; Tipirdamaz, Rukiye; Demir, Yavuz

    2010-01-01

    Na+, Cl-, K+, Ca2+, and proline contents, the rate of lipid peroxidation level in terms of malondialdehyde (MDA) and chlorophyll content, and the changes in the activity of antioxidant enzymes, such as superoxide dismutase (SOD: EC 1.15.1.1), catalase (CAT: EC 1.11.1.6), ascorbate peroxidase (APX: EC 1.11.1.11), and glutathione reductase (GR: EC 1.6.4.2), in tissues of five tomato cultivars in salt tolerance were investigated in a callus culture. The selection of effective parameters used in these tomato genotypes and to find out the use of in vitro tests in place of in vivo salt tolerance tests were investigated. As a material, five different tomato genotypes during a 10-day time period were used, and 150 mM NaCl was applied at callus plant tissue. The exposure to NaCl induced a significant increase in MDA content in both salt-resistant and salt-sensitive cultivars. But the MDA content was higher in salt-sensitive cultivars. The chlorophyll content was more decreased in salt-sensitive than in salt-resistant ones. The proline amount was more increased in salt-sensitive than in salt-resistant ones. It has been reported that salt-tolerant plants, besides being able to regulate the ion and water movements, also exhibit a strong antioxidative enzyme system for effective removal of ROS. The degree of damage depends on the balance between the formation of ROS and its removal by the antioxidative scavenging system that protects against them. Exclusion or inclusion of Na+, Cl-, K+, and Ca2+, antioxidant enzymes and MDA concentration play a key protective role against stress, and this feature at the callus plant tissue used as an identifier for tolerance to salt proved to be an effective criterion.

  17. A comparative study of the in vitro corrosion behavior and cytotoxicity of a superferritic stainless steel, a Ti-13Nb-13Zr alloy, and an austenitic stainless steel in Hank's solution.

    PubMed

    Assis, S L; Rogero, S O; Antunes, R A; Padilha, A F; Costa, I

    2005-04-01

    In this study, the in vitro corrosion resistance of a superferritic stainless steel in naturally aerated Hank's solution at 37 degrees C has been determined to evaluate the steel for use as a biomaterial. The potentiodynamic polarization method and electrochemical impedance spectroscopy (EIS) were used to determine the corrosion resistance. The polarization results showed very low current densities at the corrosion potential and electrochemical behavior typical of passive metals. At potentials above 0.75 V (SCE), and up to that of the oxygen evolution reaction, the superferritic steel exhibited transpassive behavior followed by secondary passivation. The superferritic stainless steel exhibited high pitting resistance in Hank's solution. This steel did not reveal pits even after polarization to 3000 mV (SCE). The EIS results indicated high impedance values at low frequencies, supporting the results obtained from the polarization measurements. The results obtained for the superferritic steel have been compared with those of the Ti-13Nb-13Zr alloy and an austenitic stainless steel, as Ti alloys are well known for their high corrosion resistance and biocompatibility, and the austenitic stainless steel is widely used as an implant material. The cytotoxicity tests indicated that the superferritic steel, the austenitic steel, and the Ti-13Nb-13Zr alloy were not toxic. Based on corrosion resistance and cytotoxicity results, the superferritic stainless steel can be considered as a potential biomaterial. (c) 2005 Wiley Periodicals, Inc.

  18. Demand driven salt clean-up in a molten salt fast reactor - Defining a priority list.

    PubMed

    Merk, B; Litskevich, D; Gregg, R; Mount, A R

    2018-01-01

    The PUREX technology based on aqueous processes is currently the leading reprocessing technology in nuclear energy systems. It seems to be the most developed and established process for light water reactor fuel and the use of solid fuel. However, demand driven development of the nuclear system opens the way to liquid fuelled reactors, and disruptive technology development through the application of an integrated fuel cycle with a direct link to reactor operation. The possibilities of this new concept for innovative reprocessing technology development are analysed, the boundary conditions are discussed, and the economic as well as the neutron physical optimization parameters of the process are elucidated. Reactor physical knowledge of the influence of different elements on the neutron economy of the reactor is required. Using an innovative study approach, an element priority list for the salt clean-up is developed, which indicates that separation of Neodymium and Caesium is desirable, as they contribute almost 50% to the loss of criticality. Separating Zirconium and Samarium in addition from the fuel salt would remove nearly 80% of the loss of criticality due to fission products. The theoretical study is followed by a qualitative discussion of the different, demand driven optimization strategies which could satisfy the conflicting interests of sustainable reactor operation, efficient chemical processing for the salt clean-up, and the related economic as well as chemical engineering consequences. A new, innovative approach of balancing the throughput through salt processing based on a low number of separation process steps is developed. Next steps for the development of an economically viable salt clean-up process are identified.

  19. Free flow cell electrophoresis using zwitterionic buffer

    NASA Technical Reports Server (NTRS)

    Rodkey, R. Scott

    1990-01-01

    Studies of a zwitterionic buffer formulated for cell electrophoresis were done using the McDonnell-Douglas Continuous Flow Electrophoresis System. Standard buffers were analyzed for their stability in the electrical field and the results showed that both buffers tested were inherently unstable. Further, titration studies showed that the standards buffers buffered poorly at the pH employed for electrophoresis. The zwitterionic buffer buffered well at its nominal pH and was shown to be stable in the electrical field. Comparative studies of the buffer with standard cell separation buffers using formalin fixed rabbit and goose red blood cells showed that the zwitterionic buffer gave better resolution of the fixed cells. Studies with viable hybridoma cells showed that buffer Q supported cell viability equal to Hank's Balanced Salt Solution and that hybridoma cells in different stages of the growth cycle demonstrated reproducible differences in electrophoretic mobility.

  20. Influence of substrate material and surface finishing on the morphology of the calcium-phosphate coating.

    PubMed

    Leitão, E; Barbosa, M A; de Groot, K

    1997-07-01

    The formation of an apatite-like layer was achieved by immersing Ti-6A1-4V, Ti-Al-2.5Fe, and 316 L stainless-steel substrata in Hank's balanced salt solution (HBSS). The layer was characterized by surface analysis techniques, namely X-ray microanalysis and X-ray diffraction, and the morphology was observed by scanning electron microscopy and atomic force microscopy. The concentrations of Ca and P were monitored as a function of time. The morphology of the precipitate layer seems to be dependent both on the type of metal substrate and its surface finish. Polished Ti-6A1-4V and Ti-Al-2.5Fe surfaces exhibit a plate precipitate morphology, whereas rougher surfaces show scattered crystal-like precipitation. The results suggest that the layer produced by immersion of polished titanium alloys in HBSS is constituted by an amorphous apatite.

  1. Linking the Salt Transcriptome with Physiological Responses of a Salt-Resistant Populus Species as a Strategy to Identify Genes Important for Stress Acclimation1[W][OA

    PubMed Central

    Brinker, Monika; Brosché, Mikael; Vinocur, Basia; Abo-Ogiala, Atef; Fayyaz, Payam; Janz, Dennis; Ottow, Eric A.; Cullmann, Andreas D.; Saborowski, Joachim; Kangasjärvi, Jaakko; Altman, Arie; Polle, Andrea

    2010-01-01

    To investigate early salt acclimation mechanisms in a salt-tolerant poplar species (Populus euphratica), the kinetics of molecular, metabolic, and physiological changes during a 24-h salt exposure were measured. Three distinct phases of salt stress were identified by analyses of the osmotic pressure and the shoot water potential: dehydration, salt accumulation, and osmotic restoration associated with ionic stress. The duration and intensity of these phases differed between leaves and roots. Transcriptome analysis using P. euphratica-specific microarrays revealed clusters of coexpressed genes in these phases, with only 3% overlapping salt-responsive genes in leaves and roots. Acclimation of cellular metabolism to high salt concentrations involved remodeling of amino acid and protein biosynthesis and increased expression of molecular chaperones (dehydrins, osmotin). Leaves suffered initially from dehydration, which resulted in changes in transcript levels of mitochondrial and photosynthetic genes, indicating adjustment of energy metabolism. Initially, decreases in stress-related genes were found, whereas increases occurred only when leaves had restored the osmotic balance by salt accumulation. Comparative in silico analysis of the poplar stress regulon with Arabidopsis (Arabidopsis thaliana) orthologs was used as a strategy to reduce the number of candidate genes for functional analysis. Analysis of Arabidopsis knockout lines identified a lipocalin-like gene (AtTIL) and a gene encoding a protein with previously unknown functions (AtSIS) to play roles in salt tolerance. In conclusion, by dissecting the stress transcriptome of tolerant species, novel genes important for salt endurance can be identified. PMID:20959419

  2. Balanced Crystalloids versus Saline in the Intensive Care Unit. The SALT Randomized Trial.

    PubMed

    Semler, Matthew W; Wanderer, Jonathan P; Ehrenfeld, Jesse M; Stollings, Joanna L; Self, Wesley H; Siew, Edward D; Wang, Li; Byrne, Daniel W; Shaw, Andrew D; Bernard, Gordon R; Rice, Todd W

    2017-05-15

    Saline is the intravenous fluid most commonly administered to critically ill adults, but it may be associated with acute kidney injury and death. Whether use of balanced crystalloids rather than saline affects patient outcomes remains unknown. To pilot a cluster-randomized, multiple-crossover trial using software tools within the electronic health record to compare saline to balanced crystalloids. This was a cluster-randomized, multiple-crossover trial among 974 adults admitted to a tertiary medical intensive care unit from February 3, 2015 to May 31, 2015. The intravenous crystalloid used in the unit alternated monthly between saline (0.9% sodium chloride) and balanced crystalloids (lactated Ringer's solution or Plasma-Lyte A). Enrollment, fluid delivery, and data collection were performed using software tools within the electronic health record. The primary outcome was the difference between study groups in the proportion of isotonic crystalloid administered that was saline. The secondary outcome was major adverse kidney events within 30 days (MAKE30), a composite of death, dialysis, or persistent renal dysfunction. Patients assigned to saline (n = 454) and balanced crystalloids (n = 520) were similar at baseline and received similar volumes of crystalloid by 30 days (median [interquartile range]: 1,424 ml [500-3,377] vs. 1,617 ml [500-3,628]; P = 0.40). Saline made up a larger proportion of the isotonic crystalloid given in the saline group than in the balanced crystalloid group (91% vs. 21%; P < 0.001). MAKE30 did not differ between groups (24.7% vs. 24.6%; P = 0.98). An electronic health record-embedded, cluster-randomized, multiple-crossover trial comparing saline with balanced crystalloids can produce well-balanced study groups and separation in crystalloid receipt. Clinical trial registered with www.clinicaltrials.gov (NCT 02345486).

  3. Fluid balance concepts in medicine: Principles and practice

    PubMed Central

    Roumelioti, Maria-Eleni; Glew, Robert H; Khitan, Zeid J; Rondon-Berrios, Helbert; Argyropoulos, Christos P; Malhotra, Deepak; Raj, Dominic S; Agaba, Emmanuel I; Rohrscheib, Mark; Murata, Glen H; Shapiro, Joseph I; Tzamaloukas, Antonios H

    2018-01-01

    The regulation of body fluid balance is a key concern in health and disease and comprises three concepts. The first concept pertains to the relationship between total body water (TBW) and total effective solute and is expressed in terms of the tonicity of the body fluids. Disturbances in tonicity are the main factor responsible for changes in cell volume, which can critically affect brain cell function and survival. Solutes distributed almost exclusively in the extracellular compartment (mainly sodium salts) and in the intracellular compartment (mainly potassium salts) contribute to tonicity, while solutes distributed in TBW have no effect on tonicity. The second body fluid balance concept relates to the regulation and measurement of abnormalities of sodium salt balance and extracellular volume. Estimation of extracellular volume is more complex and error prone than measurement of TBW. A key function of extracellular volume, which is defined as the effective arterial blood volume (EABV), is to ensure adequate perfusion of cells and organs. Other factors, including cardiac output, total and regional capacity of both arteries and veins, Starling forces in the capillaries, and gravity also affect the EABV. Collectively, these factors interact closely with extracellular volume and some of them undergo substantial changes in certain acute and chronic severe illnesses. Their changes result not only in extracellular volume expansion, but in the need for a larger extracellular volume compared with that of healthy individuals. Assessing extracellular volume in severe illness is challenging because the estimates of this volume by commonly used methods are prone to large errors in many illnesses. In addition, the optimal extracellular volume may vary from illness to illness, is only partially based on volume measurements by traditional methods, and has not been determined for each illness. Further research is needed to determine optimal extracellular volume levels in several

  4. SALT (Strategic Arms Limitation Talks): A Selective Bibliography, 1971-1981.

    DTIC Science & Technology

    1982-08-01

    European Security: Mutual and Balance Force Reductions." Linda P. Brady. INTERNATIONAL SECURITY REVIEW 6:189-208, Summer 1981 "Negotiating With The...Danger." D. Seligman . FORTUNE 99:50-56, July 2, 1979 "Participation of the European States in the SALT III Negotiations." Hubertus Hoffmann and Rolf

  5. High Salt Diets, Bone Strength and Mineral Content of Mature Femur After Skeletal Unloading

    NASA Technical Reports Server (NTRS)

    Liang, Michael T. C.

    1998-01-01

    It is known that high salt diets increase urinary calcium (Ca) loss, but it is not known whether this effect weakens bone during space flight. The Bone Hormone Lab has studied the effect of high salt diets on Ca balance and whole body Ca in a space flight model (2,8). Neither the strength nor mineral content of the femurs from these studies has been evaluated. The purpose of this study was to determine the effect of high salt diets (HiNa) and skeletal unloading on femoral bone strength and bone mineral content (BMC) in mature rats.

  6. Demand driven salt clean-up in a molten salt fast reactor – Defining a priority list

    PubMed Central

    Litskevich, D.; Gregg, R.; Mount, A. R.

    2018-01-01

    The PUREX technology based on aqueous processes is currently the leading reprocessing technology in nuclear energy systems. It seems to be the most developed and established process for light water reactor fuel and the use of solid fuel. However, demand driven development of the nuclear system opens the way to liquid fuelled reactors, and disruptive technology development through the application of an integrated fuel cycle with a direct link to reactor operation. The possibilities of this new concept for innovative reprocessing technology development are analysed, the boundary conditions are discussed, and the economic as well as the neutron physical optimization parameters of the process are elucidated. Reactor physical knowledge of the influence of different elements on the neutron economy of the reactor is required. Using an innovative study approach, an element priority list for the salt clean-up is developed, which indicates that separation of Neodymium and Caesium is desirable, as they contribute almost 50% to the loss of criticality. Separating Zirconium and Samarium in addition from the fuel salt would remove nearly 80% of the loss of criticality due to fission products. The theoretical study is followed by a qualitative discussion of the different, demand driven optimization strategies which could satisfy the conflicting interests of sustainable reactor operation, efficient chemical processing for the salt clean-up, and the related economic as well as chemical engineering consequences. A new, innovative approach of balancing the throughput through salt processing based on a low number of separation process steps is developed. Next steps for the development of an economically viable salt clean-up process are identified. PMID:29494604

  7. Balance between salt stress and endogenous hormones influence dry matter accumulation in Jerusalem artichoke.

    PubMed

    Shao, Tianyun; Li, Lingling; Wu, Yawen; Chen, Manxia; Long, Xiaohua; Shao, Hongbo; Liu, Zhaopu; Rengel, Zed

    2016-10-15

    Salinity is one of the most serious environmental stresses limiting agricultural production. Production of Jerusalem artichoke on saline land is strategically important for using saline land resources. The interaction between plant hormones and salinity stress in governing Jerusalem artichoke (Helianthus tuberosus) growth is unclear. Jerusalem artichoke (variety Nanyu-1) was grown under variable salinity stress in the field, and a role of endogenous hormones [zeatin (ZT), auxins (IAA), gibberellins (GA3) and abscisic acid (ABA)] in regulating sugar and dry matter accumulation in tubers was characterized. Under mild salt stress (≤2.2gNaClkg(-1) soil), Nanyu-1 grew well with no significant alteration of dry matter distribution to stems and tubers. In contrast, under moderate salt stress (2.7gNaClkg(-1) soil), the distribution to stem decreased and to tubers decreased significantly. Mild salt stress induced sugar accumulation in tubers at the beginning of the tuber-expansion period, but significantly inhibited (i) transfer of non-reducing sugars to tubers, and (ii) polymerization and accumulation of fructan during the tuber-expansion stage. Under different salinity stress, before the stolon growth, the ratio of IAA/ABA in leaves increased significantly and that of GA3/ABA increased slightly; during tuber development, these ratios continued to decrease and reached the minimum late in the tuber-expansion period. While, salt stress inhibited (i) underground dry matter accumulation, (ii) tuber dry matter accumulation efficiency, (iii) transport of non-reducing sugars to tubers, and (iv) fructan accumulation efficiency during the tuber-expansion period; these effects were accompanied by significantly decreased tuber yield with an increase in salinity. With soil salinity increasing, the synthesis of IAA and GA3 was inhibited in leaves and tubers, while ABA synthesis was stimulated. In brief, tuber yield would significantly decreased with the increase of salinity

  8. Diets enriched in whey or casein improve energy balance and prevent morbidity and renal damage in salt-loaded and high-fat-fed spontaneously hypertensive stroke-prone rats.

    PubMed

    Singh, Arashdeep; Pezeshki, Adel; Zapata, Rizaldy C; Yee, Nicholas J; Knight, Cameron G; Tuor, Ursula I; Chelikani, Prasanth K

    2016-11-01

    High-fat diets induce obesity and increase risks of diabetes and cardiovascular and renal disorders. Whey- or casein-enriched diets decrease food intake and weight gain; however, their cardiovascular and renal benefits are unclear. We determined whether whey- and casein-enriched diets improve energy balance and are protective against renal damage and morbidity associated with stroke in an obesogenic and hypertensive experimental setting. We also assessed whether the hypophagic effects of these diets were due to reduced diet preference. In experiment 1, spontaneously hypertensive stroke-prone rats were randomized to (a) control (CON; 14% kcal protein, 33% fat), (b) whey (WHY; 40% protein, 33% fat), (c) casein (CAS; 40% protein, 33% fat) or (d) chow (CHW; 24% protein, 13% fat) for 12 weeks with 1% salt in drinking water for CON, WHY and CAS groups. Our results demonstrated that both WHY and CAS produced short-term hypophagia, moderately increased energy expenditure and decreased respiratory quotient, body weight and lean mass, with effects of WHY being more prolonged. Further, only WHY decreased fat mass and blood pressure. Importantly, both WHY and CAS prevented morbidity associated with stroke and decreased indices of renal inflammation (tumor necrosis factor-α, interleukin-6) and damage (osteopontin, renal lesions). In experiment 2, following four initial conditioning trials, the preference for CON, WHY or CAS diet was determined. Both WHY and CAS decreased food intake during conditioning and decreased preference. In conclusion, diets enriched in whey or casein improved energy balance, increased survival and prevented renal damage in salt-loaded and high-fat-fed spontaneously hypertensive stroke-prone rats. Copyright © 2016 Elsevier Inc. All rights reserved.

  9. Temporal dynamics of flooding, evaporation, and desiccation cycles and observations of salt crust area change at the Bonneville Salt Flats, Utah

    NASA Astrophysics Data System (ADS)

    Bowen, Brenda B.; Kipnis, Evan L.; Raming, Logan W.

    2017-12-01

    The Bonneville Salt Flats (BSF) in Utah is a dynamic saline playa environment responding to natural and anthropogenic forces. Over the last century, the saline groundwater from below BSF has been harvested to produce potash via evaporative mining, mostly used as agricultural fertilizers, while the surface halite crust has provided a significant recreational site for land speed racing. Perceptions of changes in the salt crust through time have spurred debates about land use and management; however, little is known about the timescales of natural change as the salt crust responds to climatic parameters that drive flooding, evaporation, and desiccation (FED) cycles that control surface salt growth and dissolution. Climate data over the last 30 years are examined to identify annual patterns in surface water balance at BSF to identify annual and seasonal climate constraints on FED cycles. Landsat satellite data from 1986 to the present are used to map the areal extent of the surface halite salt crust at BSF at the end of the desiccation season (between August 15 and October 30) annually. Overall, the observed area of the desiccation-stage BSF halite crust has varied from a maximum of 156 km2 in 1993 to a minimum of 72 km2 in 2014 with an overall trend of declining area of halite observed over the 30 years of analysis. Climatic variables that influence FED cycles and seasonal salt dissolution and precipitation have also varied through this time period; however, the relationship between surface water fluxes and salt crust area do not clearly correlate, suggesting that other processes are influencing the extent of the salt. Intra-annual analyses of salt area and weather illustrate the importance of ponded surface water, wind events, and microtopography in shaping a laterally extensive but thin and ephemeral halite crust. Examination of annual to decadal changes in salt crust extent and environmental parameters at BSF provides insights into the processes driving change and

  10. Oral salt supplements to compensate for jejunostomy losses: comparison of sodium chloride capsules, glucose electrolyte solution, and glucose polymer electrolyte solution.

    PubMed

    Nightingale, J M; Lennard-Jones, J E; Walker, E R; Farthing, M J

    1992-06-01

    Six patients with jejunostomies and residual jejunal lengths of 105 to 250 cm took the same food and water each day for eight study days. In random order, three methods of salt replacement were tested, each over 48 hours, against a period without added salt. During the three test periods the patients took 120 mmol of sodium chloride daily, as salt in gelatine capsules, as an isotonic glucose electrolyte (280 mOsmol/kg; 30 kcal) solution, and as a glucose polymer (Maxijul) solution (280 mOsmol/kg; 200 kcal). The daily stomal output remained constant for each patient during the four test periods but varied between patients from 0.60 to 2.84 kg (daily intestinal fluid balance 0.74-2.61 kg). Without a salt supplement, three patients lost more sodium from the stoma than they took in by mouth (-25, -94, and -101 mmol/day) and the mean sodium balance for all six subjects was -16 mmol (range -101 to 79) daily. Extra salt was absorbed with each form of supplement (p less than 0.05); no patient with the glucose electrolyte solution (mean 96, range 0 to 226 mmol), but one patient with the glucose-polymer solution (mean 96, range -25 to 164 mmol) and two with the salt capsules (mean 66, range -8 to 145 mmol) were in negative balance. Two patients vomited with the salt capsules. There was only a small increase in energy absorption (mean 115 kcal) with the glucose polymer solution compared with the glucose electrolyte solution. A sipped glucose electrolyte solution seems to be the optimal mode of sodium replacement in patients with a high output jejunostomy.

  11. Oral salt supplements to compensate for jejunostomy losses: comparison of sodium chloride capsules, glucose electrolyte solution, and glucose polymer electrolyte solution.

    PubMed Central

    Nightingale, J M; Lennard-Jones, J E; Walker, E R; Farthing, M J

    1992-01-01

    Six patients with jejunostomies and residual jejunal lengths of 105 to 250 cm took the same food and water each day for eight study days. In random order, three methods of salt replacement were tested, each over 48 hours, against a period without added salt. During the three test periods the patients took 120 mmol of sodium chloride daily, as salt in gelatine capsules, as an isotonic glucose electrolyte (280 mOsmol/kg; 30 kcal) solution, and as a glucose polymer (Maxijul) solution (280 mOsmol/kg; 200 kcal). The daily stomal output remained constant for each patient during the four test periods but varied between patients from 0.60 to 2.84 kg (daily intestinal fluid balance 0.74-2.61 kg). Without a salt supplement, three patients lost more sodium from the stoma than they took in by mouth (-25, -94, and -101 mmol/day) and the mean sodium balance for all six subjects was -16 mmol (range -101 to 79) daily. Extra salt was absorbed with each form of supplement (p less than 0.05); no patient with the glucose electrolyte solution (mean 96, range 0 to 226 mmol), but one patient with the glucose-polymer solution (mean 96, range -25 to 164 mmol) and two with the salt capsules (mean 66, range -8 to 145 mmol) were in negative balance. Two patients vomited with the salt capsules. There was only a small increase in energy absorption (mean 115 kcal) with the glucose polymer solution compared with the glucose electrolyte solution. A sipped glucose electrolyte solution seems to be the optimal mode of sodium replacement in patients with a high output jejunostomy. PMID:1624155

  12. Biomass production in agroforestry and forestry systems on salt-affected soils in South Asia: exploration of the GHG balance and economic performance of three case studies.

    PubMed

    Wicke, Birka; Smeets, Edward M W; Akanda, Razzaque; Stille, Leon; Singh, Ranjay K; Awan, Abdul Rasul; Mahmood, Khalid; Faaij, Andre P C

    2013-09-30

    This study explores the greenhouse gas balance and the economic performance (i.e. net present value (NPV) and production costs) of agroforestry and forestry systems on salt-affected soils (biosaline (agro)forestry) based on three case studies in South Asia. The economic impact of trading carbon credits generated by biosaline (agro)forestry is also assessed as a potential additional source of income. The greenhouse gas balance shows carbon sequestration over the plantation lifetime of 24 Mg CO2-eq. ha(-1) in a rice-Eucalyptus camaldulensis agroforestry system on moderately saline soils in coastal Bangladesh (case study 1), 6 Mg CO2-eq. ha(-1) in the rice-wheat- Eucalyptus tereticornis agroforestry system on sodic/saline-sodic soils in Haryana state, India (case study 2), and 96 Mg CO2-eq. ha(-1) in the compact tree (Acacia nilotica) plantation on saline-sodic soils in Punjab province of Pakistan. The NPV at a discount rate of 10% is 1.1 k€ ha(-1) for case study 1, 4.8 k€ ha(-1) for case study 2, and 2.8 k€ ha(-1) for case study 3. Carbon sequestration translates into economic values that increase the NPV by 1-12% in case study 1, 0.1-1% in case study 2, and 2-24% in case study 3 depending on the carbon credit price (1-15 € Mg(-1) CO2-eq.). The analysis of the three cases indicates that the economic performance strongly depends on the type and severity of salt-affectedness (which affect the type and setup of the agroforestry system, the tree species and the biomass yield), markets for wood products, possibility of trading carbon credits, and discount rate. Copyright © 2013 Elsevier Ltd. All rights reserved.

  13. Mass balance approaches to understanding evolution of dripwater chemistry

    NASA Astrophysics Data System (ADS)

    Fairchild, I. J.; Baker, A.; Andersen, M. S.; Treble, P. C.

    2015-12-01

    Forward and inverse modelling of dripwater chemistry is a fast-developing area in speleothem science. Such approaches can incorporate theoretical, parameterized or observed relationships between forcing factors and water composition, but at the heart is mass balance: a fundamental principle that provides important constraints. Mass balance has been used in speleothem studies to trace the evolution of dissolved inorganic carbon and carbon isotopes from soil to cave, and to characterize the existence and quantification of prior calcite precipitation (PCP) based on ratios of Mg and Sr to Ca. PCP effects can dominate slow drips, whereas fast drips are more likely to show a residual variability linked to soil-biomass processes. A possible configuration of a more complete mass balance model is illustrated in the figure. Even in humid temperate climates, evapotranspiration can be 50% of total atmospheric precipitation leading to substantially raised salt contents and there can be significant exchange with biomass. In more arid settings, at least seasonal soil storage of salts is likely. Golgotha Cave in SW Australia is in a Mediterranean climate with a strong summer soil moisture deficit. The land surface is forested leading to large ion fluxes related to vegetation. There are also periodic disturbances related to fire. Mass balance approaches have been applied to an 8-year monitoring record. Inter-annual trends of elements coprecipitated in speleothems from fast drips are predicted to be dominated by biomass effects.

  14. An Analysis of the Energy, Water, and Salt Balance of a Saline Lake in the Sandhills Region of Semi-Arid Western Nebraska (USA)

    NASA Astrophysics Data System (ADS)

    Ong, J.; Lenters, J. D.; Zlotnik, V. A.; Jones, S.

    2009-12-01

    temperatures, causing the mass transfer formulation to break down. Finally, we find that interannual variations in the energy, water, and salt balance of the lake are significant, suggesting that long-term monitoring of lakes in the Sandhills (and similar semi-arid regions) is required in order to establish a “representative” record.

  15. Aqueous origins of bright salt deposits on Ceres

    NASA Astrophysics Data System (ADS)

    Zolotov, Mikhail Yu.

    2017-11-01

    Bright materials have been reported in association with impact craters on Ceres. The abundant Na2CO3 and some ammonium salts, NH4HCO3 and/or NH4Cl, were detected in bright deposits within Occator crater with Dawn near infrared spectroscopy. The composition and appearance of the salts suggest their aqueous mobilization and emplacement after formation of the crater. Here we consider origins of the bright deposits through calculation of speciation in the H-C-N-O-Na-Cl water-salt type system constrained by the mass balance of observed salts. Calculations of chemical equilibria show that initial solutions had the pH of ∼10. The temperature and salinity of solutions could have not exceeded ∼273 K and ∼100 g per kg H2O, respectively. Freezing models reveal an early precipitation of Na2CO3·10H2O followed by minor NaHCO3. Ammonium salts precipitate near eutectic from brines enriched in NH4+, Cl- and Na+. A late-stage precipitation of NaCl·2H2O is modeled for solution compositions with added NaCl. Calculated eutectics are above 247 K. The apparently unabundant ammonium and chloride salts in Occator's deposits imply a rapid emplacement without a compositional evolution of solution. Salty ice grains could have deposited from post-impact ballistic plumes formed through low-pressure boiling of subsurface solutions. Hydrated and ammonium salts are unstable at maximum temperatures of Ceres' surface and could decompose through space weathering. Occator's ice-free salt deposits formed through a post-depositional sublimation of ice followed by dehydration of Na2CO3·10H2O and NaHCO3 to Na2CO3. In other regions, excavated and exposed bright materials could be salts initially deposited from plumes and accumulated at depth via post-impact boiling. The lack of detection of sulfates and an elevated carbonate/chloride ratio in Ceres' materials suggest an involvement of compounds abundant in the outer solar system.

  16. Influence of bovine serum albumin in Hanks' solution on the corrosion and stress corrosion cracking of a magnesium alloy.

    PubMed

    Harandi, Shervin Eslami; Banerjee, Parama Chakraborty; Easton, Christopher D; Singh Raman, R K

    2017-11-01

    It is essential for any temporary implant to possess adequate strength to maintain their mechanical integrity under the synergistic effects of mechanical loading characteristics of human body and the corrosive physiological environment. Such synergistic effects can cause stress corrosion cracking (SCC). The aim of the present study is to investigate the effect of the addition of bovine serum albumin (BSA) to Hanks' solution in corrosion and SCC susceptibility of AZ91D magnesium alloy. The electrochemical impedance spectroscopy (EIS) results indicated that the addition of BSA increased corrosion resistance of the alloy during the first 48h of immersion and then decreased it rapidly. The energy-dispersive X-ray spectroscopy (EDS) and X-ray photoelectron spectroscopy (XPS) analyses indicated adsorption of BSA on the alloy surface during initial hours of immersion. However, with the increasing immersion time, BSA chelated with the corrosion products causing disruption of the protective film; thus, it accelerated the corrosion of the alloy. Both the mechanical data and fractographic evidence have confirmed susceptibility of the alloy to SCC. However, in the presence of BSA, the alloy suffered greater SCC which was attributed to its increased susceptibility towards localized corrosion. Copyright © 2017. Published by Elsevier B.V.

  17. The subtle balance of weak supramolecular interactions: The hierarchy of halogen and hydrogen bonds in haloanilinium and halopyridinium salts.

    PubMed

    Raatikainen, Kari; Cametti, Massimo; Rissanen, Kari

    2010-01-15

    THE SERIES OF HALOANILINIUM AND HALOPYRIDINIUM SALTS: 4-IPhNH₃Cl (1), 4-IPhNH₃Br (5), 4-IPhNH₃H₂PO₄ (6), 4-ClPhNH₃H₂PO₄ (8), 3-IPyBnCl (9), 3-IPyHCl (10) and 3-IPyH-5NIPA (3-iodopyridinium 5-nitroisophthalate, 13), where hydrogen or/and halogen bonding represents the most relevant non-covalent interactions, has been prepared and characterized by single crystal X-ray diffraction. This series was further complemented by extracting some relevant crystal structures: 4-BrPhNH₃Cl (2, CCDC ref. code TAWRAL), 4-ClPhNH₃Cl (3, CURGOL), 4-FPhNH₃Cl (4, ANLCLA), 4-BrPhNH₃H₂PO₄, (7, UGISEI), 3-BrPyHCl, (11, CIHBAX) and 3-ClPyHCl, (12, VOQMUJ) from Cambridge Structural Database for sake of comparison. Based on the X-ray data it was possible to highlight the balance between non-covalent forces acting in these systems, where the relative strength of the halogen bonding C-X...A⁻ (X = I, Br or Cl) and the ratio between the halogen and hydrogen bonds [C-X...A⁻ : D-H...A⁻] varied across the series.

  18. A systematic technique for the sequential restoration of salt structures

    NASA Astrophysics Data System (ADS)

    Rowan, Mark G.

    1993-12-01

    A method is described for the sequential restoration of cross sections in areas of salt tectonics where deformation is confined to the salt and higher layers. The subsurface geometry evolves with time through the interaction of various processes: sedimentation, compaction, isostatic adjustment, thermal subsidence (if present), faulting, and salt withdrawal/ diapirism. The technique systematically calculates and removes the effects of each of these processes during specified time intervals defined by the interpreted horizons. It makes no assumptions about salt kinematics and generally results in the area of the salt layer changing through time. The method is described for restoration of extensional terranes, but it is also suitable for areas of contractional salt tectonics with only minor modifications. After converting an interpreted seismic profile to depth, the top layer is stripped off and the underlying section is decompacted according to standard porosity-depth functions. A deep baseline, unaffected by compaction or deformation, is used to restore any isostatic compensation or thermal subsidence. Isostasy is calculated according to the Airy model, and differential sedimentary loading across a section is shown to be approximately balanced by changes in salt thickness so that the load is evenly distributed. After these processes have been reversed, the resulting geometry and the seismic data are used to create the sea-floor template for structural restoration. Fault offsets are removed and the layers down to the top salt are restored to this template, while the base salt remains fixed. The resulting space between the restored top salt and the fixed base salt defines the restored salt geometry. In addition, the difference between the sea-floor template and a fixed sea level provides a measure of the change in water depth (ignoring eustatic changes in sea level). The technique is applied to an interpreted seismic profile from the eastern Green Canyon/Ewing Bank

  19. The SALT NORM : a quantitative chemical-mineralogical characterization of natural waters

    USGS Publications Warehouse

    Bodine, Marc W.; Jones, Blair F.

    1986-01-01

    The new computer program SNORM calculates the salt norm from the chemical composition of a natural water. The salt norm is the quantitative ideal equilibrium assemblage that would crystallize if the water evaporated to dryness at 25 C and 1 bar pressure under atmospheric partial pressure of CO2. SNORM proportions solute concentrations to achieve charge balance. It quantitatively distributes the 18 acceptable solutes into normative salts that are assigned from 63 possible normative salts to allow only stable associations based on the Gibbs Phase Rule, available free energy values, and observed low-temperature mineral associations. Although most natural water compositions represent multiple solute origins, results from SNORM identify three major categories: meteoric or weathering waters that are characterized by normative alkali-bearing sulfate and carbonate salts: connate marine-like waters that are chloride-rich with a halite-bischofite-carnallite-kieserite-anhydrite association; and diagenetic waters that are frequently of marine origin but yield normative salts, such as Ca-bearing chlorides (antarcticite and tachyhydrite) and sylvite, which suggest solute alteration by secondary mineral reactions. The solute source or reaction process within each of the above categories is commonly indicated by the presence or absence of diagnostic normative salts and their relative abundance in the normative salt assemblage. For example, salt norms: (1) may identify lithologic source; (2) may identify the relative roles of carbonic and sulfuric acid hydrolysis in the evolution of weathering waters; (3) may identify the origin of connate water from normal marine, hypersaline, or evaporite salt resolution processes; and (4) may distinguish between dolomitization and silicate hydrolysis or exchange for the origin of diagenetic waters. (Author 's abstract)

  20. Salt Composition Derived from Veazey Composition by Thermodynamic Modeling and Predicted Composition of Drum Contents

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Weisbrod, Kirk Ryan; Veirs, Douglas Kirk; Funk, David John

    This report describes the derivation of the salt composition from the Veazey salt stream analysis. It also provides an estimate of the proportions of the kitty litter, nitrate salt and neutralizer that was contained in drum 68660. While the actinide content of waste streams was judiciously followed in the 1980s in TA-55, no record of the salt composition could be found. Consequently, a salt waste stream produced from 1992 to 1994 and reported by Gerry Veazey provided the basis for this study. While chemical analysis of the waste stream was highly variable, an average analysis provided input to the Streammore » Analyzer software to calculate a composition for a concentrated solid nitrate salt and liquid waste stream. The calculation predicted the gas / condensed phase compositions as well as solid salt / saturated liquid compositions. The derived composition provides an estimate of the nitrate feedstream to WIPP for which kinetic measurements can be made. The ratio of salt to Swheat in drum 68660 contents was estimated through an overall mass balance on the parent and sibling drums. The RTR video provided independent confirmation concerning the volume of the mixture. The solid salt layer contains the majority of the salt at a ratio with Swheat that potentially could become exothermic.« less

  1. Salt and its Role in Health and Disease Prevention from the Perspectives of Iranian Medicine and Modern Medicine.

    PubMed

    Mokhtari, Masoud; Vahid, Hamide

    2016-05-01

    Salt in Iranian medical sources is mentioned as Malh and has a special place in people's nutrition. The purpose of this study was to investigate the effect of correct use of salt on health and disease prevention in the context of Iranian medicine and its comparison with modern medicine. This article reviews Iranian medicine references on the usage of salt and its benefits. Additionally, modern medicine references were searched to identify the dos and don'ts of salt consumption. Then the results from both approaches were compared and analyzed. The main application salt in Iranian medical resources includes usage in latif supplier, solvent, dryer, laxative of phlegm and melancholy, slimy moisture body repellent, opening obstruction of liver and spleen, aid in digestion, beneficial for seeds and corruption of foods, appetizing, cold foods reformer and improving the flavor of foods. On the other hand, the major benefits of salt according to modern medicine resources are; aiding the balance of electrolytes and fluids, carry nutrients into cells, regulation of acid-base balance, support transfer of nerve impulses, regulate blood pressure, and secretion of gastric acid. According to the Iranian medicine, the amount and type of salt to maintain health and prevent diseases is determined based on factors such as temperament, age, health and disease, season, and location. While a unique approach is not prescribed for every individual, in modern medicine resources, a fixed set of guidelines is recommended for all healthy individuals. Consequently, the modern medicine pays less attention to physiological, structural, and genetic issues. Considering the importance of salt and its undeniable impact on human health, it is apparent that additional research is required to determine factors affecting the actual amount of salt per person.

  2. Deliquescence Measurements of Potassium Salts

    NASA Astrophysics Data System (ADS)

    Freney, E. J.; Martin, S. T.; Buseck, P. R.

    2007-12-01

    Potassium compounds such as KCl, K2SO4, and KNO3 are salts resulting from biomass burning. With time the number of aerosol particles containing KCl decreases, and the number of particles containing KNO3 and K2SO4 increases. The transformation of KCl to K2SO4 and KNO3 with aging of the smoke could lead to changes in the hygroscopic properties of the smoke particles and thus their cloud-nucleating potential. Similar reaction mechanisms are likely to be involved in the conversion of KCl in smoke particles as occur for NaCl in sea salt. Little experimental work has been published on the hygroscopic properties of potassium salts because of their high DRH values. Instruments that are commonly used to measure hygroscopic properties such as differential mobility analyzers or electrodynamic balances do not operate accurately at RH > 90%. Here we present data describing the hygroscopic properties of several fresh potassium salts, as well as laboratory generated mixed salts, using transmission and scanning electron microscopes (TEM and SEM). Both microscopes have environmental chambers that enable study of the interaction of water with single particles. DRH values for KCl, KNO3 and K2SO4 were found to be 86%, 92%, and 97%, respectively. KNO3 particles formed by atomization appear rounded and undergo continuous hygroscopic growth without a distinct deliquescence point. Similar results have been published for NaNO3. In contrast, when KNO3 powder is ground in a mortar and pestle and placed in the SEM, the grains appear euhedral and have a DRH at 92%, in agreement with literature values. It appears that KNO3 particles formed by atomization will readily take up water at RH values below their DRH. Our results indicate that the hygroscopic properties of KNO3 particles are influenced by their histories. Water associated with aged or mixed particles at RH's less than their DRH will affect how these particles uptake and react with gases.

  3. Liking, salt taste perception and use of table salt when consuming reduced-salt chicken stews in light of South Africa's new salt regulations.

    PubMed

    De Kock, H L; Zandstra, E H; Sayed, N; Wentzel-Viljoen, E

    2016-01-01

    This study investigated the impact of salt reduction on liking, salt taste perception, and use of table salt when consuming chicken stew in light of South Africa's new salt recommendations. In total, 432 South-African consumers (aged 35.2 ± 12.3 years) consumed a full portion of a chicken stew meal once at a central location. Four stock cube powders varying in salt content were used to prepare chicken stews: 1) no reduction - 2013 Na level; regular salt level as currently available on the South African market (24473 mg Na/100 g), 2) salt reduction smaller than 2016 level, i.e. 10%-reduced (22025 mg Na/100 g), 3) 2016 salt level, as per regulatory prescriptions (18000 mg Na/100 g), 4) 2019 salt level, as per regulatory prescriptions (13000 mg Na/100 g). Consumers were randomly allocated to consume one of the four meals. Liking, salt taste perception, and use of table salt and pepper were measured. Chicken stews prepared with reduced-salt stock powders were equally well-liked as chicken stews with the current salt level. Moreover, a gradual reduction of the salt in the chicken stews resulted in a reduced salt intake, up to an average of 19% for the total group compared to the benchmark 2013 Na level stew. However, 19% of consumers compensated by adding salt back to full compensation in some cases. More salt was added with increased reductions of salt in the meals, even to the point of full compensation. Further investigation into the impacts of nutrition communication and education about salt reduction on salt taste perception and use is needed. This research provides new consumer insights on salt use and emphasises the need for consumer-focused behaviour change approaches, in addition to reformulation of products. Copyright © 2015 Elsevier Ltd. All rights reserved.

  4. Sea Salt vs. Table Salt: What's the Difference?

    MedlinePlus

    ... Nutrition and healthy eating What's the difference between sea salt and table salt? Answers from Katherine Zeratsky, R.D., L.D. The main differences between sea salt and table salt are in their taste, ...

  5. The strategic balance, the MX-system and deficiencies in the SALT Treaty

    NASA Astrophysics Data System (ADS)

    Karlsson, H.

    1982-04-01

    The Strategic Arms Limitation Treaty project SALT 2 is shown to have fundamental deficiencies. An asymetric development of the USA's and the USSR's strategic forces and their military doctrines led to increasing vulnerability of these forces. According to the American intimidation theory, nonvulnerable retaliation forces are a precondition for strategic stability, therefore the USA developed the MX-system, a more reliable land-based system for intercontinental missiles. The characteristics of the MX are not definitely defined yet.

  6. [Salt, renal function and high blood pressure--reflections on a current issue].

    PubMed

    Aurell, Mattias

    2002-11-21

    The role of salt intake for blood pressure control has been discussed for a long time. A brief review is given of some pertinent physiological facts to explain this relationship and evolutionary aspects of renal function are emphasized. Salt intake is very high in the modern society, often as high as 15 g sodium chloride per 24 hours while 3-6 g may be more than enough to maintain an adequate salt balance. If the kidneys cannot cope with this severe sodium overload, blood pressure will rise. Therefore, the kidneys' ability to excrete sodium is a key factor and the salt excretion capacity is the kidneys' major barostatic function. As barostats, the kidneys control the blood pressure by ultimately determining the sodium excretion. Reducing sodium intake is, however, difficult as more than 50% of the intake is contained in the food we buy such as bread, sausages, canned food, chips and fast-food. Food products should therefore be "salt declared", but information on this aspect is generally lacking. If the population's salt intake could be reduced by 50%, the prevalence of hypertension will be much reduced, perhaps also by as much as 50%. The cost to society for treating hypertension would be reduced accordingly. Salt intake is also an important aspect of the overweight problem among today's youth. Salt and overweight impose great health risks later in life. Preventive measures in this area must be given high priority in future health care work.

  7. Age-dependent salt hypertension in Dahl rats: fifty years of research.

    PubMed

    Zicha, J; Dobešová, Z; Vokurková, M; Rauchová, H; Hojná, S; Kadlecová, M; Behuliak, M; Vaněčková, I; Kuneš, J

    2012-01-01

    Fifty years ago, Lewis K. Dahl has presented a new model of salt hypertension - salt-sensitive and salt-resistant Dahl rats. Twenty years later, John P. Rapp has published the first and so far the only comprehensive review on this rat model covering numerous aspects of pathophysiology and genetics of salt hypertension. When we summarized 25 years of our own research on Dahl/Rapp rats, we have realized the need to outline principal abnormalities of this model, to show their interactions at different levels of the organism and to highlight the ontogenetic aspects of salt hypertension development. Our attention was focused on some cellular aspects (cell membrane function, ion transport, cell calcium handling), intra- and extrarenal factors affecting renal function and/or renal injury, local and systemic effects of renin-angiotensin-aldosterone system, endothelial and smooth muscle changes responsible for abnormal vascular contraction or relaxation, altered balance between various vasoconstrictor and vasodilator systems in blood pressure maintenance as well as on the central nervous and peripheral mechanisms involved in the regulation of circulatory homeostasis. We also searched for the age-dependent impact of environmental and pharmacological interventions, which modify the development of high blood pressure and/or organ damage, if they influence the salt-sensitive organism in particular critical periods of development (developmental windows). Thus, severe self-sustaining salt hypertension in young Dahl rats is characterized by pronounced dysbalance between augmented sympathetic hyperactivity and relative nitric oxide deficiency, attenuated baroreflex as well as by a major increase of residual blood pressure indicating profound remodeling of resistance vessels. Salt hypertension development in young but not in adult Dahl rats can be attenuated by preventive increase of potassium or calcium intake. On the contrary, moderate salt hypertension in adult Dahl rats is

  8. Genetic regulation of salt stress tolerance revealed by RNA-Seq in cotton diploid wild species, Gossypium davidsonii

    PubMed Central

    Zhang, Feng; Zhu, Guozhong; Du, Lei; Shang, Xiaoguang; Cheng, Chaoze; Yang, Bing; Hu, Yan; Cai, Caiping; Guo, Wangzhen

    2016-01-01

    Cotton is an economically important crop throughout the world, and is a pioneer crop in salt stress tolerance research. Investigation of the genetic regulation of salinity tolerance will provide information for salt stress-resistant breeding. Here, we employed next-generation RNA-Seq technology to elucidate the salt-tolerant mechanisms in cotton using the diploid cotton species Gossypium davidsonii which has superior stress tolerance. A total of 4744 and 5337 differentially expressed genes (DEGs) were found to be involved in salt stress tolerance in roots and leaves, respectively. Gene function annotation elucidated salt overly sensitive (SOS) and reactive oxygen species (ROS) signaling pathways. Furthermore, we found that photosynthesis pathways and metabolism play important roles in ion homeostasis and oxidation balance. Moreover, our studies revealed that alternative splicing also contributes to salt-stress responses at the posttranscriptional level, implying its functional role in response to salinity stress. This study not only provides a valuable resource for understanding the genetic control of salt stress in cotton, but also lays a substantial foundation for the genetic improvement of crop resistance to salt stress. PMID:26838812

  9. Genetic regulation of salt stress tolerance revealed by RNA-Seq in cotton diploid wild species, Gossypium davidsonii.

    PubMed

    Zhang, Feng; Zhu, Guozhong; Du, Lei; Shang, Xiaoguang; Cheng, Chaoze; Yang, Bing; Hu, Yan; Cai, Caiping; Guo, Wangzhen

    2016-02-03

    Cotton is an economically important crop throughout the world, and is a pioneer crop in salt stress tolerance research. Investigation of the genetic regulation of salinity tolerance will provide information for salt stress-resistant breeding. Here, we employed next-generation RNA-Seq technology to elucidate the salt-tolerant mechanisms in cotton using the diploid cotton species Gossypium davidsonii which has superior stress tolerance. A total of 4744 and 5337 differentially expressed genes (DEGs) were found to be involved in salt stress tolerance in roots and leaves, respectively. Gene function annotation elucidated salt overly sensitive (SOS) and reactive oxygen species (ROS) signaling pathways. Furthermore, we found that photosynthesis pathways and metabolism play important roles in ion homeostasis and oxidation balance. Moreover, our studies revealed that alternative splicing also contributes to salt-stress responses at the posttranscriptional level, implying its functional role in response to salinity stress. This study not only provides a valuable resource for understanding the genetic control of salt stress in cotton, but also lays a substantial foundation for the genetic improvement of crop resistance to salt stress.

  10. Investigation of the effect of sealer use on the heat generated at the external root surface during root canal obturation using warm vertical compaction technique with System B heat source.

    PubMed

    Viapiana, Raqueli; Guerreiro-Tanomaru, Juliane Maria; Tanomaru-Filho, Mario; Camilleri, Josette

    2014-04-01

    During warm vertical compaction of gutta-percha, root canal sealers with different chemical compositions absorb the heat generated inside the root canal. The aim of this research was to assess physicochemical modifications of sealers subjected to the System B heat source (Analytic Technology, Redmond, WA) and to evaluate the effect that the use of different sealers has on the heat transfer to the external root surface. Three proprietary brand sealers (AH Plus [Dentsply International, Addlestone, UK], Pulp Canal Sealer [Kerr Corporation, Orange, CA], MTA Fillapex [Angelus Dental Solutions, Londrina, PR, Brazil]) and a prototype sealer based on Portland cement were assessed. The heat generated on the surfaces of System pluggers and the heat dissipation at different levels (apical, midroot, and cervical) over root surface while using different sealers was assessed using thermocouples. Data were collected in 3 different environmental conditions with the tooth suspended in air, immersed in Hank's balanced salt solution, or gelatinized Hank's balanced salt solution. Chemical changes in the sealers induced by the heat were monitored by Fourier transform infrared spectroscopy. The effect of heat changes on the setting time and compressive strength of the sealers was also assessed. The continuous wave plugger sustained a rise in temperature at a maximum of 80°C at the instrument shank. The highest change in temperature on the external root surface was recorded after 1.5 minutes from the start of heating, and it was restored to body temperature by 6 minutes. Environmental conditions affected heat dissipation for all the sealers in the midroot and cervical regions and the highest increase in temperature (∼60°C) recorded in air. In the midroot and cervical regions, the type of sealer used did not affect the rise in temperature. In the apical region, AH Plus obturations resulted in a greater rise in temperature, and the chemical composition of this sealer was affected by

  11. Loss of CaMKI function disrupts salt aversive learning in C. elegans.

    PubMed

    Lim, Jana P; Fehlauer, Holger; Das, Alakananda; Saro, Gabriella; Glauser, Dominique A; Brunet, Anne; Goodman, Miriam B

    2018-06-06

    The ability to adapt behavior to environmental fluctuations is critical for survival of organisms ranging from invertebrates to mammals. Caenorhabditis elegans can learn to avoid sodium chloride when it is paired with starvation. This behavior may help animals avoid areas without food. While some genes have been implicated in this salt aversive learning behavior, critical genetic components, and the neural circuit in which they act, remain elusive. Here, we show that the sole worm ortholog of mammalian CaMKI/IV, CMK-1, is essential for salt aversive learning behavior in C. elegans hermaphrodites. We find that CMK-1 acts in the primary salt-sensing ASE neurons to regulate this behavior. By characterizing the intracellular calcium dynamics in ASE neurons using microfluidics, we find that loss of cmk-1 has subtle effects on sensory-evoked calcium responses in ASE axons and their modulation by salt conditioning. Our study implicates the expression of the conserved CaMKI/CMK-1 in chemosensory neurons as a regulator of behavioral plasticity to environmental salt in C. elegans SIGNIFICANCE STATEMENT Like other animals, the nematode Caenorhabditis elegans depends on salt for survival and navigates toward high concentrations of this essential mineral. Besides its role as an essential nutrient, salt also causes osmotic stress at high concentrations. A growing body of evidence indicates that C. elegans balances the requirement for salt with the danger it presents through a process called salt aversive learning. We show that this behavior depends on expression of a calcium/calmodulin-dependent kinase, CMK-1, in the ASE salt sensing neurons. Our study identifies CMK-1 and salt-sensitive chemosensory neurons as key factors in this form of behavioral plasticity. Copyright © 2018 the authors.

  12. Time-lapse electric resistivity in a stressed mangrove forest to image the role of the root zone in porewater salt distribution

    NASA Astrophysics Data System (ADS)

    Downs, C. M.; Krauss, K.; Kruse, S.

    2017-12-01

    The movement and storage of porewater salts is poorly understood in mangrove forests with limited surface water exchange between the forest and neighboring lagoon. These mangroves are often the most stressed, and have the most unfavorable salinity balance that often transition to mortality during extreme drought. A time-lapse resistivity survey was conducted in a stressed mangrove forest over a diel period. Resistivity is sensitive to the entire soil volume, including fine roots. The objective was to image changes in porewater salinity structures around both mangrove trees, where roots can be a prolific contributor to soil volume, and a salt pan with little or no vegetation. Throughout the diel period, salt pan conductivities remained relatively constant. The most significant temporal changes occur in the root zone around mangrove trees. Particularly interesting is a drop in resistivity (increased conductivity) at sunset when transpiration from individual trees decreases (or even ceases), potentially identifying a cumulative concentration of salts around the mangrove root zone after a full day of transpiration. The resistivity gradient decreases immediately after its peak at sunset, potentially identifying the consequences of hydraulic redistribution in diluting soils surrounding trees immediately after transpiration ceases. This is quicker than expected, and may imply a very strong and rapid eco-hydrological connection in the tree-facilitated salinity balance essential to their survival under the most salinity-stressed environments. At sunrise, resistivity increases, further suggesting dilution of salts via hydraulic redistribution of fresh water from the tree into the upper soil layers, or suggests an accumulation of salts within roots when presumably less water is moving through the trees. Repeated electric resistivity arrays provide spatial and temporal information about these salts and contribute to an overall understanding of how stressed mangrove forests

  13. Age, budget and dynamics of an active salt extrusion in Iran

    NASA Astrophysics Data System (ADS)

    Talbot, C. J.; Jarvis, R. J.

    The Hormuz salt of Kuh-e-Namak, Iran began rising through its Phanerozoic cover in Jurassic times and had surfaced by Cretaceous times. In Miocene times, the still-active Zagros folds began to develop and the salt is still extruding to feed a massive topographic dome and two surface flows of salt which have previously been called salt glaciers but are here called namakiers. Two crude but independent estimates for the rate of salt extrusion and loss are shown to balance the salt budget if the current salt dynamics are assumed to be in steady state. First, to replace the extrusive salt likely to be lost in solution in the annual rainfall, the salt must rise at an average velocity of about 11 cm a -1. Second, the foliation pattern shows that the extruding (and partially dissolved) salt column spreads under its own weight. The maximum height of the salt dome is consistent with a viscous fluid with a viscosity of 2.6 × 10 17 poises extruding from its orifice at a rate of almost 17 cm a -1. Both estimates are consistent in indicating that salt can extrude onto the surface 42-85 times faster than the average long term rate at which salt diapirs rise to the surface. The structure, fabrics, textures and deformation mechanisms of the impure halite all change along the path of the extrusive salt from the dome down the length of both namakiers. Such changes tend to occur when the flowing salt encounters changes in its boundary conditions, and the recognition of buried namakiers is discussed in the light of such observations. Episodes of salt flow at a rate of 0.5 m per day have been measured along the margin of the N namakier after significant rain showers. Such brief episodes of rapid flow alternate with long periods when the namakier is dry and stationary. The shape of the colour bands cropping out on the N namakier indicate that the flow over the surface of impure salt with a mylonitic texture obeys a power law with n ≈ 3. Although the reported annual rainfall has the

  14. Integration of membrane distillation into traditional salt farming method: Process development and modelling

    NASA Astrophysics Data System (ADS)

    Hizam, S.; Bilad, M. R.; Putra, Z. A.

    2017-10-01

    Farmers still practice the traditional salt farming in many regions, particularly in Indonesia. This archaic method not only produces low yield and poor salt quality, it is also laborious. Furthermore, the farming locations typically have poor access to fresh water and are far away from electricity grid, which restrict upgrade to a more advanced technology for salt production. This paper proposes a new concept of salt harvesting method that improves the salt yield and at the same time facilitates recovery of fresh water from seawater. The new concept integrates solar powered membrane distillation (MD) and photovoltaic cells to drive the pumping. We performed basic solar still experiments to quantify the heat flux received by a pond. The data were used as insight for designing the proposed concept, particularly on operational strategy and the most effective way to integrate MD. After the conceptual design had been developed, we formulated mass and energy balance to estimate the performance of the proposed concept. Based on our data and design, it is expected that the system would improve the yield and quality of the salt production, maximizing fresh water harvesting, and eventually provides economical gain for salt farmers hence improving their quality of life. The key performance can only be measured via experiment using gain output ratio as performance indicator, which will be done in a future study.

  15. 21 CFR 100.155 - Salt and iodized salt.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... 21 Food and Drugs 2 2010-04-01 2010-04-01 false Salt and iodized salt. 100.155 Section 100.155 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) FOOD FOR HUMAN CONSUMPTION GENERAL Specific Administrative Rulings and Decisions § 100.155 Salt and iodized salt. (a) For the purposes of this section, the...

  16. Diclofenac salts. III. Alkaline and earth alkaline salts.

    PubMed

    Fini, Adamo; Fazio, Giuseppe; Rosetti, Francesca; Angeles Holgado, M; Iruín, Ana; Alvarez-Fuentes, Josefa

    2005-11-01

    Diclofenac salts containing the alkaline and two earth alkaline cations have been prepared and characterized by scanning electron microscopy (SEM) and EDAX spectroscopy; and by thermal and thermogravimetric analysis (TGA): all of them crystallize as hydrate when precipitated from water. The salts dehydrate at room temperature and more easily on heating, but recovery the hydration, when placed in a humid environment. X-ray diffraction spectra suggest that on dehydration new peaks appear on diffractograms and the lattice of the salts partially looses crystallinity. This phenomenon is readily visible in the case of the calcium and magnesium salts, whose thermograms display a crystallization exotherm, before melting or decomposing at temperatures near or above 200 degrees C; these last salts appear to form solvates, when prepared from methanol. The thermogram of each salt shows a complex endotherm of dehydration about 100 degrees C; the calcium salt displays two endotherms, well separated at about 120 and 160 degrees C, which disappear after prolonged heating. Decomposition exotherms, before or soon after the melting, appear below 300 degrees C. The ammonium salt is thermally unstable and, when heated to start dehydration, dissociates and leaves acidic diclofenac.

  17. Mineralocorticoid-induced sodium appetite and renal salt retention: Evidence for common signaling and effector mechanisms

    PubMed Central

    Fu, Yiling; Vallon, Volker

    2014-01-01

    An increase in renal sodium chloride (salt) retention and an increase in sodium appetite is the body's response to salt restriction or depletion in order to restore salt balance. Renal salt retention and increased sodium appetite can also be maladaptive and sustain the pathophysiology in conditions like salt-sensitive hypertension and chronic heart failure. Here we review the central role of the mineralocorticoid aldosterone in both the increase in renal salt reabsorption and sodium appetite. We discuss the working hypothesis that aldosterone activates similar signaling and effector mechanisms in the kidney and brain, including the mineralocorticoid receptor, the serum-and-glucocorticoid-induced kinase SGK1, the ubiquitin ligase NEDD4-2, and the epithelial sodium channel ENaC. The latter also mediates the gustatory salt sensing in the tongue, which is required for the manifestation of increased salt intake. Effects of aldosterone on both brain and kidney synergize with the effects of angiotensin II. Thus, mineralocorticoids appear to induce similar molecular pathways in the kidney, brain, and possibly tongue, which could provide opportunities for more effective therapeutic interventions. Inhibition of renal salt reabsorption is compensated by stimulation of salt appetite and vice versa; targeting both mechanisms should be more effective. Inhibiting the arousal to consume salty food may improve a patient's compliance to reducing salt intake. While a better understanding of the molecular mechanisms is needed and will provide new options, current pharmacological interventions that target both salt retention and sodium appetite include mineralocorticoid receptor antagonists and potentially inhibitors of angiotensin II and ENaC. PMID:25376899

  18. Stratification and salt-wedge in the Seomjin river estuary under the idealized tidal influence

    NASA Astrophysics Data System (ADS)

    Hwang, Jin Hwan; Jang, Dongmin; Kim, Yong Hoon

    2017-12-01

    Advection, straining, and vertical mixing play primary roles in the process of estuarine stratification. Estuaries can be classified as salt-wedge, partially-mixed or well-mixed depending on the vertical density structure determined by the balancing of advection, mixing and straining. In particular, straining plays a major role in the stratification of the estuarine water body along the estuarine channel. Also, the behavior of a salt wedge with a halocline shape in a stratified channel can be controlled by the competition between straining and mixing induced by buoyancy from the riverine source and tidal forcing. The present study uses Finite Volume Coastal Ocean Model (FVCOM) to show that straining and vertical mixing play major roles in controlling along-channel flow and stratification structures in the Seomjin river estuary (SRE) under idealized conditions. The Potential Energy Anomaly (PEA) dynamic equation quantifies the governing processes thereby enabling the determination of the stratification type. By comparing terms in the equation, we examined how the relative strengths of straining and mixing alter the stratification types in the SRE due to changes in river discharge and the depth resulting from dredging activities. SRE under idealized tidal forcing tends to be partially-mixed based on an analysis of the balance between terms and the vertical structure of salinity, and the morphological and hydrological change in SRE results in the shift of stratification type. While the depth affects the mixing, the freshwater discharge mainly controls the straining, and the balance between mixing and straining determines the final state of the stratification in an estuarine channel. As a result, the development and location of a salt wedge along the channel in a partially mixed and highly stratified condition is also determined by the ratio of straining to mixing. Finally, our findings confirm that the contributions of mixing and straining can be assessed by using the

  19. Amino Acid Side Chain Interactions in the Presence of Salts

    PubMed Central

    Hassan, Sergio A.

    2005-01-01

    The effects of salt on the intermolecular interactions between polar/charged amino acids are investigated through molecular dynamics simulations. The mean forces and associated potentials are calculated for NaCl salt in the 0–2 M concentration range at 298 K. It is found that the addition of salt may stabilize or destabilize the interactions, depending on the nature of the interacting molecules. The degree of (de)stabilization is quantified, and the origin of the salt-dependent modulation is discussed based upon an analysis of solvent density profiles. To gain insight into the molecular origin of the salt modulation, spatial distribution functions (sdf’s) are calculated, revealing a high degree of solvent structuredness in all cases. The peaks in the sdf’s are consistent with long-range hydrogen-bonding networks connecting the solute hydrophilic groups, and that contribute to their intermolecular solvent-induced forces. The restructuring of water around the solutes as they dissociate from close contact is analyzed. This analysis offers clues on how the solvent structure modulates the effective intermolecular interactions in complex solutes. This modulation results from a critical balance between bulk electrostatic forces and those exerted by (i) the water molecules in the structured region between the monomers, which is disrupted by ions that transiently enter the hydration shells, and (ii) the ions in the hydration shells in direct interactions with the solutes. The implications of these findings in protein/ligand (noncovalent) association/dissociation mechanisms are briefly discussed. PMID:16479276

  20. Consumer knowledge and attitudes to salt intake and labelled salt information.

    PubMed

    Grimes, Carley A; Riddell, Lynn J; Nowson, Caryl A

    2009-10-01

    The objective of this study was to investigate consumers' knowledge of health risks of high salt intake and frequency of use and understanding of labelled salt information. We conducted a cross-sectional survey in shopping centres within Metropolitan Melbourne. A sample of 493 subjects was recruited. The questionnaire assessed salt related shopping behaviours, attitudes to salt intake and health and their ability to interpret labelled sodium information. Four hundred and seventy four valid surveys were collected (65% female, 64% being the main shopper). Most participants knew of the relationship between salt intake and high blood pressure (88%). Sixty five percent of participants were unable to correctly identify the relationship between salt and sodium. Sixty nine percent reported reading the salt content of food products when shopping. Salt label usage was significantly related to shoppers concern about the amount of salt in their diet and the belief that their health could improve by lowering salt intake. Approximately half of the sample was unable to accurately use labelled sodium information to pick low salt options. Raising consumer awareness of the health risks associated with high salt consumption may increase salt label usage and purchases of low salt foods. However, for food labels to be effective in helping consumers select low salt foods a more 'user friendly' labelling format is needed.

  1. Investigation of salt loss from the Bonneville Salt Flats, northwestern Utah

    USGS Publications Warehouse

    Mason, James L.; Kipp, Kenneth L.

    1997-01-01

    The Bonneville Salt Flats study area is located in the western part of the Great Salt Lake Desert in northwestern Utah, about 110 miles west of Salt Lake City. The salt crust covers about 50 square miles, but the extent varies yearly as a result of salt being dissolved by the formation and movement of surface ponds during the winter and redeposited with the evaporation of these ponds during the summer.A decrease in thickness and extent of the salt crust on the Bonneville Salt Flats has been documented during 1960-88 (S. Brooks, Bureau of Land Management, written commun., 1989). Maximum salt-crust thickness was 7 feet in 1960 and 5.5 feet in 1988. No definitive data are available to identify and quantify the processes that cause salt loss. More than 55 million tons of salt are estimated to have been lost from the salt crust during the 28-year period. The Bureau of Land Management needs to know the causes of salt loss to make appropriate management decisions.

  2. Visual outcomes after balanced salt solution infiltration during lenticule separation in small-incision lenticule extraction for myopic astigmatism.

    PubMed

    Liu, Ting; Zhu, Xiaomin; Chen, Kaijian; Bai, Ji

    2017-07-01

    To evaluate the refractive outcomes of balanced salt solution infiltration during small-incision lenticule extraction (SMILE).This randomized prospective study enrolled 52 patients (104 eyes) with myopic astigmatism. Patients underwent SMILE to correct the myopic astigmatism in Daping Hospital of the Third Military Medical University between January and July 2013. One eye of each patient received traditional SMILE (control group) and the other received a modified SMILE procedure (liquid infiltration group). The corrected distance visual acuity (CDVA), postoperative uncorrected distance visual acuity (UDVA), refraction, wavefront aberration, intraocular pressure (IOP), modulation transfer function (MTF) cut-off frequency, and objective scattering index (OSI) were evaluated.UDVA in the liquid infiltration group was significantly higher than that in the control group at 1 day postoperatively, but not at 1 month after surgery. Moreover, OSI and MTF cut-off frequency in the liquid infiltration group were higher than those in the control group at early follow-up. However, no significant intergroup difference was observed in the OSI and MTF cut-off frequency at 3 months after surgery. In addition, the predictability was better in the liquid infiltration group than in the control group. The changes of horizontal coma in the liquid infiltration group were lesser than those in the control group. However, no intergroup difference was observed in the reduction of IOP at 1 month after surgery.The modified SMILE procedure results in better visual outcomes than did the traditional SMILE procedure when used for treating myopic astigmatism.

  3. Renal Effects and Underlying Molecular Mechanisms of Long-Term Salt Content Diets in Spontaneously Hypertensive Rats

    PubMed Central

    Berger, Rebeca Caldeira Machado; Vassallo, Paula Frizera; Crajoinas, Renato de Oliveira; Oliveira, Marilene Luzia; Martins, Flávia Letícia; Nogueira, Breno Valentim; Motta-Santos, Daisy; Araújo, Isabella Binotti; Forechi, Ludimila; Girardi, Adriana Castello Costa; Santos, Robson Augusto Souza; Mill, José Geraldo

    2015-01-01

    Several evidences have shown that salt excess is an important determinant of cardiovascular and renal derangement in hypertension. The present study aimed to investigate the renal effects of chronic high or low salt intake in the context of hypertension and to elucidate the molecular mechanisms underlying such effects. To this end, newly weaned male SHR were fed with diets only differing in NaCl content: normal salt (NS: 0.3%), low salt (LS: 0.03%), and high salt diet (HS: 3%) until 7 months of age. Analysis of renal function, morphology, and evaluation of the expression of the main molecular components involved in the renal handling of albumin, including podocyte slit-diaphragm proteins and proximal tubule endocytic receptors were performed. The relationship between diets and the balance of the renal angiotensin-converting enzyme (ACE) and ACE2 enzymes was also examined. HS produced glomerular hypertrophy and decreased ACE2 and nephrin expressions, loss of morphological integrity of the podocyte processes, and increased proteinuria, characterized by loss of albumin and high molecular weight proteins. Conversely, severe hypertension was attenuated and renal dysfunction was prevented by LS since proteinuria was much lower than in the NS SHRs. This was associated with a decrease in kidney ACE/ACE2 protein and activity ratio and increased cubilin renal expression. Taken together, these results suggest that LS attenuates hypertension progression in SHRs and preserves renal function. The mechanisms partially explaining these findings include modulation of the intrarenal ACE/ACE2 balance and the increased cubilin expression. Importantly, HS worsens hypertensive kidney injury and decreases the expression nephrin, a key component of the slit diaphragm. PMID:26495970

  4. Where Does Road Salt Go - a Static Salt Model

    NASA Astrophysics Data System (ADS)

    Yu, C. W.; Liu, F.; Moriarty, V. W.

    2017-12-01

    Each winter, more than 15 million tons of road salt is applied in the United States for the de-icing purpose. Considerable amount of chloride in road salt flows into streams/drainage systems with the snow melt runoff and spring storms, and eventually goes into ecologically sensitive low-lying areas in the watershed, such as ponds and lakes. In many watersheds in the northern part of US, the chloride level in the water body has increased significantly in the past decades, and continues an upward trend. The environmental and ecological impact of the elevated chloride level can no longer be ignored. However although there are many studies on the biological impact of elevated chloride levels, there are few investigations on how the spatially distributed road salt application affects various parts of the watershed. In this presentation, we propose a static road salt model as a first-order metric to address spacial distribution of salt loading. Derived from the Topological Wetness Index (TWI) in many hydrological models, this static salt model provides a spatial impact as- sessment of road salt applications. To demonstrate the effectiveness of the static model, National Elevation Dataset (NED) of ten-meter resolution of Lake George watershed in New York State is used to generate the TWI, which is used to compute a spatially dis- tributed "salt-loading coefficient" of the whole watershed. Spatially varying salt applica- tion rate is then aggregated, using the salt-loading coefficients as weights, to provide salt loading assessments of streams in the watershed. Time-aggregated data from five CTD (conductivity-temperature-depth) sensors in selected streams are used for calibration. The model outputs and the sensor data demonstrate a strong linear correlation, with the R value of 0.97. The investigation shows that the static modeling approach may provide an effective method for the understanding the input and transport of road salt to within watersheds.

  5. INNER SALTS

    DTIC Science & Technology

    been characterized include: (1) mesomeric phosphonium salts possessing phototropic properties; (2) pentavalent phosphorus compounds; and (3) a...Products that have been characterized include: (1) mesomeric phosphonium salts possessing phototropic properties; (2) pentavalent phosphorus compounds; and (3) a mesomeric inner salt. (Author)

  6. Effect of sources of calcium salts of fatty acids on production, nutrient digestibility, energy balance, and carryover effects of early lactation grazing dairy cows.

    PubMed

    de Souza, Jonas; Batistel, Fernanda; Santos, Flávio Augusto Portela

    2017-02-01

    The objective of our study was to investigate the effects of sources of calcium salts of fatty acids (FA) on production, nutrient digestibility, energy balance, and carryover effects of early lactation grazing dairy cows. Treatment diets were offered from 3 to 16 wk postpartum (the treatment period), in which all cows grazed elephantgrass (Pennisetum purpureum 'Cameroon') and treatments were added to a concentrate supplement. The treatments were (1) control (concentrate without supplemental fat); (2) concentrate with calcium salts of soybean FA (CSSO); and (3) concentrate with calcium salts of palm FA (CSPO). From 17 to 42 wk postpartum (the carryover period), all cows received a common diet fed as a total mixed ration. During the treatment period, CSPO increased milk yield, milk fat yield, 3.5% fat-corrected milk, energy-corrected milk, and cumulative milk yield compared with control and CSSO. Treatment CSSO increased the yield of milk but did not affect 3.5% fat-corrected milk or energy-corrected compared with control. Also, CSSO decreased milk fat yield, dry matter intake, neutral detergent fiber digestibility, and body weight and body condition loss. Compared with control, both CSSO and CSPO increased feed efficiency (3.5% fat-corrected milk:dry matter intake), and CSPO increased feed efficiency compared with CSSO. When considering energy partitioning (as % energy intake), CSPO increased energy partitioning toward milk and increased energy mobilized from body reserves compared with control and CSSO. Furthermore, CSSO tended to reduce the mobilization of energy from body reserves compared with control. In the carryover period, no differences in milk composition were observed among treatments. A treatment by time interaction was observed during the carryover period for milk yield because cows on CSPO maintained higher production compared with control and CSSO cows until 30 wk postpartum; CSSO had a lower carryover effect sustaining higher milk yield compared with

  7. Comparison of coconut water, propolis, HBSS, and milk on PDL cell survival.

    PubMed

    Gopikrishna, Velayutham; Baweja, Parvinder Singh; Venkateshbabu, Nagendrababu; Thomas, Toby; Kandaswamy, Deivanayagam

    2008-05-01

    Coconut water is biologically pure and sterile, with a rich presence of amino acids, proteins, vitamins, and minerals. The purpose of this study was to use a collagenase-dispase assay to investigate the potential of a new storage medium, coconut water, in comparison with propolis, Hank's balanced salt solution (HBSS), and milk in maintaining viable periodontal ligament (PDL) cells on simulated avulsed teeth. Seventy freshly extracted human teeth were divided into 4 experimental groups and 2 control groups. The positive and negative controls corresponded to 0-minute and 8-hour dry times, respectively. The experimental teeth were stored dry for 30 minutes and then immersed in 1 of the 4 media (coconut water, propolis, HBSS, and milk). The teeth were then treated with dispase grade II and collagenase for 30 minutes. The number of viable PDL cells was counted with a hemocytometer and analyzed. Statistical analysis showed that coconut water kept significantly more PDL cells viable compared with propolis, HBSS, or milk. Coconut water can be used as a superior transport medium for avulsed teeth.

  8. Hydrologic connections between environmental and societal change at the Bonneville Salt Flats, Utah

    NASA Astrophysics Data System (ADS)

    Bowen, B. B.; Harman, C. J.; Kipnis, E. L.; Liu, T.; Bernau, J. A.; Horel, J.

    2017-12-01

    The Bonneville Salt Flats (BSF) is an ephemeral and valued salt pan in northwestern Utah where a century of land speed racing and potash mining have created a complex and intertwined social and hydrologic system. The character of BSF changes on daily, weekly, monthly, annual, and geologic time scales in response to fluctuations in water balance, solute flux, and groundwater flow which is impacted by both local meteorology and water management associated with potash mining. In addition, the texture of the salt surface is changed by land use including racing activities, which impacts water fluxes through the crust. Ongoing research is focused on characterizing physical changes in the BSF environment and attributing observed changes in the landscape to specific processes and drivers. Five years of field observations and sampling, analyses of satellite imagery dating back the 1980s, and geochemical analysis of surface brines have shown that spatiotemporal changes in surface water and fluctuations in the surface salt footprint are linked to both climate and land use. Climate data over the last 30 years are examined to identify annual patterns in surface water balance at BSF to identify annual and seasonal climate constraints on flooding, evaporation, and desiccation cycles. A new weather station installed in the Fall of 2016 in the middle of BSF allows for unprecedented analyses of halite surface dynamics. Spatiotemporally dispersed stable isotope analyses of BSF surface brine samples constrain brine sources and evolution. An understanding of the processes that change the surface composition and texture through time inform interpretation of subsurface saline deposits at BSF. The wide range of temporal and spatial scales of observation help to guide to best management practices of this iconic natural resource.

  9. Molten salt oxidation of organic hazardous waste with high salt content.

    PubMed

    Lin, Chengqian; Chi, Yong; Jin, Yuqi; Jiang, Xuguang; Buekens, Alfons; Zhang, Qi; Chen, Jian

    2018-02-01

    Organic hazardous waste often contains some salt, owing to the widespread use of alkali salts during industrial manufacturing processes. These salts cause complications during the treatment of this type of waste. Molten salt oxidation is a flameless, robust thermal process, with inherent capability of destroying the organic constituents of wastes, while retaining the inorganic ingredients in the molten salt. In the present study, molten salt oxidation is employed for treating a typical organic hazardous waste with a high content of alkali salts. The hazardous waste derives from the production of thiotriazinone. Molten salt oxidation experiments have been conducted using a lab-scale molten salt oxidation reactor, and the emissions of CO, NO, SO 2 , HCl and dioxins are studied. Impacts are investigated from the composition of the molten salts, the types of feeding tube, the temperature of molten carbonates and the air factor. Results show that the waste can be oxidised effectively in a molten salt bath. Temperature of molten carbonates plays the most important role. With the temperature rising from 600 °C to 750 °C, the oxidation efficiency increases from 91.1% to 98.3%. Compared with the temperature, air factor has but a minor effect, as well as the composition of the molten salts and the type of feeding tube. The molten carbonates retain chlorine with an efficiency higher than 99.9% and the emissions of dioxins are below 8 pg TEQ g -1 sample. The present study shows that molten salt oxidation is a promising alternative for the disposal of organic hazardous wastes containing a high salt content.

  10. [Salt and cancer].

    PubMed

    Strnad, Marija

    2010-05-01

    Besides cardiovascular disease, a high salt intake causes other adverse health effects, i.e., gastric and some other cancers, obesity (risk factor for many cancer sites), Meniere's disease, worsening of renal disease, triggering an asthma attack, osteoporosis, exacerbation of fluid retention, renal calculi, etc. Diets containing high amounts of food preserved by salting and pickling are associated with an increased risk of cancers of the stomach, nose and throat. Because gastric cancer is still the most common cancer in some countries (especially in Japan), its prevention is one of the most important aspects of cancer control strategy. Observations among Japanese immigrants in the U.S.A. and Brazil based on the geographic differences, the trend in cancer incidence with time, and change in the incidence patterns indicate that gastric cancer is closely associated with dietary factors such as the intake of salt and salted food. The findings of many epidemiological studies suggest that high dietary salt intake is a significant risk factor for gastric cancer and this association was found to be strong in the presence of Helicobacter (H.) pylori infection with atrophic gastritis. A high-salt intake strips the lining of the stomach and may make infection with H. pylori more likely or may exacerbate the infection. Salting, pickling and smoking are traditionally popular ways of preparing food in Japan and some parts of Asia. In addition to salt intake, cigarette smoking and low consumption of fruit and vegetables increase the risk of stomach cancer. However, it is not known whether it is specifically the salt in these foods or a combination of salt and other chemicals that can cause cancer. One study identified a mutagen in nitrite-treated Japanese salted fish, and chemical structure of this mutagen suggests that it is derived from methionine and that salt and nitrite are precursors for its formation. Working under conditions of heat stress greatly increased the workers

  11. Salt stress responsiveness of a wild cotton species (Gossypium klotzschianum) based on transcriptomic analysis.

    PubMed

    Wei, Yangyang; Xu, Yanchao; Lu, Pu; Wang, Xingxing; Li, Zhenqing; Cai, Xiaoyan; Zhou, Zhongli; Wang, Yuhong; Zhang, Zhenmei; Lin, Zhongxu; Liu, Fang; Wang, Kunbo

    2017-01-01

    Cotton is a pioneer of saline land crop, while salt stress still causes its growth inhibition and fiber production decrease. Phenotype identification showed better salt tolerance of a wild diploid cotton species Gossypium klotzschianum. To elucidate the salt-tolerant mechanisms in G. klotzschianum, we firstly detected the changes in hormones, H2O2 and glutathione (GSSH and GSH), then investigated the gene expression pattern of roots and leaves treated with 300 mM NaCl for 0, 3, 12, 48 h, and each time control by RNA-seq on the Illumina-Solexa platform. Physiological determination proved that the significant increase in hormone ABA at 48 h, while that in H2O2 was at 12 h, likewise, the GSH content decrease at 48 h and the GSSH content increase at 48 h, under salt stress. In total, 37,278 unigenes were identified from the transcriptome data, 8,312 and 6,732 differentially expressed genes (DEGs) were discovered to be involved in salt stress tolerance in roots and leaves, respectively. Gene function annotation and expression analysis elucidated hormone biosynthesis and signal transduction, reactive oxygen species (ROS), and salt overly sensitive (SOS) signal transduction related genes revealed the important roles of them in signal transmission, oxidation balance and ion homeostasis in response to salinity stress. This is a report which focuses on primary response to highly salty stress (upto 300 mM NaCl) in cotton using a wild diploid Gossypium species, broadening our understanding of the salt tolerance mechanism in cotton and laying a solid foundation of salt resistant for the genetic improvement of upland cotton with the resistance to salt stress.

  12. Salt stress responsiveness of a wild cotton species (Gossypium klotzschianum) based on transcriptomic analysis

    PubMed Central

    Wang, Xingxing; Li, Zhenqing; Cai, Xiaoyan; Zhou, Zhongli; Wang, Yuhong; Zhang, Zhenmei; Liu, Fang

    2017-01-01

    Cotton is a pioneer of saline land crop, while salt stress still causes its growth inhibition and fiber production decrease. Phenotype identification showed better salt tolerance of a wild diploid cotton species Gossypium klotzschianum. To elucidate the salt-tolerant mechanisms in G. klotzschianum, we firstly detected the changes in hormones, H2O2 and glutathione (GSSH and GSH), then investigated the gene expression pattern of roots and leaves treated with 300 mM NaCl for 0, 3, 12, 48 h, and each time control by RNA-seq on the Illumina-Solexa platform. Physiological determination proved that the significant increase in hormone ABA at 48 h, while that in H2O2 was at 12 h, likewise, the GSH content decrease at 48 h and the GSSH content increase at 48 h, under salt stress. In total, 37,278 unigenes were identified from the transcriptome data, 8,312 and 6,732 differentially expressed genes (DEGs) were discovered to be involved in salt stress tolerance in roots and leaves, respectively. Gene function annotation and expression analysis elucidated hormone biosynthesis and signal transduction, reactive oxygen species (ROS), and salt overly sensitive (SOS) signal transduction related genes revealed the important roles of them in signal transmission, oxidation balance and ion homeostasis in response to salinity stress. This is a report which focuses on primary response to highly salty stress (upto 300 mM NaCl) in cotton using a wild diploid Gossypium species, broadening our understanding of the salt tolerance mechanism in cotton and laying a solid foundation of salt resistant for the genetic improvement of upland cotton with the resistance to salt stress. PMID:28552980

  13. Effects of aging on mineralocorticoid-induced salt appetite in rats

    PubMed Central

    Beltz, Terry G.; Johnson, Alan Kim

    2013-01-01

    This work examined the effects of age on salt appetite measured in the form of daily saline (i.e., 0.3 M NaCl) drinking in response to administration of deoxycorticosterone acetate (DOCA; 5 mg/kg body wt) using young (4 mo), “middle-aged” adult (12 mo), and old (30 mo) male Brown Norway rats. Water and sodium intakes, excretions, and balances were determined daily. The salt appetite response was age dependent with “middle-aged” rats ingesting the most saline solution followed in order by young and then old rats. While old rats drank the least saline solution, the amounts of saline ingested still were copious and comprise an unambiguous demonstration of salt appetite in old rats. Middle-aged rats had the highest saline preference ratios of the groups under baseline conditions and throughout testing consistent with an increased avidity for sodium taste. There were age differences in renal handling of water and sodium that were consistent with a renal contribution to the greater saline intakes by middle-aged rats. There was evidence of impaired renal function in old rats, but this did not account for the reduced saline intakes of the oldest rats. PMID:24133100

  14. Profiling Groundwater Salt Concentrations in Mangrove Swamps and Tropical Salt Flats

    NASA Astrophysics Data System (ADS)

    Ridd, Peter V.; Sam, Renagi

    1996-11-01

    The salt concentration of groundwater in mangrove swamps is an important parameter controlling the growth of mangrove species. Extremely high salt concentrations of groundwater in tropical salt flats are responsible for the complete absence of macrophytes. Determining groundwater salt concentrations can be a very time-consuming and laborious process if conventional techniques are used. Typically, groundwater samples must be extracted for later laboratory analysis. In this work, a simple conductivity probe has been developed which may be inserted easily to a depth of 2 m into the sediment. The changes in conductivity of the sediment is due primarily to porewater salt concentration, and thus ground conductivity is useful in determining changes in groundwater salt concentrations. Using the conductivity probe, transects of sediment conductivity can be undertaken quickly. As an example of a possible application of the probe, transects of ground conductivity were taken on a mangrove swamp/saltflat system. The transects show clearly the sharp delineation in conductivity between the salt flat and mangrove swamp due to a change in groundwater salt concentrations. Horizontal and vertical salt concentration gradients of up to 50 g l -1 m -1and 150 g l -1 m -1, respectively, were found. Very sharp changes in groundwater salt concentrations at the interface between salt flats and mangroves indicate that the mangroves may be modifying the salinity of the groundwater actively.

  15. Prediction of Greenhouse Gas (GHG) Fluxes from Coastal Salt Marshes using Artificial Neural Network

    NASA Astrophysics Data System (ADS)

    Ishtiaq, K. S.; Abdul-Aziz, O. I.

    2017-12-01

    Coastal salt marshes are among the most productive ecosystems on earth. Given the complex interactions between ambient environment and ecosystem biological exchanges, it is difficult to predict the salt marsh greenhouse gas (GHG) fluxes (CO2 and CH4) from their environmental drivers. In this study, we developed an artificial neural network (ANN) model to robustly predict the salt marsh GHG fluxes using a limited number of input variables (photosynthetically active radiation, soil temperature and porewater salinity). The ANN parameterization involved an optimized 3-layer feed forward Levenberg-Marquardt training algorithm. Four tidal salt marshes of Waquoit Bay, MA — incorporating a gradient in land-use, salinity and hydrology — were considered as the case study sites. The wetlands were dominated by native Spartina Alterniflora, and characterized by high salinity and frequent flooding. The developed ANN model showed a good performance (training R2 = 0.87 - 0.96; testing R2 = 0.84 - 0.88) in predicting the fluxes across the case study sites. The model can be used to estimate wetland GHG fluxes and potential carbon balance under different IPCC climate change and sea level rise scenarios. The model can also aid the development of GHG offset protocols to set monitoring guidelines for restoration of coastal salt marshes.

  16. Distillation and condensation of LiCl-KCl eutectic salts for a separation of pure salts from salt wastes from an electrorefining process

    NASA Astrophysics Data System (ADS)

    Eun, Hee Chul; Yang, Hee Chul; Lee, Han Soo; Kim, In Tae

    2009-12-01

    Salt separation and recovery from the salt wastes generated from a pyrochemical process is necessary to minimize the high-level waste volumes and to stabilize a final waste form. In this study, the thermal behavior of the LiCl-KCl eutectic salts containing rare earth oxychlorides or oxides was investigated during a vacuum distillation and condensation process. LiCl was more easily vaporized than the other salts (KCl and LiCl-KCl eutectic salt). Vaporization characteristics of LiCl-KCl eutectic salts were similar to that of KCl. The temperature to obtain the vaporization flux (0.1 g min -1 cm -2) was decreased by much as 150 °C by a reduction of the ambient pressure from 5 Torr to 0.5 Torr. Condensation behavior of the salt vapors was different with the ambient pressure. Almost all of the salt vapors were condensed and were formed into salt lumps during a salt distillation at the ambient pressure of 0.5 Torr and they were collected in the condensed salt storage. However, fine salt particles were formed when the salt distillation was performed at 10 Torr and it is difficult for them to be recovered. Therefore, it is thought that a salt vacuum distillation and condensation should be performed to recover almost all of the vaporized salts at a pressure below 0.5 Torr.

  17. Magnesium retention from metabolic-balance studies in female adolescents: impact of race, dietary salt, and calcium123

    PubMed Central

    Palacios, Cristina; Wigertz, Karin; Braun, Michelle; Martin, Berdine R; McCabe, George P; McCabe, Linda; Pratt, J Howard; Peacock, Munro; Weaver, Connie M

    2013-01-01

    Background: Previously, we showed that black girls retained more calcium than white girls did and that salt loading negatively affected calcium retention. Racial differences likely exist in other bone minerals also, such as magnesium, in response to salt loading during growth. Objective: We studied racial differences in magnesium metabolism in response to dietary sodium and calcium during rapid bone growth. Design: Twenty-seven white and 40 black girls (11–15 y old) were studied for 3 wk while they consumed low-sodium (1.3 g/d) and high-sodium (3.8 g/d) diets by using a randomized-order, crossover metabolic study with 3 dietary calcium intakes; the magnesium dietary intake was fixed at 230 mg/d. Urine and feces were collected during each 3-wk period in 24-h pools and analyzed for magnesium. A mixed-model ANOVA was used to determine the effect of race and dietary sodium with calcium intake as a covariate. Results: Salt loading or calcium intake had no significant effect on urinary magnesium excretion. Blacks excreted significantly less urinary magnesium (mean ± SD: 83.8 ± 25.6 mg/d) than did whites (94.9 ± 27.3 mg/d; P < 0.05). No effects were observed in fecal magnesium excretion. Magnesium retention was higher with the low-sodium diet (50.1 ± 44.0 mg/d) than with the high-sodium diet (39.3 ± 49.8 mg/d) (P < 0.05), with no effects of race or calcium intake. Salt loading had no effect on biomarkers. Whites had higher 25-hydroxyvitamin D and insulin-like growth factor binding protein 3 but lower 1,25-dihydroxyvitamin D and parathyroid hormone concentrations. Conclusions: Blacks excreted less urinary magnesium than did whites. Magnesium retention was similar between races but higher with the low-sodium diet. Kinetic studies are needed to fully explain magnesium homeostasis. This trial was registered at clinicaltrials.gov as NCT01564238. PMID:23553157

  18. [Alleviation effects of melatonin and Ca2+ on melon seedlings under salt stress].

    PubMed

    Gao, Qing Hai; Guo, Yuan Yuan; Wu, Yan; Jia, Shuang Shuang

    2017-06-18

    To assess the role of exogenous melatonin (MT) and Ca 2+ in melon under salt stress, the content of mineral elements (Cl - , Na + , K + , Mg 2+ , Ca 2+ ), the values of Na + /K + , Na + /Ca 2+ , Na + /Mg 2+ , the activity of H + -ATP, the accumulation of osmotic substances and membrane lipid peroxidation in melon under salt stress were investigated in the environmental conditions (day/night 25/18 ℃) controlled by artificial climate chamber. The results showed that salt stress significantly inhibited growth of the melon seedlings with the increased contents of Cl - and Na + in roots and lea-ves, and the decreased contents of K + , Mg 2+ and Ca 2+ , compared with the control. Under salt stress, exogenous application of MT or Ca 2+ remarkably reduced the contents of Cl - and Na + in roots and leaves, increased the contents of K + , Mg 2+ and Ca 2+ , and decreased values of Na + /K + , Na + /Ca 2+ and Na + /Mg 2+ . Additionally, exogenous melatonin or Ca 2+ increased H + -ATP activity and osmotic adjustments, and further alleviated cell membrane injuries imposed by salt stress, displaying lower MDA content and relative conductivity. Collectively, this work suggested that single or combined applications of exogenous MT and Ca 2+ effectively reduced the content of Cl - and Na + , improved ion balance by enhancing H + -ATP activity, and increased the content of osmotic adjustment substances for ameliorating membrane lipid peroxidation, thereby enhancing plant adaptation to salt stress, especially combined applications of exogenous MT and Ca 2+ . Our results further showed that the combined application of exogenous MT and Ca 2+ resulted in a synergistic effect on increasing salt tolerance in melon seedlings.

  19. INCREASED RENAL OXIDATIVE STRESS IN SALT-SENSITIVE HUMAN GRK4γ486V TRANSGENIC MICE

    PubMed Central

    Diao, Zhenyu; Asico, Laureano D.; Villar, Van Anthony M.; Zheng, Xiaoxu; Cuevas, Santiago; Armando, Ines; Jose, Pedro A.; Wang, Xiaoyan

    2017-01-01

    We tested the hypothesis that salt-sensitive hypertension is caused by renal oxidative stress by measuring the blood pressure and reactive oxygen species-related proteins in the kidneys of human G protein-coupled receptor kinase 4γ (hGRK4γ) 486V transgenic mice and non-transgenic (Non-T) littermates on normal and high salt diets. High salt diet increased the blood pressure, associated with impaired sodium excretion, in hGRK4γ486V mice. Renal expressions of NOX isoforms were similar in both strains on normal salt diet but NOX2 was decreased by high salt diet to a greater extent in Non-T than hGRK4γ486V mice. Renal HO-2, but not HO-1, protein was greater in hGRK4γ486V than Non-T mice on normal salt diet and normalized by high salt diet. On normal salt diet, renal CuZnSOD and ECSOD proteins were similar but renal MnSOD was lower in hGRK4γ486V than Non-T mice and remained low on high salt diet. High salt diet decreased renal CuZnSOD in hGRK4γ486V but not Non-T mice and decreased renal ECSOD to a greater extent in hGRK4γ486V than Non-T mice. Renal SOD activity, superoxide production, and NOS3 protein were similar in two strains on normal salt diet. However, high salt diet decreased SOD activity and NOS3 protein and increased superoxide production in hGRK4γ486V mice but not in Non-T mice. High salt diet also increased urinary 8-isoprostane and 8-hydroxydeoxyguanosine to a greater extent in hGRK4γ486V than Non-T mice. hGRK4γwild-type mice were normotensive and hGRK4γ142V mice were hypertensive but both were salt-resistant and in normal redox balance. Chronic tempol treatment partially prevented the salt-sensitivity of hGRK4γ486V mice. Thus, hGRK4γ486V causes salt-sensitive hypertension due, in part, to defective renal antioxidant mechanisms. PMID:28189851

  20. On the origin of salt in the Caspian Sea

    NASA Astrophysics Data System (ADS)

    Esin, Nikolay; Esin, Nikolay V.; Yanko-Hombach, Valentina

    2017-04-01

    A very serious problem associated with the evolution of the Caspian Sea, is the appearance of salt in it with a chemical composition that is different from the ocean salt (Svitoch, 2014). There are several hypotheses proposed to explain the specified properties. In each of them states that the salt entered the sea from the Arctic or Indian oceans or from the Mediterranean Sea, and then it was subsequently reworked by numerous evaporations. But they do not explain the mechanism of salt accumulation in the Caspian lowlands and its chemical composition changes. In recent years, our studies have shown that after Paratethys disconnecting from the Mediterranean Sea the transgressions of the Black and Caspian seas occurred as a result of periodic melting of the continental ice. The flow of water through the mountain range from the Black Sea to the Mediterranean Sea led to the formation of the Bosphorus Strait. The erosive lowering of the river bed flowing out of the Black Sea is gradually lowered limit of the possible filling of the seas Paratethys descendants. A mathematical reconstruction of the Sarmatian Sea in current relief showed that the theoretical contours of the sea very well coincide with the contours obtained according to the natural geological research. This shows that over the past 14 million years the significant changes in the landscape of the Black Sea-Caspian lowlands in the whole did not happen. The results allow creating a new understanding of the dynamics of the coasts and seas levels, and the origin of salt in the Caspian Sea. In our opinion the oceanic salt in the Caspian Sea remained since Paratethys connection with the Mediterranean Sea. As a result of tectonic processes of the Alps formation there was a gradual separation of the Paratethys from the Mediterranean Sea. As a result of negative freshwater balance the water in the Caspian depression evaporated with continuous (some time) inflow of salt water from the ocean. Thus, water evaporated and

  1. Effects of indigenous yeasts on physicochemical and microbial properties of Korean soy sauce prepared by low-salt fermentation.

    PubMed

    Song, Young-Ran; Jeong, Do-Youn; Baik, Sang-Ho

    2015-10-01

    This study deals with understanding the effects of salt reduction on both the physicochemical and microbiological properties of soy sauce fermentation and also the application of indigenous yeast starters to compensate for undesirable changes occurring in salt-reduced processes. Fermentation was tested in situ at a Korean commercial soy sauce processing unit. Salt reduction resulted in higher acidity as well as lower pH and contents of residual sugar and ethanol. Moreover, undesired flavor characteristics, due to a lack of distinctive compounds, was observed. In addition, putrefactive Staphylococcus and Enterococcus spp. were present only during salt-reduced fermentation. To control these adverse effects, a single or mixed culture of two indigenous yeasts, Torulaspora delbrueckii and Pichia guilliermondii, producing high ethanol and 3-methyl-1-butanol, respectively, were tested. Overall, all types of yeast applications inhibited undesirable bacterial growth despite salt reduction. Of the starter cultures tested, the mixed culture resulted in a balance of more complex and richer flavors with an identical flavor profile pattern to that obtained from high salt soy sauce. Hence, this strategy using functional yeast cultures offers a technological option to manufacture salt-reduced soy sauce while preserving its typical sensory characteristics without affecting safety. Copyright © 2015 Elsevier Ltd. All rights reserved.

  2. Molten Salt Promoting Effect in Double Salt CO2 Absorbents

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zhang, Keling; Li, Xiaohong S.; Chen, Haobo

    2016-01-01

    The purpose of this paper is to elaborate on the concept of molten salts as catalysts for CO2 absorption by MgO, and extend these observations to the MgO-containing double salt oxides. We will show that the phenomena involved with CO2 absorption by MgO and MgO-based double salts are similar and general, but with some important differences. This paper focuses on the following key concepts: i) identification of conditions that favor or disfavor participation of isolated MgO during double salt absorption, and investigation of methods to increase the absorption capacity of double salt systems by including MgO participation; ii) examination ofmore » the relationship between CO2 uptake and melting point of the promoter salt, leading to the recognition of the role of pre-melting (surface melting) in these systems; and iii) extension of the reaction pathway model developed for the MgO-NaNO3 system to the double salt systems. This information advances our understanding of MgO-based CO2 absorption systems for application with pre-combustion gas streams.« less

  3. Approaches in modulating proline metabolism in plants for salt and drought stress tolerance: Phytohormones, mineral nutrients and transgenics.

    PubMed

    Per, Tasir S; Khan, Nafees A; Reddy, Palakolanu Sudhakar; Masood, Asim; Hasanuzzaman, Mirza; Khan, M Iqbal R; Anjum, Naser A

    2017-06-01

    Major abiotic stress factors such as salt and drought adversely affect important physiological processes and biochemical mechanisms and cause severe loss in crop productivity worldwide. Plants develop various strategies to stand healthy against these stress factors. The accumulation of proline (Pro) is one of the striking metabolic responses of plants to salt and drought stress. Pro biosynthesis and signalling contribute to the redox balance of cell under normal and stressful conditions. However, literature is meager on the sustainable strategies potentially fit for modulating Pro biosynthesis and production in stressed plants. Considering the recent literature, this paper in its first part overviews Pro biosynthesis and transport in plants and also briefly highlights the significance of Pro in plant responses to salt and drought stress. Secondly, this paper discusses mechanisms underlying the regulation of Pro metabolism in salt and drought-exposed plant via phytohormones, mineral nutrients and transgenic approaches. The outcome of the studies may give new opportunities in modulating Pro metabolism for improving plant tolerance to salt and drought stress and benefit sustainable agriculture. Copyright © 2017 Elsevier Masson SAS. All rights reserved.

  4. Prenatal programming of renal salt wasting resets postnatal salt appetite, which drives food intake in the rat.

    PubMed

    Alwasel, Saleh H; Barker, David J P; Ashton, Nick

    2012-03-01

    Sodium retention has been proposed as the cause of hypertension in the LP rat (offspring exposed to a maternal low-protein diet in utero) model of developmental programming because of increased renal NKCC2 (Na+/K+/2Cl- co-transporter 2) expression. However, we have shown that LP rats excrete more rather than less sodium than controls, leading us to hypothesize that LP rats ingest more salt in order to maintain sodium balance. Rats were fed on either a 9% (low) or 18% (control) protein diet during pregnancy; male and female offspring were studied at 4 weeks of age. LP rats of both sexes held in metabolism cages excreted more sodium and urine than controls. When given water to drink, LP rats drank more and ate more food than controls, hence sodium intake matched excretion. However, when given a choice between saline and water to drink, the total volume of fluid ingested by LP rats fell to control levels, but the volume of saline taken was significantly larger [3.8±0.1 compared with 8.8±1.3 ml/24 h per 100 g of body weight in control and LP rats respectively; P<0.001]. Interestingly food intake also fell to control levels. Total body sodium content and ECF (extracellular fluid) volumes were greater in LP rats. These results show that prenatal programming of renal sodium wasting leads to a compensatory increase in salt appetite in LP rats. We speculate that the need to maintain salt homoeostasis following malnutrition in utero stimulates greater food intake, leading to accelerated growth and raised BP (blood pressure).

  5. Impact of Salt Intake on the Pathogenesis and Treatment of Hypertension.

    PubMed

    Rust, Petra; Ekmekcioglu, Cem

    2017-01-01

    Excessive dietary salt (sodium chloride) intake is associated with an increased risk for hypertension, which in turn is especially a major risk factor for stroke and other cardiovascular pathologies, but also kidney diseases. Besides, high salt intake or preference for salty food is discussed to be positive associated with stomach cancer, and according to recent studies probably also obesity risk. On the other hand a reduction of dietary salt intake leads to a considerable reduction in blood pressure, especially in hypertensive patients but to a lesser extent also in normotensives as several meta-analyses of interventional studies have shown. Various mechanisms for salt-dependent hypertension have been put forward including volume expansion, modified renal functions and disorders in sodium balance, impaired reaction of the renin-angiotensin-aldosterone-system and the associated receptors, central stimulation of the activity of the sympathetic nervous system, and possibly also inflammatory processes.Not every person reacts to changes in dietary salt intake with alterations in blood pressure, dividing people in salt sensitive and insensitive groups. It is estimated that about 50-60 % of hypertensives are salt sensitive. In addition to genetic polymorphisms, salt sensitivity is increased in aging, in black people, and in persons with metabolic syndrome or obesity. However, although mechanisms of salt-dependent hypertensive effects are increasingly known, more research on measurement, storage and kinetics of sodium, on physiological properties, and genetic determinants of salt sensitivity are necessary to harden the basis for salt reduction recommendations.Currently estimated dietary intake of salt is about 9-12 g per day in most countries of the world. These amounts are significantly above the WHO recommended level of less than 5 g salt per day. According to recent research results a moderate reduction of daily salt intake from current intakes to 5-6 g can reduce

  6. Salt II: Toward Security or Danger? A Balanced Account of the Key Issues in the Debate.

    ERIC Educational Resources Information Center

    Irwin, Wallace, Jr., Ed.; And Others

    Facts and controversial issues concerning SALT II (Strategic Arms Limitations Talks) are examined. The intent of the document is to enable non-specialists in military/strategic matters to arrive at their own conclusions. Central questions explored are: Is it possible to arrive at an agreement that will stabilize strategic arms competition and…

  7. Deformation of allochthonous salt and evolution of related salt-structural systems, eastern Louisiana Gulf Coast

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Schuster, D.C.

    1996-12-31

    Salt tectonics in the northern Gulf of Mexico involves both vertical diapirism and lateral silling or flow of salt into wings and tablets (sheets). Combinations of these two modes of salt deformation, concurrent with sediment loading and salt evacuation, have produced complex structures in the coastal and offshore region of southeastern Louisiana, a prolific oil and gas province. Many large growth faults and salt domes in the study area root into intra-Tertiary salt welds that were formerly occupied by allochthonous salt tablets. Two end-member structural systems involving evacuation of former tabular salt are recognized: roho systems and stepped counter-regional systems.more » Both end-member systems share a similar multi-staged evolution, including (1) initial formation of a south-leaning salt dome or wall sourced from the Jurassic salt level; (2) progressive development into a semi-tabular allochthonous salt body; and (3) subsequent loading, evacuation, and displacement of the tabular salt into secondary domes. In both systems, it is not uncommon to find salt displaced as much as 16-24 km south of its autochthonous source, connected by a horizontal salt weld to an updip, deflated counter-regional feeder. Although both end-member structural systems may originate before loading of allochthonous salt having grossly similar geometry, their final structural configurations after loading and salt withdrawal are distinctly different. Roho systems are characterized by large-displacement, listric, south-dipping growth faults that sole into intra-Tertiary salt welds marked by high-amplitude reflections continuous with residual salt masses. Salt from the former salt tablets has been loaded and squeezed laterally and downdip. Stepped counter-regional systems, in contrast, comprise large salt domes and adjacent large-displacement, north-dipping growth faults that sole into intra-Tertiary salt welds before stepping down again farther north.« less

  8. Sulfate Salts in Gasoline and Ethanol Fuels -- Historical Perspective and Analysis of Available Data

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    McCormick, Robert L.; Alleman, Teresa; Yanowitz, Janet

    This report reviews the chemistry of sulfate salts dissolved in ethanol and gasoline, potential sources of sulfate salts in ethanol and gasoline, the history of consumer vehicle issues with sulfate salt deposits in the early 2000s, and the corresponding changes to the denatured fuel ethanol specification. Recommendations for future research are provided. During a period of rapid market expansion in 2004-05, issues were reported with vehicles running on E10 provided by certain suppliers in some markets. It was commonly believed that these vehicle problems were caused by sulfate salts precipitating from the fuel. Investigators identified sodium sulfate, and in onemore » case also ammonium sulfate, as the predominate salts found in the engines. Several stakeholders believed the issue was excess sulfate ions in the ethanol portion of the E10, and in 2005 the ASTM specification for ethanol (D4806) was modified to include a 4-part per million (ppm) limit on sulfate ions. While there have been no further reports of consumer vehicle issues, the recently approved increase of ethanol in gasoline from 10 to 15 volume percent has resulted in renewed interest in the sulfate ion concentration in fuel ethanol. This report reviews published data on the solubility of sulfate salts in ethanol. The possible sources of sulfate anions and charge balancing cations (such as sodium) in fuel ethanol and petroleum derived blendstocks are discussed. Examination of historical information on the consumer vehicle issues that occurred in 2004-2005 reveals that a source of sodium or ammonium ions, required for the formation of the observed insoluble salts, was never identified. Recommendations for research to better understand sulfate salt solubility issues in ethanol, hydrocarbon blendstocks, and ethanol-gasoline blends are presented.« less

  9. New iodide-based molten salt systems for high temperature molten salt batteries

    NASA Astrophysics Data System (ADS)

    Fujiwara, Syozo; Kato, Fumio; Watanabe, Syouichiro; Inaba, Minoru; Tasaka, Akimasa

    Novel multi-component molten salt systems containing iodides, LiF-LiBr-LiI, LiF-NaBr-LiI, and LiF-LiCl-LiBr-LiI, were investigated for use as electrolytes in high temperature molten salt batteries to improve the discharge rate-capability. The iodide-based molten salts showed higher ionic conductivity (∼3 S cm -1 at 500 °C) than conventional LiCl-KCl, and had low enough melting points (below 400 °C) that can be used in practical high temperature molten salt batteries. The iodide-based salts showed instability at temperatures higher than 280 °C in dried air. The decomposition mechanism of iodide-based molten salts was discussed, and it was found that elimination of oxygen from the environment is effective to stabilize the iodide-based molten salts at high temperatures.

  10. Enhancing consumer liking of low salt tomato soup over repeated exposure by herb and spice seasonings.

    PubMed

    Ghawi, Sameer Khalil; Rowland, Ian; Methven, Lisa

    2014-10-01

    There is strong evidence for the link between high dietary sodium and increased risk of cardiovascular disease which drives the need to reduce salt content in foods. In this study, herb and spice blends were used to enhance consumer acceptability of a low salt tomato soup (0.26% w/w). Subjects (n = 148) scored their liking of tomato soup samples over 5 consecutive days. The first and last days were pre-and post-exposure visits where all participants rated three tomato soup samples; standard, low salt and low salt with added herbs and spices. The middle 3 days were the repeated exposure phase where participants were divided into three balanced groups; consuming the standard soup, the low salt soup, or the low salt soup with added herbs and spices. Reducing salt in the tomato soup led to a significant decline in consumer acceptability, and incorporating herbs and spices did not lead to an immediate enhancement in liking. However, inclusion of herbs and spices enhanced the perception of the salty taste of the low salt soup to the same level as the standard. Repeated exposure to the herbs and spice-modified soup led to a significant increase in the overall liking and liking of flavour, texture and aftertaste of the soup, whereas no changes in liking were observed for the standard and low salt tomato soups over repeated exposure. Moreover, a positive trend in increasing the post-exposure liking of the herbs and spices soup was observed. The findings suggest that the use of herbs and spices is a useful approach to reduce salt content in foods; however, herbs and spices should be chosen carefully to complement the food as large contrasts in flavour can polarise consumer liking. Copyright © 2014 The Authors. Published by Elsevier Ltd.. All rights reserved.

  11. Agroforestry-based management of salt-affected croplands in irrigated agricultural landscape in Uzbekistan

    NASA Astrophysics Data System (ADS)

    Khamzina, Asia; Kumar, Navneet; Heng, Lee

    2017-04-01

    In the lower Amu Darya River Basin, the decades of intensive irrigation led to elevated groundwater tables, resulting in ubiquitous soil salinization and adverse impact on crop production. Field-scale afforestation trials and farm-scale economic analyses in the Khorezm region have determined that afforestation can be an environmentally and financially attractive land-use option for degraded croplands because it combines a diversified agricultural production, carbon sequestration, an improved soil health and minimizes the use of irrigation water. We examined prospects for upscaling afforestation activity for regional land-use planning considering prevailing constraints in irrigated agriculture landscape. Assessment of salinity-induced cropland productivity decline using satellite imagery of multiple spatial and temporal resolution revealed that 18-38% of the marginally productive or abandoned cropland might be considered for conversion to agroforestry. Furthermore, a regional-scale water balance suggests that most of these marginal croplands are characterized by sufficient surface water supplies for irrigating the newly planted saplings, before they are able to rely on the groundwater alone. However, the 10-year monitoring of soil salt dynamics in the afforestation trials reveals increasing salinity levels due to the salt exclusion from the root water uptake by the trees. Further study focuses on enhancing long-term sustainability of afforestation as a management option for highly saline lands by examining salt tolerance of candidate species using 13C isotopic signature as the indicator of water and salt stress, salt leaching needs and implications for regional scale planning.

  12. Effect of salt intake on beat-to-beat blood pressure nonlinear dynamics and entropy in salt-sensitive versus salt-protected rats.

    PubMed

    Fares, Souha A; Habib, Joseph R; Engoren, Milo C; Badr, Kamal F; Habib, Robert H

    2016-06-01

    Blood pressure exhibits substantial short- and long-term variability (BPV). We assessed the hypothesis that the complexity of beat-to-beat BPV will be differentially altered in salt-sensitive hypertensive Dahl rats (SS) versus rats protected from salt-induced hypertension (SSBN13) maintained on high-salt versus low-salt diet. Beat-to-beat systolic and diastolic BP series from nine SS and six SSBN13 rats (http://www.physionet.org) were analyzed following 9 weeks on low salt and repeated after 2 weeks on high salt. BP complexity was quantified by detrended fluctuation analysis (DFA), short- and long-range scaling exponents (αS and αL), sample entropy (SampEn), and traditional standard deviation (SD) and coefficient of variation (CV(%)). Mean systolic and diastolic BP increased on high-salt diet (P < 0.01) particularly for SS rats. SD and CV(%) were similar across groups irrespective of diet. Salt-sensitive and -protected rats exhibited similar complexity indices on low-salt diet. On high salt, (1) SS rats showed increased scaling exponents or smoother, systolic (P = 0.007 [αL]) and diastolic (P = 0.008 [αL]) BP series; (2) salt-protected rats showed lower SampEn (less complex) systolic and diastolic BP (P = 0.046); and (3) compared to protected SSBN13 rats, SS showed higher αL for systolic (P = 0.01) and diastolic (P = 0.005) BP Hypertensive SS rats are more susceptible to high salt with a greater rise in mean BP and reduced complexity. Comparable mean pressures in sensitive and protective rats when on low-salt diet coupled with similar BPV dynamics suggest a protective role of low-salt intake in hypertensive rats. This effect likely reflects better coupling of biologic oscillators. © 2016 The Authors. Physiological Reports published by Wiley Periodicals, Inc. on behalf of the American Physiological Society and The Physiological Society.

  13. Mediterranean salt giants beyond the evaporite model: The Sicily perspective

    NASA Astrophysics Data System (ADS)

    Carmelo Manuella, Fabio; Scribano, Vittorio; Carbone, Serafina; Hovland, Martin; Johnsen, Hans-Konrad; Rueslåtten, Håkon

    2017-04-01

    Mediterranean salt giants, occurring both in sub-seafloor and in onshore settings (the "Gessoso Solfifera Group"), are traditionally explained by repeated cycles of desiccation and replenishment of the entire basin. However, such hypotheses are strongly biased by mass balance calculations and geodynamic considerations. In addition, any hypothesis without full desiccation, still based on the evaporite model, should consider that seawater brines start to precipitate halite when 2/3 of the seawater has evaporated, and hence the level of the basin cannot be the same as the adjacent ocean. On the other hand, hydrothermal venting of hot saline brines onto the seafloor can precipitate salt in a deep marine basin if a layer of heavy brine exists along the seafloor. This process, likely related to sub-surface boiling or supercritical out-salting (Hovland et al., 2006), is consistent with geological evidence in the Red Sea "Deeps" (Hovland et al., 2015). Although supercritical out-salting and phase separation can sufficiently explain the formation of several marine salt deposits, even in deep marine settings, the Mediterranean salt giant formations can also be explained by the serpentinization model (Scribano et al., 2016). Serpentinization of abyssal peridotites does not involve seawater salts, and large quantities of saline brines accumulate in pores and fractures of the sub-seafloor serpentinites. If these rocks undergo thermal dehydration, for example, due to igneous intrusions, brines and salt slurries can migrate upwards as hydrothermal plumes, eventually venting at the seafloor, giving rise to giant salt deposits over time. These hydrothermal processes can take place in a temporal sequence, as it occurred in the "Caltanissetta Basin" (Sicily). There, salt accumulation associated with serpentinization started during Triassic times (and even earlier), and venting of heavy brines onto the seafloor eventually occurred in the Messinian via the hydrothermal plume mechanism

  14. Electrolyte salts for power sources

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Doddapaneni, Narayan; Ingersoll, David

    Electrolyte salts for power sources comprising salts of phenyl polysulfonic acids and phenyl polyphosphonic acids. The preferred salts are alkali and alkaline earth metal salts, most preferably lithium salts.

  15. Reducing the Salt Added to Takeaway Food: Within-Subjects Comparison of Salt Delivered by Five and 17 Holed Salt Shakers in Controlled Conditions

    PubMed Central

    Goffe, Louis; Wrieden, Wendy; Penn, Linda; Hillier-Brown, Frances; Lake, Amelia A.; Araujo-Soares, Vera; Summerbell, Carolyn; White, Martin; Adamson, Ashley J.

    2016-01-01

    Objectives To determine if the amount of salt delivered by standard salt shakers commonly used in English independent takeaways varies between those with five and 17 holes; and to determine if any differences are robust to variations in: the amount of salt in the shaker, the length of time spent shaking, and the person serving. Design Four laboratory experiments comparing the amount of salt delivered by shakers. Independent variables considered were: type of shaker used (five or 17 holes), amount of salt in the shaker before shaking commences (shaker full, half full or nearly empty), time spent shaking (3s, 5s or 10s), and individual serving. Setting Controlled, laboratory, conditions. Participants A quota-based convenience sample of 10 participants (five women) aged 18–59 years. Main Outcome Measures Amount of salt delivered by salt shakers. Results Across all trials, the 17 holed shaker delivered a mean (SD) of 7.86g (4.54) per trial, whilst the five holed shaker delivered 2.65g (1.22). The five holed shaker delivered a mean of 33.7% of the salt of the 17 holed shaker. There was a significant difference in salt delivered between the five and 17 holed salt shakers when time spent shaking, amount of salt in the shaker and participant were all kept constant (p<0.001). This difference was robust to variations in the starting weight of shakers, time spent shaking and participant shaking (pssalt shakers have the potential to reduce the salt content of takeaway food, and particularly food from Fish & Chip shops, where these shakers are particularly used. Further research will be required to determine the effects of this intervention on customers’ salt intake with takeaway food and on total dietary salt intake. PMID:27668747

  16. Implications of diapir-derived detritus and gypsic paleosols in Lower Triassic strata near the Castle Valley salt wall, Paradox Basin, Utah

    NASA Astrophysics Data System (ADS)

    Lawton, Timothy F.; Buck, Brenda J.

    2006-10-01

    Gypsum-bearing growth strata and sedimentary facies of the Moenkopi Formation on the crest and NE flank of the Castle Valley salt wall in the Paradox Basin record salt rise, evaporite exposure, and salt-withdrawal subsidence during the Early Triassic. Detrital gypsum and dolomite clasts derived from the middle Pennsylvanian Paradox Formation were deposited in strata within a few kilometers of the salt wall and indicate that salt rise rates roughly balanced sediment accumulation, resulting in long-term exposure of mobile evaporite. Deposition took place primarily in flood-basin or inland sabkha settings that alternated between shallow subaqueous and subaerial conditions in a hyperarid climate. Matrix-supported and clast-supported conglomerates with gypsum fragments represent debris-flow deposits and reworked debris-flow deposits, respectively, interbedded with flood-basin sandstone and siltstone during development of diapiric topography. Mudstone-rich flood-basin deposits with numerous stage I to III gypsic paleosols capped by eolian gypsum sand sheets accumulated during waning salt-withdrawal subsidence. Association of detrital gypsum, eolian gypsum, and gypsic paleosols suggests that the salt wall provided a common source for gypsum in the surrounding strata. This study documents a previously unrecognized salt weld with associated growth strata containing diapir-derived detritus and gypsic palesols that can be used to interpret halokinesis.

  17. [Alleviation of salt stress during maize seed germination by presoaking with exogenous sugar].

    PubMed

    Zhao, Ying; Yang, Ke-jun; Li, Zuo-tong; Zhao, Chang-jiang; Xu, Jing-yu; Hu, Xue- wei; Shi, Xin-xin; Ma, Li-feng

    2015-09-01

    The maize variety Kenyu 6 was used to study the effects of exogenous glucose (Glc) and sucrose (Suc) on salt tolerance of maize seeds at germination stage under 150 mmol · L(-1) NaCl treatment. Results showed that under salt stress condition, 0.5 mmol · L(-1) exogenous Glc and Suc presoaking could promote seed germination and early seedling growth. Compared with the salt treatment, Glc presoaking increased the shoot length, radicle length and corresponding dry mass up to 1.5, 1.3, 2.1 and 1.8 times, and those of the Suc presoaking treatment increased up to 1.7, 1.3. 2.7 and 1.9 times, respectively. Exogenous Glc and Suc presoaking resulted in decreased levels of thiobarbituric acid reactive substances (TBARS) and hydrogen peroxide (H2O2) content of maize shoot under salt stress, which were lowered by 24.9% and 20.6% respectively. Exogenous Glc and Suc presoaking could increase the activities of superoxide dismutase (SOD), ascorbate peroxidase (APX), glutathione peroxidase (GPX), glutathione reductase (GR) and induce glucose-6-phosphate dehydrogenase (G6PDH) activity of maize shoot under salt stress. Compared with the salt treatment. Glc presoaking increased the activity of SOD, APX, GPX, GR and G6PDH by 66.2%, 62.9%, 32.0%, 38.5% and 50.5%, and those of the Suc presoaking increased by 67.5%, 59.8%, 30.0%, 38.5% and 50.4%, respectively. Glc and Suc presoaking also significantly increased the contents of ascorbic acid (ASA) and glutathione (GSH), ASA/DHA and GSH/GSSG. The G6PDH activity was found closely related with the strong antioxidation capacity induced by exogenous sugars. In addition, Glc and Suc presoaking enhanced K+/Na+ in maize shoot by 1.3 and 1.4 times of water soaking salt treatment, respectively. These results indicated that exogenous Glc and Suc presoaking could improve antioxidation capacity of maize seeds and maintain the in vivo K+/Na+ ion balance to alleviate the inhibitory effect of salt stress on maize seed germination.

  18. Great Salt Lake and Bonneville Salt Flats, UT, USA

    NASA Technical Reports Server (NTRS)

    1992-01-01

    This is a view of the Great Salt Lake and nearby Bonneville Salt Flats, UT, (41.0N, 112.5W). A railroad causeway divides the lake with a stark straight line changing the water level and chemistry of the lake as a result. Fresh water runoff enters from the south adding to the depth and reducing the salinity. The north half receives little frsh water and is more saline and shallow. The Bonnieville Salt Flats is the lakebed of a onetime larger lake.

  19. Great Salt Lake and Bonneville Salt Flats, UT, USA

    NASA Image and Video Library

    1992-04-02

    This is a view of the Great Salt Lake and nearby Bonneville Salt Flats, UT, (41.0N, 112.5W). A railroad causeway divides the lake with a stark straight line changing the water level and chemistry of the lake as a result. Fresh water runoff enters from the south adding to the depth and reducing the salinity. The north half receives little frsh water and is more saline and shallow. The Bonnieville Salt Flats is the lakebed of a onetime larger lake.

  20. Global transcriptome analysis of Halolamina sp. to decipher the salt tolerance in extremely halophilic archaea.

    PubMed

    Kurt-Kızıldoğan, Aslıhan; Abanoz, Büşra; Okay, Sezer

    2017-02-15

    Extremely halophilic archaea survive in the hypersaline environments such as salt lakes or salt mines. Therefore, these microorganisms are good sources to investigate the molecular mechanisms underlying the tolerance to high salt concentrations. In this study, a global transcriptome analysis was conducted in an extremely halophilic archaeon, Halolamina sp. YKT1, isolated from a salt mine in Turkey. A comparative RNA-seq analysis was performed using YKT1 isolate grown either at 2.7M NaCl or 5.5M NaCl concentrations. A total of 2149 genes were predicted to be up-regulated and 1638 genes were down-regulated in the presence of 5.5M NaCl. The salt tolerance of Halolamina sp. YKT1 involves the up-regulation of genes related with membrane transporters, CRISPR-Cas systems, osmoprotectant solutes, oxidative stress proteins, and iron metabolism. On the other hand, the genes encoding the proteins involved in DNA replication, transcription, translation, mismatch and nucleotide excision repair were down-regulated. The RNA-seq data were verified for seven up-regulated genes as well as six down-regulated genes via qRT-PCR analysis. This comprehensive transcriptome analysis showed that the halophilic archaeon canalizes its energy towards keeping the intracellular osmotic balance minimizing the production of nucleic acids and peptides. Copyright © 2016 Elsevier B.V. All rights reserved.

  1. [Historical roles of salt].

    PubMed

    Ritz, E; Ritz, C

    2004-12-17

    Recently increasing evidence has been provided pointing to a close relation of salt consumption to hypertension as well as to target organ damage. It is interesting to note that the discussion concerning salt is unusually emotional. This may be explained, at least in part, by the fact that since ancient times salt had deep symbolic significance, as exemplified, mostly subconsciously, by many customs and expressions still in current use. In the past salt was essential to preserve food. The past importance of salt as a commodity can well be compared with that of oil today. These and further historical aspects of the role of salt are briefly dealt with in this article.

  2. What Drives Saline Circulation Cells in Coastal Aquifers? An Energy Balance for Density-Driven Groundwater Systems

    NASA Astrophysics Data System (ADS)

    Harvey, C. F.; Michael, H. A.

    2017-12-01

    We formulate the energy balance for coastal groundwater systems and apply it to: (1) Explain the energy driving offshore saline circulation cells, and; (2) Assess the accuracy of numerical simulations of coastal groundwater systems. The flow of fresh groundwater to the ocean is driven by the loss of potential energy as groundwater drops from the elevation of the inland watertable, where recharge occurs, to discharge at sea level. This freshwater flow creates an underlying circulation cell of seawater, drawn into coastal aquifers offshore and discharging near shore, that adds to total submarine groundwater discharge. The saline water in the circulation cell enters and exits the aquifer through the sea floor at the same hydraulic potential. Existing theory explains that the saline circulation cell is driven by mixing of fresh and saline without any additional source of potential or mechanical power. This explanation raises a basic thermodynamic question: what is the source of energy that drives the saline circulation cell? Here, we resolve this question by building upon Hubbert's conception of hydraulic potential to formulate an energy balance for density-dependent flow and salt transport through an aquifer. We show that, because local energy dissipation within the aquifer is proportional to the square of the groundwater velocity, more groundwater flow may be driven through an aquifer for a given energy input if local variations in velocity are smoothed. Our numerical simulations of coastal groundwater systems show that dispersion of salt across the fresh-saline interface spreads flow over larger volumes of the aquifer, smoothing the velocity field, and increasing total flow and submarine groundwater discharge without consuming more power. The energy balance also provides a criterion, in addition to conventional mass balances, for judging the accuracy of numerical solutions of non-linear density-dependent flow problems. Our results show that some numerical

  3. Salt flow direction and velocity during subsalt normal faulting and syn-kinematic sedimentation—implications from analytical calculations

    NASA Astrophysics Data System (ADS)

    Warsitzka, M.; Kukowski, N.; Kley, J.

    2018-04-01

    Salt flow induced by subsalt normal faulting is mainly controlled by tilting of the salt layer, the amount of differential loading due to syn-kinematic deposition, and tectonic shearing at the top or the base of the salt layer. Our study addresses the first two mechanisms and aims to examine salt flow patterns above a continuously moving subsalt normal fault and beneath a syn-kinematic minibasin. In such a setting, salt either tends to flow down towards the basin centre driven by its own weight or is squeezed up towards the footwall side owing to loading differences between the minibasin and the region above the footwall block. Applying isostatic balancing in analytical models, we calculated the steady-state flow velocity in a salt layer. This procedure gives insights into (1) the minimum vertical offset required for upward flow to occur, (2) the magnitude of the flow velocity, and (3) the average density of the supra-salt cover layer at the point at which upward flow starts. In a sensitivity study, we examined how the point of flow reversal and the velocity patterns are influenced by changes of the salt and cover layer thickness, the geometry of the cover flexure, the dip of the subsalt fault, compaction parameters of the supra-salt cover, the salt viscosity and the salt density. Our model results reveal that in most geological scenarios, salt flow above a continuously displacing subsalt normal fault goes through an early phase of downward flow. At sufficiently high fault offset in the range of 700-2600 m, salt is later squeezed upward towards the footwall side. This flow reversal occurs at smaller vertical fault displacement, if the thickness of the pre-kinematic layer is larger, the sedimentation rate of the syn-kinematic cover is higher, the compaction coefficient of cover sediments (i.e. the density increase with depth) is larger or the average density of the salt is lower. Other geometrical parameters such as the width of the cover monocline, the dip of the

  4. Are nonsymmetric balanced configurations of four equal masses virtual or real?

    NASA Astrophysics Data System (ADS)

    Chenciner, Alain

    2017-11-01

    Balanced configurations of N point masses are the configurations which, in a Euclidean space of high enough dimension, i. e., up to 2( N - 1), admit a relative equilibrium motion under the Newtonian (or similar) attraction. Central configurations are balanced and it has been proved by Alain Albouy that central configurations of four equal masses necessarily possess a symmetry axis, from which followed a proof that the number of such configurations up to similarity is finite and explicitly describable. It is known that balanced configurations of three equal masses are exactly the isosceles triangles, but it is not known whether balanced configurations of four equal masses must have some symmetry. As balanced configurations come in families, it makes sense to look for possible branches of nonsymmetric balanced configurations bifurcating from the subset of symmetric ones. In the simpler case of a logarithmic potential, the subset of symmetric balanced configurations of four equal masses is easy to describe as well as the bifurcation locus, but there is a grain of salt: expressed in terms of the squared mutual distances, this locus lies almost completely outside the set of true configurations (i. e., generalizations of triangular inequalities are not satisfied) and hence could lead most of the time only to the bifurcation of a branch of virtual nonsymmetric balanced configurations. Nevertheless, a tiny piece of the bifurcation locus lies within the subset of real balanced configurations symmetric with respect to a line and hence has a chance to lead to the bifurcation of real nonsymmetric balanced configurations. This raises the question of the title, a question which, thanks to the explicit description given here, should be solvable by computer experts even in the Newtonian case. Another interesting question is about the possibility for a bifurcating branch of virtual nonsymmetric balanced configurations to come back to the domain of true configurations.

  5. Equilibrium distribution of rare earth elements between molten KCl-LiCl eutectic salt and liquid cadmium

    NASA Astrophysics Data System (ADS)

    Sakata, Masahiro; Kurata, Masaki; Hijikata, Takatoshi; Inoue, Tadashi

    1991-11-01

    Distribution experiments for several rare earth elements (La, Ce, Pr, Nd and Y) between molten KCl-LiCl eutectic salt and liquid Cd were carried out at 450, 500 and 600°C. The material balance of rare earth elements after reaching the equilibrium and their distribution and chemical states in a Cd sample frozen after the experiment were examined. The results suggested the formation of solid intermetallic compounds at the lower concentrations of rare earth metals dissolved in liquid Cd than those solubilities measured in the binary alloy system. The distribution coefficients of rare earth elements between two phases (mole fraction in the Cd phase divided by mole fraction in the salt phase) were determined at each temperature. These distribution coefficients were explained satisfactorily by using the activity coefficients of chlorides and metals in salt and Cd. Both the activity coefficients of metal and chloride caused a much smaller distribution coefficient of Y relative to those of other elements.

  6. Water purification using organic salts

    DOEpatents

    Currier, Robert P.

    2004-11-23

    Water purification using organic salts. Feed water is mixed with at least one organic salt at a temperature sufficiently low to form organic salt hydrate crystals and brine. The crystals are separated from the brine, rinsed, and melted to form an aqueous solution of organic salt. Some of the water is removed from the aqueous organic salt solution. The purified water is collected, and the remaining more concentrated aqueous organic salt solution is reused.

  7. Korean Hemorrhagic Fever.

    DTIC Science & Technology

    1981-03-31

    secretions, and ectoparasites were prepared in phosphate buffered saline, pH 7.6 containing 0.2% serum bovine albumin(PBS). Penicillin, streptomycin...water source and urine was collected during an interval of 3-5 hours, in sterile bottles containing 10 ml of Hanks balanced solution(BSS) with 1% bovine ...Shope, R. E. and Harrison, A. Physiocochemical and morphological relationships of some arthropod-borne viruses to bluetongue virus - a new taxonomic

  8. Acetylcholine, carbachol, and GABA induce no detectable change in the length of isolated outer hair cells.

    PubMed

    Bobbin, R P; Fallon, M; Puel, J L; Bryant, G; Bledsoe, S C; Zajic, G; Schacht, J

    1990-08-01

    The mechanical and electrical properties of cochlear outer hair cells (OHCs) are suggested to modulate transduction by inner hair cells. These properties of OHCs are presumably regulated by efferent neurons which use several transmitters including acetylcholine (Ach) and gamma aminobutyric acid (GABA). Since it had been suggested that Ach causes isolated OHCs to shorten visibly, this study was designed to investigate whether GABA also alters the length of OHCs. OHCs were isolated from the guinea pig cochlea by mechanical dispersion after collagenase treatment. Cells were initially selected by strict morphological criteria. In addition they were only included in further studies if they attained a constant length during 10 min of superfusion with buffer solution. Neither GABA (20 microM: 100 microM), Ach (5 mM; 10 microM with 10 microM eserine) or carbachol (10 microM; 100 microM) altered OHC length when applied in iso-osmotic Hank's balanced salt solution (total number of cells tested, 72). If a change in length occurred it must have been smaller than 0.3 microns, our detection ability. In contrast, high potassium and variations in osmolarity changed hair cell length by 3-10% in agreement with other reports.

  9. Concurrent improvement in biocompatibility and bioinertness of diamond-like carbon films with nitrogen doping.

    PubMed

    Liao, Wen-Hsiang; Lin, Chii-Ruey; Wei, Da-Hua; Shen, You-Ruey; Li, Yi-Chieh; Lee, Jen-Ai; Liang, Chia-Yao

    2012-11-01

    The surfaces of implantable biomaterials improving biocompatibility and bioinertness are critical for new application of bioimplantable devices. Diamond-like carbon (DLC) film is a promising biomaterial with use for coating bioimplantable devices because of its good biocompatibility, bioinertness, and mechanical properties. In this study, concurrent improvement in biocompatibility and bioinertness of DLC films has been achieved using N-incorporation technique. The N doping degree was found to play an important role in affecting the biocompatibility and bioinertness of N-doped DLC films. The results indicated that the N-doped DLC films deposited at N(2) concentration of 5% could help to create suitable condition of surface/structure/adhesion combination of DLC films in the both affinity of the L929 mouse fibroblasts and electrochemical inertness in the Hank's balanced salt solutions (simulating human body fluids). N doping supports the attachment and proliferation of cells and prevents the permeation of electrolyte solutions, thereby simultaneity improved the biocompatibility and bioinertness of DLC films. This finding is useful for the fabrication and encapsulation of in vivo devices without induced immune response in the human body. Copyright © 2012 Wiley Periodicals, Inc.

  10. Clinical and Practical Implications of Storage Media used for Tooth Avulsion.

    PubMed

    Is Khinda, Vineet; Kaur, Gurpreet; S Brar, Gurlal; Kallar, Shiminder; Khurana, Heena

    2017-01-01

    Replantation is being widely accepted as an effective treatment option for an avulsed tooth. However, the long-term fate of replanted teeth is unpredictable; it is dependent on various factors, such as the time interval between avulsion and replantation, extra-alveolar storage period (dry storage or storage media), the vitality status of pulp or periodontal tissues and the type and period of splinting. The appropriate use of storage media is an important clinical factor affecting the postoperative prognosis of avulsed teeth following replantation. Hank's balanced salt solution and pasteurized milk are considered to be the most appropriate and clinically recommended storage media for avulsed teeth. The present review discusses the various available storage media for avulsed teeth and their potential maintenance of the vitality of periodontal ligament cells. A brief overview of the effect of clinical factors, such as the storage time, pH, and the osmolar-ity of storage media on their efficacy is included. Khinda VIS, Kaur G, Brar GS, Kallar S, Khurana H. Clinical and Practical Implications of Storage Media used for Tooth Avulsion. Int J Clin Pediatr Dent 2017; 10(2): 158-165.

  11. Validation of UHPLC-MS/MS methods for the determination of kaempferol and its metabolite 4-hydroxyphenyl acetic acid, and application to in vitro blood-brain barrier and intestinal drug permeability studies.

    PubMed

    Moradi-Afrapoli, Fahimeh; Oufir, Mouhssin; Walter, Fruzsina R; Deli, Maria A; Smiesko, Martin; Zabela, Volha; Butterweck, Veronika; Hamburger, Matthias

    2016-09-05

    Sedative and anxiolytic-like properties of flavonoids such as kaempferol and quercetin, and of some of their intestinal metabolites, have been demonstrated in pharmacological studies. However, routes of administration were shown to be critical for observing in vivo activity. Therefore, the ability to cross intestinal and blood-brain barriers was assessed in cell-based models for kaempferol (KMF), and for the major intestinal metabolite of KMF, 4-hydroxyphenylacetic acid (4-HPAA). Intestinal transport studies were performed with Caco-2 cells, and blood-brain barrier transport studies with an immortalized monoculture human model and a primary triple-co-culture rat model. UHPLC-MS/MS methods for KMF and 4-HPAA in Ringer-HEPES buffer and in Hank's balanced salt solution were validated according to industry guidelines. For all methods, calibration curves were fitted by least-squares quadratic regression with 1/X(2) as weighing factor, and mean coefficients of determination (R(2)) were >0.99. Data obtained with all barrier models showed high intestinal and blood-brain barrier permeation of KMF, and no permeability of 4-HPAA, when compared to barrier integrity markers. Copyright © 2016 Elsevier B.V. All rights reserved.

  12. Human Norovirus and Its Surrogates Induce Plant Immune Response in Arabidopsis thaliana and Lactuca sativa.

    PubMed

    Markland, Sarah M; Bais, Harsh; Kniel, Kalmia E

    2017-08-01

    Human norovirus is the leading cause of foodborne illness worldwide with the majority of outbreaks linked to fresh produce and leafy greens. It is essential that we thoroughly understand the type of relationship and interactions that take place between plants and human norovirus to better utilize control strategies to reduce transmission of norovirus in the field onto plants harvested for human consumption. In this study the expression of gene markers for the salicylic acid (SA) and jasmonic acid (JA) plant defense pathways was measured and compared in romaine lettuce (Lactuca sativa) and Arabidopsis thaliana Col-0 plants that were inoculated with Murine Norovirus-1, Tulane Virus, human norovirus GII.4, or Hank's Balanced Salt Solution (control). Genes involving both the SA and JA pathways were expressed in both romaine lettuce and A. thaliana for all three viruses, as well as controls. Studies, including gene expression of SA- and JA-deficient A. thaliana mutant lines, suggest that the JA pathway is more likely involved in the plant immune response to human norovirus. This research provides the first pieces of information regarding how foodborne viruses interact with plants in the preharvest environment.

  13. Mammalian cell delivery via aerosol deposition.

    PubMed

    Veazey, William S; Anusavice, Kenneth J; Moore, Karen

    2005-02-15

    The objective of this study was to test the hypothesis that bovine dermal fibroblasts can survive aerosol delivery via an airbrush with mean cell survival rates greater than 50%. This technology has great implications for burn and other wound therapies, for delivery of genetically altered cells in gene therapies, and for tissue engineering with tissue scaffolds. Bovine dermal fibroblasts were suspended at a concentration of 200,000 cells/mL in Hank's Balanced Salt Solution, and delivered into six-well tissue culture plates using a Badger 100G airbrush. Cells were delivered through three nozzle diameters (312, 484, and 746 microm) at five different air pressures (41, 55, 69, 96, and 124 kPa). Nine repetitions were performed for each treatment group, and cell viability was measured using trypan blue exclusion assay. Mean cell viability ranged from 37 to 94%, and depended on the combination of nozzle diameter and delivery pressure (p < 0.0001). Linear regression analysis was used to develop a stochastic model of cell delivery viability as a function of nozzle diameter and delivery air pressure. This study demonstrates the feasibility of using an airbrush to deliver viable cells in an aerosol to a substrate.

  14. A universal salt model based on under-ground precipitation of solid salts due to supercritical water `out-salting'

    NASA Astrophysics Data System (ADS)

    Rueslåtten, H.; Hovland, M. T.

    2010-12-01

    One of the common characteristics of planets Earth and Mars is that both host water (H2O) and large accumulations of salt. Whereas Earth’s surface-environment can be regarded as ‘water-friendly’ and ‘salt hostile’, the reverse can be said for the surface of Mars. This is because liquid water is stable on Earth, and the atmosphere transports humidity around the globe, whereas on planet Mars, liquid water is unstable, rendering the atmosphere dry and, therefore, ‘salt-friendly’. The riddle as to how the salt accumulated in various locations on those two planets, is one of long-lasting and great debate. The salt accumulations on Earth are traditionally termed ‘evaporites’, meaning that they formed as a consequence of the evaporation of large masses of seawater. How the accumulations on Mars formed is much harder to explain, as an ocean only existed briefly. Although water molecules and OH-groups may exist in abundance in bound form (crystal water, adsorbed water, etc.), the only place where free water is expected to be stable on Mars is within underground faults, fractures, and crevices. Here it likely occurs as brine or in the form of ice. Based on these conditions, a key to understanding the accumulation of large deposits of salt on both planets is linked to how brines behave in the subsurface when pressurized and heated beyond their supercritical point. At depths greater than about 3 km (P>300 bars) water will no longer boil in a steam phase. Rather, it becomes supercritical and will attain the phase of supercritical water vapor (SCRIW) with a specific gravity of typically 0.3 g/cm3. An important characteristic of SCRIW is its inability to dissolve the common sea salts. The salt dissolved in the brines will therefore precipitate as solid particles when brines (seawater on the Earth) move into the supercritical P&T-domain (T>400°C, P>300 bars). Numerical modeling of a hydrothermal system in the Atlantis II Deep of the Red Sea indicates that a

  15. Increased sensitivity to salt stress in tocopherol-deficient Arabidopsis mutants growing in a hydroponic system

    PubMed Central

    Ellouzi, Hasna; Hamed, Karim Ben; Cela, Jana; Müller, Maren; Abdelly, Chedly; Munné-Bosch, Sergi

    2013-01-01

    Recent studies suggest that tocopherols could play physiological roles in salt tolerance but the mechanisms are still unknown. In this study, we analyzed changes in growth, mineral and oxidative status in vte1 and vte4 Arabidopsis thaliana mutants exposed to salt stress. vte1 and vte4 mutants lack α-tocopherol, but only the vte1 mutant is additionally deficient in γ-tocopherol. Results showed that a deficiency in vitamin E leads to reduced growth and increased oxidative stress in hydroponically-grown plants. This effect was observed at early stages, not only in rosettes but also in roots. The vte1 mutant was more sensitive to salt-induced oxidative stress than the wild type and the vte4 mutant. Salt sensitivity was associated with (i) high contents of Na+, (ii) reduced efficiency of PSII photochemistry (Fv/Fm ratio) and (iii) more pronounced oxidative stress as indicated by increased hydrogen peroxide and malondialdeyde levels. The vte 4 mutant, which accumulates γ- instead of α-tocopherol showed an intermediate sensitivity to salt stress between the wild type and the vte1 mutant. Contents of abscisic acid, jasmonic acid and the ethylene precursor, 1-aminocyclopropane-1-carboxylic acid were higher in the vte1 mutant than the vte4 mutant and wild type. It is concluded that vitamin E-deficient plants show an increased sensitivity to salt stress both in rosettes and roots, therefore indicating the positive role of tocopherols in stress tolerance, not only by minimizing oxidative stress, but also controlling Na+/K+ homeostasis and hormonal balance. PMID:23299430

  16. Salt Stability - The Effect of pHmax on Salt to Free Base Conversion.

    PubMed

    Hsieh, Yi-Ling; Merritt, Jeremy M; Yu, Weili; Taylor, Lynne S

    2015-09-01

    The aim of this study was to investigate how the disproportionation process can be impacted by the properties of the salt, specifically pHmax. Five miconazole salts and four sertraline salts were selected for this study. The extent of conversion was quantified using Raman spectroscopy. A mathematical model was utilized to estimate the theoretical amount of conversion. A trend was observed that for a given series of salts of a particular basic compound (both sertraline and miconazole are bases), the extent of disproportionation increases as pHmax decreases. Miconazole phosphate monohydrate and sertraline mesylate, although exhibiting significantly different pHmax values (more than 2 units apart), underwent a similar extent of disproportionation, which may be attributed to the lower buffering capacity of sertraline salts. This work shows that the disproportionation tendency can be influenced by pHmax and buffering capacity and thus highlights the importance of selecting the appropriate salt form during the screening process in order to avoid salt-to-free form conversion.

  17. Plasma 24,25-dihydroxyvitamin D concentration of Dahl salt-sensitive rats decreases during high salt intake

    NASA Technical Reports Server (NTRS)

    Thierry-Palmer, Myrtle; Tewolde, Teclemicael K.; Forte, Camille; Wang, Min; Bayorh, Mohamed A.; Emmett, Nerimiah L.; White, Jolanda; Griffin, Keri

    2002-01-01

    Dahl salt-sensitive rats, but not salt-resistant rats, develop hypertension in response to high salt intake. We have previously shown an inverse relationship between plasma 25-hydroxyvitamin D (25-OHD) concentration and blood pressure of Dahl salt-sensitive rats during high salt intake. In this study, we report on the relationship between high salt intake and plasma 24,25-dihydroxyvitamin D (24,25-(OH)(2)D) concentration of Dahl salt-sensitive and salt-resistant rats. Rats were fed a high salt diet (8%) and sacrificed at day 2, 7, 14, 21, and 28. Plasma 24,25-(OH)(2)D concentrations of salt-sensitive rats were reduced to 50% of that at baseline at day 2-when blood pressure and plasma 25-OHD concentration were unchanged, but 25-OHD content in the kidney was 81% of that at baseline. Plasma 24,25-(OH)(2)D concentration was reduced further to 10% of that at baseline from day 7 to 14 of high salt intake, a reduction that was prevented in rats switched to a low salt (0.3%) diet at day 7. Exogenous 24,25-dihydroxycholecalciferol (24,25-(OH)(2)D(3)), administered at a level that increased plasma 24,25-(OH)(2)D concentration to five times normal, did not attenuate the salt-induced hypertension of salt-sensitive rats. Plasma 24,25-(OH)(2)D concentration of salt-resistant rats was gradually reduced to 50% of that at baseline at day 14 and returned to baseline value at day 28 of high salt intake. We conclude that the decrease in plasma 24,25-(OH)(2)D concentration in salt-sensitive rats during high salt intake is caused by decreased 25-OHD content in the kidney and also by another unidentified mechanism.

  18. Watering cattle (young bulls) with brackish water--a hazard due to its salt content?

    PubMed

    Visscher, C F; Witzmann, S; Beyerbach, M; Kamphues, J

    2013-01-01

    The aim of this experimental study was primarily to test the effects and reactions of cattle offered salty water as the only source of drinking water. Mineral balance studies were carried out on three bull, continuously fed a ration based on hay, hay cobs, barley, soybean meal and a vitamin/mineral supplement. The salt content of the drinking water varied between the trials (trials I/II/III: 0.10/5.00/10.0 g/l; town water supplemented by different amounts of an additive containing 95.4% sodium chloride and 4.6% potassium chloride). Rising salt concentration of the drinking water led to significantly higher sodium, potassium and chloride intake (sodium: trial I/II/III = 5.42/59.5/ 157 g/day; potassium: trials I/II/III = 108/117/121 g/day; chloride: trials I/II/III = 22.8/112/266 g/day) mainly caused by a significantly higher water intake (trials I/II/III: 21.8 ± 2.03/30.4 ± 3.08/41.5 ± 5.89 kg/day). Amounts of urine increased significantly (trials I/II/III: 3.99 ± 0.46/ 9.66 ± 1.34/20.2 ± 3.14 kg/day). The concentrations of minerals in the urine (sodium: trials I/II/III = 123/3729/6705 mg/kg; potassium: trials I/II/III = 17345/9996/ 5496 mg/kg; chloride: trials I/II/III = 2020/ 9672/11870 mg/kg) and faeces (sodium: trials I/II/III = 1299/6544/ 7653 mg/kg; potassium: trials I/II/III = 6343/3719/3490 mg/kg; chloride: trials I/II/III = 3851/4580/4693 mg/kg) also changed significantly over time. Serum values of sodium tended to decrease (trials I/II/III: 142/137/137 mmol/l) within the physiological range, whereas those of chloride increased (trials I/II/III: 91.5/95.6/97.5 mmol/l) at higher salt concentrations in drinking water. The haematocrit, pH-value as well as urea content in blood were not affected by the higher salt intake. In balance trial III (highest salt load: 10.0 g/l), sodium intake of the bulls reached 0.57 ± 0.03 g/kg BW (~22.1 ± 0.9 g sodium/kg dry matter feed). An increase of salinity in drinking water up to 10 g/l--with otherwise harmless water

  19. Comparison of salt taste thresholds and salt usage behaviours between adults in Myanmar and Korea.

    PubMed

    Cho, Hyungjin; Kim, So Mi; Jeong, Seong Su; Kim, Soon Bae

    2016-12-01

    Excessive oral salt intake can induce hypertension. According to previous studies, the prevalence of hypertension is higher in Myanmar than in Korea. We postulated that Myanmar adults had higher salt taste thresholds and eat much saltier food. This study aimed to compare salt taste thresholds and salt usage behaviour scores between adults in Myanmar and Korea. This cross-sectional study enrolled patients who visited volunteer medical service clinics at Ansung in Korea and Hlegu and Bago in Myanmar in August 2014. We measured the vital signs, heights, and weights of each patient and evaluated detection thresholds, recognition thresholds, and salt preferences. All patients underwent urinalysis and spot urine Na tests. Additionally, they each completed a salt usage behaviour questionnaire. A total of 131 patients were enrolled, including 64 Myanmarese patients and 67 Korean patients. Blood pressure was significantly higher in the Myanmarese than in the Koreans. Detection and recognition thresholds, salt preferences, and spot urine sodium and salt usage behaviour scores were also higher in the Myanmarese than in the Korean subjects. We calculated correlation coefficients between systolic blood pressure and parameters that were related to salt intake. The detection and recognition thresholds were significantly correlated with systolic blood pressure. All parameters related to salt intake, including detection and recognition thresholds, salt preference, salt usage behaviour scores and spot urine sodium concentrations, are significantly higher in Myanmarese than in Korean individuals.

  20. Mineral resource of the month: salt

    USGS Publications Warehouse

    Kostick, Dennis S.

    2010-01-01

    The article presents information on various types of salt. Rock salt is either found from underground halite deposits or near the surface. Other types of salt include solar salt, salt brine, and vacuum pan salt. The different uses of salt are also given including its use as a flavor enhancer, as a road deicing agent, and to manufacture sodium hydroxide.

  1. Mechanical stratification of autochthonous salt: Implications from basin-scale numerical models of rifted margin salt tectonics

    NASA Astrophysics Data System (ADS)

    Ings, Steven; Albertz, Markus

    2014-05-01

    Deformation of salt and sediments owing to the flow of weak evaporites is a common phenomenon in sedimentary basins worldwide, and the resulting structures and thermal regimes have a significant impact on hydrocarbon exploration. Evaporite sequences ('salt') of significant thickness (e.g., >1km) are typically deposited in many cycles of seawater inundation and evaporation in restricted basins resulting in layered autochthonous evaporite packages. However, analogue and numerical models of salt tectonics typically treat salt as a homogeneous viscous material, often with properties of halite, the weakest evaporite. In this study, we present results of two-dimensional plane-strain numerical experiments designed to illustrate the effects of variable evaporite viscosity and embedded frictional-plastic ('brittle') sediment layers on the style of salt flow and associated deformation of the sedimentary overburden. Evaporite viscosity is a first-order control on salt flow rate and the style of overburden deformation. Near-complete evacuation of low-viscosity salt occurs beneath expulsion basins, whereas significant salt is trapped when viscosity is high. Embedded frictional-plastic sediment layers (with finite yield strength) partition salt flow and develop transient contractional structures (folds, thrust faults, and folded faults) in a seaward salt-squeeze flow regime. Multiple internal sediment layers reduce the overall seaward salt flow during sediment aggradation, leaving more salt behind to be re-mobilized during subsequent progradation. This produces more seaward extensive allochthonous salt sheets. If there is a density difference between the embedded layers and the surrounding salt, then the embedded layers 'fractionate' during deformation and either float to the surface or sink to the bottom (depending on density), creating a thick zone of pure halite. Such a process of 'buoyancy fractionation' may partially explain the apparent paradox of layered salt in

  2. 238Pu recovery and salt disposition from the molten salt oxidation process

    NASA Astrophysics Data System (ADS)

    Remerowski, M. L.; Stimmel, Jay J.; Wong, Amy S.; Ramsey, Kevin B.

    2000-07-01

    We have begun designing and optimizing our recovery and recycling processes by experimenting with samples of "spent salt" produced by MSO treatment of surrogate waste in the reaction vessel at the Naval Surface Warfare Center-Indian Head. One salt was produced by treating surrogate waste containing pyrolysis ash spiked with cerium. The other salt contains residues from MSO treatment of materials similar to those used in 238Pu processing, e.g., Tygon tubing, PVC bagout bags, HDPE bottles. Using these two salt samples, we will present results from our investigations.

  3. Salt Weathering on Mars

    NASA Astrophysics Data System (ADS)

    Jagoutz, E.

    2006-12-01

    Large well rounded boulders and angular rock fragments characterizes the Martian landscape as seen on the recent excellent quality photos. Analyzing the different rock-shapes indicates a time sequence of emplacement, fragmentation and transport of different rocks on Mars, which might give interesting insight into transport and weathering processes. Larger commonly well rounded boulders were emplaced onto gravel plains. After emplacement, these rocks were fragmented and disassembled. Nests of angular rock fragments are marking the locations of preexisting larger rocks. Frequently it is possible to reconstruct larger rounded rocks from smaller angular fragments. In other cases transport after fragmentation obscured the relationship of the fragments. However, a strewn field of fragments is still reminiscent of the preexisting rock. Mechanical salt weathering could be a plausible explanation for the insitu fragmentation of larger rounded blocks into angular fragments. Impact or secondary air fall induced fragmentation produces very different patterns, as observed around impact crates on Earth. Salt weathering of rocks is a common process in terrestrial environments. Salt crystallization in capillaries causes fragmentation of rocks, irrespective of the process of salt transportation and concentration. On Earth significant salt weathering can be observed in different climatic environments: in the transition zone of alluvial aprons and salt playas in desserts and in dry valleys of Antarctica. In terrestrial semi-arid areas the salt is transported by salt solution, which is progressively concentrated by evaporation. In Antarctic dry valleys freeze-thaw cycles causes salt transportation and crystallization resulting in rock fragmentation. This salt induced process can lead to complete destruction of rocks and converts rocks to fine sand. The efficient breakdown of rocks is dominating the landscape in some dry valleys of the Earth but possibly also on Mars. (Malin, 1974

  4. Should we eat less salt?

    PubMed

    Delahaye, François

    2013-05-01

    High blood pressure is a major cardiovascular risk factor. There is overwhelming evidence that high salt consumption is a major cause of increased blood pressure. There is also a link between high salt consumption and risk of stroke, left ventricular hypertrophy, renal disease, obesity, renal stones and stomach cancer. Reducing salt consumption leads to a decrease in blood pressure and the incidence of cardiovascular disease. There are no deleterious effects associated with reducing salt consumption and it is also very cost-effective. Many organizations and state governments have issued recommendations regarding the suitable amount of salt consumption. In France, the objective is a salt consumption<8g/day in men and<6.5g/day in women and children. As 80% of consumed salt comes from manufactured products in developed countries, reduction of salt consumption requires the participation of the food industry. The other tool is consumer information and education. Salt consumption has already decreased in France in recent years, but efforts must continue. Copyright © 2013 Elsevier Masson SAS. All rights reserved.

  5. Actinide removal from spent salts

    DOEpatents

    Hsu, Peter C.; von Holtz, Erica H.; Hipple, David L.; Summers, Leslie J.; Adamson, Martyn G.

    2002-01-01

    A method for removing actinide contaminants (uranium and thorium) from the spent salt of a molten salt oxidation (MSO) reactor is described. Spent salt is removed from the reactor and analyzed to determine the contaminants present and the carbonate concentration. The salt is dissolved in water, and one or more reagents are added to precipitate the thorium as thorium oxide and/or the uranium as either uranium oxide or as a diuranate salt. The precipitated materials are filtered, dried and packaged for disposal as radioactive waste. About 90% of the thorium and/or uranium present is removed by filtration. After filtration, salt solutions having a carbonate concentration >20% can be dried and returned to the reactor for re-use. Salt solutions containing a carbonate concentration <20% require further clean-up using an ion exchange column, which yields salt solutions that contain less than 0.1 ppm of thorium or uranium.

  6. Power plant I - Fused salt

    NASA Astrophysics Data System (ADS)

    Roche, M.

    A solar thermal power plant using fused salt as the heat transfer fluid for steam power generation is analyzed for the feasibility of economic operation. The salt is also stored in a tank reservoir for maintaining the primary heat loop at temperatures high enough for the salts to remain liquid, and also to provide reserve power for the steam generator. Initial studies were with eutectic (hitec) salt comprising Na, KOH, and nitrites melting at 146 C, and further studies were performed employing draw salt, which has no nitrite, is more stable at high temperature, and melts at 225 C. The use of draw salt was found to allow a 5 percent reduction in storage capacity. Further examinations of the effects of the hitec salts on corrosion and composition degradation at high temperatures are indicated. The molten salt system is projected to offer an efficiency of 26 percent.

  7. DEVELOPMENT OF AN INSOLUBLE SALT SIMULANT TO SUPPORT ENHANCED CHEMICAL CLEANING TESTS

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Eibling, R

    insoluble salt simulant described in this report represents the initial attempt to represent the material which may be encountered during final waste removal and tank cleaning. The final selected simulant was produced by heating and evaporation of a salt slurry sample to remove excess water and promote formation and precipitation of solids with solubility characteristics which are consistent with actual tank insoluble salt samples. The exact anion composition of the final product solids is not explicitly known since the chemical components in the final product are distributed between the solid and liquid phases. By combining the liquid phase analyses and total solids analysis with mass balance requirements a calculated composition of assumed simple compounds was obtained and is shown in Table 0-1. Additional improvements to and further characterization of the insoluble salt simulant are possible. During the development of these simulants it was recognized that: (1) Additional waste characterization on the residues from salt dissolution tests with actual waste samples to determine the amount of species such as carbonate, oxalate and aluminosilicate would allow fewer assumptions to be made in constructing an insoluble salt simulant. (2) The tank history will impact the amount and type of insoluble solids that exist in the salt dissolution solids. Varying the method of simulant production (elevated temperature processing time, degree of evaporation, amount of mixing (shear) during preparation, etc.) should be tested.« less

  8. Holding immature equine oocytes in the absence of meiotic inhibitors: effect on germinal vesicle chromatin and blastocyst development after intracytoplasmic sperm injection.

    PubMed

    Choi, Y H; Love, L B; Varner, D D; Hinrichs, K

    2006-09-01

    Holding immature oocytes before the onset of maturation simplifies oocyte transport and aids in scheduling later manipulations. We report here a method for holding equine oocytes in the absence of meiotic inhibitors. In Experiment 1, immature oocytes with expanded cumuli were cultured at 38.2 degrees C in medium containing cycloheximide, or were held at room-temperature in M199 with Hanks' salts, for 16-18 h before maturation. Control oocytes were matured immediately after recovery. Oocytes were fertilized by intracytoplasmic sperm injection and cultured for 4d. Embryo development was not different among treatments. In Experiment 2, oocytes were treated as in Experiment 1, but embryos were cultured for 7.5d. Blastocyst development was significantly lower in the cycloheximide-treated group than in controls (7% versus 30%) with the room-temperature group intermediate (16%). In Experiment 3, oocytes were cultured at 38.2 degrees C in medium containing roscovitine, or were held at room temperature in sealed glass vials in a mixture of 40% M199 with Earle's salts, 40% M199 with Hanks' salts, and 20% FBS (EH treatment) for 16-18 h, before maturation, sperm injection, and embryo culture for 7.5d. Blastocyst development of oocytes in the EH treatment was significantly higher than that for roscovitine-treated oocytes (34% versus 12%), but not significantly different from that for controls (25%). Oocytes in the EH treatment did not mature during holding (70% germinal vesicle stage after 18 h holding). Whereas culture with cycloheximide or roscovitine of equine oocytes with expanded cumuli reduced subsequent blastocyst formation, these oocytes could be held in a modified M199 at room temperature overnight without adverse affecting meiotic or developmental competence.

  9. Salt briquette: the form of salt monopoly in madura, 1883-1911

    NASA Astrophysics Data System (ADS)

    Wisnu; Alrianingrum, S.; Artono; Liana, C.

    2018-01-01

    This study describes the history of the salt monopoly in Indonesia because it is associated with the issue of salt crisis lately, widely reported in various media. This study tried to find answers to the relationship between monopoly and crisis events through the study of history. Monopoly policy by the government of the colonial period is actually an industrial modernization effort, but it turned out another impact. Although the colonial government wanted to issue a policy that ends strengthens the position of the government in the industry, but ultimately backfire and disasters in the salt industry at the time. This article discusses only the focus of the salt monopoly in Madura as a selection of events, arguing the island as a center of salt in Indonesia. The method used in this study using a review of history. Therefore, their explanations using historical sources. Methodologically through the process of collecting historical sources, criticize these sources, synthesize and interpret the analysis in an array of historical writing. In conclusion, although the salt monopoly policy gives a great advantage to the colonial government, but the overall population of Madura remains in a poor state. It is evident that the Madurese to migrate Madurese to various areas outside the island of Madura, to fix the economy.

  10. Salt and cocrystals of sildenafil with dicarboxylic acids: solubility and pharmacokinetic advantage of the glutarate salt.

    PubMed

    Sanphui, Palash; Tothadi, Srinu; Ganguly, Somnath; Desiraju, Gautam R

    2013-12-02

    Sildenafil is a drug used to treat erectile dysfunction and pulmonary arterial hypertension. Because of poor aqueous solubility of the drug, the citrate salt, with improved solubility and pharmacokinetics, has been marketed. However, the citrate salt requires an hour to reach its peak plasma concentration. Thus, to improve solubility and bioavailability characteristics, cocrystals and salts of the drug have been prepared by treating aliphatic dicarboxylic acids with sildenafil; the N-methylated piperazine of the drug molecule interacts with the carboxyl group of the acid to form a heterosynthon. Salts are formed with oxalic and fumaric acid; salt monoanions are formed with succinic and glutaric acid. Sildenafil forms cocrystals with longer chain dicarboxylic acids such as adipic, pimelic, suberic, and sebacic acids. Auxiliary stabilization via C-H···O interactions is also present in these cocrystals and salts. Solubility experiments of sildenafil cocrystal/salts were carried out in 0.1N HCl aqueous medium and compared with the solubility of the citrate salt. The glutarate salt and pimelic acid cocrystal dissolve faster than the citrate salt in a two hour dissolution experiment. The glutarate salt exhibits improved solubility (3.2-fold) compared to the citrate salt in water. Solubilities of the binary salts follow an inverse correlation with their melting points, while the solubilities of the cocrystals follow solubilities of the coformer. Pharmacokinetic studies on rats showed that the glutarate salt exhibits doubled plasma AUC values in a single dose within an hour compared to the citrate salt. The high solubility of glutaric acid, in part originating from the strained conformation of the molecule and its high permeability, may be the reason for higher plasma levels of the drug.

  11. Metals removal from spent salts

    DOEpatents

    Hsu, Peter C.; Von Holtz, Erica H.; Hipple, David L.; Summers, Leslie J.; Brummond, William A.; Adamson, Martyn G.

    2002-01-01

    A method and apparatus for removing metal contaminants from the spent salt of a molten salt oxidation (MSO) reactor is described. Spent salt is removed from the reactor and analyzed to determine the contaminants present and the carbonate concentration. The salt is dissolved in water, and one or more reagents may be added to precipitate the metal oxide and/or the metal as either metal oxide, metal hydroxide, or as a salt. The precipitated materials are filtered, dried and packaged for disposal as waste or can be immobilized as ceramic pellets. More than about 90% of the metals and mineral residues (ashes) present are removed by filtration. After filtration, salt solutions having a carbonate concentration >20% can be spray-dried and returned to the reactor for re-use. Salt solutions containing a carbonate concentration <20% require further clean-up using an ion exchange column, which yields salt solutions that contain less than 1.0 ppm of contaminants.

  12. Fluid temperature at the corneal endothelium during phacoemulsification: comparison of an ophthalmic viscosurgical device and balanced salt solution using the finite element method.

    PubMed

    Reepolmaha, Somporn; Limtrakarn, Wiroj; Uthaisang-Tanechpongtamb, Wanlaya; Dechaumphai, Pramote

    2010-01-01

    The purpose of this study was to estimate and compare the temperatures of two different anterior chamber solutions at the corneal endothelial level during phacoemulsification. An ophthalmic viscosurgical device (OVD) and balanced salt solution (BSS) were compared using the finite element method (FEM). The thermal properties of an OVD (IAL-F) and BSS were studied in an experimental setting. A computer-aided design model of ocular anatomy was created in two dimensions. The phaco needle was considered to be the only source of heat generation. Then, the FEM was used to demonstrate the transient temperature distribution in the two ocular models at 10, 20, 30, 40, 50 and 60 s. In these models, the anterior chamber was filled with IAL-F (IAL-F model) or BSS (BSS model). The heat generation rate of the phaco needle was 0.0004 cal/s/mm(2). The maximum corneal endothelial temperatures for the two models at 60 s were 52.67 and 41.57 degrees C, respectively. The experimental IAL-F model showed fewer changes in temperature for any given time and location. At larger distances from the heat source, less temperature variation was detected. Phacoemulsification is a potential heat-generating procedure performed between the delicate anterior chamber structures. During this procedure, IAL-F protects the endothelium against heat better than BSS. Copyright 2009 S. Karger AG, Basel.

  13. Salt Reductions in Some Foods in The Netherlands: Monitoring of Food Composition and Salt Intake

    PubMed Central

    Temme, Elisabeth H. M.; Hendriksen, Marieke A. H.; Milder, Ivon E. J.; Toxopeus, Ido B.; Westenbrink, Susanne; Brants, Henny A. M.; van der A, Daphne L.

    2017-01-01

    Background and objectives. High salt intake increases blood pressure and thereby the risk of chronic diseases. Food reformulation (or food product improvement) may lower the dietary intake of salt. This study describes the changes in salt contents of foods in the Dutch market over a five-year period (2011–2016) and differences in estimated salt intake over a 10-year period (2006–2015). Methods. To assess the salt contents of foods; we obtained recent data from chemical analyses and from food labels. Salt content of these foods in 2016 was compared to salt contents in the 2011 version Dutch Food Composition Database (NEVO, version 2011), and statistically tested with General Linear Models. To estimate the daily dietary salt intake in 2006, 2010, and 2015, men and women aged 19 to 70 years were recruited through random population sampling in Doetinchem, a small town located in a rural area in the eastern part of the Netherlands. The characteristics of the study population were in 2006: n = 317, mean age 49 years, 43% men, in 2010: n = 342, mean age 46 years, 45% men, and in 2015: n = 289, mean age 46 years, 47% men. Sodium and potassium excretion was measured in a single 24-h urine sample. All estimates were converted to a common metric: salt intake in grams per day by multiplication of sodium with a factor of 2.54. Results. In 2016 compared to 2011, the salt content in certain types of bread was on average 19 percent lower and certain types of sauce, soup, canned vegetables and legumes, and crisps had a 12 to 26 percent lower salt content. Salt content in other types of foods had not changed significantly. Between 2006, 2010 and 2015 the estimated salt intake among adults in Doetinchem remained unchanged. In 2015, the median estimated salt intake was 9.7 g per day for men and 7.4 g per day for women. As in 2006 and 2010, the estimated salt intake in 2015 exceeded the recommended maximum intake of 6 g per day set by the Dutch Health Council. Conclusion. In the

  14. Salt Reductions in Some Foods in The Netherlands: Monitoring of Food Composition and Salt Intake.

    PubMed

    Temme, Elisabeth H M; Hendriksen, Marieke A H; Milder, Ivon E J; Toxopeus, Ido B; Westenbrink, Susanne; Brants, Henny A M; van der A, Daphne L

    2017-07-22

    High salt intake increases blood pressure and thereby the risk of chronic diseases. Food reformulation (or food product improvement) may lower the dietary intake of salt. This study describes the changes in salt contents of foods in the Dutch market over a five-year period (2011-2016) and differences in estimated salt intake over a 10-year period (2006-2015). To assess the salt contents of foods; we obtained recent data from chemical analyses and from food labels. Salt content of these foods in 2016 was compared to salt contents in the 2011 version Dutch Food Composition Database (NEVO, version 2011), and statistically tested with General Linear Models. To estimate the daily dietary salt intake in 2006, 2010, and 2015, men and women aged 19 to 70 years were recruited through random population sampling in Doetinchem, a small town located in a rural area in the eastern part of the Netherlands. The characteristics of the study population were in 2006: n = 317, mean age 49 years, 43% men, in 2010: n = 342, mean age 46 years, 45% men, and in 2015: n = 289, mean age 46 years, 47% men. Sodium and potassium excretion was measured in a single 24-h urine sample. All estimates were converted to a common metric: salt intake in grams per day by multiplication of sodium with a factor of 2.54. In 2016 compared to 2011, the salt content in certain types of bread was on average 19 percent lower and certain types of sauce, soup, canned vegetables and legumes, and crisps had a 12 to 26 percent lower salt content. Salt content in other types of foods had not changed significantly. Between 2006, 2010 and 2015 the estimated salt intake among adults in Doetinchem remained unchanged. In 2015, the median estimated salt intake was 9.7 g per day for men and 7.4 g per day for women. As in 2006 and 2010, the estimated salt intake in 2015 exceeded the recommended maximum intake of 6 g per day set by the Dutch Health Council. In the Netherlands, the salt content of bread, certain sauces, soups

  15. Plant salt-tolerance mechanisms

    DOE PAGES

    Deinlein, Ulrich; Stephan, Aaron B.; Horie, Tomoaki; ...

    2014-06-01

    Crop performance is severely affected by high salt concentrations in soils. To engineer more salt-tolerant plants it is crucial to unravel the key components of the plant salt-tolerance network. Here we review our understanding of the core salt-tolerance mechanisms in plants. Recent studies have shown that stress sensing and signaling components can play important roles in regulating the plant salinity stress response. We also review key Na+ transport and detoxification pathways and the impact of epigenetic chromatin modifications on salinity tolerance. In addition, we discuss the progress that has been made towards engineering salt tolerance in crops, including marker-assisted selectionmore » and gene stacking techniques. We also identify key open questions that remain to be addressed in the future.« less

  16. Effects of ion exchange on stream solute fluxes in a basin receiving highway deicing salts

    USGS Publications Warehouse

    Shanley, J.B.

    1994-01-01

    At Fever Brook, a 1260-ha forested basin in central Massachusetts, highway deicing salt application increased the solute flux in streamflow by 120% above background flux (equivalent basis) during a 2-yr period. Attempts to isolate the nonsalt component of stream solute fluxes have commonly subtracted salt contributions based on the net Cl flux (Cl output in streamflow minus Cl input in precipitation). In these studies, any net Na flux in excess of the amount needed to balance the net Cl flux has been attributed to weathering. At Fever Brook, however, the net output of Na was less than the net output of Cl, suggesting a loss of Na within the basin. The Na sink was inferred to be cation exchange of Na for Ca and Mg in the soil. A method was developed to quantify the exchange based on a Na budget, which included an independent estimate of the Na flux from weathering. The amount of exchange was apportioned to Ca and Mg based on their relative concentrations in the stream. The background fluxes of Ca and Mg (i.e., those that would occur in the absence of deicing salts) were calculated by subtracting the amounts from ion exchange plus the much smaller direct contributions in deicing salts from the observed fluxes. Ion exchange and direct salt contributions increased the net output fluxes of Ca and Mg, each by 44% above background. In basins that receive deicing salts, failure to account for cation exchange thus may result in an underestimate of the flux of Na from weathering and overestimates of the fluxes of Ca and Mg from weathering.

  17. Early evolution of salt structures in north Louisiana salt basin

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lobao, J.J.; Pilger, R.H. Jr.

    1986-05-01

    Several salt diapirs and pillows in southern and central north Louisiana have been studied using approximately 355 mi (570 km) of seismic reflection data and information from 57 deep well holes. Using seismic profiles with deep well-hole data is the most advantageous method to document regional salt tectonism through time. The following conclusions were reached on diapirism in the North Louisiana Salt basin. (1) The diapiric event began early (early Coahuilan) in the southern and central part of the basin, and later (late Coahuilan to Comanchean) in the northern part. (2) The initial diapiric event is much more abrupt andmore » intense in the southern and central diapirs when compared with the later diapiric event in the northern diapirs. (3) Regional depocenter shifting, relative sea level, local erosion with salt extrusion, and rapid depositional loading of sediments are the major controls on diapirism in the basin.« less

  18. Salt weathering on Mars

    NASA Astrophysics Data System (ADS)

    Jagoutz, E.

    Large well rounded boulders and angular rock fragments characterizes the Martian landscape as seen on the recent excellent quality photos. Analyzing the different rock-shapes indicates a time sequence of emplacement, fragmentation and transport of different rocks on Mars, which might give interesting insight into transport and weathering processes. Larger commonly well rounded boulders were emplaced onto gravel plains. After emplacement, these rocks were fragmented and disassembled. Nests of angular rock fragments are marking the locations of preexisting larger rocks. Frequently it is possible to reconstruct larger rounded rocks from smaller angular fragments. In other cases transport after fragmentation obscured the relationship of the fragments. However, a strewn field of fragments is still reminiscent of the preexisting rock. Mechanical salt weathering could be a plausible explanation for the insitu fragmentation of larger rounded blocks into angular fragments. Impact or secondary air fall induced fragmentation produces very different patterns, as observed around impact crates on Earth. Salt weathering of rocks is a common process in terrestrial environments. Salt crystallization in capillaries causes fragmentation of rocks, irrespective of the process of salt transportation and concentration. On Earth significant salt weathering can be observed in different climatic environments: in the transition zone of alluvial aprons and salt playas in desserts and in dry valleys of Antarctica. In terrestrial semi-arid areas the salt is transported by salt solution, which is progressively concentrated by evaporation. In Antarctic dry valleys freeze-thaw cycles causes salt transportation and crystallization resulting in rock fragmentation. This salt induced process can lead to complete destruction of rocks and converts rocks to fine sand. The efficient breakdown of rocks is dominating the landscape in some dry valleys of the Earth but possibly also on Mars. (Malin, 1974

  19. Case report: Improvement in dissociative symptoms with mixed amphetamine salts.

    PubMed

    Scarella, Timothy M; Franzen, Jamie R

    2017-01-01

    Symptoms of dissociation, including dissociative amnesia, depersonalization, and derealization, commonly develop in individuals subject to chronic and repeated trauma during development. This includes the trauma of environmental inability to facilitate development of adequate cognitive strategies for coping with strong negative emotions. Dissociation likely involves dysregulated balance of prefrontal inhibition of limbic structures and inadequate regulation of attentional bias by both prefrontal and limbic systems. There is currently no established psychopharmacologic treatment for dissociative symptoms. Here the case of a woman with severe dissociative symptoms that were markedly improved with the administration of mixed amphetamine salts is discussed. Potential neurobiologic mechanisms for dissociative symptom improvement with psychostimulants are discussed.

  20. Combinations of fluorinated solvents with imide salts or methide salts for electrolytes

    DOEpatents

    Tikhonov, Konstantin; Yip, Ka Ki; Lin, Tzu-Yuan; Lei, Norman; Guerrero-Zavala, Guillermo; Kwong, Kristie W

    2015-11-10

    Provided are electrochemical cells and electrolytes used to build such cells. The electrolytes include imide salts and/or methide salts as well as fluorinated solvents capable of maintaining single phase solutions at between about -30.degree. C. to about 80.degree. C. The fluorinated solvents, such as fluorinated carbonates, fluorinated esters, and fluorinated esters, are less flammable than their non-fluorinated counterparts and improve safety characteristics of cells containing these solvents. The amount of fluorinated solvents in electrolytes may be between about 30% and 80% by weight not accounting weight of the salts. Linear and cyclic imide salts, such as LiN(SO.sub.2CF.sub.2CF.sub.3).sub.2, and LiN(SO.sub.2CF.sub.3).sub.2, as well as methide salts, such as LiC(SO.sub.2CF.sub.3).sub.3 and LiC(SO.sub.2CF.sub.2CF.sub.3).sub.3, may be used in these electrolytes. Fluorinated alkyl groups enhance solubility of these salts in the fluorinated solvents. In some embodiments, the electrolyte may also include a flame retardant, such as a phosphazene, and/or one or more ionic liquids.

  1. Salt fluoridation and oral health.

    PubMed

    Marthaler, Thomas M

    2013-11-01

    The aim of this paper is to make known the potential of fluoridated salt in community oral health programs, particularly in South Eastern Europe. Since 1922, the addition of iodine to salt has been successful in Switzerland. Goiter is virtually extinct. By 1945, the caries-protective effect of fluorides was well established. Based on the success of water fluoridation, a gynecologist started adding of fluoride to salt. The sale of fluoridated salt began in 1956 in the Swiss Canton of Zurich, and several other cantons followed suit. Studies initiated in the early seventies showed that fluoride, when added to salt, inhibits dental caries. The addition of fluoride to salt for human consumption was officially authorized in 1980-82. In Switzerland 85% of domestic salt consumed is fluoridated and 67% in Germany. Salt fluoridation schemes are reaching more than one hundred million in Mexico, Colombia, Peru and Cuba. The cost of salt fluoridation is very low, within 0.02 and 0.05 € per year and capita. Children and adults of the low socio-economic strata tend to have substantially more untreated caries than higher strata. Salt fluoridation is by far the cheapest method for improving oral health. Salt fluoridation has cariostatic potential like water fluoridation (caries reductions up to 50%). In Europe, meaningful percentages of users have been attained only in Germany (67%) and Switzerland (85%). In Latin America, there are more than 100 million users, and several countries have arrived at coverage of 90 to 99%. Salt fluoridation is by far the cheapest method of caries prevention, and billions of people throughout the world could benefit from this method. Copyright © 2013 by Academy of Sciences and Arts of Bosnia and Herzegovina.

  2. Physiological responses to salt stress of salt-adapted and directly salt (NaCl and NaCl+Na2SO4 mixture)-stressed cyanobacterium Anabaena fertilissima.

    PubMed

    Swapnil, Prashant; Rai, Ashwani K

    2018-05-01

    Soil salinity in nature is generally mixed type; however, most of the studies on salt toxicity are performed with NaCl and little is known about sulfur type of salinity (Na 2 SO 4 ). Present study discerns the physiologic mechanisms responsible for salt tolerance in salt-adapted Anabaena fertilissima, and responses of directly stressed parent cells to NaCl and NaCl+Na 2 SO 4 mixture. NaCl at 500 mM was lethal to the cyanobacterium, whereas salt-adapted cells grew luxuriantly. Salinity impaired gross photosynthesis, electron transport activities, and respiration in parent cells, but not in the salt-adapted cells, except a marginal increase in PSI activity. Despite higher Na + concentration in the salt mixture, equimolar NaCl appeared more inhibitive to growth. Sucrose and trehalose content and antioxidant activities were maximal in 250 mM NaCl-treated cells, followed by salt mixture and was almost identical in salt-adapted (exposed to 500 mm NaCl) and control cells, except a marginal increase in ascorbate peroxidase activity and an additional fourth superoxide dismutase isoform. Catalase isoform of 63 kDa was induced only in salt-stressed cells. Salinity increased the uptake of intracellular Na + and Ca 2+ and leakage of K + in parent cells, while cation level in salt-adapted cells was comparable to control. Though there was differential increase in intracellular Ca 2+ under different salt treatments, ratio of Ca 2+ /Na + remained the same. It is inferred that stepwise increment in the salt concentration enabled the cyanobacterium to undergo priming effect and acquire robust and efficient defense system involving the least energy.

  3. Electrolyte salts for nonaqueous electrolytes

    DOEpatents

    Amine, Khalil; Zhang, Zhengcheng; Chen, Zonghai

    2012-10-09

    Metal complex salts may be used in lithium ion batteries. Such metal complex salts not only perform as an electrolyte salt in a lithium ion batteries with high solubility and conductivity, but also can act as redox shuttles that provide overcharge protection of individual cells in a battery pack and/or as electrolyte additives to provide other mechanisms to provide overcharge protection to lithium ion batteries. The metal complex salts have at least one aromatic ring. The aromatic moiety may be reversibly oxidized/reduced at a potential slightly higher than the working potential of the positive electrode in the lithium ion battery. The metal complex salts may also be known as overcharge protection salts.

  4. ADR salt pill design and crystal growth process for hydrated magnetic salts

    NASA Technical Reports Server (NTRS)

    Shirron, Peter J. (Inventor); DiPirro, Michael J. (Inventor); Canavan, Edgar R. (Inventor)

    2013-01-01

    A process is provided for producing a salt pill for use in very low temperature adiabatic demagnetization refrigerators (ADRs). The method can include providing a thermal bus in a housing. The thermal bus can include an array of thermally conductive metal conductors. A hydrated salt can be grown on the array of thermally conductive metal conductors. Thermal conductance can be provided to the hydrated salt.

  5. Reconsolidated Salt as a Geotechnical Barrier

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hansen, Francis D.; Gadbury, Casey

    Salt as a geologic medium has several attributes favorable to long-term isolation of waste placed in mined openings. Salt formations are largely impermeable and induced fractures heal as stress returns to equilibrium. Permanent isolation also depends upon the ability to construct geotechnical barriers that achieve nearly the same high-performance characteristics attributed to the native salt formation. Salt repository seal concepts often include elements of reconstituted granular salt. As a specific case in point, the Waste Isolation Pilot Plant recently received regulatory approval to change the disposal panel closure design from an engineered barrier constructed of a salt-based concrete to onemore » that employs simple run-of-mine salt and temporary bulkheads for isolation from ventilation. The Waste Isolation Pilot Plant is a radioactive waste disposal repository for defense-related transuranic elements mined from the Permian evaporite salt beds in southeast New Mexico. Its approved shaft seal design incorporates barrier components comprising salt-based concrete, bentonite, and substantial depths of crushed salt compacted to enhance reconsolidation. This paper will focus on crushed salt behavior when applied as drift closures to isolate disposal rooms during operations. Scientific aspects of salt reconsolidation have been studied extensively. The technical basis for geotechnical barrier performance has been strengthened by recent experimental findings and analogue comparisons. The panel closure change was accompanied by recognition that granular salt will return to a physical state similar to the halite surrounding it. Use of run-of-mine salt ensures physical and chemical compatibility with the repository environment and simplifies ongoing disposal operations. Our current knowledge and expected outcome of research can be assimilated with lessons learned to put forward designs and operational concepts for the next generation of salt repositories. Mined salt

  6. Pathophysiology of salt sensitivity hypertension.

    PubMed

    Ando, Katsuyuki; Fujita, Toshiro

    2012-06-01

    Dietary salt intake is the most important factor contributing to hypertension, but the salt susceptibility of blood pressure (BP) is different in individual subjects. Although the pathogenesis of salt-sensitive hypertension is heterogeneous, it is mainly attributable to an impaired renal capacity to excrete sodium (Na(+) ). We recently identified two novel mechanisms that impair renal Na(+) -excreting function and result in an increase in BP. First, mineralocorticoid receptor (MR) activation in the kidney, which facilitates distal Na(+) reabsorption through epithelial Na(+) channel activation, causes salt-sensitive hypertension. This mechanism exists not only in models of high-aldosterone hypertension as seen in conditions of obesity or metabolic syndrome, but also in normal- or low-aldosterone type of salt-sensitive hypertension. In the latter, Rac1 activation by salt excess causes MR stimulation. Second, renospecific sympathoactivation may cause an increase in BP under conditions of salt excess. Renal beta2 adrenoceptor stimulation in the kidney leads to decreased transcription of the gene encoding WNK4, a negative regulator of Na(+) reabsorption through Na(+) -Cl (-) cotransporter in the distal convoluted tubules, resulting in salt-dependent hypertension. Abnormalities identified in these two pathways of Na(+) reabsorption in the distal nephron may present therapeutic targets for the treatment of salt-sensitive hypertension.

  7. Microbial Successions and Metabolite Changes during Fermentation of Salted Shrimp (Saeu-Jeot) with Different Salt Concentrations

    PubMed Central

    Lee, Se Hee; Jung, Ji Young; Jeon, Che Ok

    2014-01-01

    To investigate the effects of salt concentration on saeu-jeot (salted shrimp) fermentation, four sets of saeu-jeot samples with 20%, 24%, 28%, and 32% salt concentrations were prepared, and the pH, bacterial and archaeal abundances, bacterial communities, and metabolites were monitored during the entire fermentation period. Quantitative PCR showed that Bacteria were much more abundant than Archaea in all saeu-jeot samples, suggesting that bacterial populations play more important roles than archaeal populations even in highly salted samples. Community analysis indicated that Vibrio, Photobacterium, Psychrobacter, Pseudoalteromonas, and Enterovibrio were identified as the initially dominant genera, and the bacterial successions were significantly different depending on the salt concentration. During the early fermentation period, Salinivibrio predominated in the 20% salted samples, whereas Staphylococcus, Halomonas, and Salimicrobium predominated in the 24% salted samples; eventually, Halanaerobium predominated in the 20% and 24% salted samples. The initially dominant genera gradually decreased as the fermentation progressed in the 28% and 32% salted samples, and eventually Salimicrobium became predominant in the 28% salted samples. However, the initially dominant genera still remained until the end of fermentation in the 32% salted samples. Metabolite analysis showed that the amino acid profile and the initial glycerol increase were similar in all saeu-jeot samples regardless of the salt concentration. After 30–80 days of fermentation, the levels of acetate, butyrate, and methylamines in the 20% and 24% salted samples increased with the growth of Halanaerobium, even though the amino acid concentrations steadily increased until approximately 80–107 days of fermentation. This study suggests that a range of 24–28% salt concentration in saeu-jeot fermentation is appropriate for the production of safe and tasty saeu-jeot. PMID:24587230

  8. Kinematics and dynamics of salt movement driven by sub-salt normal faulting and supra-salt sediment accumulation - combined analogue experiments and analytical calculations

    NASA Astrophysics Data System (ADS)

    Warsitzka, Michael; Kukowski, Nina; Kley, Jonas

    2017-04-01

    In extensional sedimentary basins, the movement of ductile salt is mainly controlled by the vertical displacement of the salt layer, differential loading due to syn-kinematic deposition, and tectonic shearing at the top and the base of the salt layer. During basement normal faulting, salt either tends to flow downward to the basin centre driven by its own weight or it is squeezed upward due to differential loading. In analogue experiments and analytical models, we address the interplay between normal faulting of the sub-salt basement, compaction and density inversion of the supra-salt cover and the kinematic response of the ductile salt layer. The analogue experiments consist of a ductile substratum (silicone putty) beneath a denser cover layer (sand mixture). Both layers are displaced by normal faults mimicked through a downward moving block within the rigid base of the experimental apparatus and the resulting flow patterns in the ductile layer are monitored and analysed. In the computational models using an analytical approximative solution of the Navier-Stokes equation, the steady-state flow velocity in an idealized natural salt layer is calculated in order to evaluate how flow patterns observed in the analogue experiments can be translated to nature. The analytical calculations provide estimations of the prevailing direction and velocity of salt flow above a sub-salt normal fault. The results of both modelling approaches show that under most geological conditions salt moves downwards to the hanging wall side as long as vertical offset and compaction of the cover layer are small. As soon as an effective average density of the cover is exceeded, the direction of the flow velocity reverses and the viscous material is squeezed towards the elevated footwall side. The analytical models reveal that upward flow occurs even if the average density of the overburden does not exceed the density of salt. By testing various scenarios with different layer thicknesses

  9. Measuring salt retention.

    DOT National Transportation Integrated Search

    2013-03-01

    This research developed and completed a field evaluation of salt distribution equipment. The evaluation provides a direct comparison of three different types of salt spreaders at three different truck speeds and brine rates. A rubber mat was divided ...

  10. Fetal bile salt metabolism

    PubMed Central

    Smallwood, R. A.; Lester, R.; Piasecki, G. J.; Klein, P. D.; Greco, R.; Jackson, B. T.

    1972-01-01

    Bile salt metabolism was studied in fetal dogs 1 wk before term. The size and distribution of the fetal bile salt pool were measured, and individual bile salts were identified. The hepatic excretion of endogenous bile salts was studied in bile fistula fetuses, and the capacity of this excretory mechanism was investigated by the i.v. infusion of a load of sodium taurocholate-14C up to 20 times the endogenous pool size. The total fetal bile salt pool was 30.9±2.7 μmoles, of which two-thirds was in the fetal gallbladder. Expressed on a body weight basis, this was equal to approximately one-half the estimated pool size in the adult dog (119.2±11.3 vs. 247.5±33.1 μmoles/kg body wt). Measurable quantities of bile salt were found in small bowel (6.0±1.8 μmoles), large bowel (1.1±0.3 μmoles), liver (1.2±0.5 μmoles), and plasma (0.1±0.03 μmoles). Plasma bile salt levels were significantly greater in fetal than in maternal plasma (1.01±0.24 μg/ml vs. 0.36±0.06 μg/ml; P < 0.05). Fetal hepatic bile salt excretion showed a fall over the period of study from 2.04±0.34 to 0.30±0.07 μmoles/hr. The maximal endogenous bile salt concentration in fetal hepatic bile was 18.7±1.5 μmoles/ml. The concentration in fetal gallbladder bile was 73.9±8.6 μmoles/ml; and, in those studies in which hepatic and gallbladder bile could be compared directly, the gallbladder appeared to concentrate bile four- to fivefold. Taurocholate, taurochenodeoxycholate, and taurodeoxycholate were present in fetal bile, but no free bile salts were identified. The presence of deoxycholate was confirmed by thin-layer chromatography and gas liquid chromatography, and the absence of microorganisms in fetal gut suggests that it was probably transferred from the maternal circulation. After infusion of a taurocholate load, fetal hepatic bile salt excretion increased 30-fold, so that 85-95% of the dose was excreted by the fetal liver during the period of observation. Placental transfer accounted

  11. Atmospheric bromine flux from the coastal Abu Dhabi sabkhat: A ground-water mass-balance investigation

    USGS Publications Warehouse

    Wood, W.W.; Sanford, W.E.

    2007-01-01

    A solute mass-balance study of ground water of the 3000 km2 coastal sabkhat (salt flats) of the Emirate of Abu Dhabi, United Arab Emirates, documents an annual bromide loss of approximately 255 metric tons (0.0032 Gmoles), or 85 kg/km2. This value is an order of magnitude greater than previously published direct measurements from the atmosphere over an evaporative environment of a salar in Bolivia. Laboratory evidence, consistent with published reports, suggests that this loss is by vapor transport to the atmosphere. If this bromine flux to the atmosphere is representative of the total earth area of active salt flats then it is a significant, and generally under recognized, input to the global atmospheric bromide flux.

  12. Rheological stratification of the Hormuz Salt Formation in Iran - microstructural study of the dirty and pure rock salts from the Kuh-e-Namak (Dashti) salt diapir

    NASA Astrophysics Data System (ADS)

    Závada, Prokop; Desbois, Guillaume; Urai, Janos; Schulmann, Karel; Rahmati, Mahmoud; Lexa, Ondrej; Wollenberg, Uwe

    2014-05-01

    Significant viscosity contrasts displayed in flow structures of a mountain namakier (Kuh-e-Namak - Dashti), between 'weak' terrestrial debris bearing rock salt types and 'strong' pure rock salt types are questioned for deformation mechanisms using detailed quantitative microstructural study including crystallographic preferred orientation (CPO) mapping of halite grains. While the solid impurity rich ("dirty") rock salts contain disaggregated siltstone and dolomite interlayers, "clean" salts (debris free) reveal microscopic hematite and remnants of abundant fluid inclusions in non-recrystallized cores of porphyroclasts. Although flow in both, the recrystallized dirty and clean salt types is accommodated by combined mechanisms of pressure-solution creep (PS), grain boundary sliding (GBS) and dislocation creep accommodated grain boundary migration (GBM), their viscosity contrasts are explained by significantly slower rates of intergranular diffusion and piling up of dislocations at hematite inclusions in clean salt types. Porphyroclasts of clean salts deform by semi-brittle and plastic mechanisms with intra-crystalline damage being induced also by fluid inclusions that explode in the crystals at high fluid pressures. Boudins of clean salt types with coarse grained and original sedimentary microstructure suggest that clean rock salts are associated with dislocation creep dominated power law flow in the source layer and the diapiric stem. Rheological contrasts between both rock salt classes apply in general for the variegated and terrestrial debris rich ("dirty") Lower Hormuz and the "clean" rock salt forming the Upper Hormuz, respectively, and suggest that large strain rate gradients likely exist along horizons of mobilized salt types of different composition and microstructure.

  13. Dosimetry using silver salts

    DOEpatents

    Warner, Benjamin P.

    2003-06-24

    The present invention provides a method for detecting ionizing radiation. Exposure of silver salt AgX to ionizing radiation results in the partial reduction of the salt to a mixture of silver salt and silver metal. The mixture is further reduced by a reducing agent, which causes the production of acid (HX) and the oxidized form of the reducing agent (R). Detection of HX indicates that the silver salt has been exposed to ionizing radiation. The oxidized form of the reducing agent (R) may also be detected. The invention also includes dosimeters employing the above method for detecting ionizing radiation.

  14. Determination of discretionary salt intake in rural Guatemala and Benin to determine the iodine fortification of salt required to control iodine deficiency disorders: studies using lithium-labeled salt.

    PubMed

    Melse-Boonstra, A; Rozendaal, M; Rexwinkel, H; Gerichhausen, M J; van den Briel, T; Bulux, J; Solomons, N W; West, C E

    1998-09-01

    The use of discretionary salt, which is salt added during cooking and at the table, as a suitable vehicle for iodine intake was assessed by measuring salt consumption using the lithium-marker technique in rural areas of Guatemala and Benin. In both countries, we studied boys aged 6-12 y and their mothers. Subjects used lithium-labeled salt after all unlabeled salt was removed from their households. In Guatemala, 24-h urine samples for 9 mother-son pairs were collected at baseline and on days 7, 8, and 9 during the use of lithium-labeled salt. Total maternal salt intake averaged 5.2 +/- 1.7 g/d (mean +/- SD), of which 77 +/- 24% came from discretionary sources, whereas Guatemalan boys consumed 1.8 +/- 0.6 g salt/d, of which 72 +/- 12% came from discretionary sources. In Benin, urine collection from 13 mother-son pairs took place at baseline and on days 5 and 7. Beninese mothers had a total salt intake of 9.0 +/- 2.9 g/d and their sons had an intake of 5.7 +/- 2.8 g/d; discretionary salt contributed 52 +/- 14% and 50 +/- 13%, respectively, of total salt consumed. Therefore, fortification of household salt appears to be an appropriate method of controlling iodine deficiency in both countries, although fortification of other salt sources could be considered in Benin.

  15. Natural gas storage in bedded salt formations

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Macha, G.

    1996-09-01

    In 1990 Western Resources Inc. (WRI) identified the need for additional natural gas storage capacity for its intrastate natural gas system operated in the state of Kansas. Western Resources primary need was identified as peak day deliverability with annual storage balancing a secondary objective. Consequently, an underground bedded salt storage facility, Yaggy Storage Field, was developed and placed in operation in November 1993. The current working capacity of the new field is 2.1 BCF. Seventy individual caverns are in service on the 300 acre site. The caverns vary in size from 310,000 CF to 2,600,000 CF. Additional capacity can bemore » added on the existing acreage by increasing the size of some of the smaller existing caverns by further solution mining and by development of an additional 30 potential well sites on the property.« less

  16. Renal excretion of water in men under hypokinesia and physical exercise with fluid and salt supplementation

    NASA Astrophysics Data System (ADS)

    Zorbas, Yan G.; Federenko, Youri F.; Togawa, Mitsui N.

    It has been suggested that under hypokinesia (reduced number of steps/day) and intensive physical exercise, the intensification of fluid excretion in men is apparently caused as a result of the inability of the body to retain optimum amounts of water. Thus, to evaluate this hypothesis, studies were performed with the use of fluid and sodium chloride (NaCl) supplements on 12 highly trained physically healthy male volunteers aged 19-24 years under 364 days of hypokinesis (HK) and a set of intensive physical exercises (PE). They were divided into two groups with 6 volunteers per group. The first group of subjects were submitted to HK and took daily fluid and salt supplements in very small doses and the second group of volunteers were subjected to intensive PE and fluid-salt supplements. For the simulation of the hypokinetic effect, both groups of subjects were kept under an average of 4000 steps/day. During the prehypokinetic period of 60 days and under the hypokinetic period of 364 days water consumed and eliminated in urine by the men, water content in blood, plasma volume, rate of glomerular filtration, renal blood flow, osmotic concentration of urine and blood were measured. Under HK, the rate of renal excretion of water increased considerably in both groups. The additional fluid and salt intake failed to normalize water balance adequately under HK and PE. It was concluded that negative water balance evidently resulted not from shortage of water in the diet but from the inability of the body to retain optimum amounts of fluid under HK and a set of intensive PEs.

  17. Dietary Salt Intake and Hypertension

    PubMed Central

    2014-01-01

    Over the past century, salt has been the subject of intense scientific research related to blood pressure elevation and cardiovascular mortalities. Moderate reduction of dietary salt intake is generally an effective measure to reduce blood pressure. However, recently some in the academic society and lay media dispute the benefits of salt restriction, pointing to inconsistent outcomes noted in some observational studies. A reduction in dietary salt from the current intake of 9-12 g/day to the recommended level of less than 5-6 g/day will have major beneficial effects on cardiovascular health along with major healthcare cost savings around the world. The World Health Organization (WHO) strongly recommended to reduce dietary salt intake as one of the top priority actions to tackle the global non-communicable disease crisis and has urged member nations to take action to reduce population wide dietary salt intake to decrease the number of deaths from hypertension, cardiovascular disease and stroke. However, some scientists still advocate the possibility of increased risk of CVD morbidity and mortality at extremes of low salt intake. Future research may inform the optimal sodium reduction strategies and intake targets for general populations. Until then, we have to continue to build consensus around the greatest benefits of salt reduction for CVD prevention, and dietary salt intake reduction strategies must remain at the top of the public health agenda. PMID:25061468

  18. Freshwater-Brine Mixing Zone Hydrodynamics in Salt Flats (Salar de Atacama)

    NASA Astrophysics Data System (ADS)

    Marazuela, M. A.; Vázquez-Suñé, E.; Custodio, E.; Palma, T.; García-Gil, A.

    2017-12-01

    The increase in the demand of strategic minerals for the development of medicines and batteries require detailed knowledge of the salt flats freshwater-brine interface to make its exploitation efficient. The interface zone is the result of a physical balance between the recharged and evaporated water. The sharp interface approach assumes the immiscibility of the fluids and thus neglects the mixing between them. As a consequence, for miscible fluids it is more accurate and often needed to use the mixing zone concept, which results from the dynamic equilibrium of flowing freshwater and brine. In this study, we consider two and three-dimensional scale approaches for the management of the mixing zone. The two-dimensional approach is used to understand the dynamics and the characteristics of the salt flat mixing zone, especially in the Salar de Atacama (Atacama salt flat) case. By making use of this model we analyze and quantify the effects of the aquitards on the mixing zone geometry. However, the understanding of the complex physical processes occurring in the salt flats and the management of these environments requires the adoption of three-dimensional regional scale numerical models. The models that take into account the effects of variable density represent the best management tool, but they require large computational resources, especially in the three-dimensional case. In order to avoid these computational limitations in the modeling of salt flats and their valuable ecosystems, we propose a three-step methodology, consisting of: (1) collection, validation and interpretation of the hydrogeochemical data, (2) identification and three-dimensional mapping of the mixing zone on the land surface and in depth, and (3) application of a water head correction to the freshwater and mixed water heads in order to compensate the density variations and to transform them to brine water heads. Finally, an evaluation of the sensibility of the mixing zone to anthropogenic and

  19. Salt-Stress Response Mechanisms Using de Novo Transcriptome Sequencing of Salt-Tolerant and Sensitive Corchorus spp. Genotypes

    PubMed Central

    Yang, Zemao; Lu, Ruike; Dai, Zhigang; Yan, An; Tang, Qing; Cheng, Chaohua; Xu, Ying; Yang, Wenting; Su, Jianguang

    2017-01-01

    High salinity is a major environmental stressor for crops. To understand the regulatory mechanisms underlying salt tolerance, we conducted a comparative transcriptome analysis between salt-tolerant and salt-sensitive jute (Corchorus spp.) genotypes in leaf and root tissues under salt stress and control conditions. In total, 68,961 unigenes were identified. Additionally, 11,100 unigenes (including 385 transcription factors (TFs)) exhibited significant differential expression in salt-tolerant or salt-sensitive genotypes. Numerous common and unique differentially expressed unigenes (DEGs) between the two genotypes were discovered. Fewer DEGs were observed in salt-tolerant jute genotypes whether in root or leaf tissues. These DEGs were involved in various pathways, such as ABA signaling, amino acid metabolism, etc. Among the enriched pathways, plant hormone signal transduction (ko04075) and cysteine/methionine metabolism (ko00270) were the most notable. Eight common DEGs across both tissues and genotypes with similar expression profiles were part of the PYL-ABA-PP2C (pyrabactin resistant-like/regulatory components of ABA receptors-abscisic acid-protein phosphatase 2C). The methionine metabolism pathway was only enriched in salt-tolerant jute root tissue. Twenty-three DEGs were involved in methionine metabolism. Overall, numerous common and unique salt-stress response DEGs and pathways between salt-tolerant and salt-sensitive jute have been discovered, which will provide valuable information regarding salt-stress response mechanisms and help improve salt-resistance molecular breeding in jute. PMID:28927022

  20. The variability of reported salt levels in fast foods across six countries: opportunities for salt reduction.

    PubMed

    Dunford, Elizabeth; Webster, Jacqueline; Woodward, Mark; Czernichow, Sebastien; Yuan, Wen Lun; Jenner, Katharine; Ni Mhurchu, Cliona; Jacobson, Michael; Campbell, Norm; Neal, Bruce

    2012-06-12

    Several fast food companies have made commitments to reduce the levels of salt in the foods they serve, but technical issues are often cited as a barrier to achieving substantial reductions. Our objective was to examine the reported salt levels for products offered by leading multinational fast food chains. Data on salt content for products served by six fast food chains operating in Australia, Canada, France, New Zealand, the United Kingdom and the United States were collected by survey in April 2010. Mean salt contents (and their ranges) were calculated and compared within and between countries and companies. We saw substantial variation in the mean salt content for different categories of products. For example, the salads we included in our survey contained 0.5 g of salt per 100 g, whereas the chicken products we included contained 1.6 g. We also saw variability between countries: chicken products from the UK contained 1.1 g of salt per 100 g, whereas chicken products from the US contained 1.8 g. Furthermore, the mean salt content of food categories varied between companies and between the same products in different countries (e.g., McDonald's Chicken McNuggets contain 0.6 g of salt per 100 g in the UK, but 1.6 g of salt per 100 g in the US). The salt content of fast foods varies substantially, not only by type of food, but by company and country in which the food is produced. Although the reasons for this variation are not clear, the marked differences in salt content of very similar products suggest that technical reasons are not a primary explanation. In the right regulatory environment, it is likely that fast food companies could substantially reduce the salt in their products, translating to large gains for population health.

  1. The variability of reported salt levels in fast foods across six countries: opportunities for salt reduction

    PubMed Central

    Dunford, Elizabeth; Webster, Jacqueline; Woodward, Mark; Czernichow, Sebastien; Yuan, Wen Lun; Jenner, Katharine; Mhurchu, Cliona Ni; Jacobson, Michael; Campbell, Norm; Neal, Bruce

    2012-01-01

    Background: Several fast food companies have made commitments to reduce the levels of salt in the foods they serve, but technical issues are often cited as a barrier to achieving substantial reductions. Our objective was to examine the reported salt levels for products offered by leading multinational fast food chains. Methods: Data on salt content for products served by six fast food chains operating in Australia, Canada, France, New Zealand, the United Kingdom and the United States were collected by survey in April 2010. Mean salt contents (and their ranges) were calculated and compared within and between countries and companies. Results: We saw substantial variation in the mean salt content for different categories of products. For example, the salads we included in our survey contained 0.5 g of salt per 100 g, whereas the chicken products we included contained 1.6 g. We also saw variability between countries: chicken products from the UK contained 1.1 g of salt per 100 g, whereas chicken products from the US contained 1.8 g. Furthermore, the mean salt content of food categories varied between companies and between the same products in different countries (e.g., McDonald’s Chicken McNuggets contain 0.6 g of salt per 100 g in the UK, but 1.6 g of salt per 100 g in the US). Interpretation: The salt content of fast foods varies substantially, not only by type of food, but by company and country in which the food is produced. Although the reasons for this variation are not clear, the marked differences in salt content of very similar products suggest that technical reasons are not a primary explanation. In the right regulatory environment, it is likely that fast food companies could substantially reduce the salt in their products, translating to large gains for population health. PMID:22508978

  2. Alternative methods of salt disposal at the seven salt sites for a nuclear waste repository

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Not Available

    1987-02-01

    This study discusses the various alternative salt management techniques for the disposal of excess mined salt at seven potentially acceptable nuclear waste repository sites: Deaf Smith and Swisher Counties, Texas; Richton and Cypress Creek Domes, Mississippi; Vacherie Dome, Louisiana; and Davis and Lavender Canyons, Utah. Because the repository development involves the underground excavation of corridors and waste emplacement rooms, in either bedded or domed salt formations, excess salt will be mined and must be disposed of offsite. The salt disposal alternatives examined for all the sites include commercial use, ocean disposal, deep well injection, landfill disposal, and underground mine disposal.more » These alternatives (and other site-specific disposal methods) are reviewed, using estimated amounts of excavated, backfilled, and excess salt. Methods of transporting the excess salt are discussed, along with possible impacts of each disposal method and potential regulatory requirements. A preferred method of disposal is recommended for each potentially acceptable repository site. 14 refs., 5 tabs.« less

  3. Significance of adjusting salt intake by body weight in the evaluation of dietary salt and blood pressure.

    PubMed

    Hashimoto, Tomomi; Takase, Hiroyuki; Okado, Tateo; Sugiura, Tomonori; Yamashita, Sumiyo; Kimura, Genjiro; Ohte, Nobuyuki; Dohi, Yasuaki

    2016-08-01

    The close association between dietary salt and hypertension is well established. However, previous studies generally assessed salt intake without adjustment for body weight. Herein, we investigated the significance of body weight-adjusted salt intake in the general population. The present cross-sectional study included 7629 participants from our yearly physical checkup program, and their salt intake was assessed using a spot urine test to estimate 24-hour urinary salt excretion. Total salt intake increased with increasing body weight. Body weight-adjusted salt intake was greater in participants with hypertension than in those without hypertension. Systolic blood pressure, estimated glomerular filtration rate, and urinary albumin were independently correlated with body weight-adjusted salt intake after adjustment for possible cardiovascular risk factors. Excessive body weight-adjusted salt intake could be related to an increase in blood pressure and hypertensive organ damage. Adjustment for body weight might therefore provide clinically important information when assessing individual salt intake. Copyright © 2016 American Society of Hypertension. Published by Elsevier Inc. All rights reserved.

  4. Renal tubular NEDD4-2 deficiency causes NCC-mediated salt-dependent hypertension.

    PubMed

    Ronzaud, Caroline; Loffing-Cueni, Dominique; Hausel, Pierrette; Debonneville, Anne; Malsure, Sumedha Ram; Fowler-Jaeger, Nicole; Boase, Natasha A; Perrier, Romain; Maillard, Marc; Yang, Baoli; Stokes, John B; Koesters, Robert; Kumar, Sharad; Hummler, Edith; Loffing, Johannes; Staub, Olivier

    2013-02-01

    The E3 ubiquitin ligase NEDD4-2 (encoded by the Nedd4L gene) regulates the amiloride-sensitive epithelial Na+ channel (ENaC/SCNN1) to mediate Na+ homeostasis. Mutations in the human β/γENaC subunits that block NEDD4-2 binding or constitutive ablation of exons 6-8 of Nedd4L in mice both result in salt-sensitive hypertension and elevated ENaC activity (Liddle syndrome). To determine the role of renal tubular NEDD4-2 in adult mice, we generated tetracycline-inducible, nephron-specific Nedd4L KO mice. Under standard and high-Na+ diets, conditional KO mice displayed decreased plasma aldosterone but normal Na+/K+ balance. Under a high-Na+ diet, KO mice exhibited hypercalciuria and increased blood pressure, which were reversed by thiazide treatment. Protein expression of βENaC, γENaC, the renal outer medullary K+ channel (ROMK), and total and phosphorylated thiazide-sensitive Na+Cl- cotransporter (NCC) levels were increased in KO kidneys. Unexpectedly, Scnn1a mRNA, which encodes the αENaC subunit, was reduced and proteolytic cleavage of αENaC decreased. Taken together, these results demonstrate that loss of NEDD4-2 in adult renal tubules causes a new form of mild, salt-sensitive hypertension without hyperkalemia that is characterized by upregulation of NCC, elevation of β/γENaC, but not αENaC, and a normal Na+/K+ balance maintained by downregulation of ENaC activity and upregulation of ROMK.

  5. COMPLEX EVOLUTION OF BILE SALTS IN BIRDS

    PubMed Central

    Hagey, Lee R.; Vidal, Nicolas; Hofmann, Alan F.; Krasowski, Matthew D.

    2010-01-01

    Bile salts are the major end-metabolites of cholesterol and are important in lipid digestion and shaping of the gut microflora. There have been limited studies of bile-salt variation in birds. The purpose of our study was to determine bile-salt variation among birds and relate this variation to current avian phylogenies and hypotheses on the evolution of bile salt pathways. We determined the biliary bile-salt composition of 405 phylogenetically diverse bird species, including 7 paleognath species. Bile salt profiles were generally stable within bird families. Complex bile-salt profiles were more common in omnivores and herbivores than in carnivores. The structural variation of bile salts in birds is extensive and comparable to that seen in surveys of bile salts in reptiles and mammals. Birds produce many of the bile salts found throughout nonavian vertebrates and some previously uncharacterized bile salts. One difference between birds and other vertebrates is extensive hydroxylation of carbon-16 of bile salts in bird species. Comparison of our data set of bird bile salts with that of other vertebrates, especially reptiles, allowed us to infer evolutionary changes in the bile salt synthetic pathway. PMID:21113274

  6. Microplastic Pollution in Table Salts from China.

    PubMed

    Yang, Dongqi; Shi, Huahong; Li, Lan; Li, Jiana; Jabeen, Khalida; Kolandhasamy, Prabhu

    2015-11-17

    Microplastics have been found in seas all over the world. We hypothesize that sea salts might contain microplastics, because they are directly supplied by seawater. To test our hypothesis, we collected 15 brands of sea salts, lake salts, and rock/well salts from supermarkets throughout China. The microplastics content was 550-681 particles/kg in sea salts, 43-364 particles/kg in lake salts, and 7-204 particles/kg in rock/well salts. In sea salts, fragments and fibers were the prevalent types of particles compared with pellets and sheets. Microplastics measuring less than 200 μm represented the majority of the particles, accounting for 55% of the total microplastics, and the most common microplastics were polyethylene terephthalate, followed by polyethylene and cellophane in sea salts. The abundance of microplastics in sea salts was significantly higher than that in lake salts and rock/well salts. This result indicates that sea products, such as sea salts, are contaminated by microplastics. To the best of our knowledge, this is the first report on microplastic pollution in abiotic sea products.

  7. Modeling Episodic Ephemeral Brine Lake Evaporation and Salt Crystallization on the Bonneville Salt Flats, Utah

    NASA Astrophysics Data System (ADS)

    Liu, T.; Harman, C. J.; Kipnis, E. L.; Bowen, B. B.

    2017-12-01

    Public concern about apparent reductions in the areal extent of the Bonneville Salt Flat (BSF) and perceived changes in inundation frequency has motivated renewed interest in the hydrologic and geochemical behavior of this salt playa. In this study, we develop a numerical modeling framework to simulate the relationship between hydrometeorologic variability, brine evaporation and salt crystallization processes on BSF. The BSF, locates in Utah, is the remnant of paleo-lake Bonneville, and is capped by up to 1 meter of salt deposition over a 100 km2 area. The BSF has two distinct hydrologic periods each year: a winter wet periods with standing surface brine and the summer dry periods when the brine is evaporated, exposing the surface salt crust. We develop a lumped non-linear dynamical models coupling conservation expressions from water, dissolved salt and thermal energy to investigate the seasonal and diurnal behavior of brine during the transition from standing brine to exposed salt at BSF. The lumped dynamic models capture important nonlinear and kinetic effects introduced by the high ionic concentration of the brine, including the pronounced effect of the depressed water activity coefficient on evaporation. The salt crystallization and dissolution rate is modeled as a kinetic process linearly proportional to the degree of supersaturation of brine. The model generates predictions of the brine temperature and the solute and solvent masses controlled by diurnal net radiation input and aerodynamic forcing. Two distinct mechanisms emerge as potential controls on salt production and dissolution: (1) evapo-concentration and (2) changes in solubility related to changes in brine temperature. Although the evaporation of water is responsible for ultimate disappearance of the brine each season ,variation in solubility is found to be the dominant control on diurnal cycles of salt precipitation and dissolution in the BSF case. Most salt is crystallized during nighttime, but the

  8. Replacement of salt by a novel potassium- and magnesium-enriched salt alternative improves the cardiovascular effects of ramipril.

    PubMed Central

    Mervaala, E. M.; Paakkari, I.; Laakso, J.; Nevala, R.; Teräväinen, T. M.; Fyhrquist, F.; Vapaatalo, H.; Karppanen, H.

    1994-01-01

    1. The influence of salt (sodium chloride; NaCl) (an additional 6% in the diet) and that of a novel sodium-reduced, potassium-, magnesium-, and L-lysine-enriched salt alternative on the cardiovascular effects of ramipril was studied in stroke-prone spontaneously hypertensive rats in a 6-week study. The intake of sodium chloride was adjusted to the same level by adding the salt alternative at a 1.75 times higher amount than regular salt. 2. Salt produced a marked rise in blood pressure and induced cardiac hypertrophy and significant mortality, while the salt alternative neither increased blood pressure nor caused any mortality and produced less cardiac hypertrophy than salt. 3. Ramipril treatment at a daily dose of 3 mg kg-1 normalized blood pressure and prevented the development of cardiac hypertrophy of rats on control diet. These effects of ramipril were blocked by the addition of salt but were only slightly attenuated by the addition of the salt alternative. The mortality in the salt group was prevented by ramipril. 4. Responses of mesenteric arterial rings in vitro were examined at the end of the study. Salt, but not the salt alternative, increased vascular contractile responses to noradrenaline. Ramipril treatment improved the arterial relaxation responses to acetylcholine and to sodium nitroprusside. The vascular relaxation enhancing effect of ramipril was blocked by salt but only slightly attenuated by the salt alternative. 5. Ramipril treatment did not significantly increase plasma renin activity in the presence or in the absence of salt supplementation. The salt alternative did not cause hyperkalaemia, either alone or in combination with ramipril treatment.(ABSTRACT TRUNCATED AT 250 WORDS) PMID:8032605

  9. Iodized salt sales in the United States.

    PubMed

    Maalouf, Joyce; Barron, Jessica; Gunn, Janelle P; Yuan, Keming; Perrine, Cria G; Cogswell, Mary E

    2015-03-10

    Iodized salt has been an important source of dietary iodine, a trace element important for regulating human growth, development, and metabolic functions. This analysis identified iodized table salt sales as a percentage of retail salt sales using Nielsen ScanTrack. We identified 1117 salt products, including 701 salt blends and 416 other salt products, 57 of which were iodized. When weighted by sales volume in ounces or per item, 53% contained iodized salt. These findings may provide a baseline for future monitoring of sales of iodized salt.

  10. Comparison of Descemet stripping under continuous air flow, manual air injection and balanced salt solution for DMEK: a pilot study.

    PubMed

    Gabbay, I E; Bahar, I; Nahum, Y; Livny, E

    2017-08-01

    Descemet's membrane endothelial keratoplasty (DMEK) involves removal of the recipient's Descemet membrane (DM) prior to transplanting the donor's DM. When using balanced salt solution (BSS) or ophthalmic viscosurgical devices (OVDs), visualization of the host's DM during its stripping may be inadequate and may result in Descemet remnants and could lead to sub-optimal surgical results. Previous articles described excellent visualization when utilizing air injection but this requires repeated air injection into the anterior chamber (AC). We present a pilot study that compares different techniques under which DM stripping can be performed: with continuous automated air infusion, with manual air infusion, and with BSS. We retrospectively compared video footage of DM stripping with BSS, with continuous air and with manual injection of air into the AC to determine DM stripping duration and the number of times the surgeon had to insert and retrieve a surgical instrument from the AC. Thirty videos of 10 consecutive cases of the three DM stripping techniques were evaluated. DM stripping duration was 3.26 (±1.32), 3.92 (±1.2) and 12.9 (±3.98) minutes for BSS, continuous air flow, and manual air injection, respectively. Frequency of instrument retrieval (FIR) was 3.6 (±1.71), 1.5 (±0.71) and 15.1 (±3.28) for BSS, continuous air flow, and manual air injection, respectively. Continuous air flow and BSS were both statistically different than manual air injection into the AC (p < 0.05), but did not differ from one another statistically. DM stripping during posterior lamellar surgery is imperative for favorable post-operative results and prevention of complications. Performing this step under air in the AC contributes to better visualization and an efficient surgery.

  11. A Kirkwood-Buff derived force field for alkaline earth halide salts

    NASA Astrophysics Data System (ADS)

    Naleem, Nawavi; Bentenitis, Nikolaos; Smith, Paul E.

    2018-06-01

    The activity and function of many macromolecules in cellular environments are coupled with the binding of divalent ions such as calcium or magnesium. In principle, computer simulations can be used to understand the molecular level aspects of how many important macromolecules interact with ions. However, most of the force fields currently available often fail to accurately reproduce the properties of divalent ions in aqueous environments. Here we develop classical non-polarizable force fields for the aqueous alkaline earth metal halides (MX2), where M = Mg2+, Ca2+, Sr2+, Ba2+ and X = Cl-, Br-, I-, which can be used in bimolecular simulations and which are compatible with the Simple Point Charge/Extended (SPC/E) water model. The force field parameters are specifically developed to reproduce the experimental Kirkwood-Buff integrals for aqueous solutions and thereby the experimental activity derivatives, partial molar volumes, and excess coordination numbers. This ensures that a reasonable balance between ion-ion, ion-water, and water-water distributions is obtained. However, this requires a scaling of the cation to water oxygen interaction strength in order to accurately reproduce the integrals. The scaling factors developed for chloride salts are successfully transferable to the bromide and iodide salts. Use of these new models leads to reasonable diffusion constants and dielectric decrements. However, the performance of the models decreases with increasing salt concentration (>4m), and simulations of the pure crystals exhibited unstable behavior.

  12. A Kirkwood-Buff derived force field for alkaline earth halide salts.

    PubMed

    Naleem, Nawavi; Bentenitis, Nikolaos; Smith, Paul E

    2018-06-14

    The activity and function of many macromolecules in cellular environments are coupled with the binding of divalent ions such as calcium or magnesium. In principle, computer simulations can be used to understand the molecular level aspects of how many important macromolecules interact with ions. However, most of the force fields currently available often fail to accurately reproduce the properties of divalent ions in aqueous environments. Here we develop classical non-polarizable force fields for the aqueous alkaline earth metal halides (MX 2 ), where M = Mg 2+ , Ca 2+ , Sr 2+ , Ba 2+ and X = Cl - , Br - , I - , which can be used in bimolecular simulations and which are compatible with the Simple Point Charge/Extended (SPC/E) water model. The force field parameters are specifically developed to reproduce the experimental Kirkwood-Buff integrals for aqueous solutions and thereby the experimental activity derivatives, partial molar volumes, and excess coordination numbers. This ensures that a reasonable balance between ion-ion, ion-water, and water-water distributions is obtained. However, this requires a scaling of the cation to water oxygen interaction strength in order to accurately reproduce the integrals. The scaling factors developed for chloride salts are successfully transferable to the bromide and iodide salts. Use of these new models leads to reasonable diffusion constants and dielectric decrements. However, the performance of the models decreases with increasing salt concentration (>4m), and simulations of the pure crystals exhibited unstable behavior.

  13. Risk factors for postoperative intraretinal cystoid changes after peeling of idiopathic epiretinal membranes among patients randomized for balanced salt solution and air-tamponade.

    PubMed

    Leisser, Christoph; Hirnschall, Nino; Hackl, Christoph; Döller, Birgit; Varsits, Ralph; Ullrich, Marlies; Kefer, Katharina; Karl, Rigal; Findl, Oliver

    2018-02-20

    Epiretinal membranes (ERM) are macular disorders leading to loss of vision and metamorphopsia. Vitrectomy with membrane peeling displays the gold standard of care. Aim of this study was to assess risk factors for postoperative intraretinal cystoid changes in a study population randomized for balanced salt solution and air-tamponade at the end of surgery. A prospective randomized study, including 69 eyes with idiopathic ERM. Standard 23-gauge three-port pars plana vitrectomy with membrane peeling, using intraoperative optical coherence tomography (OCT), was performed. Randomization for BSS and air-tamponade was performed prior to surgery. Best-corrected visual acuity improved from 32.9 letters to 45.1 letters 3 months after surgery. Presence of preoperative intraretinal cystoid changes was found to be the only risk factor for presence of postoperative intraretinal cystoid changes 3 months after surgery (p = 0.01; odds ratio: 8.0). Other possible risk factors such as combined phacoemulsification with 23G-ppv and membrane peeling (p = 0.16; odds ratio: 2.4), intraoperative subfoveal hyporeflective zones (p = 0.23; odds ratio: 2.6), age over 70 years (p = 0.29; odds ratio: 0.5) and air-tamponade (p = 0.59; odds ratio: 1.5) were not found to be significant. There is strong evidence that preoperative intraretinal cystoid changes lead to smaller benefit from surgery. © 2018 Acta Ophthalmologica Scandinavica Foundation. Published by John Wiley & Sons Ltd.

  14. Community solar salt production in Goa, India

    PubMed Central

    2012-01-01

    Traditional salt farming in Goa, India has been practised for the past 1,500 years by a few communities. Goa’s riverine estuaries, easy access to sea water and favourable climatic conditions makes salt production attractive during summer. Salt produced through this natural evaporation process also played an important role in the economy of Goa even during the Portuguese rule as salt was the chief export commodity. In the past there were 36 villages involved in salt production, which is now reduced to 9. Low income, lack of skilled labour, competition from industrially produced salt, losses incurred on the yearly damage of embankments are the major reasons responsible for the reduction in the number of salt pans. Salt pans (Mithagar or Mithache agor) form a part of the reclaimed waterlogged khazan lands, which are also utilised for aquaculture, pisciculture and agriculture. Salt pans in Goa experience three phases namely, the ceased phase during monsoon period of June to October, preparatory phase from December to January, and salt harvesting phase, from February to June. After the monsoons, the salt pans are prepared manually for salt production. During high tide, an influx of sea water occurs, which enters the reservoir pans through sluice gates. The sea water after 1–2 days on attaining a salinity of approximately 5ºBé, is released into the evaporator pans and kept till it attains a salinity of 23 - 25ºBé. The brine is then released to crystallizer pans, where the salt crystallises out 25 - 27ºBé and is then harvested. Salt pans form a unique ecosystem where succession of different organisms with varying environmental conditions occurs. Organisms ranging from bacteria, archaea to fungi, algae, etc., are known to colonise salt pans and may influence the quality of salt produced. The aim of this review is to describe salt farming in Goa’s history, importance of salt production as a community activity, traditional method of salt production and the

  15. Community solar salt production in Goa, India.

    PubMed

    Mani, Kabilan; Salgaonkar, Bhakti B; Das, Deepthi; Bragança, Judith M

    2012-12-01

    Traditional salt farming in Goa, India has been practised for the past 1,500 years by a few communities. Goa's riverine estuaries, easy access to sea water and favourable climatic conditions makes salt production attractive during summer. Salt produced through this natural evaporation process also played an important role in the economy of Goa even during the Portuguese rule as salt was the chief export commodity. In the past there were 36 villages involved in salt production, which is now reduced to 9. Low income, lack of skilled labour, competition from industrially produced salt, losses incurred on the yearly damage of embankments are the major reasons responsible for the reduction in the number of salt pans.Salt pans (Mithagar or Mithache agor) form a part of the reclaimed waterlogged khazan lands, which are also utilised for aquaculture, pisciculture and agriculture. Salt pans in Goa experience three phases namely, the ceased phase during monsoon period of June to October, preparatory phase from December to January, and salt harvesting phase, from February to June. After the monsoons, the salt pans are prepared manually for salt production. During high tide, an influx of sea water occurs, which enters the reservoir pans through sluice gates. The sea water after 1-2 days on attaining a salinity of approximately 5ºBé, is released into the evaporator pans and kept till it attains a salinity of 23 - 25ºBé. The brine is then released to crystallizer pans, where the salt crystallises out 25 - 27ºBé and is then harvested.Salt pans form a unique ecosystem where succession of different organisms with varying environmental conditions occurs. Organisms ranging from bacteria, archaea to fungi, algae, etc., are known to colonise salt pans and may influence the quality of salt produced.The aim of this review is to describe salt farming in Goa's history, importance of salt production as a community activity, traditional method of salt production and the biota

  16. The principal factors contributing to the flux of salt in a narrow, partially stratified estuary

    NASA Astrophysics Data System (ADS)

    Lewis, R. E.; Lewis, J. O.

    1983-06-01

    , salinity and depth and turbulent fluctuations are of secondary importance as contributors to the estuary salt budget. On both neap and spring tides, the computed total salt transports at the Newport and Victoria bridges did not match the values required for a salt balance with the corresponding freshwater flows. These fluxes were probably the cause of the observed downstream displacement of the tidal mean salinity distribution between neap and spring tides.

  17. A banana aquaporin gene, MaPIP1;1, is involved in tolerance to drought and salt stresses

    PubMed Central

    2014-01-01

    Background Aquaporin (AQP) proteins function in transporting water and other small molecules through the biological membranes, which is crucial for plants to survive in drought or salt stress conditions. However, the precise role of AQPs in drought and salt stresses is not completely understood in plants. Results In this study, we have identified a PIP1 subfamily AQP (MaPIP1;1) gene from banana and characterized it by overexpression in transgenic Arabidopsis plants. Transient expression of MaPIP1;1-GFP fusion protein indicated its localization at plasma membrane. The expression of MaPIP1;1 was induced by NaCl and water deficient treatment. Overexpression of MaPIP1;1 in Arabidopsis resulted in an increased primary root elongation, root hair numbers and survival rates compared to WT under salt or drought conditions. Physiological indices demonstrated that the increased salt tolerance conferred by MaPIP1;1 is related to reduced membrane injury and high cytosolic K+/Na+ ratio. Additionally, the improved drought tolerance conferred by MaPIP1;1 is associated with decreased membrane injury and improved osmotic adjustment. Finally, reduced expression of ABA-responsive genes in MaPIP1;1-overexpressing plants reflects their improved physiological status. Conclusions Our results demonstrated that heterologous expression of banana MaPIP1;1 in Arabidopsis confers salt and drought stress tolerances by reducing membrane injury, improving ion distribution and maintaining osmotic balance. PMID:24606771

  18. Molten salt power towers operating at 600–650 °C: Salt selection and cost benefits

    DOE PAGES

    Turchi, Craig S.; Vidal, Judith; Bauer, Matthew

    2018-03-14

    This analysis examines the potential benefit of adopting the supercritical carbon dioxide (sCO 2) Brayton cycle at 600-650 degrees C compared to the current state-of-the-art power tower operating a steam-Rankine cycle with solar salt at approximately 574 degrees C. The analysis compares a molten-salt power tower configuration using direct storage of solar salt (60:40 wt% sodium nitrate: potassium nitrate) or single-component nitrate salts at 600 degrees C or alternative carbonate- or chloride-based salts at 650 degrees C.

  19. Molten salt power towers operating at 600–650 °C: Salt selection and cost benefits

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Turchi, Craig S.; Vidal, Judith; Bauer, Matthew

    This analysis examines the potential benefit of adopting the supercritical carbon dioxide (sCO 2) Brayton cycle at 600-650 degrees C compared to the current state-of-the-art power tower operating a steam-Rankine cycle with solar salt at approximately 574 degrees C. The analysis compares a molten-salt power tower configuration using direct storage of solar salt (60:40 wt% sodium nitrate: potassium nitrate) or single-component nitrate salts at 600 degrees C or alternative carbonate- or chloride-based salts at 650 degrees C.

  20. Nano spray-dried sodium chloride and its effects on the microbiological and sensory characteristics of surface-salted cheese crackers.

    PubMed

    Moncada, Marvin; Astete, Carlos; Sabliov, Cristina; Olson, Douglas; Boeneke, Charles; Aryana, Kayanush J

    2015-09-01

    Reducing particle size of salt to approximately 1.5 µm would increase its surface area, leading to increased dissolution rate in saliva and more efficient transfer of ions to taste buds, and hence, perhaps, a saltier perception of foods. This has a potential for reducing the salt level in surface-salted foods. Our objective was to develop a salt using a nano spray-drying method, to use the developed nano spray-dried salt in surface-salted cheese cracker manufacture, and to evaluate the microbiological and sensory characteristics of cheese crackers. Sodium chloride solution (3% wt/wt) was sprayed through a nano spray dryer. Particle sizes were determined by dynamic light scattering, and particle shapes were observed by scanning electron microscopy. Approximately 80% of the salt particles produced by the nano spray dryer, when drying a 3% (wt/wt) salt solution, were between 500 and 1,900 nm. Cheese cracker treatments consisted of 3 different salt sizes: regular salt with an average particle size of 1,500 µm; a commercially available Microsized 95 Extra Fine Salt (Cargill Salt, Minneapolis, MN) with an average particle size of 15 µm; and nano spray-dried salt with an average particle size of 1.5 µm, manufactured in our laboratory and 3 different salt concentrations (1, 1.5, and 2% wt/wt). A balanced incomplete block design was used to conduct consumer analysis of cheese crackers with nano spray-dried salt (1, 1.5, and 2%), Microsized salt (1, 1.5, and 2%) and regular 2% (control, as used by industry) using 476 participants at 1wk and 4mo. At 4mo, nano spray-dried salt treatments (1, 1.5, and 2%) had significantly higher preferred saltiness scores than the control (regular 2%). Also, at 4mo, nano spray-dried salt (1.5 and 2%) had significantly more just-about-right saltiness scores than control (regular 2%). Consumers' purchase intent increased by 25% for the nano spray-dried salt at 1.5% after they were notified about the 25% reduction in sodium content of the

  1. Geospatial Estimates of Road Salt Usage Across a Gradient of Urbanizing Watersheds in Southern Ontario:Thesis for Masters in Spatial Analysis (MSA)

    NASA Astrophysics Data System (ADS)

    Giberson, G. K.; Oswald, C.

    2015-12-01

    In areas affected by snow, chloride (Cl) salts are widely used as a de-icing agent to improve road conditions. While the improvement in road safety is indisputable, there are environmental consequences to local aquatic ecosystems. In many waterways, Cl concentrations have been increasing since the early 1990s, often exceeding national water quality guidelines. To determine the quantity of Cl that is accumulating in urban and urbanizing watersheds, accurate estimates of road salt usage at the watershed-scale are needed. The complex jurisdictional control over road salt application in southern Ontario lends itself to a geospatial approach for calculating Cl inputs to improve the accuracy of watershed-scale Cl mass balance estimates. This study will develop a geospatial protocol for combining information on road salt applications and road network areas to refine watershed-scale Cl inputs, as well as assess spatiotemporal patterns in road salt application across the southern Ontario study region. The overall objective of this project is to use geospatial methods (predominantly ArcGIS) to develop high-accuracy estimates of road salt usage in urbanizing watersheds in southern Ontario. Specifically, the aims will be to map and summarize the types and areas ("lane-lengths") of roadways in each watershed that have road salt applied to them, to determine the most appropriate source(s) of road salt usage data for each watershed, taking into consideration multiple levels of jurisdiction (e.g. municipal, regional, provincial), to calculate and summarize sub-watershed and watershed-scale road salt usage estimates for multiple years, and to analyze intra-watershed spatiotemporal patterns of road salt usage, especially focusing on impervious surfaces. These analyses will recommend areas of concern exacerbated by high-levels of road salt distribution; recommendations around modifying on-the-ground operations will be the next step in helping to correct these issues.

  2. Salt-water imbalance and fluid overload in hemodialysis patients: a pivotal role of corin.

    PubMed

    Ricciardi, Carlo Alberto; Lacquaniti, Antonio; Cernaro, Valeria; Bruzzese, Annamaria; Visconti, Luca; Loddo, Saverio; Santoro, Domenico; Buemi, Michele

    2016-08-01

    Natriuretic peptides (NP) play a key role in regulation of salt and water balance. Corin, a serine protease which activates NP, plays a key role in regulation of blood pressure and cardiac function. The aim of the study was to evaluate the involvement of corin in renal physiopathology, analyze its levels in dialyzed patients and evaluate its relation with fluid overload and comorbidities such as heart failure and blood hypertension. We studied serum corin in uremic patients (n = 20) undergoing hemodialysis therapy (HD) and in healthy subjects (HS). Corin levels in uremic patients were higher than in HS (p < 0.0001). Moreover, its concentration did not change after a single HD session. Hypertensive patients and subject suffering from heart failure were characterized by high values of corin. After multivariate analysis, direct correlations were maintained between corin and dialysis vintage (β = 0.83; p = 0.0002), heart failure (β = 0.42; p < 0.0001), systolic blood pressure (β = -0.70; p = 0.0002) and body weight (β = -0.39; p < 0.0001). Corin might be implicated in the regulation of salt and water balance and the disturbances of volume homeostasis of HD patients. However, further studies are warranted to understand the role of corin in kidney diseases and to define its diagnostic and prognostic role.

  3. The effect of hydrocarbons on the microstructural evolution in rock salt: a case study on hydrocarbon bearing Ara salt from the South Oman Salt Basin

    NASA Astrophysics Data System (ADS)

    Schmatz, Joyce; Urai, Janos L.; Wübbeler, Franziska M. M.; Sadler, Marc

    2014-05-01

    It has been shown that dilatant deformation promotes the incorporation of hydrocarbons into typically low permeable rock salt (Schoenherr et al., 2007). However, there is not much knowledge on subsequent mechanisms related to recrystallization processes, which cause morphological and chemical changes of the carbonic inclusions. This work aims to contribute to an increased understanding of fluid inclusion dynamics related to grain boundary migration recrystallization and hence to facilitate the interpretation of complex microstructures in recrystallized, multiphase salt rocks. In this case study we investigate hydrocarbon-impregnated salt from the Cambrian Ara Group in the South Oman Salt Basin. The samples were cored from cm-m thick anhydrite-salt sequences overlying hydrocarbon bearing carbonate stringers in 3300 m depth. The anhydrite layers consist mainly of fine-grained anhydrite, which contains calcite, dolomite, and olivine inclusions. Solid bitumen and lighter hydrocarbon phases are observed in between the anhydrite grains and along cracks. Anhydrite layers host salt veins, which contain fragments of anhydrite. These fragments do not differ in composition or structure from the host material and the related vein microstructures indicate crack-seal mechanisms. Halite in the salt layers is almost entirely recrystallized with solid inclusions consisting of anhydrite, calcite, dolomite and olivine with hydrocarbon-coatings present inside grains and along grain boundaries. Solid inclusions cause pinning indicated by a decreased recrystallized grain size and by the presence of grains with preserved substructures representing earlier deformation phases. We observe two types of carbonic inclusions: I) solid bitumen coatings along grain boundaries and microcracks, interpreted to be incorporated into the salt in an overpressure state that allowed dilatancy of the salt, and II) less degraded, liquid hydrocarbons along grain boundaries in the vicinity of the anhydrite

  4. Proteomic analysis of salt stress and recovery in leaves of Vigna unguiculata cultivars differing in salt tolerance.

    PubMed

    de Abreu, Carlos Eduardo Braga; Araújo, Gyedre dos Santos; Monteiro-Moreira, Ana Cristina de Oliveira; Costa, José Hélio; Leite, Hugo de Brito; Moreno, Frederico Bruno Mendes Batista; Prisco, José Tarquinio; Gomes-Filho, Enéas

    2014-08-01

    Cowpea cultivars differing in salt tolerance reveal differences in protein profiles and adopt different strategies to overcome salt stress. Salt-tolerant cultivar shows induction of proteins related to photosynthesis and energy metabolism. Salinity is a major abiotic stress affecting plant cultivation and productivity. The objective of this study was to examine differential proteomic responses to salt stress in leaves of the cowpea cultivars Pitiúba (salt tolerant) and TVu 2331 (salt sensitive). Plants of both cultivars were subjected to salt stress (75 mM NaCl) followed by a recovery period of 5 days. Proteins extracted from leaves of both cultivars were analyzed by two-dimensional electrophoresis (2-DE) under salt stress and after recovery. In total, 22 proteins differentially regulated by both salt and recovery were identified by LC-ESI-MS/MS. Our current proteome data revealed that cowpea cultivars adopted different strategies to overcome salt stress. For the salt-tolerant cultivar (Pitiúba), increase in abundance of proteins involved in photosynthesis and energy metabolism, such as rubisco activase, ribulose-5-phosphate kinase (Ru5PK) (EC 2.7.1.19), glycine decarboxylase (EC 1.4.4.2) and oxygen-evolving enhancer (OEE) protein 2, was observed. However, these vital metabolic processes were more profoundly affected in salt-sensitive cultivar (TVu), as indicated by the down-regulation of OEE protein 1, Mn-stabilizing protein-II, carbonic anhydrase (EC 4.2.1.1) and Rubisco (EC 4.1.1.39), leading to energy reduction and a decline in plant growth. Other proteins differentially regulated in both cultivars corresponded to different physiological responses. Overall, our results provide information that could lead to a better understanding of the molecular basis of salt tolerance and sensitivity in cowpea plants.

  5. Production of chlorine from chloride salts

    DOEpatents

    Rohrmann, Charles A.

    1981-01-01

    A process for converting chloride salts and sulfuric acid to sulfate salts and elemental chlorine is disclosed. A chloride salt and sulfuric acid are combined in a furnace where they react to produce a sulfate salt and hydrogen chloride. Hydrogen chloride from the furnace contacts a molten salt mixture containing an oxygen compound of vanadium, an alkali metal sulfate and an alkali metal pyrosulfate to recover elemental chlorine. In the absence of an oxygen-bearing gas during the contacting, the vanadium is reduced, but is regenerated to its active higher valence state by separately contacting the molten salt mixture with an oxygen-bearing gas.

  6. Salt-Sensitive Hypertension: Perspectives on Intrarenal Mechanisms

    PubMed Central

    Majid, Dewan S.A.; Prieto, Minolfa C.; Navar, L Gabriel

    2015-01-01

    Salt sensitive hypertension is characterized by increases in blood pressure in response to increases in dietary salt intake and is associated with an enhanced risk of cardiovascular and renal morbidity. Although researchers have sought for decades to understand how salt sensitivity develops in humans, the mechanisms responsible for the increases in blood pressure in response to high salt intake are complex and only partially understood. Until now, scientists have been unable to explain why some individuals are salt sensitive and others are salt resistant. Although a central role for the kidneys in the development of salt sensitivity and hypertension has been generally accepted, it is also recognized that hypertension is of multifactorial origin and a variety of factors can induce, or prevent, blood pressure responsiveness to the manipulation of salt intake. Excess salt intake in susceptible persons may also induce inappropriate central and sympathetic nervous system responses and increase the production of intrarenal angiotensin II, catecholamines and other factors such as oxidative stress and inflammatory cytokines. One key factor is the concomitant inappropriate or paradoxical activation of the intrarenal renin-angiotensin system, by high salt intake. This is reflected by the increases in urinary angiotensinogen during high salt intake in salt sensitive models. A complex interaction between neuroendocrine factors and the kidney may underlie the propensity for some individuals to retain salt and develop salt-dependent hypertension. In this review, we focus mainly on the renal contributions that provide the mechanistic link between chronic salt intake and the development of hypertension. PMID:26028244

  7. Marangoni convection in molten salts

    NASA Astrophysics Data System (ADS)

    Cramer, A.; Landgraf, S.; Beyer, E.; Gerbeth, G.

    2011-02-01

    Marangoni convection is involved in many technological processes. The substances of industrial interest are often governed by diffusive heat transport and their physical modelling is limited with respect to the Prandtl number Pr. The present paper addresses this deficiency. Studies were made on molten salts having Pr values in an intermediate range well below that of the typically employed organics. Since some of the selected species have a relatively high melting point, a high-temperature facility which allows studying thermocapillary convection at temperatures in excess of 1,000°C was built. The results presented here were obtained in a cylindrical geometry, although the equipment that was built is not restricted to this configuration because of its modular construction. Modelled after some applications, the fluid was heated centrically on top. The bulk was embedded in a large thermostatically controlled reservoir so as to establish the lower ambient reference temperature. A characteristic size of the experimental cell was chosen such that, on the one hand, the dynamic Bond number Bo did not become too high; on the other hand, the liquid had to have a certain depth to allow particle image velocimetry. The complicated balance between body forces and thermocapillary forces in the case of intermediate Bo was found to result in a distinct local separation into a bulk motion governed by natural convection with a recirculating Marangoni flow on top. In contrast to low viscosity organics, the vapour pressure of which increases considerably with decreasing Pr, high values of the Marangoni number can be reached. Comparisons of the topology of Marangoni vortices between molten salts with 2.3 ⩽ Pr ⩽ 6.4 and a silicone oil with Pr typically one order of magnitude higher suggest that the regime of non-negligible heat diffusion is entered.

  8. Salt movements and faulting of the overburden - can numerical modeling predict the fault patterns above salt structures?

    NASA Astrophysics Data System (ADS)

    Clausen, O. R.; Egholm, D. L.; Wesenberg, R.

    2012-04-01

    Salt deformation has been the topic of numerous studies through the 20th century and up until present because of the close relation between commercial hydrocarbons and salt structure provinces of the world (Hudec & Jackson, 2007). The fault distribution in sediments above salt structures influences among other things the productivity due to the segmentation of the reservoir (Stewart 2006). 3D seismic data above salt structures can map such fault patterns in great detail and studies have shown that a variety of fault patterns exists. Yet, most patterns fall between two end members: concentric and radiating fault patterns. Here we use a modified version of the numerical spring-slider model introduced by Malthe-Sørenssen et al.(1998a) for simulating the emergence of small scale faults and fractures above a rising salt structure. The three-dimensional spring-slider model enables us to control the rheology of the deforming overburden, the mechanical coupling between the overburden and the underlying salt, as well as the kinematics of the moving salt structure. In this presentation, we demonstrate how the horizontal component on the salt motion influences the fracture patterns within the overburden. The modeling shows that purely vertical movement of the salt introduces a mesh of concentric normal faults in the overburden, and that the frequency of radiating faults increases with the amount of lateral movements across the salt-overburden interface. The two end-member fault patterns (concentric vs. radiating) can thus be linked to two different styles of salt movement: i) the vertical rising of a salt indenter and ii) the inflation of a 'salt-balloon' beneath the deformed strata. The results are in accordance with published analogue and theoretical models, as well as natural systems, and the model may - when used appropriately - provide new insight into how the internal dynamics of the salt in a structure controls the generation of fault patterns above the structure. The

  9. Bile salts as semiochemicals in fish

    USGS Publications Warehouse

    Buchinger, Tyler J.; Li, Weiming; Johnson, Nicholas S.

    2014-01-01

    Bile salts are potent olfactory stimuli in fishes; however the biological functions driving such sensitivity remain poorly understood. We provide an integrative review of bile salts as semiochemicals in fish. First, we present characteristics of bile salt structure, metabolism, and function that are particularly relevant to chemical communication. Bile salts display a systematic pattern of structural variation across taxa, are efficiently synthesized, and are stable in the environment. Bile salts are released into the water via the intestine, urinary tract, or gills, and are highly water soluble. Second, we consider the potential role of bile salts as semiochemicals in the contexts of detecting nearby fish, foraging, assessing risk, migrating, and spawning. Lastly, we suggest future studies on bile salts as semiochemicals further characterize release into the environment, behavioral responses by receivers, and directly test the biological contexts underlying olfactory sensitivity.

  10. Maritime Aerosol Network as a Component of AERONET - a Useful Tool for Evaluation of the Global Sea-Salt Aerosol Distribution

    NASA Astrophysics Data System (ADS)

    Smirnov, A.; Holben, B. N.; Kinne, S.; Nelson, N. B.; Stenchikov, G. L.; Broccardo, S. P.; Sowers, D.; Lobecker, E.; Ondrusek, M.; Zielinski, T. P.; Gray, L. M.; Frouin, R.; Radionov, V. F.; Smyth, T. J.; Zibordi, G.; Heller, M. I.; Slabakova, V.; Krüger, K.; Reid, E. A.; Istomina, L.; Vandermeulen, R. A.; O'Neill, N. T.; Levy, G.; Giles, D. M.; Slutsker, I.; Sorokin, M. G.; Eck, T. F.

    2016-02-01

    Sea-salt aerosol plays an important role in radiation balance and chemistry of marine atmosphere. Sea-salt production depends on various factors. There is a significant uncertainty in the parametrization of the sea-salt production and budget. Ship-based aerosol optical depth (AOD) measurements can be used as an important validation tool for various global models and in-situ measurements. The paper presents the current status of the Maritime Aerosol Network (MAN) which is a component of Aerosol Robotic Network. Since 2006 over 300 cruises were completed and data archive of more than 5500 measurement days is accessible at http://aeronet.gsfc.nasa.gov/new_web/maritime_aerosol_network.html . AOD measurements from ships of opportunity complemented island-based AERONET measurements and provided important reference points for satellite retrieved and modelled AOD climatology over the oceans. The program exemplifies mutually beneficial international, multi-agency effort in atmospheric aerosol optical studies over the oceans.

  11. Just add a pinch of salt!--current directions for the use of salt in recipes in Australian magazines.

    PubMed

    Webster, Jacqui; Dunford, Elizabeth; Barzi, Federica; Neal, Bruce

    2010-02-01

    Australians currently consume too much salt causing adverse consequences for health. The media play an important role in the provision of nutrition advice to consumers. Previous research shows that many foods advertized in consumer magazines are high in salt, but little research has examined magazine recipes in this context. The aim of this project was to summarize directions for salt use in recipes in leading Australian magazines. In August 2007 and 2008, the top 10 magazines by circulation that included at least five recipes, were examined. Standardized information was collected about directions for salt use in recipes. Three hundred and thirty recipes were identified in 2007 and 417 in 2008. About 68% of recipes included high-salt ingredients, 37% instructed to season with salt, 10% instructed to add a specific quantity of salt and 15% recommended selection of low-salt ingredients. There was substantial variability in directions for salt use in recipes between magazines, but no clear differences between 2007 and 2008. Many recipes advised to add salt in direct contradiction to national dietary guidelines. There is clear potential for editorial guidelines on salt use in recipes to play a role in advancing public health efforts in Australia and other such nations.

  12. Salt Lake City, Utah

    NASA Technical Reports Server (NTRS)

    2002-01-01

    Salt Lake City, Utah, will host the 2002 Winter Olympic Games. The city is located on the southeastern shore of the Great Salt Lake and sits to the west of the Wasatch Mountains, which rise more than 3,500 meters (10,000 feet) above sea level. The city was first settled in 1847 by pioneers seeking relief from religious persecution. Today Salt Lake City, the capital of Utah, is home to more than 170,000 residents. This true-color image of Salt Lake City was acquired by the Enhanced Thematic Mapper Plus (ETM+), flying aboard Landsat 7, on May 26, 2000. The southeastern tip of the Great Salt Lake is visible in the upper left of the image. The furrowed green and brown landscape running north-south is a portion of the Wasatch Mountains, some of which are snow-capped (white pixels). The greyish pixels in the center of the image show the developed areas of the city. A number of water reservoirs can be seen east of the mountain range. Salt Lake City International Airport is visible on the northwestern edge of the city. About 20 miles south of the airport is the Bingham Canyon Copper Mine (tan pixels), the world's largest open pit excavation. See also this MODIS image of Utah. Image courtesy NASA Landsat7 Science Team and USGS Eros Data Center

  13. The geohydrologic system and probable effects of mining in the Sand Creek-Hanks lignite area, western Williams County, North Dakota

    USGS Publications Warehouse

    Armstrong, C.A.

    1985-01-01

    The investigation was undertaken to define the geohydrology of the Sand Creek-Hanks area and to project probable hydrologic effects of lignite mining on the area. Aquifers occur in sandstone beds in the Fox Hills Sandstone and the Hell Creek Formation of Cretaceous age and in sandstone lenses and lignite beds in the Tongue River and Sentinel Butte Members of the Fort Union Formation of Tertiary age.The top of the Fox Hills aquifer ranges from about 1,200 to 2,000 feet below land surface. Yields of wells completed in the aquifer could be as much as 60 gallons per minute. Water in the Fox Hills aquifer is a sodium bicarbonate type and generallyDepths to the top of the Hell Creek aquifer range from about 900 to 1,600 feet. Well yields range from less than 10 to 40 gallons per minute. Water in the aquifer is a sodium bicarbonate type and generally contains between 1,000 and 2,200 milligrams per liter dissolved solids. Depths to aquifers in the Tongue River and Sentinel Butte Members of Fort Union Formation range from near land surface to about 1,000 feet below land surface. Wells completed in the aquifers may yield as much as 40 gallons per minute of sodium bicarbonate or a sodium sulfate type water that contains about 800 to 4,100 milligrams per liter dissolved solids.Glacial drift covers most of the study area. The drift thickness ranges from a veneer to about 380 feet. Well yields range from a few gallons per minute to 900 gallons per minute. Dissolved-solids concentrations in water from the glacial drift generally range from 477 to 2,050 milligrams per liter. Mining of lignite will destroy all aquifers in and above the mined lignite and will expose overburden to oxidation. Leaching will cause an increase in dissolved solids in ground water immediately beneath the mines and possibly will cause some increase in the dissolved solids in low flows in area streams.

  14. Influence of pre-salt topographic features on supra-salt deformation in Mediterranean basins: Geology vs. physical models

    NASA Astrophysics Data System (ADS)

    Ferrer, Oriol; Vidal-Royo, Oskar; Gratacós, Oscar; Roca, Eduard; Muñoz, Josep Anton; Esestime, Paolo; Rodriguez, Karyna; Yazmin Piragauta, Mary; Feliu, Nil

    2017-04-01

    The presence of a thick Messinian evaporite unit is a well known feature of the Mediterranean basins. This salt unit is composed of three sub-units (Lower, Mobile and Upper Units) in the Northwest Mediterranean. In contrast, in the Eastern Mediterranean it is characterized by a multilayered evaporite sequence. In both regions the salt acted as a detachment favoring the downslope gravitational failure of the overlying sediments in a thin-skinned deformation regime (e.g. Liguro-Provençal or Levant basins). As a result, these salt-bearing passive margins exhibit the classical three-domain structural zonation characterized by upslope extension, intermediate translation and downslope contraction. Nevertheless, the presence of pre-salt reliefs (e.g. irregularly eroded palaeotopography or volcanic edifices) is rather common in the translational domain of the Northwestern Mediterranean (e.g. Liguro-Provençal and West Corsica margins). In this scenario, pre-salt reliefs act as flow barriers and hinder salt drainage. When their summit lies close or above the top salt, these structures may partially or fully block salt flow. They also disrupt locally the structural zonation of the passive margin and constrain cover deformation. In contrast, in the Eastern Mediterranean the Eratosthenes seamount is characterized by a large scale submerged massif (ca. 120 km in size) that significantly influenced the structural evolution of the surrounding areas. This inherited relief acted as a buttress and deflected the Messinian salt flow constraining supra-salt deformation (e.g. Levant Basin and Nile margin). In addition, the geometry of the Eratosthenes seamount also restrained the structural style of the allochthonous salt that was expulsed during the development of the Cyprus subduction zone to the north. Using an experimental approach (sandbox models) and new analysis techniques, we investigate salt and supra-salt deformation in response to two different types of pre-salt relief: 1

  15. Whitecaps, sea-salt aerosols, and climate

    NASA Astrophysics Data System (ADS)

    Anguelova, Magdalena Dimitrova

    Oceanic whitecaps are the major source of sea-salt aerosols. Because these aerosols are dominant in remote marine air, they control the radiative properties of the clean background atmosphere by scattering sunlight, changing cloud properties and lifetime, and providing media for chemical reactions. Including sea-salt effects in climate models improves predictions, but simulating their generation is first necessary. To make the sea-salt generation function currently used in climate models more relevant for aerosol investigations, this study proposes two modifications. First, the conventional relation between whitecap coverage, W, and the 10-meter wind speed, U10, used in typical generation functions is expanded to include additional factors that affect whitecaps and sea-salt aerosol formation. Second, the sea-salt generation function is extended to smaller sizes; sea-salt aerosol with initial radii from 0.4 to 20 mum can now be modeled. To achieve these goals, this thesis develops a new method for estimating whitecap coverage on a global scale using satellite measurements of the brightness temperature of the ocean surface. Whitecap coverage evaluated with this method incorporates the effects of atmospheric stability, sea-surface temperature, salinity, wind fetch, wind duration, and the amount of surface-active material. Assimilating satellite-derived values for whitecap coverage in the sea-salt generation function incorporates the effects of all environmental factors on sea-salt production and predicts realistic sea-salt aerosol loadings into the atmosphere. An extensive database of whitecap coverage and sea-salt aerosol fluxes has been compiled with the new method and is used to investigate their spatial and temporal characteristics. The composite effect of all environmental factors suggests a more uniform latitudinal distribution of whitecaps and sea-salt aerosols than that predicted from wind speed alone. The effect of sea-surface temperature, TS, is

  16. Old torsion Balance Observations - too old for modern Exploration?

    NASA Astrophysics Data System (ADS)

    Götze, H.-J.

    2003-04-01

    Gravity gradiometry is a new gravity measurement technology that could fundamentally change the game of subsurface modelling and enhance geological interpretations: at fully inertial stabilized platforms they provide observed components of the E&{uml;o}tv&{uml;o}s tensor for 3D interpretations in mining and oil exploration and other fields of pure and applied geophysics. Although gravity gradiometry was among the first geophysical methods used successfully in applied Geophysics (E&{uml;o}tv&{uml;o}s torsion balance), the technology fell from favour in the 1930s. From this time measurements, done by torsion balances (Drehwaagen), are presented here which were observed to detect salt domes in the Northwest German basin. The data were digitized from old copies, then reprocessed and recalculated to draw Bouguer anomaly maps. However, the second derivatives of the gravity potential provide also independent data which can be used to constrain forward modelling. 3D modelling of Vxz, Vyz and other components of the E&{uml;o}tv&{uml;o}s tensor provide better insight into the geometry of the salt dome structure than modelling of the Bouguer gravity field. In addition to this first example results from gravity data processing by applying curvature techniques and again 3D forward modelling of second derivatives of the potential of density domains in the uppermost crust in the area of the Dead Sea Transform (Jordan) is presented here. The 3D modelling is conducted by the program package IGMAS which supply possibilities to calculate potential, gravity, its components and the Eötvös tensor components. Based on results so far one can conclude that the knowledge of the "second derivatives of the potential" could fundamentally change the role of gravity field measurements in the process of underground investigations not only for resource exploration but for investigations along large faults systems.

  17. Salt bridges: geometrically specific, designable interactions.

    PubMed

    Donald, Jason E; Kulp, Daniel W; DeGrado, William F

    2011-03-01

    Salt bridges occur frequently in proteins, providing conformational specificity and contributing to molecular recognition and catalysis. We present a comprehensive analysis of these interactions in protein structures by surveying a large database of protein structures. Salt bridges between Asp or Glu and His, Arg, or Lys display extremely well-defined geometric preferences. Several previously observed preferences are confirmed, and others that were previously unrecognized are discovered. Salt bridges are explored for their preferences for different separations in sequence and in space, geometric preferences within proteins and at protein-protein interfaces, co-operativity in networked salt bridges, inclusion within metal-binding sites, preference for acidic electrons, apparent conformational side chain entropy reduction on formation, and degree of burial. Salt bridges occur far more frequently between residues at close than distant sequence separations, but, at close distances, there remain strong preferences for salt bridges at specific separations. Specific types of complex salt bridges, involving three or more members, are also discovered. As we observe a strong relationship between the propensity to form a salt bridge and the placement of salt-bridging residues in protein sequences, we discuss the role that salt bridges might play in kinetically influencing protein folding and thermodynamically stabilizing the native conformation. We also develop a quantitative method to select appropriate crystal structure resolution and B-factor cutoffs. Detailed knowledge of these geometric and sequence dependences should aid de novo design and prediction algorithms. Copyright © 2010 Wiley-Liss, Inc.

  18. Biocorrosion behavior of biodegradable nanocomposite fibers coated layer-by-layer on AM50 magnesium implant.

    PubMed

    Abdal-Hay, Abdalla; Hasan, Anwarul; Kim, Yu-Kyoung; Yu-Kyoung; Lee, Min-Ho; Hamdy, Abdel Salam; Khalil, Khalil Abdelrazek

    2016-01-01

    This article demonstrates the use of hybrid nanofibers to improve the biodegradation rate and biocompatibility of AM50 magnesium alloy. Biodegradable hybrid membrane fiber layers containing nano-hydroxyapatite (nHA) particles and poly(lactide)(PLA) nanofibers were coated layer-by-layer (LbL) on AM50 coupons using a facile single-step air jet spinning (AJS) approach. The corrosion performance of coated and uncoated coupon samples was investigated by means of electrochemical measurements. The results showed that the AJS 3D membrane fiber layers, particularly the hybrid membrane layers containing a small amount of nHA (3 wt.%), induce a higher biocorrosion resistance and effectively decrease the initial degradation rate compared with the neat AM50 coupon samples. The adhesion strength improved highly due to the presence of nHA particles in the AJS layer. Furthermore, the long biodegradation rates of AM50 alloy in Hank's balanced salt solution (HBSS) were significantly controlled by the AJS-coatings. The results showed a higher cytocompatibility for AJS-coatings compared to that for neat Mg alloys. The nanostructured nHA embedded hybrid PLA nanofiber coating can therefore be a suitable coating material for Mg alloy as a potential material for biodegradable metallic orthopedic implants. Copyright © 2015 Elsevier B.V. All rights reserved.

  19. Bovine serum albumin adsorption on titania surfaces and its relation to wettability aspects.

    PubMed

    Valagão Amadeu do Serro, A P; Fernandes, A C; de Jesus Vieira Saramago, B; Norde, W

    1999-09-05

    The adsorption of bovine serum albumin (BSA) from sodium chloride solution and Hanks' balanced salt solution (HBSS) onto TiO2-silicon surfaces is studied by reflectometry in stagnation point flow. The results are compared with those obtained by dynamic contact-angle (DCA) analysis of titanium substrates. The adsorption isotherms show that the adsorbed amount of protein always is lower in HBSS, that is, in the presence of calcium and phosphate ions. This may be related to the increase in surface hydrophilicity caused by these ions, as suggested by the authors in previous works. The rate of adsorption also is lower in HBSS solutions. Comparison of the initial adsorption rates with the rate of mass transfer to the surface reveals that in both solvents only a small fraction of the protein that arrives at the surface adsorbs onto it. Electrostatic and/or conformational effects can explain the energy barrier to adsorption. The DCA analysis of high concentration (4 mg/mL) protein solutions shows a strong reduction of the contact-angle hysteresis, both in HBSS and in NaCl solutions, which confirms that the immediate adsorption of the protein to the surface forms a stable, hydrophilic film. Copyright 1999 John Wiley & Sons, Inc.

  20. Jet Fuel Exposure and Neurological Health in Military Personnel

    DTIC Science & Technology

    2010-07-01

    MACA ) or bovine serum albumin (BSA) in Hank’s Balanced Salr Solution {H BSS) or HBSS alone. Mice were sacrificed alTer I, 3, G. 12. I R and 24h...isolated from lung tissue for microarmy analysis and RT-PCR. MACA .tdmini>tratiun induced a rapid increase in HALF ncutrophils, lymphocytes...produc- tion, signaling. infl:unmarory cell recruitment, adh..-.ion and activation in 3h and 12h MACA -tre:lted samples as compared to BSA or HBSS

  1. Evolution of salt structures and Cretaceous uplift in westernmost Mississippi Salt basin, Madison Parish, Louisiana

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Alam, A.H.M.S.; Pilger, R.H. Jr.

    1988-09-01

    Subsurface structures were interpreted from seismic images and well logs in the westernmost Mississippi Salt basin, Madison Parish, Louisiana. Structural and stratigraphic relations indicate that salt structures (Duckport, North Tallulah, South Coleman, Tallulah, and Walnut domes) have evolved through pillow, diapir, and postdiapir stages. Withdrawal synclines associated with each stage of growth occur adjacent to salt domes and are characterized by overthickening of sediments. Synclines associated with Walnut dome are particularly well recognized in the seismic data. Primary withdrawal synclines and present day turtle structure anticlines involve the deepest recorded reflections (possibly Jurassic carbonates) above seismically transparent Paleozoic basement andmore » overlying remnant salt. Similar early (Late Jurassic) salt mobility has recently been documented in North Louisiana and East Texas Salt basins. Secondary withdrawal synclines (Cotton Valley) are exceptionally overthickened and their axes are closer to the dome than the axes of primary synclines. Tertiary synclines are broad and appear to be active at present. North-south seismic sections that cross the approximate northwest boundary of the Mississippi Salt basin display post-middle Cretaceous upwarp (the Monroe Uplift) involving basement. Successively older Lower Cretaceous reflections are truncated to the north beneath an erosional surface. Upwarp apparently continued well into the Cenozoic.« less

  2. Synthesis and properties of acetamidinium salts

    PubMed Central

    2011-01-01

    Background Acetamidines are starting materials for synthesizing many chemical substances, such as imidazoles, pyrimidines and triazines, which are further used for biochemically active compounds as well as energetic materials. The aim of this study was to synthesise and characterise a range of acetamidinium salts in order to overcome the inconvenience connected with acetamidinium chloride, which is the only commercially available acetamidinium salt. Results Acetamidinium salts were synthesised and characterised by elemental analysis, mass spectrometry, NMR and - in the case of energetic salts - DTA. The structures of previously unknown acetamidinium salts were established by X-ray diffraction analysis. Hygroscopicities in 90% humidity of eight acetamidinium salts were evaluated. Conclusions The different values of hygroscopicity are corroborated by the structures determined by X-ray analysis. The acetamidinium salts with 2D layered structures (acetamidinium nitrate, formate, oxalate and dinitromethanide) show a lack of hygroscopicity, and the compounds with 3D type of structure (acetamidinium chloride, acetate, sulphate and perchlorate) and possessing rather large cavities are quite hygroscopic. PMID:22152129

  3. Methods to Prepare Aluminum Salt-Adjuvanted Vaccines.

    PubMed

    Thakkar, Sachin G; Cui, Zhengrong

    2017-01-01

    Many human vaccines contain certain insoluble aluminum salts such as aluminum oxyhydroxide and aluminum hydroxyphosphate as vaccine adjuvants to boost the immunogenicity of the vaccines. Aluminum salts have been used as vaccine adjuvants for decades and have an established, favorable safety profile. However, preparing aluminum salts and aluminum salt-adjuvanted vaccines in a consistent manner remains challenging. This chapter discusses methods to prepare aluminum salts and aluminum salt-adjuvanted vaccines, factors to consider during preparation, and methods to characterize the vaccines after preparation.

  4. Salt intake and dietary sources of salt on weekdays and weekend days in Australian adults.

    PubMed

    Nowson, Caryl; Lim, Karen; Land, Mary-Ann; Webster, Jacqui; Shaw, Jonathan E; Chalmers, John; Flood, Victoria; Woodward, Mark; Grimes, Carley

    2018-02-01

    To assess if there is a difference in salt intake (24 h urine collection and dietary recall) and dietary sources of salt (Na) on weekdays and weekend days. A cross-sectional study of adults who provided one 24 h urine collection and one telephone-administered 24 h dietary recall. Community-dwelling adults living in the State of Victoria, Australia. Adults (n 598) who participated in a health survey (53·5 % women; mean age 57·1 (95 % CI 56·2, 58·1) years). Mean (95 % CI) salt intake (dietary recall) was 6·8 (6·6, 7·1) g/d and 24 h urinary salt excretion was 8·1 (7·8, 8·3) g/d. Mean dietary and 24 h urinary salt (age-adjusted) were 0·9 (0·1, 1·6) g/d (P=0·024) and 0·8 (0·3, 1·6) g/d (P=0·0017), respectively, higher at weekends compared with weekdays. There was an indication of a greater energy intake at weekends (+0·6 (0·02, 1·2) MJ/d, P=0·06), but no difference in Na density (weekday: 291 (279, 304) mg/MJ; weekend: 304 (281, 327) mg/MJ; P=0·360). Cereals/cereal products and dishes, meat, poultry, milk products and gravy/sauces accounted for 71 % of dietary Na. Mean salt intake (24 h urine collection) was more than 60 % above the recommended level of 5 g salt/d and 8-14 % more salt was consumed at weekends than on weekdays. Substantial reductions in the Na content of staple foods, processed meat, sauces, mixed dishes (e.g. pasta), convenience and takeaway foods are required to achieve a significant consistent reduction in population salt intake throughout the week.

  5. BALANCE

    DOEpatents

    Carmichael, H.

    1953-01-01

    A torsional-type analytical balance designed to arrive at its equilibrium point more quickly than previous balances is described. In order to prevent external heat sources creating air currents inside the balance casing that would reiard the attainment of equilibrium conditions, a relatively thick casing shaped as an inverted U is placed over the load support arms and the balance beam. This casing is of a metal of good thernnal conductivity characteristics, such as copper or aluminum, in order that heat applied to one portion of the balance is quickly conducted to all other sensitive areas, thus effectively preventing the fornnation of air currents caused by unequal heating of the balance.

  6. Measuring salt retention : [summary].

    DOT National Transportation Integrated Search

    2013-03-01

    This project involves measuring and reporting the retention of salt and brine on the roadway as a result of using different salt spreaders, application speeds, and brine quantities. The research develops an evaluation methodology, directs the field c...

  7. Great Salt Lake, Utah

    USGS Publications Warehouse

    Stephens, Doyle W.; Gardner, Joe F.

    1999-01-01

    This document is intended as a source of general information and facts about Great Salt Lake, Utah. This U.S. Geological Survey information sheet answers frequently asked questions about Great Salt Lake. Topics include: History, salinity, brine shrimp, brine flies, migratory birds, and recreation. Great Salt Lake, the shrunken remnant of prehistoric Lake Bonneville, has no outlet. Dissolved salts accumulate in the lake by evaporation. Salinity south of the causeway has ranged from 6 percent to 27 percent over a period of 22 years (2 to 7 times saltier than the ocean). The high salinity supports a mineral industry that extracts about 2 million tons of salt from the lake each year. The aquatic ecosystem consists of more than 30 species of organisms. Harvest of its best-known species, the brine shrimp, annually supplies millions of pounds of food for the aquaculture industry worldwide. The lake is used extensively by millions of migratory and nesting birds and is a place of solitude for people. All this occurs in a lake that is located at the bottom of a 35,000-square-mile drainage basin that has a human population of more than 1.5 million.

  8. Overexpression of a partial fragment of the salt-responsive gene OsNUC1 enhances salt adaptation in transgenic Arabidopsis thaliana and rice (Oryza sativa L.) during salt stress.

    PubMed

    Sripinyowanich, Siriporn; Chamnanmanoontham, Nontalee; Udomchalothorn, Thanikarn; Maneeprasopsuk, Somporn; Santawee, Panudda; Buaboocha, Teerapong; Qu, Li-Jia; Gu, Hongya; Chadchawan, Supachitra

    2013-12-01

    The rice (Oryza sativa L.) nucleolin gene, OsNUC1, transcripts were expressed in rice leaves, flowers, seeds and roots but differentially expressed within and between two pairs of salt-sensitive and salt-resistant rice lines when subjected to salt stress. Salt-resistant lines exhibited higher OsNUC1 transcript expression levels than salt-sensitive lines during 0.5% (w/v) NaCl salt stress for 6d. Two sizes of OsNUC1 full-length cDNA were found in the rice genome database and northern blot analysis confirmed their existence in rice tissues. The longer transcript (OsNUC1-L) putatively encodes for a protein with a serine rich N-terminal, RNA recognition motifs in the central domain and a glycine- and arginine-rich repeat in the C-terminal domain, while the shorter one (OsNUC1-S) putatively encodes for the similar protein without the N-terminus. Without salt stress, OsNUC1-L expressing Arabidopsis thaliana Atnuc1-L1 plants displayed a substantial but incomplete revertant phenotype, whereas OsNUC1-S expression only induced a weak effect. However, under 0.5% (w/v) NaCl salt stress they displayed a higher relative growth rate, longer root length and a lower H2O2 level than the wild type plants, suggesting a higher salt resistance. Moreover, they displayed elevated AtSOS1 and AtP5CS1 transcript levels. We propose that OsNUC1-S plays an important role in salt resistance during salt stress, a new role for nucleolin in plants. Copyright © 2013 Elsevier Ireland Ltd. All rights reserved.

  9. Salt or cocrystal of salt? Probing the nature of multicomponent crystal forms with infrared spectroscopy

    NASA Astrophysics Data System (ADS)

    da Silva, Cameron Capeletti; Guimarães, Freddy Fernandes; Ribeiro, Leandro; Martins, Felipe Terra

    2016-10-01

    The recognition of the nature of a multicomponent crystal form (solvate, salt, cocrystal or cocrystal of salt) is of great importance for pharmaceutical industry because it is directly related to the performance of a pharmaceutical ingredient, since there is interdependence between the structure, its energy and its physical properties. In this context, here we have identified the nature of multicomponent crystal forms of the anti-HIV drug lamivudine with mandelic acid through infrared spectroscopy. These investigated crystal forms were the known S-mandelic acid cocrystal of lamivudine R-mandelate trihydrate (1), a cocrystal of salt, and lamivudine R-mandelate (2), a salt. This approach also supports the identification and distinction of both ionized and unionized forms of mandelic acid in the infrared spectrum of 1. In this way, infrared spectroscopy can be useful to distinguish a cocrystal of salt from either salt or cocrystal forms. In the course of this study, for the first time we have also characterized and determined the crystal structure of R-mandelic acid cocrystal of sodium R-mandelate (3).

  10. EFFECTS OF CHRONIC EXCESS SALT FEEDING

    PubMed Central

    Dahl, Lewis K.; Heine, Martha

    1961-01-01

    Female rats were fed diets containing either excess sea salt or excess sodium chloride for periods up to 14 months. The hypertension produced by sea salt was more pronounced than that caused by sodium chloride alone, although the average amount of sodium chloride contained in the sea salt feeding was slightly less. The ions involved in this incremental effect of sea salt were not identified. PMID:13719314

  11. Coordinated Gene Regulation in the Initial Phase of Salt Stress Adaptation*

    PubMed Central

    Vanacloig-Pedros, Elena; Bets-Plasencia, Carolina; Pascual-Ahuir, Amparo; Proft, Markus

    2015-01-01

    Stress triggers complex transcriptional responses, which include both gene activation and repression. We used time-resolved reporter assays in living yeast cells to gain insights into the coordination of positive and negative control of gene expression upon salt stress. We found that the repression of “housekeeping” genes coincides with the transient activation of defense genes and that the timing of this expression pattern depends on the severity of the stress. Moreover, we identified mutants that caused an alteration in the kinetics of this transcriptional control. Loss of function of the vacuolar H+-ATPase (vma1) or a defect in the biosynthesis of the osmolyte glycerol (gpd1) caused a prolonged repression of housekeeping genes and a delay in gene activation at inducible loci. Both mutants have a defect in the relocation of RNA polymerase II complexes at stress defense genes. Accordingly salt-activated transcription is delayed and less efficient upon partially respiratory growth conditions in which glycerol production is significantly reduced. Furthermore, the loss of Hog1 MAP kinase function aggravates the loss of RNA polymerase II from housekeeping loci, which apparently do not accumulate at inducible genes. Additionally the Def1 RNA polymerase II degradation factor, but not a high pool of nuclear polymerase II complexes, is needed for efficient stress-induced gene activation. The data presented here indicate that the finely tuned transcriptional control upon salt stress is dependent on physiological functions of the cell, such as the intracellular ion balance, the protective accumulation of osmolyte molecules, and the RNA polymerase II turnover. PMID:25745106

  12. Salt-Bridge Energetics in Halophilic Proteins

    PubMed Central

    Nayek, Arnab; Sen Gupta, Parth Sarthi; Banerjee, Shyamashree; Mondal, Buddhadev; Bandyopadhyay, Amal K.

    2014-01-01

    Halophilic proteins have greater abundance of acidic over basic and very low bulky hydrophobic residues. Classical electrostatic stabilization was suggested as the key determinant for halophilic adaptation of protein. However, contribution of specific electrostatic interactions (i.e. salt-bridges) to overall stability of halophilic proteins is yet to be understood. To understand this, we use Adaptive-Poison-Boltzmann-Solver Methods along with our home-built automation to workout net as well as associated component energy terms such as desolvation energy, bridge energy and background energy for 275 salt-bridges from 20 extremely halophilic proteins. We then perform extensive statistical analysis on general and energetic attributes on these salt-bridges. On average, 8 salt-bridges per 150 residues protein were observed which is almost twice than earlier report. Overall contributions of salt-bridges are −3.0 kcal mol−1. Majority (78%) of salt-bridges in our dataset are stable and conserved in nature. Although, average contributions of component energy terms are equal, their individual details vary greatly from one another indicating their sensitivity to local micro-environment. Notably, 35% of salt-bridges in our database are buried and stable. Greater desolvation penalty of these buried salt-bridges are counteracted by stable network salt-bridges apart from favorable equal contributions of bridge and background terms. Recruitment of extensive network salt-bridges (46%) with a net contribution of −5.0 kcal mol−1 per salt-bridge, seems to be a halophilic design wherein favorable average contribution of background term (−10 kcal mol−1) exceeds than that of bridge term (−7 kcal mol−1). Interiors of proteins from halophiles are seen to possess relatively higher abundance of charge and polar side chains than that of mesophiles which seems to be satisfied by cooperative network salt-bridges. Overall, our theoretical analyses provide insight into halophilic

  13. Salt-bridge energetics in halophilic proteins.

    PubMed

    Nayek, Arnab; Sen Gupta, Parth Sarthi; Banerjee, Shyamashree; Mondal, Buddhadev; Bandyopadhyay, Amal K

    2014-01-01

    Halophilic proteins have greater abundance of acidic over basic and very low bulky hydrophobic residues. Classical electrostatic stabilization was suggested as the key determinant for halophilic adaptation of protein. However, contribution of specific electrostatic interactions (i.e. salt-bridges) to overall stability of halophilic proteins is yet to be understood. To understand this, we use Adaptive-Poison-Boltzmann-Solver Methods along with our home-built automation to workout net as well as associated component energy terms such as desolvation energy, bridge energy and background energy for 275 salt-bridges from 20 extremely halophilic proteins. We then perform extensive statistical analysis on general and energetic attributes on these salt-bridges. On average, 8 salt-bridges per 150 residues protein were observed which is almost twice than earlier report. Overall contributions of salt-bridges are -3.0 kcal mol-1. Majority (78%) of salt-bridges in our dataset are stable and conserved in nature. Although, average contributions of component energy terms are equal, their individual details vary greatly from one another indicating their sensitivity to local micro-environment. Notably, 35% of salt-bridges in our database are buried and stable. Greater desolvation penalty of these buried salt-bridges are counteracted by stable network salt-bridges apart from favorable equal contributions of bridge and background terms. Recruitment of extensive network salt-bridges (46%) with a net contribution of -5.0 kcal mol-1 per salt-bridge, seems to be a halophilic design wherein favorable average contribution of background term (-10 kcal mol-1) exceeds than that of bridge term (-7 kcal mol-1). Interiors of proteins from halophiles are seen to possess relatively higher abundance of charge and polar side chains than that of mesophiles which seems to be satisfied by cooperative network salt-bridges. Overall, our theoretical analyses provide insight into halophilic signature in its

  14. Effect of surface chemistries and characteristics of Ti6Al4V on the Ca and P adsorption and ion dissolution in Hank's ethylene diamine tetra-acetic acid solution.

    PubMed

    Chang, E; Lee, T M

    2002-07-01

    This study examined the influence of chemistries and surface characteristics of Ti6Al4V on the adsorption of Ca and P species and ion dissolution behavior of the material exposed in Hank's solution with 8.0 mM ethylene diamine tetra-acetic acid at 37 degrees C. The variation of chemistries of the alloy and nano-surface characteristics (chemistries of nano-surface oxides, amphoteric OH group adsorbed on oxides, and oxide thickness) was effected by surface modification and three passivation methods (34% nitric acid passivation. 400 degrees C heated in air, and aged in 100 degrees C water). X-ray photoelectron spectroscopy and Auger electron spectroscopy were used for surface analyses. The chemistries of nano-surface oxides in a range studied should not change the capability of Ca and P adsorption. Nor is the capability affected significantly by amphoteric OH group and oxide thickness. However, passivations influence the surface oxide thickness and the early stage ion dissolution rate of the alloy. The rate-limiting step of the rate can be best explained by metal-ion transport through the oxide film, rather than hydrolysis of the film. Variation of the chemistries of titanium alloy alters the electromotive force potential of the metal, thereby affecting the corrosion and ion dissolution rate.

  15. saltPAD: A New Analytical Tool for Monitoring Salt Iodization in Low Resource Settings

    PubMed Central

    Myers, Nicholas M.; Strydom, Emmerentia Elza; Sweet, James; Sweet, Christopher; Spohrer, Rebecca; Dhansay, Muhammad Ali; Lieberman, Marya

    2016-01-01

    We created a paper test card that measures a common iodizing agent, iodate, in salt. To test the analytical metrics, usability, and robustness of the paper test card when it is used in low resource settings, the South African Medical Research Council and GroundWork performed independent validation studies of the device. The accuracy and precision metrics from both studies were comparable. In the SAMRC study, more than 90% of the test results (n=1704) were correctly classified as corresponding to adequately or inadequately iodized salt. The cards are suitable for market and household surveys to determine whether salt is adequately iodized. Further development of the cards will improve their utility for monitoring salt iodization during production. PMID:29942380

  16. Molten salt electrolyte separator

    DOEpatents

    Kaun, Thomas D.

    1996-01-01

    A molten salt electrolyte/separator for battery and related electrochemical systems including a molten electrolyte composition and an electrically insulating solid salt dispersed therein, to provide improved performance at higher current densities and alternate designs through ease of fabrication.

  17. Electrochromic Salts, Solutions, and Devices

    DOEpatents

    Burrell, Anthony K.; Warner, Benjamin P.; McClesky, T. Mark

    2008-11-11

    Electrochromic salts. Electrochromic salts of dicationic viologens such as methyl viologen and benzyl viologen associated with anions selected from bis(trifluoromethylsulfonyl)imide, bis(perfluoroethylsulfonyl)imide, and tris(trifluoromethylsulfonyl)methide are produced by metathesis with the corresponding viologen dihalide. They are highly soluble in molten quarternary ammonium salts and together with a suitable reductant provide electrolyte solutions that are used in electrochromic windows.

  18. Electrochromic salts, solutions, and devices

    DOEpatents

    Burrell, Anthony K [Los Alamos, NM; Warner, Benjamin P [Los Alamos, NM; McClesky,7,064,212 T. Mark

    2006-06-20

    Electrochromic salts. Electrochromic salts of dicationic viologens such as methyl viologen and benzyl viologen associated with anions selected from bis(trifluoromethylsulfonyl)imide, bis(perfluoroethylsulfonyl)imide, and tris(trifluoromethylsulfonyl)methide are produced by metathesis with the corresponding viologen dihalide. They are highly soluble in molten quarternary ammonium salts and together with a suitable reductant provide electrolyte solutions that are used in electrochromic windows.

  19. Electrochromic Salts, Solutions, and Devices

    DOEpatents

    Burrell, Anthony K.; Warner, Benjamin P.; McClesky, T. Mark

    2008-10-14

    Electrochromic salts. Electrochromic salts of dicationic viologens such as methyl viologen and benzyl viologen associated with anions selected from bis(trifluoromethylsulfonyl)imide, bis(perfluoroethylsulfonyl)imide, and tris(trifluoromethylsulfonyl)methide are produced by metathesis with the corresponding viologen dihalide. They are highly soluble in molten quarternary ammonium salts and together with a suitable reductant provide electrolyte solutions that are used in electrochromic windows.

  20. Dietary salt loading and ion-poor water exposure provide insight into the molecular physiology of the rainbow trout gill epithelium tight junction complex.

    PubMed

    Kolosov, Dennis; Kelly, Scott P

    2016-08-01

    This study utilized dietary salt loading and ion-poor water (IPW) exposure of rainbow trout (Oncorhynchus mykiss) to further understand the role of fish gill epithelium tight junction (TJ) physiology in salt and water balance. Gill morphology, biochemistry and molecular physiology were examined, with an emphasis on genes encoding TJ proteins. Fish were either fed a control or salt-enriched diet (~10 % NaCl) for 4 weeks prior to IPW exposure for 24 h. Serum [Na(+)], [Cl(-)] and muscle moisture content were unaltered by salt feeding, but changed in response to IPW irrespective of diet. Dietary salt loading altered the morphology (reduced Na(+)-K(+)-ATPase-immunoreactive cell numbers and surface exposure of mitochondrion-rich cells), biochemistry (decreased vacuolar-type H(+)-ATPase activity) and molecular physiology (decreased nkaα1a and cftrII mRNA abundance) of the gill in a manner indicative of reduced active ion uptake activity. But in control fish and not salt-fed fish, gill mRNA abundance of nkaα1c increased and nbc decreased after IPW exposure. Genes encoding TJ proteins were typically either responsive to salt feeding or IPW, but select genes responded to combined experimental treatment (e.g. IPW responsive but only if fish were salt-fed). Therefore, using salt feeding and IPW exposure, new insights into what factors influence gill TJ proteins and the role that specific TJ proteins might play in regulating the barrier properties of the gill epithelium have been acquired. In particular, evidence suggests that TJ proteins in the gill epithelium, or the regulatory networks that control them, respond independently to external or internal stimuli.

  1. Discretionary salt use in airline meal service.

    PubMed

    Wallace, S; Wellman, N S; Dierkes, K E; Johnson, P M

    1987-02-01

    Salt use in airline meal service was studied through observation of returned meal trays of 932 passengers. Observation and weighing of salt packets on returned trays revealed that 64% of passengers did not salt their airline dinner, while 6% used the entire salt packet, 0.92 gm NaCl (362 mg Na). Average discretionary salt use among the 234 passengers (25%) who added salt was 0.57 gm NaCl (232 mg Na). Estimates of total sodium in the four airline dinners averaged 2.0 gm NaCl (786 mg Na). Laboratory assays of menu items produced by the airline foodservice differed 3% to 19% from estimated values. Sodium content of the four airline dinner menus was similar and did not affect salt use. Discretionary salt use was related to the total amount of entrée consumed but was not affected by the amount of salad consumed. It is postulated that salt use in the "captive" airline situation is predicated on consistent, habitual practices. Lowering sodium consumption in this setting may require alteration in both food preparation methods and quantity of salt presented in the packets.

  2. Salt-induced epithelial-to-mesenchymal transition in Dahl salt-sensitive rats is dependent on elevated blood pressure.

    PubMed

    Wang, Y; Mu, J J; Liu, F Q; Ren, K Y; Xiao, H Y; Yang, Z; Yuan, Z Y

    2014-02-01

    Dietary salt intake has been linked to hypertension and cardiovascular disease. Accumulating evidence has indicated that salt-sensitive individuals on high salt intake are more likely to develop renal fibrosis. Epithelial-to-mesenchymal transition (EMT) participates in the development and progression of renal fibrosis in humans and animals. The objective of this study was to investigate the impact of a high-salt diet on EMT in Dahl salt-sensitive (SS) rats. Twenty-four male SS and consomic SS-13(BN) rats were randomized to a normal diet or a high-salt diet. After 4 weeks, systolic blood pressure (SBP) and albuminuria were analyzed, and renal fibrosis was histopathologically evaluated. Tubular EMT was evaluated using immunohistochemistry and real-time PCR with E-cadherin and alpha smooth muscle actin (α-SMA). After 4 weeks, SBP and albuminuria were significantly increased in the SS high-salt group compared with the normal diet group. Dietary salt intake induced renal fibrosis and tubular EMT as identified by reduced expression of E-cadherin and enhanced expression of α-SMA in SS rats. Both blood pressure and renal interstitial fibrosis were negatively correlated with E-cadherin but positively correlated with α-SMA. Salt intake induced tubular EMT and renal injury in SS rats, and this relationship might depend on the increase in blood pressure.

  3. Salt, chloride, bleach, and innate host defense

    PubMed Central

    Wang, Guoshun; Nauseef, William M.

    2015-01-01

    Salt provides 2 life-essential elements: sodium and chlorine. Chloride, the ionic form of chlorine, derived exclusively from dietary absorption and constituting the most abundant anion in the human body, plays critical roles in many vital physiologic functions, from fluid retention and secretion to osmotic maintenance and pH balance. However, an often overlooked role of chloride is its function in innate host defense against infection. Chloride serves as a substrate for the generation of the potent microbicide chlorine bleach by stimulated neutrophils and also contributes to regulation of ionic homeostasis for optimal antimicrobial activity within phagosomes. An inadequate supply of chloride to phagocytes and their phagosomes, such as in CF disease and other chloride channel disorders, severely compromises host defense against infection. We provide an overview of the roles that chloride plays in normal innate immunity, highlighting specific links between defective chloride channel function and failures in host defense. PMID:26048979

  4. Salt, chloride, bleach, and innate host defense.

    PubMed

    Wang, Guoshun; Nauseef, William M

    2015-08-01

    Salt provides 2 life-essential elements: sodium and chlorine. Chloride, the ionic form of chlorine, derived exclusively from dietary absorption and constituting the most abundant anion in the human body, plays critical roles in many vital physiologic functions, from fluid retention and secretion to osmotic maintenance and pH balance. However, an often overlooked role of chloride is its function in innate host defense against infection. Chloride serves as a substrate for the generation of the potent microbicide chlorine bleach by stimulated neutrophils and also contributes to regulation of ionic homeostasis for optimal antimicrobial activity within phagosomes. An inadequate supply of chloride to phagocytes and their phagosomes, such as in CF disease and other chloride channel disorders, severely compromises host defense against infection. We provide an overview of the roles that chloride plays in normal innate immunity, highlighting specific links between defective chloride channel function and failures in host defense. © Society for Leukocyte Biology.

  5. Cross-sectional survey of salt content in cheese: a major contributor to salt intake in the UK

    PubMed Central

    Hashem, Kawther M; He, Feng J; Jenner, Katharine H; MacGregor, Graham A

    2014-01-01

    Objective To investigate the salt (sodium chloride) content in cheese sold in UK supermarkets. Study design We carried out a cross-sectional survey in 2012, including 612 cheeses available in UK supermarkets. Methods The salt content (g/100 g) was collected from product packaging and nutrient information panels of cheeses available in the top seven retailers. Results Salt content in cheese was high with a mean (±SD) of 1.7±0.58 g/100 g. There was a large variation in salt content between different types of cheeses and within the same type of cheese. On average, halloumi (2.71±0.34 g/100 g) and imported blue cheese (2.71±0.83 g/100 g) contained the highest amounts of salt and cottage cheese (0.55±0.14 g/100 g) contained the lowest amount of salt. Overall, among the 394 cheeses that had salt reduction targets, 84.5% have already met their respective Department of Health 2012 salt targets. Cheddar and cheddar-style cheese is the most popular/biggest selling cheese in the UK and has the highest number of products in the analysis (N=250). On average, salt level was higher in branded compared with supermarket own brand cheddar and cheddar-style products (1.78±0.13 vs 1.72±0.14 g/100 g, p<0.01). Ninety per cent of supermarket own brand products met the 2012 target for cheddar and cheddar-style cheese compared with 73% of branded products (p=0.001). Conclusions Salt content in cheese in the UK is high. There is a wide variation in the salt content of different types of cheeses and even within the same type of cheese. Despite this, 84.5% of cheeses have already met their respective 2012 targets. These findings demonstrate that much larger reductions in the amount of salt added to cheese could be made and more challenging targets need to be set, so that the UK can continue to lead the world in salt reduction. PMID:25099933

  6. Cross-sectional survey of salt content in cheese: a major contributor to salt intake in the UK.

    PubMed

    Hashem, Kawther M; He, Feng J; Jenner, Katharine H; MacGregor, Graham A

    2014-07-18

    To investigate the salt (sodium chloride) content in cheese sold in UK supermarkets. We carried out a cross-sectional survey in 2012, including 612 cheeses available in UK supermarkets. The salt content (g/100 g) was collected from product packaging and nutrient information panels of cheeses available in the top seven retailers. Salt content in cheese was high with a mean (±SD) of 1.7±0.58 g/100 g. There was a large variation in salt content between different types of cheeses and within the same type of cheese. On average, halloumi (2.71±0.34 g/100 g) and imported blue cheese (2.71±0.83 g/100 g) contained the highest amounts of salt and cottage cheese (0.55±0.14 g/100 g) contained the lowest amount of salt. Overall, among the 394 cheeses that had salt reduction targets, 84.5% have already met their respective Department of Health 2012 salt targets. Cheddar and cheddar-style cheese is the most popular/biggest selling cheese in the UK and has the highest number of products in the analysis (N=250). On average, salt level was higher in branded compared with supermarket own brand cheddar and cheddar-style products (1.78±0.13 vs 1.72±0.14 g/100 g, p<0.01). Ninety per cent of supermarket own brand products met the 2012 target for cheddar and cheddar-style cheese compared with 73% of branded products (p=0.001). Salt content in cheese in the UK is high. There is a wide variation in the salt content of different types of cheeses and even within the same type of cheese. Despite this, 84.5% of cheeses have already met their respective 2012 targets. These findings demonstrate that much larger reductions in the amount of salt added to cheese could be made and more challenging targets need to be set, so that the UK can continue to lead the world in salt reduction. Published by the BMJ Publishing Group Limited. For permission to use (where not already granted under a licence) please go to http://group.bmj.com/group/rights-licensing/permissions.

  7. Arabidopsis CaM1 and CaM4 Promote Nitric Oxide Production and Salt Resistance by Inhibiting S-Nitrosoglutathione Reductase via Direct Binding

    PubMed Central

    Wu, Dan; Peng, Xuan; Liu, Xu; Zhang, Jiaojiao; Zhao, Junfeng; Chen, Kunming; Zhao, Liqun

    2016-01-01

    Salt is a major threat to plant growth and crop productivity. Calmodulin (CaM), the most important multifunctional Ca2+ sensor protein in plants, mediates reactions against environmental stresses through target proteins; however, direct proof of the participation of CaM in salt tolerance and its corresponding signaling pathway in vivo is lacking. In this study, we found that AtCaM1 and AtCaM4 produced salt-responsive CaM isoforms according to real-time reverse transcription-polymerase chain reaction analyses; this result was verified based on a phenotypic analysis of salt-treated loss-of-function mutant and transgenic plants. We also found that the level of nitric oxide (NO), an important salt-responsive signaling molecule, varied in response to salt treatment depending on AtCaM1 and AtCaM4 expression. GSNOR is considered as an important and widely utilized regulatory component of NO homeostasis in plant resistance protein signaling networks. In vivo and in vitro protein-protein interaction assays revealed direct binding between AtCaM4 and S-nitrosoglutathione reductase (GSNOR), leading to reduced GSNOR activity and an increased NO level. Overexpression of GSNOR intensified the salt sensitivity of cam4 mutant plants accompanied by a reduced internal NO level, whereas a gsnor deficiency increased the salt tolerance of cam4 plants accompanied by an increased internal NO level. Physiological experiments showed that CaM4-GSNOR, acting through NO, reestablished the ion balance to increase plant resistance to salt stress. Together, these data suggest that AtCaM1 and AtCaM4 serve as signals in plant salt resistance by promoting NO accumulation through the binding and inhibition of GSNOR. This could be a conserved defensive signaling pathway in plants and animals. PMID:27684709

  8. Differential expression of salt-responsive genes to salinity stress in salt-tolerant and salt-sensitive rice (Oryza sativa L.) at seedling stage.

    PubMed

    Singh, Vijayata; Singh, Ajit Pal; Bhadoria, Jyoti; Giri, Jitender; Singh, Jogendra; T V, Vineeth; Sharma, P C

    2018-05-08

    The understanding of physio-biochemical and molecular attributes along with morphological traits contributing to the salinity tolerance is important for developing salt-tolerant rice (Oryza sativa L.) varieties. To explore these facts, rice genotypes CSR10 and MI48 with contrasting salt tolerance were characterized under salt stress (control, 75 and 150 mM NaCl) conditions. CSR10 expressed higher rate of physio-biochemical parameters, maintained lower Na/K ratio in shoots, and restricted Na translocation from roots to shoots than MI48. The higher expression of genes related to the osmotic module (DREB2A and LEA3) and ionic module (HKT2;1 and SOS1) in roots of CSR10 suppresses the stress, enhances electrolyte leakage, promotes the higher compatible solute accumulation, and maintains cellular ionic homeostasis leading to better salt stress tolerance than MI48. This study further adds on the importance of these genes in salt tolerance by comparing their behaviour in contrasting rice genotypes and utilizing specific marker to identify salinity-tolerant accessions/donors among germplasm; overexpression of these genes which accelerate the selection procedure precisely has been shown.

  9. Nutrient and salt mass balance on the Lower Arkansas River and a contributing tributary in an irrigated agricultural setting

    Treesearch

    Alexander Hulzenga; Ryan T. Bailey; Timothy K. Gates

    2016-01-01

    The Lower Arkansas River Basin is an irrigated, agricultural valley suffering from high concentrations of nutrients and salts in the coupled groundwater-surface water system. The majority of water quality data collection and associated spatial analysis of concentrations and mass loadings from the aquifer to the stream network has been performed at the regional scale (...

  10. Micromechanical processes in consolidated granular salt

    DOE PAGES

    Mills, Melissa Marie; Stormont, John C.; Bauer, Stephen J.

    2018-03-27

    Here, granular salt is likely to be used as backfill material and a seal system component within geologic salt formations serving as a repository for long-term isolation of nuclear waste. Pressure from closure of the surrounding salt formation will promote consolidation of granular salt, eventually resulting in properties comparable to native salt. Understanding dependence of consolidation processes on stress state, moisture availability, temperature, and time is important for demonstrating sealing functions and long-term repository performance. This study characterizes laboratory-consolidated granular salt by means of microstructural observations. Granular salt material from mining operations was obtained from the bedded Salado Formation hostingmore » the Waste Isolation Pilot Plant and the Avery Island salt dome. Laboratory test conditions included hydrostatic consolidation of jacketed granular salt with varying conditions of confining isochoric stress to 38 MPa, temperature to 250 °C, moisture additions of 1% by weight, time duration, and vented and non-vented states. Resultant porosities ranged between 1% and 22%. Optical and scanning electron microscopic techniques were used to ascertain consolidation mechanisms. From these investigations, samples with 1% added moisture or unvented during consolidation, exhibit clear pressure solution processes with tightly cohered grain boundaries and occluded fluid pores. Samples with only natural moisture content consolidated by a combination of brittle, cataclastic, and crystal plastic deformation. Recrystallization at 250 °C irrespective of moisture conditions was also observed. The range and variability of conditions applied in this study, combined with the techniques used to display microstructural features, are unique, and provide insight into an important area of governing deformation mechanism(s) occurring within salt repository applications.« less

  11. Micromechanical processes in consolidated granular salt

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Mills, Melissa Marie; Stormont, John C.; Bauer, Stephen J.

    Here, granular salt is likely to be used as backfill material and a seal system component within geologic salt formations serving as a repository for long-term isolation of nuclear waste. Pressure from closure of the surrounding salt formation will promote consolidation of granular salt, eventually resulting in properties comparable to native salt. Understanding dependence of consolidation processes on stress state, moisture availability, temperature, and time is important for demonstrating sealing functions and long-term repository performance. This study characterizes laboratory-consolidated granular salt by means of microstructural observations. Granular salt material from mining operations was obtained from the bedded Salado Formation hostingmore » the Waste Isolation Pilot Plant and the Avery Island salt dome. Laboratory test conditions included hydrostatic consolidation of jacketed granular salt with varying conditions of confining isochoric stress to 38 MPa, temperature to 250 °C, moisture additions of 1% by weight, time duration, and vented and non-vented states. Resultant porosities ranged between 1% and 22%. Optical and scanning electron microscopic techniques were used to ascertain consolidation mechanisms. From these investigations, samples with 1% added moisture or unvented during consolidation, exhibit clear pressure solution processes with tightly cohered grain boundaries and occluded fluid pores. Samples with only natural moisture content consolidated by a combination of brittle, cataclastic, and crystal plastic deformation. Recrystallization at 250 °C irrespective of moisture conditions was also observed. The range and variability of conditions applied in this study, combined with the techniques used to display microstructural features, are unique, and provide insight into an important area of governing deformation mechanism(s) occurring within salt repository applications.« less

  12. Drop the Salt! Assessing the impact of a public health advocacy strategy on Australian government policy on salt.

    PubMed

    Webster, Jacqui; Dunford, Elizabeth; Kennington, Sarah; Neal, Bruce; Chapman, Simon

    2014-01-01

    In 2007 the Australian Division of World Action on Salt and Health (AWASH) launched a campaign to encourage the Australian government to take action to reduce population salt intake. The objective of the present research was to assess the impact of the Drop the Salt! campaign on government policy. A review of government activities related to salt reduction was conducted and an advocacy strategy implemented to increase government action on salt. Advocacy actions were documented and the resulting outcomes identified. An analysis of stakeholder views on the effectiveness of the advocacy strategy was also undertaken. Settings Advocacy activities were coordinated through AWASH at the George Institute for Global Health in Sydney. All relevant State and Federal government statements and actions were reviewed and thirteen stakeholders with known interests or responsibilities regarding dietary salt, including food industry, government and health organisations, were interviewed. Stakeholder analysis affirmed that AWASH influenced the government's agenda on salt reduction and four key outputs were attributed to the campaign: (i) the Food Regulation Standing Committee discussions on salt, (ii) the Food and Health Dialogue salt targets, (iii) National Health and Medical Research Council partnership funding and (iv) the New South Wales Premier's Forum on Fast Foods. While it is not possible to definitively attribute changes in government policy to one organisation, stakeholder research indicated that the AWASH campaign increased the priority of salt reduction on the government's agenda. However, a coordinated government strategy on salt reduction is still required to ensure that the potential health benefits are fully realised.

  13. Saline versus balanced crystalloids for intravenous fluid therapy in the emergency department: study protocol for a cluster-randomized, multiple-crossover trial.

    PubMed

    Self, Wesley H; Semler, Matthew W; Wanderer, Jonathan P; Ehrenfeld, Jesse M; Byrne, Daniel W; Wang, Li; Atchison, Leanne; Felbinger, Matthew; Jones, Ian D; Russ, Stephan; Shaw, Andrew D; Bernard, Gordon R; Rice, Todd W

    2017-04-13

    Prior studies in critically ill patients suggest the supra-physiologic chloride concentration of 0.9% ("normal") saline may be associated with higher risk of renal failure and death compared to physiologically balanced crystalloids. However, the comparative effects of 0.9% saline and balanced fluids are largely unexamined among patients outside the intensive care unit, who represent the vast majority of patients treated with intravenous fluids. This study, entitled Saline Against Lactated Ringer's or Plasma-Lyte in the Emergency Department (SALT-ED), is a pragmatic, cluster, multiple-crossover trial at a single institution evaluating clinical outcomes of adults treated with 0.9% saline versus balanced crystalloids for intravenous fluid resuscitation in the emergency department. All adults treated in the study emergency department receiving at least 500 mL of isotonic crystalloid solution during usual clinical care and subsequently hospitalized outside the intensive care unit are included. Treatment allocation of 0.9% saline versus balanced crystalloids is assigned by calendar month, with study patients treated during the same month assigned to the same fluid type. The first month (January 2016) was randomly assigned to balanced crystalloids, with each subsequent month alternating between 0.9% saline and balanced crystalloids. For balanced crystalloid treatment, clinicians can choose either Lactated Ringer's or Plasma-Lyte A©. The study period is set at 16 months, which will result in an anticipated estimated sample size of 15,000 patients. The primary outcome is hospital-free days to day 28, defined as the number of days alive and out of the hospital from the index emergency department visit until 28 days later. Major secondary outcomes include proportion of patients who develop acute kidney injury by creatinine measurements; major adverse kidney events by hospital discharge or day 30 (MAKE30), which is a composite outcome of death, new renal replacement

  14. Self-monitoring urinary salt excretion in adults: A novel education program for restricting dietary salt intake

    PubMed Central

    YASUTAKE, KENICHIRO; SAWANO, KAYOKO; YAMAGUCHI, SHOKO; SAKAI, HIROKO; AMADERA, HATSUMI; TSUCHIHASHI, TAKUYA

    2011-01-01

    This study aimed to examine the usefulness of the self-monitoring of urinary salt excretion for educating individuals about the risk of excessive dietary salt intake. The subjects were 30 volunteers (15 men and 15 women) not consuming anti-hypertensive medication. The subjects measured urinary salt excretion at home for 4 weeks using a self-monitoring device. Blood pressure (BP), anthropometric variables and nutritional variables (by a dietary-habits questionnaire) were measured before and after the measurement of urinary salt excretion. Statistical analyses were performed, including paired t-tests, Chi-square test, Pearson’s product moment correlation coefficient and multiple linear regression analysis. In all subjects, the average urinary salt excretion over 4 weeks was 8.05±1.61 g/day and the range (maximum-minimum value) was 5.58±2.15 g/day. Salt excretion decreased significantly in weeks 3 and 4 (P<0.05 and P<0.01, respectively). Diastolic BP decreased from 77.7±14.3 (at baseline) to 74.3±13.3 after 4 weeks (P<0.05), while systolic BP and anthropometric variables remained unchanged. Nutrition surveys indicated that energy intake was correlated with salt intake both before and after the measurements; changes in both variables during the observation period were correlated (r=0.40, P<0.05). The percentage of subjects who were aware of the restriction in dietary salt intake increased from 47 to 90%. In conclusion, daily monitoring of the amount of urinary salt excretion using a self-monitoring device appears to be an effective educational tool for improving the quality of life of healthy adults. PMID:22977549

  15. Self-monitoring urinary salt excretion in adults: A novel education program for restricting dietary salt intake.

    PubMed

    Yasutake, Kenichiro; Sawano, Kayoko; Yamaguchi, Shoko; Sakai, Hiroko; Amadera, Hatsumi; Tsuchihashi, Takuya

    2011-07-01

    This study aimed to examine the usefulness of the self-monitoring of urinary salt excretion for educating individuals about the risk of excessive dietary salt intake. The subjects were 30 volunteers (15 men and 15 women) not consuming anti-hypertensive medication. The subjects measured urinary salt excretion at home for 4 weeks using a self-monitoring device. Blood pressure (BP), anthropometric variables and nutritional variables (by a dietary-habits questionnaire) were measured before and after the measurement of urinary salt excretion. Statistical analyses were performed, including paired t-tests, Chi-square test, Pearson's product moment correlation coefficient and multiple linear regression analysis. In all subjects, the average urinary salt excretion over 4 weeks was 8.05±1.61 g/day and the range (maximum-minimum value) was 5.58±2.15 g/day. Salt excretion decreased significantly in weeks 3 and 4 (P<0.05 and P<0.01, respectively). Diastolic BP decreased from 77.7±14.3 (at baseline) to 74.3±13.3 after 4 weeks (P<0.05), while systolic BP and anthropometric variables remained unchanged. Nutrition surveys indicated that energy intake was correlated with salt intake both before and after the measurements; changes in both variables during the observation period were correlated (r=0.40, P<0.05). The percentage of subjects who were aware of the restriction in dietary salt intake increased from 47 to 90%. In conclusion, daily monitoring of the amount of urinary salt excretion using a self-monitoring device appears to be an effective educational tool for improving the quality of life of healthy adults.

  16. To Compare the Effects of Storage Solutions 0.05% Thymol vs. 6% Sodium Hypochlorite vs. Hank’s Balanced Salt Solution on the Flexural Strength of Dentin Bars

    DTIC Science & Technology

    2016-05-20

    ridge thicknesses, restored with composite resin and composite resin reinforced with Ribbond . Indian Journal of Dental Research . Manisha, T. (2014...in the internal structure of an extracted tooth, used to test dental materials in vitro could result in findings that cannot be replicated or...roots restored with different post systems. International Endodontic Journal . Barbosa, S. V. (1994). Influence of sodium hypochlorite on the

  17. Salt stress-induced changes in antioxidative defense system and proteome profiles of salt-tolerant and sensitive Frankia strains.

    PubMed

    Srivastava, Amrita; Singh, Anumeha; Singh, Satya S; Mishra, Arun K

    2017-04-16

    An appreciation of comparative microbial survival is most easily done while evaluating their adaptive strategies during stress. In the present experiment, antioxidative and whole cell proteome variations based on spectrophotometric analysis and SDS-PAGE and 2-dimensional gel electrophoresis have been analysed among salt-tolerant and salt-sensitive Frankia strains. This is the first report of proteomic basis underlying salt tolerance in these newly isolated Frankia strains from Hippophae salicifolia D. Don. Salt-tolerant strain HsIi10 shows higher increment in the contents of superoxide dismutase, catalase and ascorbate peroxidase as compared to salt-sensitive strain HsIi8. Differential 2-DGE profile has revealed differential profiles for salt-tolerant and salt-sensitive strains. Proteomic confirmation of salt tolerance in the strains with inbuilt efficiency of thriving in nitrogen-deficient locales is a definite advantage for these microbes. This would be equally beneficial for improvement of soil nitrogen status. Efficient protein regulation in HsIi10 suggests further exploration for its potential use as biofertilizer in saline soils.

  18. Molten salt electrolyte separator

    DOEpatents

    Kaun, T.D.

    1996-07-09

    The patent describes a molten salt electrolyte/separator for battery and related electrochemical systems including a molten electrolyte composition and an electrically insulating solid salt dispersed therein, to provide improved performance at higher current densities and alternate designs through ease of fabrication. 5 figs.

  19. Mathematical model of salt cavern leaching for gas storage in high-insoluble salt formations.

    PubMed

    Li, Jinlong; Shi, Xilin; Yang, Chunhe; Li, Yinping; Wang, Tongtao; Ma, Hongling

    2018-01-10

    A mathematical model is established to predict the salt cavern development during leaching in high-insoluble salt formations. The salt-brine mass transfer rate is introduced, and the effects of the insoluble sediments on the development of the cavern are included. Considering the salt mass conservation in the cavern, the couple equations of the cavern shape, brine concentration and brine velocity are derived. According to the falling and accumulating rules of the insoluble particles, the governing equations of the insoluble sediments are deduced. A computer program using VC++ language is developed to obtain the numerical solution of these equations. To verify the proposed model, the leaching processes of two salt caverns of Jintan underground gas storage are simulated by the program, using the actual geological and technological parameters. The same simulation is performed by the current mainstream leaching software in China. The simulation results of the two programs are compared with the available field data. It shows that the proposed software is more accurate on the shape prediction of the cavern bottom and roof, which demonstrates the reliability and applicability of the model.

  20. DESCRIPTIVE ANALYSIS OF DIVALENT SALTS

    PubMed Central

    YANG, HEIDI HAI-LING; LAWLESS, HARRY T.

    2005-01-01

    Many divalent salts (e.g., calcium, iron, zinc), have important nutritional value and are used to fortify food or as dietary supplements. Sensory characterization of some divalent salts in aqueous solutions by untrained judges has been reported in the psychophysical literature, but formal sensory evaluation by trained panels is lacking. To provide this information, a trained descriptive panel evaluated the sensory characteristics of 10 divalent salts including ferrous sulfate, chloride and gluconate; calcium chloride, lactate and glycerophosphate; zinc sulfate and chloride; and magnesium sulfate and chloride. Among the compounds tested, iron compounds were highest in metallic taste; zinc compounds had higher astringency and a glutamate-like sensation; and bitterness was pronounced for magnesium and calcium salts. Bitterness was affected by the anion in ferrous and calcium salts. Results from the trained panelists were largely consistent with the psychophysical literature using untrained judges, but provided a more comprehensive set of oral sensory attributes. PMID:16614749

  1. DEVELOPING INDICATORS OF SALT MARSH HEALTH

    EPA Science Inventory

    We relate plant zonation in salt marshes to key ecosystem services such as erosion control and wildlife habitat. Ten salt marshes in Narragansett Bay, with similar geological bedrock and sea exchange, were identified to examine plant zonation. Sub-watersheds adjacent to the salt ...

  2. SALT for Language Acquisition.

    ERIC Educational Resources Information Center

    Bancroft, W. Jane

    1996-01-01

    Discusses Schuster's Suggestive-Accelerative Learning Techniques (SALT) Method, which combines Lozanov's Suggestopedia with such American methods as Asher's Total Physical Response and Galyean's Confluent Education. The article argues that students trained with the SALT Method have higher achievement scores and better attitudes than others. (14…

  3. Pluronic®-bile salt mixed micelles.

    PubMed

    Patel, Vijay; Ray, Debes; Bahadur, Anita; Ma, Junhe; Aswal, V K; Bahadur, Pratap

    2018-06-01

    The present study was aimed to examine the interaction of two bile salts viz. sodium cholate (NaC) and sodium deoxycholate (NaDC) with three ethylene polyoxide-polypropylene polyoxide (PEO-PPO-PEO) triblock copolymers with similar PPO but varying PEO micelles with a focus on the effect of pH on mixed micelles. Mixed micelles of moderately hydrophobic Pluronic ® P123 were examined in the presence of two bile salts and compared with those from very hydrophobic L121 and very hydrophilic F127. Both the bile salts increase the cloud point (CP) of copolymer solution and decreased apparent micelle hydrodynamic diameter (D h ). SANS study revealed that P123 forms small spherical micelles showing a decrease in size on progressive addition of bile salts. The negatively charged mixed micelles contained fewer P123 molecules but progressively rich in bile salt. NaDC being more hydrophobic displays more pronounced effect than NaC. Interestingly, NaC shows micellar growth in acidic media which has been attributed to the formation of bile acids by protonation of carboxylate ion and subsequent solubilization. In contrast, NaDC showed phase separation at higher concentration. Nuclear Overhauser effect spectroscopy (NOESY) experiments provided information on interaction and location of bile salts in micelles. Results are discussed in terms of hydrophobicity of bile salts and Pluronics ® and the site of bile salt in polymer micelles. Proposed molecular interactions are useful to understand more about bile salts which play important role in physiological processes. Copyright © 2018 Elsevier B.V. All rights reserved.

  4. SEPARATION OF METAL SALTS BY ADSORPTION

    DOEpatents

    Gruen, D.M.

    1959-01-20

    It has been found that certain metal salts, particularly the halides of iron, cobalt, nickel, and the actinide metals, arc readily absorbed on aluminum oxide, while certain other salts, particularly rare earth metal halides, are not so absorbed. Use is made of this discovery to separate uranium from the rare earths. The metal salts are first dissolved in a molten mixture of alkali metal nitrates, e.g., the eutectic mixture of lithium nitrate and potassium nitrate, and then the molten salt solution is contacted with alumina, either by slurrying or by passing the salt solution through an absorption tower. The process is particularly valuable for the separation of actinides from lanthanum-group rare earths.

  5. Salting Constants of Small Organic Molecules in Aerosol-Relevant Salts and Application to Aerosol Formation in the Southeastern United States

    NASA Astrophysics Data System (ADS)

    Waxman, E.; Carlton, A. M. G.; Ziemann, P. J.; Volkamer, R. M.

    2014-12-01

    Secondary organic aerosol (SOA) formation from small water-soluble molecules such as glyoxal and methyl glyoxal is a topic of emerging interest. Results from recent field campaigns, e.g. Waxman et al. (2013, GRL) and Knote et al. (2014, ACP), show that these molecules can form significant SOA mass as a result of 'salting-in'. Salting-in happens when a molecule's solubility increases with salt concentration and salting-out is the reverse. Salting effects modify the solubility exponentially with increasing salt concentration, and thus the effective Henry's law constant can strongly modify partitioning, and multiphase chemical reaction rates in aerosol water. Moreover, the solubility in aerosol water cannot easily inferred based on the solubility in cloud water, as the salting effects could change the solubility by a factor of 104 or more. In this work, we have devised and applied a novel experimental setup to measure salting constants using an ion trap mass spectrometer. We focus on small, water soluble molecules like methyl glyoxal and similar compounds and measure salting constants for aerosol-relevant salts including ammonium sulfate, ammonium nitrate, and sodium chloride. The Setschenow salting-constant values are then used to parameterize the effects of salting in CMAQ. We present a series of sensitivity studies of the effects that inorganic aerosols have on the SOA formation from small soluble molecules in the southeastern United States.

  6. Putrescine differently influences the effect of salt stress on polyamine metabolism and ethylene synthesis in rice cultivars differing in salt resistance

    PubMed Central

    Quinet, Muriel; Lefèvre, Isabelle; Lambillotte, Béatrice; Dupont-Gillain, Christine C.; Lutts, Stanley

    2010-01-01

    Effects of salt stress on polyamine metabolism and ethylene production were examined in two rice (Oryza sativa L.) cultivars [I Kong Pao (IKP), salt sensitive; and Pokkali, salt resistant] grown for 5 d and 12 d in nutrient solution in the presence or absence of putrescine (1 mM) and 0, 50, and 100 mM NaCl. The salt-sensitive (IKP) and salt-resistant (Pokkali) cultivars differ not only in their mean levels of putrescine, but also in the physiological functions assumed by this molecule in stressed tissues. Salt stress increased the proportion of conjugated putrescine in salt-resistant Pokkali and decreased it in the salt-sensitive IKP, suggesting a possible protective function in response to NaCl. Activities of the enzymes ornithine decarboxylase (ODC; EC 4.1.1.17) and arginine decarboxylase (ADC; EC 4.1.1.19) involved in putrescine synthesis were higher in salt-resistant Pokkali than in salt-sensitive IKP. Both enzymes were involved in the response to salt stress. Salt stress also increased diamine oxidase (DAO; 1.4.3.6) and polyamine oxidase (PAO EC 1.5.3.11) activities in the roots of salt-resistant Pokkali and in the shoots of salt-sensitive IKP. Gene expression followed by reverse transcription-PCR suggested that putrescine could have a post-translational impact on genes coding for ADC (ADCa) and ODC (ODCa and ODCb) but could induce a transcriptional activation of genes coding for PAO (PAOb) mainly in the shoot of salt-stressed plants. The salt-resistant cultivar Pokkali produced higher amounts of ethylene than the salt-sensitive cultivar IKP, and exogenous putrescine increased ethylene synthesis in both cultivars, suggesting no direct antagonism between polyamine and ethylene pathways in rice. PMID:20472577

  7. Use of Nitrogen Trifluoride To Purify Molten Salt Reactor Coolant and Heat Transfer Fluoride Salts

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Scheele, Randall D.; Casella, Andrew M.; McNamara, Bruce K.

    2017-05-02

    Abstract: The molten salt cooled nuclear reactor is included as one of the Generation IV reactor types. One of the challenges with the implementation of this reactor is purifying and maintaining the purity of the various molten fluoride salts that will be used as coolants. The method used for Oak Ridge National Laboratory’s molten salt experimental test reactor was to treat the coolant with a mixture of H2 and HF at 600°C. In this article we evaluate thermal NF3 treatment for purifying molten fluoride salt coolant candidates based on NF3’s 1) past use to purify fluoride salts, 2) other industrialmore » uses, 3) commercial availability, 4) operational, chemical, and health hazards, 5) environmental effects and environmental risk management methods, 6) corrosive properties, and 7) thermodynamic potential to eliminate impurities that could arise due to exposure to water and oxygen. Our evaluation indicates that nitrogen trifluoride is a viable and safer alternative to the previous method.« less

  8. Proposed Great Salt Lake Basin Hydrologic Observatory

    NASA Astrophysics Data System (ADS)

    Johnson, W. P.; Tarboton, D. G.

    2004-12-01

    The dynamic physiography and population growth within the Great Salt Lake Basin provide the opportunity to observe climate and human-induced land-surface changes affecting water availability, water quality, and water use, thereby making the Great Salt Lake Basin a microcosm of contemporary water resource issues and an excellent site to pursue interdisciplinary and integrated hydrologic science. Important societal concerns center on: How do climate variability and human-induced landscape changes affect hydrologic processes, water quality and availability, and aquatic ecosystems over a range of scales? What are the resource, social, and economic consequences of these changes? The steep topography and large climatic gradients of the Great Salt Lake Basin yield hydrologic systems that are dominated by non-linear interactions between snow deposition and snow melt in the mountains, stream flow and groundwater recharge in the mid-elevations, and evaporative losses from the desert floor at lower elevations. Because the Great Salt Lake Basin terminates in a closed basin lake, it is uniquely suited to closing the water, solute, and sediment balances in a way that is rarely possible in a watershed of a size sufficient for coupling to investigations of atmospheric processes. Proposed infrastructure will include representative densely instrumented focus areas that will be nested within a basin-wide network, thereby quantifying fluxes, residence times, pathways, and storage volumes over a range of scales and land uses. The significant and rapid ongoing urbanization presents the opportunity for observations that quantify the interactions among hydrologic processes, human induced changes and social and economic dynamics. One proposed focus area will be a unique, highly instrumented mountain-to-basin transect that will quantify hydrologic processes extending from the mountain ridge top to the Great Salt Lake. The transect will range in elevation from about 1200 m to 3200 m, with a

  9. Effect of temperature & salt concentration on salt tolerant nitrate-perchlorate reducing bacteria: Nitrate degradation kinetics.

    PubMed

    Ebrahimi, Shelir; Nguyen, Thi Hau; Roberts, Deborah J

    2015-10-15

    The sustainability of nitrate-contaminated water treatment using ion-exchange processes can be achieved by regenerating the exhausted resin several times. Our previous study shows that the use of multi-cycle bioregeneration of resin enclosed in membrane is an effective and innovative regeneration method. In this research, the effects of two independent factors (temperature and salt concentration) on the biological denitrification rate were studied. The results of this research along with the experimental results of the previous study on the effect of the same factors on nitrate desorption rate from the resin allow the optimization of the bioregeneration process. The results of nitrate denitrification rate study show that the biodegradation rate at different temperature and salt concentration is independent of the initial nitrate concentration. At each specific salt concentration, the nitrate removal rate increased with increasing temperature with the average value of 0.001110 ± 0.0000647 mg-nitrate/mg-VSS.h.°C. However, the effect of different salt concentrations was dependent on the temperature; there is a significant interaction between salt concentration and temperature; within each group of temperatures, the nitrate degradation rate decreased with increasing the salt concentration. The temperature affected the tolerance to salinity and culture was less tolerant to high concentration of salt at low temperature. Evidenced by the difference between the minimum and maximum nitrate degradation rate being greater at lower temperature. At 35 °C, a 32% reduction in the nitrate degradation rate was observed while at 12 °C this reduction was 69%. This is the first published study to examine the interaction of salt concentration and temperature during biological denitrification. Copyright © 2015 Elsevier Ltd. All rights reserved.

  10. Contamination of table salts from Turkey with microplastics.

    PubMed

    Gündoğdu, Sedat

    2018-05-01

    Microplastics (MPs) pollution has become a problem that affects all aquatic, atmospheric and terrestial environments in the world. In this study, we looked into whether MPs in seas and lakes reach consumers through table salt. For this purpose, we obtained 16 brands of table salts from the Turkish market and determined their MPs content with microscopic and Raman spectroscopic examination. According to our results, the MP particle content was 16-84 item/kg in sea salt, 8-102 item/kg in lake salt and 9-16 item/kg in rock salt. The most common plastic polymers were polyethylene (22.9%) and polypropylene (19.2%). When the amounts of MPs and the amount of salt consumed by Turkish consumers per year are considered together, if they consume sea salt, lake salt or rock salt, they consume 249-302, 203-247 or 64-78 items per year, respectively. This is the first time this concerning level of MPs content in table salts in the Turkish market has been reported.

  11. Seismic anisotropy in deforming salt bodies

    NASA Astrophysics Data System (ADS)

    Prasse, P.; Wookey, J. M.; Kendall, J. M.; Dutko, M.

    2017-12-01

    Salt is often involved in forming hydrocarbon traps. Studying salt dynamics and the deformation processes is important for the exploration industry. We have performed numerical texture simulations of single halite crystals deformed by simple shear and axial extension using the visco-plastic self consistent approach (VPSC). A methodology from subduction studies to estimate strain in a geodynamic simulation is applied to a complex high-resolution salt diapir model. The salt diapir deformation is modelled with the ELFEN software by our industrial partner Rockfield, which is based on a finite-element code. High strain areas at the bottom of the head-like strctures of the salt diapir show high amount of seismic anisotropy due to LPO development of halite crystals. The results demonstrate that a significant degree of seismic anisotropy can be generated, validating the view that this should be accounted for in the treatment of seismic data in, for example, salt diapir settings.

  12. Salt fortified with diethylcarbamazine (DEC) as an effective intervention for lymphatic filariasis, with lessons learned from salt iodization programmes.

    PubMed

    Houston, R

    2000-01-01

    DEC-fortified salt has been used successfully as a principal public health tool to eliminate lymphatic filariasis (LF) in China and, less extensively, in several other countries. Studies from 1967 to the present conducted in Brazil, Japan, Tanzania, India, China, and Taiwan involving administration of DEC salt for 18 days to 1 year, have shown this intervention to be effective for both bancroftian and brugian filariasis, as measured by reductions in both microfilarial density and positivity, and in some studies through reduction in mosquito positivity rates as well. Furthermore, studies suggest specific advantages from using DEC salt, including lack of side effects, particularly for bancroftian filariasis, and ability to reduce prevalence below 1% when used in conjunction with standard regimens of DEC tablets. However, use of DEC salt as a control tool suffers from a concern that health authorities might find it difficult to manage a programme involving a commodity such as salt. In the past decade, the very successful global efforts to eliminate iodine deficiency through universal salt iodization have demonstrated that partnership with the salt industry can be both successful and effective as a public health tool. Use of DEC salt can be most successfully implemented in areas in which (a) there is adequate governmental support for its use and for elimination of filariasis, (b) filariasis-endemic areas are clearly defined, (c) political leaders, health officials and the salt industry agree that DEC salt is an appropriate intervention, (d) the salt industry is well-organized and has known distribution patterns, (e) a successful national salt iodization effort exists, (f) a monitoring system exists that ensures adequacy of salt iodine content during production and that can also measure household coverage, and (g) measurement of impact on transmission of LF with the new antigen or filarial DNA detection methods can be established. There are advantages and disadvantages

  13. Dietary Salt Exacerbates Experimental Colitis.

    PubMed

    Tubbs, Alan L; Liu, Bo; Rogers, Troy D; Sartor, R Balfour; Miao, Edward A

    2017-08-01

    The Western diet is characterized by high protein, sugar, fat, and low fiber intake, and is widely believed to contribute to the incidence and pathogenesis of inflammatory bowel disease (IBD). However, high sodium chloride salt content, a defining feature of processed foods, has not been considered as a possible environmental factor that might drive IBD. We set out to bridge this gap. We examined murine models of colitis on either a high salt diet (HSD) or a low salt diet. We demonstrate that an HSD exacerbates inflammatory pathology in the IL-10-deficient murine model of colitis relative to mice fed a low salt diet. This was correlated with enhanced expression of numerous proinflammatory cytokines. Surprisingly, sodium accumulated in the colons of mice on an HSD, suggesting a direct effect of salt within the colon. Similar to the IL-10-deficient model, an HSD also enhanced cytokine expression during infection by Salmonella typhimurium This occurred in the first 3 d of infection, suggesting that an HSD potentiates an innate immune response. Indeed, in cultured dendritic cells we found that high salt media potentiates cytokine expression downstream of TLR4 activation via p38 MAPK and SGK1. A third common colitis model, administration of dextran sodium sulfate, was hopelessly confounded by the high sodium content of the dextran sodium sulfate. Our results raise the possibility that high dietary salt is an environmental factor that drives increased inflammation in IBD. Copyright © 2017 by The American Association of Immunologists, Inc.

  14. Reducing salt in food; setting product-specific criteria aiming at a salt intake of 5 g per day.

    PubMed

    Dötsch-Klerk, M; Goossens, W P M M; Meijer, G W; van het Hof, K H

    2015-07-01

    There is an increasing public health concern regarding high salt intake, which is generally between 9 and 12 g per day, and much higher than the 5 g recommended by World Health Organization. Several relevant sectors of the food industry are engaged in salt reduction, but it is a challenge to reduce salt in products without compromising on taste, shelf-life or expense for consumers. The objective was to develop globally applicable salt reduction criteria as guidance for product reformulation. Two sets of product group-specific sodium criteria were developed to reduce salt levels in foods to help consumers reduce their intake towards an interim intake goal of 6 g/day, and—on the longer term—5 g/day. Data modelling using survey data from the United States, United Kingdom and Netherlands was performed to assess the potential impact on population salt intake of cross-industry food product reformulation towards these criteria. Modelling with 6 and 5 g/day criteria resulted in estimated reductions in population salt intake of 25 and 30% for the three countries, respectively, the latter representing an absolute decrease in the median salt intake of 1.8-2.2 g/day. The sodium criteria described in this paper can serve as guidance for salt reduction in foods. However, to enable achieving an intake of 5 g/day, salt reduction should not be limited to product reformulation. A multi-stakeholder approach is needed to make consumers aware of the need to reduce their salt intake. Nevertheless, dietary impact modelling shows that product reformulation by food industry has the potential to contribute substantially to salt-intake reduction.

  15. Alkali Metal/Salt Thermal-Energy-Storage Systems

    NASA Technical Reports Server (NTRS)

    Phillips, Wayne W.; Stearns, John W.

    1987-01-01

    Proposed thermal-energy-storage system based on mixture of alkali metal and one of its halide salts; metal and salt form slurry of two immiscible melts. Use of slurry expected to prevent incrustations of solidified salts on heat-transfer surfaces that occur where salts alone used. Since incrustations impede heat transfer, system performance improved. In system, charging heat-exchanger surface immersed in lower liquid, rich in halide-salt, phase-charge material. Discharging heat exchanger surface immersed in upper liquid, rich in alkali metal.

  16. An innovative spraying setup to obtain uniform salt(s) mixture deposition to investigate hot corrosion

    NASA Astrophysics Data System (ADS)

    Mannava, Venkateswararao; Swaminathan, A. Vignesh; Kamaraj, M.; Kottada, Ravi Sankar

    2016-02-01

    A hot corrosion study via molten salt deposition and its interaction with creep/fatigue play a critical role in predicting the life of gas turbine engine components. To do systematic hot corrosion studies, deposition of molten salts on specimens should be uniform with good adherence. Thus, the present study describes an in-house developed spraying setup that produces uniform and reliable molten salt deposition in a repeatable fashion. The efficacy of the present method was illustrated by depositing 90 wt. % Na2SO4 + 5 wt. % NaCl + 5 wt. % NaV O3 salt mixture on hot corrosion coupons and on creep specimens, and also by comparing with other deposition methods.

  17. Target Salt 2025: A Global Overview of National Programs to Encourage the Food Industry to Reduce Salt in Foods

    PubMed Central

    Webster, Jacqui; Trieu, Kathy; Dunford, Elizabeth; Hawkes, Corinna

    2014-01-01

    Reducing population salt intake has been identified as a priority intervention to reduce non-communicable diseases. Member States of the World Health Organization have agreed to a global target of a 30% reduction in salt intake by 2025. In countries where most salt consumed is from processed foods, programs to engage the food industry to reduce salt in products are being developed. This paper provides a comprehensive overview of national initiatives to encourage the food industry to reduce salt. A systematic review of the literature was supplemented by key informant questionnaires to inform categorization of the initiatives. Fifty nine food industry salt reduction programs were identified. Thirty eight countries had targets for salt levels in foods and nine countries had introduced legislation for some products. South Africa and Argentina have both introduced legislation limiting salt levels across a broad range of foods. Seventeen countries reported reductions in salt levels in foods—the majority in bread. While these trends represent progress, many countries have yet to initiate work in this area, others are at early stages of implementation and further monitoring is required to assess progress towards achieving the global target. PMID:25195640

  18. Target salt 2025: a global overview of national programs to encourage the food industry to reduce salt in foods.

    PubMed

    Webster, Jacqui; Trieu, Kathy; Dunford, Elizabeth; Hawkes, Corinna

    2014-08-21

    Reducing population salt intake has been identified as a priority intervention to reduce non-communicable diseases. Member States of the World Health Organization have agreed to a global target of a 30% reduction in salt intake by 2025. In countries where most salt consumed is from processed foods, programs to engage the food industry to reduce salt in products are being developed. This paper provides a comprehensive overview of national initiatives to encourage the food industry to reduce salt. A systematic review of the literature was supplemented by key informant questionnaires to inform categorization of the initiatives. Fifty nine food industry salt reduction programs were identified. Thirty eight countries had targets for salt levels in foods and nine countries had introduced legislation for some products. South Africa and Argentina have both introduced legislation limiting salt levels across a broad range of foods. Seventeen countries reported reductions in salt levels in foods-the majority in bread. While these trends represent progress, many countries have yet to initiate work in this area, others are at early stages of implementation and further monitoring is required to assess progress towards achieving the global target.

  19. The Science of Salt: A focused review on salt-related knowledge, attitudes and behaviors, and gender differences.

    PubMed

    McKenzie, Briar; Santos, Joseph Alvin; Trieu, Kathy; Thout, Sudhir Raj; Johnson, Claire; Arcand, JoAnne; Webster, Jacqui; McLean, Rachael

    2018-05-01

    The aim of the current review was to examine the scope of studies published in the Science of Salt Weekly that contained a measure of self-reported knowledge, attitudes, and behavior (KAB) concerning salt. Specific objectives were to examine how KAB measures are used to evaluate salt reduction intervention studies, the questionnaires used, and whether any gender differences exist in self-reported KAB. Studies were reviewed from the commencement of Science of Salt Weekly, June 2013 to the end of August 2017. Seventy-five studies had relevant measures of KAB and were included in this review, 13 of these were salt-reduction intervention-evaluation studies, with the remainder (62) being descriptive KAB studies. The KAB questionnaires used were specific to the populations studied, without evidence of a best practice measure. 40% of studies used KAB alone as the primary outcome measure; the remaining studies used more quantitative measures of salt intake such as 24-hour urine. Only half of the descriptive studies showed KAB outcomes disaggregated by gender, and of those, 73% showed women had more favorable KAB related to salt. None of the salt intervention-evaluation studies showed disaggregated KAB data. Therefore, it is likely important that evaluation studies disaggregate, and are appropriately powered to disaggregate all outcomes by gender to address potential disparities. ©2018 Wiley Periodicals, Inc.

  20. Relating road salt to exceedances of the water quality standard for chloride in New Hampshire streams.

    PubMed

    Trowbridge, Philip R; Kahl, J Steve; Sassan, Dari A; Heath, Douglas L; Walsh, Edward M

    2010-07-01

    Six watersheds in New Hampshire were studied to determine the effects of road salt on stream water quality. Specific conductance in streams was monitored every 15 min for one year using dataloggers. Chloride concentrations were calculated from specific conductance using empirical relationships. Stream chloride concentrations were directly correlated with development in the watersheds and were inversely related to streamflow. Exceedances of the EPA water quality standard for chloride were detected in the four watersheds with the most development. The number of exceedances during a year was linearly related to the annual average concentration of chloride. Exceedances of the water quality standard were not predicted for streams with annual average concentrations less than 102 mg L(-1). Chloride was imported into three of the watersheds at rates ranging from 45 to 98 Mg Cl km(-2) yr(-1). Ninety-one percent of the chloride imported was road salt for deicing roadways and parking lots. A simple, mass balance equation was shown to predict annual average chloride concentrations from streamflow and chloride import rates to the watershed. This equation, combined with the apparent threshold for exceedances of the water quality standard, can be used for screening-level TMDLs for road salt in impaired watersheds.

  1. Salt-induced enhancement of antifreeze protein activity: a salting-out effect.

    PubMed

    Kristiansen, Erlend; Pedersen, Sindre Andre; Zachariassen, Karl Erik

    2008-10-01

    Antifreeze proteins are a structurally diverse group of proteins characterized by their unique ability to cause a separation of the melting- and growth-temperatures of ice. These proteins have evolved independently in different kinds of cold-adapted ectothermic animals, including insects and fish, where they protect against lethal freezing of the body fluids. There is a great variability in the capacity of different kinds of antifreeze proteins to evoke the antifreeze effect, but the basis of these differences is not well understood. This study reports on salt-induced enhancement of the antifreeze activity of an antifreeze protein from the longhorn beetle Rhagium inquisitor (L.). The results imply that antifreeze activity is predetermined by a steady-state distribution of the antifreeze protein between the solution and the ice surface region. The observed salt-induced enhancement of the antifreeze activity compares qualitatively and quantitatively with salt-induced lowering of protein solubility. Thus, salts apparently enhance antifreeze activity by evoking a solubility-induced shift in the distribution pattern of the antifreeze proteins in favour of the ice. These results indicate that the solubility of antifreeze proteins in the solution surrounding the ice crystal is a fundamental physiochemical property in relation to their antifreeze potency.

  2. Tetraalkylammonium Salts as Hydrogen-Bonding Catalysts.

    PubMed

    Shirakawa, Seiji; Liu, Shiyao; Kaneko, Shiho; Kumatabara, Yusuke; Fukuda, Airi; Omagari, Yumi; Maruoka, Keiji

    2015-12-21

    Although the hydrogen-bonding ability of the α hydrogen atoms on tetraalkylammonium salts is often discussed with respect to phase-transfer catalysts, catalysis that utilizes the hydrogen-bond-donor properties of tetraalkylammonium salts remains unknown. Herein, we demonstrate hydrogen-bonding catalysis with newly designed tetraalkylammonium salt catalysts in Mannich-type reactions. The structure and the hydrogen-bonding ability of the new ammonium salts were investigated by X-ray diffraction analysis and NMR titration studies. © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  3. Central Diabetes Insipidus and Cisplatin-Induced Renal Salt Wasting Syndrome: A Challenging Combination.

    PubMed

    Cortina, Gerard; Hansford, Jordan R; Duke, Trevor

    2016-05-01

    We describe a 2-year-old female with a suprasellar primitive neuroectodermal tumor and central diabetes insipidus (DI) who developed polyuria with natriuresis and subsequent hyponatremia 36 hr after cisplatin administration. The marked urinary losses of sodium in combination with a negative sodium balance led to the diagnosis of cisplatin-induced renal salt wasting syndrome (RSWS). The subsequent clinical management is very challenging. Four weeks later she was discharged from ICU without neurological sequela. The combination of cisplatin-induced RSWS with DI can be confusing and needs careful clinical assessment as inaccurate diagnosis and management can result in increased neurological injury. © 2016 Wiley Periodicals, Inc.

  4. Salt power - Is Neptune's ole salt a tiger in the tank

    NASA Astrophysics Data System (ADS)

    Wick, G. S.

    1980-02-01

    Methods of exploiting the 24 atm osmotic pressure difference between fresh and salt water to generate energy include reverse electrodialysis, wherein 80 millivolts of electricity cross each ion-selective membrane placed between solutions of fresh and salt water. Pressure-retarded osmosis, using pumps and pressure chambers, relies on semipermeable membranes that allow fresh water to flow into saline, with power generated by the permeated water being released through a turbine. In reverse vapor compression, water vapor rapidly transfers from fresh water to salt water in an evacuated chamber (due to the vapor pressure difference between them), and power can be extracted using 24 m diameter turbine blades. Environmental concerns include protecting estuaries from stress, managing sediments, and protecting marine animals, while filtration would be needed to keep the membranes free from corrosion, biological fouling, or silting.

  5. Batteries using molten salt electrolyte

    DOEpatents

    Guidotti, Ronald A.

    2003-04-08

    An electrolyte system suitable for a molten salt electrolyte battery is described where the electrolyte system is a molten nitrate compound, an organic compound containing dissolved lithium salts, or a 1-ethyl-3-methlyimidazolium salt with a melting temperature between approximately room temperature and approximately 250.degree. C. With a compatible anode and cathode, the electrolyte system is utilized in a battery as a power source suitable for oil/gas borehole applications and in heat sensors.

  6. Secondary Aluminum Processing Waste: Salt Cake ...

    EPA Pesticide Factsheets

    Thirty-nine salt cake samples were collected from 10 SAP facilities across the U.S. The facilities were identified by the Aluminum Association to cover a wide range of processes. Results suggest that while the percent metal leached from the salt cake was relatively low, the leachable metal content may still pose a contamination concern and potential human and ecological exposure if uncontrollably released to the environment. As a result, salt cake should always be managed at facilities that utilize synthetic liner systems with leachate collection (the salt content of the leachate will increase the hydraulic conductivity of clay liners within a few years of installation). The mineral phase analysis showed that various species of aluminum are present in the salt cake samples with a large degree of variability. The relative abundance of various aluminum species was evaluated but it is noted that the method used is a semi-quantitative method and as a result there is a limitation for the data use. The analysis only showed a few aluminum species present in salt cake which does not exclude the presence of other crystalline species especially in light of the variability observed in the samples. Results presented in this document are of particular importance when trying to understand concerns associated with the disposal of salt cake in MSW landfills. From the end-of-life management perspective, data presented here suggest that salt cake should not be size reduce

  7. Over-expression of TaMYB33 encoding a novel wheat MYB transcription factor increases salt and drought tolerance in Arabidopsis.

    PubMed

    Qin, Yuxiang; Wang, Mengcheng; Tian, Yanchen; He, Wenxing; Han, Lu; Xia, Guangmin

    2012-06-01

    Salt and drought stresses often adversely affect plant growth and productivity, MYB transcription factors have been shown to participate in the response to these stresses. Here we identified a new R2R3-type MYB transcription factor gene TaMYB33 from wheat (Triticum aestivum). TaMYB33 was induced by NaCl, PEG and ABA treatments, and its promoter sequence contains putative ABRE, MYB and other abiotic stress related cis-elements. Ectopic over-expression of TaMYB33 in Arabidopsis thaliana remarkably enhanced its tolerance to drought and NaCl stresses, but not to LiCl and KCl treatments. The expressions of AtP5CS and AtZAT12 which mirror the activities of proline and ascorbate peroxidase synthesis respectively were induced in TaMYB33 over-expression lines, indicating TaMYB33 promotes the ability for osmotic pressure balance-reconstruction and reactive oxidative species (ROS) scavenging. The up-regulation of AtAAO3 along with down-regulation of AtABF3, AtABI1 in TaMYB33 over-expression lines indicated that ABA synthesis was elevated while its signaling was restricted. These results suggest that TaMYB33 enhances salt and drought tolerance partially through superior ability for osmotic balance reconstruction and ROS detoxification.

  8. The Port Isabel Fold Belt: Salt enhanced Neogene Gravitational Spreading in the East Breaks, Western Gulf of Mexico

    NASA Astrophysics Data System (ADS)

    Lebit, Hermann; Clavaud, Marie; Whitehead, Sam; Opdyke, Scott; Luneburg, Catalina

    2017-04-01

    Neogene mini basin balanced by the outboard compressional domains of the displaced Paleogene sediment sequence. In this context the role of salt is enigmatic, as the system's concave, deep reaching major detachment conflicts with the interpretation of a destabilized former salt canopy. It rather indicates syn-kinematic salt extrusion from a deeper source along the major frontal thrust ramp. A syn-kinematic (Poiseuille) salt flow along the major decollement (channel flow) is required to feed the salt accumulations at the frontal section of the fold belt and the shallow salt diapirs.

  9. Reducing salt in food; setting product-specific criteria aiming at a salt intake of 5 g per day

    PubMed Central

    Dötsch-Klerk, M; PMM Goossens, W; Meijer, G W; van het Hof, K H

    2015-01-01

    Background/Objectives: There is an increasing public health concern regarding high salt intake, which is generally between 9 and 12 g per day, and much higher than the 5 g recommended by World Health Organization. Several relevant sectors of the food industry are engaged in salt reduction, but it is a challenge to reduce salt in products without compromising on taste, shelf-life or expense for consumers. The objective was to develop globally applicable salt reduction criteria as guidance for product reformulation. Subjects/Methods: Two sets of product group-specific sodium criteria were developed to reduce salt levels in foods to help consumers reduce their intake towards an interim intake goal of 6 g/day, and—on the longer term—5 g/day. Data modelling using survey data from the United States, United Kingdom and Netherlands was performed to assess the potential impact on population salt intake of cross-industry food product reformulation towards these criteria. Results: Modelling with 6 and 5 g/day criteria resulted in estimated reductions in population salt intake of 25 and 30% for the three countries, respectively, the latter representing an absolute decrease in the median salt intake of 1.8–2.2 g/day. Conclusions: The sodium criteria described in this paper can serve as guidance for salt reduction in foods. However, to enable achieving an intake of 5 g/day, salt reduction should not be limited to product reformulation. A multi-stakeholder approach is needed to make consumers aware of the need to reduce their salt intake. Nevertheless, dietary impact modelling shows that product reformulation by food industry has the potential to contribute substantially to salt-intake reduction. PMID:25690867

  10. Electrolytic orthoborate salts for lithium batteries

    DOEpatents

    Angell, Charles Austen [Mesa, AZ; Xu, Wu [Tempe, AZ

    2008-01-01

    Orthoborate salts suitable for use as electrolytes in lithium batteries and methods for making the electrolyte salts are provided. The electrolytic salts have one of the formulae (I). In this formula anionic orthoborate groups are capped with two bidentate chelating groups, Y1 and Y2. Certain preferred chelating groups are dibasic acid residues, most preferably oxalyl, malonyl and succinyl, disulfonic acid residues, sulfoacetic acid residues and halo-substituted alkylenes. The salts are soluble in non-aqueous solvents and polymeric gels and are useful components of lithium batteries in electrochemical devices.

  11. Electrolytic orthoborate salts for lithium batteries

    DOEpatents

    Angell, Charles Austen [Mesa, AZ; Xu, Wu [Tempe, AZ

    2009-05-05

    Orthoborate salts suitable for use as electrolytes in lithium batteries and methods for making the electrolyte salts are provided. The electrolytic salts have one of the formulae (I). In this formula anionic orthoborate groups are capped with two bidentate chelating groups, Y1 and Y2. Certain preferred chelating groups are dibasic acid residues, most preferably oxalyl, malonyl and succinyl, disulfonic acid residues, sulfoacetic acid residues and halo-substituted alkylenes. The salts are soluble in non-aqueous solvents and polymeric gels and are useful components of lithium batteries in electrochemical devices.

  12. Context-driven Salt Seeking Test (Rats)

    PubMed Central

    Chang, Stephen E.; Smith, Kyle S.

    2018-01-01

    Changes in reward seeking behavior often occur through incremental learning based on the difference between what is expected and what actually happens. Behavioral flexibility of this sort requires experience with rewards as better or worse than expected. However, there are some instances in which behavior can change through non-incremental learning, which requires no further experience with an outcome. Such an example of non-incremental learning is the salt appetite phenomenon. In this case, animals such as rats will immediately seek out a highly-concentrated salt solution that was previously undesired when they are put in a novel state of sodium deprivation. Importantly, this adaptive salt-seeking behavior occurs despite the fact that the rats never tasted salt in the depleted state, and therefore never tasted it as a highly desirable reward. The following protocol is a method to investigate the neural circuitry mediating adaptive salt seeking using a conditioned place preference (CPP) procedure. The procedure is designed to provide an opportunity to discover possible dissociations between the neural circuitry mediating salt seeking and salt consumption to replenish the bodily deficit after sodium depletion. Additionally, this procedure is amenable to incorporating a number of neurobiological techniques for studying the brain basis of this behavior.

  13. Charge ordered insulating phases of DODHT salts with octahedral anions and a new radical salt, β''-(DODHT)2TaF6

    NASA Astrophysics Data System (ADS)

    Nishikawa, H.; Oshio, H.; Higa, M.; Kondo, R.; Kagoshima, S.; Nakao, A.; Sawa, H.; Yasuzuka, S.; Murata, K.

    2008-10-01

    Physical properties of isostructural β''-(DODHT)2X [DODHT = (l,4-dioxane-2,3-diyldithio)dihydrotetrathiafulvalene; X = PF6, AsF6, and SbF6] at ambient pressure have been compared. The insulating phase of β''-(DODHT)2PF6 salt has already been revealed to be a charge ordering (CO) state by X-ray diffraction study and magnetic behavior. CO in this salt was also confirmed by the observation of satellite reflections in oscillation photograph using synchrotron radiation. Transport property of β''-(DODHT)2SbF6 salt was reinvestigated up to the pressure of 3.7 GPa applied by a cubic anvil apparatus. Although the SbF6 salt turned to be metallic above 2.0 GPa, no superconductivity was observed. In order to examine the anion size dependence of DODHT salts with octahedral anions, we prepared a new DODHT salt, β''-(DODHT)2TaF6, which has the larger counter anion compared with the previous salts. Crystal structure of this salt was isostructural to the other DODHT salts. The electrical and magnetic properties of this salt were similar to those of β''-(DODHT)2SbF6 salt.

  14. Salt excretion in Suaeda fruticosa.

    PubMed

    Labidi, Nehla; Ammari, Manel; Mssedi, Dorsaf; Benzerti, Maali; Snoussi, Sana; Abdelly, C

    2010-09-01

    Suaeda fruticosa is a perennial "includer" halophyte devoid of glands or trichomes with a strong ability of accumulating and sequestrating Na(+) and Cl(-). We were interested in determining whether leaf cuticle salt excretion could be involved as a further mechanism in salt response of this species after long-term treatment with high salinity levels. Seedlings had been treated for three months with seawater (SW) diluted with tap water (0, 25, 50 and 75% SW). Leaf scanning electron microscopy revealed a convex adaxial side sculpture and a higher accumulation of saline crystals at the lamina margin, with a large variability on repartition and size between treatments. No salt gland or salt bladder was found. Threedimensional wax decorations were the only structures found on leaf surface. Washing the leaf surface with water indicated that sodium and chloride predominated in excreted salts, and that potassium was poorly represented. Optimal growth of whole plant was recorded at 25% SW, correlating with maximum Na(+) and Cl(-) absolute secretion rate. The leaves of plants treated with SW retained more water than those of plants treated with tap water due to lower solute potential, especially at 25% SW. Analysis of compatible solute, such as proline, total soluble carbohydrates and glycinebetaine disclosed strong relationship between glycinebetaine and osmotic potential (r = 0.92) suggesting that tissue hydration was partly maintained by glycinebetaine accumulation. Thus in S. fruticosa , increased solute accumulation associated with water retention, and steady intracellular ion homeostasis confirms the "includer" strategy of salt tolerance previously demonstrated. However, salt excretion at leaf surface also participated in conferring to this species a capacity in high salinity tolerance.

  15. Salt preference: age and sex related variability.

    PubMed

    Verma, Punam; Mittal, Sunita; Ghildiyal, Archana; Chaudhary, Lalita; Mahajan, K K

    2007-01-01

    Salt preference was assessed in 60 adults of 18-21 yrs of age (30 males and 30 females) and in 60 children of 7-12 yrs of age (30 boys and 30 girls). Subjects rated the preference on Likert scale for popcorns of five salt concentrations (OM, 1M, 2M, 3M and +3M). Statistical analysis using Two way ANOVA revealed statistically significant effect of age and sex on salt preference (F4,100 = 15.027, P < 0.01) and One Way ANOVA revealed statistically significant sex difference in salt preference of adults (F4,50 = 16.26, P < 0.01) but no statistically significant sex difference in salt preference of children (F4,50 = 4.08, P > 0.05). Dietary experiences during development and more physical activity in children may be responsible for higher salt preference in children while finding no sex variability in children favours the role of sex hormones in salt preference of male and females.

  16. Salt Lake City, Utah 2002

    NASA Image and Video Library

    2017-12-08

    Salt Lake City, Utah, Winter 2001 The 2002 Winter Olympics are hosted by Salt Lake City at several venues within the city, in nearby cities, and within the adjacent Wasatch Mountains. This simulated natural color image presents a snowy, winter view of north central Utah that includes all of the Olympic sites. The image extends from Ogden in the north, to Provo in the south; and includes the snow-capped Wasatch Mountains and the eastern part of the Great Salt Lake. This image was acquired on February 8, 2001 by the Advanced Spaceborne Thermal Emission and Reflection Radiometer (ASTER) on NASA's Terra satellite. With its 14 spectral bands from the visible to the thermal infrared wavelength region, and its high spatial resolution of 15 to 90 meters (about 50 to 300 feet), ASTER will image Earth for the next 6 years to map and monitor the changing surface of our planet. ASTER is one of five Earth-observing instruments launched December 18,1999, on NASA's Terra satellite. The instrument was built by Japan's Ministry of Economy, Trade and Industry. A joint U.S./Japan science team is responsible for validation and calibration of the instrument and the data products. Dr. Anne Kahle at NASA's Jet Propulsion Laboratory, Pasadena, California, is the U.S. Science team leader; Bjorn Eng of JPL is the project manager. ASTER is the only high resolution imaging sensor on Terra. The Terra mission is part of NASA's Earth Science Enterprise, along-term research and technology program designed to examine Earth's land, oceans, atmosphere, ice and life as a total integrated system. The broad spectral coverage and high spectral resolution of ASTER will provide scientists in numerous disciplines with critical information for surface mapping, and monitoring dynamic conditions and temporal change. Example applications are: monitoring glacial advances and retreats; monitoring potentially active volcanoes; identifying crop stress; determining cloud morphology and physical properties; wetlands

  17. Data Quality and Reliability Analysis of U.S. Marine Corps Ground Vehicle Maintenance Records

    DTIC Science & Technology

    2015-06-01

    Corporation conducted a study on data quality issues present in U. S. Army logistics data ( Galway & Hanks, 1996). The study breaks data issues into three...categories: operational, conceptual, and organizational problems ( Galway & Hanks, 1996). Operational data problems relate to the number of missing or...codes (EIC) are left blank ( Galway & Hanks, 1996, p. 26). Missing entries are attributed to an assumed lack of significance of the EIC. The issue is

  18. Preventive dietary potassium supplementation in young salt-sensitive Dahl rats attenuates development of salt hypertension by decreasing sympathetic vasoconstriction.

    PubMed

    Zicha, J; Dobešová, Z; Behuliak, M; Kuneš, J; Vaněčková, I

    2011-05-01

    Increased potassium intake attenuates the development of salt-dependent hypertension, but the detailed mechanisms of blood pressure (BP) reduction are still unclear. The aims of our study were (i) to elucidate these mechanisms, (ii) to compare preventive potassium effects in immature and adult animals and (iii) to evaluate the therapeutic effects of dietary potassium supplementation in rats with established salt hypertension.   Young (4-week-old) and adult (24-week-old) female salt-sensitive Dahl rats were fed a high-salt diet (5% NaCl) or a high-salt diet supplemented with 3% KCl for 5 weeks. The participation of vasoconstrictor (renin-angiotensin and sympathetic nervous systems) and vasodilator systems [prostanoids, Ca(2+) -activated K(+) channels, nitric oxide (NO)] was evaluated using a sequential blockade of these systems. Preventive potassium supplementation attenuated the development of severe salt hypertension in young rats, whereas it had no effects on BP in adult rats with moderate hypertension. Enhanced sympathetic vasoconstriction was responsible for salt hypertension in young rats and its attenuation for potassium-induced BP reduction. Conversely, neither salt hypertension nor its potassium-induced attenuation were associated with significant changes of the vasodilator systems studied. The relative deficiency of vasodilator action of NO and Ca(2+) -activated K(+) channels in salt hypertensive Dahl rats was not improved by potassium supplementation. The attenuation of enhanced sympathetic vasoconstriction is the principal mechanism of antihypertensive action exerted by preventive potassium supplementation in immature Dahl rats. Dietary potassium supplementation has no preventive effects on BP in adult salt-loaded animals or no therapeutic effects on established salt hypertension in young rats. © 2011 The Authors. Acta Physiologica © 2011 Scandinavian Physiological Society.

  19. Performance of concrete pavement in the presence of deicing salts and deicing salt cocktails.

    DOT National Transportation Integrated Search

    2016-05-01

    Deicing salts are widely used for anti-icing and de-icing operations in pavements. While historically sodium chloride may have been the : deicer most commonly used, a wide range of deicing salts have begun to be used to operate at lower temperatures,...

  20. [Monitoring of water and salt transport in silt and sandy soil during the leaching process].

    PubMed

    Fu, Teng-Fei; Jia, Yong-Gang; Guo, Lei; Liu, Xiao-Lei

    2012-11-01

    Water and salt transport in soil and its mechanism is the key point of the saline soil research. The dynamic rule of water and transport in soil during the leaching process is the theoretical basis of formation, flush, drainage and improvement of saline soil. In this study, a vertical infiltration experiment was conducted to monitor the variation in the resistivity of silt and sandy soil during the leaching process by the self-designed automatic monitoring device. The experimental results showed that the peaks in the resistivity of the two soils went down and faded away in the course of leaching. It took about 30 minutes for sandy soil to reach the water-salt balance, whereas the silt took about 70 minutes. With the increasing leaching times, the desalination depth remained basically the same, being 35 cm for sandy soil and 10 cm for the silt from the top to bottom of soil column. Therefore, 3 and 7 leaching processes were required respectively for the complete desalination of the soil column. The temporal and spatial resolution of this monitoring device can be adjusted according to the practical demand. This device can not only achieve the remote, in situ and dynamic monitoring data of water and salt transport, but also provide an effective method in monitoring, assessment and early warning of salinization.

  1. High salt diet induces metabolic alterations in multiple biological processes of Dahl salt-sensitive rats.

    PubMed

    Wang, Yanjun; Liu, Xiangyang; Zhang, Chen; Wang, Zhengjun

    2018-06-01

    High salt induced renal disease is a condition resulting from the interactions of genetic and dietary factors causing multiple complications. To understand the metabolic alterations associated with renal disease, we comprehensively analyzed the metabonomic changes induced by high salt intake in Dahl salt-sensitive (SS) rats using GC-MS technology and biochemical analyses. Physiological features, serum chemistry, and histopathological data were obtained as complementary information. Our results showed that high salt (HS) intake for 16 weeks caused significant metabolic alterations in both the renal medulla and cortex involving a variety pathways involved in the metabolism of organic acids, amino acids, fatty acids, and purines. In addition, HS enhanced glycolysis (hexokinase, phosphofructokinase and pyruvate kinase) and amino acid metabolism and suppressed the TCA (citrate synthase and aconitase) cycle. Finally, HS intake caused up-regulation of the pentose phosphate pathway (glucose 6-phosphate dehydrogenase and 6-phosphogluconate dehydrogenase), the ratio of NADPH/NADP + , NADPH oxidase activity and ROS production, suggesting that increased oxidative stress was associated with an altered PPP pathway. The metabolic pathways identified may serve as potential targets for the treatment of renal damage. Our findings provide comprehensive biochemical details about the metabolic responses to a high salt diet, which may contribute to the understanding of renal disease and salt-induced hypertension in SS rats. Copyright © 2018. Published by Elsevier Inc.

  2. Structural properties of scandium inorganic salts

    DOE PAGES

    Sears, Jeremiah M.; Boyle, Timothy J.

    2016-12-16

    Here, the structural properties of reported inorganic scandium (Sc) salts were reviewed, including the halide (Cl, Br, and I), nitrate, sulfate, and phosphate salts. Additional analytical techniques used for characterization of these complexes (metrical data, FTIR and 45Sc NMR spectroscopy) were tabulated. A structural comparison of Sc to select lanthanide (La, Gd, Lu) salt complexes was briefly evaluated.

  3. Explosion investigation of asphalt-salt mixtures in a reprocessing plant.

    PubMed

    Hasegawa, K; Li, Y

    2000-12-15

    Cause investigation of a fire and explosion at the nuclear fuel waste reprocessing plant indicated that self-heating ignition of an asphalt-salt-waste, bituminized, mixture (AS) caused the disaster. A 220l drum was filled with the AS at a temperature of about 180 degrees C. About 20h later the drum ignited and burned as it was being cooled. It is estimated that the AS contained approximately 55wt.% blown asphalt, 25wt.% NaNO(3), 5wt.% NaNO(2), 8wt.% Na(2)CO(3), 2wt.% NaH(2)PO(4), 1wt.% Ba (OH)(2), 1wt.% K(4)[Fe(CN)(6)], and possibly 3wt.% of other materials. To determine the reaction promoting factors and pertinent chemical reaction rates, self-reaction of the AS has been investigated by the use of a C80D heat flux reaction calorimeter. The oxidizing reactions with asphalt are ruled by NaNO(2) rather than by NaNO(3), in spite of a lower concentration of NaNO(2). The kinetic rates of the interfacial reaction between salt particles and asphalt for the reaction controlled and diffusion controlled steps have been formulated as a function of salt particle size for both NaNO(2) and NaNO(3). Numerical solution of the heat balance equations formulating the heterogeneous reaction scheme indicates that a runaway reaction occurs when the AS-filling temperature is 208 degrees C for a drum filled with an AS mixture produced under standard operating conditions. Molecules containing intramolecular hydrogen, such as Na(2)HPO(4) and NaHCO(3), do not oxidize asphalt directly, however, their presence chemically promotes the oxidizing reaction of NaNO(2). Moreover, NaHCO(3) decomposition which produces gases creates many micro holes in the interior of the salt particles. This in turn promotes the oxidizing reactions that are diffusion controlled. Finally, the consequence of a runaway reaction at 180 degrees C or lower is qualitatively explained by taking into account the chemical effect of intramolecular hydrogen and the physical effect of the NaHCO(3) decomposition gases.

  4. Exogenous salicylic acid improves photosynthesis and growth through increase in ascorbate-glutathione metabolism and S assimilation in mustard under salt stress

    PubMed Central

    Nazar, Rahat; Umar, Shahid; Khan, Nafees A.

    2015-01-01

    Ascorbate (AsA)–glutathione (GSH) cycle metabolism has been regarded as the most important defense mechanism for the resistance of plants under stress. In this study the influence of salicylic acid (SA) was studied on ascorbate-glutathione pathway, S-assimilation, photosynthesis and growth of mustard (Brassica juncea L.) plants subjected to 100 mM NaCl. Treatment of SA (0.5 mM) alleviated the negative effects of salt stress and improved photosynthesis and growth through increase in enzymes of ascorbate-glutathione pathway which suggest that SA may participate in the redox balance under salt stress. The increase in leaf sulfur content through higher activity of ATP sulfurylase (ATPS) and serine acetyl transferase (SAT) by SA application was associated with the increased accumulation of glutathione (GSH) and lower levels of oxidative stress. These effects of SA were substantiated by the findings that application of SA-analog, 2,6, dichloro-isonicotinic acid (INA) and 1 mM GSH treatment produced similar results on rubisco, photosynthesis and growth of plants establishing that SA application alleviates the salt-induced decrease in photosynthesis mainly through inducing the enzyme activity of ascorbate-glutathione pathway and increased GSH production. Thus, SA/GSH could be a promising tool for alleviation of salt stress in mustard plants. PMID:25730495

  5. Impact of slope inclination on salt accumulation

    NASA Astrophysics Data System (ADS)

    Nachshon, Uri

    2017-04-01

    Field measurements indicated on high variability in salt accumulation along natural and cultivated slopes, even for relatively homogeneous soil conditions. It was hypothesised that slope inclination has an impact on the location of salt accumulation along the slope. A set of laboratory experiments and numerical models were used to explore the impact of slope inclination on salt accumulation. It was shown, experimentally, that for conditions of saline water source at the lower boundary of the slope - salt accumulates in low concentrations and homogeneously along the entire slope, for moderate slopes. However, as inclination increases high salt concentrations were observed at the upper parts of the slope, leaving the lower parts of the slope relatively free of salt. The traditional flow and transport models did not predict the experimental observations as they indicated also for the moderate slopes on salt accumulation in the elevated parts of the slope, away of the saline water source. Consequently - a conceptual model was raised to explain the laboratory observations. It was suggested that the interactions between slope angle, evaporation rates, hydraulic conductivity of the medium and distribution of wetness along the slope affect the saline water flow path through the medium. This lead to preferential flow path close to the soil-atmosphere interface for the steep slopes, which leads to constant wash of the salts from the evaporation front upward towards the slope upper parts, whereas for the moderate slopes, flow path is below the soil-atmosphere interface, therefore salt that accumulates at the evaporation front is not being transported upward. Understanding of salt dynamics along slopes is important for agricultural and natural environments, as well as for civil engineering purposes. Better understanding of the salt transport processes along slopes will improve our ability to minimize and to cope with soil salinization processes. The laboratory experiments and

  6. Typical balance exercises or exergames for balance improvement?

    PubMed

    Gioftsidou, Asimenia; Vernadakis, Nikolaos; Malliou, Paraskevi; Batzios, Stavros; Sofokleous, Polina; Antoniou, Panagiotis; Kouli, Olga; Tsapralis, Kyriakos; Godolias, George

    2013-01-01

    Balance training is an effective intervention to improve static postural sway and balance. The purpose of the present study was to investigate the effectiveness of the Nintendo Wii Fit Plus exercises for improving balance ability in healthy collegiate students in comparison with a typical balance training program. Forty students were randomly divided into two groups, a traditional (T group) and a Nintendo Wii group (W group) performed an 8 week balance program. The "W group" used the interactive games as a training method, while the "T group" used an exercise program with mini trampoline and inflatable discs (BOSU). Pre and Post-training participants completed balance assessments. Two-way repeated measures analyses of variance (ANOVAs) were conducted to determine the effect of training program. Analysis of the data illustrated that both training program groups demonstrated an improvement in Total, Anterior-posterior and Medial Lateral Stability Index scores for both limbs. Only at the test performed in the balance board with anterior-posterior motion, the improvement in balance ability was greater in the "T group" than the "W group", when the assessment was performed post-training (p=0.023). Findings support the effectiveness of using the Nintendo Wii gaming console as a balance training intervention tool.

  7. Salt and N leaching and soil accumulation due to cover cropping practices

    NASA Astrophysics Data System (ADS)

    Gabriel, J. L.; Quemada, M.

    2012-04-01

    Nitrate leaching beyond the root zone can increase water contamination hazards and decrease crop available N. Cover crops used in spite of fallow are an alternative to reduce nitrate contamination in the vadose zone, because reducing drainage and soil mineral N accumulation. Cover crops can improve important characteristics in irrigated land as water retention capacity or soil aggregate stability. However, increasing evapotranspiration and consequent drainage below the root system reduction, could lead to soil salt accumulation. Salinity affects more than 80 million ha of arable land in many areas of the world, and one of the principal causes for yield reduction and even land degradation in the Mediterranean region. Few studies dealt with both problems at the same time. Therefore, it is necessary a long-term evaluation of the potential effect on soil salinity and nitrate leaching, in order to ensure that potential disadvantages that could originate from soil salt accumulation are compensated with all advantages of cover cropping. A study of the soil salinity and nitrate leaching was conducted during 4 years in a semiarid irrigated agricultural area of Central Spain. Three treatments were studied during the intercropping period of maize (Zea mays L.): barley (Hordeum vulgare L.), vetch (Vicia villosa L.) and fallow. Cover crops were killed in March allowing seeding of maize of the entire trial in April, and all treatments were irrigated and fertilised following the same procedure. Before sowing, and after harvesting maize and cover crops, soil salt and nitrate accumulation was determined along the soil profile. Soil analysis was conducted at six depths every 0.20 m in each plot in samples from four 0 to 1.2-m depth holes dug. The electrical conductivity of the saturated paste extract and soil mineral nitrogen was measured in each soil sample. A numerical model based on the Richards water balance equation was applied in order to calculate drainage at 1.2 m depth

  8. Socioeconomic inequality in salt intake in Britain 10 years after a national salt reduction programme

    PubMed Central

    Ji, Chen; Cappuccio, Francesco P

    2014-01-01

    Objectives The impact of the national salt reduction programme in the UK on social inequalities is unknown. We examined spatial and socioeconomic variations in salt intake in the 2008–2011 British National Diet and Nutrition Survey (NDNS) and compared them with those before the programme in 2000–2001. Setting Cross-sectional survey in Great Britain. Participants 1027 Caucasian males and females, aged 19–64 years. Primary outcome measures Participants’ dietary sodium intake measured with a 4-day food diary. Bayesian geo-additive models used to assess spatial and socioeconomic patterns of sodium intake accounting for sociodemographic, anthropometric and behavioural confounders. Results Dietary sodium intake varied significantly across socioeconomic groups, even when adjusting for geographical variations. There was higher dietary sodium intake in people with the lowest educational attainment (coefficient: 0.252 (90% credible intervals 0.003, 0.486)) and in low levels of occupation (coefficient: 0.109 (−0.069, 0.288)). Those with no qualification had, on average, a 5.7% (0.1%, 11.1%) higher dietary sodium intake than the reference group. Compared to 2000-2001 the gradient of dietary sodium intake from south to north was attenuated after adjustments for confounders. Estimated dietary sodium consumption from food sources (not accounting for discretionary sources) was reduced by 366 mg of sodium (∼0.9 g of salt) per day during the 10-year period, likely the effect of national salt reduction initiatives. Conclusions Social inequalities in salt intake have not seen a reduction following the national salt reduction programme and still explain more than 5% of salt intake between more and less affluent groups. Understanding the socioeconomic pattern of salt intake is crucial to reduce inequalities. Efforts are needed to minimise the gap between socioeconomic groups for an equitable delivery of cardiovascular prevention. PMID:25161292

  9. Stability of pharmaceutical salts in solid oral dosage forms.

    PubMed

    Nie, Haichen; Byrn, Stephen R; Zhou, Qi Tony

    2017-08-01

    Using pharmaceutical salts in solid dosage forms can raise stability concerns, especially salt dissociation which can adversely affect the product performance. Therefore, a thorough understanding of the salt instability encountered in solid-state formulations is imperative to ensure the product quality. The present article uses the fundamental theory of acid base, ionic equilibrium, relationship of pH and solubility as a starting point to illustrate and interpret the salt formation and salt disproportionation in pharmaceutical systems. The criteria of selecting the optimal salt form and the underlying theory of salt formation and disproportionation are reviewed in detail. Factors influencing salt stability in solid dosage forms are scrutinized and discussed with the case studies. In addition, both commonly used and innovative strategies for preventing salt dissociations in formulation, on storage and during manufacturing will be suggested herein. This article will provide formulation scientists and manufacturing engineers an insight into the mechanisms of salt disproportionation and salt formation, which can help them to avoid and solve the instability issues of pharmaceutical salts in the product design.

  10. Salt-stress-responsive chloroplast proteins in Brassica juncea genotypes with contrasting salt tolerance and their quantitative PCR analysis.

    PubMed

    Yousuf, Peerzada Yasir; Ahmad, Altaf; Aref, Ibrahim M; Ozturk, Munir; Hemant; Ganie, Arshid Hussain; Iqbal, Muhammad

    2016-11-01

    Brassica juncea is mainly cultivated in the arid and semi-arid regions of India where its production is significantly affected by soil salinity. Adequate knowledge of the mechanisms underlying the salt tolerance at sub-cellular levels must aid in developing the salt-tolerant plants. A proper functioning of chloroplasts under salinity conditions is highly desirable to maintain crop productivity. The adaptive molecular mechanisms offered by plants at the chloroplast level to cope with salinity stress must be a prime target in developing the salt-tolerant plants. In the present study, we have analyzed differential expression of chloroplast proteins in two Brassica juncea genotypes, Pusa Agrani (salt-sensitive) and CS-54 (salt-tolerant), under the effect of sodium chloride. The chloroplast proteins were isolated and resolved using 2DE, which facilitated identification and quantification of 12 proteins that differed in expression in the salt-tolerant and salt-sensitive genotypes. The identified proteins were related to a variety of chloroplast-associated molecular processes, including oxygen-evolving process, PS I and PS II functioning, Calvin cycle and redox homeostasis. Expression analysis of genes encoding differentially expressed proteins through real time PCR supported our findings with proteomic analysis. The study indicates that modulating the expression of chloroplast proteins associated with stabilization of photosystems and oxidative defence plays imperative roles in adaptation to salt stress.

  11. Increased salt intake during early ontogenesis lead to development of arterial hypertension in salt-resistant Wistar rats.

    PubMed

    Svitok, Pavel; Molcan, Lubos; Vesela, Anna; Kruzliak, Peter; Moravcik, Roman; Zeman, Michal

    2015-01-01

    A direct relationship exists between salt consumption and hypertension. Increased sodium intake does not automatically lead to a rise in blood pressure (BP) because of marked intra-individual variability in salt sensitivity. Wistar rats are a salt-resistant strain and increased salt intake in adults does not induce hypertension. Mechanisms regulating BP develop during early ontogenesis and increased sodium consumption by pregnant females leads to an increase in BP of their offspring, but early postnatal stages have not been sufficiently analyzed in salt-resistant strains of rats. The aim of this work was to study the effects of increased salt during early ontogeny on cardiovascular characteristics of Wistar rats. We used 16 control (C; 8 males + 8 females) rats fed with a standard diet (0.2% sodium) and 16 experimental (S; 8 males + 8 females) rats fed with a diet containing 0.8% sodium. BP was measured weekly and plasma renin activity, aldosterone and testosterone concentrations were assayed by radioimmunoassay after the experiment in 16-week-old animals. In the kidney, AT1 receptors were determined by the western blot. BP was higher in the S as compared with the C rats and did not differ between males and females. The relative left ventricle mass was increased in S as compared with C males and no differences were recorded in females. No significant differences between groups were found in hormonal parameters and AT1 receptors. Results indicate that moderately increased salt intake during postnatal ontogeny results in a BP rise even in salt-resistant rats.

  12. Biodegradation of resin acid sodium salts

    Treesearch

    Richard W. Hemingway; H. Greaves

    1973-01-01

    The sodium salts of resin acids were readily degraded by microflora from two types of river water and from an activated sewage sludge. A lag phase with little or no resin acid salt degradation but rapid bacterial development occurred which was greatly extended by a decrease in incubation temperature. After this initial lag phase, the resin acid salts were rapidly...

  13. An efficient and reproducible protocol for the production of salt tolerant transgenic wheat plants expressing the Arabidopsis AtNHX1 gene.

    PubMed

    Moghaieb, Reda E A; Sharaf, Ahmed N; Soliman, Mohamed H; El-Arabi, Nagwa I; Momtaz, Osama A

    2014-01-01

    We present an efficient method for the production of transgenic salt tolerant hexaploid wheat plants expressing the Arabidopsis AtNHX1 gene. Wheat mature zygotic embryos were isolated from two hexaploid bread wheat (Triticum aestivum) cultivars (namely: Gemmeiza 9 and Gemmeiza 10) and were transformed with the A. tumefaciens LBA4404 harboring the pBI-121 vector containing the AtNHX1 gene. Transgenic wheat lines that express the gus intron was obtained and used as control. The results confirmed that npt-II gene could be transmitted and expressed in the T2 following 3:1 Mendelian segregation while the control plant couldn't. The data indicate that, the AtNHX1 gene was integrated in a stable manner into the wheat genome and the corresponding transcripts were expressed. The transformation efficiency was 5.7 and 7.5% for cultivars Gemmeiza 10 and Gemmeiza 9, respectively. A greenhouse experiment was conducted to investigate the effect of AtNHX1 gene in wheat salt tolerance. The transgenic wheat lines could maintain high growth rate under salt stress condition (350 mM NaCl) while the control plant couldn't. The results confirmed that Na(+)/H(+) antiporter gene AtNHX1 increased salt tolerance by increasing Na(+) accumulation and keeping K+/Na(+) balance. Thus, transgenic plants showed high tolerance to salt stress and can be considered as a new genetic resource in breeding programs.

  14. Salt reduction in sheeted dough: A successful technological approach.

    PubMed

    Diler, Guénaëlle; Le-Bail, Alain; Chevallier, Sylvie

    2016-10-01

    The challenge of reducing the salt content while maintaining shelf life, stability and acceptability of the products is major for the food industry. In the present study, we implemented processing adjustments to reduce salt content while maintaining the machinability and the saltiness perception of sheeted dough: the homogeneous distribution of a layer of encapsulated salt grains on the dough during the laminating process. During sheeting, for an imposed deformation of 0.67, the final strain remained unchanged around 0.50 for salt reduction below 50%, and then, increased significantly up to 0.53 for a dough without salt. This increase is, in fine, positive regarding the rolling process since the decrease of salt content induces less shrinkage of dough downstream, which is the main feature to be controlled in the process. Moreover, the final strain was negatively correlated to the resistance to extension measured with a texture analyzer, therefore providing a method to evaluate the machinability of the dough. From these results, a salt reduction of 25% was achieved by holding 50% of the salt in the dough recipe to maintain the dough properties and saving 25% as salt grains to create high-salted areas that would enhance the saltiness perception of the dough. The distributor mounted above the rollers of the mill proved to be able to distribute evenly salt grains at a calculated step of the rolling out process. An innovative method based on RX micro-tomography allowed to follow the salt dissolving and to demonstrate the capability of the coatings to delay the salt dissolving and consequently the diffusion of salt within the dough piece. Finally, a ranking test on the salted perception of different samples having either an even distribution of encapsulated salt grains, a single layer of salt grains or a homogeneous distribution of salt, demonstrated that increasing the saltiness perception in salt-reduced food product could be achieved by a technological approach

  15. Hydroxycarboxylic acids and salts

    DOEpatents

    Kiely, Donald E; Hash, Kirk R; Kramer-Presta, Kylie; Smith, Tyler N

    2015-02-24

    Compositions which inhibit corrosion and alter the physical properties of concrete (admixtures) are prepared from salt mixtures of hydroxycarboxylic acids, carboxylic acids, and nitric acid. The salt mixtures are prepared by neutralizing acid product mixtures from the oxidation of polyols using nitric acid and oxygen as the oxidizing agents. Nitric acid is removed from the hydroxycarboxylic acids by evaporation and diffusion dialysis.

  16. Higher salt preference in heart failure patients.

    PubMed

    de Souza, Juli Thomaz; Matsubara, Luiz S; Menani, José Vanderlei; Matsubara, Beatriz B; Johnson, Alan Kim; De Gobbi, Juliana Irani Fratucci

    2012-02-01

    Heart failure (HF) is a complex syndrome that involves changes in behavioral, neural and endocrine regulatory systems. Dietary salt restriction along with pharmacotherapy is considered an essential component in the effective management of symptomatic HF patients. However, it is well recognized that HF patients typically have great difficulty in restricting sodium intake. We hypothesized that under HF altered activity in systems that normally function to regulate body fluid and cardiovascular homeostasis could produce an increased preference for the taste of salt. Therefore, this study was conducted to evaluate the perceived palatability (defined as salt preference) of food with different concentrations of added salt in compensated chronically medicated HF patients and comparable control subjects. Healthy volunteers (n=25) and medicated, clinically stable HF patients (n=38, NYHA functional class II or III) were interviewed and given an evaluation to assess their preferences for different amounts of saltiness. Three salt concentrations (0.58, 0.82, and 1.16 g/100 g) of bean soup were presented to the subjects. Salt preference for each concentration was quantified using an adjective scale (unpleasant, fair or delicious). Healthy volunteers preferred the soup with medium salt concentration (p=0.042), HF patients disliked the low concentration (p<0.001) and preferred the high concentration of salted bean soup (p<0.001). When compared to healthy volunteers, HF patients demonstrated a significantly greater preference for the soup with a high salt concentration (p=0.038). It is concluded that medicated, compensated patients under chronic treatment for HF have an increased preference for salt. Copyright © 2011 Elsevier Ltd. All rights reserved.

  17. Molten salt based nanofluids based on solar salt and alumina nanoparticles: An industrial approach

    NASA Astrophysics Data System (ADS)

    Muñoz-Sánchez, Belén; Nieto-Maestre, Javier; Guerreiro, Luis; Julia, José Enrique; Collares-Pereira, Manuel; García-Romero, Ana

    2017-06-01

    Thermal Energy Storage (TES) and its associated dispatchability is extremely important in Concentrated Solar Power (CSP) plants since it represents the main advantage of CSP technology in relation to other renewable energy sources like photovoltaic (PV). Molten salts are used in CSP plants as a TES material because of their high operational temperature and stability of up to 600°C. Their main problems are their relative poor thermal properties and energy storage density. A simple cost-effective way to improve the thermal properties of molten salts is to dope them with nanoparticles, thus obtaining the so-called salt-based nanofluids. Additionally, the use of molten salt based nanofluids as TES materials and Heat Transfer Fluid (HTF) has been attracting great interest in recent years. The addition of tiny amounts of nanoparticles to the base salt can improve its specific heat as shown by different authors1-3. The application of these nano-enhanced materials can lead to important savings on the investment costs in new TES systems for CSP plants. However, there is still a long way to go in order to achieve a commercial product. In this sense, the improvement of the stability of the nanofluids is a key factor. The stability of nanofluids will depend on the nature and size of the nanoparticles, the base salt and the interactions between them. In this work, Solar Salt (SS) commonly used in CSP plants (60% NaNO3 + 40% KNO3 wt.) was doped with alumina nanoparticles (ANPs) at a solid mass concentration of 1% wt. at laboratory scale. The tendency of nanoparticles to agglomeration and sedimentation is tested in the molten state by analyzing their size and concentration through the time. The specific heat of the nanofluid at 396 °C (molten state) is measured at different times (30 min, 1 h, 5 h). Further research is needed to understand the mechanisms of agglomeration. A good understanding of the interactions between the nanoparticle surface and the ionic media would provide

  18. Improved Design and Fabrication of Hydrated-Salt Pills

    NASA Technical Reports Server (NTRS)

    Shirron, Peter J.; DiPirro, Michael J.; Canavan, Edgar R.

    2011-01-01

    A high-performance design, and fabrication and growth processes to implement the design, have been devised for encapsulating a hydrated salt in a container that both protects the salt and provides thermal conductance between the salt and the environment surrounding the container. The unitary salt/container structure is known in the art as a salt pill. In the original application of the present design and processes, the salt is, more specifically, a hydrated paramagnetic salt, for use as a refrigerant in a very-low-temperature adiabatic demagnetization refrigerator (ADR). The design and process can also be applied, with modifications, to other hydrated salts. Hydrated paramagnetic salts have long been used in ADRs because they have the desired magnetic properties at low temperatures. They also have some properties, disadvantageous for ADRs, that dictate the kind of enclosures in which they must be housed: Being hydrated, they lose water if exposed to less than 100-percent relative humidity. Because any dehydration compromises their magnetic properties, salts used in ADRs must be sealed in hermetic containers. Because they have relatively poor thermal conductivities in the temperature range of interest (<0.1 K), integral thermal buses are needed as means of efficiently transferring heat to and from the salts during refrigeration cycles. A thermal bus is typically made from a high-thermal-conductivity met al (such as copper or gold), and the salt is configured to make intimate thermal contact with the metal. Commonly in current practice (and in the present design), the thermal bus includes a matrix of wires or rods, and the salt is grown onto this matrix. The density and spacing of the conductors depend on the heat fluxes that must be accommodated during operation.

  19. Helping crops stand up to salt

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Raeburn, P.

    1985-05-01

    A new approach to the problem of increasing soil salinity is to raise salt-tolerant plants. The search for such plants involves finding new applications for naturally occurring salt-resistant plants (halophytes), using conventional breeding techniques to identify and strengthen crop varieties known to have better-than-average salt tolerance, and applying recombinant DNA methods to introduce salt resistance into existing plants. One promising plant is salicornia, which produces oil high in polyunsaturates at a greater yield than soybeans. Two varieties of atriplex yield as much animal feed as alfalfa and can be harvested several times a year. Seed companies are supporting the research.

  20. Spacebased Observation of Water Balance Over Global Oceans

    NASA Astrophysics Data System (ADS)

    Liu, W.; Xie, X.

    2008-12-01

    We demonstrated that ocean surface fresh water flux less the water discharge into the ocean from river and ice melt balances the mass loss in the ocean both in magnitude and in the phase of annual variation. The surface water flux was computed from the divergence of the water transport integrated over the depth of the atmosphere. The atmospheric water transport is estimated from the precipitable water measured by Special Sensor Microwave Imager, the surface wind vector by QuikSCAT, and the NOAA cloud drift wind through a statistical model. The transport has been extensively validated using global radiosonde and data and operational numerical weather prediction results. Its divergence has been shown to agree with the difference between evaporation estimated from the Advanced Microwave Scanning Radiometer data and the precipitation measured by Tropical Rain Measuring Mission over the global tropical and subtropical oceans both in magnitude and geographical distribution for temporal scales ranging from intraseasonal to interannual. The water loss rate in the ocean is estimated by two methods, one is from Gravity Recovery and Climate Experiment and the other is by subtracting the climatological steric change from the sea level change measured by radar altimeter on Jason. Only climatological river discharge and ice melt from in situ measurements are available and the lack of temporal variation may contribute to discrepancies in the balance. We have successfully used the spacebased surface fluxes to estimate to climatological mean heat transport in the Atlantic ocean and is attempting to estimate the meridional fresh water (or salt) transport from the surface flux. The approximate closure of the water balance gives a powerful indirect validation of the spacebased products.

  1. Salt tectonics and shallow subseafloor fluid convection: Models of coupled fluid-heat-salt transport

    USGS Publications Warehouse

    Wilson, A.; Ruppel, C.

    2007-01-01

    Thermohaline convection associated with salt domes has the potential to drive significant fluid flow and mass and heat transport in continental margins, but previous studies of fluid flow associated with salt structures have focused on continental settings or deep flow systems of importance to petroleum exploration. Motivated by recent geophysical and geochemical observations that suggest a convective pattern to near-seafloor pore fluid flow in the northern Gulf of Mexico (GoMex), we devise numerical models that fully couple thermal and chemical processes to quantify the effects of salt geometry and seafloor relief on fluid flow beneath the seafloor. Steady-state models that ignore halite dissolution demonstrate that seafloor relief plays an important role in the evolution of shallow geothermal convection cells and that salt at depth can contribute a thermal component to this convection. The inclusion of faults causes significant, but highly localized, increases in flow rates at seafloor discharge zones. Transient models that include halite dissolution show the evolution of flow during brine formation from early salt-driven convection to later geothermal convection, characteristics of which are controlled by the interplay of seafloor relief and salt geometry. Predicted flow rates are on the order of a few millimeters per year or less for homogeneous sediments with a permeability of 10−15 m2, comparable to compaction-driven flow rates. Sediment permeabilities likely fall below 10−15 m2 at depth in the GoMex basin, but such thermohaline convection can drive pervasive mass transport across the seafloor, affecting sediment diagenesis in shallow sediments. In more permeable settings, such flow could affect methane hydrate stability, seafloor chemosynthetic communities, and the longevity of fluid seeps.

  2. Sensitization of salt appetite is associated with increased "wanting" but not "liking" of a salt reward in the sodium-deplete rat.

    PubMed

    Clark, Jeremy J; Bernstein, Ilene L

    2006-02-01

    To examine the role of incentive sensitization in the potentiation of salt appetite by prior depletions, the authors assessed the motivation to obtain salt ("wanting") and the palatability of salt ("liking") independently in salt-sensitized rats. Breakpoint on a progressive ratio reinforcement schedule was used to measure salt wanting and taste reactivity was used to measure salt liking in rats with and without a history of Na+ depletion. Salt-sensitized rats displayed higher breakpoints relative to controls. However, a history of Na+ depletion was not associated with a greater positive shift in taste reactivity measures. The data suggest that these components of reward are separable in this model and support the general proposition that sensitization may alter wanting but not liking.

  3. Introductory lecture: interpreting and predicting Hofmeister salt ion and solute effects on biopolymer and model processes using the solute partitioning model.

    PubMed

    Record, M Thomas; Guinn, Emily; Pegram, Laurel; Capp, Michael

    2013-01-01

    Understanding how Hofmeister salt ions and other solutes interact with proteins, nucleic acids, other biopolymers and water and thereby affect protein and nucleic acid processes as well as model processes (e.g. solubility of model compounds) in aqueous solution is a longstanding goal of biophysical research. Empirical Hofmeister salt and solute "m-values" (derivatives of the observed standard free energy change for a model or biopolymer process with respect to solute or salt concentration m3) are equal to differences in chemical potential derivatives: m-value = delta(dmu2/dm3) = delta mu23, which quantify the preferential interactions of the solute or salt with the surface of the biopolymer or model system (component 2) exposed or buried in the process. Using the solute partitioning model (SPM), we dissect mu23 values for interactions of a solute or Hofmeister salt with a set of model compounds displaying the key functional groups of biopolymers to obtain interaction potentials (called alpha-values) that quantify the interaction of the solute or salt per unit area of each functional group or type of surface. Interpreted using the SPM, these alpha-values provide quantitative information about both the hydration of functional groups and the competitive interaction of water and the solute or salt with functional groups. The analysis corroborates and quantifies previous proposals that the Hofmeister anion and cation series for biopolymer processes are determined by ion-specific, mostly unfavorable interactions with hydrocarbon surfaces; the balance between these unfavorable nonpolar interactions and often-favorable interactions of ions with polar functional groups determine the series null points. The placement of urea and glycine betaine (GB) at opposite ends of the corresponding series of nonelectrolytes results from the favorable interactions of urea, and unfavorable interactions of GB, with many (but not all) biopolymer functional groups. Interaction potentials and

  4. Carbon stocks in mangroves, salt marshes, and salt barrens in Tampa Bay, Florida, USA: Vegetative and soil characteristics.

    NASA Astrophysics Data System (ADS)

    Moyer, R. P.; Radabaugh, K.; Chappel, A. R.; Powell, C.; Bociu, I.; Smoak, J. M.

    2017-12-01

    When compared to other terrestrial environments, coastal "blue carbon" habitats such as salt marshes and mangrove forests sequester disproportionately large amounts of carbon as standing plant biomass and sedimentary peat deposits. This study quantified total carbon stocks in vegetation and soil of 17 salt marshes, salt barrens, and mangrove forests in Tampa Bay, Florida, USA. The sites included natural, restored, and created wetlands of varying ages and degrees of anthropogenic impacts. The average vegetative carbon stock in mangrove forests was 60.1 ± 2.7 Mg ha-1. Mangrove forests frequently consisted of a few large Avicennia germinans trees with smaller, abundant Rhizophora mangle and/or Laguncularia racemosa trees. The average vegetative carbon stock was 11.8 ± 3.7 Mg ha-1 for salt marshes and 2.0 ± 1.2 Mg ha-1 for salt barrens. Vegetative carbon did not significantly differ between natural and newly created salt marsh habitats, indicating that mature restored wetlands can be included with natural wetlands for the calculation of vegetative carbon in coastal blue carbon assessments. Peat deposits were generally less than 50 cm thick and organic content rapidly decreased with depth in all habitats. Soil in this study was analyzed in 1 cm intervals; the accuracy of subsampling or binning soil into depth intervals of 2-5 cm was also assessed. In most cases, carbon stock values obtained from these larger sampling intervals were not statistically different from values obtained from sampling at 1 cm intervals. In the first 15 cm, soil in mangrove forests contained an average of 15.1% organic carbon by weight, salt marshes contained 6.5%, and salt barrens contained 0.8%. Total carbon stock in mangroves was 187.1±17.3 Mg ha-1, with 68% of that carbon stored in soil. Salt marshes contained an average of 65.2±25.3 Mg ha-1 (82% soil carbon) and salt barrens had carbon stocks of 21.4±7.4 Mg ha-1 (89% soil carbon). These values were much lower than global averages for

  5. SALT-RESPONSIVE ERF1 Regulates Reactive Oxygen Species–Dependent Signaling during the Initial Response to Salt Stress in Rice[W

    PubMed Central

    Schmidt, Romy; Mieulet, Delphine; Hubberten, Hans-Michael; Obata, Toshihiro; Hoefgen, Rainer; Fernie, Alisdair R.; Fisahn, Joachim; San Segundo, Blanca; Guiderdoni, Emmanuel; Schippers, Jos H.M.; Mueller-Roeber, Bernd

    2013-01-01

    Early detection of salt stress is vital for plant survival and growth. Still, the molecular processes controlling early salt stress perception and signaling are not fully understood. Here, we identified SALT-RESPONSIVE ERF1 (SERF1), a rice (Oryza sativa) transcription factor (TF) gene that shows a root-specific induction upon salt and hydrogen peroxide (H2O2) treatment. Loss of SERF1 impairs the salt-inducible expression of genes encoding members of a mitogen-activated protein kinase (MAPK) cascade and salt tolerance–mediating TFs. Furthermore, we show that SERF1-dependent genes are H2O2 responsive and demonstrate that SERF1 binds to the promoters of MAPK KINASE KINASE6 (MAP3K6), MAPK5, DEHYDRATION-RESPONSIVE ELEMENT BINDING2A (DREB2A), and ZINC FINGER PROTEIN179 (ZFP179) in vitro and in vivo. SERF1 also directly induces its own gene expression. In addition, SERF1 is a phosphorylation target of MAPK5, resulting in enhanced transcriptional activity of SERF1 toward its direct target genes. In agreement, plants deficient for SERF1 are more sensitive to salt stress compared with the wild type, while constitutive overexpression of SERF1 improves salinity tolerance. We propose that SERF1 amplifies the reactive oxygen species–activated MAPK cascade signal during the initial phase of salt stress and translates the salt-induced signal into an appropriate expressional response resulting in salt tolerance. PMID:23800963

  6. Deposition, Accumulation, and Alteration of Cl(-), NO3(-), ClO4(-) and ClO3(-) Salts in a Hyper-Arid Polar Environment: Mass Balance and Isotopic Constraints

    NASA Technical Reports Server (NTRS)

    Jackson, Andrew; Davila, Alfonso F.; Boehlke, J. K.; Sturchio, Neil C.; Sevanthi, Ritesh; Estrada, Nubia; Brundrette, Megan; Lacell, Denis; McKay, Christopher P.; Poghosyan, Armen; hide

    2016-01-01

    The salt fraction in permafrost soils/sediments of the McMurdo Dry Valleys (MDV) of Antarctica can be used as a proxy for cold desert geochemical processes and paleoclimate reconstruction. Previous analyses of the salt fraction in MDV permafrost soils have largely been conducted in coastal regions where permafrost soils are variably affected by aqueous processes and mixed inputs from marine and stratospheric sources. We expand upon this work by evaluating permafrost soil/sediments in University Valley, located in the ultraxerous zone where both liquid water transport and marine influences are minimal. We determined the abundances of Cl(-), NO3(-, ClO4(-)and ClO3(-)in dry and ice-cemented soil/sediments, snow and glacier ice, and also characterized Cl(-) and NO3(-) isotopically. The data are not consistent with salt deposition in a sublimation till, nor with nuclear weapon testing fall-out, and instead point to a dominantly stratospheric source and to varying degrees of post depositional transformation depending on the substrate, from minimal alteration in bare soils to significant alteration (photodegradation and/or volatilization) in snow and glacier ice. Ionic abundances in the dry permafrost layer indicate limited vertical transport under the current climate conditions, likely due to percolation of snowmelt. Subtle changes in ClO4(-)/NO3(-) ratios and NO3(-) isotopic composition with depth and location may reflect both transport related fractionation and depositional history. Low molar ratios of ClO3(-)/ClO4(-) in surface soils compared to deposition and other arid systems suggest significant post depositional loss of ClO3(-), possibly due to reduction by iron minerals, which may have important implications for oxy-chlorine species on Mars. Salt accumulation varies with distance along the valley and apparent accumulation times based on multiple methods range from approximately 10 to 30 kyr near the glacier to 70-200 kyr near the valley mouth. The relatively

  7. Deposition, accumulation, and alteration of Cl-, NO3-, ClO4- and ClO3- salts in a hyper-arid polar environment: Mass balance and isotopic constraints

    NASA Astrophysics Data System (ADS)

    Jackson, Andrew; Davila, Alfonso F.; Böhlke, John Karl; Sturchio, Neil C.; Sevanthi, Ritesh; Estrada, Nubia; Brundrett, Maeghan; Lacelle, Denis; McKay, Christopher P.; Poghosyan, Armen; Pollard, Wayne; Zacny, Kris

    2016-06-01

    The salt fraction in permafrost soils/sediments of the McMurdo Dry Valleys (MDV) of Antarctica can be used as a proxy for cold desert geochemical processes and paleoclimate reconstruction. Previous analyses of the salt fraction in MDV permafrost soils have largely been conducted in coastal regions where permafrost soils are variably affected by aqueous processes and mixed inputs from marine and stratospheric sources. We expand upon this work by evaluating permafrost soil/sediments in University Valley, located in the ultraxerous zone where both liquid water transport and marine influences are minimal. We determined the abundances of Cl-, NO3-, ClO4- and ClO3- in dry and ice-cemented soil/sediments, snow and glacier ice, and also characterized Cl- and NO3- isotopically. The data are not consistent with salt deposition in a sublimation till, nor with nuclear weapon testing fall-out, and instead point to a dominantly stratospheric source and to varying degrees of post depositional transformation depending on the substrate, from minimal alteration in bare soils to significant alteration (photodegradation and/or volatilization) in snow and glacier ice. Ionic abundances in the dry permafrost layer indicate limited vertical transport under the current climate conditions, likely due to percolation of snowmelt. Subtle changes in ClO4-/NO3- ratios and NO3- isotopic composition with depth and location may reflect both transport related fractionation and depositional history. Low molar ratios of ClO3-/ClO4- in surface soils compared to deposition and other arid systems suggest significant post depositional loss of ClO3-, possibly due to reduction by iron minerals, which may have important implications for oxy-chlorine species on Mars. Salt accumulation varies with distance along the valley and apparent accumulation times based on multiple methods range from ∼10 to 30 kyr near the glacier to 70-200 kyr near the valley mouth. The relatively young age of the salts and

  8. Salt bridge as a gatekeeper against partial unfolding.

    PubMed

    Hinzman, Mark W; Essex, Morgan E; Park, Chiwook

    2016-05-01

    Salt bridges are frequently observed in protein structures. Because the energetic contribution of salt bridges is strongly dependent on the environmental context, salt bridges are believed to contribute to the structural specificity rather than the stability. To test the role of salt bridges in enhancing structural specificity, we investigated the contribution of a salt bridge to the energetics of native-state partial unfolding in a cysteine-free version of Escherichia coli ribonuclease H (RNase H*). Thermolysin cleaves a protruding loop of RNase H(*) through transient partial unfolding under native conditions. Lys86 and Asp108 in RNase H(*) form a partially buried salt bridge that tethers the protruding loop. Investigation of the global stability of K86Q/D108N RNase H(*) showed that the salt bridge does not significantly contribute to the global stability. However, K86Q/D108N RNase H(*) is greatly more susceptible to proteolysis by thermolysin than wild-type RNase H(*) is. The free energy for partial unfolding determined by native-state proteolysis indicates that the salt bridge significantly increases the energy for partial unfolding by destabilizing the partially unfolded form. Double mutant cycles with single and double mutations of the salt bridge suggest that the partially unfolded form is destabilized due to a significant decrease in the interaction energy between Lys86 and Asp108 upon partial unfolding. This study demonstrates that, even in the case that a salt bridge does not contribute to the global stability, the salt bridge may function as a gatekeeper against partial unfolding that disturbs the optimal geometry of the salt bridge. © 2016 The Protein Society.

  9. Dietary salt intake and risk of gastric cancer.

    PubMed

    D'Elia, Lanfranco; Galletti, Ferruccio; Strazzullo, Pasquale

    2014-01-01

    Humans began to use large amounts of salt for the main purpose of food preservation approximately 5,000 years ago and, although since then advanced technologies have been developed allowing drastic reduction in the use of salt for food storage, excess dietary salt intake remains very common. Gastric cancer is a common neoplasia, and dietary factors, including salt consumption, are considered relevant to its causation. A number of experimental studies supported the cocarcinogenic effect of salt through synergic action with Helicobacter pylori infection, in addition to some independent effects such as increase in the rate of cell proliferation and of endogenous mutations. Many epidemiological studies analyzed the relationship between excess salt intake and risk of gastric cancer. Both cross-sectional and prospective studies indicated a possibly dose-dependent positive association. In particular, a comprehensive meta-analysis of longitudinal studies detected a strong adverse effect of total salt intake and salt-rich foods on the risk of gastric cancer in the general population. Altogether, the epidemiological, clinical, and experimental evidence supports the possibility of a substantial reduction in the rates of gastric cancer through progressive reduction in population salt intake.

  10. Low temperature oxidation using support molten salt catalysts

    DOEpatents

    Weimer, Alan W.; Czerpak, Peter J.; Hilbert, Patrick M.

    2003-05-20

    Molten salt reactions are performed by supporting the molten salt on a particulate support and forming a fluidized bed of the supported salt particles. The method is particularly suitable for combusting hydrocarbon fuels at reduced temperatures, so that the formation NO.sub.x species is reduced. When certain preferred salts are used, such as alkali metal carbonates, sulfur and halide species can be captured by the molten salt, thereby reducing SO.sub.x and HCl emissions.

  11. Urinary Sodium-to-Potassium Ratio Tracks the Changes in Salt Intake during an Experimental Feeding Study Using Standardized Low-Salt and High-Salt Meals among Healthy Japanese Volunteers

    PubMed Central

    Yatabe, Midori Sasaki; Watanabe, Ami; Takano, Kozue; Sanada, Hironobu; Ichihara, Atsuhiro; Felder, Robin A.; Miura, Katsuyuki; Ueshima, Hirotsugu; Kimura, Junko; Yatabe, Junichi

    2017-01-01

    The Na/K ratio is considered to be a useful index, the monitoring of which allows an effective Na reduction and K increase, because practical methods (self-monitoring devices and reliable individual estimates from spot urine) are available for assessing these levels in individuals. An intervention trial for lowering the Na/K ratio has demonstrated that a reduction of the Na/K ratio mainly involved Na reduction, with only a small change in K. The present study aimed to clarify the relationship between dietary Na intake and the urinary Na/K molar ratio, using standardized low- and high-salt diets, with an equal dietary K intake, to determine the corresponding Na/K ratio. Fourteen healthy young adult volunteers ingested low-salt (3 g salt per day) and high-salt (20 g salt per day) meals for seven days each. Using a portable urinary Na/K meter, participants measured their spot urine at each voiding, and 24-h urine was collected on the last day of each diet period. On the last day of the unrestricted, low-salt, and high-salt diet periods, the group averages of the 24-h urine Na/K ratio were 4.2, 1.0, and 6.9, while the group averages of the daily mean spot urine Na/K ratio were 4.2, 1.1, and 6.6, respectively. The urinary Na/K ratio tracked changes in dietary salt intake, and reached a plateau approximately three days after each change in diet. Frequent monitoring of the spot urine Na/K ratio may help individuals adhere to an appropriate dietary Na intake. PMID:28850062

  12. Urinary Sodium-to-Potassium Ratio Tracks the Changes in Salt Intake during an Experimental Feeding Study Using Standardized Low-Salt and High-Salt Meals among Healthy Japanese Volunteers.

    PubMed

    Yatabe, Midori Sasaki; Iwahori, Toshiyuki; Watanabe, Ami; Takano, Kozue; Sanada, Hironobu; Watanabe, Tsuyoshi; Ichihara, Atsuhiro; Felder, Robin A; Miura, Katsuyuki; Ueshima, Hirotsugu; Kimura, Junko; Yatabe, Junichi

    2017-08-29

    The Na/K ratio is considered to be a useful index, the monitoring of which allows an effective Na reduction and K increase, because practical methods (self-monitoring devices and reliable individual estimates from spot urine) are available for assessing these levels in individuals. An intervention trial for lowering the Na/K ratio has demonstrated that a reduction of the Na/K ratio mainly involved Na reduction, with only a small change in K. The present study aimed to clarify the relationship between dietary Na intake and the urinary Na/K molar ratio, using standardized low- and high-salt diets, with an equal dietary K intake, to determine the corresponding Na/K ratio. Fourteen healthy young adult volunteers ingested low-salt (3 g salt per day) and high-salt (20 g salt per day) meals for seven days each. Using a portable urinary Na/K meter, participants measured their spot urine at each voiding, and 24-h urine was collected on the last day of each diet period. On the last day of the unrestricted, low-salt, and high-salt diet periods, the group averages of the 24-h urine Na/K ratio were 4.2, 1.0, and 6.9, while the group averages of the daily mean spot urine Na/K ratio were 4.2, 1.1, and 6.6, respectively. The urinary Na/K ratio tracked changes in dietary salt intake, and reached a plateau approximately three days after each change in diet. Frequent monitoring of the spot urine Na/K ratio may help individuals adhere to an appropriate dietary Na intake.

  13. Interchangeability of the Wii Balance Board for Bipedal Balance Assessment.

    PubMed

    Bonnechère, Bruno; Jansen, Bart; Omelina, Lubos; Rooze, Marcel; Van Sint Jan, Serge

    2015-08-27

    Since 2010, an increasing interest in more portable and flexible hardware for balance and posture assessment led to previously published studies determining whether or not the Wii Balance Board could be used to assess balance and posture, both scientifically and clinically. However, no previous studies aimed at comparing results from different Wii Balance Boards for clinical balance evaluation exist. The objective of this crossover study is to assess the interchangeability of the Wii Balance Board. A total of 6 subjects participated in the study and their balance was assessed using 4 different Wii Balance Boards. Trials were recorded simultaneously with Wii Balance Boards and with a laboratory force plate. Nine relevant clinical parameters were derived from center of pressure displacement data obtained from Wii Balance Board and force plate systems. Intraclass correlation coefficients (ICC), F tests, and Friedman tests were computed to assess the agreement between trials and to compare the Wii Balance Board and force plate results. Excellent correlations were found between the Wii Balance Board and force plate (mean ρ =.83). With the exception of 2 parameters, strong to excellent agreements were found for the 7 remaining parameters (ICC=.96). No significant differences were found between trials recorded with different Wii Balance Boards. Our results indicate that for most of the parameters analyzed, balance and posture assessed with one Wii Balance Board were statistically similar to results obtained from another. Furthermore, the good correlation between the Wii Balance Board and force plate results shows that Wii Balance Boards can be reliably used for scientific assessment using most of the parameters analyzed in this study. These results also suggest that the Wii Balance Board could be used in multicenter studies and therefore, would allow for the creation of larger populations for clinical studies. Ethical Committee of the Erasme Hospital (CCB B406201215142

  14. Interchangeability of the Wii Balance Board for Bipedal Balance Assessment

    PubMed Central

    Jansen, Bart; Omelina, Lubos; Rooze, Marcel; Van Sint Jan, Serge

    2015-01-01

    Background Since 2010, an increasing interest in more portable and flexible hardware for balance and posture assessment led to previously published studies determining whether or not the Wii Balance Board could be used to assess balance and posture, both scientifically and clinically. However, no previous studies aimed at comparing results from different Wii Balance Boards for clinical balance evaluation exist. Objective The objective of this crossover study is to assess the interchangeability of the Wii Balance Board. Methods A total of 6 subjects participated in the study and their balance was assessed using 4 different Wii Balance Boards. Trials were recorded simultaneously with Wii Balance Boards and with a laboratory force plate. Nine relevant clinical parameters were derived from center of pressure displacement data obtained from Wii Balance Board and force plate systems. Intraclass correlation coefficients (ICC), F tests, and Friedman tests were computed to assess the agreement between trials and to compare the Wii Balance Board and force plate results. Results Excellent correlations were found between the Wii Balance Board and force plate (mean ρ =.83). With the exception of 2 parameters, strong to excellent agreements were found for the 7 remaining parameters (ICC=.96). No significant differences were found between trials recorded with different Wii Balance Boards. Conclusions Our results indicate that for most of the parameters analyzed, balance and posture assessed with one Wii Balance Board were statistically similar to results obtained from another. Furthermore, the good correlation between the Wii Balance Board and force plate results shows that Wii Balance Boards can be reliably used for scientific assessment using most of the parameters analyzed in this study. These results also suggest that the Wii Balance Board could be used in multicenter studies and therefore, would allow for the creation of larger populations for clinical studies. Trial

  15. Effect of Genetic Information Regarding Salt-Sensitive Hypertension on the Intent to Maintain a Reduced Salt Diet: Implications for Health Communication in Japan.

    PubMed

    Miyamoto, Keiko; Iwakuma, Miho; Nakayama, Takeo

    2017-03-01

    The authors investigated the relationship between the awareness of dietary salt and genetics and the intent to maintain a low-salt diet. In particular, they assessed whether hypothetical genetic information regarding salt-sensitive hypertension motivates the intent to reduce dietary salt for communicating the health benefits of lower salt consumption to citizens. A self-administered questionnaire survey was conducted with 2500 randomly sampled residents aged 30 to 69 years living in Nagahama, Japan. Genetic information regarding higher salt sensitivity increased motivation to reduce salt intake for both those who agreed that genes cause hypertension and those who did not. Less than 50% of those who agreed that genes cause hypertension lost their intention to lower their salt consumption when they found they did not possess the susceptibility gene. Communicating genetic information positively affected motivation to reduce salt intake. The present study clarifies the difficulty in changing the behavioral intent of those who have significantly less incentive to reduce salt intake. Therefore, a multidimensional approach is crucial to reduce salt consumption. ©2016 Wiley Periodicals, Inc.

  16. Mild Salt Stress Conditions Induce Different Responses in Root Hydraulic Conductivity of Phaseolus vulgaris Over-Time

    PubMed Central

    Calvo-Polanco, Monica; Sánchez-Romera, Beatriz; Aroca, Ricardo

    2014-01-01

    Plants respond to salinity by altering their physiological parameters in order to maintain their water balance. The reduction in root hydraulic conductivity is one of the first responses of plants to the presence of salt in order to minimize water stress. Although its regulation has been commonly attributed to aquaporins activity, osmotic adjustment and the toxic effect of Na+ and Cl− have also a main role in the whole process. We studied the effects of 30 mM NaCl on Phaseolus vulgaris plants after 9 days and found different responses in root hydraulic conductivity over-time. An initial and final reduction of root hydraulic conductivity, stomatal conductance, and leaf water potential in response to NaCl was attributed to an initial osmotic shock after 1 day of treatment, and to the initial symptoms of salt accumulation within the plant tissues after 9 days of treatment. After 6 days of NaCl treatment, the increase in root hydraulic conductivity to the levels of control plants was accompanied by an increase in root fructose content, and with the intracellular localization of root plasma membrane aquaporins (PIP) to cortex cells close to the epidermis and to cells surrounding xylem vessels. Thus, the different responses of bean plants to mild salt stress over time may be connected with root fructose accumulation, and intracellular localization of PIP aquaporins. PMID:24595059

  17. A contribution to the history of common salt.

    PubMed

    DeSanto, N G; Bisaccia, C; Cirillo, M; DeSanto, R M; DeSanto, L S; DeSanto, D; Papalia, T; Capasso, G; De Napoli, N

    1997-06-01

    Salt has influenced human nutrition, health, politics, taxation, economy, freight, transport, and commerce throughout the ages. All human activities have been influenced by salt including economy, religious beliefs and practices, art, literature, psychoanalysis, superstitions, and exorcism. Salt is recognized as a symbol for friendship, hospitality, chastity, alliance, table fellowship, fidelity, fertility, blessing, curse and endurance, etc. The Bible is the first book of salt and contains no fewer than 24 references to this substance. In the Gospels the parable of salt is a central one. Many many church fathers have written on salt a substance, which up to 1969 was a relevant element in the rite of Baptism. This paper reviews the importance of common salt for human life, and by drawing from various scientific and literary sources makes a special discussion of its various symbolisms.

  18. Ethanol modulates the VR-1 variant amiloride-insensitive salt taste receptor. II. Effect on chorda tympani salt responses.

    PubMed

    Lyall, Vijay; Heck, Gerard L; Phan, Tam-Hao T; Mummalaneni, Shobha; Malik, Shahbaz A; Vinnikova, Anna K; Desimone, John A

    2005-06-01

    The effect of ethanol on the amiloride- and benzamil (Bz)-insensitive salt taste receptor was investigated by direct measurement of intracellular Na(+) activity ([Na(+)](i)) using fluorescence imaging in polarized fungiform taste receptor cells (TRCs) and by chorda tympani (CT) taste nerve recordings. CT responses to KCl and NaCl were recorded in Sprague-Dawley rats, and in wild-type (WT) and vanilloid receptor-1 (VR-1) knockout mice (KO). CT responses were monitored in the presence of Bz, a specific blocker of the epithelial Na(+) channel (ENaC). CT responses were also recorded in the presence of agonists (resiniferatoxin and elevated temperature) and antagonists (capsazepine and SB-366791) of VR-1 that similarly modulate the Bz-insensitive VR-1 variant salt taste receptor. In the absence of mineral salts, ethanol induced a transient decrease in TRC volume and elicited only transient phasic CT responses. In the presence of mineral salts, ethanol increased the apical cation flux in TRCs without a change in volume, increased transepithelial electrical resistance across the tongue, and elicited CT responses that were similar to salt responses, consisting of both a phasic component and a sustained tonic component. At concentrations <50%, ethanol enhanced responses to KCl and NaCl, while at ethanol concentrations >50%, those CT responses were inhibited. Resiniferatoxin and elevated temperature increased the sensitivity of the CT response to ethanol in salt-containing media, and SB-366791 inhibited the effect of ethanol, resiniferatoxin, and elevated temperature on the CT responses to mineral salts. VR-1 KO mice demonstrated no Bz-insensitive CT response to NaCl and no sensitivity to ethanol. We conclude that ethanol increases salt taste sensitivity by its direct action on the Bz-insensitive VR-1 variant salt taste receptor.

  19. Socioeconomic inequality in salt intake in Britain 10 years after a national salt reduction programme.

    PubMed

    Ji, Chen; Cappuccio, Francesco P

    2014-08-14

    The impact of the national salt reduction programme in the UK on social inequalities is unknown. We examined spatial and socioeconomic variations in salt intake in the 2008-2011 British National Diet and Nutrition Survey (NDNS) and compared them with those before the programme in 2000-2001. Cross-sectional survey in Great Britain. 1027 Caucasian males and females, aged 19-64 years. Participants' dietary sodium intake measured with a 4-day food diary. Bayesian geo-additive models used to assess spatial and socioeconomic patterns of sodium intake accounting for sociodemographic, anthropometric and behavioural confounders. Dietary sodium intake varied significantly across socioeconomic groups, even when adjusting for geographical variations. There was higher dietary sodium intake in people with the lowest educational attainment (coefficient: 0.252 (90% credible intervals 0.003, 0.486)) and in low levels of occupation (coefficient: 0.109 (-0.069, 0.288)). Those with no qualification had, on average, a 5.7% (0.1%, 11.1%) higher dietary sodium intake than the reference group. Compared to 2000-2001 the gradient of dietary sodium intake from south to north was attenuated after adjustments for confounders. Estimated dietary sodium consumption from food sources (not accounting for discretionary sources) was reduced by 366 mg of sodium (∼0.9 g of salt) per day during the 10-year period, likely the effect of national salt reduction initiatives. Social inequalities in salt intake have not seen a reduction following the national salt reduction programme and still explain more than 5% of salt intake between more and less affluent groups. Understanding the socioeconomic pattern of salt intake is crucial to reduce inequalities. Efforts are needed to minimise the gap between socioeconomic groups for an equitable delivery of cardiovascular prevention. Published by the BMJ Publishing Group Limited. For permission to use (where not already granted under a licence) please go to

  20. Durability of building stones against artificial salt crystallization

    NASA Astrophysics Data System (ADS)

    Min, K.; Park, J.; Han, D.

    2005-12-01

    Salts have been known as the most powerful weathering agents, especially when combined with frost action. Salt crystallization test along with freezing-thawing test and acid immersion test was carried out to assess the durability of building stones against weathering. Granite, limestone, marble and basalt were sampled from different quarries in south Korea for this study. One cycle of artificial salt crystallization test was composed of immersion of cored rock specimens in oversaturated solutions of CaCl2, KCl, NaCl and Na2SO4, respectively for 15 hours and successive drying in an oven of 105°C for 3 hours and cooling at room temperature. Tests were performed up to 30 cycles, and specific gravity and ultrasonic velocity were measured after experiencing every 10 cycles and uniaxial compressive strength was measured only after 30 cycles. During the repeated Na2SO4 salt crystallization, some rock samples were gradually deformed excessively and burst after 20 to 30 cycles of test. The variation patterns of physical properties during the salt crystallization tests are too variable to generalize the effect of salt weathering on physical properties but limestone, marble and basalt samples showed relatively greater change of physical properties than granite samples. The recrystallized salts were well observed in the cracks of rock samples through the scanning electron microscope. In the all salt crystallization tests, apparent specific gravities for all tested samples increased generally but not so significantly due to recrystallization of salts. It can be inferred that filling the pores with salt crystals cause the increase of ultrasonic velocity during the early stage of salt crystallization and then in later stages the repeated cycles of salt crystallization result in development of cracks leading decrease of ultrasonic velocity for some rock samples.

  1. Reconceptualizing Balance: Attributes associated with balance performance

    PubMed Central

    Thomas, Julia C.; Odonkor, Charles; Griffith, Laura; Holt, Nicole; Percac-Lima, Sanja; Leveille, Suzanne; Ni, Pensheng; Latham, Nancy K.; Jette, Alan M.; Bean, Jonathan F.

    2014-01-01

    Balance tests are commonly used to screen for impairments that put older adults at risk for falls. The purpose of this study was to determine the attributes that were associated with balance performance as measured by the The Frailty and Injuries: Cooperative Studies of Intervention Techniques (FICSIT) balance test. This study was a cross-sectional secondary analysis of baseline data from a longitudinal cohort study, the Boston Rehabilitative Impairment Study of the Elderly (Boston RISE). Boston RISE was performed in an outpatient rehabilitation research center and evaluated Boston area primary care patients aged 65 to 96 (N=364) with self-reported difficulty or task-modification climbing a flight of stairs or walking ½ of a mile. The outcome measure was standing balance as measured by the FICSIT-4 balance assessment. Other measures included: self-efficacy, pain, depression, executive function, vision, sensory loss, reaction time, kyphosis, leg range of motion, trunk extensor muscle endurance, leg strength and leg velocity at peak power. Participants were 67% female, had an average age of 76.5 (± 7.0) years, an average of 4.1 (± 2.0) chronic conditions, and an average FICSIT-4 score of 6.7 (± 2.2) out of 9. After adjusting for age and gender, attributes significantly associated with balance performance were falls self-efficacy, trunk extensor muscle endurance, sensory loss, and leg velocity at peak power. FICSIT-4 balance performance is associated with a number of behavioral and physiologic attributes, many of which are amenable to rehabilitative treatment. Our findings support a consideration of balance as multidimensional activity as proposed by the current International Classification of Functioning, Disability, and Health (ICF) model. PMID:24952097

  2. Ultrasonic Technique for Predicting Grittiness of Salted Duck Egg

    NASA Astrophysics Data System (ADS)

    Erawan, S.; Budiastra, I. W.; Subrata, I. D. M.

    2018-05-01

    Grittiness of egg yolk is a major factor in consumer acceptance of salted duck egg product. Commonly, the grittiness level is determined by the destructive method. Salted egg industries need a grading system that can judge the grittiness accurately and nondestructively. The purpose of this study was to develop a method for determining grittiness of salted duck eggs nondestructively based on ultrasonic method. This study used 100 samples of salted duck eggs with 7,10,14 and 21 days of salting age. Velocity and attenuation were measured by an ultrasonic system at frequency 50 kHz, followed by physicochemical properties measurement (hardness of egg yolks and salt content), and organoleptic test. Ultrasonic wave velocity in salted duck eggs ranged from 620.6 m/s to 1334.6 m/s, while the coefficient of attenuation value ranged from – 0.76 dB/m to -0.51 dB/m. Yolk hardness was 2.68 N at 7 days to 5.54 N at 21 days of salting age. Salt content was 1.81 % at 7 days to 5.71 % at 21 days of salting age. Highest scores of organoleptic tests on salted duck eggs were 4.23 and 4.18 for 10 and 14 days of salting age, respectively. Discriminant function using ultrasonic velocity variables in minor and major diameter could predict grittiness with 95 % accuracy.

  3. [Food processing industry--the salt shock to the consumers].

    PubMed

    Doko Jelinić, Jagoda; Nola, Iskra Alexandra; Andabaka, Damir

    2010-05-01

    Industrial food production and processing is necessarily connected with the use of salt. Salt or sodium chloride is used as a preservative, spice, agent for color maintenance, texture, and to regulate fermentation by stopping the growth of bacteria, yeast and mold. Besides kitchen salt, other types of salt that also contain sodium are used in various technological processes in food preparing industry. Most of the "hidden" salt, 70%-75%, can be brought to the body by using industrial food, which, unfortunately, has been increasingly used due to the modern way of life. Bread and bakery products, meat products, various sauces, dried fish, various types of cheese, fast food, conserved vegetables, ready-made soups and food additives are the most common industrial foods rich in sodium. Many actions have been taken all over the world to restrict salt consumption. The World Health Organization recommends the upper limit of salt input of 5 g per day. These actions appeal to food industry to reduce the proportion of salt in their products. Besides lower salt addition during manufacture, food industry can use salt substitutes, in particular potassium chloride (KCl), in combination with additives that can mask the absence of salt, and flavor intensifiers that also enhance the product salinity. However, food industry is still quite resistant to reducing salt in their products for fear from losing profits.

  4. Invasive Knotweeds are Highly Tolerant to Salt Stress

    NASA Astrophysics Data System (ADS)

    Rouifed, Soraya; Byczek, Coline; Laffray, Daniel; Piola, Florence

    2012-12-01

    Japanese knotweed s.l. are some of the most invasive plants in the world. Some genotypes are known to be tolerant to the saline concentrations found in salt marshes. Here we focus on tolerance to higher concentrations in order to assess whether the species are able to colonize and establish in highly stressful environments, or whether salt is an efficient management tool. In a first experiment, adult plants of Fallopia japonica, Fallopia × bohemica and Fallopia sachalinensis were grown under salt stress conditions by watering with saline concentrations of 6, 30, 120, or 300 g L-1 for three weeks to assess the response of the plants to a spill of salt. At the two highest concentrations, their leaves withered and fell. There were no effects on the aboveground parts at the lowest concentrations. Belowground dry weight and number of buds were reduced from 30 and 120 g L-1 of salt, respectively. In a second experiment, a single spraying of 120 g L-1 of salt was applied to individuals of F. × bohemica and their stems were clipped to assess the response to a potential control method. 60 % of the plants regenerated. Regeneration was delayed by the salt treatment and shoot growth slowed down. This study establishes the tolerance of three Fallopia taxa to strong salt stress, with no obvious differences between taxa. Their salt tolerance could be an advantage in their ability to colonize polluted environments and to survive to spills of salt.

  5. Bath Salts

    MedlinePlus

    ... panic attacks depression suicidal thoughts paranoia delusions and hallucinations distorted sense of reality decreased ability to think ... of bath salts may cause people to have hallucinations, hear voices, feel paranoid, and develop a psychosis ...

  6. Salt controls feeding decisions in a blood-sucking insect.

    PubMed

    Pontes, Gina; Pereira, Marcos H; Barrozo, Romina B

    2017-04-01

    Salts are necessary for maintaining homeostatic conditions within the body of all living organisms. Like with all essential nutrients, deficient or excessive ingestion of salts can result in adverse health effects. The taste system is a primary sensory modality that helps animals to make adequate feeding decisions in terms of salt consumption. In this work we show that sodium and potassium chloride salts modulate the feeding behavior of Rhodnius prolixus in a concentration-dependent manner. Feeding is only triggered by an optimal concentration of any of these salts (0.1-0.15M) and in presence of the phagostimulant ATP. Conversely, feeding solutions that do not contain salts or have a high-salt concentration (>0.3M) are not ingested by insects. Notably, we show that feeding decisions of insects cannot be explained as an osmotic effect, because they still feed over hyperosmotic solutions bearing the optimal salt concentration. Insects perceive optimal-salt, no-salt and high-salt solutions as different gustatory information, as revealed the electromyogram recordings of the cibarial pump. Moreover, because insects do a continuous gustatory monitoring of the incoming food during feeding, sudden changes beyond the optimal sodium concentration decrease and even inhibit feeding. The administration of amiloride, a sodium channel blocker, noticeably reduces the ingestion of the optimal sodium solution but not of the optimal potassium solution. Salt detection seems to occur at least through two salt receptors, one amiloride-sensitive and another amiloride-insensitive. Our results confirm the importance of the gustatory system in R. prolixus, showing the relevant role that salts play on their feeding decisions. Copyright © 2016 Elsevier Ltd. All rights reserved.

  7. Single molecule force measurements delineate salt, pH and surface effects on biopolymer adhesion

    NASA Astrophysics Data System (ADS)

    Pirzer, T.; Geisler, M.; Scheibel, T.; Hugel, T.

    2009-06-01

    In this paper we probe the influence of surface properties, pH and salt on the adhesion of recombinant spider silk proteins onto solid substrates with single molecule force spectroscopy. A single engineered spider silk protein (monomeric C16 or dimeric (QAQ)8NR3) is covalently bound with one end to an AFM tip, which assures long-time measurements for hours with one and the same protein. The tip with the protein is brought into contact with various substrates at various buffer conditions and then retracted to desorb the protein. We observe a linear dependence of the adhesion force on the concentration of three selected salts (NaCl, NaH2PO4 and NaI) and a Hofmeister series both for anions and cations. As expected, the more hydrophobic C16 shows a higher adhesion force than (QAQ)8NR3, and the adhesion force rises with the hydrophobicity of the substrate. Unexpected is the magnitude of the dependences—we never observe a change of more than 30%, suggesting a surprisingly well-regulated balance between dispersive forces, water-structure-induced forces as well as co-solute-induced forces in biopolymer adhesion.

  8. The water supply-water environment nexus in salt Intrusion area under the climate change

    NASA Astrophysics Data System (ADS)

    Liu, D.

    2017-12-01

    Water resources are critical problems in in salt Intrusion area for the increasing water supply and water quality deterioration. And the climate change exacerbates these problems. In order to balance the relationship between water supply and water environment requirements, the water supply-water environment nexus should be understood well. Based on the de Saint-Venant system of equations and the convection diffusion equation, which can be used to reflect the laws of water quality, the water supply- water environment nexus equation has be determined. And the nexus is dynamic with the climate change factors. The methods of determined the nexus have then been applied to a case study of the water supply-water environment nexus for the Pearl River Delta in China. The results indicate that the water supply-water environment nexus is trade off each other and are mainly affected by the fresh water flow from the upstream, salt water intrusion will reduce the resilience of the water supply system in this area. Our methods provides a useful framework to quantify the nexus according to the mechanisms of the water quantity and water quality, which will useful freshwater allocation and management in this saltwater intrusion area.

  9. Cadmium hampers salt tolerance of Sesuvium portulacastrum.

    PubMed

    Wali, Mariem; Martos, Soledad; Pérez-Martín, Laura; Abdelly, Chedly; Ghnaya, Tahar; Poschenrieder, Charlotte; Gunsé, Benet

    2017-06-01

    It is well known that salinity reduces cadmium toxicity in halophytes. However, the possible interference of Cd with the mechanisms of salt tolerance is poorly explored. The aim of this study was to see whether Cd affects salt tolerance mechanisms in the halophyte Sesuvium portulacastrum. S. portulacastrum plants obtained from cuttings were grown in hydroponics for 3 weeks and then exposed to low (0.09 mM) or moderate (200 mM) NaCl concentrations, alone or in combination with 25 μM CdCl 2 . Microscopy observation revealed two strategies of salt tolerance: euhalophytism and secretion of salt by bladder cells. Cadmium exposure hardly influenced the total leaf Na + concentrations. However, Cd supply delayed the salt-induced upregulation of AHA1 (plasma membrane H + -ATPase 1) and SOS1 (plasma membrane Na + transporter "Salt Overly Sensitive 1"), genes that are essential for salt tolerance. Moreover, Cd induced the activation of BADH, coding for betaine aldehyde dehydrogenase, indicating enhanced osmotic stress due to Cd. Sodium-green fluorescence in protoplasts from plants grown with low or high NaCl, alone or in combination with Cd, revealed higher Na + concentrations in the cytoplasm of Cd-exposed plants. Taken together the results indicate interference of Cd with salt tolerance mechanisms in S. portulacastrum. This may have consequences for the efficient use of halophytes in phytoremediation of Cd-contaminated saline soils. Copyright © 2017 Elsevier Masson SAS. All rights reserved.

  10. Salt deposits in Arizona promise gas-storage opportunities

    USGS Publications Warehouse

    Rauzi, S.L.

    2002-01-01

    Massive salt formations and their proximity to pipeline systems and power plants make Arizona attractive for natural gas storage. Caverns dissolved in subsurface salt are used to store LPG at Ferrellgas Partners LP facility near Holbrook and the AmeriGas Partners LP facility near Glendale. Three other companies are investigating the feasibility of storing natural gas in Arizona salt: Copper Eagle Gas Storage LLC, Desert Crossing Gas Storage and Transportation System LLC, and Aquila Inc. The most extensive salt deposits are in the Colorado Plateau Province. Marine and nonmarine salt deposits are present in Arizona.

  11. Corrosion of Mullite by Molten Salts

    NASA Technical Reports Server (NTRS)

    Jacobson, Nathan S.; Lee, Kang N.; Yoshio, Tetsuo

    1996-01-01

    The interaction of molten salts of different Na2O activities and mullite is examined with furnace and burner tests. The more-acidic molten salts form small amounts of Al2O3; the more-basic molten salts form various Na2O-Al2O3-SiO2 compounds. The results are interpreted using the Na2O-Al203-SiO2 ternary phase diagram, and some possible diffusion paths are discussed. The generally higher melting points of Na2O-Al2O3-SiO2 compounds lead to better behavior of mullite in molten salts, as compared to SiO2-protected ceramics such as SiC. Mullite-coated SiC is discussed, and the corrosion behavior is evaluated.

  12. 46 CFR 45.37 - Salt water load lines.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... 46 Shipping 2 2011-10-01 2011-10-01 false Salt water load lines. 45.37 Section 45.37 Shipping... Marks § 45.37 Salt water load lines. Each vessel that operates in the salt water of the St. Lawrence... marks under § 45.77 for salt water; and (b) Be marked with the letters “FW” above the fresh water marks...

  13. 46 CFR 45.37 - Salt water load lines.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... 46 Shipping 2 2010-10-01 2010-10-01 false Salt water load lines. 45.37 Section 45.37 Shipping... Marks § 45.37 Salt water load lines. Each vessel that operates in the salt water of the St. Lawrence... marks under § 45.77 for salt water; and (b) Be marked with the letters “FW” above the fresh water marks...

  14. 46 CFR 45.37 - Salt water load lines.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... 46 Shipping 2 2013-10-01 2013-10-01 false Salt water load lines. 45.37 Section 45.37 Shipping... Marks § 45.37 Salt water load lines. Each vessel that operates in the salt water of the St. Lawrence... marks under § 45.77 for salt water; and (b) Be marked with the letters “FW” above the fresh water marks...

  15. 46 CFR 45.37 - Salt water load lines.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... 46 Shipping 2 2012-10-01 2012-10-01 false Salt water load lines. 45.37 Section 45.37 Shipping... Marks § 45.37 Salt water load lines. Each vessel that operates in the salt water of the St. Lawrence... marks under § 45.77 for salt water; and (b) Be marked with the letters “FW” above the fresh water marks...

  16. 46 CFR 45.37 - Salt water load lines.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... 46 Shipping 2 2014-10-01 2014-10-01 false Salt water load lines. 45.37 Section 45.37 Shipping... Marks § 45.37 Salt water load lines. Each vessel that operates in the salt water of the St. Lawrence... marks under § 45.77 for salt water; and (b) Be marked with the letters “FW” above the fresh water marks...

  17. Effects of sodium chloride salinity on ecophysiological and biochemical parameters of oak seedlings (Quercus robur L.) from use of de-icing salts for winter road maintenance.

    PubMed

    Laffray, Xavier; Alaoui-Sehmer, Laurence; Bourioug, Mohamed; Bourgeade, Pascale; Alaoui-Sossé, Badr; Aleya, Lotfi

    2018-04-04

    Salt is widely used to melt snow on roads especially in mountain regions. Whether as rock salt or aerosols, spread or sprayed over road surfaces, salt may result in increased salt concentrations in soils, which, in turn, affect natural vegetation, especially tree seedlings already subjected to various other types of abiotic stress. The authors investigated the effects of salt treatment-related stress on seedling growth and certain biochemical parameters in Quercus robur to determine ion concentrations in root tips. Seedlings growing in a quartz sand/vermiculite mixture were subjected to NaCl concentrations of 0, 50, or 100 mM for 5 weeks. The results showed that high NaCl concentrations caused a marked reduction in total leaf biomass 55 and 75% for 50 and 100 mM treatments, respectively, in dry weight of stems (84%) and roots (175%) for 100 mM treatment and modified root architecture, whereas no changes appeared in leaf number. A non-significant decrease in relative water content, with changes in ion balance was recorded. Comparison of stressed to control plants show an increase in sodium (3.5-8-fold), potassium (0.6-fold), and chloride (9.5-14-fold) concentrations in the root tips while the K + /Na + ratio decreased. In taproots, no significant biochemical differences were observed between the salt-treated and the control plants for acid invertase activity, reducing sugars, sucrose, or soluble protein contents. The significance of ion and sugar accumulations in relation to osmotic adjustment and the ability of oak seedlings to cope with salt stress are discussed.

  18. Effect of salt intensity on ad libitum intake of tomato soup similar in palatability and on salt preference after consumption.

    PubMed

    Bolhuis, Dieuwerke P; Lakemond, Catriona M M; de Wijk, Rene A; Luning, Pieternel A; de Graaf, Cees

    2010-11-01

    Sensory properties of food play an important role in satiation. Studies on the effect of taste intensity on satiation show conflicting results. This may be due to the notion that in these studies taste intensity and palatability were confounded. The objective of this study was to investigate the effect of salt intensity of tomato soup on ad libitum intake (satiation), while controlling for palatability on an individual basis. Forty-eight subjects consumed both a low-salt (LS) and high-salt (HS) soup ad libitum from a self-refilling bowl. The results showed no difference between LS and HS soup in ad libitum intake, eating rate, changes in appetite ratings, and changes in hedonic ratings after intake. After intake of HS soup, LS soup was perceived as more bland than before intake of HS soup. After intake of LS soup, HS soup was perceived as more salt intense than before intake of LS soup. In conclusion, this study found no effect of salt intensity on satiation of tomato soups that were similar in palatability. During consumption, subjects adapted quickly to the exposed salt intensity as contrasting salt intensities were rated further from the ideal salt intensity and therefore perceived as less pleasant after consumption.

  19. Time-dependent disturbances of chloride salts on overall redox reaction and luminescence in Vibrio fischeri.

    PubMed

    Yu, Zhenyang; Zhang, Jing; Hou, Meifang

    2018-05-01

    The redox state of NADH/NADPH balance (nicotinamide adenine dinucleotide/nicotinamide adenine dinucleotide phosphate) is crucial in cellular homeostasis. Recent studies reported that sodium halide ions (NaX, X = F - , Cl - , Br - and I - ) stimulated NAD(P)H in Vibrio fischeri (VF). However, it remained unanswered whether this pattern applied in salts with other cations, e.g., K + , Mg 2+ and Ca 2+ , whose aquatic concentrations were increased by anthropogenic activities and climate change. Currently, VF were incubated with chloride salts, including KCl, MgCl 2 and CaCl 2 , and effects were measured in a time-dependent fashion. Both NADH and NADPH showed stimulation that increased over time, and the greatest maximum stimulation at 24 h was CaCl 2  > MgCl 2  > KCl. The changes of NADH/NADPH ratios over time in CaCl 2 , MgCl 2 and KCl were descendent, ascendant and stable, respectively. Simultaneously, FMN:NAD(P)H reaction catalyst (luciferase, in the form of expression levels of lux A and lux B), adenosine triphosphate and the expression levels of its regulating gene adk were also stimulated. The luminescence showed even more significant stimulations than the overall redox reaction. Together with earlier reported effects of NaCl, the chloride salts commonly disturbed the redox state and influenced the adaption of organisms to challenging environments. Copyright © 2018 Elsevier Ltd. All rights reserved.

  20. Sol-Gel transition behavior of pure iota-carrageenan in both salt-free and added salt states.

    PubMed

    Hossain, K S; Miyanaga, K; Maeda, H; Nemoto, N

    2001-01-01

    This paper describes how strongly the gelation process of iota-carrageenan is affected by addition of metallic ions from the creep and creep recovery, dynamic viscoelasticity (DVE) and DSC measurements. Creep results at T = 25 degrees C indicate that below a polymer concentration C of 3.0 wt % the salt-free system behaves as a viscous solution, and it starts to exhibit viscoelasticity as C exceeds 3.0 wt %. In the range C = 5.0-7.0 wt %, the salt-free system shows gellike behavior whereas the added salt system, measured in the low C range 1.0-2.5 wt %, showed gellike behavior at the same temperature. The sol-gel transition temperature T(c) was determined using Winter's criterion as the temperature at which both G'(omega) and G' '(omega) follow power law behavior with the same exponent n. DSC measurements reveal that salt-free and added salt systems take different types of thermal behavior within the same temperature range. The temperature T(c) is quite close to the gelation temperature T(m) determined from DSC measurement. The Eldrige-Ferry plot was performed to estimate activaton enthalpy, which shows that physical cross-links in the salt-free iota-carrageenan is not strong in comparison with those of samples which contains metal ions. We conclude from the data analysis of C dependence of the plateau modulus using the theory developed by Jones and Marques for rigid networks based on the fractal theories that addition of metallic ions gives rise to a rigid fiber like structure even at low C of iota-carrageenan in contrast to the salt-free system for which a flexible structure has been maintained at higher C.

  1. Systematic Evaluation of Salt Cavern Well Integrity

    NASA Astrophysics Data System (ADS)

    Roberts, B. L.; Lord, D. L.; Lord, A. S.; Bettin, G.; Sobolik, S. R.; Park, B. Y.

    2017-12-01

    The U.S. Strategic Petroleum Reserve (SPR) holds a reserve of crude oil ( 700 million barrels) to help ease any interruptions in oil import to the United States. The oil is stored in a set of 63 underground caverns distributed across four sites along the U.S. Gulf Coast. The caverns were solution mined into salt domes at each of the four sites. The plastic nature of the salt is beneficial for the storage of crude oil as it heals any fractures that may occur in the salt. The SPR is responsible for operating and maintaining the nearly 120 wells used to access the storage caverns over operational lifetimes spanning decades. Salt creep can induce deformation of the well casing which must be remediated to insure cavern and well integrity. This is particularly true at the interface between the plastic salt and the rigid caprock. The Department of Energy, the SPR Management and Operations contractor, and Sandia National Laboratories has developed a multidimensional well-grading system for the salt cavern access wells. This system is designed to assign numeric grades to each well indicating its risk of losing integrity and remediation priority. The system consists of several main components which themselves may consist of sub-components. The main components consider such things as salt cavern pressure history, results from geomechanical simulations modeling salt deformation, and measurements of well casing deformation due to salt creep. In addition, the geology of the salt domes and their overlying caprock is also included in the grading. These multiple factors are combined into summary values giving the monitoring and remediation priority for each well. Sandia National Laboratories is a multimission laboratory managed and operated by National Technology and Engineering Solutions of Sandia LLC, a wholly owned subsidiary of Honeywell International Inc. for the U.S. Department of Energy's National Nuclear Security Administration under contract DE-NA0003525.

  2. Characterization and analyses of acid-extractable and leached trace elements in dental cements.

    PubMed

    Camilleri, J; Kralj, P; Veber, M; Sinagra, E

    2012-08-01

    Determination of the elemental constitution and investigation of the total and leachable arsenic, chromium and lead in Portland cement, pure tricalcium silicate, Biodentine, Bioaggregate and mineral trioxide aggregate (MTA) Angelus. The chemical composition of Portland cement, MTA Angelus, tricalcium silicate cement, Biodentine and Bioaggregate was determined using X-ray fluorescence (XRF). Measurements of arsenic, lead and chromium were taken with inductively coupled plasma-mass spectrometry (ICP-MS), following acid digestion on the hydrated material and on leachates of cements soaked in Hank's balanced salt solution (HBSS). All the cements investigated had a similar oxide composition with the main oxide being calcium and silicon oxide. Both the Portland cement and MTA Angelus had an additional aluminium oxide. The dental cements included a radiopacifying material. All the materials tested had higher acid-extractable arsenic content than the level set by ISO 9917-1 (2007) and an acceptable level of lead. Regardless these high levels of trace elements present in the materials, the leaching in HBSS was minimal for all the dental material tested in contrast to the high levels displayed by Portland cement. Dental materials based on tricalcium silicate cement and MTA Angelus release minimal quantities of trace elements when in contact with simulated body fluids. The results of acid extraction could be affected by nonspecific matrix effects by the cement. © 2012 International Endodontic Journal.

  3. Evaluation of active and passive transport processes in corneas extracted from preserved rabbit eyes.

    PubMed

    Majumdar, Soumyajit; Hingorani, Tushar; Srirangam, Ramesh

    2010-04-01

    In vitro transcorneal permeability studies are an important screening tool in drug development. The objective of this research is to examine the feasibility of using corneas isolated from preserved rabbit eyes as a model for permeability evaluation. Eyes from male New Zealand White rabbits were used immediately or were stored overnight in phosphate-buffered saline (PBS) or Hanks balanced salt solution (HBSS) over wet ice. Integrity of isolated corneas was evaluated by measuring the TEER and by determining the permeability of paracellular and transcellular markers. Active transport was assessed by measuring transcorneal permeability of selected amino acids. Esterase activity was estimated using p-nitrophenyl assay. In all cases, corneas from freshly enucleated eyes were compared to those isolated from the day-old preserved eyes. Transcellular and paracellular passive diffusion was not affected by the storage medium and observed to be similar in the fresh and preserved eye models. However, amino acid transporters demonstrated lower functional activity in corneas excised from eyes preserved in PBS. Moreover, preserved eyes displayed almost 1.5-fold lower esterase activity in the corneal tissue. Thus, corneas isolated from day-old eyes, preserved in HBSS, closely mimics freshly excised rabbit corneas in terms of both active and passive transport characteristics but possesses slightly reduced enzymatic activity. 2009 Wiley-Liss, Inc. and the American Pharmacists Association

  4. Challenges in Development of Sperm Repositories for Biomedical Fishes: Quality Control in Small-Bodied Species.

    PubMed

    Torres, Leticia; Liu, Yue; Guitreau, Amy; Yang, Huiping; Tiersch, Terrence R

    2017-12-01

    Quality control (QC) is essential for reproducible and efficient functioning of germplasm repositories. However, many biomedical fish models present significant QC challenges due to small body sizes (<5 cm) and miniscule sperm volumes (<5 μL). Using minimal volumes of sperm, we used Zebrafish to evaluate common QC endpoints as surrogates for fertilization success along sequential steps of cryopreservation. First, concentrations of calibration bead suspensions were evaluated with a Makler ® counting chamber by using different sample volumes and mixing methods. For sperm analysis, samples were initially diluted at a 1:30 ratio with Hanks' balanced salt solution (HBSS). Motility was evaluated by using different ratios of sperm and activation medium, and membrane integrity was analyzed with flow cytometry at different concentrations. Concentration and sperm motility could be confidently estimated by using volumes as small as 1 μL, whereas membrane integrity required a minimum of 2 μL (at 1 × 10 6 cells/mL). Thus, <5 μL of sperm suspension (after dilution to 30-150 μL with HBSS) was required to evaluate sperm quality by using three endpoints. Sperm quality assessment using a combination of complementary endpoints enhances QC efforts during cryopreservation, increasing reliability and reproducibility, and reducing waste of time and resources.

  5. L-Sorbose but not D-tagatose induces hemolysis of dog erythrocytes in vitro.

    PubMed

    Bär, A; Leeman, W R

    1999-04-01

    Previous investigations have demonstrated that L-sorbose induces hemolysis of dog erythrocytes. This effect is probably the consequence of an ATP depletion of the red blood cells subsequent to inhibition of hexokinase, and thus the glycolytic pathway, by sorbose 1-phosphate. In the present study, the susceptibility of dog erythrocytes to D-tagatose, a stereoisomer of L-sorbose, was examined. Washed dog erythrocytes were suspended in Hanks' balanced salt solution (HBSS, containing 5.6 mM glucose) with or without the addition of 0.6, 6, and 60 mM L-sorbose or D-tagatose, or in HBSS with total glucose concentrations of 5.6, 6 and 60 mM D-glucose. After incubation for 24 h at 34 degrees C, the suspensions were centrifuged, and the percentage of hemolysis was determined by measuring the hemoglobin in the sediment and the supernatant. The amount of hemoglobin released in the medium did not differ significantly between the control (HBSS) and the test incubations with glucose or D-tagatose supplementation. In contrast, the addition of 6 and 60 mM L-sorbose resulted in significant hemolysis. At the low dose (0.6 mM), L-sorbose did not have an adverse effect. It is concluded that D-tagatose, unlike L-sorbose, does not have a hemolytic effect on canine erythrocytes. Copyright 1999 Academic Press.

  6. In vivo imaging of brain infarct with the novel fluorescent probe PSVue 794 in a rat middle cerebral artery occlusion-reperfusion model.

    PubMed

    Chu, Chun; Huang, Xiaofang; Chen, Chiung-Tong; Zhao, Yuanli; Luo, Jin J; Gray, Brian D; Pak, Koon Y; Dun, Nae J

    2013-01-01

    The utility of PSVue 794 (PS794), a near-infrared fluorescent dye conjugated to a bis[zinc (II)-dipicolylamine] (Zn-DPA) targeting moiety, in imaging brain infarct was assessed in a rat middle cerebral artery occlusion-reperfusion model. Following reperfusion, 1 mM PS794 solution was administered intravenously via a tail vein. Fluorescence images were captured between 6 to 72 hours postinjection using a LI-COR Biosciences Pearl Imaging System. Strong fluorescence signals, which may represent the infarct core, were detected in the right hemisphere, ipsilateral to the injured site, and weaker signals in areas surrounding the core. In ischemia-reperfusion rats injected with a control dye not linked to a targeting agent, fluorescence was distributed diffusely throughout the brain. To address the issue of whether Zn-DPA targets apoptotic/necrotic cells, HT22 mouse hippocampal neurons were cultured in either Dulbecco's Modified Eagle's Medium, serum-deprived medium, Hank's Balanced Salt Solution, or L-glutamate (10 mM)-containing medium for up to 33 hours. Cells were then double-labeled with PSVue 480 (Zn-DPA conjugated to fluorescein isothiocyanate) and propidium iodide, which labels necrotic cells. Microscopic examination revealed that PS480 targeted apoptotic and necrotic cells. The result indicates that PS794 is applicable to in vivo imaging of brain infarct and that Zn-DPA selectively targets apoptotic/necrotic cells.

  7. Tribo-electrochemical characterization of metallic biomaterials for total joint replacement.

    PubMed

    Diomidis, N; Mischler, S; More, N S; Roy, Manish

    2012-02-01

    Knee and hip joint replacement implants involve a sliding contact between the femoral component and the tibial or acetabular component immersed in body fluids, thus making the metallic parts susceptible to tribocorrosion. Micro-motions occur at points of fixation leading to debris and ion release by fretting corrosion. β-Titanium alloys are potential biomaterials for joint prostheses due to their biocompatibility and compatibility with the mechanical properties of bone. The biotribocorrosion behavior of Ti-29Nb-13Ta-4.6Zr was studied in Hank's balanced salt solution at open circuit potential and at an applied potential in the passive region. Reciprocating sliding tribocorrosion tests were carried out against technical grade ultra high molecular weight polyethylene, while fretting corrosion tests were carried out against alumina. The wear of the alloy is insignificant when sliding against polyethylene. However, depassivation does take place, but the tested alloy showed an ability to recover its passive state during sliding. The abrasivity of the alloy depends on the electrochemical conditions of the contact, while the wear of polyethylene proceeds through third body formation and material transfer. Under fretting corrosion conditions recovery of the passive state was also achieved. In a fretting contact wear of the alloy proceeds through plastic deformation of the bulk material and wear resistance depends on the electrochemical conditions. Copyright © 2011 Acta Materialia Inc. Published by Elsevier Ltd. All rights reserved.

  8. Physiological and biochemical perspectives of non-salt tolerant plants during bacterial interaction against soil salinity.

    PubMed

    Radhakrishnan, Ramalingam; Baek, Kwang Hyun

    2017-07-01

    Climatic changes on earth affect the soil quality of agricultural lands, especially by increasing salt deposition in soil, which results in soil salinity. Soil salinity is a major challenge to growth and reproduction among glycophytes (including all crop plants). Soil bacteria present in the rhizosphere and/or roots naturally protect plants from the adverse effects of soil salinity by reprogramming the stress-induced physiological changes in plants. Bacteria can enrich the soil with major nutrients (nitrogen, phosphorus, and potassium) in a form easily available to plants and prevent the transport of excess sodium to roots (exopolysaccharides secreted by bacteria bind with sodium ions) for maintaining ionic balance and water potential in cells. Salinity also affects plant growth regulators and suppresses seed germination and root and shoot growth. Bacterial secretion of indole-3-acetic acid and gibberellins compensates for the salt-induced hormonal decrease in plants, and bacterial 1-aminocyclopropane-1-carboxylate (ACC) deaminase synthesis decreases ethylene production to stimulate plant growth. Furthermore, bacteria modulate the redox state of salinity-affected plants by enhancing antioxidants and polyamines, which leads to increased photosynthetic efficiency. Bacteria-induced accumulation of compatible solutes in stressed plants regulates plant cellular activities and prevents salt stress damage. Plant-bacterial interaction reprograms the expression of salt stress-responsive genes and proteins in salinity-affected plants, resulting in a precise stress mitigation metabolism as a defense mechanism. Soil bacteria increase the fertility of soil and regulate the plant functions to prevent the salinity effects in glycophytes. This review explains the current understanding about the physiological changes induced in glycophytes during bacterial interaction to alleviate the adverse effects of soil salinity stress. Copyright © 2017 Elsevier Masson SAS. All rights

  9. Growth and physiological responses of two phenotypically distinct accessions of centipedegrass (Eremochloa ophiuroides (Munro) Hack.) to salt stress.

    PubMed

    Li, JianJian; Ma, Jingjing; Guo, Hailin; Zong, Junqin; Chen, Jingbo; Wang, Yi; Li, Dandan; Li, Ling; Wang, Jingjing; Liu, Jianxiu

    2018-05-01

    Salinity is one of the major abiotic environmental stress factors affecting plant growth and development. Centipedegrass (Eremochloa ophiuroides [Munro)] Hack.) is an important warm-season turfgrass species with low turf maintenance requirements, but is sensitive to salinity stress. To explore salt tolerant germplasms in centipedegrass and better understand the growth and physiological responses of centipedegrass to salinity, we conducted anatomic observation and phytochemical quantification, examined growth parameters, and investigated photosynthetic machinery and antioxidant system in two phenotypically distinct centipedegrass accessions under NaCl salt stress. The morphophenotypical difference of the stems in the two accessions mainly depends on whether or not a thickened epidermal horny layer with purple colour was formed, which was caused by anthocyanin accumulation in the tissue. Successive salinity treatment was found to result in an inhibition of leaf growth, a marked decrease in photosynthesis, chlorophyll contents, and the maximal photochemical efficiency of PSII (Fv/Fm). Under the same treatment, purple-stem accession (E092) showed a lower degree of inhibition or decrease than green-stem one (E092-1). With the exception of malondialdehyde level, both proline content and antioxidant enzymes were upregulated to a greater extent in E092 following exposure to salinity condition. Meanwhile, significant enhancements of anthocyanin accumulation and total protein synthesis were detected in E092 after salt treatment, but not in E092-1. These results demonstrated that E092 favor better accumulation of anthocyanins under salinity condition, which contribute to salt tolerance by adjusting physiological functions and osmotic balance, and better maintenance of high turf quality. Hence, genetic phenotype can be utilized as a key indicator in E. ophiuroides breeding for salt-tolerance. Copyright © 2018. Published by Elsevier Masson SAS.

  10. Interdependency of Reactive Oxygen Species generating and scavenging system in salt sensitive and salt tolerant cultivars of rice.

    PubMed

    Kaur, Navdeep; Dhawan, Manish; Sharma, Isha; Pati, Pratap Kumar

    2016-06-10

    Salinity stress is a major constrain in the global rice production and hence serious efforts are being undertaken towards deciphering its remedial strategies. The comparative analysis of differential response of salt sensitive and salt tolerant lines is a judicious approach to obtain essential clues towards understanding the acquisition of salinity tolerance in rice plants. However, adaptation to salt stress is a fairly complex process and operates through different mechanisms. Among various mechanisms involved, the reactive oxygen species mediated salinity tolerance is believed to be critical as it evokes cascade of responses related to stress tolerance. In this background, the present paper for the first time evaluates the ROS generating and the scavenging system in tandem in both salt sensitive and salt tolerant cultivars of rice for getting better insight into salinity stress adaptation. Comparative analysis of ROS indicates the higher level of hydrogen peroxide (H2O2) and lower level of superoxide ions (O(2-)) in the salt tolerant as compared to salt sensitive cultivars. Specific activity of ROS generating enzyme, NADPH oxidase was also found to be more in the tolerant cultivars. Further, activities of various enzymes involved in enzymatic and non enzymatic antioxidant defence system were mostly higher in tolerant cultivars. The transcript level analysis of antioxidant enzymes were in alignment with the enzymatic activity. Other stress markers like proline were observed to be higher in tolerant varieties whereas, the level of malondialdehyde (MDA) equivalents and chlorophyll content were estimated to be more in sensitive. The present study showed significant differences in the level of ROS production and antioxidant enzymes activities among sensitive and tolerant cultivars, suggesting their possible role in providing natural salt tolerance to selected cultivars of rice. Our study demonstrates that the cellular machinery for ROS production and scavenging system

  11. The SALT HRS Spectrograph

    NASA Astrophysics Data System (ADS)

    Tyas, Luke Martin Graham

    2012-05-01

    SALT HRS (Southern African Large Telescope High Resolution Échelle Spectrograph) is a high-resolution, high-efficiency spectrograph for the 11m SALT telescope in Sutherland, South Africa. The initial optical design work was performed at the University of Canterbury, New Zealand. Revisions to the concept, the mechanical design, manufacture, assembly and testing have been handled by the Centre for Advanced Instrumentation, at Durham University in the United Kingdom. SALT HRS is a fibre-fed échelle grating spectrograph with four operational modes: low-, medium- and high-resolution and high-stability modes, having spectral resolutions of R≈16000, 37000, 67000 and 67000 respectively over a wavelength range of 370-890nm. The instrument is of a dual channel, 'white pupil' design, in which the primary mirror acts to collimate light onto a single R4 échelle grating, and also to focus dispersed light to an intermediate focus. A dichroic beam-splitter separates the dispersed light into two separate spectral channels. Spherical pupil mirrors transfer the separated beams via a fold mirror to two wavelength-specific volume-phase holographic gratings (VPHGs) used as cross-dispersers. Cross-dispersed spectra are then imaged by two fully dioptric camera systems onto optimized CCD detectors. This thesis presents the results of the laboratory testing and specification of several critical sub-systems of SALT HRS, as well as the development of key software tools for the design verification and operation at the telescope. In Chapter 1 we first review the technical development of high-resolution spectroscopy and its specific implementation in SALT HRS. In Chapter 2 we develop a comprehensive throughput model of the entire system based on a combination of as-built performance and specific throughput measurements in the laboratory. This is used to make some specific predictions for the on-sky performance of SALT HRS and the magnitude limits for science targets. We also present a

  12. INTERSECTION OF 445 NORTH & 1040 EAST, SALT LAKE CITY, ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    INTERSECTION OF 445 NORTH & 1040 EAST, SALT LAKE CITY, UT. VIEW LOOKING SOUTH. REPHOTOGRAPH OF HISTORIC SHIPLER PHOTO # 18272, UTAH STATE HISTORICAL SOCIETY COLLECTION. - Salt Lake City Cemetery, 200 N Street, Salt Lake City, Salt Lake County, UT

  13. Geohydrology of the Keechi, Mount Sylvan, Oakwood, and Palestine salt domes in the northeast Texas salt-dome basin

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Carr, J.E.; Halasz, S.J.; Peters, H.B.

    1980-01-01

    The salt within these domes has penetrated as much as 20,000 feet of Mesozoic and Cenozoic strata, and presently extends to within 120 to 800 feet of the land surface. The salt penetrates or closely underlies major freshwater and salinewater aquifers within the basin. To provide a safe repository for radioactive wastes within one or more of these domes, a thorough understanding of the geohydrology needs to be obtained, and the hydrologic stability of the domes needs to be established for the expected life of the storage facility. Dissolution may exist at all four candidate salt domes, possibly through contactmore » with Cretaceous or Tertiary aquifers, or through fault systems in the vicinity of the domes. Strata overlying and surrounding Palestine and Keechi Salt Domes have been arched into steeply-dipping folds that are complexly faulted. Similar conditions exist at Oakwood and Mount Sylvan Domes, except that the Tertiary strata have been only moderately disturbed. Additional problems concerning the hydrologic stability of Oakwood and Palestine Salt Domes have resulted from the disposal of oil-field salinewater in the cap rock at the Oakwood Dome and previous solution mining of salt at the Palestine Dome.« less

  14. Physical chemistry and evolution of salt tolerance in halobacteria

    NASA Technical Reports Server (NTRS)

    Lanyi, J. K.

    1980-01-01

    The cellular constituents of extremely halophilic bacteria not only tolerate high salt concentration, but in many cases require it for optical functioning. The characteristics affected by salt include enzyme activity, stability, allosteric regulation, conformation and subunit association. The salt effects are of two major kinds: electrostatic shielding of negative charges by cations at low salt concentration, and hydrophobic stabilization by salting-out type salts at high salt concentration. The composition of halobacterial proteins shows an excess of acidic amino acids and a deficiency of nonpolar amino acids, which accounts for these effects. Since the cohesive forces are weaker and the repulsing forces are stronger in these proteins, preventing aggregation in salt, these structures are no longer suited for functioning in the absence of high salt concentrations. Unlike these nonspecific effects, ribosomes in halobacteria show marked preference for potassium over sodium ions. To ensure the proper intracellular ionic composition, powerful ion transport systems have evolved in the halobacteria, resulting in the extrusion of sodium ions and their replacement by potassium. It is likely that such membrane transport system for ionic movements is a necessary requisite for salt tolerance.

  15. 21 CFR 172.626 - Salts of carrageenan.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... 21 Food and Drugs 3 2010-04-01 2009-04-01 true Salts of carrageenan. 172.626 Section 172.626 Food... Gums, Chewing Gum Bases and Related Substances § 172.626 Salts of carrageenan. The food additive salts of carrageenan may be safely used in food in accordance with the following prescribed conditions: (a...

  16. 21 CFR 172.626 - Salts of carrageenan.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... 21 Food and Drugs 3 2011-04-01 2011-04-01 false Salts of carrageenan. 172.626 Section 172.626 Food... Gums, Chewing Gum Bases and Related Substances § 172.626 Salts of carrageenan. The food additive salts of carrageenan may be safely used in food in accordance with the following prescribed conditions: (a...

  17. Salting the landscapes in Transbaikalia: natural and technogenic factors

    NASA Astrophysics Data System (ADS)

    Peryazeva, E. G.; Plyusnin, A. M.; Chinavlev, A. M.

    2010-05-01

    Salting the soils, surface and subsurface waters is widespread in Transbaikalia. Hearths of salting occur within intermountain depressions of the Mesozoic and Cenozoic age both in the steppe arid and forest humid landscapes. Total water mineralization reaches 80 g/dm3 in lakes and 4-5 g/dm3 in subsurface waters. The waters belong to hydrocarbonate sodium and sulfate sodium types by chemical composition. The soda type of waters is widely spread through the whole area. Sulfate waters are found in several hearths of salting. Deposition of salts takes place in some lakes. Mirabilite and soda depositions are most commonly observed in muds of salt lakes. Deposition of salts occurs both as a result of evaporative concentrating and during freezing out the solvent. In the winter period, efflorescences of salts, where decawater soda is main mineral, are observed on ice surface. Solonchaks are spread in areas of shallow ground waters (1-2m). Soil salting is most intense in the lower parts of depressions, where surface of ground waters is at depth 0.5-1.0m. In soil cover of solonchaks, salt horizon is of various thicknesses, and it has various morphological forms of occurrence, i.e. as thick deposits of salts on soil surface and salting the surficial horizons. The soil has low alkaline reaction of medium and is characterized by high content of exchangeable bases with significant content of exchangeable sodium in the absorbing complex. Total amount of salts varies from 0.7 to 1.3%. Their maximal quantity (3.1%) is confined to the surficial layer. Sulfate-sodium type of salting is noted in the solonchak upper horizons and sulfate-magnesium-calcium one in the lower ones (Ubugunov et al, 2009). Formation of salting hearths is associated with natural and technogenic conditions. The Mesozoic depressions of Transbaikalia are characterized by intense volcanism. Covers of alkaline and moderately alkaline basalts that are enriched in potassium, sodium, carbon dioxide, fluorine, chlorine

  18. Thickness and Closure Kinetics of the Suprachoroidal Space Following Microneedle Injection of Liquid Formulations.

    PubMed

    Chiang, Bryce; Venugopal, Nitin; Grossniklaus, Hans E; Jung, Jae Hwan; Edelhauser, Henry F; Prausnitz, Mark R

    2017-01-01

    To determine the effect of injection volume and formulation of a microneedle injection into the suprachoroidal space (SCS) on SCS thickness and closure kinetics. Microneedle injections containing 25 to 150 μL Hanks' balanced salt solution (HBSS) were performed in the rabbit SCS ex vivo. Distribution of SCS thickness was measured by ultrasonography and three-dimensional (3D) cryo-reconstruction. Microneedle injections were performed in the rabbit SCS in vivo using HBSS, Discovisc, and 1% to 5% carboxymethyl cellulose (CMC) in HBSS. Ultrasonography was used to track SCS thickness over time. Increasing HBSS injection volume increased the area of expanded SCS, but did not increase SCS thickness ex vivo. With SCS injections in vivo, the SCS initially expanded to thicknesses of 0.43 ± 0.06 mm with HBSS, 1.5 ± 0.4 mm with Discovisc, and 0.69 to 2.1 mm with 1% to 5% CMC. After injection with HBSS, Discovisc, and 1% CMC solution, the SCS collapsed to baseline with time constants of 19 minutes, 6 hours, and 2.4 days, respectively. In contrast, injections with 3% to 5% CMC solution resulted in SCS expansion to 2.3 to 2.8 mm over the course of 2.8 to 9.1 hours, after which the SCS collapsed to baseline with time constants of 4.5 to 9.2 days. With low-viscosity formulations, SCS expands to a thickness that remains roughly constant, independent of the volume of fluid injected. Increasing injection fluid viscosity significantly increased SCS thickness. Expansion of the SCS is hypothesized to be controlled by a balance between the viscous forces of the liquid formulation and the resistive biomechanical forces of the tissue.

  19. Molten Salt Thermal Energy Storage Systems

    NASA Technical Reports Server (NTRS)

    Maru, H. C.; Dullea, J. F.; Kardas, A.; Paul, L.; Marianowski, L. G.; Ong, E.; Sampath, V.; Huang, V. M.; Wolak, J. C.

    1978-01-01

    The feasibility of storing thermal energy at temperatures of 450 C to 535 C in the form of latent heat of fusion was examined for over 30 inorganic salts and salt mixtures. Alkali carbonate mixtures were chosen as phase-change storage materials in this temperature range because of their relatively high storage capacity and thermal conductivity, moderate cost, low volumetric expansion upon melting, low corrosivity, and good chemical stability. Means of improving heat conduction through the solid salt were explored.

  20. Comparative Toxicities of Salts on Microbial Processes in Soil

    PubMed Central

    Maheshwari, Arpita; Bengtson, Per; Rousk, Johannes

    2016-01-01

    Soil salinization is a growing threat to global agriculture and carbon sequestration, but to date it remains unclear how microbial processes will respond. We studied the acute response to salt exposure of a range of anabolic and catabolic microbial processes, including bacterial (leucine incorporation) and fungal (acetate incorporation into ergosterol) growth rates, respiration, and gross N mineralization and nitrification rates. To distinguish effects of specific ions from those of overall ionic strength, we compared the addition of four salts frequently associated with soil salinization (NaCl, KCl, Na2SO4, and K2SO4) to a nonsaline soil. To compare the tolerance of different microbial processes to salt and to interrelate the toxicity of different salts, concentration-response relationships were established. Growth-based measurements revealed that fungi were more resistant to salt exposure than bacteria. Effects by salt on C and N mineralization were indistinguishable, and in contrast to previous studies, nitrification was not found to be more sensitive to salt exposure than other microbial processes. The ion-specific toxicity of certain salts could be observed only for respiration, which was less inhibited by salts containing SO42− than Cl− salts, in contrast to the microbial growth assessments. This suggested that the inhibition of microbial growth was explained solely by total ionic strength, while ion-specific toxicity also should be considered for effects on microbial decomposition. This difference resulted in an apparent reduction of microbial growth efficiency in response to exposure to SO42− salts but not to Cl− salts; no evidence was found to distinguish K+ and Na+ salts. PMID:26801570

  1. Improving crop salt tolerance.

    PubMed

    Flowers, T J

    2004-02-01

    Salinity is an ever-present threat to crop yields, especially in countries where irrigation is an essential aid to agriculture. Although the tolerance of saline conditions by plants is variable, crop species are generally intolerant of one-third of the concentration of salts found in seawater. Attempts to improve the salt tolerance of crops through conventional breeding programmes have met with very limited success, due to the complexity of the trait: salt tolerance is complex genetically and physiologically. Tolerance often shows the characteristics of a multigenic trait, with quantitative trait loci (QTLs) associated with tolerance identified in barley, citrus, rice, and tomato and with ion transport under saline conditions in barley, citrus and rice. Physiologically salt tolerance is also complex, with halophytes and less tolerant plants showing a wide range of adaptations. Attempts to enhance tolerance have involved conventional breeding programmes, the use of in vitro selection, pooling physiological traits, interspecific hybridization, using halophytes as alternative crops, the use of marker-aided selection, and the use of transgenic plants. It is surprising that, in spite of the complexity of salt tolerance, there are commonly claims in the literature that the transfer of a single or a few genes can increase the tolerance of plants to saline conditions. Evaluation of such claims reveals that, of the 68 papers produced between 1993 and early 2003, only 19 report quantitative estimates of plant growth. Of these, four papers contain quantitative data on the response of transformants and wild-type of six species without and with salinity applied in an appropriate manner. About half of all the papers report data on experiments conducted under conditions where there is little or no transpiration: such experiments may provide insights into components of tolerance, but are not grounds for claims of enhanced tolerance at the whole plant level. Whether enhanced

  2. Reactivity of pyrylium salts toward basic reactants

    NASA Technical Reports Server (NTRS)

    Neidlein, R.; Witerzens, P.

    1981-01-01

    The reactivity of some N-acyl and N-sulfonyl-hydrazines 2-4, 10a-10g, 12, 13, 16a, 16b and of hydrazones 18, benzyldihydrazone 21 towards pyrylium salts 1 was examined. By reaction of 2,4,6-trimethyl-pyrylium salt 1 with substituted hydrazines some pyridinium salts were obtained. Relationships between basicity and reactivity were discussed.

  3. Salt intake and the validity of a salt intake assessment system based on a 24-h dietary recall method in pregnant Japanese women.

    PubMed

    Satoh, Michihiro; Tanno, Yumi; Hosaka, Miki; Metoki, Hirohito; Obara, Taku; Asayama, Kei; Hoshi, Kazuhiko; Suzuki, Masakuni; Mano, Nariyasu; Imai, Yutaka

    2015-01-01

    Information regarding salt intake in pregnant women in Japan is limited. An electronic system for the assessment of salt intake using a 24-h dietary recall method has been developed in Japan. The objectives of the present study were to investigate salt intake in pregnant women and to compare the salt intake estimated by the electronic salt intake assessment system with that measured by 24-h urinary salt excretion (24-hUNaCl). Data were collected on 24-hUNaCl and salt intake estimated by the salt intake assessment system for 35 pregnant Japanese women at approximately 20 weeks of gestation. The adjusted 24-hUNaCl (24-hUNaCl/[the number of urinations during the examination day--the number of missing urine collections] × the number of urinations during the examination day, g/day) was used as a standard. The mean adjusted 24-hUNaCl was 7.7 ± 2.5 g/day, and mean systolic/diastolic blood pressure values were 106.1 ± 8.6/62.8 ± 6.5 mmHg. The adjusted 24-hUNaCl was significantly correlated with the salt intake estimated by the salt intake assessment system (r = 0.47, p = 0.004). Bland-Altman analysis showed no significant mean difference (adjusted 24-hUNaCl--salt intake estimated by the assessment system = -0.36 g/day, p = 0.4) and no significant proportional bias (p = 0.1). These results suggest that pregnant women in Japan restrict their salt intake, at least when they are being examined for salt intake. They also suggest that repeated use of the described system may be useful in estimating salt intake in pregnant women.

  4. Feasibility and antihypertensive effect of replacing regular salt with mineral salt -rich in magnesium and potassium- in subjects with mildly elevated blood pressure

    PubMed Central

    2011-01-01

    Background High salt intake is linked to hypertension whereas a restriction of dietary salt lowers blood pressure (BP). Substituting potassium and/or magnesium salts for sodium chloride (NaCl) may enhance the feasibility of salt restriction and lower blood pressure beyond the sodium reduction alone. The aim of this study was to determine the feasibility and effect on blood pressure of replacing NaCl (Regular salt) with a novel mineral salt [50% sodium chloride and rich in potassium chloride (25%), magnesium ammonium potassium chloride, hydrate (25%)] (Smart Salt). Methods A randomized, double-blind, placebo-controlled study was conducted with an intervention period of 8-weeks in subjects (n = 45) with systolic (S)BP 130-159 mmHg and/or diastolic (D)BP 85-99 mmHg. During the intervention period, subjects consumed processed foods salted with either NaCl or Smart Salt. The primary endpoint was the change in SBP. Secondary endpoints were changes in DBP, daily urine excretion of sodium (24-h dU-Na), potassium (dU-K) and magnesium (dU-Mg). Results 24-h dU-Na decreased significantly in the Smart Salt group (-29.8 mmol; p = 0.012) and remained unchanged in the control group: resulting in a 3.3 g difference in NaCl intake between the groups. Replacement of NaCl with Smart Salt resulted in a significant reduction in SBP over 8 weeks (-7.5 mmHg; p = 0.016). SBP increased (+3.8 mmHg, p = 0.072) slightly in the Regular salt group. The difference in the change of SBP between study groups was significant (p < 0.002). Conclusions The substitution of Smart Salt for Regular salt in subjects with high normal or mildly elevated BP resulted in a significant reduction in their daily sodium intake as well as a reduction in SBP. Trial Registration ISRCTN: ISRCTN01739816 PMID:21888642

  5. Modeling of Flow, Transport and Controlled Sedimentation Phenomena during Mixing of Salt Solutions in Complex Porous Formations

    NASA Astrophysics Data System (ADS)

    Skouras, Eugene D.; Jaho, Sofia; Pavlakou, Efstathia I.; Sygouni, Varvara; Petsi, Anastasia; Paraskeva, Christakis A.

    2015-04-01

    The deposition of salts in porous media is a major engineering phenomenon encountered in a plethora of industrial and environmental applications where in some cases is desirable and in other not (oil production, geothermal systems, soil stabilization etc). Systematic approach of these problems requires knowledge of the key mechanisms of precipitating salts within the porous structures, in order to develop new methods to control the process. In this work, the development and the solution of spatiotemporally variable mass balances during salt solution mixing along specific pores were performed. Both analytical models and finite differences CFD models were applied for the study of flow and transport with simultaneous homogeneous and heterogeneous nucleation (by crystal growth on the surface of the pores) in simple geometries, while unstructured finite elements and meshless methods were developed and implemented for spatial discretization, reconstruction, and solution of transport equations and homogeneous / heterogeneous reactions in more complex geometries. At initial stages of this work, critical problem parameters were identified, such as the characteristics of the porosity, the number of dissolved components, etc. The parameters were then used for solving problems which correspond to available experimental data. For each combination of ions and materials, specific data and process characteristics were included: (a) crystal kinetics (nucleation, growth rates or reaction surface rates of crystals, critical suspension concentrations), (b) physico-chemical properties (bulk density, dimensions of generated crystals, ion diffusion coefficients in the solution), (c) operating parameters (macroscopic velocity, flow, or pressure gradient of the solution, ion concentration) (d) microfluidic data (geometry, flow area), (e) porosity data in Darcy description (initial porosity, specific surface area, tortuosity). During the modeling of flow and transport in three

  6. Brines formed by multi-salt deliquescence

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Carroll, S; Rard, J; Alai, M

    2005-11-04

    The FY05 Waste Package Environment testing program at Lawrence Livermore National Laboratory focused on determining the temperature, relative humidity, and solution compositions of brines formed due to the deliquescence of NaCl-KNO{sub 3}-NaNO{sub 3} and NaCl-KNO{sub 3}-NaNO{sub 3}-Ca(NO{sub 3}){sub 2} salt mixtures. Understanding the physical and chemical behavior of these brines is important because they define conditions under which brines may react with waste canister surfaces. Boiling point experiments show that NaCl-KNO{sub 3}-NaNO{sub 3} and NaCl-KNO{sub 3}-NaNO{sub 3}-Ca(NO{sub 3}){sub 2} salt mixtures form brines that transform to hydrous melts that do not truly 'dry out' until temperatures exceed 300 and 400more » C, respectively. Thus a conducting solution is present for these salt assemblages over the thermal history of the repository. The corresponding brines form at lower relative humidity at higher temperatures. The NaCl-KNO{sub 3}-NaNO{sub 3} salt mixture has a mutual deliquescence relative humidity (MDRH) of 25.9% at 120 C and 10.8% at 180 C. Similarly, the KNO{sub 3}-NaNO{sub 3} salt mixture has MDRH of 26.4% at 120 C and 20.0% at 150 C. The KNO{sub 3}-NaNO{sub 3} salt mixture salts also absorb some water (but do not appear to deliquesce) at 180 C and thus may also contribute to the transfer of electrons at interface between dust and the waste package surface. There is no experimental evidence to suggest that these brines will degas and form less deliquescent salt assemblages. Ammonium present in atmospheric and tunnel dust (as the chloride, nitrate, or sulfate) will readily decompose in the initial heating phase of the repository, and will affect subsequent behavior of the remaining salt mixture only through the removal of a stoichiometric equivalent of one or more anions. Although K-Na-NO{sub 3}-Cl brines form at high temperature and low relative humidity, these brines are dominated by nitrate, which is known to inhibit corrosion at lower

  7. Water and solute balances as a basis for sustainable irrigation agriculture

    NASA Astrophysics Data System (ADS)

    Pla-Sentís, Ildefonso

    2015-04-01

    The growing development of irrigated agriculture is necessary for the sustainable production of the food required by the increasing World's population. Such development is limited by the increasing scarcity and low quality of the available water resources and by the competitive use of the water for other purposes. There are also increasing problems of contamination of surface and ground waters to be used for other purposes by the drainage effluents of irrigated lands. Irrigation and drainage may cause drastic changes in the regime and balance of water and solutes (salts, sodium, contaminants) in the soil profile, resulting in problems of water supply to crops and problems of salinization, sodification and contamination of soils and ground waters. This is affected by climate, crops, soils, ground water depth, irrigation and groundwater composition, and by irrigation and drainage management. In order to predict and prevent such problems for a sustainable irrigated agriculture and increased efficiency in water use, under each particular set of conditions, there have to be considered both the hydrological, physical and chemical processes determining such water and solute balances in the soil profile. In this contribution there are proposed the new versions of two modeling approaches (SOMORE and SALSODIMAR) to predict those balances and to guide irrigation water use and management, integrating the different factors involved in such processes. Examples of their application under Mediterranean and tropical climate conditions are also presented.

  8. Liquid salt environment stress-rupture testing

    DOEpatents

    Ren, Weiju; Holcomb, David E.; Muralidharan, Govindarajan; Wilson, Dane F.

    2016-03-22

    Disclosed herein are systems, devices and methods for stress-rupture testing selected materials within a high-temperature liquid salt environment. Exemplary testing systems include a load train for holding a test specimen within a heated inert gas vessel. A thermal break included in the load train can thermally insulate a load cell positioned along the load train within the inert gas vessel. The test specimen can include a cylindrical gage portion having an internal void filled with a molten salt during stress-rupture testing. The gage portion can have an inner surface area to volume ratio of greater than 20 to maximize the corrosive effect of the molten salt on the specimen material during testing. Also disclosed are methods of making a salt ingot for placement within the test specimen.

  9. Salt Acclimation of Cyanobacteria and Their Application in Biotechnology

    PubMed Central

    Pade, Nadin; Hagemann, Martin

    2014-01-01

    The long evolutionary history and photo-autotrophic lifestyle of cyanobacteria has allowed them to colonize almost all photic habitats on Earth, including environments with high or fluctuating salinity. Their basal salt acclimation strategy includes two principal reactions, the active export of ions and the accumulation of compatible solutes. Cyanobacterial salt acclimation has been characterized in much detail using selected model cyanobacteria, but their salt sensing and regulatory mechanisms are less well understood. Here, we briefly review recent advances in the identification of salt acclimation processes and the essential genes/proteins involved in acclimation to high salt. This knowledge is of increasing importance because the necessary mass cultivation of cyanobacteria for future use in biotechnology will be performed in sea water. In addition, cyanobacterial salt resistance genes also can be applied to improve the salt tolerance of salt sensitive organisms, such as crop plants. PMID:25551682

  10. Examination of Liquid Fluoride Salt Heat Transfer

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Yoder Jr, Graydon L

    2014-01-01

    The need for high efficiency power conversion and energy transport systems is increasing as world energy use continues to increase, petroleum supplies decrease, and global warming concerns become more prevalent. There are few heat transport fluids capable of operating above about 600oC that do not require operation at extremely high pressures. Liquid fluoride salts are an exception to that limitation. Fluoride salts have very high boiling points, can operate at high temperatures and low pressures and have very good heat transfer properties. They have been proposed as coolants for next generation fission reactor systems, as coolants for fusion reactor blankets,more » and as thermal storage media for solar power systems. In each case, these salts are used to either extract or deliver heat through heat exchange equipment, and in order to design this equipment, liquid salt heat transfer must be predicted. This paper discusses the heat transfer characteristics of liquid fluoride salts. Historically, heat transfer in fluoride salts has been assumed to be consistent with that of conventional fluids (air, water, etc.), and correlations used for predicting heat transfer performance of all fluoride salts have been the same or similar to those used for water conventional fluids an, water, etc). A review of existing liquid salt heat transfer data is presented, summarized, and evaluated on a consistent basis. Less than 10 experimental data sets have been found in the literature, with varying degrees of experimental detail and measured parameters provided. The data has been digitized and a limited database has been assembled and compared to existing heat transfer correlations. Results vary as well, with some data sets following traditional correlations; in others the comparisons are less conclusive. This is especially the case for less common salt/materials combinations, and suggests that additional heat transfer data may be needed when using specific salt eutectics in heat

  11. Effect of varying the salt and fat content in Cheddar cheese on aspects of the performance of a commercial starter culture preparation during ripening.

    PubMed

    Yanachkina, Palina; McCarthy, Catherine; Guinee, Tim; Wilkinson, Martin

    2016-05-02

    Production of healthier reduced-fat and reduced-salt cheeses requires careful selection of starter bacteria, as any substantial alterations to cheese composition may prompt changes in the overall performance of starters during cheese ripening. Therefore, it is important to assess the effect of compositional alterations on the individual strain response during cheese ripening for each optimised cheese matrix. In the current study, the effect of varying fat and salt levels in Cheddar cheese on the performance of a commercial Lactococcus lactis culture preparation, containing one L. lactis subsp. lactis strain and one L. lactis subsp. cremoris strain was investigated. Compositional variations in fat or salt levels did not affect overall starter viability, yet reduction of fat by 50% significantly delayed non-starter lactic acid bacteria (NSLAB) populations at the initial ripening period. In comparison to starter viability, starter autolysis, as measured by release of intracellular lactate dehydrogenase (LDH) or post-proline dipeptidyl aminopeptidase (Pep X) into cheese juices, decreased significantly with lower salt addition levels in full-fat Cheddar. Conversely, reducing fat content of cheese resulted in a significantly higher release of intracellular Pep X, and to a lesser extent intracellular LDH, into juices over ripening. Flow cytometry (FCM) indicated that the permeabilised and dead cell sub-populations were generally lower in juices from cheeses with reduced salt content, however no significant differences were observed between different salt and fat treatments. Interestingly, fat reductions by 30 and 50% in cheeses with reduced or half added salt contents appeared to balance out the effect of salt, and enhanced cell permeabilisation, cell death, and also cell autolysis in these variants. Overall, this study has highlighted that alterations in both salt and fat levels in cheese influence certain aspects of starter performance during ripening, including

  12. Ghaba salt basin province and Fahud salt basin province, Oman; geological overview and total petroleum systems

    USGS Publications Warehouse

    Pollastro, R.M.

    1999-01-01

    Three Total Petroleum Systems each consisting of one assessment unit have been identified in the Ghaba and Fahud Salt Basin Provinces of north-central Oman. One Total Petroleum System and corresponding assessment unit, the North Oman Huqf/`Q'? Haushi(!) Total Petroleum System (201401) and Ghaba-Makarem Combined Structural Assessment Unit (20140101), were identified for the Ghaba Salt Basin Province (2014). In the Fahud Salt Basin Province, however, two overlapping Total Petroleum Systems (TPS) were recognized: 1) the North Oman Huqf ? Shu'aiba(!) TPS (201601); Fahud-Huqf Combined Structural Assessment Unit (20160101), and 2) the Middle Cretaceous Natih(!) TPS (201602); Natih-Fiqa Structural/Stratigraphic Assessment Unit (20160201). The boundary for each Total Petroleum System also defines the boundary of the corresponding assessment unit and includes all trap styles and hydrocarbon producing reservoirs within the petroleum system. In both the Ghaba and Fahud Salt Basin Provinces, hydrocarbons were generated from several deeply-buried source rocks within the Infracambrian Huqf Supergroup. One general `North Oman Huqf' type oil is dominant in the Fahud Salt Basin. Oils in the Ghaba Salt Basin are linked to at least two distinct Huqf source-rock units based on oil geochemistry: a general North Oman Huqf-type oil source and a more dominant `questionable unidentified-source' or `Q'-type Huqf oil source. These two Huqf-sourced oils are commonly found as admixtures in reservoirs throughout north-central Oman. Hydrocarbons generated from Huqf sources are produced from a variety of reservoir types and ages ranging from Precambrian to Cretaceous in both the Ghaba and Fahud Salt Basin Provinces. Clastic reservoirs of the Gharif and Al Khlata Formations, Haushi Group (M. Carboniferous to L. Permian), dominate oil production in the Ghaba Salt Basin Province and form the basis for the Huqf/`Q' ? Haushi(!) TPS. In contrast, the Lower Cretaceous Shu'aiba and Middle Cretaceous

  13. Ghaba salt basin province and Fahud salt basin province, Oman; geological overview and total petroleum systems

    USGS Publications Warehouse

    Pollastro, Richard M.

    1999-01-01

    Three Total Petroleum Systems each consisting of one assessment unit have been identified in the Ghaba and Fahud Salt Basin Provinces of north-central Oman. One Total Petroleum System and corresponding assessment unit, the North Oman Huqf/?Q??Haushi(!) Total Petroleum System (201401) and Ghaba- Makarem Combined Structural Assessment Unit (20140101), were identified for the Ghaba Salt Basin Province (2014). In the Fahud Salt Basin Province, however, two overlapping Total Petroleum Systems (TPS) were recognized: (1) the North Oman Huqf?Shu?aiba(!) TPS (201601); Fahud-Huqf Combined Structural Assessment Unit (20160101), and (2) the middle Cretaceous Natih(!) TPS (201602); Natih-Fiqa Structural/Stratigraphic Assessment Unit (20160201). The boundary for each Total Petroleum System also defines the boundary of the corresponding assessment unit and includes all trap styles and hydrocarbon-producing reservoirs within the petroleum system. In both the Ghaba and Fahud Salt Basin Provinces, hydrocarbons were generated from several deeply buried source rocks within the Infracambrian Huqf Supergroup. One general ?North Oman Huqf? type oil is dominant in the Fahud Salt Basin. Oils in the Ghaba Salt Basin are linked to at least two distinct Huqf source-rock units based on oil geochemistry: a general North Oman Huqf-type oil source and a more dominant ?questionable unidentified source? or ?Q?-type Huqf oil source. These two Huqf-sourced oils are commonly found as admixtures in reservoirs throughout northcentral Oman. Hydrocarbons generated from Huqf sources are produced from a variety of reservoir types and ages ranging from Precambrian to Cretaceous in both the Ghaba and Fahud Salt Basin Provinces. Clastic reservoirs of the Gharif and Al Khlata Formations, Haushi Group (middle Carboniferous to Lower Permian), dominate oil production in the Ghaba Salt Basin Province and form the basis for the Huqf/?Q??Haushi(!) TPS. In contrast, the Lower Cretaceous Shu?aiba and middle Cretaceous

  14. Physical Monitoring of Flow Into and Within Great Salt Lake, Utah

    NASA Astrophysics Data System (ADS)

    Kenney, T. A.; Naftz, D. L.; Perschon, W. C.

    2006-12-01

    identified surface currents related to both freshwater inflow and wind throughout main body GSL. Velocity profiles have also determined the flow direction and magnitude of a persistent anoxic layer at depth in the south part of GSL. Movement of this layer between the two main basins of the south along a topographically high divide has also been documented (5 to 31 centimeters per second). References Cited Loving, B.L., Waddell, K.M., and Miller, C.W., 2000, Water and salt balance of Great Salt Lake, Utah, and simulation of water and salt movement through the causeway, 1987-98, U.S. Geological Survey Water-Resources Investigations Report 00-4221, 31 p.

  15. Genetic Diversity of Salt Tolerance in Miscanthus

    PubMed Central

    Chen, Chang-Lin; van der Schoot, Hanneke; Dehghan, Shiva; Alvim Kamei, Claire L.; Schwarz, Kai-Uwe; Meyer, Heike; Visser, Richard G. F.; van der Linden, C. Gerard

    2017-01-01

    Miscanthus is a woody rhizomatous C4 grass that can be used as a CO2 neutral biofuel resource. It has potential to grow in marginal areas such as saline soils, avoiding competition for arable lands with food crops. This study explored genetic diversity for salt tolerance in Miscanthus and discovered mechanisms and traits that can be used to improve the yield under salt stress. Seventy genotypes of Miscanthus (including 57 M. sinensis, 5 M. sacchariflorus, and 8 hybrids) were evaluated for salt tolerance under saline (150 mM NaCl) and normal growing conditions using a hydroponic system. Analyses of shoot growth traits and ion concentrations revealed the existence of large variation for salt tolerance in the genotypes. We identified genotypes with potential for high biomass production both under control and saline conditions that may be utilized for growth under marginal, saline conditions. Several relatively salt tolerant genotypes had clearly lower Na+ concentrations and showed relatively high K+/Na+ ratios in the shoots under salt stress, indicating that a Na+ exclusion mechanism was utilized to prevent Na+ accumulation in the leaves. Other genotypes showed limited reduction in leaf expansion and growth rate under saline conditions, which may be indicative of osmotic stress tolerance. The genotypes demonstrating potentially different salt tolerance mechanisms can serve as starting material for breeding programs aimed at improving salinity tolerance of Miscanthus. PMID:28261243

  16. Low molecular weight salts combined with fluorinated solvents for electrolytes

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Tikhonov, Konstantin; Yip, Ka Ki; Lin, Tzu-Yuan

    2015-11-10

    Provided are electrochemical cells and electrolytes used to build such cells. An electrolyte includes at least one salt having a molecular weight less than about 250. Such salts allow forming electrolytes with higher salt concentrations and ensure high conductivity and ion transport in these electrolytes. The low molecular weight salt may have a concentration of at least about 0.5M and may be combined with one or more other salts, such as linear and cyclic imide salts and/or methide salts. The concentration of these additional salts may be less than that of the low molecular weight salt, in some embodiments, twicemore » less. The additional salts may have a molecular weight greater than about 250. The electrolyte may also include one or more fluorinated solvents and may be capable of maintaining single phase solutions at between about -30.degree. C. to about 80.degree. C.« less

  17. Receptacle model of salting-in by tetramethylammonium ions.

    PubMed

    Hribar-Lee, Barbara; Dill, Ken A; Vlachy, Vojko

    2010-11-25

    Water is a poor solvent for nonpolar solutes. Water containing ions is an even poorer solvent. According to standard terminology, the tendency of salts to precipitate oils from water is called salting-out. However, interestingly, some salt ions, such as tetramethylammonium (TMA), cause instead the salting-in of hydrophobic solutes. Even more puzzling, there is a systematic dependence on solute size. TMA causes the salting-out of small hydrophobes and the salting-in of larger nonpolar solutes. We study these effects using NPT Monte Carlo simulations of the Mercedes-Benz (MB) + dipole model of water, which was previously shown to account for hydrophobic effects and ion solubilities in water. The present model gives a structural interpretation for the thermodynamics of salting-in. The TMA structure allows deep penetration by a first shell of waters, the dipoles of which interact electrostatically with the ion. This first water shell sets up a second water shell that is shaped to act as a receptacle that binds the nonpolar solute. In this way, a nonpolar solute can actually bind more tightly to the TMA ion than to another hydrophobe, leading to the increased solubility and salting-in. Such structuring may also explain why molecular ions do not follow the same charge density series as atomic ions do.

  18. Early postoperative changes of the foveal surface in epiretinal membranes: comparison of 23-gauge macular surgery with air vs. balanced salt solution.

    PubMed

    Leitritz, Martin A; Ziemssen, Focke; Voykov, Bogomil; Dimopoulos, Spyridon; Zobor, Ditta; Bartz-Schmidt, Karl U; Gelisken, Faik

    2014-08-01

    To analyze the foveal surface using binary image analysis after spectral-domain optical coherence tomography (SD-OCT) following 23-gauge macular surgery in epiretinal membranes (ERM) using either air tamponade (AIR) or balanced salt solution (BSS). One hundred twenty-four eyes (124 patients) with ERM that had undergone membrane peeling with installation of air or BSS were analyzed retrospectively. Ophthalmic examination was performed at baseline and 3 months. The foveal area and surface symmetry, area matched thickness, area matched contour, and best-corrected visual acuity (BCVA). The OCT images were analyzed after binary conversion with ImageJ software. Eighty eyes (80 patients) of 124 screened patients were included (AIR group: 39 patients, BSS group: 41 patients). Median follow-up time was 14 weeks (range, 9-19 weeks). Three months after surgery, the median horizontal area decreased significantly in both groups (p < 0.0001). At follow-up, the foveal surface symmetry values for the BSS group (median, 22.73 μm, range, 0-153) were significantly lower than for the AIR group (median, 23.95 μm, range, 0-160.43) (p < 0.0001). The area-matched thickness increased significantly in both groups (p < 0.001). The AIR group showed a significant increase of the area matched contour for the nasal located measurement-areas N1 (p < 0.0003), N2 (p < 0.0079), N3 (p < 0.007). The BSS group showed a significant increase of the area-matched contour for the measurement areas N1 (p < 0.019), N2 (p < 0.0014), and N4 (p < 0.022). After surgery, median BCVA for both groups increased significantly to 0.3 logMAR. The analysis of early contour changes after ERM surgery was technically possible. Long-term data have to be looked at before the clinical impact of this methodology can be estimated. Although there were no big differences between both groups (AIR vs. BSS), this could change within a longer and more representative follow-up.

  19. Recent changes in salt use and stroke mortality in England and Wales. Any help for the salt-hypertension debate?

    PubMed Central

    Cummins, R O

    1983-01-01

    This analysis attempts to fill the gap in the epidemiological evidence about the relation between dietary salt and hypertension. Changes in the purchase of salt in England and Wales are compared with changes in mortality from cerebrovascular disease (1958-78). Stroke mortality, a major sequel of hypertension, has declined in this period. Consumer purchases of salt have decreased also, as suggested by the National Food Survey. While these trends are consistent with the salt-hypertension hypothesis, the picture is confused by an increase in meals eaten outside the home, by the consumption of more processed food, and by a higher prevalence of refrigerators. Other events, such as medical treatment of hypertension or changes in the case fatality rate, could have contributed to the decline in stroke mortality. This secular trend analysis, using available data, does not clarify the salt-hypertension debate. PMID:6875440

  20. View of the Salt Lake City, Utah area

    NASA Technical Reports Server (NTRS)

    1973-01-01

    An oblique view of the Salt Lake City, Utah area as photographed from Earth orbit by one of the six lenses of the Itek-furnished S190-A Multispectral Photographic Facility Experiment aboard the Skylab space station. Approximately two-thirds of the Great Salt Lake is in view. The smaller body of water south of Salt Lake City is Utah Lake. The Wasatch Range is on the east side of the Great Salt Lake.

  1. Method for preparing salt solutions having desired properties

    DOEpatents

    Ally, Moonis R.; Braunstein, Jerry

    1994-01-01

    The specification discloses a method for preparing salt solutions which exhibit desired thermodynamic properties. The method enables prediction of the value of the thermodynamic properties for single and multiple salt solutions over a wide range of conditions from activity data and constants which are independent of concentration and temperature. A particular application of the invention is in the control of salt solutions in a process to provide a salt solution which exhibits the desired properties.

  2. The molecular basis for attractive salt-taste coding in Drosophila.

    PubMed

    Zhang, Yali V; Ni, Jinfei; Montell, Craig

    2013-06-14

    Below a certain level, table salt (NaCl) is beneficial for animals, whereas excessive salt is harmful. However, it remains unclear how low- and high-salt taste perceptions are differentially encoded. We identified a salt-taste coding mechanism in Drosophila melanogaster. Flies use distinct types of gustatory receptor neurons (GRNs) to respond to different concentrations of salt. We demonstrated that a member of the newly discovered ionotropic glutamate receptor (IR) family, IR76b, functioned in the detection of low salt and was a Na(+) channel. The loss of IR76b selectively impaired the attractive pathway, leaving salt-aversive GRNs unaffected. Consequently, low salt became aversive. Our work demonstrated that the opposing behavioral responses to low and high salt were determined largely by an elegant bimodal switch system operating in GRNs.

  3. Understanding the Differences Between Cocrystal and Salt Aqueous Solubilities.

    PubMed

    Cavanagh, Katie L; Maheshwari, Chinmay; Rodríguez-Hornedo, Naír

    2018-01-01

    This work challenges the popular notion that pharmaceutical salts are more soluble than cocrystals. There are cocrystals that are more soluble than salt forms of a drug and vice-versa. It all depends on the interplay between the chemistry of both the solid and solution phases. Aqueous solubility, pH max , and supersaturation index (SA = S CC /S D or S salt /S D ) of cocrystals and salts of a basic drug, lamotrigine (LTG), were determined, and mathematical models that predict the influence of cocrystal/salt K sp and K a were derived. K sp and SA followed the order LTG-nicotinamide cocrystal (18) > LTG-HCl salt (12) > LTG-saccharin salt (5) > LTG-methylparaben cocrystal (1) > LTG-phenobarbital cocrystal (0.2). The values in parenthesis represent SA under nonionizing conditions. Cocrystal/salt solubility and thermodynamic stability are determined by pH and will drastically change with a single unit change in pH. pH max values ranged from 5.0 (saccharin salt) to 6.4 (methylparaben cocrystal) to 9.0 (phenobarbital cocrystal). Cocrystal/salt pH max dependence on pK sp and pK a shows that cocrystals and salts exhibit different behavior. Solubility and pH max are as important as supersaturation index in assessing the stability and risks associated with conversions of supersaturating forms. Copyright © 2018 American Pharmacists Association®. Published by Elsevier Inc. All rights reserved.

  4. Reducing population salt intake worldwide: from evidence to implementation.

    PubMed

    He, Feng J; MacGregor, Graham A

    2010-01-01

    Raised blood pressure is a major cause of cardiovascular disease, responsible for 62% of stroke and 49% of coronary heart disease. There is overwhelming evidence that dietary salt is the major cause of raised blood pressure and that a reduction in salt intake lowers blood pressure, thereby, reducing blood pressure-related diseases. Several lines of evidence including ecological, population, and prospective cohort studies, as well as outcome trials, demonstrate that a reduction in salt intake is related to a lower risk of cardiovascular disease. Increasing evidence also suggests that a high salt intake may directly increase the risk of stroke, left ventricular hypertrophy, and renal disease; is associated with obesity through soft drink consumption; is related to renal stones and osteoporosis; is linked to the severity of asthma; and is probably a major cause of stomach cancer. In most developed countries, a reduction in salt intake can be achieved by a gradual and sustained reduction in the amount of salt added to foods by the food industry. In other countries where most of the salt consumed comes from salt added during cooking or from sauces, a public health campaign is needed to encourage consumers to use less salt. Several countries have already reduced salt intake. The challenge now is to spread this out to all other countries. A modest reduction in population salt intake worldwide will result in a major improvement in public health. Copyright 2010 Elsevier Inc. All rights reserved.

  5. Quantifying drag on wellbore casings in moving salt sheets

    NASA Astrophysics Data System (ADS)

    Weijermars, R.; Jackson, M. P. A.; Dooley, T. P.

    2014-08-01

    Frontier hydrocarbon development projects in the deepwater slopes of the Gulf of Mexico Basin, Santos Basin and Lower Congo Basin all require wells to cross ductile layers of autochthonous or allochthonous salt moving at peak rates of 100 mm yr-1. The Couette-Poiseuille number is introduced here to help pinpoint the depth of shear stress reversal in such salt layers. For any well-planned through salt, the probable range of creep forces of moving salt needs to be taken into account when designing safety margins and load-factor tolerance of the well casing. Drag forces increase with wellbore diameter, but more significantly with effective viscosity and speed of the creeping salt layer. The potential drag forces on cased wellbores in moving salt sheets are estimated analytically using a range of salt viscosities (1015-1019 Pa s) and creep rates (0-10 mm yr-1). Drag on perfectly rigid casing of infinite strength may reach up to 13 Giga Newton per meter wellbore length in salt having a viscosity of 1019 Pa s. Well designers may delay stress accumulations due to salt drag when flexible casing accommodates some of the early displacement and strain. However, all creeping salt could displace, fracture and disconnect well casing, eventually. The shear strength of typical heavy duty well casing (about 1000 MPa) can be reached due to drag by moving salt. Internal flow of salt will then fracture the casing near salt entry and exit points, but the structural damage is likely to remain unnoticed early in the well-life when the horizontal shift of the wellbore is still negligibly small (at less than 1 cm yr-1). Disruption of casing and production flow lines within the anticipated service lifetime of a well remains a significant risk factor within distinct zones of low-viscosity salt which may reach ultrafast creep rates of 100 mm yr-1.

  6. Molten salts and energy related materials.

    PubMed

    Fray, Derek

    2016-08-15

    Molten salts have been known for centuries and have been used for the extraction of aluminium for over one hundred years and as high temperature fluxes in metal processing. This and other molten salt routes have gradually become more energy efficient and less polluting, but there have been few major breakthroughs. This paper will explore some recent innovations that could lead to substantial reductions in the energy consumed in metal production and in carbon dioxide production. Another way that molten salts can contribute to an energy efficient world is by creating better high temperature fuel cells and novel high temperature batteries, or by acting as the medium that can create novel materials that can find applications in high energy batteries and other energy saving devices, such as capacitors. Carbonate melts can be used to absorb carbon dioxide, which can be converted into C, CO and carbon nanoparticles. Molten salts can also be used to create black silicon that can absorb more sunlight over a wider range of wavelengths. Overall, there are many opportunities to explore for molten salts to play in an efficient, low carbon world.

  7. Efficacy of virtual reality-based balance training versus the Biodex balance system training on the body balance of adults

    PubMed Central

    Ibrahim, Manal S.; Mattar, Ayman G.; Elhafez, Salam M.

    2016-01-01

    [Purpose] This study investigated efficacy of virtual reality (VR)-based balance training on enhancing balance and postural reactions of adults as a low-cost new modality compared to the established Biodex Balance System (BBS). [Subjects] Thirty normal adults of both genders were divided randomly into two equal-sized experimental groups of 15: BBS balance training and VR balance training. [Methods] The training programmes were conducted in 12 sessions, three 15-min sessions per week. The Nintendo® Wii Fit Plus (NWFP) and its balance board were used to train of the VR group. Each participant answered a questionnaire concerning usability, enjoyment, balance improvement, and fatigue at the end of the training programs. [Results] The study found a significant increase the measure of mean overall balance (OLB) in both groups. No significant difference was found between the groups, but a significant decrease in the mean balance-test time was found for both groups, with no significant difference between the two training methods. The VR programme was rated highly enjoyable by 81.8% of the group. [Conclusion] The Wii Fit Plus system with the balance board as a new VR balance-training technique, can be considered an effective and enjoyable tool for the training of adults’ body balance. PMID:26957722

  8. Development of salt production technology using prism greenhouse method

    NASA Astrophysics Data System (ADS)

    Guntur, G.; Jaziri, A. A.; Prihanto, A. A.; Arisandi, D. M.; Kurniawan, A.

    2018-01-01

    The main problem of salt production in Indonesia is low productivity and quality because the technology used commonly by Indonesian salt farmers is traditional method. This research aims to increase production of salt by using the prism greenhouse method. The prism greenhouse method is a salt production system with a combination of several salt production technologies, including geomembrane, threaded filter, and prism greenhouse technology. This research method used descriptive method. The results of this study were the productivity increased threefold, and the quality of salt produced also increased in terms of the content of NaCl from 85% to 95%. In addition, salt production with the prism greenhouse method has several advantages, such as faster harvest time, weather resistance, easy to use, and higher profit than traditional methods.

  9. Salicylic acid promotes plant growth and salt-related gene expression in Dianthus superbus L. (Caryophyllaceae) grown under different salt stress conditions.

    PubMed

    Zheng, Jian; Ma, Xiaohua; Zhang, Xule; Hu, Qingdi; Qian, Renjuan

    2018-03-01

    Salt stress is a critical factor that affects the growth and development of plants. Salicylic acid (SA) is an important signal molecule that mitigates the negative effects of salt stress on plants. To elucidate salt tolerance in large pink Dianthus superbus L. (Caryophyllaceae) and the regulatory mechanism of exogenous SA on D. superbus under different salt stresses, we conducted a pot experiment to evaluate leaf biomass, leaf anatomy, soluble protein and sugar content, and the relative expression of salt-induced genes in D. superbus under 0.3, 0.6, and 0.9% NaCl conditions with and without 0.5 mM SA. The result showed that exposure of D. superbus to salt stress lead to a decrease in leaf growth, soluble protein and sugar content, and mesophyll thickness, together with an increase in the expression of MYB and P5CS genes. Foliar application of SA effectively increased leaf biomass, soluble protein and sugar content, and upregulated the expression of MYB and P5CS in the D. superbus , which facilitated in the acclimation of D. superbus to moderate salt stress. However, when the plants were grown under severe salt stress (0.9% NaCl), no significant difference in plant physiological responses and relevant gene expression between plants with and without SA was observed. The findings of this study suggest that exogenous SA can effectively counteract the adverse effects of moderate salt stress on D. superbus growth and development.

  10. Thermal Properties of Consolidated Granular Salt as a Backfill Material

    NASA Astrophysics Data System (ADS)

    Paneru, Laxmi P.; Bauer, Stephen J.; Stormont, John C.

    2018-03-01

    Granular salt has been proposed as backfill material in drifts and shafts of a nuclear waste disposal facility where it will serve to conduct heat away from the waste to the host rock. Creep closure of excavations in rock salt will consolidate (reduce the porosity of) the granular salt. This study involved measuring the thermal conductivity and specific heat of granular salt as a function of porosity and temperature to aid in understanding how thermal properties will change during granular salt consolidation accomplished at pressures and temperatures consistent with a nuclear waste disposal facility. Thermal properties of samples from laboratory-consolidated granular salt and in situ consolidated granular salt were measured using a transient plane source method at temperatures ranging from 50 to 250 °C. Additional measurements were taken on a single crystal of halite and dilated polycrystalline rock salt. Thermal conductivity of granular salt decreased with increases in temperature and porosity. Specific heat of granular salt at lower temperatures decreased with increasing porosity. At higher temperatures, porosity dependence was not apparent. The thermal conductivity and specific heat data were fit to empirical models and compared with results presented in the literature. At comparable densities, the thermal conductivities of granular salt samples consolidated hydrostatically in this study were greater than those measured previously on samples formed by quasi-static pressing. Petrographic studies of the consolidated salt indicate that the consolidation method influenced the nature of the porosity; these observations are used to explain the variation of measured thermal conductivities between the two consolidation methods. Thermal conductivity of dilated polycrystalline salt was lower than consolidated salt at comparable porosities. The pervasive crack network along grain boundaries in dilated salt impedes heat flow and results in a lower thermal conductivity

  11. Separation of Cs and Sr from LiCl-KCl eutectic salt via a zone-refining process for pyroprocessing waste salt minimization

    NASA Astrophysics Data System (ADS)

    Shim, Moonsoo; Choi, Ho-Gil; Choi, Jeong-Hun; Yi, Kyung-Woo; Lee, Jong-Hyeon

    2017-08-01

    The purification of a LiCl-KCl salt mixture was carried out by a zone-refining process. To improve the throughput of zone refining, three heaters were installed in the zone refiner. The zone-refining method was used to grow pure LiCl-KCl salt ingots from a LiCl-KCl-CsCl-SrCl2 salt mixture. The main investigated parameters were the heater speed and the number of passes. From each zone-refined salt ingot, samples were collected axially along the salt ingot and the concentrations of Sr and Cs were determined. Experimental results show that the Sr and Cs concentrations at the initial region of the ingot were low and increased to a maximum at the final freezing region of the salt ingot. Concentration results of the zone-refined salt were compared with theoretical results furnished by the proposed model to validate its predictions. The keff values for Sr and Cs were 0.55 and 0.47, respectively. The correlation between the salt composition and separation behavior was also investigated. The keff values of the Sr in LiCl-KCl-SrCl2 and the Cs in LiCl-KCl-CsCl were found to be 0.53 and 0.44, respectively, by fitting the experimental data into the proposed model.

  12. Salt Lake City, Utah

    NASA Technical Reports Server (NTRS)

    2001-01-01

    The 2002 Winter Olympics are hosted by Salt Lake City at several venues within the city, in nearby cities, and within the adjacent Wasatch Mountains. This simulated natural color image presents a late spring view of north central Utah that includes all of the Olympic sites. The image extends from Ogden in the north, to Provo in the south; and includes the snow-capped Wasatch Mountains and the eastern part of the Great Salt Lake.

    This image was acquired on May 28, 2000 by the Advanced Spaceborne Thermal Emission and Reflection Radiometer (ASTER) on NASA's Terra satellite. With its 14 spectral bands from the visible to the thermal infrared wavelength region, and its high spatial resolution of 15 to 90 meters (about 50 to 300 feet), ASTER will image Earth for the next 6 years to map and monitor the changing surface of our planet.

    ASTER is one of five Earth-observing instruments launched December 18,1999, on NASA's Terra satellite. The instrument was built by Japan's Ministry of Economy, Trade and Industry. A joint U.S./Japan science team is responsible for validation and calibration of the instrument and the data products. Dr. Anne Kahle at NASA's Jet Propulsion Laboratory, Pasadena, California, is the U.S. Science team leader; Bjorn Eng of JPL is the project manager. ASTER is the only high resolution imaging sensor on Terra. The Terra mission is part of NASA's Earth Science Enterprise, a long-term research and technology program designed to examine Earth's land, oceans, atmosphere, ice and life as a total integrated system.

    The broad spectral coverage and high spectral resolution of ASTER will provide scientists in numerous disciplines with critical information for surface mapping, and monitoring dynamic conditions and temporal change. Example applications are: monitoring glacial advances and retreats; monitoring potentially active volcanoes; identifying crop stress; determining cloud morphology and physical properties; wetlands evaluation; thermal pollution

  13. Electrodeposition of Dense Chromium Coatings from Molten Salt Electrolytes

    DTIC Science & Technology

    1991-04-01

    AD-A235 978 . JUN 03 391 ELECTRODEPOSITION OF DENSE CHROMIUM COATINGS FROM MOLTEN SALT ELECTROLYTES Final Technical Report J t ]Vgca or by ~ 4 OTC... molten salts , pulsed currents, electrodeposition. 2. The results, on the electrodeposition of dense chromium coatings from molten salt electrolytes... salts dissolved in molten salts using the cell Cl2/C/!Cr 2 + in LiCI-KCI//Cr metal The chromium ions are introduced by anodizing a piece of chromium and

  14. SEPARATION OF INORGANIC SALTS FROM ORGANIC SOLUTIONS

    DOEpatents

    Katzin, L.I.; Sullivan, J.C.

    1958-06-24

    A process is described for recovering the nitrates of uranium and plutonium from solution in oxygen-containing organic solvents such as ketones or ethers. The solution of such salts dissolved in an oxygen-containing organic compound is contacted with an ion exchange resin whereby sorption of the entire salt on the resin takes place and then the salt-depleted liquid and the resin are separated from each other. The reaction seems to be based on an anion formation of the entire salt by complexing with the anion of the resin. Strong base or quaternary ammonium type resins can be used successfully in this process.

  15. A Trail of Salts

    NASA Technical Reports Server (NTRS)

    2004-01-01

    This graph shows the relative abundances of sulfur (in the form of sulfur tri-oxide) and chlorine at three Meridiani Planum sites: soil measured in the small crater where Opportunity landed; the rock dubbed 'McKittrick' in the outcrop lining the inner edge of the crater; and the rock nicknamed 'Guadalupe,' also in the outcrop. The 'McKittrick' data shown here were taken both before and after the rover finished grinding the rock with its rock abrasion tool to expose fresh rock underneath. The 'Guadalupe' data were taken after the rover grounded the rock. After grinding both rocks, the sulfur abundance rose to high levels, nearly five times higher than that of the soil. This very high sulfur concentration reflects the heavy presence of sulfate salts (approximately 30 percent by weight) in the rocks. Chloride and bromide salts are also indicated. Such high levels of salts strongly suggest the rocks contain evaporite deposits, which form when water evaporates or ice sublimes into the atmosphere.

  16. Sea-Salt Aerosol Forecasts Compared with Wave and Sea-Salt Measurements in the Open Mediterranean Sea

    NASA Astrophysics Data System (ADS)

    Kishcha, P.; Starobinets, B.; Bozzano, R.; Pensieri, S.; Canepa, E.; Nickovie, S.; di Sarra, A.; Udisti, R.; Becagli, S.; Alpert, P.

    2012-03-01

    Sea-salt aerosol (SSA) could influence the Earth's climate acting as cloud condensation nuclei. However, there were no regular measurements of SSA in the open sea. At Tel-Aviv University, the DREAM-Salt prediction system has been producing daily forecasts of 3-D distribution of sea-salt aerosol concentrations over the Mediterranean Sea (http://wind.tau.ac.il/saltina/ salt.html). In order to evaluate the model performance in the open sea, daily modeled concentrations were compared directly with SSA measurements taken at the tiny island of Lampedusa, in the Central Mediterranean. In order to further test the robustness of the model, the model performance over the open sea was indirectly verified by comparing modeled SSA concentrations with wave height measurements collected by the ODAS Italia 1 buoy and the Llobregat buoy. Model-vs.-measurement comparisons show that the model is capable of producing realistic SSA concentrations and their day-today variations over the open sea, in accordance with observed wave height and wind speed.

  17. Life Balancing -- A Better Way to Balance Large Batteries

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Anderson, R. Dyche; Zane, Regan; Plett, Gregory

    2017-03-28

    A new cell balancing technology was developed under a Department of Energy contract which merges the DC/DC converter function into cell balancing. Instead of conventional passive cell balancing technology which bypasses current through a resistor, or active cell balancing which moves current from one cell to another, with significant cost and additional inefficiencies, this concept takes variable amount of current from each cell or small group of cells and converts it to current for the low voltage system.

  18. Calcium Balance in Mature Rats Exposed to a Space Flight Model

    NASA Technical Reports Server (NTRS)

    Navidi, Meena; Evans, J.; Looft-Wilson, R.; Wolinsky, I.; Arnaud, S. B.; Hargens, Alan R. (Technical Monitor)

    1996-01-01

    Depressed intestinal calcium absorption (Ca abs.) and lower circulating 1,25-dihydroxyvitamin D (1,25-D) are associated with less positive calcium balance in young 200 g rats exposed to skeletal unloading by hind-limb suspension than controls (C) . To determine the effect of the space flight model on calcium balance in mature rats, we exposed 6 mo. old males weighing 492 +/- 12g to the model for 4 weeks (S) and compared Ca in the diet, urine, feces and 1,25-D in S and C. Rats were fed diets containing sufficient Ca to satisfy metabolic needs, but not to cause deficiency (0.1%). At the end of 4 weeks, there was a 5 percent weight loss in S, but not in C; and no differences in dietary, urine (UCa) or fecal Ca (FCa) in S and C. Net Ca abs. (0.1 vs 2.7 %), 1,25-D (50 +/- 16 vs 47 +/- 14 pg/ml) and Ca balances (-1.8 +/- 4 vs -1.0 +/- 2.9 mg/d) were similar in C and S. UCa loss was added to the model by inducing calciuria with 8% salt diets (HiNa). A 4-fold increase in UCa in C and S was transiently higher in S than C after 1 week. After 4 weeks, loss in BW was greater in S than C, Ca abs was higher in C than S (32 +/- 10 vs 3.5 +/- 16%, p less than .05), 1,25-D greater in S than C (98 +/- 15 vs 79 +/- 14 pg/ml p less than .05) and Ca balance less in S than C (-5.2 +/- 4 vs -1.7 +/- 2 mg/d, p less than .05). Ca balance in the mature rat is unaffected by the space flight model unless calciuria intervenes and reveals the failure of the intestine to enhance Ca abs. and compensate for UCa loss.

  19. Free energy landscape of a minimalist salt bridge model.

    PubMed

    Li, Xubin; Lv, Chao; Corbett, Karen M; Zheng, Lianqing; Wu, Dongsheng; Yang, Wei

    2016-01-01

    Salt bridges are essential to protein stability and dynamics. Despite the importance, there has been scarce of detailed discussion on how salt bridge partners interact with each other in distinct solvent exposed environments. In this study, employing a recent generalized orthogonal space tempering (gOST) method, we enabled efficient molecular dynamics simulation of repetitive breaking and reforming of salt bridge structures within a minimalist salt-bridge model, the Asp-Arg dipeptide and thereby were able to map its detailed free energy landscape in aqueous solution. Free energy surface analysis shows that although individually-solvated states are more favorable, salt-bridge states still occupy a noticeable portion of the overall population. Notably, the competing forces, e.g. intercharge attractions that drive the formation of salt bridges and solvation forces that pull the charged groups away from each other, are energetically comparable. As the result, the salt bridge stability is highly tunable by local environments; for instance when local water molecules are perturbed to interact more strongly with each other, the population of the salt-bridge states is likely to increase. Our results reveal the critical role of local solvent structures in modulating salt-bridge partner interactions and imply the importance of water fluctuations on conformational dynamics that involves solvent accessible salt bridge formations. © 2015 The Protein Society.

  20. Healthcare Costs Associated with an Adequate Intake of Sugars, Salt and Saturated Fat in Germany: A Health Econometrical Analysis.

    PubMed

    Meier, Toni; Senftleben, Karolin; Deumelandt, Peter; Christen, Olaf; Riedel, Katja; Langer, Martin

    2015-01-01

    Non-communicable diseases (NCDs) represent not only the major driver for quality-restricted and lost life years; NCDs and their related medical treatment costs also pose a substantial economic burden on healthcare and intra-generational tax distribution systems. The main objective of this study was therefore to quantify the economic burden of unbalanced nutrition in Germany--in particular the effects of an excessive consumption of fat, salt and sugar--and to examine different reduction scenarios on this basis. In this study, the avoidable direct cost savings in the German healthcare system attributable to an adequate intake of saturated fatty acids (SFA), salt and sugar (mono- & disaccharides, MDS) were calculated. To this end, disease-specific healthcare cost data from the official Federal Health Monitoring for the years 2002-2008 and disease-related risk factors, obtained by thoroughly searching the literature, were used. A total of 22 clinical endpoints with 48 risk-outcome pairs were considered. Direct healthcare costs attributable to an unbalanced intake of fat, salt and sugar are calculated to be 16.8 billion EUR (CI95%: 6.3-24.1 billion EUR) in the year 2008, which represents 7% (CI95% 2%-10%) of the total treatment costs in Germany (254 billion EUR). This is equal to 205 EUR per person annually. The excessive consumption of sugar poses the highest burden, at 8.6 billion EUR (CI95%: 3.0-12.1); salt ranks 2nd at 5.3 billion EUR (CI95%: 3.2-7.3) and saturated fat ranks 3rd at 2.9 billion EUR (CI95%: 32 million-4.7 billion). Predicted direct healthcare cost savings by means of a balanced intake of sugars, salt and saturated fat are substantial. However, as this study solely considered direct medical treatment costs regarding an adequate consumption of fat, salt and sugars, the actual societal and economic gains, resulting both from direct and indirect cost savings, may easily exceed 16.8 billion EUR.

  1. INORGANIC AND ORGANIC ONIUM SALTS

    DTIC Science & Technology

    The nitrosonium NO ion absorbs in the infrared between 1/2400 and 1/ 2150 cm. Salts of complex fluoro-acids absorb at higher frequencies than salts...halide adducts generally contain nitrosonium ions . Hexaphenylditin does not undergo marked heterolytic dissociation in nitromethane solution...influencing the covalent-ionic equilibrium are discussed. Infrared spectrum nitrosonium ion ; ionic character in lattice and position nitrosonium ion absorption

  2. Origin of salt giants in abyssal serpentinite systems

    NASA Astrophysics Data System (ADS)

    Scribano, Vittorio; Carbone, Serafina; Manuella, Fabio C.; Hovland, Martin; Rueslåtten, Håkon; Johnsen, Hans-K.

    2017-10-01

    Worldwide marine salt deposits ranging over the entire geological record are generally considered climate-related evaporites, derived from the precipitation of salts (mainly chlorides and sulfates) from saturated solutions driven by solar evaporation of seawater. This explanation may be realistic for a salt thickness ≤100 m, being therefore inadequate for thicker (>1 km) deposits. Moreover, sub-seafloor salt deposits in deep marine basins are difficult to reconcile with a surface evaporation model. Marine geology reports on abyssal serpentinite systems provide an alternative explanation for some salt deposits. Seawater-driven serpentinization consumes water and increases the salinity of the associated aqueous brines. Brines can be trapped in fractures and cavities in serpentinites and the surrounding `country' rocks. Successive thermal dehydration of buried serpentinites can mobilize and accumulate the brines, forming highly saline hydrothermal solutions. These can migrate upwards and erupt onto the seafloor as saline geysers, which may form salt-saturated water pools, as are currently observed in numerous deeps in the Red Sea and elsewhere. The drainage of deep-seated saline brines to seafloor may be a long-lasting, effective process, mainly occurring in areas characterized by strong tectonic stresses and/or igneous intrusions. Alternatively, brines could be slowly expelled from fractured serpentinites by buoyancy gradients and, hence, separated salts/brines could intrude vertically into surrounding rocks, forming salt diapirs. Serpentinization is an ubiquitous, exothermic, long-lasting process which can modify large volumes of oceanic lithosphere over geological times. Therefore, buried salt deposits in many areas of the world can be reasonably related to serpentinites.

  3. Permanent Disposal of Nuclear Waste in Salt

    NASA Astrophysics Data System (ADS)

    Hansen, F. D.

    2016-12-01

    Salt formations hold promise for eternal removal of nuclear waste from our biosphere. Germany and the United States have ample salt formations for this purpose, ranging from flat-bedded formations to geologically mature dome structures. Both nations are revisiting nuclear waste disposal options, accompanied by extensive collaboration on applied salt repository research, design, and operation. Salt formations provide isolation while geotechnical barriers reestablish impermeability after waste is placed in the geology. Between excavation and closure, physical, mechanical, thermal, chemical, and hydrological processes ensue. Salt response over a range of stress and temperature has been characterized for decades. Research practices employ refined test techniques and controls, which improve parameter assessment for features of the constitutive models. Extraordinary computational capabilities require exacting understanding of laboratory measurements and objective interpretation of modeling results. A repository for heat-generative nuclear waste provides an engineering challenge beyond common experience. Long-term evolution of the underground setting is precluded from direct observation or measurement. Therefore, analogues and modeling predictions are necessary to establish enduring safety functions. A strong case for granular salt reconsolidation and a focused research agenda support salt repository concepts that include safety-by-design. Sandia National Laboratories is a multi-program laboratory managed and operated by Sandia Corporation, a wholly owned subsidiary of Lockheed Martin Corporation, for the U.S. Department of Energy's National Nuclear Security Administration under contract DE-AC04-94AL85000. Author: F. D. Hansen, Sandia National Laboratories

  4. Pyrochemical process for extracting plutonium from an electrolyte salt

    DOEpatents

    Mullins, L.J.; Christensen, D.C.

    1982-09-20

    A pyrochemical process for extracting plutonium from a plutonium-bearing salt is disclosed. The process is particularly useful in the recovery of plutonium for electrolyte salts which are left over from the electrorefining of plutonium. In accordance with the process, the plutonium-bearing salt is melted and mixed with metallic calcium. The calcium reduces ionized plutonium in the salt to plutonium metal, and also causes metallic plutonium in the salt, which is typically present as finely dispersed metallic shot, to coalesce. The reduced and coalesced plutonium separates out on the bottom of the reaction vessel as a separate metallic phase which is readily separable from the overlying salt upon cooling of the mixture. Yields of plutonium are typically on the order of 95%. The stripped salt is virtually free of plutonium and may be discarded to low-level waste storage.

  5. Pyrochemical process for extracting plutonium from an electrolyte salt

    DOEpatents

    Mullins, Lawrence J.; Christensen, Dana C.

    1984-01-01

    A pyrochemical process for extracting plutonium from a plutonium-bearing salt is disclosed. The process is particularly useful in the recovery of plutonium from electrolyte salts which are left over from the electrorefining of plutonium. In accordance with the process, the plutonium-bearing salt is melted and mixed with metallic calcium. The calcium reduces ionized plutonium in the salt to plutonium metal, and also causes metallic plutonium in the salt, which is typically present as finely dispersed metallic shot, to coalesce. The reduced and coalesced plutonium separates out on the bottom of the reaction vessel as a separate metallic phase which is readily separable from the overlying salt upon cooling of the mixture. Yields of plutonium are typically on the order of 95%. The stripped salt is virtually free of plutonium and may be discarded to low-level waste storage.

  6. Imaging Shallow Salt With 3D Refraction Migration

    NASA Astrophysics Data System (ADS)

    Vanschuyver, C. J.; Hilterman, F. J.

    2005-05-01

    In offshore West Africa, numerous salt walls are within 200 m of sea level. Because of the shallowness of these salt walls, reflections from the salt top can be difficult to map, making it impossible to build an accurate velocity model for subsequent pre-stack depth migration. An accurate definition of salt boundaries is critical to any depth model where salt is present. Unfortunately, when a salt body is very shallow, the reflection from the upper interface can be obscured due to large offsets between the source and near receivers and also due to the interference from multiples and other near-surface noise events. A new method is described using 3D migration of the refraction waveforms which is simplified because of several constraints in the model definition. The azimuth and dip of the refractor is found by imaging with Kirchhoff theory. A Kirchhoff migration is performed where the traveltime values are adjusted to use the CMP refraction traveltime equation. I assume the sediment and salt velocities to be known such that once the image time is specified, then the dip and azimuth of the refraction path can be found. The resulting 3D refraction migrations are in excellent depth agreement with available well control. In addition, the refraction migration time picks of deeper salt events are in agreement with time picks of the same events on the reflection migration.

  7. Salt inactivates endothelial nitric oxide synthase in endothelial cells.

    PubMed

    Li, Juan; White, James; Guo, Ling; Zhao, Xiaomin; Wang, Jiafu; Smart, Eric J; Li, Xiang-An

    2009-03-01

    There is a 1-4 mmol/L rise in plasma sodium concentrations in individuals with high salt intake and in patients with essential hypertension. In this study, we used 3 independent assays to determine whether such a small increase in sodium concentrations per se alters endothelial nitric oxide synthase (eNOS) function and contributes to hypertension. By directly measuring NOS activity in living bovine aortic endothelial cells, we demonstrated that a 5-mmol/L increase in salt concentration (from 137 to 142 mmol/L) caused a 25% decrease in NOS activity. Importantly, the decrease in NOS activity was in a salt concentration-dependent manner. The NOS activity was decreased by 25, 45, and 70%, with the increase of 5, 10, and 20 mmol/L of NaCl, respectively. Using Chinese hamster ovary cells stably expressing eNOS, we confirmed the inhibitory effects of salt on eNOS activity. The eNOS activity was unaffected in the presence of equal milliosmol of mannitol, which excludes an osmotic effect. Using an ex vivo aortic angiogenesis assay, we demonstrated that salt attenuated the nitric oxide (NO)-dependent proliferation of endothelial cells. By directly monitoring blood pressure changes in response to salt infusion, we found that in vivo infusion of salt induced an acute increase in blood pressure in a salt concentration-dependent manner. In conclusion, our findings demonstrated that eNOS is sensitive to changes in salt concentration. A 5-mmol/L rise in salt concentration, within the range observed in essential hypertension patients or in individuals with high salt intake, could significantly suppress eNOS activity. This salt-induced reduction in NO generation in endothelial cells may contribute to the development of hypertension.

  8. Biomechanical assessment of dynamic balance: Specificity of different balance tests.

    PubMed

    Ringhof, Steffen; Stein, Thorsten

    2018-04-01

    Dynamic balance is vitally important for most sports and activities of daily living, so the assessment of dynamic stability has become an important issue. In consequence, a large number of balance tests have been developed. However, it is not yet known whether these tests (i) measure the same construct and (ii) can differentiate between athletes with different balance expertise. We therefore studied three common dynamic balance tests: one-leg jump landings, Posturomed perturbations and simulated forward falls. Participants were 24 healthy young females in regular training in either gymnastics (n = 12) or swimming (n = 12). In each of the tests, the participants were instructed to recover balance as quickly as possible. Dynamic stability was computed by time to stabilization and margin of stability, deduced from force plates and motion capture respectively. Pearson's correlations between the dynamic balance tests found no significant associations between the respective dynamic stability measures. Furthermore, independent t-tests indicated that only jump landings could properly distinguish between both groups of athletes. In essence, the different dynamic balance tests applied did not measure the same construct but rather task-specific skills, each of which depends on multifactorial internal and external constraints. Our study therefore contradicts the traditional view of considering balance as a general ability, and reinforces that dynamic balance measures are not interchangeable. This highlights the importance of selecting appropriate balance tests. Copyright © 2018 Elsevier B.V. All rights reserved.

  9. [Progress on salt resistance in autopolyploid plants].

    PubMed

    Zhu, Hong Ju; Liu, Wen Ge

    2018-04-20

    Polyploidization is a key driving force that plays a vital role in the evolution of higher plants. Autopolyploid plants often demonstrate altered physiology phenomena due to the different genome composition and gene expression patterns. For example, autopolyploid plants are more resistant to stresses than their homologous diploid ancestors. Soil salinity and secondary salinization are two vital factors affecting crop production which severely limit the sustainable development of agriculture in China. Polyploid plants are important germplasm resources in crop genetic improvement due to their higher salt tolerance. Revealing the mechanism of salt tolerance in homologous plants will provide a foundation for breeding new plants with improved salt resistance. In this review, we describe the existing and ongoing characterization of the mechanism of salt tolerance in autopolyploid plants, including the salt tolerance evolution, physiology, biochemistry, cell structure and molecular level researches. Finally, we also discuss the prospects in this field by using polyploid watermelon as an example, which will be helpful in polyploid research and plant breeding.

  10. High Salt Intake Attenuates Breast Cancer Metastasis to Lung.

    PubMed

    Xu, Yijuan; Wang, Wenzhe; Wang, Minmin; Liu, Xuejiao; Lee, Mee-Hyun; Wang, Mingfu; Zhang, Hao; Li, Haitao; Chen, Wei

    2018-04-04

    Diet-related factors are thought to modify the risk of cancers, while the influence of high salt intake remains largely uncharacterized. Breast cancer is the most common cancer in women worldwide. In the present study, we examined the effect of salt intake on breast cancer by using a 4T1 mouse mammary tumor model. Unexpectedly, both the fitness and the survival rate of the tumor-bearing mice were improved by high salt intake. Similarly, high salt intake suppressed the primary tumor growth as well as metastasis to lung in mice. Mechanistically, high salt intake greatly reduced food intake and thus might exert antitumor effect through mimicking calorie restriction. Immunoblotting showed the lower proliferation marker Ki-67 and the higher expression of the tumor suppressor gene p53 in tumors of high salt intake mice. Importantly, high salt intake might induce hyperosmotic stress, which sensitized breast cancer cells to p53-dependent anoikis. Collectively, our findings raise the possibility that endogenous salt deposition might act as the first-line defense system against breast cancer progression as well as metastasis.

  11. Photobleachable Diazonium Salt-Phenolic Resin Two-Layer Resist System

    NASA Astrophysics Data System (ADS)

    Uchino, Shou-ichi; Iwayanagi, Takao; Hashimoto, Michiaki

    1988-01-01

    This article describes a new negative two-layer photoresist system formed by a simple, successive spin-coating method. An aqueous acetic acid solution of diazonium salt and poly(N-vinylpyrrolidone) is deposited so as to contact a phenolic resin film spin-coated on a silicon wafer. The diazonium salt diffuses into the phenolic resin layer after standing for several minutes. The residual solution on the phenolic resin film doped with diazonium salt is spun to form the diazonium salt-poly(N-vinylpyrrolidone) top layer. This forms a uniform two-layer resist without phase separation or striation. Upon UV exposure, the diazonium salt in the top layer bleaches to act as a CEL dye, while the diazonium salt in the bottom layer decomposes to cause insolubilization. Half μm line-and-space patterns are obtained with an i-line stepper using 4-diazo-N,N-dimethylaniline chloride zinc chloride double salt as the diazonium salt and a cresol novolac resin for the bottom polymer layer. The resist formation processes, insolubilization mechanism, and the resolution capability of the new two-layer resist are discussed.

  12. Postharvest application of organic and inorganic salts to control potato (Solanum tuberosum L.) storage soft rot: plant tissue-salt physicochemical interactions.

    PubMed

    Yaganza, E S; Tweddell, R J; Arul, J

    2014-09-24

    Soft rot caused by Pectobacterium sp. is a devastating disease affecting stored potato tubers, and there is a lack of effective means of controlling this disease. In this study, 21 organic and inorganic salts were tested for their ability to control soft rot in potato tubers. In the preventive treatment, significant control of soft rot was observed with AlCl3 (≥66%) and Na2S2O3 (≥57%) and to a lesser extent with Al lactate and Na benzoate (≥34%) and K sorbate and Na propionate (≥27%). However, only a moderate control was achieved by curative treatment with AlCl3 and Na2S2O3 (42%) and sodium benzoate (≥33%). Overall, the in vitro inhibitory activity of salts was attenuated in the presence of plant tissue (in vivo) to different degrees. The inhibitory action of the salts in the preventive treatment, whether effective or otherwise, showed an inverse linear relationship with water ionization capacity (pK') of the salt ions, whereas in the curative treatment, only the effective salts showed this inverse linear relationship. Salt-plant tissue interactions appear to play a central role in the attenuated inhibitory activity of salts in potato tuber through reduction in the availability of the inhibitory ions for salt-bacteria interactions. This study demonstrates that AlCl3, Na2S2O3, and Na benzoate have potential in controlling potato tuber soft rot and provides a general basis for understanding of specific salt-tissue interactions.

  13. Balancing Vanguard Satellites

    NASA Technical Reports Server (NTRS)

    Simkovich, A.; Baumann, Robert C.

    1961-01-01

    The Vanguard satellites and component parts were balanced within the specified limits by using a Gisholt Type-S balancer in combination with a portable International Research and Development vibration analyzer and filter, with low-frequency pickups. Equipment and procedures used for balancing are described; and the determination of residual imbalance is accomplished by two methods: calculation, and graphical interpretation. Between-the-bearings balancing is recommended for future balancing of payloads.

  14. 40 CFR 721.640 - Amine substituted metal salts.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 40 Protection of Environment 31 2011-07-01 2011-07-01 false Amine substituted metal salts. 721.640... Substances § 721.640 Amine substituted metal salts. (a) Chemical substance and significant new uses subject to reporting. (1) The chemical substances identified generically as amine substituted metal salts...

  15. SALT - a better way of estimating suspended sediment

    Treesearch

    R. B. Thomas

    1984-01-01

    Hardware and software supporting a sediment sampling procedure--Sampling At List Time (SALT) have been perfected. SALT provides estimates of sediment discharge having improved accuracy and estimable precision. Although the greatest benefit of SALT may accrue to those attempting to monitor ""flashy"" small streams, its superior statistical...

  16. [Balance trainability using the Nintendo Wii balance board in sportive people].

    PubMed

    Paukowits, S; Stöggl, T

    2014-03-01

    A multivariable training has a positive impact on balance skills and risk of injury. To date the effect of this training using the Nintendo Wii balance board in sportive people has not yet been investigated. The aim of this study was to investigate whether training with the Nintendo Wii balance board can improve balance skills. 20 people were randomized into a control and an intervention group each with 10 people who performed a unilateral stance test with eyes open and closed as well as the star excursion balance test before and after the intervention. The control group completed their usual sports and the intervention group an adjunct training with the Nintendo Wii balance board for 4 weeks. Adjunct Training using the Nintendo Wii Balance Board did not improve sportive people's balance skills significantly. The intervention group, however, attained better results in the star excursion balance test, whereas the control group did not show any changes. The unilateral stance tests did not provide significant differences before and after training within both groups. The use of the Nintendo Wii balance board should be further investigated by employing individual difficulty levels. © Georg Thieme Verlag KG Stuttgart · New York.

  17. Vertical Redistribution of Ocean Salt Content

    NASA Astrophysics Data System (ADS)

    Liang, X.; Liu, C.; Ponte, R. M.; Piecuch, C. G.

    2017-12-01

    Ocean salinity is an important proxy for change and variability in the global water cycle. Multi-decadal trends have been observed in both surface and subsurface salinity in the past decades, and are usually attributed to the change in air-sea freshwater flux. Although air-sea freshwater flux, a major component of the global water cycle, certainly contributes to the change in surface and upper ocean salinity, the salt redistribution inside the ocean can affect the surface and upper ocean salinity as well. Also, the mechanisms controlling the surface and upper ocean salinity changes likely depend on timescales. Here we examined the ocean salinity changes as well as the contribution of the vertical redistribution of salt with a 20-year dynamically consistent and data-constrained ocean state estimate (ECCO: Estimating Circulation and Climate of the Ocean). A decrease in the spatial mean upper ocean salinity and an upward salt flux inside the ocean were observed. These findings indicate that over 1992-2011, surface freshwater fluxes contribute to the decrease in spatial mean upper ocean salinity and are partly compensated by the vertical redistribution of salt inside the ocean. Between advection and diffusion, the two major processes determining the vertical exchange of salt, the advective term at different depths shows a downward transport, while the diffusive term is the dominant upward transport contributor. These results suggest that the salt transport in the ocean interior should be considered in interpreting the observed surface and upper ocean salinity changes, as well as inferring information about the changes in the global water cycle.

  18. Evaluation of goat milk as storage media to preserve viability of human periodontal ligament cells in vitro.

    PubMed

    Ulusoy, Ayça Tuba; Kalyoncuoglu, Elif; Kaya, Senay; Cehreli, Zafer Cavit

    2016-08-01

    The purpose of this study was to evaluate the effectiveness of goat milk as a storage media for maintenance of periodontal ligament (PDL) cell viability of avulsed teeth and compare it with commonly used and/or investigated storage media. PDL cells were obtained from the root surface of healthy premolars and were cultured in Eagle's maintenance medium (EMM). Cell cultures were treated with the following storage media: tap water (negative control); EMM (positive control); Hank's balanced salt solution; ultra high temperature (UHT) long-shelf-life lactose-free cow milk; UHT long-shelf-life whole cow milk; UHT long-shelf-life skimmed cow milk; UHT long-shelf-life soy milk; UHT long-shelf-life goat milk, UHT long-shelf-life follow on milk with probiotic, 20% propolis, and egg white. Culture plates were incubated with experimental media at 20°C for 1, 3, 6, 12, and 24 h. PDL cell viability was assessed by tetrazolium salt-based colorimetric (MTT) assay at each test period. One-way anova was used to evaluate the effects of storage solutions at each time point, followed by post hoc Duncan's multiple comparison test (P = 0.05). A dendrogram was constructed to show the arrangement of hierarchical clustering. Goat milk displayed the highest capacity to maintain cell viability at all test intervals (P < 0.001). Between 3 and 24 h, milk with the probiotic showed the lowest time-dependent PDL cell viability among all test media (P < 0.001). Compared with all milks, HBSS performed significantly less effectively in maintaining PDL cell viability during the entire test period (P < 0.001). Based on PDL viability, goat milk can be recommended as a suitable storage medium for avulsed teeth. © 2015 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd.

  19. Molten salt destruction of energetic waste materials

    DOEpatents

    Brummond, W.A.; Upadhye, R.S.; Pruneda, C.O.

    1995-07-18

    A molten salt destruction process is used to treat and destroy energetic waste materials such as high explosives, propellants, and rocket fuels. The energetic material is pre-blended with a solid or fluid diluent in safe proportions to form a fluid fuel mixture. The fuel mixture is rapidly introduced into a high temperature molten salt bath. A stream of molten salt is removed from the vessel and may be recycled as diluent. Additionally, the molten salt stream may be pumped from the reactor, circulated outside the reactor for further processing, and delivered back into the reactor or cooled and circulated to the feed delivery system to further dilute the fuel mixture entering the reactor. 4 figs.

  20. Molten salt destruction of energetic waste materials

    DOEpatents

    Brummond, William A.; Upadhye, Ravindra S.; Pruneda, Cesar O.

    1995-01-01

    A molten salt destruction process is used to treat and destroy energetic waste materials such as high explosives, propellants, and rocket fuels. The energetic material is pre-blended with a solid or fluid diluent in safe proportions to form a fluid fuel mixture. The fuel mixture is rapidly introduced into a high temperature molten salt bath. A stream of molten salt is removed from the vessel and may be recycled as diluent. Additionally, the molten salt stream may be pumped from the reactor, circulated outside the reactor for further processing, and delivered back into the reactor or cooled and circulated to the feed delivery system to further dilute the fuel mixture entering the reactor.

  1. Dietary potassium and the renal control of salt balance and blood pressure.

    PubMed

    Penton, David; Czogalla, Jan; Loffing, Johannes

    2015-03-01

    Dietary potassium (K(+)) intake has antihypertensive effects, prevents strokes, and improves cardiovascular outcomes. The underlying mechanism for these beneficial effects of high K(+) diets may include vasodilation, enhanced urine flow, reduced renal renin release, and negative sodium (Na(+)) balance. Indeed, several studies demonstrate that dietary K(+) intake induces renal Na(+) loss despite elevated plasma aldosterone. This review briefly highlights the epidemiological and experimental evidences for the effects of dietary K(+) on arterial blood pressure. It discusses the pivotal role of the renal distal tubule for the regulation of urinary K(+) and Na(+) excretion and blood pressure and highlights that it depends on the coordinated interaction of different nephron portions, epithelial cell types, and various ion channels, transporters, and ATPases. Moreover, we discuss the relevance of aldosterone and aldosterone-independent factors in mediating the effects of an altered K(+) intake on renal K(+) and Na(+) handling. Particular focus is given to findings suggesting that an aldosterone-independent downregulation of the thiazide-sensitive NaCl cotransporter significantly contributes to the natriuretic and antihypertensive effect of a K(+)-rich diet. Last but not least, we refer to the complex signaling pathways enabling the kidney to adapt its function to the homeostatic needs in response to an altered K(+) intake. Future work will have to further address the underlying cellular and molecular mechanism and to elucidate, among others, how an altered dietary K(+) intake is sensed and how this signal is transmitted to the different epithelial cells lining the distal tubule.

  2. Salt reduction in China: a state-of-the-art review

    PubMed Central

    Shao, Shuai; Hua, Yechu; Yang, Ying; Liu, Xiaojuan; Fan, Jingruo; Zhang, An; Xiang, Jingling; Li, Mingjing; Yan, Lijing L

    2017-01-01

    Objective This study aimed to reveal the latest evidence on salt reduction initiatives in China in order to identify the contextual cost-effective interventions, as well as the barriers encountered during China’s long march to reach its population salt reduction goal. Background Population-based salt reduction has been considered as one of the most cost-effective strategies in the world for the prevention and control of noncommunicable diseases. China, along with its sustained economic growth, faces increasing burdens from chronic diseases such as cardiovascular and kidney diseases. With policy support and cross-sector collaboration, various salt reduction initiatives have been adopted in China in order to reduce such dietary risk, especially since the beginning of this millennium. Methods This study conducted structured literature reviews in both English and Chinese databases and synthesized the latest evidence on the association of salt intake and health, as well as salt intake among Chinese and population-based salt reduction strategies in China and around the world. Findings Dietary salt restriction has been found to contribute to the reduction of blood pressure among both the normotensives and hypertensives bringing associated reduced disease burdens and great public health benefits. With gender, ethnic, and regional variations, salt intake levels in the population in China are well above the recommended threshold and physiological need. Admittedly, excessive salt intake precipitates the high prevalence of hypertension and cardiovascular disease among the Chinese. Considering that the majority of the dietary salt is added during cooking in China, salt substitutes, salt restriction tools, and health education are the most common salt reduction initiatives with varying levels of effectiveness and acceptability among the Chinese population. Implication Overwhelming evidence is in support of a well-coordinated nationwide salt restriction initiative as a key

  3. Microbiology of solar salt ponds

    NASA Technical Reports Server (NTRS)

    Javor, B.

    1985-01-01

    Solar salt ponds are shallow ponds of brines that range in salinity from that of normal seawater (3.4 percent) through NaCl saturation. Some salterns evaporate brines to the potash stage of concentration (bitterns). All the brines (except the bitterns, which are devoid of life) harbor high concentrations of microorganisms. The high concentrations of microorganisms and their adaptation to life in the salt pond are discussed.

  4. Production of carboxylic acid and salt co-products

    DOEpatents

    Hanchar, Robert J.; Kleff, Susanne; Guettler, Michael V.

    2014-09-09

    This invention provide processes for producing carboxylic acid product, along with useful salts. The carboxylic acid product that is produced according to this invention is preferably a C.sub.2-C.sub.12 carboxylic acid. Among the salts produced in the process of the invention are ammonium salts.

  5. Salt-responsive gut commensal modulates TH17 axis and disease.

    PubMed

    Wilck, Nicola; Matus, Mariana G; Kearney, Sean M; Olesen, Scott W; Forslund, Kristoffer; Bartolomaeus, Hendrik; Haase, Stefanie; Mähler, Anja; Balogh, András; Markó, Lajos; Vvedenskaya, Olga; Kleiner, Friedrich H; Tsvetkov, Dmitry; Klug, Lars; Costea, Paul I; Sunagawa, Shinichi; Maier, Lisa; Rakova, Natalia; Schatz, Valentin; Neubert, Patrick; Frätzer, Christian; Krannich, Alexander; Gollasch, Maik; Grohme, Diana A; Côrte-Real, Beatriz F; Gerlach, Roman G; Basic, Marijana; Typas, Athanasios; Wu, Chuan; Titze, Jens M; Jantsch, Jonathan; Boschmann, Michael; Dechend, Ralf; Kleinewietfeld, Markus; Kempa, Stefan; Bork, Peer; Linker, Ralf A; Alm, Eric J; Müller, Dominik N

    2017-11-30

    A Western lifestyle with high salt consumption can lead to hypertension and cardiovascular disease. High salt may additionally drive autoimmunity by inducing T helper 17 (T H 17) cells, which can also contribute to hypertension. Induction of T H 17 cells depends on gut microbiota; however, the effect of salt on the gut microbiome is unknown. Here we show that high salt intake affects the gut microbiome in mice, particularly by depleting Lactobacillus murinus. Consequently, treatment of mice with L. murinus prevented salt-induced aggravation of actively induced experimental autoimmune encephalomyelitis and salt-sensitive hypertension by modulating T H 17 cells. In line with these findings, a moderate high-salt challenge in a pilot study in humans reduced intestinal survival of Lactobacillus spp., increased T H 17 cells and increased blood pressure. Our results connect high salt intake to the gut-immune axis and highlight the gut microbiome as a potential therapeutic target to counteract salt-sensitive conditions.

  6. Guanidinium-Induced Denaturation by Breaking of Salt Bridges.

    PubMed

    Meuzelaar, Heleen; Panman, Matthijs R; Woutersen, Sander

    2015-12-07

    Despite its wide use as a denaturant, the mechanism by which guanidinium (Gdm(+) ) induces protein unfolding remains largely unclear. Herein, we show evidence that Gdm(+) can induce denaturation by disrupting salt bridges that stabilize the folded conformation. We study the Gdm(+) -induced denaturation of a series of peptides containing Arg/Glu and Lys/Glu salt bridges that either stabilize or destabilize the folded conformation. The peptides containing stabilizing salt bridges are found to be denatured much more efficiently by Gdm(+) than the peptides containing destabilizing salt bridges. Complementary 2D-infrared measurements suggest a denaturation mechanism in which Gdm(+) binds to side-chain carboxylate groups involved in salt bridges. © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  7. Fluoride metabolism when added to salt.

    PubMed

    Whitford, Gary M

    2005-01-01

    The purpose of this review is to present the general characteristics of the metabolism of fluoride particularly as it occurs when ingested with fluoridated salt. Following the absorption of salt-borne fluoride from the stomach and intestines, its metabolism is identical to that of water-borne fluoride or other vehicles containing ionized fluoride. Because fluoridated salt is almost always ingested with food, however, absorption from the gastrointestinal tract may be delayed or reduced. Reports dealing with this subject have shown that fluoride absorption is delayed and, therefore, peak plasma concentrations are lower than when fluoride is ingested with water. The amount of ingested fluoride that is finally absorbed, however, is not appreciably affected unless the meal is composed mainly of components with high calcium concentrations. In this case, the extent of absorption can be reduced by as much as 50%. Fluoridated salt is also ingested less frequently than fluoridated water. Data are presented to show that the dose size and frequency of ingestion have only minor effects on fluoride retention in the body and on the concentrations in plasma, bone and enamel. Finally, calculations are presented to show that the risk of acute toxicity from fluoridated salt is virtually non-existent.

  8. Sea salts as a potential source of food spoilage fungi.

    PubMed

    Biango-Daniels, Megan N; Hodge, Kathie T

    2018-02-01

    Production of sea salt begins with evaporation of sea water in shallow pools called salterns, and ends with the harvest and packing of salts. This process provides many opportunities for fungal contamination. This study aimed to determine whether finished salts contain viable fungi that have the potential to cause spoilage when sea salt is used as a food ingredient by isolating fungi on a medium that simulated salted food with a lowered water activity (0.95 a w ). The viable filamentous fungi from seven commercial salts were quantified and identified by DNA sequencing, and the fungal communities in different salts were compared. Every sea salt tested contained viable fungi, in concentrations ranging from 0.07 to 1.71 colony-forming units per gram of salt. In total, 85 fungi were isolated representing seven genera. One or more species of the most abundant genera, Aspergillus, Cladosporium, and Penicillium was found in every salt. Many species found in this study have been previously isolated from low water activity environments, including salterns and foods. We conclude that sea salts contain many fungi that have potential to cause food spoilage as well as some that may be mycotoxigenic. Copyright © 2017 The Authors. Published by Elsevier Ltd.. All rights reserved.

  9. Salt reduction in Australia: from advocacy to action

    PubMed Central

    Trieu, Kathy; Dunford, Elizabeth; Nowson, Caryl; Jolly, Kellie-Ann; Greenland, Rohan; Reimers, Jenny; Bolam, Bruce

    2015-01-01

    Background As part of its endorsement of the World Health Organization’s Global Action Plan to prevent non-communicable diseases, the Federal Government of Australia has committed to a 30% reduction in average population salt intake by 2025. Currently, mean daily salt intake levels are 8-9 g, varying by sex, region and population group. A number of salt reduction initiatives have been established over the last decade, but key elements for a co-ordinated population-level strategy are still missing. The objective of this review is to provide a comprehensive overview of existing population-level salt reduction activities in Australia and identify opportunities for further action. Methods A review of the published literature and stakeholder activities was undertaken to identify and document current activities. The activities were then assessed against a pre-defined framework for salt reduction strategies. Results A range of initiatives were identified from the review. The Australian Division of World Action on Salt and Health (AWASH) was established in 2005 and in 2007 launched its Drop the Salt! Campaign. This united non-governmental organisations (NGOs), health and medical and food industry organisations in a co-ordinated advocacy effort to encourage government to develop a national strategy to reduce salt. Subsequently, in 2010 the Federal Government launched its Food and Health Dialogue (FHD) with a remit to improve the health of the food supply in Australia through voluntary partnerships with food industry, government and non-government public health organisations. The focus of the FHD to date has been on voluntary reformulation of foods, primarily through salt reduction targets. More recently, in December 2014, the government’s Health Star Rating system was launched. This front of pack labelling scheme uses stars to highlight the nutritional profile of packaged foods. Both government initiatives have clear targets or criteria for industry to meet, however

  10. Risk of high blood pressure in salt workers working near salt milling plants: A cross-sectional and interventional study

    PubMed Central

    Haldiya, Kripa Ram; Mathur, Murli Lal; Sachdev, Raman; Saiyed, Habibulla N

    2005-01-01

    Background Workers working close to salt milling plants may inhale salt particles floating in the air, leading to a rise in plasma sodium, which, in turn, may increase the blood pressure and the risk of hypertension. Methods To test the above hypothesis, occupational health check-up camps were organized near salt manufacturing units and all workers were invited for a free health examination. The workers who worked with dry salt in the vicinity of salt milling plants were defined as "non-brine workers," while those working in brine pans located far away from milling plants were defined as "brine workers." Blood pressure (BP) was measured during each clinical examination. In all, 474 non-brine workers and 284 brine workers were studied. Results Mean systolic blood pressure of non-brine workers (122.1 ± 13.3 mm Hg) was significantly higher than that of brine workers (118.8 ± 12.8 mm Hg, p < 0.01). Mean diastolic blood pressure of non-brine workers (71.5 ± 10.4 mm Hg) was significantly higher than that of brine workers (69.7 ± 9.4 mm Hg, p = 0.02). The prevalence of hypertension was significantly higher in non-brine workers (12.2%) than in brine workers (7.0%, p = 0.02). Nineteen salt workers were monitored while they used face masks and spectacles, for six days. Systolic, as well as diastolic, blood pressure of these workers began declining on the third day and continued to decline on the fourth day, but remained stationary up to the sixth day. The concentration of salt particles in the breathing zone of these workers was 376 mg/m3 air. Conclusion Inhalation of salt particles in non-brine workers may be an occupational cause of increased blood pressure. PMID:16042798

  11. Metal Oxide Solubility and Molten Salt Corrosion.

    DTIC Science & Technology

    1982-03-29

    METAL OXIDE SOLUBILITY AND MOLTEN SALT CORROSION .(U) MAR 82 K H STERN UNCLASSI E DL R L-4772NL EL .2. MICROCOPY RESOLUTION TEST CHART NATIONAL BURALU...21 l 7 3 ..... l DTIC NSPECT I" ’I cCPY INSECE( METAL OXIDE SOLUBILITY AND MOLTEN SALT CORROSION I. INTRODUCTION Molten ...discussed in terms of its importance to the understanding of molten salt corrosion . II. PROTECTIVE COATINGS Since most structural metals and alloys are

  12. Salt weathering in Egyptian limestone after laboratory simulations with continuous flow of salt solutions at different temperatures

    NASA Astrophysics Data System (ADS)

    Aly, Nevin; Gomez-Heras, Miguel; Hamed, Ayman; Alvarez de Buergo, Monica

    2013-04-01

    weathering in Egyptian limestone after laboratory simulations with continuous flow of salt solutions at different temperatures Nevin Aly Mohamed (1), Miguel Gomez - Heras(2), Ayman Hamed Ahmed (1), and Monica Alvarez de Buergo(2). (1) Faculty of Pet. & Min. Engineering- Suez Canal University, Suez, Egypt, (2) Instituto de Geociencias (CSIC-UCM) Madrid. Spain. Limestone is one of the most frequent building stones in Egypt and is used since the time of ancient Egyptians and salt weathering is one of the main threats to its conservation. Most of the limestone used in historical monuments in Cairo is a biomicrite extracted from the Mid-Eocene Mokattam Group. During this work, cylindrical samples (2.4 cm diameter and approx. 4.8 cm length) were subjected, in a purpose-made simulation chamber, to simulated laboratory weathering tests with fixed salt concentration (10% weight NaCl solution), at different temperatures, which were kept constant throughout each test (10, 20, 30, 40 oC). During each test, salt solutions flowed continuously imbibing samples by capilarity. Humidity within the simulation chamber was reduced using silica gel to keep it low and constant to increase evaporation rate. Temperature, humidity inside the simulation chamber and samples weight were digitally monitored during each test. Results show the advantages of the proposed experimental methodology using a continuous flow of salt solutions and shed light on the effect of temperature on the dynamics of salt crystallization on and within samples. Research funded by mission sector of high education ministry, Egypt and Geomateriales S2009/MAT-1629.

  13. The salt-taste threshold in untreated hypertensive patients.

    PubMed

    Kim, Chang-Yeon; Ye, Mi-Kyung; Lee, Young Soo

    2017-01-01

    The salt-taste threshold can influence the salt appetite, and is thought to be another marker of sodium intake. Many studies have mentioned the relationship between the sodium intake and blood pressure (BP). The aim of this study was to evaluate the relationship between the salt-taste threshold and urinary sodium excretion in normotensive and hypertensive groups. We analyzed 199 patients (mean age 52 years, male 47.3%) who underwent 24-h ambulatory BP monitoring (ABPM). Hypertension was diagnosed as an average daytime systolic BP of ≥135 mmHg or diastolic BP of ≥85 mmHg by the ABPM. We assessed the salt-taste threshold using graded saline solutions. The salt-taste threshold, 24-h urinary sodium and potassium excretion, and echocardiographic data were compared between the control and hypertensive groups. The detection and recognition threshold of the salt taste did not significantly differ between the control and hypertensive groups. The 24-h urinary sodium excretion of hypertensive patients was significantly higher than that of the control group (140.9 ± 59.8 vs. 117.9 ± 57.2 mEq/day, respectively, p  = 0.011). Also, the urinary sodium-potassium ratio was significantly higher in the hypertensive patients. There was no correlation between the salt-taste threshold and 24-h urinary sodium excretion. The salt-taste threshold might not be related to the BP status as well as the 24-h urinary sodium excretion.

  14. Effects of Heat Generation on Nuclear Waste Disposal in Salt

    NASA Astrophysics Data System (ADS)

    Clayton, D. J.

    2008-12-01

    Disposal of nuclear waste in salt is an established technology, as evidenced by the successful operations of the Waste Isolation Pilot Plant (WIPP) since 1999. The WIPP is located in bedded salt in southeastern New Mexico and is a deep underground facility for transuranic (TRU) nuclear waste disposal. There are many advantages for placing radioactive wastes in a geologic bedded-salt environment. One desirable mechanical characteristic of salt is that it flows plastically with time ("creeps"). The rate of salt creep is a strong function of temperature and stress differences. Higher temperatures and deviatoric stresses increase the creep rate. As the salt creeps, induced fractures may be closed and eventually healed, which then effectively seals the waste in place. With a backfill of crushed salt emplaced around the waste, the salt creep can cause the crushed salt to reconsolidate and heal to a state similar to intact salt, serving as an efficient seal. Experiments in the WIPP were conducted to investigate the effects of heat generation on the important phenomena and processes in and around the repository (Munson et al. 1987; 1990; 1992a; 1992b). Brine migration towards the heaters was induced from the thermal gradient, while salt creep rates showed an exponential dependence on temperature. The project "Backfill and Material Behavior in Underground Salt Repositories, Phase II" (BAMBUS II) studied the crushed salt backfill and material behavior with heat generation at the Asse mine located near Remlingen, Germany (Bechthold et al. 2004). Increased salt creep rates and significant reconsolidation of the crushed salt were observed at the termination of the experiment. Using the data provided from both projects, exploratory modeling of the thermal-mechanical response of salt has been conducted with varying thermal loading and waste spacing. Increased thermal loading and decreased waste spacing drive the system to higher temperatures, while both factors are desired to

  15. How rheological heterogeneities control the internal deformation of salt giants.

    NASA Astrophysics Data System (ADS)

    Raith, Alexander; Urai, Janos L.

    2017-04-01

    Salt giants, like the North European Zechstein, consist of several evaporation cycles of different evaporites with highly diverse rheologies. Common Potassium and Magnesium (K-Mg) salt are typically 10 to 100 times less viscous as halite while stringers consisting of anhydrite and carbonates are about 100 times more viscous. In most parts, these mechanically layered bodies experienced complex deformation, resulting in large scale internal folding with ruptured stringers and shear zones, as observed in seismic images. Furthermore, locally varying evaporation history produced different mechanical stratigraphies across the salt basin. Although most of these extraordinary soft or strong layers are rather thin (<100 m) compared to the dominating halite, we propose they have first order control on the deformation and the resulting structures inside salt bodies. Numerical models representing different mechanical stratigraphies of hard and soft layers inside a salt body were performed to analyze their influence on the internal deformation during lateral salt flow. The results show that a continuous or fractured stringer is folded and thrusted during salt contraction while soft K-Mg salt layers act as internal décollement. Depending on the viscosity of the fractured stringers, the shortening is mostly compensated by either folding or thrusting. This folding has large control over the internal structure of the salt body imposing a dominating wavelength to the whole structure during early deformation. Beside strong stringers, K-Mg salt layers also influence the deformation and salt flow inside the salt pillow. Strain is accumulated in the soft layers leading to stronger salt flow near these layers and extensive deformation inside of them. Thus, if a soft layer is present near a stringer, it will experience more deformation. Additionally, the strong strain concentration in the soft layers could decouple parts of the salt body from the main deformation.

  16. Bile salt tolerance of Lactococcus lactis is enhanced by expression of bile salt hydrolase thereby producing less bile acid in the cells.

    PubMed

    Bi, Jie; Liu, Song; Du, Guocheng; Chen, Jian

    2016-04-01

    Changes of bile salt tolerance, morphology and amount of bile acid within cells were studied to evaluate the exact effects of bile salt hydrolase (BSH) on bile salt tolerance of microorganism. The effect of BSHs on the bile salt tolerance of Lactococcus lactis was examined by expressing two BSHs (BSH1 and BSH2). Growth of L. lactis expressing BSH1 or BSH2 was better under bile salt stress compared to wild-type L. lactis. As indicated by transmission electron microscopy, bile acids released by the action of BSH induced the formation of micelles around the membrane surface of cells subject to conjugated bile salt stress. A similar micelle containing bile acid was observed in the cytoplasm by liquid chromatography-mass spectrometry. BSH1 produced fewer bile acid micelles in the cytoplasm and achieved better cell growth of L. lactis compared to BSH2. Expression of BSH improved bile salt tolerance of L. lactis but excessive production by BSH of bile acid micelles in the cytoplasm inhibited cell growth.

  17. Balance in Assessment

    ERIC Educational Resources Information Center

    White, Richard

    2007-01-01

    The review by Black and Wiliam of national systems makes clear the complexity of assessment, and identifies important issues. One of these is "balance": balance between local and central responsibilities, balance between the weights given to various purposes of schooling, balance between weights for various functions of assessment, and balance…

  18. Projected Salt Waste Production from a Commercial Pyroprocessing Facility

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Simpson, Michael F.

    Pyroprocessing of used nuclear fuel inevitably produces salt waste from electrorefining and/or oxide reduction unit operations. Various process design characteristics can affect the actual mass of such waste produced. This paper examines both oxide and metal fuel treatment, estimates the amount of salt waste generated, and assesses potential benefit of process options to mitigate the generation of salt waste. For reference purposes, a facility is considered in which 100 MT/year of fuel is processed. Salt waste estimates range from 8 to 20 MT/year from considering numerous scenarios. It appears that some benefit may be derived from advanced processes for separatingmore » fission products from molten salt waste, but the degree of improvement is limited. Waste form production is also considered but appears to be economically unfavorable. Direct disposal of salt into a salt basin type repository is found to be the most promising with respect to minimizing the impact of waste generation on the economic feasibility and sustainability of pyroprocessing.« less

  19. Immunological biomarkers in salt miners exposed to salt dust, diesel exhaust and nitrogen oxides.

    PubMed

    Backé, Eva; Lotz, Gabriele; Tittelbach, Ulrike; Plitzko, Sabine; Gierke, Erhardt; Schneider, Wolfram Dietmar

    2004-06-01

    Air pollutants can affect lung function and also the immune system. In a study about lung function of salt miners in relation to the complex exposure in a salt mine, we also analysed selected immunological parameters and inflammation markers in the blood of miners. Effect of salt dust, diesel exhaust, nitrogen oxides (NOx) and smoking on the biomarkers was analysed. Blood was drawn from 286 salt miners, and the soluble intercellular adhesion molecule-1 (s-ICAM), monocyte chemotactic protein (MCP-1) and clara cell protein (CC16) were analysed by an immunoassay, blood profile was done and lymphocyte subpopulations (CD3, CD3/CD4, CD3/CD8, CD19, NK-cells, CD3/HLA-DR) were determined by flow cytometry. Salt dust was measured by two-step gravimetry (personal sampling). Diesel exhaust was measured as elemental carbon concentration by coulometry. NOx were determined by an electrochemical cell method. Differences between non-smokers, former smokers and active smokers were analysed by analysis of variance. Linear regression analysis to describe exposure-response relationships was done with regard to confounding factors [smoking, inflammatory diseases, time of blood drawing, respiratory infection and body-mass index (BMI)]. Significant differences between non-smokers and active smokers were found for most of the leukocyte types (e.g. granulocytes P = 0.000, lymphocytes P = 0.002, T-cells P = 0.033) and for some soluble parameters (ICAM P = 0.000, IgM P = 0.007, IgE P = 0.035). Increasing numbers of total lymphocytes, T-cells and HLA-DR positive T-cells in relation to exposure were found by linear regression analysis (e.g. for inhalable dust:total lymphocytes P = 0.011, T-cells P = 0.061, HLA-DR positive T-cells P = 0.007). CONCLUSION. Comparison of immunological markers in non-smokers and active smokers confirms leukocytosis and inflammation following tobacco consumption. The combined exposure of salt dust, diesel exhaust and NOx seems to influence the immune system. Together

  20. 40 CFR 721.4660 - Alcohol, alkali metal salt.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 40 Protection of Environment 31 2011-07-01 2011-07-01 false Alcohol, alkali metal salt. 721.4660... Substances § 721.4660 Alcohol, alkali metal salt. (a) Chemical substance and significant new uses subject to reporting. (1) The chemical substance generically identified as alcohol, alkali metal salt (PMN P-91-151) is...