Sample records for hansenii yarrowia lipolytica

  1. Yarrowia lipolytica vesicle-mediated protein transport pathways

    PubMed Central

    Swennen, Dominique; Beckerich, Jean-Marie

    2007-01-01

    Background Protein secretion is a universal cellular process involving vesicles which bud and fuse between organelles to bring proteins to their final destination. Vesicle budding is mediated by protein coats; vesicle targeting and fusion depend on Rab GTPase, tethering factors and SNARE complexes. The Génolevures II sequencing project made available entire genome sequences of four hemiascomycetous yeasts, Yarrowia lipolytica, Debaryomyces hansenii, Kluyveromyces lactis and Candida glabrata. Y. lipolytica is a dimorphic yeast and has good capacities to secrete proteins. The translocation of nascent protein through the endoplasmic reticulum membrane was well studied in Y. lipolytica and is largely co-translational as in the mammalian protein secretion pathway. Results We identified S. cerevisiae proteins involved in vesicular secretion and these protein sequences were used for the BLAST searches against Génolevures protein database (Y. lipolytica, C. glabrata, K. lactis and D. hansenii). These proteins are well conserved between these yeasts and Saccharomyces cerevisiae. We note several specificities of Y. lipolytica which may be related to its good protein secretion capacities and to its dimorphic aspect. An expansion of the Y. lipolytica Rab protein family was observed with autoBLAST and the Rab2- and Rab4-related members were identified with BLAST against NCBI protein database. An expansion of this family is also found in filamentous fungi and may reflect the greater complexity of the Y. lipolytica secretion pathway. The Rab4p-related protein may play a role in membrane recycling as rab4 deleted strain shows a modification of colony morphology, dimorphic transition and permeability. Similarly, we find three copies of the gene (SSO) encoding the plasma membrane SNARE protein. Quantification of the percentages of proteins with the greatest homology between S. cerevisiae, Y. lipolytica and animal homologues involved in vesicular transport shows that 40% of Y

  2. Enantiocomplementary Yarrowia lipolytica Oxidoreductases: Alcohol Dehydrogenase 2 and Short Chain Dehydrogenase/Reductase

    PubMed Central

    Napora-Wijata, Kamila; Strohmeier, Gernot A.; Sonavane, Manoj N.; Avi, Manuela; Robins, Karen; Winkler, Margit

    2013-01-01

    Enzymes of the non-conventional yeast Yarrowia lipolytica seem to be tailor-made for the conversion of lipophilic substrates. Herein, we cloned and overexpressed the Zn-dependent alcohol dehydrogenase ADH2 from Yarrowia lipolytica in Escherichia coli. The purified enzyme was characterized in vitro. The substrate scope for YlADH2 mediated oxidation and reduction was investigated spectrophotometrically and the enzyme showed a broader substrate range than its homolog from Saccharomyces cerevisiae. A preference for secondary compared to primary alcohols in oxidation direction was observed for YlADH2. 2-Octanone was investigated in reduction mode in detail. Remarkably, YlADH2 displays perfect (S)-selectivity and together with a highly (R)-selective short chain dehydrogenase/ reductase from Yarrowia lipolytica it is possible to access both enantiomers of 2-octanol in >99% ee with Yarrowia lipolytica oxidoreductases. PMID:24970175

  3. Enantiocomplementary Yarrowia lipolytica Oxidoreductases: Alcohol Dehydrogenase 2 and Short Chain Dehydrogenase/Reductase.

    PubMed

    Napora-Wijata, Kamila; Strohmeier, Gernot A; Sonavane, Manoj N; Avi, Manuela; Robins, Karen; Winkler, Margit

    2013-08-12

    Enzymes of the non-conventional yeast Yarrowia lipolytica seem to be tailor-made for the conversion of lipophilic substrates. Herein, we cloned and overexpressed the Zn-dependent alcohol dehydrogenase ADH2 from Yarrowia lipolytica in Escherichia coli. The purified enzyme was characterized in vitro. The substrate scope for YlADH2 mediated oxidation and reduction was investigated spectrophotometrically and the enzyme showed a broader substrate range than its homolog from Saccharomyces cerevisiae. A preference for secondary compared to primary alcohols in oxidation direction was observed for YlADH2. 2-Octanone was investigated in reduction mode in detail. Remarkably, YlADH2 displays perfect (S)-selectivity and together with a highly (R)-selective short chain dehydrogenase/ reductase from Yarrowia lipolytica it is possible to access both enantiomers of 2-octanol in >99% ee with Yarrowia lipolytica oxidoreductases.

  4. Heterologous expression of xylanase enzymes in lipogenic yeast Yarrowia lipolytica

    DOE PAGES

    Wang, Wei; Wei, Hui; Alahuhta, Markus; ...

    2014-12-02

    In order to develop a direct microbial sugar conversion platform for the production of lipids, drop-in fuels and chemicals from cellulosic biomass substrate, we chose Yarrowia lipolytica as a viable demonstration strain. Y. lipolytica is known to accumulate lipids intracellularly and is capable of metabolizing sugars to produce lipids; however, it lacks the lignocellulose-degrading enzymes needed to break down biomass directly. While research is continuing on the development of a Y. lipolytica strain able to degrade cellulose, in this study, we present successful expression of several xylanases in Y. lipolytica. The XynII and XlnD expressing Yarrowia strains exhibited an abilitymore » to grow on xylan mineral plates. This was shown by Congo Red staining of halo zones on xylan mineral plates. Enzymatic activity tests further demonstrated active expression of XynII and XlnD in Y. lipolytica. Furthermore, synergistic action in converting xylan to xylose was observed when XlnD acted in concert with XynII. Finally, the successful expression of these xylanases in Yarrowia further advances us toward our goal to develop a direct microbial conversion process using this organism.« less

  5. Metabolic engineering of Yarrowia lipolytica for industrial applications.

    PubMed

    Zhu, Quinn; Jackson, Ethel N

    2015-12-01

    Yarrowia lipolytica is a safe and robust yeast that has a history of industrial applications. Its physiological, metabolic and genomic characteristics have made it a superior host for metabolic engineering. The results of optimizing internal pathways and introducing new pathways have demonstrated that Y. lipolytica can be a platform cell factory for cost-effective production of chemicals and fuels derived from fatty acids, lipids and acetyl-CoA. Two products have been commercialized from metabolically engineered Y. lipolytica strains producing high amounts of omega-3 eicosapentaenoic acid, and more products are on the way to be produced at industrial scale. Here we review recent progress in metabolic engineering of Y. lipolytica for production of biodiesel fuel, functional fatty acids and carotenoids. Copyright © 2015 The Authors. Published by Elsevier Ltd.. All rights reserved.

  6. Applications of the Non-Conventional Yeast Yarrowia lipolytica

    NASA Astrophysics Data System (ADS)

    Thevenieau, France; Nicaud, Jean-Marc; Gaillardin, Claude

    The yeast Yarrowia lipolytica is often found associated to proteinaceous or hydrophobic substrates such as alkanes or lipids. To assimilate these hydropho-bic substrates, Y. lipolytica has developed an adaptative strategy resulting in elaborated morphological and physiological changes leading to terminal and β-oxidation of substrates as well as to lipid storage. The completion of the Y. lipolytica genome greatly improved our understanding of these mechanisms. Three main applications of this metabolism will be discussed. The first class corresponds to bioconver-sion processes for the production of secondary metabolites (citric acid), of aroma ( γ - lactone, green note, epoxy geraniol) and of chemicals (dicarboxylic acids). The second class leads to fine chemical production by enantio separation of pharmaceutical compounds using Y. lipolytica enzymes such as epoxyde hydrolase or lipase. The third one refers to production of Single Cell Oils (SCO) from agriculture feedstock. In addition to its ability to handle hydrophobic substrates, Y. lipolytica has also been recognised as a strong secretor of various proteins such as proteases, lipases, RNases and others. A comprehensive review of recent developments of the Y. lipolytica expression/secretion system will finally be presented.

  7. Food-related applications of Yarrowia lipolytica.

    PubMed

    Zinjarde, Smita S

    2014-01-01

    Yarrowia lipolytica is a non-pathogenic generally regarded as safe yeast. It displays unique physiological as well as biochemical properties that are relevant in food-related applications. Strains naturally associated with meat and dairy products contribute towards specific textures and flavours. On some occasions they cause food spoilage. They produce food-additives such as aroma compounds, organic acids, polyalcohols, emulsifiers and surfactants. The yeast biomass has been projected as single cell oil and single cell protein. Y. lipolytica degrades or upgrades different types of food wastes and in some cases, value-added products have also been obtained. The yeast is thus involved in the manufacture of food stuffs, making of food ingredients, generation of biomass that can be used as food or feed and in the effective treatment of food wastes. On account of all these features, this versatile yeast is of considerable significance in food-related applications. Copyright © 2013 Elsevier Ltd. All rights reserved.

  8. Production of Lycopene in the Non-Carotenoid-Producing Yeast Yarrowia lipolytica

    PubMed Central

    Ketelhot, Markus; Gatter, Michael; Barth, Gerold

    2014-01-01

    The codon-optimized genes crtB and crtI of Pantoea ananatis were expressed in Yarrowia lipolytica under the control of the TEF1 promoter of Y. lipolytica. Additionally, the rate-limiting genes for isoprenoid biosynthesis in Y. lipolytica, GGS1 and HMG1, were overexpressed to increase the production of lycopene. All of the genes were also expressed in a Y. lipolytica strain with POX1 to POX6 and GUT2 deleted, which led to an increase in the size of lipid bodies and a further increase in lycopene production. Lycopene is located mainly within lipid bodies, and increased lipid body formation leads to an increase in the lycopene storage capacity of Y. lipolytica. Growth-limiting conditions increase the specific lycopene content. Finally, a yield of 16 mg g−1 (dry cell weight) was reached in fed-batch cultures, which is the highest value reported so far for a eukaryotic host. PMID:24375130

  9. Engineering towards a complete heterologous cellulase secretome in Yarrowia lipolytica reveals its potential for consolidated bioprocessing

    DOE PAGES

    Wei, Hui; Wang, Wei; Alahuhta, Markus; ...

    2014-10-16

    Background: Yarrowia lipolytica is an oleaginous yeast capable of metabolizing glucose to lipids, which then accumulate intracellularly. However, it lacks the suite of cellulolytic enzymes required to break down biomass cellulose and cannot therefore utilize biomass directly as a carbon source. Toward the development of a direct microbial conversion platform for the production of hydrocarbon fuels from cellulosic biomass, the potential for Y. lipolytica to function as a consolidated bioprocessing strain was investigated by first conducting a genomic search and functional testing of its endogenous glycoside hydrolases. Once the range of endogenous enzymes was determined, the critical cellulases from Trichodermamore » reesei were cloned into Yarrowia. Results: Initially, work to express T. reesei endoglucanase II (EGII) and cellobiohydrolase (CBH) II in Y. lipolytica resulted in the successful secretion of active enzymes. However, a critical cellulase, T. reesei CBHI, while successfully expressed in and secreted from Yarrowia, showed less than expected enzymatic activity, suggesting an incompatibility (probably at the post-translational level) for its expression in Yarrowia. This result prompted us to evaluate alternative or modified CBHI enzymes. Our subsequent expression of a T. reesei-Talaromyces emersonii (Tr-Te) chimeric CBHI, Chaetomium thermophilum CBHI, and Humicola grisea CBHI demonstrated remarkably improved enzymatic activities. Specifically, the purified chimeric Tr-Te CBHI showed a specific activity on Avicel that is comparable to that of the native T. reesei CBHI. Furthermore, the chimeric Tr-Te CBHI also showed significant synergism with EGII and CBHII in degrading cellulosic substrates, using either mixed supernatants or co-cultures of the corresponding Y. lipolytica transformants. The consortia system approach also allows rational volume mixing of the transformant cultures in accordance with the optimal ratio of cellulases required for efficient

  10. A genome-scale metabolic model of the lipid-accumulating yeast Yarrowia lipolytica

    PubMed Central

    2012-01-01

    Background Yarrowia lipolytica is an oleaginous yeast which has emerged as an important microorganism for several biotechnological processes, such as the production of organic acids, lipases and proteases. It is also considered a good candidate for single-cell oil production. Although some of its metabolic pathways are well studied, its metabolic engineering is hindered by the lack of a genome-scale model that integrates the current knowledge about its metabolism. Results Combining in silico tools and expert manual curation, we have produced an accurate genome-scale metabolic model for Y. lipolytica. Using a scaffold derived from a functional metabolic model of the well-studied but phylogenetically distant yeast S. cerevisiae, we mapped conserved reactions, rewrote gene associations, added species-specific reactions and inserted specialized copies of scaffold reactions to account for species-specific expansion of protein families. We used physiological measures obtained under lab conditions to validate our predictions. Conclusions Y. lipolytica iNL895 represents the first well-annotated metabolic model of an oleaginous yeast, providing a base for future metabolic improvement, and a starting point for the metabolic reconstruction of other species in the Yarrowia clade and other oleaginous yeasts. PMID:22558935

  11. Yarrowia lipolytica and Its Multiple Applications in the Biotechnological Industry

    PubMed Central

    Gonçalves, F. A. G.; Colen, G.; Takahashi, J. A.

    2014-01-01

    Yarrowia lipolytica is a nonpathogenic dimorphic aerobic yeast that stands out due to its ability to grow in hydrophobic environments. This property allowed this yeast to develop an ability to metabolize triglycerides and fatty acids as carbon sources. This feature enables using this species in the bioremediation of environments contaminated with oil spill. In addition, Y. lipolytica has been calling the interest of researchers due to its huge biotechnological potential, associated with the production of several types of metabolites, such as bio-surfactants, γ-decalactone, citric acid, and intracellular lipids and lipase. The production of a metabolite rather than another is influenced by the growing conditions to which Y. lipolytica is subjected. The choice of carbon and nitrogen sources to be used, as well as their concentrations in the growth medium, and the careful determination of fermentation parameters, pH, temperature, and agitation (oxygenation), are essential for efficient metabolites production. This review discusses the biotechnological potential of Y. lipolytica and the best growing conditions for production of some metabolites of biotechnological interest. PMID:24715814

  12. Comparative physiology of forty-five Yarrowia lipolytica strains grown on pretreated switchgrass hydrolysate

    USDA-ARS?s Scientific Manuscript database

    Yarrowia lipolytica is a well-characterized yeast of the phylum Ascomycota with established use in the biotechnology industry for production of organic acids and enzymes. In addition, the yeast is a model oleaginous organism that accumulates lipids during growth on a variety of carbon sources. The a...

  13. Multi-omics analysis reveals regulators of the response to nitrogen limitation in Yarrowia lipolytica

    DOE PAGES

    Pomraning, Kyle R.; Kim, Young -Mo; Nicora, Carrie D.; ...

    2016-02-25

    Yarrowia lipolytica is an oleaginous ascomycete yeast that stores lipids in response to limitation of nitrogen. Furthermore, while the enzymatic pathways responsible for neutral lipid accumulation in Y. lipolytica are well characterized, regulation of these pathways has received little attention. We therefore sought to characterize the response to nitrogen limitation at system-wide levels, including the proteome, phosphoproteome and metabolome, to better understand how this organism regulates and controls lipid metabolism and to identify targets that may be manipulated to improve lipid yield.

  14. Advances in synthetic biology of oleaginous yeast Yarrowia lipolytica for producing non-native chemicals.

    PubMed

    Darvishi, Farshad; Ariana, Mehdi; Marella, Eko Roy; Borodina, Irina

    2018-07-01

    Oleaginous yeast Yarrowia lipolytica is an important industrial host for the production of enzymes, oils, fragrances, surfactants, cosmetics, and pharmaceuticals. More recently, improved synthetic biology tools have allowed more extensive engineering of this yeast species, which lead to the production of non-native metabolites. In this review, we summarize the recent advances of genome editing tools for Y. lipolytica, including the application of CRISPR/Cas9 system and discuss case studies, where Y. lipolytica was engineered to produce various non-native chemicals: short-chain fatty alcohols and alkanes as biofuels, polyunsaturated fatty acids for nutritional and pharmaceutical applications, polyhydroxyalkanoates and dicarboxylic acids as precursors for biodegradable plastics, carotenoid-type pigments for food and feed, and campesterol as a precursor for steroid drugs.

  15. Expression and Characterization of Glucose Oxidase from Aspergillus niger in Yarrowia lipolytica.

    PubMed

    Khadivi Derakshan, Fatemeh; Darvishi, Farshad; Dezfulian, Mehrouz; Madzak, Catherine

    2017-08-01

    Glucose oxidase (GOX) is currently used in clinical, pharmaceutical, food and chemical industries. The aim of this study was expression and characterization of Aspergillus niger glucose oxidase gene in the yeast Yarrowia lipolytica. For the first time, the GOX gene of A. niger was successfully expressed in Y. lipolytica using a mono-integrative vector containing strong hybrid promoter and secretion signal. The highest total glucose oxidase activity was 370 U/L after 7 days of cultivation. An innovative method was used to cell wall disruption in current study, and it could be recommended to use for efficiently cell wall disruption of Y. lipolytica. Optimum pH and temperature for recombinant GOX activity were 5.5 and 37 °C, respectively. A single band with a molecular weight of 80 kDa similar to the native and pure form of A. niger GOX was observed for the recombinant GOX in SDS-PAGE analysis. Y. lipolytica is a suitable and efficient eukaryotic expression system to production of recombinant GOX in compered with other yeast expression systems and could be used to production of pure form of GOX for industrial applications.

  16. Engineering Promoter Architecture in Oleaginous Yeast Yarrowia lipolytica.

    PubMed

    Shabbir Hussain, Murtaza; Gambill, Lauren; Smith, Spencer; Blenner, Mark A

    2016-03-18

    Eukaryotic promoters have a complex architecture to control both the strength and timing of gene transcription spanning up to thousands of bases from the initiation site. This complexity makes rational fine-tuning of promoters in fungi difficult to predict; however, this very same complexity enables multiple possible strategies for engineering promoter strength. Here, we studied promoter architecture in the oleaginous yeast, Yarrowia lipolytica. While recent studies have focused on upstream activating sequences, we systematically examined various components common in fungal promoters. Here, we examine several promoter components including upstream activating sequences, proximal promoter sequences, core promoters, and the TATA box in autonomously replicating expression plasmids and integrated into the genome. Our findings show that promoter strength can be fine-tuned through the engineering of the TATA box sequence, core promoter, and upstream activating sequences. Additionally, we identified a previously unreported oleic acid responsive transcription enhancement in the XPR2 upstream activating sequences, which illustrates the complexity of fungal promoters. The promoters engineered here provide new genetic tools for metabolic engineering in Y. lipolytica and provide promoter engineering strategies that may be useful in engineering other non-model fungal systems.

  17. A novel multigene expression construct for modification of glycerol metabolism in Yarrowia lipolytica

    PubMed Central

    2013-01-01

    Background High supply of raw, residual glycerol from biodiesel production plants promote the search for novel biotechnological methods of its utilization. In this study we attempted modification of glycerol catabolism in a nonconventional yeast species Yarrowia lipolytica through genetic engineering approach. Results To address this, we developed a novel genetic construct which allows transferring three heterologous genes, encoding glycerol dehydratase, its reactivator and a wide-spectrum alcohol oxidoreductase under the control of glycerol-induced promoter. The three genes, tandemly arrayed in an expression cassette with a marker gene ura3, regulatory and targeting sequences (G3P dh promoter and XPR-like terminator, 28S rDNA as a target locus), were transferred into Yarrowia lipolytica cells. The obtained recombinant strain NCYC3825 was characterized at the molecular level and with respect to its biotechnological potential. Our experiments indicated that the novel recombinant strain stably borne one copy of the expression cassette and efficiently expressed heterologous alcohol oxidoreductase, while glycerol dehydratase and its reactivator were expressed at lower level. Comparative shake flask cultivations in glucose- and glycerol-based media demonstrated higher biomass production by the recombinant strain when glycerol was the main carbon source. During bioreactor (5 L) fed-batch cultivation in glycerol-based medium, the recombinant strain was characterized by relatively high biomass and lipids accumulation (up to 42 gDCW L-1, and a peak value of 38%LIPIDS of DCW, respectively), and production of high titers of citric acid (59 g L-1) and 2-phenylethanol (up to 1 g L-1 in shake flask cultivation), which are industrially attractive bioproducts. Conclusions Due to heterogeneous nature of the observed alterations, we postulate that the main driving force of the modified phenotype was faster growth in glycerol-based media, triggered by modifications in the red

  18. Fatty alcohol production in Lipomyces starkeyi and Yarrowia lipolytica

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wang, Wei; Wei, Hui; Knoshaug, Eric

    Current biological pathways to produce biofuel intermediates amenable to separations and catalytic upgrading to hydrocarbon fuels are not cost effective. Previously, oleaginous yeasts have been investigated primarily for lipid production. However, yeasts store neutral lipids intracellularly making recovery difficult and expensive. In addition, once recovered from the cells, lipids are difficult to blend directly with the existing fuels without upgrading. We have, therefore, begun to investigate secreted fatty acid-derived products which can be easily recovered and upgraded to fuels. In this study, we successfully demonstrate the production of fatty alcohols by the oleaginous yeasts, Yarrowia lipolytica and Lipomyces starkeyi, throughmore » expression of the fatty acyl-CoA reductase gene from Marinobactor aquaeolei VT8. This strategy resulted in the production of 167 and 770 mg/L of fatty alcohols in shake flask from Y. lipolytica and L starkeyi, respectively. When using a dodecane overlay during fermentation, 92 and 99% of total fatty alcohols produced by Y. lipolytica and L. starkeyi, respectively, were extracted into the dodecane phase, which compares favorably to the 3 and 50% recovered, respectively, without the dodecane layer. In both oleaginous yeasts, long chain length, saturated fatty alcohols, i.e., hexadecanol (C16:0) and octadecanol (C18:0), were predominant and accounted for more than 85% of the total fatty alcohols produced. To the best of our knowledge, this is the first report of fatty alcohol production in L. starkeyi. Furthermore, this work demonstrates that the oleaginous yeasts, Y. lipolytica and L. starkeyi, can serve as platform organisms for the production of fatty acid-derived biofuels and bioproducts.« less

  19. Fatty alcohol production in Lipomyces starkeyi and Yarrowia lipolytica

    DOE PAGES

    Wang, Wei; Wei, Hui; Knoshaug, Eric; ...

    2016-10-24

    Current biological pathways to produce biofuel intermediates amenable to separations and catalytic upgrading to hydrocarbon fuels are not cost effective. Previously, oleaginous yeasts have been investigated primarily for lipid production. However, yeasts store neutral lipids intracellularly making recovery difficult and expensive. In addition, once recovered from the cells, lipids are difficult to blend directly with the existing fuels without upgrading. We have, therefore, begun to investigate secreted fatty acid-derived products which can be easily recovered and upgraded to fuels. In this study, we successfully demonstrate the production of fatty alcohols by the oleaginous yeasts, Yarrowia lipolytica and Lipomyces starkeyi, throughmore » expression of the fatty acyl-CoA reductase gene from Marinobactor aquaeolei VT8. This strategy resulted in the production of 167 and 770 mg/L of fatty alcohols in shake flask from Y. lipolytica and L starkeyi, respectively. When using a dodecane overlay during fermentation, 92 and 99% of total fatty alcohols produced by Y. lipolytica and L. starkeyi, respectively, were extracted into the dodecane phase, which compares favorably to the 3 and 50% recovered, respectively, without the dodecane layer. In both oleaginous yeasts, long chain length, saturated fatty alcohols, i.e., hexadecanol (C16:0) and octadecanol (C18:0), were predominant and accounted for more than 85% of the total fatty alcohols produced. To the best of our knowledge, this is the first report of fatty alcohol production in L. starkeyi. Furthermore, this work demonstrates that the oleaginous yeasts, Y. lipolytica and L. starkeyi, can serve as platform organisms for the production of fatty acid-derived biofuels and bioproducts.« less

  20. Multiplex gene editing of the Yarrowia lipolytica genome using the CRISPR-Cas9 system.

    PubMed

    Gao, Shuliang; Tong, Yangyang; Wen, Zhiqiang; Zhu, Li; Ge, Mei; Chen, Daijie; Jiang, Yu; Yang, Sheng

    2016-08-01

    Yarrowia lipolytica is categorized as a generally recognized as safe (GRAS) organism and is a heavily documented, unconventional yeast that has been widely incorporated into multiple industrial fields to produce valuable biochemicals. This study describes the construction of a CRISPR-Cas9 system for genome editing in Y. lipolytica using a single plasmid (pCAS1yl or pCAS2yl) to transport Cas9 and relevant guide RNA expression cassettes, with or without donor DNA, to target genes. Two Cas9 target genes, TRP1 and PEX10, were repaired by non-homologous end-joining (NHEJ) or homologous recombination, with maximal efficiencies in Y. lipolytica of 85.6 % for the wild-type strain and 94.1 % for the ku70/ku80 double-deficient strain, within 4 days. Simultaneous double and triple multigene editing was achieved with pCAS1yl by NHEJ, with efficiencies of 36.7 or 19.3 %, respectively, and the pCASyl system was successfully expanded to different Y. lipolytica breeding strains. This timesaving method will enable and improve synthetic biology, metabolic engineering and functional genomic studies of Y. lipolytica.

  1. Metabolic peculiarities of the citric acid overproduction from glucose in yeasts Yarrowia lipolytica.

    PubMed

    Kamzolova, Svetlana V; Morgunov, Igor G

    2017-11-01

    Comparative study of 43 natural yeast strains belonging to 20 species for their capability for overproduction of citric acid (CA) from glucose under nitrogen limitation of cell growth was carried out. As a result, natural strain Yarrowia lipolytica VKM Y-2373 was selected. The effect of growth limitation by biogenic macroelements (nitrogen, phosphorus, or sulfur) on the CA production by the selected strain was studied. It was shown that yeasts Y. lipolytica grown under deficiency of nitrogen, phosphorus, or sulfur were able to excrete CA in industrially sufficient amounts (80-85g/L with the product yield (Y CA ) of 0.70-0.75g/g and the process selectivity of 92.5-95.3%). Based on the obtained data on activities of enzymes involved in the initial stages of glucose oxidation, the cycle of tricarboxylic acids, and the glyoxylate cycle, the conception of the mechanism responsible for the CA overproduction from glucose in Y. lipolytica was formulated. Copyright © 2017 Elsevier Ltd. All rights reserved.

  2. Impacts of environmental conditions on product formation and morphology of Yarrowia lipolytica.

    PubMed

    Timoumi, Asma; Guillouet, Stéphane E; Molina-Jouve, Carole; Fillaudeau, Luc; Gorret, Nathalie

    2018-05-01

    The yeast Yarrowia lipolytica is an industrially important microorganism with distinctive physiological and metabolic characteristics. A variety of external factors (e.g., pH, temperature, and nutrient availability) influences the behavior of the yeast and may act as stress conditions which the cells must withstand and adapt. In this mini review, the impacts of environmental factors on the morphology and metabolite production by Y. lipolytica are summarized. In this regard, detailed insights into the effectors involved in the dimorphic transition of Y. lipolytica, the cultivation conditions employed, as well as the methods applied for the morphological characterization are highlighted. Concerning the metabolism products, a special focus is addressed on lipid and citric acid metabolites which have attracted significant attention in recent years. The dependence of lipid and citric acid productivity on key process parameters, such as media composition and physico-chemical variables, is thoroughly discussed. This review attempts to provide a recent update on the topic and will serve as a meaningful resource for researchers working in the field.

  3. Droplet-based microfluidic high-throughput screening of heterologous enzymes secreted by the yeast Yarrowia lipolytica.

    PubMed

    Beneyton, Thomas; Thomas, Stéphane; Griffiths, Andrew D; Nicaud, Jean-Marc; Drevelle, Antoine; Rossignol, Tristan

    2017-01-31

    Droplet-based microfluidics is becoming an increasingly attractive alternative to microtiter plate techniques for enzymatic high-throughput screening (HTS), especially for exploring large diversities with lower time and cost footprint. In this case, the assayed enzyme has to be accessible to the substrate within the water-in-oil droplet by being ideally extracellular or displayed at the cell surface. However, most of the enzymes screened to date are expressed within the cytoplasm of Escherichia coli cells, which means that a lysis step must take place inside the droplets for enzyme activity to be assayed. Here, we take advantage of the excellent secretion abilities of the yeast Yarrowia lipolytica to describe a highly efficient expression system particularly suitable for the droplet-based microfluidic HTS. Five hydrolytic genes from Aspergillus niger genome were chosen and the corresponding five Yarrowia lipolytica producing strains were constructed. Each enzyme (endo-β-1,4-xylanase B and C; 1,4-β-cellobiohydrolase A; endoglucanase A; aspartic protease) was successfully overexpressed and secreted in an active form in the crude supernatant. A droplet-based microfluidic HTS system was developed to (a) encapsulate single yeast cells; (b) grow yeast in droplets; (c) inject the relevant enzymatic substrate; (d) incubate droplets on chip; (e) detect enzymatic activity; and (f) sort droplets based on enzymatic activity. Combining this integrated microfluidic platform with gene expression in Y. lipolytica results in remarkably low variability in the enzymatic activity at the single cell level within a given monoclonal population (<5%). Xylanase, cellobiohydrolase and protease activities were successfully assayed using this system. We then used the system to screen for thermostable variants of endo-β-1,4-xylanase C in error-prone PCR libraries. Variants displaying higher thermostable xylanase activities compared to the wild-type were isolated (up to 4.7-fold improvement

  4. Metabolic engineering of oleaginous yeast Yarrowia lipolytica for limonene overproduction.

    PubMed

    Cao, Xuan; Lv, Yu-Bei; Chen, Jun; Imanaka, Tadayuki; Wei, Liu-Jing; Hua, Qiang

    2016-01-01

    Limonene, a monocyclic monoterpene, is known for its using as an important precursor of many flavoring, pharmaceutical, and biodiesel products. Currently, d-limonene has been produced via fractionation from essential oils or as a byproduct of orange juice production, however, considering the increasing need for limonene and a certain amount of pesticides may exist in the limonene obtained from the citrus industry, some other methods should be explored to produce limonene. To construct the limonene synthetic pathway in Yarrowia lipolytica , two genes encoding neryl diphosphate synthase 1 (NDPS1) and limonene synthase (LS) were codon-optimized and heterologously expressed in Y. lipolytica . Furthermore, to maximize limonene production, several genes involved in the MVA pathway were overexpressed, either in different copies of the same gene or in combination. Finally with the optimized pyruvic acid and dodecane concentration in flask culture, a maximum limonene titer and content of 23.56 mg/L and 1.36 mg/g DCW were achieved in the final engineered strain Po1f-LN-051, showing approximately 226-fold increase compared with the initial yield 0.006 mg/g DCW. This is the first report on limonene biosynthesis in oleaginous yeast Y. lipolytica by heterologous expression of codon-optimized tLS and tNDPS1 genes. To our knowledge, the limonene production 23.56 mg/L, is the highest limonene production level reported in yeast. In short, we demonstrate that Y. lipolytica provides a compelling platform for the overproduction of limonene derivatives, and even other monoterpenes.

  5. Optimization of odd chain fatty acid production by Yarrowia lipolytica.

    PubMed

    Park, Young-Kyoung; Dulermo, Thierry; Ledesma-Amaro, Rodrigo; Nicaud, Jean-Marc

    2018-01-01

    Odd chain fatty acids (odd FAs) have a wide range of applications in therapeutic and nutritional industries, as well as in chemical industries including biofuel. Yarrowia lipolytica is an oleaginous yeast considered a preferred microorganism for the production of lipid-derived biofuels and chemicals. However, it naturally produces negligible amounts of odd chain fatty acids. The possibility of producing odd FAs using Y. lipolytica was investigated. Y. lipolytica wild-type strain was shown able to grow on weak acids; acetate, lactate, and propionate. Maximal growth rate on propionate reached 0.24 ± 0.01 h -1 at 2 g/L, and growth inhibition occurred at concentration above 10 g/L. Wild-type strain accumulated lipids ranging from 7.39 to 8.14% (w/w DCW) depending on the carbon source composition, and odd FAs represented only 0.01-0.12 g/L. We here proved that the deletion of the PHD1 gene improved odd FAs production, which reached a ratio of 46.82% to total lipids. When this modification was transferred to an obese strain, engineered for improving lipid accumulation, further increase odd FAs production reaching a total of 0.57 g/L was shown. Finally, a fed-batch co-feeding strategy was optimized for further increase odd FAs production, which generated 0.75 g/L, the best production described so far in Y. lipolytica . A Y. lipolytica strain able to accumulate high level of odd chain fatty acids, mainly heptadecenoic acid, has been successfully developed. In addition, a fed-batch co-feeding strategy was optimized to further improve lipid accumulation and odd chain fatty acid content. These lipids enriched in odd chain fatty acid can (1) improve the properties of the biodiesel generated from Y. lipolytica lipids and (2) be used as renewable source of odd chain fatty acid for industrial applications. This work paves the way for further improvements in odd chain fatty acids and fatty acid-derived compound production.

  6. YALI0E32769g (DGA1) and YALI0E16797g (LRO1) encode major triacylglycerol synthases of the oleaginous yeast Yarrowia lipolytica.

    PubMed

    Athenstaedt, Karin

    2011-10-01

    The oleaginous yeast Yarrowia lipolytica has an outstanding capacity to produce and store triacylglycerols resembling adipocytes of higher eukaryotes. Here, the identification of two genes YALI0E32769g (DGA1) and YALI0E16797g (LRO1) encoding major triacylglycerol synthases of Yarrowia lipolytica is reported. Heterologous expression of either DGA1 or LRO1 in a mutant of the budding yeast Saccharomyces cerevisiae defective in triacylglycerol synthesis restores the formation of this neutral lipid. Whereas Dga1p requires acyl-CoA as a substrate for acylation of diacylglycerol, Lro1p is an acyl-CoA independent triacylglycerol synthase using phospholipids as acyl-donor. Growth of Yarrowia lipolytica strains deleted of DGA1 and/or LRO1 on glucose containing medium significantly decreases triacylglycerol accumulation. Most interestingly, when oleic acid serves as the carbon source the ratio of triacylglycerol accumulation in mutants to wild-type is significantly increased in strains defective in DGA1 but not in lro1Δ. In vitro experiments revealed that under these conditions an additional acyl-CoA dependent triacylglycerol synthase contributes to triacylglycerol synthesis in the respective mutants. Taken together, evidence is provided that Yarrowia lipolytica contains at least four triacylglycerol synthases, namely Lro1p, Dga1p and two additional triacylglycerol synthases whereof one is acyl-CoA dependent and specifically induced upon growth on oleic acid. Copyright © 2011 Elsevier B.V. All rights reserved.

  7. Yarrowia lipolytica morphological mutant enables lasting in situ immobilization in bioreactor.

    PubMed

    Vandermies, Marie; Kar, Tambi; Carly, Frédéric; Nicaud, Jean-Marc; Delvigne, Frank; Fickers, Patrick

    2018-04-26

    In the present study, we have isolated and characterized a Yarrowia lipolytica morphological mutant growing exclusively in the pseudohyphal morphology. The gene responsible for this phenotype, YALI0E06519g, was identified as homologous to the mitosis regulation gene HSL1 from Saccharomyces cerevisiae. Taking advantage of its morphology, we achieved the immobilization of the Δhsl1 mutant on the metallic structured packing of immobilized-cell bioreactors. We obtained significant cell retention and growth on the support during shake flask and bioreactor experiments without an attachment step prior to the culture. The system of medium aspersion on the packing ensured oxygen availability in the absence of agitation and minimized the potential release of cells in the culture medium. Additionally, the metallic packing proved its facility of cleaning and sterilization after fermentation. This combined use of morphological mutation and bioreactor design is a promising strategy to develop continuous processes for the production of recombinant protein and metabolites using Y. lipolytica. Graphical Abstract.

  8. Engineering ..beta..-Oxidation in Yarrowia lipolytica for Methyl Ketone Production

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sanchez i Nogue, Violeta; Ramirez, Kelsey J; Singer, Christine

    Medium- and long-chain methyl ketones are fatty acid-derived compounds that can be used as biofuel blending agents, flavors and fragrances. However, their large-scale production from sustainable feedstocks is currently limited due to the lack of robust microbial biocatalysts. The oleaginous yeast Yarrowia lipolytica is a promising biorefinery platform strain for the production of methyl ketones from renewable lignocellulosic biomass due to its natively high flux towards fatty acid biosynthesis. In this study, we report the metabolic engineering of Y. lipolytica to produce long- and very long-chain methyl ketones. Truncation of peroxisomal ..beta..-oxidation by chromosomal deletion of pot1 resulted in themore » biosynthesis of saturated, mono-, and diunsaturated methyl ketones in the C13-C23 range. Additional overexpression and peroxisomal targeting of a heterologous bacterial methyl ketone biosynthesis pathway yielded an initial titer of 151.5 mg/L of saturated methyl ketones. Dissolved oxygen concentrations in the cultures were found to substantially impact cell morphology and methyl ketone biosynthesis. Bioreactor cultivation under optimized conditions resulted in a titer of 314.8 mg/L of total methyl ketones, representing more than a 6000-fold increase over the parental strain. This work highlights the potential of Y. lipolytica to serve as chassis organism for the biosynthesis of acyl-thioester derived long- and very long-chain methyl ketones.« less

  9. Production of Medium Chain Fatty Acids by Yarrowia lipolytica: Combining Molecular Design and TALEN to Engineer the Fatty Acid Synthase.

    PubMed

    Rigouin, Coraline; Gueroult, Marc; Croux, Christian; Dubois, Gwendoline; Borsenberger, Vinciane; Barbe, Sophie; Marty, Alain; Daboussi, Fayza; André, Isabelle; Bordes, Florence

    2017-10-20

    Yarrowia lipolytica is a promising organism for the production of lipids of biotechnological interest and particularly for biofuel. In this study, we engineered the key enzyme involved in lipid biosynthesis, the giant multifunctional fatty acid synthase (FAS), to shorten chain length of the synthesized fatty acids. Taking as starting point that the ketoacyl synthase (KS) domain of Yarrowia lipolytica FAS is directly involved in chain length specificity, we used molecular modeling to investigate molecular recognition of palmitic acid (C16 fatty acid) by the KS. This enabled to point out the key role of an isoleucine residue, I1220, from the fatty acid binding site, which could be targeted by mutagenesis. To address this challenge, TALEN (transcription activator-like effector nucleases)-based genome editing technology was applied for the first time to Yarrowia lipolytica and proved to be very efficient for inducing targeted genome modifications. Among the generated FAS mutants, those having a bulky aromatic amino acid residue in place of the native isoleucine at position 1220 led to a significant increase of myristic acid (C14) production compared to parental wild-type KS. Particularly, the best performing mutant, I1220W, accumulates C14 at a level of 11.6% total fatty acids. Overall, this work illustrates how a combination of molecular modeling and genome-editing technology can offer novel opportunities to rationally engineer complex systems for synthetic biology.

  10. Impact of culture conditions on β-carotene encapsulation using Yarrowia lipolytica cells

    NASA Astrophysics Data System (ADS)

    Dang, Tran Hai; Minh, Ho Thi Thu; Van Nhi, Tran Nguyen; Ngoc, Ta Thi Minh

    2017-09-01

    Yeast cell was reported as an effective natural preformed material for use in encapsulation of hydrophobic compounds. The encapsulation process was normally considered as passive transfer through cellular wall and cellular membrane. Beside solubility of hydrophobic compound in phospholipid membrane or plasmolysis, membrane characteristics of yeast cell which are differed between strains and influenced by culture conditions are main factors involving the accumulation of hydrophobic compound into yeast cell. In this study, the oleaginous yeast Yarrowia lipolytica was used as micro-container shell to encapsulate a high hydrophobic compound - β-carotene. Yeast cell was cultured under different conditions and wet yeast biomass was incubated with β-carotene which was dissolved in soybean oil overnight. β-carotene accumulation was then extracted and evaluated by UV-VIS spectrometry. Optimization of culture condition was investigated using the Box-Behnken model. β-carotene encapsulation efficiency in Y. lipolytica was showed to be affected by both pH of medium and agitation conditions. The highest β-carotene encapsulation efficiency was optimized at 42.8 μg/g with Y. lipolytica cultured at pH 4.5, medium volume equal to 115 ml and agitation speed at 211 rpm.

  11. Prospect for Developing a Consolidated Bioprocessing (CBP) Strain Using Xylan as the Substrate: the Case Study of Yarrowia lipolytica

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wang, Wei; Wei, Hui; Alahuhta, Markus

    2016-07-08

    To achieve the goal of developing a direct microbial sugar conversion platform for the production of lipids and drop-in fuels from cellulosic biomass substrate, Yarrowia lipolytica was used to investigate its potential for being developed as CBP strain by expressing cellulase and xylanase enzymes. Y. lipolytica is known to accumulate lipids intracellularly and is capable of metabolizing glucose and xylose to produce lipids; however, due to the lack of the biomass degrading enzymes, it cannot directly utilize lignocellulosic substrates as carbon sources. While research is continuing on the development of a Y. lipolytica strain able to degrade cellulose, in thismore » study, we present successful expression of several xylanases in Y. lipolytica. To the best of our knowledge, this is the first study introducing heterologous hemicellulose genes into the genome of Y. lipolytica. SDS-PAGE and western blotting analysis showed that the endo-xylanase gene XynII and exo-xylosidase gene XlnD were successfully expressed and secreted, and the expressed xylanases were likely either not or sparsely glycosylated, which is advantageous for expression of heterologous proteins from any species. Enzymatic activity tests further demonstrated active expression of XynII and XlnD in Y. lipolytica. Furthermore, synergistic action on converting xylan to xylose was observed when XlnD worked in concert with XynII. XlnD was able to work on the xylo-oligomers generated by XynII, enhancing the xylan conversion to monomeric xylose. The successful expression of these xylanases in Yarrowia further advances us towards our goal to develop a direct microbial conversion process using this organism. and xylose to produce lipids; however, due to the lack of the biomass degrading enzymes, it cannot directly utilize lignocellulosic substrates as carbon sources. While research is continuing on the development of a Y. lipolytica strain able to degrade cellulose, in this study, we present successful

  12. Engineering β-oxidation in Yarrowia lipolytica for methyl ketone production.

    PubMed

    Hanko, Erik K R; Denby, Charles M; Sànchez I Nogué, Violeta; Lin, Weiyin; Ramirez, Kelsey J; Singer, Christine A; Beckham, Gregg T; Keasling, Jay D

    2018-05-28

    Medium- and long-chain methyl ketones are fatty acid-derived compounds that can be used as biofuel blending agents, flavors and fragrances. However, their large-scale production from sustainable feedstocks is currently limited due to the lack of robust microbial biocatalysts. The oleaginous yeast Yarrowia lipolytica is a promising biorefinery platform strain for the production of methyl ketones from renewable lignocellulosic biomass due to its natively high flux towards fatty acid biosynthesis. In this study, we report the metabolic engineering of Y. lipolytica to produce long- and very long-chain methyl ketones. Truncation of peroxisomal β-oxidation by chromosomal deletion of pot1 resulted in the biosynthesis of saturated, mono-, and diunsaturated methyl ketones in the C 13 -C 23 range. Additional overexpression and peroxisomal targeting of a heterologous bacterial methyl ketone biosynthesis pathway yielded an initial titer of 151.5 mg/L of saturated methyl ketones. Dissolved oxygen concentrations in the cultures were found to substantially impact cell morphology and methyl ketone biosynthesis. Bioreactor cultivation under optimized conditions resulted in a titer of 314.8 mg/L of total methyl ketones, representing more than a 6000-fold increase over the parental strain. This work highlights the potential of Y. lipolytica to serve as chassis organism for the biosynthesis of acyl-thioester derived long- and very long-chain methyl ketones. Copyright © 2018 International Metabolic Engineering Society. Published by Elsevier Inc. All rights reserved.

  13. Yarrowia lipolytica: a model yeast for citric acid production.

    PubMed

    Cavallo, Ema; Charreau, Hernán; Cerrutti, Patricia; Foresti, María Laura

    2017-12-01

    Every year more than 2 million tons of citric acid (CA) are produced around the world for industrial uses. Although initially extracted from citrus, the low profitability of the process and the increasing demand soon stimulated the search for more efficient methods to produce CA. Currently, most world CA demand (99%) is satisfied by fermentations with microorganisms, especially filamentous fungi and yeasts. CA production with yeasts has certain advantages over molds (e.g. higher productivity and easier cultivation), which in the last two decades have triggered a clear increase in publications and patents devoted to the use of yeasts in this field. Yarrowia lipolytica has become a model yeast that proved to be successful in different production systems. Considering the current interest evidenced in the literature, the most significant information on CA production using Y. lipolytica is summarized. The relevance on CA yields of key factors such as strains, media formulation, environmental conditions and production regimes is thoroughly discussed, with particular focus on increasing CA productivity. Besides, the possibility of tuning the mentioned variables to reduce concomitant isocitric acid production-the biggest disadvantage of using yeasts-is analyzed. Available methods for CA purification/quantification are also discussed. © FEMS 2017. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com.

  14. Engineering Yarrowia lipolytica for Use in Biotechnological Applications: A Review of Major Achievements and Recent Innovations.

    PubMed

    Madzak, Catherine

    2018-06-25

    Yarrowia lipolytica is an oleaginous saccharomycetous yeast with a long history of industrial use. It aroused interest several decades ago as host for heterologous protein production. Thanks to the development of numerous molecular and genetic tools, Y. lipolytica is now a recognized system for expressing heterologous genes and secreting the corresponding proteins of interest. As genomic and transcriptomic tools increased our basic knowledge on this yeast, we can now envision engineering its metabolic pathways for use as whole-cell factory in various bioconversion processes. Y. lipolytica is currently being developed as a workhorse for biotechnology, notably for single-cell oil production and upgrading of industrial wastes into valuable products. As it becomes more and more difficult to keep up with an ever-increasing literature on Y. lipolytica engineering technology, this article aims to provide basic and actualized knowledge on this research area. The most useful reviews on Y. lipolytica biology, use, and safety will be evoked, together with a resume of the engineering tools available in this yeast. This mini-review will then focus on recently developed tools and engineering strategies, with a particular emphasis on promoter tuning, metabolic pathways assembly, and genome editing technologies.

  15. Development of a novel rDNA based plasmid for enhanced cell surface display on Yarrowia lipolytica.

    PubMed

    Bulani, Siyavuya Ishmael; Moleleki, Lucy; Albertyn, Jacobus; Moleleki, Ntsane

    2012-05-20

    In this study, a novel rDNA based plasmid was developed for display of heterologous proteins on the cell surface of Yarrowia lipolytica using the C-terminal end of the glycosylphosphatidylinositol (GPI) anchored Y. lipolytica cell wall protein 1 (YlCWP1). mCherry was used as a model protein to assess the efficiency of the constructed plasmid. Y. lipolytica transformants harbouring the expression cassettes showed a purple colour phenotype on selective YNB-casamino plates as compared to control cells indicating that mCherry was displayed on the cells. Expression of mCherry on cells of Y. lipolytica was confirmed by both fluorescent microscopy and flow cytometry. Furthermore, SDS-PAGE analysis and matrix-assisted laser desorption/ionization (MALDI)-time-of (TOF)-mass spectrometry (MS) peptide mass fingerprinting (PMF) confirmed that the protein cleaved from the yeast cells using enterokinase was mCherry. Efficient cleavage of mCherry reported in this work offers an alternative purification method for displayed heterologous proteins on Y. lipolytica cells using the plasmid constructed in this study. The developed displaying system offers great potential for industrial production and purification of heterologous proteins at low cost.

  16. Comprehensive metabolomic, lipidomic and microscopic profiling of Yarrowia lipolytica during lipid accumulation identifies targets for increased lipogenesis

    DOE PAGES

    Pomraning, Kyle R.; Wei, Siwei; Karagiosis, Sue A.; ...

    2015-04-23

    Yarrowia lipolytica is an oleaginous ascomycete yeast that accumulates large amounts of lipids and has potential as a biofuel producing organism. Despite a growing scientific literature focused on lipid production by Y. lipolytica, there remain significant knowledge gaps regarding the key biological processes involved. We applied a combination of metabolomic and lipidomic profiling approaches as well as microscopic techniques to identify and characterize the key pathways involved in de novo lipid accumulation from glucose in batch cultured, wild-type Y. lipolytica. We found that lipids accumulated rapidly and peaked at 48 hours during the five day experiment, concurrent with a shiftmore » in amino acid metabolism. We also report that Y. lipolytica secretes disaccharides early in batch culture and reabsorbs them when extracellular glucose is depleted. Exhaustion of extracellular sugars coincided with thickening of the cell wall, suggesting that genes involved in cell wall biogenesis may be a useful target for improving the efficiency of lipid producing yeast strains.« less

  17. Urea and urine are a viable and cost-effective nitrogen source for Yarrowia lipolytica biomass and lipid accumulation.

    PubMed

    Brabender, Matthew; Hussain, Murtaza Shabbir; Rodriguez, Gabriel; Blenner, Mark A

    2018-03-01

    Yarrowia lipolytica is an industrial yeast that has been used in the sustainable production of fatty acid-derived and lipid compounds due to its high growth capacity, genetic tractability, and oleaginous properties. This investigation examines the possibility of utilizing urea or urine as an alternative to ammonium sulfate as a nitrogen source to culture Y. lipolytica. The use of a stoichiometrically equivalent concentration of urea in lieu of ammonium sulfate significantly increased cell growth when glucose was used as the carbon source. Furthermore, Y. lipolytica growth was equally improved when grown with synthetic urine and real human urine. Equivalent or better lipid production was achieved when cells are grown on urea or urine. The successful use of urea and urine as nitrogen sources for Y. lipolytica growth highlights the potential of using cheaper media components as well as exploiting and recycling non-treated human waste streams for biotechnology processes.

  18. Genome-scale model-driven strain design for dicarboxylic acid production in Yarrowia lipolytica.

    PubMed

    Mishra, Pranjul; Lee, Na-Rae; Lakshmanan, Meiyappan; Kim, Minsuk; Kim, Byung-Gee; Lee, Dong-Yup

    2018-03-19

    Recently, there have been several attempts to produce long-chain dicarboxylic acids (DCAs) in various microbial hosts. Of these, Yarrowia lipolytica has great potential due to its oleaginous characteristics and unique ability to utilize hydrophobic substrates. However, Y. lipolytica should be further engineered to make it more competitive: the current approaches are mostly intuitive and cumbersome, thus limiting its industrial application. In this study, we proposed model-guided metabolic engineering strategies for enhanced production of DCAs in Y. lipolytica. At the outset, we reconstructed genome-scale metabolic model (GSMM) of Y. lipolytica (iYLI647) by substantially expanding the previous models. Subsequently, the model was validated using three sets of published culture experiment data. It was finally exploited to identify genetic engineering targets for overexpression, knockout, and cofactor modification by applying several in silico strain design methods, which potentially give rise to high yield production of the industrially relevant long-chain DCAs, e.g., dodecanedioic acid (DDDA). The resultant targets include (1) malate dehydrogenase and malic enzyme genes and (2) glutamate dehydrogenase gene, in silico overexpression of which generated additional NADPH required for fatty acid synthesis, leading to the increased DDDA fluxes by 48% and 22% higher, respectively, compared to wild-type. We further investigated the effect of supplying branched-chain amino acids on the acetyl-CoA turn-over rate which is key metabolite for fatty acid synthesis, suggesting their significance for production of DDDA in Y. lipolytica. In silico model-based strain design strategies allowed us to identify several metabolic engineering targets for overproducing DCAs in lipid accumulating yeast, Y. lipolytica. Thus, the current study can provide a methodological framework that is applicable to other oleaginous yeasts for value-added biochemical production.

  19. Synthetic Biology Expands the Industrial Potential of Yarrowia lipolytica.

    PubMed

    Markham, Kelly A; Alper, Hal S

    2018-06-04

    The oleaginous yeast Yarrowia lipolytica is quickly emerging as the most popular non-conventional (i.e., non-model organism) yeast in the bioproduction field. With a high propensity for flux through tricarboxylic acid (TCA) cycle intermediates and biological precursors such as acetyl-CoA and malonyl-CoA, this host is especially well suited to meet our industrial chemical production needs. Recent progress in synthetic biology tool development has greatly enhanced our ability to rewire this organism, with advances in genetic component design, CRISPR technologies, and modular cloning strategies. In this review we investigate recent developments in metabolic engineering and describe how the new tools being developed help to realize the full industrial potential of this host. Finally, we conclude with our vision of the developments that will be necessary to enhance future engineering efforts. Copyright © 2018 Elsevier Ltd. All rights reserved.

  20. Engineering Yarrowia lipolytica to express secretory invertase with strong FBA1IN promoter.

    PubMed

    Hong, Seung-Pyo; Seip, John; Walters-Pollak, Dana; Rupert, Ross; Jackson, Raymond; Xue, Zhixiong; Zhu, Quinn

    2012-02-01

    Oleaginous yeast Yarrowia lipolytica is an important host for the production of lipid-derived compounds or heterologous proteins. Selection of strong promoters and effective expression systems is critical for heterologous protein secretion. To search for a strong promoter in Y. lipolytica, activities of FBA1, TDH1 and GPM1 promoters were compared to that of TEF1 promoter by constructing GUS reporter fusions. The FBA1 promoter activity was 2.2 and 5.5 times stronger than the TDH1 and GPM1 promoters, respectively. The FBA1IN promoter (FBA1 sequence of -826 to +169) containing an intron (+64 to +165) showed five-fold higher expression than the FBA1 promoter (-831 to -1). The transcriptional enhancement by the 5'-region within the FBA1 gene was confirmed by GPM1::FBA1 chimeric promoter construction. Using the strong FBA1IN promoter, four different S. cerevisiae SUC2 expression cassettes were tested for the SUC+ phenotype in Y. lipolytica. Functional invertase secretion was facilitated by the Xpr2 prepro-region with an additional 13 amino acids of mature Xpr2, or by the native Suc2 signal sequence. However, these two secretory signals in tandem, or the mature Suc2 with no secretory signal, did not direct secretion of functional invertase. Unlike previously reported Y. lipolytica SUC+ strains, our engineered stains secreted most of invertase into the medium. Copyright © 2011 John Wiley & Sons, Ltd.

  1. Selection of Yarrowia lipolytica strains with high protein content from yeasts isolated from different marine environments

    NASA Astrophysics Data System (ADS)

    Chi, Zhenming; Wang, Fang; Wang, Lin; Li, Jing; Wang, Xianghong

    2007-10-01

    A total of 78 Yarrowia lipolytica yeast strains from seawater, sediments, mud of salterns, the guts of marine fish, and marine algae were obtained. After the crude protein of the yeasts was estimated by the method of Kjehldahl, we found that seven strains of the marine yeasts grown in soy bean cake hydrolysate with 20 g L-1 of glucose for 48 h at 28°C contained more than 41.0 g protein per 100 g of cell dry weight and the cell dry weight was more than 4.4 g per L of the culture. Among them, strain SWJ-1b contained the highest crude protein. The results of Biolog identification and molecular methods further confirmed that they indeed belonged to Y. lipolytica.

  2. [Genetic system for maintaining the mitochondrial human genome in yeast Yarrowia lipolytica].

    PubMed

    Isakova, E P; Deryabina, Yu I; Velyakova, A V; Biryukova, J K; Teplova, V V; Shevelev, A B

    2016-01-01

    For the first time, the possibility of maintaining an intact human mitochondrial genome in a heterologous system in the mitochondria of yeast Yarrowia lipolytica is shown. A method for introducing directional changes into the structure of the mitochondrial human genome replicating in Y. lipolytica by an artificially induced ability of yeast mitochondria for homologous recombination is proposed. A method of introducing and using phenotypic selection markers for the presence or absence of defects in genes tRNA-Lys and tRNA-Leu of the mitochondrial genome is developed. The proposed system can be used to correct harmful mutations of the human mitochondrial genome associated with mitochondrial diseases and for preparative amplification of intact mitochondrial DNA with an adjusted sequence in yeast cells. The applicability of the new system for the correction of mutations in the genes of Lys- and Leu-specific tRNAs of the human mitochondrial genome associated with serious and widespread human mitochondrial diseases such as myoclonic epilepsy with lactic acidosis (MELAS) and myoclonic epilepsy with ragged-red fibers (MERRF) is shown.

  3. CRISPR-Cas9-Mediated Genome Editing and Transcriptional Control in Yarrowia lipolytica.

    PubMed

    Schwartz, Cory; Wheeldon, Ian

    2018-01-01

    The discovery and adaptation of RNA-guided nucleases has resulted in the rapid development of efficient, scalable, and easily accessible synthetic biology tools for targeted genome editing and transcriptional control. In these systems, for example CRISPR-Cas9 from Streptococcus pyogenes, a protein with nuclease activity is targeted to a specific nucleotide sequence by a short RNA molecule, whereupon binding it cleaves the targeted nucleotide strand. To extend this genome-editing ability to the industrially important oleaginous yeast Yarrowia lipolytica, we developed a set of easily usable and effective CRISPR-Cas9 episomal vectors. In this protocols chapter, we first present a method by which arbitrary protein-coding genes can be disrupted via indel formation after CRISPR-Cas9 targeting. A second method demonstrates how the same CRISPR-Cas9 system can be used to induce markerless gene cassette integration into the genome by inducing homologous recombination after DNA cleavage by Cas9. Finally, we describe how a catalytically inactive form of Cas9 fused to a transcriptional repressor can be used to control transcription of native genes in Y. lipolytica. The CRISPR-Cas9 tools and strategies described here greatly increase the types of genome editing and transcriptional control that can be achieved in Y. lipolytica, and promise to facilitate more advanced engineering of this important oleaginous host.

  4. Irradiation of Yarrowia lipolytica NRRL YB-567 creating novel strains with enhanced ammonia and oil production on protein and carbohydrate substrates

    USDA-ARS?s Scientific Manuscript database

    Increased interest in sustainable production of renewable diesel and other valuable bioproducts is redoubling efforts to improve economic feasibility of microbial-based oil production. The yeast Yarrowia lipolytica is capable of employing a wide variety of substrates to produce oil and valuable co-p...

  5. An ortholog of farA of Aspergillus nidulans is implicated in the transcriptional activation of genes involved in fatty acid utilization in the yeast Yarrowia lipolytica

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Poopanitpan, Napapol; Kobayashi, Satoshi; Fukuda, Ryouichi

    2010-11-26

    Research highlights: {yields} POR1 is a Yarrowia lipolytica ortholog of farA involved in fatty acid response in A. nidulans. {yields} Deletion of POR1 caused growth defects on fatty acids. {yields} {Delta}por1 strain exhibited defects in the induction of genes involved in fatty acid utilization. -- Abstract: The yeast Yarrowia lipolytica effectively utilizes hydrophobic substrates such as fatty acids and n-alkanes. To identify a gene(s) regulating fatty acid utilization in Y. lipolytica, we first studied homologous genes to OAF1 and PIP2 of Saccharomyces cerevisiae, but their disruption did not change growth on oleic acid at all. We next characterized a Y.more » lipolytica gene, POR1 (primary oleate regulator 1), an ortholog of farA encoding a transcriptional activator that regulates fatty acid utilization in Aspergillus nidulans. The deletion mutant of POR1 was defective in the growth on various fatty acids, but not on glucose, glycerol, or n-hexadecane. It exhibited slight defect on n-decane. The transcriptional induction of genes involved in {beta}-oxidation and peroxisome proliferation by oleate was distinctly diminished in the {Delta}por1 strains. These data suggest that POR1 encodes a transcriptional activator widely regulating fatty acid metabolism in Y. lipolytica.« less

  6. New finding and optimal production of a novel extracellular alkaline lipase from Yarrowia lipolytica NRRL Y-2178.

    PubMed

    Lee, Geon-Ho; Bae, Jae-Han; Suh, Min-Jung; Kim, In-Hwan; Hou, Ching T; Kim, Hak-Ryul

    2007-06-01

    Lipases are industrially useful versatile enzymes that catalyze numerous different reactions including hydrolysis of triglycerides, transesterification, and chiral synthesis of esters under natural conditions. Although lipases from various sources have been widely used in industrial applications, such as in food, chemical, pharmaceutical, and detergent industries, there are still substantial current interests in developing new microbial lipases, specifically those functioning in abnormal conditions. We screened 17 lipase-producing yeast strains, which were prescreened for substrate specificity of lipase from more than 500 yeast strains from the Agricultural Research Service Culture Collection (Peoria, IL, U.S.A.), and selected Yarrowia lipolytica NRRL Y-2178 as a best lipase producer. This report presents new finding and optimal production of a novel extracellular alkaline lipase from Y. lipolytica NRRL Y-2178. Optimal c ulture conditions f orlipase production by Y. lipolytica NRRL Y-2178 were 72 h incubation time, 27.5 degrees C, pH 9.0. Glycerol and glucose were efficiently used as the most efficient carbon sources, and a combination of yeast extract and peptone was a good nitrogen source for lipase production by Y. lipolytica NRRL Y-2178. These results suggested that Y. lipolytica NRRL Y-2178 showsgood industrial potential as a new alkaline lipase producer.

  7. [The Engineering of a Yarrowia lipolytica Yeast Strain Capable of Homologous Recombination of the Mitochondrial Genome].

    PubMed

    Isakova, E P; Epova, E Yu; Sekova, V Yu; Trubnikova, E V; Kudykina, Yu K; Zylkova, M V; Guseva, M A; Deryabina, Yu I

    2015-01-01

    None of the studied eukaryotic species has a natural system for homologous recombination of the mitochondrial genome. We propose an integrated genetic construct pQ-SRUS, which allows introduction of the recA gene from Bacillus subtilis into the nuclear genome of an extremophilic yeast, Yarrowia lipolytica. The targeting of recombinant RecA to the yeast mitochondria is provided by leader sequences (5'-UTR and 3'-UTR) derived from the SOD2 gene mRNA, which exhibits affinity to the outer mitochondrial membrane and thus provides cotranslational transport of RecA to the inner space of the mitochondria. The Y. lipolytica strain bearing the pQ-SRUS construct has the unique ability to integrate DNA constructs into the mitochondrial genome. This fact was confirmed using a tester construct, pQ-NIHN, intended for the introduction of the EYFP gene into the translation initiation region of the Y. lipolytica ND1 mitochondrial gene. The Y. lipolytica strain bearing pQ-SRUS makes it possible to engineer recombinant producers based on Y. lipolytica bearing transgenes in the mitochondrial genome. They are promising for the construction of a genetic system for in vivo replication and modification of the human mitochondrial genome. These strains may be used as a tool for the treatment of human mitochondrial diseases (including genetically inherited ones).

  8. Robust signal peptides for protein secretion in Yarrowia lipolytica: identification and characterization of novel secretory tags.

    PubMed

    Celińska, Ewelina; Borkowska, Monika; Białas, Wojciech; Korpys, Paulina; Nicaud, Jean-Marc

    2018-06-01

    Upon expression of a given protein in an expression host, its secretion into the culture medium or cell-surface display is frequently advantageous in both research and industrial contexts. Hence, engineering strategies targeting folding, trafficking, and secretion of the proteins gain considerable interest. Yarrowia lipolytica has emerged as an efficient protein expression platform, repeatedly proved to be a competitive secretor of proteins. Although the key role of signal peptides (SPs) in secretory overexpression of proteins and their direct effect on the final protein titers are widely known, the number of reports on manipulation with SPs in Y. lipolytica is rather scattered. In this study, we assessed the potential of ten different SPs for secretion of two heterologous proteins in Y. lipolytica. Genomic and transcriptomic data mining allowed us to select five novel, previously undescribed SPs for recombinant protein secretion in Y. lipolytica. Their secretory potential was assessed in comparison with known, widely exploited SPs. We took advantage of Golden Gate approach, for construction of expression cassettes, and micro-volume enzymatic assays, for functional screening of large libraries of recombinant strains. Based on the adopted strategy, we identified novel secretory tags, characterized their secretory capacity, indicated the most potent SPs, and suggested a consensus sequence of a potentially robust synthetic SP to expand the molecular toolbox for engineering Y. lipolytica.

  9. Bioconversion of R-(+)-limonene to perillic acid by the yeast Yarrowia lipolytica

    PubMed Central

    Ferrara, Maria Antonieta; Almeida, Débora S.; Siani, Antonio C.; Lucchetti, Leonardo; Lacerda, Paulo S.B.; Freitas, André; Tappin, Marcelo R.R.; Bon, Elba P.S.

    2013-01-01

    Perillyl derivatives are increasingly important due to their flavouring and antimicrobial properties as well as their potential as anticancer agents. These terpenoid species, which are present in limited amounts in plants, may be obtained via bioconversion of selected monoterpene hydrocarbons. In this study, seventeen yeast strains were screened for their ability to oxidize the exocyclic methyl group in the p-menthene moiety of limonene into perillic acid. Of the yeast tested, the highest efficiency was observed for Yarrowia lipolytica ATCC 18942. The conversion of R (+)-limonene by Y. lipolytica was evaluated by varying the pH (3 to 8) and the temperature (25 to 30 °C) in a reaction medium containing 0.5% v/v limonene and 10 g/L of stationary phase cells (dry weight). The best results, corresponding to 564 mg/L of perillic acid, were obtained in buffered medium at pH 7.1 that was incubated at 25 °C for 48 h. The stepwise addition of limonene increased the perillic acid concentration by over 50%, reaching 855 mg/L, whereas the addition of glucose or surfactant to the reaction medium did not improve the bioconversion process. The use of Y. lipolytica showed promise for ease of further downstream processing, as perillic acid was the sole oxidised product of the bioconversion reaction. Moreover, bioprocesses using safe and easy to cultivate yeast cells have been favoured in industry. PMID:24688495

  10. Engineering Yarrowia lipolytica as a platform for synthesis of drop-in transportation fuels and oleochemicals

    PubMed Central

    Xu, Peng; Qiao, Kangjian; Ahn, Woo Suk; Stephanopoulos, Gregory

    2016-01-01

    Harnessing lipogenic pathways and rewiring acyl-CoA and acyl-ACP (acyl carrier protein) metabolism in Yarrowia lipolytica hold great potential for cost-efficient production of diesel, gasoline-like fuels, and oleochemicals. Here we assessed various pathway engineering strategies in Y. lipolytica toward developing a yeast biorefinery platform for sustainable production of fuel-like molecules and oleochemicals. Specifically, acyl-CoA/acyl-ACP processing enzymes were targeted to the cytoplasm, peroxisome, or endoplasmic reticulum to generate fatty acid ethyl esters and fatty alkanes with tailored chain length. Activation of endogenous free fatty acids and the subsequent reduction of fatty acyl-CoAs enabled the efficient synthesis of fatty alcohols. Engineering a hybrid fatty acid synthase shifted the free fatty acids to a medium chain-length scale. Manipulation of alternative cytosolic acetyl-CoA pathways partially decoupled lipogenesis from nitrogen starvation and unleashed the lipogenic potential of Y. lipolytica. Taken together, the strategies reported here represent promising steps to develop a yeast biorefinery platform that potentially upgrades low-value carbons to high-value fuels and oleochemicals in a sustainable and environmentally friendly manner. PMID:27621436

  11. Yarrowia lipolytica possesses two plasma membrane alkali metal cation/H+ antiporters with different functions in cell physiology.

    PubMed

    Papouskova, Klara; Sychrova, Hana

    2006-04-03

    The family of Nha antiporters mediating the efflux of alkali metal cations in exchange for protons across the plasma membrane is conserved in all yeast species. Yarrowia lipolytica is a dimorphic yeast, phylogenetically very distant from the model yeast Saccharomyces cerevisiae. A search in its sequenced genome revealed two genes (designated as YlNHA1 and YlNHA2) with homology to the S. cerevisiae NHA1 gene, which encodes a plasma membrane alkali metal cation/H+ antiporter. Upon heterologous expression of both YlNHA genes in S. cerevisiae, we showed that Y. lipolytica antiporters differ not only in length and sequence, but also in their affinity for individual substrates. While the YlNha1 protein mainly increased cell tolerance to potassium, YlNha2p displayed a remarkable transport capacity for sodium. Thus, Y. lipolytica is the first example of a yeast species with two plasma membrane alkali metal cation/H+ antiporters differing in their putative functions in cell physiology; cell detoxification vs. the maintenance of stable intracellular pH, potassium content and cell volume.

  12. Steroid biotransformations in biphasic systems with Yarrowia lipolytica expressing human liver cytochrome P450 genes

    PubMed Central

    2012-01-01

    Background Yarrowia lipolytica efficiently metabolizes and assimilates hydrophobic compounds such as n-alkanes and fatty acids. Efficient substrate uptake is enabled by naturally secreted emulsifiers and a modified cell surface hydrophobicity and protrusions formed by this yeast. We were examining the potential of recombinant Y. lipolytica as a biocatalyst for the oxidation of hardly soluble hydrophobic steroids. Furthermore, two-liquid biphasic culture systems were evaluated to increase substrate availability. While cells, together with water soluble nutrients, are maintained in the aqueous phase, substrates and most of the products are contained in a second water-immiscible organic solvent phase. Results For the first time we have co-expressed the human cytochromes P450 2D6 and 3A4 genes in Y. lipolytica together with human cytochrome P450 reductase (hCPR) or Y. lipolytica cytochrome P450 reductase (YlCPR). These whole-cell biocatalysts were used for the conversion of poorly soluble steroids in biphasic systems. Employing a biphasic system with the organic solvent and Y. lipolytica carbon source ethyl oleate for the whole-cell bioconversion of progesterone, the initial specific hydroxylation rate in a 1.5 L stirred tank bioreactor was further increased 2-fold. Furthermore, the product formation was significantly prolonged as compared to the aqueous system. Co-expression of the human CPR gene led to a 4-10-fold higher specific activity, compared to the co-overexpression of the native Y. lipolytica CPR gene. Multicopy transformants showed a 50-70-fold increase of activity as compared to single copy strains. Conclusions Alkane-assimilating yeast Y. lipolytica, coupled with the described expression strategies, demonstrated its high potential for biotransformations of hydrophobic substrates in two-liquid biphasic systems. Especially organic solvents which can be efficiently taken up and/or metabolized by the cell might enable more efficient bioconversion as compared

  13. Enhanced α-ketoglutaric acid production and recovery in Yarrowia lipolytica yeast by effective pH controlling.

    PubMed

    Morgunov, Igor G; Kamzolova, Svetlana V; Samoilenko, Vladimir A

    2013-10-01

    The replacement of chemical synthesis by environmentally friendly energy-efficient technologies for production of valuable metabolites is a principal strategy of developing biotechnological industry all over the world. In the present study, we develop a method for α-ketoglutaric acid (KGA) production from rapeseed oil with the use of Yarrowia lipolytica yeast. Sixty strains of Y. lipolytica yeasts were tested for their ability to produce KGA, and the strain Y. lipolytica 212 (Y. lipolytica VKM Y-2412) was selected as a promising KGA producer. Using a three-stage pH controlling, in which pH was 4.5 in the growth phase, then since 72 to 144 h, pH was maintained at 3.5 and in the later phase of acid production, the titration by KOH was switch off, selected strain produced 106.5 g l(-1) of KGA with mass yield of 0.95 g g(-1). KGA in the form of monopotassium salt was isolated from the culture broth and purified. The isolation procedure involved separation of biomass, extraction of residual triglycerides, filtrate bleaching, and acidification with mineral acid (to pH 2.8-3.4), concentration, precipitation of mineral salts, and crystallization of the product. The purity of KGA isolated from the culture filtrate reached 99.1 %.

  14. Development of recombinant Yarrowia lipolytica producing virus-like particles of a fish nervous necrosis virus.

    PubMed

    Luu, Van-Trinh; Moon, Hye Yun; Hwang, Jee Youn; Kang, Bo-Kyu; Kang, Hyun Ah

    2017-08-01

    Nervous necrosis virus (NNV) causes viral encephalopathy and retinopathy, a devastating disease of many species of cultured marine fish worldwide. In this study, we used the dimorphic non-pathogenic yeast Yarrowia lipolytica as a host to express the capsid protein of red-spotted grouper nervous necrosis virus (RGNNV-CP) and evaluated its potential as a platform for vaccine production. An initial attempt was made to express the codon-optimized synthetic genes encoding intact and N-terminal truncated forms of RGNNV-CP under the strong constitutive TEF1 promoter using autonomously replicating sequence (ARS)-based vectors. The full-length recombinant capsid proteins expressed in Y. lipolytica were detected not only as monomers and but also as trimers, which is a basic unit for formation of NNV virus-like particles (VLPs). Oral immunization of mice with whole recombinant Y. lipolytica harboring the ARS-based plasmids was shown to efficiently induce the formation of IgG against RGNNV-CP. To increase the number of integrated copies of the RGNNV-CP expression cassette, a set of 26S ribosomal DNA-based multiple integrative vectors was constructed in combination with a series of defective Ylura3 with truncated promoters as selection markers, resulting in integrants harboring up to eight copies of the RGNNV-CP cassette. Sucrose gradient centrifugation and transmission electron microscopy of this high-copy integrant were carried out to confirm the expression of RGNNV-CPs as VLPs. This is the first report on efficient expression of viral capsid proteins as VLPs in Y. lipolytica, demonstrating high potential for the Y. lipolytica expression system as a platform for recombinant vaccine production based on VLPs.

  15. Investigating Proteome and Transcriptome Defense Response of Apples Induced by Yarrowia lipolytica.

    PubMed

    Zhang, Hongyin; Chen, Liangliang; Sun, Yiwen; Zhao, Lina; Zheng, Xiangfeng; Yang, Qiya; Zhang, Xiaoyun

    2017-04-01

    A better understanding of the mode of action of postharvest biocontrol agents on fruit surfaces is critical for the advancement of successful implementation of postharvest biocontrol products. This is due to the increasing importance of biological control of postharvest diseases over chemical and other control methods. However, most of the mechanisms involved in biological control remain unknown and need to be explored. Yarrowia lipolytica significantly inhibited blue mold decay of apples caused by Penicillium expansum. The findings also demonstrated that Y. lipolytica stimulated the activities of polyphenoloxidase, peroxidase, chitinase, l-phenylalanine ammonia lyase involved in enhancing defense responses in apple fruit tissue. Proteomic and transcriptomic analysis revealed a total of 35 proteins identified as up- and down-regulated in response to the Y. lipolytica inducement. These proteins were related to defense, biotic stimulus, and stress responses, such as pathogenesis-related proteins and dehydrin. The analysis of the transcriptome results proved that the induced resistance was mediated by a crosstalk between salicylic acid (SA) and ethylene/jasmonate (ET/JA) pathways. Y. lipolytica treatment activated the expression of isochorismate synthase gene in the SA pathway, which up-regulates the expression of PR4 in apple. The expression of 1-aminocyclopropane-1-carboxylate oxidase gene and ET-responsive transcription factors 2 and 4, which are involved in the ET pathway, were also activated. In addition, cytochrome oxidase I, which plays an important role in JA signaling for resistance acquisition, was also activated. However, not all of the genes had a positive effect on the SA and ET/JA signal pathways. As transcriptional repressors in JA signaling, TIFY3B and TIFY11B were triggered by the yeast, but the gene expression levels were relatively low. Taken together, Y. lipolytica induced the SA and ET/JA signal mediating the defense pathways by stimulating

  16. Oxidative phosphorylation in Debaryomyces hansenii: physiological uncoupling at different growth phases.

    PubMed

    Cabrera-Orefice, Alfredo; Guerrero-Castillo, Sergio; Díaz-Ruíz, Rodrigo; Uribe-Carvajal, Salvador

    2014-07-01

    Physiological uncoupling of mitochondrial oxidative phosphorylation (OxPhos) was studied in Debaryomyces hansenii. In other species, such as Yarrowia lipolytica and Saccharomyces cerevisiae, OxPhos can be uncoupled through differential expression of branched respiratory chain enzymes or by opening of a mitochondrial unspecific channel (ScMUC), respectively. However D. hansenii mitochondria, which contain both a branched respiratory chain and a mitochondrial unspecific channel (DhMUC), selectively uncouple complex I-dependent rate of oxygen consumption in the stationary growth phase. The uncoupled complex I-dependent respiration was only 20% of the original activity. Inhibition was not due to inactivation of complex I, lack of protein expression or to differential expression of alternative oxidoreductases. Furthermore, all other respiratory chain activities were normal. Decrease of complex I-dependent respiration was due to NAD(+) loss from the matrix, probably through an open of DhMUC. When NAD(+) was added back, coupled complex I-activity was recovered. NAD(+) re-uptake was independent of DhMUC opening and seemed to be catalyzed by a NAD(+)-specific transporter, which was sensitive to bathophenanthroline, bromocresol purple or pyridoxal-5'-phosphate as described for S. cerevisiae mitochondrial NAD(+) transporters. Loss of NAD(+) from the matrix through an open MUC is proposed as an additional mechanism to uncouple OxPhos. Copyright © 2014 Elsevier Masson SAS. All rights reserved.

  17. Optimized invertase expression and secretion cassette for improving Yarrowia lipolytica growth on sucrose for industrial applications.

    PubMed

    Lazar, Zbigniew; Rossignol, Tristan; Verbeke, Jonathan; Crutz-Le Coq, Anne-Marie; Nicaud, Jean-Marc; Robak, Małgorzata

    2013-11-01

    Yarrowia lipolytica requires the expression of a heterologous invertase to grow on a sucrose-based substrate. This work reports the construction of an optimized invertase expression cassette composed of Saccharomyces cerevisiae Suc2p secretion signal sequence followed by the SUC2 sequence and under the control of the strong Y. lipolytica pTEF promoter. This new construction allows a fast and optimal cleavage of sucrose into glucose and fructose and allows cells to reach the maximum growth rate. Contrary to pre-existing constructions, the expression of SUC2 is not sensitive to medium composition in this context. The strain JMY2593, expressing this new cassette with an optimized secretion signal sequence and a strong promoter, produces 4,519 U/l of extracellular invertase in bioreactor experiments compared to 597 U/l in a strain expressing the former invertase construction. The expression of this cassette strongly improved production of invertase and is suitable for simultaneously high production level of citric acid from sucrose-based media.

  18. A Rac Homolog Is Required for Induction of Hyphal Growth in the Dimorphic Yeast Yarrowia lipolytica

    PubMed Central

    Hurtado, Cleofe A. R.; Beckerich, Jean-Marie; Gaillardin, Claude; Rachubinski, Richard A.

    2000-01-01

    Dimorphism in fungi is believed to constitute a mechanism of response to adverse conditions and represents an important attribute for the development of virulence by a number of pathogenic fungal species. We have isolated YlRAC1, a gene encoding a 192-amino-acid protein that is essential for hyphal growth in the dimorphic yeast Yarrowia lipolytica and which represents the first Rac homolog described for fungi. YlRAC1 is not an essential gene, and its deletion does not affect the ability to mate or impair actin polarization in Y. lipolytica. However, strains lacking functional YlRAC1 show alterations in cell morphology, suggesting that the function of YlRAC1 may be related to some aspect of the polarization of cell growth. Northern blot analysis showed that transcription of YlRAC1 increases steadily during the yeast-to-hypha transition, while Southern blot analysis of genomic DNA suggested the presence of several RAC family members in Y. lipolytica. Interestingly, strains lacking functional YlRAC1 are still able to grow as the pseudohyphal form and to invade agar, thus pointing to a function for YlRAC1 downstream of MHY1, a previously isolated gene encoding a C2H2-type zinc finger protein with the ability to bind putative stress response elements and whose activity is essential for both hyphal and pseudohyphal growth in Y. lipolytica. PMID:10762235

  19. Unraveling fatty acid transport and activation mechanisms in Yarrowia lipolytica.

    PubMed

    Dulermo, Rémi; Gamboa-Meléndez, Heber; Ledesma-Amaro, Rodrigo; Thévenieau, France; Nicaud, Jean-Marc

    2015-09-01

    Fatty acid (FA) transport and activation have been extensively studied in the model yeast species Saccharomyces cerevisiae but have rarely been examined in oleaginous yeasts, such as Yarrowia lipolytica. Because the latter begins to be used in biodiesel production, understanding its FA transport and activation mechanisms is essential. We found that Y. lipolytica has FA transport and activation proteins similar to those of S. cerevisiae (Faa1p, Pxa1p, Pxa2p, Ant1p) but mechanism of FA peroxisomal transport and activation differs greatly with that of S. cerevisiae. While the ScPxa1p/ScPxa2p heterodimer is essential for growth on long-chain FAs, ΔYlpxa1 ΔYlpxa2 is not impaired for growth on FAs. Meanwhile, ScAnt1p and YlAnt1p are both essential for yeast growth on medium-chain FAs, suggesting they function similarly. Interestingly, we found that the ΔYlpxa1 ΔYlpxa2 ΔYlant1 mutant was unable to grow on short-, medium-, or long-chain FAs, suggesting that YlPxa1p, YlPxa2p, and YlAnt1p belong to two different FA degradation pathways. We also found that YlFaa1p is involved in FA storage in lipid bodies and that FA remobilization largely depended on YlFat1p, YlPxa1p and YlPxa2p. This study is the first to comprehensively examine FA intracellular transport and activation in oleaginous yeast. Copyright © 2015. Published by Elsevier B.V.

  20. Biomass production by novel strains of Yarrowia lipolytica using raw glycerol, derived from biodiesel production.

    PubMed

    Juszczyk, Piotr; Tomaszewska, Ludwika; Kita, Agnieszka; Rymowicz, Waldemar

    2013-06-01

    This study demonstrated the potential applicability of the isolated strains of Yarrowia lipolytica for the valorization of glycerol waste generated during biodiesel production, throughout biomass production. Twenty-one strains were isolated from different environments and identified as Y. lipolytica. Biomass production from pure glycerol (25 g L(-1)) was performed in the shake-flasks experiment. Eight strains with the best biomass production ability were chosen for studies in bioreactor (pH 3.5). The analysis of technological process parameters and biomass chemical composition demonstrated that S6 strain was the most suitable for biomass production. Its application allowed obtaining 11.7 and 12.3 g L(-1) of the biomass with 1.30 and 1.37 g L(-1) h(-1) productivity, respectively when pure and raw glycerol (25 g L(-1)) was used. In the yeast protein amino acid profile the contents of lysine, threonine and phenylalanine/tyrosine were higher than required by FAO/WHO. According to the EAAI, the nutritional value of the biomass reached up to 72.3%. Copyright © 2013 Elsevier Ltd. All rights reserved.

  1. Sugar versus fat: elimination of glycogen storage improves lipid accumulation in Yarrowia lipolytica.

    PubMed

    Bhutada, Govindprasad; Kavšcek, Martin; Ledesma-Amaro, Rodrigo; Thomas, Stéphane; Rechberger, Gerald N; Nicaud, Jean-Marc; Natter, Klaus

    2017-05-01

    Triacylglycerol (TAG) and glycogen are the two major metabolites for carbon storage in most eukaryotic organisms. We investigated the glycogen metabolism of the oleaginous Yarrowia lipolytica and found that this yeast accumulates up to 16% glycogen in its biomass. Assuming that elimination of glycogen synthesis would result in an improvement of lipid accumulation, we characterized and deleted the single gene coding for glycogen synthase, YlGSY1. The mutant was grown under lipogenic conditions with glucose and glycerol as substrates and we obtained up to 60% improvement in TAG accumulation compared to the wild-type strain. Additionally, YlGSY1 was deleted in a background that was already engineered for high lipid accumulation. In this obese background, TAG accumulation was also further increased. The highest lipid content of 52% was found after 3 days of cultivation in nitrogen-limited glycerol medium. Furthermore, we constructed mutants of Y. lipolytica and Saccharomyces cerevisiae that are deleted for both glycogen and TAG synthesis, demonstrating that the ability to store carbon is not essential. Overall, this work showed that glycogen synthesis is a competing pathway for TAG accumulation in oleaginous yeasts and that deletion of the glycogen synthase has beneficial effects on neutral lipid storage. © FEMS 2017.

  2. Functional analysis of recombinant human and Yarrowia lipolytica O-GlcNAc transferases expressed in Saccharomyces cerevisiae.

    PubMed

    Oh, Hye Ji; Moon, Hye Yun; Cheon, Seon Ah; Hahn, Yoonsoo; Kang, Hyun Ah

    2016-10-01

    O-linked β-N-acetylglucosamine (O-GlcNAc) glycosylation is an important post-translational modification in many cellular processes. It is mediated by O-GlcNAc transferases (OGTs), which catalyze the addition of O-GlcNAc to serine or threonine residues of the target proteins. In this study, we expressed a putative Yarrowia lipolytica OGT (YlOGT), the only homolog identified in the subphylum Saccharomycotina through bioinformatics analysis, and the human OGT (hOGT) as recombinant proteins in Saccharomyces cerevisiae, and performed their functional characterization. Immunoblotting assays using antibody against O-GlcNAc revealed that recombinant hOGT (rhOGT), but not the recombinant YlOGT (rYlOGT), undergoes auto-O-GlcNAcylation in the heterologous host S. cerevisiae. Moreover, the rhOGT expressed in S. cerevisiae showed a catalytic activity during in vitro assays using casein kinase II substrates, whereas no such activity was obtained in rYlOGT. However, the chimeric human-Y. lipolytica OGT, carrying the human tetratricopeptide repeat (TPR) domain along with the Y. lipolytica catalytic domain (CTD), mediated the transfer of O-GlcNAc moiety during the in vitro assays. Although the overexpression of full-length OGTs inhibited the growth of S. cerevisiae, no such inhibition was obtained upon overexpression of only the CTD fragment, indicating the role of TPR domain in growth inhibition. This is the first report on the functional analysis of the fungal OGT, indicating that the Y. lipolytica OGT retains its catalytic activity, although the physiological role and substrates of YlOGT remain to be elucidated.

  3. Multi-omics analysis reveals regulators of the response to nitrogen limitation in Yarrowia lipolytica.

    PubMed

    Pomraning, Kyle R; Kim, Young-Mo; Nicora, Carrie D; Chu, Rosalie K; Bredeweg, Erin L; Purvine, Samuel O; Hu, Dehong; Metz, Thomas O; Baker, Scott E

    2016-02-25

    Yarrowia lipolytica is an oleaginous ascomycete yeast that stores lipids in response to limitation of nitrogen. While the enzymatic pathways responsible for neutral lipid accumulation in Y. lipolytica are well characterized, regulation of these pathways has received little attention. We therefore sought to characterize the response to nitrogen limitation at system-wide levels, including the proteome, phosphoproteome and metabolome, to better understand how this organism regulates and controls lipid metabolism and to identify targets that may be manipulated to improve lipid yield. We found that ribosome structural genes are down-regulated under nitrogen limitation, during which nitrogen containing compounds (alanine, putrescine, spermidine and urea) are depleted and sugar alcohols and TCA cycle intermediates accumulate (citrate, fumarate and malate). We identified 1219 novel phosphorylation sites in Y. lipolytica, 133 of which change in their abundance during nitrogen limitation. Regulatory proteins, including kinases and DNA binding proteins, are particularly enriched for phosphorylation. Within lipid synthesis pathways, we found that ATP-citrate lyase, acetyl-CoA carboxylase and lecithin cholesterol acyl transferase are phosphorylated during nitrogen limitation while many of the proteins involved in β-oxidation are down-regulated, suggesting that storage lipid accumulation may be regulated by phosphorylation of key enzymes. Further, we identified short DNA elements that associate specific transcription factor families with up- and down-regulated genes. Integration of metabolome, proteome and phosphoproteome data identifies lipid accumulation in response to nitrogen limitation as a two-fold result of increased production of acetyl-CoA from excess citrate and decreased capacity for β-oxidation.

  4. Cloning, Expression, and Biochemical Characterization of an Enantioselective Lipase, YLIP9, from Yarrowia lipolytica MSR80.

    PubMed

    Syal, Poonam; Gupta, Rani

    2015-05-01

    A novel lipase gene, ylip9, of Yarrowia lipolytica MSR80 was cloned and expressed in pEZZ18-HB101 system and was 99% identical to YLIP9 of Y. lipolytica CLIB122. It was purified using IgG-Sepharose as ZZ fused YLIP9 and had specific activity of 0.8 U/mg. ZZ-YLIP9 was most active at pH 8.0 and 70 °C. It was stable over a wide pH range of 3.0-11.0 and 100 % active at 70 °C up to 2 h and had t1/2 of 286.42 min at 80 °C. It showed high specificity toward p-nitrophenyldecanoate with kcat and catalytic efficiency of 30.17 s(-1) and 16.67 mM(-1) s(-1), respectively. It was non-regioselective, but an S-enantioselective lipase and the percentage conversion were enhanced in presence of hexane. ZZ-YLIP9 was stable in all of the organic solvents used, and its activity was enhanced by solvents having logP value less than 2.

  5. Study of trans-trans farnesol effect on hyphae formation by Yarrowia lipolytica.

    PubMed

    Nunes, Patrícia Martins Botelho; da Rocha, Silvia Maria; Amaral, Priscilla Filomena Fonseca; da Rocha-Leão, Maria Helena Miguez

    2013-12-01

    Dimorphism is an ability of certain fungi related to its adaptation to the environment and provides a selective advantage under stress conditions and is associated to the development of human diseases. Hyphae inducing- and inhibitory-effect of farnesol on hyphae formation by the dimorphic yeast Yarrowia lipolytica was evaluated through digital image analysis. The agitation speed of the culture was the most effective hyphae inducer in comparison to bovine calf serum and N-acetylglucosamine. In low agitation system, bovine calf serum was more effective for hyphae formation inducing 57 % of hyphae transition. Farnesol inhibited hyphae formation even in low concentration (300 μM) and this effect increased with increasing concentrations. In the presence of N-acetylglucosamine, this effect was more evident in comparison to the presence of bovine calf serum, which might have protected the cells from farnesol. Digital image analysis was an important tool to evaluate this phenomenon.

  6. New Insights into Sulfur Metabolism in Yeasts as Revealed by Studies of Yarrowia lipolytica

    PubMed Central

    Hébert, Agnès; Forquin-Gomez, Marie-Pierre; Roux, Aurélie; Aubert, Julie; Junot, Christophe; Heilier, Jean-François; Landaud, Sophie; Bonnarme, Pascal

    2013-01-01

    Yarrowia lipolytica, located at the frontier of hemiascomycetous yeasts and fungi, is an excellent candidate for studies of metabolism evolution. This yeast, widely recognized for its technological applications, in particular produces volatile sulfur compounds (VSCs) that fully contribute to the flavor of smear cheese. We report here a relevant global vision of sulfur metabolism in Y. lipolytica based on a comparison between high- and low-sulfur source supplies (sulfate, methionine, or cystine) by combined approaches (transcriptomics, metabolite profiling, and VSC analysis). The strongest repression of the sulfate assimilation pathway was observed in the case of high methionine supply, together with a large accumulation of sulfur intermediates. A high sulfate supply seems to provoke considerable cellular stress via sulfite production, resulting in a decrease of the availability of the glutathione pathway's sulfur intermediates. The most limited effect was observed for the cystine supply, suggesting that the intracellular cysteine level is more controlled than that of methionine and sulfate. Using a combination of metabolomic profiling and genetic experiments, we revealed taurine and hypotaurine metabolism in yeast for the first time. On the basis of a phylogenetic study, we then demonstrated that this pathway was lost by some of the hemiascomycetous yeasts during evolution. PMID:23220962

  7. The expression of the Cuphea palustris thioesterase CpFatB2 in Yarrowia lipolytica triggers oleic acid accumulation.

    PubMed

    Stefan, Alessandra; Hochkoeppler, Alejandro; Ugolini, Luisa; Lazzeri, Luca; Conte, Emanuele

    2016-01-01

    The conversion of industrial by-products into high-value added compounds is a challenging issue. Crude glycerol, a by-product of the biodiesel production chain, could represent an alternative carbon source for the cultivation of oleaginous yeasts. Here, we developed five minimal synthetic glycerol-based media, with different C/N ratios, and we analyzed the production of biomass and fatty acids by Yarrowia lipolytica Po1g strain. We identified two media at the expense of which Y. lipolytica was able to accumulate ∼5 g L(-1) of biomass and 0.8 g L(-1) of fatty acids (0.16 g of fatty acids per g of dry weight). These optimized media contained 0.5 g L(-1) of urea or ammonium sulfate and 20 g L(-1) of glycerol, and were devoid of yeast extract. Moreover, Y. lipolytica was engineered by inserting the FatB2 gene, coding for the CpFatB2 thioesterase from Cuphea palustris, in order to modify the fatty acid composition towards the accumulation of medium-chain fatty acids. Contrary to the expected, the expression of the heterologous gene increased the production of oleic acid, and concomitantly decreased the level of saturated fatty acids. © 2015 American Institute of Chemical Engineers.

  8. Substrates and oxygen dependent citric acid production by Yarrowia lipolytica: insights through transcriptome and fluxome analyses.

    PubMed

    Sabra, Wael; Bommareddy, Rajesh Reddy; Maheshwari, Garima; Papanikolaou, Seraphim; Zeng, An-Ping

    2017-05-08

    Unlike the well-studied backer yeast where catabolite repression represents a burden for mixed substrate fermentation, Yarrowia lipolytica, an oleaginous yeast, is recognized for its potential to produce single cell oils and citric acid from different feedstocks. These versatilities of Y. lipolytica with regards to substrate utilization make it an attractive host for biorefinery application. However, to develop a commercial process for the production of citric acid by Y. lipolytica, it is necessary to better understand the primary metabolism and its regulation, especially for growth on mixed substrate. Controlling the dissolved oxygen concentration (pO 2 ) in Y. lipolytica cultures enhanced citric acid production significantly in cultures grown on glucose in mono- or dual substrate fermentations, whereas with glycerol as mono-substrate no significant effect of pO 2 was found on citrate production. Growth on mixed substrate with glucose and glycerol revealed a relative preference of glycerol utilization by Y. lipolytica. Under optimized conditions with pO 2 control, the citric acid titer on glucose in mono- or in dual substrate cultures was 55 and 50 g/L (with productivity of 0.6 g/L*h in both cultures), respectively, compared to a maximum of 18 g/L (0.2 g/L*h) with glycerol in monosubstrate culture. Additionally, in dual substrate fermentation, glycerol limitation was found to trigger citrate consumption despite the presence of enough glucose in pO 2 -limited culture. The metabolic behavior of this yeast on different substrates was investigated at transcriptomic and 13 C-based fluxomics levels. Upregulation of most of the genes of the pentose phosphate pathway was found in cultures with highest citrate production with glucose in mono- or in dual substrate fermentation with pO 2 control. The activation of the glyoxylate cycle in the oxygen limited cultures and the imbalance caused by glycerol limitation might be the reason for the re-consumption of citrate in

  9. Citric acid production from hydrolysate of pretreated straw cellulose by Yarrowia lipolytica SWJ-1b using batch and fed-batch cultivation.

    PubMed

    Liu, Xiaoyan; Lv, Jinshun; Zhang, Tong; Deng, Yuanfang

    2015-01-01

    In this study, crude cellulase produced by Trichoderma reesei Rut-30 was used to hydrolyze pretreated straw. After the compositions of the hydrolysate of pretreated straw were optimized, the study showed that natural components of pretreated straw without addition of any other components such as (NH4)2SO4, KH2PO4, or Mg(2+) were suitable for citric acid production by Yarrowia lipolytica SWJ-1b, and the optimal ventilatory capacity was 10.0 L/min/L medium. Batch and fed-batch production of citric acid from the hydrolysate of pretreated straw by Yarrowia lipolytica SWJ-1b has been investigated. In the batch cultivation, 25.4 g/L and 26.7 g/L citric acid were yields from glucose and hydrolysate of straw cellulose, respectively, while the cultivation time was 120 hr. In the three-cycle fed-batch cultivation, citric acid (CA) production was increased to 42.4 g/L and the cultivation time was extended to 240 hr. However, iso-citric acid (ICA) yield in fed-batch cultivation (4.0 g/L) was similar to that during the batch cultivation (3.9 g/L), and only 1.6 g/L of reducing sugar was left in the medium at the end of fed-batch cultivation, suggesting that most of the added carbon was used in the cultivation.

  10. Dual CRISPR-Cas9 Cleavage Mediated Gene Excision and Targeted Integration in Yarrowia lipolytica.

    PubMed

    Gao, Difeng; Smith, Spencer; Spagnuolo, Michael; Rodriguez, Gabriel; Blenner, Mark

    2018-05-29

    CRISPR-Cas9 technology has been successfully applied in Yarrowia lipolytica for targeted genomic editing including gene disruption and integration; however, disruptions by existing methods typically result from small frameshift mutations caused by indels within the coding region, which usually resulted in unnatural protein. In this study, a dual cleavage strategy directed by paired sgRNAs is developed for gene knockout. This method allows fast and robust gene excision, demonstrated on six genes of interest. The targeted regions for excision vary in length from 0.3 kb up to 3.5 kb and contain both non-coding and coding regions. The majority of the gene excisions are repaired by perfect nonhomologous end-joining without indel. Based on this dual cleavage system, two targeted markerless integration methods are developed by providing repair templates. While both strategies are effective, homology mediated end joining (HMEJ) based method are twice as efficient as homology recombination (HR) based method. In both cases, dual cleavage leads to similar or improved gene integration efficiencies compared to gene excision without integration. This dual cleavage strategy will be useful for not only generating more predictable and robust gene knockout, but also for efficient targeted markerless integration, and simultaneous knockout and integration in Y. lipolytica. © 2018 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  11. Biochemical characterization of Yarrowia lipolytica LIP8, a secreted lipase with a cleavable C-terminal region.

    PubMed

    Kamoun, Jannet; Schué, Mathieu; Messaoud, Wala; Baignol, Justine; Point, Vanessa; Mateos-Diaz, Eduardo; Mansuelle, Pascal; Gargouri, Youssef; Parsiegla, Goetz; Cavalier, Jean-François; Carrière, Frédéric; Aloulou, Ahmed

    2015-02-01

    Yarrowia lipolytica is a lipolytic yeast possessing 16 paralog genes coding for lipases. Little information on these lipases has been obtained and only the major secreted lipase, namely YLLIP2, had been biochemically and structurally characterized. Another secreted lipase, YLLIP8, was isolated from Y. lipolytica culture medium and compared with the recombinant enzyme produced in Pichia pastoris. N-terminal sequencing showed that YLLIP8 is produced in its active form after the cleavage of a signal peptide. Mass spectrometry analysis revealed that YLLIP8 recovered from culture medium lacks a C-terminal part of 33 amino acids which are present in the coding sequence. A 3D model of YLLIP8 built from the X-ray structure of the homologous YLLIP2 lipase shows that these truncated amino acids in YLLIP8 belong to an additional C-terminal region predicted to be mainly helical. Western blot analysis shows that YLLIP8 C-tail is rapidly cleaved upon enzyme secretion since both cell-bound and culture supernatant lipases lack this extension. Mature recombinant YLLIP8 displays a true lipase activity on short-, medium- and long-chain triacylglycerols (TAG), with an optimum activity at alkaline pH on medium chain TAG. It has no apparent regioselectivity in TAG hydrolysis, thus generating glycerol and FFAs as final lipolysis products. YLLIP8 properties are distinct from those of the 1,3-regioselective YLLIP2, acting optimally at acidic pH. These lipases are tailored for complementary roles in fatty acid uptake by Y. lipolytica. Copyright © 2014 Elsevier B.V. All rights reserved.

  12. The growth, properties and interactions of yeasts and bacteria associated with the maturation of Camembert and blue-veined cheeses.

    PubMed

    Addis, E; Fleet, G H; Cox, J M; Kolak, D; Leung, T

    2001-09-19

    The growth of yeasts and bacteria were monitored during the maturation of Camembert and blue-veined cheese produced in Australia. Yeasts were prominent throughout maturation, growing to 10(5)-10(9)/g, depending on the manufacturer. Debaryomyces hansenii predominated, but there were lesser, inconsistent contributions from Yarrowia lipolytica. Of the non-lactic acid bacteria, Acinetobacter species were significant during the maturation of Camembert but not blue-veined cheeses, and grew to 10(6)-10(8) cfu/g. Staphylococcus and Micrococcus species were consistently isolated from the cheeses with Staphylococcus xylosus growing to 10(5)-10(9) cfu/g, depending on the product. Lactic acid bacteria (10(7)-10(9) cfu/g) were present throughout maturation but were not identified. Interactions between the various yeasts and bacterial isolates were examined. Several strains of D. hansenii exhibited killer activity but not against Y. lipolytica. None of the yeasts were antagonistic towards the bacteria but some strains of D. hansenii enhanced the growth of Y. lipolytica and S. xylosus. The yeast and bacterial isolates exhibited various degrees of extracellular proteolytic and lipolytic activities.

  13. Omega-3 production by fermentation of Yarrowia lipolytica: From fed-batch to continuous.

    PubMed

    Xie, Dongming; Miller, Edward; Sharpe, Pamela; Jackson, Ethel; Zhu, Quinn

    2017-04-01

    The omega-3 fatty acid, cis-5,8,11,14,17-eicosapentaenoic acid (C20:5; EPA) has wide-ranging benefits in improving heart health, immune function, and mental health. A sustainable source of EPA production through fermentation of metabolically engineered Yarrowia lipolytica has been developed. In this paper, key fed-batch fermentation conditions were identified to achieve 25% EPA in the yeast biomass, which is so far the highest EPA titer reported in the literature. Dynamic models of the EPA fermentation process were established for analyzing, optimizing, and scaling up the fermentation process. In addition, model simulations were used to develop a two-stage continuous process and compare to single-stage continuous and fed- batch processes. The two stage continuous process, which is equipped with a smaller growth fermentor (Stage 1) and a larger production fermentor (Stage 2), was found to be a superior process to achieve high titer, rate, and yield of EPA. A two-stage continuous fermentation experiment with Y. lipolytica strain Z7334 was designed using the model simulation and then tested in a 2 L and 5 L fermentation system for 1,008 h. Compared with the standard 2 L fed-batch process, the two-stage continuous fermentation process improved the overall EPA productivity by 80% and EPA concentration in the fermenter by 40% while achieving comparable EPA titer in biomass and similar conversion yield from glucose. During the long-term experiment it was also found that the Y. lipolytica strain evolved to reduce byproduct and increase lipid production. This is one of the few continuous fermentation examples that demonstrated improved productivity and concentration of a final product with similar conversion yield compared with a fed-batch process. This paper suggests the two-stage continuous fermentation could be an effective process to achieve improved production of omega-3 and other fermentation products where non-growth or partially growth associated kinetics

  14. Three alcohol dehydrogenase genes and one acetyl-CoA synthetase gene are responsible for ethanol utilization in Yarrowia lipolytica.

    PubMed

    Gatter, Michael; Ottlik, Stephanie; Kövesi, Zsolt; Bauer, Benjamin; Matthäus, Falk; Barth, Gerold

    2016-10-01

    The non-conventional yeast Yarrowia lipolytica is able to utilize a wide range of different substrates like glucose, glycerol, ethanol, acetate, proteins and various hydrophobic molecules. Although most metabolic pathways for the utilization of these substrates have been clarified by now, it was not clear whether ethanol is oxidized by alcohol dehydrogenases or by an alternative oxidation system inside the cell. In order to detect the genes that are required for ethanol utilization in Y. lipolytica, eight alcohol dehydrogenase (ADH) genes and one alcohol oxidase gene (FAO1) have been identified and respective deletion strains were tested for their ability to metabolize ethanol. As a result of this, we found that the availability of ADH1, ADH2 or ADH3 is required for ethanol utilization in Y. lipolytica. A strain with deletions in all three genes is lacking the ability to utilize ethanol as sole carbon source. Although Adh2p showed by far the highest enzyme activity in an in vitro assay, the availability of any of the three genes was sufficient to enable a decent growth. In addition to ADH1, ADH2 and ADH3, an acetyl-CoA synthetase encoding gene (ACS1) was found to be essential for ethanol utilization. As Y. lipolytica is a non-fermenting yeast, it is neither able to grow under anaerobic conditions nor to produce ethanol. To investigate whether Y. lipolytica may produce ethanol, the key genes of alcoholic fermentation in S. cerevisiae, ScADH1 and ScPDC1, were overexpressed in an ADH and an ACS1 deletion strain. However, instead of producing ethanol, the respective strains regained the ability to use ethanol as single carbon source and were still not able to grow under anaerobic conditions. Copyright © 2016 Elsevier Inc. All rights reserved.

  15. Characterization of phosphatidic acid phosphatase activity in the oleaginous yeast Yarrowia lipolytica and its role in lipid biosynthesis.

    PubMed

    Hardman, Derell; McFalls, Daniel; Fakas, Stylianos

    2017-02-01

    Phosphatidic acid phosphatase (PAP) catalyses the committed step of triacylglycerol (TAG) biosynthesis and thus regulates the amounts of TAG produced by the cell. TAG is the target of biotechnological processes developed for the production of food lipids or biofuels. These processes are using oleaginous microorganisms like the yeast Yarrowia lipolytica as the TAG producers. Thus manipulating key enzymatic activities like PAP in Y. lipolytica could drive lipid biosynthesis towards TAG production and increase TAG yields. In this study, PAP activity in Y. lipolytica was characterized in detail and its role in lipid biosynthesis was addressed. PAP activity increased 2.5-fold with the addition of Mg 2+ (1 mm) in the assay mixture, which means that most of the PAP activity was due to Mg 2+ -dependent PAP enzymes (e.g. Pah1, App1). In contrast, N-ethylmaleimide (NEM) potently inhibited PAP activity, indicating the presence of NEM-sensitive PAP enzymes (e.g. App1, Lpp1). Localization studies revealed that the majority of PAP activity resides in the membrane fraction, while the cytosolic fraction harbours only a small amount of activity. PAP activity was regulated in a growth-dependent manner, being induced at the early exponential phase and declining thereafter. PAP activity did not correlate with TAG synthesis, which increased as cells progressed from the exponential phase to the early stationary phase. In stationary phase, TAG was mobilized with the concomitant synthesis of sterols and sterol esters. These results provide the first insights into the role of PAP in lipid biosynthesis by Y. lipolytica. Copyright © 2016 John Wiley & Sons, Ltd. Copyright © 2016 John Wiley & Sons, Ltd.

  16. Citric acid production in Yarrowia lipolytica SWJ-1b yeast when grown on waste cooking oil.

    PubMed

    Liu, Xiaoyan; Lv, Jinshun; Xu, Jiaxing; Zhang, Tong; Deng, Yuanfang; He, Jianlong

    2015-03-01

    In this study, citric acid was produced from waste cooking oil by Yarrowia lipolytica SWJ-1b. To get the maximal yield of citric acid, the compositions of the medium for citric acid production were optimized, and our results showed that extra nitrogen and magnesium rather than vitamin B1 and phosphate were needed for CA accumulation when using waste cooking oil. The results also indicated that the optimal initial concentration of the waste cooking oil in the medium for citric acid production was 80.0 g/l, and the ideal inoculation size was 1 × 10(7) cells/l of medium. We also reported that during 10-l fermentation, 31.7 g/l of citric acid, 6.5 g/l of isocitric acid, 5.9 g/l of biomass, and 42.1 g/100.0 g cell dry weight of lipid were attained from 80.0 g/l of waste cooking oil within 336 h. At the end of the fermentation, 94.6 % of the waste cooking oil was utilized by the cells of Y. lipolytica SWJ-1b, and the yield of citric acid was 0.4 g/g waste cooking oil, which suggested that waste cooking oil was a suitable carbon resource for citric acid production.

  17. The RAD52 ortholog of Yarrowia lipolytica is essential for nuclear integrity and DNA repair.

    PubMed

    Campos-Góngora, Eduardo; Andaluz, Encarnación; Bellido, Alberto; Ruiz-Herrera, José; Larriba, German

    2013-08-01

    Yarrowia lipolytica (Yl) is a dimorphic fungus that has become a well-established model for a number of biological processes, including secretion of heterologous and chimerical proteins. However, little is known on the recombination machinery responsible for the integration in the genome of the exogenous DNA encoding for those proteins. We have carried out a phenotypic analysis of rad52 deletants of Y. lipolytica. YlRad52 exhibited 20-30% identity with Rad52 homologues of other eukaryotes, including Saccharomyces cerevisiae and Candida albicans. Ylrad52-Δ strains formed colonies on YPD-agar plates which were spinier and smaller than those from wild type, whereas in YPD liquid cultures they exhibited a decreased grow rate and contained cells with aberrant morphology and fragmented chromatin, supporting a role for homologous recombination (HR) in genome stability under nondamaging conditions. In addition, Ylrad52 mutants showed moderate to high sensitivity to UV light, oxidizing agents and compounds that cause single- (SSB) and double-strand breaks (DSB), indicating an important role for Rad52 in DNA repair. These findings extend to Yl previous observations indicating that RAD52 is a crucial gene for DNA repair in other fungi, including S. cerevisiae, C. albicans and Schizosaccharomyces pombe. © 2013 Federation of European Microbiological Societies. Published by John Wiley & Sons Ltd. All rights reserved.

  18. Sustainable source of omega-3 eicosapentaenoic acid from metabolically engineered Yarrowia lipolytica: from fundamental research to commercial production.

    PubMed

    Xie, Dongming; Jackson, Ethel N; Zhu, Quinn

    2015-02-01

    The omega-3 fatty acids, cis-5, 8, 11, 14, and 17-eicosapentaenoic acid (C20:5; EPA) and cis-4, 7, 10, 13, 16, and 19-docosahexaenoic acid (C22:6; DHA), have wide-ranging benefits in improving heart health, immune function, mental health, and infant cognitive development. Currently, the major source for EPA and DHA is from fish oil, and a minor source of DHA is from microalgae. With the increased demand for EPA and DHA, DuPont has developed a clean and sustainable source of the omega-3 fatty acid EPA through fermentation using metabolically engineered strains of Yarrowia lipolytica. In this mini-review, we will focus on DuPont's technology for EPA production. Specifically, EPA biosynthetic and supporting pathways have been introduced into the oleaginous yeast to synthesize and accumulate EPA under fermentation conditions. This Yarrowia platform can also produce tailored omega-3 (EPA, DHA) and/or omega-6 (ARA, GLA) fatty acid mixtures in the cellular lipid profiles. Fundamental research such as metabolic engineering for strain construction, high-throughput screening for strain selection, fermentation process development, and process scale-up were all needed to achieve the high levels of EPA titer, rate, and yield required for commercial application. Here, we summarize how we have combined the fundamental bioscience and the industrial engineering skills to achieve large-scale production of Yarrowia biomass containing high amounts of EPA, which led to two commercial products, New Harvest™ EPA oil and Verlasso® salmon.

  19. Influence of oxygen availability on the metabolism and morphology of Yarrowia lipolytica: insights into the impact of glucose levels on dimorphism.

    PubMed

    Timoumi, Asma; Bideaux, Carine; Guillouet, Stéphane E; Allouche, Yohan; Molina-Jouve, Carole; Fillaudeau, Luc; Gorret, Nathalie

    2017-10-01

    Dynamic behavior of Yarrowia lipolytica W29 strain under conditions of fluctuating, low, and limited oxygen supply was characterized in batch and glucose-limited chemostat cultures. In batch cultures, transient oscillations between oxygen-rich and -deprived environments induced a slight citric acid accumulation (lower than 29 mg L -1 ). By contrast, no citric acid was detected in continuous fermentations for all stress conditions: full anoxia (zero pO 2 value, 100% N 2 ), limited (zero pO 2 value, 75% of cell needs), and low (pO 2 close to 2%) dissolved oxygen (DO) levels. The macroscopic behavior (kinetic parameters, yields, viability) of Y. lipolytica was not significantly affected by the exposure to DO fluctuations under both modes of culture. Nevertheless, conditions of oxygen limitation resulted in the destabilization of the glucose-limited growth during the continuous cultivations. Morphological responses of Y. lipolytica to DO oscillations were different between batch and chemostat runs. Indeed, a yeast-to-mycelium transition was induced and progressively intensified during the batch fermentations (filamentous subpopulation reaching 74% (v/v)). While, in chemostat bioreactors, the culture consisted mainly of yeast-like cells (mean diameter not exceeding 5.7 μm) with a normal size distribution. During the continuous cultures, growth at low DO concentration did not induce any changes in Y. lipolytica morphology. Dimorphism (up to 80.5% (v/v) of filaments) was only detected under conditions of oxygen limitation in the presence of a residual glucose excess (more than 0.75 g L -1 ). These data suggest an impact of glucose levels on the signaling pathways regulating dimorphic responses in Y. lipolytica.

  20. An evolutionary metabolic engineering approach for enhancing lipogenesis in Yarrowia lipolytica.

    PubMed

    Liu, Leqian; Pan, Anny; Spofford, Caitlin; Zhou, Nijia; Alper, Hal S

    2015-05-01

    Lipogenic organisms provide an ideal platform for biodiesel and oleochemical production. Through our previous rational metabolic engineering efforts, lipogenesis titers in Yarrowia lipolytica were significantly enhanced. However, the resulting strain still suffered from decreased biomass generation rates. Here, we employ a rapid evolutionary metabolic engineering approach linked with a floating cell enrichment process to improve lipogenesis rates, titers, and yields. Through this iterative process, we were able to ultimately improve yields from our prior strain by 55% to achieve production titers of 39.1g/L with upwards of 76% of the theoretical maximum yield of conversation. Isolated cells were saturated with up to 87% lipid content. An average specific productivity of 0.56g/L/h was achieved with a maximum instantaneous specific productivity of 0.89g/L/h during the lipid production phase in fermentation. Genomic sequencing of the evolved strains revealed a link between a decrease/loss of function mutation of succinate semialdehyde dehydrogenase, uga2, suggesting the importance of gamma-aminobutyric acid assimilation in lipogenesis. This linkage was validated through gene deletion experiments. This work presents an improved host strain that can serve as a platform for efficient oleochemical production. Copyright © 2015 International Metabolic Engineering Society. Published by Elsevier Inc. All rights reserved.

  1. Regulation of nitrogen metabolism by GATA zinc finger transcription factors in Yarrowia lipolytica

    DOE PAGES

    Pomraning, Kyle R.; Bredeweg, Erin L.; Baker, Scott E.; ...

    2017-02-15

    Here, fungi accumulate lipids in a manner dependent on the quantity and quality of the nitrogen source on which they are growing. In the oleaginous yeast Yarrowia lipolytica, growth on a complex source of nitrogen enables rapid growth and limited accumulation of neutral lipids, while growth on a simple nitrogen source promotes lipid accumulation in large lipid droplets. Here we examined the roles of nitrogen catabolite repression and its regulation by GATA zinc finger transcription factors on lipid metabolism in Y. lipolytica. Deletion of the GATA transcription factor genes gzf3 and gzf2 resulted in nitrogen source-specific growth defects and greatermore » accumulation of lipids when the cells were growing on a simple nitrogen source. Deletion of gzf1, which is most similar to activators of genes repressed by nitrogen catabolite repression in filamentous ascomycetes, did not affect growth on the nitrogen sources tested. We examined gene expression of wild-type and GATA transcription factor mutants on simple and complex nitrogen sources and found that expression of enzymes involved in malate metabolism, beta-oxidation, and ammonia utilization are strongly upregulated on a simple nitrogen source. Deletion of gzf3 results in overexpression of genes with GATAA sites in their promoters, suggesting that it acts as a repressor, while gzf2 is required for expression of ammonia utilization genes but does not grossly affect the transcription level of genes predicted to be controlled by nitrogen catabolite repression. Both GATA transcription factor mutants exhibit decreased expression of genes controlled by carbon catabolite repression via the repressor mig1, including genes for beta-oxidation, highlighting the complex interplay between regulation of carbon, nitrogen, and lipid metabolism.« less

  2. Regulation of nitrogen metabolism by GATA zinc finger transcription factors in Yarrowia lipolytica

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Pomraning, Kyle R.; Bredeweg, Erin L.; Baker, Scott E.

    Here, fungi accumulate lipids in a manner dependent on the quantity and quality of the nitrogen source on which they are growing. In the oleaginous yeast Yarrowia lipolytica, growth on a complex source of nitrogen enables rapid growth and limited accumulation of neutral lipids, while growth on a simple nitrogen source promotes lipid accumulation in large lipid droplets. Here we examined the roles of nitrogen catabolite repression and its regulation by GATA zinc finger transcription factors on lipid metabolism in Y. lipolytica. Deletion of the GATA transcription factor genes gzf3 and gzf2 resulted in nitrogen source-specific growth defects and greatermore » accumulation of lipids when the cells were growing on a simple nitrogen source. Deletion of gzf1, which is most similar to activators of genes repressed by nitrogen catabolite repression in filamentous ascomycetes, did not affect growth on the nitrogen sources tested. We examined gene expression of wild-type and GATA transcription factor mutants on simple and complex nitrogen sources and found that expression of enzymes involved in malate metabolism, beta-oxidation, and ammonia utilization are strongly upregulated on a simple nitrogen source. Deletion of gzf3 results in overexpression of genes with GATAA sites in their promoters, suggesting that it acts as a repressor, while gzf2 is required for expression of ammonia utilization genes but does not grossly affect the transcription level of genes predicted to be controlled by nitrogen catabolite repression. Both GATA transcription factor mutants exhibit decreased expression of genes controlled by carbon catabolite repression via the repressor mig1, including genes for beta-oxidation, highlighting the complex interplay between regulation of carbon, nitrogen, and lipid metabolism.« less

  3. Production of Laccase by Recombinant Yarrowia lipolytica from Molasses: Bioprocess Development Using Statistical Modeling and Increase Productivity in Shake-Flask and Bioreactor Cultures.

    PubMed

    Darvishi, Farshad; Moradi, Marzieh; Madzak, Catherine; Jolivalt, Claude

    2017-03-01

    Laccases are used in numerous applications, from green degradation of various xenobiotic compounds, waste detoxification, textile dye bleaching, and delignification of lignocellulose materials to biofuel production. In this study, the recombinant Yarrowia lipolytica YL4 strain carrying the white-rot fungus Trametes versicolor laccase IIIb gene was used for laccase production from beet molasses as an agro-industrial residue. Response surface methodology was used to statistical optimization of the production of laccase by Y. lipolytica using an industrial medium containing molasses which allows a six times increase in laccase activity compared to primary medium contains glucose after 144 h. In bioreactor cultivation after 48 h, laccase production reached to 3.7- and 22.5-fold more than optimized and primary media in shake-flask cultures, respectively. Laccase productivity in bioreactor (0.0937 U/h) was higher than shake-flask culture (0.0084 U/h). The present study provides valuable information about statistical optimization of bioprocess development for cost-effective production of laccase and other heterologous proteins in Y. lipolytica from beet molasses as sole carbon source, thus allowing the valorization and decreasing environmental pollution of this agro-industrial waste.

  4. The Strictly Aerobic Yeast Yarrowia lipolytica Tolerates Loss of a Mitochondrial DNA-Packaging Protein

    PubMed Central

    Bakkaiova, Jana; Arata, Kosuke; Matsunobu, Miki; Ono, Bungo; Aoki, Tomoyo; Lajdova, Dana; Nebohacova, Martina; Nosek, Jozef; Miyakawa, Isamu

    2014-01-01

    Mitochondrial DNA (mtDNA) is highly compacted into DNA-protein structures termed mitochondrial nucleoids (mt-nucleoids). The key mt-nucleoid components responsible for mtDNA condensation are HMG box-containing proteins such as mammalian mitochondrial transcription factor A (TFAM) and Abf2p of the yeast Saccharomyces cerevisiae. To gain insight into the function and organization of mt-nucleoids in strictly aerobic organisms, we initiated studies of these DNA-protein structures in Yarrowia lipolytica. We identified a principal component of mt-nucleoids in this yeast and termed it YlMhb1p (Y. lipolytica mitochondrial HMG box-containing protein 1). YlMhb1p contains two putative HMG boxes contributing both to DNA binding and to its ability to compact mtDNA in vitro. Phenotypic analysis of a Δmhb1 strain lacking YlMhb1p resulted in three interesting findings. First, although the mutant exhibits clear differences in mt-nucleoids accompanied by a large decrease in the mtDNA copy number and the number of mtDNA-derived transcripts, its respiratory characteristics and growth under most of the conditions tested are indistinguishable from those of the wild-type strain. Second, our results indicate that a potential imbalance between subunits of the respiratory chain encoded separately by nuclear DNA and mtDNA is prevented at a (post)translational level. Third, we found that mtDNA in the Δmhb1 strain is more prone to mutations, indicating that mtHMG box-containing proteins protect the mitochondrial genome against mutagenic events. PMID:24972935

  5. Analysis of ATP-citrate lyase and malic enzyme mutants of Yarrowia lipolytica points out the importance of mannitol metabolism in fatty acid synthesis.

    PubMed

    Dulermo, Thierry; Lazar, Zbigniew; Dulermo, Rémi; Rakicka, Magdalena; Haddouche, Ramedane; Nicaud, Jean-Marc

    2015-09-01

    The role of the two key enzymes of fatty acid (FA) synthesis, ATP-citrate lyase (Acl) and malic enzyme (Mae), was analyzed in the oleaginous yeast Yarrowia lipolytica. In most oleaginous yeasts, Acl and Mae are proposed to provide, respectively, acetyl-CoA and NADPH for FA synthesis. Acl was mainly studied at the biochemical level but no strain depleted for this enzyme was analyzed in oleaginous microorganisms. On the other hand the role of Mae in FA synthesis in Y. lipolytica remains unclear since it was proposed to be a mitochondrial NAD(H)-dependent enzyme and not a cytosolic NADP(H)-dependent enzyme. In this study, we analyzed for the first time strains inactivated for corresponding genes. Inactivation of ACL1 decreases FA synthesis by 60 to 80%, confirming its essential role in FA synthesis in Y. lipolytica. Conversely, inactivation of MAE1 has no effects on FA synthesis, except in a FA overaccumulating strain where it improves FA synthesis by 35%. This result definitively excludes Mae as a major key enzyme for FA synthesis in Y. lipolytica. During the analysis of both mutants, we observed a negative correlation between FA and mannitol level. As mannitol and FA pathways may compete for carbon storage, we inactivated YlSDR, encoding a mannitol dehydrogenase converting fructose and NADPH into mannitol and NADP+. The FA content of the resulting mutant was improved by 60% during growth on fructose, demonstrating that mannitol metabolism may modulate FA synthesis in Y. lipolytica. Copyright © 2015. Published by Elsevier B.V.

  6. Modeling and optimization of lipid accumulation by Yarrowia lipolytica from glucose under nitrogen depletion conditions.

    PubMed

    Robles-Rodríguez, Carlos E; Muñoz-Tamayo, Rafael; Bideaux, Carine; Gorret, Nathalie; Guillouet, Stéphane E; Molina-Jouve, Carole; Roux, Gilles; Aceves-Lara, César A

    2018-05-01

    Oleaginous yeasts have been seen as a feasible alternative to produce the precursors of biodiesel due to their capacity to accumulate lipids as triacylglycerol having profiles with high content of unsaturated fatty acids. The yeast Yarrowia lipolytica is a promising microorganism that can produce lipids under nitrogen depletion conditions and excess of the carbon source. However, under these conditions, this yeast also produces citric acid (overflow metabolism) decreasing lipid productivity. This work presents two mathematical models for lipid production by Y. lipolytica from glucose. The first model is based on Monod and inhibition kinetics, and the second one is based on the Droop quota model approach, which is extended to yeast. The two models showed good agreements with the experimental data used for calibration and validation. The quota based model presented a better description of the dynamics of nitrogen and glucose dynamics leading to a good management of N/C ratio which makes this model interesting for control purposes. Then, quota model was used to evaluate, by means of simulation, a scenario for optimizing lipid productivity and lipid content. For that, a control strategy was designed by approximating the flow rates of glucose and nitrogen with piecewise linear functions. Simulation results achieved productivity of 0.95 g L -1  hr -1 and lipid content fraction of 0.23 g g -1 , which indicates that this strategy is a promising alternative for the optimization of lipid production. © 2017 Wiley Periodicals, Inc.

  7. Overproduction of Fatty Acid Ethyl Esters by the Oleaginous Yeast Yarrowia lipolytica through Metabolic Engineering and Process Optimization.

    PubMed

    Gao, Qi; Cao, Xuan; Huang, Yu-Ying; Yang, Jing-Lin; Chen, Jun; Wei, Liu-Jing; Hua, Qiang

    2018-05-18

    Recent advances in the production of biofuels by microbes have attracted attention due to increasingly limited fossil fuels. Biodiesels, especially fatty acid ethyl esters (FAEEs), are considered a potentially fully sustainable fuel in the near future due to similarities with petrodiesels and compatibility with existing infrastructure. However, biosynthesis of FAEEs is limited by the supply of precursor lipids and acetyl-CoA. In the present study, we explored the production potential of an engineered biosynthetic pathway coupled to the addition of ethanol in the oleaginous yeast Yarrowia lipolytica. This type of yeast is able to supply a greater amount of precursor lipids than species typically used. To construct the FAEEs synthesis pathway, WS genes that encode wax ester synthases (WSs) from different species were codon-optimized and heterologously expressed in Y. lipolytica. The most productive engineered strain was found to express a WS gene from Marinobacter hydrocarbonoclasticus strain DSM 8798. To stepwisely increase FAEEs production, we optimized the promoter of WS overexpression, eliminated β-oxidation by deleting the PEX10 gene in our engineered strains, and redirected metabolic flux toward acetyl-CoA. The new engineered strain, coupled with an optimized ethanol concentration, led to an approximate 5.5-fold increase in extracellular FAEEs levels compared to the wild-type strain and a maximum FAEEs titer of 1.18 g/L in shake flask cultures. In summary, the present study demonstrated that an engineered Y. lipolytica strain possessed a high capacity for FAEEs production and may serve as a platform for more efficient biodiesel production in the future.

  8. Inference and interrogation of a coregulatory network in the context of lipid accumulation in Yarrowia lipolytica.

    PubMed

    Trébulle, Pauline; Nicaud, Jean-Marc; Leplat, Christophe; Elati, Mohamed

    2017-01-01

    Complex phenotypes, such as lipid accumulation, result from cooperativity between regulators and the integration of multiscale information. However, the elucidation of such regulatory programs by experimental approaches may be challenging, particularly in context-specific conditions. In particular, we know very little about the regulators of lipid accumulation in the oleaginous yeast of industrial interest Yarrowia lipolytica . This lack of knowledge limits the development of this yeast as an industrial platform, due to the time-consuming and costly laboratory efforts required to design strains with the desired phenotypes. In this study, we aimed to identify context-specific regulators and mechanisms, to guide explorations of the regulation of lipid accumulation in Y. lipolytica . Using gene regulatory network inference, and considering the expression of 6539 genes over 26 time points from GSE35447 for biolipid production and a list of 151 transcription factors, we reconstructed a gene regulatory network comprising 111 transcription factors, 4451 target genes and 17048 regulatory interactions (YL-GRN-1) supported by evidence of protein-protein interactions. This study, based on network interrogation and wet laboratory validation (a) highlights the relevance of our proposed measure, the transcription factors influence, for identifying phases corresponding to changes in physiological state without prior knowledge (b) suggests new potential regulators and drivers of lipid accumulation and (c) experimentally validates the impact of six of the nine regulators identified on lipid accumulation, with variations in lipid content from +43.2% to -31.2% on glucose or glycerol.

  9. A comparative study on glycerol metabolism to erythritol and citric acid in Yarrowia lipolytica yeast cells.

    PubMed

    Tomaszewska, Ludwika; Rakicka, Magdalena; Rymowicz, Waldemar; Rywińska, Anita

    2014-09-01

    Citric acid and erythritol biosynthesis from pure and crude glycerol by three acetate-negative mutants of Yarrowia lipolytica yeast was investigated in batch cultures in a wide pH range (3.0-6.5). Citric acid biosynthesis was the most effective at pH 5.0-5.5 in the case of Wratislavia 1.31 and Wratislavia AWG7. With a decreasing pH value, the direction of biosynthesis changed into erythritol synthesis accompanied by low production of citric acid. Pathways of glycerol conversion into erythritol and citric acid were investigated in Wratislavia K1 cells. Enzymatic activity was compared in cultures run at pH 3.0 and 4.5, that is, under conditions promoting the production of erythritol and citric acid, respectively. The effect of pH value (3.0 and 4.5) and NaCl presence on the extracellular production and intracellular accumulation of citric acid and erythritol was compared as well. Low pH and NaCl resulted in diminished activity of glycerol kinase, whereas such conditions stimulated the activity of glycerol-3-phosphate dehydrogenase. The presence of NaCl strongly influenced enzymes activity - the effective erythritol production was correlated with a high activity of transketolase and erythrose reductase. Therefore, presented results confirmed that transketolase and erythrose reductase are involved in the overproduction of erythritol in the cells of Y. lipolytica yeast. © 2014 Federation of European Microbiological Societies. Published by John Wiley & Sons Ltd. All rights reserved.

  10. Overlapping reading frames at the LYS5 locus in the yeast Yarrowia lipolytica.

    PubMed Central

    Xuan, J W; Fournier, P; Declerck, N; Chasles, M; Gaillardin, C

    1990-01-01

    Mutants affected at the LYS5 locus of Yarrowia lipolytica lack detectable dehydrogenase (SDH) activity. The LYS5 gene has previously been cloned, and we present here the sequence of the 2.5-kilobase-pair (kb) DNA fragment complementing the lys5 mutation. Two large antiparallel open reading frames (ORF1 and ORF2) were observed, flanked by potential transcription signals. Both ORFs appear to be transcribed, but several lines of evidence suggest that only ORF2 is translated and encodes SDH. (i) The global amino acid compositions of Saccharomyces cerevisiae SDH and of the putative ORF2 product are similar and that of ORF1 is dissimilar. (ii) An in-frame translational fusion of ORF2 with the Escherichia coli lacZ gene was introduced into yeast cells and resulted in a beta-galactosidase activity regulated similarly to SDH; no beta-galactosidase activity was obtained with an in-frame fusion of ORF1 with lacZ. (iii) The introduction of a stop codon at the beginning of ORF2 prevented SDH expression in yeast cells, whereas no phenotypic effect was observed when ORF1 translation was blocked. Images PMID:2388625

  11. Leucine Biosynthesis Is Involved in Regulating High Lipid Accumulation in Yarrowia lipolytica

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kerkhoven, Eduard J.; Kim, Young-Mo; Wei, Siwei

    ABSTRACT The yeastYarrowia lipolyticais a potent accumulator of lipids, and lipogenesis in this organism can be influenced by a variety of factors, such as genetics and environmental conditions. Using a multifactorial study, we elucidated the effects of both genetic and environmental factors on regulation of lipogenesis inY. lipolyticaand identified how two opposite regulatory states both result in lipid accumulation. This study involved comparison of a strain overexpressing diacylglycerol acyltransferase (DGA1) with a control strain grown under either nitrogen or carbon limitation conditions. A strong correlation was observed between the responses on the transcript and protein levels. Combination ofDGA1overexpression with nitrogen limitationmore » resulted in a high level of lipid accumulation accompanied by downregulation of several amino acid biosynthetic pathways, including that of leucine in particular, and these changes were further correlated with a decrease in metabolic fluxes. This downregulation was supported by the measured decrease in the level of 2-isopropylmalate, an intermediate of leucine biosynthesis. Combining the multi-omics data with putative transcription factor binding motifs uncovered a contradictory role for TORC1 in controlling lipid accumulation, likely mediated through 2-isopropylmalate and a Leu3-like transcription factor. IMPORTANCEThe ubiquitous metabolism of lipids involves refined regulation, and an enriched understanding of this regulation would have wide implications. Various factors can influence lipid metabolism, including the environment and genetics. We demonstrated, using a multi-omics and multifactorial experimental setup, that multiple factors affect lipid accumulation in the yeastYarrowia lipolytica. Using integrative analysis, we identified novel interactions between nutrient restriction and genetic factors involving regulators that are highly conserved among eukaryotes. Given that lipid metabolism is involved in many

  12. Functional overexpression and characterization of lipogenesis-related genes in the oleaginous yeast Yarrowia lipolytica.

    PubMed

    Silverman, Andrew M; Qiao, Kangjian; Xu, Peng; Stephanopoulos, Gregory

    2016-04-01

    Single cell oil (SCO) is an attractive energy source due to scalability, utilization of low-cost renewable feedstocks, and type of product(s) made. Engineering strains capable of producing high lipid titers and yields is crucial to the economic viability of these processes. However, lipid synthesis in cells is a complex phenomenon subject to multiple layers of regulation, making gene target identification a challenging task. In this study, we aimed to identify genes in the oleaginous yeast Yarrowia lipolytica whose overexpression enhances lipid production by this organism. To this end, we examined the effect of the overexpression of a set of 44 native genes on lipid production in Y. lipolytica, including those involved in glycerolipid synthesis, fatty acid synthesis, central carbon metabolism, NADPH generation, regulation, and metabolite transport and characterized each resulting strain's ability to produce lipids growing on both glucose and acetate as a sole carbon source. Our results suggest that a diverse subset of genes was effective at individually influencing lipid production in Y. lipolytica, sometimes in a substrate-dependent manner. The most productive strain on glucose overexpressed the diacylglycerol acyltransferase DGA2 gene, increasing lipid titer, cellular content, and yield by 236, 165, and 246 %, respectively, over our control strain. On acetate, our most productive strain overexpressed the acylglycerol-phosphate acyltransferase SLC1 gene, with a lipid titer, cellular content, and yield increase of 99, 91, and 151 %, respectively, over the control strain. Aside from genes encoding enzymes that directly catalyze the reactions of lipid synthesis, other ways by which lipogenesis was increased in these cells include overexpressing the glycerol-3-phosphate dehydrogenase (GPD1) gene to increase production of glycerol head groups and overexpressing the 6-phosphogluconolactonase (SOL3) gene from the oxidative pentose phosphate pathway to increase NADPH

  13. Physical and physiological impacts of different foam control strategies during a process involving hydrophobic substrate for the lipase production by Yarrowia lipolytica.

    PubMed

    Kar, Tambi; Destain, Jacqueline; Thonart, Philippe; Delvigne, Frank

    2012-05-01

    The potentialities for the intensification of the process of lipase production by the yeast Yarrowia lipolytica on a renewable hydrophobic substrate (methyl oleate) have to be investigated. The key factor governing the lipase yield is the intensification of the oxygen transfer rate, considering the fact that Y. lipolytica is a strict aerobe. However, considering the nature of the substrate and the capacity for protein excretion and biosurfactant production of Y. lipolytica, intensification of oxygen transfer rate is accompanied by an excessive formation of foam. Two different foam control strategies have thus been implemented: a classical chemical foam control strategy and a mechanical foam control (MFM) based on the Stirring As Foam Disruption principle. The second strategy allows foam control without any modifications of the physico-chemical properties of the broth. However, the MFM system design induced the formation of a persistent foam layer in the bioreactor. This phenomenon has led to the segregation of microbial cells between the foam phase and the liquid phase in the case of the bioreactors operated with MFM control, and induced a reduction at the level of the lipase yield. More interestingly, flow cytometry experiments have shown that the residence time of microbial cells in the foam phase tends to induce a dimorphic transition which could potentially explain the reduction of lipase excretion.

  14. Developing cellulolytic Yarrowia lipolytica as a platform for the production of valuable products in consolidated bioprocessing of cellulose.

    PubMed

    Guo, Zhong-Peng; Robin, Julien; Duquesne, Sophie; O'Donohue, Michael Joseph; Marty, Alain; Bordes, Florence

    2018-01-01

    Both industrial biotechnology and the use of cellulosic biomass as feedstock for the manufacture of various commercial goods are prominent features of the bioeconomy. In previous work, with the aim of developing a consolidated bioprocess for cellulose bioconversion, we conferred cellulolytic activity of Yarrowia lipolytica , one of the most widely studied "nonconventional" oleaginous yeast species. However, further engineering this strain often leads to the loss of previously introduced heterologous genes due to the presence of multiple LoxP sites when using Cre -recombinase to remove previously employed selection markers. In the present study, we first optimized the strategy of expression of multiple cellulases and rescued selection makers to obtain an auxotrophic cellulolytic Y. lipolytica strain. Then we pursued the quest, exemplifying how this cellulolytic Y. lipolytica strain can be used as a CBP platform for the production of target products. Our results reveal that overexpression of SCD1 gene, encoding stearoyl-CoA desaturase, and DGA1 , encoding acyl-CoA:diacylglycerol acyltransferase, confers the obese phenotype to the cellulolytic Y. lipolytica . When grown in batch conditions and minimal medium, the resulting strain consumed 12 g/L cellulose and accumulated 14% (dry cell weight) lipids. Further enhancement of lipid production was achieved either by the addition of glucose or by enhancing cellulose consumption using a commercial cellulase cocktail. Regarding the latter option, although the addition of external cellulases is contrary to the concept of CBP, the amount of commercial cocktail used remained 50% lower than that used in a conventional process (i.e., without internalized production of cellulases). The introduction of the LIP2 gene into cellulolytic Y. lipolytica led to the production of a strain capable of producing lipase 2 while growing on cellulose. Remarkably, when the strain was grown on glucose, the expression of six cellulases did not

  15. A survey of yeast from the Yarrowia clade for lipid production in dilute-acid pretreated lignocellulosic biomass hydrolysate

    USDA-ARS?s Scientific Manuscript database

    Yarrowia lipolytica is an oleaginous yeast species that has attracted attention as a model organism for synthesis of single cell oil. Among over 50 isolates of Y. lipolytica identified, only a few of the strains have been studied extensively. Furthermore, 12 other yeast species were recently assigne...

  16. Identification of the Transcription Factor Znc1p, which Regulates the Yeast-to-Hypha Transition in the Dimorphic Yeast Yarrowia lipolytica

    PubMed Central

    Martinez-Vazquez, Azul; Gonzalez-Hernandez, Angelica; Domínguez, Ángel; Rachubinski, Richard; Riquelme, Meritxell; Cuellar-Mata, Patricia; Guzman, Juan Carlos Torres

    2013-01-01

    The dimorphic yeast Yarrowia lipolytica is used as a model to study fungal differentiation because it grows as yeast-like cells or forms hyphal cells in response to changes in environmental conditions. Here, we report the isolation and characterization of a gene, ZNC1, involved in the dimorphic transition in Y. lipolytica. The ZNC1 gene encodes a 782 amino acid protein that contains a Zn(II)2C6 fungal-type zinc finger DNA-binding domain and a leucine zipper domain. ZNC1 transcription is elevated during yeast growth and decreases during the formation of mycelium. Cells in which ZNC1 has been deleted show increased hyphal cell formation. Znc1p-GFP localizes to the nucleus, but mutations within the leucine zipper domain of Znc1p, and to a lesser extent within the Zn(II)2C6 domain, result in a mislocalization of Znc1p to the cytoplasm. Microarrays comparing gene expression between znc1::URA3 and wild-type cells during both exponential growth and the induction of the yeast-to-hypha transition revealed 1,214 genes whose expression was changed by 2-fold or more under at least one of the conditions analyzed. Our results suggest that Znc1p acts as a transcription factor repressing hyphal cell formation and functions as part of a complex network regulating mycelial growth in Y. lipolytica. PMID:23826133

  17. High-throughput fermentation screening for the yeast Yarrowia lipolytica with real-time monitoring of biomass and lipid production.

    PubMed

    Back, Alexandre; Rossignol, Tristan; Krier, François; Nicaud, Jean-Marc; Dhulster, Pascal

    2016-08-23

    Because the model yeast Yarrowia lipolytica can synthesize and store lipids in quantities up to 20 % of its dry weight, it is a promising microorganism for oil production at an industrial scale. Typically, optimization of the lipid production process is performed in the laboratory and later scaled up for industrial production. However, the scale-up process can be complicated by genetic modifications that are optimized for one set of growing conditions can confer a less-than-optimal phenotype in a different environment. To address this issue, small cultivation systems have been developed that mimic the conditions in benchtop bioreactors. In this work, we used one such microbioreactor system, the BioLector, to develop high-throughput fermentation procedures that optimize growth and lipid accumulation in Y. lipolytica. Using this system, we were able to monitor lipid and biomass production in real time throughout the culture duration. The BioLector can monitor the growth of Y. lipolytica in real time by evaluating scattered light; this produced accurate measurements until cultures reached an equivalent of OD600nm = 115 and a cell dry weight of 100 g L(-1). In addition, a lipid-specific fluorescent probe was applied which reliably monitored lipid production up to a concentration of 12 g L(-1). Through screening various growing conditions, we determined that a carbon/nitrogen ratio of 35 was the most efficient for lipid production. Further screening showed that ammonium chloride and glycerol were the most valuable nitrogen and carbon sources, respectively, for growth and lipid production. Moreover, a carbon concentration above 1 M appeared to impair growth and lipid accumulation. Finally, we used these optimized conditions to screen engineered strains of Y. lipolytica with high lipid-accumulation capability. The growth and lipid content of the strains cultivated in the BioLector were compared to those grown in benchtop bioreactors. To our knowledge, this is the

  18. Occurrence and diversity of marine yeasts in Antarctica environments

    NASA Astrophysics Data System (ADS)

    Zhang, Xue; Hua, Mingxia; Song, Chunli; Chi, Zhenming

    2012-03-01

    A total of 28 yeast strains were obtained from the sea sediment of Antarctica. According to the results of routine identification and molecular characterization, the strains belonged to species of Yarrowia lipolytica, Debaryomyces hansenii, Rhodotorula slooffiae, Rhodotorula mucilaginosa, Sporidiobolus salmonicolor, Aureobasidium pullulans, Mrakia frigida and Guehomyces pullulans, respectively. The Antarctica yeasts have wide potential applications in biotechnology, for some of them can produce β-galactosidase and killer toxins.

  19. High performance microbiological transformation of L-tyrosine to L-dopa by Yarrowia lipolytica NRRL-143

    PubMed Central

    Ali, Sikander; Shultz, Jeffry L; Ikram-ul-Haq

    2007-01-01

    Background The 3,4-dihydroxy phenyl L-alanine (L-dopa) is a drug of choice for Parkinson's disease, controlling changes in energy metabolism enzymes of the myocardium following neurogenic injury. Aspergillus oryzae is commonly used for L-dopa production; however, potential improvements in ease of handling, growth rate and environmental impact have led to an interest in exploiting alternative yeasts. The two important elements required for L-dopa production are intracellular tyrosinases (thus pre-grown yeast cells are required for the transformation of L-tyrosine to L-dopa) and L-ascorbate, which acts as a reducing agent. Results Pre-grown cells of Yarrowia lipolytica NRRL-143 were used for the microbiological transformation of L-tyrosine to L-dopa. Different diatomite concentrations (0.5–3.0 mg/ml) were added to the acidic (pH 3.5) reaction mixture. Maximum L-dopa biosynthesis (2.96 mg/ml L-dopa from 2.68 mg/ml L-tyrosine) was obtained when 2.0 mg/ml diatomite was added 15 min after the start of the reaction. After optimizing reaction time (30 min), and yeast cell concentration (2.5 mg/ml), an overall 12.5 fold higher L-dopa production rate was observed when compared to the control. Significant enhancements in Yp/s, Qs and qs over the control were observed. Conclusion Diatomite (2.0 mg/ml) addition 15 min after reaction commencement improved microbiological transformation of L-tyrosine to L-dopa (3.48 mg/ml; p ≤ 0.05) by Y. lipolytica NRRL-143. A 35% higher substrate conversion rate was achieved when compared to the control. PMID:17705832

  20. L-Phenylalanine catabolism and 2-phenylethanol synthesis in Yarrowia lipolytica--mapping molecular identities through whole-proteome quantitative mass spectrometry analysis.

    PubMed

    Celińska, Ewelina; Olkowicz, Mariola; Grajek, Włodzimierz

    2015-08-01

    A world-wide effort is now being pursued towards the development of flavors and fragrances (F&F) production independently from traditional sources, as well as autonomously from depleting fossil fuel supplies. Biotechnological production of F&F by microbes has emerged as a vivid solution to the current market limitations. Amongst a wide variety of fragrant chemicals, 2-PE is of significant interest to both scientific and industrial community. Although the general overview of the 2-PE synthesis pathway is commonly known, involvement of particular molecular identities in this pathway has not been elucidated in Yarrowia lipolytica to date. The aim of this study was mapping molecular identities involved in 2-PE synthesis in Y. lipolytica. To acquire a comprehensive landscape of the proteins that are directly and indirectly involved in L-Phe degradation and 2-PE synthesis, we took advantage of comprehensibility and sensitivity of high-throughput LC-MS/MS-quantitative analysis. Amongst a number of proteins involved in amino acid turnover and the central carbon metabolism, enzymes involved in L-Phe conversion to 2-PE have been identified. Results on yeast-to-hyphae transition in relation to the character of the provided nitrogen source have been presented. © FEMS 2015. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com.

  1. Regulation of Nitrogen Metabolism by GATA Zinc Finger Transcription Factors in Yarrowia lipolytica

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Pomraning, Kyle R.; Bredeweg, Erin L.; Baker, Scott E.

    ABSTRACT Fungi accumulate lipids in a manner dependent on the quantity and quality of the nitrogen source on which they are growing. In the oleaginous yeastYarrowia lipolytica, growth on a complex source of nitrogen enables rapid growth and limited accumulation of neutral lipids, while growth on a simple nitrogen source promotes lipid accumulation in large lipid droplets. Here we examined the roles of nitrogen catabolite repression and its regulation by GATA zinc finger transcription factors on lipid metabolism inY. lipolytica. Deletion of the GATA transcription factor genesgzf3andgzf2resulted in nitrogen source-specific growth defects and greater accumulation of lipids when the cells weremore » growing on a simple nitrogen source. Deletion ofgzf1, which is most similar to activators of genes repressed by nitrogen catabolite repression in filamentous ascomycetes, did not affect growth on the nitrogen sources tested. We examined gene expression of wild-type and GATA transcription factor mutants on simple and complex nitrogen sources and found that expression of enzymes involved in malate metabolism, beta-oxidation, and ammonia utilization are strongly upregulated on a simple nitrogen source. Deletion ofgzf3results in overexpression of genes with GATAA sites in their promoters, suggesting that it acts as a repressor, whilegzf2is required for expression of ammonia utilization genes but does not grossly affect the transcription level of genes predicted to be controlled by nitrogen catabolite repression. Both GATA transcription factor mutants exhibit decreased expression of genes controlled by carbon catabolite repression via the repressormig1, including genes for beta-oxidation, highlighting the complex interplay between regulation of carbon, nitrogen, and lipid metabolism. IMPORTANCENitrogen source is commonly used to control lipid production in industrial fungi. Here we identified regulators of nitrogen catabolite repression in the oleaginous yeast

  2. Molecular Characterization of the Elaeis guineensis Medium-Chain Fatty Acid Diacylglycerol Acyltransferase DGAT1-1 by Heterologous Expression in Yarrowia lipolytica.

    PubMed

    Aymé, Laure; Jolivet, Pascale; Nicaud, Jean-Marc; Chardot, Thierry

    2015-01-01

    Diacylglycerol acyltransferases (DGAT) are involved in the acylation of sn-1,2-diacylglycerol. Palm kernel oil, extracted from Elaeis guineensis (oil palm) seeds, has a high content of medium-chain fatty acids mainly lauric acid (C12:0). A putative E. guineensis diacylglycerol acyltransferase gene (EgDGAT1-1) is expressed at the onset of lauric acid accumulation in the seed endosperm suggesting that it is a determinant of medium-chain triacylglycerol storage. To test this hypothesis, we thoroughly characterized EgDGAT1-1 activity through functional complementation of a Yarrowia lipolytica mutant strain devoid of neutral lipids. EgDGAT1-1 expression is sufficient to restore triacylglycerol accumulation in neosynthesized lipid droplets. A comparative functional study with Arabidopsis thaliana DGAT1 highlighted contrasting substrate specificities when the recombinant yeast was cultured in lauric acid supplemented medium. The EgDGAT1-1 expressing strain preferentially accumulated medium-chain triacylglycerols whereas AtDGAT1 expression induced long-chain triacylglycerol storage in Y. lipolytica. EgDGAT1-1 localized to the endoplasmic reticulum where TAG biosynthesis takes place. Reestablishing neutral lipid accumulation in the Y. lipolytica mutant strain did not induce major reorganization of the yeast microsomal proteome. Overall, our findings demonstrate that EgDGAT1-1 is an endoplasmic reticulum DGAT with preference for medium-chain fatty acid substrates, in line with its physiological role in palm kernel. The characterized EgDGAT1-1 could be used to promote medium-chain triacylglycerol accumulation in microbial-produced oil for industrial chemicals and cosmetics.

  3. Molecular Characterization of the Elaeis guineensis Medium-Chain Fatty Acid Diacylglycerol Acyltransferase DGAT1-1 by Heterologous Expression in Yarrowia lipolytica

    PubMed Central

    Aymé, Laure; Jolivet, Pascale; Nicaud, Jean-Marc; Chardot, Thierry

    2015-01-01

    Diacylglycerol acyltransferases (DGAT) are involved in the acylation of sn-1,2-diacylglycerol. Palm kernel oil, extracted from Elaeis guineensis (oil palm) seeds, has a high content of medium-chain fatty acids mainly lauric acid (C12:0). A putative E. guineensis diacylglycerol acyltransferase gene (EgDGAT1-1) is expressed at the onset of lauric acid accumulation in the seed endosperm suggesting that it is a determinant of medium-chain triacylglycerol storage. To test this hypothesis, we thoroughly characterized EgDGAT1-1 activity through functional complementation of a Yarrowia lipolytica mutant strain devoid of neutral lipids. EgDGAT1-1 expression is sufficient to restore triacylglycerol accumulation in neosynthesized lipid droplets. A comparative functional study with Arabidopsis thaliana DGAT1 highlighted contrasting substrate specificities when the recombinant yeast was cultured in lauric acid supplemented medium. The EgDGAT1-1 expressing strain preferentially accumulated medium-chain triacylglycerols whereas AtDGAT1 expression induced long-chain triacylglycerol storage in Y. lipolytica. EgDGAT1-1 localized to the endoplasmic reticulum where TAG biosynthesis takes place. Reestablishing neutral lipid accumulation in the Y. lipolytica mutant strain did not induce major reorganization of the yeast microsomal proteome. Overall, our findings demonstrate that EgDGAT1-1 is an endoplasmic reticulum DGAT with preference for medium-chain fatty acid substrates, in line with its physiological role in palm kernel. The characterized EgDGAT1-1 could be used to promote medium-chain triacylglycerol accumulation in microbial-produced oil for industrial chemicals and cosmetics. PMID:26581109

  4. Proteomic analysis of the response of α-ketoglutarate-producer Yarrowia lipolytica WSH-Z06 to environmental pH stimuli.

    PubMed

    Guo, Hongwei; Wan, Hui; Chen, Hongwen; Fang, Fang; Liu, Song; Zhou, Jingwen

    2016-10-01

    During bioproduction of short-chain carboxylates, a shift in pH is a common strategy for enhancing the biosynthesis of target products. Based on two-dimensional gel electrophoresis, comparative proteomics analysis of general and mitochondrial protein samples was used to investigate the cellular responses to environmental pH stimuli in the α-ketoglutarate overproducer Yarrowia lipolytica WSH-Z06. The lower environmental pH stimuli tensioned intracellular acidification and increased the level of reactive oxygen species (ROS). A total of 54 differentially expressed protein spots were detected, and 11 main cellular processes were identified to be involved in the cellular response to environmental pH stimuli. Slight decrease in cytoplasmic pH enhanced the cellular acidogenicity by elevating expression level of key enzymes in tricarboxylic acid cycle (TCA cycle). Enhanced energy biosynthesis, ROS elimination, and membrane potential homeostasis processes were also employed as cellular defense strategies to compete with environmental pH stimuli. Owing to its antioxidant role of α-ketoglutarate, metabolic flux shifted to α-ketoglutarate under lower pH by Y. lipolytica in response to acidic pH stimuli. The identified differentially expressed proteins provide clues for understanding the mechanisms of the cellular responses and for enhancing short-chain carboxylate production through metabolic engineering or process optimization strategies in combination with manipulation of environmental conditions.

  5. Ylpex5 mutation partially suppresses the defective hyphal growth of a Yarrowia lipolytica ceramide synthase mutant, Yllac1, by recovering lipid raft polarization and vacuole morphogenesis.

    PubMed

    Bal, Jyotiranjan; Lee, Hye-Jeong; Cheon, Seon Ah; Lee, Kyung Jin; Oh, Doo-Byoung; Kim, Jeong-Yoon

    2013-01-01

    Sphingolipids are involved in cell differentiation and morphogenesis in eukaryotic cells. In this study, YlLac1p, a ceramide synthase required for glucosylceramide (GlcCer) synthesis, was found to be essential for hyphal growth in Yarrowia lipolytica. Y. lipolytica GlcCer was shown to be composed of a C16:0 fatty acid, which is hydroxylated at C2, and a C18:2 long chain base, which is unsaturated at both C4 and C8 and methylated at C9. Domain swapping analysis revealed that the entire TRAM/Lag1/CLN8 (TLC) domain, not the Lag1 motif, is crucial for the function of YlLac1p. YlDes1p, the C4 desaturase of the ceramide synthesized by YlLac1p, was also required for Y. lipolytica morphogenesis. Both Yllac1Δ and Yldes1Δ mutants neither polarize lipid rafts nor form normal vacuoles. Interestingly, mutation in YlPEX5, which encode a peroxisomal targeting signal receptor, partially suppressed the defective hyphal growth of Yllac1Δ. The Yllac1ΔYlpex5Δ mutant restored the ability to polarize lipid rafts and to form normal vacuoles, although it could not synthesize GlcCer. Taken together, our results suggest that GlcCer or GlcCer derivatives may be involved in hyphal morphogenesis in Y. lipolytica, at least in part, by affecting polarization of lipid rafts and vacuole morphogenesis. Copyright © 2012 Elsevier Inc. All rights reserved.

  6. Dynamic behavior of Yarrowia lipolytica in response to pH perturbations: dependence of the stress response on the culture mode.

    PubMed

    Timoumi, Asma; Cléret, Mégane; Bideaux, Carine; Guillouet, Stéphane E; Allouche, Yohan; Molina-Jouve, Carole; Fillaudeau, Luc; Gorret, Nathalie

    2017-01-01

    Yarrowia lipolytica, a non-conventional yeast with a promising biotechnological potential, is able to undergo metabolic and morphological changes in response to environmental conditions. The effect of pH perturbations of different types (pulses, Heaviside) on the dynamic behavior of Y. lipolytica W29 strain was characterized under two modes of culture: batch and continuous. In batch cultures, different pH (4.5, 5.6 (optimal condition), and 7) were investigated in order to identify the pH inducing a stress response (metabolic and/or morphologic) in Y. lipolytica. Macroscopic behavior (kinetic parameters, yields, viability) of the yeast was slightly affected by pH. However, contrary to the culture at pH 5.6, a filamentous growth was induced in batch experiments at pH 4.5 and 7. Proportions of the filamentous subpopulation reached 84 and 93 % (v/v) under acidic and neutral conditions, respectively. Given the significant impact of neutral pH on morphology, pH perturbations from 5.6 to 7 were subsequently assayed in batch and continuous bioreactors. For both process modes, the growth dynamics remained fundamentally unaltered during exposure to stress. Nevertheless, morphological behavior of the yeast was dependent on the culture mode. Specifically, in batch bioreactors where cells proliferated at their maximum growth rate, mycelia were mainly formed. Whereas, in continuous cultures at controlled growth rates (from 0.03 to 0.20 h -1 ) even closed to the maximum growth rate of the stain (0.24 h -1 ), yeast-like forms predominated. This pointed out differences in the kinetic behavior of filamentous and yeast subpopulations, cell age distribution, and pH adaptive mechanisms between both modes of culture.

  7. Optimization of a low-cost hyperosmotic medium and establishing the fermentation kinetics of erythritol production by Yarrowia lipolytica from crude glycerol.

    PubMed

    Yang, Li-Bo; Zhan, Xiao-Bei; Zhu, Li; Gao, Min-Jie; Lin, Chi-Chung

    2016-05-18

    The production of erythritol by Yarrowia lipolytica from low-cost substitutable substrates for high yield was investigated. Crude glycerol, urea, and NaCl related to osmotic pressure were the most significant factors affecting erythritol production. An artificial neural network model and genetic algorithm were used to search the optimal composition of the significant factors and locate the resulting erythritol yield. Medium with 232.39 g/L crude glycerol, 1.57 g/L urea, and 31.03 g/L NaCl led to predictive maximum erythritol concentration of 110.7 g/L. The erythritol concentration improved from 50.4 g/L to 109.2 g/L with the optimized medium, which was reproducible. Erythritol fermentation kinetics were investigated in a batch system. Multistep fermentation kinetic models with hyperosmotic inhibitory effects were developed. The resulting mathematical equations provided a good description of temporal variations such as microbial growth (X), substrate consumption (S), and product formation (P) in erythritol fermentation. The accordingly derived model is the first reported model for fermentative erythritol production from glycerol, providing useful information to optimize the growth of Y. lipolytica and contributing visual description for the erythritol fermentation process under high osmotic pressure, as well as improvement of productivity and efficiency.

  8. Improvement of erythrose reductase activity, deletion of by-products and statistical media optimization for enhanced erythritol production from Yarrowia lipolytica mutant 49.

    PubMed

    Ghezelbash, Gholam Reza; Nahvi, Iraj; Emamzadeh, Rahman

    2014-08-01

    The purpose of the present investigation was to produce erythritol by Yarrowia lipolytica mutant without any by-products. Mutants of Y. lipolytica were generated by ultra-violet for enhancing erythrose reductase (ER) activity and erythritol production. The mutants showing the highest ER activity were screened by triphenyl tetrazolium chloride agar plate assay. Productivity of samples was analyzed by thin-layer chromatography and high-performance liquid chromatography equipped with the refractive index detector. One of the mutants named as mutant 49 gave maximum erythritol production without any other by-products (particularly glycerol). Erythritol production and specific ER activity in mutant 49 increased to 1.65 and 1.47 times, respectively, in comparison with wild-type strain. The ER gene of wild and mutant strains was sequenced and analyzed. A general comparison of wild and mutant gene sequences showed the replacement of Asp(270) with Glu(270) in ER protein. In order to enhance erythritol production, we used a three component-three level-one response Box-Behnken of response surface methodology model. The optimum medium composition for erythritol production was found to be (g/l) glucose 279.49, ammonium sulfate 9.28, and pH 5.41 with 39.76 erythritol production.

  9. Yarrowia lipolytica NCIM 3589, a tropical marine yeast, degrades bromoalkanes by an initial hydrolytic dehalogenation step.

    PubMed

    Vatsal, Aakanksha; Zinjarde, Smita S; Kumar, Ameeta Ravi

    2015-04-01

    The widespread industrial use of organobromines which are known persistent organic pollutants has led to their accumulation in sediments and water bodies causing harm to animals and humans. While degradation of organochlorines by bacteria is well documented, information regarding degradation pathways of these recalcitrant organobromines is scarce. Hence, their fates and effects on the environment are of concern. The present study shows that a tropical marine yeast, Yarrowia lipolytica NCIM 3589 aerobically degrades bromoalkanes differing in carbon chain length and position of halogen substitution viz., 2-bromopropane (2-BP), 1-bromobutane (1-BB), 1,5 dibromopentane (1,5-DBP) and 1-bromodecane (1-BD) as seen by an increase in cell mass, release of bromide and concomitant decrease in concentration of brominated compound. The amount of bromoalkane degraded was 27.3, 21.9, 18.0 and 38.3 % with degradation rates of 0.076, 0.058, 0.046 and 0.117/day for 2-BP, 1-BB, 1,5-DBP and 1-BD, respectively. The initial product formed respectively were alcohols viz., 2-propanol, 1-butanol, 1-bromo, 5-pentanol and 1-decanol as detected by GC-MS. These were further metabolized to fatty acids viz., 2-propionic, 1-butyric and 1-decanoic acid eventually leading to carbon dioxide formation. Neither higher chain nor brominated fatty acids were detected. An inducible extracellular dehalogenase responsible for removal of bromide was detected with activities of 21.07, 18.82, 18.96 and 26.67 U/ml for 2-BP, 1-BB, 1,5-DBP and 1-BD, respectively. We report here for the first time the proposed aerobic pathway of bromoalkane degradation by an eukaryotic microbe Y. lipolytica 3589, involving an initial hydrolytic dehalogenation step.

  10. [Activation of the alternative oxidase of Yarrowia lipolytica by adenosine 5'-monophosphate].

    PubMed

    Medentsev, A G; Arinbasarova, A Iu; Smirnova, N M; Akimenko, V K

    2004-01-01

    The study of the effect of nucleoside phosphates on the activity of cyanide-resistant oxidase in the mitochondria and the submitochondrial particles of Yarrowia lipolytica showed that adenosine monophosphate (5'-AMP, AMP) did not stimulate the respiration of the intact mitochondria. The incubation of the mitochondria at room temperature (25 degrees C) for 3-5 h or their treatment with ultrasound, phospholipase A, and detergent Triton X-100 at a low temperature inactivated the cyanide-resistant alternative oxidase. The inactivated alternative oxidase could be reactivated by AMP. The reactivating effect of AMP was enhanced by azolectin. Some other nucleoside phosphates also showed reactivating ability in the following descending order. AMP = GMP > GDP > GTP > XMP > IMP. The apparent reaction rate constant Km for AMP upon the reactivation of the alternative oxidase of mitochondria treated with Triton X-100 or incubated at 25 degrees C was 12.5 and 20 microM, respectively. The Km for AMP upon the reactivation of the alternative oxidase of submitochondrial particles was 15 microM. During the incubation of yeast cells under conditions promoting the development of alternative oxidase, the content of adenine nucleotides (AMP, ADP, and ATP) in the cells and their respiration tended to decrease. The subsequent addition of cyanide to the cells activated their respiration, diminished the intracellular content of ATP three times, and augmented the content of AMP five times. These data suggest that the stimulation of cell respiration by cyanide may be due to the activation of alternative oxidase by AMP.

  11. Design of an efficient medium for heterologous protein production in Yarrowia lipolytica: case of human interferon alpha 2b.

    PubMed

    Gasmi, Najla; Ayed, Atef; Nicaud, Jean-Marc; Kallel, Héla

    2011-05-20

    The non conventional yeast Yarrowia lipolytica has aroused a strong industrial interest for heterologous protein production. However most of the studies describing recombinant protein production by this yeast rely on the use of complex media, such media are not convenient for large scale production particularly for products intended for pharmaceutical applications. In addition medium composition can also affect the production yield. Hence it is necessary to design an efficient medium for therapeutic protein expression by this host. Five different media, including four minimal media and a complex medium, were assessed in shake flasks for the production of human interferon alpha 2b (hIFN α2b) by Y. lipolytica under the control of POX2 promoter inducible with oleic acid. The chemically defined medium SM4 formulated by Invitrogen for Pichia pastoris growth was the most suitable. Using statistical experimental design this medium was further optimized. The selected minimal medium consisting in SM4 supplemented with 10 mg/l FeCl₃, 1 g/l glutamate, 5 ml/l PTM1 (Pichia Trace Metals) solution and a vitamin solution composed of myo-inositol, thiamin and biotin was called GNY medium. Compared to shake flask, bioreactor culture in GNY medium resulted in 416-fold increase of hIFN α2b production and 2-fold increase of the biological activity. Furthermore, SM4 enrichment with 5 ml/l PTM1 solution contributed to protect hIFN α2b against the degradation by the 28 kDa protease identified by zymography gel in culture supernatant. The screening of the inhibitory effect of the trace elements present in PTM1 solution on the activity of this protease was achieved using a Box-Behnken design. Statistical data analysis showed that FeCl₃ and MnSO₄ had the most inhibitory effect. We have designed an efficient medium for large scale production of heterologous proteins by Y. lipolytica. The optimized medium GNY is suitable for the production of hIFN α2b with the advantage that no

  12. MHY1 Encodes a C2H2-Type Zinc Finger Protein That Promotes Dimorphic Transition in the Yeast Yarrowia lipolytica

    PubMed Central

    Hurtado, Cleofe A. R.; Rachubinski, Richard A.

    1999-01-01

    The yeast-to-hypha morphological transition (dimorphism) is typical of many pathogenic fungi. Dimorphism has been attributed to changes in temperature and nutritional status and is believed to constitute a mechanism of response to adverse conditions. We have isolated and characterized a gene, MHY1, whose transcription is dramatically increased during the yeast-to-hypha transition in Yarrowia lipolytica. Deletion of MHY1 is viable and has no effect on mating, but it does result in a complete inability of cells to undergo mycelial growth. MHY1 encodes a C2H2-type zinc finger protein, Mhy1p, which can bind putative cis-acting DNA stress response elements, suggesting that Mhy1p may act as a transcription factor. Interestingly, Mhy1p tagged with a hemagglutinin epitope was concentrated in the nuclei of actively growing cells found at the hyphal tip. PMID:10322005

  13. Harnessing the Effect of pH on Lipid Production in Batch Cultures of Yarrowia lipolytica SKY7.

    PubMed

    Kuttiraja, Mathiazhakan; Dhouha, Ayed; Tyagi, Rajeshwar Dayal

    2018-04-01

    The objective of this research was to investigate the kinetics of lipid production by Yarrowia lipolytica SKY7 in the crude glycerol-supplemented media with and without the control of pH. Lipid and citric acid production were improved with the pH control condition. There was no significant difference observed in the biomass concentration with or without the pH control. In the pH-controlled experiments, the biomass and lipid concentration reached 18 and 7.78 g/L, (45.5% w/w), respectively, with lipid yield (Yp/s) of 0.179 g/g at 60 h of fermentation. The lipid production was directly correlated with growth and the process was defined as growth associated. After 60 h of fermentation, the lipid degradation was noticed in the pH-controlled reactor whereas it occurred after 84 h in the pH-uncontrolled reactor. Apart from lipid, citric acid was produced as the major extracellular product in both fermentations but the much lower concentration in uncontrolled pH. Based on the experimental results, it is evident that controlling the pH will enhance the lipid production by 15% compared to pH-uncontrolled fermentation.

  14. Production of oils and fats by oleaginous microorganisms with an emphasis given to the potential of the nonconventional yeast Yarrowia lipolytica.

    PubMed

    Carsanba, E; Papanikolaou, S; Erten, H

    2018-05-15

    Recently, there has been a great upsurge of interest in studies related to several aspects of microbial lipid production, which is one of the top topics in relevant research fields due to the high demand of these fatty materials in food, medical, oleochemical and biofuel industries. Lipid accumulation by the so-called "oleaginous microorganisms" can generate more than 20% w/w of oil in dry biomass and is governed by a plethora of parameters, such as medium pH, incubation temperature, nutrient limitation and C/N (carbon/nitrogen) ratio, which drastically affect the lipid production bioprocess. Until now, considerable work has been undertaken to find the cheapest substrate to enable lipid fermentation by oleaginous microorganisms. This review principally details information regarding microbial lipids, suitable production conditions and focuses attention on using the yeast Yarrowia lipolytica to achieve these objectives. Lipid production by this yeast is discussed and the necessary conditions and suitable substrates are reviewed.

  15. Irradiation of Yarrowia lipolytica NRRL YB-567 creating novel strains with enhanced ammonia and oil production on protein and carbohydrate substrates.

    PubMed

    Lindquist, Mitch R; López-Núñez, Juan Carlos; Jones, Marjorie A; Cox, Elby J; Pinkelman, Rebecca J; Bang, Sookie S; Moser, Bryan R; Jackson, Michael A; Iten, Loren B; Kurtzman, Cletus P; Bischoff, Kenneth M; Liu, Siqing; Qureshi, Nasib; Tasaki, Kenneth; Rich, Joseph O; Cotta, Michael A; Saha, Badal C; Hughes, Stephen R

    2015-11-01

    Increased interest in sustainable production of renewable diesel and other valuable bioproducts is redoubling efforts to improve economic feasibility of microbial-based oil production. Yarrowia lipolytica is capable of employing a wide variety of substrates to produce oil and valuable co-products. We irradiated Y. lipolytica NRRL YB-567 with UV-C to enhance ammonia (for fertilizer) and lipid (for biodiesel) production on low-cost protein and carbohydrate substrates. The resulting strains were screened for ammonia and oil production using color intensity of indicators on plate assays. Seven mutant strains were selected (based on ammonia assay) and further evaluated for growth rate, ammonia and oil production, soluble protein content, and morphology when grown on liver infusion medium (without sugars), and for growth on various substrates. Strains were identified among these mutants that had a faster doubling time, produced higher maximum ammonia levels (enzyme assay) and more oil (Sudan Black assay), and had higher maximum soluble protein levels (Bradford assay) than wild type. When grown on plates with substrates of interest, all mutant strains showed similar results aerobically to wild-type strain. The mutant strain with the highest oil production and the fastest doubling time was evaluated on coffee waste medium. On this medium, the strain produced 0.12 g/L ammonia and 0.20 g/L 2-phenylethanol, a valuable fragrance/flavoring, in addition to acylglycerols (oil) containing predominantly C16 and C18 residues. These mutant strains will be investigated further for potential application in commercial biodiesel production.

  16. D-stat culture for studying the metabolic shifts from oxidative metabolism to lipid accumulation and citric acid production in Yarrowia lipolytica.

    PubMed

    Ochoa-Estopier, Abril; Guillouet, Stéphane E

    2014-01-20

    Lipid accumulation in oleaginous yeasts is triggered by nutrient imbalance in the culture medium between the carbon source in excess and the nitrogen source in limiting concentration. However Yarrowia lipolytica when cultivated on glucose as the sole carbon source, mainly produces citric acid upon nitrogen limitation over lipid accumulation (only 5-10% triacylglycerol). Therefore for developing bioprocess for the production of triacylglycerol from renewable carbon source as glucose it is of first importance to control this imbalance in order to avoid citric acid production during TAG accumulation. Using D-stat cultivation system, where the N/C was linearly decreased using a constant change rate we were able to identify the N/C ratio inducing TAG accumulation (0.085NmolCmol(-1)) and citric acid (0.021NmolCmol(-1)). We therefore demonstrated that it was possible to accumulate lipids without excretion citric acid as long as the N/C was within this indicated range. Moreover enzyme specific activities measurement during the D-stat indicated that ATP-citrate lyase, malic enzyme and acetyl-coA carboxylase were strongly induced at the onset of lipid accumulation and showed different patterns when citric acid was excreted. Our results give relevant information for future industrial bioprocess development concerning the production of lipids using renewable carbohydrate substrates as an alternative way to produce synthons for fuel or chemical industry. By controlling the N/C over the fermentation process on glucose Y. lipolytica can accumulate lipids without excreting citric acid. Copyright © 2013 Elsevier B.V. All rights reserved.

  17. Engineering Yarrowia lipolytica to Simultaneously Produce Lipase and Single Cell Protein from Agro-industrial Wastes for Feed.

    PubMed

    Yan, Jinyong; Han, Bingnan; Gui, Xiaohua; Wang, Guilong; Xu, Li; Yan, Yunjun; Madzak, Catherine; Pan, Dujie; Wang, Yaofeng; Zha, Genhan; Jiao, Liangcheng

    2018-01-15

    Lipases are scarcely exploited as feed enzymes in hydrolysis of lipids for increasing energy supply and improving nutrient use efficiency. In this work, we performed homologous overexpression, in vitro characterization and in vivo assessment of a lipase from the yeast Yarrowia lipolytica for feed purpose. Simultaneously, a large amount of yeast cell biomass was produced, for use as single cell protein, a potential protein-rich feed resource. Three kinds of low cost agro-industrial wastes were tested as substrates for simultaneous production of lipase and single cell protein (SCP) as feed additives: sugarcane molasses, waste cooking oil and crude glycerol from biodiesel production. Sugarcane molasses appeared as the most effective cheap medium, allowing production of 16420 U/ml of lipase and 151.2 g/L of single cell protein at 10 liter fermentation scale. In vitro characterization by mimicking a gastro-intestinal environment and determination of essential amino acids of the SCP, and in vivo oral feeding test on fish all revealed that lipase, SCP and their combination were excellent feed additives. Such simultaneous production of this lipase and SCP could address two main concerns of feed industry, poor utilization of lipid and shortage of protein resource at the same time.

  18. SOA genes encode proteins controlling lipase expression in response to triacylglycerol utilization in the yeast Yarrowia lipolytica.

    PubMed

    Desfougères, Thomas; Haddouche, Ramdane; Fudalej, Franck; Neuvéglise, Cécile; Nicaud, Jean-Marc

    2010-02-01

    The oleaginous yeast Yarrowia lipolytica efficiently metabolizes hydrophobic substrates such as alkanes, fatty acids or triacylglycerol. This yeast has been identified in oil-polluted water and in lipid-rich food. The enzymes involved in lipid breakdown, for use as a carbon source, are known, but the molecular mechanisms controlling the expression of the genes encoding these enzymes are still poorly understood. The study of mRNAs obtained from cells grown on oleic acid identified a new group of genes called SOA genes (specific for oleic acid). SOA1 and SOA2 are two small genes coding for proteins with no known homologs. Single- and double-disrupted strains were constructed. Wild-type and mutant strains were grown on dextrose, oleic acid and triacylglycerols. The double mutant presents a clear phenotype consisting of a growth defect on tributyrin and triolein, but not on dextrose or oleic acid media. Lipase activity was 50-fold lower in this mutant than in the wild-type strain. The impact of SOA deletion on the expression of the main extracellular lipase gene (LIP2) was monitored using a LIP2-beta-galactosidase promoter fusion protein. These data suggest that Soa proteins are components of a molecular mechanism controlling lipase gene expression in response to extracellular triacylglycerol.

  19. Integrated Approach To Producing High-Purity Trehalose from Maltose by the Yeast Yarrowia lipolytica Displaying Trehalose Synthase (TreS) on the Cell Surface.

    PubMed

    Li, Ning; Wang, Hengwei; Li, Lijuan; Cheng, Huiling; Liu, Dawen; Cheng, Hairong; Deng, Zixin

    2016-08-10

    An alternative strategy that integrated enzyme production, trehalose biotransformation, and bioremoval in one bioreactor was developed in this study, thus simplifying the traditional procedures used for trehalose production. The trehalose synthase gene from a thermophilic archaea, Picrophilus torridus, was first fused to the YlPir1 anchor gene and then inserted into the genome of Yarrowia lipolytica, thus yielding an engineered yeast strain. The trehalose yield reached 73% under optimal conditions. The thermal and pH stabilities of the displayed enzyme were improved compared to those of its free form purified from recombinant Escherichia coli. After biotransformation, the glucose byproduct and residual maltose were directly fermented to ethanol by a Saccharomyces cerevisiae strain. Ethanol can be separated by distillation, and high-purity trehalose can easily be obtained from the fermentation broth. The results show that this one-pot procedure is an efficient approach to the economical production of trehalose from maltose.

  20. Green and sustainable succinic acid production from crude glycerol by engineered Yarrowia lipolytica via agricultural residue based in situ fibrous bed bioreactor.

    PubMed

    Li, Chong; Gao, Shi; Yang, Xiaofeng; Lin, Carol Sze Ki

    2018-02-01

    In situ fibrous bed bioreactor (isFBB) for efficient succinic acid (SA) production by Yarrowia lipolytica was firstly developed in our former study. In this study, agricultural residues including wheat straw, corn stalk and sugarcane bagasse were investigated for the improvement of isFBB, and sugarcane bagasse was demonstrated to be the best immobilization material. With crude glycerol as the sole carbon source, optimization for isFBB batch fermentation was carried out. Under the optimal conditions of 20g sugarcane bagasse as immobilization material, 120gL -1 crude glycerol as carbon source and 4Lmin -1 of aeration rate, the resultant SA concentration was 53.6gL -1 with an average productivity of 1.45gL -1 h -1 and a SA yield of 0.45gg -1 . By feeding crude glycerol, SA titer up to 209.7gL -1 was obtained from fed batch fermentation, which was the highest value that ever reported. Copyright © 2017 Elsevier Ltd. All rights reserved.

  1. Mitochondria from Dipodascus (Endomyces) magnusii and Yarrowia lipolytica yeasts did not undergo a Ca²⁺-dependent permeability transition even under anaerobic conditions.

    PubMed

    Trendeleva, Tat'yana; Sukhanova, Evgeniya; Ural'skaya, Ludmila; Saris, Nils-Erik; Zvyagilskaya, Renata

    2011-12-01

    In this study we used tightly-coupled mitochondria from Yarrowia lipolytica and Dipodascus (Endomyces) magnusii yeasts. The two yeast strains are good alternatives to Saccharomyces cerevisiae, being aerobes containing well structured mitochondria (thus ensuring less structural limitation to observe their appreciable swelling) and fully competent respiratory chain with three invariantly functioning energy conservation points, including Complex I, that can be involved in induction of the canonical Ca²⁺/P(i)-dependent mitochondrial permeability transition (mPTP pore) with an increased open probability when electron flux increases(Fontaine et al. J Biol Chem 273: 25734–25740, 1998; Bernardi et al. FEBS J 273:2077–2099, 2006). High amplitude swelling and collapse of the membrane potential were used as parameters for demonstrating pore opening. Previously (Kovaleva et al. J Bioenerg Biomembr 41:239–249, 2009; Kovaleva et al. Biochemistry (Moscow) 75: 297–303, 2010) we have shown that mitochondria from Y.lipolytica and D. magnusii were very resistant to the Ca²⁺overload combined with varying concentrations of P(i),palmitic acid, SH-reagents, carboxyatractyloside (an inhibitor of ADP/ATP translocator), as well as depletion of intramitochondrial adenine nucleotide pools, deenergization of mitochondria, and shifting to acidic pH values in the presence of high [P(i)]. Here we subjected yeast mitochondria to other conditions known to induce an mPTP in animal and plant mitochondria, namely to Ca²⁺ overload under hypoxic conditions (anaerobiosis). We were unable to observe Ca²⁺-induced high permeability of the inner membrane of D. magnusii and Y. lipolytica yeast mitochondria under anaerobic conditions, thus suggesting that an mPTP-like pore, if it ever occurs in yeast mitochondria, is not coupled with the Ca²⁺ uptake. The results provide the first demonstration of ATP-dependent energization of yeast mitochondria under conditions of anaerobiosis.

  2. Integrating Cellular and Bioprocess Engineering in the Non-Conventional Yeast Yarrowia lipolytica for Biodiesel Production: A Review

    PubMed Central

    Xie, Dongming

    2017-01-01

    As one of the major biofuels to replace fossil fuel, biodiesel has now attracted more and more attention due to its advantages in higher energy density and overall less greenhouse gas generation. Biodiesel (fatty acid alkyl esters) is produced by chemically or enzymatically catalyzed transesterification of lipids from microbial cells, microalgae, oil crops, or animal fats. Currently, plant oils or waste cooking oils/fats remain the major source for biodiesel production via enzymatic route, but the production capacity is limited either by the uncertain supplement of plant oils or by the low or inconsistent quality of waste oils/fats. In the past decades, significant progresses have been made on synthesis of microalgae oils directly from CO2 via a photosynthesis process, but the production cost from any current technologies is still too high to be commercialized due to microalgae’s slow growth rate on CO2, inefficiency in photo-bioreactors, lack of efficient contamination control methods, and high cost in downstream recovery. At the same time, many oleaginous microorganisms have been studied to produce lipids via the fatty acid synthesis pathway under aerobic fermentation conditions, among them one of the most studied is the non-conventional yeast, Yarrowia lipolytica, which is able to produce fatty acids at very high titer, rate, and yield from various economical substrates. This review summarizes the recent research progresses in both cellular and bioprocess engineering in Y. lipolytica to produce lipids at a low cost that may lead to commercial-scale biodiesel production. Specific technologies include the strain engineering for using various substrates, metabolic engineering in high-yield lipid synthesis, cell morphology study for efficient substrate uptake and product formation, free fatty acid formation and secretion for improved downstream recovery, and fermentation engineering for higher productivities and less operating cost. To further improve the

  3. Use of Plackett-Burman design for rapid screening of nitrogen and carbon sources for the production of lipase in solid state fermentation by Yarrowia lipolytica from mustard oil cake (Brassica napus).

    PubMed

    Imandi, Sarat Babu; Karanam, Sita Kumari; Garapati, Hanumantha Rao

    2013-01-01

    Mustard oil cake (Brassica napus), the residue obtained after extraction of mustard oil from mustard oil seeds, was investigated for the production of lipase under solid state fermentation (SSF) using the marine yeast Yarrowia lipolytica NCIM 3589. Process parameters such as incubation time, biomass concentration, initial moisture content, carbon source concentration and nitrogen source concentration of the medium were optimized. Screening of ten nitrogen and five carbon sources has been accomplished with the help of Plackett-Burman design. The highest lipase activity of 57.89 units per gram of dry fermented substrate (U/gds) was observed with the substrate of mustard oil cake in four days of fermentation.

  4. The ‘LipoYeasts’ project: using the oleaginous yeast Yarrowia lipolytica in combination with specific bacterial genes for the bioconversion of lipids, fats and oils into high‐value products

    PubMed Central

    Sabirova, Julia S.; Haddouche, R.; Van Bogaert, I. N.; Mulaa, F.; Verstraete, W.; Timmis, K. N.; Schmidt‐Dannert, C.; Nicaud, J. M.; Soetaert, W.

    2011-01-01

    Summary The oleochemical industry is currently still dominated by conventional chemistry, with biotechnology only starting to play a more prominent role, primarily with respect to the biosurfactants or lipases, e.g. as detergents, or for biofuel production. A major bottleneck for all further biotechnological applications is the problem of the initial mobilization of cheap and vastly available lipid and oil substrates, which are then to be transformed into high‐value biotechnological, nutritional or pharmacological products. Under the EU‐sponsored LipoYeasts project we are developing the oleaginous yeast Yarrowia lipolytica into a versatile and high‐throughput microbial factory that, by use of specific enzymatic pathways from hydrocarbonoclastic bacteria, efficiently mobilizes lipids by directing its versatile lipid metabolism towards the production of industrially valuable lipid‐derived compounds like wax esters (WE), isoprenoid‐derived compounds (carotenoids, polyenic carotenoid ester), polyhydroxyalkanoates (PHAs) and free hydroxylated fatty acids (HFAs). Different lipid stocks (petroleum, alkane, vegetable oil, fatty acid) and combinations thereof are being assessed as substrates in combination with different mutant and recombinant strains of Y. lipolytica, in order to modulate the composition and yields of the produced added‐value products. PMID:21255371

  5. Improved performance of Yarrowia lipolytica lipase-catalyzed kinetic resolution of (R,S)-2-octanol by an integrated strategy of interfacial activation, bioimprinting and immobilization.

    PubMed

    Liu, Ying; Guo, Chen; Sun, Xi-Tong; Liu, Chun-Zhao

    2013-08-01

    Yarrowia lipolytica lipase (YLL) demonstrated an (R)-enantiopreference for efficient resolution of (R,S)-2-octanol. The activity, enantioselectivity, the ratio of substrate to enzyme, acetaldehyde tolerance, and operational stability of YLL were improved by an integrated strategy of interfacial activation, bioimprinting, and immobilization. In comparison with the control, both the enzymatic activity and enantioselectivity increased by a factor of 8.85 and 2.75 by the integrated strategy, respectively. Fifty-one percentage of conversion with 220 of enantioselectivity was obtained using the immobilized YLL prepared by the integrated strategy at a ratio of 104 of substrate to enzyme loaded. The immobilized YLL retained 97% of its initial activity without a decrease in enantioselectivity after 10 successive reuse cycles. Together these results will result in a promising strategy with the YYL for efficient resolution of (R,S)-2-octanol in practice. Copyright © 2013 Elsevier Ltd. All rights reserved.

  6. Deciphering how LIP2 and POX2 promoters can optimally regulate recombinant protein production in the yeast Yarrowia lipolytica.

    PubMed

    Sassi, Hosni; Delvigne, Frank; Kar, Tambi; Nicaud, Jean-Marc; Coq, Anne-Marie Crutz-Le; Steels, Sebastien; Fickers, Patrick

    2016-09-20

    In recent years, the non-conventional model yeast species Yarrowia lipolytica has received much attention because it is a useful cell factory for producing recombinant proteins. In this species, expression vectors involving LIP2 and POX2 promoters have been developed and used successfully for protein production at yields similar to or even higher than those of other cell factories, such as Pichia pastoris. However, production processes involving these promoters can be difficult to manage, especially if carried out at large scales in fed-batch bioreactors, because they require hydrophobic inducers, such as oleic acid or methyl oleate. Thus, the challenge has become to reduce loads of hydrophobic substrates while simultaneously promoting recombinant protein production. One possible solution is to replace a portion of the inducer with a co-substrate that can serve as an alternative energy source. However, implementing such an approach would require detailed knowledge of how carbon sources impact promoter regulation, which is surprisingly still lacking for the LIP2 and POX2 promoters. This study's aim was thus to better characterize promoter regulation and cell metabolism in Y. lipolytica cultures grown in media supplemented with different carbon sources. pPOX2 induction could be detected when glucose or glycerol was used as sole carbon source, which meant these carbon source could not prevent promoter induction. In addition, when a mixture of glucose and oleic acid was used in complex medium, pPOX2 induction level was lower that that of pLIP2. In contrast, pLIP2 induction was absent when glucose was present in the culture medium, which meant that cell growth could occur without any recombinant gene expression. When a 40/60 mixture of glucose and oleic acid (w/w) was used, a tenfold increase in promoter induction, as compared to when an oleic-acid-only medium was observed. It was also clear that individual cells were adapting metabolically to use both glucose and oleic

  7. Enhancement of methanol resistance of Yarrowia lipolytica lipase 2 using β-cyclodextrin as an additive: Insights from experiments and molecular dynamics simulation.

    PubMed

    Cao, Hao; Jiang, Yang; Zhang, Haiyang; Nie, Kaili; Lei, Ming; Deng, Li; Wang, Fang; Tan, Tianwei

    2017-01-01

    The methanol resistance of lipase is a critical parameter in enzymatic biodiesel production. In the present work, the methanol resistance of Yarrowia lipolytica Lipase 2 (YLLIP2) was significantly improved using β-cyclodextrin (β-CD) as an additive. According to the results, YLLIP2 with β-CD exhibited approximately 7000U/mg specific activity in 30wt% methanol for 60min compared with no activity without β-CD under the same conditions. Molecular dynamics (MD) simulation results indicated that the β-CD molecules weakened the conformational change of YLLIP2 and maintained a semi-open state of the lid by overcoming the interference caused by methanol molecules. Furthermore, the β-CD molecule could directly stabilize "pathway" regions (e.g., Asp61-Asp67) and indirectly stabilize "pathway" regions (e.g., Gly44-Phe50) by forming hydrogen bonds with "pathway" regions and nearby "pathway" regions, respectively. The regions stabilized by the β-CD molecule then prevented the closure of active pockets, thus retaining the enzymatic activity of YLLIP2 with β-CD in methanol solvent. Copyright © 2016. Published by Elsevier Inc.

  8. Citric acid production from partly deproteinized whey under non-sterile culture conditions using immobilized cells of lactose-positive and cold-adapted Yarrowia lipolytica B9.

    PubMed

    Arslan, Nazli Pinar; Aydogan, Mehmet Nuri; Taskin, Mesut

    2016-08-10

    The present study was performed to produce citric acid (CA) from partly deproteinized cheese whey (DPCW) under non-sterile culture conditions using immobilized cells of the cold-adapted and lactose-positive yeast Yarrowia lipolytica B9. DPCW was prepared using the temperature treatment of 90°C for 15min. Sodium alginate was used as entrapping agent for cell immobilization. Optimum conditions for the maximum CA production (33.3g/L) in non-sterile DPCW medium were the temperature of 20°C, pH 5.5, additional lactose concentration of 20g/L, sodium alginate concentration of 2%, number of 150 beads/100mL and incubation time of 120h. Similarly, maximum citric acid/isocitric acid (CA/ICA) ratio (6.79) could be reached under these optimal conditions. Additional nitrogen and phosphorus sources decreased CA concentration and CA/ICA ratio. Immobilized cells were reused in three continuous reaction cycles without any loss in the maximum CA concentration. The unique combination of low pH and temperature values as well as cell immobilization procedure could prevent undesired microbial contaminants during CA production. This is the first work on CA production by cold-adapted microorganisms under non-sterile culture conditions. Besides, CA production using a lactose-positive strain of the yeast Y. lipolytica was investigated for the first time in the present study. Copyright © 2016 Elsevier B.V. All rights reserved.

  9. Induction of a non-specific permeability transition in mitochondria from Yarrowia lipolytica and Dipodascus (Endomyces) magnusii yeasts.

    PubMed

    Kovaleva, Mariya V; Sukhanova, Evgeniya I; Trendeleva, Tatyana A; Zyl'kova, Marina V; Ural'skaya, Ludmila A; Popova, Kristina M; Saris, Nils-Erik L; Zvyagilskaya, Renata A

    2009-06-01

    In this study we used tightly-coupled mitochondria from Yarrowia lipolytica and Dipodascus (Endomyces) magnusii yeasts, possessing a respiratory chain with the usual three points of energy conservation. High-amplitude swelling and collapse of the membrane potential were used as parameters for demonstrating induction of the mitochondrial permeability transition due to opening of a pore (mPTP). Mitochondria from Y. lipolytica, lacking a natural mitochondrial Ca(2+) uptake pathway, and from D. magnusii, harboring a high-capacitive, regulated mitochondrial Ca(2+) transport system (Bazhenova et al. J Biol Chem 273:4372-4377, 1998a; Bazhenova et al. Biochim Biophys Acta 1371:96-100, 1998b; Deryabina and Zvyagilskaya Biochemistry (Moscow) 65:1352-1356, 2000; Deryabina et al. J Biol Chem 276:47801-47806, 2001) were very resistant to Ca(2+) overload. However, exposure of yeast mitochondria to 50-100 microM Ca(2+) in the presence of the Ca(2+) ionophore ETH129 induced collapse of the membrane potential, possibly due to activation of the fatty acid-dependent Ca(2+)/nH(+)-antiporter, with no classical mPTP induction. The absence of response in yeast mitochondria was not simply due to structural limitations, since large-amplitude swelling occurred in the presence of alamethicin, a hydrophobic, helical peptide, forming voltage-sensitive ion channels in lipid membranes. Ca(2+)- ETH129-induced activation of the Ca(2+)/H(+)-antiport system was inhibited and prevented by bovine serum albumin, and partially by inorganic phosphate and ATP. We subjected yeast mitochondria to other conditions known to induce the permeability transition in animal mitochondria, i.e., Ca(2+) overload (in the presence of ETH129) combined with palmitic acid (Mironova et al. J Bioenerg Biomembr 33:319-331, 2001; Sultan and Sokolove Arch Biochem Biophys 386:37-51, 2001), SH-reagents, carboxyatractyloside (an inhibitor of the ADP/ATP translocator), depletion of intramitochondrial adenine nucleotide pools

  10. Storage lipids of yeasts: a survey of nonpolar lipid metabolism in Saccharomyces cerevisiae, Pichia pastoris, and Yarrowia lipolytica.

    PubMed

    Koch, Barbara; Schmidt, Claudia; Daum, Günther

    2014-09-01

    Biosynthesis and storage of nonpolar lipids, such as triacylglycerols (TG) and steryl esters (SE), have gained much interest during the last decades because defects in these processes are related to severe human diseases. The baker's yeast Saccharomyces cerevisiae has become a valuable tool to study eukaryotic lipid metabolism because this single-cell microorganism harbors many enzymes and pathways with counterparts in mammalian cells. In this article, we will review aspects of TG and SE metabolism and turnover in the yeast that have been known for a long time and combine them with new perceptions of nonpolar lipid research. We will provide a detailed insight into the mechanisms of nonpolar lipid synthesis, storage, mobilization, and degradation in the yeast S. cerevisiae. The central role of lipid droplets (LD) in these processes will be addressed with emphasis on the prevailing view that this compartment is more than only a depot for TG and SE. Dynamic and interactive aspects of LD with other organelles will be discussed. Results obtained with S. cerevisiae will be complemented by recent investigations of nonpolar lipid research with Yarrowia lipolytica and Pichia pastoris. Altogether, this review article provides a comprehensive view of nonpolar lipid research in yeast. © 2014 Federation of European Microbiological Societies. Published by John Wiley & Sons Ltd. All rights reserved.

  11. Extracellular expression of YlLip11 with a native signal peptide from Yarrowia lipolytica MSR80 in three different yeast hosts.

    PubMed

    Kumari, Arti; Baronian, Keith; Kunze, Gotthard; Gupta, Rani

    2015-06-01

    Lipase YlLip11 from Yarrowia lipolytica was expressed with a signal peptide encoding sequence in Arxula adeninivorans, Saccharomyces cerevisiae and Hansenula polymorpha using the Xplor®2 transformation/expression platform and an expression module with the constitutive Arxula-derived TEF1 promoter. The YlLip11 signal peptide was functional in all of the yeast hosts with 97% of the recombinant enzyme being secreted into the culture medium. However, recombinant YlLip11 with His Tag fused at C-terminal was not active. The best recombinant YlLip11 producing A. adeninivorans G1212/YRC102-YlLip11 transformant cultivated in shake flasks produced 2654 U/L lipase, followed by S. cerevisiae SEY6210/YRC103-YlLip11 (1632U/L) and H. polymorpha RB11/YRC103-YlLip11 (1144U/L). Although the biochemical parameters of YlLip11 synthesized in different hosts were similar, their glycosylation level and thermo stability differed. The protein synthesized by the H. polymorpha transformant had the highest degree of glycosylation and with a t1/2 of 60min at 70°C, exhibited the highest thermostability. Copyright © 2015 Elsevier Inc. All rights reserved.

  12. Citric acid production from extract of Jerusalem artichoke tubers by the genetically engineered yeast Yarrowia lipolytica strain 30 and purification of citric acid.

    PubMed

    Wang, Ling-Fei; Wang, Zhi-Peng; Liu, Xiao-Yan; Chi, Zhen-Ming

    2013-11-01

    In this study, citric acid production from extract of Jerusalem artichoke tubers by the genetically engineered yeast Yarrowia lipolytica strain 30 was investigated. After the compositions of the extract of Jerusalem artichoke tubers for citric acid production were optimized, the results showed that natural components of extract of Jerusalem artichoke tubers without addition of any other components were suitable for citric acid production by the yeast strain. During 10 L fermentation using the extract containing 84.3 g L(-1) total sugars, 68.3 g L(-1) citric acid was produced and the yield of citric acid was 0.91 g g(-1) within 336 h. At the end of the fermentation, 9.2 g L(-1) of residual total sugar and 2.1 g L(-1) of reducing sugar were left in the fermented medium. At the same time, citric acid in the supernatant of the culture was purified. It was found that 67.2 % of the citric acid in the supernatant of the culture was recovered and purity of citric acid in the crystal was 96 %.

  13. Draft Genome Sequence of the Dimorphic Yeast Yarrowia lipolytica Strain W29

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Pomraning, Kyle R.; Baker, Scott E.

    Here, we present the draft genome sequence of the dimorphic ascomycete yeastYarrowia lipolyticastrain W29 (ATCC 20460).Y. lipolyticais a commonly employed model for the industrial production of lipases, small molecules, and more recently for its ability to accumulate lipids.

  14. Physiological uncoupling of mitochondrial oxidative phosphorylation. Studies in different yeast species.

    PubMed

    Guerrero-Castillo, Sergio; Araiza-Olivera, Daniela; Cabrera-Orefice, Alfredo; Espinasa-Jaramillo, Juan; Gutiérrez-Aguilar, Manuel; Luévano-Martínez, Luís A; Zepeda-Bastida, Armando; Uribe-Carvajal, Salvador

    2011-06-01

    Under non-phosphorylating conditions a high proton transmembrane gradient inhibits the rate of oxygen consumption mediated by the mitochondrial respiratory chain (state IV). Slow electron transit leads to production of reactive oxygen species (ROS) capable of participating in deleterious side reactions. In order to avoid overproducing ROS, mitochondria maintain a high rate of O(2) consumption by activating different exquisitely controlled uncoupling pathways. Different yeast species possess one or more uncoupling systems that work through one of two possible mechanisms: i) Proton sinks and ii) Non-pumping redox enzymes. Proton sinks are exemplified by mitochondrial unspecific channels (MUC) and by uncoupling proteins (UCP). Saccharomyces. cerevisiae and Debaryomyces hansenii express highly regulated MUCs. Also, a UCP was described in Yarrowia lipolytica which promotes uncoupled O(2) consumption. Non-pumping alternative oxido-reductases may substitute for a pump, as in S. cerevisiae or may coexist with a complete set of pumps as in the branched respiratory chains from Y. lipolytica or D. hansenii. In addition, pumps may suffer intrinsic uncoupling (slipping). Promising models for study are unicellular parasites which can turn off their aerobic metabolism completely. The variety of energy dissipating systems in eukaryote species is probably designed to control ROS production in the different environments where each species lives.

  15. Multi-responses optimization of simultaneous biosorption of cationic dyes by live yeast Yarrowia lipolytica 70562 from binary solution: Application of first order derivative spectrophotometry.

    PubMed

    Dil, Ebrahim Alipanahpour; Ghaedi, Mehrorang; Ghezelbash, Gholam Reza; Asfaram, Arash

    2017-05-01

    Present study is based on application of live yeast Yarrowia lipolytica 70562 as new biosorbent was investigated for the simultaneous biosorption of Crystal Violet (CV) and Brilliant Green (BG) from wastewater. The effect of operating parameters such as initial dye concentrations (6-14mgL -1 ), solution pH (4.0-8.0) and contact time (4-20h) was investigated by response surface methodology (RSM) for modeling and optimization of biosorption process and accordingly the best operational conditions was set as: initial CV and BG concentration of 8.0, and 10mgL -1 , pH of 7.0 and contact time of 16h. Above specified conditions lead to achievement of maximum biosorption of 98.823% and 99.927% for CV and BG dyes, respectively. The experimental equilibrium data well explained according to Langmuir isotherm model with maximum biosorption capacity of 65.359 and 56.497mgg -1 for BG and CV, respectively. The second order and intraparticle diffusion models as cooperative mechanism has high efficiency and performance for interpretation of real data. Copyright © 2017. Published by Elsevier Inc.

  16. Comparative evaluation of 13 yeast species in the Yarrowia clade on lignocellulosic biomass hydrolysate and genetic engineering of inhibitor tolerant strains for lipid and biofuel production

    USDA-ARS?s Scientific Manuscript database

    Yarrowia lipolytica is an oleaginous yeast that has garnered interest for commercial production of single cell oil and other fatty acid-derived chemicals because of its GRAS status and genetic tractability. Three recent peer-reviewed studies have highlighted the possibility of lipid production by th...

  17. Quantitative study of lipase secretion, extracellular lipolysis, and lipid storage in the yeast Yarrowia lipolytica grown in the presence of olive oil: analogies with lipolysis in humans.

    PubMed

    Najjar, Amal; Robert, Sylvie; Guérin, Clémence; Violet-Asther, Michèle; Carrière, Frédéric

    2011-03-01

    Lipase secretion, extracellular lipolysis, and fatty acid uptake were quantified in the yeast Yarrowia lipolytica grown in the presence of olive oil and/or glucose. Specific lipase assays, Western blot analysis, and ELISA indicated that most of the lipase activity measured in Y. lipolytica cultures resulted from the YLLIP2 lipase. Lipase production was triggered by olive oil and, during the first hours of culture, most of the lipase activity and YLLIP2 immunodetection remained associated with the yeast cells. YLLIP2 was then released in the culture medium before it was totally degraded by proteases. Olive oil triglycerides were largely degraded when the lipase was still attached to the cell wall. The fate of lipolysis products in the culture medium and inside the yeast cell, as well as lipid storage, was investigated simultaneously by quantitative TLC-FID and GC analysis. The intracellular levels of free fatty acids (FFA) and triglycerides increased transiently and were dependent on the carbon sources. A maximum fat storage of 37.8% w/w of yeast dry mass was observed with olive oil alone. A transient accumulation of saturated FFA was observed whereas intracellular triglycerides became enriched in unsaturated fatty acids. So far, yeasts have been mainly used for studying the intracellular synthesis, storage, and mobilization of neutral lipids. The present study shows that yeasts are also interesting models for studying extracellular lipolysis and fat uptake by the cell. The quantitative data obtained here allow for the first time to establish interesting analogies with gastrointestinal and vascular lipolysis in humans.

  18. Mutants of Yarrowia lipolytica NCIM 3589 grown on waste cooking oil as a biofactory for biodiesel production.

    PubMed

    Katre, Gouri; Ajmera, Namasvi; Zinjarde, Smita; RaviKumar, Ameeta

    2017-10-24

    Oleaginous yeasts are fast emerging as a possible feedstock for biodiesel production. Yarrowia lipolytica, a model oleaginous yeast is known to utilize a variety of hydrophobic substrates for lipid accumulation including waste cooking oil (WCO). Approaches to increase lipid content in this yeast include metabolic engineering which requires manipulation of multiple genes in the lipid biosynthesis pathway. A classical and cost-effective approach, namely, random chemical mutagenesis on the yeast can lead to increased production of biodiesel as is explored here. In this study, chemical mutagenesis using the alkylating agent, N- methyl-N'-nitro-N-nitrosoguanidine (MNNG) as well as an additional treatment with cerulenin, a fatty acid synthase inhibitor generated 800 mutants of Y. lipolytica NCIM 3589 (761 MNNG treated and 39 MNNG + cerulenin treated). A three-stage screening using Sudan Black B plate technique, Nile red fluorimetry and total lipid extraction using solvent was performed, which enabled selection of ten high lipid yielding mutants. Time course studies of all the ten mutants were further undertaken in terms of biomass, lipid yield and lipid content to select three stable mutants (YlB6, YlC7 and YlE1) capable of growing and accumulating lipid on WCO, with lipid contents of 55, 60 and 67% as compared to 45% for the wild type. The mutants demonstrated increased volumetric lipid productivities (0.062, 0.044 and 0.041 g L -1  h -1 ) as compared to the wild type (0.033 g L -1  h -1 ). The fatty acid profile of the three mutants consisted of a high content of C16 and C18 saturated and monounsaturated fatty acids and was found to be suitable for biodiesel production. The fuel properties, namely, density, kinematic viscosity, total acid number, iodine value of the three mutants were evaluated and found to lie within the limits specified by internationally accepted standards. Additionally, it was noted that the mutants demonstrated better cetane numbers and

  19. Phenol Is the Initial Product Formed during Growth and Degradation of Bromobenzene by Tropical Marine Yeast, Yarrowia lipolytica NCIM 3589 via an Early Dehalogenation Step.

    PubMed

    Vatsal, Aakanksha A; Zinjarde, Smita S; RaviKumar, Ameeta

    2017-01-01

    Bromobenzene (BrB), a hydrophobic, recalcitrant organic compound, is listed by the environmental protection agencies as an environmental and marine pollutant having hepatotoxic, mutagenic, teratogenic, and carcinogenic effects. The tropical marine yeast Yarrowia lipolytica 3589 was seen to grow aerobically on BrB and displayed a maximum growth rate (μ max ) of 0.04 h -1 . Furthermore, we also observed an increase in cell size and sedimentation velocity for the cells grown on BrB as compared to the glucose grown cells. The cells attached to the hydrophobic bromobenzene droplets through its hydrophobic and acid-base interactions. The BrB (0.5%, 47.6 mM) was utilized by the cells with the release of a corresponding amount of bromide (12.87 mM) and yielded a cell mass of 1.86 g/L after showing 34% degradation in 96 h. Maximum dehalogenase activity of 16.16 U/mL was seen in the cell free supernatant after 24 h of growth. Identification of metabolites formed as a result of BrB degradation, namely, phenol, catechol, cis, cis muconic acid, and carbon dioxide were determined by LC-MS and GC-MS. The initial attack on bromobenzene by Y. lipolytica cells lead to the transient accumulation of phenol as an early intermediate which is being reported for the first time. Degradation of phenol led to catechol which was degraded by the ortho- cleavage pathway forming cis, cis muconic acid and then to Krebs cycle intermediates eventually leading to CO 2 production. The study shows that dehalogenation via an extracellular dehalogenase occurs prior to ring cleavage with phenol as the preliminary degradative compound being produced. The yeast was also able to grow on the degradative products, i.e., phenol and catechol, to varying degrees which would be of potential relevance in the degradation and remediation of xenobiotic environmental bromoaromatic pollutants such as bromobenzene.

  20. Gene repression via multiplex gRNA strategy in Y. lipolytica.

    PubMed

    Zhang, Jin-Lai; Peng, Yang-Zi; Liu, Duo; Liu, Hong; Cao, Ying-Xiu; Li, Bing-Zhi; Li, Chun; Yuan, Ying-Jin

    2018-04-20

    The oleaginous yeast Yarrowia lipolytica is a promising microbial cell factory due to their biochemical characteristics and native capacity to accumulate lipid-based chemicals. To create heterogenous biosynthesis pathway and manipulate metabolic flux in Y. lipolytica, numerous studies have been done for developing synthetic biology tools for gene regulation. CRISPR interference (CRISPRi), as an emerging technology, has been applied for specifically repressing genes of interest. In this study, we established CRISPRi systems in Y. lipolytica based on four different repressors, that was DNase-deactivated Cpf1 (dCpf1) from Francisella novicida, deactivated Cas9 (dCas9) from Streptococcus pyogenes, and two fusion proteins (dCpf1-KRAB and dCas9-KRAB). Ten gRNAs that bound to different regions of gfp gene were designed and the results indicated that there was no clear correlation between the repression efficiency and targeting sites no matter which repressor protein was used. In order to rapidly yield strong gene repression, a multiplex gRNAs strategy based on one-step Golden-brick assembly technology was developed. High repression efficiency 85% (dCpf1) and 92% (dCas9) were achieved in a short time by making three different gRNAs towards gfp gene simultaneously, which avoided the need of screening effective gRNA loci in advance. Moreover, two genes interference including gfp and vioE and three genes repression including vioA, vioB and vioE in protodeoxy-violaceinic acid pathway were also realized. Taken together, successful CRISPRi-mediated regulation of gene expression via four different repressors dCpf1, dCas9, dCpf1-KRAB and dCas9-KRAB in Y. lipolytica is achieved. And we demonstrate a multiplexed gRNA targeting strategy can efficiently achieve transcriptional simultaneous repression of several targeted genes and different sites of one gene using the one-step Golden-brick assembly. This timesaving method promised to be a potent transformative tool valuable for

  1. Oleaginous yeast Yarrowia lipolytica culture with synthetic and food waste-derived volatile fatty acids for lipid production.

    PubMed

    Gao, Ruiling; Li, Zifu; Zhou, Xiaoqin; Cheng, Shikun; Zheng, Lei

    2017-01-01

    The sustainability of microbial lipids production from traditional carbon sources, such as glucose or glycerol, is problematic given the high price of raw materials. Considerable efforts have been directed to minimize the cost and find new alternative carbon sources. Volatile fatty acids (VFAs) are especially attractive raw materials, because they can be produced from a variety of organic wastes fermentation. Therefore, the use of volatile fatty acids as carbon sources seems to be a feasible strategy for cost-effective microbial lipid production. Lipid accumulation in Y. lipolytica using synthetic and food waste-derived VFAs as substrates was systematically compared and evaluated in batch cultures. The highest lipid content obtained with acetic, butyric, and propionic acids reached 31.62 ± 0.91, 28.36 ± 0.74, and 28.91 ± 0.66%, respectively. High concentrations of VFA inhibited cell growth in the following order: butyric acid > propionic acid > acetic acid. Within a 30-day experimental period, Y. lipolytica could adapt up to 20 g/L acetic acid, whereas the corresponding concentration of propionic acid and butyric acid were 10 and 5 g/L, respectively. Cultures on a VFA mixture showed that the utilization of different types of VFA by Y. lipolytica was not synchronized but rather performed in a step-wise manner. Although yeast fermentation is an exothermic process, and the addition of VFA will directly affect the pH of the system by increasing environmental acidity, cultures at a cultivation temperature of 38 °C and uncontrolled pH demonstrated that Y. lipolytica had high tolerance in the high temperature and acidic environment when a low concentration (2.5 g/L) of either synthetic or food waste-derived VFA was used. However, batch cultures fed with food fermentate yielded lower lipid content (18.23 ± 1.12%) and lipid productivity (0.12 ± 0.02 g/L/day). The lipid composition obtained with synthetic and food waste-derived VFA was similar to

  2. A comparative analysis of single cell and droplet-based FACS for improving production phenotypes: Riboflavin overproduction in Yarrowia lipolytica.

    PubMed

    Wagner, James M; Liu, Leqian; Yuan, Shuo-Fu; Venkataraman, Maya V; Abate, Adam R; Alper, Hal S

    2018-04-23

    Evolutionary approaches to strain engineering inherently require the identification of suitable selection techniques for the product and phenotype of interest. In this work, we undertake a comparative analysis of two related but functionally distinct methods of high-throughput screening: traditional single cell fluorescence activated cell sorting (single cell FACS) and microdroplet-enabled FACS (droplet FACS) using water/oil/water (w/o/w) emulsions. To do so, we first engineer and evolve the non-conventional yeast Yarrowia lipolytica for high extracellular production of riboflavin (vitamin B2), an innately fluorescent product. Following mutagenesis and adaptive evolution, a direct parity-matched comparison of these two selection strategies was conducted. Both single cell FACS and droplet FACS led to significant increases in total riboflavin titer (32 and 54 fold relative to the parental PO1f strain, respectively). However, single cell FACS favored intracellular riboflavin accumulation (with only 70% of total riboflavin secreted) compared with droplet FACS that favored extracellular product accumulation (with 90% of total riboflavin secreted). We find that for the test case of riboflavin, the extent of secretion and total production were highly correlated. The resulting differences in production modes and levels clearly demonstrate the significant impact that selection approaches can exert on final evolutionary outcomes in strain engineering. Moreover, we note that these results provide a cautionary tale when intracellular read-outs of product concentration (including signals from biosensors) are used as surrogates for total production of potentially secreted products. In this regard, these results demonstrate that extracellular production is best assayed through an encapsulation technique when performing high throughput screening. Copyright © 2018 International Metabolic Engineering Society. Published by Elsevier Inc. All rights reserved.

  3. Heterologous expression of lipases YLIP4, YLIP5, YLIP7, YLIP13, and YLIP15 from Yarrowia lipolytica MSR80 in Escherichia coli: Substrate specificity, kinetic comparison, and enantioselectivity.

    PubMed

    Syal, Poonam; Gupta, Rani

    2017-11-01

    Five lipase genes, ylip4, ylip5, ylip7, ylip13, and ylip15, from Yarrowia lipolytica MSR80 were cloned and expressed in the pEZZ18-HB101 system. The lipases shared maximum sequence identity with Candida galli lipase, whereas they shared structural similarity with YLIP2 of Y. lipolytica CLIB122. The enzymes, purified using IgG sepharose, had specific activities in the range of 7-25 U mg -1 . Biochemical characteristics of all the lipases varied with respect to thermostability, substrate specificity, and enantioselectivity. All the enzymes were most active at neutral or slightly alkaline pH and were stable in the pH range 3.0-8.0, except YLIP4, which showed 50% stability at pH 10.0. Temperature optima of all the lipases varied from 30 to 50 ºC. YLIP15 and YLIP13 were most thermostable with a t 1/2 of 138 and 112 Min, respectively, at 60 °C. The lipases exhibited varied substrate specificity on p-nitrophenyl esters ranging from short-chain specificity (YLIP15), mid-chain specificity (YLIP4, YLIP5, YLIP7), and long-chain specificity (YLIP13). Catalytic efficiency on p-nitrophenylcaprate was highest for YLIP13 (67 × 10 3 mM -1 min -1 ) and lowest for YLIP15 (6.7 × 10 3 mM -1 min -1 ). YLIP13 was S-enantioselective, and YLIP15 was R-enantioselective with enantiomeric excess of 53 and 36%, respectively. Of all five lipases, YLIP13 and YLIP15 could be considered as industrially important enzymes as they were thermostable and enantioselective. © 2016 International Union of Biochemistry and Molecular Biology, Inc.

  4. Phenol Is the Initial Product Formed during Growth and Degradation of Bromobenzene by Tropical Marine Yeast, Yarrowia lipolytica NCIM 3589 via an Early Dehalogenation Step

    PubMed Central

    Vatsal, Aakanksha A.; Zinjarde, Smita S.; RaviKumar, Ameeta

    2017-01-01

    Bromobenzene (BrB), a hydrophobic, recalcitrant organic compound, is listed by the environmental protection agencies as an environmental and marine pollutant having hepatotoxic, mutagenic, teratogenic, and carcinogenic effects. The tropical marine yeast Yarrowia lipolytica 3589 was seen to grow aerobically on BrB and displayed a maximum growth rate (μmax) of 0.04 h-1. Furthermore, we also observed an increase in cell size and sedimentation velocity for the cells grown on BrB as compared to the glucose grown cells. The cells attached to the hydrophobic bromobenzene droplets through its hydrophobic and acid–base interactions. The BrB (0.5%, 47.6 mM) was utilized by the cells with the release of a corresponding amount of bromide (12.87 mM) and yielded a cell mass of 1.86 g/L after showing 34% degradation in 96 h. Maximum dehalogenase activity of 16.16 U/mL was seen in the cell free supernatant after 24 h of growth. Identification of metabolites formed as a result of BrB degradation, namely, phenol, catechol, cis, cis muconic acid, and carbon dioxide were determined by LC–MS and GC–MS. The initial attack on bromobenzene by Y. lipolytica cells lead to the transient accumulation of phenol as an early intermediate which is being reported for the first time. Degradation of phenol led to catechol which was degraded by the ortho- cleavage pathway forming cis, cis muconic acid and then to Krebs cycle intermediates eventually leading to CO2 production. The study shows that dehalogenation via an extracellular dehalogenase occurs prior to ring cleavage with phenol as the preliminary degradative compound being produced. The yeast was also able to grow on the degradative products, i.e., phenol and catechol, to varying degrees which would be of potential relevance in the degradation and remediation of xenobiotic environmental bromoaromatic pollutants such as bromobenzene. PMID:28690604

  5. Candida famata (Debaryomyces hansenii)

    NASA Astrophysics Data System (ADS)

    Sibirny, Andriy A.; Voronovsky, Andriy Y.

    Debaryomyces hansenii (teleomorph of asporogenous strains known as Candida famata ) belongs to the group of so named ‘ flavinogenic yeasts ’ capable of riboflavin oversynthesis during starvation for iron. Some strains of C. famata belong to the most flavinogenic organisms known (accumulate 20 mg of riboflavin in 1 ml of the medium) and were used for industrial production of riboflavin in USA for long time. Many strains of D. hansenii are characterized by high salt tolerance and are used for ageing of cheeses whereas some others are able to convert xylose to xylitol, anti-caries sweetener. Transformation system has been developed for D. hansenii. It includes collection of host recipient strains, vectors with complementation and dominant markers and several transformation protocols based on protoplasting and electroporation. Besides, methods of multicopy gene insertion and insertional mutagenesis have been developed and several strong constitutive and regulatable promoters have been cloned. All structural genes of riboflavin synthesis and some regulatory genes involved in this process have been identified. Genome of D. hansenii has been sequenced in the frame of French National program ‘Genolevure’ and is opened for public access

  6. Co-expression of Exo-inulinase and Endo-inulinase Genes in the Oleaginous Yeast Yarrowia lipolytica for Efficient Single Cell Oil Production from Inulin.

    PubMed

    Shi, Nianci; Mao, Weian; He, Xiaoxia; Chi, Zhe; Chi, Zhenming; Liu, Guanglei

    2018-05-01

    Yarrowia lipolytica is a promising platform for the single cell oil (SCO) production. In this study, a transformant X+N8 in which exo- and endo-inulinase genes were co-expressed could produce an inulinase activity of 124.33 U/mL within 72 h. However, the inulinase activity of a transformant X2 carrying a single exo-inulinase gene was only 47.33 U/mL within 72 h. Moreover, the transformant X+N8 could accumulate 48.13% (w/w) SCO from inulin and the cell dry weight reached 13.63 g/L within 78 h, which were significantly higher than those of the transformant X2 (41.87% (w/w) and 11.23 g/L) under the same conditions. In addition, inulin hydrolysis and utilization of the transformant X+N8 were also more efficient than those of the transformant X2 during the fermentation process. These results demonstrated that the co-expression of the exo- and endo-inulinase genes significantly enhanced the SCO production from inulin due to the improvement of the inulinase activity and the synergistic action of exo- and endo-inulinase. Besides, over 95.01% of the fatty acids from the transformant X+N8 were C16-C18, especially C18:1 (53.10%), suggesting that the fatty acids could be used as feedstock for biodiesel production.

  7. Targeted mutations and MD simulations of a methanol-stable lipase YLIP9 from Yarrowia lipolytica MSR80 to develop a biodiesel enzyme.

    PubMed

    Syal, Poonam; Verma, Ved Vrat; Gupta, Rani

    2017-11-01

    Biodiesel, an environment friendly alternative for fuels, contains methyl esters of long-chain fatty acids. Our group has reported a methanol-stable YLIP9 from Yarrowia lipolytica MSR80 that shows poor catalysis of long-chain fatty acids. To shift its substrate specificity, residues within lid and binding pocket were identified for sequential mutations using YLIP2 as the template. Of the two point mutations (Glu116Leu and Ser119Val) introduced in the lid, the former mutation (YLIP9L1) increased the catalytic rate by ∼2-fold without any change in substrate specificity. In this mutant, six binding pocket residues (Bp2-Bp7) were further mutated to obtain six double mutants. YLIP9L1Bp3 showed significant shift in substrate specificity towards long-chain pNPesters with 11-fold increase in catalytic efficiency than YLIP9. Double mutations also led to increased thermostability and lowered activation energy of YLIP9L1Bp3 thereby shifting its optimum temperature from 60°C to 50°C. In silico molecular dynamics simulations revealed improved lid flexibility and increased catalytic triad volume in YLIP9L1Bp3. The enzyme YLIP9L1Bp3 was methanol-stable having selectivity for long-chain fatty acids with improved catalytic efficiency. Its application as a biodiesel enzyme was validated by transesterification of palm oil in presence of methanol, where it showed 8-fold increase in conversion of oil to methyl esters. Copyright © 2017 Elsevier B.V. All rights reserved.

  8. Development of New Genetic Manipulation Tools for Metabolic Engineering of Diatoms

    DTIC Science & Technology

    2008-08-28

    protein L41 has been shown in a variety of yeasts to be involved in resistance to anisomycin and cycloheximide 7𔄂. A conserved mutation from proline...atipitis Yarrowia lipolytica Candida troplcalis S. cerevisiae A. nidulans Oryza sativa Homo sapiens P. tricornutum T. pseudonana...Pichia stipitis Yarrowia lipolytica Candida troplcalis S. cerevisiae A. nidulans Oryza sativa Homo sapiens P

  9. An interfacial and comparative in vitro study of gastrointestinal lipases and Yarrowia lipolytica LIP2 lipase, a candidate for enzyme replacement therapy.

    PubMed

    Bénarouche, Anaïs; Point, Vanessa; Carrière, Frédéric; Cavalier, Jean-François

    2014-07-01

    Lipolytic activities of Yarrowia lipolytica LIP2 lipase (YLLIP2), human pancreatic (HPL) and dog gastric (DGL) lipases were first compared using lecithin-stabilized triacylglycerol (TAG) emulsions (Intralipid) at various pH and bile salt concentrations. Like DGL, YLLIP2 was able to hydrolyze TAG droplets covered by a lecithin monolayer, while HPL was not directly active on that substrate. These results were in good agreement with the respective kinetics of adsorption on phosphatidylcholine (PC) monomolecular films of the same three lipases, YLLIP2 being the most tensioactive lipase. YLLIP2 adsorption onto a PC monolayer spread at the air/water interface was influenced by pH-dependent changes in the enzyme/lipid interfacial association constant (KAds) which was optimum at pH 6.0 on long-chain egg PC monolayer, and at pH 5.0 on medium chain dilauroylphosphatidylcholine film. Using substrate monolayers (1,2-dicaprin, trioctanoin), YLLIP2 displayed the highest lipolytic activities on both substrates in the 25-35 mN m(-1) surface pressure range. YLLIP2 was active in a large pH range and displayed a pH-dependent activity profile combining DGL and HPL features at pH values found in the stomach (pH 3-5) and in the intestine (pH 6-7), respectively. The apparent maximum activity of YLLIP2 was observed at acidic pH 4-6 and was therefore well correlated with an efficient interfacial binding at these pH levels, whatever the type of interfaces (Intralipid emulsions, substrate or PC monolayers). All these findings support the use of YLLIP2 in enzyme replacement therapy for the treatment of pancreatic exocrine insufficiency, a pathological situation in which an acidification of intestinal contents occurs. Copyright © 2014 Elsevier Masson SAS. All rights reserved.

  10. Debaryomyces hansenii: An Osmotolerant and Halotolerant Yeast

    NASA Astrophysics Data System (ADS)

    Aggarwal, Monika; Mondal, Alok K.

    The yeast Debaryomyces hansenii which was isolated from saline environments such as sea water, concentrated brines, salty food, is one of the most halotolerant species. It can grow in media containing as high as 4 M NaCl, while the growth of Saccharomyces cerevisiae is limited in media with more than 1.7 M NaCl. This species is very important for food industry as it is used for surface ripening of cheese and meat products. In the recent past, there is growing interest in understanding the molecular mechanisms of high halotolerance exhibited by D. hansenii. Availability of genome sequence of D. hansenii has opened up new vistas in this direction

  11. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wang, Wei; Wei, Hui; Alahuhta, Markus

    In order to develop a direct microbial sugar conversion platform for the production of lipids, drop-in fuels and chemicals from cellulosic biomass substrate, we chose Yarrowia lipolytica as a viable demonstration strain. Y. lipolytica is known to accumulate lipids intracellularly and is capable of metabolizing sugars to produce lipids; however, it lacks the lignocellulose-degrading enzymes needed to break down biomass directly. While research is continuing on the development of a Y. lipolytica strain able to degrade cellulose, in this study, we present successful expression of several xylanases in Y. lipolytica. The XynII and XlnD expressing Yarrowia strains exhibited an abilitymore » to grow on xylan mineral plates. This was shown by Congo Red staining of halo zones on xylan mineral plates. Enzymatic activity tests further demonstrated active expression of XynII and XlnD in Y. lipolytica. Furthermore, synergistic action in converting xylan to xylose was observed when XlnD acted in concert with XynII. Finally, the successful expression of these xylanases in Yarrowia further advances us toward our goal to develop a direct microbial conversion process using this organism.« less

  12. Production of Eight Different Hydride Complexes and Nitrite Release from 2,4,6-Trinitrotoluene by Yarrowia lipolytica▿ †

    PubMed Central

    Ziganshin, Ayrat M.; Gerlach, Robin; Borch, Thomas; Naumov, Anatoly V.; Naumova, Rimma P.

    2007-01-01

    2,4,6-Trinitrotoluene (TNT) transformation by the yeast strain Yarrowia lipolytica AN-L15 was shown to occur via two different pathways. Direct aromatic ring reduction was the predominant mechanism of TNT transformation, while nitro group reduction was observed to be a minor pathway. Although growth of Y. lipolytica AN-L15 was inhibited initially in the presence of TNT, TNT transformation was observed, indicating that the enzymes necessary for TNT reduction were present initially. Aromatic ring reduction resulted in the transient accumulation of eight different TNT-hydride complexes, which were characterized using high-performance liquid chromatography, UV-visible diode array detection, and negative-mode atmospheric pressure chemical ionization mass spectrometry (APCI-MS). APCI-MS analysis revealed three different groups of TNT-hydride complexes with molecular ions at m/z 227, 228, and 230, which correspond to TNT-mono- and dihydride complexes and protonated dihydride isomers, respectively. One of the three protonated dihydride complex isomers detected appears to release nitrite in the presence of strain AN-L15. This release of nitrite is of particular interest since it can provide a pathway towards complete degradation and detoxification of TNT. PMID:17933928

  13. The Gene YALI0E20207g from Yarrowia lipolytica Encodes an N-Acetylglucosamine Kinase Implicated in the Regulated Expression of the Genes from the N-Acetylglucosamine Assimilatory Pathway

    PubMed Central

    Flores, Carmen-Lisset; Gancedo, Carlos

    2015-01-01

    The non-conventional yeast Yarrowia lipolytica possesses an ORF, YALI0E20207g, which encodes a protein with an amino acid sequence similar to hexokinases from different organisms. We have cloned that gene and determined several enzymatic properties of its encoded protein showing that it is an N-acetylglucosamine (NAGA) kinase. This conclusion was supported by the lack of growth in NAGA of a strain carrying a YALI0E20207g deletion. We named this gene YlNAG5. Expression of YlNAG5 as well as that of the genes encoding the enzymes of the NAGA catabolic pathway—identified by a BLAST search—was induced by this sugar. Deletion of YlNAG5 rendered that expression independent of the presence of NAGA in the medium and reintroduction of the gene restored the inducibility, indicating that YlNag5 participates in the transcriptional regulation of the NAGA assimilatory pathway genes. Expression of YlNAG5 was increased during sporulation and homozygous Ylnag5/Ylnag5 diploid strains sporulated very poorly as compared with a wild type isogenic control strain pointing to a participation of the protein in the process. Overexpression of YlNAG5 allowed growth in glucose of an Ylhxk1glk1 double mutant and produced, in a wild type background, aberrant morphologies in different media. Expression of the gene in a Saccharomyces cerevisiae hxk1 hxk2 glk1 triple mutant restored ability to grow in glucose. PMID:25816199

  14. The RNA polymerase III-dependent family of genes in hemiascomycetes: comparative RNomics, decoding strategies, transcription and evolutionary implications

    PubMed Central

    Marck, Christian; Kachouri-Lafond, Rym; Lafontaine, Ingrid; Westhof, Eric; Dujon, Bernard; Grosjean, Henri

    2006-01-01

    We present the first comprehensive analysis of RNA polymerase III (Pol III) transcribed genes in ten yeast genomes. This set includes all tRNA genes (tDNA) and genes coding for SNR6 (U6), SNR52, SCR1 and RPR1 RNA in the nine hemiascomycetes Saccharomyces cerevisiae, Saccharomyces castellii, Candida glabrata, Kluyveromyces waltii, Kluyveromyces lactis, Eremothecium gossypii, Debaryomyces hansenii, Candida albicans, Yarrowia lipolytica and the archiascomycete Schizosaccharomyces pombe. We systematically analysed sequence specificities of tRNA genes, polymorphism, variability of introns, gene redundancy and gene clustering. Analysis of decoding strategies showed that yeasts close to S.cerevisiae use bacterial decoding rules to read the Leu CUN and Arg CGN codons, in contrast to all other known Eukaryotes. In D.hansenii and C.albicans, we identified a novel tDNA-Leu (AAG), reading the Leu CUU/CUC/CUA codons with an unusual G at position 32. A systematic ‘p-distance tree’ using the 60 variable positions of the tRNA molecule revealed that most tDNAs cluster into amino acid-specific sub-trees, suggesting that, within hemiascomycetes, orthologous tDNAs are more closely related than paralogs. We finally determined the bipartite A- and B-box sequences recognized by TFIIIC. These minimal sequences are nearly conserved throughout hemiascomycetes and were satisfactorily retrieved at appropriate locations in other Pol III genes. PMID:16600899

  15. Inhibition of ochratoxigenic moulds by Debaryomyces hansenii strains for biopreservation of dry-cured meat products.

    PubMed

    Andrade, Maria J; Thorsen, Line; Rodríguez, Alicia; Córdoba, Juan J; Jespersen, Lene

    2014-01-17

    The ability of the osmotolerant yeast Debaryomyces hansenii to inhibit Penicillium nordicum, the most common ochratoxigenic mould encountered in dry-cured meat products, was evaluated. The antagonistic effect of ten D. hansenii strains isolated from dry-cured ham was screened in vitro using malt extract media and meat extract peptone media with the water activity (a(w)) adjusted to 0.97 and 0.90. A significant inhibition of the two tested P. nordicum strains by D. hansenii cells and cell-free supernatants was observed. At 0.97 a(w), increasing D. hansenii inoculum concentrations significantly improved the inhibition of mould growth on solid medium, whereas at 0.90 a(w) this was not always the case. As observed by bright field microscopy, most D. hansenii strains were able to delay P. nordicum spore germination when co-cultured in malt extract broth. D. hansenii FHSCC 253H showed the highest overall in vitro inhibition of ochratoxigenic mould growth, and was therefore chosen for co-cultivation assays in dry-cured ham slices incubated at 0.94 and 0.84 a(w) simulating ham ripening. Regardless of the experimental conditions tested, lower levels of the inoculated P. nordicum strain were detected in co-cultivation batches compared with batches without D. hansenii. The highest level of mould growth inhibition was observed in batches at 0.94 a(w). Ochratoxin A (OTA) production in ham samples was detected by HPLC-MS. Co-culturing of P. nordicum with D. hansenii FHSCC 253H resulted in lower OTA levels compared with control samples without D. hansenii. The decrease of the mycotoxin presence due to D. hansenii FHSCC 253H was more efficient at 0.94 a(w) (OTA was below the detection limit). In conclusion, D. hansenii is potentially suitable as a biopreservative agent for preventing ochratoxigenic mould growth and OTA accumulation in dry-cured meat products. The inoculation of D. hansenii should be made at the beginning of processing (at the end of post salting) when the a(w) of

  16. Characterization of the two intracellular lipases of Y. lipolytica encoded by TGL3 and TGL4 genes: new insights into the role of intracellular lipases and lipid body organisation.

    PubMed

    Dulermo, Thierry; Tréton, Brigitte; Beopoulos, Athanasios; Kabran Gnankon, Affoué Philomène; Haddouche, Ramdane; Nicaud, Jean-Marc

    2013-09-01

    Eukaryotes store lipids in a specialised organelle, the lipid body (LB), mainly as triglycerides (TAGs). Both the rates of synthesis and degradation contribute to the control of the accumulation of TAGs. The synthesis of TAGs in yeasts has been well documented, especially in the model yeast Saccharomyces cerevisiae and in the oleaginous yeast Yarrowia lipolytica. However, descriptions of the processes involved in TAG degradation are more scarce and mostly for S. cerevisiae. Here, we report the characterisation of two Y. lipolytica genes, YlTGL3 and YlTGL4, encoding intracellular lipases involved in TAG degradation. The two proteins are localised in lipid bodies, and YlTgl4 was mainly found at the interface between LBs. Surprisingly, the spatial organisation of YlTgl3 and YlTgl4 depends on the culture medium and on the physiological phase of the cell. Inactivation of one or both genes doubles the lipid accumulation capacity of Y. lipolytica, increasing the cell's capacity to accumulate TAGs. The amino acid sequence of YlTgl4 contains the consensus sequence motif (G/A)XSXG, typical of serine hydrolases, whereas YlTgl3 does not. Single and double mutants are unable to degrade TAGs, and higher expression of YlTgl4 correlates with TAG degradation. Therefore, we propose that YlTgl4 is the main lipase responsible for TAG degradation and that YlTgl3 may act as a positive regulator of YlTgl4 rather than a functional lipase. Thus, contrary to S. cerevisiae, Y. lipolytica possesses two intracellular lipases with distinct roles and with distinct localisations in the LB. © 2013. Published by Elsevier B.V. All rights reserved.

  17. Effects of Topical Anesthetics on Pullularia pullulans and Debaryomyces hansenii

    PubMed Central

    Merdinger, Emanuel; Guthmann, Walter S.; Mangine, Francis W.

    1969-01-01

    The inhibitory effects of three topical anesthetics of various concentrations on the growth of Pullularia pullulans, Debaryomyces hansenii, and on pigment production by P. pullulans were investigated. The topical anesthetics were benoxinate hydrochloride, proparacaine hydrochloride, and tetracaine hydrochloride. In decreasing order, the inhibiting effects of the drugs on growth were benoxinate, tetracaine, and proparacaine for P. pullulans, and tetracaine, benoxinate, and proparacaine for D. hansenii. The pigment formation in P. pullulans was inhibited by the three drugs. PMID:5392897

  18. Effects of topical anesthetics on Pullalaria pullulans and Debaryomyces hansenii.

    PubMed

    Merdinger, E; Guthmann, W S; Mangine, F W

    1969-09-01

    The inhibitory effects of three topical anesthetics of various concentrations on the growth of Pullularia pullulans, Debaryomyces hansenii, and on pigment production by P. pullulans were investigated. The topical anesthetics were benoxinate hydrochloride, proparacaine hydrochloride, and tetracaine hydrochloride. In decreasing order, the inhibiting effects of the drugs on growth were benoxinate, tetracaine, and proparacaine for P. pullulans, and tetracaine, benoxinate, and proparacaine for D. hansenii. The pigment formation in P. pullulans was inhibited by the three drugs.

  19. Characterization of the marine propionate-degrading, sulfate-reducing bacterium Desulfofaba fastidiosa sp. nov. and reclassification of Desulfomusa hansenii as Desulfofaba hansenii comb. nov.

    PubMed

    Abildgaard, Lone; Ramsing, Niels Birger; Finster, Kai

    2004-03-01

    A rod-shaped, slightly curved sulfate reducer, designated strain P2(T), was isolated from the sulfate-methane transition zone of a marine sediment. Cells were motile by means of a single polar flagellum. The strain reduced sulfate, thiosulfate and sulfite to sulfide and used propionate, lactate and 1-propanol as electron donors. Strain P2(T) also grew by fermentation of lactate. Propionate was oxidized incompletely to acetate and CO(2). The DNA G+C content was 48.8 mol%. Sequence analysis of the small-subunit rDNA and the dissimilatory sulfite reductase gene revealed that strain P2(T) was related to the genera Desulfonema, Desulfococcus, Desulfosarcina, 'Desulfobotulus', Desulfofaba, Desulfomusa and Desulfofrigus. These genera include incomplete as well as complete oxidizers of substrates. Strain P2(T) shared important morphological and physiological traits with Desulfofaba gelida and Desulfomusa hansenii, including the ability to oxidize propionate incompletely to acetate. The 16S rRNA gene similarities of P2(T) to Desulfofaba gelida and Desulfomusa hansenii were respectively 92.9 and 91.5 %. Combining phenotypic and genotypic traits, we propose strain P2(T) to be a member of the genus Desulfofaba. The name Desulfofaba fastidiosa sp. nov. (type strain P2(T)=DSM 15249(T)=ATCC BAA-815(T)) is proposed, reflecting the limited number of substrates consumed by the strain. In addition, the reclassification of Desulfomusa hansenii as a member of the genus Desulfofaba, Desulfofaba hansenii comb. nov., is proposed. A common line of descent and a number of shared phenotypic traits support this reclassification.

  20. Evaluation of the Composition of Culture Medium for Yeast Biomass Production Using Raw Glycerol from Biodiesel Synthesis

    PubMed Central

    dos Santos, Elisane Odriosolla; Michelon, Mariano; Furlong, Eliana Badiale; Burkert, Janaína Fernandes de Medeiros; Kalil, Susana Juliano; Burkert, Carlos André Veiga

    2012-01-01

    The work herewith investigated the production of yeast biomass as a source of protein, using Yarrowia lipolytica NRRL YB-423 and raw glycerol from biodiesel synthesis as the main carbon source. A significant influence of glycerol concentration, initial pH and yeast extract concentration on biomass and protein content was observed according to the 2v5-1 fractional design. These factors were further evaluated using a central composite design and response surface methodology, and an empirical model for protein content was established and validated. The biomass of Yarrowia lipolytica NRRL YB-423 reached 19.5 ± 1.0 g/L in shaken flasks cultivation, with a protein content of 20.1 ± 0.6% (w/w). PMID:24031849

  1. 21 CFR 173.165 - Candida lipolytica.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... description for Candida lipolytica variety lipolytica listed in “The Yeasts—A Toxonomic Study,” 2d Ed. (1970... equivalent). Activate as follows: Slurry 900 grams of silica gel reagent with 2 liters of purified water in a 3-liter beaker. Cool the mixture and pour into a 80 × 900 chromatographic column with coarse fritted...

  2. 21 CFR 173.165 - Candida lipolytica.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... description for Candida lipolytica variety lipolytica listed in “The Yeasts—A Toxonomic Study,” 2d Ed. (1970... equivalent). Activate as follows: Slurry 900 grams of silica gel reagent with 2 liters of purified water in a 3-liter beaker. Cool the mixture and pour into a 80 × 900 chromatographic column with coarse fritted...

  3. Microbial Interactions within a Cheese Microbial Community▿ †

    PubMed Central

    Mounier, Jérôme; Monnet, Christophe; Vallaeys, Tatiana; Arditi, Roger; Sarthou, Anne-Sophie; Hélias, Arnaud; Irlinger, Françoise

    2008-01-01

    The interactions that occur during the ripening of smear cheeses are not well understood. Yeast-yeast interactions and yeast-bacterium interactions were investigated within a microbial community composed of three yeasts and six bacteria found in cheese. The growth dynamics of this community was precisely described during the ripening of a model cheese, and the Lotka-Volterra model was used to evaluate species interactions. Subsequently, the effects on ecosystem functioning of yeast omissions in the microbial community were evaluated. It was found both in the Lotka-Volterra model and in the omission study that negative interactions occurred between yeasts. Yarrowia lipolytica inhibited mycelial expansion of Geotrichum candidum, whereas Y. lipolytica and G. candidum inhibited Debaryomyces hansenii cell viability during the stationary phase. However, the mechanisms involved in these interactions remain unclear. It was also shown that yeast-bacterium interactions played a significant role in the establishment of this multispecies ecosystem on the cheese surface. Yeasts were key species in bacterial development, but their influences on the bacteria differed. It appeared that the growth of Arthrobacter arilaitensis or Hafnia alvei relied less on a specific yeast function because these species dominated the bacterial flora, regardless of which yeasts were present in the ecosystem. For other bacteria, such as Leucobacter sp. or Brevibacterium aurantiacum, growth relied on a specific yeast, i.e., G. candidum. Furthermore, B. aurantiacum, Corynebacterium casei, and Staphylococcus xylosus showed reduced colonization capacities in comparison with the other bacteria in this model cheese. Bacterium-bacterium interactions could not be clearly identified. PMID:17981942

  4. The euryhaline yeast Debaryomyces hansenii has two catalase genes encoding enzymes with differential activity profile.

    PubMed

    Segal-Kischinevzky, Claudia; Rodarte-Murguía, Beatriz; Valdés-López, Victor; Mendoza-Hernández, Guillermo; González, Alicia; Alba-Lois, Luisa

    2011-03-01

    Debaryomyces hansenii is a spoilage yeast able to grow in a variety of ecological niches, from seawater to dairy products. Results presented in this article show that (i) D. hansenii has an inherent resistance to H2O2 which could be attributed to the fact that this yeast has a basal catalase activity which is several-fold higher than that observed in Saccharomyces cerevisiae under the same culture conditions, (ii) D. hansenii has two genes (DhCTA1 and DhCTT1) encoding two catalase isozymes with a differential enzymatic activity profile which is not strictly correlated with a differential expression profile of the encoding genes.

  5. Selection and evaluation of Debaryomyces hansenii isolates as potential bioprotective agents against toxigenic penicillia in dry-fermented sausages.

    PubMed

    Núñez, Félix; Lara, María S; Peromingo, Belén; Delgado, Josué; Sánchez-Montero, Lourdes; Andrade, María J

    2015-04-01

    Biocontrol using autochthonous Debaryomyces hansenii isolates is a potentially suitable strategy for inhibiting toxigenic moulds in dry-cured meat products. The antifungal activity of 280 D. hansenii isolated from dry-cured meat products as well as the mode of action of the most active isolates against toxigenic penicillia were evaluated in this work. A 13.9% of the D. hansenii isolates showed inhibitory activity in a radial inhibition assay. The effects on penicillia growth of both the cell-free culture filtrate and volatile compounds from active yeast isolates were analysed. Penicillia growth inhibition by D. hansenii was probably based on additive or synergistic effects of several inhibiting factors such as competition for nutrient and space, and production of soluble or volatile compounds. When four D. hansenii isolates were tested on dry-fermented sausage, two of them produced a significantly growth reduction of the ochratoxigenic Penicillium verrucosum, keeping its counts under the level considered as hazardous for the mycotoxin presence. Therefore, the use of these two D. hansenii isolates during the processing of dry-fermented meat product could be a promising tool to control toxigenic moulds in the meat industry. Copyright © 2014 Elsevier Ltd. All rights reserved.

  6. Complete Genome Sequence of Komagataeibacter hansenii LMG 23726T

    PubMed Central

    Santos, Richard; Ebels, Marcus; Bordbar, Darius

    2017-01-01

    ABSTRACT This study reports the release of the complete nucleotide sequence of Komagataeibacter hansenii LMG 23726T. This organism is a cellulose producer, and its genome may provide more information to aid in the understanding of the genes necessary for cellulose biosynthesis. PMID:28408680

  7. Comparison of volatile sulphur compound production by cheese-ripening yeasts from methionine and methionine-cysteine mixtures.

    PubMed

    López Del Castillo-Lozano, M; Delile, A; Spinnler, H E; Bonnarme, P; Landaud, S

    2007-07-01

    Production of volatile sulphur compounds (VSC) was assessed in culture media supplemented with L-methionine or L-methionine/L-cysteine mixtures, using five cheese-ripening yeasts: Debaryomyces hansenii DH47(8), Kluyveromyces lactis KL640, Geotrichum candidum GC77, Yarrowia lipolytica YL200 and Saccharomyces cerevisiae SC45(3). All five yeasts produced VSC with L-methionine or L-methionine/L-cysteine, but different VSC profiles were found. GC77 and YL200 produced dimethyldisulphide and trace levels of dimethyltrisulphide while DH47(8), KL640 and SC45(3) produced mainly methionol and low levels of methional. S-methylthioacetate was produced by all the yeasts but at different concentrations. DH47(8), KL640 and SC45(3) also produced other minor VSC including 3-methylthiopropyl acetate, ethyl-3-methylthiopropanoate, a thiophenone, and an oxathiane. However, VSC production diminished in a strain-dependent behaviour when L-cysteine was supplemented, even at a low concentration (0.2 g l(-1)). This effect was due mainly to a significant decrease in L-methionine consumption in all the yeasts except YL200. Hydrogen sulphide produced by L-cysteine catabolism did not seem to contribute to VSC generation at the acid pH of yeast cultures. The significance of such results in the cheese-ripening context is discussed.

  8. Complete Genome Sequence of Komagataeibacter hansenii Strain SC-3B

    PubMed Central

    Santos, Richard; Ebels, Marcus; Bordbar, Darius

    2017-01-01

    ABSTRACT This study reports the release of the complete nucleotide sequence of Komagataeibacter hansenii SC-3B, a new efficient producer of cellulose. Elucidation of the genome may provide more information to aid in understanding the genes necessary for cellulose biosynthesis. PMID:28408681

  9. Origins of cell-to-cell bioprocessing diversity and implications of the extracellular environment revealed at the single-cell level

    DOE PAGES

    Vasdekis, A. E.; Silverman, A. M.; Stephanopoulos, G.

    2015-12-14

    We probed the lipid expression dynamics of the oleaginous yeast Yarrowia Lipolytica. We observed that neutral lipid expression is sporadic. By performing single-cell analysis, we found that such noise emanates from the metabolic reaction level. Our results provide an alternative insight into the regulation and phenotypic variability of lipogenesis.

  10. Intracellular pH Homeostasis Plays a Role in the Tolerance of Debaryomyces hansenii and Candida zeylanoides to Acidified Nitrite▿

    PubMed Central

    Mortensen, Henrik Dam; Jacobsen, Tomas; Koch, Anette Granly; Arneborg, Nils

    2008-01-01

    The effects of acidified-nitrite stress on the growth initiation and intracellular pH (pHi) of individual cells of Debaryomyces hansenii and Candida zeylanoides were investigated. Our results show that 200 μg/ml of nitrite caused pronounced growth inhibition and intracellular acidification of D. hansenii at an external pH (pHex) value of 4.5 but did not at pHex 5.5. These results indicate that nitrous acid as such plays an important role in the antifungal effect of acidified nitrite. Furthermore, both yeast species experienced severe growth inhibition and a pHi decrease at pHex 4.5, suggesting that at least some of the antifungal effects of acidified nitrite may be due to intracellular acidification. For C. zeylanoides, this phenomenon could be explained in part by the uncoupling effect of energy generation from growth. Debaryomyces hansenii was more tolerant to acidified nitrite at pHex 5.5 than C. zeylanoides, as determined by the rate of growth initiation. In combination with the fact that D. hansenii was able to maintain pHi homeostasis at pHex 5.5 but C. zeylanoides was not, our results suggest that the ability to maintain pHi homeostasis plays a role in the acidified-nitrite tolerance of D. hansenii and C. zeylanoides. Possible mechanisms underlying the different abilities of the two yeast species to maintain their pHi homeostasis during acidified-nitrite stress, comprising the intracellular buffer capacity and the plasma membrane ATPase activity, were investigated, but none of these mechanisms could explain the difference. PMID:18539814

  11. Genome sequence and plasmid transformation of the model high-yield bacterial cellulose producer Gluconacetobacter hansenii ATCC 53582

    NASA Astrophysics Data System (ADS)

    Florea, Michael; Reeve, Benjamin; Abbott, James; Freemont, Paul S.; Ellis, Tom

    2016-03-01

    Bacterial cellulose is a strong, highly pure form of cellulose that is used in a range of applications in industry, consumer goods and medicine. Gluconacetobacter hansenii ATCC 53582 is one of the highest reported bacterial cellulose producing strains and has been used as a model organism in numerous studies of bacterial cellulose production and studies aiming to increased cellulose productivity. Here we present a high-quality draft genome sequence for G. hansenii ATCC 53582 and find that in addition to the previously described cellulose synthase operon, ATCC 53582 contains two additional cellulose synthase operons and several previously undescribed genes associated with cellulose production. In parallel, we also develop optimized protocols and identify plasmid backbones suitable for transformation of ATCC 53582, albeit with low efficiencies. Together, these results provide important information for further studies into cellulose synthesis and for future studies aiming to genetically engineer G. hansenii ATCC 53582 for increased cellulose productivity.

  12. A surprisingly large RNase P RNA in Candida glabrata

    PubMed Central

    KACHOURI, RYM; STRIBINSKIS, VILIUS; ZHU, YANGLONG; RAMOS, KENNETH S.; WESTHOF, ERIC; LI, YONG

    2005-01-01

    We have found an extremely large ribonuclease P (RNase P) RNA (RPR1) in the human pathogen Candida glabrata and verified that this molecule is expressed and present in the active enzyme complex of this hemiascomycete yeast. A structural alignment of the C. glabrata sequence with 36 other hemiascomycete RNase P RNAs (abbreviated as P RNAs) allows us to characterize the types of insertions. In addition, 15 P RNA sequences were newly characterized by searching in the recently sequenced genomes Candida albicans, C. glabrata, Debaryomyces hansenii, Eremothecium gossypii, Kluyveromyces lactis, Kluyveromyces waltii, Naumovia castellii, Saccharomyces kudriavzevii, Saccharomyces mikatae, and Yarrowia lipolytica; and by PCR amplification for other Candida species (Candida guilliermondii, Candida krusei, Candida parapsilosis, Candida stellatoidea, and Candida tropicalis). The phylogenetic comparative analysis identifies a hemiascomycete secondary structure consensus that presents a conserved core in all species with variable insertions or deletions. The most significant variability is found in C. glabrata P RNA in which three insertions exceeding in total 700 nt are present in the Specificity domain. This P RNA is more than twice the length of any other homologous P RNAs known in the three domains of life and is eight times the size of the smallest. RNase P RNA, therefore, represents one of the most diversified noncoding RNAs in terms of size variation and structural diversity. PMID:15987816

  13. Changes in volatile profile of soybean residue (okara) upon solid-state fermentation by yeasts.

    PubMed

    Vong, Weng Chan; Liu, Shao-Quan

    2017-01-01

    Soybean residue (okara), a by-product of soymilk, is produced in large volumes by the soy food industry and is often discarded due to its undesirable flavour. As it contains a considerable amount of protein and fats, biotransformation of okara to improve its flavour presents an opportunity for alternative utilisation. This paper evaluated 10 yeasts in the solid-state fermentation of okara based on their volatile profiles as analysed with HS-SPME GC-MS/FID. Four 'dairy yeasts' (Geotrichum candidum, Yarrowia lipolytica, Debaryomyces hansenii and Kluyveromyces lactis) and six 'wine yeasts' (Saccharomyces cerevisiae, Lachancea thermotolerans, Metschnikowia pulcherrima, Pichia kluyveri, Torulaspora delbrueckii, and Williopsis saturnus) were studied. The main off-odourants in okara, hexanal and trans-2-hexenal, significantly decreased after fermentation due to their bioconversion into methyl ketones and/or esters. The okara fermented by dairy yeasts contained greater proportions of methyl ketones, while that by wine yeasts contained more ethyl and acetyl esters. Notably, the okara fermented by W. saturnus contained 13 esters and the total GC-FID peak area of esters was about 380 times that in fresh okara, leading to a perceptible fruity note. Okara can be exploited as an inexpensive substrate for bioflavour extraction and/or a more pleasant food ingredient via yeast fermentation. © 2016 Society of Chemical Industry. © 2016 Society of Chemical Industry.

  14. Intracellular pH homeostasis plays a role in the tolerance of Debaryomyces hansenii and Candida zeylanoides to acidified nitrite.

    PubMed

    Mortensen, Henrik Dam; Jacobsen, Tomas; Koch, Anette Granly; Arneborg, Nils

    2008-08-01

    The effects of acidified-nitrite stress on the growth initiation and intracellular pH (pH(i)) of individual cells of Debaryomyces hansenii and Candida zeylanoides were investigated. Our results show that 200 microg/ml of nitrite caused pronounced growth inhibition and intracellular acidification of D. hansenii at an external pH (pH(ex)) value of 4.5 but did not at pH(ex) 5.5. These results indicate that nitrous acid as such plays an important role in the antifungal effect of acidified nitrite. Furthermore, both yeast species experienced severe growth inhibition and a pH(i) decrease at pH(ex) 4.5, suggesting that at least some of the antifungal effects of acidified nitrite may be due to intracellular acidification. For C. zeylanoides, this phenomenon could be explained in part by the uncoupling effect of energy generation from growth. Debaryomyces hansenii was more tolerant to acidified nitrite at pH(ex) 5.5 than C. zeylanoides, as determined by the rate of growth initiation. In combination with the fact that D. hansenii was able to maintain pH(i) homeostasis at pH(ex) 5.5 but C. zeylanoides was not, our results suggest that the ability to maintain pH(i) homeostasis plays a role in the acidified-nitrite tolerance of D. hansenii and C. zeylanoides. Possible mechanisms underlying the different abilities of the two yeast species to maintain their pH(i) homeostasis during acidified-nitrite stress, comprising the intracellular buffer capacity and the plasma membrane ATPase activity, were investigated, but none of these mechanisms could explain the difference.

  15. [Yeast irrigation enhances the nutritional content in hydroponic green maize fodder].

    PubMed

    Bedolla-Torres, Martha H; Palacios Espinosa, Alejandro; Palacios, Oskar A; Choix, Francisco J; Ascencio Valle, Felipe de Jesús; López Aguilar, David R; Espinoza Villavicencio, José Luis; de Luna de la Peña, Rafael; Guillen Trujillo, Ariel; Avila Serrano, Narciso Y; Ortega Pérez, Ricardo

    2015-01-01

    The objective of this study was to evaluate the effect of irrigation with yeasts (Debaryomyces hansenii var. Fabry, Yarowia lipolytica YIBCS002, Yarowia lipolytica var. BCS and Candida pseudointermedia) on the final nutritional content of hydroponic green maize fodder (Zea Zea mays L.), applied at different fodder growth stages (1. seed-seedling stage, 2. seedling-plant 20cm, 3. during all the culture). Irrespective of the fodder growth stages at which they were applied, all yeasts tested enhanced the content of raw protein, lipids, ash, moisture and energy. The percentage of electrolytes (Na, K, Cl, sulphates, Ca and Mg) showed different responses depending on the kind of yeast applied; D. hansenii exhibited the highest increment in all electrolytes, except for phosphorous. We conclude that the addition of yeasts belonging to the genera Debaryomyces, Candida and Yarowia to the irrigation solution of hydroponic systems enhances the nutrient content of green fodder. This kind of irrigation can be applied to generate high commercial value cultures in limited spaces. Copyright © 2014 Asociación Argentina de Microbiología. Publicado por Elsevier España, S.L.U. All rights reserved.

  16. Effect of selected strains of Debaryomyces hansenii on the volatile compound production of dry fermented sausage "salchichón".

    PubMed

    Andrade, M A Jesús; Córdoba, Juan José; Casado, Eva M A; Córdoba, María G; Rodríguez, Mar

    2010-06-01

    Different biotypes of Debaryomyces hansenii, characterized by mitochondrial DNA (mtDNA) restriction analysis, were inoculated in dry fermented sausages to evaluate their influence as single starter culture on volatile compound generation throughout the ripening process. Similar evolution of physicochemical parameters and microbial population was observed in both uninoculated and inoculated sausages. The tested biotypes modified the volatile compound profile of sausages specially in esters, branched alcohols and aldehydes. The biotype of D. hansenii with the E mtDNA restriction pattern is the most suitable to be used as starter culture since it produced volatile compounds involved in flavour development of dry-cured meat products such as 3-methylbutanol, 3-methylbutanal and 2-propanone. Moreover, the use of D. hansenii strains with the B, C2 and E mtDNA restriction patterns, as a mixed starter culture, should be also considered to generate low amount of sulphur compounds in dry-cured meat products. Copyright 2010 Elsevier Ltd. All rights reserved.

  17. Complementation and Genetic Recombination in Candida lipolytica

    PubMed Central

    Bassel, John; Warfei, Jean; Mortimer, Robert

    1971-01-01

    Nutritional requirements were introduced into wild-type, heterothallic strains of Candida lipolytica by exposing the cells to X rays. Complementing hybrids were recovered from mixtures of the auxotrophic strains, and genetic recombination was observed in individually isolated ascospores from the hybrid strains. PMID:5122814

  18. Surface Microflora of Four Smear-Ripened Cheeses

    PubMed Central

    Mounier, Jérôme; Gelsomino, Roberto; Goerges, Stefanie; Vancanneyt, Marc; Vandemeulebroecke, Katrien; Hoste, Bart; Scherer, Siegfried; Swings, Jean; Fitzgerald, Gerald F.; Cogan, Timothy M.

    2005-01-01

    The microbial composition of smear-ripened cheeses is not very clear. A total of 194 bacterial isolates and 187 yeast isolates from the surfaces of four Irish farmhouse smear-ripened cheeses were identified at the midpoint of ripening using pulsed-field gel electrophoresis (PFGE), repetitive sequence-based PCR, and 16S rRNA gene sequencing for identifying and typing the bacteria and Fourier transform infrared spectroscopy and mitochondrial DNA restriction fragment length polymorphism (mtDNA RFLP) analysis for identifying and typing the yeast. The yeast microflora was very uniform, and Debaryomyces hansenii was the dominant species in the four cheeses. Yarrowia lipolytica was also isolated in low numbers from one cheese. The bacteria were highly diverse, and 14 different species, Corynebacterium casei, Corynebacterium variabile, Arthrobacter arilaitensis, Arthrobacter sp., Microbacterium gubbeenense, Agrococcus sp. nov., Brevibacterium linens, Staphylococcus epidermidis, Staphylococcus equorum, Staphylococcus saprophyticus, Micrococcus luteus, Halomonas venusta, Vibrio sp., and Bacillus sp., were identified on the four cheeses. Each cheese had a more or less unique microflora with four to nine species on its surface. However, two bacteria, C. casei and A. arilaitensis, were found on each cheese. Diversity at the strain level was also observed, based on the different PFGE patterns and mtDNA RFLP profiles of the dominant bacterial and yeast species. None of the ripening cultures deliberately inoculated onto the surface were reisolated from the cheeses. This study confirms the importance of the adventitious, resident microflora in the ripening of smear cheeses. PMID:16269673

  19. Adhesion of Bacillus subtilis and Pseudoalteromonas lipolytica to steel in a seawater environment and their effects on corrosion.

    PubMed

    Guo, Zhangwei; Liu, Tao; Cheng, Y Frank; Guo, Na; Yin, Yansheng

    2017-09-01

    In a marine environment, Bacillus subtilis and Pseudoalteromonas lipolytica are commonly found in the biofilms adherent to low-alloy engineering steel, and they have distinct effects on corrosion. In the present work, this phenomenon was investigated through the study of various materials characterization methods, electrochemical techniques, and contact angle measurements. It was found that the surface film formed on the steel in the presence of B. subtilis was compact, uniform, free of cracks, and hydrophobic. However, the film formed in the presence of P. lipolytica was loose, rough, heterogeneous, and hydrophilic. The main components of the films formed in the presence of B. subtilis and P. lipolytica were polysaccharides/TasA amyloid fibers and proteins/carboxylic acid, respectively. The composition, structure, and properties of the surface films formed on the steel were associated with different effects on corrosion. The presence of B. subtilis enhances the steel's resistance to corrosion, whereas corrosion was increased by the presence of P. lipolytica. In short, the compact and hydrophobic biofilm of B. subtilis appears to inhibit the corrosion of steel, while the loose, hydrophilic film of P. lipolytica tends to induce pitting corrosion. Copyright © 2017 Elsevier B.V. All rights reserved.

  20. Clinical, microbiological, and experimental animal studies of Candida lipolytica.

    PubMed Central

    Walsh, T J; Salkin, I F; Dixon, D M; Hurd, N J

    1989-01-01

    Candida lipolytica was recovered from six patients in three different clinical centers. The index isolate caused a persistent fungemia with catheter-associated Candida thrombophlebitis, the second isolate was from a polymicrobial sinusitis, and the remaining four isolates were involved in tissue colonization. These and 20 other isolates were consistent in their morphological and physiological characteristics. All formed true hyphae and blastoconidia on cornmeal-Tween 80 agar and all assimilated glucose, glycerol, and erythritol. In a murine model of disseminated candidiasis, the index isolate that caused clinical fungemia caused no mortality and produced only two lesions on a kidney, as determined at necropsy. The nine isolates selected for in vitro antifungal susceptibility studies had intermediate susceptibilities to amphotericin B but were susceptible to ketoconazole. We conclude that C. lipolytica is a weakly virulent pathogen which may require an intravascular foreign body to cause fungemia. Images PMID:2745702

  1. Optimization of cold-adapted lysozyme production from the psychrophilic yeast Debaryomyces hansenii using statistical experimental methods.

    PubMed

    Wang, Quanfu; Hou, Yanhua; Yan, Peisheng

    2012-06-01

    Statistical experimental designs were employed to optimize culture conditions for cold-adapted lysozyme production of a psychrophilic yeast Debaryomyces hansenii. In the first step of optimization using Plackett-Burman design (PBD), peptone, glucose, temperature, and NaCl were identified as significant variables that affected lysozyme production, the formula was further optimized using a four factor central composite design (CCD) to understand their interaction and to determine their optimal levels. A quadratic model was developed and validated. Compared to the initial level (18.8 U/mL), the maximum lysozyme production (65.8 U/mL) observed was approximately increased by 3.5-fold under the optimized conditions. Cold-adapted lysozymes production was first optimized using statistical experimental methods. A 3.5-fold enhancement of microbial lysozyme was gained after optimization. Such an improved production will facilitate the application of microbial lysozyme. Thus, D. hansenii lysozyme may be a good and new resource for the industrial production of cold-adapted lysozymes. © 2012 Institute of Food Technologists®

  2. Impact of Debaryomyces hansenii strains inoculation on the quality of slow dry-cured fermented sausages.

    PubMed

    Cano-García, Liliana; Belloch, Carmela; Flores, Mónica

    2014-04-01

    Debaryomyces hansenii strains, M4 and P2, isolated from natural fermented sausages were inoculated in slow fermented sausages to study their effect on processing parameters, microbial population, volatile compound and sensory characteristics. The inoculation of D. hansenii strains, M4 and P2, did not affect the ripening process as no differences in pH and Aw were detected. The dominance of the inoculated yeast strains along the process was followed by RAPDs of M13 minisatellite. The inoculated yeasts, P2 and M4, were recovered at the end of the ripening process although P2 appeared in higher counts than M4. The sausages inoculated with P2 resulted in a decrease in lipid oxidation values (TBARS) and a reduction of lipid-oxidation derived aldehydes in addition to a highest acid compound abundance. M4 inoculated sausages resulted in highest sulphur containing compound abundance. However, no differences in consumer acceptance were detected. Moreover, both yeast strains were responsible for the generation of ethyl methyl-branched ester compounds in the dry-cured sausages. Copyright © 2014 Elsevier Ltd. All rights reserved.

  3. Immunostimulant effects and potential application of β-glucans derived from marine yeast Debaryomyces hansenii in goat peripheral blood leucocytes.

    PubMed

    Medina-Córdova, Noé; Reyes-Becerril, Martha; Ascencio, Felipe; Castellanos, Thelma; Campa-Córdova, Angel I; Angulo, Carlos

    2018-05-12

    Debaryomyces hansenii has been described to be effective probiotic and immunostimulatory marine yeast in fish. Nonetheless, to the best of our knowledge, it has been not assayed in ruminants. This study attempts to describe the immunostimulatory effects of its β-glucan content through in vitro assays using goat peripheral blood leukocytes at 24 h of stimulation. The structural characterization of yeast glucans by proton nuclear magnetic resonance indicated structures containing (1-6)-branched (1-3)-β-D-glucan. In vitro assays using peripheral blood leukocytes stimulated with β-glucans derived from three D. hansenii strains and zymosan revealed that β-glucans significantly increased cell immune parameters, such as phagocytic ability, reactive oxygen species production (respiratory burst), peroxidase activity and nitric oxide production. Antioxidant enzymes revealed an increase in superoxide dismutase and catalase activities in leukocytes stimulated with yeast β-glucans. This study revealed that yeast β-glucans were able to activate dectin-1 mRNA gene expression in leukocytes. The TLR4 gene expression was up-regulated in leukocytes after stimulation with yeast β-glucans. In conclusion, β-glucans were able to modulate the immune system by promoting cell viability, phagocytic activity, antioxidant immune response and immune-related gene expression in leukocytes. Therefore, β-glucans derived from Debaryomyces hansenii should be considered a potential immunostimulant for goat production systems. Copyright © 2018 Elsevier B.V. All rights reserved.

  4. Biocontrol of ochratoxigenic moulds (Aspergillus ochraceus and Penicillium nordicum) by Debaryomyces hansenii and Saccharomycopsis fibuligera during speck production.

    PubMed

    Iacumin, Lucilla; Manzano, Marisa; Andyanto, Debbie; Comi, Giuseppe

    2017-04-01

    Speck is a meat product obtained from the deboned leg of pork that is salted, smoked and seasoned for four to six months. During speck seasoning, Eurotium rubrum and Penicillium solitum grow on the surface and collaborate with other moulds and tissue enzymes to produce the typical aroma. Both of these strains usually predominate over other moulds. However, moulds producing ochratoxins, such as Aspergillus ochraceus and Penicillium nordicum, can also co-grow on speck and produce ochratoxin A (OTA). Consequently, speck could represent a potential health risk for consumers. Because A. ochraceus and P. nordicum could represent a problem for artisanal speck production, the aim of this study was to inhibit these mould strains using Debaryomyces hansenii and Saccharomycopsis fibuligera. Six D. hansenii and six S. fibuligera strains were tested in vitro to inhibit A. ochraceus and P. nordicum. The D. hansenii DIAL 1 and S. fibuligera DIAL 3 strains demonstrated the highest inhibitory activity and were selected for in vivo tests. The strains were co-inoculated on fresh meat cuts for speck production with both of the OTA-producing moulds prior to drying and seasoning. At the end of seasoning (six months), OTA was not detected in the speck treated with both yeast strains. Because the yeasts did not adversely affect the speck odour or flavour, the strains are proposed as starters for the inhibition of ochratoxigenic moulds. Copyright © 2016 Elsevier Ltd. All rights reserved.

  5. Statistical optimization of medium composition for bacterial cellulose production by Gluconacetobacter hansenii UAC09 using coffee cherry husk extract--an agro-industry waste.

    PubMed

    Rani, Mahadevaswamy Usha; Rastogi, Navin K; Appaiah, K A Anu

    2011-07-01

    During the production of grape wine, the formation of thick leathery pellicle/bacterial cellulose (BC) at the airliquid interface was due to the bacterium, which was isolated and identified as Gluconacetobacter hansenii UAC09. Cultural conditions for bacterial cellulose production from G. hansenii UAC09 were optimized by central composite rotatable experimental design. To economize the BC production, coffee cherry husk (CCH) extract and corn steep liquor (CSL) were used as less expensive sources of carbon and nitrogen, respectively. CCH and CSL are byproducts from the coffee processing and starch processing industry, respectively. The interactions between pH (4.5- 8.5), CSL (2-10%), alcohol (0.5-2%), acetic acid (0.5- 2%), and water dilution rate to CCH ratio (1:1 to 1:5) were studied using response surface methodology. The optimum conditions for maximum BC production were pH (6.64), CSL (10%), alcohol (0.5%), acetic acid (1.13%), and water to CCH ratio (1:1). After 2 weeks of fermentation, the amount of BC produced was 6.24 g/l. This yield was comparable to the predicted value of 6.09 g/l. This is the first report on the optimization of the fermentation medium by RSM using CCH extract as the carbon source for BC production by G. hansenii UAC09.

  6. Influence of selected factors on browning of Camembert cheese.

    PubMed

    Carreira, Alexandra; Dillinger, Klaus; Eliskases-Lechner, Frieda; Loureiro, Virgílio; Ginzinger, Wolfgang; Rohm, Harald

    2002-05-01

    Experimental Camembert cheeses were made to investigate the effects on browning of the following factors: inoculation with Yarrowia lipolytica, the use of Penicillium candidum strains with different proteolytic activity, the addition of tyrosine, and the addition of Mn2+ thus leading to 16 different variants of cheese. Two physical colour parameters were used to describe browning, depending on the location in the cheeses: a whiteness index for the outside browning (mould mycelium), and a brownness index for the inside browning (surface of the cheese body). Mn2+ promoted a significant increase of browning at both locations, whereas Yar. lipolytica had the opposite effect. Outside browning was significantly more intense when using the Pen. candidum strain with higher proteolytic activity. A significant interaction was found between Yar. lipolytica and Pen. candidum. The yeast had no effect in combination with a low proteolytic strain of Pen. candidum, but significantly reduced proteolysis and browning in combination with a high proteolytic strain of Pen. candidum. We further confirmed that both strains of Pen. candidum were able to produce brown pigments from tyrosine and thus both are presumably responsible for the browning activity in this type of cheese.

  7. Metabolic Engineering of Oleaginous Yeasts for Fatty Alcohol Production

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wang, Wei; Wei, Hui; Knoshaug, Eric

    To develop pathways for advanced biological upgrading of sugars to hydrocarbons, we are seeking biological approaches to produce high carbon efficiency intermediates amenable to separations and catalytic upgrading to hydrocarbon fuels. In this study, we successfully demonstrated fatty alcohol production by oleaginous yeasts Yarrowia lipolytica and Lipomyces starkeyi by expressing a bacteria-derived fatty acyl-CoA reductase (FAR). Moreover, we find higher extracellular distribution of fatty alcohols produced by FAR-expressing L. starkeyi strain as compared to Y. lipolytica strain, which would benefit the downstream product recovery process. In both oleaginous yeasts, long chain length saturated fatty alcohols were predominant, accounting for moremore » than 85% of the total fatty alcohols produced. To the best of our knowledge, this is the first report of fatty alcohol production in L. starkeyi. Taken together, our work demonstrates that in addition to Y. lipolytica, L. starkeyi can also serve as a platform organism for production of fatty acid-derived biofuels and bioproducts via metabolic engineering. We believe strain and process development both will significantly contribute to our goal of producing scalable and cost-effective fatty alcohols from renewable biomass.« less

  8. Evolutionary relationships among pathogenic Candida species and relatives.

    PubMed Central

    Barns, S M; Lane, D J; Sogin, M L; Bibeau, C; Weisburg, W G

    1991-01-01

    Small subunit rRNA sequences have been determined for 10 of the most clinically important pathogenic species of the yeast genus Candida (including Torulopsis [Candida] glabrata and Yarrowia [Candida] lipolytica) and for Hansenula polymorpha. Phylogenetic analyses of these sequences and those of Saccharomyces cerevisiae, Kluyveromyces marxianus var. lactis, and Aspergillus fumigatus indicate that Candida albicans, C. tropicalis, C. parapsilosis, and C. viswanathii form a subgroup within the genus. The remaining significant pathogen, T. glabrata, falls into a second, distinct subgroup and is specifically related to S. cerevisiae and more distantly related to C. kefyr (psuedotropicalis) and K. marxianus var. lactis. The 18S rRNA sequence of Y. lipolytica has evolved rapidly in relation to the other Candida sequences examined and appears to be only distantly related to them. As anticipated, species of several other genera appear to bear specific relationships to members of the genus Candida. PMID:2007550

  9. Metrological aspects of enzyme production

    NASA Astrophysics Data System (ADS)

    Kerber, T. M.; Dellamora-Ortiz, G. M.; Pereira-Meirelles, F. V.

    2010-05-01

    Enzymes are frequently used in biotechnology to carry out specific biological reactions, either in industrial processes or for the production of bioproducts and drugs. Microbial lipases are an important group of biotechnologically valuable enzymes that present widely diversified applications. Lipase production by microorganisms is described in several published papers; however, none of them refer to metrological evaluation and the estimation of the uncertainty in measurement. Moreover, few of them refer to process optimization through experimental design. The objectives of this work were to enhance lipase production in shaken-flasks with Yarrowia lipolytica cells employing experimental design and to evaluate the uncertainty in measurement of lipase activity. The highest lipolytic activity obtained was about three- and fivefold higher than the reported activities of CRMs BCR-693 and BCR-694, respectively. Lipase production by Y. lipolytica cells aiming the classification as certified reference material is recommended after further purification and stability studies.

  10. Use of one- and two-mediator systems for developing a BOD biosensor based on the yeast Debaryomyces hansenii.

    PubMed

    Zaitseva, A S; Arlyapov, V A; Yudina, N Yu; Alferov, S V; Reshetilov, A N

    2017-03-01

    We investigated the use of one- and two-mediator systems in amperometric BOD biosensors (BOD, biochemical oxygen demand) based on the yeast Debaryomyces hansenii. Screening of nine mediators potentially capable of electron transfer - ferrocene, 1,1'-dimethylferrocene, ferrocenecarboxaldehyde, ferroceneacetonitrile, neutral red, 2,6-dichlorophenolindophenol, thionine, methylene blue and potassium ferricyanide - showed only ferrocene and neutral red to be efficient electron carriers for the eukaryotes studied. Two-mediator systems based on combinations of the investigated compounds were used to increase the efficiency of electron transfer. The developed two-mediator biosensors exceeded their one-mediator analogs by their characteristics. The most preferable two-mediator system for developing a BOD biosensor was a ferrocene-methylene blue combination that ensured a satisfactory long-time stability (43 days), selectivity, sensitivity (the lower limit of the determined BOD 5 concentrations, 2.5mg О 2 /dm 3 ) and speed (assay time for one sample, not greater than 10min) of BOD determination. Analysis of water samples showed that the use of a ferrocene-methylene blue two-mediator system and the yeast D. hansenii enabled registration of data that highly correlated with the results of the standard method (R=0.9913). Copyright © 2017 Elsevier Inc. All rights reserved.

  11. Characterization of Bacterial Cellulose by Gluconacetobacter hansenii CGMCC 3917.

    PubMed

    Feng, Xianchao; Ullah, Niamat; Wang, Xuejiao; Sun, Xuchun; Li, Chenyi; Bai, Yun; Chen, Lin; Li, Zhixi

    2015-10-01

    In this study, comprehensive characterization and drying methods on properties of bacterial cellulose were analyzed. Bacterial cellulose was prepared by Gluconacetobacter hansenii CGMCC 3917, which was mutated by high hydrostatic pressure (HHP) treatment. Bacterial cellulose is mainly comprised of cellulose Iα with high crystallinity and purity. High-water holding and absorption capacity were examined by reticulated structure. Thermogravimetric analysis showed high thermal stability. High tensile strength and Young's modulus indicated its mechanical properties. The rheological analysis showed that bacterial cellulose had good consistency and viscosity. These results indicated that bacterial cellulose is a potential food additive and also could be used for a food packaging material. The high textural stability during freeze-thaw cycles makes bacterial cellulose an effective additive for frozen food products. In addition, the properties of bacterial cellulose can be affected by drying methods. Our results suggest that the bacterial cellulose produced from HHP-mutant strain has an effective characterization, which can be used for a wide range of applications in food industry. © 2015 Institute of Food Technologists®

  12. High-oleate yeast oil without polyunsaturated fatty acids.

    PubMed

    Tsakraklides, Vasiliki; Kamineni, Annapurna; Consiglio, Andrew L; MacEwen, Kyle; Friedlander, Jonathan; Blitzblau, Hannah G; Hamilton, Maureen A; Crabtree, Donald V; Su, Austin; Afshar, Jonathan; Sullivan, John E; LaTouf, W Greg; South, Colin R; Greenhagen, Emily H; Shaw, A Joe; Brevnova, Elena E

    2018-01-01

    Oleate-enriched triacylglycerides are well-suited for lubricant applications that require high oxidative stability. Fatty acid carbon chain length and degree of desaturation are key determinants of triacylglyceride properties and the ability to manipulate fatty acid composition in living organisms is critical to developing a source of bio-based oil tailored to meet specific application requirements. We sought to engineer the oleaginous yeast Yarrowia lipolytica for production of high-oleate triacylglyceride oil. We studied the effect of deletions and overexpressions in the fatty acid and triacylglyceride synthesis pathways to identify modifications that increase oleate levels. Oleic acid accumulation in triacylglycerides was promoted by exchanging the native ∆9 fatty acid desaturase and glycerol-3-phosphate acyltransferase with heterologous enzymes, as well as deletion of the Δ12 fatty acid desaturase and expression of a fatty acid elongase. By combining these engineering steps, we eliminated polyunsaturated fatty acids and created a Y. lipolytica strain that accumulates triglycerides with > 90% oleate content. High-oleate content and lack of polyunsaturates distinguish this triacylglyceride oil from plant and algal derived oils. Its composition renders the oil suitable for applications that require high oxidative stability and further demonstrates the potential of Y. lipolytica as a producer of tailored lipid profiles.

  13. Development of cost-effective media to increase the economic potential for larger-scale bioproduction of natural food additives by Lactobacillus rhamnosus , Debaryomyces hansenii , and Aspergillus niger.

    PubMed

    Salgado, José Manuel; Rodríguez, Noelia; Cortés, Sandra; Domínguez, José Manuel

    2009-11-11

    Yeast extract (YE) is the most common nitrogen source in a variety of bioprocesses in spite of the high cost. Therefore, the use of YE in culture media is one of the major technical hurdles to be overcome for the development of low-cost fermentation routes, making the search for alternative-cheaper nitrogen sources particularly desired. The aim of the current study is to develop cost-effective media based on corn steep liquor (CSL) and locally available vinasses in order to increase the economic potential for larger-scale bioproduction. Three microorganisms were evaluated: Lactobacillus rhamnosus , Debaryomyces hansenii , and Aspergillus niger . The amino acid profile and protein concentration was relevant for the xylitol and citric acid production by D. hansenii and A. niger , respectively. Metals also played an important role for citric acid production, meanwhile, D. hansenii showed a strong dependence with the initial amount of Mg(2+). Under the best conditions, 28.8 g lactic acid/L (Q(LA) = 0.800 g/L.h, Y(LA/S) = 0.95 g/g), 35.3 g xylitol/L (Q(xylitol) = 0.380 g/L.h, Y(xylitol/S) = 0.69 g/g), and 13.9 g citric acid/L (Q(CA) = 0.146 g/L.h, Y(CA/S) = 0.63 g/g) were obtained. The economic efficiency (E(p/euro)) parameter identify vinasses as a lower cost and more effective nutrient source in comparison to CSL.

  14. Non-canonical Activities of Hog1 Control Sensitivity of Candida albicans to Killer Toxins From Debaryomyces hansenii

    PubMed Central

    Morales-Menchén, Ana; Navarro-García, Federico; Guirao-Abad, José P.; Román, Elvira; Prieto, Daniel; Coman, Ioana V.; Pla, Jesús; Alonso-Monge, Rebeca

    2018-01-01

    Certain yeasts secrete peptides known as killer toxins or mycocins with a deleterious effect on sensitive yeasts or filamentous fungi, a common phenomenon in environmental species. In a recent work, different Debaryomyces hansenii (Dh) strains isolated from a wide variety of cheeses were identified as producing killer toxins active against Candida albicans and Candida tropicalis. We have analyzed the killer activity of these toxins in C. albicans mutants defective in MAPK signaling pathways and found that the lack of the MAPK Hog1 (but not Cek1 or Mkc1) renders cells hypersensitive to Dh mycocins while mutants lacking other upstream elements of the pathway behave as the wild type strain. Point mutations in the phosphorylation site (T174A-176F) or in the kinase domain (K52R) of HOG1 gene showed that both activities were relevant for the survival of C. albicans to Dh killer toxins. Moreover, Hog1 phosphorylation was also required to sense and adapt to osmotic and oxidative stress while the kinase activity was somehow dispensable. Although the addition of supernatant from the killer toxin- producing D. hansenii 242 strain (Dh-242) induced a slight intracellular increase in Reactive Oxygen Species (ROS), overexpression of cytosolic catalase did not protect C. albicans against this mycocin. This supernatant induced an increase in intracellular glycerol concentration suggesting that this toxin triggers an osmotic stress. We also provide evidence of a correlation between sensitivity to Dh-242 killer toxin and resistance to Congo red, suggesting cell wall specific alterations in sensitive strains. PMID:29774204

  15. Production of xylitol from D-xylose by Debaryomyces hansenii

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Dominguez, J.M.; Gong, Cheng S.; Tsao, G.T.

    1997-12-31

    Xylitol, a naturally occurring five-carbon sugar alcohol, can be produced from D-xylose through microbial hydrogenation. Xylitol has found increasing use in the food industries, especially in confectionary. It is the only so-called {open_quotes}second-generation polyol sweeteners{close_quotes} that is allowed to have the specific health claims in some world markets. In this study, the effect of cell density on the xylitol production by the yeast Debaryomyces hansenii NRRL Y-7426 from D-xylose under microaerobic conditions was examined. The rate of xylitol production increased with increasing yeast cell density to 3 g/L. Beyond this amount there was no increase in the xylitol production withmore » increasing cell density. The optimal pH range for xylitol production was between 4.5 and 5.5. The optimal temperature was between 28 and 37{degrees}C, and the optimal shaking speed was 300 rpm. The rate of xylitol production increased linearly with increasing initial xylose concentration. A high concentration of xylose (279 g/L) was converted rapidly and efficiently to produce xylitol with a product concentration of 221 g/L was reached after 48 h of incubation under optimum conditions. 18 refs., 5 figs.« less

  16. Improvement of soil characteristics and growth of Dorycnium pentaphyllum by amendment with agrowastes and inoculation with AM fungi and/or the yeast Yarowia lipolytica.

    PubMed

    Medina, A; Vassileva, M; Caravaca, F; Roldán, A; Azcón, R

    2004-08-01

    The effectiveness of two microbiologically treated agrowastes [dry olive cake (DOC) and/or sugar beet (SB)] on plant growth, soil enzymatic activities and other soil characteristics was determined in a natural soil from a desertified area. Dorycnium pentaphyllum, a legume plant adapted to stress situations, was the test plant to evaluate the effect of inoculation of native arbuscular mycorrhizal (AM) fungi and/or Yarowia lipolytica (a dry soil adapted yeast) on amended and non-amended soils. Plant growth and nutrition, symbiotic developments and soil enzymatic activities were limited in non-amended soil where microbial inoculations did not improve plant development. The lack of nodules formation and AM colonization can explain the limited plant growth in this natural soil. The effectiveness and performance of inocula applied was only evident in amended soils. AM colonization and spores number in natural soil were increased by amendments and the inoculation with Y. lipolytica promoted this value. The effect of the inoculations on plant N-acquisition was only important in AM-inoculated plants growing in SB medium. Enzymatic activities as urease and protease activities were particularly increased in DOC amended soil meanwhile dehydrogenase activity was greatest in treatments inoculated with Y. lipolytica in SB added soil. The biological activities in rhizosphere of agrowaste amended soil, used as indices of changes in soil properties and fertility, were affected not only by the nature of amendments but also by the inoculant applied. All these results show that the lignocellulosic agrowastes treated with a selected microorganism and its further interaction with beneficial microbial groups (native AM fungi and/or Y. lipolytica) is a useful tool to modify soil physico-chemical, biological and fertility properties that enhance the plant performance probably by making nutrients more available to plants.

  17. Screening of a thiamine-auxotrophic yeast for alpha-ketoglutaric acid overproduction.

    PubMed

    Zhou, Jingwen; Zhou, Haiyan; Du, Guocheng; Liu, Liming; Chen, Jian

    2010-09-01

    To obtain a thiamine-auxotrophic yeast strain that overproduces alpha-ketoglutaric acid (alpha-KG) from glycerol and to investigate nutrient effects on alpha-KG production. Yeast strain WSH-Z06, a thiamine auxotroph that gave high yields of alpha-KG from glycerol, was obtained by screening for ampicillin/kanamycin resistance and thiamine auxotrophy. The strain was identified as Yarrowia lipolytica based on physiological, chemical, and phylogenetic analysis. The ability of the strain to convert glycerol to alpha-KG was analysed by investigating the effects of nutritional factors, including thiamine, riboflavin, nitrogen sources, and calcium ion. Thiamine and calcium ion concentration had the greatest effect on alpha-KG accumulation. Under optimal conditions, a yield of 39.2 g l(-1)alpha-KG was obtained from 100 g l(-1) glycerol, with 16.84 g l(-1) pyruvate as a by-product. The current work provides a method for screening for an alpha-KG overproducer. Nutrients have a significant impact on alpha-KG production in the yeast strain presented here. The alpha-KG-overproducing yeast strain Y. lipolytica WSH-Z06 is a promising parent strain for further metabolic engineering to lower by-product accumulation and accelerate glycerol utilization.

  18. Microbial diversity and dynamics during the production of May bryndza cheese.

    PubMed

    Pangallo, Domenico; Saková, Nikoleta; Koreňová, Janka; Puškárová, Andrea; Kraková, Lucia; Valík, Lubomír; Kuchta, Tomáš

    2014-01-17

    paradoxus. The diversity of yeasts and fungi encompassed Alternaria alternata, "Ascomycete sp.", Aspergillus fumigatus, Beauveria brongniartii, Candida xylopsoci, C. inconspicua, Cladosporium cladosporioides, Debaromyces hansenii, Fomes fomentarius, Galactomyces candidus, Gymnoascus reesii, Chaetomium globosum, Kluyveromyces marxianus, Metarhizium anisopliae, Penicillium aurantiogriseum, P. camemberti, P. freii, P. polonicum, P. viridicatum, Pichia kudriavzevii, Sordaria alcina, Trichosporon lactis and Yarrowia lipolytica. © 2013.

  19. Isolation and characterization of two cellulose morphology mutants of Gluconacetobacter hansenii ATCC23769 producing cellulose with lower crystallinity

    DOE PAGES

    Deng, Ying; Nagachar, Nivedita; Fang, Lin; ...

    2015-03-19

    Gluconacetobacter hansenii, a Gram-negative bacterium, produces and secrets highly crystalline cellulose into growth medium, and has long been used as a model system for studying cellulose synthesis in higher plants. Cellulose synthesis involves the formation of β-1,4 glucan chains via the polymerization of glucose units by a multi-enzyme cellulose synthase complex (CSC). These glucan chains assemble into ordered structures including crystalline microfibrils. AcsA is the catalytic subunit of the cellulose synthase enzymes in the CSC, and AcsC is required for the secretion of cellulose. However, little is known about other proteins required for the assembly of crystalline cellulose. To addressmore » this question, we visually examined cellulose pellicles formed in growth media of 763 individual colonies of G. hansenii generated via Tn5 transposon insertion mutagenesis, and identified 85 that produced cellulose with altered morphologies. X-ray diffraction analysis of these 85 mutants identified two that produced cellulose with significantly lower crystallinity than wild type. The gene disrupted in one of these two mutants encoded a lysine decarboxylase and that in the other encoded an alanine racemase. Solid-state NMR analysis revealed that cellulose produced by these two mutants contained increased amounts of non-crystalline cellulose and monosaccharides associated with non-cellulosic polysaccharides as compared to the wild type. Monosaccharide analysis detected higher percentages of galactose and mannose in cellulose produced by both mutants. Field emission scanning electron microscopy showed that cellulose produced by the mutants was unevenly distributed, with some regions appearing to contain deposition of non-cellulosic polysaccharides; however, the width of the ribbon was comparable to that of normal cellulose. As both lysine decarboxylase and alanine racemase are required for the integrity of peptidoglycan, we propose a model for the role of peptidoglycan

  20. Isolation and characterization of two cellulose morphology mutants of Gluconacetobacter hansenii ATCC23769 producing cellulose with lower crystallinity.

    PubMed

    Deng, Ying; Nagachar, Nivedita; Fang, Lin; Luan, Xin; Catchmark, Jeffrey M; Tien, Ming; Kao, Teh-hui

    2015-01-01

    Gluconacetobacter hansenii, a Gram-negative bacterium, produces and secrets highly crystalline cellulose into growth medium, and has long been used as a model system for studying cellulose synthesis in higher plants. Cellulose synthesis involves the formation of β-1,4 glucan chains via the polymerization of glucose units by a multi-enzyme cellulose synthase complex (CSC). These glucan chains assemble into ordered structures including crystalline microfibrils. AcsA is the catalytic subunit of the cellulose synthase enzymes in the CSC, and AcsC is required for the secretion of cellulose. However, little is known about other proteins required for the assembly of crystalline cellulose. To address this question, we visually examined cellulose pellicles formed in growth media of 763 individual colonies of G. hansenii generated via Tn5 transposon insertion mutagenesis, and identified 85 that produced cellulose with altered morphologies. X-ray diffraction analysis of these 85 mutants identified two that produced cellulose with significantly lower crystallinity than wild type. The gene disrupted in one of these two mutants encoded a lysine decarboxylase and that in the other encoded an alanine racemase. Solid-state NMR analysis revealed that cellulose produced by these two mutants contained increased amounts of non-crystalline cellulose and monosaccharides associated with non-cellulosic polysaccharides as compared to the wild type. Monosaccharide analysis detected higher percentages of galactose and mannose in cellulose produced by both mutants. Field emission scanning electron microscopy showed that cellulose produced by the mutants was unevenly distributed, with some regions appearing to contain deposition of non-cellulosic polysaccharides; however, the width of the ribbon was comparable to that of normal cellulose. As both lysine decarboxylase and alanine racemase are required for the integrity of peptidoglycan, we propose a model for the role of peptidoglycan in the

  1. Isolation and Characterization of Two Cellulose Morphology Mutants of Gluconacetobacter hansenii ATCC23769 Producing Cellulose with Lower Crystallinity

    PubMed Central

    Deng, Ying; Nagachar, Nivedita; Fang, Lin; Luan, Xin; Catchmark, Jeffrey M.; Tien, Ming; Kao, Teh-hui

    2015-01-01

    Gluconacetobacter hansenii, a Gram-negative bacterium, produces and secrets highly crystalline cellulose into growth medium, and has long been used as a model system for studying cellulose synthesis in higher plants. Cellulose synthesis involves the formation of β-1,4 glucan chains via the polymerization of glucose units by a multi-enzyme cellulose synthase complex (CSC). These glucan chains assemble into ordered structures including crystalline microfibrils. AcsA is the catalytic subunit of the cellulose synthase enzymes in the CSC, and AcsC is required for the secretion of cellulose. However, little is known about other proteins required for the assembly of crystalline cellulose. To address this question, we visually examined cellulose pellicles formed in growth media of 763 individual colonies of G. hansenii generated via Tn5 transposon insertion mutagenesis, and identified 85 that produced cellulose with altered morphologies. X-ray diffraction analysis of these 85 mutants identified two that produced cellulose with significantly lower crystallinity than wild type. The gene disrupted in one of these two mutants encoded a lysine decarboxylase and that in the other encoded an alanine racemase. Solid-state NMR analysis revealed that cellulose produced by these two mutants contained increased amounts of non-crystalline cellulose and monosaccharides associated with non-cellulosic polysaccharides as compared to the wild type. Monosaccharide analysis detected higher percentages of galactose and mannose in cellulose produced by both mutants. Field emission scanning electron microscopy showed that cellulose produced by the mutants was unevenly distributed, with some regions appearing to contain deposition of non-cellulosic polysaccharides; however, the width of the ribbon was comparable to that of normal cellulose. As both lysine decarboxylase and alanine racemase are required for the integrity of peptidoglycan, we propose a model for the role of peptidoglycan in the

  2. Delineating Substrate Diversity of Disparate Short-Chain Dehydrogenase Reductase from Debaryomyces hansenii.

    PubMed

    Ghatak, Arindam; Bharatham, Nagakumar; Shanbhag, Anirudh P; Datta, Santanu; Venkatraman, Janani

    2017-01-01

    Short-chain dehydrogenase reductases (SDRs) have been utilized for catalyzing the reduction of many aromatic/aliphatic prochiral ketones to their respective alcohols. However, there is a paucity of data that elucidates their innate biological role and diverse substrate space. In this study, we executed an in-depth biochemical characterization and substrate space mapping (with 278 prochiral ketones) of an unannotated SDR (DHK) from Debaryomyces hansenii and compared it with structurally and functionally characterized SDR Synechococcus elongatus. PCC 7942 FabG to delineate its industrial significance. It was observed that DHK was significantly more efficient than FabG, reducing a diverse set of ketones albeit at higher conversion rates. Comparison of the FabG structure with a homology model of DHK and a docking of substrate to both structures revealed the presence of additional flexible loops near the substrate binding site of DHK. The comparative elasticity of the cofactor and substrate binding site of FabG and DHK was experimentally substantiated using differential scanning fluorimetry. It is postulated that the loop flexibility may account for the superior catalytic efficiency of DHK although the positioning of the catalytic triad is conserved.

  3. Delineating Substrate Diversity of Disparate Short-Chain Dehydrogenase Reductase from Debaryomyces hansenii

    PubMed Central

    Ghatak, Arindam; Bharatham, Nagakumar; Shanbhag, Anirudh P.; Datta, Santanu; Venkatraman, Janani

    2017-01-01

    Short-chain dehydrogenase reductases (SDRs) have been utilized for catalyzing the reduction of many aromatic/aliphatic prochiral ketones to their respective alcohols. However, there is a paucity of data that elucidates their innate biological role and diverse substrate space. In this study, we executed an in-depth biochemical characterization and substrate space mapping (with 278 prochiral ketones) of an unannotated SDR (DHK) from Debaryomyces hansenii and compared it with structurally and functionally characterized SDR Synechococcus elongatus. PCC 7942 FabG to delineate its industrial significance. It was observed that DHK was significantly more efficient than FabG, reducing a diverse set of ketones albeit at higher conversion rates. Comparison of the FabG structure with a homology model of DHK and a docking of substrate to both structures revealed the presence of additional flexible loops near the substrate binding site of DHK. The comparative elasticity of the cofactor and substrate binding site of FabG and DHK was experimentally substantiated using differential scanning fluorimetry. It is postulated that the loop flexibility may account for the superior catalytic efficiency of DHK although the positioning of the catalytic triad is conserved. PMID:28107498

  4. Evolution of the carboxylate Jen transporters in fungi.

    PubMed

    Lodi, Tiziana; Diffels, Julie; Goffeau, André; Baret, Philippe V

    2007-08-01

    Synteny analysis is combined with sequence similarity and motif identification to trace the evolution of the putative monocarboxylate (lactate/pyruvate) transporters Jen1p and the dicarboxylate (succinate/fumarate/malate) transporters Jen2p in Hemiascomycetes yeasts and Euascomycetes fungi. It is concluded that a precursor form of Jen1p, named here preJen1p, arose by the duplication of an ancestral Jen2p, during the speciation of Yarrowia lipolytica, which was transferred into a new syntenic context. The Jen1p transporters differentiated from preJen1p in Kluyveromyces lactis, before the Whole Genome Duplication (WGD), and are conserved as a single copy in the Saccharomyces species. In contrast, the ancestral Jen2p was definitively lost just prior to the WGD and is absent in Saccharomyces.

  5. Biodegradation of micropollutant naproxen with a selected fungal strain and identification of metabolites.

    PubMed

    Aracagök, Y Doruk; Göker, Hakan; Cihangir, Nilüfer

    2017-05-01

    Pharmaceuticals are widely used for treating human and animal diseases. Naproxen [(S) 6-methoxy-α-methyl-2-naphthalene acetic acid] and its sodium salt are members of the α-arylpropionic acid group of nonsteroidal anti-inflammatory drugs. Due to excessive usage of naproxen, this drug has been determined even in drinking water. In this study, four fungal strains Phanerochaete chrysosporium, Funalia trogii, Aspergillus niger, and Yarrowia lipolytica were investigated in terms of naproxen removal abilities. According to LC/MS data, A. niger was found the most efficient strain with 98% removal rate. Two main by-products of fungal transformation, O-desmethylnaproxen and 7-hydroxynaproxen, were identified by using LC/MS, 1HNMR, and 13CNMR. Our results showed that O-demethylation and hydroxylation of naproxen is catalyzed by cytochrome P450 enzyme system.

  6. Investigation of the effect of biologically active threo-Ds-isocitric acid on oxidative stress in Paramecium caudatum.

    PubMed

    Morgunov, Igor G; Karpukhina, Olga V; Kamzolova, Svetlana V; Samoilenko, Vladimir A; Inozemtsev, Anatoly N

    2018-01-02

    The effect of biologically active form (threo-Ds-) of isocitric acid (ICA) on oxidative stress was studied using the infusorian Paramecium caudatum stressed by hydrogen peroxide and salts of some heavy metals (Cu, Pb, Zn, and Cd). ICA at concentrations between 0.5 and 10 mM favorably influenced the infusorian cells with oxidative stress induced by the toxicants studied. The maximal antioxidant effect of ICA was observed at its concentration 10 mM irrespective of the toxicant used (either H 2 O 2 or heavy metal ions). ICA was found to be a more active antioxidant than ascorbic acid. Biologically active pharmaceutically pure threo-Ds-ICA was produced through cultivation of the yeast Yarrowia lipolytica and isolated from the culture liquid in the form of crystalline monopotassium salt with a purity of 99.9%.

  7. Antifungal activity of the lipopeptides produced by Bacillus amyloliquefaciens anti-CA against Candida albicans isolated from clinic.

    PubMed

    Song, Bo; Rong, Yan-Jun; Zhao, Ming-Xin; Chi, Zhen-Ming

    2013-08-01

    The bacterium Bacillus amyloliquefaciens anti-CA isolated from mangrove system was found to be able to actively kill Candida albicans isolated from clinic. The bacterial strain anti-CA could produce high level of bioactive substance, amylase and protease in the cheap medium containing 2.0 % soybean meal, 2.0 % wheat flour, pH 6.5 within 26 h. After purification, the main bioactive substance was confirmed to be a cyclic lipopeptide containing a heptapeptide, L-Asp→L-Leu→L-Leu→L-Val→L-Val→L-Glu→L-Leu and a 3-OH fatty acid (15 carbons). In addition to C. albicans, the purified lipopeptide can also kill many yeast strains including Metschnikowia bicuspidata, Candida tropicalis, Yarrowia lipolytica and Saccharomyces cerevisiae. After treated by the purified lipopeptide, both the whole cells and protoplasts of C. albicans were destroyed.

  8. Metabolic engineering of microbial competitive advantage for industrial fermentation processes.

    PubMed

    Shaw, A Joe; Lam, Felix H; Hamilton, Maureen; Consiglio, Andrew; MacEwen, Kyle; Brevnova, Elena E; Greenhagen, Emily; LaTouf, W Greg; South, Colin R; van Dijken, Hans; Stephanopoulos, Gregory

    2016-08-05

    Microbial contamination is an obstacle to widespread production of advanced biofuels and chemicals. Current practices such as process sterilization or antibiotic dosage carry excess costs or encourage the development of antibiotic resistance. We engineered Escherichia coli to assimilate melamine, a xenobiotic compound containing nitrogen. After adaptive laboratory evolution to improve pathway efficiency, the engineered strain rapidly outcompeted a control strain when melamine was supplied as the nitrogen source. We additionally engineered the yeasts Saccharomyces cerevisiae and Yarrowia lipolytica to assimilate nitrogen from cyanamide and phosphorus from potassium phosphite, and they outcompeted contaminating strains in several low-cost feedstocks. Supplying essential growth nutrients through xenobiotic or ecologically rare chemicals provides microbial competitive advantage with minimal external risks, given that engineered biocatalysts only have improved fitness within the customized fermentation environment. Copyright © 2016, American Association for the Advancement of Science.

  9. Bacterial cellulose of Gluconoacetobacter hansenii as a potential bioadsorption agent for its green environment applications.

    PubMed

    Mohite, Bhavna V; Patil, Satish V

    2014-01-01

    Bacterial cellulose (BC) is an interesting biopolymer produced by bacteria having superior properties. BC produced by Gluconoacetobacter hansenii (strain NCIM 2529) under shaking condition and explored for its applications in dye removal and bioadsorption of protein and heavy metals. Purity of BC was confirmed by Fourier transform infrared spectroscopy and scanning electron microscopy (SEM) analysis. BC removed azo dye and Aniline blue (400 mg/L) with 80% efficiency within 60 min. The adsorption and elution of Bovine serum albumin (BSA) and heavy metals like lead, cadmium and nickel (Pb(2+), Cd(2+) and Ni(2+)) was achieved with BC which confirms the exclusion ability with reusability. The BSA adsorption quantity was increased with increase in protein concentration with more than 90% adsorption and elution ratio. The effect of pH and temperature on BSA adsorption has been investigated. Bioadsorption (82%) and elution ratio (92%) of BC for Pb(2+) was more when compared with Cd(2+) (41 and 67%) and Ni(2+) (33 and 85%), respectively. BC was also explored as soil conditioner to increase the water-holding capacity and porosity of soil. The results elucidated the significance of BC as renewable effective ecofriendly bioadsorption agent.

  10. Zinc Finger Transcription Factors Displaced SREBP Proteins as the Major Sterol Regulators during Saccharomycotina Evolution

    PubMed Central

    Maguire, Sarah L.; Wang, Can; Holland, Linda M.; Brunel, François; Neuvéglise, Cécile; Nicaud, Jean-Marc; Zavrel, Martin; White, Theodore C.; Wolfe, Kenneth H.; Butler, Geraldine

    2014-01-01

    In most eukaryotes, including the majority of fungi, expression of sterol biosynthesis genes is regulated by Sterol-Regulatory Element Binding Proteins (SREBPs), which are basic helix-loop-helix transcription activators. However, in yeasts such as Saccharomyces cerevisiae and Candida albicans sterol synthesis is instead regulated by Upc2, an unrelated transcription factor with a Gal4-type zinc finger. The SREBPs in S. cerevisiae (Hms1) and C. albicans (Cph2) have lost a domain, are not major regulators of sterol synthesis, and instead regulate filamentous growth. We report here that rewiring of the sterol regulon, with Upc2 taking over from SREBP, likely occurred in the common ancestor of all Saccharomycotina. Yarrowia lipolytica, a deep-branching species, is the only genome known to contain intact and full-length orthologs of both SREBP (Sre1) and Upc2. Deleting YlUPC2, but not YlSRE1, confers susceptibility to azole drugs. Sterol levels are significantly reduced in the YlUPC2 deletion. RNA-seq analysis shows that hypoxic regulation of sterol synthesis genes in Y. lipolytica is predominantly mediated by Upc2. However, YlSre1 still retains a role in hypoxic regulation; growth of Y. lipolytica in hypoxic conditions is reduced in a Ylupc2 deletion and is abolished in a Ylsre1/Ylupc2 double deletion, and YlSre1 regulates sterol gene expression during hypoxia adaptation. We show that YlSRE1, and to a lesser extent YlUPC2, are required for switching from yeast to filamentous growth in hypoxia. Sre1 appears to have an ancestral role in the regulation of filamentation, which became decoupled from its role in sterol gene regulation by the arrival of Upc2 in the Saccharomycotina. PMID:24453983

  11. Presence and changes in populations of yeasts on raw and processed poultry products stored at refrigeration temperature.

    PubMed

    Ismail, S A; Deak, T; El-Rahman, H A; Yassien, M A; Beuchat, L R

    2000-12-05

    A study was undertaken to determine populations and profiles of yeast species on fresh and processed poultry products upon purchase from retail supermarkets and after storage at 5 degrees C until shelf life expiration, and to assess the potential role of these yeasts in product spoilage. Fifty samples representing 15 commercial raw, marinated, smoked, or roasted chicken and turkey products were analyzed. Yeast populations were determined by plating on dichloran rose bengal chloramphenicol (DRBC) agar and tryptone glucose yeast extract (TGY) agar. Proteolytic activity was determined using caseinate and gelatin agars and lipolytic activity was determined on plate count agar supplemented with tributyrin. Populations of aerobic microorganisms were also determined. Initial populations of yeasts (log10 cfu/g) ranged from less than 1 (detection limit) to 2.89, and increased by the expiration date to 0.37-5.06, indicating the presence of psychrotrophic species. Highest initial populations were detected in raw chicken breast, wings, and ground chicken, as well as in turkey necks and legs, whereas roasted chicken and turkey products contained less than 1 log10 cfu/g. During storage, yeast populations increased significantly (P < or = 0.05) in whole chicken, ground chicken, liver, heart and gizzard, and in ground turkey and turkey sausage. Isolates (152 strains) of yeasts from poultry products consisted of 12 species. Yarrowia lipolytica and Candida zeylanoides were predominant, making up 39 and 26% of the isolates, respectively. Six different species of basidiomycetous yeasts representing 24% of the isolates were identified. Most Y. lipolytica strains showed strong proteolytic and lipolytic activities, whereas C. zeylanoides was weakly lipolytic. Results suggest that yeasts, particularly Y. lipolytica, may play a more prominent role than previously recognized in the spoilage of fresh and processed poultry stored at 5 degrees C.

  12. Interactions between yeasts and bacteria in the smear surface-ripened cheeses.

    PubMed

    Corsetti, A; Rossi, J; Gobbetti, M

    2001-09-19

    In the initial phase of ripening, the microflora of bacterial smear surface-ripened cheeses such as Limburger, Taleggio, Brick, Münster and Saint-Paulin and that of surface mould-ripened cheeses such as Camembert and Brie may be similar, but at the end of the ripening, bacteria such as Brevibacterium spp., Arthrobacter spp., Micrococcus spp., Corynebacterium spp. and moulds such as Penicillium camemberti are, respectively, the dominant microorganisms. Yeasts such as Candida spp., Cryptococcus spp., Debaryomyces spp., Geotrichum candidum, Pichia spp., Rhodotorula spp., Saccharomyces spp. and Yarrowia lipolytica are often and variably isolated from the smear surface-ripened cheeses. Although not dominant within the microorganisms of the smear surface-ripened cheeses, yeasts establish significant interactions with moulds and especially bacteria, including surface bacteria and lactic acid bacteria. Some aspects of the interactions between yeasts and bacteria in such type of cheeses are considered in this paper.

  13. Efficient resource recycling from liquid digestate by microalgae-yeast mixed culture and the assessment of key gene transcription related to nitrogen assimilation in microalgae.

    PubMed

    Qin, Lei; Liu, Lu; Wang, Zhongming; Chen, Weining; Wei, Dong

    2018-05-18

    To determine the feasibility of microalgae-yeast mixed culture using the liquid digestate of dairy wastewater (LDDW) for biofuels and single cell protein (SCP) production, the cell growth, nutrient removal and outputs evaluation of the mono and mixed culture of Chlorella vulgaris and Yarrowia lipolytica in LDDW were investigated by adding glycerol as carbon source. The results showed that the mixed culture could enhance the biological utilization efficiency of nitrogen and phosphorus, and obtain higher yield of biomass (1.62 g/L), lipid (0.31 g/L), protein (0.51 g/L), and higher heating value (34.06 KJ/L). Compared with the mono culture of C. vulgaris, a decline of the transcription level in nitrate reductase and glutamine synthetase II genes in C. vulgaris was observed in the mixed culture when ammonia was sufficient. The results suggest the possibility of using the mixed culture for the efficient treatment of LDDW and resources recycling. Copyright © 2018. Published by Elsevier Ltd.

  14. Molecular characterization and expression of microbial inulinase genes.

    PubMed

    Liu, Guang-Lei; Chi, Zhe; Chi, Zhen-Ming

    2013-05-01

    Many genes encoding exo- and endo-inulinases from bacteria, yeasts and filamentous fungi have been cloned and characterized. All the inulinases have several conserved motifs, such as WMND(E)PNGL, RDP, EC(V)P, SVEVF, Q and FS(T), which play an important role in inulinase catalysis and substrate binding. However, the exo-inulinases produced by yeasts has no conserved motif SVEVF and the yeasts do not produce any endo-inulinase. Exo- and endo-inulinases found in different microorganisms cluster separately at distant positions from each other. Most of the cloned inulinase genes have been expressed in Yarrowia lipolytica, Saccharomyces cerevisiae, Pichia pastoris, Klyuveromyces lactis and Escherichia coli, respectively. The recombinant inulinases produced and the engineered hosts using the cloned inulinase genes have many potential applications. Expression of most of the inulinase genes is repressed by glucose and fructose and induced by inulin and sucrose. However, the detailed mechanisms of the repression and induction are still unknown.

  15. Metabolic engineering of yeast for lignocellulosic biofuel production.

    PubMed

    Jin, Yong-Su; Cate, Jamie Hd

    2017-12-01

    Production of biofuels from lignocellulosic biomass remains an unsolved challenge in industrial biotechnology. Efforts to use yeast for conversion face the question of which host organism to use, counterbalancing the ease of genetic manipulation with the promise of robust industrial phenotypes. Saccharomyces cerevisiae remains the premier host for metabolic engineering of biofuel pathways, due to its many genetic, systems and synthetic biology tools. Numerous engineering strategies for expanding substrate ranges and diversifying products of S. cerevisiae have been developed. Other yeasts generally lack these tools, yet harbor superior phenotypes that could be exploited in the harsh processes required for lignocellulosic biofuel production. These include thermotolerance, resistance to toxic compounds generated during plant biomass deconstruction, and wider carbon consumption capabilities. Although promising, these yeasts have yet to be widely exploited. By contrast, oleaginous yeasts such as Yarrowia lipolytica capable of producing high titers of lipids are rapidly advancing in terms of the tools available for their metabolic manipulation. Copyright © 2017 Elsevier Ltd. All rights reserved.

  16. Synthetic biology and molecular genetics in non-conventional yeasts: Current tools and future advances.

    PubMed

    Wagner, James M; Alper, Hal S

    2016-04-01

    Coupling the tools of synthetic biology with traditional molecular genetic techniques can enable the rapid prototyping and optimization of yeast strains. While the era of yeast synthetic biology began in the well-characterized model organism Saccharomyces cerevisiae, it is swiftly expanding to include non-conventional yeast production systems such as Hansenula polymorpha, Kluyveromyces lactis, Pichia pastoris, and Yarrowia lipolytica. These yeasts already have roles in the manufacture of vaccines, therapeutic proteins, food additives, and biorenewable chemicals, but recent synthetic biology advances have the potential to greatly expand and diversify their impact on biotechnology. In this review, we summarize the development of synthetic biological tools (including promoters and terminators) and enabling molecular genetics approaches that have been applied in these four promising alternative biomanufacturing platforms. An emphasis is placed on synthetic parts and genome editing tools. Finally, we discuss examples of synthetic tools developed in other organisms that can be adapted or optimized for these hosts in the near future. Copyright © 2015 Elsevier Inc. All rights reserved.

  17. Comparison of nitrogen depletion and repletion on lipid production in yeast and fungal species

    DOE PAGES

    Yang, Shihui; Wang, Wei; Wei, Hui; ...

    2016-08-29

    Although it is well known that low nitrogen stimulates lipid accumulation, especially for algae and some oleaginous yeast, few studies have been conducted in fungal species, especially on the impact of different nitrogen deficiency strategies. In this study, we use two promising consolidated bioprocessing (CBP) candidates to examine the impact of two nitrogen deficiency strategies on lipid production, which are the extensively investigated oleaginous yeast Yarrowia lipolytica, and the commercial cellulase producer Trichoderma reesei. We first utilized bioinformatics approaches to reconstruct the fatty acid metabolic pathway and demonstrated the presence of a triacylglycerol (TAG) biosynthesis pathway in Trichoderma reesei. Wemore » then examined the lipid production of Trichoderma reesei and Y. lipomyces in different media using two nitrogen deficiency strategies of nitrogen natural repletion and nitrogen depletion through centrifugation. Our results demonstrated that nitrogen depletion was better than nitrogen repletion with about 30% lipid increase for Trichoderma reesei and Y. lipomyces, and could be an option to improve lipid production in both oleaginous yeast and filamentous fungal species. The resulting distinctive lipid composition profiles indicated that the impacts of nitrogen depletion on yeast were different from those for fungal species. Under three types of C/N ratio conditions, C16 and C18 fatty acids were the predominant forms of lipids for both Trichoderma reesei and Y. lipolytica. In addition, while the overall fatty acid methyl ester (FAME) profiles of Trichoderma reesei were similar, the overall FAME profiles of Y. lipolytica observed a shift. The fatty acid metabolic pathway reconstructed in this work supports previous reports of lipid production in T. reesei, and provides a pathway for future omics studies and metabolic engineering efforts. Further investigation to identify the genetic targets responsible for the effect of nitrogen depletion

  18. Comparison of nitrogen depletion and repletion on lipid production in yeast and fungal species

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Yang, Shihui; Wang, Wei; Wei, Hui

    Although it is well known that low nitrogen stimulates lipid accumulation, especially for algae and some oleaginous yeast, few studies have been conducted in fungal species, especially on the impact of different nitrogen deficiency strategies. In this study, we use two promising consolidated bioprocessing (CBP) candidates to examine the impact of two nitrogen deficiency strategies on lipid production, which are the extensively investigated oleaginous yeast Yarrowia lipolytica, and the commercial cellulase producer Trichoderma reesei. We first utilized bioinformatics approaches to reconstruct the fatty acid metabolic pathway and demonstrated the presence of a triacylglycerol (TAG) biosynthesis pathway in Trichoderma reesei. Wemore » then examined the lipid production of Trichoderma reesei and Y. lipomyces in different media using two nitrogen deficiency strategies of nitrogen natural repletion and nitrogen depletion through centrifugation. Our results demonstrated that nitrogen depletion was better than nitrogen repletion with about 30% lipid increase for Trichoderma reesei and Y. lipomyces, and could be an option to improve lipid production in both oleaginous yeast and filamentous fungal species. The resulting distinctive lipid composition profiles indicated that the impacts of nitrogen depletion on yeast were different from those for fungal species. Under three types of C/N ratio conditions, C16 and C18 fatty acids were the predominant forms of lipids for both Trichoderma reesei and Y. lipolytica. In addition, while the overall fatty acid methyl ester (FAME) profiles of Trichoderma reesei were similar, the overall FAME profiles of Y. lipolytica observed a shift. The fatty acid metabolic pathway reconstructed in this work supports previous reports of lipid production in T. reesei, and provides a pathway for future omics studies and metabolic engineering efforts. Further investigation to identify the genetic targets responsible for the effect of nitrogen depletion

  19. A novel phagocytic receptor (CgNimC) from Pacific oyster Crassostrea gigas with lipopolysaccharide and gram-negative bacteria binding activity.

    PubMed

    Wang, Weilin; Liu, Rui; Zhang, Tao; Zhang, Ran; Song, Xuan; Wang, Lingling; Song, Linsheng

    2015-03-01

    Phagocytosis is an evolutionarily conserved process to ingest the invading microbes and apoptotic or necrotic corpses, playing vital roles in defensing invaders and maintenance of normal physiological conditions. In the present study, a new Nimrod family phagocytic receptor with three EGF-like domains was identified in Pacific oyster Crassostrea gigas (designated CgNimC). CgNimC shared homology with other identified multiple EGF-like domain containing proteins. The mRNA transcripts of CgNimC were mainly distributed in mantle and hemocytes. Its relative expression level in hemocytes was significantly (P < 0.01) up-regulated after the injection of bacteria Vibrio anguillarum. Different to the NimC in Drosophila and Anopheles gambiae, the recombinant protein of CgNimC (rCgNimC) could bind directly to two gram-negative bacteria V. anguillarum and Vibrio splendidus, but not to gram-positive bacteria Staphylococci aureus, Micrococcus luteus or fungi Yarrowia lipolytica and Pichia pastoris. The affinity of rCgNimC toward M. luteus and Y. lipolytica was enhanced when the microorganisms were pre-incubated with the cell free hemolymph. rCgNimC exhibited higher affinity to lipopolysaccharide (LPS) and relatively lower affinity to peptidoglycan (PGN), while no affinity to glucan (GLU). After the CgNimC receptor was blocked by anti-rCgNimC antibody in vitro, the phagocytic rate of hemocytes toward two gram-negative bacteria V. anguillarum and V. splendidus was reduced significantly (P < 0.05), but no significant change of phagocytic rate was observed toward M. luteus and Y. lipolytica. All these results implied that CgNimC, with significant binding capability to LPS and gram-negative bacteria, was a novel phagocytic receptor involved in immune response of Pacific oyster. Further, it was speculated that receptors of Nimrod family might function as a phagocytic receptor to recognize PAMPs on the invaders and its recognition could be promoted by opsonization of molecules in

  20. The occurrence and growth of yeasts in Camembert and blue-veined cheeses.

    PubMed

    Roostita, R; Fleet, G H

    1996-01-01

    Yeast populations greater than 10(6) cfu/g were found in approximately 54% and 36%, respectively in surface samples of retail Camembert (85 samples) and Blue-veined (45 samples) cheeses. The most predominant species isolated were Debaryomyces hansenii, Candida catenulata, C. lipolytica, C. kefyr, C. intermedia, Saccharomyces cerevisiae, Cryptococcus albidus and Kluyveromyces marxianus. The salt concentration of the surface samples of the cheeses varied between 2.5-5.5% (w/w) (Camembert) and 7.5-8.3 (Blue-veined), depending upon brand, and influenced the yeast ecology, especially the presence of S. cerevisiae. Yeasts grew to populations of 10(6)-10(8) cfu/g when cheeses were stored at either 25 degrees C or 10 degrees C. These populations decreased on continued storage at 25 degrees C, but such decreases were not so evident on storage at 10 degrees C. The properties of yeasts influencing their occurrence and growth in cheese were: fermentation/assimilation of lactose; production of extracellular lipolytic and proteolytic enzymes, utilisation of lactic and citric acids; and growth at 10 degrees C.

  1. Detergent assisted lipid extraction from wet yeast biomass for biodiesel: A response surface methodology approach.

    PubMed

    Yellapu, Sravan Kumar; Bezawada, Jyothi; Kaur, Rajwinder; Kuttiraja, Mathiazhakan; Tyagi, Rajeshwar D

    2016-10-01

    The lipid extraction from the microbial biomass is a tedious and high cost dependent process. In the present study, detergent assisted lipids extraction from the culture of the yeast Yarrowia lipolytica SKY-7 was carried out. Response surface methodology (RSM) was used to investigate the effect of three principle parameters (N-LS concentration, time and temperature) on microbial lipid extraction efficiency % (w/w). The results obtained by statistical analysis showed that the quadratic model fits in all cases. Maximum lipid recovery of 95.3±0.3% w/w was obtained at the optimum level of process variables [N-LS concentration 24.42mg (equal to 48mgN-LS/g dry biomass), treatment time 8.8min and reaction temperature 30.2°C]. Whereas the conventional chloroform and methanol extraction to achieve total lipid recovery required 12h at 60°C. The study confirmed that oleaginous yeast biomass treatment with N-lauroyl sarcosine would be a promising approach for industrial scale microbial lipid recovery. Copyright © 2016 Elsevier Ltd. All rights reserved.

  2. Yeast synthetic biology for the production of recombinant therapeutic proteins.

    PubMed

    Kim, Hyunah; Yoo, Su Jin; Kang, Hyun Ah

    2015-02-01

    The production of recombinant therapeutic proteins is one of the fast-growing areas of molecular medicine and currently plays an important role in treatment of several diseases. Yeasts are unicellular eukaryotic microbial host cells that offer unique advantages in producing biopharmaceutical proteins. Yeasts are capable of robust growth on simple media, readily accommodate genetic modifications, and incorporate typical eukaryotic post-translational modifications. Saccharomyces cerevisiae is a traditional baker's yeast that has been used as a major host for the production of biopharmaceuticals; however, several nonconventional yeast species including Hansenula polymorpha, Pichia pastoris, and Yarrowia lipolytica have gained increasing attention as alternative hosts for the industrial production of recombinant proteins. In this review, we address the established and emerging genetic tools and host strains suitable for recombinant protein production in various yeast expression systems, particularly focusing on current efforts toward synthetic biology approaches in developing yeast cell factories for the production of therapeutic recombinant proteins. © FEMS 2015. All rights reserved. For permissions, please e-mail: journals.permission@oup.com.

  3. Accumulation and metabolism of selenium by yeast cells.

    PubMed

    Kieliszek, Marek; Błażejak, Stanisław; Gientka, Iwona; Bzducha-Wróbel, Anna

    2015-07-01

    This paper examines the process of selenium bioaccumulation and selenium metabolism in yeast cells. Yeast cells can bind elements in ionic from the environment and permanently integrate them into their cellular structure. Up to now, Saccharomyces cerevisiae, Candida utilis, and Yarrowia lipolytica yeasts have been used primarily in biotechnological studies to evaluate binding of minerals. Yeast cells are able to bind selenium in the form of both organic and inorganic compounds. The process of bioaccumulation of selenium by microorganisms occurs through two mechanisms: extracellular binding by ligands of membrane assembly and intracellular accumulation associated with the transport of ions across the cytoplasmic membrane into the cell interior. During intracellular metabolism of selenium, oxidation, reduction, methylation, and selenoprotein synthesis processes are involved, as exemplified by detoxification processes that allow yeasts to survive under culture conditions involving the elevated selenium concentrations which were observed. Selenium yeasts represent probably the best absorbed form of this element. In turn, in terms of wide application, the inclusion of yeast with accumulated selenium may aid in lessening selenium deficiency in a diet.

  4. CE separation of proteins and yeasts dynamically modified by PEG pyrenebutanoate with fluorescence detection.

    PubMed

    Horká, Marie; Růzicka, Filip; Holá, Veronika; Slais, Karel

    2007-07-01

    The optimized protocols of the bioanalytes separation, proteins and yeasts, dynamically modified by the nonionogenic tenside PEG pyrenebutanoate, were applied in CZE and CIEF with the acidic gradient in pH range 2-5.5, both with fluorescence detection. PEG pyrenebutanoate was used as a buffer additive for a dynamic modification of proteins and/or yeast samples. The narrow peaks of modified analytes were detected. The values of the pI's of the labeled proteins were calculated using new fluorescent pI markers in CIEF and they were found to be comparable with pI's of the native compounds. As an example of the possible use of the suggested CIEF technique, the mixed cultures of yeasts, Candida albicans, Candida glabrata, Candida kefyr, Candida krusei, Candida lusitaniae, Candida parapsilosis, Candida tropicalis, Candida zeylanoides, Geotrichum candidum, Saccharomyces cerevisiae, Trichosporon asahii and Yarrowia lipolytica, were reproducibly focused and separated with high sensitivity. Using UV excitation for the on-column fluorometric detection, the minimum detectable amounts of analytes, femtograms of proteins and down to ten cells injected on the separation capillary, were estimated.

  5. A critical tyrosine residue determines the uncoupling protein-like activity of the yeast mitochondrial oxaloacetate carrier.

    PubMed

    Luévano-Martínez, Luis A; Barba-Ostria, Carlos; Araiza-Olivera, Daniela; Chiquete-Félix, Natalia; Guerrero-Castillo, Sergio; Rial, Eduardo; Georgellis, Dimitris; Uribe-Carvajal, Salvador

    2012-04-01

    The mitochondrial Oac (oxaloacetate carrier) found in some fungi and plants catalyses the uptake of oxaloacetate, malonate and sulfate. Despite their sequence similarity, transport specificity varies considerably between Oacs. Indeed, whereas ScOac (Saccharomyces cerevisiae Oac) is a specific anion-proton symporter, the YlOac (Yarrowia lipolytica Oac) has the added ability to transport protons, behaving as a UCP (uncoupling protein). Significantly, we identified two amino acid changes at the matrix gate of YlOac and ScOac, tyrosine to phenylalanine and methionine to leucine. We studied the role of these amino acids by expressing both wild-type and specifically mutated Oacs in an Oac-null S. cerevisiae strain. No phenotype could be associated with the methionine to leucine substitution, whereas UCP-like activity was dependent on the presence of the tyrosine residue normally expressed in the YlOac, i.e. Tyr-ScOac mediated proton transport, whereas Phe-YlOac lost its protonophoric activity. These findings indicate that the UCP-like activity of YlOac is determined by the tyrosine residue at position 146.

  6. Characterization of self-generated variants in Pseudoalteromonas lipolytica biofilm with increased antifouling activities.

    PubMed

    Zeng, Zhenshun; Guo, Xing-Pan; Li, Baiyuan; Wang, Pengxia; Cai, Xingsheng; Tian, Xinpeng; Zhang, Si; Yang, Jin-Long; Wang, Xiaoxue

    2015-12-01

    Pseudoalteromonas is widespread in various marine environments, and most strains can affect invertebrate larval settlement and metamorphosis by forming biofilms. However, the impact and the molecular basis of population diversification occurring in Pseudoalteromonas biofilms are poorly understood. Here, we show that morphological diversification is prevalent in Pseudoalteromonas species during biofilm formation. Two types of genetic variants, wrinkled (frequency of 12±5%) and translucent (frequency of 5±3%), were found in Pseudoalteromonas lipolytica biofilms. The inducing activities of biofilms formed by the two variants on larval settlement and metamorphosis of the mussel Mytilus coruscus were significantly decreased, suggesting strong antifouling activities. Using whole-genome re-sequencing combined with genetic manipulation, two genes were identified to be responsible for the morphology alternations. A nonsense mutation in AT00_08765 led to a wrinkled morphology due to the overproduction of cellulose, whereas a point mutation in AT00_17125 led to a translucent morphology via a reduction in capsular polysaccharide production. Taken together, the results suggest that the microbial behavior on larval settlement and metamorphosis in marine environment could be affected by the self-generated variants generated during the formation of marine biofilms, thereby rendering potential application in biocontrol of marine biofouling.

  7. The Influence of Sugar Cane Bagasse Type and Its Particle Size on Xylose Production and Xylose-to-Xylitol Bioconversion with the Yeast Debaryomyces hansenii.

    PubMed

    Aghcheh, Razieh Karimi; Bonakdarpour, Babak; Ashtiani, Farzin Zokaee

    2016-11-01

    In the present study, the effect of the type of sugar cane bagasse (non-depithed or depithed) and its particle size on the production of xylose and its subsequent fermentation to xylitol by Debaryomyces hansenii CBS767 was investigated using a full factorial experimental design. It was found that the particle size range and whether bagasse was depithed or not had a significant effect on the concentration and yield of xylose in the resulting hemicellulose hydrolysate. Depithed bagasse resulted in higher xylose concentrations compared to non-depithed bagasse. The corresponding detoxified hemicellulose hydrolysates were used as fermentation media for the production of xylitol. The hemicellulose hydrolysate prepared from depithed bagasse also yielded meaningfully higher xylitol fermentation rates compared to non-depithed bagasse. However, in the case of non-depithed bagasse, the hemicellulose hydrolysate prepared from larger particle size range resulted in higher xylitol fermentation rates, whereas the effect in the case of non-depithed bagasse was not pronounced. Therefore, depithing of bagasse is an advantageous pretreatment when it is to be employed in bioconversion processes.

  8. Structure of the cellulose synthase complex of Gluconacetobacter hansenii at 23.4 Å resolution

    DOE PAGES

    Du, Juan; Vepachedu, Venkata; Cho, Sung Hyun; ...

    2016-05-23

    Bacterial crystalline cellulose is used in biomedical and industrial applications, but the molecular mechanisms of synthesis are unclear. Unlike most bacteria, which make non-crystalline cellulose, Gluconacetobacter hansenii extrudes profuse amounts of crystalline cellulose. Its cellulose synthase (AcsA) exists as a complex with accessory protein AcsB, forming a 'terminal complex' (TC) that has been visualized by freeze-fracture TEM at the base of ribbons of crystalline cellulose. The catalytic AcsAB complex is embedded in the cytoplasmic membrane. The C-terminal portion of AcsC is predicted to form a translocation channel in the outer membrane, with the rest of AcsC possibly interacting with AcsDmore » in the periplasm. It is thus believed that synthesis from an organized array of TCs coordinated with extrusion by AcsC and AcsD enable this bacterium to make crystalline cellulose. The only structural data that exist for this system are the above mentioned freeze-fracture TEM images, fluorescence microscopy images revealing that TCs align in a row, a crystal structure of AcsD bound to cellopentaose, and a crystal structure of PilZ domain of AcsA. Here we advance our understanding of the structural basis for crystalline cellulose production by bacterial cellulose synthase by determining a negative stain structure resolved to 23.4 angstrom for highly purified AcsAB complex that catalyzed incorporation of UDP-glucose into β-1,4-glucan chains, and responded to the presence of allosteric activator cyclic diguanylate. Although the AcsAB complex was functional in vitro, the synthesized cellulose was not visible in TEM. The negative stain structure revealed that AcsAB is very similar to that of the BcsAB synthase of Rhodobacter sphaeroides, a non-crystalline cellulose producing bacterium. Furthermore, the results indicate that the crystalline cellulose producing and non-crystalline cellulose producing bacteria share conserved catalytic and membrane translocation

  9. Structure of the Cellulose Synthase Complex of Gluconacetobacter hansenii at 23.4 Å Resolution

    PubMed Central

    Du, Juan; Vepachedu, Venkata; Cho, Sung Hyun; Kumar, Manish; Nixon, B. Tracy

    2016-01-01

    Bacterial crystalline cellulose is used in biomedical and industrial applications, but the molecular mechanisms of synthesis are unclear. Unlike most bacteria, which make non-crystalline cellulose, Gluconacetobacter hansenii extrudes profuse amounts of crystalline cellulose. Its cellulose synthase (AcsA) exists as a complex with accessory protein AcsB, forming a 'terminal complex' (TC) that has been visualized by freeze-fracture TEM at the base of ribbons of crystalline cellulose. The catalytic AcsAB complex is embedded in the cytoplasmic membrane. The C-terminal portion of AcsC is predicted to form a translocation channel in the outer membrane, with the rest of AcsC possibly interacting with AcsD in the periplasm. It is thus believed that synthesis from an organized array of TCs coordinated with extrusion by AcsC and AcsD enable this bacterium to make crystalline cellulose. The only structural data that exist for this system are the above mentioned freeze-fracture TEM images, fluorescence microscopy images revealing that TCs align in a row, a crystal structure of AcsD bound to cellopentaose, and a crystal structure of PilZ domain of AcsA. Here we advance our understanding of the structural basis for crystalline cellulose production by bacterial cellulose synthase by determining a negative stain structure resolved to 23.4 Å for highly purified AcsAB complex that catalyzed incorporation of UDP-glucose into β-1,4-glucan chains, and responded to the presence of allosteric activator cyclic diguanylate. Although the AcsAB complex was functional in vitro, the synthesized cellulose was not visible in TEM. The negative stain structure revealed that AcsAB is very similar to that of the BcsAB synthase of Rhodobacter sphaeroides, a non-crystalline cellulose producing bacterium. The results indicate that the crystalline cellulose producing and non-crystalline cellulose producing bacteria share conserved catalytic and membrane translocation components, and support the

  10. Structure of the cellulose synthase complex of Gluconacetobacter hansenii at 23.4 Å resolution

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Du, Juan; Vepachedu, Venkata; Cho, Sung Hyun

    Bacterial crystalline cellulose is used in biomedical and industrial applications, but the molecular mechanisms of synthesis are unclear. Unlike most bacteria, which make non-crystalline cellulose, Gluconacetobacter hansenii extrudes profuse amounts of crystalline cellulose. Its cellulose synthase (AcsA) exists as a complex with accessory protein AcsB, forming a 'terminal complex' (TC) that has been visualized by freeze-fracture TEM at the base of ribbons of crystalline cellulose. The catalytic AcsAB complex is embedded in the cytoplasmic membrane. The C-terminal portion of AcsC is predicted to form a translocation channel in the outer membrane, with the rest of AcsC possibly interacting with AcsDmore » in the periplasm. It is thus believed that synthesis from an organized array of TCs coordinated with extrusion by AcsC and AcsD enable this bacterium to make crystalline cellulose. The only structural data that exist for this system are the above mentioned freeze-fracture TEM images, fluorescence microscopy images revealing that TCs align in a row, a crystal structure of AcsD bound to cellopentaose, and a crystal structure of PilZ domain of AcsA. Here we advance our understanding of the structural basis for crystalline cellulose production by bacterial cellulose synthase by determining a negative stain structure resolved to 23.4 angstrom for highly purified AcsAB complex that catalyzed incorporation of UDP-glucose into β-1,4-glucan chains, and responded to the presence of allosteric activator cyclic diguanylate. Although the AcsAB complex was functional in vitro, the synthesized cellulose was not visible in TEM. The negative stain structure revealed that AcsAB is very similar to that of the BcsAB synthase of Rhodobacter sphaeroides, a non-crystalline cellulose producing bacterium. Furthermore, the results indicate that the crystalline cellulose producing and non-crystalline cellulose producing bacteria share conserved catalytic and membrane translocation

  11. Rapid fabrication of three-dimensional structures for dielectrophoretic sorting of lipid-containing organisms

    NASA Astrophysics Data System (ADS)

    Schor, Alisha R.; Buie, Cullen R.

    2016-10-01

    In this work, we demonstrate a microfluidic particle sorter consisting of three-dimensional, conducting microposts. Our sorter uses dielectrophoresis (DEP) to sort high- and low-lipid phenotypes of the yeast Yarrowia lipolytica. Y. lipolytica is one of the many microorganisms being explored as a hydrocarbon source for biodiesel, Omega-3 additives, and other products derived from fatty acids. A rapid, non-destructive, lipid-based sorting tool would accelerate the commercialization of these products. Our device consists of an array of 105, 25 μm wide gold microposts that span the height of a 15 μm channel. This array generates an electric field in a microfluidic device that is uniform through the channel height, but has a custom-shaped non-uniformity in the horizontal directions. This is crucial in order to achieve continuous sorting using DEP, as it ensures all cells are exposed to the same conditions throughout the channel height. By using very low currents (100 μA), we are able to electroplate these post arrays in fewer than 15 min. This is an order of magnitude improvement over previous reports of electroplated microstructures. With an applied signal of 250 MHz, 2.6 V pp in our device, we separate a heterogeneous population with a purity of 97.8% in the low-lipid stream and 71.4% in the high-lipid stream. The high-lipid stream purity can be improved by adjusting the spacing of the array. This unique protocol for the rapid fabrication of 3D microstructures has enabled the creation of a non-invasive sorting tool for genetically engineered, lipid-producing organisms. The ability to screen organisms based on lipid content will alleviate one of the major bottlenecks in commercialization of microbial biofuels.

  12. Sustainable conversion of coffee and other crop wastes to biofuels and bioproducts using coupled biochemical and thermochemical processes in a multi-stage biorefinery concept.

    PubMed

    Hughes, Stephen R; López-Núñez, Juan Carlos; Jones, Marjorie A; Moser, Bryan R; Cox, Elby J; Lindquist, Mitch; Galindo-Leva, Luz Angela; Riaño-Herrera, Néstor M; Rodriguez-Valencia, Nelson; Gast, Fernando; Cedeño, David L; Tasaki, Ken; Brown, Robert C; Darzins, Al; Brunner, Lane

    2014-10-01

    The environmental impact of agricultural waste from the processing of food and feed crops is an increasing concern worldwide. Concerted efforts are underway to develop sustainable practices for the disposal of residues from the processing of such crops as coffee, sugarcane, or corn. Coffee is crucial to the economies of many countries because its cultivation, processing, trading, and marketing provide employment for millions of people. In coffee-producing countries, improved technology for treatment of the significant amounts of coffee waste is critical to prevent ecological damage. This mini-review discusses a multi-stage biorefinery concept with the potential to convert waste produced at crop processing operations, such as coffee pulping stations, to valuable biofuels and bioproducts using biochemical and thermochemical conversion technologies. The initial bioconversion stage uses a mutant Kluyveromyces marxianus yeast strain to produce bioethanol from sugars. The resulting sugar-depleted solids (mostly protein) can be used in a second stage by the oleaginous yeast Yarrowia lipolytica to produce bio-based ammonia for fertilizer and are further degraded by Y. lipolytica proteases to peptides and free amino acids for animal feed. The lignocellulosic fraction can be ground and treated to release sugars for fermentation in a third stage by a recombinant cellulosic Saccharomyces cerevisiae, which can also be engineered to express valuable peptide products. The residual protein and lignin solids can be jet cooked and passed to a fourth-stage fermenter where Rhodotorula glutinis converts methane into isoprenoid intermediates. The residues can be combined and transferred into pyrocracking and hydroformylation reactions to convert ammonia, protein, isoprenes, lignins, and oils into renewable gas. Any remaining waste can be thermoconverted to biochar as a humus soil enhancer. The integration of multiple technologies for treatment of coffee waste has the potential to

  13. Potential of yeasts isolated from dry-cured ham to control ochratoxin A production in meat models.

    PubMed

    Peromingo, Belén; Núñez, Félix; Rodríguez, Alicia; Alía, Alberto; Andrade, María J

    2018-03-02

    The environmental conditions reached during the ripening of dry-cured meat products favour the proliferation of moulds on their surface. Some of these moulds are hazardous to consumers because of their ability to produce ochratoxin A (OTA). Biocontrol using Debaryomyces hansenii could be a suitable strategy to prevent the growth of ochratoxigenic moulds and OTA accumulation in dry-cured meat products. The aim of this work was to evaluate the ability of two strains of D. hansenii to control the growth and OTA production of Penicillium verrucosum in a meat model under water activities (a w ) values commonly reached during the dry-cured meat product ripening. The presence of D. hansenii strains triggered a lengthening of the lag phase and a decrease of the growth rate of P. verrucosum in meat-based media at 0.97 and 0.92 a w . Both D. hansenii strains significantly reduced OTA production (between 85.16 and 92.63%) by P. verrucosum in the meat-based medium at 0.92 a w . Neither absorption nor detoxification of OTA by D. hansenii strains seems to be involved. However, a repression of the expression of the non-ribosomal peptide synthetase (otanpsPN) gene linked to the OTA biosynthetic pathway was observed in the presence of D. hansenii. To confirm the protective role of D. hansenii strains, they were inoculated together with P. verrucosum Pv45 in dry-fermented sausage and dry-cured ham slices. Although P. verrucosum Pv45 counts were not affected by the presence of D. hansenii in both meat matrices, a reduction of OTA amount was observed. Therefore, the effect of D. hansenii strains on OTA accumulation should be attributed to a reduction at transcriptional level. Consequently, native D. hansenii can be useful as biocontrol agent in dry-cured meat products for preventing the hazard associated with the presence of OTA. Copyright © 2018 Elsevier B.V. All rights reserved.

  14. Utilization of inulin-containing waste in industrial fermentations to produce biofuels and bio-based chemicals.

    PubMed

    Hughes, Stephen R; Qureshi, Nasib; López-Núñez, Juan Carlos; Jones, Marjorie A; Jarodsky, Joshua M; Galindo-Leva, Luz Ángela; Lindquist, Mitchell R

    2017-04-01

    Inulins are polysaccharides that belong to an important class of carbohydrates known as fructans and are used by many plants as a means of storing energy. Inulins contain 20 to several thousand fructose units joined by β-2,1 glycosidic bonds, typically with a terminal glucose unit. Plants with high concentrations of inulin include: agave, asparagus, coffee, chicory, dahlia, dandelion, garlic, globe artichoke, Jerusalem artichoke, jicama, onion, wild yam, and yacón. To utilize inulin as its carbon and energy source directly, a microorganism requires an extracellular inulinase to hydrolyze the glycosidic bonds to release fermentable monosaccharides. Inulinase is produced by many microorganisms, including species of Aspergillus, Kluyveromyces, Penicillium, and Pseudomonas. We review various inulinase-producing microorganisms and inulin feedstocks with potential for industrial application as well as biotechnological efforts underway to develop sustainable practices for the disposal of residues from processing inulin-containing crops. A multi-stage biorefinery concept is proposed to convert cellulosic and inulin-containing waste produced at crop processing operations to valuable biofuels and bioproducts using Kluyveromyces marxianus, Yarrowia lipolytica, Rhodotorula glutinis, and Saccharomyces cerevisiae as well as thermochemical treatments.

  15. Genome-scale metabolic modeling of Mucor circinelloides and comparative analysis with other oleaginous species.

    PubMed

    Vongsangnak, Wanwipa; Klanchui, Amornpan; Tawornsamretkit, Iyarest; Tatiyaborwornchai, Witthawin; Laoteng, Kobkul; Meechai, Asawin

    2016-06-01

    We present a novel genome-scale metabolic model iWV1213 of Mucor circinelloides, which is an oleaginous fungus for industrial applications. The model contains 1213 genes, 1413 metabolites and 1326 metabolic reactions across different compartments. We demonstrate that iWV1213 is able to accurately predict the growth rates of M. circinelloides on various nutrient sources and culture conditions using Flux Balance Analysis and Phenotypic Phase Plane analysis. Comparative analysis of three oleaginous genome-scale models, including M. circinelloides (iWV1213), Mortierella alpina (iCY1106) and Yarrowia lipolytica (iYL619_PCP) revealed that iWV1213 possesses a higher number of genes involved in carbohydrate, amino acid, and lipid metabolisms that might contribute to its versatility in nutrient utilization. Moreover, the identification of unique and common active reactions among the Zygomycetes oleaginous models using Flux Variability Analysis unveiled a set of gene/enzyme candidates as metabolic engineering targets for cellular improvement. Thus, iWV1213 offers a powerful metabolic engineering tool for multi-level omics analysis, enabling strain optimization as a cell factory platform of lipid-based production. Copyright © 2016 Elsevier B.V. All rights reserved.

  16. Comparative Lipidomic Profiling of S. cerevisiae and Four Other Hemiascomycetous Yeasts

    PubMed Central

    Hein, Eva-Maria; Hayen, Heiko

    2012-01-01

    Glycerophospholipids (GP) are the building blocks of cellular membranes and play essential roles in cell compartmentation, membrane fluidity or apoptosis. In addition, GPs are sources for multifunctional second messengers. Whereas the genome and proteome of the most intensively studied eukaryotic model organism, the baker’s yeast (Saccharomyces cerevisiae), are well characterized, the analysis of its lipid composition is still at the beginning. Moreover, different yeast species can be distinguished on the DNA, RNA and protein level, but it is currently unknown if they can also be differentiated by determination of their GP pattern. Therefore, the GP compositions of five different yeast strains, grown under identical environmental conditions, were elucidated using high performance liquid chromatography coupled to negative electrospray ionization-hybrid linear ion trap-Fourier transform ion cyclotron resonance mass spectrometry in single and multistage mode. Using this approach, relative quantification of more than 100 molecular species belonging to nine GP classes was achieved. The comparative lipidomic profiling of Saccharomyces cerevisiae, Saccharomyces bayanus, Kluyveromyces thermotolerans, Pichia angusta, and Yarrowia lipolytica revealed characteristic GP profiles for each strain. However, genetically related yeast strains show similarities in their GP compositions, e.g., Saccharomyces cerevisiae and Saccharomyces bayanus. PMID:24957378

  17. Oleaginous yeasts: Promising platforms for the production of oleochemicals and biofuels.

    PubMed

    Adrio, José L

    2017-09-01

    Oleaginous yeasts have a unique physiology that makes them the best suited hosts for the production of lipids, oleochemicals, and diesel-like fuels. Their high lipogenesis, capability of growing on many different carbon sources (including lignocellulosic sugars), easy large-scale cultivation, and an increasing number of genetic tools are some of the advantages that have encouraged their use to develop sustainable processes. This mini-review summarizes the metabolic engineering strategies developed in oleaginous yeasts within the last 2 years to improve process metrics (titer, yield, and productivity) for the production of lipids, free fatty acids, fatty acid-based chemicals (e.g., fatty alcohols, fatty acid ethyl esters), and alkanes. During this short period of time, tremendous progress has been made in Yarrowia lipolytica, the model oleaginous yeast, which has been engineered to improve lipid production by different strategies including increasing lipogenic pathway flux and biosynthetic precursors, and blocking degradation pathways. Moreover, remarkable advances have also been reported in Rhodosporidium toruloides and Lipomyces starkey despite the limited genetic tools available for these two very promising hosts. Biotechnol. Bioeng. 2017;114: 1915-1920. © 2017 Wiley Periodicals, Inc. © 2017 Wiley Periodicals, Inc.

  18. Genome and metabolic engineering in non-conventional yeasts: Current advances and applications.

    PubMed

    Löbs, Ann-Kathrin; Schwartz, Cory; Wheeldon, Ian

    2017-09-01

    Microbial production of chemicals and proteins from biomass-derived and waste sugar streams is a rapidly growing area of research and development. While the model yeast Saccharomyces cerevisia e is an excellent host for the conversion of glucose to ethanol, production of other chemicals from alternative substrates often requires extensive strain engineering. To avoid complex and intensive engineering of S. cerevisiae, other yeasts are often selected as hosts for bioprocessing based on their natural capacity to produce a desired product: for example, the efficient production and secretion of proteins, lipids, and primary metabolites that have value as commodity chemicals. Even when using yeasts with beneficial native phenotypes, metabolic engineering to increase yield, titer, and production rate is essential. The non-conventional yeasts Kluyveromyces lactis, K. marxianus, Scheffersomyces stipitis, Yarrowia lipolytica, Hansenula polymorpha and Pichia pastoris have been developed as eukaryotic hosts because of their desirable phenotypes, including thermotolerance, assimilation of diverse carbon sources, and high protein secretion. However, advanced metabolic engineering in these yeasts has been limited. This review outlines the challenges of using non-conventional yeasts for strain and pathway engineering, and discusses the developed solutions to these problems and the resulting applications in industrial biotechnology.

  19. The expression of glycerol facilitators from various yeast species improves growth on glycerol of Saccharomyces cerevisiae.

    PubMed

    Klein, Mathias; Islam, Zia-Ul; Knudsen, Peter Boldsen; Carrillo, Martina; Swinnen, Steve; Workman, Mhairi; Nevoigt, Elke

    2016-12-01

    Glycerol is an abundant by-product during biodiesel production and additionally has several assets compared to sugars when used as a carbon source for growing microorganisms in the context of biotechnological applications. However, most strains of the platform production organism Saccharomyces cerevisiae grow poorly in synthetic glycerol medium. It has been hypothesized that the uptake of glycerol could be a major bottleneck for the utilization of glycerol in S. cerevisiae . This species exclusively relies on an active transport system for glycerol uptake. This work demonstrates that the expression of predicted glycerol facilitators (Fps1 homologues) from superior glycerol-utilizing yeast species such as Pachysolen tannophilus , Komagataella pastoris , Yarrowia lipolytica and Cyberlindnera jadinii significantly improves the growth performance on glycerol of the previously selected glycerol-consuming S. cerevisiae wild-type strain (CBS 6412-13A). The maximum specific growth rate increased from 0.13 up to 0.18 h -1 and a biomass yield coefficient of 0.56 g DW /g glycerol was observed. These results pave the way for exploiting the assets of glycerol in the production of fuels, chemicals and pharmaceuticals based on baker's yeast.

  20. Characterization of the newly isolated ω-oxidizing yeast Candida sorbophila DS02 and its potential applications in long-chain dicarboxylic acid production.

    PubMed

    Lee, Heeseok; Sugiharto, Yohanes Eko Chandra; Lee, Seunghoon; Park, Gyuyeon; Han, Changpyo; Jang, Hyeran; Jeon, Wooyoung; Park, Heejoon; Ahn, Jungoh; Kang, Kyungbo; Lee, Hongwoen

    2017-08-01

    α, ω-Dicarboxylic acids (DCAs) are multipurpose chemicals widely used in polymers, perfumes, plasticizers, lubricants, and adhesives. The biotransformation of DCAs from alkanes and fatty acids by microorganisms has attracted recent interest, since synthesis via chemical oxidation causes problems in terms of the environment and safety. We isolated an ω-oxidizing yeast from a wastewater disposal facility of a petrochemical factory by chemostat enrichment culture. The haploid strain identified as Candida sorbophila DS02 grew on glucose and dodecane, exhibiting greater cell shrinkage on the latter. In flask cultures with mixed alkanes (C10-16) and fatty acid methyl esters (C10-16), DS02 used mixed alkanes simultaneously unlike Candida tropicalis and Yarrowia lipolytica and showed high substrate resistance. In flask cultures with acrylic acid-a known inhibitor of β-oxidation-DS02 produced 0.28 g/l dodecanedioic acid (DDDA) from dodecane, similar to wild-type C. tropicalis ATCC 20336. In fed-batch fermentation, DS02 produced 9.87 g/l DDDA, which was 5.7-fold higher than wild-type C. tropicalis. These results suggest that C. sorbophila strain DS02 has potential applications for the large-scale production of DCA.

  1. Production of Bacterial Cellulose by Gluconacetobacter hansenii Using Corn Steep Liquor As Nutrient Sources

    PubMed Central

    Costa, Andrea F. S.; Almeida, Fabíola C. G.; Vinhas, Glória M.; Sarubbo, Leonie A.

    2017-01-01

    Cellulose is mainly produced by plants, although many bacteria, especially those belonging to the genus Gluconacetobacter, produce a very peculiar form of cellulose with mechanical and structural properties that can be exploited in numerous applications. However, the production cost of bacterial cellulose (BC) is very high to the use of expensive culture media, poor yields, downstream processing, and operating costs. Thus, the purpose of this work was to evaluate the use of industrial residues as nutrients for the production of BC by Gluconacetobacter hansenii UCP1619. BC pellicles were synthesized using the Hestrin–Schramm (HS) medium and alternative media formulated with different carbon (sugarcane molasses and acetylated glucose) and nitrogen sources [yeast extract, peptone, and corn steep liquor (CSL)]. A jeans laundry was also tested. None of the tested sources (beside CSL) worked as carbon and nutrient substitute. The alternative medium formulated with 1.5% glucose and 2.5% CSL led to the highest yield in terms of dry and hydrated mass. The BC mass produced in the alternative culture medium corresponded to 73% of that achieved with the HS culture medium. The BC pellicles demonstrated a high concentration of microfibrils and nanofibrils forming a homogenous, compact, and three-dimensional structure. The biopolymer produced in the alternative medium had greater thermal stability, as degradation began at 240°C, while degradation of the biopolymer produced in the HS medium began at 195°C. Both biopolymers exhibited high crystallinity. The mechanical tensile test revealed the maximum breaking strength and the elongation of the break of hydrated and dry pellicles. The dry BC film supported up to 48 MPa of the breaking strength and exhibited greater than 96.98% stiffness in comparison with the hydrated film. The dry film supported up to 48 MPa of the breaking strength and exhibited greater than 96.98% stiffness in comparison with the hydrated film. The values

  2. Identification and Characterization of Non-Cellulose-Producing Mutants of Gluconacetobacter hansenii Generated by Tn5 Transposon Mutagenesis

    PubMed Central

    Deng, Ying; Nagachar, Nivedita; Xiao, Chaowen; Tien, Ming

    2013-01-01

    The acs operon of Gluconacetobacter is thought to encode AcsA, AcsB, AcsC, and AcsD proteins that constitute the cellulose synthase complex, required for the synthesis and secretion of crystalline cellulose microfibrils. A few other genes have been shown to be involved in this process, but their precise role is unclear. We report here the use of Tn5 transposon insertion mutagenesis to identify and characterize six non-cellulose-producing (Cel−) mutants of Gluconacetobacter hansenii ATCC 23769. The genes disrupted were acsA, acsC, ccpAx (encoding cellulose-complementing protein [the subscript “Ax” indicates genes from organisms formerly classified as Acetobacter xylinum]), dgc1 (encoding guanylate dicyclase), and crp-fnr (encoding a cyclic AMP receptor protein/fumarate nitrate reductase transcriptional regulator). Protein blot analysis revealed that (i) AcsB and AcsC were absent in the acsA mutant, (ii) the levels of AcsB and AcsC were significantly reduced in the ccpAx mutant, and (iii) the level of AcsD was not affected in any of the Cel− mutants. Promoter analysis showed that the acs operon does not include acsD, unlike the organization of the acs operon of several strains of closely related Gluconacetobacter xylinus. Complementation experiments confirmed that the gene disrupted in each Cel− mutant was responsible for the phenotype. Quantitative real-time PCR and protein blotting results suggest that the transcription of bglAx (encoding β-glucosidase and located immediately downstream from acsD) was strongly dependent on Crp/Fnr. A bglAx knockout mutant, generated via homologous recombination, produced only ∼16% of the wild-type cellulose level. Since the crp-fnr mutant did not produce any cellulose, Crp/Fnr may regulate the expression of other gene(s) involved in cellulose biosynthesis. PMID:24013627

  3. Selection of enhanced antimicrobial activity posing lactic acid bacteria characterised by (GTG)5-PCR fingerprinting.

    PubMed

    Šalomskienė, Joana; Abraitienė, Asta; Jonkuvienė, Dovilė; Mačionienė, Irena; Repečkienė, Jūratė

    2015-07-01

    The aim of the study was a detail evaluation of genetic diversity among the lactic acid bacteria (LAB) strains having an advantage of a starter culture in order to select genotypically diverse strains with enhanced antimicrobial effect on some harmfull and pathogenic microorganisms. Antimicrobial activity of LAB was performed by the agar well diffusion method and was examined against the reference strains and foodborne isolates of Bacillus cereus, Listeria monocytogenes, Escherichia coli, Staphylococcus aureus and Salmonella Typhimurium. Antifungal activity was tested against the foodborne isolates of Candida parapsilosis, Debaromyces hansenii, Kluyveromyces marxianus, Pichia guilliermondii, Yarowia lipolytica, Aspergillus brasiliensis, Aspergillus versicolor, Cladosporium herbarum, Penicillium chrysogenum and Scopulariopsis brevicaulis. A total 40 LAB strains representing Lactobacillus (23 strains), Lactococcus (13 strains) and Streptococcus spp. (4 strains) were characterised by repetitive sequence based polymerase chain reaction fingerprinting which generated highly discriminatory profiles, confirmed the identity and revealed high genotypic heterogeneity among the strains. Many of tested LAB demonstrated strong antimicrobial activity specialised against one or few indicator strains. Twelve LAB strains were superior in suppressing growth of the whole complex of pathogenic bacteria and fungi. These results demonstrated that separate taxonomic units offered different possibilities of selection for novel LAB strains could be used as starter cultures enhancing food preservation.

  4. Cloning, expression and characterization of a lipase gene from marine bacterium Pseudoalteromonas lipolytica SCSIO 04301

    NASA Astrophysics Data System (ADS)

    Su, Hongfei; Mai, Zhimao; Zhang, Si

    2016-12-01

    A lipase gene, lip1233, isolated from Pseudoalteromonas lipolytica SCSIO 04301, was cloned and expressed in E. coli. The enzyme comprised 810 amino acid residues with a deduced molecular weight of 80 kDa. Lip1233 was grouped into the lipase family X because it contained a highly conserved motif GHSLG. The recombinant enzyme was purified with Ni-NTA affinity chromatography. The optimal temperature and pH value of Lip1233 were 45°C and 8.0, respectively. It retained more than 70% of original activity after being incubated in pH ranging from 6.0 to 9.5 for 30 min. It was stable when the temperature was below 45°C, but was unstable when the temperature was above 55°C. Most metal ions tested had no significant effect on the activity of Lip1233. Lip1233 remained more than original activity in some organic solvents at the concentration of 30% (v/v). It retained more than 30% activity after incubated in pure organic solvents for 12 h, while in hexane the activity was nearly 100%. Additionally, Lip1233 exhibited typical halotolerant characteristic as it was active under 4M NaCl. Lip1233 powder could catalyze efficiently the synthesis of fructose esters in hexane at 40°C. These characteristics demonstrated that Lip1233 is applicable to elaborate food processing and organic synthesis.

  5. Desulfomusa hansenii gen. nov., sp. nov., a novel marine propionate-degrading, sulfate-reducing bacterium isolated from Zostera marina roots.

    PubMed

    Finster, K; Thomsen, T R; Ramsing, N B

    2001-11-01

    The physiology and phylogeny of a novel sulfate-reducing bacterium, isolated from surface-sterilized roots of the marine macrophyte Zostera marina, are presented. The strain, designated P1T, was enriched and isolated in defined oxygen-free, bicarbonate-buffered, iron-reduced seawater medium with propionate as sole carbon source and electron donor and sulfate as electron acceptor. Strain P1T had a rod-shaped, slightly curved cell morphology and was motile by means of a single polar flagellum. Cells generally aggregated in clumps throughout the growth phase. High CaCl2 (10 mM) and MgCl2 (50 mM) concentrations were required for optimum growth. In addition to propionate, strain P1T utilized fumarate, succinate, pyruvate, ethanol, butanol and alanine. Oxidation of propionate was incomplete and acetate was formed in stoichiometric amounts. Strain P1T thus resembles members of the sulfate-reducing genera Desulfobulbus and Desulforhopalus, which both oxidize propionate incompletely and form acetate in addition to CO2. However, sequence analysis of the small-subunit rDNA and the dissimilatory sulfite reductase gene revealed that strain P1T was unrelated to the incomplete oxidizers Desulfobulbus and Desulforhopalus and that it constitutes a novel lineage affiliated with the genera Desulfococcus, Desulfosarcina, Desulfonema and 'Desulfobotulus'. Members of this branch, with the exception of 'Desulfobotulus sapovorans', oxidize a variety of substrates completely to CO2. Strain P1T (= DSM 12642T = ATCC 700811T) is therefore proposed as Desulfomusa hansenii gen. nov., sp. nov. Strain p1T thus illustrates the difficulty of extrapolating rRNA similarities to physiology and/or ecological function.

  6. Subunit mass fingerprinting of mitochondrial complex I.

    PubMed

    Morgner, Nina; Zickermann, Volker; Kerscher, Stefan; Wittig, Ilka; Abdrakhmanova, Albina; Barth, Hans-Dieter; Brutschy, Bernhard; Brandt, Ulrich

    2008-10-01

    We have employed laser induced liquid bead ion desorption (LILBID) mass spectrometry to determine the total mass and to study the subunit composition of respiratory chain complex I from Yarrowia lipolytica. Using 5-10 pmol of purified complex I, we could assign all 40 known subunits of this membrane bound multiprotein complex to peaks in LILBID subunit fingerprint spectra by comparing predicted protein masses to observed ion masses. Notably, even the highly hydrophobic subunits encoded by the mitochondrial genome were easily detectable. Moreover, the LILBID approach allowed us to spot and correct several errors in the genome-derived protein sequences of complex I subunits. Typically, the masses of the individual subunits as determined by LILBID mass spectrometry were within 100 Da of the predicted values. For the first time, we demonstrate that LILBID spectrometry can be successfully applied to a complex I band eluted from a blue-native polyacrylamide gel, making small amounts of large multiprotein complexes accessible for subunit mass fingerprint analysis even if they are membrane bound. Thus, the LILBID subunit mass fingerprint method will be of great value for efficient proteomic analysis of complex I and its assembly intermediates, as well as of other water soluble and membrane bound multiprotein complexes.

  7. Harnessing biodiesel-producing microbes: from genetic engineering of lipase to metabolic engineering of fatty acid biosynthetic pathway.

    PubMed

    Yan, Jinyong; Yan, Yunjun; Madzak, Catherine; Han, Bingnan

    2017-02-01

    Microbial production routes, notably whole-cell lipase-mediated biotransformation and fatty-acids-derived biosynthesis, offer new opportunities for synthesizing biodiesel. They compare favorably to immobilized lipase and chemically catalyzed processes. Genetically modified whole-cell lipase-mediated in vitro route, together with in vivo and ex vivo microbial biosynthesis routes, constitutes emerging and rapidly developing research areas for effective production of biodiesel. This review presents recent advances in customizing microorganisms for producing biodiesel, via genetic engineering of lipases and metabolic engineering (including system regulation) of fatty-acids-derived pathways. Microbial hosts used include Escherichia coli, Saccharomyces cerevisiae, Pichia pastoris and Aspergillus oryzae. These microbial cells can be genetically modified to produce lipases under different forms: intracellularly expressed, secreted or surface-displayed. They can be metabolically redesigned and systematically regulated to obtain balanced biodiesel-producing cells, as highlighted in this study. Such genetically or metabolically modified microbial cells can support not only in vitro biotransformation of various common oil feedstocks to biodiesel, but also de novo biosynthesis of biodiesel from glucose, glycerol or even cellulosic biomass. We believe that the genetically tractable oleaginous yeast Yarrowia lipolytica could be developed to an effective biodiesel-producing microbial cell factory. For this purpose, we propose several engineered pathways, based on lipase and wax ester synthase, in this promising oleaginous host.

  8. Comparison of Yeasts as Hosts for Recombinant Protein Production.

    PubMed

    Vieira Gomes, Antonio Milton; Souza Carmo, Talita; Silva Carvalho, Lucas; Mendonça Bahia, Frederico; Parachin, Nádia Skorupa

    2018-04-29

    Recombinant protein production emerged in the early 1980s with the development of genetic engineering tools, which represented a compelling alternative to protein extraction from natural sources. Over the years, a high level of heterologous protein was made possible in a variety of hosts ranging from the bacteria Escherichia coli to mammalian cells. Recombinant protein importance is represented by its market size, which reached $1654 million in 2016 and is expected to reach $2850.5 million by 2022. Among the available hosts, yeasts have been used for producing a great variety of proteins applied to chemicals, fuels, food, and pharmaceuticals, being one of the most used hosts for recombinant production nowadays. Historically, Saccharomyces cerevisiae was the dominant yeast host for heterologous protein production. Lately, other yeasts such as Komagataella sp., Kluyveromyces lactis , and Yarrowia lipolytica have emerged as advantageous hosts. In this review, a comparative analysis is done listing the advantages and disadvantages of using each host regarding the availability of genetic tools, strategies for cultivation in bioreactors, and the main techniques utilized for protein purification. Finally, examples of each host will be discussed regarding the total amount of protein recovered and its bioactivity due to correct folding and glycosylation patterns.

  9. Immobilization of Yarrowia lipolytica Lipase on Macroporous Resin Using Different Methods: Characterization of the Biocatalysts in Hydrolysis Reaction.

    PubMed

    Sun, Jingjing; Chen, Yiling; Sheng, Jun; Sun, Mi

    2015-01-01

    To improve the reusability and organic solvent tolerance of microbial lipase and expand the application of lipase (hydrolysis, esterification, and transesterification), we immobilized marine microbial lipase using different methods and determined the properties of immobilized lipases. Considering the activity and cost of immobilized lipase, the concentration of lipase was fixed at 2 mg/mL. The optimal temperature of immobilized lipases was 40°C and 5°C higher than free lipase. The activities of immobilized lipases were much higher than free lipase at alkaline pH (more than 50% at pH 12). The free lipase lost most activity (35.3%) and immobilized lipases retained more than 46.4% of their initial activity after 3 h heat treatment at 70°C. At alkaline pH, immobilized lipases were more stable than free lipase (more than 60% residue activity at pH 11 for 3 h). Immobilized lipases retained 80% of their activity after 5 cycles and increased enzyme activity (more than 108.7%) after 3 h treatment in tert-butanol. Immobilization of lipase which improved reusability of lipase and provided a chance to expand the application of marine microbial lipase in organic system expanded the application range of lipase to catalyze hydrolysis and esterification in harsh condition.

  10. Fine Structure of Tibetan Kefir Grains and Their Yeast Distribution, Diversity, and Shift

    PubMed Central

    Lu, Man; Wang, Xingxing; Sun, Guowei; Qin, Bing; Xiao, Jinzhou; Yan, Shuling; Pan, Yingjie; Wang, Yongjie

    2014-01-01

    Tibetan kefir grains (TKGs), a kind of natural starter for fermented milk in Tibet, China, host various microorganisms of lactic acid bacteria, yeasts, and occasionally acetic acid bacteria in a polysaccharide/protein matrix. In the present study, the fine structure of TKGs was studied to shed light on this unusual symbiosis with stereomicroscopy and thin sections. The results reveal that TKGs consist of numerous small grain units, which are characterized by a hollow globular structure with a diameter between 2.0 and 9.0 mm and a wall thickness of approximately 200 µm. A polyhedron-like net structure, formed mainly by the bacteria, was observed in the wall of the grain units, which has not been reported previously to our knowledge. Towards the inside of the grain unit, the polyhedron-like net structures became gradually larger in diameter and fewer in number. Such fine structures may play a crucial role in the stability of the grains. Subsequently, the distribution, diversity, and shift of yeasts in TKGs were investigated based on thin section, scanning electron microscopy, cloning and sequencing of D1/D2 of the 26S rRNA gene, real-time quantitative PCR, and in situ hybridization with specific fluorescence-labeled oligonucleotide probes. These show that (i) yeasts appear to localize on the outer surface of the grains and grow normally together to form colonies embedded in the bacterial community; (ii) the diversity of yeasts is relatively low on genus level with three dominant species – Saccharomyces cerevisiae, Kluyveromyces marxianus, and Yarrowia lipolytica; (iii) S. cerevisiae is the stable predominant yeast species, while the composition of Kluyveromyces and Yarrowia are subject to change over time. Our results indicate that TKGs are relatively stable in structure, and culture conditions to some extent shape the microbial community and interaction in kefir grains. These findings pave the way for further study of the specific symbiotic associations between S

  11. Candida lipolytica UCP0988 Biosurfactant: Potential as a Bioremediation Agent and in Formulating a Commercial Related Product

    PubMed Central

    Santos, Danyelle K. F.; Resende, Ana H. M.; de Almeida, Darne G.; Soares da Silva, Rita de Cássia F.; Rufino, Raquel D.; Luna, Juliana M.; Banat, Ibrahim M.; Sarubbo, Leonie A.

    2017-01-01

    The aim of the present study was to investigate the potential application of the biosurfactant from Candida lipolytica grown in low-cost substrates, which has previously been produced and characterized under optimized conditions as an adjunct material to enhance the remediation processes of hydrophobic pollutants and heavy metals generated by the oil industry and propose the formulation of a safe and stable remediation agent. In tests carried out with seawater, the crude biosurfactant demonstrated 80% oil spreading efficiency. The dispersion rate was 50% for the biosurfactant at a concentration twice that of the CMC. The biosurfactant removed 70% of motor oil from contaminated cotton cloth in detergency tests. The crude biosurfactant also removed 30–40% of Cu and Pb from standard sand, while the isolated biosurfactant removed ~30% of the heavy metals. The conductivity of solutions containing Cd and Pb was sharply reduced after biosurfactants' addition. A product was prepared through adding 0.2% potassium sorbate as preservative and tested over 120 days. The formulated biosurfactant was analyzed for emulsification and surface tension under different pH values, temperatures, and salt concentrations and tested for toxicity against the fish Poecilia vivipara. The results showed that the formulation had no toxicity and did not cause significant changes in the tensoactive capacity of the biomolecule while maintaining activity demonstrating suitability for potential future commercial product formulation. PMID:28507538

  12. The requirement of sterol glucoside for pexophagy in yeast is dependent on the species and nature of peroxisome inducers.

    PubMed

    Nazarko, Taras Y; Polupanov, Andriy S; Manjithaya, Ravi R; Subramani, Suresh; Sibirny, Andriy A

    2007-01-01

    Sterol glucosyltransferase, Ugt51/Atg26, is essential for both micropexophagy and macropexophagy of methanol-induced peroxisomes in Pichia pastoris. However, the role of this protein in pexophagy in other yeast remained unclear. We show that oleate- and amine-induced peroxisomes in Yarrowia lipolytica are degraded by Atg26-independent macropexophagy. Surprisingly, Atg26 was also not essential for macropexophagy of oleate- and amine-induced peroxisomes in P. pastoris, suggesting that the function of sterol glucoside (SG) in pexophagy is both species and peroxisome inducer specific. However, the rates of degradation of oleate- and amine-induced peroxisomes in P. pastoris were reduced in the absence of SG, indicating that P. pastoris specifically uses sterol conversion by Atg26 to enhance selective degradation of peroxisomes. However, methanol-induced peroxisomes apparently have lost the redundant ability to be degraded without SG. We also show that the P. pastoris Vac8 armadillo repeat protein is not essential for macropexophagy of methanol-, oleate-, or amine-induced peroxisomes, which makes PpVac8 the first known protein required for the micropexophagy, but not for the macropexophagy, machinery. The uniqueness of Atg26 and Vac8 functions under different pexophagy conditions demonstrates that not only pexophagy inducers, such as glucose or ethanol, but also the inducers of peroxisomes, such as methanol, oleate, or primary amines, determine the requirements for subsequent pexophagy in yeast.

  13. "Bligh and Dyer" and Folch Methods for Solid-Liquid-Liquid Extraction of Lipids from Microorganisms. Comprehension of Solvatation Mechanisms and towards Substitution with Alternative Solvents.

    PubMed

    Breil, Cassandra; Abert Vian, Maryline; Zemb, Thomas; Kunz, Werner; Chemat, Farid

    2017-03-27

    Bligh and Dyer (B & D) or Folch procedures for the extraction and separation of lipids from microorganisms and biological tissues using chloroform/methanol/water have been used tens of thousands of times and are "gold standards" for the analysis of extracted lipids. Based on the Conductor-like Screening MOdel for realistic Solvatation (COSMO-RS), we select ethanol and ethyl acetate as being potentially suitable for the substitution of methanol and chloroform. We confirm this by performing solid-liquid extraction of yeast ( Yarrowia lipolytica IFP29 ) and subsequent liquid-liquid partition-the two steps of routine extraction. For this purpose, we consider similar points in the ternary phase diagrams of water/methanol/chloroform and water/ethanol/ethyl acetate, both in the monophasic mixtures and in the liquid-liquid miscibility gap. Based on high performance thin-layer chromatography (HPTLC) to obtain the distribution of lipids classes, and gas chromatography coupled with a flame ionisation detector (GC/FID) to obtain fatty acid profiles, this greener solvents pair is found to be almost as effective as the classic methanol-chloroform couple in terms of efficiency and selectivity of lipids and non-lipid material. Moreover, using these bio-sourced solvents as an alternative system is shown to be as effective as the classical system in terms of the yield of lipids extracted from microorganism tissues, independently of their apparent hydrophilicity.

  14. “Bligh and Dyer” and Folch Methods for Solid–Liquid–Liquid Extraction of Lipids from Microorganisms. Comprehension of Solvatation Mechanisms and towards Substitution with Alternative Solvents

    PubMed Central

    Breil, Cassandra; Abert Vian, Maryline; Zemb, Thomas; Kunz, Werner; Chemat, Farid

    2017-01-01

    Bligh and Dyer (B & D) or Folch procedures for the extraction and separation of lipids from microorganisms and biological tissues using chloroform/methanol/water have been used tens of thousands of times and are “gold standards” for the analysis of extracted lipids. Based on the Conductor-like Screening MOdel for realistic Solvatation (COSMO-RS), we select ethanol and ethyl acetate as being potentially suitable for the substitution of methanol and chloroform. We confirm this by performing solid–liquid extraction of yeast (Yarrowia lipolytica IFP29) and subsequent liquid–liquid partition—the two steps of routine extraction. For this purpose, we consider similar points in the ternary phase diagrams of water/methanol/chloroform and water/ethanol/ethyl acetate, both in the monophasic mixtures and in the liquid–liquid miscibility gap. Based on high performance thin-layer chromatography (HPTLC) to obtain the distribution of lipids classes, and gas chromatography coupled with a flame ionisation detector (GC/FID) to obtain fatty acid profiles, this greener solvents pair is found to be almost as effective as the classic methanol–chloroform couple in terms of efficiency and selectivity of lipids and non-lipid material. Moreover, using these bio-sourced solvents as an alternative system is shown to be as effective as the classical system in terms of the yield of lipids extracted from microorganism tissues, independently of their apparent hydrophilicity. PMID:28346372

  15. The modulation of extracellular superoxide dismutase in the specifically enhanced cellular immune response against secondary challenge of Vibrio splendidus in Pacific oyster (Crassostrea gigas).

    PubMed

    Liu, Conghui; Zhang, Tao; Wang, Lingling; Wang, Mengqiang; Wang, Weilin; Jia, Zhihao; Jiang, Shuai; Song, Linsheng

    2016-10-01

    Extracellular superoxide dismutase (EcSOD) is a copper-containing glycoprotein playing an important role in antioxidant defense of living cells exposed to oxidative stress, and also participating in microorganism internalization and cell adhesion in invertebrates. EcSOD from oyster (designated CgEcSOD) had been previously reported to bind lipopolysaccharides (LPS) and act as a bridge molecule in Vibrio splendidus internalization. Its mRNA expression pattern, PAMP binding spectrum and microorganism binding capability were examined in the present study. The mRNA expression of CgEcSOD in hemocytes was significantly up-regulated at the initial phase and decreased sharply at 48 h post V. splendidus stimulation. The recombinant CgEcSOD protein (rCgEcSOD) could bind LPS, PGN and poly (I:C), as well as various microorganisms including Micrococcus luteus, Staphylococcus aureus, Escherichia coli, Vibrio anguillarum, V. splendidus, Pastoris pastoris and Yarrowia lipolytica at the presence of divalent metal ions Cu(2+). After the secondary V. splendidus stimulation, the mRNA and protein of CgEcSOD were both down-regulated significantly. The results collectively indicated that CgEcSOD could not only function in the immune recognition, but also might contribute to the immune priming of oyster by inhibiting the foreign microbe invasion through a specific down-regulation. Copyright © 2016 Elsevier Ltd. All rights reserved.

  16. The secretory pathway: exploring yeast diversity.

    PubMed

    Delic, Marizela; Valli, Minoska; Graf, Alexandra B; Pfeffer, Martin; Mattanovich, Diethard; Gasser, Brigitte

    2013-11-01

    Protein secretion is an essential process for living organisms. In eukaryotes, this encompasses numerous steps mediated by several hundred cellular proteins. The core functions of translocation through the endoplasmic reticulum membrane, primary glycosylation, folding and quality control, and vesicle-mediated secretion are similar from yeasts to higher eukaryotes. However, recent research has revealed significant functional differences between yeasts and mammalian cells, and even among diverse yeast species. This review provides a current overview of the canonical protein secretion pathway in the model yeast Saccharomyces cerevisiae, highlighting differences to mammalian cells as well as currently unresolved questions, and provides a genomic comparison of the S. cerevisiae pathway to seven other yeast species where secretion has been investigated due to their attraction as protein production platforms, or for their relevance as pathogens. The analysis of Candida albicans, Candida glabrata, Kluyveromyces lactis, Pichia pastoris, Hansenula polymorpha, Yarrowia lipolytica, and Schizosaccharomyces pombe reveals that many - but not all - secretion steps are more redundant in S. cerevisiae due to duplicated genes, while some processes are even absent in this model yeast. Recent research obviates that even where homologous genes are present, small differences in protein sequence and/or differences in the regulation of gene expression may lead to quite different protein secretion phenotypes. © 2013 Federation of European Microbiological Societies. Published by John Wiley & Sons Ltd. All rights reserved.

  17. 13C Metabolic Flux Analysis for Systematic Metabolic Engineering of S. cerevisiae for Overproduction of Fatty Acids

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ghosh, Amit; Ando, David; Gin, Jennifer

    Efficient redirection of microbial metabolism into the abundant production of desired bioproducts remains non-trivial. Here, we used flux-based modeling approaches to improve yields of fatty acids in Saccharomyces cerevisiae. We combined 13C labeling data with comprehensive genome-scale models to shed light onto microbial metabolism and improve metabolic engineering efforts. We concentrated on studying the balance of acetyl-CoA, a precursor metabolite for the biosynthesis of fatty acids. A genome-wide acetyl-CoA balance study showed ATP citrate lyase from Yarrowia lipolytica as a robust source of cytoplasmic acetyl-CoA and malate synthase as a desirable target for downregulation in terms of acetyl-CoA consumption. Thesemore » genetic modifications were applied to S. cerevisiae WRY2, a strain that is capable of producing 460 mg/L of free fatty acids. With the addition of ATP citrate lyase and downregulation of malate synthase, the engineered strain produced 26% more free fatty acids. Further increases in free fatty acid production of 33% were obtained by knocking out the cytoplasmic glycerol-3-phosphate dehydrogenase, which flux analysis had shown was competing for carbon flux upstream with the carbon flux through the acetyl-CoA production pathway in the cytoplasm. In total, the genetic interventions applied in this work increased fatty acid production by ~70%.« less

  18. 13C Metabolic Flux Analysis for Systematic Metabolic Engineering of S. cerevisiae for Overproduction of Fatty Acids

    DOE PAGES

    Ghosh, Amit; Ando, David; Gin, Jennifer; ...

    2016-10-05

    Efficient redirection of microbial metabolism into the abundant production of desired bioproducts remains non-trivial. Here, we used flux-based modeling approaches to improve yields of fatty acids in Saccharomyces cerevisiae. We combined 13C labeling data with comprehensive genome-scale models to shed light onto microbial metabolism and improve metabolic engineering efforts. We concentrated on studying the balance of acetyl-CoA, a precursor metabolite for the biosynthesis of fatty acids. A genome-wide acetyl-CoA balance study showed ATP citrate lyase from Yarrowia lipolytica as a robust source of cytoplasmic acetyl-CoA and malate synthase as a desirable target for downregulation in terms of acetyl-CoA consumption. Thesemore » genetic modifications were applied to S. cerevisiae WRY2, a strain that is capable of producing 460 mg/L of free fatty acids. With the addition of ATP citrate lyase and downregulation of malate synthase, the engineered strain produced 26% more free fatty acids. Further increases in free fatty acid production of 33% were obtained by knocking out the cytoplasmic glycerol-3-phosphate dehydrogenase, which flux analysis had shown was competing for carbon flux upstream with the carbon flux through the acetyl-CoA production pathway in the cytoplasm. In total, the genetic interventions applied in this work increased fatty acid production by ~70%.« less

  19. Safety assessment of EPA-rich triglyceride oil produced from yeast: genotoxicity and 28-day oral toxicity in rats.

    PubMed

    Belcher, Leigh A; MacKenzie, Susan A; Donner, Maria; Sykes, Greg P; Frame, Steven R; Gillies, Peter J

    2011-02-01

    The 28-day repeat-dose oral and genetic toxicity of eicosapentaenoic acid triglyceride oil (EPA oil) produced from genetically modified Yarrowia lipolytica yeast were assessed. Groups of rats received 0 (olive oil), 940, 1880, or 2820 mg EPA oil/kg/day, or fish oil (sardine/anchovy source) by oral gavage. Lower total serum cholesterol was seen in all EPA and fish oil groups. Liver weights were increased in the medium and high-dose EPA (male only), and fish oil groups but were considered non-adverse physiologically adaptive responses. Increased thyroid follicular cell hypertrophy was observed in male high-dose EPA and fish oil groups, and was considered to be an adaptive response to high levels of polyunsaturated fatty acids. No adverse test substance-related effects were observed on body weight, nutritional, or other clinical or anatomic pathology parameters. The oil was not mutagenic in the in vitro Ames or mouse lymphoma assay, and was not clastogenic in the in vivo mouse micronucleus test. In conclusion, exposure for 28 days to EPA oil derived from yeast did not produce adverse effects at doses up to 2820 mg/kg/day and was not genotoxic. The safety profile of the EPA oil in these tests was comparable to a commercial fish oil. Copyright © 2010 Elsevier Inc. All rights reserved.

  20. Application of metabolic controls for the maximization of lipid production in semicontinuous fermentation.

    PubMed

    Xu, Jingyang; Liu, Nian; Qiao, Kangjian; Vogg, Sebastian; Stephanopoulos, Gregory

    2017-07-03

    Acetic acid can be generated through syngas fermentation, lignocellulosic biomass degradation, and organic waste anaerobic digestion. Microbial conversion of acetate into triacylglycerols for biofuel production has many advantages, including low-cost or even negative-cost feedstock and environmental benefits. The main issue stems from the dilute nature of acetate produced in such systems, which is costly to be processed on an industrial scale. To tackle this problem, we established an efficient bioprocess for converting dilute acetate into lipids, using the oleaginous yeast Yarrowia lipolytica in a semicontinuous system. The implemented design used low-strength acetic acid in both salt and acid forms as carbon substrate and a cross-filtration module for cell recycling. Feed controls for acetic acid and nitrogen based on metabolic models and online measurement of the respiratory quotient were used. The optimized process was able to sustain high-density cell culture using acetic acid of only 3% and achieved a lipid titer, yield, and productivity of 115 g/L, 0.16 g/g, and 0.8 g⋅L -1 ⋅h -1 , respectively. No carbon substrate was detected in the effluent stream, indicating complete utilization of acetate. These results represent a more than twofold increase in lipid production metrics compared with the current best-performing results using concentrated acetic acid as carbon feed.

  1. Assessment of Antimicrobial and Antioxidant Activities of Nepeta trachonitica: Analysis of Its Phenolic Compounds Using HPLC-MS/MS

    PubMed Central

    Köksal, Ekrem; Tohma, Hatice; Kılıç, Ömer; Alan, Yusuf; Aras, Abdülmelik; Gülçin, İlhami; Bursal, Ercan

    2017-01-01

    Continuing our work on the sources of natural bioactive compounds, we evaluated the antimicrobial and antioxidant activities of Nepeta trachonitica as well as its major phenolic content using the high-performance liquid chromatography-mass spectrometry/mass spectrometry (HPLC-MS/MS) technique. For antioxidant activity, ferric reducing antioxidant power (FRAP) and cupric ion reducing antioxidant capacity (CUPRAC) methods were performed to measure the reducing power and 1,1-diphenyl-2-picrylhydrazyl (DPPH) assay was employed to evaluate the radical scavenging activity of the sample. For antimicrobial activity, three Gram-positive and four Gram-negative microbial species as well as three fungi species were tested. N. trachonitica appeared to have reasonable antioxidant activity and decent antimicrobial activity as indicated by the inhibition of the organisms’ growth. The most susceptible species were Bacillus subtilis ATCC 6633 and Escherichia coli ATCC 11229 among the organisms tested. Ethanol extract of the plant has the highest effect on Saccharomyces cerevisiae but no effect on Yarrowia lipolytica. The HPLC-MS/MS analysis showed that at least 11 major phenolic compounds of N. trachonitica exist, the major ones being rosmarinic acid, chlorogenic acid and quinic acid. The obtained results suggest that N. trachonitica could be a promising source for food and nutraceutical industries because of its antimicrobial and antioxidant properties and phenolic compounds. PMID:28505129

  2. Novel efficient promoter of the mitochondrial porin, voltage-dependent anion channel (VDAC), in the genome of the Yarrowia lipolytica yeast.

    PubMed

    Kulanbaewa, F F; Sekova, V Yu; Isakova, E P; Deryabina, Y I; Nikolaev, A V

    2016-09-01

    This article presents the characteristics of the highly inducible promoter of the gene encoding the mitochondrial porin, the voltage-dependent anion channel (VDAC). This promoter is recommended for use in new genetic constructs both in basic research for assessing the adaptive strategy of lower eukaryotes under adverse conditions and in designing new highly competitive transformants producing economically important compounds (proteins, lipids, and organic acids) on its basis.

  3. Expression and secretion of fungal endoglucanase II and chimeric cellobiohydrolase I in the oleaginous yeast Lipomyces starkeyi

    DOE PAGES

    Xu, Qi; Knoshaug, Eric P.; Wang, Wei; ...

    2017-07-24

    Lipomyces starkeyi is one of the leading lipid-producing microorganisms reported to date; its genetic transformation was only recently reported. Our aim is to engineer L. starkeyi to serve in consolidated bioprocessing (CBP) to produce lipid or fatty acid-related biofuels directly from abundant and low-cost lignocellulosic substrates. To evaluate L. starkeyi in this role, we first conducted a genome analysis, which revealed the absence of key endo- and exocellulases in this yeast, prompting us to select and screen four signal peptides for their suitability for the overexpression and secretion of cellulase genes. To compensate for the cellulase deficiency, we chose twomore » prominent cellulases, Trichoderma reesei endoglucanase II (EG II) and a chimeric cellobiohydrolase I (TeTrCBH I) formed by fusion of the catalytic domain from Talaromyces emersonii CBH I with the linker peptide and cellulose-binding domain from T. reesei CBH I. The systematically tested signal peptides included three peptides from native L. starkeyi and one from Yarrowia lipolytica. We found that all four signal peptides permitted secretion of active EG II. We also determined that three of these signal peptides worked for expression of the chimeric CBH I; suggesting that our design criteria for selecting these signal peptides was effective. Encouragingly, the Y. lipolytica signal peptide was able to efficiently guide secretion of the chimeric TeTrCBH I protein from L. starkeyi. The purified chimeric TeTrCBH I showed high activity against the cellulose in pretreated corn stover and the purified EG II showed high endocellulase activity measured by the CELLG3 (Megazyme) method. Our results suggest that L. starkeyi is capable of expressing and secreting core fungal cellulases. Moreover, the purified EG II and chimeric TeTrCBH I displayed significant and potentially useful enzymatic activities, demonstrating that engineered L. starkeyi has the potential to function as an oleaginous CBP strain for

  4. Expression and secretion of fungal endoglucanase II and chimeric cellobiohydrolase I in the oleaginous yeast Lipomyces starkeyi

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Xu, Qi; Knoshaug, Eric P.; Wang, Wei

    Lipomyces starkeyi is one of the leading lipid-producing microorganisms reported to date; its genetic transformation was only recently reported. Our aim is to engineer L. starkeyi to serve in consolidated bioprocessing (CBP) to produce lipid or fatty acid-related biofuels directly from abundant and low-cost lignocellulosic substrates. To evaluate L. starkeyi in this role, we first conducted a genome analysis, which revealed the absence of key endo- and exocellulases in this yeast, prompting us to select and screen four signal peptides for their suitability for the overexpression and secretion of cellulase genes. To compensate for the cellulase deficiency, we chose twomore » prominent cellulases, Trichoderma reesei endoglucanase II (EG II) and a chimeric cellobiohydrolase I (TeTrCBH I) formed by fusion of the catalytic domain from Talaromyces emersonii CBH I with the linker peptide and cellulose-binding domain from T. reesei CBH I. The systematically tested signal peptides included three peptides from native L. starkeyi and one from Yarrowia lipolytica. We found that all four signal peptides permitted secretion of active EG II. We also determined that three of these signal peptides worked for expression of the chimeric CBH I; suggesting that our design criteria for selecting these signal peptides was effective. Encouragingly, the Y. lipolytica signal peptide was able to efficiently guide secretion of the chimeric TeTrCBH I protein from L. starkeyi. The purified chimeric TeTrCBH I showed high activity against the cellulose in pretreated corn stover and the purified EG II showed high endocellulase activity measured by the CELLG3 (Megazyme) method. Our results suggest that L. starkeyi is capable of expressing and secreting core fungal cellulases. Moreover, the purified EG II and chimeric TeTrCBH I displayed significant and potentially useful enzymatic activities, demonstrating that engineered L. starkeyi has the potential to function as an oleaginous CBP strain for

  5. Chemical signaling and insect attraction is a conserved trait in yeasts.

    PubMed

    Becher, Paul G; Hagman, Arne; Verschut, Vasiliki; Chakraborty, Amrita; Rozpędowska, Elżbieta; Lebreton, Sébastien; Bengtsson, Marie; Flick, Gerhard; Witzgall, Peter; Piškur, Jure

    2018-03-01

    Yeast volatiles attract insects, which apparently is of mutual benefit, for both yeasts and insects. However, it is unknown whether biosynthesis of metabolites that attract insects is a basic and general trait, or if it is specific for yeasts that live in close association with insects. Our goal was to study chemical insect attractants produced by yeasts that span more than 250 million years of evolutionary history and vastly differ in their metabolism and lifestyle. We bioassayed attraction of the vinegar fly Drosophila melanogaster to odors of phylogenetically and ecologically distinct yeasts grown under controlled conditions. Baker's yeast Saccharomyces cerevisiae , the insect-associated species Candida californica , Pichia kluyveri and Metschnikowia andauensis , wine yeast Dekkera bruxellensis , milk yeast Kluyveromyces lactis , the vertebrate pathogens Candida albicans and Candida glabrata , and oleophilic Yarrowia lipolytica were screened for fly attraction in a wind tunnel. Yeast headspace was chemically analyzed, and co-occurrence of insect attractants in yeasts and flowering plants was investigated through a database search. In yeasts with known genomes, we investigated the occurrence of genes involved in the synthesis of key aroma compounds. Flies were attracted to all nine yeasts studied. The behavioral response to baker's yeast was independent of its growth stage. In addition to Drosophila , we tested the basal hexapod Folsomia candida (Collembola) in a Y-tube assay to the most ancient yeast, Y. lipolytica, which proved that early yeast signals also function on clades older than neopteran insects. Behavioral and chemical data and a search for selected genes of volatile metabolites underline that biosynthesis of chemical signals is found throughout the yeast clade and has been conserved during the evolution of yeast lifestyles. Literature and database reviews corroborate that yeast signals mediate mutualistic interactions between insects and yeasts

  6. Expression and secretion of fungal endoglucanase II and chimeric cellobiohydrolase I in the oleaginous yeast Lipomyces starkeyi.

    PubMed

    Xu, Qi; Knoshaug, Eric P; Wang, Wei; Alahuhta, Markus; Baker, John O; Yang, Shihui; Vander Wall, Todd; Decker, Stephen R; Himmel, Michael E; Zhang, Min; Wei, Hui

    2017-07-24

    Lipomyces starkeyi is one of the leading lipid-producing microorganisms reported to date; its genetic transformation was only recently reported. Our aim is to engineer L. starkeyi to serve in consolidated bioprocessing (CBP) to produce lipid or fatty acid-related biofuels directly from abundant and low-cost lignocellulosic substrates. To evaluate L. starkeyi in this role, we first conducted a genome analysis, which revealed the absence of key endo- and exocellulases in this yeast, prompting us to select and screen four signal peptides for their suitability for the overexpression and secretion of cellulase genes. To compensate for the cellulase deficiency, we chose two prominent cellulases, Trichoderma reesei endoglucanase II (EG II) and a chimeric cellobiohydrolase I (TeTrCBH I) formed by fusion of the catalytic domain from Talaromyces emersonii CBH I with the linker peptide and cellulose-binding domain from T. reesei CBH I. The systematically tested signal peptides included three peptides from native L. starkeyi and one from Yarrowia lipolytica. We found that all four signal peptides permitted secretion of active EG II. We also determined that three of these signal peptides worked for expression of the chimeric CBH I; suggesting that our design criteria for selecting these signal peptides was effective. Encouragingly, the Y. lipolytica signal peptide was able to efficiently guide secretion of the chimeric TeTrCBH I protein from L. starkeyi. The purified chimeric TeTrCBH I showed high activity against the cellulose in pretreated corn stover and the purified EG II showed high endocellulase activity measured by the CELLG3 (Megazyme) method. Our results suggest that L. starkeyi is capable of expressing and secreting core fungal cellulases. Moreover, the purified EG II and chimeric TeTrCBH I displayed significant and potentially useful enzymatic activities, demonstrating that engineered L. starkeyi has the potential to function as an oleaginous CBP strain for biofuel

  7. Yeast diversity and dynamics in the production processes of Norwegian dry-cured meat products.

    PubMed

    Asefa, Dereje T; Møretrø, Trond; Gjerde, Ragnhild O; Langsrud, Solveig; Kure, Cathrine F; Sidhu, Maan S; Nesbakken, Truls; Skaar, Ida

    2009-07-31

    This study investigate the diversity and dynamics of yeasts in the production processes of one unsmoked and two smoked dry-cured meat products of a Norwegian dry-cured meat production facility. A longitudinal observational study was performed to collect 642 samples from the meat, production materials, room installations and indoor and outdoor air of the production facility. Nutrient rich agar media were used to isolate the yeasts. Morphologically different isolates were re-cultivated in their pure culture forms. Both classical and molecular methods were employed for species identification. Totally, 401 yeast isolates belonging to 10 species of the following six genera were identified: Debaryomyces, Candida, Rhodotorula, Rhodosporidium, Cryptococcus and Sporidiobolus. Debaryomyces hansenii and Candida zeylanoides were dominant and contributed by 63.0% and 26.4% respectively to the total isolates recovered from both smoked and unsmoked products. The yeast diversity was higher at the pre-salting production processes with C. zeylanoides being the dominant. Later at the post-salting stages, D. hansenii occurred frequently. Laboratory studies showed that D. hansenii was more tolerant to sodium chloride and nitrite than C. zeylanoides. Smoking seems to have a killing or a temporary growth inhibiting effect on yeasts that extend to the start of the drying process. Yeasts were isolated only from 31.1% of the environmental samples. They belonged to six different species of which five of them were isolated from the meat samples too. Debaryomyces hansenii and Rhodotorula glutinis were dominant with a 62.6% and 22.0% contribution respectively. As none of the air samples contained D. hansenii, the production materials and room installations used in the production processes were believed to be the sources of contamination. The dominance of D. hansenii late in the production process replacing C. zeylanoides should be considered as a positive change both for the quality and safety

  8. Cocoa butter-like lipid production ability of non-oleaginous and oleaginous yeasts under nitrogen-limited culture conditions.

    PubMed

    Wei, Yongjun; Siewers, Verena; Nielsen, Jens

    2017-05-01

    Cocoa butter (CB) extracted from cocoa beans is the main raw material for chocolate production. However, growing chocolate demands and limited CB production has resulted in a shortage of CB supply. CB is mainly composed of three different kinds of triacylglycerols (TAGs), POP (C16:0-C18:1-C16:0), POS (C16:0-C18:1-C18:0), and SOS (C18:0-C18:1-C18:0). The storage lipids of yeasts, mainly TAGs, also contain relative high-level of C16 and C18 fatty acids and might be used as CB-like lipids (CBL). In this study, we cultivated six different yeasts, including one non-oleaginous yeast strain, Saccharomyces cerevisiae CEN.PK113-7D, and five oleaginous yeast strains, Trichosporon oleaginosus DSM11815, Rhodotorula graminis DSM 27356, Lipomyces starkeyi DSM 70296, Rhodosporidium toruloides DSM 70398, and Yarrowia lipolytica CBS 6124, in nitrogen-limited medium and compared their CBL production ability. Under the same growth conditions, we found that TAGs were the main lipids in all six yeasts and that T. oleaginosus can produce more TAGs than the other five yeasts. Less than 3% of the total TAGs were identified as potential SOS in the six yeasts. However, T. oleaginosus produced 27.8% potential POP and POS at levels of 378 mg TAGs/g dry cell weight, hinting that this yeast may have potential as a CBL production host after further metabolic engineering in future.

  9. Role of charge screening and delocalization for lipophilic cation permeability of model and mitochondrial membranes.

    PubMed

    Trendeleva, Tatiana A; Sukhanova, Evgenia I; Rogov, Anton G; Zvyagilskaya, Renata A; Seveina, Inna I; Ilyasova, Tatiana M; Cherepanov, Dmitry A; Skulachev, Vladimir P

    2013-09-01

    The effects of the mitochondria-targeted lipophilic cation dodecyltriphenylphosphonium (C12TPP, the charge is delocalized and screened by bulky hydrophobic residues) and those of lipophilic cations decyltriethylammonium bromide and cetyltrimethylammonium bromide (C10TEA and C16TMA, the charges are localized and screened by less bulky residues) on bilayer planar phospholipid membranes and tightly-coupled mitochondria from the yeast Yarrowia lipolytica have been compared. In planar membranes, C12TPP was found to generate a diffusion potential as if it easily penetrates these membranes. In the presence of palmitate, C12TPP induced H(+) permeability like plastoquinonyl decyltriphenilphosphonium that facilitates transfer of fatty acid anions (Severin et al., PNAS, 2010, 107, 663-668). C12TPP was shown to stimulate State 4 respiration of mitochondria and caused a mitochondrial membrane depolarization with a half-maximal effect at 6μM. Besides, C12TPP profoundly potentiated the uncoupling effect of endogenous or added fatty acids. C10TEA and C16TMA inhibited State 4 respiration and decreased the membrane potential, though at much higher concentrations than C12TPP, and they did not promote the uncoupling action of fatty acids. These relationships were modeled by molecular dynamics. They can be explained by different membrane permeabilities for studied cations, which in turn are due to different availabilities of the positive charge in these cations to water dipoles. Copyright © 2012 Elsevier B.V. All rights reserved.

  10. Multi-wavelength dye concentration determination for enzymatic assays: evaluation of chromogenic para-nitrophenol over a wide pH range.

    PubMed

    Max, Jean-Joseph; Meddeb-Mouelhi, Fatma; Beauregard, Marc; Chapados, Camille

    2012-12-01

    Enzymatic assays need robust, rapid colorimetric methods that can follow ongoing reactions. For this, we developed a highly accurate, multi-wavelength detection method that could be used for several systems. Here, it was applied to the detection of para-nitrophenol (pNP) in basic and acidic solutions. First, we confirmed by factor analysis that pNP has two forms, with unique spectral characteristics in the 240 to 600 nm range: Phenol in acidic conditions absorbs in the lower range, whereas phenolate in basic conditions absorbs in the higher range. Thereafter, the method was used for the determination of species concentration. For this, the intensity measurements were made at only two wavelengths with a microtiter plate reader. This yielded total dye concentration, species relative abundance, and solution pH value. The method was applied to an enzymatic assay. For this, a chromogenic substrate that generates pNP after hydrolysis catalyzed by a lipase from the fungus Yarrowia lipolytica was used. Over the pH range of 3-11, accurate amounts of acidic and basic pNP were determined at 340 and 405 nm, respectively. This method surpasses the commonly used single-wavelength assay at 405 nm, which does not detect pNP acidic species, leading to activity underestimations. Moreover, alleviation of this pH-related problem by neutralization is not necessary. On the whole, the method developed is readily applicable to rapid high-throughput of enzymatic activity measurements over a wide pH range.

  11. Gene cloning and characterization of a novel esterase from activated sludge metagenome

    PubMed Central

    2009-01-01

    A metagenomic library was prepared using pCC2FOS vector containing about 3.0 Gbp of community DNA from the microbial assemblage of activated sludge. Screening of a part of the un-amplified library resulted in the finding of 1 unique lipolytic clone capable of hydrolyzing tributyrin, in which an esterase gene was identified. This esterase/lipase gene consists of 834 bp and encodes a polypeptide (designated EstAS) of 277 amino acid residuals with a molecular mass of 31 kDa. Sequence analysis indicated that it showed 33% and 31% amino acid identity to esterase/lipase from Gemmata obscuriglobus UQM 2246 (ZP_02733109) and Yarrowia lipolytica CLIB122 (XP_504639), respectively; and several conserved regions were identified, including the putative active site, HSMGG, a catalytic triad (Ser92, His125 and Asp216) and a LHYFRG conserved motif. The EstAS was overexpressed, purified and shown to hydrolyse p-nitrophenyl (NP) esters of fatty acids with short chain lengths (≤ C8). This EstAS had optimal temperature and pH at 35°C and 9.0, respectively, by hydrolysis of p-NP hexanoate. It also exhibited the same level of stability over wide temperature and pH ranges and in the presence of metal ions or detergents. The high level of stability of esterase EstAS with its unique substrate specificities make itself highly useful for biotechnological applications. PMID:20028524

  12. Synthetic biology for manufacturing chemicals: constraints drive the use of non-conventional microbial platforms.

    PubMed

    Czajka, Jeffrey; Wang, Qinhong; Wang, Yechun; Tang, Yinjie J

    2017-10-01

    Genetically modified microbes have had much industrial success producing protein-based products (such as antibodies and enzymes). However, engineering microbial workhorses for biomanufacturing of commodity compounds remains challenging. First, microbes cannot afford burdens with both overexpression of multiple enzymes and metabolite drainage for product synthesis. Second, synthetic circuits and introduced heterologous pathways are not yet as "robust and reliable" as native pathways due to hosts' innate regulations, especially under suboptimal fermentation conditions. Third, engineered enzymes may lack channeling capabilities for cascade-like transport of metabolites to overcome diffusion barriers or to avoid intermediate toxicity in the cytoplasmic environment. Fourth, moving engineered hosts from laboratory to industry is unreliable because genetic mutations and non-genetic cell-to-cell variations impair the large-scale fermentation outcomes. Therefore, synthetic biology strains often have unsatisfactory industrial performance (titer/yield/productivity). To overcome these problems, many different species are being explored for their metabolic strengths that can be leveraged to synthesize specific compounds. Here, we provide examples of non-conventional and genetically amenable species for industrial manufacturing, including the following: Corynebacterium glutamicum for its TCA cycle-derived biosynthesis, Yarrowia lipolytica for its biosynthesis of fatty acids and carotenoids, cyanobacteria for photosynthetic production from its sugar phosphate pathways, and Rhodococcus for its ability to biotransform recalcitrant feedstock. Finally, we discuss emerging technologies (e.g., genome-to-phenome mapping, single cell methods, and knowledge engineering) that may facilitate the development of novel cell factories.

  13. Waste Soybean Oil and Corn Steep Liquor as Economic Substrates for Bioemulsifier and Biodiesel Production by Candida lipolytica UCP 0998

    PubMed Central

    Souza, Adriana Ferreira; Rodriguez, Dayana M.; Ribeaux, Daylin R.; Luna, Marcos A. C.; Lima e Silva, Thayse A.; Andrade, Rosileide F. Silva; Gusmão, Norma B.; Campos-Takaki, Galba M.

    2016-01-01

    Almost all oleaginous microorganisms are available for biodiesel production, and for the mechanism of oil accumulation, which is what makes a microbial approach economically competitive. This study investigated the potential that the yeast Candida lipolytica UCP0988, in an anamorphous state, has to produce simultaneously a bioemulsifier and to accumulate lipids using inexpensive and alternative substrates. Cultivation was carried out using waste soybean oil and corn steep liquor in accordance with 22 experimental designs with 1% inoculums (107 cells/mL). The bioemulsifier was produced in the cell-free metabolic liquid in the late exponential phase (96 h), at Assay 4 (corn steep liquor 5% and waste soybean oil 8%), with 6.704 UEA, IE24 of 96.66%, and showed an anionic profile. The emulsion formed consisted of compact small and stable droplets (size 0.2–5 µm), stable at all temperatures, at pH 2 and 4, and 2% salinity, and showed an ability to remove 93.74% of diesel oil from sand. The displacement oil (ODA) showed 45.34 cm2 of dispersion (central point of the factorial design). The biomass obtained from Assay 4 was able to accumulate lipids of 0.425 g/g biomass (corresponding to 42.5%), which consisted of Palmitic acid (28.4%), Stearic acid (7.7%), Oleic acid (42.8%), Linoleic acid (19.0%), and γ-Linolenic acid (2.1%). The results showed the ability of C. lipopytica to produce both bioemulsifier and biodiesel using the metabolic conversion of waste soybean oil and corn steep liquor, which are economic renewable sources. PMID:27669227

  14. Yeast Biomass Production in Brewery's Spent Grains Hemicellulosic Hydrolyzate

    NASA Astrophysics Data System (ADS)

    Duarte, Luís C.; Carvalheiro, Florbela; Lopes, Sónia; Neves, Ines; Gírio, Francisco M.

    Yeast single-cell protein and yeast extract, in particular, are two products which have many feed, food, pharmaceutical, and biotechnological applications. However, many of these applications are limited by their market price. Specifically, the yeast extract requirements for culture media are one of the major technical hurdles to be overcome for the development of low-cost fermentation routes for several top value chemicals in a biorefinery framework. A potential biotechnical solution is the production of yeast biomass from the hemicellulosic fraction stream. The growth of three pentose-assimilating yeast cell factories, Debaryomyces hansenii, Kluyveromyces marxianus, and Pichia stipitis was compared using non-detoxified brewery's spent grains hemicellulosic hydrolyzate supplemented with mineral nutrients. The yeasts exhibited different specific growth rates, biomass productivities, and yields being D. hansenii as the yeast species that presented the best performance, assimilating all sugars and noteworthy consuming most of the hydrolyzate inhibitors. Under optimized conditions, D. hansenii displayed a maximum specific growth rate, biomass yield, and productivity of 0.34 h-1, 0.61 g g-1, and 0.56 g 1-1 h-1, respectively. The nutritional profile of D. hansenii was thoroughly evaluated, and it compares favorably to others reported in literature. It contains considerable amounts of some essential amino acids and a high ratio of unsaturated over saturated fatty acids.

  15. An ultraviolet spectrophotometric assay for the screening of sn-2-specific lipases using 1,3-O-dioleoyl-2-O-α-eleostearoyl-sn-glycerol as substrate

    PubMed Central

    Mendoza, Lilia D.; Rodriguez, Jorge A.; Leclaire, Julien; Buono, Gerard; Fotiadu, Frédéric; Carrière, Frédéric; Abousalham, Abdelkarim

    2012-01-01

    In the present study, we propose a continuous assay for the screening of sn-2 lipases by using triacylglycerols (TAGs) from Aleurites fordii seed (tung oil) and a synthetic TAG containing the α-eleostearic acid at the sn-2 position and the oleic acid (OA) at the sn-1 and sn-3 positions [1,3-O-dioleoyl-2-O-α-eleostearoyl-sn-glycerol (sn-OEO)]. Each TAG was coated into a microplate well, and the lipase activity was measured by optical density increase at 272 nm due to transition of α-eleostearic acid from the adsorbed to the soluble state. The sn-1,3-regioselective lipases human pancreatic lipase (HPL), LIP2 lipase from Yarrowia lipolytica (YLLIP2), and a known sn-2 lipase, Candida antarctica lipase A (CALA) were used to validate this method. TLC analysis of lipolysis products showed that the lipases tested were able to hydrolyze the sn-OEO and the tung oil TAGs, but only CALA hydrolyzed the sn-2 position. The ratio of initial velocities on sn-OEO and tung oil TAGs was used to estimate the sn-2 preference of lipases. CALA was the enzyme with the highest ratio (0.22 ± 0.015), whereas HPL and YLLIP2 showed much lower ratios (0.072 ± 0.026 and 0.038 ± 0.016, respectively). This continuous sn-2 lipase assay is compatible with a high sample throughput and thus can be applied to the screening of sn-2 lipases. PMID:22114038

  16. Yeast mitochondrial HMG proteins: DNA-binding properties of the most evolutionarily divergent component of mitochondrial nucleoids.

    PubMed

    Bakkaiova, Jana; Marini, Victoria; Willcox, Smaranda; Nosek, Jozef; Griffith, Jack D; Krejci, Lumir; Tomaska, Lubomir

    2015-12-08

    Yeast mtDNA is compacted into nucleoprotein structures called mitochondrial nucleoids (mt-nucleoids). The principal mediators of nucleoid formation are mitochondrial high-mobility group (HMG)-box containing (mtHMG) proteins. Although these proteins are some of the fastest evolving components of mt-nucleoids, it is not known whether the divergence of mtHMG proteins on the level of their amino acid sequences is accompanied by diversification of their biochemical properties. In the present study we performed a comparative biochemical analysis of yeast mtHMG proteins from Saccharomyces cerevisiae (ScAbf2p), Yarrowia lipolytica (YlMhb1p) and Candida parapsilosis (CpGcf1p). We found that all three proteins exhibit relatively weak binding to intact dsDNA. In fact, ScAbf2p and YlMhb1p bind quantitatively to this substrate only at very high protein to DNA ratios and CpGcf1p shows only negligible binding to dsDNA. In contrast, the proteins exhibit much higher preference for recombination intermediates such as Holliday junctions (HJ) and replication forks (RF). Therefore, we hypothesize that the roles of the yeast mtHMG proteins in maintenance and compaction of mtDNA in vivo are in large part mediated by their binding to recombination/replication intermediates. We also speculate that the distinct biochemical properties of CpGcf1p may represent one of the prerequisites for frequent evolutionary tinkering with the form of the mitochondrial genome in the CTG-clade of hemiascomycetous yeast species. © 2016 Authors.

  17. Human recombinant lysosomal enzymes produced in microorganisms.

    PubMed

    Espejo-Mojica, Ángela J; Alméciga-Díaz, Carlos J; Rodríguez, Alexander; Mosquera, Ángela; Díaz, Dennis; Beltrán, Laura; Díaz, Sergio; Pimentel, Natalia; Moreno, Jefferson; Sánchez, Jhonnathan; Sánchez, Oscar F; Córdoba, Henry; Poutou-Piñales, Raúl A; Barrera, Luis A

    2015-01-01

    Lysosomal storage diseases (LSDs) are caused by accumulation of partially degraded substrates within the lysosome, as a result of a function loss of a lysosomal protein. Recombinant lysosomal proteins are usually produced in mammalian cells, based on their capacity to carry out post-translational modifications similar to those observed in human native proteins. However, during the last years, a growing number of studies have shown the possibility to produce active forms of lysosomal proteins in other expression systems, such as plants and microorganisms. In this paper, we review the production and characterization of human lysosomal proteins, deficient in several LSDs, which have been produced in microorganisms. For this purpose, Escherichia coli, Saccharomyces cerevisiae, Pichia pastoris, Yarrowia lipolytica, and Ogataea minuta have been used as expression systems. The recombinant lysosomal proteins expressed in these hosts have shown similar substrate specificities, and temperature and pH stability profiles to those produced in mammalian cells. In addition, pre-clinical results have shown that recombinant lysosomal enzymes produced in microorganisms can be taken-up by cells and reduce the substrate accumulated within the lysosome. Recently, metabolic engineering in yeasts has allowed the production of lysosomal enzymes with tailored N-glycosylations, while progresses in E. coli N-glycosylations offer a potential platform to improve the production of these recombinant lysosomal enzymes. In summary, microorganisms represent convenient platform for the production of recombinant lysosomal proteins for biochemical and physicochemical characterization, as well as for the development of ERT for LSD. Copyright © 2015 Elsevier Inc. All rights reserved.

  18. Biodiversity of yeast mycobiota in "sucuk," a traditional Turkish fermented dry sausage: phenotypic and genotypic identification, functional and technological properties.

    PubMed

    Ozturk, Ismet; Sagdic, Osman

    2014-11-01

    In this study, yeasts from Turkish fermented sucuks were identified and their functional and technological properties were evaluated. Two hundred fifty-five yeast isolates were obtained from 35 different sucuk samples from different regions of Turkey. The yeast isolates were determined as genotypic using 2 different polymerase chain reaction (PCR) methods (rep-PCR and RAPD-PCR). Functional and technological properties of including proteolytic, lipolytic, and catalase activities, tolerance to NaCl and bile, as well as growing rates at different temperature and pH conditions selected yeast strains were also evaluated. Candida zeylanoides and Debaryomyces hansenii were dominant strains in sucuk samples. All C. zeylanoides and D. hansenii tested could grow at the condition of 15% NaCl and 0.3% bile salt. However, none of the strains were able to grow at 37 °C, even though catalase activity, weak proteolytic and lipolytic activities was still observed. D. hansenii were able to grow only at pH 3, while some of C. zeylanoides could grow at lower pH levels (pH 2). Three and 4 strains of C. zeylanoides showed β-hemolysis activity and nitrate reduction ability to nitrite, respectively. D. hansenii did not have properties, which are β-hemolysis, nitrate reduction, or hydrogen sulfide production. Overall, diverse yeast mycobiota present in Turkish fermented sucuk and their functional and technological properties were revealed with this study. © 2014 Institute of Food Technologists®

  19. Organoleptic Analysis of Doughs Fermented with Yeasts From A Nigerian Palm Wine (Elaeis guineensis) and Certain Commercial Yeasts

    PubMed Central

    B, Boboye; I, Dayo-Owoyemi; F. A, Akinyosoye

    2008-01-01

    Yeasts isolated from a freshly tapped palm wine obtained from Akure, Nigeria were identified as Schizosaccharomyces pombe, Saccharomyces cerevisiae, Debaryomyces hansenii, Geotrichum lactis and Zygosaccharomyces rouxii. Each of the isolates was used to ferment wheat flour dough and baked. Sensory analysis of the doughs was carried out on leavening, texture, aroma, taste and appearance. Saccharomyces cerevisiae performed best in leavening the dough while Debaryomyces hansenii produced doughs with the best taste and aroma. Appearances of the doughs made with all the isolated yeasts did not differ significantly (P<0.05) from that of the dough that lacked yeast. PMID:19088921

  20. The purification and characterization of ATP synthase complexes from the mitochondria of four fungal species.

    PubMed

    Liu, Sidong; Charlesworth, Thomas J; Bason, John V; Montgomery, Martin G; Harbour, Michael E; Fearnley, Ian M; Walker, John E

    2015-05-15

    The ATP synthases have been isolated by affinity chromatography from the mitochondria of the fungal species Yarrowia lipolytica, Pichia pastoris, Pichia angusta and Saccharomyces cerevisiae. The subunit compositions of the purified enzyme complexes depended on the detergent used to solubilize and purify the complex, and the presence or absence of exogenous phospholipids. All four enzymes purified in the presence of n-dodecyl-β-D-maltoside had a complete complement of core subunits involved directly in the synthesis of ATP, but they were deficient to different extents in their supernumerary membrane subunits. In contrast, the enzymes from P. angusta and S. cerevisiae purified in the presence of n-decyl-β-maltose neopentyl glycol and the phospholipids 1-palmitoyl-2-oleoyl-sn-glycero-3-phosphocholine, 1-palmitoyl-2-oleoyl-sn-glycero-3-phosphoethanolamine, cardiolipin (diphosphatidylglycerol) and 1-palmitoyl-2-oleoyl-sn-glycero-3-[phospho-rac-(1-glycerol)] had a complete complement of core subunits and also contained all of the known supernumerary membrane subunits, e, f, g, j, k and ATP8 (or Aap1), plus an additional new membrane component named subunit l, related in sequence to subunit k. The catalytic domain of the enzyme from P. angusta was more resistant to thermal denaturation than the enzyme from S. cerevisiae, but less stable than the catalytic domain of the bovine enzyme, but the stator and the integrity of the transmembrane proton pathway were most stable in the enzyme from P. angusta. The P. angusta enzyme provides a suitable source of enzyme for studying the structure of the membrane domain and properties associated with that sector of the enzyme complex.

  1. The purification and characterization of ATP synthase complexes from the mitochondria of four fungal species

    PubMed Central

    Liu, Sidong; Charlesworth, Thomas J.; Bason, John V.; Montgomery, Martin G.; Harbour, Michael E.; Fearnley, Ian M.; Walker, John E.

    2015-01-01

    The ATP synthases have been isolated by affinity chromatography from the mitochondria of the fungal species Yarrowia lipolytica, Pichia pastoris, Pichia angusta and Saccharomyces cerevisiae. The subunit compositions of the purified enzyme complexes depended on the detergent used to solubilize and purify the complex, and the presence or absence of exogenous phospholipids. All four enzymes purified in the presence of n-dodecyl-β-D-maltoside had a complete complement of core subunits involved directly in the synthesis of ATP, but they were deficient to different extents in their supernumerary membrane subunits. In contrast, the enzymes from P. angusta and S. cerevisiae purified in the presence of n-decyl-β-maltose neopentyl glycol and the phospholipids 1-palmitoyl-2-oleoyl-sn-glycero-3-phosphocholine, 1-palmitoyl-2-oleoyl-sn-glycero-3-phosphoethanolamine, cardiolipin (diphosphatidylglycerol) and 1-palmitoyl-2-oleoyl-sn-glycero-3-[phospho-rac-(1-glycerol)] had a complete complement of core subunits and also contained all of the known supernumerary membrane subunits, e, f, g, j, k and ATP8 (or Aap1), plus an additional new membrane component named subunit l, related in sequence to subunit k. The catalytic domain of the enzyme from P. angusta was more resistant to thermal denaturation than the enzyme from S. cerevisiae, but less stable than the catalytic domain of the bovine enzyme, but the stator and the integrity of the transmembrane proton pathway were most stable in the enzyme from P. angusta. The P. angusta enzyme provides a suitable source of enzyme for studying the structure of the membrane domain and properties associated with that sector of the enzyme complex. PMID:25759169

  2. Novel Strategy of Using Methyl Esters as Slow Release Methanol Source during Lipase Expression by mut+ Pichia pastoris X33

    PubMed Central

    Kumari, Arti; Gupta, Rani

    2014-01-01

    One of the major issues with heterologous production of proteins in Pichia pastoris X33 under AOX1 promoter is repeated methanol induction. To obviate repeated methanol induction, methyl esters were used as a slow release source of methanol in lipase expressing mut+ recombinant. Experimental design was based on the strategy that in presence of lipase, methyl esters can be hydrolysed to release their products as methanol and fatty acid. Hence, upon break down of methyl esters by lipase, first methanol will be used as a carbon source and inducer. Then P. pastoris can switch over to fatty acid as a carbon source for multiplication and biomass maintenance till further induction by methyl esters. We validated this strategy using recombinant P. pastoris expressing Lip A, Lip C from Trichosporon asahii and Lip11 from Yarrowia lipolytica. We found that the optimum lipase yield under repeated methanol induction after 120 h was 32866 U/L, 28271 U/L and 21978 U/L for Lip C, Lip A and Lip 11 respectively. In addition, we found that a single dose of methyl ester supported higher production than repeated methanol induction. Among various methyl esters tested, methyl oleate (0.5%) caused 1.2 fold higher yield for LipA and LipC and 1.4 fold for Lip11 after 120 h of induction. Sequential utilization of methanol and oleic acid by P. pastoris was observed and was supported by differential peroxisome proliferation studies by transmission electron microscopy. Our study identifies a novel strategy of using methyl esters as slow release methanol source during lipase expression. PMID:25170843

  3. Integrated bioprocess for conversion of gaseous substrates to liquids

    PubMed Central

    Hu, Peng; Chakraborty, Sagar; Kumar, Amit; Woolston, Benjamin; Liu, Hongjuan; Emerson, David; Stephanopoulos, Gregory

    2016-01-01

    In the quest for inexpensive feedstocks for the cost-effective production of liquid fuels, we have examined gaseous substrates that could be made available at low cost and sufficiently large scale for industrial fuel production. Here we introduce a new bioconversion scheme that effectively converts syngas, generated from gasification of coal, natural gas, or biomass, into lipids that can be used for biodiesel production. We present an integrated conversion method comprising a two-stage system. In the first stage, an anaerobic bioreactor converts mixtures of gases of CO2 and CO or H2 to acetic acid, using the anaerobic acetogen Moorella thermoacetica. The acetic acid product is fed as a substrate to a second bioreactor, where it is converted aerobically into lipids by an engineered oleaginous yeast, Yarrowia lipolytica. We first describe the process carried out in each reactor and then present an integrated system that produces microbial oil, using synthesis gas as input. The integrated continuous bench-scale reactor system produced 18 g/L of C16-C18 triacylglycerides directly from synthesis gas, with an overall productivity of 0.19 g⋅L−1⋅h−1 and a lipid content of 36%. Although suboptimal relative to the performance of the individual reactor components, the presented integrated system demonstrates the feasibility of substantial net fixation of carbon dioxide and conversion of gaseous feedstocks to lipids for biodiesel production. The system can be further optimized to approach the performance of its individual units so that it can be used for the economical conversion of waste gases from steel mills to valuable liquid fuels for transportation. PMID:26951649

  4. Multiple rare opportunistic and pathogenic fungi in persistent foot skin infection.

    PubMed

    Chan, Giek Far; Sinniah, Sivaranjini; Idris, Tengku Idzzan Nadzirah Tengku; Puad, Mohamad Safwan Ahmad; Abd Rahman, Ahmad Zuhairi

    2013-03-01

    Persistent superficial skin infection caused by multiple fungi is rarely reported. Recently, a number of fungi, both opportunistic and persistent in nature were isolated from the foot skin of a 24-year old male in Malaysia. The fungi were identified as Candida parapsilosis, Rhodotorula mucilaginosa, Phoma spp., Debaryomyces hansenii, Acremonium spp., Aureobasidium pullulans and Aspergillus spp., This is the first report on these opportunistic strains were co-isolated from a healthy individual who suffered from persistent foot skin infection which was diagnosed as athlete's foot for more than 12 years. Among the isolated fungi, C. parapsilosis has been an increasingly common cause of skin infections. R. mucilaginosa and D. hansenii were rarely reported in cases of skin infection. A. pullulans, an emerging fungal pathogen was also being isolated in this case. Interestingly, it was noted that C. parapsilosis, R. mucilaginosa, D. hansenii and A. pullulans are among the common halophiles and this suggests the association of halotolerant fungi in causing persistent superficial skin infection. This discovery will shed light on future research to explore on effective treatment for inhibition of pathogenic halophiles as well as to understand the interaction of multiple fungi in the progress of skin infection.

  5. Screening for antimicrobial and proteolytic activities of lactic acid bacteria isolated from cow, buffalo and goat milk and cheeses marketed in the southeast region of Brazil.

    PubMed

    Tulini, Fabricio L; Hymery, Nolwenn; Haertlé, Thomas; Le Blay, Gwenaelle; De Martinis, Elaine C P

    2016-02-01

    Lactic acid bacteria (LAB) can be isolated from different sources such as milk and cheese, and the lipolytic, proteolytic and glycolytic enzymes of LAB are important in cheese preservation and in flavour production. Moreover, LAB produce several antimicrobial compounds which make these bacteria interesting for food biopreservation. These characteristics stimulate the search of new strains with technological potential. From 156 milk and cheese samples from cow, buffalo and goat, 815 isolates were obtained on selective agars for LAB. Pure cultures were evaluated for antimicrobial activities by agar antagonism tests and for proteolytic activity on milk proteins by cultivation on agar plates. The most proteolytic isolates were also tested by cultivation in skim milk followed by sodium dodecyl sulphate polyacrylamide gel electrophoresis (SDS-PAGE) analysis of the fermented milk. Among the 815 tested isolates, three of them identified as Streptococcus uberis (strains FT86, FT126 and FT190) were bacteriocin producers, whereas four other ones identified as Weissella confusa FT424, W. hellenica FT476, Leuconostoc citreum FT671 and Lactobacillus plantarum FT723 showed high antifungal activity in preliminary assays. Complementary analyses showed that the most antifungal strain was L. plantarum FT723 that inhibited Penicillium expansum in modified MRS agar (De Man, Rogosa, Sharpe, without acetate) and fermented milk model, however no inhibition was observed against Yarrowia lipolytica. The proteolytic capacities of three highly proteolytic isolates identified as Enterococcus faecalis (strains FT132 and FT522) and Lactobacillus paracasei FT700 were confirmed by SDS-PAGE, as visualized by the digestion of caseins and whey proteins (β-lactoglobulin and α-lactalbumin). These results suggest potential applications of these isolates or their activities (proteolytic activity or production of antimicrobials) in dairy foods production.

  6. A novel junctional adhesion molecule A (CgJAM-A-L) from oyster (Crassostrea gigas) functions as pattern recognition receptor and opsonin.

    PubMed

    Liu, Conghui; Wang, Mengqiang; Jiang, Shuai; Wang, Lingling; Chen, Hao; Liu, Zhaoqun; Qiu, Limei; Song, Linsheng

    2016-02-01

    Junctional adhesion molecule (JAM), a subfamily of immunoglobulin superfamily (IgSF) with a couple of immunoglobulin domains, can act as regulator in homeostasis and inflammation of vertebrates. In the present study, a structural homolog of JAM-A (designated CgJAM-A-L) was screened out from oyster, Crassostrea gigas, through a search of JAM-A D1 domain (N-terminal Ig domain in JAM-A). The cDNA of CgJAM-A-L was of 1188 bp encoding a predicted polypeptide of 395 amino acids. The immunoreactive area of CgJAM-A-L mainly distributed over the plasma membrane of hemocytes. After Vibro splendidus or tumor necrosis factor (CgTNF-1) stimulation, the mRNA transcripts of CgJAM-A-L in hemocytes increased significantly by 4.46-fold and 9.00-fold (p < 0.01) of those in control group, respectively. The recombinant CgJAM-A-L protein (rCgJAM-A-L) could bind multiple PAMPs including lipopolysaccharides (LPS), peptidoglycan (PGN), lipoteichoic acid (LTA), mannose (MAN), β-glucan (GLU) and poly(I:C), and various microorganisms including Micrococcus luteus, Staphylococcus aureus, Escherichia coli, Vibro anguillarum, V. splendidus, Pastoris pastoris and Yarrowia lipolytica. The phagocytic rates of oyster hemocytes towards Gram-negative bacteria V. anguillarum and yeast P. pastoris were significantly enhanced after the incubation of rCgJAM-A-L, and even increased more significantly after the pre-incubation of rCgJAM-A-L with microbes (p < 0.01). The results collectively indicated that CgJAM-A-L functioned as an important pattern recognition receptor (PRR) and opsonin in the immune defense against invading pathogen in oyster. Moreover, as the most primitive specie with homolog of JAMs, the information of CgJAM-A-L in oyster would provide useful clues for the evolutionary study of JAMs and immunoglobulins. Copyright © 2015 Elsevier Ltd. All rights reserved.

  7. Diversity of spoilage fungi associated with various French dairy products.

    PubMed

    Garnier, Lucille; Valence, Florence; Pawtowski, Audrey; Auhustsinava-Galerne, Lizaveta; Frotté, Nicolas; Baroncelli, Riccardo; Deniel, Franck; Coton, Emmanuel; Mounier, Jérôme

    2017-01-16

    Yeasts and molds are responsible for dairy product spoilage, resulting in significant food waste and economic losses. Yet, few studies have investigated the diversity of spoilage fungi encountered in dairy products. In the present study, 175 isolates corresponding to 105 from various spoiled dairy products and 70 originating from dairy production environments, were identified using sequencing of the ITS region, the partial β-tubulin, calmodulin and/or EFα genes, and the D1-D2 domain of the 26S rRNA gene for filamentous fungi and yeasts, respectively. Among the 41 species found in spoiled products, Penicillium commune and Penicillium bialowiezense were the most common filamentous fungi, representing around 10% each of total isolates while Meyerozyma guilliermondii and Trichosporon asahii were the most common yeasts (4.8% each of total isolates). Several species (e.g. Penicillium antarcticum, Penicillium salamii and Cladosporium phyllophilum) were identified for the first time in dairy products or their environment. In addition, numerous species were identified in both spoiled products and their corresponding dairy production environment suggesting that the latter acts as a primary source of contamination. Secondly, the resistance to chemical preservatives (sodium benzoate, calcium propionate, potassium sorbate and natamycin) of 10 fungal isolates representative of the observed biodiversity was also evaluated. Independently of the fungal species, natamycin had the lowest minimum inhibitory concentration (expressed in gram of preservative/l), followed by potassium sorbate, sodium benzoate and calcium propionate. In the tested conditions, Cladosporium halotolerans and Didymella pinodella were the most sensitive fungi while Yarrowia lipolytica and Candida parapsilosis were the most resistant towards the tested preservatives. This study provides interesting information on the occurrence of fungal contaminants in dairy products and environments that may help developing

  8. Molecular and biochemical characterisation of two aspartic proteinases TcAP1 and TcAP2 from Theobroma cacao seeds.

    PubMed

    Laloi, Maryse; McCarthy, James; Morandi, Olivia; Gysler, Christof; Bucheli, Peter

    2002-09-01

    Aspartic proteinase (EC 3.4.23) activity plays a pivotal role in the degradation of Theobroma cacao L. seed proteins during the fermentation step of cacao bean processing. Therefore, this enzyme is believed to be critical for the formation of the peptide and amino acid cocoa flavor precursors that occurs during fermentation. Using cDNA cloning and northern blot analysis, we show here that there are at least two distinct aspartic proteinase genes ( TcAP1 and TcAP2) expressed during cacao seed development. Both genes are expressed early during seed development and their mRNA levels decrease towards the end of seed maturation. TcAP2 is expressed at a much higher level than TcAP1, although the expression of TcAP1 increases slightly during germination. The proteins encoded by TcAP1 and TcAP2 are relatively different from each other (73% identity). This, and the fact that the two corresponding genes have different expression patterns, suggests that the TcAP1 and TcAP2 proteins may have different functions in the maturing seeds and during germination. Because the TcAP2 gene is expressed at a much higher level during seed development than TcAP1, it is likely that the TcAP2 protein is primarily responsible for the majority of the industrially important protein hydrolysis that occurs during cacao bean fermentation. Finally, TcAP2 has been functionally expressed in the yeast Yarrowia lipolytica. The secreted recombinant protein is able to hydrolyse bovine haemoglobin at acidic pH and is sensitive to pepstatin A, confirming that TcAP2 encodes an aspartic proteinase, and strongly suggests that this gene encodes the well-characterized aspartic proteinase of mature cacao seeds.

  9. Application of experimental design and derivative spectrophotometry methods in optimization and analysis of biosorption of binary mixtures of basic dyes from aqueous solutions.

    PubMed

    Asfaram, Arash; Ghaedi, Mehrorang; Ghezelbash, Gholam Reza; Pepe, Francesco

    2017-05-01

    Simultaneous biosorption of malachite green (MG) and crystal violet (CV) on biosorbent Yarrowia lipolytica ISF7 was studied. An appropriate derivative spectrophotometry technique was used to evaluate the concentration of each dye in binary solutions, despite significant interferences in visible light absorbances. The effects of pH, temperature, growth time, initial MG and CV concentration in batch experiments were assessed using Design of Experiment (DOE) according to central composite second order response surface methodology (RSM). The analysis showed that the greatest biosorption efficiency (>99% for both dyes) can be obtained at pH 7.0, T=28°C, 24h mixing and 20mgL -1 initial concentrations for both MG and CV dyes. The quadratic constructed equation ability for fitting experimental data is judged based on criterions like R 2 values, significant p and lack-of-fit value strongly confirm its high adequacy and applicability for prediction of revel behavior of the system under study. The proposed model showed very high correlation coefficients (R 2 =0.9997 for CV and R 2 =0.9989 for MG), while supported by closeness of predicted and experimental value. A kinetic analysis was carried out, showing that for both dyes a pseudo-second order kinetic model adequately describes the available data. The Langmuir isotherm model in single and binary components has better performance for description of dyes biosorption with maximum monolayer biosorption capacity of 59.4 and 62.7mgg -1 in single component and 46.4 and 50.0mgg -1 for CV and MB in binary components, respectively. The surface structure of biosorbents and the possible biosorbents-dyes interactions between were also evaluated by Fourier transform infrared (FT-IR) spectroscopy and scanning electron microscopy (SEM). The values of thermodynamic parameters including ΔG° and ΔH° strongly confirm which method is spontaneous and endothermic. Copyright © 2017. Published by Elsevier Inc.

  10. Process Analysis of Variables for Standardization of Antifungal Susceptibility Testing of Nonfermentative Yeasts ▿

    PubMed Central

    Zaragoza, Oscar; Mesa-Arango, Ana C.; Gómez-López, Alicia; Bernal-Martínez, Leticia; Rodríguez-Tudela, Juan Luis; Cuenca-Estrella, Manuel

    2011-01-01

    Nonfermentative yeasts, such as Cryptococcus spp., have emerged as fungal pathogens during the last few years. However, standard methods to measure their antifungal susceptibility (antifungal susceptibility testing [AST]) are not completely reliable due to the impaired growth of these yeasts in standard media. In this work, we have compared the growth kinetics and the antifungal susceptibilities of representative species of nonfermentative yeasts such as Cryptococcus neoformans, Cryptococcus gattii, Cryptococcus albidus, Rhodotorula spp., Yarrowia lipolytica, Geotrichum spp., and Trichosporon spp. The effect of the growth medium (RPMI medium versus yeast nitrogen base [YNB]), glucose concentration (0.2% versus 2%), nitrogen source (ammonium sulfate), temperature (30°C versus 35°C), shaking, and inoculum size (103, 104, and 105 cells) were analyzed. The growth rate, lag phase, and maximum optical density were obtained from each growth experiment, and after multivariate analysis, YNB-based media demonstrated a significant improvement in the growth of yeasts. Shaking, an inoculum size of 105 CFU/ml, and incubation at 30°C also improved the growth kinetics of organisms. Supplementation with ammonium sulfate and with 2% glucose did not have any effect on growth. We also tested the antifungal susceptibilities of all the isolates by the reference methods of the CLSI and EUCAST, the EUCAST method with shaking, YNB under static conditions, and YNB with shaking. MIC values obtained under different conditions showed high percentages of agreement and significant correlation coefficient values between them. MIC value determinations according to CLSI and EUCAST standards were rather complicated, since more than half of isolates tested showed a limited growth index, hampering endpoint determinations. We conclude that AST conditions including YNB as an assay medium, agitation of the plates, reading after 48 h of incubation, an inoculum size of 105 CFU/ml, and incubation at 30

  11. Synthesis, structural characterization and photoluminescence properties of a novel La(III) complex

    NASA Astrophysics Data System (ADS)

    Köse, Muhammet; Ceyhan, Gökhan; Atcı, Emine; McKee, Vickie; Tümer, Mehmet

    2015-05-01

    In this study, a novel La(III) complex [La(H2L)2(NO3)3(MeOH)] of a Schiff base ligand was synthesized and characterized by spectroscopic and analytical methods. Single crystals of the complex suitable for X-ray diffraction study were obtained by slow diffusion of diethyl ether into a MeOH solution of the complex which was found to crystallise as [La(H2L)2(NO3)3(MeOH)]ṡ2MeOHṡH2O. The structure was solved in monoclinic crystal system, P21/n space group with unit cell parameters a = 10.5641(11), b = 12.6661(16), c = 16.0022(17) Å, α = 67.364(2), β = 83.794(2)°, γ = 70.541(2)°, V = 1862.9(4) Å3 and Z = 2 with R final value of 0.526. In the complex, the La(III) ion is ten-coordinated by O atoms, five of which come from three nitrate ions, four from the two Schiff base ligands and one from MeOH oxygen atom. The Schiff base ligands in the structure are in a zwitter ion form with the phenolic H transferred to the imine N atom. Thermal properties of the La(III) complex were examined by thermogravimetric analysis and the complex was found to be thermally stable up to 310 °C. The Schiff base ligand and its La(II) complex were screened for their in vitro antimicrobial activity against Bacillus megaterium, Staphylococcus aureus, Bacillus subtilis, Micrococcus luteus (Gram positive bacteria), Klebsiella pneumonia, Escherichia coli, Enterobacter aerogenes, Pseudomonas aeruginosa (Gram negative bacteria), Candida albicans,Yarrowia lipolytica (fungus) and Saccharomyces cerevisiae (yeast). The complex shows more antimicrobial activity than the free ligand.

  12. Differentiation of yeasts growing on dry-cured Iberian ham by mitochondrial DNA restriction analysis, RAPD-PCR and their volatile compounds production.

    PubMed

    Andrade, M J; Rodríguez, M; Casado, E M; Bermúdez, E; Córdoba, J J

    2009-09-01

    The efficiency of mitochondrial DNA (mtDNA) restriction analysis, RAPD-PCR and volatile compounds analysis to differentiate yeast biotypes involved in flavour development of dry-cured Iberian ham throughout the ripening process is evaluated. For this purpose, 86 yeasts isolated from Iberian hams in the main ripening stages at different industries of the four Protected Designations of Origin of this product, were used. The combination of mtDNA restriction analysis and RAPD-PCR using the primer (GACA)4 showed a higher variability in the yeast species detected than obtained using only mtDNA restriction analysis. Only two species, Debaryomyces hansenii and Candida zeylanoides, were identified throughout the whole ripening process and a wide diversity of biotypes was found in these two species, with those of D. hansenii predominating. Clear differences between biotypes were detected in the generation of volatile compounds, with the biotype C2-2 of D. hansenii showing the highest concentrations of volatiles. The combined use of mtDNA restriction analysis and RAPD-PCR distinguishes yeast biotypes with different production of volatile compounds. In addition, analysis of the production profile of volatile compounds is needed to differentiate yeast strains of the same biotype recovered at different stages of ripening. Thus, the combination of these three methods could be very useful to select or monitor yeasts as starter cultures in dry-cured meat products.

  13. Exogenous calcium improves viability of biocontrol yeasts under heat stress by reducing ROS accumulation and oxidative damage of cellular protein.

    PubMed

    An, Bang; Li, Boqiang; Qin, Guozheng; Tian, Shiping

    2012-08-01

    In this article, we investigated the effect of exogenous calcium on improving viability of Debaryomyces hansenii and Pichia membranaefaciens under heat stress, and evaluated the role of calcium in reducing oxidant damage of proteins in the yeast cells. The results indicated that high concentration of exogenous calcium in culture medium was beneficial for enhancing the tolerance of the biocontrol yeasts to heat stress. The possible mechanism of calcium improving the viability of yeasts was attributed to enhancement of antioxidant enzyme activities, decrease in ROS accumulation and reduction of oxidative damage of intracellular protein in yeast cells under heat stress. D. hansenii is more sensitive to calcium as compared to P. membranaefaciens. Our results suggest that application of exogenous calcium combined with biocontrol yeasts is a practical approach for the control of postharvest disease in fruit.

  14. Thermosyntropha lipolytica gen. nov., sp. nov., a lipolytic, anaerobic, alkalitolerant, thermophilic bacterium utilizing short- and long-chain fatty acids in syntrophic coculture with a methanogenic archaeum.

    PubMed

    Svetlitshnyi, V; Rainey, F; Wiegel, J

    1996-10-01

    Three strains of an anaerobic thermophilic organoheterotrophic lipolytic alkalitolerant bacterium, Thermosyntropha lipolytica gen. nov., sp. nov. (type strain JW/VS-265T; DSM 11003), were isolated from alkaline hot springs of Lake Bogoria (Kenya). The cells were nonmotile, non-spore forming, straight or slightly curved rods. At 60 degrees C the pH range for growth determined at 25 degrees C [pH25 degrees C] was 7.15 to 9.5, with an optimum between 8.1 and 8.9 (pH60 degrees C of 7.6 and 8.1). At a pH25 degrees C of 8.5 the temperature range for growth was from 52 to 70 degrees C, with an optimum between 60 and 66 degrees C. The shortest doubling time was around 1 h. In pure culture the bacterium grew in a mineral base medium supplemented with yeast extract, tryptone, Casamino Acids, betaine, and crotonate as carbon sources, producing acetate as a major product and constitutively a lipase. During growth in the presence of olive oil, free long-chain fatty acids were accumulated in the medium but the pure culture could not utilize olive oil, triacylglycerols, short- and long-chain fatty acids, and glycerol for growth. In syntrophic coculture (Methanobacterium strain JW/VS-M29) the lipolytic bacteria grew on triacylglycerols and linear saturated and unsaturated fatty acids with 4 to 18 carbon atoms, but glycerol was not utilized. Fatty acids with even numbers of carbon atoms were degraded to acetate and methane, while from odd-numbered fatty acids 1 mol of propionate per mol of fatty acid was additionally formed. 16S rDNA sequence analysis identified Syntrophospora and Syntrophomonas spp. as closest phylogenetic neighbors.

  15. The yeast flora of the coast redwood, Sequoia sempervirens.

    PubMed

    Middelhoven, W J

    2003-01-01

    Only four yeast species could be isolated from young and perannual shoots of the coast redwood tree, Sequoia sempervirens, and from soil beneath the trees, viz. both varieties of Debaryomyces hansenii, Trichosporon pullulans, T. porosum and an unidentified red basidiomycetous yeast.

  16. Protease and lipase activities of fungal and bacterial strains derived from an artisanal raw ewe's milk cheese.

    PubMed

    Ozturkoglu-Budak, Sebnem; Wiebenga, Ad; Bron, Peter A; de Vries, Ronald P

    2016-11-21

    We previously identified the microbiota present during cheese ripening and observed high protease and lipase activity in Divle Cave cheese. To determine the contribution of individual isolates to enzyme activities, we investigated a range of species representing this microbiota for their proteolytic and lipolytic ability. In total, 17 fungal, 5 yeast and 18 bacterial strains, previously isolated from Divle Cave cheese, were assessed. Qualitative protease and lipase activities were performed on skim-milk agar and spirit-blue lipase agar, respectively, and resulted in a selection of strains for quantitative assays. For the quantitative assays, the strains were grown on minimal medium containing irradiated Divle Cave cheese, obtained from the first day of ripening. Out of 16 selected filamentous fungi, Penicillium brevicompactum, Penicillium cavernicola and Penicillium olsonii showed the highest protease activity, while Mucor racemosus was the best lipase producer. Yarrowia lipolytica was the best performing yeast with respect to protease and lipase activity. From the 18 bacterial strains, 14 and 11 strains, respectively showed protease and lipase activity in agar plates. Micrococcus luteus, Bacillus stratosphericus, Brevibacterium antiquum, Psychrobacter glacincola and Pseudomonas proteolytica displayed the highest protease and lipase activity. The proteases of yeast and filamentous fungi were identified as mainly aspartic protease by specific inhibition with Pepstatin A, whereas inhibition by PMSF (phenylmethylsulfonyl fluoride) indicated that most bacterial enzymes belong to serine type protease. Our results demonstrate that aspartic proteases, which usually have high milk clotting activity, are predominantly derived from fungal strains, and therefore fungal enzymes appear to be more suitable for use in the cheese industry. Microbial enzymes studied in this research might be alternatives for rennin (chymosin) from animal source because of their low cost and stable

  17. Purification and characterization of an alkaline protease from the marine yeast Aureobasidium pullulans for bioactive peptide production from different sources.

    PubMed

    Ma, Chunling; Ni, Xiumei; Chi, Zhenming; Ma, Liyan; Gao, Lingmei

    2007-01-01

    The extracellular alkaline protease in the supernatant of cell culture of the marine yeast Aureobasidium pullulans 10 was purified to homogeneity with a 2.1-fold increase in specific protease activity as compared to that in the supernatant by ammonium sulfate fractionation, gel filtration chromatography (Sephadex G-75), and anion-exchange chromatography (DEAE Sepharose Fast Flow). According to the sodium dodecyl sulfate-polyacrylamide gel electrophoresis data, the molecular mass of the purified enzyme was estimated to be 32.0 kDa. The optimal pH and temperature of the purified enzyme were 9.0 and 45 degrees C, respectively. The enzyme was activated by Cu(2+) (at a concentration of 1.0 mM) and Mn(2+) and inhibited by Hg(2+), Fe(2+), Fe(3+), Zn(2+), and Co(2+). The enzyme was strongly inhibited by phenylmethylsulfonyl fluoride, but weakly inhibited by EDTA, 1-10-phenanthroline, and iodoacetic acid. The K(m) and V(max) values of the purified enzyme for casein were 0.25 mg/ml and 0.0286 micromol/min/mg of protein, respectively. After digestion of shrimp protein, spirulina (Arthospira platensis) protein, proteins of marine yeast strains N3C (Yarrowia lipolytica) and YA03a (Hanseniaspora uvarum), milk protein, and casein with the purified alkaline protease, angiotensin I converting enzyme (ACE) inhibitory activities of the resulting peptides reached 85.3%, 12.1%, 29.8%, 22.8%, 14.1%, and 15.5%, respectively, while the antioxidant activities of these were 52.1%. 54.6%, 25.1%, 35%, 12.5%, and 24.2%, respectively, indicating that ACE inhibitory activity of the resulting peptides from the shrimp protein and antioxidant activity of those produced from the spirulina protein were the highest, respectively. These results suggest that the bioactive peptides produced by digestion of the shrimp protein with the purified alkaline protease have potential applications in the food and pharmaceutical industries.

  18. Heterologous Expression Implicates a GATA Factor in Regulation of Nitrogen Metabolic Genes and Ion Homeostasis in the Halotolerant Yeast Debaryomyces hansenii†

    PubMed Central

    García-Salcedo, Raúl; Casamayor, Antonio; Ruiz, Amparo; González, Asier; Prista, Catarina; Loureiro-Dias, Maria C.; Ramos, José; Ariño, Joaquín

    2006-01-01

    The yeast Debaryomyces hansenii has a remarkable capacity to proliferate in salty and alkaline environments such as seawater. A screen for D. hansenii genes able to confer increased tolerance to high pH when overexpressed in Saccharomyces cerevisiae yielded a single gene, named here DhGZF3, encoding a putative negative GATA transcription factor related to S. cerevisiae Dal80 and Gzf3. Overexpression of this gene in wild-type S. cerevisiae increased caffeine and rapamycin tolerance, blocked growth in low glucose concentrations and nonfermentable carbon sources, and resulted in lithium- and sodium-sensitive cells. Sensitivity to salt could be attributed to a reduced cation efflux, most likely because of a decrease in expression of the ENA1 Na+-ATPase gene. Overexpression of DhGZF3 did not affect cell growth in a gat1 mutant but was lethal in the absence of Gln3. These are positive factors that oppose both Gzf3 and Dal80. Genome-wide transcriptional profiling of wild-type cells overexpressing DhGZF3 shows decreased expression of a number of genes that are usually induced in poor nitrogen sources. In addition, the entire pathway leading to Lys biosynthesis was repressed, probably as a result of a decrease in the expression of the specific Lys14 transcription factor. In conclusion, our results demonstrate that DhGzf3 can play a role as a negative GATA transcription factor when expressed in S. cerevisiae and that it most probably represents the only member of this family in D. hansenii. These findings also point to the GATA transcription factors as relevant elements for alkaline-pH tolerance. PMID:16896222

  19. Effect of scenedesmus acuminatus green algae extracts on the development of Candida lipolytic yeast in gas condensate-containing media

    NASA Technical Reports Server (NTRS)

    Bilmes, B. I.; Kasymova, G. A.; Runov, V. I.; Karavayeva, N. N.

    1980-01-01

    Data are given of a comparative study of the growth and development as well as the characteristics of the biomass of the C. Lipolytica yeast according to the content of raw protein, protein, lipids, vitamins in the B group, and residual hydrocarbons during growth in media with de-aromatized gas-condensate FNZ as the carbon source with aqueous and alcohol extracts of S. acuminatus as the biostimulants. It is shown that the decoction and aqueous extract of green algae has the most intensive stimulating effect on the yeast growth. When a decoction of algae is added to the medium, the content of residual hydrocarbons in the biomass of C. lipolytica yeast is reduced by 4%; the quantity of protein, lipids, thamine and inositol with replacement of the yeast autolysate by the decoction of algae is altered little.

  20. Fourier-Transform Infrared Microspectroscopy, a Novel and Rapid Tool for Identification of Yeasts

    PubMed Central

    Wenning, Mareike; Seiler, Herbert; Scherer, Siegfried

    2002-01-01

    Fourier-transform infrared (FT-IR) microspectroscopy was used in this study to identify yeasts. Cells were grown to microcolonies of 70 to 250 μm in diameter and transferred from the agar plate by replica stamping to an IR-transparent ZnSe carrier. IR spectra of the replicas on the carrier were recorded using an IR microscope coupled to an IR spectrometer, and identification was performed by comparison to reference spectra. The method was tested by using small model libraries comprising reference spectra of 45 strains from 9 genera and 13 species, recorded with both FT-IR microspectroscopy and FT-IR macrospectroscopy. The results show that identification by FT-IR microspectroscopy is equivalent to that achieved by FT-IR macrospectroscopy but the time-consuming isolation of the organisms prior to identification is not necessary. Therefore, this method also provides a rapid tool to analyze mixed populations. Furthermore, identification of 21 Debaryomyces hansenii and 9 Saccharomyces cerevisiae strains resulted in 92% correct identification at the strain level for S. cerevisiae and 91% for D. hansenii, which demonstrates that the resolution power of FT-IR microspectroscopy may also be used for yeast typing at the strain level. PMID:12324312

  1. Study of Holtermanniella wattica, Leucosporidium creatinivorum, Naganishia adeliensis, Solicoccozyma aeria, and Solicoccozyma terricola for their lipogenic aptitude from different carbon sources.

    PubMed

    Filippucci, Sara; Tasselli, Giorgia; Scardua, Alessandro; Di Mauro, Simone; Cramarossa, Maria Rita; Perini, Davide; Turchetti, Benedetta; Onofri, Andrea; Forti, Luca; Buzzini, Pietro

    2016-01-01

    The ability of some microorganisms to accumulate lipids is well known; however, only recently the number of studies on microbial lipid biosynthesis for obtaining oleochemical products, namely biofuels and some building blocks for chemistry, is rapidly and spectacularly increased. Since 1990s, some oleaginous yeasts were studied for their ability to accumulate lipids up to 60-70% of their dry weight. Due to the vast array of engineering techniques currently available, the recombinant DNA technology was the main approach followed so far for obtaining lipid-overproducing yeasts, mainly belonging to the Yarrowia lipolytica . However, an alternative approach can be offered by worldwide diversity as source of novel oleaginous yeasts. Lipogenic aptitude of a number of yeast strains has been reviewed, but many of these studies utilized a limited number of species and/or different culture conditions that make impossible the comparison of different results. Accordingly, the lipogenic aptitude inside the yeast world is still far from being fully explored, and finding new oleaginous yeast species can acquire a strategic importance. Holtermanniella wattica , Leucosporidium creatinivorum , Naganishia adeliensis , Solicoccozyma aeria, and Solicoccozyma terricola strains were selected as a result of a large-scale screening on 706 yeasts (both Ascomycota and Basidiomycota). Lipid yields and fatty acid profiles of selected strains were evaluated at 20 and 25 °C on glucose, and on glycerol, xylose, galactose, sucrose, maltose, and cellobiose. A variable fatty acid profile was observed in dependence of both temperature and different carbon sources. On the whole, L. creatinivorum exhibited the highest performances: total lipid yield (Y L ) >7 g/l on glucose and glycerol, % of intracellular lipids on cell biomass (Y L /DW) >70% at 20 °C on glucose, lipid coefficient (Y L /Glu) around 20% on glucose, and daily productivity (Y L /d) on glucose and sucrose >1.6 g/(l*d). This study

  2. Organic Acid Production by Filamentous Fungi

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Magnuson, Jon K.; Lasure, Linda L.

    Many of the commercial production processes for organic acids are excellent examples of fungal biotechnology. However, unlike penicillin, the organic acids have had a less visible impact on human well-being. Indeed, organic acid fermentations are often not even identified as fungal bioprocesses, having been overshadowed by the successful deployment of the β-lactam processes. Yet, in terms of productivity, fungal organic acid processes may be the best examples of all. For example, commercial processes using Aspergillus niger in aerated stirred-tank-reactors can convert glucose to citric acid with greater than 80% efficiency and at final concentrations in hundreds of grams per liter.more » Surprisingly, this phenomenal productivity has been the object of relatively few research programs. Perhaps a greater understanding of this extraordinary capacity of filamentous fungi to produce organic acids in high concentrations will allow greater exploitation of these organisms via application of new knowledge in this era of genomics-based biotechnology. In this chapter, we will explore the biochemistry and modern genetic aspects of the current and potential commercial processes for making organic acids. The organisms involved, with a few exceptions, are filamentous fungi, and this review is limited to that group. Although yeasts including Saccharomyces cerevisiae, species of Rhodotorula, Pichia, and Hansenula are important organisms in fungal biotechnology, they have not been significant for commercial organic acid production, with one exception. The yeast, Yarrowia lipolytica, and related yeast species, may be in use commercially to produce citric acid (Lopez-Garcia, 2002). Furthermore, in the near future engineered yeasts may provide new commercial processes to make lactic acid (Porro, Bianchi, Ranzi, Frontali, Vai, Winkler, & Alberghina, 2002). This chapter is divided into two parts. The first contains a review of the commercial aspects of current and potential large

  3. Debaryomyces hansenii: A Model System for Marine Molecular Biology

    DTIC Science & Technology

    1991-12-31

    Gajadhar et al. 1991), Plasmodium berghei (Gunderson et al. 1986), Oytricha nova (Elwood et al. 1985), Paramecium terraurelia (Sogin and Elwood, 1986...berg J𔃾 Paramecium tenaurelia Dyctelioniiw discoideum 0.1 II -ifTorzdospra delbrueckii 52 Can&&d glabrata Saccharomyces cerevisiae 98 Kluyveromyces

  4. Multiple microbial cell-free extracts improve the microbiological, biochemical and sensory features of ewes' milk cheese.

    PubMed

    Calasso, Maria; Mancini, Leonardo; De Angelis, Maria; Conte, Amalia; Costa, Cristina; Del Nobile, Matteo Alessandro; Gobbetti, Marco

    2017-09-01

    This study used cell-free enzyme (CFE) extracts from Lactobacillus casei, Hafnia alvei, Debaryomyces hansenii and Saccharomyces cerevisiae to condition or accelerate Pecorino-type cheese ripening. Compositional, microbiological, and biochemical analyses were performed, and volatile and sensory profiles were obtained. Lactobacilli and cocci increased during ripening, especially in cheeses containing CFE from L. casei, H. alvei and D. hansenii (LHD-C) and L. casei, H. alvei and S. cerevisiae (LHS-C). Compared to control cheese (CC), several enzymatic activities were higher (P < 0.05) in CFE-supplemented cheeses. Compared to the CC (1907 mg kg -1 of cheese), the free amino acid level increased (P < 0.05) in CFE-supplemented cheeses, ranging from approximately 2575 (LHS-C) to 5720 (LHD-C) mg kg -1 of cheese after 60 days of CFE-supplemented ripening. As shown by GC/MS analysis, the levels of several volatile organic compounds were significantly (P < 0.05) lower in CC than in CFE-supplemented cheeses. All cheeses manufactured by adding multiple CFEs exhibited higher scores (P < 0.05) for internal structure, acid taste and juiciness than CC samples. This study shows the possibility of producing ewes' milk cheese with standardized characteristics and improved flavor intensity in a relatively short time. Copyright © 2017 Elsevier Ltd. All rights reserved.

  5. Antifungal properties of durancins isolated from Enterococcus durans A5-11 and of its synthetic fragments.

    PubMed

    Belguesmia, Y; Choiset, Y; Rabesona, H; Baudy-Floc'h, M; Le Blay, G; Haertlé, T; Chobert, J-M

    2013-04-01

    The aim of this work was to study the antifungal properties of durancins isolated from Enterococcus durans A5-11 and of their chemically synthesized fragments. Enterococcus durans A5-11 is a lactic acid bacteria strain isolated from traditional Mongolian airag cheese. This strain inhibits the growth of several fungi including Fusarium culmorum, Penicillium roqueforti and Debaryomyces hansenii. It produces two bacteriocins: durancin A5-11a and durancin A5-11b, which have similar antimicrobial properties. The whole durancins A5-11a and A5-11b, as well as their N- and C-terminal fragments were synthesized, and their antifungal properties were studied. C-terminal fragments of both durancins showed stronger antifungal activities than other tested peptides. Treatment of D. hansenii LMSA2.11.003 strain with 2 mmol l(-1) of the synthetic peptides led to the loss of the membrane integrity and to several changes in the ultra-structure of the yeast cells. Chemically synthesized durancins and their synthetic fragments showed different antimicrobial properties from each other. N-terminal peptides show activities against both bacterial and fungal strains tested. C-terminal peptides have specific activities against tested fungal strain and do not show antibacterial activity. However, the C-terminal fragment enhances the activity of the N-terminal fragment in the whole bacteriocins against bacteria. © 2012 The Society for Applied Microbiology.

  6. Electrically conductive cellulose composite

    DOEpatents

    Evans, Barbara R.; O'Neill, Hugh M.; Woodward, Jonathan

    2010-05-04

    An electrically conductive cellulose composite includes a cellulose matrix and an electrically conductive carbonaceous material incorporated into the cellulose matrix. The electrical conductivity of the cellulose composite is at least 10 .mu.S/cm at 25.degree. C. The composite can be made by incorporating the electrically conductive carbonaceous material into a culture medium with a cellulose-producing organism, such as Gluconoacetobacter hansenii. The composites can be used to form electrodes, such as for use in membrane electrode assemblies for fuel cells.

  7. Method of forming an electrically conductive cellulose composite

    DOEpatents

    Evans, Barbara R [Oak Ridge, TN; O'Neill, Hugh M [Knoxville, TN; Woodward, Jonathan [Ashtead, GB

    2011-11-22

    An electrically conductive cellulose composite includes a cellulose matrix and an electrically conductive carbonaceous material incorporated into the cellulose matrix. The electrical conductivity of the cellulose composite is at least 10 .mu.S/cm at 25.degree. C. The composite can be made by incorporating the electrically conductive carbonaceous material into a culture medium with a cellulose-producing organism, such as Gluconoacetobacter hansenii. The composites can be used to form electrodes, such as for use in membrane electrode assemblies for fuel cells.

  8. 21 CFR 173.165 - Candida lipolytica.

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ... parts of hexane. n-Hexadecane, 99 percent olefin-free. Determine the absorbance compared to isooctane as..., isooctane, benzene, hexane and 1,2-dichloroethane designated in the list following this paragraph shall pass... containing 0.5 milliliter of purified n-hexadecane and evaporated on the rotary evaporator at 45 °C to...

  9. 21 CFR 173.165 - Candida lipolytica.

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ... parts of hexane. n-Hexadecane, 99 percent olefin-free. Determine the absorbance compared to isooctane as..., isooctane, benzene, hexane and 1,2-dichloroethane designated in the list following this paragraph shall pass... containing 0.5 milliliter of purified n-hexadecane and evaporated on the rotary evaporator at 45 °C to...

  10. 21 CFR 173.165 - Candida lipolytica.

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ... parts of hexane. n-Hexadecane, 99 percent olefin-free. Determine the absorbance compared to isooctane as..., isooctane, benzene, hexane and 1,2-dichloroethane designated in the list following this paragraph shall pass... containing 0.5 milliliter of purified n-hexadecane and evaporated on the rotary evaporator at 45 °C to...

  11. Synergistic rhizosphere degradation of γ-hexachlorocyclohexane (lindane) through the combinatorial plant-fungal action.

    PubMed

    Asemoloye, Michael Dare; Ahmad, Rafiq; Jonathan, Segun Gbolagade

    2017-01-01

    Fungi are usually involved in degradation/deterioration of many anthropogenic wastes due to their verse enzyme secretions and adaptive capabilities. In this study, five dominant fungal strains were isolated from an aged lindane polluted site, they were all mixed (100 mg each) together with pent mushroom compost (SMC) and applied to lindane polluted soil (5 kg) at 10, 20, 30, 40% and control 0% (soil with no treatment), these were used to grow M. maximus Jacq for 3 months. To establish lindane degradation, deductions such as Degradation rate (K1), Half-life (t1/2) and Degradation efficiency (DE) were made based on the analyzed lindane concentrations before and after the experiment. We also tested the presence and expressions of phosphoesterases (mpd and opd-A) and catechol 1,2-dioxygenases (efk2 and efk4) genes in the strains. The stains were identified as Aspergillus niger (KY693970); Talaromyces atroroseus (KY488464), Talaromyces purpurogenus (KY488468), Yarrowia lipolytica (KY488469) and Aspergillus flavus (KY693973) through morphological and molecular methods. Combined rhizospheric action of M. maximus and fungi speed up lindane degradation rate, initially detected lindane concentration of 45 mg/kg was reduced to 11.26, 9.34 and 11.23 mg/kg in 20, 30 and 40% treatments respectively making 79.76, 85.93 and 88.67% degradation efficiencies. K1 of 1.29 was recorded in control while higher K1 of 1.60, 1.96 and 2.18 /day were recorded in 20, 30 and 40% treatments respectively. The best t1/2 of 0.32 and 0.35 /day were recorded in 40 and 30% compared to control (0.54 /day). All the strains were also affirmed to possess the tested genes; opd was overexpressed in all the strains except KY693973 while mpd was overexpressed in KY693970, KY488464 but moderately expressed in KY488468, KY488469 and KY693973. However, efk genes were under-expressed in most of the strains except KY488469 and KY693973 which showed moderate expression of efk4. This work suggests that the

  12. Synergistic rhizosphere degradation of γ-hexachlorocyclohexane (lindane) through the combinatorial plant-fungal action

    PubMed Central

    Ahmad, Rafiq; Jonathan, Segun Gbolagade

    2017-01-01

    Fungi are usually involved in degradation/deterioration of many anthropogenic wastes due to their verse enzyme secretions and adaptive capabilities. In this study, five dominant fungal strains were isolated from an aged lindane polluted site, they were all mixed (100 mg each) together with pent mushroom compost (SMC) and applied to lindane polluted soil (5 kg) at 10, 20, 30, 40% and control 0% (soil with no treatment), these were used to grow M. maximus Jacq for 3 months. To establish lindane degradation, deductions such as Degradation rate (K1), Half-life (t1/2) and Degradation efficiency (DE) were made based on the analyzed lindane concentrations before and after the experiment. We also tested the presence and expressions of phosphoesterases (mpd and opd-A) and catechol 1,2-dioxygenases (efk2 and efk4) genes in the strains. The stains were identified as Aspergillus niger (KY693970); Talaromyces atroroseus (KY488464), Talaromyces purpurogenus (KY488468), Yarrowia lipolytica (KY488469) and Aspergillus flavus (KY693973) through morphological and molecular methods. Combined rhizospheric action of M. maximus and fungi speed up lindane degradation rate, initially detected lindane concentration of 45 mg/kg was reduced to 11.26, 9.34 and 11.23 mg/kg in 20, 30 and 40% treatments respectively making 79.76, 85.93 and 88.67% degradation efficiencies. K1 of 1.29 was recorded in control while higher K1 of 1.60, 1.96 and 2.18 /day were recorded in 20, 30 and 40% treatments respectively. The best t1/2 of 0.32 and 0.35 /day were recorded in 40 and 30% compared to control (0.54 /day). All the strains were also affirmed to possess the tested genes; opd was overexpressed in all the strains except KY693973 while mpd was overexpressed in KY693970, KY488464 but moderately expressed in KY488468, KY488469 and KY693973. However, efk genes were under-expressed in most of the strains except KY488469 and KY693973 which showed moderate expression of efk4. This work suggests that the

  13. Final Report for Project "A high-throughput pipeline for mapping inter-species interactions and metabolic synergy relevant to next-generation biofuel production"

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Segre, Daniel; Marx, Christopher J.; Northen, Trent

    The goal of our project was to implement a pipeline for the systematic, computationally-driven study and optimization of microbial interactions and their effect on lignocellulose degradation and biofuel production. We specifically sought to design and construct artificial microbial consortia that could collectively degrade lignocellulose from plant biomass, and produce precursors of energy-rich biofuels. This project fits into the bigger picture goal of helping identify a sustainable strategy for the production of energy-rich biofuels that would satisfy the existing energy constraints and demand of our society. Based on the observation that complex natural microbial communities tend to be metabolically efficient andmore » ecologically robust, we pursued the study of a microbial system in which the desired engineering function is achieved through division of labor across multiple microbial species. Our approach was aimed at bypassing the complexity of natural communities by establishing a rational approach to design small synthetic microbial consortia. Towards this goal, we combined multiple approaches, including computer modeling of ecosystem-level microbial metabolism, mass spectrometry of metabolites, genetic engineering, and experimental evolution. The microbial production of biofuels from lignocellulose is a complex, multi-step process. Microbial consortia are an ideal approach to consolidated bioprocessing: a community of microorganisms performs a wide variety of functions more efficiently and is more resilient to environmental perturbations than a microbial monoculture. Each organism we chose for this project addresses a specific challenge: lignin degradation (Pseudomonas putida); (hemi)cellulose degradation (Cellulomonas fimi); lignin degradation product demethoxylation (Methylobacterium spp); generation of biofuel lipid precursors (Yarrowia lipolytica). These organisms are genetically tractable, aerobic, and have been used in biotechnological applications

  14. A novel C-type lectin from the sea cucumber Apostichopus japonicus (AjCTL-2) with preferential binding of d-galactose.

    PubMed

    Wang, Hui; Xue, Zhuang; Liu, Zhaoqun; Wang, Weilin; Wang, Feifei; Wang, Ying; Wang, Lingling; Song, Linsheng

    2018-05-15

    C-type lectins (CTLs) are Ca 2+ dependent carbohydrate-binding proteins that share structural homology in their carbohydrate-recognition domains (CRDs). In the present study, a novel CTL was identified from sea cucumber Apostichopus japonicus (named as AjCTL-2). The deduced amino acid sequence of AjCTL-2 was homologous to CTLs from other animals with the identities ranging from 33% to 40%. It contained a canonical signal peptide at the N-terminus, a low density lipoprotein receptor class A (LDLa), a C1r/C1s/Uegf/bone morphogenetic protein 1 (CUB), and a CRD with two motifs Glu-Pro-Asn (EPN) and Trp-Asn-Asp (WND) in Ca 2+ binding site 2. The mRNA transcripts of AjCTL-2 were extensively expressed in all the tested tissues including respiratory tree, muscle, gut, coelomocyte, tube-foot, body wall and gonad, and the highest expression level of AjCTL-2 in coelomocyte was about 4.2-fold (p < 0.05) of that in body wall. The mRNA expression level of AjCTL-2 in coelomocyte increased significantly after Vibrio splendidus stimulation, and dramatically peaked at 12 h, which was 206.4-fold (p < 0.05) of that in control group. AjCTL-2 protein was mainly detected in cytoplasm of coelomocyte by immunofluorescence. The recombinant AjCTL-2 (rAjCTL-2) displayed binding activity to d-galactose independent of Ca 2+ , while the binding activity to other tested pathogen-associated molecular patterns (PAMPs) including lipopolysaccharide (LPS), peptidoglycan (PGN), and mannose (Man) could not be detected. Surface plasmon resonance (SPR) analysis further revealed the high binding specificity and moderate binding affinity of rAjCTL-2 to d-galactose (KD = 4.093 × 10 -6  M). After rAjCTL-2 was blocked by its polyclonal antibody, the binding activity to d-galactose could not be detected by using a blocking ELISA (B-ELISA). Moreover, rAjCTL-2 could bind various microorganisms including V. splendidus, V. anguillarum, Staphylococcus aureus, Bifidobacterium breve and Yarrowia

  15. The composition of Camembert cheese-ripening cultures modulates both mycelial growth and appearance.

    PubMed

    Lessard, Marie-Hélène; Bélanger, Gaétan; St-Gelais, Daniel; Labrie, Steve

    2012-03-01

    The fungal microbiota of bloomy-rind cheeses, such as Camembert, forms a complex ecosystem that has not been well studied, and its monitoring during the ripening period remains a challenge. One limitation of enumerating yeasts and molds on traditional agar media is that hyphae are multicellular structures, and colonies on a petri dish rarely develop from single cells. In addition, fungi tend to rapidly invade agar surfaces, covering small yeast colonies and resulting in an underestimation of their number. In this study, we developed a real-time quantitative PCR (qPCR) method using TaqMan probes to quantify a mixed fungal community containing the most common dairy yeasts and molds: Penicillium camemberti, Geotrichum candidum, Debaryomyces hansenii, and Kluyveromyces lactis on soft-cheese model curds (SCMC). The qPCR method was optimized and validated on pure cultures and used to evaluate the growth dynamics of a ripening culture containing P. camemberti, G. candidum, and K. lactis on the surface of the SCMC during a 31-day ripening period. The results showed that P. camemberti and G. candidum quickly dominated the ecosystem, while K. lactis remained less abundant. When added to this ecosystem, D. hansenii completely inhibited the growth of K. lactis in addition to reducing the growth of the other fungi. This result was confirmed by the decrease in the mycelium biomass on SCMC. This study compares culture-dependent and qPCR methods to successfully quantify complex fungal microbiota on a model curd simulating Camembert-type cheese.

  16. Study of the counts, species and characteristics of the yeast population during the manufacture of dry-cured "lacón". Effect of salt level.

    PubMed

    Purriños, Laura; García Fontán, María C; Carballo, Javier; Lorenzo, José M

    2013-05-01

    The aim of this work was to study the yeast population during the manufacture of dry-cured "lacón" (a Spanish traditional meat product) and the effect of the salting time. For this study, six batches of "lacón" were manufactured with three different salting times (LS (3 days of salting), MS (4 days of salting) and HS (5 days of salting)). Yeast counts increased significantly (P < 0.001) during the whole process from 2.60 to 6.37 log cfu/g. An increased length of salting time did not affect yeast counts throughout the manufacture of dry-cured "lacón", although the highest yeast counts were obtained from LS batches. A total of 226 isolates were obtained from dry-cured "lacón" during drying-ripening stage, of which 151 were yeasts and were identified at the species level using molecular techniques. The total of 151 identified yeasts belonged to 4 different genera: Debaryomyces, Candida, Cryptococcus and Rhodotorula. Debaryomyces hansenii was the most abundant species isolated throughout the whole process as much in the interior as in the exterior of the pieces of three salt levels of "lacón" studied, while Candida zeylanoides was only isolated from the interior of MS and HS batches and from the exterior of LS and HS groups, but at lesser proportion than D. hansenii. Copyright © 2012. Published by Elsevier Ltd.

  17. The Composition of Camembert Cheese-Ripening Cultures Modulates both Mycelial Growth and Appearance

    PubMed Central

    Lessard, Marie-Hélène; Bélanger, Gaétan; St-Gelais, Daniel

    2012-01-01

    The fungal microbiota of bloomy-rind cheeses, such as Camembert, forms a complex ecosystem that has not been well studied, and its monitoring during the ripening period remains a challenge. One limitation of enumerating yeasts and molds on traditional agar media is that hyphae are multicellular structures, and colonies on a petri dish rarely develop from single cells. In addition, fungi tend to rapidly invade agar surfaces, covering small yeast colonies and resulting in an underestimation of their number. In this study, we developed a real-time quantitative PCR (qPCR) method using TaqMan probes to quantify a mixed fungal community containing the most common dairy yeasts and molds: Penicillium camemberti, Geotrichum candidum, Debaryomyces hansenii, and Kluyveromyces lactis on soft-cheese model curds (SCMC). The qPCR method was optimized and validated on pure cultures and used to evaluate the growth dynamics of a ripening culture containing P. camemberti, G. candidum, and K. lactis on the surface of the SCMC during a 31-day ripening period. The results showed that P. camemberti and G. candidum quickly dominated the ecosystem, while K. lactis remained less abundant. When added to this ecosystem, D. hansenii completely inhibited the growth of K. lactis in addition to reducing the growth of the other fungi. This result was confirmed by the decrease in the mycelium biomass on SCMC. This study compares culture-dependent and qPCR methods to successfully quantify complex fungal microbiota on a model curd simulating Camembert-type cheese. PMID:22247164

  18. Characterization and Reclassification of Yeasts Used for Biological Control of Postharvest Diseases of Fruits and Vegetables

    PubMed Central

    McLaughlin, R. J.; Wilson, C. L.; Chalutz, E.; Kurtzman, C. P.; Fett, W. F.; Osman, S. F.

    1990-01-01

    In previous studies workers have shown that three yeast strains (strains US-7, 82, and 101) have biological control activity against various postharvest fungal pathogens of fruits and vegetables, including Penicillium rots of apples and citrus and Botrytis rot of apples. In these reports the researchers have described these strains as Debaryomyces hansenii (anamorph, Candida famata) or Candida sp. strains. In this study we performed additional physiological, DNA reassociation, and mannan characterization tests that clearly established a new taxonomic classification for these strains, Candida guilliermondii. We also propose amendment of the physiological test profile in the taxonomic description of C. guilliermondii. PMID:16348361

  19. Biochemical localization of a protein involved in Gluconacetobacter hansenii cellulose synthesis

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Iyer, Prashanti R; Catchmark, Jeffrey M; Brown, Nicole Robitaille

    2011-02-08

    Using subcellular fractionation and Western blot methods, we have shown that AcsD, one of the proteins encoded by the Acetobacter cellulose synthase (acs) operon, is localized in the periplasmic region of the cell. AcsD protein was heterologously expressed in Escherichia coli and purified using histidine tag affinity methods. The purified protein was used to obtain rabbit polyclonal antibodies. The purity of the subcellular fractions was assessed by marker enzyme assays.

  20. Yeast and Macroinvertebrate Communities Associated with Leaf Litter Decomposition in a Second Order Stream

    NASA Astrophysics Data System (ADS)

    Sampaio, Ana; Cortes, Rui; Leão, Cecília

    2004-11-01

    The composition of yeast and macroinvertebrate communities was studied on black alder, blue gum eucalyptus and English oak leaves decaying in a stream during a six-month period. ANOVA analysis showed significantly different values (p < 0.0001) of yeast and macroinvertebrate densities among the three leaf litters. Some yeast species such as Cryptococcus albidus (Saito), C. laurentii (Kufferath), Rhodothorula glutinis (Fresenius), R. colostri (Castelli), and Debaryomyces hansenii (Lodder and Kreger-van Rij) were present in all litter types. Other yeasts were restricted to a specific type of litter. Macroinvertebrates were dominated by collectors-gatherers on oak and eucalyptus leaves. Shredders reached highest densities in alder leaves. (

  1. In view of an optimal gut antifungal therapeutic strategy: an in vitro susceptibility and toxicity study testing a novel phyto-compound.

    PubMed

    Metugriachuk, Yussef; Kuroi, Olivia; Pavasuthipaisit, Kanok; Tsuchiya, Junji; Minelli, Emilio; Okura, Ruichi; Fesce, Edoardo; Marotta, F

    2005-01-01

    In view of the raising concern for gut fungal infection, the aim of the present research was to carry out a systematic in vitro study testing the antifungal activity and possible toxicity of a polygodyal-anethole compound (Kolorex) in several strains of Candida albicans and in other fungal pathogens. The in vitro susceptibility tests were carried out on 4 strains of C. albicans (C. krusei, C. lipolytica, C. tropicalis, C. utilis), Aspergillus flavus and A. fumigatus. Cultures were also analyzed by varying medium, pH and inoculum size, and a time-course killing test was carried out. In the present study the polygodyal-anethole compound showed remarkable in vitro activity against the most common fungi, which was significantly better than polygodyal alone. Moreover, such mixture compound was shown to exert its activity against a wide spectrum of fungi, including C. lipolytica and C. tropicalis, which required significantly higher MIC of polygodyal to be unfeasible in clinical application. The activity of the polygodyal-anethole compound was significantly better than polygodyal alone with high inoculum size and low pH. Moreover, it proved to exert a significantly faster biological activity against low inoculum. This study suggests that the mixture compound Kolorex has a very good profile of antifungal activity in terms of effectiveness and spectrum of action while being devoid of any significant toxicity.

  2. Yeast community in traditional Portuguese Serpa cheese by culture-dependent and -independent DNA approaches.

    PubMed

    Gonçalves Dos Santos, Maria Teresa P; Benito, María José; Córdoba, María de Guía; Alvarenga, Nuno; Ruiz-Moyano Seco de Herrera, Santiago

    2017-12-04

    This study investigated the yeast community present in the traditional Portuguese cheese, Serpa, by culture-dependent and -independent methods. Sixteen batches of Serpa cheeses from various regional industries registered with the Protected Designation of Origin (PDO) versus non-PDO registered, during spring and winter, were used. Irrespective of the producer, the yeast counts were around 5log CFU/g in winter and, overall, were lower in spring. The yeast species identified at the end of ripening (30days), using PCR-RFLP analysis and sequencing of the 26S rRNA, mainly corresponded to Debaryomyces hansenii and Kluyveromyces marxianus, with Candida spp. and Pichia spp. present to a lesser extent. The culture-independent results, obtained using high-throughput sequencing analysis, confirmed the prevalence of Debaryomyces spp. and Kluyveromyces spp. but, also, that Galactomyces spp. was relevant for three of the five producers, which indicates its importance during the early stages of the cheese ripening process, considering it was not found among the dominant viable yeast species. In addition, differences between the identified yeast isolated from cheeses obtained from PDO and non-PDO registered industries, showed that the lack of regulation of the cheese-making practice, may unfavourably influence the final yeast microbiota. The new knowledge provided by this study of the yeast diversity in Serpa cheese, could be used to modify the cheese ripening conditions, to favour desirable yeast species. Additionally, the prevalent yeast isolates identified, Debaryomyces hansenii and Kluyveromyces spp., may have an important role during cheese ripening and in the final sensorial characteristics. Thus, the study of their technological and functional properties could be relevant, in the development of an autochthonous starter culture, to ensure final quality and safety of the cheese. Copyright © 2017 Elsevier B.V. All rights reserved.

  3. Efficiency of mitochondrial DNA restriction analysis and RAPD-PCR to characterize yeasts growing on dry-cured Iberian ham at the different geographic areas of ripening.

    PubMed

    Andrade, María J; Rodríguez, Mar; Casado, Eva; Córdoba, Juan J

    2010-03-01

    The efficiency of mitochondrial DNA (mtDNA) restriction analysis and random amplification of polymorphic DNA (RAPD)-PCR to characterize yeasts growing on dry-cured Iberian ham was evaluated. Besides, the distribution of the main species and biotypes of yeasts in the different ripening areas of this product was investigated. MtDNA restriction analysis allowed yeast characterization at species and strain level. RAPD-PCR with the primers (GACA)(4) and (GAC)(5) was inappropriate for characterization at species level. Most of the mtDNA restriction patterns detected in dry-cured Iberian ham were consistent with Debaryomyces hansenii. Several yeasts biotypes were associated to specific geographic areas of dry-cured Iberian ham ripening. Copyright 2009 Elsevier Ltd. All rights reserved.

  4. Effect of starter cultures on survival of Listeria monocytogenes in Čajna sausage

    NASA Astrophysics Data System (ADS)

    Bošković, M.; Tadić, V.; Đorđević, J.; Glišić, M.; Lakićević, B.; Dimitrijević, M.; Baltić, M. Ž.

    2017-09-01

    The aim of the study was to evaluate the survival of Listeria monocytogenes during the production of Čajna sausage with short maturation time. Sausage batter was inoculated with three different serotypes 4b and serotype 1/2a of L. monocytogenes. Control sausages were without any starter culture added; the second batch was inoculated with strains of Lactobacillus sakei, Staphylococcus carnosus and Staphylococcus xylosus, and the third batch was inoculated with strains of Debaryomyces hansenii, Lactobacillus sakei, Pediococcus acidilactici, Pediococcus pentosaceus, Staphylococcus carnosus and Staphylococcus xylosus. After 18 days of ripening, L. monocytogenes was not detected in any of the sausages, but during this fermentation and drying, the numbers of this pathogen was lower in the sausages inoculated with starter cultures.

  5. [Protease activity of microflora in the oral cavity of patients with periodontitis].

    PubMed

    Voropaeva, E A; Baĭrakova, A L; Bichucher, A M; D'iakov, V L; Kozlov, L V

    2008-01-01

    Microbial spectrum and non-specific as well as specific IgA1 protease activity of isolated microorganisms were investigated in gingival liquid of patients with periodontitis. Microorganisms from the gingival liqud of these patients belonged to conditional-pathogenic obligate and facultatively anaerobic bacteria. 24 strains of microorganisms have been identified. Nonspecific proteolytic activity was found in the following microorganisms: Actinomyces israelii, Actinomyces naeslundii, Aerococcus viridans, Bifidobacterium longum, Neisseria subflave, Streptococcus parvulus, Eubacterium alactolyticum, Lactobaccilus catenoforme, Bacillus spp. Specific IgA1-protease activity and lack of proteolytic activity towards IgG was found in Streptococcus acidominimus, Streptococcus hansenii, Streptococcus salivarius, Leptotrychia buccalis, Staphylococcus haemolyticus and Neisseria sicca. No proteolytic activity was found in cultivation medium of Eubacterium alactolyticum (1 strain), Prevotella buccalis, Aerococcus viridans and Streptococcus sanguis.

  6. Cellulose synthesis by Komagataeibacter rhaeticus strain P 1463 isolated from Kombucha.

    PubMed

    Semjonovs, Pavels; Ruklisha, Maija; Paegle, Longina; Saka, Madara; Treimane, Rita; Skute, Marite; Rozenberga, Linda; Vikele, Laura; Sabovics, Martins; Cleenwerck, Ilse

    2017-02-01

    Isolate B17 from Kombucha was estimated to be an efficient producer of bacterial cellulose (BC). The isolate was deposited under the number P 1463 and identified as Komagataeibacter rhaeticus by comparing a generated amplified fragment length polymorphism (AFLP™) DNA fingerprint against a reference database. Static cultivation of the K. rhaeticus strain P 1463 in Hestrin and Schramm (HS) medium resulted in 4.40 ± 0.22 g/L BC being produced, corresponding to a BC yield from glucose of 25.30 ± 1.78 %, when the inoculum was made with a modified HS medium containing 10 g/L glucose. Fermentations for 5 days using media containing apple juice with analogous carbon source concentrations resulted in 4.77 ± 0.24 g/L BC being synthesised, corresponding to a yield from the consumed sugars (glucose, fructose and sucrose) of 37.00 ± 2.61 %. The capacity of K. rhaeticus strain P 1463 to synthesise BC was found to be much higher than that of two reference strains for cellulose production, Komagataeibacter xylinus DSM 46604 and Komagataeibacter hansenii DSM 5602 T , and was also considerably higher than that of K. hansenii strain B22, isolated from another Kombucha sample. The BC synthesised by K. rhaeticus strain P 1463 after 40 days of cultivation in HS medium with additional glucose supplemented to the cell culture during cultivation was shown to have a degree of polymerization of 3300.0 ± 122.1 glucose units, a tensile strength of 65.50 ± 3.27 MPa and a length at break of 16.50 ± 0.83 km. For the other strains, these properties did not exceed 25.60 ± 1.28 MPa and 15.20 ± 0.76 km.

  7. Investigation of the Activity of the Microorganisms in a Reblochon-Style Cheese by Metatranscriptomic Analysis

    PubMed Central

    Monnet, Christophe; Dugat-Bony, Eric; Swennen, Dominique; Beckerich, Jean-Marie; Irlinger, Françoise; Fraud, Sébastien; Bonnarme, Pascal

    2016-01-01

    The microbial communities in cheeses are composed of varying bacteria, yeasts, and molds, which contribute to the development of their typical sensory properties. In situ studies are needed to better understand their growth and activity during cheese ripening. Our objective was to investigate the activity of the microorganisms used for manufacturing a surface-ripened cheese by means of metatranscriptomic analysis. The cheeses were produced using two lactic acid bacteria (Streptococcus thermophilus and Lactobacillus delbrueckii ssp. bulgaricus), one ripening bacterium (Brevibacterium aurantiacum), and two yeasts (Debaryomyces hansenii and Geotrichum candidum). RNA was extracted from the cheese rinds and, after depletion of most ribosomal RNA, sequencing was performed using a short-read sequencing technology that generated ~75 million reads per sample. Except for B. aurantiacum, which failed to grow in the cheeses, a large number of CDS reads were generated for the inoculated species, making it possible to investigate their individual transcriptome over time. From day 5 to 35, G. candidum accounted for the largest proportion of CDS reads, suggesting that this species was the most active. Only minor changes occurred in the transcriptomes of the lactic acid bacteria. For the two yeasts, we compared the expression of genes involved in the catabolism of lactose, galactose, lactate, amino acids, and free fatty acids. During ripening, genes involved in ammonia assimilation and galactose catabolism were down-regulated in the two species. Genes involved in amino acid catabolism were up-regulated in G. candidum from day 14 to day 35, whereas in D. hansenii, they were up-regulated mainly at day 35, suggesting that this species catabolized the cheese amino acids later. In addition, after 35 days of ripening, there was a down-regulation of genes involved in the electron transport chain, suggesting a lower cellular activity. The present study has exemplified how

  8. Metabolic Engineering of Oleaginous Yeasts for Production of Fuels and Chemicals

    PubMed Central

    Shi, Shuobo; Zhao, Huimin

    2017-01-01

    Oleaginous yeasts have been increasingly explored for production of chemicals and fuels via metabolic engineering. Particularly, there is a growing interest in using oleaginous yeasts for the synthesis of lipid-related products due to their high lipogenesis capability, robustness, and ability to utilize a variety of substrates. Most of the metabolic engineering studies in oleaginous yeasts focused on Yarrowia that already has plenty of genetic engineering tools. However, recent advances in systems biology and synthetic biology have provided new strategies and tools to engineer those oleaginous yeasts that have naturally high lipid accumulation but lack genetic tools, such as Rhodosporidium, Trichosporon, and Lipomyces. This review highlights recent accomplishments in metabolic engineering of oleaginous yeasts and recent advances in the development of genetic engineering tools in oleaginous yeasts within the last 3 years. PMID:29167664

  9. Metabolic Engineering of Oleaginous Yeasts for Production of Fuels and Chemicals.

    PubMed

    Shi, Shuobo; Zhao, Huimin

    2017-01-01

    Oleaginous yeasts have been increasingly explored for production of chemicals and fuels via metabolic engineering. Particularly, there is a growing interest in using oleaginous yeasts for the synthesis of lipid-related products due to their high lipogenesis capability, robustness, and ability to utilize a variety of substrates. Most of the metabolic engineering studies in oleaginous yeasts focused on Yarrowia that already has plenty of genetic engineering tools. However, recent advances in systems biology and synthetic biology have provided new strategies and tools to engineer those oleaginous yeasts that have naturally high lipid accumulation but lack genetic tools, such as Rhodosporidium , Trichosporon , and Lipomyces . This review highlights recent accomplishments in metabolic engineering of oleaginous yeasts and recent advances in the development of genetic engineering tools in oleaginous yeasts within the last 3 years.

  10. PCR-DGGE analysis of the microbial communities in three different Chinese "Baiyunbian" liquor fermentation starters.

    PubMed

    Xiong, Xiaomao; Hu, Yuanliang; Yan, Nanfeng; Huang, Yingna; Peng, Nan; Liang, Yunxiang; Zhao, Shumiao

    2014-08-01

    A systematic investigation was performed on the bacterial, Bacillus, fungal, and yeast communities of the three types of Daqu (mechanically prepared, manually prepared, and mixed prepared) used in Baiyunbian Company by reconditioning PCR-denaturing gradient gel electrophoresis (PCR-DGGE). The DGGE results showed that the microbes in the three types of Daqu were mainly thermotolerant and thermophilic microbes, and the most dominant bacterial species were Bacillus and Virgibacillus, followed by Lactobacillus and Trichococcus. Furthermore, the dominant fungi were found to be molds, such as Rasamsonia, Penicillium, Aspergillus, and Monascus, and the dominant yeasts were Saccharomyces cerevisiae, Saccharomycopsis fibuligera, Pichia anomala, and Debaryomyces hansenii. In general, the three types of Daqu showed slight differences in microbial communities, and the Shannon indexes (H') of the manually prepared and mechanically prepared Daqu were similar. The results suggest that mechanically prepared Daqu can replace manually prepared Daqu in liquor production, and this research provides useful information for liquor production and process improvement.

  11. The effect of reduced sodium chloride content on the microbiological and biochemical properties of a soft surface-ripened cheese.

    PubMed

    Dugat-Bony, E; Sarthou, A-S; Perello, M-C; de Revel, G; Bonnarme, P; Helinck, S

    2016-04-01

    Many health authorities have targeted salt reduction in food products as a means to reduce dietary sodium intake due to the harmful effects associated with its excessive consumption. In the present work, we evaluated the effect of reducing sodium chloride (NaCl) content on the microbiological and biochemical characteristics of an experimental surface-ripened cheese. A control cheese (1.8% NaCl) and a cheese with a reduced NaCl content (1.3% NaCl) were sampled weekly over a period of 27d. Reducing NaCl content induced microbial perturbations such as the lesser development of the yeast Debaryomyces hansenii and the greater development of the gram-negative bacterium Hafnia alvei. This was accompanied by changes in proteolytic kinetics and in profiles of volatile aroma compounds and biogenic amine production. Finally, the development of the spoilage microorganism Pseudomonas fragi was significantly higher in the cheese with a reduced salt content. Copyright © 2016 American Dairy Science Association. Published by Elsevier Inc. All rights reserved.

  12. Characterisation of films and nanopaper obtained from cellulose synthesised by acetic acid bacteria.

    PubMed

    Rozenberga, Linda; Skute, Marite; Belkova, Lubova; Sable, Inese; Vikele, Laura; Semjonovs, Pavels; Saka, Madara; Ruklisha, Maija; Paegle, Longina

    2016-06-25

    Bacterial cellulose (BC) samples were obtained using two culture media (glucose and glucose+fructose) and two bacteria (Komagataeibacter rhaeticus and Komagataeibacter hansenii). Nanopaper was obtained from the BC through oxidation and both were studied to determine the impact of culture media and bacteria strain on nanofiber structure and mechanical properties. AFM and SEM were used to investigate fibre dimensions and network morphology; FTIR and XRD to determine cellulose purity and crystallinity; carboxyl content, degree of polymerisation and zeta potential were used to characterise nanofibers. Tensile testing showed that nanopaper has up to 24 times higher Young's modulus (7.39GPa) than BC (0.3GPa). BC displayed high water retention values (86-95%) and a degree of polymerisation up to 2540. Nanofibers obtained were 80-120nm wide and 600-1200nm long with up to 15% higher crystallinity than the original BC. It was concluded that BC is an excellent source for easily obtainable, highly crystalline and strong nanofibers. Copyright © 2016 Elsevier Ltd. All rights reserved.

  13. Population dynamics of hydrocarbon-oxidizing yeasts introduced into oil-contaminated soils

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kulichevskaya, I.S.; Panikov, N.S.; Guzev, V.S.

    A pure culture of the yeastlike fungus Candida lipolytica, able to actively degrade crude oil, was isolated. In preliminary trials, an optimal dose for its introduction was adjusted (10{sup 8} cells/g soil) to ensure its predominance in contaminated soil. Laboratory incubation experiments in which the population dynamics of the introduced species and indigenous soil bacteria and the dynamics of soil respiration activity were followed showed that active proliferation of the introduced species in soil is accompanied by its elimination as a result of grazing by microfauna. The most favorable conditions for the development of introduced yeasts were found to bemore » provided in gray and gray forest soil, whereas in soddy-podzolic soil, their growth and oil degradation were retarded. The obtained results indicate that introduction of the tested culture can significantly increase the rate of oil degradation. In uncontaminated soil, the introduced species is rapidly eliminated. 9 refs., 5 figs.« less

  14. Candida northwykensis sp. nov., a novel yeast isolated from the gut of the click beetle Melanotus villosus.

    PubMed

    Ravella, Sreenivas Rao; Donovan, Neil; James, Stephen A; Shivaji, Sisinthy; Arunasri, Kotakonda; Bond, Christopher J; Roberts, Ian N; Hobbs, Phil J

    2011-08-01

    Two yeast morphotypes, BET 4(T) and BET 7, were isolated from the gut of click beetle Melanotus villosus. Click beetles were collected from the decaying timber within the woodlands of North Wyke Research, South West England, UK (latitude, 50°46'29″N; longitude, 3°55'23″W). Morphotype BET 7 was identified as Debaryomyces hansenii, and the other morphotype, BET 4(T), was found to differ from Priceomyces castillae and Priceomyces haplophilus, its closest phylogenetic neighbours, by 5.0% with respect to the nucleotide sequence of the D1/D2 domain of the large-subunit (LSU) rRNA gene, and by 8.0% with respect to the ribosomal internal-transcribed spacer (ITS) region. BET 4(T) also differ from P. castillae and P. haplophilus in a number of different phenotypic characteristics. Thus, based on the unique nucleotide sequences of its D1/D2 domain and ITS region, its physiological characteristics and an inability to sporulate, strain BET 4(T) is assigned the status of a new species of Candida, for which the name Candida northwykensis sp. nov., is proposed. The type strain is BET 4(T) (NCYC 3525(T) = CBS 11370(T)).

  15. Changes in flavour and microbial diversity during natural fermentation of suan-cai, a traditional food made in Northeast China.

    PubMed

    Wu, Rina; Yu, Meiling; Liu, Xiaoyu; Meng, Lingshuai; Wang, Qianqian; Xue, Yating; Wu, Junrui; Yue, Xiqing

    2015-10-15

    We measured changes in the main physical and chemical properties, flavour compounds and microbial diversity in suan-cai during natural fermentation. The results showed that the pH and concentration of soluble protein initially decreased but were then maintained at a stable level; the concentration of nitrite increased in the initial fermentation stage and after reaching a peak it decreased significantly to a low level by the end of fermentation. Suan-cai was rich in 17 free amino acids. All of the free amino acids increased in concentration to different degrees, except histidine. Total free amino acids reached their highest levels in the mid-fermentation stage. The 17 volatile flavour components identified at the start of fermentation increased to 57 by the mid-fermentation stage; esters and aldehydes were in the greatest diversity and abundance, contributing most to the aroma of suan-cai. Bacteria were more abundant and diverse than fungi in suan-cai; 14 bacterial species were identified from the genera Leuconostoc, Bacillus, Pseudomonas and Lactobacillus. The predominant fungal species identified were Debaryomyces hansenii, Candida tropicalis and Penicillium expansum. Copyright © 2015 Elsevier B.V. All rights reserved.

  16. Nitrogen-fixing and cellulose-producing Gluconacetobacter kombuchae sp. nov., isolated from Kombucha tea.

    PubMed

    Dutta, Debasree; Gachhui, Ratan

    2007-02-01

    A few members of the family Acetobacteraceae are cellulose-producers, while only six members fix nitrogen. Bacterial strain RG3T, isolated from Kombucha tea, displays both of these characteristics. A high bootstrap value in the 16S rRNA gene sequence-based phylogenetic analysis supported the position of this strain within the genus Gluconacetobacter, with Gluconacetobacter hansenii LMG 1527T as its nearest neighbour (99.1 % sequence similarity). It could utilize ethanol, fructose, arabinose, glycerol, sorbitol and mannitol, but not galactose or xylose, as sole sources of carbon. Single amino acids such as L-alanine, L-cysteine and L-threonine served as carbon and nitrogen sources for growth of strain RG3T. Strain RG3T produced cellulose in both nitrogen-free broth and enriched medium. The ubiquinone present was Q-10 and the DNA base composition was 55.8 mol% G+C. It exhibited low values of 5.2-27.77 % DNA-DNA relatedness to the type strains of related gluconacetobacters, which placed it within a separate taxon, for which the name Gluconacetobacter kombuchae sp. nov. is proposed, with the type strain RG3T (=LMG 23726T=MTCC 6913T).

  17. Characterization of thermophilic fungal community associated with pile fermentation of Pu-erh tea.

    PubMed

    Zhang, Wei; Yang, Ruijuan; Fang, Wenjun; Yan, Liang; Lu, Jun; Sheng, Jun; Lv, Jie

    2016-06-16

    This study aimed to characterize the thermophilic fungi in pile-fermentation process of Pu-erh tea. Physicochemical analyses showed that the high temperature and low pH provided optimal conditions for propagation of fungi. A number of fungi, including Blastobotrys adeninivorans, Thermomyces lanuginosus, Rasamsonia emersonii, Aspergillus fumigatus, Rhizomucor pusillus, Rasamsonia byssochlamydoides, Rasamsonia cylindrospora, Aspergillus tubingensis, Aspergillus niger, Candida tropicalis and Fusarium graminearum were isolated as thermophilic fungi under combination of high temperature and acid culture conditions from Pu-erh tea pile-fermentation. The fungal communities were analyzed by PCR-DGGE. Results revealed that those fungi are closely related to Debaryomyces hansenii, Cladosporium cladosporioides, A. tubingensis, R. emersonii, R. pusillus, A. fumigatus and A. niger, and the last four presented as dominant species in the pile process. These four preponderant thermophilic fungi reached the order of magnitude of 10(7), 10(7), 10(7) and 10(6)copies/g dry tea, respectively, measured by real-time quantitative PCR (q-PCR). The results indicate that the thermophilic fungi play an important role in Pu-erh tea pile fermentation. Copyright © 2016 Elsevier B.V. All rights reserved.

  18. Diet-Dependent Shifts in the Bacterial Population of the Rumen Revealed with Real-Time PCR

    PubMed Central

    Tajima, K.; Aminov, R. I.; Nagamine, T.; Matsui, H.; Nakamura, M.; Benno, Y.

    2001-01-01

    A set of PCR primers was designed and validated for specific detection and quantification of Prevotella ruminicola, Prevotella albensis, Prevotella bryantii, Fibrobacter succinogenes, Selenomonas ruminantium-Mitsuokella multiacida, Streptococcus bovis, Ruminococcus flavefaciens, Ruminobacter amylophilus, Eubacterium ruminantium, Treponema bryantii, Succinivibrio dextrinosolvens, and Anaerovibrio lipolytica. By using these primers and the real-time PCR technique, the corresponding species in the rumens of cows for which the diet was switched from hay to grain were quantitatively monitored. The dynamics of two fibrolytic bacteria, F. succinogenes and R. flavefaciens, were in agreement with those of earlier, culture-based experiments. The quantity of F. succinogenes DNA, predominant in animals on the hay diet, fell 20-fold on the third day of the switch to a grain diet and further declined on day 28, with a 57-fold reduction in DNA. The R. flavefaciens DNA concentration on day 3 declined to approximately 10% of its initial value in animals on the hay diet and remained at this level on day 28. During the transition period (day 3), the quantities of two ruminal prevotella DNAs increased considerably: that of P. ruminicola increased 7-fold and that of P. bryantii increased 263-fold. On day 28, the quantity of P. ruminicola DNA decreased 3-fold, while P. bryantii DNA was still elevated 10-fold in comparison with the level found in animals on the initial hay diet. The DNA specific for another xylanolytic bacterium, E. ruminantium, dropped 14-fold during the diet switch and was maintained at this level on day 28. The concentration of a rumen spirochete, T. bryantii, decreased less profoundly and stabilized with a sevenfold decline by day 28. The variations in A. lipolytica DNA were not statistically significant. After an initial slight increase in S. dextrinosolvens DNA on day 3, this DNA was not detected at the end of the experiment. S. bovis DNA displayed a 67-fold

  19. Inoculation of starter cultures in a semi-dry coffee (Coffea arabica) fermentation process.

    PubMed

    Evangelista, Suzana Reis; Miguel, Maria Gabriela da Cruz Pedrozo; Cordeiro, Cecília de Souza; Silva, Cristina Ferreira; Pinheiro, Ana Carla Marques; Schwan, Rosane Freitas

    2014-12-01

    The aim of this study was to evaluate the use of yeasts as starter cultures in coffee semi-dry processing. Arabica coffee was inoculated with one of the following starter cultures: Saccharomyces cerevisiae UFLA YCN727, S. cerevisiae UFLA YCN724, Candida parapsilosis UFLA YCN448 and Pichia guilliermondii UFLA YCN731. The control was not inoculated with a starter culture. Denaturing gradient gel electrophoresis (DGGE) was used to assess the microbial population, and organic acids and volatile compounds were quantified by HPLC and HS-SPME/GC, respectively. Sensory analyses were evaluated using the Temporal Dominance of Sensations (TDS). DGGE analysis showed that the inoculated yeasts were present throughout the fermentation. Other yeast species were also detected, including Debaryomyces hansenii, Cystofilobasidium ferigula and Trichosporon cavernicola. The bacterial population was diverse and was composed of the following genera: Weissella, Leuconostoc, Gluconobacter, Pseudomonas, Pantoea, Erwinia and Klebsiella. Butyric and propionic acids, were not detected in any treatment A total of 47 different volatiles compounds have been identified. The coffee inoculated with yeast had a caramel flavor that was not detected in the control, as assessed by TDS. The use of starter cultures during coffee fermentation is an interesting alternative for obtaining a beverage quality with distinctive flavor. Copyright © 2014 Elsevier Ltd. All rights reserved.

  20. Metagenomics analysis of microbial communities associated with a traditional rice wine starter culture (Xaj-pitha) of Assam, India.

    PubMed

    Bora, Sudipta Sankar; Keot, Jyotshna; Das, Saurav; Sarma, Kishore; Barooah, Madhumita

    2016-12-01

    This is the first report on the microbial diversity of xaj-pitha, a rice wine fermentation starter culture through a metagenomics approach involving Illumine-based whole genome shotgun (WGS) sequencing method. Metagenomic DNA was extracted from rice wine starter culture concocted by Ahom community of Assam and analyzed using a MiSeq ® System. A total of 2,78,231 contigs, with an average read length of 640.13 bp, were obtained. Data obtained from the use of several taxonomic profiling tools were compared with previously reported microbial diversity studies through the culture-dependent and culture-independent method. The microbial community revealed the existence of amylase producers, such as Rhizopus delemar, Mucor circinelloides, and Aspergillus sp. Ethanol producers viz., Meyerozyma guilliermondii, Wickerhamomyces ciferrii, Saccharomyces cerevisiae, Candida glabrata, Debaryomyces hansenii, Ogataea parapolymorpha, and Dekkera bruxellensis, were found associated with the starter culture along with a diverse range of opportunistic contaminants. The bacterial microflora was dominated by lactic acid bacteria (LAB). The most frequent occurring LAB was Lactobacillus plantarum, Lactobacillus brevis, Leuconostoc lactis, Weissella cibaria, Lactococcus lactis, Weissella para mesenteroides, Leuconostoc pseudomesenteroides, etc. Our study provided a comprehensive picture of microbial diversity associated with rice wine fermentation starter and indicated the superiority of metagenomic sequencing over previously used techniques.

  1. Synthesis and characterization of 3-aminoquinoline derivatives and studies of photophysicochemical behaviour and antimicrobial activities

    NASA Astrophysics Data System (ADS)

    Zengin, Gulay; Nafea Al Kawaz, Ali Muayad; Zengin, Huseyin; Mert, Adem; Kucuk, Bedia

    2016-01-01

    A series of 3-aminoquinoline derivatives were synthesized, where their chemical structures were confirmed by various analytical techniques, such as, Elemental Analysis, Nuclear Magnetic Resonance Spectroscopy (1H and 13C NMR), Liquid Chromatography-Mass-Mass Spectroscopy (LC-MS-MS), Ultraviolet-Visible Spectroscopy (UV-Vis), Fourier Transform Infrared Spectroscopy (FTIR) and Photoluminescence (PL). The quinoline ring core, typical of aminoquinolines, and a naphthalene group was combined to devise (4-alkyl-1-naphthyl)-quinolin-3-ylamide derivatives. These derivatives were designed and synthesized in light of the chemical and biological profiles of these important subunits. All the compounds were evaluated for their in vitro antibacterial and antifungal activities by the paper disc diffusion method with Gram-positive Bacillus subtilis, Bacillus megaterium and Staphylococcus aureus, Gram-negative Enterobacter aerogenes, Eschericha coli, Klebsiella pneumoniae and Pseudomonas aeruginosa and yeasts Candida albicans, Saccharomyces cerevisiae and Yarrovia lipolytica. These compounds showed antimicrobial activities against Gram-positive and Gram-negative bacteria and several yeasts, and thus their activity was not restricted to any particular type of microorganism.

  2. Facile preparation of magnetic carbon nanotubes-immobilized lipase for highly efficient synthesis of 1,3-dioleoyl-2-palmitoylglycerol-rich human milk fat substitutes.

    PubMed

    Zheng, Mingming; Wang, Shi; Xiang, Xia; Shi, Jie; Huang, Juan; Deng, Qianchun; Huang, Fenghong; Xiao, Junyong

    2017-08-01

    In this study, Candida lipolytica lipase (CLL) was immobilized on magnetic multi-walled carbon nanotubes (mMWCNTs) via hydrophobic and cation-exchange interaction. The resultant immobilized CLL showed much better thermal stability, biocatalyst activity and easier recycling than the free form. A method for efficient enzymatic acidolysis of tripalmitin (PPP) with oleic acid (OA), to produce OPO-rich TAGs, was developed, using the immobilized CLL as the biocatalyst. Under optimized conditions (2% water, 20mg/ml enzyme, 1:6 PPP/OA, 50°C, 2h), the content of OPO in the final product reached 46.5%. CLL@mMWCNTs had a better activity and manipulative stability than commercial lipases. More importantly, the feasibility of CLL@mMWCNTs was also validated in the practical production of OPO-rich TAGs, using lard and restructured palm oil as the raw material. These results suggest that CLL@mMWCNTs is a promising biocatalyst for the OPO-rich TAGs production and will be helpful for the infant formula industry. Copyright © 2017 Elsevier Ltd. All rights reserved.

  3. Production, characterization and gene cloning of the extracellular enzymes from the marine-derived yeasts and their potential applications.

    PubMed

    Chi, Zhenming; Chi, Zhe; Zhang, Tong; Liu, Guanglei; Li, Jing; Wang, Xianghong

    2009-01-01

    In this review article, the extracellular enzymes production, their properties and cloning of the genes encoding the enzymes from marine yeasts are overviewed. Several yeast strains which could produce different kinds of extracellular enzymes were selected from the culture collection of marine yeasts available in this laboratory. The strains selected belong to different genera such as Yarrowia, Aureobasidium, Pichia, Metschnikowia and Cryptococcus. The extracellular enzymes include cellulase, alkaline protease, aspartic protease, amylase, inulinase, lipase and phytase, as well as killer toxin. The conditions and media for the enzyme production by the marine yeasts have been optimized and the enzymes have been purified and characterized. Some genes encoding the extracellular enzymes from the marine yeast strains have been cloned, sequenced and expressed. It was found that some properties of the enzymes from the marine yeasts are unique compared to those of the homologous enzymes from terrestrial yeasts and the genes encoding the enzymes in marine yeasts are different from those in terrestrial yeasts. Therefore, it is of very importance to further study the enzymes and their genes from the marine yeasts. This is the first review on the extracellular enzymes and their genes from the marine yeasts.

  4. Carbohydrate and energy-yielding metabolism in non-conventional yeasts.

    PubMed

    Flores, C L; Rodríguez, C; Petit, T; Gancedo, C

    2000-10-01

    Sugars are excellent carbon sources for all yeasts. Since a vast amount of information is available on the components of the pathways of sugar utilization in Saccharomyces cerevisiae it has been tacitly assumed that other yeasts use sugars in the same way. However, although the pathways of sugar utilization follow the same theme in all yeasts, important biochemical and genetic variations on it exist. Basically, in most non-conventional yeasts, in contrast to S. cerevisiae, respiration in the presence of oxygen is prominent for the use of sugars. This review provides comparative information on the different steps of the fundamental pathways of sugar utilization in non-conventional yeasts: glycolysis, fermentation, tricarboxylic acid cycle, pentose phosphate pathway and respiration. We consider also gluconeogenesis and, briefly, catabolite repression. We have centered our attention in the genera Kluyveromyces, Candida, Pichia, Yarrowia and Schizosaccharomyces, although occasional reference to other genera is made. The review shows that basic knowledge is missing on many components of these pathways and also that studies on regulation of critical steps are scarce. Information on these points would be important to generate genetically engineered yeast strains for certain industrial uses.

  5. Wine aromatic compound production and fermentative behaviour within different non-Saccharomyces species and clones.

    PubMed

    Escribano, R; González-Arenzana, L; Portu, J; Garijo, P; López-Alfaro, I; López, R; Santamaría, P; Gutiérrez, A R

    2018-06-01

    Twenty-five enological yeasts belonging to nine different species (Candida zeylanoides, Cryptococcus uzbekistanensis, Debaryomyces hansenii, Lachancea thermotolerans, Metschnikowia pulcherrima, Torulaspora delbrueckii, Williopsis pratensis, Zygosaccharomyces bailii and Saccharomyces cerevisiae) were screened for aroma formation and fermentative behaviour as part of a non-Saccharomyces yeast selection programme. Pure cultures were inoculated in pasteurized grape juice in order to perform alcoholic fermentations. Some non-Saccharomyces species did not ferment, others did not get established and none of them completed alcoholic fermentations. The physico-chemical parameters of the wines and the abundance of aromatic compounds at the end of alcoholic fermentation highlighted the notable differences in the aroma-forming ability and fermentative behaviour of the different non-Saccharomyces species, but not within clones. Lower diversity was detected within non-Saccharomyces species than that reported in S. cerevisiae with regard to enological behaviour and aromatic profiles. Metschnikowia pulcherrima and L. thermotolerans are the two species with higher possibilities to become an inoculum. Few significant differences were found within clones of the same species, but very important parameters in wine quality, such as volatile acidity, ethyl acetate and acetoin, which would justify selection programmes within those species. The results also demonstrated that T. delbrueckii and L. thermotolerans are two close species in their aromatic profiles. © 2018 The Society for Applied Microbiology.

  6. Identification and Characterization of Oleaginous Yeast Isolated from Kefir and Its Ability to Accumulate Intracellular Fats in Deproteinated Potato Wastewater with Different Carbon Sources

    PubMed Central

    Kieliszek, Marek; Jermacz, Karolina; Błażejak, Stanisław

    2017-01-01

    The search for efficient oleaginous microorganisms, which can be an alternative to fossil fuels and biofuels obtained from oilseed crops, has been going on for many years. The suitability of microorganisms in this regard is determined by their ability to biosynthesize lipids with preferred fatty acid profile along with the concurrent utilization of energy-rich industrial waste. In this study, we isolated, characterized, and identified kefir yeast strains using molecular biology techniques. The yeast isolates identified were Candida inconspicua, Debaryomyces hansenii, Kluyveromyces marxianus, Kazachstania unispora, and Zygotorulaspora florentina. We showed that deproteinated potato wastewater, a starch processing industry waste, supplemented with various carbon sources, including lactose and glycerol, is a suitable medium for the growth of yeast, which allows an accumulation of over 20% of lipid substances in its cells. Fatty acid composition primarily depended on the yeast strain and the carbon source used, and, based on our results, most of the strains met the criteria required for the production of biodiesel. In particular, this concerns a significant share of saturated fatty acids, such as C16:0 and C18:0, and unsaturated fatty acids, such as C18:1 and C18:2. The highest efficiency in lipid biosynthesis exceeded 6.3 g L−1. Kazachstania unispora was able to accumulate the high amount of palmitoleic acid. PMID:29098157

  7. Identification and Characterization of Oleaginous Yeast Isolated from Kefir and Its Ability to Accumulate Intracellular Fats in Deproteinated Potato Wastewater with Different Carbon Sources.

    PubMed

    Gientka, Iwona; Kieliszek, Marek; Jermacz, Karolina; Błażejak, Stanisław

    2017-01-01

    The search for efficient oleaginous microorganisms, which can be an alternative to fossil fuels and biofuels obtained from oilseed crops, has been going on for many years. The suitability of microorganisms in this regard is determined by their ability to biosynthesize lipids with preferred fatty acid profile along with the concurrent utilization of energy-rich industrial waste. In this study, we isolated, characterized, and identified kefir yeast strains using molecular biology techniques. The yeast isolates identified were Candida inconspicua , Debaryomyces hansenii , Kluyveromyces marxianus , Kazachstania unispora , and Zygotorulaspora florentina . We showed that deproteinated potato wastewater, a starch processing industry waste, supplemented with various carbon sources, including lactose and glycerol, is a suitable medium for the growth of yeast, which allows an accumulation of over 20% of lipid substances in its cells. Fatty acid composition primarily depended on the yeast strain and the carbon source used, and, based on our results, most of the strains met the criteria required for the production of biodiesel. In particular, this concerns a significant share of saturated fatty acids, such as C16:0 and C18:0, and unsaturated fatty acids, such as C18:1 and C18:2. The highest efficiency in lipid biosynthesis exceeded 6.3 g L -1 . Kazachstania unispora was able to accumulate the high amount of palmitoleic acid.

  8. Are biological control agents, isolated from tropical fruits, harmless to potential consumers?

    PubMed

    Ocampo-Suarez, Iris Betsabee; López, Zaira; Calderón-Santoyo, Montserrat; Ragazzo-Sánchez, Juan Arturo; Knauth, Peter

    2017-11-01

    Postharvest losses of fruits and vegetables can reach up to 25% in developed and up to 50% in developing countries. (Sub)tropical fruits are especially susceptible because their protecting peel can easily be damaged. Traditionally used pesticides are associated to environmental pollution and possible harmful health effects. An alternative are biocontrol agents (BCA), means bacteria or yeasts applied onto the fruits to inhibit the growth of phytopathogens. Many reports on their effectiveness have been published, however, reports on their harmlessness to consumers are still rare. Culture extracts of six BCAs, tested on two human lines (Caco-2, HeLa), exhibited no cytotoxic effect, when used directly (1×) to protect the fruits; however, when they are 5×overconcentrated, the confluence of proliferating cells was reduced, but not of differentiated Caco-2. In both cases necrosis was not increased. On proliferating cells, the 5×-extract from Cryptococcus laurentii or Debaryomyces hansenii reduced lysosome functionality and the 6.25×extract from Meyerozyma guilliermondii or Candida famata increased membrane permeability, while only the 25×-extract from M. guilliermondii or M. caribbica reduced slightly the metabolic activity. The extract of Bacillus subtilis showed no cytotoxic effect up to 10× concentration. Overall, their low cytotoxicity combined with high biodegradability make these products suitable for sustainable agriculture. Copyright © 2017 Elsevier Ltd. All rights reserved.

  9. Molecular monitoring of spoilage yeasts during the production of candied fruit nougats to determine food contamination sources.

    PubMed

    Martorell, Patricia; Fernández-Espinar, M Teresa; Querol, Amparo

    2005-06-15

    In the present work, we have analysed the yeast microbiota present in a manufacturing plant of candied fruits and nougats. Four yeasts species (Zygosaccharomyces bailii, Zygosaccharomyces rouxii, Sporobolomyces roseus, and Debaryomyces hansenii) and a filamentous fungi (Nectria mauriiticola) were identified according to restriction analysis of 5.8S-ITS rDNA. These identifications were subsequently confirmed by sequencing the D1/D2 domain of the 26S rRNA gene. Z. rouxii and Z. bailii were isolated at high frequency along the whole manufacturing process. Since food alteration by Z. bailii and Z. rouxii is the cause of important economic losses for the food industry, there is a need for differentiating yeasts at the strain level as an essential part of quality control programs in this industry. For this purpose, we have tested the performance of three molecular techniques (RFLP mtDNA, RAPD-PCR, and microsatellite with (GAC)5 and (GTG)5 primers) to differentiate strains belonging to these two Zygosaccharomyces species. Those techniques with the best discriminatory power were applied to differentiate Zygosaccharomyces species isolates. The results of this analysis indicate that one strain of Z. bailii and two strains of Z. rouxii were involved in the spoilage of candied fruits. Moreover, the Z. bailii strain was also present in the spoiled nougat, hence being responsible of this alteration.

  10. Production and characterization of bacterial cellulose membranes with hyaluronic acid from chicken comb.

    PubMed

    de Oliveira, Sabrina Alves; da Silva, Bruno Campos; Riegel-Vidotti, Izabel Cristina; Urbano, Alexandre; de Sousa Faria-Tischer, Paula Cristina; Tischer, Cesar Augusto

    2017-04-01

    The bacterial cellulose (BC), from Gluconacetobacter hansenii, is a biofilm with a high degree of crystallinity that can be used for therapeutic purposes and as a candidate for healing wounds. Hyaluronic acid (HA) is a constitutive polysaccharide found in the extracellular matrix and is a material used in tissue engineering and scaffolding for tissue regeneration. In this study, polymeric composites were produced in presence of hyaluronic acid isolated from chicken comb on different days of fermentation, specifically on the first (BCHA-SABT0) and third day (BCHA-SABT3) of fermentation. The structural characteristics, thermal stability and molar mass of hyaluronic acid from chicken comb were evaluated. Native membrane and polymeric composites were characterized with respect to their morphology and crystallinity. The optimized process of extraction and purification of hyaluronic acid resulted in low molar mass hyaluronic acid with structural characteristics similar to the standard commercial hyaluronic acid. The results demonstrate that the polymeric composites (BC/HA-SAB) can be produced in situ. The membranes produced on the third day presented better incorporation of HA-SAB between cellulose microfiber, resulting in membranes with higher thermal stability, higher roughness and lower crystallinity. The biocompatiblily of bacterial cellulose and the importance of hyaluronic acid as a component of extracellular matrix qualify the polymeric composites as promising biomaterials for tissue engineering. Copyright © 2017 Elsevier B.V. All rights reserved.

  11. Study on the effects of near-future ocean acidification on marine yeasts: a microcosm approach

    NASA Astrophysics Data System (ADS)

    Krause, Evamaria; Wichels, Antje; Erler, René; Gerdts, Gunnar

    2013-12-01

    Marine yeasts play an important role in biodegradation and nutrient cycling and are often associated with marine flora and fauna. They show maximum growth at pH levels lower than present-day seawater pH. Thus, contrary to many other marine organisms, they may actually profit from ocean acidification. Hence, we conducted a microcosm study, incubating natural seawater from the North Sea at present-day pH (8.10) and two near-future pH levels (7.81 and 7.67). Yeasts were isolated from the initial seawater sample and after 2 and 4 weeks of incubation. Isolates were classified by matrix-assisted laser desorption/ionization time-of-flight mass spectrometry (MALDI-TOF MS) and representative isolates were identified by partial sequencing of the large subunit rRNA gene. From the initial seawater sample, we predominantly isolated a yeast-like filamentous fungus related to Aureobasidium pullulans, Cryptococcus sp., Candida sake, and various cold-adapted yeasts. After incubation, we found more different yeast species at near-future pH levels than at present-day pH. Yeasts reacting to low pH were related to Leucosporidium scottii, Rhodotorula mucilaginosa, Cryptococcus sp., and Debaryomyces hansenii. Our results suggest that these yeasts will benefit from seawater pH reductions and give a first indication that the importance of yeasts will increase in a more acidic ocean.

  12. In Vitro Antifungal Susceptibility of Oral Candida Isolates from Patients Suffering from Caries and Chronic Periodontitis.

    PubMed

    De-la-Torre, Janire; Ortiz-Samperio, María Esther; Marcos-Arias, Cristina; Marichalar-Mendia, Xabier; Eraso, Elena; Echebarria-Goicouria, María Ángeles; Aguirre-Urizar, José Manuel; Quindós, Guillermo

    2017-06-01

    Caries and chronic periodontitis are common oral diseases where a higher Candida colonization is reported. Antifungal agents could be adjuvant drugs for the therapy of both clinical conditions. The aim of the current study has been to evaluate the in vitro activities of conventional and new antifungal drugs against oral Candida isolates from patients suffering from caries and/or chronic periodontitis. In vitro activities of amphotericin B, fluconazole, itraconazole, miconazole, nystatin, posaconazole and voriconazole against 126 oral Candida isolates (75 Candida albicans, 18 Candida parapsilosis, 11 Candida dubliniensis, six Candida guilliermondii, five Candida lipolytica, five Candida glabrata, four Candida tropicalis and two Candida krusei) from 61 patients were tested by the CLSI M27-A3 method. Most antifungal drugs were highly active, and resistance was observed in less than 5% of tested isolates. Miconazole was the most active antifungal drug, being more than 98% of isolates susceptible. Fluconazole, itraconazole, and the new triazoles, posaconazole and voriconazole, were also very active. Miconazole, fluconazole and voriconazole have excellent in vitro activities against all Candida isolates and could represent suitable treatment for a hypothetically adjunctive therapy of caries and chronic periodontitis.

  13. Viability and growth promotion of starter and probiotic bacteria in yogurt supplemented with whey protein hydrolysate during refrigerated storage.

    PubMed

    Dąbrowska, Anna; Babij, Konrad; Szołtysik, Marek; Chrzanowska, Józefa

    2017-11-22

    The effect of whey protein hydrolysate (WPH) addition on growth of standard yoghurt cultures and Bifidobacterium adolescentis during co-fermentation and its viability during storage at 4ºC in yoghurts has been evaluated. WPH was obtained with the use of serine protease from Y. lipolytica yeast. Stirred probiotic yoghurts were prepared by using whole milk standardized to 16% of dry matter with the addition of either whey protein concentrate, skim milk powder (SMP), WPH-SMP (ratio 1:1), WPH. The hydrolysate increased the yoghurt culture counts at the initial stage of fermentation and significantly inhibited the decrease in population viability throughout the storage at 4ºC in comparison to the control. The post-fermentation acidification was also retarded by the addition of WPH. The hydrolysate did not increase the Bifidobacterium adolescentis counts at the initial stage. However, the WPH significantly improved its viability. After 21 days of storage, in the yogurts supplemented with WPH, the population of these bacteria oscillated around 3.04 log10 CFU/g, while in samples where SMP or whey protein concentrate was used, the bacteria were no longer detected.

  14. Microbial cell-free extracts as sources of enzyme activities to be used for enhancement flavor development of ewe milk cheese.

    PubMed

    Calasso, Maria; Mancini, Leonardo; Di Cagno, Raffaella; Cardinali, Gianluigi; Gobbetti, Marco

    2015-09-01

    Freeze-dried cell-free extracts (CFE) from Lactobacillus casei LC01, Weissella cibaria 1XF5, Hafnia alvei Moller ATCC 51815, and Debaryomyces hansenii LCF-558 were used as sources of enzyme activities for conditioning the ripening of ewe milk cheese. Compared with control cheese (CC), CFE did not affect the gross composition and the growth of the main microbial groups of the cheeses. As shown through urea-PAGE electrophoresis of the pH 4.6-soluble nitrogen fraction and the analysis of free AA, the secondary proteolysis of the cheeses with CFE added was markedly differed from that of the CC. Compared with CC, several enzyme activities were higher in the water-soluble extracts from cheeses made with CFE. In agreement, the levels of 49 volatile compounds significantly differentiated CC from the cheeses made with CFE. The level of some alcohols, ketones, sulfur compounds, and furans were the lowest in the CC, whereas most aldehydes were the highest. Each CFE seemed to affect a specific class of chemical compounds (e.g., the CFE from H. alvei ATCC 51815 mainly influenced the synthesis of sulfur compounds). Apart from the microbial source used, the cheeses with the addition of CFE showed higher score for acceptability than the control cheese. Cheese ripening was accelerated or conditioned using CFE as sources of tailored enzyme activities. Copyright © 2015 American Dairy Science Association. Published by Elsevier Inc. All rights reserved.

  15. Rewiring yeast sugar transporter preference through modifying a conserved protein motif.

    PubMed

    Young, Eric M; Tong, Alice; Bui, Hang; Spofford, Caitlin; Alper, Hal S

    2014-01-07

    Utilization of exogenous sugars found in lignocellulosic biomass hydrolysates, such as xylose, must be improved before yeast can serve as an efficient biofuel and biochemical production platform. In particular, the first step in this process, the molecular transport of xylose into the cell, can serve as a significant flux bottleneck and is highly inhibited by other sugars. Here we demonstrate that sugar transport preference and kinetics can be rewired through the programming of a sequence motif of the general form G-G/F-XXX-G found in the first transmembrane span. By evaluating 46 different heterologously expressed transporters, we find that this motif is conserved among functional transporters and highly enriched in transporters that confer growth on xylose. Through saturation mutagenesis and subsequent rational mutagenesis, four transporter mutants unable to confer growth on glucose but able to sustain growth on xylose were engineered. Specifically, Candida intermedia gxs1 Phe(38)Ile(39)Met(40), Scheffersomyces stipitis rgt2 Phe(38) and Met(40), and Saccharomyces cerevisiae hxt7 Ile(39)Met(40)Met(340) all exhibit this phenotype. In these cases, primary hexose transporters were rewired into xylose transporters. These xylose transporters nevertheless remained inhibited by glucose. Furthermore, in the course of identifying this motif, novel wild-type transporters with superior monosaccharide growth profiles were discovered, namely S. stipitis RGT2 and Debaryomyces hansenii 2D01474. These findings build toward the engineering of efficient pentose utilization in yeast and provide a blueprint for reprogramming transporter properties.

  16. Use of whey lactose from dairy industry for economical kefiran production by Lactobacillus kefiranofaciens in mixed cultures with yeasts.

    PubMed

    Cheirsilp, Benjamas; Radchabut, Sirilaor

    2011-10-01

    To evaluate the feasibility of producing kefiran industrially, whey lactose, a by-product from dairy industry, was used as a low cost carbon source. Because the accumulation of lactic acid as a by-product of Lactobacillus kefiranofaciens inhibited cell growth and kefiran production, the kefir grain derived and non-derived yeasts were screened for their abilities to reduce lactic acid and promote kefiran production in a mixed culture. Six species of yeasts were examined: Torulaspora delbrueckii IFO 1626; Saccharomyces cerevisiae IFO 0216; Debaryomyces hansenii TISTR 5155; Saccharomyces exiguus TISTR 5081; Zygosaccharomyces rouxii TISTR 5044; and Saccharomyces carlsbergensis TISTR 5018. The mixed culture of L. kefiranofaciens with S. cerevisiae IFO 0216 enhanced the kefiran production best from 568 mg/L in the pure culture up to 807 and 938 mg/L in the mixed cultures under anaerobic and microaerobic conditions, respectively. The optimal conditions for kefiran production by the mixed culture were: whey lactose 4%; yeast extract 4%; initial pH of 5.5; and initial amounts of L. kefiranofaciens and S. cerevisiae IFO 0216 of 2.1×10(7) and 4.0×10(6)CFU/mL, respectively. Scaling up the mixed culture in a 2L bioreactor with dissolved oxygen control at 5% and pH control at 5.5 gave the maximum kefiran production of 2,580 mg/L in batch culture and 3,250 mg/L in fed-batch culture. Copyright © 2011 Elsevier B.V. All rights reserved.

  17. Distribution of tannin-'tolerant yeasts isolated from Miang, a traditional fermented tea leaf (Camellia sinensis var. assamica) in northern Thailand.

    PubMed

    Kanpiengjai, Apinun; Chui-Chai, Naradorn; Chaikaew, Siriporn; Khanongnuch, Chartchai

    2016-12-05

    Miang is a fermented food product prepared from the tea leaves of Camellia sinensis var. assamica, and is traditionally produced in mountainous areas of northern Thailand. Although Miang has a long history and reveals deep-rooted cultural involvement with local people in northern Thailand, little is known regarding its microbial diversity. Yeasts were isolated from 47 Miang samples collected from 28 sampling sites, including eight provinces in upper northern Thailand. A hundred and seven yeast isolates were recovered and identified within 14 species based on the comparison of the D1/D2 sequence of the large subunit (LSU) rRNA gene. Candida ethanolica was determined to be the dominant species that was frequently found in Miang together with minor resident yeast species. All yeast isolates demonstrated their tannin-tolerant capability when cultivated on yeast malt agar (YMA) containing 50g/l tannin, but nine isolates displayed clear zones forming around their colonies, e.g., Debaryomyces hansenii, Cyberlindnera rhodanensis, and Sporidiobolus ruineniae. The results obtained from a visual reading method of tannase revealed that all yeast isolates were positive for methyl gallate, indicating that they possess tannase activity. It is assumed that a tannin-tolerant ability is one of the most important factors for developing a yeast community in Miang. This research study is the first report to describe tannin-tolerant yeasts and yeast communities in traditionally fermented tea leaves. Copyright © 2016. Published by Elsevier B.V.

  18. Coexistence of Lactic Acid Bacteria and Potential Spoilage Microbiota in a Dairy Processing Environment

    PubMed Central

    Stellato, Giuseppina; De Filippis, Francesca; La Storia, Antonietta

    2015-01-01

    Microbial contamination in food processing plants can play a fundamental role in food quality and safety. In this study, the microbiota in a dairy plant was studied by both 16S rRNA- and 26S rRNA-based culture-independent high-throughput amplicon sequencing. Environmental samples from surfaces and tools were studied along with the different types of cheese produced in the same plant. The microbiota of environmental swabs was very complex, including more than 200 operational taxonomic units with extremely variable relative abundances (0.01 to 99%) depending on the species and sample. A core microbiota shared by 70% of the samples indicated a coexistence of lactic acid bacteria with a remarkable level of Streptococcus thermophilus and possible spoilage-associated bacteria, including Pseudomonas, Acinetobacter, and Psychrobacter, with a relative abundance above 50%. The most abundant yeasts were Kluyveromyces marxianus, Yamadazyma triangularis, Trichosporon faecale, and Debaryomyces hansenii. Beta-diversity analyses showed a clear separation of environmental and cheese samples based on both yeast and bacterial community structure. In addition, predicted metagenomes also indicated differential distribution of metabolic pathways between the two categories of samples. Cooccurrence and coexclusion pattern analyses indicated that the occurrence of potential spoilers was excluded by lactic acid bacteria. In addition, their persistence in the environment can be helpful to counter the development of potential spoilers that may contaminate the cheeses, with possible negative effects on their microbiological quality. PMID:26341209

  19. Microbiota of high-pressure-processed Serrano ham investigated by culture-dependent and culture-independent methods.

    PubMed

    Martínez-Onandi, N; Castioni, A; San Martín, E; Rivas-Cañedo, A; Nuñez, M; Torriani, S; Picon, A

    2017-01-16

    The microbiota of Serrano dry-cured ham of different chemical composition, subjected or not to high-pressure processing (HPP), was investigated using culture-dependent and culture-independent methods. Microbial counts were submitted to analysis of variance with physicochemical parameters (a w , NaCl concentration, salt-in-lean ratio and intramuscular fat content) or HPP as main effects. In untreated hams, physicochemical parameters significantly affected counts of aerobic mesophiles, psychrotrophs, and moulds and yeasts. NaCl concentration and fat content influenced the levels of four and three of the five studied microbial groups, respectively, whereas no influence of a w was stated. The HPP treatment had a significant effect on counts of all investigated microbial groups. Culture-independent methods showed the presence of bacteria such as Staphylococcus equorum, Staphylococcus succinus, Bacillus subtilis and Cellulosimicrobium sp., moulds like Penicillium commune, Aspergillus fumigatus, Sclerotinia sclerotiorum, Eurotium athecium and Moniliella mellis, and yeasts like Debaryomyces hansenii and Candida glucosophila. Absence of B. subtilis bands and weaker bands of E. athecium were recorded for HPP-treated hams. The higher microbial levels found in lean ham might result in a quicker deterioration. HPP treatment confirmed its suitability as a procedure to control spoilage microorganisms. DGGE did not seem to be sensitive enough to highlight changes caused by HPP treatment in the microbiota of ham, but contributed to the detection of microbial species not previously found in ham. Copyright © 2016 Elsevier B.V. All rights reserved.

  20. Spectroscopic studies, antimicrobial activities and crystal structures of N-(2-hydroxy-3-methoxybenzalidene)1-aminonaphthalene

    NASA Astrophysics Data System (ADS)

    Ünver, Hüseyin; Yıldız, Mustafa; Dülger, Başaran; Özgen, Özen; Kendi, Engin; Durlu, Tahsin Nuri

    2005-03-01

    Schiff base N-(2-hydroxy-3-methoxybenzalidene)1-aminonaphthalene has been synthesized from the reaction of 2-hydroxy-3-methoxybenzaldehyde with 1-aminonaphthalene. The compound were characterized by elemental analysis, FT-IR, 1H NMR, 13C NMR and UV-visible techniques. The UV-visible spectra of the Schiff base were studied in polar and nonpolar solvents in acidic and basic media. The structure of the compound has been examined cyrstallographically. There are two independent molecules in the asymmetric unit. It crystallizes in the monoclinic space group P21/c, with unit cell parameters: a=14, 602(2), b=5,800(1), c=16, 899(1) Å, V=1394.4(2) Å 3, Dx=1.321 g cm -3 and Z=4. The crystal structure was solved by direct methods and refined by full-matrix least squares to a find R=0.041 of for 1179 observed reflections. The title compound's antimicrobial activities also have been studied. The antimicrobial activities of the ligand has been screened in vitro against the organisms Escherichia coli ATCC 11230, Staphylococcus aureus ATCC 6538, Klebsiella pneumoniae UC57, Micrococcus luteus La 2971, Proteus vulgaris ATCC 8427, Pseudomonas aeruginosa ATCC 27853, Mycobacterium smegmatis CCM 2067, Bacillus cereus ATCC 7064 and Listeria monocytogenes ATCC 15313, the yeast cultures Candida albicans ATCC 10231, Kluyveromyces fragilis NRRL 2415, Rhodotorula rubra DSM 70403, Debaryomyces hansenii DSM 70238 and Hanseniaspora guilliermondii DSM 3432.

  1. Enhancement of clover growth by inoculation of P-solubilizing fungi and arbuscular mycorrhizal fungi.

    PubMed

    Souchie, Edson L; Azcón, Rosario; Barea, Jose M; Silva, Eliane M R; Saggin-Júnior, Orivaldo J

    2010-09-01

    This study evaluated the synergism between several P-solubilizing fungi isolates and arbuscular mycorrhizal fungi to improve clover ( Trifolium pratense) growth in the presence of Araxá apatite. Clover was sown directly in plastic pots with 300g of sterilized washed sand, vermiculite and sepiolite 1:1:1 (v:v:v) as substrate, and grown in a controlled environment chamber. The substrate was fertilized with 3 g L(-1) of Araxá apatite. A completely randomized design, in 8×2 factorial scheme (eight P-solubilizing fungi treatments with or without arbuscular mycorrhizal fungi)and four replicates were used. The P-solubilizing fungi treatments consisted of five Brazilian P-solubilizing fungi isolates (PSF 7, 9, 20, 21 and 22), two Spanish isolates ( Aspergillus niger and the yeast Yarowia lipolytica) and control (non-inoculated treatment). The greatest clover growth rate was recorded when Aspergillus niger and PSF 21 were co-inoculated with arbuscular mycorrhizal fungi. Aspergillus niger, PSF 7 and PSF 21 were the most effective isolates on increasing clover growth in the presence of arbuscular mycorrhizal fungi. Greater mycorrhizal colonization resulted in greater clover growth rate in most PSF treatments. PSF 7 was the best isolate to improve the establishment of mycorrhizal and rhizobia symbiosis.

  2. Ground transport stress affects bacteria in the rumen of beef cattle: A real-time PCR analysis.

    PubMed

    Deng, Lixin; He, Cong; Zhou, Yanwei; Xu, Lifan; Xiong, Huijun

    2017-05-01

    Transport stress syndrome often appears in beef cattle during ground transportation, leading to changes in their capacity to digest food due to changes in rumen microbiota. The present study aimed to analyze bacteria before and after cattle transport. Eight Xianan beef cattle were transported over 1000 km. Rumen fluid and blood were sampled before and after transport. Real-time PCR was used to quantify rumen bacteria. Cortisol and adrenocorticotrophic hormone (ACTH) were measured. Cortisol and ACTH were increased on day 1 after transportation and decreased by day 3. Cellulolytic bacteria (Fibrobacter succinogenes and Ruminococcus flavefaciens), Ruminococcus amylophilus and Prevotella albensis were increased at 6 h and declined by 15 days after transport. There was a significant reduction in Succinivibrio dextrinosolvens, Prevotella bryantii, Prevotella ruminicola and Anaerovibrio lipolytica after transport. Rumen concentration of acetic acid increased after transport, while rumen pH and concentrations of propionic and butyric acids were decreased. Body weight decreased by 3 days and increased by 15 days after transportation. Using real-time PCR analysis, we detected changes in bacteria in the rumen of beef cattle after transport, which might affect the growth of cattle after transport. © 2016 Japanese Society of Animal Science.

  3. Yeast diversity associated to sediments and water from two Colombian artificial lakes

    PubMed Central

    Silva-Bedoya, L.M.; Ramírez-Castrillón, M.; Osorio-Cadavid, E.

    2014-01-01

    In Colombia, knowledge of the yeast and yeast-like fungi community is limited because most studies have focused on species with clinical importance. Sediments and water represent important habitats for the study of yeast diversity, especially for yeast species with industrial, biotechnological, and bioremediation potential. The main purpose of this study was to identify and compare the diversity of yeast species associated with sediment and water samples from two artificial lakes in Universidad del Valle (Cali-Colombia). Yeast samplings were performed from fifteen sediment samples and ten water samples. Grouping of similar isolates was initially based on colony and cell morphology, which was then complemented by micro/mini satellite primed PCR banding pattern analysis by using GTG5 as single primer. A representative isolate for each group established was chosen for D1/D2 domain sequencing and identification. In general, the following yeast species were identified: Candida albicans, Candida diversa, Candida glabrata, Candida pseudolambica, Cryptococcus podzolicus, Cryptococcus rajasthanensis, Cryptococcus laurentii, Williopsis saturnus, Hanseniaspora thailandica, Hanseniaspora uvarum, Rhodotorula mucilaginosa, Saccharomyces cerevisiae, Torulaspora delbrueckii, Torulaspora pretoriensis, Tricosporon jirovecii, Trichosporon laibachii and Yarrowia lypolitica. Two possible new species were also found, belonging to the Issatchenkia sp. and Bullera sp. genera. In conclusion, the lakes at the Universidad del Valle campus have significant differences in yeast diversity and species composition between them. PMID:24948924

  4. Biotechnological Applications of Dimorphic Yeasts

    NASA Astrophysics Data System (ADS)

    Doiphode, N.; Joshi, C.; Ghormade, V.; Deshpande, M. V.

    The dimorphic yeasts have the equilibrium between spherical growth (budding) and polarized (hyphal or pseudohyphal tip elongation) which can be triggered by change in the environmental conditions. The reversible growth phenomenon has made dimorphic yeasts as an useful model to understand fungal evolution and fungal differentiation, in general. In nature dimorphism is clearly evident in plant and animal fungal pathogens, which survive and most importantly proliferate in the respective hosts. However, number of organisms with no known pathogenic behaviour also show such a transition, which can be exploited for the technological applications due to their different biochemical make up under different morphologies. For instance, chitin and chitosan production using dimorphic Saccharomyces, Mucor, Rhizopus and Benjaminiella, oil degradation and biotransformation with yeast-form of Yarrowia species, bioremediation of organic pollutants, exopolysac-charide production by yeast-phase of Aureobasidium pullulans, to name a few. Myrothecium verrucaria can be used for seed dressing in its yeast form and it produces a mycolytic enzyme complex in its hyphal-form for the biocontrol of fungal pathogens, while Beauveria bassiana and other entomopathogens kill the insect pest by producing yeast- like cells in the insect body. The form-specific expression of protease, chitinase, lipase, ornithine decarboxylase, glutamate dehydrogenases, etc. make Benjaminiella poitrasii, Basidiobolus sp., and Mucor rouxii strains important in bioremediation, nanobiotechnology, fungal evolution and other areas.

  5. Quantification of Yeast and Bacterial Gene Transcripts in Retail Cheeses by Reverse Transcription-Quantitative PCR

    PubMed Central

    Straub, Cécile; Castellote, Jessie; Onesime, Djamila; Bonnarme, Pascal; Irlinger, Françoise

    2013-01-01

    The cheese microbiota contributes to a large extent to the development of the typical color, flavor, and texture of the final product. Its composition is not well defined in most cases and varies from one cheese to another. The aim of the present study was to establish procedures for gene transcript quantification in cheeses by reverse transcription-quantitative PCR. Total RNA was extracted from five smear-ripened cheeses purchased on the retail market, using a method that does not involve prior separation of microbial cells. 16S rRNA and malate:quinone oxidoreductase gene transcripts of Corynebacterium casei, Brevibacterium aurantiacum, and Arthrobacter arilaitensis and 26S rRNA and beta tubulin gene transcripts of Geotrichum candidum and Debaryomyces hansenii could be detected and quantified in most of the samples. Three types of normalization were applied: against total RNA, against the amount of cheese, and against a reference gene. For the first two types of normalization, differences of reverse transcription efficiencies from one sample to another were taken into account by analysis of exogenous control mRNA. No good correlation was found between the abundances of target mRNA or rRNA transcripts and the viable cell concentration of the corresponding species. However, in most cases, no mRNA transcripts were detected for species that did not belong to the dominant species. The applications of gene expression measurement in cheeses containing an undefined microbiota, as well as issues concerning the strategy of normalization and the assessment of amplification specificity, are discussed. PMID:23124230

  6. Survival of cheese-ripening microorganisms in a dynamic simulator of the gastrointestinal tract.

    PubMed

    Adouard, Nadège; Magne, Laurent; Cattenoz, Thomas; Guillemin, Hervé; Foligné, Benoît; Picque, Daniel; Bonnarme, Pascal

    2016-02-01

    A mixture of nine microorganisms (six bacteria and three yeasts) from the microflora of surface-ripened cheeses were subjected to in vitro digestive stress in a three-compartment "dynamic gastrointestinal digester" (DIDGI). We studied the microorganisms (i) grown separately in culture medium only (ii) grown separately in culture medium and then mixed, (iii) grown separately in culture medium and then included in a rennet gel and (iv) grown together in smear-ripened cheese. The yeasts Geotrichum candidum, Kluyveromyces lactis and Debaryomyces hansenii, were strongly resistant to the whole DIDGI process (with a drop in viable cell counts of less than <1 log CFU mL(-1)) and there were no significant differences between lab cultures and cheese-grown cultures. Ripening bacteria such as Hafnia alvei survived gastric stress less well when grown in cheese (with no viable cells after 90 min of exposure of the cheese matrix, compared with 6 CFU mL(-1) in lab cultures). The ability of Corynebacterium casei and Staphylococcus equorum to withstand digestive stress was similar for cheese and pure culture conditions. When grow in a cheese matrix, Brevibacterium aurantiacum and Arthrobacter arilaitensis were clearly more sensitive to the overall digestive process than when grown in pure cultures. Lactococcus lactis displayed poorer survival in gastric and duodenal compartments when it had been grown in cheese. In vivo experiments in BALB/c mice agreed with the DIDGI experiments and confirmed the latter's reliability. Copyright © 2015. Published by Elsevier Ltd.

  7. Diversity, in-vitro virulence traits and antifungal susceptibility pattern of gastrointestinal yeast flora of healthy poultry, Gallus gallus domesticus.

    PubMed

    Subramanya, Supram Hosuru; Sharan, Nawal Kishor; Baral, Bharat Prasad; Hamal, Deependra; Nayak, Niranjan; Prakash, Peralam Yegneswaran; Sathian, Brijesh; Bairy, Indira; Gokhale, Shishir

    2017-05-15

    Poultry farming and consumption of poultry (Gallus gallus domesticus) meat and eggs are common gastronomical practices worldwide. Till now, a detailed understanding about the gut colonisation of Gallus gallus domesticus by yeasts and their virulence properties and drug resistance patterns in available literature remain sparse. This study was undertaken to explore this prevalent issue. A total of 103 specimens of fresh droppings of broiler chickens (commercial G domesticus) and domesticated chickens (domesticated G domesticus) were collected from the breeding sites. The isolates comprised of 29 (33%) Debaryozyma hansenii (Candida famata), 12 (13.6%) Sporothrix catenata (C. ciferrii), 10 (11.4%) C. albicans, 8 (9.1%) Diutnia catenulata (C. catenulate), 6 (6.8%) C. tropicalis, 3 (3.4%) Candida acidothermophilum (C. krusei), 2 (2.3%) C. pintolopesii, 1 (1.1%) C. parapsilosis, 9 (10.2%) Trichosporon spp. (T. moniliiforme, T. asahii), 4 (4.5%) Geotrichum candidum, 3 (3.4%) Cryptococcus macerans and 1 (1%) Cystobasidium minuta (Rhodotorula minuta). Virulence factors, measured among different yeast species, showed wide variability. Biofilm cells exhibited higher Minimum Inhibitory Concentration (MIC) values (μg/ml) than planktonic cells against all antifungal compounds tested: (fluconazole, 8-512 vs 0.031-16; amphotericin B, 0.5-64 vs 0.031-16; voriconazole 0.062-16 vs 0.062-8; caspofungin, 0.062-4 vs 0.031-1). The present work extends the current understanding of in vitro virulence factors and antifungal susceptibility pattern of gastrointestinal yeast flora of G domesticus. More studies with advanced techniques are needed to quantify the risk of spread of these potential pathogens to environment and human.

  8. Microbial Community Structure and Dynamics of Dark Fire-Cured Tobacco Fermentation▿ †

    PubMed Central

    Di Giacomo, Michele; Paolino, Marianna; Silvestro, Daniele; Vigliotta, Giovanni; Imperi, Francesco; Visca, Paolo; Alifano, Pietro; Parente, Dino

    2007-01-01

    The Italian Toscano cigar production includes a fermentation step that starts when dark fire-cured tobacco leaves are moistened and mixed with ca. 20% prefermented tobacco to form a 500-kg bulk. The dynamics of the process, lasting ca. 18 days, has never been investigated in detail, and limited information is available on microbiota involved. Here we show that Toscano fermentation is invariably associated with the following: (i) an increase in temperature, pH, and total microbial population; (ii) a decrease in reducing sugars, citric and malic acids, and nitrate content; and (iii) an increase in oxalic acid, nitrite, and tobacco-specific nitrosamine content. The microbial community structure and dynamics were investigated by culture-based and culture-independent approaches, including denaturing gradient gel electrophoresis and single-strand conformational polymorphism. Results demonstrate that fermentation is assisted by a complex microbial community, changing in structure and composition during the process. During the early phase, the moderately acidic and mesophilic environment supports the rapid growth of a yeast population predominated by Debaryomyces hansenii. At this stage, Staphylococcaceae (Jeotgalicoccus and Staphylococcus) and Lactobacillales (Aerococcus, Lactobacillus, and Weissella) are the most commonly detected bacteria. When temperature and pH increase, endospore-forming low-G+C content gram-positive bacilli (Bacillus spp.) become evident. This leads to a further pH increase and promotes growth of moderately halotolerant and alkaliphilic Actinomycetales (Corynebacterium and Yania) during the late phase. To postulate a functional role for individual microbial species assisting the fermentation process, a preliminary physiological and biochemical characterization of representative isolates was performed. PMID:17142368

  9. Identification of a second PAD1 in Brettanomyces bruxellensis LAMAP2480.

    PubMed

    González, Camila; Godoy, Liliana; Ganga, Ma Angélica

    2017-02-01

    Volatile phenols are aromatic compounds produced by some yeasts of the genus Brettanomyces as defense against the toxicity of hydroxycinnamic acids (p-coumaric acid, ferulic acid and caffeic acid). The origin of these compounds in winemaking involves the sequential action of two enzymes: coumarate decarboxylase and vinylphenol reductase. The first one converts hydroxycinnamic acids into hydroxystyrenes, which are then reduced to ethyl derivatives by vinylphenol reductase. Volatile phenols derived from p-coumaric acid (4-vinylphenol and 4-ethylphenol) have been described as the major contributors to self-defeating aromas associated with stable, gouache, wet mouse, etc., which generates large economic losses in the wine industry. The gene responsible for the production of 4-vinylphenol from p-coumaric acid has been identified as PAD1, which encodes a phenylacrylic acid decarboxylase. PAD1 has been described for many species, among them Candida albicans, Candida dubliniensis, Debaryomyces hansenii and Pichia anomala. In Brettanomyces bruxellensis LAMAP2480, a 666 bp reading frame (DbPAD) encodes a coumarate decarboxylase. Recent studies have reported the existence of a new reading frame belonging to DbPAD called DbPAD2 of 531 bp, which could encode a protein with similar enzymatic activity to PAD1. The present study confirmed that the transformation of Saccharomyces cerevisiae strain BY4722 with reading frame DbPAD2 under the control of the B. bruxellensis ACT1 promoter, encodes an enzyme with coumarate decarboxylase activity. This work has provided deeper insight into the origin of aroma defects in wine due to contamination by Brettanomyces spp.

  10. An original method for producing acetaldehyde and diacetyl by yeast fermentation.

    PubMed

    Rosca, Irina; Petrovici, Anca Roxana; Brebu, Mihai; Stoica, Irina; Minea, Bogdan; Marangoci, Narcisa

    In this study a natural culture medium that mimics the synthetic yeast peptone glucose medium used for yeast fermentations was designed to screen and select yeasts capable of producing high levels of diacetyl and acetaldehyde. The presence of whey powder and sodium citrate in the medium along with manganese and magnesium sulfate enhanced both biomass and aroma development. A total of 52 yeasts strains were cultivated in two different culture media, namely, yeast peptone glucose medium and yeast acetaldehyde-diacetyl medium. The initial screening of the strains was based on the qualitative reaction of the acetaldehyde with Schiff's reagent (violet color) and diacetyl with Brady's reagent (yellow precipitate). The fermented culture media of 10 yeast strains were subsequently analyzed by gas chromatography to quantify the concentration of acetaldehyde and diacetyl synthesized. Total titratable acidity values indicated that a total titratable acidity of 5.5°SH, implying culture medium at basic pH, was more favorable for the acetaldehyde biosynthesis using strain D15 (Candida lipolytica; 96.05mgL -1 acetaldehyde) while a total titratable acidity value of 7°SH facilitated diacetyl flavor synthesis by strain D38 (Candida globosa; 3.58mgL -1 diacetyl). Importantly, the results presented here suggest that this can be potentially used in the baking industry. Copyright © 2016 Sociedade Brasileira de Microbiologia. Published by Elsevier Editora Ltda. All rights reserved.

  11. Yeast cell surface display for lipase whole cell catalyst and its applications

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Liu, Yun; Zhang, Rui; Lian, Zhongshuai

    The cell surface display technique allows for the expression of target proteins or peptides on the microbial cell surface by fusing an appropriate protein as an anchoring motif. Yeast display systems, such as Pichia pastoris, Yarowia lipolytica and Saccharomyces cerevisiae, are ideal, alternative and extensive display systems with the advantage of simple genetic manipulation and post-translational modification of expressed heterologous proteins. Engineered yeasts show high performance characteristics and variant utilizations. Herein, we comprehensively summarize the variant factors affecting lipase whole cell catalyst activity and display efficiency, including the structure and size of target proteins, screening anchor proteins, type and chainmore » length of linkers, and the appropriate matching rules among the above-mentioned display units. Furthermore, we also address novel approaches to enhance stability and activity of recombinant lipases, such as VHb gene co-expression, multi-enzyme co-display technique, and the micro-environmental interference and self-assembly techniques. Finally, we represent the variety of applications of whole cell surface displayed lipases on yeast cells in non-aqueous phases, including synthesis of esters, PUFA enrichment, resolution of chiral drugs, organic synthesis and biofuels. We demonstrate that the lipase surface display technique is a powerful tool for functionalizing yeasts to serve as whole cell catalysts, and increasing interest is providing an impetus for broad application of this technique.« less

  12. Discrimination of Four Marine Biofilm-Forming Bacteria by LC-MS Metabolomics and Influence of Culture Parameters.

    PubMed

    Favre, Laurie; Ortalo-Magné, Annick; Greff, Stéphane; Pérez, Thierry; Thomas, Olivier P; Martin, Jean-Charles; Culioli, Gérald

    2017-05-05

    Most marine bacteria can form biofilms, and they are the main components of biofilms observed on marine surfaces. Biofilms constitute a widespread life strategy, as growing in such structures offers many important biological benefits. The molecular compounds expressed in biofilms and, more generally, the metabolomes of marine bacteria remain poorly studied. In this context, a nontargeted LC-MS metabolomics approach of marine biofilm-forming bacterial strains was developed. Four marine bacteria, Persicivirga (Nonlabens) mediterranea TC4 and TC7, Pseudoalteromonas lipolytica TC8, and Shewanella sp. TC11, were used as model organisms. The main objective was to search for some strain-specific bacterial metabolites and to determine how culture parameters (culture medium, growth phase, and mode of culture) may affect the cellular metabolism of each strain and thus the global interstrain metabolic discrimination. LC-MS profiling and statistical partial least-squares discriminant analyses showed that the four strains could be differentiated at the species level whatever the medium, the growth phase, or the mode of culture (planktonic vs biofilm). A MS/MS molecular network was subsequently built and allowed the identification of putative bacterial biomarkers. TC8 was discriminated by a series of ornithine lipids, while the P. mediterranea strains produced hydroxylated ornithine and glycine lipids. Among the P. mediterranea strains, TC7 extracts were distinguished by the occurrence of diamine derivatives, such as putrescine amides.

  13. High-level expression of two thermophilic β-mannanases in Yarrowialipolytica.

    PubMed

    YaPing, Wang; Ben, Rao; Ling, Zhang; Lixin, Ma

    2017-05-01

    Two thermophilic β-mannanases (ManA and ManB)were successfully expressed in Yarrowialipolytica using vector pINA1296I. The sequences of manA from Aspergillus niger CBS 513.88 and manB from Bacillus subtilis BCC41051 were optimized based on codon-usage bias in Y.lipolytica and synthesized by overlapping polymerase chain reaction (PCR). We utilized the pINA1296I vector, which allows inserting and expression of multiple copies of an expression cassette, to engineer recombinant strains containing multiple copies of manA or manB. Following verification of target-gene expression by quantitative PCR, fermentation experiments indicated that recombinant protein levels and enzyme activity increased along with increasing manA/manB copy number.After production in a 10 l fermenter, we obtained maximum enzyme activity from strains YLA6 and YLB6 of3024 U/mL and 1024 U/mL, respectively. Additionally, purification and characterization results revealed that the optimum pH and temperature for manA activity were pH∼5 and ∼70 °C, and for manB activity were pH∼7 and 60 °C, respectively. These results indicated that the thermo stabilities of these two enzymes were higher than most other mannanases, making them potentially useful for industrial applications. Copyright © 2017 Elsevier Inc. All rights reserved.

  14. MALDI-TOF MS as a tool to identify foodborne yeasts and yeast-like fungi.

    PubMed

    Quintilla, Raquel; Kolecka, Anna; Casaregola, Serge; Daniel, Heide M; Houbraken, Jos; Kostrzewa, Markus; Boekhout, Teun; Groenewald, Marizeth

    2018-02-02

    Since food spoilage by yeasts causes high economic losses, fast and accurate identifications of yeasts associated with food and food-related products are important for the food industry. In this study the efficiency of the matrix assisted laser desorption ionization time-of-flight mass spectrometry (MALDI-TOF MS) to identify food related yeasts was evaluated. A CBS in-house MALDI-TOF MS database was created and later challenged with a blinded test set of 146 yeast strains obtained from food and food related products. Ninety eight percent of the strains were correctly identified with log score values>1.7. One strain, Mrakia frigida, gained a correct identification with a score value<1.7. Two strains could not be identified at first as they represented a mix of two different species. These mixes were Rhodotorula babjevae with Meyerozyma caribbica and Clavispora lusitaniae with Debaryomyces hansenii. After separation, all four species could be correctly identified with scores>1.7. Ambiguous identifications were observed due to two incorrect reference mass spectra's found in the commercial database BDAL v.4.0, namely Candida sake DSM 70763 which was re-identified as Candida oleophila, and Candida inconspicua DSM 70631 which was re-identified as Pichia membranifaciens. MALDI-TOF MS can distinguish between most of the species, but for some species complexes, such as the Kazachstania telluris and Mrakia frigida complexes, MALDI-TOF MS showed limited resolution and identification of sibling species was sometimes problematic. Despite this, we showed that the MALDI-TOF MS is applicable for routine identification and validation of foodborne yeasts, but a further update of the commercial reference databases is needed. Copyright © 2017 Elsevier B.V. All rights reserved.

  15. Application of MALDI-TOF MS fingerprinting as a quick tool for identification and clustering of foodborne pathogens isolated from food products.

    PubMed

    Elbehiry, Ayman; Marzouk, Eman; Hamada, Mohamed; Al-Dubaib, Musaad; Alyamani, Essam; Moussa, Ihab M; AlRowaidhan, Anhar; Hemeg, Hassan A

    2017-10-01

    Foodborne pathogens can be associated with a wide variety of food products and it is very important to identify them to supply safe food and prevent foodborne infections. Since traditional techniques are timeconsuming and laborious, this study was designed for rapid identification and clustering of foodborne pathogens isolated from various restaurants in Al-Qassim region, Kingdom of Saudi Arabia (KSA) using matrix-assisted laser desorption ionization-time of flight mass spectrometry (MALDI-TOF MS). Sixty-nine bacterial and thirty-two fungal isolates isolated from 80 food samples were used in this study. Preliminary identification was carried out through culture and BD Phoenix™ methods. A confirmatory identification technique was then performed using MALDI-TOF MS. The BD Phoenix results revealed that 97% (67/69 isolates) of bacteria were correctly identified as 75% Enterobacter cloacae, 95.45% Campylobacter jejuni and 100% for Escherichia coli, Salmonella enterica, Staphylococcus aureus, Acinetobacter baumannii, and Klebsiella pneumoniae. While 94.44% (29/32 isolates) of fungi were correctly identified as 77.77% Alternaria alternate, 88.88% Aspergillus niger and 100% for Aspergillus flavus, Penicillium digitatum, Candida albicans and Debaryomyces hansenii. However, all bacterial and fungal isolates were 100% properly identified by MALDI-TOF MS fingerprinting with a score value ≥2.00. A gel view illustrated that the spectral peaks for the identified isolates fluctuate between 3,000 and 10,000 Da. The results of main spectra library (MSP) dendrogram showed that the bacterial and fungal isolates matched with 19 and 9 reference strains stored in the Bruker taxonomy, respectively. Our results indicated that MALDI-TOF MS is a promising technique for fast and accurate identification of foodborne pathogens.

  16. Relative Abundance in Bacterial and Fungal Gut Microbes in Obese Children: A Case Control Study.

    PubMed

    Borgo, Francesca; Verduci, Elvira; Riva, Alessandra; Lassandro, Carlotta; Riva, Enrica; Morace, Giulia; Borghi, Elisa

    2017-02-01

    Differences in relative proportions of gut microbial communities in adults have been correlated with intestinal diseases and obesity. In this study we evaluated the gut microbiota biodiversity, both bacterial and fungal, in obese and normal-weight school-aged children. We studied 28 obese (mean age 10.03 ± 0.68) and 33 age- and sex-matched normal-weight children. BMI z-scores were calculated, and the obesity condition was defined according to the WHO criteria. Fecal samples were analyzed by 16S rRNA amplification followed by denaturing gradient gel electrophoresis (DGGE) analysis and sequencing. Real-time polymerase chain reaction (PCR) was performed to quantify the most representative microbial species and genera. DGGE profiles showed high bacterial biodiversity without significant correlations with BMI z-score groups. Compared to bacterial profiles, we observed lower richness in yeast species. Sequence of the most representative bands gave back Eubacterium rectale, Saccharomyces cerevisiae, Candida albicans, and C. glabrata as present in all samples. Debaryomyces hansenii was present only in two obese children. Obese children revealed a significantly lower abundance in Akkermansia muciniphyla, Faecalibacterium prausnitzii, Bacteroides/Prevotella group, Candida spp., and Saccharomyces spp. (P = 0.031, P = 0.044, P = 0.003, P = 0.047, and P = 0.034, respectively). Taking into account the complexity of obesity, our data suggest that differences in relative abundance of some core microbial species, preexisting or diet driven, could actively be part of its etiology. This study improved our knowledge about the fungal population in the pediatric school-age population and highlighted the need to consider the influence of cross-kingdom relationships.

  17. Contribution of a selected fungal population to proteolysis on dry-cured ham.

    PubMed

    Martín, Alberto; Córdoba, Juan J; Núñez, Félix; Benito, María J; Asensio, Miguel A

    2004-07-01

    The proteolytic changes taking place in dry-cured hams lead to increases in free amino acids. Such free amino acids not only contribute to flavour, but also serve as precursors of volatile compounds. Several months of ripening time are required to allow the particular flavour to develop. The fungal population allowed to grow on the surface of some types of dry-cured could play a key role on proteolysis, as it has been shown for dry-cured sausages. The purpose of this work was to study the possible contribution of fungi to proteolysis in dry-cured ham. For this, a strain each of non-toxigenic Penicillium chrysogenum (Pg222) and Debaryomyces hansenii (Dh345), selected for their proteolytic activity on myofibrillar proteins, were inoculated as starter cultures. Changes in the high ionic strength-soluble proteins of an external muscle (adductor) revealed in only 6 months higher proteolysis in the inoculated hams when compared to non-inoculated control hams. Proteolytic strains among the wild fungal population on non-inoculated control hams prevented from obtaining similar differences at the end of processing. However, inoculation with Pg222 and Dh345 led to higher levels for most free amino acids at the external muscle in fully dry-cured hams. In addition, the concentration for some of the more polar free amino acids (i.e. Asp, Glu, Ser and Gln) in inoculated hams was higher at external than at internal (biceps femoris) muscles. These promising results deserve further studies to know the impact of a selected fungal population on the volatile compounds and sensory properties of dry-cured ham.

  18. Molecular Characterization of the Bacterial Community in Biofilms for Degradation of Poly(3-Hydroxybutyrate-co-3-Hydroxyhexanoate) Films in Seawater

    PubMed Central

    Morohoshi, Tomohiro; Ogata, Kento; Okura, Tetsuo; Sato, Shunsuke

    2018-01-01

    Microplastics are fragmented pieces of plastic in marine environments, and have become a serious environmental issue. However, the dynamics of the biodegradation of plastic in marine environments have not yet been elucidated in detail. Polyhydroxyalkanoates (PHAs) are biodegradable polymers that are synthesized by a wide range of microorganisms. One of the PHA derivatives, poly(3-hydroxybutyrate-co-3-hydroxyhexanoate) (PHBH) has flexible material properties and a low melting temperature. After an incubation in seawater samples, a significant amount of biofilms were observed on the surfaces of PHBH films, and some PHBH films were mostly or partially degraded. In the biofilms that formed on the surfaces of unbroken PHBH films, the most dominant operational taxonomic units (OTUs) showed high similarity with the genus Glaciecola in the family Alteromonadaceae. On the other hand, the dominant OTUs in the biofilms that formed on the surfaces of broken PHBH films were assigned to the families Rhodobacteraceae, Rhodospirillaceae, and Oceanospirillaceae, and the genus Glaciecola mostly disappeared. The bacterial community in the biofilms on PHBH films was assumed to have dynamically changed according to the progression of degradation. Approximately 50 colonies were isolated from the biofilm samples that formed on the PHBH films and their PHBH-degrading activities were assessed. Two out of three PHBH-degrading isolates showed high similarities to Glaciecola lipolytica and Aestuariibacter halophilus in the family Alteromonadaceae. These results suggest that bacterial strains belonging to the family Alteromonadaceae function as the principal PHBH-degrading bacteria in these biofilms. PMID:29386425

  19. Molecular Characterization of the Bacterial Community in Biofilms for Degradation of Poly(3-Hydroxybutyrate-co-3-Hydroxyhexanoate) Films in Seawater.

    PubMed

    Morohoshi, Tomohiro; Ogata, Kento; Okura, Tetsuo; Sato, Shunsuke

    2018-03-29

    Microplastics are fragmented pieces of plastic in marine environments, and have become a serious environmental issue. However, the dynamics of the biodegradation of plastic in marine environments have not yet been elucidated in detail. Polyhydroxyalkanoates (PHAs) are biodegradable polymers that are synthesized by a wide range of microorganisms. One of the PHA derivatives, poly(3-hydroxybutyrate-co-3-hydroxyhexanoate) (PHBH) has flexible material properties and a low melting temperature. After an incubation in seawater samples, a significant amount of biofilms were observed on the surfaces of PHBH films, and some PHBH films were mostly or partially degraded. In the biofilms that formed on the surfaces of unbroken PHBH films, the most dominant operational taxonomic units (OTUs) showed high similarity with the genus Glaciecola in the family Alteromonadaceae. On the other hand, the dominant OTUs in the biofilms that formed on the surfaces of broken PHBH films were assigned to the families Rhodobacteraceae, Rhodospirillaceae, and Oceanospirillaceae, and the genus Glaciecola mostly disappeared. The bacterial community in the biofilms on PHBH films was assumed to have dynamically changed according to the progression of degradation. Approximately 50 colonies were isolated from the biofilm samples that formed on the PHBH films and their PHBH-degrading activities were assessed. Two out of three PHBH-degrading isolates showed high similarities to Glaciecola lipolytica and Aestuariibacter halophilus in the family Alteromonadaceae. These results suggest that bacterial strains belonging to the family Alteromonadaceae function as the principal PHBH-degrading bacteria in these biofilms.

  20. Presumptive identification of Candida species other than C. albicans, C. krusei, and C. tropicalis with the chromogenic medium CHROMagar Candida

    PubMed Central

    Hospenthal, Duane R; Beckius, Miriam L; Floyd, Karon L; Horvath, Lynn L; Murray, Clinton K

    2006-01-01

    Background CHROMagar Candida (CaC) is increasingly being reported as a medium used to differentiate Candida albicans from non-albicans Candida (NAC) species. Rapid identification of NAC can assist the clinician in selecting appropriate antifungal therapy. CaC is a differential chromogenic medium designed to identify C. albicans, C. krusei, and C. tropicalis based on colony color and morphology. Some reports have proposed that CaC can also reliably identify C. dubliniensis and C. glabrata. Methods We evaluated the usefulness of CaC in the identification of C. dubliniensis, C. famata, C. firmetaria, C. glabrata, C. guilliermondii, C. inconspicua, C. kefyr, C. lipolytica, C. lusitaniae, C. norvegensis, C. parapsilosis, and C. rugosa. Results Most NAC produced colonies that were shades of pink, lavender, or ivory. Several isolates of C. firmetaria and all C. inconspicua produced colonies difficult to differentiate from C. krusei. Most C. rugosa isolates produced unique colonies with morphology like C. krusei except in a light blue-green color. C. glabrata isolates produced small dark violet colonies that could be differentiated from the pink and lavender colors produced by other species. All seventeen isolates of C. dubliniensis produced green colonies similar to those produced by C. albicans. Conclusion C. glabrata and C. rugosa appear distinguishable from other species using CaC. Some NAC, including C. firmetaria and C. inconspicua, could be confused with C. krusei using this medium. PMID:16390552

  1. Dominance of rumen microorganisms during cheese whey acidification: acidogenesis can be governed by a rare Selenomonas lacticifex-type fermentation.

    PubMed

    Ntougias, Spyridon; Tsiamis, George; Soultani, Despoina; Melidis, Paraschos

    2015-11-01

    The microbial basis of acidification process during spontaneous cheese whey wastewater fermentation was decrypted by implementing both culture-dependent and culture-independent techniques. Lac tobacillus and Bifidobacterium were the predominant taxa among the microbiota growing on MRS (deMan, Rogosa, and Sharpe), while Kazachstania unispora and Dekkera anomala yeast species were also isolated. Almost all Lactobacillus isolates were heterofermentative that could ferment glucose and lactose, with most of them being related to Lactobacillus hilgardii (99.0-100 % similarity). By employing fluorescence techniques, the dominance of long crescent-shaped bacteria in the acidogenic sludge was observed. Temperature gradient gel electrophoresis (TGGE), clone library, and next-generation sequencing techniques revealed the dominance of Selenomonas lacticifex. Based on Illumina data, Selenomonas in the continuous stirred-tank reactor (CSTR) represented 70.13 ± 4.64 % of the bacterial reads, while other Veillonellaceae taxa (Megasphaera and Pectinatus) represented a notable proportion (6.54 %). Prevotella was only detected by Illumina sequencing as an important constituent of the microbial population (14.97 ± 1.71 %). Budding yeasts represented 97 % of the fungal population in the CSTR, with Yarrowia strains representing 88.85 ± 5.52 % of the fungal reads. Spontaneous cheese whey acidification can favor the dominance of rumen bacteria and here was driven by the rarely reported S. lacticifex-type fermentation, which should be taken into consideration during evaluation of acidogenesis in process simulation and modelling. Moreover, the important nervonic acid content detected indicates that acidogenic sludge can be used as a source for the production of high value-added biomedical substrates.

  2. Coupling two sizes of CSTR-type bioreactors for sequential lactic acid and xylitol production from hemicellulosic hydrolysates of vineshoot trimmings.

    PubMed

    Salgado, José Manuel; Rodríguez, Noelia; Cortés, Sandra; Domínguez, José Manuel

    2012-02-15

    This study develops a system for the efficient valorisation of hemicellulosic hydrolysates of vineshoot trimmings. By connecting two reactors of 2L and 10L, operational conditions were set up for the sequential production of lactic acid and xylitol in continuous fermentation, considering the dependence of the main metabolites and fermentation parameters on the dilution rate. In the first bioreactor, Lactobacillus rhamnosus consumed all the glucose to produce lactic acid at 31.5°C, with 150rpm and 1L of working volume as the optimal conditions. The residual sugars were employed for the xylose to xylitol bioconversion by Debaryomyces hansenii in the second bioreactor at 30°C, 250rpm and an air-flow rate of 2Lmin(-1). Several steady states were reached at flow rates (F) in the range of 0.54-5.33mLmin(-1), leading to dilution rates (D) ranging from 0.032 to 0.320h(-1) in Bioreactor 1 and from 0.006 to 0.064h(-1) in Bioreactor 2. The maximum volumetric lactic acid productivity (Q(P LA)=2.908gL(-1)h(-1)) was achieved under D=0.266h(-1) (F=4.44mLmin(-1)); meanwhile, the maximum production of xylitol (5.1gL(-1)), volumetric xylitol productivity (Q(P xylitol)=0.218gL(-1)h(-1)), volumetric rate of xylose consumption (Q(S xylose)=0.398gL(-1)h(-1)) and product yield (0.55gg(-1)) were achieved at an intermediate dilution rate of 0.043h(-1) (F=3.55mLmin(-1)). Under these conditions, ethanol, which was the main by-product of the fermentation, was produced in higher amounts (1.9gL(-1)). Finally, lactic acid and xylitol were effectively recovered by conventional procedures. Copyright © 2011 Elsevier B.V. All rights reserved.

  3. Taggiasca extra virgin olive oil colonization by yeasts during the extraction process.

    PubMed

    Ciafardini, G; Cioccia, G; Zullo, B A

    2017-04-01

    The opalescent appearance of the newly produced olive oil is due to the presence of solid particles and microdrops of vegetation water in which the microorganisms from the olives' carposphere are trapped. Present research has demonstrated that the microbiota of the fresh extracted olive oil, produced in the mills, is mainly composed of yeasts and to a lesser extent of molds. The close link between the composition of the microbiota of the olives' carposphere undergoing to processing, and that of the microbiota of the newly produced olive oil, concerns only the yeasts and molds, given that the bacterial component is by and large destroyed mainly in the kneaded paste during the malaxation process. Six physiologically homogenous yeast groups were highlighted in the wash water, kneaded paste and newly produced olive oil from the Taggiasca variety which had been collected in mills located in the Liguria region. The more predominant yeasts of each group belonged to a single species called respectively: Kluyveromyces marxianus, Candida oleophila, Candida diddensiae, Candida norvegica, Wickerhamomyces anomalus and Debaryomyces hansenii. Apart from K. marxianus, which was found only in the wash water, all the other species were found in the wash water and in the kneaded paste as well as in the newly produced olive oil, while in the six-month stored olive oil, was found only one physiologically homogeneous group of yeast represented by the W. anomalus specie. These findings in according to our previous studies carried out on other types of mono varietal olive oils, confirms that the habitat of the Taggiascas' extra virgin olive oil, had a strong selective pressure on the yeast biota, allowing only to a few member of yeast species, contaminating the fresh product, to survive and reproduce in it during storage. Copyright © 2016 Elsevier Ltd. All rights reserved.

  4. Diversity and physiological characterization of D-xylose-fermenting yeasts isolated from the Brazilian Amazonian Forest.

    PubMed

    Cadete, Raquel M; Melo, Monaliza A; Dussán, Kelly J; Rodrigues, Rita C L B; Silva, Silvio S; Zilli, Jerri E; Vital, Marcos J S; Gomes, Fátima C O; Lachance, Marc-André; Rosa, Carlos A

    2012-01-01

    This study is the first to investigate the Brazilian Amazonian Forest to identify new D-xylose-fermenting yeasts that might potentially be used in the production of ethanol from sugarcane bagasse hemicellulosic hydrolysates. A total of 224 yeast strains were isolated from rotting wood samples collected in two Amazonian forest reserve sites. These samples were cultured in yeast nitrogen base (YNB)-D-xylose or YNB-xylan media. Candida tropicalis, Asterotremella humicola, Candida boidinii and Debaryomyces hansenii were the most frequently isolated yeasts. Among D-xylose-fermenting yeasts, six strains of Spathaspora passalidarum, two of Scheffersomyces stipitis, and representatives of five new species were identified. The new species included Candida amazonensis of the Scheffersomyces clade and Spathaspora sp. 1, Spathaspora sp. 2, Spathaspora sp. 3, and Candida sp. 1 of the Spathaspora clade. In fermentation assays using D-xylose (50 g/L) culture medium, S. passalidarum strains showed the highest ethanol yields (0.31 g/g to 0.37 g/g) and productivities (0.62 g/L · h to 0.75 g/L · h). Candida amazonensis exhibited a virtually complete D-xylose consumption and the highest xylitol yields (0.55 g/g to 0.59 g/g), with concentrations up to 25.2 g/L. The new Spathaspora species produced ethanol and/or xylitol in different concentrations as the main fermentation products. In sugarcane bagasse hemicellulosic fermentation assays, S. stipitis UFMG-XMD-15.2 generated the highest ethanol yield (0.34 g/g) and productivity (0.2 g/L · h), while the new species Spathaspora sp. 1 UFMG-XMD-16.2 and Spathaspora sp. 2 UFMG-XMD-23.2 were very good xylitol producers. This study demonstrates the promise of using new D-xylose-fermenting yeast strains from the Brazilian Amazonian Forest for ethanol or xylitol production from sugarcane bagasse hemicellulosic hydrolysates.

  5. Candida guilliermondii and Other Species of Candida Misidentified as Candida famata: Assessment by Vitek 2, DNA Sequencing Analysis, and Matrix-Assisted Laser Desorption Ionization–Time of Flight Mass Spectrometry in Two Global Antifungal Surveillance Programs

    PubMed Central

    Woosley, Leah N.; Diekema, Daniel J.; Jones, Ronald N.; Pfaller, Michael A.

    2013-01-01

    Candida famata (teleomorph Debaryomyces hansenii) has been described as a medically relevant yeast, and this species has been included in many commercial identification systems that are currently used in clinical laboratories. Among 53 strains collected during the SENTRY and ARTEMIS surveillance programs and previously identified as C. famata (includes all submitted strains with this identification) by a variety of commercial methods (Vitek, MicroScan, API, and AuxaColor), DNA sequencing methods demonstrated that 19 strains were C. guilliermondii, 14 were C. parapsilosis, 5 were C. lusitaniae, 4 were C. albicans, and 3 were C. tropicalis, and five isolates belonged to other Candida species (two C. fermentati and one each C. intermedia, C. pelliculosa, and Pichia fabianni). Additionally, three misidentified C. famata strains were correctly identified as Kodomaea ohmeri, Debaryomyces nepalensis, and Debaryomyces fabryi using intergenic transcribed spacer (ITS) and/or intergenic spacer (IGS) sequencing. The Vitek 2 system identified three isolates with high confidence to be C. famata and another 15 with low confidence between C. famata and C. guilliermondii or C. parapsilosis, displaying only 56.6% agreement with DNA sequencing results. Matrix-assisted laser desorption ionization–time of flight (MALDI-TOF) results displayed 81.1% agreement with DNA sequencing. One strain each of C. metapsilosis, C. fermentati, and C. intermedia demonstrated a low score for identification (<2.0) in the MALDI Biotyper. K. ohmeri, D. nepalensis, and D. fabryi identified by DNA sequencing in this study were not in the current database for the MALDI Biotyper. These results suggest that the occurrence of C. famata in fungal infections is much lower than previously appreciated and that commercial systems do not produce accurate identifications except for the newly introduced MALDI-TOF instruments. PMID:23100350

  6. Quantification and characterization of microbial biofilm community attached on the surface of fermentation vessels used in green table olive processing.

    PubMed

    Grounta, Athena; Doulgeraki, Agapi I; Panagou, Efstathios Z

    2015-06-16

    The aim of the present study was the quantification of biofilm formed on the surface of plastic vessels used in Spanish-style green olive fermentation and the characterization of the biofilm community by means of molecular fingerprinting. Fermentation vessels previously used in green olive processing were subjected to sampling at three different locations, two on the side and one on the bottom of the vessel. Prior to sampling, two cleaning treatments were applied to the containers, including (a) washing with hot tap water (60 °C) and household detergent (treatment A) and (b) washing with hot tap water, household detergent and bleach (treatment B). Population (expressed as log CFU/cm(2)) of total viable counts (TVC), lactic acid bacteria (LAB) and yeasts were enumerated by standard plating. Bulk cells (whole colonies) from agar plates were isolated for further characterization by PCR-DGGE. Results showed that regardless of the cleaning treatment no significant differences were observed between the different sampling locations in the vessel. The initial microbial population before cleaning ranged between 3.0-4.5 log CFU/cm(2) for LAB and 4.0-4.6 log CFU/cm(2) for yeasts. Cleaning treatments exhibited the highest effect on LAB that were recovered at 1.5 log CFU/cm(2) after treatment A and 0.2 log CFU/cm(2) after treatment B, whereas yeasts were recovered at approximately 1.9 log CFU/cm(2) even after treatment B. High diversity of yeasts was observed between the different treatments and sampling spots. The most abundant species recovered belonged to Candida genus, while Wickerhamomyces anomalus, Debaryomyces hansenii and Pichia guilliermondii were frequently detected. Among LAB, Lactobacillus pentosus was the most abundant species present on the abiotic surface of the vessels. Copyright © 2015 Elsevier B.V. All rights reserved.

  7. Spectroscopic study, antimicrobial activity and crystal structures of N-(2-hydroxy-5-nitrobenzalidene)4-aminomorpholine and N-(2-hydroxy-1-naphthylidene)4-aminomorpholine

    NASA Astrophysics Data System (ADS)

    Yıldız, Mustafa; Ünver, Hüseyin; Dülger, Başaran; Erdener, Diğdem; Ocak, Nazan; Erdönmez, Ahmet; Durlu, Tahsin Nuri

    2005-03-01

    Schiff bases N-(2-hydroxy-3-nitrobenzalidene)4-aminomorpholine ( 1) and N-(2-hydroxy-1-naphthylidene)4-aminomorpholine ( 2) were synthesized from the reaction of 4-aminomorpholine with 2-hydroxy-5-nitrobenzaldehyde and 2-hydroxy-1-naphthaldehyde. Compounds 1 and 2 were characterized by elemental analysis, IR, 1H NMR, 13C NMR and UV-Visible techniques. The UV-Visible spectra of the Schiff bases with OH group in ortho position to the imino group were studied in polar and nonpolar solvents in acidic and basic media. The structures of compounds 1 and 2 have been examined cyrstallographically, for two compounds exist as dominant form of enol-imines in both the solutions and solid state. The title compounds 1 and 2 crystallize in the monoclinic space group P2 1/ c and P2 1/ n with unit cell parameters: a=8.410(1) and 11.911(3), b=6.350(9) and 4.860(9), c=21.728(3) and 22.381(6) Å, β=90.190(1) and 95.6(2)°, V=1160.6(3) and 1289.5(5) Å 3, Dx=1.438 and 1.320 g cm -3, respectively. The crystal structures were solved by direct methods and refined by full-matrix least squares. The antimicrobial activities of compounds 1 and 2 have also been studied. The antimicrobial activities of the ligands have been screened in vitro against the organisms Escherichia coli ATCC 11230, Staphylococcus aureus ATCC 6538, Klebsiella pneumoniae UC57, Micrococcus luteus La 2971, Proteus vulgaris ATCC 8427, Pseudomonas aeruginosa ATCC 27853, Mycobacterium smegmatis CCM 2067, Bacillus cereus ATCC 7064, Listeria monocytogenes ATCC 15313, Candida albicans ATCC 10231, Kluyveromyces fragilis NRRL 2415, Rhodotorula rubra DSM 70403, Debaryomyces hansenii DSM 70238 and Hanseniaspora guilliermondii DSM 3432.

  8. RP-HPLC/MS/MS Analysis of the Phenolic Compounds, Antioxidant and Antimicrobial Activities of Salvia L. Species

    PubMed Central

    Tohma, Hatice; Köksal, Ekrem; Kılıç, Ömer; Alan, Yusuf; Yılmaz, Mustafa Abdullah; Gülçin, İlhami; Bursal, Ercan; Alwasel, Saleh H.

    2016-01-01

    The identification and quantification of the phenolic contents of methanolic extracts of three Salvia L. species namely S. brachyantha (Bordz.) Pobed, S. aethiopis L., and S. microstegia Boiss. and Bal. were evaluated using reverse phase high performance liquid chromatography, UV adsorption, and mass spectrometry (RP-HPLC/MS). In order to determine the antioxidant capacity of these species, cupric ions (Cu2+) reducing assay (CUPRAC) and ferric ions (Fe3+) reducing assay (FRAP) were performed to screen the reducing capacity and 1,1-diphenyl-2-picrylhydrazyl (DPPH) assay was employed for evaluation of the radical scavenging activity for both solvents. In further investigation, the antimicrobial activities of Salvia species were tested using the disc diffusion method against three Gram-positive and four Gram-negative microbial species, as well as three fungi species. The results showed that there is a total of 18 detectable phenols, the most abundant of which was kaempferol in S. microstegia and rosmarinic acids in S. brachyantha and S aethiopis. The other major phenols were found to be apigenin, luteolin, p-coumaric acid, and chlorogenic acid. All species tested showed moderate and lower antioxidant activity than standard antioxidants such as butylated hydroxyanisole (BHA), butylated hydroxytoluene (BHT), and ascorbic acid. The ethanolic extracts of Salvia species revealed a wide range of antimicrobial activity. S. brachyantha and S. microstegia showed the highest antimicrobial activities against B. subtilis, whereas S. aethiopis was more effective on Y. lipolytica. None of the extracts showed anti-fungal activity against S. cerevisiae. Thus these species could be valuable due to their bioactive compounds. PMID:27775656

  9. Comparison of proteolytic activity of Candida sp. strains depending on their origin.

    PubMed

    Modrzewska, B; Kurnatowski, P; Khalid, K

    2016-06-01

    The aim of the research was to evaluate the proteolytic activity of various Candida strains isolated from the oral cavity of persons without clinical symptoms of fungal infection, outpatients with oral cavity disorders and patients hospitalized due to head and neck tumors. A secondary aim was to confirm the presence of secreted aspartyl protease (SAP) genes in the isolated strains and then to compare it depending on the fungal species. Material consisted of 134 fungal strains that were analysed by a modified Staib method and polymerase chain reaction (PCR) with the use of specific primer pairs. The greatest proteolytic activity of fungi was observed at pH 3.5. The proteolysis were the strongest for strains isolated from dental patients and the weakest from persons without changes in the oral cavity. In total, 61.9% of the strains exhibited the presence of at least one of the SAP1-3 genes in all examined groups, SAP1 being the most common; SAP4-6 genes were not observed. All genes were more frequent in the strains isolated from the dental patients than from other groups. SAP1-3 genes were present in Candida albicans, C. tropicalis, C. parapsilosis, C. glabrata, C. humicola and C. lipolytica, but were not noted in other isolated species. The lowest activity of proteolytic enzymes and the least number of aspartyl protease genes are observed among strains isolated from patients without clinical symptoms of mycosis. SAP1-3 genes are most frequently detected in the strains isolated from the oral cavity; their presence varies depending on the species of the fungi. Copyright © 2016 Elsevier Masson SAS. All rights reserved.

  10. Unravel lipid accumulation mechanism in oleaginous yeast through single cell systems biology study

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Xie, Xiaoliang; Ding, Shiyou

    Searching for alternative and clean energy is one of the most important tasks today. Our research aimed at finding the best living condition for certain types of oleaginous yeasts for efficient lipid production. We found that R. glutinis yeast cells has great variability in lipid production among cells while Y. lipolytica cells has similar oil production ability. We found some individual cells shows much higher level of oil production. In order to further study these cases, we employed a label-free chemical sensitive microscopy method call stimulated Raman scattering (SRS). With SRS, we could measure the lipid content in each cell.more » We combined SRS microscopy with microfluidic device so that we can isolate cells with high fat content. We also developed SRS imaging technique that has higher imaging speed, which is highly desirable for high throughput cell screening and sorting. Since these cells has similar genome, it must be the transcriptome caused their difference in oil production. We developed a single cell transcriptome sequencing method to study which genes are responsible for elevated oil production. These methods that are developed for this project can easily be applied for many other areas of research. For example, the single transcriptome can be used to study the transcriptomes of other cell types. The high-speed SRS microscopy techniques can be used to speed up chemical imaging for lablefree histology or imaging distribution of chemicals in tissues of live mice or in humans. The developed microfluidic platform can be used to sort other type of cells, e.g., white blood cells for diagnosis of cancer or other blood diseases.« less

  11. Leaching of rare earth elements from fluorescent powder using the tea fungus Kombucha.

    PubMed

    Hopfe, Stefanie; Flemming, Katrin; Lehmann, Falk; Möckel, Robert; Kutschke, Sabine; Pollmann, Katrin

    2017-04-01

    In most modern technologies such as flat screens, highly effective magnets and lasers, as well as luminescence phosphors, Rare Earth Elements (REE) are used. Unfortunately no environmentally friendly recycling process exists so far. In comparison to other elements the interaction of microorganisms with REE has been studied to a less extent. However, as REE are ubiquitously present in nature it can be assumed that microorganisms play an important role in the biogeochemistry of REE. This study investigates the potential of organic acid-producing microbes for extracting REE from industrial waste. In Germany, 175 tons of fluorescent phosphor (FP) are collected per year as a distinct fraction from the recycling of compact fluorescent lamps. Because the FP contains about 10% of REE-oxides bound in the so-called triband dyes it is a readily accessible secondary resource of REE. Using the symbiotic mixed culture Kombucha, consisting of yeasts and acetic acid bacteria, REE were leached at a significant rate. The highest leaching-rates were observed in shake cultures using the entire Kombucha-consortium or its supernatant as leaching agent compared to experiments using the isolates Zygosaccharomyces lentus and Komagataeibacter hansenii as leaching organisms. During the cultivation, the pH decreased as a result of organic acid production (mainly acetic and gluconic acid). Thus, the underlying mechanism of the triband dye solubilisation is probably linked to the carboxyl-functionality or a proton excess. In accordance with the higher solubility of REE-oxides compared to REE-phosphates and -aluminates, the red dye Y 2 O 3 :Eu 2+ containing relatively expensive REE was shown to be preferentially solubilized. These results show that it is possible to dissolve the REE-compounds of FP with the help of microbial processes. Moreover, they provide the basis for the development of an eco-friendly alternative to the currently applied methods that use strong inorganic acids or toxic

  12. Pioneering a Biobased UAS

    NASA Technical Reports Server (NTRS)

    Block, Eli; Byemerwa, Jovita; Dispenza, Ross; Doughty, Benjamin; Gillyard, KaNesha; Godbole, Poorwa; Gonzales-Wright, Jeanette; Hull, Ian; Kannappan, Jotthe; Levine, Alexander; hide

    2015-01-01

    With the exponential growth of interest in unmanned aerial vehicles (UAVs) and their vast array of applications in both space exploration and terrestrial uses such as the delivery of medicine and monitoring the environment, the 2014 Stanford-Brown-Spelman iGEM team is pioneering the development of a fully biological UAV for scientific and humanitarian missions. The prospect of a biologically-produced UAV presents numerous advantages over the current manufacturing paradigm. First, a foundational architecture built by cells allows for construction or repair in locations where it would be difficult to bring traditional tools of production. Second, a major limitation of current research with UAVs is the size and high power consumption of analytical instruments, which require bulky electrical components and large fuselages to support their weight. By moving these functions into cells with biosensing capabilities – for example, a series of cells engineered to report GFP, green fluorescent protein, when conditions exceed a certain threshold concentration of a compound of interest, enabling their detection post-flight – these problems of scale can be avoided. To this end, we are working to engineer cells to synthesize cellulose acetate as a novel bioplastic, characterize biological methods of waterproofing the material, and program this material’s systemic biodegradation. In addition, we aim to use an “amberless” system to prevent horizontal gene transfer from live cells on the material to microorganisms in the flight environment. So far, we have: successfully transformed Gluconacetobacter hansenii, a cellulose-producing bacterium, with a series of promoters to test transformation efficiency before adding the acetylation genes; isolated protein bands present in the wasp nest material; transformed the cellulose-degrading genes into Escherichia coli; and we have confirmed that the amberless construct prevents protein expression in wild-type cells. In addition, as

  13. Pioneering a Biobased UAS

    NASA Technical Reports Server (NTRS)

    Block, Eli; Byemerwa, Jovita; Dispenza, Ross; Doughty, Benjamin; Gillyard, KaNesha; Godbole, Poorwa; Gonzalez-Wright, Jeanette; Hull, Ian; Kannappan, Jotthe; Levine, Alexander; hide

    2015-01-01

    With the exponential growth of interest in unmanned aerial vehicles (UAVs) and their vast array of applications in both space exploration and terrestrial uses such as the delivery of medicine and monitoring the environment, the 2014 Stanford-Brown-Spelman iGEM team is pioneering the development of a fully biological UAV for scientific and humanitarian missions. The prospect of a biologically-produced UAV presents numerous advantages over the current manufacturing paradigm. First, a foundational architecture built by cells allows for construction or repair in locations where it would be difficult to bring traditional tools of production. Second, a major limitation of current research with UAVs is the size and high power consumption of analytical instruments, which require bulky electrical components and large fuselages to support their weight. By moving these functions into cells with biosensing capabilities - for example, a series of cells engineered to report GFP, green fluorescent protein, when conditions exceed a certain threshold concentration of a compound of interest, enabling their detection post-flight - these problems of scale can be avoided. To this end, we are working to engineer cells to synthesize cellulose acetate as a novel bioplastic, characterize biological methods of waterproofing the material, and program this material's systemic biodegradation. In addition, we aim to use an "amberless" system to prevent horizontal gene transfer from live cells on the material to microorganisms in the flight environment. So far, we have: successfully transformed Gluconacetobacter hansenii, a cellulose-producing bacterium, with a series of promoters to test transformation efficiency before adding the acetylation genes; isolated protein bands present in the wasp nest material; transformed the cellulose-degrading genes into Escherichia coli; and we have confirmed that the amberless construct prevents protein expression in wild-type cells. In addition, as part of our

  14. Early gut mycobiota and mother-offspring transfer.

    PubMed

    Schei, Kasper; Avershina, Ekaterina; Øien, Torbjørn; Rudi, Knut; Follestad, Turid; Salamati, Saideh; Ødegård, Rønnaug Astri

    2017-08-24

    The fungi in the gastrointestinal tract, the gut mycobiota, are now recognised as a significant part of the gut microbiota, and they may be important to human health. In contrast to the adult gut mycobiota, the establishment of the early gut mycobiota has never been described, and there is little knowledge about the fungal transfer from mother to offspring. In a prospective cohort, we followed 298 pairs of healthy mothers and offspring from 36 weeks of gestation until 2 years of age (1516 samples) and explored the gut mycobiota in maternal and offspring samples. Half of the pregnant mothers were randomised into drinking probiotic milk during and after pregnancy. The probiotic bacteria included Lactobacillus rhamnosus GG (LGG), Bifidobacterium animalis subsp. lactis Bb-12 and Lactobacillus acidophilus La-5. We quantified the fungal abundance of all the samples using qPCR of the fungal internal transcribed spacer (ITS)1 segment, and we sequenced the 18S rRNA gene ITS1 region of 90 high-quantity samples using the MiSeq platform (Illumina). The gut mycobiota was detected in most of the mothers and the majority of the offspring. The offspring showed increased odds of having detectable faecal fungal DNA if the mother had detectable fungal DNA as well (OR = 1.54, p = 0.04). The fungal alpha diversity in the offspring gut increased from its lowest at 10 days after birth, which was the earliest sampling point. The fungal diversity and fungal species showed a succession towards the maternal mycobiota as the child aged, with Debaryomyces hansenii being the most abundant species during breast-feeding and Saccharomyces cerevisiae as the most abundant after weaning. Probiotic consumption increased the gut mycobiota abundance in pregnant mothers (p = 0.01). This study provides the first insight into the early fungal establishment and the succession of fungal species in the gut mycobiota. The results support the idea that the fungal host phenotype is transferred from

  15. Quantitative analysis of ruminal bacterial populations involved in lipid metabolism in dairy cows fed different vegetable oils.

    PubMed

    Vargas-Bello-Pérez, E; Cancino-Padilla, N; Romero, J; Garnsworthy, P C

    2016-11-01

    Vegetable oils are used to increase energy density of dairy cow diets, although they can provoke changes in rumen bacteria populations and have repercussions on the biohydrogenation process. The aim of this study was to evaluate the effect of two sources of dietary lipids: soybean oil (SO, an unsaturated source) and hydrogenated palm oil (HPO, a saturated source) on bacterial populations and the fatty acid profile of ruminal digesta. Three non-lactating Holstein cows fitted with ruminal cannulae were used in a 3×3 Latin square design with three periods consisting of 21 days. Dietary treatments consisted of a basal diet (Control, no fat supplement) and the basal diet supplemented with SO (2.7% of dry matter (DM)) or HPO (2.7% of DM). Ruminal digesta pH, NH3-N and volatile fatty acids were not affected by dietary treatments. Compared with control and HPO, total bacteria measured as copies of 16S ribosomal DNA/ml by quantitative PCR was decreased (P<0.05) by SO. Fibrobacter succinogenes, Butyrivibrio proteoclasticus and Anaerovibrio lipolytica loads were not affected by dietary treatments. In contrast, compared with control, load of Prevotella bryantii was increased (P<0.05) with HPO diet. Compared with control and SO, HPO decreased (P<0.05) C18:2 cis n-6 in ruminal digesta. Contents of C15:0 iso, C18:11 trans-11 and C18:2 cis-9, trans-11 were increased (P<0.05) in ruminal digesta by SO compared with control and HPO. In conclusion, supplementation of SO or HPO do not affect ruminal fermentation parameters, whereas HPO can increase load of ruminal P. bryantii. Also, results observed in our targeted bacteria may have depended on the saturation degree of dietary oils.

  16. A fungal phylogeny based on 42 complete genomes derived from supertree and combined gene analysis

    PubMed Central

    Fitzpatrick, David A; Logue, Mary E; Stajich, Jason E; Butler, Geraldine

    2006-01-01

    Background To date, most fungal phylogenies have been derived from single gene comparisons, or from concatenated alignments of a small number of genes. The increase in fungal genome sequencing presents an opportunity to reconstruct evolutionary events using entire genomes. As a tool for future comparative, phylogenomic and phylogenetic studies, we used both supertrees and concatenated alignments to infer relationships between 42 species of fungi for which complete genome sequences are available. Results A dataset of 345,829 genes was extracted from 42 publicly available fungal genomes. Supertree methods were employed to derive phylogenies from 4,805 single gene families. We found that the average consensus supertree method may suffer from long-branch attraction artifacts, while matrix representation with parsimony (MRP) appears to be immune from these. A genome phylogeny was also reconstructed from a concatenated alignment of 153 universally distributed orthologs. Our MRP supertree and concatenated phylogeny are highly congruent. Within the Ascomycota, the sub-phyla Pezizomycotina and Saccharomycotina were resolved. Both phylogenies infer that the Leotiomycetes are the closest sister group to the Sordariomycetes. There is some ambiguity regarding the placement of Stagonospora nodurum, the sole member of the class Dothideomycetes present in the dataset. Within the Saccharomycotina, a monophyletic clade containing organisms that translate CTG as serine instead of leucine is evident. There is also strong support for two groups within the CTG clade, one containing the fully sexual species Candida lusitaniae, Candida guilliermondii and Debaryomyces hansenii, and the second group containing Candida albicans, Candida dubliniensis, Candida tropicalis, Candida parapsilosis and Lodderomyces elongisporus. The second major clade within the Saccharomycotina contains species whose genomes have undergone a whole genome duplication (WGD), and their close relatives. We could not

  17. Effect of mixed antimicrobial agents and flavors in active packaging films.

    PubMed

    Gutiérrez, Laura; Escudero, Ana; Batlle, Ramón; Nerín, Cristina

    2009-09-23

    Active packaging is an emerging food technology to improve the quality and safety of food products. Many works have been developed to study the antimicrobial activity of essential oils. Essential oils have been traditionally used as flavorings in food, so they have an important odor impact but they have as well antimicrobial properties that could be used to protect the food. Recent developments in antimicrobial active packaging showed the efficiency of essential oils versus bread and bakery products among other applications. However, one of the main problems to face is the odor and taste they could provide to the packaged food. Using some aromas to mask the odor could be a good approach. That is why the main objective of this paper is to develop an antimicrobial packaging material based on the combination of the most active compounds of essential oils (hydrocinnamaldehyde, oregano essential oil, cinnamaldehyde, thymol, and carvacrol) together with some aromas commonly used in the food industry. A study of the concentration required to get the antimicrobial properties, the organoleptic compatibility with typical aroma present in many food systems (vanilla, banana, and strawberry), and the right combination of both systems has been carried out. Antimicrobial tests of both the mentioned aromas, the main components of some essential oils, and the combination of both groups were carried out against bacteria (Enterococcus faecalis, Listeria monocytogenes, Bacillus cereus, Staphylococcus aureus, Salmonella choleraesuis, Yersinia enterocolitica, Escherichia coli), yeasts (Candida albicans, Debaryomyces hansenii, Zygosaccharomyces rouxii), and molds (Botrytis cinerae, Aspergillus flavus, Penicillium roqueforti, Eurotium repens, Penicillium islandicum, Penicillium commune, Penicillium nalgiovensis). The sensory properties of the combinations were evaluated with a triangular test and classification was by an order test; the odor threshold of the aroma compounds was also

  18. Mitigation of methane production from cattle by feeding cashew nut shell liquid.

    PubMed

    Shinkai, T; Enishi, O; Mitsumori, M; Higuchi, K; Kobayashi, Y; Takenaka, A; Nagashima, K; Mochizuki, M; Kobayashi, Y

    2012-09-01

    The effects of cashew nut shell liquid (CNSL) feeding on methane production and rumen fermentation were investigated by repeatedly using 3 Holstein nonlactating cows with rumen fistulas. The cows were fed a concentrate and hay diet (6:4 ratio) for 4 wk (control period) followed by the same diet with a CNSL-containing pellet for the next 3 wk (CNSL period). Two trials were conducted using CNSL pellets blended with only silica (trial 1) or with several other ingredients (trial 2). Each pellet type was fed to cows to allow CNSL intake at 4 g/100 kg of body weight per day. Methane production was measured in a respiration chamber system, and energy balance, nutrient digestibility, and rumen microbial changes were monitored. Methane production per unit of dry matter intake decreased by 38.3 and 19.3% in CNSL feeding trials 1 and 2, respectively. Energy loss as methane emission decreased from 9.7 to 6.1% (trial 1) and from 8.4 to 7.0% (trial 2) with CNSL feeding, whereas the loss to feces (trial 1) and heat production (trial 2) increased. Retained energy did not differ between the control and CNSL periods. Digestibility of dry matter and gross energy decreased with CNSL feeding in trial 1, but did not differ in trial 2. Feeding CNSL caused a decrease in acetate and total short-chain fatty acid levels and an increase in propionate proportion in both trials. Relative copy number of methyl coenzyme-M reductase subunit A gene and its expression decreased with CNSL feeding. The relative abundance of fibrolytic or formate-producing species such as Ruminococcus flavefaciens, Butyrivibrio fibrisolvens, and Treponema bryantii decreased, but species related to propionate production, including Prevotella ruminicolla, Selenomonas ruminantium, Anaerovibrio lipolytica, and Succinivibrio dextrinosolvens, increased. If used in a suitable formulation, CNSL acts as a potent methane-inhibiting and propionate-enhancing agent through the alteration of rumen microbiota without adversely

  19. Mycological examinations on the fungal flora of the chicken comb.

    PubMed

    Gründer, S; Mayser, P; Redmann, T; Kaleta, E F

    2005-03-01

    A total of 500 combs of adult chickens from two different locations in Germany (Hessen and Schleswig-Holstein) were clinically and mycologically examined. The chickens came from three battery cages (n = 79), one voliere system (n=32), six flocks maintained on deep litter (n = 69) and 12 flocks kept on free outdoor range (n=320). Twenty-two of the 500 chicken combs (4.4%) were found to have clinical signs: only non-specific lesions neither typical of mycosis nor of avian pox such as desquamation with crust formation, yellow to brown or black dyschromic changes, alopecia in the surrounding area and moist inflammation. Only seven of the 22 clinically altered combs showed a positive mycological result; the non-pathogenic and geophilic Trichophyton terrestre in one case and non-pathogenic yeast in six cases. The following fungi were seen in the different housing systems: 13 dermatophytes (2.6% of 500 samples): 12 x T. terrestre, 1 x Trichophyton mentagrophytes, 11 isolates of Chrysosporium georgiae (2.2% of 500 samples) and 149 isolates of yeasts (29.8%): Malassezia sympodialis: n = 52, Kloeckera apiculata: n = 33, Trichosporon capitatum (syn. Geotrichum capitatum): n = 23, Trichosporon cutaneum/Trichosporon mucoides: n = 12, Trichosporon inkin (syn. Sarcinosporon inkin): n = 8 and Candida spp.: n = 21, including pathogenic or possibly pathogenic species: Candida albicans: n = 3, Candida famata: n = 4, Candida guilliermondii: n = 3, Candida lipolytica: n = 3, Candida dattila: n = 2 and one isolate each of Candida glabrata, Candida parapsilosis, Candida aaseri, Candida catenulata sive brumpti, Candida fructus and Candida kefyr sive pseudotropicalis. There is no stringent correlation between the clinical symptoms diagnosed on the chicken combs and the species of yeasts isolated. The causative agent of favus in chickens, Trichophyton gallinae, and the saprophytic yeast in pigeons, Cr. neoformans were not isolated. The most frequently isolated yeasts M. sympodialis and

  20. Growth inhibition and ultrastructural alterations induced by Delta24(25)-sterol methyltransferase inhibitors in Candida spp. isolates, including non-albicans organisms.

    PubMed

    Ishida, Kelly; Rodrigues, Juliany Cola Fernandes; Ribeiro, Marcos Dornelas; Vila, Taíssa Vieira Machado; de Souza, Wanderley; Urbina, Julio A; Nakamura, Celso Vataru; Rozental, Sonia

    2009-04-20

    Although Candida species are commensal microorganisms, they can cause many invasive fungal infections. In addition, antifungal resistance can contribute to failure of treatment.The purpose of this study was to evaluate the antifungal activity of inhibitors of Delta24(25)-sterol methyltransferase (24-SMTI), 20-piperidin-2-yl-5alpha-pregnan-3beta-20(R)-diol (AZA), and 24(R,S),25-epiminolanosterol (EIL), against clinical isolates of Candida spp., analysing the ultrastructural changes. AZA and EIL were found to be potent growth inhibitors of Candida spp. isolates. The median MIC50 was 0.5 microg.ml-1 for AZA and 2 microg.ml-1 for EIL, and the MIC90 was 2 microg.ml-1 for both compounds. All strains used in this study were susceptible to amphotericin B; however, some isolates were fluconazole- and itraconazole-resistant. Most of the azole-resistant isolates were Candida non-albicans (CNA) species, but several of them, such as C. guilliermondii, C. zeylanoides, and C. lipolytica, were susceptible to 24-SMTI, indicating a lack of cross-resistance. Reference strain C. krusei (ATCC 6258, FLC-resistant) was consistently susceptible to AZA, although not to EIL. The fungicidal activity of 24-SMTI was particularly high against CNA isolates. Treatment with sub-inhibitory concentrations of AZA and EIL induced several ultrastructural alterations, including changes in the cell-wall shape and thickness, a pronounced disconnection between the cell wall and cytoplasm with an electron-lucent zone between them, mitochondrial swelling, and the presence of electron-dense vacuoles. Fluorescence microscopy analyses indicated an accumulation of lipid bodies and alterations in the cell cycle of the yeasts. The selectivity of 24-SMTI for fungal cells versus mammalian cells was assessed by the sulforhodamine B viability assay. Taken together, these results suggest that inhibition of 24-SMT may be a novel approach to control Candida spp. infections, including those caused by azole

  1. Growth inhibition and ultrastructural alterations induced by Δ24(25)-sterol methyltransferase inhibitors in Candida spp. isolates, including non-albicans organisms

    PubMed Central

    2009-01-01

    Background Although Candida species are commensal microorganisms, they can cause many invasive fungal infections. In addition, antifungal resistance can contribute to failure of treatment. The purpose of this study was to evaluate the antifungal activity of inhibitors of Δ24(25)-sterol methyltransferase (24-SMTI), 20-piperidin-2-yl-5α-pregnan-3β-20(R)-diol (AZA), and 24(R,S),25-epiminolanosterol (EIL), against clinical isolates of Candida spp., analysing the ultrastructural changes. Results AZA and EIL were found to be potent growth inhibitors of Candida spp. isolates. The median MIC50 was 0.5 μg.ml-1 for AZA and 2 μg.ml-1 for EIL, and the MIC90 was 2 μg.ml-1 for both compounds. All strains used in this study were susceptible to amphotericin B; however, some isolates were fluconazole- and itraconazole-resistant. Most of the azole-resistant isolates were Candida non-albicans (CNA) species, but several of them, such as C. guilliermondii, C. zeylanoides, and C. lipolytica, were susceptible to 24-SMTI, indicating a lack of cross-resistance. Reference strain C. krusei (ATCC 6258, FLC-resistant) was consistently susceptible to AZA, although not to EIL. The fungicidal activity of 24-SMTI was particularly high against CNA isolates. Treatment with sub-inhibitory concentrations of AZA and EIL induced several ultrastructural alterations, including changes in the cell-wall shape and thickness, a pronounced disconnection between the cell wall and cytoplasm with an electron-lucent zone between them, mitochondrial swelling, and the presence of electron-dense vacuoles. Fluorescence microscopy analyses indicated an accumulation of lipid bodies and alterations in the cell cycle of the yeasts. The selectivity of 24-SMTI for fungal cells versus mammalian cells was assessed by the sulforhodamine B viability assay. Conclusion Taken together, these results suggest that inhibition of 24-SMT may be a novel approach to control Candida spp. infections, including those caused by azole

  2. Macroalgae Extracts From Antarctica Have Antimicrobial and Anticancer Potential

    PubMed Central

    Martins, Rosiane M.; Nedel, Fernanda; Guimarães, Victoria B. S.; da Silva, Adriana F.; Colepicolo, Pio; de Pereira, Claudio M. P.; Lund, Rafael G.

    2018-01-01

    Background: Macroalgae are sources of bioactive compounds due to the large number of secondary metabolites they synthesize. The Antarctica region is characterized by extreme weather conditions and abundant aggregations of macroalgae. However, current knowledge on their biodiversity and their potential for bio-prospecting is still fledging. This study evaluates the antimicrobial and cytotoxic activity of different extracts of four macroalgae (Cystosphaera jacquinotii, Iridaea cordata, Himantothallus grandifolius, and Pyropia endiviifolia) from the Antarctic region against cancer and non-cancer cell lines. Methods: The antimicrobial activity of macroalgae was evaluated by the broth microdilution method. Extracts were assessed against Staphylococcus aureus ATCC 19095, Enterococcus faecalis ATCC 4083, Escherichia coli ATCC29214, Pseudomonas aeruginosa ATCC 9027, Candida albicans ATCC 62342, and the clinical isolates from the human oral cavity, namely, C. albicans (3), C. parapsilosis, C. glabrata, C. lipolytica, and C. famata. Cytotoxicity against human epidermoid carcinoma (A-431) and mouse embryonic fibroblast (NIH/3T3) cell lines was evaluated with MTT colorimetric assay. Results: An ethyl acetate extract of H. grandifolius showed noticeable antifungal activity against all fungal strains tested, including fluconazole-resistant samples. Cytotoxicity investigation with a cancer cell line revealed that the ethyl acetate extract of I. cordata was highly cytotoxic against A-431 cancer cell line, increasing the inhibitory ratio to 91.1 and 95.6% after 24 and 48 h exposure, respectively, for a concentration of 500 μg mL−1. Most of the algal extracts tested showed little or no cytotoxicity against fibroblasts. Conclusion: Data suggest that macroalgae extracts from Antarctica may represent a source of therapeutic agents. HIGHLIGHTS Different macroalgae samples from Antarctica were collected and the lyophilized biomass of each macroalgae was extracted sequentially with

  3. Evaluation of risk factors in patients with vulvovaginal candidiasis and the value of chromID Candida agar versus CHROMagar Candida for recovery and presumptive identification of vaginal yeast species.

    PubMed

    Guzel, Ahmet Bariş; Ilkit, Macit; Akar, Tuba; Burgut, Refik; Demir, S Cansun

    2011-01-01

    Vulvovaginal candidiasis (VVC), particularly the recurrent form, remains an intractable problem for clinicians, microbiologists, and patients. It is essential to confirm the clinical diagnosis by mycological methods and avoid empirical therapy. The recovery of yeast in fungal culture, such as on Sabouraud dextrose agar, remains the gold standard for diagnosis. In this investigation, we examined 474 participants, including 122 (25.7%) with acute VVC cases, 249 (52.5%) who had recurrent VVC (RVVC) cases, and 103 (21.7%) healthy controls. We also administered a questionnaire to obtain information on patient lifestyle and medical, gynecological, and sexual history. In addition, we compared the performance of chromID Candida agar (CAN2) to CHROMagar Candida (CAC) and Sabouraud dextrose agar with gentamicin and chloramphenicol (SGC2). The yeasts were identified by conventional methods including the germ tube test, microscopic morphology on cornmeal-Tween 80 agar, and the commercial API 20C AUX system. We detected yeasts in 60 of 122 (49.2%) patients with acute VVC cases, 110 of 249 (44.2%) with RVVC cases, and in 35 of 103 (34%) healthy controls (P = 0.07). A total of 205 samples were found to be positive for fungi (43.2%), of which 176 (85.9%) were monofungal, and 29 (14.1%) were polyfungal. In addition, 198 of these samples (96.6%) were positive on CAN2, 195 (95.1%) on CAC, 189 (92.2%) on SGC2, and 183 (89.3%) samples on all three (P = 0.17). The 234 yeast isolates recovered were C. albicans (n = 118), C. glabrata (n = 82), C. kefyr (n = 11), C. krusei (n = 9), C. lipolytica (n = 3), C. colliculosa (n = 2), C. parapsilosis (n = 2), C. pelliculosa (n = 2), C. tropicalis (n = 2), and other species of Candida (n = 3). Of the 29 polyfungal populations, 28 (96.6%) were detected in CAN2, 25 in (86.2%) CAC, and 25 (86.2%) on both (P = 0.35). Notably, we detected the high predominance of C. albicans+C. glabrata (86.2%) in polyfungal populations. Briefly, the detection of C

  4. Effect of pH and level of concentrate in the diet on the production of biohydrogenation intermediates in a dual-flow continuous culture.

    PubMed

    Fuentes, M C; Calsamiglia, S; Cardozo, P W; Vlaeminck, B

    2009-09-01

    Milk fat depression in cows fed high-grain diets has been related to an increase in the concentration of trans-10 C(18:1) and trans-10,cis-12 conjugated linoleic acid (CLA) in milk. These fatty acids (FA) are produced as a result of the alteration in rumen biohydrogenation of dietary unsaturated FA. Because a reduction in ruminal pH is usually observed when high-concentrate diets are fed, the main cause that determines the alteration in the biohydrogenation pathways is not clear. The effect of pH (6.4 vs. 5.6) and dietary forage to concentrate ratios (F:C; 70:30 F:C vs. 30:70 F:C) on rumen microbial fermentation, effluent FA profile, and DNA concentration of bacteria involved in lipolysis and biohydrogenation processes were investigated in a continuous culture trial. The dual-flow continuous culture consisted of 2 periods of 8 d (5 d for adaptation and 3 d for sampling), with a 2 x 2 factorial arrangement of treatments. Samples from solid and liquid mixed effluents were taken for determination of total N, ammonia-N, and volatile fatty acid concentrations, and the remainder of the sample was lyophilized. Dry samples were analyzed for dry matter, ash, neutral and acid detergent fiber, FA, and purine contents. The pH 5.6 reduced organic matter and fiber digestibility, ammonia-N concentration and flow, and crude protein degradation, and increased nonammonia and dietary N flows. The pH 5.6 decreased the flow of C(18:0), trans-11 C(18:1) and cis-9, trans-11 CLA, and increased the flow of trans-10 C(18:1), C(18:2n-6), C(18:3n-3), trans-11,cis-15 C(18:2) and trans-10,cis-12 CLA in the 1 h after feeding effluent. The pH 5.6 reduced Anaerovibrio lipolytica (32.7 vs. 72.1 pg/10 ng of total DNA) and Butyrivibrio fibrisolvens vaccenic acid subgroup (588 vs. 1,394 pg/10 ng of total DNA) DNA concentrations. The high-concentrate diet increased organic matter and fiber digestibility, nonammonia and bacterial N flows, and reduced ammonia-N concentration and flow. The high

  5. Active dry Saccharomyces cerevisiae can alleviate the effect of subacute ruminal acidosis in lactating dairy cows.

    PubMed

    AlZahal, O; Dionissopoulos, L; Laarman, A H; Walker, N; McBride, B W

    2014-12-01

    ) and lower acetate:propionate ratio (0.26 ± 0.5 vs. 0.36 ± 0.05 for ADSC and control, respectively). Microbial analyses conducted on samples collected during wk 10 showed that cows supplemented with S. cerevisiae had a 9-fold, 2-fold, 6-fold, 1.3-fold, and 8-fold increase in S. cerevisiae, Fibrobacter succinogenes, Anaerovibrio lipolytica, Ruminococcus albus, and anaerobic fungi, respectively, which suggested an increase in cellulolytic microbes within the rumen. Cows supplemented with ADSC had 2.2-fold reduction in Prevotella albensis, which is a gram-negative bacterium predominant during SARA. Prevotella spp. are suggested to be an important source of lipopolysaccharide responsible for inflammation within the rumen. Cows supplemented with ADSC had a 2.3-fold increase in Streptococcus bovis and a 12-fold reduction in Megasphaera elsdenii. The reduction in M. elsdenii may reflect lower concentration of lactic acid within the rumen for ADSC cows. In conclusion, ADSC supplementation to dairy cows was demonstrated to alleviate the condition of SARA caused by abrupt dietary changes from HF to HG, and can potentially improve rumen function, as indicated by greater numbers of cellulolytic microorganisms within the rumen. Copyright © 2014 American Dairy Science Association. Published by Elsevier Inc. All rights reserved.

  6. Fungal Planet description sheets: 625-715.

    PubMed

    Crous, P W; Wingfield, M J; Burgess, T I; Carnegie, A J; Hardy, G E St J; Smith, D; Summerell, B A; Cano-Lira, J F; Guarro, J; Houbraken, J; Lombard, L; Martín, M P; Sandoval-Denis, M; Alexandrova, A V; Barnes, C W; Baseia, I G; Bezerra, J D P; Guarnaccia, V; May, T W; Hernández-Restrepo, M; Stchigel, A M; Miller, A N; Ordoñez, M E; Abreu, V P; Accioly, T; Agnello, C; Agustin Colmán, A; Albuquerque, C C; Alfredo, D S; Alvarado, P; Araújo-Magalhães, G R; Arauzo, S; Atkinson, T; Barili, A; Barreto, R W; Bezerra, J L; Cabral, T S; Camello Rodríguez, F; Cruz, R H S F; Daniëls, P P; da Silva, B D B; de Almeida, D A C; de Carvalho Júnior, A A; Decock, C A; Delgat, L; Denman, S; Dimitrov, R A; Edwards, J; Fedosova, A G; Ferreira, R J; Firmino, A L; Flores, J A; García, D; Gené, J; Giraldo, A; Góis, J S; Gomes, A A M; Gonçalves, C M; Gouliamova, D E; Groenewald, M; Guéorguiev, B V; Guevara-Suarez, M; Gusmão, L F P; Hosaka, K; Hubka, V; Huhndorf, S M; Jadan, M; Jurjević, Ž; Kraak, B; Kučera, V; Kumar, T K A; Kušan, I; Lacerda, S R; Lamlertthon, S; Lisboa, W S; Loizides, M; Luangsa-Ard, J J; Lysková, P; Mac Cormack, W P; Macedo, D M; Machado, A R; Malysheva, E F; Marinho, P; Matočec, N; Meijer, M; Mešić, A; Mongkolsamrit, S; Moreira, K A; Morozova, O V; Nair, K U; Nakamura, N; Noisripoom, W; Olariaga, I; Oliveira, R J V; Paiva, L M; Pawar, P; Pereira, O L; Peterson, S W; Prieto, M; Rodríguez-Andrade, E; Rojo De Blas, C; Roy, M; Santos, E S; Sharma, R; Silva, G A; Souza-Motta, C M; Takeuchi-Kaneko, Y; Tanaka, C; Thakur, A; Smith, M Th; Tkalčec, Z; Valenzuela-Lopez, N; van der Kleij, P; Verbeken, A; Viana, M G; Wang, X W; Groenewald, J Z

    2017-12-01

    . Pseudosporidesmiaceae fam. nov.) on Lambertia formosa , Saccharata acaciae on Acacia sp., Saccharata epacridis on Epacris sp., Saccharata hakeigena on Hakea sericea , Seiridium persooniae on Persoonia sp., Semifissispora tooloomensis on Eucalyptus dunnii , Stagonospora lomandrae on Lomandra longifolia , Stagonospora victoriana on Poaceae , Subramaniomyces podocarpi on Podocarpus elatus , Sympoventuria melaleucae on Melaleuca sp . , Sympoventuria regnans on Eucalyptus regnans , Trichomerium eucalypti on Eucalyptus tereticornis , Vermiculariopsiella eucalypticola on Eucalyptus dalrympleana , Verrucoconiothyrium acaciae on Acacia falciformis , Xenopassalora petrophiles (incl. Xenopassalora gen. nov.) on Petrophile sp . , Zasmidium dasypogonis on Dasypogon sp., Zasmidium gahniicola on Gahnia sieberiana. Brazil : Achaetomium lippiae on Lippia gracilis , Cyathus isometricus on decaying wood, Geastrum caririense on soil, Lycoperdon demoulinii (incl. Lycoperdon subg. Arenicola ) on soil, Megatomentella cristata (incl. Megatomentella gen. nov.) on unidentified plant, Mutinus verrucosus on soil, Paraopeba schefflerae (incl. Paraopeba gen. nov.) on Schefflera morototoni , Phyllosticta catimbauensis on Mandevilla catimbauensis , Pseudocercospora angularis on Prunus persica , Pseudophialophora sorghi on Sorghum bicolor , Spumula piptadeniae on Piptadenia paniculata. Bulgaria : Yarrowia parophonii from gut of Parophonus hirsutulus . Croatia : Pyrenopeziza velebitica on Lonicera borbasiana. Cyprus : Peziza halophila on coastal dunes. Czech Republic : Aspergillus contaminans from human fingernail. Ecuador : Cuphophyllus yacurensis on forest soil, Ganoderma podocarpense on fallen tree trunk. England : Pilidium anglicum (incl. Chaetomellales ord. nov.) on Eucalyptus sp. France : Planamyces parisiensis (incl. Planamyces gen. nov.) on wood inside a house. French Guiana : Lactifluus ceraceus on soil. Germany : Talaromyces musae on Musa sp. India : Hyalocladosporiella cannae on Canna indica , Nothophoma